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Abstract

Transport Mode Detection (TMD) is a classi�cation problem where the goal is to infer the transport mode
of a user from GPS signals or inertial sensors, with applications such as carbon footprint tracking, mobility
behaviour analysis, or real-time door-to-door smart planning. Traditionally, the method for solving this
problem involved training a Machine Learning classi�er on handcrafted features.

In this thesis, we will tackle Transport Mode Detection using Deep Neural Networks, a class of algorithms
which o�ers the possibility to learn the features automatically from data. By attempting to use Deep
Learning on TMD, we will tackle several di�erent research questions: �rstly, whether to preprocess the
signals by computing a spectrogram, or stick to a one-dimensional sequence. We will show that computing a
spectrogram does simplify the problem, thereby helping the network not to over�t on a simple problem. The
second question to answer is data fusion, or, how to merge the data from di�erent sensors. We propose a
benchmark of di�erent data fusion methods used with Deep Neural Networks and conclude that no method
outperforms the others. Lastly, we will focus on Canonical Correlation Analysis to show that, when it
is applied to features of deep neural networks, the canonical components are equal to the classi�cation
components of the network.
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Résumé

La Détectiuon du Mode de Transport (Transport Mode Detection, TMD) est un problème de classi�cation
dont le but est de déterminer le mode de transport emprunté par un utilisateur à partir de signaux GPS
ou de capteurs inertiels, et dont les applications vont de l'estimation d'empreinte carbone à l'analyse de
comportement de déplacements, en passant par la plani�cation d'itinéraire en temps réel. Traditionnellement,
la résolution de ce problème passait par l'entraînement d'un classi�eur avec des descripteurs calculés en
fonction de connaissances pré-établies du domaine.

Dans cette thèse, nous nous attaquerons au problème de la Détection du Mode de Transport à l'aide de
réseaux de neurones profonds, un type d'algorithme qui apprend à calculer les descripteurs les plus adaptés
au problème à résoudre. Ce faisant, nous rencontrerons plusieurs questions de recherche : d'abord, nous
chercherons à savoir s'il nous faut passer par un spectrogramme, ou si le réseau peut traiter les signaux
bruts. Nous montrerons que, dans notre cas, calculer un spectrogramme permet de simpli�er le problème
de classi�cation à résoudre, ce qui évite au réseau de surapprendre. La deuxième question à résoudre est de
savoir comment intégrer les informations en provenance de di�érents capteurs, un problème appelé fusion
de données. Nous proposons une évaluation de di�érents algorithmes de fusion de données par réseaux de
neurones et concluons que, pour notre problème, aucune méthode ne dépasse signi�cativement les autres.
En�n, nous nous intéresserons à une opération appelée Analyse des Corrélations Canoniques (Canonical
Correlation Analysis, CCA) pour montrer que, lorsqu'on l'applique aux descripteurs appris par des réseaux
de neurones, les composantes canoniques sont égales aux composantes de classi�cation.
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Chapter 1

Introduction

1.1 Context and Motivation

1.1.1 Temporal signals

A temporal signal (or sometimes signal) , simply the recording of a physical quantity over time. This
measurement may come from any source: audio (barometric pressure sensors), seismographs, inertial sensors,
physiological signals,etc. Since the 19th century, theories such as signal processing produced analytical tools
in order to understand a signal's properties and modify them.

Historically, these tools were mostly used for domains where the signals were already measured, such as
automation or audio processing. However, the increasing availability of data, in addition to the development
of algorithms encoding these operations in o�-the-shelf libraries, make it possible to apply signal processing
algorithms in any domain where a measure is regularly repeated. In particular, by extracting a meaningful
and compact representation of often high-dimensional temporal data, signal processing proved valuable for
the Machine Learning community. For instance, we will see that one way to classify the transport mode of a
user is to train a Machine Learning model (e.g., SVM) on the spectral coe�cients of the signal. But for the
last few years, these interpretable features have been questioned by the apparition of a type of algorithms
which is able to learn the feature extraction step from raw data.

1.1.2 A brief overview of recent Computer Vision history

In the years 2000, the classical approach in classi�cation of images was quite di�erent from what it is today.
It consisted of mainly two steps: �rst, compute handcrafted features to encode the information present in
the image (Local Binary Patterns, Scale Invariant Feature Transform, etc.). Then, use a Machine Learning
model (mainly SVM) to classify this series of features. If Convolutional Neural networks already existed [1],
the advent of the kernel methods somewhat made CNNs temporarily obsolete.

This was until 2008, when a team of researchers decided to gather a huge dataset for Image classi�cation.
They collected enormous amounts of natural images from the Internet and organized the annotation process
using Amazon Mechanical Turk. The project involved more than 50,000 people across 167 countries [2], all
this in order to produce a dataset that would act as a reference in the Computer Vision community. In order
to compare the di�erent image classi�cation algorithms, they also organized from 2010 and onwards a yearly
challenge, the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC), for which participants had to
classify one million images from the dataset.

In 2012, the �rst ranking submission to the challenge was the one by Krizhevskyet al. [3] who, thanks
to Convolutional Neural Networks, outstandingly won the competition. Given that the sole neural network
participation ranked �rst, and given the wide margin by which this submission won [4] (the error rate went
from 25 % to 16 %), it was not long until the research community experimented with neural networks,
and, upon seeing the good results of these methods, switched to a new standard. Deep neural networks
quickly became the go-to approach, for image classi�cation and many other applications. One interesting
property which explains this popularity is the generalization capability of these deep models: a network
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trained on ImageNet (a pretrained network) will prove useful for many other Computer Vision problems.
More importantly, this utility goes beyond the cases where one can simply use the network as-is: to make use
of a pretrained network, one can decide to use its weights as a starting point to begin the learning process on
the new problem [5]; or, they can remove the classi�cation layer of the network, to use the features produced
by the network as encodings for the images they want [6, 7]. These models are so useful that the deep
learning libraries Pytorch and Tensor�ow include functions to download ImageNet-pretrained networks for
the practitioners to use as they choose.

Nowadays, the research in Computer vision focuses mostly on Deep Neural Networks, with new archi-
tectures for classi�cation [8, 9], training processes that require lesser amounts of (labelled) data, such as
transfer learning or self-supervised learning [10], or even the generation of realistic images, with the advent
of Generative Adversarial Networks (GANs) [11].

Without even reaching the current state of the art in computer vision, creating a Deep model which is
as versatile and powerful as the ImageNet models would prove useful for many real-life applications and
industrial researchers. Among them is the LSSC, the laboratory which �nanced this thesis.

1.1.3 A collaboration with an applied research laboratory

The thesis is organized in collaboration with an applied research institution named CEA,Commissariat
à l'Énergie Atomique et aux Energies Alternatives (Commission for Nuclear and Alternative Energies).
Originally created after the Second World War to develop the nuclear energy for industrial applications,
this organization became a tool for the French state to develop its industry, and in particular, to close the
gap between academic research and the industrial world. Nowadays, this institution is a country-wide actor
in diverse research domains (engineering, telecommunications, nuclear physics,etc.), and it is a recognized
actor in many applied research communities.

We will spare the reader the whole organization chart of departments, services, and laboratories that
the CEA is made of, to focus on the laboratory I was in. The LSSC (Laboratoire Signaux et Systèmes de
Capteurs, Sensor Systems and Signals Laboratory) is a team of �fteen research engineers who work within
a department that specializes in embedded sensors. The whole department works like an R&D service for
private companies: when an industrial actor has an idea about a technological product they want to develop
and would like to obtain a prototype, they contact the CEA. To do so, the organization either design the
appropriate sensors internally or make use of existing ones. The LSSC, in turn, is tasked with the design
of the software that will process the information from these sensors. Many of the sensors produce temporal
sequences of measures, and the typical treatments involve signal processing and Machine Learning. Other
activities of the laboratory include the production of studies or the participation in research projects �nanced
by public research agencies. To give a few ideas of the variety of the type of problems the laboratory has to
solve, here are a few examples of projects delivered by the LSSC in the last years:

ˆ the classi�cation of stress type from physiological signals (heart rate, electro-dermal conductance,etc.)
[12]

ˆ the detection of early dysgraphia using recordings of a child's writing [13]

ˆ the tracking of cable shape of cable transportation from cable tension signals [14]

ˆ the classi�cation of the transport mode of a person using smartphone measurements [15]

When they face a classi�cation problem, the research engineers usually rely on classical Machine Learning
and handcrafted features. In particular, when they deal with problems that are under-represented in the
literature, the laboratory may not be able to a�ord to have an engineer focus on creating problem-speci�c
features. Bene�ting from a deep model producing general-purpose features, like in Computer Vision, would
prove extremely valuable for the laboratory, if not for the whole research community. This thesis will not be
enough to reach this goal, but it will nonetheless provide a few useful indications in this direction. We will
try to pave the way for smarter use of neural networks with temporal signals.

As we cannot work on all possible problems, we decided to focus on a single classi�cation problem, a
problem called Transport Mode Detection (TMD). We will concentrate our experiments on this problem,
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and we will use the literature to know which conclusions apply to the general case, and which are proper to
our problem.

The choice of this problem relies on several reasons:

ˆ Firstly, it is a problem involving temporal signals where some temporal features (frequency bands) are
important, without solving the problem entirely.

ˆ It is multimodal, in the strictest de�nition of the word ( i.e., the problem does not involve a single
sensor with several channel, but di�erent sensors).

ˆ Lastly, having a practical solution was interesting for the CEA.

1.2 The problem of Transport Mode Detection and its application

Transport Mode Detection (TMD) is a family of classi�cation problems in which an algorithm has to predict
the transport mode of a given user, using several signals. The exact list of possible transport modes may vary
depending on the application (most research papers use between four and eight modes), but most applications
include at least the most common ones, such as Walk, Bus, Train, or Car, for instance. The signals are
collected from an embedded device (either the sensors of a mobile phone, or a dedicated device), and
processed by a TMD Algorithm. In practical applications, this algorithm is implemented either in a client-
server fashion (the device sends the raw data to a server that runs the transport Mode Detection) or directly
runs on the embedded device. The algorithm may run either in real-time (predicting the transport mode
instantaneously), or return a delayed prediction, after the user ended their trip. The practical implementation
of the algorithm translates into speci�c constraints for the programmer: if the algorithm runs in an embedded
device or in real-time, it should have low computational requirements; if the algorithm runs in a client-server
fashion, privacy guarantees are appreciable [16].

When returning delayed predictions, the algorithm most usually starts from a complete trajectory, par-
titions it into single-mode segments, and predicts the transport mode of each of these segments. Some
algorithms directly work with a trip that may contain several transport modes, and return the sequence of
all the transportation modes the user took. Other algorithms use only classi�cation, that is, they return only
a single class. This may happen either because the trajectory is known to contain only a single mode from
the start; or because the algorithm makes its predictions on segments so short they can assume the segment
to be unimodal with little errors (typically, a segment duration of one minute is enough, given that the
typical duration between two mode transitions is 20 minutes). In the next chapter, a review of the literature
will allow us to explain how one uses Machine Learning to this goal.

This �eld has several applications, such as smart trajectory planning, city-wide transportation studies, or
even carbon footprint estimation. An example of the latter application is the project led by the LSSC before
the beginning of the thesis, in collaboration with another French institution, the IFPEN ( Institut Français
du Pétrole et des Énergies Nouvelles, French institute for petrol and new energies). This organization wanted
to develop an app for anyone to estimate the greenhouse gas and pollutant emissions of their car trajectories,
and help the users reduce theirCO2 emissions. Concretely, the application detects the beginning and end
of every user trip or waits for user input to classify the transport modes of a trajectory. After the end of
the trip, the app uses a Machine Learning model to predict the transport mode of the user and computes
an estimation of the greenhouse gas emitted during the travel given the trajectory duration, the type of
vehicle involved, and the driving style of the driver (if applicable). After the project, the institute continued
developing this app on their own and, nowadays, it is available for download under the name Géco air for
Android and Apple1.

We could mention that Transport Mode Detection is already implemented by default in Android phones
[17]: Android proposes an API available for use by any application which was granted permission by the
user2. However, we do not know how does this API behaves internally, or what features or models it relies on.
The closest o�cial information comes from a page from 2015 which mentions the use of Machine Learning

1Sadly, the author of this manuscript did not receive any compensation for the promotion of this product.
2This applies only for applications developed after mid-2020, which means the applications that have not been updated

before this date still do not need any permission to use the activity recognition.
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and Bluetooth signals [18]. A study from 2018 [19] shows that the performance of this API is far from perfect.
Another imperfection of this implementation is the fact that the class granularity is rough: among the eight
labels returned by the API, there are six TMD classes (still, walking, running, bicycle, in a vehicle), but all
the vehicles belong to a single class. This means that despite existing practical implementations, TMD is
not a solved problem. We will see in the next chapter all the recent improvements in the academic domain.

1.3 The proposed approach and contributions

In this thesis, we are investigating how the paradigm of deep learning, which proves successful in computer
vision, can be used and adapted to handle the TMD problem while dealing with various temporal signals. The
proposed approach is therefore Deep Learning-based as opposed to traditional Machine Learning approaches
which require manually handcrafting features.

In doing so, we have to address several scienti�c questions:

ˆ How to preprocess temporal signals to use deep neural networks ?We study the bibliography to �nd
which representations are used in di�erent sub�elds of deep learning and perform a comparison of
di�erent representations ourselves. Finally, we try to understand what does the computation of a
spectrogram bring to our model.

ˆ How to merge data from di�erent sensors ? After an empirical benchmark of di�erent fusion methods
in the literature, we study in detail one fusion method we found in the literature, an algorithm based
on a statistical operation named Canonical Correlation Analysis.

Our attempt to answer these questions led to the following contributions:

ˆ We exhibit one reason why spectrograms are better than the raw data for a neural network: they allow
to simplify the problem of Transport Mode detection.

ˆ We introduce the use of global pooling in the domain of deep learning for Transport Mode Detection,
which allows us to use convolutional networks with inputs of any size.

ˆ We establish a benchmark of di�erent data fusion algorithms in the literature.

ˆ We demonstrate that using Canonical Correlation Analysis to perform data fusion, as done in literature
do, is equivalent to a much more simple operation: considering the class logits of the networks.

1.4 Outline of the manuscript

The present manuscript will try to cover the di�erent types of problems a practitioner faces. Usually, when a
research team tries to design an algorithm to solve a practical problem, they have to answer several questions:
which sensors to use, how to preprocess the data, how to choose hyperparameters for the network (including
how to choose an architecture), how to make sure they evaluate their model properly etc. Without giving
de�nitive answers, we will cover each of these subjects and give some indications for future researchers. The
organization of the manuscript will re�ect these choices.

First, chapter 2 will present the state-of-the-art, the datasets we use (the GeoLife and SHL datasets),
and the two baselines our work will use in the next chapters.

In chapter 3, we will look at the problem of the preprocessing. After a brief introduction showing how
simple preprocessing step (the choice of a good padding for shorter segments) can change the performance,
we will spend some time to know whether one should use their one-dimensional sequence of data points as
is, if they should compute the one-dimensional spectrum of the signal, or if they had better using time-
frequency diagrams. To do so, we will �rst review the type of preprocessing used with one-dimensional
signals in di�erent �elds of application, before trying to do the comparison ourselves. Finally, we will show
that the spectrograms (the time-frequency diagrams) allow simplifying the TMD problem by making the
classi�cation of the easiest classes linear.
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When the sensors and the form of the input are chosen, one decision that often comes to practitioners
is the choice of an architecture for the network. Chapter 4 will be devoted to one particular decision: the
choice of a pooling function for the network.

A decision that also comes with the architecture selection is the choice of the architecture to merge the
data from di�erent sensors, a problem calleddata fusion, which we will cover in chapter 5. We will start
by implementing several data fusion architectures from the literature to compare them and conclude that,
in our case, most data fusion methods are equivalent. We will try to improve on the di�erent methods by
forcing the networks to learn complementary features, and we will show that in fact, the networks decide
better by themselves what is the optimal amount of correlation between their feature.

However, the tool we use to produce complementary features, Canonical Correlation Analysis (CCA),
is not devoid of interest. The �nal chapter will be devoted to the study of this operation. Mainly, we
will demonstrate that when we apply CCA to the features from a neural network, this operation implicitly
recomputes the classi�cation logits which are the inputs of the softmax layer. The main implication is that
a data fusion relying on CCA can safely be replaced by a much more simple operation, which is to the sum
of logits of each network before computing the probabilities.
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Chapter 2

Related works, datasets, and baseline

This chapter is in three parts: section 2.1 will present an overview of the literature in Transport Mode
Detection (TMD). Then, section 2.2 will review the most important TMD datasets available in the literature.
Finally, section 2.3 will focus on the two datasets we used. For each of them, we will show the network we
will build our experiments upon.

2.1 State of the art

Transport Mode Detection is a well-studied subject in the research community. Similarly to the literature,
this thesis will focus on TMD from GPS or inertial sensors (accelerometer, gyrometer, magnetometer), even
though other sensors are available: some works focus on Transport Mode Detection using the signal received
from radio towers [20], Wi� signal [21], potentially along Bluetooth [22, 23], or even sound [24, 25]. The
�rst two are not very present in the literature because of their limited performance, while the sound is rarely
used because of important privacy concerns. Hence, we will focus on the two types of sensors that are the
most commonly used in the literature: GPS signals and inertial sensors.

As �gure 2.1 shows, many works follow a common structure: Cleaning, Point-level feature computation,
Segmentation, and either Trajectory-level classi�cation using classical Machine Learning algorithms; or using
a pure Deep Neural Network.

The next pages will detail what these steps consist of, and what are the di�erent alternatives used in the
literature. This section will not try to compare the di�erent alternatives, mainly because there are multiple
datasets or problems to consider (the exhaustive list of reasons that present an e�ective comparison will be
provided at the end of the section). However, we will compare the publications relying on the same dataset
when presenting our baselines, in section 2.3.

2.1.1 Data cleaning

When dealing with signals that are are known for being noisy (such as GPS signals [26]), most research
works use Kalman �lters [27], Savitzky-Golay �lters [28], particle �lters [29], or outlier detection thanks to
clustering techniques [27] to clean the data. Some approaches also remove the trajectory from the dataset
if its speed or acceleration is above a realistic threshold given the class of the trajectory (for instance, the
maximum speed and acceleration for the 'bus' class are set to120 km=h and 2 m=s2 respectively in [28]).

For inertial sensors, we notice the use of Butterworth �lters [30], or undersampling [31] to work with
smaller amounts of data. But many choose to simply ignore this step (see [32, 33] for instance).

The possible options to clean a signal seem to come mainly from signal processing. In addition, given
that the works that ignore the cleaning step do not report su�ering from the noise in the data, we think there
is little to gain by improving the cleaning of the signal. Combined with the fact that the signal processing
research domain is well-theorized, and much more stable than the Machine Learning or Arti�cial Intelligence
one, we expect to see little improvements of this step in a near future.

The relevance of this step might not even be obvious at a �rst glance because it is sometimes done by
those who gather the dataset as part of thecuration step (such as the SHL dataset we will present later).
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Figure 2.1: The outline of a classic Transport Mode Detection algorithms, along with a few examples of each
step.
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Figure 2.2: An illustration of the meaning of the axes in a smartphone: the referential of the sensor (xb; yb; zb)
and the de-rotated, or NED (North, East, Down) coordinate system. Reproduced from [54].

We include it here for two reasons: First, researchers might still have to perform cleaning themselves in some
cases (the GeoLife database, which we will present later, is one example). Second, forgetting it might result
in a mismatch between the academic and industrial practices. Even if it is more convenient for academic
comparisons to share clean datasets, we must keep in mind that the practitioners will have to deal with this
additional work [34].

2.1.2 Point-level feature computation

This step consists in computing a representation of the input data which encodes the information more
explicitly than the raw representation. This is where the di�erences between GPS and inertial sensors are
the most important. In fact, every problem has its own point-level processing.

GPS signals : When dealing with GPS data, researchers often convert the(lat, long) into more signi�cant
values. Those features are computed at each timestamp. Speed and acceleration are used universally. Other
point-level features include distance [35, 36, 37], jerk (the time derivative of acceleration [27, 37]), or delta-
bearing (the angle di�erence at each time step, sometimes calledbearing rate) [27, 37].

The works of Endo et al. [38] and Zhu et al. [39] are fairly original: the compute heatmaps of the
GPS measurements. They use a �xed-size grid centred on the barycenter of the GPS. Endoet al. [38]
demonstrated that the discretization into grid cells helps the algorithm to be resilient to noise.

Apart from these two exceptions, the speed, bearing, and their time derivatives are the only point-level
features that have seen any use in the literature since the emergence of transport mode detection in the
years 2000. The improvements in the feature computation all belong to the trajectory-level features (section
2.1.4) or, more importantly, to the architectures of deep networks and their training (section 2.1.6). Hence,
we expect this step to keep being stable throughout the years for GPS signals.

Inertial sensors : With inertial sensors, the most common preprocessing is the computation of the
norm (or magnitude) of the triaxial signal: norm =

p
x2 + y2 + z2, [31, 30, 32, 40, 41, 42, 43, 44]. As

these sensors measure in their own referential (see �g. 2.2), there might be a need to express them with a
referential that does not depend on the movements of the phone. To do so, researchers often convert into the
North-East-Down (NED hereafter) coordinate system, using the real-time orientation [45] (sometimes under
the name derotated features[46]). The NED signals are often considered in addition to the raw signals from
the sensor's referential (see �g. 2.2 for an illustration of this referential), [33]. In addition, the Euler angles
are sometimes added to the orientation quaternion [45, 47].

We mention seeing the gradients [46] and integrals of signals [48, 49]. We also notice the computation
of the Fourier Transform [25, 33] or Spectrograms (two-dimensional diagrams consisting of sequences of
Short-Term Fourier Transform [31, 50, 25, 51, 52, 53])

Why is computing a FFT not part of the trajectory-level feature computation step: The border between
point-level and trajectory-level features is not crystal clear (the spectrogram, for instance, o�ers an interesting
in-between), and one could argue that computing the Fourier spectrum of a signal is already computing
trajectory-based features. For our application, the clearest di�erence between the two is in the dimensionality
of the data: the number of point-level features may change if the input sequences have di�erent lengths, while
the number of trajectory-level features remains constant. For example, the full spectrum has a number of
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points that is equal to the number of points of the input trajectory in the temporal domain, while the power
in a series of �xed frequency bands will always output the same number of values, no matter the frequency
resolution of the input sequence. Hence, in this work, the Fourier transform is part of the point-level features,
and the energies in di�erent frequency bands are considered as trajectory-level features.

The rare publications that do justify their choice of a point-features use either ana priori reasoning on the
contribution of each type of features (like we will do partly in section 2.3.3), a measure of the consumption
of each sensor, or an empirical measure of the performance. This last criterion necessitates particular
caution: there would be nothing wrong with a research domain being purely empirical, but measuring the
generalization ability of a model is not as straightforward as it seems, and we will see that many works can
be criticized on that aspect. Note that we will dedicate a chapter (chapter 3) to the choice between raw
temporal data and spectrograms.

2.1.3 Segmentation

The goal of segmentation is to separate a potentially multimodal trip into several portions with a single
transport mode. This step is often skipped, most research works (including us, or [28, 55]) prefer using the
ground truths to be sure to work on segments containing one transport mode. This corresponds to a simpler
version of the real-life problem, where we do not consider the errors added by the segmentation algorithm.
Those who segment using the data typically rely on walk detection (a small walk is usually necessary between
two modes, [35]) or the PELT algorithm [56, 57]. See [58] for interesting considerations on segmentation
algorithms in trajectory analysis.

Some researchers work on asemantic segmentationproblem: semantic segmentation is, like classi�cation,
a type of supervised problem, as they both require some amounts of labelled data to create a model able to
make predictions on unseen data. However, classi�cation is a type of problem where the model returns only
a single prediction per sample. For semantic segmentation, the model returns a localization of the di�erent
classes present in each input sample, to a resolution that can go up to one label per input data point.
This problem is well studied in computer vision and other research domains, and multiple Machine Learning
models or neural networks exist to return more than one prediction. Surprisingly, however, most of the works
in the TMD literature do not use any of these semantic segmentation-speci�c models. Instead, they apply a
classi�cation algorithm to small windows of the trajectory [30, 59, 57, 31, 45, 42, 60, 61, 62]. Note that these
approaches are only possible because the data we use is sequential in nature: using moving windows might
not be feasible with two-dimensional (or even three-dimensional) data for complexity reasons. Some [59,
63] predict the mode using partitions of the segment into windows of di�erent lengths (each window length
creates a new partition of the segment), and obtain a prediction at each timestep with a majority voting.
For those who output a sequence of predictions, an additional step is sometimes present: a correction of the
prediction sequence using either an explicit transition matrix [59, 61], rules [62, 64] or a HMM [31, 45, 42,
60].

We found only one publication using semantic segmentation techniques in the literature: Liet al. [65]
used an architecture similar to UNet ([66]) in order to process in one forward pass the trajectories with
potentially several transport modes. They also use a semi-supervised training and a post processing step to
smooth the predictions. We will see that many ideas in the recent TMD literature are directly adapted from
the Computer Vision literature after a delay of several years. Hence, we expect to see a development of the
semantic segmentation in TMD in the next few years.

2.1.4 Trajectory-level feature computation

For classical Machine-learning approaches,trajectory-level feature computation has two objectives:

ˆ Get back to a �xed-size feature vector, usable by machine learning models: the number of point-level
features is often proportional to the length of the input trajectory, while the number of trajectory-level
features is constant.

ˆ Extract meaningful information from the features: for example, with GPS signals, the standard devi-
ation of the speed is more meaningful than the speed of, let us say, the fourth point of the trajectory.
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The computation of the mean, standard deviation, minimum, and maximum of each point-level feature is
universal. In the case of the noisy GPS signals, the maximum and minimum are often replaced by percentiles,
which are more robust to errors [27, 67]. Other used operations are the computation of the median [68],
interquartile range [69], the number of zero crossings of the temporal signal [70, 48], kurtosis [69], frequency
energy bands [71], autocorrelation coe�cients [67, 72], or maximum and index of the maximal coe�cient
of the autocorrelation function [73]. Some of these rarer trajectory-level features are computed using the
spectrum of the point-level feature signal. This is the case of the most important frequency [74, 31], the center
of gravity of the spectrum [73], spectral entropy [31, 70, 69], the coe�cients of the wavelet decomposition
[75], or cepstral coe�cients [76].

Some trajectory-level features do not rely on a speci�c point-level feature, such as the stop rate and
direction change rate [35], tripleg duration [77]. Several works also improve the predictions using features
from external sources, like the weather [78] or the closeness to train lines [79] and/or bus stops [80, 81, 82].
The additional information needed to compute these last three features is obtained from sources such as
Open Street Map [80, 82] or Baidu Map [81]).

Given the large majority of features used, some works decide to use automatic feature selection, whether
by adding features one by one [27, 70, 83], by a global analysis of the correlations between features [31, 84,
44], or using PCA [85, 86].

2.1.5 Classi�cation: classical Machine Learning

For classical Machine-learning approaches, the state of the art is Random Forests [27, 87, 70, 87, 62, 88, 44]
and SVM [89, 82, 70]. Other classi�ers include XGBoost [51, 74, 90, 91], decision trees [92, 93] NaiveBayes
[71], Multi Layer Perceptron [38, 81, 71, 87], KNN [67, 85], HMM [94], Gradient Boosting [48, 75], logistic
regression [95], statistical models [93], or even rules [96] and fuzzy rules [97, 98]. Many works [77, 48, 99,
100] compare several Machine Learning classi�ers. In these works, XGBoost, Random Forest, and SVM are
often among the best performing classi�ers.

One may also use an ensemble of di�erent Machine Learning classi�ers [31, 84, 48]. After each model made
its prediction, the �nal decision is made with a Hidden Markov Model [31, 84], a Multi-Layer Perceptron
[48], or a simple majority voting [41].

Sometimes, the classi�cation is hierarchical: a �rst classi�er distinguishes two groups of classes from each
other (for instance, the motorized modes, such as car, bus, train, against the others), and a second and third
classi�er are trained to recognize the class on each subgroup. This is done to simplify each classi�cation
problem, and can be noticed in [59, 40, 76, 90, 101].

Surprisingly, when researchers report the reasons to choose a model, they mostly mention performance
alone, measured using the accuracy, the F1 score, or even the AUC. Apart from the hierarchical classi�ers
and (fuzzy) rules, domain knowledge is never used to choose or even design a classi�er. It seems that the
only source of improvement to this step is the advances in Machine Learning. However, the progress in this
direction has slowed down since the advent of deep learning: it seems that neural networks have become the
most active source of inspiration for TMD.

2.1.6 Classi�cation: Deep Learning

Within deep learning-based approaches, there is a great diversity of neural networks: we note the existence
of Convolutional Neural Networks [102, 103, 28, 104, 57, 105, 37, 52, 47, 106], which extract representations
that are independent from the position of the motif along the temporal axis. We see Recurrent Neural
Networks (RNNs, [33, 107]), or LSTMs [108, 109, 110, 43, 111] (a speci�c kind of RNNs). The architecture
may even integrate both convolutional layers and recurrent layers, such as in [112, 99, 39, 113, 114, 115,
78]. In these situations, the convolutional layers are often closer to the input data, to extract the features:
we saw only one counterexample (that is, one work where the LSTM layer is closer to the input than the
convolutional layers are [116]), and with limited results [117].

This organization of the networks (convolutional layers �rst, and recurrent layers afterwards) is consistent
with the role of each type of network:

ˆ Convolutional layers are more suited to extract representations from raw data. The convolution layers
learn representations which are invariant to the location of the motif, while the pooling layers provide
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valuable dimension reduction

ˆ Recurrent networks are more suited to classify sequential information.

RNNs and LSTMs are not often used on raw data ([108, 109, 43] are notable exceptions). Most of
the time, they are used either on handcrafted features ([46, 33, 107, 95]) or after a series of convolution
layers ([112, 39, 113, 114, 115, 78]). This mirrors the use of RNNs in the general literature: For instance, in
Natural Language Processing (before the advent of transformer architectures), the recurrent neural networks
used features from word embedding such as Word2Vec [118], which were trained in an unsupervised setting.
To sum up, in TMD, extracting meaningful features from the raw data seems to be the prerogative of
Convolutional networks.

In some occasions, ensemble of deep models are used [28, 37, 51, 46]. We can also notice the use of
attention mechanisms, [119, 120]. However, these works may use di�erent names, and/or di�erent imple-
mentations from the "baselines" of attention [121, 122]

We do not notice the presence of ensembles of RNNs. This may be due to the fact that Recurrent
architectures take longer to train than convolutional ones, due to their low degree of parallelism [122].

We should also mention the works of [105] who used Generative Adversarial Networks (GAN) to generate
samples from the least represented class in order to produce a balanced version of the dataset. They compare
the performance of an ensemble of CNNs trained on the augmented dataset to a single CNN trained on an
oversampled version of the original dataset and notice the ensemble method has a higher performance for all
of the �ve classes they considered. In a similar fashion, [123] created a conditional GAN for which a classi�er
makes a prediction on the sample, and the discriminator sees both the prediction of the classi�er and the
sample to say whether it is real or fake. In addition, [124] considered a particular type of GANs, where the
discriminator did not have to only predict if the sample was real or fake, but it also had to predict the class
of the real samples. Hence, the discriminator's output had5 + 1 classes (Walk, Car, Bike, Bus, Train, for
real samples, and Fake). Finally, we should mention the works of [125], who used Adversarial Autoencoders,
[126], a variant of the classic Autoencoder where the discriminator has access to the latent vector of the
autoencoder and learns to distinguish it from a random Gaussian variable so that the Autoencoder fools the
discriminator and generates latent representations that follow this distribution.

Some [102, 38, 81, 57, 110, 127, 65] use autoencoders to extract features from trajectories but, curiously,
only four [57, 110, 127, 65] make use of additional unlabeled data. These works are calledsemi-supervised:
that is, they use samples without their labels to teach their models to process the data, along with a fraction
of labelled samples to learn a classi�cation boundary. Making use of the unlabeled data is useful in many
industrial applications because collecting the labels is often the most expensive part of the dataset creation
process. In the case of TMD, collecting unlabeled data allows the user not to label their transport mode
constantly, which might translate into more frequent recordings. The fact that so little publications made
use of unlabeled data is surprising in TMD because the most famous GPS transport mode database (the
GeoLife database) contains a majority of unlabeled samples. In a similar fashion, the works of [55], who
usesunsupervisedclustering with a convolutional autoencoder in order to create features from trajectories.
They realize that the clusters they computed align fairly well with the classes of the dataset, even though
they never made use of the labels to compute the clusters.

We also mentioned how some publications used data from other sources (the positions of bus lines [81]
or the weather [78]). However, to the best of our knowledge, none used GPS data from other sources to help
training a semi-supervised model.

Currently, this step is the main source of innovation in TMD. It bene�ts most from Computer Vision,
which is the main driving force in the research in Deep Learning. We can even notice that the improvements
in deep learning take a few years before being adapted in TMD: the semi supervised work were published
in 2018 ([57]), 2020 ([127]), and 2021 ([65]); and the works involving GANS date from 2019 ([124, 125])
and 2020 ([123, 105]). This is why we think one obvious direction of research in TMD is to keep bringing
to this domain the innovations from the general Deep Learning community, and in particular, Computer
Vision. Given that the recent trends in computer vision involve using GANs [11], training the networks using
self-supervised losses [10], the use of transformer architectures [9], or semantic segmentation [128], we could
expect these domains to emerge in TMD, possibly after a few months or years of acclimation.

However, there is one domain which we think will not appear in TMD: the use of simulated data. In
Computer Vision, many works generate data with graphical engines to increase the amount of data they
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train their model with. When we look at simulation data in Computer vision, we can see that the creation
of simulated data relies on realistic simulated images obtained from graphical software like Blender, from
graphical engines of video games, both including rich libraries of objects and textures. The important point
is that the software used for the creation of arti�cial images is already available, with open licenses and a
documentation allowing easy reuse. In the case of signals from GPS or inertial sensors, several sensor-speci�c
reasons prevent an e�ective simulation:

1. The GPS signals should, ideally, incorporate the noise of the real signals that is due the re�ection of
the signal on buildings.

2. For accelerometers or gyrometers, if it is possible to model the movements of a human skeleton, a
realistic simulation should also take into account the fact that the sensor is not �xed rigidly to the
user's body. Instead, a typical smartphone is usually in the user's pocket or bag, and a realistic
simulation should model the bouncing of the sensor's support.

3. For the signal from magnetometers, a realistic simulation should take into account the di�erent per-
turbations: presence of electrical engines of trains or subways, �uctuation of the magnetic �eld of the
Earth inside the metallic cabin of a vehicle,etc.

In all three cases, the physical laws governing the phenomena are well known. However, there is a
substantial di�erence between knowing the theory and making a practical simulator: before using arti�cial
data, the TMD research community should learn how to generate arti�cial data realistically and e�ciently.
One could also think of using GANs to generate arti�cial data, but this approach is, to the best of our
knowledge, currently unexplored in TMD.

The e�cient generation of arti�cial samples is a technological lock that prevents to adapt the use of
simulated data in TMD. Hence, before even trying to import the literature on the use of synthetic data
from Computer vision, one should additionally develop a realistic simulator. The other domains (GANs,
transformers, focusing on semi-supervised, self-supervised, or even unsupervised networks) are easier to adapt
from Computer Vision. This is why we think that the research in the next years will focus on using less
(labelled) data, before trying to leverage the power of arti�cial datasets.

2.1.7 The problem of the evaluation

Even though every classi�cation algorithm is systematically evaluated to be compared to the state of the
art, in practice, comparing approaches of di�erent works is not as easy as one could think, for four reasons:

1. The �rst one is the fact that there is no ImageNet for TMD: many researchers conduct a study
in which they sample new data (by leading an entire data collection campaign) and perform some
Machine Learning, but without publishing their dataset [87, 79, 129, 130, 82, 92, 131, 40, 132, 133,
134, 110]. This makes the comparisons harder: if, for instance, the data comes from a city with lenient
speed limits, the cars and buses will tend to drive faster, and the distinction between motorized modes
and bikes will be easier. In addition, if the data is recorded under the direct supervision of a researcher
(such as in [130], for example), chances are that the subject will be aware they are surveyed, and act
di�erently than they would have in their daily lives (this is the Hawthorne e�ect, [135]). These two
examples illustrate the need to compare performances on the same dataset, as one cannot quantify
the e�ect of these di�erences, nor can they enumerate all possible sources of performance discrepancy
between two datasets.

2. Even when two papers work on the same dataset, they might not use the same set of classes: for
instance, in one of the datasets we will use (the GeoLife dataset), many classes originally present in
the set form an extreme minority of the samples (motorbike, car, boat). This is why the creators of
the dataset advise the researchers to remove some classes and to merge others [89]. However, given
the varying applications of TMD, some researchers decided to merge more classes than the original
recommendation. This leads to a situation where, despite working on the same dataset, two publications
work on di�erent problems. To know how a change in the categories employed would a�ect the results,
one could look at the confusion matrix (�g. 2.12). For instance, if two modes are frequently confused
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with each other, merging them would cause the model's performance to increase. This applies to the
merger of {car & taxi} with bus [28, 57, 109] and, to a lesser extent, to the merger of the classes train
with subway. A similar reasoning could be made about the removing of the two rail modes (train and
subway), as [108] do (leaving only four modes, {walk, bike, car, bus}): not only are these modes no
longer confused with each other, but they are not even confused with the car or the bus. As one could
expect, the number of classes employed correlates negatively to a model's performance (see table 2.4
in section 2.3.2).

3. The third hurdle to an e�cient comparison is the use of multiple scores to evaluate the classi�ers. Some
works (including recent ones [127, 55]) use the accuracy, that is, the proportion of samples that are
correctly classi�ed. Yet, the accuracy is biased towards the most frequent classes [136]. To illustrate it,
let us use the famous example of a classi�cation system that considers a given individual, and predicts
the presence of a rare disease that touches0:1% of the population. If this system always predicted
that the individual was healthy, it would have an accuracy of 99:9%, despite being obviously �awed.
In TMD, the classes are not unbalanced to this degree, but the disproportion is large enough to make
the accuracy score unreliable (see �g. 2.10 and 2.14, along with table 2.2). When considering the
Transport Mode Detection publications using GPS signals, the works that use an appropriate measure
are the slight minority: one work computes the AUC [108], and some research publications use the
F1-score [27, 28, 28, 105]. Worse, we sometimes even see some direct comparison between di�erent
scores: a recent survey Sadeghianet al. [137] (table 2) cited the results from [28, 57] by putting their
resulting F1-score in the "accuracy" column of their table (which also contains true accuracy scores).

4. Finally, the last hurdle is an e�cient splitting between the training, validation, and test set. Not all
research works use a three-set separation, many works preferring to only use one train and one validation
set, to compare their validation score against the state of the art. This leads to an obvious risk of
over�tting, as the hyperparameters one chose might be speci�c to the dataset the model was evaluated
on to some extent (this point is further reinforced by the fact that many publications do not display
any standard deviation, see table 2.4). The second downside is that the creation of a test set leaves
a bit less data for training, which means a model trained without a test set bene�ts from a training
size that is inappropriately larger than what it should be. We should note that in several publications,
the validation set (the set that is used to choose the Machine Learning algorithm or calibrate the
hyperparameters) is calledtest set [38, 127]. Even for those who do use a separate test set to compare
their results against the state-of-the-art, the separation between the sets is primordial. With the two
datasets we will use, computing the training, validation, and test set is not straightforward, and there
are pitfalls one must be careful of in order to avoid hidden over�tting sources. We will present these
in the next section.

Normally, a test set is used to evaluate the generalization ability of a model. Each time one uses any
dataset to select a model, they have a small chance to select improvements that are proper to this very
dataset, instead of choosing a model that generalizes well. We can use a test set to choose between a handful
of publications, because the probability of choosing a model that is better on this particular test set is low.
However, if every publication uses the test set to select the best model, the probability to over�t to this set
increases signi�cantly. In other words, if we compare publications on the validation set, our comparison will
be biased towards the publication that did the most evaluations on the validation set.

This is why the organization of a challenge, with common rules and hidden test set, is so important: the
fact that the test set is unavailable is a strong guarantee against over�tting, no matter how rigorous the
participant are, or how much the validation score of the publication is. A challenge guarantees to avoid a
situation where there are so many qualitative precautions to keep track of that numerical results lose any
meaning (a situation that somewhat happened for the GeoLife dataset, see section 2.3.2).

When working with these datasets, we will use the F1-score that takes the imbalance into account, and
will follow the recommendations of the GeoLife dataset creators [89] when multiple choices of classes are
present. However, comparing the approaches relying on GPS signals to the literature will be di�cult. When
we will work with a dataset from a challenge, we can at least choose to be in the exact conditions of the
challenge, using the 'hidden' test set (which labels have been released since) only once, to compare ourselves
against the participants. In the next sections, we will present the datasets the publications base their results
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on, including the two datasets we used (the GeoLife dataset, and the SHL 2018 challenge), and, the baselines
that most of the experiments rely on.

2.2 Datasets

This section is devoted to the presentation of the main public datasets in TMD. If we only chose to use two
of them (the GeoLife and the SHL 2018 datasets), we explain why we did not choose the others. Table 2.1
summarizes the di�erent datasets.

2.2.1 The GeoLife dataset

The GeoLife database [89, 138, 139] was collected between 2007 and 2012. The GPS signals of 180 partic-
ipants living in �ve di�erent cities of China were recorded during their commutes, in order to study their
behaviours when travelling. Unfortunately, the need for labelled data did not appear immediately, and only
one tenth of the trajectories of the database is labelled (in the subsequent, we will only refer to the labelled
data, unless otherwise speci�ed). The dataset is an ensemble of trajectories, each trajectory being a series
of (latitude; longitude; timestamp ) points. Each labelled trajectory has one or more transport modes, and
each change between modes has an associated timestamp, so that each point can be attributed a label. The
transport modes (classes) in the dataset are:walk, bike, car, taxi, bus, train, subway, boat, airplane, motor-
cycle. An overview of the dataset is available in table 2.1. We follow the recommendations of the GeoLife
user guide [89], removing the classes,boat, airplane, and motorcycle, and merging together the classestaxi
and car. Figure 2.3 gives some examples of trajectories in the dataset. One can see that most of them follow
the straight lines of the street networks (most streets are oriented either on the North to South axis or on a
West to East axis) using the histogram of the angles in �g. 2.4. Finally, a histogram of the di�erent classes'
trajectories durations is available in �g. 2.5. One important thing to note is that the data points are not
sampled at the same rate: some trajectories have a sampling rate of 1 or 2 Hz, while some others can go
down to 0.02 Hz on average.

Figure 2.3: A few examples of monomodal portions of trajectories in the GeoLife dataset. The start of the
trajectory is set to be the origin
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Figure 2.4: The histogram of all the orientations between two successive GPS points in the GeoLife dataset.
The fact that the 0°, 90°, 180°, and 270° values are over-represented indicate that most of the trajectories
follow the orientation of the grid-like road system.

Figure 2.5: The histogram of the durations of each monomodal segment in the GeoLife dataset. As expected
by the intuition, the Walk segments are typically quite short (less than 15 minutes), while the train segments
can be extremely long (more than three hours).

15



C
hapter

2
�

R
elated

w
orks,

datasets,
and

baseline

Dataset GeoLife [89] SHL 2018 [140] SHL 2019 [141] SHL 2020 [117] TMD [19]

Number of users 69 1 1 3 16

Total duration 5,000 h 272 h 3� 272 h 4� 312 h 32 h

Total trajectories
length (estimated)

116,000 km 1,200 km 500 km 1,700 km unknown

Average interval
between two data points

7s 0.01s between 0.2 and 10s
(depending on the sensor)

Median interval
between two data points

2s 0.01s between 1s and 10s
(depending on the sensor)

Sensors GPS
Accelerometer, Magnetometer,
Gravity, Linear Acceleration,

Gyrometer, Orientation quaternion,
Pressure

Accelerometer, Magnetometer,
Gravity, Linear Acceleration,

Gyrometer, Orientation quaternion,
Pressure, Sound, Light,
Step detector, internal

sensors,etc.

Position of the sensor unconstrained Pocket Pocket, Bag
Torso

Pocket, Bag
Torso, Hand

unconstrained

Number of channels 3 20 59

Total number of
trajectories

10; 000 16; 000 3� 200; 000 4� 220; 000 248

Total number of data
points in the database

(for each channel)
2:5 � 106 9:6 � 107 3� 3:2 � 107 4� 1:1 � 108 1:4 � 106 to 3:3 � 106

(depending on the sensor)

Classes
Walk, Bike, Bus,

Car & Taxi, Subway,
Train

Still, Walk, Bike,
Run, Bus, Car,
Subway, Train

Still, Walk, Bus,
Car, Train

Table 2.1: An overview of the labeled data in the datasets from the literature. The notation in bold 3� and 4� for the durations and number of data
points refers to the fact that several measurements are simultaneous, using phones placed at di�erent positions at the same time. The distances from
the three SHL challenges were estimated proportionally to the duration of the complete SHL dataset (15,000 km for 2,800 h, [117]).
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2.2.2 The SHL 2018 challenge

The Sussex-Huawei Locomotion challenge 2018 is a competition organized by the University of Sussex, UK,
in collaboration with Huawei. The participants were given a series of 16,310 consecutive annotated recordings
of embedded sensors and had to classify some 5978 samples of a test set. Each recording is 60-seconds long,
and contains data from 7 sensors, and 20 channels: three axes (x, y, z) for the accelerometer, magnetometer,
gravity, linear acceleration (acceleration minus gravity), and gyrometer; one orientation quaternion (x, y, z,
w), and a recording of the barometric pressure. The accelerometer, gyrometer, magnetometer, and pressure
are said to be real sensors, because they were recorded directly from a sensor, in contrast to the linear
acceleration, gravity, and orientation, which are said to bevirtual sensors (that is, sensors whose value are
computed by the phone system). Each signal was recorded at100Hz, so that one sample to classify is a set
of 20 vectors of size60� 100 = 6000points. There are 8 classes available: Still, Walk, Run, Bike, Car, Bus,
Train, Subway, and �gure 2.6 displays some examples of signals from samples of all classes. The participants
had to design an evaluation protocol to train and evaluate their models on the 16,310 annotated samples, and
submitted their predictions on the 5978 test samples for evaluation. Then, the organizers of the challenge
evaluated all these predictions and established a ranking of the participants, before releasing the annotations
on the whole dataset. Our protocol mimics this setting: the annotations on the 5978 test samples are used
only once in chapter 5.

2.2.3 SHL 2019 and 2020 challenges

The data used to set up the SHL 2018 challenge come from a larger dataset. This dataset gathers the data
of three users, who were asked to record the data from four phones at once: one in their pocket, one in their
hand, one in their bag, and one on their torso. They also equipped the users with a RGB camera taking a
picture every 30 seconds, so that they could review the photos to correct any labelling mistakes.

In 2018, 2019, and 2020, three challenges were organized with di�erent subsets of this dataset. In 2018, the
challenge was a simple classi�cation problem: the training and testing data are samples from the �rst user,
using only the phone in their pocket. In 2019, the challenge was a transfer learning problem: the organizers
released the data from the pocket, bag, and torso phones of the �rst user, and asked the participants to train
a model predicting the transport mode using the data from the phone in the user's hand [141]. To help with
the validation, a small amount of hand-phone data was also provided.

In 2020, the challenge was still a transfer learning problem, but this time, the participants were to transfer
to new users. The organizers released the data from the �rst user (four positions), along with a small amount
of data from the two other users, and asked to predict the transport modes of the two other users [117].
Using the same set of classes as the 2018 challenge, the best test F1-scores of the SHL 2020 challenge were
88.5 %, 79.0 %, and 77.9 %. As the �rst-ranking participation used the labelled data from the second and
third users to train their �nal model (this data was originally intended for validation only), we can say that
a F1-score of 77.9 % to 79.0 % is more representative of the real-life performance of the best algorithms.

These challenges are interesting but, given that they include a transfer learning dimension, we chose not
to explore them. In this manuscript, we will focus on well-known supervised classi�cation.

2.2.4 The TMD Dataset

In 2017, the University of Bologna started recording a dataset to act as a benchmark for transport mode
detection. They asked sixteen volunteers to record the data from their phones' sensors using an application
they created for the occasion, and recorded this data to publish it the following year [19]. They adequately
named their dataset TMD (for Transport Mode Detection). This dataset contains about thirty hours of
data, shared approximately equivalently between �ve modes: Still, Walk, Car, Bus, and Train.

In addition to the user imbalance (similarly to the GeoLife dataset, each user has their own class balance),
this dataset su�ers from an extreme frequency imbalance: contrary to the SHL dataset (where the sampling
frequency is 100 Hz across the whole dataset), the TMD dataset has a sampling frequency which ranges
from 0.2 to 200 Hz (�g. 2.7). This is why we did not make use of this dataset: if we had to �lter only the
segments with a similar sampling frequency, we would have been left with an extremely small dataset. And
we did not consider the fact that each segment is not necessarily sampled regularly (which �g. 2.7 does not
show).
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(a)

(b)

(c)

Figure 2.6: Some example of signals from the SHL 2018 dataset, for each of the 8 classes and for three
sensors: a) norm of the accelerometer b) norm of the magnetometer c) barometric pressure
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Figure 2.7: A scatter plot of the samples from the accelerometer measurements of the TMD dataset, depend-
ing on their number of points and total duration. The diagonal lines illustrate the iso-frequencies (average
frequency in the sample), in Hz.

There are ways to use convolutions on irregularly sampled data (like point-clouds [128, 142]), and the
use of these types of networks could have o�ered a solution. They are, however, slightly out of scope for our
work. We could also think of leveraging this diversity through Transfer Learning, or Few-shot learning: the
general idea would be to �nd a way to leverage both the huge amount of data in the SHL challenges and the
diversity of the TMD dataset. We are not sure exactly how one should proceed, however, and this might be
an option for future work. But for now, let us focus on the work we did perform. The next section presents
the networks that tackle TMD on the GeoLife and SHL datasets.

2.3 Baselines

In this thesis, we focus on the GeoLife and SHL 2018 datasets. Compared to the state of the art, and
contrary to many publications in TMD and elsewhere, we do not aim to improve a classi�cation score by
introducing an new algorithm or computational step. Instead, we will focus on evaluating the choices made
in the literature, so that a new practitioner does not have to evaluate them all empirically.

For each dataset, we develop an approach, abaseline which will serve as a starting point for our other
experiments. After a general introduction of our framework (section 2.3.1), we will present the two datasets
we focused our work on the GeoLife (section 2.3.2) and the SHL 2018 datasets (section 2.3.3)

Methodology

In the next chapters, we will evaluate several types of choices: type of preprocessing, architecture, sensors
used,etc. In order to make the comparisons, we will rely on one model per dataset which we present here.
Figure 2.8 illustrates our experiments: for every type of parameter choice (each choice corresponding roughly
to a chapter), we will change only the concerned parameters and leave all the others equal as their baseline
versions.
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Figure 2.8: The outline of our methodology. As we cannot explore the whole search space, we simply explore
along a few chosen directions, changing one type of option at a time.

Why choosing a CNN ? This thesis focuses on processing temporal signals with deep neural networks.
One could think that the Recurrent Neural networks are more suited to this problem, yet, we use Convolu-
tional Neural Networks in all our experiments. The reason for this is that we are mainly interested in the
computation of temporal features. As we mentioned in section 2.1.6, RNNs (and LSTMs) are mostly used
to process high-level information, with a relatively low number of temporal steps. In other words, the inputs
of these networks are much higher-level abstractions than the raw data. On the other hand, computing
features from raw data requires handling data with no abstraction whatsoever. For instance, a segment of
the SHL dataset has 6,000 points, and one point in itself has very little meaning. This is why we will focus
on CNNs, whose convolutions demonstrated their ability to extract lower-level features in several di�erent
domains [143, 144, 145].

2.3.1 Transport Mode Detection as a classi�cation problem

Our goal is to use some labelled data in order to learn to assign a transport mode to unknown data. Using
Machine Learning vocabulary, this is a classi�cation problem: we use a certain amount of labelled samples
to train a classi�er that will predict the transport mode used during the recording of an unseen segment:
class(segmenti ) 2 f walk; bike; bus; car; train; subway; etc:g

Some additional preprocessing is applied so that the data can be fed to a machine learning model. To
train and test properly the model, the dataset will be split into train, validation and test sets. A fraction
of the data with the associated labels will be used to train the machine learning model to predict the class
of an unseen segment. This is thetrain set. We usually have a wide choice when selecting preprocessing
functions. In addition, machine learning models generally involve several hyperparameters,e.g., number of
�lters, or number of layers, that need to be chosen. These hyperparameters are optimized and chosen in
evaluating the variants of the machine learning models on previously unseen segments, thevalidation set.
Once we have chosen every possible parameter using the validation set, we use the last part of the dataset
(test set) to evaluate the generalization of the learned model against the state of the art. The following
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Figure 2.9: The separation of a trajectory with the GeoLife dataset. Each trip is composed of triplegs; each
tripleg correspond to a single transport mode. When two consecutive points are distant more than a certain
threshold (chosen to be equal to 20 minutes in our case), we break it into two neighboring trips.

algorithm shows how we use the three datasets:
Require: Three datasetsX train , X val , X test , for training, validation, and testing; a list of hyperparameters

setsL h to evaluate.
best_ score  0
best_ hyperparameters  ;
for h in L h do

Create a deep learning model with hyperparametersh
Train the model on X train

Evaluate the model on X val , measure the F1-scorescoreval

if best_ score < scoreval then
best_ score  scoreval

best_ hyperparameters  h
end if

end for
Create a deep learning model with hyperparametersbest_ hyperparameters
Train the model on X train

Evaluate the model on X test , measure the F1-scorescoretest

return scoretest for comparison with the state-of-the-art

2.3.2 GeoLife Baseline

Preliminary de�nitions

Figure 2.9 illustrate how we get to a classi�cation problem: the dataset contains a series oftrajectories (each
trajectory being a series of measurements points, such as(lat; long ) for GPS signals. Each trajectory has
to be divided into trips : series of points that are likely recorded in one go (we chose GPS points such that
two consecutive points are distant by less than 20 minutes, as in [35]). Each trip is made of one or several
triplegs: series of points sharing a single transport mode. This setting corresponds to a more simple version
of the problem, where we know triplegs to have only one mode. In real-life applications, we could consider
applying segmentation algorithms like in [81, 57, 35].

The triplegs might still have di�erent lengths, but a model sometimes requires all inputs to have the
same shape. When this is the case, we cut triplegs into �xed-shapesegments. When we use a model that
can deal with arbitrary-sized inputs, segments are equal to triplegs. Thus, a model only classi�es segments.
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Preprocessing

We begin by computing the speed and acceleration of each point. This way, our data is not dependent on
the precise location of the trajectory. We remove the data points which acceleration or speed are deemed
unrealistic given the annotated transport mode (we reused the values from [28]). We considered adding the
bearing [28], but it turned out using this feature did not increase the performance of our model. As the
sampling rate is irregular, we interpolate linearly our data points (T = 2s), so that a di�erence between two
consecutive points always has the same meaning. We realized when writing these lines that the interpolation
step was absent from the literature and that we should have at least evaluated it before moving on. However,
the comparisons we will make in the next chapters all use the interpolated dataset, which means they are
still relatively valid.

We do not apply any other cleaning or �ltering, for we found these to be unnecessary during the Random
Search (see appendix C).

Data Preparation and Splitting

Etemad [27] showed that the way the segments are split between the di�erent sets (training, validation, test)
can have a huge in�uence on performance: when a tripleg is split into several segments and the segments of
a single trajectory can go in both the training and the test set, the trained model will be likely to have seen
parts of all trajectories in the dataset, which will cause it to over�t.

In his experiments, Etemad found the F1 score can vary by 20 percentage points between a training
scenario in which the users are correctly split (71 %), compared to a scenario in which the fragments of a
given trajectory can go in di�erent sets (91 %). This result is not surprising, as mobility trajectories have a
high degree of regularity [146, 147, 148]. Ideally, we should train a prediction model using the trajectories
from a set of users and test the generalization skills of the trained model on those of unseen users. This
means that we need �rst to assign the trajectories of each user to one set among training, validation or
test (as in [27, 38, 28, 57]). This corresponds to the most realistic setting, where an algorithm predicts the
transport mode of unseen users.

As an illustration, here is a pseudo-code of the separation into users:
Require: A list L users of users, each user being a list of trips.

Randomly split the list L users into three lists f L train
users ; L val

users ; L test
users g

for s in f train; val; test g do
L tripleg  ;
for each useru in L s

users do
Split the trips of u into triplegs and segments,
Add the triplegs to the list:
L tripleg  L tripleg

S
usplit

end for
end for
return the three tripleg lists L tripleg obtained for f train; val; test g
But in practice, with the GeoLife dataset, this method leads to extremely imbalanced sets, as users have

di�erent habits when it comes to transportation. In some cases (depending on the seed used to initialize
the splitting process), splitting the dataset by users can even produce validation or test sets that completely
lack one class. To show this, we realized 200 separations with di�erent seeds initializing the random process,
and looked at the e�ect it would have on the �nal distribution (�g. 2.10). While the median is centered
around the correct distribution, the quartiles show a high variance. In the validation and test set, the third
quartile is at least twice higher than the �rst quartile. This distribution variance is a problem for comparison,
because the performance of imbalanced models will strongly depend on the distribution, even when using
measures like the F1 score: if the hardest classes to classify are present more often, the recall for this class
will not change, but the precision of all the classes will be lower, which will, in turn, lower the F1 score.

This is why we only split the sets by tripleg: we �rst separate triplegs between train (64% of the
trajectories), validation (16%), and test (20%), before segmenting the triplegs into segments. This method
is less realistic than splitting the sets by users, but it allows to produce sets with similar distributions
consistently, given that each tripleg has a unique class. The following pseudo-code explains how we split by
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Figure 2.10: An overview of 200 distributions obtained by splitting by users. Depending on the realizations,
the proportion of each class can vary greatly: in the validation and test sets, the �rst quartile is always at
least twice lower than the third quartile. In extreme cases, one set can completely lack one class.

triplegs:
Require: A list L users of users, each user being a list of trips

Create a list L trips of trips by merging all users
Randomly split the list L trips into three lists f L train

trips ; L val
trips ; L test

trips g
for s in f train; val; test g do

X s  ;
for each trip t in L s

trips do
Split the trip t into triplegs and,
Add the triplegs to the set:
X s  X s

S
tsplit

end for
end for
return the three tripleg sets X train ; X val ; X test

We did not realize it at the time, but there might have been a solution to split by users while still keeping
a similar class distribution between sets. For instance, this problem looks similar to the knapsack problem (a
classic Computer Science problem where we are given a list of items, each having a weight and a value, and
we must choose the items to maximize the total value while keeping within prede�ned weight bounds), and
we could have tried searching for solutions in the literature. Or, we could have been less subtle: the speed of
the script computing the 200 splits is enough for us to use a brute-force solution, trying random splits until
one is well distributed enough. Using such brute-force solutions might seem surprising and inelegant, but we
must keep in mind that if elegance is desirable, it must not get in the way of actually solving the problem.
However, we did not consider these options at the time of experimenting.

In any way, splitting by tripleg is di�erent from a split by segments: in this case, the segments are
assigned a set (among train, val, and test) at random and independently, it means the two fragments of the
same trip can go in di�erent sets. This separation is the most likely to result in data leakage and, to the
best of our knowledge, is not justi�ed in any way.
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Parameter value (GeoLife) value (SHL)

learning rate 10� 2 10� 3

regularization parameter 3:10� 3 10� 3

batch size 128 64

non-linearity ReLU ReLU

optimizer Adadelta [149] Adam

max number of epochs 2000 50

patience 100 /

Table 2.3: The chosen hyperparameters for the training of both models

Figure 2.11: The architecture of the GeoLife baseline model

walk bike car & taxi bus subway train

total 4517 1731 1459 2129 632 200

train 2890 1108 934 1362 405 128

validation 723 277 233 341 101 32

test 904 346 292 426 126 40

Table 2.2: The number of triplegs in each subset of the GeoLife dataset.

Baseline architecture

The CNN on the GeoLife dataset uses the speed and acceleration features to classify a segment. The input
is a one-dimensional signal (the values are stacked along the time axis), two-channel signal (one channel for
the speed, one channel for the acceleration). Its architecture is inspired by ResNet [150] and is given in �g.
2.11. To train our neural network, we use a weighted version of the cross-entropy loss: the loss of every
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segment is given a weight that is inversely proportional to the number of elements in this segment's class on
the training set (which is proportional to the proportion on the whole dataset, see section 2.3.2). The goal
of this procedure is to compensate for the class imbalance in the dataset. We also apply early stopping: we
stop the training process when the loss on the validation set did not increase for more than a �xed number
of epochs (chosen to be 100, see table 2.3), and we keep the model which minimized the validation loss for
testing. Usually, this minimum loss is reached between epoch 100 and 600.

A nontrivial comparison with the literature

As we mentioned in section 2.1.7, comparing the performance of two publications in TMD is not easy, and
the literature on the GeoLife dataset exhibits many of these discrepancies that prevent a fair evaluation:
di�erent number of classes, biased metrics, and separation between train, validation, and testing.

If our experiments in the next chapters use the 6-class problem recommended by the GeoLife creators [89],
we still tried to compare the performance of this baseline model to the literature. When there are di�erent
valid methods for comparisons, (number of classes, F1-score versus AUC), we repeat the training and testing
and display the test result each time (we allow to use the test set several times here because this will not
result in a choice of a number of classes or error measure). However, we kept using the hyperparameters
found using the 6-class problem. We also enumerate each element that might change translate into higher or
lower performance in the real case: allowing the trajectories to have several transport modes, for instance,
is an element that means the reported score will be more realistic of the performance of a real-life TMD
algorithm because the error measure includes a step (the segmentation of trips into triplegs with a single
class) which might decrease the score in the real case. On the other hand, splitting the training and validation
sets by segments means the score is likely to be in�ated, or dubious.

Note that the meaning of the scores di�er slightly depending on the exact problem solved by the publi-
cation: a method for which the transport mode may vary will look at each point of the segment and count
the number of points for which the model returned the correct class in order to compute a performance score
(Accuracy, F1, AUC, etc.). Yet, a publication working with the hypothesis that a trip can only have a single
mode only counts the number oftrips that are classi�ed correctly. In this manuscript, we put the two scores
side by side and allow ourselves to compare, for instance, a F1 on points to a F1 on trips.

As table 2.4 shows, the four GeoLife baselines look acceptable, but there are so many of these exceptions
to consider that the numerical score loses its meaning. We also display the confusion matrix of the GeoLife
model on the 6-class problem in �gure 2.12. As one can see, some classes are fairly easy to distinguish from
the rest (the Bike, Train, and Walk classes), while others couple of classes are harder to discriminate (car &
taxi versus bus and, to a lesser extent, subway versus walking or train).
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model
reported

score
classes remarks

LSTM + embedding [108] 94.5 % AUC 4
No mention of the splitting

No test set

Our GeoLife Baseline 97:1 � 0:3% AUC 4 /

Convolutional LSTM [78] 80.67 % F1 4
No additional information

No test set

Convolutional LSTM [78] 83.97 % F1 4
Additional information: weather

No test set

Our GeoLife Baseline 87:1 � 1:1% F1 4 /

Convolutional Auto Encoder [57] 76.4 % F1 5

The trajectories are
not segmented

Additional information:
Unlabeled GeoLife data

No test set

Convolutional Auto Encoder
with skip-connections [65]

80.4* % F1
67.7 % IoU

(average Intersection
over Union)

5

The trajectories are
not segmented

Additional information:
Unlabeled GeoLife data

No mention of the splitting
No test set

Fully-connected Autoencoder [81] 93.44 % F1 5

The trajectories are
not segmented

Additional information:
Bus stops position
Incorrect splitting

No test set

Unsupervised Convolutional
Autoencoder [55]

80.5 % Acc. 5

They did not use
any labels to

compute the clusters
No mention of a validation set

CNN ensemble (7 models) [28] 84.0 % F1 5 No test set

semi-supervised LSTM ensemble [127] 91:5 � 0:41% Acc. 5 No test set

LSTM + Wavelet features [109]
91.9* % F1
92.7 % Acc.

5
No mention of the splitting

No test set

Our GeoLife Baseline 83:9 � 1:1% F1 5 /

Random Forests [27] 71 % F1 6 No test set

Our GeoLife Baseline 81:8 � 0:9% F1 6 /

AE + Logistic Regression [38] 67.9 % Acc. 7 No test set

Our GeoLife Baseline 74:1 � 0:7% F1 7 /

Table 2.4: An overview of the most recent works using the GeoLife dataset. Along with the performance
metric (as provided by the cited works), we outline the qualitative particularities that imply the method
might have higher (green text) or lower (red text) performance in a real-life scenario. The asterisks (*)
denote the values we recomputed using the reported per-class results from the publications. See appendix
A to know how we computed an average F1 from the per-class IoU in [65].
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Figure 2.12: The confusion matrix of the GeoLife model, on the test set. We can see that there is a
high confusion between the classes "Car&taxi" and "Bus": merging together these classes will improve the
performance considerably.

2.3.3 SHL Baseline

Separation of the training and validation sets

With the SHL 2018 challenge, the test set is already split from the rest, but the separation between train
and validation was left to the participants. We choose to have 13,000 samples in the training set, and 3,000
samples in the validation set. This division corresponds roughly to an 80/20 separation. However, similarly
to the GeoLife dataset, there is a caveat to consider before running the �rst training. This time, it is not
about user separation (there is only one user in the database), but about the trip separation problem which
holds here too.

As noticed by Widhalm et al. [42], if one randomly assigns segments to either of the sets, the segments
in the validation set will be too close to segments in the train set: for each segment in the validation set,
chances are that at least one segment from the training set was recorded right before or after it. They even
show the autocorrelation coe�cient of the standard deviation of the norm of the accelerometer is equal to
25%of the maximum at t = 10min , which means the training and validation samples must be well-separated.

A random split leads to possible over�tting: as the validation set is too close to the train set, the validation
performances will be unrealistic. To illustrate, in the experiments from [42], the di�erences between a correct,
rigorous splitting and a random one are signi�cant, between 7 and 11 percentage points in F1-score.

In order to have a realistic evaluation, the segments of the training set must be as far as possible from
segments from the validation set. The �rst idea to split the data in a time-consistent fashion is to sort
the database chronologically, take the �rst 13,000 samples for training, and leave the last 3,000 samples for
validation. However, this method leads to a high imbalance between the training and validation set. The
reason behind this is the following: the distribution of the di�erent transport modes changes with time (see
�g. 2.13 for an illustration). In particular, the 'Car' class is absent from the end of the dataset. If one
chooses to take the last 3,000 for validation, the validation set will practically lack this particular class. To
achieve better class balance, we still sort the samples chronologically, but we use the�rst 3,000 samples for
validation, and the last 13,000 samples for training.

Preprocessing

The 2018 SHL Challenge asked candidates to give one prediction per timestamp (that is, to output 6,000
predictions per sample) but, as only 4% of the samples of the database have more than one mode, we work
on a simpler problem: each sample in the dataset is assigned a single transport mode, which is the mode at
t = 30s.

We did not consider cleaning the data, for two reasons:

ˆ Firstly, cleaning was found to be ine�ective on the GeoLife dataset (appendix C), and GPS signals are
more noisy than embedded sensors [26].
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Figure 2.13: The cumulative proportion of each class versus time. The class proportion is computed on a
moving window of 1,500 samples, with a stride of 50. We can see the end of the dataset is devoid of Car
segments.

Figure 2.14: The histogram of the classes in each set (lines) for each splitting (columns). The train/validation
split made by the organizers of the challenge is balanced, but it does not take the chronological order into
account. A train/val split does, but the train set lacks run segments. A val/train split of the samples is both
rigorous and balanced enough. As the test set is already split by the organizers of the challenge, its content
does not depend on the splitting.
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Figure 2.15: An illustration of the preprocessing step with the norm of the accelerometer data from a running
segment. The 2.3 Hz frequency band appears in the middle of the spectrogram due to the log scale for the
frequencies. This 2.3 Hz frequency is approximately the frequency at which one foot touches the ground.
The use of the log-energy on the bottom right-hand corner allows to better displays the 1.15 Hz band, which
is the period of the right leg movement (with the SHL 2018 dataset, the phone is kept in the right pocket of
the user).

ˆ Secondly, no publication working on the SHL dataset found that cleaning the data helped a classi�cation
algorithm. Some works do apply some �ltering, but they either do it to accelerate the computation
(e.g., subsampling [31, 45]), or they apply the �ltering without evaluating this step ([30, 76])

We repeat the preprocessing protocol in [50]. Each temporal signal is �rst converted into a spectrogram
using a moving Short-Term Fourier Transform (STFT) window. The samples are 6,000 points-longsegments
(60 seconds at 100 Hz), and we use 5 seconds-long windows with 4.9s overlap. We obtain spectrograms with
550 points on the time axis, and 250 points on the frequency axis. Then, the spectrograms are rescaled
into 48 � 48 pixels. If the choice of a smaller resolution is done in order to reduce the complexity of the
problem, we assume that this precise resolution was chosen to �t exactly the architecture of the network:
with the successive size reductions due to convolution and pooling steps, a48� 48 spectrogram �ts exactly
and leaves no 'leftover pixel line'. The time axis is rescaled linearly, while the frequency axis is rescaled using
a logarithmic interpolation (similarly to the mel scale). This allows to give more importance to the lowest
frequencies as walking, running, and cycling generate sharp components between 1 and 2 Hz (see chapter 3).

We also rely on the architecture in [50]: the Convolutional Neural Network has three convolutional layers
and two fully-connected layers, as �g. 2.16 shows. The convolution �lters are3 � 3, in order to process the
two-dimensional spectrograms. The hyperparameters used are given in table 2.3.
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Figure 2.16: The architecture of the baseline SHL model

Training protocol

To generate the comparisons between parameters or choices, the network is trained for 50 epochs on the
training set, before being evaluated on the validation set. Each evaluation is repeated 5 times (with a new
random seed every time), the mean and standard deviation of the validation F1 score are given as a result.
The hyperparameters for the training can be found in table 2.3. Once the hyperparameters are found, we
test the best method against the state of the art by training the model with the union of the train and
validation set, and evaluating the results on the test set. The results on the test set will appear in chapter
5, after we tried improving on the baseline.

Evaluation of the sensors

The attentive reader noticed that there are several sensors in the GeoLife dataset, and that we did not
precise which sensors we would use. Our baseline network uses only one sensor as is (we will address the
problem of data fusion in chapter 5), but we will not repeat out experiments with each axis of the seven
sensors available.

To know which sensors to choose, we decide to evaluate all the sensors individually by training a network
using one sensor at a time. For each sensor available (accelerometer, gyrometer, etc.) we consider every
possible axis (x, y, z, with the possible addition of w for the orientation quaternion), in addition to the
norm of these axes (computed using the euclidean norm). The norm is hoped to represent an orientation-
independent version of the signals. For each signal, we compute a log-power spectrogram, using a log axis.
We then evaluate them individually. Table 2.5 shows the norm of the accelerometer is the single best signal
available. Even though the accelerometer is the best sensor, the linear acceleration and gravity follow closely.
This is no surprise, as those three signals are closely correlated to each other. The non-negligible di�erences
between the x; y; z axes of each sensor might be due to the fact that some orientations of the phone are
more likely than others (�g. 2.18). The pressure signal is surprisingly e�ective at distinguishing between
transport modes. This sensor manages to reliably capture the periodic disturbances from walk, run, or bike
segments (see �g. 3.6 in chapter 3), and somehow retains enough information to classify most of the other
modes (Still, Car, Bus, Subway, Train).
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sensor Acc LAcc Gra Gyr Mag Ori Pressure

x 87:24� 0:53 83:97� 0:80 85:19� 0:26 81:31� 0:57 71:14� 0:67 73:82� 1:24

y 87:22� 0:72 86:22� 0:84 84:44� 0:22 81:05� 1:25 73:63� 0:82 74:37� 1:25

z 84:18� 0:77 85:36� 0:69 83:34� 0:54 79:32� 1:32 73:17� 1:03 75:46� 0:51 76:35� 0:67

norm 89:14 � 0:65 81:01� 0:50 47:67� 3:27 76:52� 0:68 66:81� 0:47 42:05� 0:97

w 78:54� 1:07

Table 2.5: The validation F1-score per signal. The best result is in bold.

Figure 2.17: A bar plot of each individual sensors corresponding to the results in table 2.5. The error bars
denote the standard deviation over �ve random initializations of the network.

Concerning the accelerometer, the norm of the acceleration vector has a better performance than any of
its individual axes, which shows the orientation-independent signal is better than the orientation-dependent
components. For the norm of the magnetometer, however, the result is the opposite: each of the individual
axes could play the role of a compass, giving information about the way the phone moves, which particularly
helps with most dynamic transport modes (Walk, Bike, Run). For instance, if the user is on a bike and has
their leg moving with a 2Hz period, the y axis of the magnetometer will display a strong2Hz components.
When we compute the norm of the magnetometer, we obtain the strength of the magnetic �eld and loose this
compass-like information. However, this is not a problem in our setting, because we always use the norm of
the magnetometer in conjunction with the accelerometer signal, which is already e�cient enough to classify
the classes for which the phones moves the most.

Two other surprisingly high performance signals are the norm of gravity and the norm of the orientation
vector. In theory, these two signals are constant (equal to 1 for the norm of the orientation vector, and
9:81m:s� 2 for the gravity). In practice, these values are never exactly constant: when zooming in on the
most dynamic transport modes (Walk, Bike, Run), we can see some periodic patterns (�g. 2.19). The motif
is quite noisy, but the frequency of the signal is the same as the fundamental of the individual axes (see �g.
3.6). These patterns may have a negligible amplitude in the temporal domain, but we use spectrograms with
the log of the energy: this representation allows us to convey these small patterns to the network. With the
other classes, however (Still, Car, Bus, Train, Subway), these signals look like plain noise, and the classi�er
is almost always wrong.
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Figure 2.18: An histogram displaying the values of the three axes of the Gravity sensor. We can see that
the phone is upright when the user walks (the extreme values in the negative region of the y axis are mainly
from walk segments); the phone lies �at, with the screen facing up or down, when the user drives (the car
segments are extreme values of the z-axis, both positive and negative); and that the phone is not often on
the side (the extreme values of the x-axis are not the most represented). See �g. 2.2 for an illustration of
the meaning of the axes. Note that the phone was in the user's pocket when the dataset was recorded.

Figure 2.19: An example of signal that shows how the slight noise in the norm of the gravity discloses the
class for the most obvious modes (here, a Bike segment).

Sensor choice

We start with the norm of the accelerometer (jAccj), for it is the single best signal available (table 2.5). As
in [50], we add they-axis of the gyrometer (Gyr y ).
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But those two sensors only measure the inertial dynamics. To add a di�erent kind of information, we
choose to use the norm of the magnetometer. This signal does not change much on the exterior, and varies
greatly around metal objects and strong electrical currents. In particular, when the sensor (and hence the
user) is inside a car, a bus, a train, or a subway, the value of this signal can jump up to200�T (whereas
it remains around 40�T , the value of Earth's magnetic �eld, when the sensor is left outside). One could
argue against this choice because when considered alone, the norm of the magnetometer is worse than any
of its three individual axes (x; y; z, table 2.5). This is because the axes can act as a compass, thus retaining
information about the dynamics of the movement. Computing the norm destroys this precious information.
However, this is not a problem in our setting as we always use the magnetometer along with other inertial
sensors (accelerometer and gyrometer).

As a sanity check, we add thew component of the orientation vector (Ori w ), to have an example of a
virtual sensor. The orientation quaternion is a representation of the orientation of a referential that, contrary
to the Euler angles, prevents the loss of a degree of freedom because of the gimbal lock. As indicated by
its name, the quaternion has four dimensions,Ori x ; Ori y ; Ori z ; Ori w , computed using the coordinates of a
vector around which the phone rotates (see �g. 2.20):

8
>><

>>:

Ori x = x:cos(�=2)
Ori y = y:cos(�=2)
Ori z = z:cos(�=2)
Ori w = sin (�=2)

Figure 2.20: The computation of the orientation quaternion.

In short, this signal gives some information about the amount of rotation the phone records. Note
that we ignore how is this sensor computed in practice, even though we assume it involves the gyrometer,
magnetometer, and possibly the accelerometer. This is why, when we will consider a fusion of di�erent
sensors, we expect this signal to carry similar information to at least the gyrometer and magnetometer:
adding the orientation to the triplet ( jAccj; Gyr y ; jMagj) should not improve results signi�cantly.

The confusion matrices of baseline models usingjAccj; Gyr y ; jMagj, and Ori w individually are displayed
in �gure 2.21. As with Transport Mode Detection from GPS signals, the performance di�ers depending on
the class to classify: running segments are classi�er almost perfectly using the accelerometer (which is not
surprising given the simplicity of the problem [140]), while train and subway classes are harder to distinguish
from each other. To a lesser extent, these two modes are also confused with the Still class. Depending on
the sensors, the Car and Bus classes might also be hard to tell each other apart.
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(a) norm of the accelerometer (b) y axis of the gyrometer

(c) norm of the magnetometer (d) w axis of the orientation

Figure 2.21: The confusion matrices of models using (a) the norm of the accelerometer (b) they axis of the
gyrometer (c) the norm of the magnetometer (d) the w axis of the orientation quaternion, with the SHL
validation dataset.

A focus on the results of the challenge

Contrary to the GeoLife dataset, those who participated in the challenge had to use the F1-score, and their
evaluation by a hidden test set guaranteed the comparability of the results.

The most successful methods were the two submissions from the Joseph-Stephan Institute, ranking �rst
and second on the unseen test set [31, 45]. Both approaches relied on computing a broad set of features:
statistical (mean, standard deviation, skewness, kurtosis, min, max, etc.) and frequency features (frequency
of the highest power component, energy in prede�ned frequency bands, etc.). These features were computed
on raw data, norm, and de-rotated signals (aligned on the North-East-Down coordinates). A feature selection
step took place before using the features for classi�cation. The only di�erence between them is that the
approach from [45] used a XGBoost model for classi�cation, while [31] trained several Machine Learning
models, along with a Deep Neural Network, to predict the output. Then, a Hidden Markov Model was
trained to return the �nal prediction from the predictions of all the individual models. This allowed them
to gain one and a half points: the F1-scores of these approaches were 92.41 % and 93.86 % with XGBoost
and the ensemble models (respectively).

The next best participation [50] is the one that we started from for our baseline. Ito et al. used
spectrograms, with a log-scale for the frequencies. The 'images' containing the log of the power were then
given to a 2-dimensional CNN for classi�cation. This pure-deep learning approach is the one we selected,
but the participation only used two sensors: the accelerometer with gyrometer. For each classi�cation, the
spectrograms from these two sensors were concatenated along their 'frequency' axis, to form a single image
that was to be classi�ed by a single network. This approach seems unusual, but chapter 5 explains how this
procedure is not as cumbersome as it seems. In the challenge, this approach ranked third, with 88.83 %
F1-score on the test set.

Several other participants did submit a prediction to the challenge. Similarly to the Transport Mode
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Detection literature, some used traditional ML algorithms with handcrafted features, others relied on Recur-
rent Neural Networks, or a combination of CNN and RNN. Wang et al. [140] published a complete synthesis
of the challenge participations along with the results. However, they did not conduct any experiments to
assess the importance of each choice that can be made.

After the end of the challenge. Since the end of the challenge, other publications have worked on
this dataset. Gjoreski et al. [84] improved the model that scored �rst in 2018 [31]. By adding another
neural network to the prediction models, they managed to improve the F1-score on the SHL test set by one
percentage point, up to 94.9%.

Using the dataset without adopting the same constraints. Some publications also worked in a
similar setting ( ie, using the same data, without evaluating on the same train/val/test split) as the challenge:

Richoz et al. [25] designed a 1-dimensional CNN working on a sequence of FFT segments from the
di�erent sensors. Using the inertial sensors (accelerometer, magnetometer, gyrometer), they obtained a 79.4
% F1-score with a 1-dimensional convolutional neural network working on Discrete Fourier Transforms. Even
if their evaluation methodology is di�erent, the results will be fairly close to ours (section 3.3, chapter 3).

Qin et al. [115] combined handcrafted features with features from a CNN and gives them to a LSTM.
The resulting classi�er achieved an average F1-score of 98.0 % (this result was recomputed using table 10
in [115]). However, they explicitly stated splitting the train and validation sets using a random split from
sklearn, which hides potential over�tting (see section 2.3.3 or [42])

Drosouli et al. [85] studied the performance of di�erent Machine Learning models with several sets of
features, and obtain a surprising F1-score of 99.5% with k-nearest neighbours on a broad set of features.
Here too, we argue that their performance is likely to be overestimated, for three reasons:

ˆ they did not mention having a correct train/val split (section 2.3.3), nor cite the publication that �rst
noticed the problem on the SHL 2018 challenge [42].

ˆ the best classi�ers were worse when dimensionality reduction was used, yet, dimensionality reduction
is often used to reduce over�tting.

ˆ the best classi�er is k-nearest neighbours, an algorithm that relies on explicitly memorizing every
sample in the train dataset.

These two examples highlight one fundamental issue for a fair comparison of di�erent methods in terms of
performance: the experimental protocol;e.g., dataset, number of classes, recording conditions,etc. matters
greatly.

2.4 Conclusion

This chapter was the occasion to present the problem of Transport Mode Detection. We began by displaying
an overview of the state of the art, and the typical steps a TMD algorithm follows. Then, we reviewed the
available datasets, and made the distinction, between those we would use and the databases we would leave
for others to work on. Finally, we presented our methodology, along with the networks we will use in our
experiments.

The literature review showed that there were many improvements to be made before making valid com-
parisons. We will try to be cautious to these so that we do not make the same mistakes as our predecessors:
we use a hidden test set, a score (the F1) that is not biased towards the most frequent classes, and to give
the standard deviation to know whether a result is signi�cant.

The way �gure 2.8 illustrated our methodology prompts an idea: one could wonder if instead of optimizing
the performance on each of the axes independently, we could formulate a single optimization problem that
encompasses the entirety of all possible choices one could make. Alas, this is not an idea that occurred to
us at the time we made the experiments. Pursuing this idea might be a possibility for future work.

Now that we have mentioned all the concepts needed to understand our works and underlined all the
pitfalls we paid attention to, we can present the experiments in themselves, starting with the choice of an
adequate preprocessing for the network.
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Preprocessing

When dealing with the SHL dataset, the input data we work with are series of 1-dimensional data points,
but we switched to spectrograms. We based our approach on one of the submissions [50], but did we do well?
Are we sure the network cannot learn the best hidden representation itself, as it generally does with images?
We could think that a neural network needs no help to learn automatically the best representations. Alas, a
neural network is not always optimal. For example, the researchers of Google who solved the protein folding
problem this year [151] relied on the extensive use of domain knowledge-related representations.

After a quick example illustrating the shortcomings of one of the preprocessing steps used in the literature
(section 3.1), we will focus the rest of the chapter on the use of signal processing treatments. Four ways of
representing a signal exist in the literature: using the raw sequence of temporal values, computing the one-
dimensional spectrum using the Fourier Transform, using a two-dimensional spectrogram (a time-frequency
diagram using the Short-Term Fourier Transform), or a 2D scalogram (a time-frequency diagram using a
wavelet decomposition of the signal). Given that the raw data and the spectrograms are the two most
common representations in the literature, we will focus on these two, and try to answer the question: when
should we compute spectrograms, and when should we stick to one-dimensional temporal data? We will
begin by a review of the use of each preprocessing with deep learning in di�erent domains in section 3.2.
Then, we will use the SHL dataset to establish a comparison between the representations in section Section
3.3. We will see that the spectrograms are better than temporal representations, at least in our case. Finally,
we will try to understand why spectrograms are better than raw, temporal data. The section 3.4 will provide
some answers: the spectrograms allow to simplify the classi�cation problem.

3.1 Introductory example: How padding segments can disturb the
learning process

Before tackling the complex subject of knowing whether the spectrograms are more useful, we will show
a very simple improvement to the padding some works from the literature use: if we see publications use
zero-padding, we will show we can increase the performance by a few points by padding using a replicated
version of the segment itself.

When we use a Convolutional neural network with segments of di�erent sizes (eg the GeoLife dataset),
we are often required to �nd a way to get back to �xed-size segments.Padding is the action of �lling a short
segment with well-chosen values so that the segment reaches a desired shape. This action can be required
on two occasions:

ˆ When the model requires a �xed-size input [28], the most common approach is to cut the triplegs that
are too long, which inevitably generates segments that are shorter than the limit. This requires to pad
those segments so that they have the same lengths as the others.

ˆ When the model can deal with segments of arbitrary shape, one problem arises: to accelerate the
training, the common practice is to parallelize the computation and to submit to prediction a set of 64
or 128 samples (a batch). This requires putting all segments into a single tensor, which is impossible
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Padding Validation F1
Zero 77:7 � 1:5%

Re�ection 80:2 � 1:6%
Wrapping 80:3 � 1:6%

Table 3.1: The validation F1-score of each type of padding. Zero-padding is particularly detrimental to the
model performance.

when the segments have di�erent lengths. One could simulate the batch computation by sending each
segment one after the other and computing the weight update once after a certain number of segments
are processed, but doing so would increase greatly the training times. This is why even with the
baseline we presented in chapter 2 (which can use segments of di�erent lengths) we pad all the short
segments so that they reach the length of the longest segment in the batch.

There are several ways to pad short segments. One could pad using zero-values (like in [28, 57]), but we
will show that this disturbs the learning process. To demonstrate it, we compare this padding to two methods
consisting of padding using the data from the input segment itself (see �g. 3.1). We tried padding with a
re�ection of the segment (adding a reversed copy of the segment after the original), or simply repeating the
segment until the maximum length is reached.

Figure 3.1: The di�erent kinds of padding. Zero-padding simply adds zeros until the maximum length is
reached, Re�ection reverses a copy of the segment and adds it at the end, while wrapping simply duplicates
the segment until the maximum length is reached.

Using the GeoLife baseline architecture, we compared the three kinds of padding shown in �g. 3.1:

ˆ Zero-padding, where zeros are added to the shorter segments until they reach the correct length, as in
[28, 57].

ˆ Wrapping, where segments are padded using their own data

ˆ Re�ection , which consists in padding the segments using a time-reversed version of the segment itself.

As table 3.1 shows, padding with zeros is particularly detrimental to the performance of our model.
However, one can wonder which padding is better between wrapping and re�ection. Wrapping creates
discontinuities in the data, but this is the only artefact it introduces: otherwise, wrapping only uses data
from the segment itself. On the other hand, re�ection removes some of the meaning of the data (i.e, and
acceleration becomes a breaking), but it does not introduce any discontinuity.

In general, padding by wrapping works well when using a global pooling operation: because convolutions
can only see patterns locally, if the input data is periodic, the output of a convolution will be periodic, with
the same period. When considering the whole convolution blocks, only the layers with a stride di�erent
from 1 will a�ect the period of the features. This means a global max-pooling layer will output the same
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result whether the input segment was padded by wrapping or not padded at all. Conversely, zero-padding
and re�ection-padding create new patterns that might be interpreted as signi�cant by the network. One
could think that using a re�ection is better than wrap the segment around because the former introduces
no arti�cial discontinuities. However, the GeoLife model has a particularity: during the random search for
hyperparameters (appendix C), we contemplated adding a cleaning step using median or Savitzky-Golay
�lters, and it turns out these �lters did not improve the performance. This means the GeoLife network
is naturally robust to noise in the data, which is why it is not a�ected by the discontinuities brought by
wrapping the segments around.

One could wonder why zero-padding is worse than the rest. Two mutually exclusive hypotheses could be
formulated to explain this phenomenon:

ˆ A long series of zeros is interpreted as being meaningful by the model, and disturbs itspredictions.

ˆ The model notices the long series of zeros in the learning process, and, upon seeing they are uncorrelated
with the segment's classes, somehow learns to ignore the end of a segment during the training process,
which cause it to miss relevant information

Figure 3.2: The validation accuracy versus the size of each segment (the shorter the segment, the more zeros
it will be padded with). Adding zeros is not particularly detrimental to the classi�cation performance, which
means the network learnt to ignore the zeros, missing potentially relevant information. Intervals bins are
obtained using equidistant separations between 0 and the 90-th percentile

To know which one is true, we compute the accuracy for segments with di�erent lengths (using the fact
that the shorter the segment, the more zeros it will be padded with). If the former hypothesis was true, we
would see the performance to be correlated negatively with the number of zeros. The performance would
be correlated positively with the length of a segment, resulting in a decreasing curve when displaying the
performance versus the number of zeros.Note: in this experiment, and this experiment only, we computed
the accuracy, because some bins are devoid of certain classes, and the F1-score is not de�ned when the
number of samples from one of the classes is zero. Figure 3.2 shows that the curve is quite irregular, which
means the model learnt to ignore zeros at the end of segments, at the price of also ignoring the end of relevant
segments.

Even though some works did use zero-padding, choosing an alternative padding method is an obvious
decision when it is clearly exposed as a choice. However, a less clear choice is to know if the network will see
raw segments or if we apply some kind of signal processing treatment (e.g., computing the spectrum), and
the rest of the chapter is devoted to this preprocessing.
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3.2 An overview of preprocessing in the literature

The recent advent of Deep Learning sparked enthusiasm in a diversity of domains. Quantity of researchers
tried to use a learning algorithm to replace the old approaches based on domain knowledge. However,
this domain knowledge does not always disappear completely. In particular, in domains that involve signal
processing, we often see deep neural networks applied mostly on either the raw data, or on spectrograms.
This section is devoted to a quick overview of the use of the di�erent representations in di�erent research
domains.

If there are four representations we will focus on (raw data, FFT, spectrograms, scalograms), we would
want to answer the following question: when is it more interesting to compute a representation for the
network, and when should we leave the network alone? In this regard, we will consider that the FFT,
spectrograms, and scalograms all consist in computing features along the temporal axis ourselves, while
leaving the data unprocessed lets the network learn the optimal features to compute. One key hypothesis
that will structure this study: the fact that it is better to let the network learn which temporal features to
extract itself when the number of samples is high, and that it is better to compute the frequency features
(FFT, spectrograms, scalograms) when the number of samples does not allow the network to �nd an optimum
that generalizes well ([152] �g. 3.3).

Figure 3.3: The main hypothesis we want to verify ([152]): leaving the data intact is worse when the number
of samples is low, and better when the dataset is large.

When looking at �gure 3.3, one particular question comes to mind:

Isn't that obvious ?

Many researchers know that classical Machine Learning models, based on handcrafted features, see their
performance increase at a slower rate when the number of samples increases than deep neural networks
[153]. In other words, when the number of samples increases, the slope of the curve of the performance is
higher for deep neural networks than for Machine Learning algorithms relying on handcrafted features. The
use of deep learning on FFT, spectrograms, or scalograms could be thought of as a middle ground between
handcrafted features, for which an expert selects the interesting values a classi�er will work with; and deep
neural networks that compute their own features from the immense variety of the raw data.

However, the choice representation does not follow this reasoning: for instance, the Fourier transform
is bijective, which means there is, in theory, as much information in the spectrum of a signal as in the
original signal. In general, spectrograms often have more pixels than the input segment. We do not say that
computing a spectrogram creates new information (there is actually some redundancy in the values of pixels
in a spectrogram), but we argue that the idea that frequency representation reduces the amount of data
the network works with is not straightforward. What changes between representations is only the semantic
meaning of the data points in the segment or spectrum.
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In addition, the reasoning we presented in the last paragraph and in �g. 3.3 is, to the best of our
knowledge, not the subject of many research works. At �rst, we will try to use the literature to know
whether this hypothesis is veri�ed.

We will rely on summary papers, and when available, on direct comparisons of the performance of di�erent
representations. However, some of these comparisons (including the one we will lead in the next section)
su�er from a common �aw: they work with a �xed architecture, and many of them do not say how this
architecture was found. In our case, when we worked with the SHL Dataset, our baseline architecture comes
from a participation that worked exclusively with spectrograms [50]. This means that the architecture is likely
to be optimized for this exact representation, and that evaluating 1-dimensional temporal representations
with it will result in suboptimal performances. To establish a fair comparison, we would need to reproduce
the hyperparameter and architecture search for each representation (similarly to [111]). We could also
look at the challenges: as they consist in giving the same time window to several teams to optimize their
performance, we could compare the result each representation manages to get. However, one must keep
in mind that even the challenges are not perfect, because the number of researchers working on the same
participation may vary, and we do not know how much time and computational resources each team devoted
to its participation.

When no comparisons are available, we will try to know which representation is used the most often
(given that researchers often make many choices that are not written in publications). However, even
this information is not easy to gather: many summary papers focus on neural networks architectures and
disregard the network input. This information is either hidden in the detailed list of publications the review
cites [154, 155], or simply absent from the review [156, 157, 158]. We will also try to mention the approaches
that stand out from the rest due to their originality.

The present section does not aim to be exhaustive (there are too many research subjects to cover), but
only to provide an overview of the use of spectrograms in the literature. We will try to cover four research
domains we chose for their diversity: audio processing (section 3.2.1); analysis or vibration signals for rotating
machinery (section 3.2.2); physiological signals (mainly EEG and ECG, section 3.2.3); and Human Activity
Recognition (section 3.2.4). Finally, we will detail the use of representations in Transport Mode Detection
in section 3.2.5, and conclude on some opening remarks in section 3.2.6.

3.2.1 Audio processing

In 2015-2016, reviews [159, 160] indicate that, for audio processing (whether it is speaker identi�cation,
speech transcription,etc.), the golden standard was use recurrent models (either Hidden Markov Models or
RNNs), applied on features namedMel-Frequency Cepstral Coe�cients (MFCC) [161, 162]. These features
are obtained the following way:

ˆ Compute the Fourier Transform of the signal.

ˆ Compute the energy of the signal in an overlapping series of frequency bands. The ranges of the bands'
scale with the logarithm of the frequency (mel scale).

ˆ Compute the log of the power.

ˆ Compute the Discrete Cosine Transform (DCT), which plays the role of an "inverse Fourier Transform".

These features have the property that any convolution �ltering applied to the raw data can be separated
linearly from the signal in the feature space, and they represent an example of features that are specially
handcrafted for a speci�c domain.

During the last years, reviews noticed an increase in the amount of research works using deep neural
networks [163, 164]. Some networks use the raw data [165, 166, 143], but most of them rely on some kind
of spectral features such as spectral bank features [167, 168, 169], or spectrograms [170, 171]. However, the
use of MFCCs still occurs in more recent works [172].

We did study two speech recognition challenges in detail: the CHiME challenge (both the �fth edition
[173], and the sixth [174], for they are extremely similar), and the Airbus challenge [175].

For the �fth CHiME challenge, the organizers provided a baseline relying on MFCCs [176], and the
participations that improved the results on one of the tasks either build upon this baseline ([177]), or
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rely on complex knowledge-based models. For our subject of interest, no deep learning model on raw data
outperformed the MFCC-based models. A similar conclusion can be drawn from the sixth CHiME challenge,
for which none of the participants managed to outperform baselines using MFCCs with GMM and HMM
([174, 178]). Both challenges had about 100,000utterances (an utterance is an uninterrupted sequences of
words, or even sentences, which is used to count the number of samples in a speech dataset).

This conclusion also applies to the Airbus challenge [175], where the participants had to perform Auto-
matic Speech Recognition of sentences pronounced by airport controllers and pilots, involving both technical
terms and non-native speakers. The best submissions in this challenge used MFCCs, along with other
problem-speci�c features we will not present here. The Airbus challenge has 50 hours of data, which repre-
sents about 18,000 utterances if we estimate an utterance to last 10 seconds. For both the Airbus and the
CHiME challenges, the dataset size is too small for deep learning to even start being relevant.

In addition to the challenges, a publication performing di�erent comparisons is extremely important for
us. Pons et al. [152]. tackled audio tagging for music, a task where the model must choose appropriate
tags to characterize a song: the tone, the style, the type of instruments,etc. This can be considered as a
classi�cation problem where we can assign multiple classes to any sample. They used prior knowledge to
design two architectures, one using spectrograms, and one using temporal data. They concluded that the
raw data had the best performance, but the most important conclusion is when they used smaller portions of
the dataset: if the original dataset had a million songs for 50 tags, they tried using only 500,000 and 100,000
songs to train the models. With the smaller versions of these training sets, the two architectures perform
identically. They concluded by saying that the raw, temporal data are better when the number of samples
is high (when the network can use the mass of data to extract the features itself), but the spectrograms are
comparatively better when the number of samples is low, and the network needs help extracting the relevant
features. However, their results are not extremely signi�cant, and the di�erence between the increase rates
(the di�erence between the slopes of the red and blue curves in �g. 3.3) are hard to observe in the results
they provide.

Finally, we should mention the works of [143], who designed a convolutional network whose �rst layer was
particular: instead of using the classic, discrete convolution, the values of the �rst convolutional �lters are
computed using the formula of a given wavelet. Only the two parameters that compute the wavelet are learnt
by gradient descent. Their network, dubbed SincNet, is able to focus on the frequencies relevant to speech
understanding better than the classic CNN. Also, when the authors added noise in a speci�c frequency band,
SincNet ignored the noise faster than the classic CNN. For us, the most interesting is not their network,
but the following derived result: at the end of the training, the classic CNN did learn to ignore the noise
extremely well: the average Fourier spectrum of the �rst convolutional �lters displays a low power at the
frequencies in which the noise was added. In other words, the �rst layer of a CNN with discrete �lters can
'see' the interesting frequencies in the signal and ignore the irrelevant frequencies. Provided, of course, that
this layer is long enough to capture interesting frequencies (the layers were 250-points long in the original
architecture).

If we could not draw any conclusions from challenges, a review of the literature indicates that both
spectrograms and temporal representations are used. One paper showed that the raw data is better than the
spectrograms when the dataset has more than500; 000samples, and one of them tell us that one-dimensional
convolutions on raw data do notice the interesting frequencies by themselves, and learn to ignore the useless
ones. This seems to indicate that one-dimensional convolutions could e�ectively re-learn the same features
like the ones we compute with spectrograms, provided the number of samples is high enough.

3.2.2 Failure prediction in rotating machines

Rotating machinery is widely used in a large number of industries. Given how extensive the utilization of
this equipment is, some researchers try to design algorithms to predict a breaking from acceleration signals.
In order to produce a dataset, the typical method is to use an experimental testbed: the researchers keep
an engine functioning in a laboratory until one of the roll bearing breaks. Meanwhile, they place a sensor
(most often an accelerometer) on the engine (or close to it), and record the vibration signals. They obtain
the datasets of 1,000 to 30,000 samples in total [179, 180, 181, 182, 183], and add labels to solve one of two
tasks:

ˆ predict the Remaining Useful Life (RUL) of the bearing using the acceleration signal: if, for instance,
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the network is presented a segment recorded seven hours before the bearing breaks, it should predict
that the engine can keep running for seven hours before a preventive repair is needed. This is a
regression problem, as the objective is a continuous value.

ˆ predict the exact source of the fault (diagnosis), which is a classi�cation problem.

In addition to the classic Machine learning, producing handcrafted features inspired by signal processing
knowledge, this �eld has seen the use of several neural networks for automatic classi�cation. According
to reviews [155, 184], if some approaches use raw, temporal data (such as [185]), most networks work on
spectrograms, or on scalograms. We also see the use of the Hilbert�Huang Transform (HHT, [186]), a signal
processing operation aiming at �nding the instantaneous frequencies of harmonics in the signal. We did �nd
one work using convolutions with the one-dimensional FFT [187], which is rare because most publications
use either the raw, 1-dimensional temporal representation or the two-dimensional spectrograms/scalograms.

Most of the publications work using only one type of wavelet, but [188] did a comparison of the perfor-
mance of a network trained on scalograms (Morlet wavelets), along with spectrograms and concluded that
the scalograms were the best, then came the spectrogram, and the HHT was the worst. Another comparison
is the one from [179] who designed a network similarly to [143]: the �rst convolutional layer uses continuous
�lters from a diversity of wavelet families, and the scale parameter of these wavelets are learnt by gradient
descent. They compared di�erent families of wavelets to the classic CNN using discrete �lters, and concluded
that the Laplace wavelets were the best, signi�cantly above the classic CNN (which was on par with the other
families they evaluated: Morlet and Mexican hat wavelets). Finally, the sinusoidal network (the network
using continuous �lters based on the Fourier basis) was signi�cantly worse than the rest. However, they did
not draw any conclusion relating these results to physics. The Airbus challenge has 50 hours of data, which
represents about 18,000 utterances if we estimate an utterance to last 10 seconds. of their problem.

Sadly, we could not �nd any comparison involving the temporal representations. The fact that spectro-
grams and scalograms are more popular than raw representations [155] might be an indication that these
representations are better, but it might also be due to the fact that researchers tried the spectrograms
more often due to prior experience with these diagrams. In this domain, we cannot conclude whether the
hypothesis we presented is veri�ed.

3.2.3 Physiological signals

The human body generates a great number of signals: heart rate (ElectroCardioGram, ECG), brain waves
(ElectroEncephaloGram, EEG) etc. Many research works try to design automated diagnostic models that
use these signals to know if a given patient su�ers from a disease, or sometimes to try to predict the state
of the patient (sleep, emotions,etc.).

Both approaches are present: the use of raw signals [189, 190, 191, 192]; as well as spectrograms [193,
194] or scalograms [195]. For EEG signals, reviews [196, 197] indicate that both preprocessing methods are
used in similar proportions. However, this conclusion does not apply uniformly to all types of problem. For
instance, in EEG for brain-Computer Interface, most works using deep networks focus on spectrograms [198].

The extensiveness of the theoretical background surrounding these signals allows the authors to rely more
on expert knowledge to create new preprocessing methods. For instance, with EEG processing, di�erent
families of frequencies are known to exist in the brain [199, 197]: alpha (8 � 13Hz), beta (13 � 30Hz), etc.
This pushed some authors to create a preprocessing where they compute the energy in prede�ned frequency
intervals. For each frequency band, they project the recordings of the power from the di�erent electrodes
on a 2D plane, using a projection that translates as best as possible the physical position of the electrode
on the patient's head. They obtain one "image" per band, and stack the images like channels in an RGB
image. This image is then given to a 2D CNN [200, 201] for classi�cation. In this example, the role of the
CNN is mainly to extract spatial features, because the convolution �lters run on the two dimensions of the
image, and not along the temporal axis. Hence, it would make sense to consider this preprocessing to belong
to the spectrogramscategory, for the temporal features (the type of feature encoding we are interested in)
are extracted when the energies in di�erent frequency bands are computed.

However, the reasoning we made comes from the very speci�c need to know how the temporal features are
computed: the existing reviews do not categorize this preprocessing as spectrograms. A thorough analysis
would review each paper in detail, to know exactly where does the paper �t in, but such a work is too vast
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for us to pursue, and we will only rely on the number of raw and spectrograms/scalograms publications to
know whether the networks compute the temporal features themselves or not. In addition, some works are
quite hard to classify, such as the creation of a 2-dimensional matrix symbolizing the similarities between
two points of the temporal input signal [202].

Another hurdle to the proper accounting of the number of representations is that this number does
not depend only on the performance of each method. For instance, with ECG processing, spectrograms
are used less often [203], because the temporal signal is composed of an extremely stereotyped motif, and
no wavelet family corresponds: trying to encode an ECG recording with wavelets would scatter on many
di�erent frequencies, even though the signal consists in repeating the same pattern with varying frequencies.
Hence, the frequencies we observe with spectrograms using such bases do not translate the frequency of
the heartbeat, but depend more on the shape of the motif [204]. However, we argue that this kind of
information might still be useful, because one study [194] does report that 2D convolutions on spectrograms
are better than a heavily optimized one-dimensional CNN for heart disease classi�cation, on a dataset with
2,500 samples and �ve classes. This pushes us to question whether the absence of spectrograms (with this
database at least) is due to a worse performance, or if this preprocessing was merely left unstudied because
of prior reasoning.

Finally, Hussein et al. provide us with another evaluation that is interesting to our case: they compare
the raw data to scalograms(they argue that scalograms are better than spectrograms). They do not mention
which family of wavelets they used to compute the scalograms, but the comparison is still useful to us: they
evaluated many architectures from Computer Vision (ResNet, AlexNet, VGG, etc.) on these scalograms,
and all of them are signi�cantly better than the one-dimensional convolutions on raw data. They used three
datasets with about 100,000 samples each to detect epileptic seizure, a two-class imbalanced problem.

Figure 3.4: The type of preprocessing used, depending on the total duration, number of samples, or number
of subjects of the dataset (N/M: Not Mentioned; combination denotes the use of several types of features).
Figure generated using the code and data from [196]. We would like to thank Y. Roy for providing us access
to the code.

In this domain, it seems that both approaches coexist, and �gure 3.4 shows that the choice of a prepro-
cessing method is not related to the size or complexity of the dataset. However, the extensiveness of this
research domain prevents us from reading all the publications in detail, which hinders the analysis.

3.2.4 Human Activity Recognition

Human Activity Recognition (HAR) is a classi�cation problem in which the classi�er must distinguish be-
tween the activities, in a broad sense, of a subject. The classes are among the most common activities a
random person can take: Walking, running, sitting, going upstairs or downstairs, playing sports,etc.

As transportation is part of the daily routine for most of the population, TMD can be seen as a subset
of Human Activity Recognition, and some HAR datasets include classes that are transport modes (Walking,
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being in a vehicle, running, etc.). However, the low granularity of the transport modes is often too low to
use these bases for TMD, or at least without adaptation.

Many types of sensors are used for the problem, and most of them are not interesting for the question at
hand: RGB or depth map videos, point clouds, position of a skeleton of the individual, etc. We will focus
on accelerometers, for which computing a spectrogram makes sense.

The reviews we found [185, 205] do not even acknowledge the use of spectrograms. It is true that the
majority of the publications use one-dimensional convolutions on raw signals [206, 207, 208, 209, 210, 211,
212, 213, 214, 215, 216, 207].

Since the publication of the reviews, some works did use spectrograms [217, 218]. However, some publi-
cations that use spectrograms are not usable for our problem, because the employed network is not known
to extract features from the data (e.g., Alsheikh et al. implemented a Deep Belief Networks [219]). Our
problematic is about deep learning, and we want to know if the network is able to extract relevant features
from the data. If the network used is unable to extract features from itself, it is obvious that the raw data
will be inadequate.

With deep convolutional networks, a preprocessing that is surprisingly common is the stacking of one-
dimensional segments to form a two-dimensional image [211, 220, 221]: for instance, if we start from six
one-dimensional signals withT = 100 samples each, we obtain a6 � 100 matrix to perform 2D convolu-
tions on. In a similar fashion, [220] stacks the 1D Discrete Fourier Transform of segments into a 2D matrix
which is then given to a 2D CNN. In some situations, the stacking occurs along three dimensions: Zheng
et al. [221] uses signals from eight triaxial accelerometers. Instead of creating a one-channelT � 24 image,
they create a T � 8 image with three channels, each channel being one axis of the sensor (x; y; z). Con-
catenating the signals into an image to perform two-dimensional convolutions might seem weird at a �rst
sight, because the order of the signals has an in�uence. This is why Jiang and Yin [220] also introduced
an algorithm that replicates the input signal and orders them in such a way that every couple of signals
is represented exactly once. For instance, if we wanted to create a 2D matrix out of nine one-dimensional
signals (which we will call 1; 2:::9), their algorithm would return the following concatenation of signals:
1; 2; 3; 4; 5; 6; 7; 8; 9; 1; 3; 5; 7; 9; 2; 4; 6; 8; 1; 4; 7; 1; 5; 8; 2; 5; 9; 3; 6; 9; 4; 8; 3; 7; 2; 6; 1. Even if the network uses
2D convolutions, we will consider this preprocessing to be equivalent to a one-dimensional convolution on
raw segments.

There are also works that introduce their own preprocessing: Some [222] use images called recurrence
plots [223], two-dimensional matrices where the(i; j ) indicates a measure of the distance between the samples
x i and x j in the segment. Memmesheimer [224] simply plots the signal (using libraries such asmatplotlib ),
records the image, and applies a CNN to solve an image classi�cation problem. Arigbabuet al. [225] start
by reshaping the temporal segment into a 2D matrix (samples 1 to 10 go into the �rst column, samples 11 to
20 go in the second,etc.), and compute the two-dimensional FFT of the matrix. They compare their results
to a 1-dimensional CNN working on raw data and show their method is better on a six-class, 10,000-samples
dataset. The diversity of the preprocessing methods make the classi�cation into clear categories harder. One
might be tempted to argue to classify some of these methods into one category or the other, but, as these
method are quite uncommon in the literature, and as they do not appear to be competitive in any direct
comparison, we will simply not consider them any longer.

Finally, to complicate things even further, we also see publications which mention using a 2D CNN, but
without giving the actual preprocessing they used [226]. For others, the lack of details even prevent us to
know the type of the network in unexpected ways. For example, Chen and Xue [227] concatenate three one-
dimensional Discrete Cosine Transforms of the signals into a two-dimensional matrix, and compares three
�lter sizes for the �rst layer: 13� 1, 13� 2, 13� 3. Given that the input 'image' has a resolution of 256� 3,
we could think that the last �lter size makes the network equivalent to a 1-dimensional CNN. However, the
�rst convolutional layer can be con�gured to use padding. If the layer did use a nonzero padding, this leaves
room for the 13� 3 �lter to move along the second dimension, and the �rst layer is e�ectively 2D. If, on the
other hand, there is no padding, the network is actually equivalent to a one-dimensional CNN, where the
input has three channels.

However, we can �nd three comparisons that are useful to us: Gholamrezaiiet al. [228] compared the
stacking of 1D raw signals and stacking of the FFT of these signals. A two-dimensional CNN performed
better with the FFT on a dataset of 10,000 samples and eight classes. We should mention that they split
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the datasets by users, which means their results are trustworthy.
The second comparison is the one made by Huret al. [218], who used datasets with thousands of samples

and six to twelve classes to compare four preprocessing methods from the literature, and they concluded
that their performance order with CNN was the following (in decreasing order):

1. 2D concatenation of one-dimensional temporal signals

2. Spectrograms

3. Signal plot (with e.g. matplotlib )

4. Recurrence plot

They also introduce their own preprocessing, a modi�cation of the concatenation of input signals, which
improves slightly the results. However, we argue that their work is dubious, for reasons similar to the ones
we developed in chapter 2: not only they did not mention splitting by user (there are tens of users in every
dataset, all with the same class balance) or in a time-consistent fashion, but, the separation of continuous
temporal recordings into �xed-size windows is done with non-negligible overlapping (33 to 50 %, depending
on the dataset). This means the networks they trained have a chance of over�tting. The over�tting is even
more plausible if we know that they claim to reach a performance of100; 00% on one of the four datasets
they considered.

Lastly, Zheng et al. used a 2D CNN on three types of preprocessing [221]: an image plot (e.g. matplotlib )
of the signal, a spectrogram, and a concatenation into an image. They used a dataset of 7,000 samples and
eight classes and concluded that the spectrogram and concatenation were equally important, and that the
concatenation they used was better. One could argue that the fusion method is they used for spectrograms
and signal plots is questionable: in both cases, they computed one image per axis (x; y; z) per sensor and
put the images side by side. In this case, the width of the image, for instance, denotes both the time and
the axis (x; y; z) of the sensor. We could think that the concatenation of 1D signals into an image is the only
method where the concatenation axes (depth/channels forx; y; z and height for sensor) do not already have a
meaning to understand the signal; and that this is why it is better. However, we will see in chapter 5 (�g. 5.2)
that the fusion method for spectrograms and image plots is actually relevant. Here, the authors explicitly
mention using non-overlapping windows, and the splitting of the samples into training and validation sets
follows the chronological order (similarly to the process we explained with the SHL dataset). This means
their work is likely to be trustworthy.

To conclude the part on HAR, we should say that even though most of the publications work with
convolutions along the temporal axis, some publications using 2D convolutions on spectrograms do exist,
even though they have been found slightly worse than the temporal representation.

3.2.5 Transport Mode Detection

We devoted a section to point-level feature computation in the second chapter, but this time, we will focus
especially on temporal representations versus frequency features.

With GPS signals, we argue that all works relied on raw representations, despite the fact that no network
used the raw latitude and longitude as an input to their networks. One could argue that computing a speed
and acceleration is di�erent from using raw data. However, this section primarily makes the distinction
between the temporal representation and the frequency ones (FFT, spectrograms, scalograms). Given that
the real-time speed and acceleration have a similar meaning to the real-time position, we think that computing
the speed and acceleration still counts as using the temporal representation. If it is theoretically possible to
estimate the spectrum (and thus, to compute a spectrogram) from irregular data (such as the GPS signals),
we found no mention of a deep neural network trained on GPS spectrograms. As a matter of fact, some
publications use spectral features to feed a Machine Learning classi�er [71], or computed the coe�cient from
the wavelet decomposition in conjunction with the features from a neural network using temporal data [109],
but these methods are the minority.

With inertial sensors, the small amount of publications simplify our analysis: to the best of our knowledge,
no publications used deep networks with the TMD dataset [19]. This leaves only the three SHL challenges,
which we will present in detail.
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SHL 2018

In the SHL 2018 challenge, the best submission [31] used statistical features, feature selection, and an
ensemble of Machine Learning classi�ers. However, we are not interested in knowing whether Machine
Learning outperforms Deep Learning, which is why we will systematically ignore the submissions that do not
use a deep neural network in all three SHL challenges. In 2018, �ve submissions optimized the architecture to
use raw (temporal) representations, and even the best of them (83:2% test F1-score, [140]) was 5 percentage
points under the only submission that used spectrograms (88:8% test F1-score, [140]). This implies that the
spectrograms bring something unique, allowing them to exceed the e�ect of architecture, or sensor selection.
Thus, for our tests, we expect the di�erence between temporal and spectrogram representations to be superior
to 5 percentage points.

SHL 2019

In 2019, the results are not so clear: the �rst deep submission did use both the FFT and the raw data, but
they reported that the results were almost equivalent when only the FFT was used [120]. If we look only at
deep learning approaches, the two submissions that used spectrograms ranked third and sixth [141], while
the two submissions that used convolutions on temporal data ranked second and seventh. Two submissions
ranked fourth and �fth with LSTMs on raw data, but we are not sure if we should take them into account:
contrary to CNNs Recurrent Neural Networks are not known to extract features e�ciently from raw data.

In 2019, one team [111] compared the performance of 2D convolutions on spectrograms, 1D convolutions
on raw data, and LSTM on raw (temporal) data. If we are not interested in the fact that the LSTM was the
best by a small margin, the fact that the spectrograms and raw representations have the same performance
on this 3 � 200; 000 samples database is valuable to us: it means that the intersection between the blue and
red curves in �g. 3.3 is located around this number of samples. In addition, the �nal validation performance
they report is fairly close to the test result after the challenge, which make their work more trustworthy.
However, this team used only the Accelerometer and Linear Acceleration (Acceleration minus Gravity) for
their tests.

SHL 2020

Like the previous year, the results of the 2020 challenge are hard to interpret. The winners of the challenge
were the only ones to use some of the data from the unseen users as training data (the organizers intended
this data to serve for validation only), which is why we will not consider their submission. The second,
fourth, and seventh deep submission used spectrograms, while the third, �fth, and sixth used raw data. In
this challenge, there do not seem to be a clear in�uence of the type of preprocessing on the �nal performance.

In short, for the SHL 2018 challenge (16; 000 samples), the results clearly indicate that spectrograms are
better-suited. For the 2019 and 2020 challenges (3 � 200; 000 and 4 � 220; 000 samples, respectively), both
representations seem to have equal performances.

3.2.6 Conclusion of the literature study

During this study in section 3.2, we tried to know whether it was best to compute the temporal features
using signal processing operations (FFT, spectrograms, scalograms) when the number of samples is small,
and whether a network would learn better features with the raw data when the number of samples is large.
We looked at three types of indications: challenge organizations, direct comparisons, and tendencies in the
research domains. The frequency of use of the preprocessing methods in diverse domains (table 3.3) does not
seem to be extremely helpful in our case: some domains (e.g. the study of rotating machinery) rely manly on
spectrograms, some (such as ECG or HAR), on raw data, and some of them, �nally, see both representations
be used, without a clear link to dataset size (as �g. 3.4 illustrates for EEG). The only challenge that we
could consider e�ectively were the SHL challenges, where the 2018 edition did see the spectrograms yield
better results, and the 2019 edition seemed to imply that the two representations are equivalent. This seems
to con�rm the conclusion by Pons et al.: the �rst challenge took place with a "small" dataset, while the two
following editions used a dataset for which the two representations are similar. The di�erent comparisons
we found are presented in table 3.2. The only domain for which we can say anything is the Human Activity
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Recognition, where the hypothesis from Ponset al. does not seem to be veri�ed. Even is we except the works
from Hur et al. [218] because of doubts we have on its rigour, it seems that computing frequency information
does help when the number of samples is less or equal to a few thousands. Note that even if Gholamrezaiiet
al. did not evaluate spectrograms but the stacked Discrete Fourier Transforms of the signals, given the high
di�erence between the performance of DFT and raw data (about ten percentage points on accuracy scores),
we assume it is unlikely that spectrograms are so much worse than the DFT that they are actually inferior
to the stacked segments (the two other comparisons found a di�erence of performance between two and �ve
percentage points between the methods).

Ref. input type problem which representation
is better ?

number of
samples

number of
classes

Temporal > Spectrograms 1,000,000 50

[152] Audio music tagging Temporal = Spectrograms 500,000 50

Temporal = Spectrograms 250,000 50

[111] Accelerometers TMD Temporal = Spectrograms 3 � 200; 000 8

Temporal > Spectrograms 50,000 9

[218] Accelerometers HAR Temporal > Spectrograms 20,000 12

Temporal > Spectrograms 10,000 6

Temporal > Spectrograms 7,000 8

[228] Accelerometers
Gyrometers

HAR FFT > Temporal 10,000 8

[221] Accelerometers HAR Temporal > Spectrograms 7,000 8

Scalograms> Temporal 144,000 2

[229] EEG Epilepsy detection Scalograms> Temporal 100,000 2

Scalograms> Temporal 126,000 2

[194] ECG Heart disease
classi�cation

Spectrograms> Temporal 2,500 5

Table 3.2: A summary of the publications that compared the one-dimensional convolutions on raw data to
two-dimensional convolutions on spectrograms, scalograms, or the Fourier Transform of the signal. The lines
are ordered by number of samples, approximately

problem Which representation
is the most common ?

Typical number
of samples

Audio Spectrograms & Temporal 1,000 to 500,000

EEG Spectrograms & Temporal 1,000 to 1,000,000

ECG Temporal 500 to 10,000

Rotating machinery Spectrograms 1,000 to 30,000

HAR Temporal 3,000 to 50,000

TMD (GPS) Temporal 10,000

TMD (inertial sensors) Spectrograms & Temporal 10,000 to 500,000

Table 3.3: A summary of the most common representation found in every domain we studied.

However, the fact that these works use di�erent datasets means that we cannot compare them as-is: the
threshold number of samples (after which the raw data is better) might change from one domain to another,
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and even between datasets. We argue that this is because measuring the number of samples is limited, for
two reasons:

ˆ It does not take into account the complexity of the problem to solve. 50,000 sample are enough to
learn to recognize written digits in images, but certainly not for general-purpose, ImageNet-like, image
classi�cation. We sometimes see a number of samples per class (we often see that neural networks
should be preferred to traditional Machine Learning models when the number of samples is higher
than 1,000 per class, because it is the number of images per class in ImageNet [230]), but this is still
not enough: for TMD, classifying Run segments versus Still ones is much easier than, say, Train versus
Subway segments.

ˆ The de�nition of what constitutes 'one sample' is not as clear as it seems. When looking at the
mathematical theorems that guarantee a convergence when the number of samples goes to the in�nity,
all of them state that the samples must beindependentfrom each other. To give an example, duplicating
a dataset as is doubles the number of samples, but it does not bring any additional information. This
has very practical consequences: when preparing the SHL 2019 challenge, the organizers decided that
the classi�cation would be done on 5-second samples instead of 60-second ones. As a consequence,
the SHL 2019 challenge has 12 times more "samples" available for each position. Does it means
that the available information was multiplied by 12 in this operation ? We think not 1. Even in the
SHL 2018 dataset, the high temporal regularity of the samples [42] means that the samples are far
from being independent: we said there were 13,000 labeled samples available to train the model, but
as these samples are redundant, if we were to �lter the samples to keep only a subset of mutually-
independent segments, the number of samples should be lower. Note that this reasoning applies mainly
to temporal data (especially when several samples are extracted from an single sequence, such as the
SHL comparison or the EEG and HAR comparisons in table 3.2), to images extracted from a video
sequence [231], or to multi-user data (a dataset where a single user is present carries less information
than a dataset with a representative set of users). Finally, we sometimes see researchers performing
data augmentation, and counting the number of augmented samples in the set [232] (for instance,
adding the horizontal re�ection of RGB images in a 10,000-sample dataset results in a 20,000-sample
dataset). We do not know if the augmented versions of already-existing samples bring more or less
information than new, unseen samples.

Counting the samples is not incorrect, but these reasons explain that the number of samples is both
problem-speci�c and dataset-speci�c: if one drew a conclusion on a given dataset (for instance, �nding the
exact number of samples for which using spectrograms is equivalent to raw representations), these �ndings
would likely not hold if they changed the objective (the classes to recognize) or the data collection process
(the diversity in the samples).

Using the literature, we tried con�rming the hypothesis from Pons et al., according to which giving the
raw, temporal segments to a network is better than computing spectrograms when the number of samples is
large enough, but the spectrograms yield better performances when the number of samples is low. If the use
of each preprocessing method in the literature does not answer our question, the direct comparisons and the
challenges indicate that the hypothesis seems to be true. However, we did not �nd a single reference proving
the hypothesis by itself, as the work from Ponset al. does not exhibit �gure 3.3 in its entirety. This is why
we will make a comparison ourselves.

3.3 Evaluation of preprocessing methods

This section presents the comparisons of the spectrograms, FFT, and raw data representations on the SHL
2018 dataset. We compare the di�erent methods to preprocess four signals from the SHL dataset:jAccj,
Gyr y , jMagj, Ori w . We consider the 1-dimensional temporal data, and di�erent kinds of spectrograms. For
each signal, we also compute the power spectrum using the Fast Fourier Transform (FFT), to obtain the
power associated to each of the 6,000 frequencies. As the input signal was real, we obtain a symmetric curve,

1The following editions of the challenge still contain more data because the organizers added data from other locations
(backpack, torso, hands) to the samples from 2018, which were recorded with the phone in the user's pocket. However, we
argue that the mere splitting into shorter segments does not bring signi�cantly new information.
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which will go through a 1-dimensional CNN. This is intended to be halfway between the one-dimensional
temporal representation and the computation of frequencies of the spectrogram representations. For the
results in the 'temporal' and 'FFT' categories (and for these results only), the network uses 1-dimensional
convolutions, with �lters of size 3. All the other parameters remain similar to the parameters presented in
chapter 2 and, in particular, the baseline network working on spectrograms relies on3 � 3 convolutional
�lters.

mode
interpolation

(frequency

axis)

power scale
size

(T, F)
jAccj Gyr y jMagj Ori w

temporal 6000 70:20� 1:63 64:71� 2:74 7:49� 10:32 39:65� 2:26

FFT 6000 80:57� 1:30 74:30� 0:72 55:99� 1:53 64:27� 1:57

spectrogram none linear 550, 250 84:55� 1:03 71:81� 0:64 63:64� 0:96 2:29� 0:00

spectrogram none log 550, 250 87:88� 0:68 79:89� 1:30 64:81� 0:85 43:35� 33:56

spectrogram linear linear 48, 48 81:98� 0:75 58:42� 1:31 45:97� 1:88 2:29� 0:00

spectrogram linear log 48, 48 86:33� 1:00 77:06� 1:32 56:53� 0:68 75:03� 2:08

spectrogram log-freq. linear 48, 48 84:46� 0:63 69:19� 0:89 53:36� 1:41 2:29� 0:00

spectrogram log-freq. log 48, 48 88:83 � 0:71 82:64 � 0:68 67:36 � 0:49 78:39 � 1:79

Table 3.4: The validation F1-score (%) per preprocessing method. For each signal, the highest result is in
bold, and the second highest result is underlined

Figure 3.5: A bar plot representation of table 3.4. Best view in color.

Table 3.4 gives the results the evaluation of each preprocessing method. Note that the results in table 3.4
are similar to those obtained by Richozet al. [25] with a di�erent neural network architecture: with three
sensors (accelerometer, magnetometer, gyrometer), they obtained a F1-score of 79.4 %. For the record, we
reproduced their approach (frequency concatenation of FFT segments), with our setting (architecture pre-
sented in chapter 2, Fourier transforms of 60-seconds long segments instead of 5s), and obtained a validation
F1-score of81:44 � 1:06%. The closeness of the results is not surprising, as using sixty seconds instead of
�ve to make a prediction actually brings little additional information [141].

Switching to the norm of the FFT is strictly better than using raw, temporal representations. This
di�erence might be due to the fact that the power spectrum better separates patterns from noise (see �g.
3.6).
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Figure 3.6: The average power spectrum per class (only half of the spectrum is shown). Note the closeness
of the fundamentals for the Walk, Run, and Bike classes, the Dirac comb shape of the Run spectra, and the
sharp components at 21, 25, and 30 Hz for Bus signals (corresponding respectively to 1260, 1500 and 1800
rpm, the usual rotation speeds of an engine). Best view in color

As expected, using spectrograms seems better, in most cases, than using a power spectrum, or even a
temporal segment, and the di�erence between spectrograms and temporal data (about 25 points on average)
is higher than the di�erence between the two optimized approaches of the challenge (�ve points between
the spectrograms [50] and the best temporal representation [113]). One notable exception, however, is the
raw, full-size spectrogram, with the orientation vector. This method has an impressive standard deviation,
because two of the �ve initializations were failure cases that did not learn e�ciently and had a F1-score of
2.8% (which is the score of a classi�er that predicts the most occurring mode). The others had a F1-score
of 76:4 � 1:6%, which is closer to what one could expect given the results of the other sensors. We will look
at this unexpected behaviour in the appendix (chapter D).

Using the log of the power is strictly better than the raw power for the accelerometer, gyrometer, mag-
netometer: the average gain obtained by switching from the raw power to the log power is7:66 percentage
points. For the case of the Orientation, using the log power is even mandatory. This is due to a particularity
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of the signal: contrary to other sensors, the orientation vector is subject to sharp changes: all scalars may
be replaced by their opposite between one timestamp and the following one. As these scalars are de�ned up
to a sign, the information stays the same if the whole quaternion is multiplied by � 1. But the individual
signals are still a�ected. On a frequency level, this translates into a sharp, but localized, maximum. When
computing spectrograms, those maxima prevent the network from seeing anything else. Switching to the
log-power allows to dampen these maxima, so that the network works with relevant information.

Figure 3.7: An example of discontinuity. Note how the periodic components at the end of the segment leave
patterns that remain noticeable with the log-power, and not with the raw power.

Using a logarithmic interpolation for the frequency axis allows to e�ectively reduce the size of the data
without altering the signal as a linear interpolation does. This might be due to the fact that interpolating
linearly a (550, 250) spectrogram into a (48, 48) matrix erases the di�erence between the fundamental
frequency of the Walk and Bike segments (the fundamental frequencies for the Bike, Walk, and Run classes
are at 0:9, 1:15, 1:3Hz, respectively). A log scale preserves the distinction between these modes by giving
more room to the lower frequencies.

However, we should mention that this section is not entirely fair: to perform our comparison, we used
the baseline architecture, a network which comes from a publication using spectrograms [50]. This means
that the di�erent hyperparameters (learning rate, number of layers, etd.) are likely to be optimized for
spectrograms. Using these same hyperparameters for temporal representations (and FFT) is likely to yield
suboptimal results, which leads to a bias in favor of spectrograms. A more rigorous approach would perform
a hyperparameter search for each representation independently. The fact that we found results similar to
Richoz et al. despite having di�erent networks might indicate that the architecture has little in�uence on
the performances. However, the di�erence in performance we found in out experiments (about 20 percentage
points on average) is much higher than the di�erence between the best 1D CNN of the challenge (83%
test F1) and the only 2D CNN (88% test F1) [140]. The results of the challenge allow us to be sure that
spectrograms are better, but our experiments alone are not enough to reach this conclusion.
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3.4 Understanding why spectrograms are more e�ective

We have seen that the spectrograms seem to be the most e�cient representation for the SHL 2018 challenge,
but we do not know why. We did display a graph (�g. 3.6) which shows some of the classi�cation information
can be found in the spectrum of the signal, but this �gure, as pretty as it is, is not a guarantee that the
network actually relies on this speci�c information. In this section, we will focus on a network using the
spectrogram of the norm of the accelerometer; and try to know which information the network exploits.

3.4.1 Which frequencies are useful for classi�cation ?

We �rst want to know what are the frequencies exploited by the spectrogram, To do so, we try obfuscating
the frequencies (�g. 3.8): we set eight lines of pixels (corresponding to frequencies) to zero in the every
spectrogram, and ask the network to predict the class of the noisy samples. We will vary the frequency
interval we set to zero to see which frequencies are the most useful: the more important the corresponding
frequencies, the worse the performance when this information disappears. We evaluate two type of networks:

ˆ networks that were trained on normal data: we train one network on pristine data, and evaluate it on
a degraded validation set.

ˆ networks that were trained on noisy data: for each frequency band we remove, we train the network
on a degraded version of the train set, and evaluate it on a degraded validation set. We use the same
degradation (we set to zero the same frequency bands) for the training and validation sets.

Figure 3.8: An illustration of the data degradation process: we set eight consecutive lines to zero in the
48� 48 spectrograms.

If the �rst experiment matters the most to us (we want to understand the frequency a normal network
uses), the evaluation of networks trained on degraded data allow us to see whether there is another way to
solve the problem that the one the network chose. Given the strong di�erences in the frequencies that are
proper to each class, we display the F1-score per class. Figure 3.9 displays the results. For the network
trained on clean data (�g. 3.9a), the only understandable curves are the Run and the Walk ones: they are
almost to their maxima for all but two of the intervals ( [1 � 2:6Hz] and [1:8 � 4:4Hz]), meaning that the
network bases its predictions on these frequencies to predict if the user is walking and running. The other
curves are harder to interpret given their irregularity.
For the network trained on degraded data (�g. 3.9b), we cannot draw class-speci�c conclusions for the
opposite reasons: we can see that the network learnt to ignore the noise because the performance is generally
much higher than the performance of a network that did not see the degraded data during its training. At
best, we could say that there is a slight decrease in performance for the Run and Walk classes for the two
bands between 1 and 4 hertz, but the di�erence (a few percentage points) is much smaller than the variations
in the curves for the other classes, which we cannot assign meaning to. The only a�rmation we can deduce
is that there are enough redundancies in the spectrogram for the network to ignore partially the loss of
information: the lowest average F1-score in �g. 3.9b is86:23 � 1:50%, which is not far from the network
trained and evaluated on clean data (88:83� 0:71%).

We cannot conclude on the data each class needs, but we can draw an additional conclusion about �gure
3.9b: given that setting the [20� 50Hz] to zero during the training process does nor a�ect the performance
much (the average F1-score of the network is88:61 � 0:94%), we could have undersampled the signal to
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20 � 2 = 40Hz (the � 2 factor comes from the Shannon theorem), without loosing too much information.
This means that the sensors that recorded the SHL dataset could have run at 40 Hz instead of 100, saving
valuable amounts of energy. A practitioner trying to implement an practical device could have this conclusion
in mind to help increase the autonomy of the device.

(a) (b)

Figure 3.9: The F1 per class of a network that was trained on clean (a) or degraded (b) data and evaluated
on degraded data, depending on the frequency band removed by the degradation. The width of the curves
denote the standard deviation across �ve random initializations. The log scale for the frequencies make the
intervals uneven when expressed in Hertz, while they had the same size (eight pixels) on the spectrogram.

However, when designing this experiment, we did a mistake, which was to reproduce a protocol from
Computer Vision (obfuscation, [233]) without thinking why this protocol was not adapted to our signals:
when setting a series of frequencies to zero, we create a discontinuity, a border in the frequencies. In other
words, the di�erence between clean data and noisy data is a feature in itself, like the value of any other pixel
of the spectrogram. We assume this is why the performance of the 'Still' class is almost always zero when
the network did not learn to ignore the noise: it interprets the discontinuity in frequency as a meaningful
signal, while it expects to see no (or close to zero) energy when the user is not moving. We assume that in
Computer Vision, this is not as much of a concern because occlusion is a natural phenomenon in images.
Some Computer Vision training protocols even hide a fraction of the image to make the network more
resilient to occlusion [234].

To improve our protocol, we could have considered changing the data degradation protocol: instead of
setting the desired segments to zero, we could have replaced the data with a linear interpolation of the closest
valid frequencies. However, the main conclusion that we can make is that the network relies heavily on the
1 � 4Hz interval to detect the Run and Walk classes. The next chapter will be the occasion to precise how
the spectrogram computation make the problem easier for the network to solve.

3.4.2 Computing the average of gradients

Saliency maps

Deep models usually are known to su�er from a lack of immediate interpretability [235]. To be able to
know what a network relied on to classify a given image, several works produce asaliency map, that is, an
image with the same size as the input, which values di�er from zero in the regions which contribute to the
network's conclusion. Let us consider a spectrogramX which is the input of our network, and choose a
classy. To know what are the regions contributing to the classi�cation as y, we generate a saliency map by
computing the gradient of the log-probability of the class y: r X log(py ). We obtain the saliency map which
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has the same shape asX , with both positive and negative values2. If one value is positive (resp. negative),
it means that increasing the scalar in the corresponding position in the input increases (resp. decreases) the
probability py .
Remark 1: Contrary to the training process of the network, in which we compute the gradient of loss with
relation to the network's weights, here, we compute the gradient of log-probability with relation to the input.
Remark 2: in this manuscript, we only apply salience to compute the gradient of the log-probability of the
class the spectrogram belongs to (ground truth), but we could have computed the gradient of another class
(and in particular, the class the network predicted in case of a mistake).

One could wonder why we do not compute the gradient of the probability directly, and choose to focus on
the log-probability. This protocol is common to many saliency maps publications, even the �rst publication
computing saliency maps used the class logits. In our case, we do so because the probabilities are computed
with a softmax of the logits: as �g. 3.10 illustrate, their gradient are often too close to zero. When we will
add the saliency maps to each other, if we added the gradients of the probabilities, many spectrograms for
which the model is certain (py = 0 or py = 1 ) would simply not account in the average.

Figure 3.10: the reason why we compute the gradient of a log-probability: for many samples, the gradient
of the probability are too low to account for in an average.

In the literature, there is a large diversity in the family of methods to create a meaningful saliency map.
We presented the most baseline saliency map, but several alterations exist, such as removing the negative
gradients [144]. We will not go through a complete inventory of the di�erent saliency maps in the literature,
because a recent paper [236], demonstrated both theoretically and experimentally that methods like Decon-
vNet or Guided BackPropagation (GBP) partially reconstructed the input image instead of highlighting the
elements the network based itself upon. As the most basic saliency map did not su�er from this �aw, we
will consider only this technique. Even though its usefulness has been questioned [237, 238, 239, 240], we
will demonstrate the relevance of this method for our application.

2Some [144] consider the absolute value of the saliency map to di�erentiate between the informative regions (high absolute
value) from the low-informative ones (values close to zero), a treatment we will not use.
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Figure 3.11: An example of saliency map with a single Run segment.

Figure 3.11 displays an example of such saliency maps. When looking at this example, it seems that
the saliency map correctly translates the useful frequency band we saw being used in the previous section.
However, we would like to use a method for which we do not have to look at samples one by one. We would
like to compute an average of saliency maps per class, but we are not yet sure that such an average makes
sense. Figure 3.12 illustrates the main problem we face: computing an average only makes sense if every
input pixel has the same meaning. Given that the position of a point on the time axis does not change
the meaning of the information much, a pattern might be present anywhere along this axis. By summing
the 48� 48 values of the spectrogram, we run the risk to sum di�erent instant of the same pattern, hereby
destroying it. This problem is not a concern for the frequency axis, because two patterns which have di�erent
positions on the frequency axis have di�erent meanings.

To summarize, we need to make sure that no interesting patterns on the time axis are destroyed. In
the next section, we will demonstrate that the temporal variations we observe in the gradients are not used
much by the network.

Figure 3.12: An illustration with arti�cial data of what we want be careful to when averaging the gradients:
summing di�erent versions of the same motif, at di�erent time steps, might destroy it.

Hypothesis veri�cation: the network uses mainly the frequencies

To verify whether the time axis is relevant, we will use a data degradation that leaves one axis intact: the
shu�e (see �g. 3.13 for an illustration). We select all the lines (resp. columns) of the spectrogram, and
shu�e their order at random (with uniform probability, independently for each spectrogram). By doing so,
we completely destroy any pattern that appeared on this axis. Then, we ask a network trained on clean data
to predict the class of degraded versions of the validation samples. Given that the shu�e operation made
the axis useless, if the network still obtains a good performance, it means that the respective positions of
the lines (resp. columns) do not play an important role in the network's prediction. Inversely, the lower the
performance, the more important the position on the axis we just shu�ed. We also consider shu�ing both
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axes to provide an additional veri�cation.

Figure 3.13: An illustration of the axis shu�ing with a spectrogram from a Run segment. On top of each
spectrogram is the name of the shu�ed axis

clean time shu�ed time

clean frequencies 89:0 � 1:6% 80:7 � 0:7%

shu�ed frequencies 21:7 � 2; 7% 24:4 � 3:8%

Table 3.5: The validation F1-score of a network trained on clean data and evaluated on spectrograms whose
axis were shu�ed (see �g. 3.13). We repeated the evaluation with �ve random initializations of the network.

Table 3.5 gives the result. We can see that the decrease in performance is much higher when shu�ing
the frequency axis (there is a di�erence of about sixty points between each result of the top line and their
bottom counterpart) than the di�erence when shu�ing the time axis (left versus right). The fact that there
is (relatively) little di�erence between the spectrograms and their time-shu�ed counterparts means that the
time axis : the interesting patterns seem to be located in majority along the frequency axis. Figure 3.12
does not happen in our case: the network saw the input signals wee stationary and does not seem to search
for temporal variations in the signals' spectra. In other words, the fact that the temporal organization of
the spectrogram values are much less important than the organization on the frequency axis mean that we
can safely sum the gradients of spectrograms.
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Understanding the sum of gradients

Figure 3.14: The gradient of each class.

Now that we know we will destroy little information by summing gradients, we can proceed to compute the
average of gradients: for each of the eight classes, we gather thetraining samples belonging to the class,
compute the saliency map using the gradient of the log-probabilities, and average the gradient for each
class. The result is in �gure 3.14 (a zoom on the most interesting frequencies is provided in �g. 3.15), and
displays several interesting patterns. Firstly, to predict the Walk class, the network is mostly in�uenced by
the [1:8 � 2:0Hz] and the [3:0 � 3:4Hz] bands. On the other hand, a high power in the[1:4 � 1:6Hz] and
[2:3 � 2:6Hz] bands will strongly reduce the probability of the network classifying the sample as walking.We
assume that the negative bands come from the interactions between classes: if the sample exhibits a sharp
component at 2:6Hz (We remind the reader that the fundamental frequencies for the Bike, Walk, and Run
classes are at0:9, 1:15, and 1:3Hz, respectively, but the highest power is at1:8, 1:15, and 2:6Hz for these
three modes). This is further shown by the fact that the Run gradient is at its highest for the [2:6 � 3:0Hz]
band, one line above the lowest value for the Walk gradient. The same goes for the[1:1 � 2:6Hz] band,
which contributes to the Bike class.

Surprisingly, if the Bus class displayed strong components at21, 25, and 30Hz (�g. 3.6), the network
seems to only use the25Hz band: the intervals [19:8 � 22:2Hz] and [28:0 � 35:3Hz] seem to contribute
negatively to the Bus class. Most importantly, these bands are not the ones to have the highest absolute
value in the whole gradient: their contribution does not seem to outshine the other frequencies' in�uences.

Also, please note how strong the gradients for the Walk and Run classes are (the maximal values of these
two classes' gradients are �ve to ten times higher the value of the other classes'). We could assume that any
model looking at the frequencies can at least classify these two classes. We will see that it is the case, at
least for the Run class. But before proceeding, we need to make sure that the gradients we just computed
are relevant.
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Figure 3.15: A focus on some gradients from �gure 3.14.

A sanity check: Going further towards the gradients

For many classes (Still, Car, Train, Subway), the gradients are fairly hard to interpret. To make sure that all
our gradients make sense, we will try to evaluate the predictions of the network when we add the gradients of
each class to all the samples in the validation dataset. If the gradients are relevant and actually encompass
the important frequencies, we will observe a shift in the predictions, such that the networks predict the class
the gradient comes from. To be able to compare the speeds of the prediction shifts across classes, we do not
consider the gradient themselves(gc)c2f W alk;Bus;etc: g, but the normalized gradients ( gc

jj gc jj 2
)c. To save time,

we also add the gradients by batches of 20 (we whose this value to be a compromise between the resolution
of the �gure and the execution speed of the code). The following pseudo-code algorithm shows the outline
of our experiment:
Require: A list of gradients (gc)c2f W alk;Bus;etc: g, a step size (chosen to be 20)

for every classc do
predictions _ history c  ;
while 90 % of the predictions do not belong in the same classdo

for every sample in the datasetdo
sample  sample + step_ size � gc=jjgcjj2

end for
Record the predictionsL predictions on this new dataset
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predictions _ history c  predictions _ history c
S

f L predictions g
end while

end for
return the lists (predictions _ history c)c which show the prediction shift

Figure 3.16: The histogram of the predictions on the validation set after we added the gradient for a given
class a certain amount of times. To display this graph, we re-weighted the samples so that the bars appear
balanced when the dataset is untouched.

Figure 3.16 gives the result: for many classes, adding repeatedly the gradient to the whole set does push
the predictions towards the class the gradient was computed with. The only exception is the Still class,
for which adding the gradient more than forty times actually decreases the probability for a sample to be
classi�ed as Still. We assume this is due to the fact that once we add the gradient a su�cient amount
of times, the power of some of the frequency bands becomes overwhelmingly positive, which the networks
interprets as seeing a high-energy segment: in short, the network sees the phone move.

On the other hand, the Walk and Run gradients' addition push the predictions towards the respective
class extremely fast, even though we made sure all gradients had the same norm.

The fact that the gradients are enough to push the direction for seven of the eight classes indicate that
they carry some meaning about the network's predictions. In the following section, we will demonstrate that
the network behaves linearly to identify the Run class.
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Measuring the linearity of the network

Given how fast adding the gradients for the Run and Walk classes caused a prediction shift, and given that
these two modes are easy to distinguish using the signal's frequencies, we might wonder if a neural network
really learns complex features learn to classify these easy classes. In particular, we will show that the network
behaves like a linear classi�er for the Run class. To show it, we will use three experiments, which �g. 3.17
illustrates:

ˆ Experiment 1: We create a linear classi�er which class prototypes (the vectors used to compute the
class logits) are the classes' gradients. This is intended to showif the classi�cation problem admits a
linear solution.

ˆ Experiment 2: We project the validation dataset onto the subspace spanned by the eight gradients
(that is, we force the samples to be linear combinations of these eight gradients), and ask the (nonlinear)
neural network to classify this altered set. If the network is linear, the predictions will not change after
the projection.

ˆ Experiment 3: We project the validation dataset along the subspace spanned by the eight gradients
(that is, we 'remove' the gradients from the samples), and ask the network to classify this altered set.
If the network is linear, the predictions will change drastically after the projection.

Figure 3.17: the three experiments we will lead to show the network classi�es some classes linearly.
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(a) linear classi�er

(b) projection onto the subspace (c) projection along the subspace

Figure 3.18: The results of the three experiments described in �g. 3.17. The �rst experiment (a) shows
the Running segments can be classi�ed linearly with little error; while the two others demonstrate that the
network actually behaves linearly.

Figure 3.18 displays the results of the three experiments. Each time, we look at the resulting confusion
matrix. For experiment 1, we should look at both lines and columns to assess the performance of a linear
classi�er. But when looking at the fate of the predictions (experiments 2 and 3), we should look at the lines
of the matrix (the samples actually belonging in the class), to know whether the alterations we introduced
disturbed the network. The results are the following:

ˆ Experiment 1 (�g. 3.18a) shows that a linear classi�er discriminates the Run class extremely well,
apart from a slight confusion with the Bike segments. This is an indication that the problem is linearly
separable using the network's gradients.

ˆ Experiment 2 (�g. 3.18b) shows that if we were to project the samples on the gradients, the prediction
of the network on the Run segments would be unchanged, a strong indication that the problem of
classifying the Run segments versus the rest is solved by the network using a linear decision boundary.

ˆ Experiment 3 (�g. 3.18c) shows that the Run segments are misclassi�ed as Walk when we remove the
Run class' gradient. On the other hand, the Walk segments are well classi�ed even after removing the
gradient, an indication that the network is does not behave linearly to discriminate this class.

Experiments 2 and 3 demonstrate that the network using the norm of the accelerometer behaves like a
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linear classi�er for the Run class. This shows one of the interest of the spectrogram representation: compared
to a high-dimensional temporal representation, spectrograms helps make the problem easier to solve.

To sum up, this section just showed that the spectrograms seem to obey the behaviour described in �gure
3.3: they make the problem more simple, thereby improving the performance when the number of samples
is low.

In particular, we said that the spectrograms made the classi�cation problem linear for the Run class,
but this is not exactly what we wanted: we wanted to know what did the spectrograms changewith respect
to the temporal representations. If the problem of classifying Running spectrograms was almost linear,
but the problem of classifying raw, temporal representations of Running segments wasexactly linear, then
the spectrogram would not have made the problem easier. Sadly, we cannot directly compute an average
of gradients in the temporal domain, because the phase will prevent the most important frequencies from
aligning with each other.

There are other ways we could have pursued our work: we could choose to do an architecture search for
each representation. Or, we could have decided to study the hypothesis that came from the study of the
literature, which is that spectrograms are better suited for smaller datasets than temporal representations
(for instance, we could have reduced the number of samples to see if the performance di�erence between
representations increases).

3.5 Conclusion

After a small introduction aiming to improve the padding used in several works of the literature, we focused on
the di�erence between raw representations and spectrograms. We concluded our overview of the literature by
saying that that spectrograms seem to be most useful when the number of samples is low, before implementing
a comparison ourselves with the SHL dataset. We tried understanding what did the spectrograms bring, and
we saw spectrograms made the classi�cation problem more simple for the network. If the conclusions of the
literature study apply to any temporal signal, the fact that a network behaves linearly for one class seems
proper to TMD: in the case where the signals are not stationary, we would expect the decision boundary to
be much more complex than a mere linear function.

Figure 3.3 seems to be veri�ed by both the bibliography and the experiments we led. Our original question
was: "should we use spectrograms ?". Our bibliographic study and experiments indicate that, unless we
work with a million-samples dataset, the answer is 'yes'. In other words, without a huge database, we need
to help the networks by computing a representation that simpli�es the problem.
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Global Pooling

In its most basic form, a Convolutional Neural Network is usually made of two types of layers: the con-
volutional layers, which process 1-dimensional signals, 2D images, or even 3D tensors [241]; and the Fully-
Connected layers, using �xed-size vectors. We use the term '�xed size' because a convolution can use inputs
or outputs of any size, provided their number of dimensions match the type of convolution. However, the
one or two-dimensional signals all have an extra 'channel' axis that does have a �xed size, which means that
the inputs and outputs of a 1D convolutional layer are actually a two-dimensional tensor. The 'channel' axis
is di�erent from the others because it encodes the type of information present at a given location (while the
other axes encode the location on the 1D or 2D tensor). This is why we will think of the vectors of the fully
connected layers are zero-dimensional representations: they encode information about the whole segment.

To obtain this global representation from local (1D or 2D) features, one needs to use an operation that
e�ectively removes one (or two) of the axes. This section is devoted to the study of the pooling operations,
the replacements for the �atten step. In this short chapter, section 4.1 will present the types of pooling
available, section 4.2 will develop the choice of metrics we focused on to assess the e�ciency of the network
a given pooling method produces, while section 4.3 presents the results and compares our network to the
state of the art. We will see that we obtain a particularly e�cient network: we reach performance levels
that compare to the state of the art with only 11,000 parameters. If the alternatives we present here are
well known in the Computer Vision community [142], our contribution is to bring them to the domain of
Transport More Detection.

4.1 The di�erent types of global pooling

Historically, the �atten layer appearing with Convolutional Neural Networks is the �atten operation [1],
which simply aligns all the values of a tensor into a vector. But in 2015, the Resnet architecture introduced
the use of an average along the two dimensions of the image [150]. In our case, ifX t;c is the two-dimensional
matrix at the end of the last convolution layer ( t being the index along the 'time' dimension, while c is the
index along the 'channel' dimension), the average of the features would be equal toYc = 1

T

P T � 1
t =0 X t;c .

Alternatively, we could use a maximum (Yc = max t 2 0::T � 1 (X t;c )), but a more general option would be to
use the generalized mean [242]:

Yc = ( 1
T

P T � 1
t =0 (X t;c ) � c )1=� c .

This expression uses one parameter� c > 0 for each channelc, which are learnt by gradient descent like
any of the other weights. When� c = 1 , the expression is equal to the arithmetic average. When� c ! + 1 ,
the generalized mean converges towards the maximum of the(X t;c )t 2 [1::T ]. In order to avoid numerical
instability, a small term 1 was added to the input tensor X . In practice, the values of � c are initialized
following N (5; 1), a normal distribution with an average of 5 and a unit standard deviation. The choice of a
distribution is arbitrary, the only constraint being that we do not want � c to be negative before the learning
even begins (if� c < 0, the expression is equivalent to using a generalization of the harmonic mean, which is

1 the lowest value we could use was 5:10� 5 , which seems quite high

63



Chapter 4 � Global Pooling

close to 0 when one of the featuresX c;t is close to zero, which makes the associated channel useless). The
value of all the � c seems to converge between 0 and 5 during the training process.

Now, these pooling methods are said to beglobal, because they use an entire feature map and return
a single, �xed-size vector. However,local variants of these pooling methods exist: a local pooling uses a
feature map as an input, and returns another feature map, where every pixel is the maximum (or the mean,
etc.) of a certain number of input pixels at the corresponding position in the input feature map. As an
example, many neural networks do include several local maxpooling layers to reduce the dimensionality of
the intermediate feature maps. We do not include these methods in our experiments, but we assume their
e�ciency (in terms of either classi�cation performance or computational requirements) in between the global
pooling and the �atten step (which we could understand as performing absolutely no pooling). However,
a local pooling layer would lack a key perk that global pooling methods have: the ability they provide to
process inputs of arbitrary sizes.

As Wang et al. [142] mention, the choice of a global pooling allows to use segments of any length as
inputs of a network. As we said, the convolutional layers can use inputs of any size (provided the number of
channels match), while the number of features in the FC layers is �xed. However, contrary to the �atten step,
the global pooling operations allow obtaining the same number of features no matter how many time steps
T the input segment had. This means that no matter how long is the input segment, the fully connected
layers will receive a segment with a �xed size (see �g. 4.1). This is why the baseline architecture for the
GeoLife database, which we presented in chapter 2 is able to process segments of di�erent sizes.

Figure 4.1: Why a global pooling method allows a network to process inputs with di�erent shapes. This
idea originally comes from Computer Vision ([142]) , but was unknown in TMD.

4.2 Evaluation metrics

To evaluate the diverse measures we will employ, we will look at three types of values: classi�cation perfor-
mance (validation F1), but also at the number of weights and operations of a network.

One might wonder why we focus on these measures and not on running times, for instance. To understand
the reasoning that led us to choose these values, we will take an example with a practical use case. Let us
consider the example of the application which made us focus on Transport Mode Detection in the �rst place:
an automatic carbon footprint estimator on a smartphone. When dealing with embedded devices, most
neural networks are trained o�ine (on a computer) on prerecorded data, and sent to embedded devices for
inference. This method relies on the fact that the training is the most computationally intensive step. In a
real use-case scenario, the end-user would download an application containing the trained model, and record
the beginning and end of their trips. The application would automatically estimate the transport mode of
the user to compute an estimation of the greenhouse gas the trip emitted.

Compared to cloud-based applications which o�-load computational steps to remote servers, this embed-
ded classi�er design keeps the user's privacy while still operating regardless of network coverage (the GPS
coverage is di�erent from the phone network or broadband such as 3G, 4G,etc.). However, if this embedded
classi�er is not resource-e�cient, the application will end up draining the battery of the end-users, who might
choose not to use it. There are publications that manage to embed neural networks e�ciently, (see [243],
for instance), however, a heavy network with many parameters is always a hurdle to e�cient embedding.
Many real-time applications also consider another parameter: the inference time. For instance, a network
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detecting objects in videos should be able to process more than one image per second to make sure to avoid
misdetection. Similarly, a network that works in a client-server architecture (as in [109]) needs to be quite
fast because it will process the trajectories from all users at once. However, in our case, the transport mode
of a user does not change too often (the average duration of a tripleg is 28 and 24 minutes in the GeoLife
and SHL 2018 datasets, respectively), and a model is to process the trips of a single user. This is why an
application does not need to run more than once per minute to get accurate results.

This is why our main concern is the number of weights of a network (which in�uences the memory
the network will require) and the number of operations (which condition the battery consumption of the
network), in addition to the performance. We do include training and evaluation times as an illustration,
even though these results depend heavily on the device. For instance, GPUs are more optimized for parallel
processing, such as convolutions. The number of parameters and operations, however, is independent of the
implementation, and provides an objective measure for comparison.

Hardware and practical setup

We trained the models on a server with an Nvidia tesla V100 GPU (32 Gb of memory), Cuda version was
10.2, and a 40-core Intel Xeon Gold 6230 CPU @ 2.10GHz with 190 Gb of RAM. The evaluation times were
measured on a CPU, a 4-core Intel i7-7820 @ 2.90 GHz with 32 Gb of RAM. However, those running times
are not absolute measures: some devices are better optimized for di�erent types of operations. The only
objective measurements are the number of parameters and operations, which do not depend on the device.
For each result (F1-score, training times), we repeat the training and evaluation process 5 times, changing
the seed each time. We display the average and standard deviation for each result. We computed the number
of operations using the code from [244]. When the input shape may vary, we used the median length of a
segment in the dataset, which is 500 points for the interpolated dataset (in our case) and 200 points for the
original GeoLife dataset ([108, 109]).

4.3 Results

4.3.1 Comparison of the alternatives to the �atten step

We compared three alternatives to the Flatten, namely Maximum, Mean, and Generalized Mean. As table
4.1 shows, on the GeoLife dataset, only the �atten step is worse than the rest, in terms of performance,
computational requirements, and training and testing time. We assume that the worse performance of the
�atten step is due to the fact that this pooling has to process shorter segments. When a segment is long, the
networks that use a �atten step see a smaller fraction of the segments than networks using a global pooling,
which means the classi�cation is less likely to be precise.

As for the running times, table 4.1 shows us that the use of alternatives to the �atten step make the
complete training processlonger, as the convergence is slower with these architectures. Given that most
applications rely on training the model o�ine (on a computer), the training time of a model is not a
major concern. More interesting is the inference time: we can see that the operations do not change
the duration, notwithstanding the global pooling operations requiring much fewer operations for a single
inference. We hypothesize this equality in running times is due to the fact that the �atten operation relies
on a matrix multiplication, an operation that can be parallelized with any modern library. Alternatively,
our implementation of these operations may be insu�ciently optimized. Either way, the fact that the global
pooling operations are as fast as the �atten is not much of a concern to us because Transport Mode Detection
does not require real-time inferences.

The number of weights of the network (which determines the memory size required to �t the network
in any device) and the number of operations (which we use as a proxy for the energy consumption of the
model) are both smaller for the global pooling operations, which is why we will favour these operations for
our application.

65



Chapter 4 � Global Pooling

Pooling
Validation
F1-score

number of
parameters

operations
(FLOPs)

training time (min)
epochs to

convergence
inference

time ( ms)

Flatten
(segments of 1,024 points)

77:0 � 1:6% 7:6 � 104 9:4 � 104 7:8 � 0:7 113 � 17 1:92 � 0:13

Generalized Mean 80:9 � 1:0% 1:1 � 104 3:3 � 104 43:9 � 7:3 538 � 114 1:94 � 0:04

Average 80:2 � 1:3% 1:1 � 104 3:3 � 104 78:7 � 34:6 1161 � 571 1:81 � 0:04

Maximum 80:3 � 1:6% 1:1 � 104 3:3 � 104 16:8 � 2:7 262 � 66 1:85 � 0:06

Table 4.1: The e�ectiveness of each kind of pooling, in terms of performance, computational resources, and
training and inference time. For each result, we display the average and the standard deviation, over 5 runs

4.3.2 Comparison with the state of the art

When looking at table 4.1, we see that the choice of a pooling operation has a signi�cant impact on the
computational requirements of the network (number of parameters and operations), which was why ResNet
introduced a global average for initially [150]. We even obtain a network with 11,000 parameters and 33,000
�oating-point operations. To the novice, this might seem a lot, and it still represents much more than
any other Machine Learning algorithm (save maybe k-nearest neighbours). But it is actually a minuscule
number for a deep network: in image processing, models usually have several millions of parameters, and
even a model like SqueezeNet, which has been developed to reduce as much as possible the memory footprint,
has 400,000 parameters [245]. Here, the model for the GeoLife dataset has 40 times fewer parameters. Even
compared to the other works in the TMD literature (table 4.2), our network is four to 100,000 times smaller
than the other networks, while still retaining similar performance levels. This is partly because most of the
other networks are either classi�cation CNN using the more expensive �atten step ([28, 57, 55]), or LSTMs,
which rely on a costly matrix series of multiplications ([108, 109]).
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model
reported

score
Number of

weights

Number of
operations
(FLOPs)

classes remarks

LSTM + embedding [108] 94.5 % AUC
1:1 � 106

(100 � p)
4:2 � 108

(10; 000 � o)
4

No mention of
the splitting
No test set

Our GeoLife Baseline 97:1 � 0:3% AUC
1:1 � 104

(p)
3:3 � 104

(o)
4 /

Convolutional LSTM [78] 80.67 % F1 ? ? 4
No additional data

No test set

Convolutional LSTM [78] 83.97 % F1 ? ? 4
AD: weather
No test set

Our GeoLife Baseline 87:1 � 1:1% F1
1:1 � 104

(p)
3:3 � 104

(o)
4 /

Convolutional Auto Encoder [57] 76.4 % F1
4:1 � 104

(4 � p)
6:4 � 106

(100 � o)
5

The trajectories are
not segmented

AD: Unlabeled GeoLife data
No test set

Convolutional Auto Encoder
with skip-connections [65]

80.4* % F1
67.7 % IoU

? ? 5

The trajectories are
not segmented

AD: Unlabeled GeoLife data
No mention of the splitting

No test set

Fully-connected Autoencoder [81] 93.44 % F1 ? ? 5

The trajectories are
not segmented

AD: Bus stop positions
Incorrect splitting

No test set

Unsupervised Convolutional
Autoencoder [55]

80.5 % Acc.
3:9 � 105

(40 � p)
7:2 � 106

(100 � o)
5

They did not use
any labels to

compute the clusters
No mention of a val. set

CNN ensemble (7 models) [28] 84.0 % F1
7 � 2:6 � 106

(1; 000 � p)
7 � 1:7 � 107

(1; 000 � o)
5 No test set

semi-supervised LSTM ensemble [127]
(4 models)

91:5 � 0:41% Acc.
4 � 3:2 � 105

(100 � p)
4 � 5:2 � 108

(10; 000 � o)
5 No test set

LSTM + Wavelet features [109]
91.9* % F1
92.7 % Acc.

8:1 � 106

(1; 000 � p)
7:3 � 109

(100; 000 � o)
5

No mention of the splitting
No test set

Our GeoLife Baseline 83:9 � 1:1% F1
1:1 � 104

(p)
3:3 � 104

(o)
5 /

Random Forests [27] 71 % F1 50 trees ? 6 No test set

Our GeoLife Baseline 81:8 � 0:9% F1
1:1 � 104

(p)
3:3 � 104

(o)
6 /

AE + Logistic Regression [38] 67.9 % Acc.
2:7 � 105

(10 � p)
5:2 � 105

(10 � o)
7 No test set

Our GeoLife Baseline 74:1 � 0:7% F1
1:1 � 104

(p)
3:3 � 104

(o)
7 /

Table 4.2: The comparison of the performance, number of weights, and number of operations required for a
single inference (forward pass) of the networks in the literature. This is a reproduction of table 2.4, which
we presented in chapter 2, except that we added the number of weights and parameters. The question marks
(?) denotes the publication which did not leave enough details to obtain a precise estimation of the number
of weights and operations.ADdenotes the presence of additional data.
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4.4 Conclusion

This short chapter presented the global pooling operations, the replacements to the �atten step. We looked
at the pooling methods in the Computer Vision literature and transferred it to a TMD problem. Not only can
we use them to increase the performance of our model, but we can also reduce its size to an extreme degree,
reaching as low as 11,000 parameters. For future work, it might be interesting to try to use architecture
compression to obtain an even smaller network.
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Data fusion

When we presented the publication that serves as our SHL baseline [50], we mentioned that the way they
merged data from two di�erent sensors is surprising: they mention simply putting two spectrograms side
by side to form a single image. Merging the information from di�erent signals, a problem calledData
Fusion, is the problem we will try to tackle in this chapter. If most of the works in Multimodal Deep
Learning focus on videos (with both RGB images and sound) or images with text, this problem touches any
Machine Learning dealing with multiple sensors. In particular, the inertial sensors of the SHL dataset we
selected (accelerometer, magnetometer, gyrometer and orientation vector) for Transport Mode Detection.
This chapter is devoted to the evaluation of diverse Data Fusion architectures on the SHL dataset. Our
main contribution is to establish a benchmark that proves that, on Transport Mode Detection, no data
fusion method is signi�cantly better than the others.

In the �rst section, we provide a brief overview of the fusion methods used in multimodal deep learning.
Then, section 5.2 presents a list of data fusion architectures we selected for evaluation. Section 5.3 displays
the results of the comparison, and mainly conclude that no fusion method strictly outperforms the others. In
section 5.4, we experiment with a novel fusion method that tries the sensor-speci�c layers to generate features
that are complementary between sensors. If the fusion method in itself does not increase the performance,
we use it to show that the networks are able to learn the right amount of redundancy by themselves. Finally,
section 5.5 concludes by an evaluation of the best fusion method we found on the SHLtest set, which we
did not use until now.

5.1 Data Fusion modes in deep learning

As we said earlier, all research works processing di�erent sensors merge the data one way or another. Most
approaches rely on simple fusion modes: Early fusion (concatenation of input signals [50, 246, 223, 247]),
intermediate fusion (concatenation of representation coming from di�erent sensors [248, 206]), or late fusion
(average of predictions [249, 25])

Some approaches are sensor-speci�c, either because they work on textual data [250, 251] and rely on
the speci�c structure of the medium; or because they create an explicit alignment between sensor data with
di�erent ranges (eg an RGB camera looking forward and a LIDAR sensor gathering information from all
directions) [248, 252], which is not applicable in our case as the signals from di�erent sensors are already
synchronized.

Others train an autoencoder to reproduce one sensor from the other, and use these autoencoders to
generate features that will be processed by a classi�er [253]. This approach relies on the fact that minimizing
the variation of information between the di�erent sensors' features helps to build e�cient features [254]. If
this method helps to train a classi�er that is robust to missing data, the resulting classi�er is worse when all
the sensors are available. In our case, as we assume the sensors function properly most of the time, we will
not consider this method.

But some methods are still relevant: for instance, Liet al. [255] design a network that merges the infrared
and RGB information for depth estimation. Their network, baptized IVFuseNet, is halfway between an early
and intermediate fusion, for it gathers two sensor-speci�c convolution modules (one for RGB images and
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one for depth map), and one series of convolution layers that uses the internal representation of the �rst two
modules to return a prediction.

Wang et al. [256] work with audiovisual videos, and noticed that in some cases, adding the audio to
the RGB video only makes the model over�t more. They start from an optimization problem (when each
network returns a prediction, �nd the optimal weights to minimize the over�tting), and derive a formula to
produce weights so that the over�tting of the di�erent sensor-speci�c networks is reduced.

Chen et al. [257] designed a network that uses a combination of features from RGB videos and Inertial
Measuring Units (accelerometers). The model starts by computing features from sensor-speci�c channels.
Then a dedicated module produces coe�cients between 0 and 1 that will be multiplied by these features.
The channels are then multiplied by their respective coe�cients, depending on the usefulness of each sensor
for a given sample.

Liu et al. [258] tried to conceive a network that does not require every sensor to be good every time,
considering that some of them may have blind spots. Their approach is a modi�cation of a late fusion (they
have several sensor-speci�c models that can return a prediction), with a speci�c loss that leaves untouched
the weights of a model if it is not con�dent in its prediction.

These methods are always better on the dataset each publication considered, but most works provide
little comparisons with other methods if any. In general, most of the publications which deal with multiple
sensors compare their architecture to a small subset of baselines, and those subsets do not always overlap
between publications. Reviews exist to identify the di�erent fusion modes [259, 260], but they only report
the performance of each method on its dataset. We provide a clear comparison of the di�erent fusion modes,
including the most basic ones.

However, we should mention that our work are not exhaustive: multimodal data fusion is an extremely
broad topic, and there are methods that we did not consider. As an example, Paul Liang, a PhD student at
Carnegie Mellon University, recently published a reading list on multimodal deep learning [261], that includes
as many as 500 publications. As a comparison, we only thirteen algorithms, amore thorough investigation
would likely require a complete thesis in itself.

5.2 An inventory of fusion modes

We selected several data fusion methods that are relevant in our setting for comparison. The names may
vary, some methods might even not be named. One important note: most of these modes are equivalent to
our baseline architecture when a single modality is used (if they leave the possibility to use a single sensor).
The exceptions are the bottleneck �lters (section 5.2.1) and attention (section 5.2.2).

5.2.1 Early fusion

Early fusion modes consist in giving all signals to a single neural network. The only di�erence between them
is how the input signals are put together before they are processed by the neural network.

ˆ Time concatenation: the input spectrograms are concatenated along their temporal axis.

ˆ Frequency concatenation: the input spectrograms are concatenated along their frequency axis (after
log interpolation).

ˆ Depth concatenation: the signals are put together like the channels of a RGB image: each convolution
�lter of the input layer has access to the same portion of all signals at the same time.

Figure 5.1 illustrates these three methods.
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Figure 5.1: the three early concatenations

Note that early fusion is not always possible for every problem. As Moya-Ruedaet al. notice [214], using
these modes require having the sensors synchronized (which implies having the same frequency) in order for
the fusion to be relevant, because temporal measures of di�erent sensors are put on the same level.

At �rst, concatenating signals along their time or frequency axis seems surprising, as the resulting 'spec-
trogram' is not homogeneous. A convolutional network using such inputs would have no way to know from
which sensor comes a given pattern. However, these fusions are similar to a more relevant setting: features
concatenation. In order to understand this idea, one should look at a characteristic of convolutional neural
networks: even if the receptive �eld of a given neuron is large, in practice, the features obtained after each
convolutional layer retain the spatial information. In other words, the features at a given location of a feature
map will be mainly in�uenced by the patterns at the corresponding location in the input spectrogram (or
image), to the extent that one can use a classi�cation dataset to train a segmentation network, and obtain
acceptable results with minimal modi�cations to the classi�cation architecture [262, 263]. As we use a �atten
layer to obtain a single feature vector, the scalars of the vector each have a distinct spatial origin. Given
that the operation that follows is a matrix multiplication, the network can adapt the weights of the Fully-
Connected Layer to make the distinction between features coming from each location of the spectrogram. In
particular, with time or frequency concatenations, the network can still distinguish the information coming
from each sensor, even if its convolution �lters browse the whole spectrogram. An illustration is available in
�g. 5.2.

Bottleneck �lters

Bottleneck �lters (as can be seen ineg [246, 264]) are a special type of �lters aiming to replace a convolution
layer. We begin by concatenating the spectrogram depth-wise (similarly to depth concatenation). We then
replace the �rst convolutional layer (containing 16 3 � 3 �lters that could see all sensors) with a succession
of two particular layers: the �rst one contains only a 1 � 1 �lter, that can see all the sensors and returns
a feature map with a depth of 1. This layer will have to learn a good combination of the input modalities.
The second layer contains 16 �lters with size3 � 3 which will see the combination learnt by the �rst layer.
The feature computation happens here. No activation function is added between these two layers. The idea
is to separate the fusion of sensors (�rst layer) from the feature computation, as those steps happen at the
same time (in the �rst convolutional layer) with depth concatenations.

5.2.2 Intermediate fusion

Intermediate fusion consists in merging together the features produced by di�erent sensor-speci�c networks,
so that a single classi�cation network can process them. As it requires the classi�er to have some kind of
internal representation, it is most adapted for deep architectures.
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Feature concatenation

The idea behind feature fusion is to let the convolutional layers compute features, before giving both features
to the next layer. The rationale behind this method is to allow each convolution module to generate its own
relevant features. For RGB-D images, concatenating features from the RGB image and features from the
depth map is better than a depth concatenation [248].

Given the remark made in the previous section, this method seems similar to the time and frequency
concatenations. There are two di�erences between the architectures (�g. 5.2):

ˆ the Feature concatenation allows the network to have a series of convolution �lters dedicated to each
modality, whereas the input concatenations impose the network to have the same convolutional �lters.

ˆ With frequency and time concatenations, the convolution �lters can go close to the border of the
signals, which means some of the features will come from both sensors. This is impossible with feature
concatenation, where the di�erent sensor's features are not merged until after the last convolutional
layer.

These reasons explain why the feature concatenation is expected to be better than the frequency or time
concatenations.
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(a) How a neural network learns local
features

(b) Frequency concatenation

(c) Feature concatenation

Figure 5.2: An overview of the di�erence between frequency and time concatenations, and feature concate-
nation. As the features learnt in the �nal feature map still retain some spatial consistency (a), a network
using frequency and time concatenations (b) can still distinguish between the features from each sensor. The
main di�erence with feature concatenation (c) is that the network can now learn sensor-speci�c convolution
�lters, which was impossible with the two early fusion methods.
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Attention

The key idea behind attention is to allow the network to allocate a di�erent importance to every feature,
depending on the sample. The implementation is similar to one the from [119] and [121]: for each pixel
of the �nal feature map of each sensor, the network produces a scalar between 0 and 1, which encodes
the importance to assign to the feature. The scalar is multiplied to the feature, the results are aggregated
(summed) over the spatial dimensions and sensors, and fed into the next fully connected layer (see �g. 5.4a).
This allows the network to modulate the importance it gives to each sensor, depending on the sample it has
to classify.

We can illustrate the behaviour of our attention mechanism by looking at the attention when the input
samples are �awed. During the training time, we hide the bottom-left hand corner of the spectrogram: a
quarter of the pixels are set to zero. Then, at test time, we submit clean spectrograms, along with their
obstructed version, and compare the attention maps with these two samples.

When we compare a clean sample with its obstructed counterpart, the network learns to distinguish
between clean and obstructed spectrograms: we can see that, when the network dedicates some attention to
the bottom right weights on a clean sample (�g. 5.3a), setting the values to zero removes all the attention:
our network learnt to ignore the noise in a representation (�g. 5.3b). Obviously, when the network does not
dedicate any attention to the bottom right-hand corner, obstructing this part of the image doe not change
the attention map.
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(a) A clean sample of Bus (b) the same sample, with one corner obstructed

(c) A clean walk sample (d) The obstructed Walk sample

Figure 5.3: A sanity check of our attention mechanism. We can see that, when a network was trained with
obstructed samples, it learns to ignore constant portions of the spectrogram by assigning them no attention

Note that for this experiment to work, submitting obstructed samples during the training is essential: if
all the training samples were clean, the network would not know that a uniform, zero-square corresponds to
noise, and it would pay attention to these regions.

Selective fusion

Chen et al. [257] conceived a neural network that is based on attention (called 'soft attention' network),
with a notable variant: the network still produces a scalar between 0 and 1 for each pixel of each sensor-
speci�c feature map; these scalars are still multiplied to their corresponding features, but features are not
aggregated. The rescaled features are instead �attened, and given to the next FC layers. Figure 5.4b
illustrate this architecture
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(a) (b)

Figure 5.4: An illustration of the architectures of the baseline attention (5.4a) and the selective fusion (5.4b).

5.2.3 Late fusion

Late fusion methods rely on using only the predictions (logits or probability vector) of di�erent sensor-speci�c
models. As they allow to use any type of model (both Machine Learning and Deep Learning), these methods
are the most �exible category.

ˆ Probability fusion: Each network produces a probability vector (after the softmax), indicating the
prediction of the network. With the probability fusion, we simply compute an average of probabilities.
If pi

c is the probability network i assigns to classc, the �nal probability vector of the ensemble of the
n models is given by

8c; pc = 1
n

P n
i =1 pi

c.

ˆ Logits fusion: To merge the logits, we extract the vector before the softmax. This vector of logits
indicates whether the sample is likely to belong to each class (the higher the logit of one class, the
more likely the sample is to belong to this class). We compute the average, for each class, of the logit
each network assigns to each class, before using a softmax to obtain a single output probability.

ˆ Weighted fusions: With the two previous modes (probabilities and logits fusion), the average was
unweighted, which means a 'bad' sensor is given as much importance as a relevant one. To avoid it, we
try letting the network learn the weight to assign to each sensor. With both methods, we compute a
weighted sum of the predictions of the sensor-speci�c models. For instance, the weighted probabilities
average is:

8c; pc =
P n

i =1 � i pi
c , where

P n
i =1 � i = 1 .
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The implementation of this mechanism is not straightforward, as the� i have to remain within [0; 1] and
sum to one. In order to learn the coe�cients of a weighted sum, each network coe�cient is obtained
using a softmax of real-valued weights:

8i; � i = exp (w i )P n
j =1 exp (w j )

Thus, the parameterswi can be learnt onR by gradient descent, and the� i can be between 0 and 1,
and sum to one.

Learn to combine modalities in multimodal deep learning

Liu et al. [258] noticed that sensors might not be relevant everytime, and instead carry only a partial
information. However, in most settings, the sensor-speci�c networks are trained to predict right every time,
leading to possible over�tting.

They design a loss function that aims to reduce the penalty for sensors that are not con�dent in their
prediction. They start by considering a model that simply computes the class-wise product of the probabil-
ities each model returns: pc =

Q
i pi

c. If gt is the index of the ground-truth class, the cross-entropy loss is
given by:

L = � log(pgt ) = �
P n

i log(pi
gt )

They introduce a coe�cient qi
c (for all classesc) as follows:

qi
c = [

Q
j 6= i (1 � pj

c)] �= (n � 1)

where n is the number of sensors and� is a hyperparameter that controls the intensity of the correction.
Its value must be between 0 and 1 and was set to 0.5 in our experiments.

This coe�cient is used to help compute a new loss:
L = �

P
i qi

gt log(pi
gt )

The general idea is that when a sensori is sure that the sample belongs to the classc, the probability pi
c

will be close to 1, which means the coe�cients(qj
c ) j 6= i will be close to zero. This means the loss will leave

the models j alone and change the weights of modeli .
Note that this approach is equivalent to replacing the probabilities pi

c by (pi
c)qi

c with a model that
computes a product of the sensor-speci�c probabilities and a classic cross-entropy loss.

Gradient Blend

When studying networks using audiovisual content (videos), Wanget al. [256] noticed a particular phe-
nomenon: in most cases, adding audio data to the image model does not help. In fact, the image-speci�c
model is so good that adding the audio only make the whole model over�t. They start from a model where
the �nal probability pc is a linear combination of the probabilities pi

c, and solve an optimization problem to
�nd optimal weights from expressions of the train and validation losses att = 0 (before the training) and at
the end of the training

For each sensori , de�ne:
O = ( L train

t =0 � L val
t =0 ) � (L train

t = end � L val
t = end )

G = L val
t =0 � L val

t = end
The relative weights of each sensor are given by:wi = O i

G2
i

Their method, named Gradient Blend is likely to succeed in our case, because one signal (the accelerom-
eter) is signi�cantly better than the others, especially the magnetometer.

However, Gradient Blend requires using a validation loss to compute each weight. To avoid contamination
and to allow for a fair comparison, we will not use our validation set to compute the validation loss. Instead,
we estimate it by further splitting our train set into two subsets: the �rst one gathers 80% of the training
set and is used to train the weights of the sensor-speci�c networks, while the other 20% are used to compute
the 'validation' losses that will give the weights of the models. When the global network is training (that is,
when all the weights wi are de�ned), the two parts of the training set are merged back together, and used
to tune the weights by gradient descent. As a result, we can evaluate this global model on our validation set
safely.
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Late fusion modes: is it better to train the models separately or jointly ?

The methods belonging to the 'late fusion' category rely on generating one model per sensor, and merging the
predictions of each complete model. When using Deep Learning models, a new option arises: the di�erent
models can be trained either separately (each model tries to do its best using the sensor it has access to),
or jointly (all models share a common loss function). However, this choice is not binary: one can decide to
begin with a separate training, before �netuning the models jointly. We did not consider the opposite, that
is, to begin with a joint training, and end with a separate one. As the late fusion models share a common
loss at test time, separating the models mid-training seems unlikely to yield good results. To know which
proportion of joint training is optimal, we used the following protocol: we start with the four sensors, and
for each fusion method that allows doing so (the late fusions), we train the network separately during a
proportion p of 50 the epochs, before merging the models, and training them together for the remaining
1 � p of the epochs. Table 5.1 shows the result: for the logits and weighted logits methods, no proportion
is statistically better than the others. The same applies for Gradient Blend, although the performance is
signi�cantly lower. For this mode, we had to do an exception: as we need to train the sensor-speci�c models
separately at least once (so that the parametersOi ; Gi make sense),p = 0 corresponds to 1 epoch where the
models are trained separately. For all the other modes,p = 0 means that the models are trained jointly.

For the methods that deal with probabilities, training the individual models together impacts the per-
formance negatively, even if the collective training is as short as 5 epochs (corresponding top = 0 :9). For
the weighted probabilities, the explanation is the following: a neural network always tries to maximize the
output probability of the correct class, on average, on the whole dataset. As probabilities are bounded
(within [0, 1]), and because the� i stay the same for all the samples, the only way a network can increase
the average correct probability on the training set is by increasing the weight� i of the best sensor-speci�c
network available (the accelerometer network): the networks over�t. At the end of the training, the global
network only assigns a weight of 1 to this sensor, and a weight of zero to all the other sensors, which is why
its performance is equal to the performance of a single network using the accelerometer signal. We con�rmed
this by explicitly looking at the weights the network assigned to each model (results not shown).

This is not the case with weighted logits, for similar reasons: in order to maximize the output probability
on the training set, the network can tune the logits, which are easier to work with since they are not bounded.
As the logits change from a sample to the other, this prevents the network to listen to only a single modality.

For the next experiments, the proportion will be set to p = 0 :5 for the logits, weighted logits, and gradient
blend fusion, and to p = 1 for the probabilities fusion. Choosingp = 1 for the weighted probabilities fusion
is irrelevant, for this method is equivalent to a mere probabilities fusion whenp = 1 (all models are trained
separately, the weight are not updated and left equal to their starting value of 1

n ). This is why we also choose
to set p = 0 :5 for the weighted probabilities.

Figure 5.5: The mean and standard deviation of di�erent late fusion methods, as a function of the proportion
of epochs where the sensor-speci�c models are learnt separately.

5.3 A benchmark of fusion modes

Table 5.1 gives the results of each fusion method, applied to four sensor combinations. We notice that, given
the standard deviation of the experiments, most fusion methods have statistically similar performances. Two
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of them, however, seem particularly worse than the rest: bottleneck �lters and attention. Without being
exceptionally bad, the methods Gradient Blend, Learn to Combine, and weighted probabilities also yield
consistently worse results than the others. This is all the more surprising that all the methods from the
literature had rationales that apply to our case, and that these methods succeeded in their respective tasks.
If the works that compare two basic fusion methods sometimes report that these methods have similar
performance (about one percentage point in [256, 255, 265]), some also report di�erences in the fusion
methods ([25, 258, 119]). In all cases, the more complex methods we took from the literature should have
di�ered from the rest.

Maybe our models are not deep enough: for instance, given that there are only two fully-connected layers,
only two layers separate the intermediate fusion from the late fusion methods. The same goes for the fact
that there are only three convolutional layers. Also, the decision boundary might be "too simple": if the
network classi�es the Run class using a linear boundary (section 3.4), chances are that the other classes are
detected using a "simple" expression of the input data. In this case, all fusion methods would be equivalent
because they would all equate to merging the input features.

Finally, a third hurdle to an e�cient comparison is the size of the training dataset: one could argue that
complex methods require more training samples to be e�cient, but achieve better results on larger datasets
(an opinion which we somewhat illustrated in �g. 3.3)

If one still wanted to follow our conclusions, we could give them the following advice: as most fusion
methods have the same performance, we recommend using the most simple ones: time, frequency, or feature
concatenations; feature concatenation; probabilities average (where all models are trained separately), logits
average.
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84:11
� 1:30

90:26
� 0:56

90:95
� 0:37

88:85
� 0:54

90:89
� 1:13

89:18
� 1:10

90:10
� 0:66

jAccj; jMagj 90:78
� 0:66

91:37
� 0:49

91:83
� 0:35

85:83
� 4:45

91:74
� 0:46

90:62
� 1:03

86:67
� 1:01

90:75
� 0:77

91:66
� 1:35

88:04
� 0:93

92:17
� 0:59

89:53
� 0:64

87:37
� 0:65

jAccj; Gyr y ;
jMag j

91:36
� 0:74

92:13
� 0:90

91:91
� 0:88

87:01
� 2:16

91:87
� 0:64

92:39
� 0:87

87:85
� 1:05

92:33
� 0:61

92:55
� 1:08

89:40
� 0:55

92:98
� 0:37

89:47
� 0:92

89:56
� 0:98

jAccj; Gyr y ;
jMag j; Ori w

92:32
� 1:18

92:30
� 0:54

91:23
� 1:25

84:59
� 5:52

92:51
� 1:01

92:93
� 0:60

87:56
� 0:62

92:43
� 0:40

92:83
� 0:19

89:43
� 0:49

93:01
� 0:36

89:36
� 1:24

91:41
� 1:11

Table 5.1: The mean and standard deviation of the validation F1-score of each method, for di�erent fusion modes
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5.4 Decorrelated networks

5.4.1 Principle

When observing the results (see table 5.1), we can notice an interesting pattern: with many of the "simple"
fusion methods (frequency and depth concatenation, features fusion, logits and weighted logits) the combi-
nation of the norm of the accelerometer and the norm of the magnetometer seem better than accelerometer
and gyrometer, even though the gyrometer is better individually than the magnetometer (see the results in
table 2.5 in chapter 2). One obvious explanation is that the norm of the magnetometer carries a di�erent
kind of information from the accelerometer: the latter is mainly a�ected by the dynamics of the sensor; while
the former changes mostly when the user is inside a metallic cabin. This can be con�rmed by noting that
the average power spectra of accelerometer and gyrometer signals are much more similar to each other than
the accelerometer and magnetometer (�g. 3.6). If choosing di�erent input sensors leads to better results, we
might increase the performance of a network by forcing it to learn decorrelated features. We will develop
this idea in the rest of section 5.4.

The �rst idea that comes to mind is to use a simple L1 loss to prevent the features of both networks
from being too close to each other: ifX 1 and X 2 are feature matrices extracted from the �rst and second
network, respectively (see �g. 5.6), the weights of the network would be trained with an additional constraint:
L = �j X 1 � X 2j, in addition to the cross-entropy (classi�cation) loss.

Figure 5.6: A naive way to force the features to be complementary.
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Figure 5.7: An illustration of why we cannot use a simple L1 norm to separate the features of two bases.
The same pointP has two coordinatesX 1 = ( x1; y1; z1) and X 2 = ( x2; y2; z2) in the red and blue coordinate
systems (respectively), and the corresponding features do not match (e.g. x1 6= x2). Note that in this illus-
tration, the two bases correspond exactly, that is, it is possible to recompute exactly the features(x2; y2; z2)
using x1; y1, z1; and inversely. In the general case, a complete alignment of the bases might not be possible,
but the CCA o�ers mathematical guarantees that we obtain the best alignment possible.

However, comparing two features as if they existed in the same space make no sense: for instance, if
the scalars of the �rst feature are a mere permutation of the features of the second one, the vectors will
look di�erent while representing the same information (see �g. 5.7). In order to compare them, we need
an operation that �nds a base change that aligns the coordinates as much as possible. We use Canonical
Correlation Analysis (CCA) [266], an operation which �nds two base changes (B1; B2, one for each set of
features), such that the correlation between features is maximized. This operation has already been used
for data fusion [249, 267], but in a way that makes it almost useless (the next chapter explains why). In our
case, to force the features to be di�erent, the loss now tries to separate the featuresafter the base change:
as the new features are expressed in the same base, we can separate them using a L1 loss, which will ensure
the information they carry is di�erent. The weights of the sensor-speci�c convolution layer are trained with
a sum of classi�cation loss and decorrelation loss: ifX 1, and X 2 are the feature matrices after the two
sensor-speci�c convolutional layers, andX 0

1 = B1X 1 and X 0
2 = B2X 2 are the result of the base change after

CCA, the complete loss is:
L = CELoss + � L decorr

It is the addition of the classic cross entropy loss and a novel term, we namedecorrelation loss:
L decorr = �j X 0

1 � X 0
2j = �j B1X 1 � B2X 2j,

As for � , it is a hyperparameter we will try to optimize.
At test time, the decorrelation loss is not used, and the network is similar to the feature concatenation

network. The original CCA operation is only de�ned for two sets of features. If expansions of the operation
exist for more than two sensors [268], we will �rst use only the two-sensor CCA. We focus on the accelerometer
with the magnetometer, even if we will consider the accelerometer with gyrometer for the comparison with
other fusion methods.

The next section presents the many additional changes we needed to apply before obtaining signi�cant
results and the two ways we found to compute the Canonical Correlation Analysis.

5.4.2 Experimental protocol

Even if we introduced a computation of new variables with the same meaning in �gure 5.6, to decorrelate
the feature e�ciently we would need to change the place where the features are extracted: in �g. 5.6, the
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features are "too close" to the classi�cation layer. For reasons we can only develop in the next chapter, if
we tried applying a L1 loss to make the features more distant from each other, we would directly go against
the classi�cation loss. This is why we extract the features one layer before. Now, in our implementation, the
features are only extracted after the �atten step (see �g. 5.8). The reason why the features are extracted
before the dropout is not insigni�cant: if the features X 1; X 2 were extracted after the dropout layer, we would
risk having the phenomenon described in �g. 5.9. This is why the features are computed after the �atten
step, and before the �rst dropout and fully connected layer. We considered applying the decorrelation loss
to features extracted even sooner (between convolution layers), but the sheer number of features prevented
the CCA from converging.

Figure 5.8: The complete architecture of the networks we forced to produce decorrelated features.
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Figure 5.9: The reason why the features that are used to compute a decorrelation loss are extracted before
any dropout is applied. Dropout, by removing some of the features at random, destroys the correlation
between realizations.

Now that we know where to extract the features, we can compute the aligned representations. We found
two ways to do so:

ˆ classic CCA: Canonical correlation analysis o�ers an explicit solution, relying on inverses of covariance
matrices. We use the implementation from [269] the following way: at every batch, after the features
are computed, we use the whole training set to evaluate the correlation matrices on the complete
dataset, and deduce the feature matricesX 0

1; X 0
2 for the current batch. Then, the decorrelation loss

uses these feature matrices on this batch to train the weights of the network. At every batch, we
compute the explicit CCA between the two sets of features on the training set. We then use the base
changesB1; B2 to evaluate the loss on the features from the current batch. To compute the CCA, we
use the code from Raghuet al. [269].

ˆ deep CCA: the previous method has two drawbacks: �rst, it requires to use the whole training set to
compute the result of the CCA operation. Secondly, the CCA objective is computed using a script
outputting the base changes. There is a risk that between two batches, the result of the CCA (and
thus, the expression of the loss) could change dramatically. To avoid this, we replace the explicit
CCA computation with an iterative solution. We use deep CCA ([270]), a neural network that tries
to maximize the correlation between two feature matrices. Deep CCA consists of two Fully Connected
neural networks, both of them using a vector as an input (in our case, a vector of 1,600 features for
each network) and outputs a vector of smaller dimension (chosen arbitrarily to be equal to 128). In
between, we tried using one, two, or three fully-connected layers with a hidden feature size of 256.
The weights of these deep CCA networks are trained tomaximize the correlation of the features, while
the decorrelation loss tries tominimize the correlation between them. However, the decorrelation loss
only changes the weights that participated in the computation of the features (i.e., the weights of the
convolutional layers). To enforce some continuity of the CCA between the batches, we alternate one
batch of deep CCA with one batch of the classi�cation network.

Note that we used the code from the original publication ([270]). In practice, the computation of the
loss requires the correlation matrix to be full rank, which is only possible if there are more samples
than features in the feature matricesX 1;2. As these matrices have 128 features each, we set the batch
size to 512 for deep CCA networks. We made sure that this hyperparameter does not change the
performance of the baseline networks (the networks that each use one sensor) before implementing it
for deep CCA models.

We presented the list of caveats we need to consider before implementing a decorrelation loss in practice.
Now that we can run the networks, let us see if the decorrelation loss actually improves the performance of
the network.
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5.4.3 Results

As we said in the previous section, we train two networks using a loss equal toCELoss + � L decorr , where
� is a hyperparameter we will change. For all our results, we will consider the following values for� :
[� 10� 1; � 100; � 10� 1; � 10� 2; 0; 10� 2; 10� 1; 100; 101; 102]: we use a logarithmic scale with a factor of 10 (the
borders of the interval were chosen so that the loss goes under 80 %). Notice also the fact that we consider
� = 0 , which corresponds to a situation where there is no decorrelation loss. we also add the negatives
values for � , which correspond to cases where we force the networks to producecorrelated (i.e., redundant)
features. We will look at the di�erence between � = 0 and � > 0 to know if a decorrelation loss helps the
network. Similarly, if the performances are higher for �< 0, than for � = 0 , this means that we help the
network y forcing its features to be more correlated.

As we mentioned in the previous section, in the case of the deep CCA networks, we consider having one,
two, and three fully-connected layers to compute the correlated components.

Figure 5.10: The performance of a neural network using a decorrelation loss computed using the theoretical
expression of the CCA.

Figure 5.11: The performance of a neural network using a decorrelation loss computed using the a DeepCCA
network.

As �gures 5.10 and 5.11 indicate, .When the values of� are too high in absolute values, the classi�cation
performance decreases dramatically, because the decorrelation term is so high that the objective starts to
become so important the network neglects the classi�cation task. More interesting is the allure of the curves;
they look to be constant in the interval � 2 [� 1; 1], and decrease when� is out of these borders. This
implies that a network is able to know automatically know how much it should correlate its features. We
will demonstrate this fact in the next section.
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5.4.4 Why did the decorrelation loss not help

In this section, we will try to know whether the networks are helped or impaired by a decorrelation loss.
To do so, we will measure thescalar product between the gradients of the two losses. The weight of a
neural network, put side by side, form an immense vector in a space of extremely high dimension (typically
thousands to billions). To train the network, we compute the gradient of the cross-entropy loss, and move
the weights of the network in this direction on an in�nitesimal distance. We repeat this process at every
batch until the network eventually stops improving its performance.

In our case, we have two losses: the cross-entropy loss, for classi�cation, and the decorrelation loss. We
can quantify their agreement by looking at the scalar product of the losses' gradients. If the two gradients
pull the weights in the same direction (resp. opposite directions), the scalar product between them will
be positive (resp. negative). In short, the scalar products between the gradients quantify the agreement
between their respective losses.

We compute the scalar product between the gradients at each batch of the whole training process and
display it to know whether our intuition was true. We train two models with � = 0 to know if decorrelating
the features helps or impairs the networks. As an illustration, we display the scalar products of the gradients
of the losses for each of the sensor-speci�c layers, and for the complete network (the union of the sensor-
speci�c layers and the last fully-connected layer in �g. 5.8)

Figure 5.12: The scalar products between the classi�cation and decorrelation losses at every batch, on the
classic CCA network

Figure 5.13: The scalar products between the classi�cation and decorrelation losses at every batch, on the
two-layer, deep CCA network

The results are presented in �gures 5.12 and 5.13. They di�er for the classic and deep CCA models.
For the classic model, we see that the scalar product between the loss is mostly positive and close to 1 (its
theoretical maximum). This means that the decorrelation and classi�cation losses pull the network in the
same direction. For the deep CCA model, however, the sign of the scalar product changes a bit more between
positive and negative values. However, given that the deep CCA networks are learning at the same time as
the classi�cation model, we cannot be sure that they reach the (the whole point of using neural networks
was to have a slow-moving model to compute the CCA), we cannot conclude from the deep CCA networks
because we cannot be sure that their decorrelation loss is actually relevant.

Starting from the observation that a couple of di�erent sensors perform better than a couple of similar
sensors, we tried to force the networks to produce features that are complementary across sensors. We notice
that forcing the networks to produce decorrelated features does not help it to improve their performance,
because the networks are perfectly able to optimize the good amount of redundancy themselves.
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5.5 Evaluations on the test set

If the data fusion method does not seem to change the results much, we might wonder if adding two sensors
(magnetometer and orientation) to the two sensors of the baseline (accelerometer and gyrometer) helps the
network. To compare our approach against the state of the art, we select the best fusion method and sensor
combination in table 5.1 (that is, a weighted logit fusion of the four sensors), and train it 5 times on the
union of train and validation sets, before evaluating the F1 score on the held-out test set of the challenge. to
choose the "best" data fusion method, we simply choose the method that has the best average performance.
Even if there is a likely risk of this choice relying on insigni�cant measurements, we need to select a single
method and see no other reasons to choose than maximizing the average validation performance.

Approach Models fusion method sensors F1-score

Four-sensor fusion CNN weighted logits Acc, Gyr
Mag, Ori

89:96� 0:07%

Baseline [50] CNN frequency
concatenation

Acc, Gyr 88:83%

Best SHL 2018 submission [31] ML + DL ensemble HMM on predictions All 93:86%

Posterior improvement [84] ML + DL ensemble HMM on predictions All 94:9%

Table 5.2: The results on the held-out test set. We repeated our training process �ve times and display the
average and standard deviation

As Table 5.2 shows, the results are surprising: not only the F1-score is still signi�cantly lower than it was
on the validation set (89:96� 0:07%and 93:01� 0:36, respectively), but it is barely superior to the baseline we
chose (88:83%). In practice, the use of additional sensors (and the energy consumption that comes with it)
might not justify the performance gain (about one percentage point). These two Deep Learning approaches
are still inferior to the methods in [31, 84], which use an ensemble of Convolutional Neural Networks and
Machine Learning models with handcrafted features, and merge the predictions of the models by giving
them to a meta-classi�er (a Hidden Markov Model). In practice, halving the error might be worth the extra
complexity and computational costs of implementing handcrafted feature computation and using all sensors.

5.6 Conclusion

In this chapter, we focused on the choice of a data fusion architecture to take into account the information
from all four sensors we chose. The most important contribution of this chapter is the benchmark we
realised: we selected thirteen data fusion algorithms in the literature to evaluate them and found that no
one was particularly better than the others. Afterwards, we tried designing a novel algorithm that forces
the networks to learn complementary information, which did not yield results that di�er signi�cantly from
the other architectures. However, we demonstrated that the networks learn to correlate the features by
themselves, and trying to intervene in one way or another is only detrimental. Finally, we wanted to see if
adding two sensors to the original publication, as well as changing the fusion method, could increase the test
performance. If we noticed an increase compared to the publication we based our baseline on, the increase
in performance was too low to justify the additional complexity.
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Chapter 6

A study on Canonical Correlation
Analysis

In the previous chapter, we mentioned a data fusion method relying on CCA we found in the literature.
Canonical Correlation Analysis operation has had many uses with deep learning, the most important of
which is to quantify the similarity between representations of deep networks. However, this chapter will
focus on the properties of CCA when applied to data fusion of features from deep networks. To use this
fusion method with deep networks, Imran et al. and Ahmad et al. [249, 267] proceed as follows:

1. Train one neural network per sensor (each training occurs separately) to solve the classi�cation problem.

2. Extract the feature matrices from the last layer of the networks, which we callX 1; X 2.

3. Use CCA to compute the aligned representationsX 0
1; X 0

2.

4. Use a Machine Learning classi�er (e.g. SVM) to classify the sum X 0
1 + X 0

2

However, the results they obtain with this method are not much better than the other data fusion methods,
and we could wonder whether this method is really relevant. The main conclusion is that the fusion method
relying on CCA is equivalent to a simple sum of the logits at the end of the network.

Section 6.1 will serve as a detailed introduction to the properties of CCA. Then, we will present an
overview of the use of this operation in the Deep Learning literature in section 6.2, before applying CCA to
our networks to draw some interesting conclusions on our problem in section 6.3. The rest of the chapter is
devoted to a more complex reasoning. To understand it, we have three a�rmations:

ˆ (A) : The classes are well separated in the feature space.

ˆ (B) : The �rst canonical components are close to a linear combination of the class components.

ˆ (C) : The fusion method relying on CCA is equivalent to a simple sum of logits.

If proposition ( C) is the one that matters the most to us, we want to understand where it comes from. There
are three ways to showC: we can demonstrate it directly using experiments; we can also show thatB is
true and B =) C, or we show that A is true and A =) B (knowing that we already have B =) C).

A is fairly easy to demonstrate: given that the classi�cation layer of a network is linear, the classes are
well separated if and only if the classi�cation performance is high. Contrary to A, showing proposition B
experimentally is not trivial, which is why we will present it �rst: section 6.4 will prove it experimentally.
Once we have a solid set of experiments to know whetherB is true, we will show how A =) B in section
6.5. After this, we will �nally come to the proposition that motivates this chapter, the fact that a CCA
fusion is approximately the same as a sum of the class logits (C). Section 6.6 will explain why B =) C,
while section 6.7 showsC experimentally.

The last section (section 6.8) will try to see what happens when we consider extracting features from
earlier layers and conclude that the reasoning this chapter is about is likely to be speci�c to the the features
from the last layer.
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6.1 Introduction

This chapter uses many speci�c notations and de�nitions, and the present section explains them: section
6.1.1 gives the �rst de�nitions, section 6.1.2 introduces the process of feature extraction from deep neural
networks, and section 6.1.3 presents the CCA operation itself with some of its properties.

6.1.1 Notations and de�nitions

variable set de�nition

X i Rn � s features matrix of network i
s samples, n dimensions

Wi Rn c � n

class weights of network i
nc classes,n input features

each row j is the class component
associated to the j th class

bi Rn c class bias

yi Rn c class logits,
8x 2 Rn ; y = W:x + b

Yi Rs� n c logits matrix

� X i ;X j Rn i � n j covariance matrix of
the feature matrices X i and X j

B i Rn i � n basis change

P Rn � n projection (P:P = P)

U; V Rn � m orthonormal families of vectors
m vectors in dimension n

E Rn � n eigenvectors of an � n matrix

I n s
n Rn � n 8ns 2 [1::n]; I n s

n =

2

4
I n s � n s 0n s � n � n s

0n � n s � n s 0n � n s � n � n s

3

5

Table 6.1: A summary of the notations we will use in this chapter
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Figure 6.1: The class components are thenc vectors formed by the lines of the weight matrix W of the last
FC layer.

CCA works with samples from a vector spaceRn and involves many concepts from linear algebra. Table 6.1
explains some of the notations we will use later.

A component from a feature space is both a vector of this feature space and the linear application that
consists in projecting a vector onto the line spanned by that vector. Hence, a series ofm components inRn

can be expressed as a matrix inRn � m . For instance, in the following sections, we will consider thenc class
components, which form the weight matrix W 2 Rn c � n of the last classi�cation layer (see �g 6.1).

6.1.2 Deep features

Figure 6.2: The extraction of deep features
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To compute deep features from any input, we select the features used by the last layer of the network.
These features are classi�ed by a fully connected layer, before the softmax which gives the �nal probability.
The fully-connected layer is linear (y1 = W1:x1 + b1). In other words, for each classc, computing the logit
corresponding to this class is equivalent to computing a scalar product with thecth row of W . We call each
of these vectors theclass components. See �gure 6.1 for an illustration.

6.1.3 A general presentation of Canonical Correlation Analysis

The Canonical Correlation Analysis (CCA, [266]) aims to �nd linear combinations of coordinates with
maximal correlation between two datasets. Let X 1 and X 2 be two feature matrices with s samples and
n1 and n2 features, respectively (X 1 2 Rn 1 � s and X 2 2 Rn 2 � s)1. Let us set n = min (n1; n2). CCA �nds
two basis change matricesB1; B2 2 Rn � n i which produce two new sets of featuresX 0

i = B i X i 2 Rn � s, such
that:

ˆ The covariance matrices ofX 0
1 and X 0

2 are diagonal

ˆ The diagonal coe�cients of the correlation matrices of X 0
1 and X 0

2 are maximal. In other words, the
correlation between thei th row of X 0

1 and the i th row of X 0
2 is maximal.

Figure 6.3: An illustration of the CCA operation. X 1 and X 2 are two 2-dimensional feature spaces represent-
ing the same �ve samples (two points sharing the same colour correspond to the same sample represented
with di�erent features). Note that if B1, B2 are rotations in our example, they can be any base change in
the general case.

Note that computing the solution assumes that the covariance matrices of bothX i are invertible so that
we can haven decorrelated components inX 0

i . In practice, to have 'enough' components, we use PCA to
keep 99:99% of the variance and remove zero-variance components, similarly to [271]. This is somewhat
similar to SVCCA [269], except that we willingly keep the low variance components, which were considered
noisy (and hence, removed) by SVCCA.

The new featuresX 0
i are called the canonical variables, while the basis changesB 0

i are called canonical
components. Figure 6.3 illustrates this operation. The components are ordered: the �rst row ofX 0

1 and the
�rst row of X 0

2 represents the most correlated linear combination of features one can �nd. The second row
of these matrices represents the second most correlated linear combinations, subject to the second row being
decorrelated with the �rst row, and so on. We will focus on the most correlated components that is, the �rst
ns features in X 0

1 for somens 2 [1::n]. The canonical components can be expressed the following way [272]:

1The notation X i is sometimes used to denote the i -th row or column of matrix X . If we except �gure 6.1, we will not use
this notation in this chapter, and X 1 and X 2 will always denote the �rst and second feature matrices (with their respective
networks and sensors).
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B1 = � � 1=2
X 1 X 1

E1 (6.1)

Where E1 is the set of eigenvectors of the matrix� � 1=2
X 1 X 1

� X 1 X 2 � � 1
X 2 X 2

� X 2 X 1 � � 1=2
X 1 X 1

, ordered by descending
eigenvalue. The same goes forB2.

The canonical variables have an interesting property: they are invariant to invertible linear transforma-
tions.

Theorem 1. Invariance to linear transformations [272]:
Let X 1 2 Rn 1 � s; X 2 2 Rn 2 � s be feature matrices,M 2 Rn 1 � n 1 an invertible transformation, b 2 Rn 1 � 1,

and X̂ 1 = M 1X 1 + b1. Let us compute CCA a �rst time on the couple (X 1; X 2) to obtain X 0
1 = B1X 1, then

compute CCA a second time on the couple(X̂ 1; X 2) to obtain X̂ 1
0

= B̂1:X̂ 1. Then:

ˆ X̂ 1
0

= X 0
1

ˆ B1 = B̂1M

It should be noted that only the canonical variables (the X 0
i ) are invariant to linear transformations.

The canonical components (the B i ) are not, because they end up cancelling the transformation applied to
X i . This distinction will prove useful at the very end of this chapter. However, CCA only covers the linear
relationships between sets of variables: if, for instance, each element ofX 2 is the square of the corresponding
element in X 1, CCA will not see the relationship between the feature matrices. Some improvements have
been suggested in the literature to cover a broader range of relationships between sets of features, the
most famous of them being kernel CCA [273]. However, this chapter will focus mostly on classical, linear,
Canonical Correlation analysis.

To conclude this section, let us sum up the hypotheses we work with:

ˆ The features are extracted fromclassi�cation networks. In future work, we might consider generalizing
to features extracted from unsupervised networks (autoencoders) or self-supervised networks, but we
do not think our experiments generalize to handcrafted features.

ˆ We extract features from the last layer of a network. One experiment in section 6.8 brie�y brushes the
subject of features from other layers, but without drawing any complete conclusion.

ˆ We work with only two feature matrices at once, that is, we will not use generalizations of CCA to
more than two feature matrices [268].

ˆ We limit our analysis to the baseline, linear CCA, and we do not use recent variations such as PWCCA
[274] nor kernel CCA [273].

6.2 Related works

The idea of applying CCA to any two feature matrices existed before the emergence of neural networks [275,
276, 271, 277, 278, 279]. The idea is the same as with deep features: extract the feature matricesX 1; X 2 using
handcrafted features, compute the canonical variablesX 0

1; X 0
2, and use them for the application (classi�cation

[276, 277], source separation [271], etc.).
Remark: for classi�cation, there are two ways to use CCA on deep features. When the canonical compo-

nents are given to the Machine Learning model, the model receives either the sum of componentsX 0
1 + X 0

2 or
the concatenation of the two feature matrices

�
X 0

1 X 0
2

�
. We focus on the sum in our explanations because

this is what the researchers did with deep features [249, 267], but the reasoning is the same when the sum
is replaced with a concatenation.

With the recent advent of deep learning, it was only a matter of time before researchers tried to use CCA
fusion on deep features. The most important �eld of application is to use CCA to quantify the similarity
between representations of deep networks. Multiple publications already studied network similarity to �nd
constants in the behaviour of all deep models. A complete inventory is out of scope for this work, because
we mostly pursue the works [280] and [281]. We will just mention that many of these works compared the
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predictions of two networks [282], or their correctness [283]. The works we are interested in mostly study
the deep features that precede the logit layer.

In 2017, Raghuet al. popularized Canonical Correlation Analysis (CCA) in the Deep Learning research
community. This operation had several applications in the last few year, the most important of which is
to demonstrate that networks learn from the bottom �rst [269] (the earlier layers stabilize before the layers
close to the output). In addition, they published their code, which we reused partly to compute the CCA
numerically.

On Linear Identi�ability of Learned Representations
Roeder et al. [280] studied the representations learnt by unsupervised or self-supervised models. They

showed that the representations learnt by two neural networks are equal up to a linear transformation if the
networks solve the problem perfectly. By using canonical correlation analysis, they show that the equality up
to a linear transformation is close to being achieved in several unsupervised learning problems: they compute
the correlation of the canonical variablesX 0

1 and X 0
2 and �nd that this correlation is relatively close to 1.

This means that recomputing the features from one network using the features from the other is feasible: if
B1X 1 = X 0

1 � X 0
2 = B2X 2,

then B � 1
2 B1X 1 should be close toX 2.

Their claim is valid for broader tasks than mere supervised classi�cation (they work on tasks like self-
supervised learning and word embedding), but we focus on classi�cation because we can compare the canon-
ical components to class components, and/or canonical variables to class logits. However, they provide
a mathematical formulation for tasks such as classi�cation, semantic segmentation, word embedding,etc.
(section 2 of [280]); which could allow to generalize the concept of "class components" beyond classi�cation.
This formulation could be used to adapt the reasoning to other problems.

Exploring the Interchangeability of CNN Embedding Spaces
McNeely-White et al. [281] generated additional results on ImageNet classi�cation. Mainly, they select

a broad diversity of architectures, and compute the accuracy when they replace the featuresX 2 with an
approximation using the features from the �rst network: instead of measuring the accuracy when the logits
use clean data (Y2 = W2X 2+ b2), they replace the featuresX 2 with W +

2 W1X 1 (whereW +
2 denotes the Moore-

Penrose pseudo-inverse ofW2) and classify these recomputed features using the fully-connected classi�cation
layer of network 2 (with weights and biasesW2 and b2, respectively). They obtain that the loss of accuracy is
relatively small (a few points on average), indicating that the reconstructed features are close to the original.

The formula X 2 � W +
2 W1X 1 looks extremely similar to the previous one (X 2 � B � 1

2 B1X 1). In fact, if
we had, X 2 = W +

2 W1X 1, we would have,Y2 = W2X 2 = W1X 1 = Y1. This would mean that the correlation
between the class logits is perfect, which would imply that CCA puts these components �rst. Obviously, the
claim Y1 = Y2 does not hold in practice, but the correlation between logits happens to be high enough so
that the CCA picks up the logits �rst.

When McNeely-White et al. state that the two results are linked, they might not have realized that the
fact that the proximity they measured is X 2 � W +

2 W1X 1 is the main reason why the canonical variables
X 0

1; X 0
2 are close to each other in the experiments from Roederet al. This is a direction we will pursue

in section 6.4.3 after we present how CCA can help us make interesting conclusions on Transport Mode
Detection.

6.3 An application of canonical correlation analysis to deep features

This section will illustrate how we can use CCA to understand better the features from the neural network.
We will use the CCA to show that the accelerometer and gyrometer are more similar to each other than
the accelerometer and magnetometer (a fact that was not demonstrated until now) in section 6.3.1. We will
also demonstrate that the architecture of the network allows the information about the power of the input
signal to appear in the network's features in section 6.3.2, and, �nally, we will see that the initialization of
a network does not impact the features after the training (section 6.3.3).
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6.3.1 Measuring the canonical correlations to quantify the similarity between
sensors

In chapter 2, we said that the accelerometer and gyrometer were close because they both encode the dynamics
of the phone. We also added that the accelerometer was quite di�erent from the norm of the magnetometer.
Canonical Correlation Analysis gives us a way to quantify this di�erence. We consider two networks and
compare the correlations of the couples of canonical variables.

The most extreme case is when the two feature matrices are equal up to a linear relationship. In this
case, the canonical variables are exactly equal, and their correlation coe�cient is equal to 1. In general, the
closer the correlation is to 1, the closer the features are to each other.

However, when considering two independent multidimensional distributions, computation of CCA will
often yield a positive (nonzero) correlation, because the number of samples is �nite: there is always a
way to �nd a direction with at least some correlation between the feature matrices. To take into account
the �niteness of data, we compare correlation between features to the correlation between two random
(independently-drawn) normal feature matrices: after we computed the PCA (after we kept 99.99 % of the
variance), we generate a couple of feature matrices �lled with independent, normal random variables (zero
mean, unit variance). If we had an in�nite number of samples, it would be impossible to �nd any correlated
components within the feature matrices, and the correlation between canonical variables would be zero.
But as the number of samples is �nite, it is possible to �nd canonical components even if feature matrices
were generated independently. We will compare the correlation obtained with these simulated curves to
the correlation obtained with deep features in order to quantify the correlation which is simply due to the
�niteness of the number of samples.

Figure 6.4: Each �gure displays the correlation coe�cient between each of the couple of canonical variables,
generated with the SHL dataset. Two curves (whether dotted or plain) sharing the same colour were
computed using the same pair of networks, before (dotted) and after the training (plain). The di�erent colors
represent di�erent couples of networks (we do not compute an average because the number of components
we kept to get to a full-rank feature matrix changes between initializations).

Figure 6.4 displays the results.In this �gure, we represent the average correlation between features from
trained networks (networks after the training process), but also betweenuntrained networks, that is, between
two networks that have just been initialized (we use the Glorot initialization [284]). To emphasize, as the
weights of an untrained network were not modi�ed by any training procedure, the untrained networks'
predictions are entirely random.
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As we can see in �g. 6.4, the correlations after training are higher than before training, which means
the two networks' features got closer during the training process, as the dashed curves are consistently lower
than the plain curves. In addition, the fact that the correlations from the last components obtained using
untrained networks (coloured dotted curve) are similar to the last correlations of random Gaussian variables
(black dotted curves) indicates that there is only a little di�erence between the latest components and two
independent Gaussian variables.

Figure 6.5: Each �gure displays the average correlation coe�cient between each of the couple of canonical
variables, generated with the SHL dataset.

These curves are interesting, but they are quite hard to compare to each other. To be able to compare
sensors, we simply compute the average of all the values in every curve and display the averages in �g. 6.5.
We made the distinction between trained (left) and untrained (right) cases. In particular, we can see that
the average correlation between the accelerometer and magnetometer (0:245) is lower than the correlation
between the accelerometer and gyrometer canonical variables (0:335). As a side note, we should mention
the fact that the correlation of the untrained accelerometer and magnetometer (0:194) is lower than the
untrained accelerometer and gyrometer (0:315). As the weight of an untrained network does not depend
on the sensor the network will use, the only reason for this mismatch in correlations to exist is that these
correlations translate similarities with the input data. These remarks �nally con�rm our intuition: the
accelerometer is closer to the gyrometer than it is close to the magnetometer.

6.3.2 Demonstrate that the network keeps the power

The previous section measured the similarity of features but did little to understand what does this similarity
rely on. In particular, we could see that the features from two untrained networks still kept some correlated
components, despite being processed by completely random weights. In this section, we will illustrate one
property of the input signal we can �nd in the network's features: the input power can be found in the
networks' features. From a statistical point of view, the power of a signal is equal to its standard deviation if
its mean is zero (which we assume in the following):P = 1

T

P T
t =1 X 2

t . To show the input power can be found
in the network's features, we simply compute the standard deviation from the raw, temporal measurements
of each sample and measure the correlation with every feature from the neural network. We also display the
correlation between the feature matrices and the power of the original, one-dimensional time signal (seen
as a feature matrix with one column). The plain curves in �g. 6.6 denote the set of correlations between
features of the canonical basis and the power of the signal. As we can see, most of the values are quite far
from +1 or -1, which mean that the power is not present in all the features of the network. However, when
computing the component which is the most correlated to the power with CCA, we �nd that this component
is quite close to one, which means that a linear combination of features is often enough to reconstruct the
power.
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Figure 6.6: the correlation between each of the features and the power of the input signal

To understand how this data is available in the features, let us list the operations that occur between the
input and the features:

ˆ Convolution (convolution layers)

ˆ Adding a bias (convolution and fully-connected layers)

ˆ ReLU nonlinearity (convolution and fully-connected layers)

ˆ MaxPooling

ˆ Multiplication by a �xed matrix (fully-connected layers)

ˆ Dropout

In particular, all but one of them (the addition of a bias) have he following property:
f (�x ) = �f (x); 8�> 0
Despite looking similar to the linearity, this property does not mean the network is linear. However, its

validity for most of the network operations is interesting. Let us forget (temporarily) that the addition of a
bias is an operation in our network, and assume that all the operations verify the property. As this property
is stable by composition (if f and g verify it, f � g will verify it), the whole network does verify it. This
means that if we multiply all the values of one signal by a positive constant� , the features of this signal
will all be multiplied by this same value. Similarly, the signal's power would also be multiplied by � . In
other words, the amplitude of the input signal in�uences both the power and the features produced by the
network. What this means is that the signals' power is correlated to the amplitude of the network's features.
The presence of bias addition does disturb the reasoning, but the disturbance is not strong enough for the
power to be completely erased from the feature embeddings. For instance, �gure 6.6 shows that there exist
an adequate linear combination of features that creates a value that is well correlated with the power.

There is one important point to make: the explanation we just gave is true whether the network is trained
or not. This means that the power of the signal is available even before the network started training. Figure
6.6 con�rms it experimentally: there exist a linear combination of the 128 features that allows computing
the power with reasonable precision from features ofuntrained networks. Note that this is true only because
the operations we used in our network let the information about to the signal's power go through them, and
we might reach a di�erent conclusion with other properties (fundamental frequency, entropy, etc.).

As the power of the signal is available from the beginning of the learning process, chances are that the
network uses this easily accessible information as soon as the training starts, especially given how relevant
it is to the problem of transport mode detection. It might be interesting to know if this stands for other
deep learning problems. However, one must be aware of the fact that not all recent "building blocks" of
neural networks obey this rule: attention (whether classical attention or multi-head attention), or squeeze-
and-excitation blocks [8] are notable counter-examples.
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For our problem, the power of an input signal is an extremely important feature. The fact that it is
available from the start may explain why the networks reach a good performance level with relatively little
epochs (for instance, a network using the norm of the accelerometer reaches a F1 score of80% in the �rst
�ve epochs, before eventually reaching values of about89%). However, with di�erent networks (such as the
transformers relying on attention), the power might not be available from the start. The network may still
be able to learn to recompute the power eventually, or any other feature that is useful for classi�cation, but
the convergence may be slower to reach. In other words, we think the simplicity of our network did help it
to reach a good performance e�ciently.

6.3.3 In�uence of the network initialization

In the literature, multiple lines of work can attest that the seed used for the random initialization of network
weights has little in�uence on the �nal performance (we are not talking about the random law the weights
are initialize from, but about the di�erence between two realizations of the same law). The fact that many of
our own experiments have standard deviations of about one percentage point (with the noticeable exception
of the networks using the orientation vector in section 3.4, or in appendix D) con�rms this fact. To evaluate
the e�ect of network training, we could try to look at �g. 6.4 where the colour of the curves denotes the
networks from which the features come. For instance, the dotted and plain blue curves in the bottom-left
hand corner of the �gure denote the correlations between features from the same couple of networks using
the norm of the magnetometer, before and after training (respectively). We could try to see if the colours
for which the dotted curve is higher are also the colours for which the plain curves are higher (i.e., if the
couples of networks that produce correlated features before the training still produce correlated features after
it), but the di�erence between the curves is not high enough for us to distinguish anything. To see things
better, we keep on measuring the feature obtained by di�erent networks before and after they are trained,
but we colourize things di�erently. We realize four comparisons, depending on the networks the features are
extracted from:

ˆ Two trained networks coming from di�erent initializations (blue curve)

ˆ The features from the same network, before and after training (green curve)

ˆ The features from one untrained network and a di�erent trained network (red curve)

ˆ Two untrained networks (black curve)

For each comparison, we extract the features, compute the canonical variablesX 0
1; X 0

2, and measure the
component-wise correlation coe�cient. We obtain a decreasing curve because the canonical variables are
ordered. For three SHL sensors (accelerometer, magnetometer, gyrometer), we repeat the experiment for
three random network training processes (which means there are three couples of networks to compare for
the green and red curves). Figure 6.7 displays the resulting correlation curve. The similarity (measured with
CCA) between any trained network and its untrained version is the same as the similarity between a trained
network and any untrained network. In other words, we bring one additional experiment supporting the fact
that the initialization of the weights has little in�uence on the network post-training.
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Figure 6.7: The correlation between di�erent versions of trained and untrained networks, with SHL data.

In this section (6.3), we used CCA to prove three things:

ˆ the accelerometer is closer to the gyrometer than the magnetometer

ˆ the features of the network allow it to see the input signal's power, even before the training

ˆ the features of a network do not depend on its initialization

These a�rmations represent examples of conclusions we can obtain by applying CCA to deep features.
However, we were originally interested in CCA to perform the fusion between features from di�erent sensors.
The application of CCA is developed in the next section, to demonstrate that this fusion method is irrelevant.

6.4 The equality between the �rst canonical components and the
class components

This section aims to show that the class components can be found with a linear combination of the �rst
canonical components (propositionB of our introduction, see �g. 6.8 for an illustration). It is fairly long,
and organized on thee major parts: subsection 6.4.1 displays a �rst plot of the �rst couples of canonical
variables, which allows us to get an insight of what propositionB actually means. Subsection 6.4.2 displays
some experiments we callprojection experiments, that can be found in the literature and used to demonstrate
B . Finally, subsection 6.4.3 will serve both to introduce better experiments to demonstrateB , and use it to
actually establish the proposition.
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Figure 6.8: The principle of the equality between class components and the �rst canonical components on
a three-class problem. The colours in the di�erent feature matrices denote the di�erent information about
the three classes. The feature vectors will undergo a matrix multiplication (denoted by the arrows under the
left matrix); and the rows of the matrix the features are multiplied by are the class components. Similarly,
the arrows under the matrix of the canonical variables represent matrixM in equation 6.2.

Proposition B is "The �rst canonical components are close to a linear combination of the class compo-
nents", and it is equivalent to:

9M 2 Rn c � n ; W1 = MI n c
n B1 (6.2)

In equation 6.2, matrix M denotes the linear transformation that are referred to in the words "up to a
linear transformation". In our experiments, we are not interested in computing matrix M explicitly, but we
want to know how close are the �rst two terms of the equation. Figure 6.9 illustrates how we will measure
the similarities of components up to a linear transformation: we compare the subspaces spanned by the two
families of components.

(a) (b)

Figure 6.9: An illustration of the problem of the comparison of two families of vectors (components),F and
G. (6.9a) shows we cannot compare the elements one-to-one, and (6.9b) shows the need for a robust measure
(for instance, the dimension of the subspace spanned by familyF

S
G would not be a good measure).

As we mentioned earlier, the experiments we describe in this section are purely empirical,i.e., we do
not give a theoretical guarantee that the linear layer keeps all correlated components. However, even if our
experiments are empirical, we will draw conclusions that might apply to any classi�cation network. In order
to show how general our claims are, we will use the CIFAR-10 Dataset, a Computer Vision dataset where
the network has to recognize the object among 10 possible classes in 60,000 low-resolution RGB images
(with size 32 � 32 � 3). We used the code from [285], which implemented the same hyperparameters and
architecture as ResNet-50 [150].
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6.4.1 Introduction: A glance at canonical variables

To illustrate our intuition, we start by plotting the values of the 16 most correlated components between
each couple of features. For each componenti , we plot the i th component of X 0

1 versus the i th component
of X 0

2. We repeat the process for CIFAR (�gure 6.10), and for SHL (�gures 6.11, 6.12, and 6.13). Firstly,
we can notice that the �rst components from each sensor are more correlated than the later components,
as expected. Secondly, the correlations are higher in the case of features coming from two identical sensors,
and that the correlations between accelerometer and gyrometer are higher than the correlations between
accelerometer and magnetometer: this comes directly from the results we showed in section 6.3.1.

Finally, for the problem that matters to us, it looks like we can easily separate several classes from the
others with these variables, which is an indication in favour of the proximity between canonical and class
components. However, if these graphs give clues indicating that the �rst canonical variables are equal to the
logits, they do not prove anything: we will present the proof in the next sections.

Figure 6.10: The �rst 16 pairs of canonical variables between two initializations of Resnet-50 models trained
on CIFAR-10. The colour indicates the class.
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Figure 6.11: The �rst 16 pairs of canonical variables between two initializations of the accelerometer model.
The colour indicates the class.

Figure 6.12: The �rst 16 pairs of canonical variables between an accelerometer and a gyrometer models. The
colour indicates the class.
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Figure 6.13: The �rst 16 pairs of canonical variables between an accelerometer and a magnetometer models.
The colour indicates the class.

6.4.2 Projection experiments

A more rigorous (but not perfect) experiment is to project the feature matrices on the most correlated
components to see if this a�ects the classi�cation performance. We will reproduce and extend the experiments
from [269] (Figure 2 from this work). We start from two trained networks, we extract the hidden features
from the last layer of the �rst one, then we project on a subspace of inferior dimensionns, before re-injecting
the features in the network to measure the performance.

The rationale we adopt is that if the performance is intact, it means that the nc class components are
una�ected by the projection. In other words, it means that the nc class components belong in the subspace
spanned by the ns most correlated components. Fig.6.14 illustrates this experiment in the case of the
projection on the ns most correlated components. Note that when we use all features, we project on the
original space,i.e., we leave the data unchanged. The di�erence between the end of the curves (performance
on pristine data) and the rest (altered data) will indicate the proximity between the considered subspace
and class components. We will see in section 6.4.3 and later that this rationale is imperfect in the case of
the CCA experiments, but we nevertheless present it for three practical reasons:

ˆ The experiments are going to be relevant later on (section 6.8).

ˆ It is always useful to make sure results from the literature are reproducible (here, from [269], �g. 2).

ˆ These experiments seem to contradict with what we will say in later sections (section 6.4.3), and one
needs to understand fully an idea before attempting to criticize it.

In addition, the �aws of these experiments are theoretical, i.e., we did not observe a di�erence in conclusion
between the present projection experiments and the more rigorous alternatives we will present later on.
This is why we will anticipate slightly and accept the conclusions of the projection experiments: we will
demonstrate in section 6.4.3 that the conclusions are true.

The dimension of the subspace and the way of choosing the subspace will vary. To choose the components,
we will use seven methods (three of them coming from [269]):

1. The most correlated components found with CCA(CCA_highest), as in [269]. This subspace should be
equal to the subspace spanned by the class components whenns = nc.

2. The least correlated components(CCA_lowest): if the most correlated components are the class com-
ponents, the components with the lowest correlation should not include any relevant information for
the problem.
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Figure 6.14: The principle of the subspace projection experiment, illustrated with the projection on the
most correlated components (red curve in �g. 6.15):P1 = B � 1

1 :I n s
n :B1 projects X 1 onto a linear space with

dimension ns. The value of ns is a parameter we will modify in our experiments.

3. CCA with random components (CCA_random): one may argue that the CCA curve is above the others
in [269] because CCA allows creating decorrelated components, which would mean that its components
are less redundant than random directions. If this was the case, selecting random CCA components
would be better than selecting components with a random projection.

4. PCA: Kamoi et al. [286] showed that thenc components with the most variance are the components
that will be used for classi�cation. We project the features on the components with the most variance
to validate their �ndings.

5. A set of ns features chosen randomly(random_keep), as in [269], for comparisons.

6. A random orthogonal projection of features (random_projection ). Comparing the random selection
of n components versus the projection onn components shows that the standard basis ofRn (the set
of x1 = [1 0 0 :::]; x2 = [0 1 0 :::]; :::)2 does not play a particular role (i.e. selecting the values ofns

features is not particularly meaningful).

7. The ns features with the highest activation in absolute value(max_activation ), as in [269]. These
features are sometimes said to be more e�cient at capturing the information than random features
[269].

To save time, we do not consider all the possible number of components: because we want a high resolution
around nc, we only considered the2 � nc �rst components (where nc is the number of classes, 8 for SHL
and 10 for CIFAR), and, after that, the number of components which are powers of 2 (16; 32; :::), up to the
maximal number of components (128 for SHL, 64 for CIFAR)

In addition to this, after measuring the performance of the layer when using projected features, we also try
retraining the classi�cation layer on a projected version of the validation set, with the same hyperparameters
as the initial training of the network. The goal of this retraining is to illustrate the di�erence between the
components a network actually uses for classi�cation and the components that carry a piece of information
the problem. If the performance of the retrained layer is low, this means we can be sure that the projection
removedall useful information. If only the performance of the original layer is low, this only means that we
got rid of the information that was used by the network.

Note that the CCA operation requires two databases. In fact, when we use CCA, we use a second matrix
of features X 2, but only to compute X 0

1 (we discard X 0
2). In the �rst experiment (�g. 6.15) this second

network is another initialization of a network working with the same sensor, while the second experiment
(�g. 6.16) shows results obtained with two networks using di�erent sensors.

2 this basis is most often called canonical basis , a name we will not use for obvious reasons.
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Similarity between identical sensors

(a) (b)

Figure 6.15: The performance of the networks after projecting their features on subspaces with varying
dimensions, on the CIFAR (a) and SHL (b) validation sets. The top row indicates the validation performance
of the network as-is, while the bottom row indicates the performance when retraining the classi�cation layer
on a projected training set. For each curve, the experiment was repeated 5 times, and the standard deviation
is given by the width of the curve (which is sometimes too small to see). The dotted line highlights the
performance with the nc most correlated components. Best view in color.

Figure 6.15 displays what happens when we project the features from di�erent subspaces. Here, we compute
the canonical components (red, yellow, and orange curves) using features from a di�erent initialization of
the same sensor. We can draw several conclusions from it:

ˆ The performance of the projection on thenc highest variance components (pca, green curve): this
veri�es the �ndings of Kamoi et al. [286], the nc components with the highest variance are the class
components.

ˆ Similarly to Figure 2 from [269], the most correlated components (cca_highest , red curve) are more
useful for the classi�cation problem than a random choice of components from the standard basis.

ˆ The red curve (performance of the components with the highest correlation) is almost at its maximum
for nc components even before retraining, there is almost nothing to gain afternc components. This
validates the claim from [281]: these components correspond to the subspace used by the classi�cation
layer.

ˆ The yellow curve (the components with lowest correlations), is under all the others. Before retraining,
the performance of a projection on thens components with the lowest correlation is minimal, even
when we select half the components. After retraining, the performance of these components is still well
under the performance of random components: selecting the least correlated components e�ectively
removed most of the classi�cation information.

ˆ The orange curve (random CCA components) is lower than the random choice of features (blue curves).
This means that the performance of the components with the highest correlation is not due to an en-
coding of the information which is 'more compact' than random directions. If one of the methods were
redundant, it would mean that adding directions would not change: we would need to add more dimen-
sions to e�ectively cover the same space, and the curve of the redundant representation would appear
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to the right of the curve of an e�cient encoding. In our case, the curve of random CCA components
appears to the right (or to the bottom, as the curves increase), which means that reason why the red
curve is higher than the random directions is not due to the fact that any two CCA components are
non-redundant, but to the fact that the �rst components are particular. Additionally, the standard
deviation of this curve is unusually high: as the CCA operation isolates the class components from the
rest, selecting some of its components at random creates extremes situations: either a classi�cation
component is selected, or it is not. The standard deviations of the other random methods are not as
high because the random choices allow spanning partly the class components.

ˆ Before retraining, the two blue curves are equivalent, this indicates that the standard basis ofRn do
not play any speci�c role in regards to classi�cation.

Similarity between two di�erent sensors

We now lead experiments to verify the most important a�rmation: the fact that the most correlated com-
ponents are equal to the class components, even when the correlation is computed across sensors. This
time, when computing CCA, we use features from a network using di�erent sensors. In this section, we
do not include any of the other dimensionality reduction methods (PCA, random projection and selection
of components, maximal activation components) because those methods work with only one database: the
results would be the same as the curves presented in �g. 6.15.

Figure 6.16: The classi�cation performance of classi�cation layer using features projected on a subspace with
varying dimension, when the CCA is computed thanks to data from another sensor. As in �g. 6.15, one
can see that the performance with thenc most correlated components is close to the performance with all
components. The graphs in the diagonal were generated using the same protocol as the �rst row of graphs
in �g. 6.15b. The dotted line highlights the performance with the nc most correlated components

Figure 6.16 shows that the performance is maximal when the number of components is slightly higher
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than 10. However, contrary to �g. 6.15b, the performance is o� by a few points when the number of selected
components is equal to 8, the number of classes. This means that the equality between most correlated
components and classi�cation vectors is less strong than in the previous case when the CCA was computed
from the same sensor. Still, the performance with only 8 components is high enough for us to conclude that
the components computed with CCA overlap signi�cantly with the class components.

Could these experiments be useful in Architecture Compression ?
The action of projecting the intermediate features on a well-chosen subspace has already been explored to

reduce the size of a (trained) network while keeping the performances intact (this is callednetwork pruning,
or sometimesarchitecture compression). For instance, one can choose the subspaces thanks to PCA [287],
or maximum activation [288]. Depending on the case, the network may or may not be retrained after the
projection. Using CCA is another way to choose which subspaces will be removed. Fig. 6.15 shows that
reducing the dimension thanks to CCA (red line) is as e�cient as using the PCA (green line). However,
CCA is less convenient to use, as it requires training two networks instead of one. As a consequence, we
think that using PCA is better suited than CCA to prune a single-sensor network, which means that CCA
is not at the same level as the state of the art in this domain. However, one may think of using the CCA to
prune two networks using di�erent sensors: the CCA might select more relevant information than a PC on
each of the two networks separately.

In any way, the experiments we led in the present section may only be used to demonstrate the claim
we are interested in: the class components are close to the �rst canonical components, up to a linear
transformation ( B ).

6.4.3 An explicit measurement of subspace similarity

Why the projection experiments are not enough

The projections experiments seemed persuasive enough, but they had two major drawbacks:
The �rst one is that these experiments relied on classi�cation performance. They looked at the classi�ca-

tion performance of a projected version of the features and concluded that the components the features were
projected on were equal to the class components if the classi�cation accuracy is the same as the accuracy of
the original features. Yet, to classify a sample, the network simply takes the highest logit among all the class
logits. For example, if a projection divides all logits by two (see �g. 6.17), the classi�cation performance
will be untouched, even though the image of the projection is quite far from the classi�cation subspace.
Granted, in practice, the probability for a vector space to distort all logits equally while being much di�erent
from the space spanned by class components is small, but this probability is not zero. The second �aw is
that even though we used the training samples to compute the components and we projected the validation
features on these components to measure the performance, the SHL dataset is only composed of one user.
The experiments risk over-�tting to this very user, and one might have not obtained similar results if the
validation samples came from another distribution. In short, the previous experiments indicate a relationship
between the ns most correlated components and classi�cation performance on the SHL validation dataset,
but do not prove that these components are equivalent to class components all the time.

This is why we will try to use an experiment that is without blind spots. Instead of comparing the class
logits Y1 and canonical variablesX 0

1, we will compare the class componentsW1 to the canonical components
B1. In other words, instead of comparing the e�ect each of these transformations has on the data, we will
compare the transformations themselves.
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Figure 6.17: Why a simple classi�cation measurement is not enough. In this example, the projection on the
canonical components (yellow arrow) does not change the prediction of the network for the green sample, for
both predictions (pink arrows) land on the same side of the decision boundary. In this example, the logits
(the coordinates of the projections of the points on the blue plane) are changed by the projection on the �rst
canonical components. Despite the canonical components (red) being quite far from the class components
(blue plane), the classi�cation accuracy is unchanged.

Why subspace distances do not work as-is with canonical components

If one were to measure the distance between the canonical components and the class components, one would
see that the subspaces seem quite far from each other. As we will show later on, at a �rst glance, the class
components seem to be closer to a random subspace than to the canonical components. This result directly
contradicts the projection experiments (along with the �ndings from [280]).

To understand what goes wrong in such reasoning, one must look at what happens when we project a
vector on CCA components. If B1 are the canonical components, the projection on the �rst ns canonical
components can be expressed byx ! B � 1

1 I n s
n B1x. The image of the projection (that is, the set of all y 2 Rn

such that 9x; y = B � 1
1 I n s

n B1x) is equal to the vector space spanned by the �rstns canonical components,
while the kernel of the projection (the set of all x such that B � 1

1 I n s
n B1x = 0 ) is equal to the vector space

spanned by thelast n � ns canonical components.
In section 6.1, eq. 6.1, we said that the canonical components can be expressed by:B i = E i �

� 1=2
X i X i

, where
the (E i ) i =1 ;2 are eigenvectors of matrices we will not present here. We only need to know the eigenvectors
are orthonormal: E i :E >

i = I . This means the projection of a vector on the canonical components is
not orthogonal: as B1 = E1� � 1=2

X 1 X 1
, the projection X ! P1:X (where P1 = B � 1

1 :I n s
n :B1) is a projection

(P1 = P1:P1), but it is not orthogonal ( P1:P>
1 6= I ). As Fig. 6.18 and 6.19 illustrate, this means that the

kernel of the projection is not orthogonal to its image.
Yet, all the distances between subspaces rely on an implicit assumption: for every subspaceU, the farthest

subspace fromU we can �nd is its orthogonal complement. The orthogonal complement ofU, which we note
U? , is a vector space of dimensionn � mU which contains all the points in Rn that are orthogonal to vectors
of U. What matters to us is that the distances we use verify: maxV d(U; V) = d(U; U? ). But with the
projection on canonical components, this is not the case: when we think about a projection, we would expect
the farthest point to the image of the projection to be its kernel. In the case of an orthogonal projection,
this consideration would not be a problem: the kernel of the projection is the orthogonal complement of its
image. But when considering the canonical components, the kernel and the image are no longer orthogonal
to each other, which is why the distances we used are not relevant. To summarize grossly, it is almost as if
keeping the �rst nc components was not equivalent to removing the lastn � nc components.
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There are two ways to show the phenomenon is strong enough to take place numerically. The �rst one
is simply to compute the distance to the kernel of the projection instead of its image. In other words, we
measure the distance between thelast n � nc components ofB1 and the nc components ofW1. Figure 6.26
will show that this measure indicates that the kernel of the projection P1 is much farther to the subspace
spanned by the vectors ofW1 than any random vector space.

The second method is consists of simply solving the problem,i.e., to get back to equivalent orthogonal
components. One could try straightforwardly to design a distance that takes this anisotropy into account
in the expression of the distances (similarly to a Mahalanobis distance), but a more simple approach is to
make sure that the basis change matricesB i are orthogonal. To do so, we simply whiten the data: before
computing CCA, we replace X 1 by X̂ 1 = � � 1=2

X 1 X 1
X . Whitening has been used in the Machine Learning

community when using features that have signi�cantly di�erent variances, but we use it here on features
from deep neural networks. This way, the covariance matrix ofX̂ 1 is the identity, and B̂1 = B1� � 1=2

X̂ 1 ;X̂ 1
= E is

orthogonal. Now, comparing the whitened data to the class components make no sense: the class components
were trained to process the original data. This is why we compare the whitened data to a modi�ed version
of the class components: we replaceW1 with Ŵ1 = W1� 1=2

X 1 ;X 1
. In our experiments, we made sure that this

change does not alter the predictions numerically.

(a) (b)

Figure 6.18: An illustration of the projection on CCA components with toy data. Figure 6.18a illustrates
three steps equivalent to the projection on thens canonical components (whitening, orthogonal projection,
and inverse whitening), while �g. 6.18b illustrates how the kernel is not orthogonal to the image of the
projection
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Figure 6.19: Why the class components are relatively una�ected by the projection on the �rst canonical
components, despite appearing quite far from its image: the components are closer to the image than to the
kernel of the projection

To sum up, as B1 = � � 1=2
X 1 X 1

E1, the projection on the �rst CCA components ( x ! B � 1
i I n s

n B i x) can be
thought of as a sequence of three operations (�g. 6.18a):

1. whitening (x ! � � 1=2
X i X i

x)

2. orthogonal projection on the ns �rst eigenvalues of E i (x ! E >
i I n s

n E i x)

3. inverse whitening (x ! � 1=2
X i X i

x)

By whitening the data, we end up cancelling the �rst and third operation, such that the complete projection

x ! B̂ i
>

B̂ i x is orthogonal. One might argue that computing the canonical components from whitened data
is not equivalent to computing the canonical components from the original features. To be true, the �rst
(original) canonical components and the class components are far from each other if "far" is de�ned using an
isotropic measure (such that the farthest space is the orthogonal complement). With a distance that takes
into account the anisotropy of the projection (�g. 6.19), the �rst canonical components are close to the class
components.

Another way to understand the whitening operation is to say that replacing X 1 by X̂ 1 = � � 1=2
X 1 X 1

X and

W1 by Ŵ1 = W1� 1=2
X 1 ;X 1

is equivalent to distorting the feature space so that the kernel of the projection
on CCA components is orthogonal to the image of the projection (the components themselves). This is the
same principle as saying the Mahalanobis distance (

p
(x � y)� � 1(x � y)> ) distorts the feature space so that

the covariance of the data is spherical.
Experiments in the remainder of the section demonstrate that CCA on whitened data creates components

that are close to the modi�ed class components.

Experimental protocol

The experiments in the remainder of the section 6.4.3 have three objectives:

ˆ Establish that the distance between the �rst canonical components and the class components is high
if the canonical components are computed as-is (which we mentioned at the beginning of section 6.4.3
without proving it).

ˆ Demonstrate that the last canonical components (the kernel of the projection on the �rst components)
are disproportionately far from the class components (i.e., show that �g 6.19 happens in practice).

ˆ Show that whitening the features solves the problem.
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We compare the canonical components found with CCA on the original dataB1 to the class components
W1, and we repeat this process with the whitened data (̂B1, Ŵ1). Each time, we use Gram-Schmidt to
obtain orthonormal bases, before comparing the bases using di�erent measures of the distance between the
class components and the canonical components.

Now, distances computed on these high-dimensional data are hard to interpret. To provide some elements
for comparison, we add twobaselines:

ˆ random orthogonal projection : the �rst ns components of an orthogonal projection chosen at ran-
dom.

ˆ PCA: Kamoi et al [286] showed that the highest variance components are equal to the class components,
and used this fact for outlier detection. If the canonical components are as close to the class components
as the principal components, we will consider it to be enough for practical applications.

Note: We do not try to use whitened data with these two baseline comparisons, because these projections
are already orthogonal: there is no need to distort the space even further. Additionally, computing the PCA
of whitened data makes no sense, as the covariance of the whitened data is the identity.

For each of these four comparisons (CCA, whitened CCA, random projection, PCA), we show that the
�rst nc projection components are equal to a linear combination of the class components. To do so, we
will consider the distances between the �rst ns projection components and the class components, wherens

gradually increases from 1 to the dimension of the subspace.

An illustration of the anisotropy

The next pages will be the occasion to demonstrate rigorously both the fact that whitening is needed and
the fact that the �rst canonical components are close to the class components, up to a linear relationship
(B ). However, the previous explanation involved concepts that might be fairly unusual, and this novelty
might translate into experimental errors: there are chances that we did something wrong without noticing it.
Before tackling the full proof with mathematical distances in section 6.4.3, we will validate the results using
methods that are less rigorous, but easier to understand, than the experiments we lead in the section before.
If these measures are not real distances, they still give indicate how close can two subspaces be. Like the
distances, they have the property that the farthest element to any subspace is its orthogonal complement.

Figure 6.20: An illustration of the measure of the angle. ComponentC1 (yellow, behind the red plane) is
quite close to the y axis, which means it is almost orthogonal to the subspace spanned by the canonical
components (xOz plane, in red). Hence, the angle (in green) between this component and its projection
on the plane (in red) will be high. On the other hand, componentC2 is closer to the plane, ant the angle
between this component and its projection is smaller. We compute an average for all class components, and
use this average to characterize the proximity between the subspace and the class components
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(a) (b)

Figure 6.21: The average angle between a class components and its projection on the �rst (a) or last (b)ns

components.

Angle between components With CIFAR, we plot the average angle between thenc = 10 class compo-
nents and their projection on the subspaces (see �g. 6.20 for an illustration). As �g 6.21a shows, the angle
between the class components and their projection is still quite high3 with n = 10 conserved dimensions.
This is because two random directions are likely to be orthogonal in high dimension. We want to draw
attention to two behaviours:

ˆ The red curves (non-whitened CCA components) have di�erent behaviours depending if we are looking
at the �rst (�g. 6.21a, left) or last (�g. 6.21b, right). The distance between the image of the projection
(the most correlated components) look to be extremely far from the 'PCA' curve in green. On the other
hand, the distance between the last components (kernel of the projection) is extremely similar to the
'PCA' curve. This illustrates one of the seeming inconsistencies we observe because the components
are not orthogonal.

ˆ The pink curve (ns most correlated components, after whitening) is similar to (albeit higher than) the
curve of the highest variance components, whether we are looking at the image or the kernel of the
projection. As we already know that highest variance components are close to class components [286],
this experiment tends to conclude to the proximity between CCA and class components.

Projection of random vectors To con�rm the previous results, we resorted to another measure of
proximity between components. We generate 10,000 random vectors on the unit sphere, and we project
these vectors on each subspace we want to compare to the class components. If one subspace is close to the
class component subspace, the norms of both projections will vary in the same amounts (if one norm is high,
the other will be high). In other words, the correlation between the 10,000 couples of norms will be close to
1. This is illustrated by the green and yellow subspaces in �g. 6.22. On the other hand, if the subspaces are
very di�erent from each other, the correlation is low (close to zero or even negative,cf. the yellow versus red
subspaces in �g. 6.22). Figure 6.23 provides the results: again, the most correlated components (red, left
�gure) are not di�erent from the random directions, while the canonical components created from whitened
features are (pink).

3higher than the distance between the class components and random components.
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Figure 6.22: An illustration of the principle of the random projections experiment. When two subspaces are
close (e.g. the yellow and green), the norms of the projections of a random vector will be close to each other.
Inversely, when the subspaces are far from each other, the correlation coe�cient between the norms will be
low.

Figure 6.23: The correlation between the norms of random vectors projected on the subspace of class
components and their projection on the �rst (a) or last (b) ns components.

Distance Experiments

Subspace distances In this section, we will see how to compare thenc components ofW1 to the �rst
nc components ofB1 rigorously, and without relying on any dataset. From a more abstract point of view,
the problem is the following: we have two families of vectors,F (the �rst canonical components) and G
(the class components), belonging in the same vector space. We want to know whether there is a linear
relationship between the vectors ofF and the vectors ofG. As we mentioned at the beginning of section 6.4
simple one-to-one comparison is not enough to cover all possible linear relationships. To do so, we compare
the subspaces spanned by each of these families. If the subspaces are equal, this means that we can compute
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the vectors of G (resp. F ) using vectors that belong in a basis of the subspace spanned byF (resp. G). In
other words, if F = ( f i )1� i � n F and G = ( gj )1� j � n G , the equality of the subspaces implies:

8i 2 [1::nf ]; 9(mi;j )1� j � n G ; f i =
P n G

j =1 mi;j gj

The matrix M = ( mi;j ) i;j is the matrix we were looking for in eq. 6.2.
We will use continuous distances: for instance, the comparison cannot rely on the rank of the family

F
S

G because the rank is not robust to small variations, as �g. 6.9b illustrates. We �nd orthonormal bases
for the subspaces spanned byF and G using Gram-Schmidt (which we nameU and V), and we use distances
from the literature between subspaces applied on these bases.

If U and V are two subspaces ofRn with dimensions mU ; mV , respectively4, we make use of the following
three distances to measure the distance between two subspaces ofRn :

ˆ Frobenius distance [289]: jjUU> � V V> jjF where jj :jjF is the Frobenius norm

ˆ nuclear distance [289]: jjUU> � V V> jj � where jj :jj � is the nuclear norm

ˆ Wang-Wang-Feng Subspace distance [291]:
p

max(mU ; mV ) � T r (UU> V V> ), where T r is the
trace of a matrix

Note that these distances all rely onUU> , the orthogonal projection on subspaceU. In particular, the
�rst two distances derive from the norm of a di�erence of projection matrices [289], hence their names.

These distances are bounded, but the bound depends on the dimension of the subspaces. For instance,
the maximal WWF-SSD distance between two subspacesU; V is inferior or equal to:p

max(dim(U); dim(V )) .
To be able to compare distances when the number of dimensions varies, we display thenormalized

distances: we divide each distance by the maximal value it could take given the dimensions of the spaces.
Table 6.2 displays the maximal value, for each of the distances we use.

Distance Expression maximal value

Frobenius jjUU> � V V> jjF
p

m U + m V =2

nuclear jjUU> � V V> jj � m U + m V =
p

2

WWF-SSD
p

max(mU ; mV ) � T r (UU> V V> )
p

max(mU ; mV )

Table 6.2: The distances we use to compute the proximity between class and canonical components.U 2
Rn � m U and V 2 Rn � m V are two orthonormal bases for two subspaces ofRn , jj :jjF is the Frobenius norm,
jj :jj � is the nuclear norm, andT r is the trace of a matrix

4Note that we use a matrix U 2 Rn � m to denote both a vector space of dimension m in Rn and an orthonormal basis for
this space (U> U = I m ). The distances we use do not depend on the choice of a basis for the spaces [289, 290].
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Figure 6.24: The distance between the class components and the �rstns components of the image of diverse
projections. We display the average over three runs, the width of the curve denotes three times the standard
deviation.
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Figure 6.25: The Frobenius distance between the image of the projection and the class components, with
SHL data. We display the average over three runs, the width of the curve denotes three times the standard
deviation.

Distances between the image of the projection and the class components Figures 6.24 and 6.25
display the distances between subspaces with a varying number of dimensions and the subspace spanned
by the class components. Note that for the sake of clarity, we display only the Frobenius distance with the
SHL networks, the curves with the other distances have a similar aspect. In each of the experiments, even
the minimal distance seems to be quite high: between 0.3 and 0.4 for CIFAR 10, and about 0.6 with SHL.
This is a speci�city of the high dimensionality of the feature space. Even if the distance is continuous, the
sheer number of dimensions tends to pull points away from each other, which makes us unlikely to see small
distances. To show it, one can look at how a random projection is consistently far away from the class
components. This is why the distances between CCA and class components should not be compared to 0
and 1, but the baselines (PCA components and random components). The display of distances between 0
and 1 is mostly useful to compare distances with a varying number of kept components.

About the baselines, one can notice the �rst point of our argumentation: the distance between canonical
components and class components (red) is similar to the distance between random components and class
components (blue). This is why a direct measurement is misleading. By whitening the data, we can reach
distance levels (in pink) that are closer to the distance between the highest variance components and class
components (green). We should note that there remains a signi�cant di�erence between the two.

Distances between the kernel of the projection and the class components In this section, we
display the distance between the class components and the kernel of the projectionP1 = B � 1

1 I n s
n B1, which

is no other than the last ns components of the basisB1 (as a reminder, the image of the projection is the
subspace spanned by the �rstns components).

Figure 6.26 displays the distances between the kernel of diverse projections and the subspace spanned by
the class components. Compared to the previous section, the meaning of closeness are reversed: if the kernel
and the class components are close, the class components are the �rst to be erased by the projection.

As we mentioned in section 6.4.3, we can see that the kernel of the projection on the lastns canonical
components (red) is as far from the class components as the projection on the lowest variance components
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(green). Whitening the data (pink) slightly lowers this distance, but the curve is still signi�cantly higher than
the distance to random components. For the three non-random curves (CCA, whitened CCA, and PCA), the
distance between the lastns components only gets lower whenns becomes greater thann � ns = 56 (whith
the CIFAR dataset, with n = 64 features andnc = 8 classes) when the last components start including the
class components themselves.

Figure 6.26: The distance between the class components and the �rstns components of the kernel of diverse
projections. We display the average over three runs, the width of the curve denotes three times the standard
deviation.

Figure 6.27: The Frobenius distance between the kernel of the projection and the class components, with
SHL data. We display the average over three runs, the width of the curve denotes three times the standard
deviation.

6.4.4 Partial conclusion: the proximity between class and canonical components

In this section, we demonstrated that the class components are equal to a linear combination of the �rstnc

canonical components (propositionB of our introduction). This a�rmation was not trivial to establish: we
�rst used the projection experiments in the literature (section 6.4.2), before criticizing them because they
rely on a classi�cation performance. We introduced an important caveat that one needs to care about before
using more rigorous experiments: the fact that the canonical components are not orthogonal implies the
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need for us to whiten the features before using distances that assumed the farthest subspace to any subspace
is its orthogonal.

This section was the longest and the most complex of the chapter. Now that we know that proposition
B takes place in practice, we will study its causes, and demonstrate that the fact that the classes are well
separated in the feature space (A) implies the proximity between the class and the �rst canonical components
(B ).

6.5 The causes of the equality

This section is devoted to showing thatA =) B . To write it explicitly, we will show that the fact that the
classes are well separated in the feature space (A) is enough to cause the class components to become close
to a linear combination of the �rst canonical components (B ). In short, we will modify anything but A, and
see that B still occurs.

To detail the concepts we need to use, one could look at �g. 6.28, which explains the di�erence between
inter-class correlation and intra-class correlation. The results in the previous section (the fact that CCA
picks up the class components) show that there is some kind of correlation, which means that the top-left
scenario is impossible. Similarly, the fact that the networks have reliable performance (70 to 90 % F1 score)
means that the down-left scenario is unlikely: there must be a linear way to split the classes and hence, some
kind of inter-class correlation. We are left with two scenarios: either the top-right scenario, in which there
is no intra-class correlation between the logits, and CCA only picks up class components because the two
networks are good at classifying the samples; or the down-right scenario, which implies that two di�erent
networks assign similar logits to a sample, a similarity which goes beyond simply belonging in the right class.

Figure 6.28: the di�erent types of correlation between samples illustrated with synthetic data: inter-class
correlation (left versus right) and intra-class correlation (top versus down)

Among the conditions that enable this observation, the easiest to verify empirically is the �rst one: the
class logits of di�erent networks are more correlated than other components, whether across initializations or
sensors. After the networks are trained, we look at the logits of each class on thevalidation set. For instance,
�g. 6.29b tells us that the correlation of the class logits predicted by the �rst and second initializations
averaged over the 10 CIFAR classes, is0:90.
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Figure 6.29: The average of the absolute values of the correlations between (a) the �rst 10 CCA components
(b) the 10 class logits (c) 10 directions chosen with a random orthogonal projection, with three networks
trained on the CIFAR dataset with a di�erent seed.

Figure 6.30: The average of the absolute values of the correlations(a) the �rst 8 CCA components (b) the
8 class logits (c) 8 directions chosen with a random orthogonal projection, with the SHL dataset. For each
sensor, we create three di�erent initializations of a network using the sensor. As expected by the intuition,
the accelerometer and gyrometer feature and predictions are closer to each other than they are close to the
magnetometer.

As CCA �nd components with maximal correlation, and as the logits can be obtained with a linear
combination of the features, the correlation of thenc �rst CCA components will be higher than the correlation
of the nc class logits. However, �g. 6.29 and 6.30 show the correlations of the class logits are quite close to
the correlation of CCA components, they are much closer to each other than to a random linear combination
of features. This seems to indicate that the organization of the features is the one of the bottom scenario
in �g. 6.28: there are strong intra-class correlations within the data. However, such a strong correlation
between logits is not necessary, and the new experiments are there to prove it.

To verify this, we do not use synthetic data, because there is a risk that the CCA bases its calculation
on statistical properties from X 1; X 2 which we are not aware of. To account for it, we use an operation
that removes the correlations while keeping the statistical properties of each random variable intact: the

118



Chapter 6 � A study on Canonical Correlation Analysis

shu�e . We simply take each feature vector (the rows ofX 1 and X 2), and assign them a new position at
random in the matrix, with uniform probability. This way, any of the statistical properties of X 1 (mean,
standard deviation, moments of any order) are kept (they do not depend on the order of the samples in the
matrix), but the correlations between the features are destroyed, because the alignment between samples
is broken: any sample inX 1 faces a random sample in the database inX 2. Now, shu�ing completely at
random is not extremely interesting to us, because such a shu�e would create canonical components that
are completely devoid of meaning. We wanted to measure the importance of class clustering. To account
for class membership, we use aclass shu�e : when we assign each samplex a new position, we make sure
the new position is the position of a sample in the same class asx. This way, any sample from X 1 will
only face a sample at random belonging to the same class asx. If class clustering is theonly reason why
canonical components are close to class components (top-right scenario in �g. 6.28), then computing the
CCA between class-shu�ed feature matricesX 1; X 2 would not change the result. On the other hand, if the
phenomenon we observe is due to intra-class correlations, then computing CCA on class-shu�ed data would
show considerably less proximity between class-shu�ed and normal data.

Figure 6.31: An example of class shu�ing on synthetic data (the colour represents the class). Random shu�e
destroys the correlation, and class-shu�e allows to destroy intra-class correlations while keeping inter-class
clustering intact.

Figure 6.32: The distance between the class components and the �rstns components of the image of diverse
projections computed on clean or shu�ed data. We display the average over three runs, the width of the
curve denotes three times the standard deviation.
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Figure 6.33: The Frobenius distance between the the class components and the image of the projection
computed from clean and shu�ed data. We display the average over three runs, the width of the curve
denotes three times the standard deviation.

Figure 6.34: The distance between the class components and the �rstns components of the kernel of diverse
projections computed on clean or shu�ed data. We display the average over three runs, the width of the
curve denotes three times the standard deviation.
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Figure 6.35: The Frobenius distance between the the class components and the kernel of the projection
computed from clean and shu�ed data. We display the average over three runs, the width of the curve
denotes three times the standard deviation.

We repeat the experiments from section 6.4.3, except that we also compute the CCA components from
shu�ed and class-shu�ed data (shu�ing the data does not change anything for PCA). When considering
shu�ed data, the canonical components are equivalent to random components. But when considering the
class-shu�ed canonical components, the curve is relatively close to the curve with normal data, while still
signi�cantly distinct. It looks like the distance between the class-shu�ed curve and the normal curve is
much smaller than the distance between normal and random curves. This is why we think that class
clustering accounts for the majority of the proximity we observe: class clustering does play a major role in
the proximity we observe, but it is not the only factor. Intra-class correlations have little in�uence over the
canonical components. In other words, even if the logits were not correlated, the CCA would still put the
class components �rst.

Now, when we say "A =) B ", one might wonder how much A needs to be true forB to take place.
tha is, if the equality between the class and the �rst canonical components (B ) might only occur in extreme
cases when the classes are extremely well separated. For instance, the SHL network with the accelerometer
data reaches90 % validation F1-score, similarly to the CIFAR 10 network. However, �gure 6.33 shows that
B still happens with the gyrometer and magnetometer features, which have validation performances of80 %
and 66 %, respectively.

Now, one could argue that these sensors are still similar to each other: in chapter 3, �gure 3.6 shows
that the norm of the magnetometer still carries some information about the dynamics of the phone (we see
traces of a2Hz Dirac comb in the norm of the magnetometer), a piece of information that is prevalent in the
accelerometer and gyrometer signals. One could argue that with networks where modalities are much more
di�erent to each other (for instance, audio and video, or text and image), the results might not hold. These
critics are entirely valid, and the lack of reproduction with other signals is the improvement we estimate to
be the most important for this chapter.

But for now, let us pursue with the SHL and CIFAR datasets. On these problems at least, we showed that
B (the fact that class components are equal to the �rst canonical components up to a linear relationship)
happens in practice and that A =) B . The next sections will show how these propositions relate to the
CCA fusion we presented at the beginning of the chapter.
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6.6 How the equality between class and canonical components im-
plies that a CCA fusion is ine�ective

The fact that the networks we consider have good classi�cation accuracies means that the classes are well
separated in the feature space (A). The previous sections demonstrated that the class components are equal
to the canonical components up to a linear transformation (B , section 6.4) and that A =) B (section
6.5). This short section aims to show howB implies C (the fact that a CCA fusion is equivalent to a sum
of logits).

Let us assume that we haveB : the �rst canonical components are equal to a linear combination of the
class components. This means that the classi�cation information is kept in these components and that the
other components are less informative about the classi�cation problem.

Now, one could argue that there might still remain some information that is relevant to the classi�cation
problem in the n� nc last canonical components. They would be right. In fact, if we train a classi�er on these
last components, we will obtain a nonzero classi�cation accuracy. However, we argue that this information
is less practical, less e�ective, than the class components. To show it, let us focus on the classi�cation layer
in the network. As this layer is linear, it means that the network optimized the classi�cation layer to classify
the hidden features.

Now, in the general case, the full set of weights of a network is not always able to reach 100 % accuracy,
so a neural network does not always �nd the perfect weights to solve a given problem. But the classi�cation
layer is linear: it means that we know it is able to reach an optimum easily (a linear problem is convex, and
gradient descent always �nds the optimum of a convex problem).

Note that the full, rigorous, mathematical guarantees applies only to the case where the features that
train the linear classi�er are �xed. In the case of a neural network, the input features of the classi�cation
layer still change during the training, as the weights of the other layers are optimized. There might be
a possibility for the hidden features to move away from the classi�cation layer, and the classi�cation layer
might be unable to catch up to them. To summarize it is possible that the classi�cation layer and the features
play a cat-and-mouse game, without the former ever reaching the latter. According to this possibility, at
every instant t, the classi�cation layer is suboptimal to classify the hidden features. However, we argue that
this possibility is unlikely to happen in practice for two reasons:

ˆ Neural networks learn their earlier layers �rst [269], which means that the classi�cation layer will
eventually catch up to the hidden features, even if the beginning of the training got the features
farther from the class components.

ˆ Linear, Multi-layer models (mathematical approximations of neural networks) trained by gradient
descent are known to 'align the layers' ([292]). In other words, the hidden features have been shown
to move towards the class components, and vice-versa.

To sum up, the class components are directly optimized to focus on the most useful components, and their
behaviour is simple enough (linear) for us to assume safely that �nding the optimum is feasible.

In other words, given that the class components are the components that classify the best the features, a
novel classi�er that sees the hidden features will likely look at the class components. When the classi�er is
presented with canonical variablesX 0

1; X 0
2, this means it will look at the �rst nc features �rst. And when the

classi�er sees a sum of canonical variablesX 0
1 + X 0

2, it will look at the �rst components of the sum. As the
�rst canonical components are equal to a linear combination of the class logits, this means the classi�er will
look at a sum of logits �rst. Now given that the neural network optimized its logits for linear classi�cation,
it is unlikely that the classi�er learns much more than what the network learnt: the classi�er using features
that are essentially a sum of logits will not be likely to reach better performances than the mere sum of
logits.

6.7 An implementation of CCA fusion with SHL

Up to now, we have shown that the separation of the classes in the feature space (A) imply that the CCA
recomputes the logits (B ), which implies that the CCA fusion is equivalent to a sum of logits (C). We know
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that A takes place in practice because the performance of the networks is high (at least 66 % F1-score), and
we know that B occurs thanks to the complex distance experiments we led in section 6.4. To conclude this
chapter, we aim to demonstrate experimentally that the fusion method relying on the canonical variables
computed from deep features is equivalent to a sum of the logits obtained from the network (C).

We implement a classic CCA fusion and compare it to the performance of a model which merges the
data using a sum of logits. Note that even though we call this model a classi�er in the rest of the section,
we do not train it in itself, because it relies on interpretable logits of trained networks. In order to reduce
the variance of the results, and given that both methods use networks that are trained using a single sensor,
we re-use the neural networks: each couple of networks is used once for the CCA fusion, and once for the
sum of logits. This way, we remove one source of randomness in the experiment. However, we still repeat
the experiment (training of a couple of networks) �ve times. The following pseudo-code algorithm details
the experimental protocol:
Require: A couple of sensorss1; s2.

for i in f 1; 2; 3; 4; 5g do
Train a �rst neural network on data from s1, record the embedded training featuresX 1

Train a second neural network on data froms2, record the embedded training featuresX 2

Compute the PCA on each ofX 1 and X 2, keep only 99.99 % of the variance
Compute the canonical variablesX 0

1; X 0
2

Train a SVM classi�er to classify the sum X 0
1 + X 0

2, measure its validation performance
Measure the validation performance of a classi�er which only considers the sum of the output logits of
the two trained networks

end for
return the mean performance of the CCA fusion and sum of logits classi�er.

Parameter value
C (regularization parameter) 1.0

kernel RBF (  = 1
� X �

p
n )

multiclass strategy One-versus-rest

Table 6.3: The parameters of the SVM classi�er

To classify the sum of canonical variables, we use a SVM classi�er which parameters are given in table
6.3. Table 6.4 gives the results. Surprisingly, the CCA fusion is slightly worse than a simple sum of logits.
We assume that SVM over�ts to the data5. The reasoning in the previous section omitted an important
point: when we said that the last layer of a network is optimized to the features of the network, we must keep
in mind that the network only sees the training data. Nothing prevents the network or the SVM classi�er
to over�t, and they might not over�t the same way.

Sum of logits CCA fusion Restricted
CCA fusion

jAccj; Gyr y 90:76� 0:87% 88:66� 0:35% 88:90� 0:70%

jAccj; jMagj 91:27� 0:31% 90:67� 0:40% 90:32� 0:55%

Table 6.4: The results of a CCA fusion, using diverse combination of sensors with the SHL dataset. The
table displays the average and standard deviation over �ve random runs

To check this hypothesis, we use only the �rst components: instead of asking SVM to classify the samples
using all the components in the sumX 0

1 + X 0
2, we select the �rst nc components of this sum (nc = 8 with the

SHL dataset), and train the SVM to classify the samples using the selected components ((X 0
1 + X 0

2) � I n c
n ).

5We tried this regularization parameter C: we �rst experimented using a search with a log scale between 10� 4 and 104 ,
with a step factor of �

p
10, which resulted in having the optimal C equal to 1:0. Then, we experimented using a linear scale

in [0:1; 5:0] with a step of 0:1. As the di�erence in performance between the optimal ( C = 1 :7) and the default ( C = 1 :0)
regularization parameters was less than 0:05%, we kept using the default value. We did not try changing the other parameters.
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The result is in the column 'restricted CCA fusion' in table 6.3. The fact that the performance of this method
is the same as the performance of the CCA fusion with full components means that the trained SVM uses
only the �rst nc components, which is a strong indication that the nc most correlated components are the
most interesting for classi�cation.

6.8 Varying the layer where features are extracted

In this experiment, we try to see what is the in�uence of the layer the features are extracted from. To repeat,
this section does not appear in theA =) B =) C reasoning that serves as a frame for the second half of
this chapter. However, this is one important hypothesis we made in section 6.2 to work with when we talk
about B .

Previously, we mostly focused on features from the ultimate layer of the network, features from which
the class logits can be obtained with a simple linear transformation. What about the feature from earlier
layers? If we were to apply the fusion method described in [267, 249], would it be relevant?

This experiment is similar to the projection experiments in section 6.4, except that we always choose to
project on a subspace withnc dimensions, wherenc is the number of classes. Thex-axis now denotes the
layer the features come from. The fact that we resort to projection experiments is only because there is no
obvious equivalent to the class components in the other layers than the last. We use experiments we know
to be imperfect because we found no other way to explore the question.

When there is a correspondence between CCA components and class logits, it is likely that the method
described in [267, 249] will be equivalent to a simple logits average. In other words, when the performance of
the original network is unchanged when the features are projected onto anc-dimensional subspace, the CCA
operation only picks up directions which are the inverse image of the class logits by the transformation of the
layers. Figure 6.36 provides the results: before the last layer of the network, the accuracy drops signi�cantly,
which means that proposition B does not really apply to features from earlier layers.

Please note that �g. 6.36 does not guarantee that applying CCA to other layers isbetter than an average
of logits. It only means the reason why the results are equal no longer holds. The methods may have
equal results for di�erent reasons (or due to mere coincidence), and applying CCA may even be worse than
computing an average. In fact, we hypothesize that classifying the most correlated components will be worse
because the features that are used are not optimized for direct classi�cation. However, the exact experiments
to demonstrate it are out of scope for this work.
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Figure 6.36: The performance when projecting the features from every layer using the sensor on top on the
nc most correlated components. The CCA is computed from the sensor on the left, using features from the
same layer. The experiment is repeated across three network initializations, the standard deviation is given
by the width of the curve. We pay attention not to use twice the same initialisation when using twice the
same sensor.

6.9 Conclusion

A comment on the meaning of deep features

We would like to come back on one of the consequences of propositionB (the proximity between the �rst
canonical components and the class components). We opened this thesis by saying that features from deep
neural networks could eventually replace the handcrafted features. If features from deep networks are more
e�ective than handcrafted feature, this means that the features from deep networks encode more interesting
properties about the signals (properties that we can compute explicitly, like the power; properties that are
harder to express mathematically; and properties that we are unaware of, but are nonetheless important to
a general-purpose classi�cation problem). If a neural network reliably computed a feature from a signal (a
feature that is not covered by the class components), this feature would appear in several initializations of
the network, which means the CCA would �nd it and put it �rst.

However, we observed that the CCA only puts �rst the class components. in other words, it seems that
the networks only learns what we need it to learn: the classi�cation information. The results from Kamoi
et al. (classi�cation information accounts for most of the variance of deep features [286]) also go in this
direction.

This seems to contradict the very rationale of feature extraction computer vision. An incredible amount of
works used these deep features and reliably showed how these features outperformed the classical handcrafted
features from computer vision. We do not question the validity of the many papers which relied on the use
of deep features. To show how these works are compatible with our results, we can say that knowing the
logits is already a lot.

To be more precise, let us take an example and consider a typical example of the use of deep features:
the works of Gu and Tresp [293]. One of their �ndings states that the feature embeddings can act as a
classi�er for new semantic concepts. For instance, one can use an ImageNet-pretrained model to detect
the presence of reptile scales in an image, even though there is no class to encode this precise concept (the
scale class designates the tool). To do so, one can regroup a series of images containing scale patterns, and
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compute their feature using any pretrained model, and compute a simple average of these vectors. To know
if a new, unseen image has scale patterns in it, one can just measure the distance between the vector of the
unseen image and the average vector computed earlier, and apply a simple threshold. As we said, we be-
lieve these results to be completely valid and compatible with our hypothesis (the classi�cation information
summarizes most of the information present in deep features). We said that there was no class explicitly
encoding the presence of reptile scales, but there are many classes of reptiles which happen to have scale
patterns in them: lizards (green_lizard , alligator_lizard , and frilled_lizard are valid ImageNet
classes), crocodiles (African_crocodile , American_alligator ), snakes (thirteen ImageNet classes repre-
sent snakes6), etc. Knowing the classi�cation information could prove useful to distinguish scale patterns:
if it looks like a lizard and a snake, chances are the image has scales in it. By averaging the encoding of
images with scale patterns, we might just average the class components for the classes of scaled animals.

This explanation looks convincing, but we must raise a warning: we do not state that this is what
happens in practice, as we lead no experiment to prove either the hypothesis (the classi�cation information
summarizes most of the information present in deep features) or its application to the works of Gu and Tresp
[293] (the average vector for a concept correlates with the classes covering this concept). The explanation we
gave is only one way to solve the apparent contradiction between the results we presented and the current
use of neural networks as feature extractors.

If the only information present in the last features was the classi�cation information (and we cannot
underline this if enough), we could give a piece of practical advice to a research team who would want
to create a dataset equivalent to ImageNet with other sensors: they would need to have extremely diverse
classes. This way, features extracted from the last layers would still carry relevant information. Were
the classi�cation problem to be only partial, the last layers would not be extremely useful. In this case, a
researcher willing to use such a model could resort to retraining the model (pretraining improves convergence
speeds even if the classi�cation semantics do not intersect [5, 171]) or to use features from other layers than
the last, similarly to [294, 295].

In other words, the unproven hypothesis we just formulated states that one of the key explanations for
the success of ImageNet-pretrained models is not only the amount of data but also the diversity oflabels the
models were trained with.

How to build a dataset with many labels ?

If building a dataset with a large number of samples is quite straightforward, one could wonder how to gather
a large number of varied classes. We can think of various ways, each of them having speci�c qualities and
drawbacks:

ˆ �rstly, one could include rarer classes (such as motorbike, boat, for TMD). However, this �rst option
changes the problem because it introduces classes that are extremely unlikely in the dataset (see [296]
for examples of solutions).

ˆ one could also add annotations to encompass a type of problem that is more general (for instance,
solving general Human Activity Recognition instead of merely TMD). This solution might not help to
learn better features for the original problem if the two problems are too di�erent or decorrelated.

ˆ the next solution is to increase the granularity of the labels: instead of asking a network to predict
whether the user is in a bus, we could ask whether the bus has an electrical engine or a combustion
engine, for instance. However, this requires to have access to levels of precision that are hard to achieve.

ˆ Finally, one could also ask a network to guess information about the user (such as the gender [297]),
but such a technology would harm the privacy of the users in such a direct fashion that we estimate
preferable not to follow this way.

For instance, young adults are known to be on average 1cm taller in the morning [298] due to changes
in the mechanical properties of the spine. We could hypothesize that asking a neural network to predict the
time of the day would force it to exploit some information about the posture of the individual.

6 thunder_snake , ringneck_snake , hognose_snake, green_snake, king_snake , garter_snake , water_snake , vine_snake ,
night_snake , boa_constrictor , rock_python , Indian_cobra , green_mamba, sea_snake and horned_viper
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With this last example, we are approaching the domain of self-supervision, where we ask a network to
solve a problem created by researchers, as a pretext to learn interesting features. A dissertation on the exact
delimitation of self-supervised learning is out of scope for this work, but we will nonetheless say that we expect
self-supervision to also be useful in helping the network to learn a useful general-purpose representation, as
it has been with Natural Language Processing.

Summary and future work

We began this chapter with a presentation of Canonical Correlation Analysis and showed how this tool helps
us to understand the features di�erent neural networks learnt: we obtained a quantitative measure showing
that the accelerometer is closer to the gyrometer than to the magnetometer, and we demonstrated that the
network had access to the power of the original signal even before its training, a piece of information it could
exploit to solve the TMD problem. We devoted a large portion of the chapter to show why this operation
would likely not revolutionize data fusion with deep features: we showed that when the classes are well
separated in the feature space, the CCA recomputed the class components. We showed that this implied
the fact that a CCA fusion was equivalent to a sum of logits, and �nally demonstrated experimentally the
ine�ectiveness of this fusion method. We brie�y tackled the subject of understanding what happens with
CCA on features from intermediate features, and showed that the reasoning we led for features from the last
layer would likely not hold for other layers.

We hypothesize that we would observe the main result (the sequence of implications) generalizing well to
any two networks (either networks using the same sensor or networks using di�erent sensors) because section
6.5 showed that simply having relatively well-separated classes in the feature space is enough for CCA to
put the class components �rst. However, to the current date, no experiment backs up this claim. Leading
these experiments with other multimodal sensor problems could be part of future work. Another possibility
for future work could be to work on unsupervised problems, using the theoretical formulation introduced by
Roeder et al. Alternatively, we could think about generalizing the present results to the improvements of
CCA we mentioned: PWCCA [274], CKA [299], or kernel-CCA [300]. Finally, the last way to continue the
work would be to verify the di�erence of meaning between deep features and class logits, and in the case our
hypothesis is proven, one could verify how to reconcile it with the current use of deep networks as feature
extractors.
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Conclusion

7.1 Summary of the contributions

This thesis is aimed at exploring Deep Learning for Transport Mode Detection. If our original goal was to
produce a general-purpose feature extractor, the lack of a "go-to" methodology quickly pushed us to try to
know how to use deep networks in practice. To do so, we focused on two major research questions: How to
preprocess the input signals ? And how to merge the data from di�erent sensors ? During this work, we
reached the following conclusions:

7.1.1 Preprocessing of input segments

We dedicated our �rst chapter (chapter 3) to the preprocessing one can apply to the input data before
sending it to a network. We began by improving the padding of short segments we found in the literature
(replacing the zero-padding with a wrapping), before trying to answer a question: should we leave our input
segments intact, or should we compute a Fourier Transform, spectrogram, or scalogram, for the network to
use? Surprisingly, this decision is not explored much in the literature. One publication did conclude that the
most e�cient representation depended on the number of samples: it seems that when the dataset is small,
computing the spectrograms helps the network. If the dataset is large and varied, we ought to let the network
earn its own features. By looking at the literature, we saw that the hypothesis seems to be veri�ed, but we
could not conclude. Given the lack of de�nitive proofs we had, we tried making the comparison ourselves. If
the comparison "spectrogram versus raw data" was biased in favour of spectrograms, the comparison of the
FFT and raw data demonstrated that computing the FFT does help the network. We also justi�ed each of
the steps of the computation of the spectrograms: resizing, log scale for the frequencies, and computation of
the log of the energy. In a last section (section 3.4), we wanted to go beyond the empirical comparisons. We
showed that the spectrograms made the problem linear for one of the classes, thus simplifying the problem.
However, this simpli�cation only happened because there was a way to solve the problem using frequency
features linearly, and we expect this last result to apply only to Transport Mode Detection.

7.1.2 Global Pooling methods

In chapter 4, we studied one choice in the architecture design of neural networks. All convolutional architec-
tures used in TMD required a �atten step to obtain a �xed-size vector from a one-dimensional sequence of
representations. We introduced the use of Global Pooling methods from the Computer Vision literature in
Transport Mode Detection. Not only did it allow to use segments of any size, but it also resulted in a signi�-
cant decrease in the memory and computational requirements. The convolutional model we obtained to work
on the GeoLife dataset could be reduced to 11,000 parameters, an extremely low memory size compared to
the millions of weights neural networks usually have.
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7.1.3 Data Fusion

The problem of Transport Mode Detection sometimes involves more than one sensor. Chapter 5 talked about
the choice of an architecture to e�ciently merge information about each sensor. The literature is extremely
vast, and we selected several algorithms which had a rationale that we could apply to our problem. However,
none of them did succeed in outmatching the most basic data fusion methods. We tried forcing the network
to learn complementary features, and failed. But this failure proved useful: we showed that if providing
a network with di�erent signals helps it more than redundant signals, trying to sway it out of learning
redundant features is ine�ective. The network seems able to choose by itself the right optimum between
redundancy and complementarity.

7.1.4 Canonical Correlation Analysis for data fusion

The last chapter (chapter 6) studied one speci�c data fusion method in detail, an algorithm that relied on a
statistical operation named Canonical Correlation Analysis. Any classi�cation network that succeeds in its
task (i.e., that has a high accuracy) will produce features that disentangle the classes: the classes are said to
be well separated in the feature space. Our contribution was to demonstrate that this separation in�uenced
the CCA, and made the operation recompute the class components �rst. Doing so was not easy, and we
demonstrated the need to whiten the data in the process. Once we were sure that the CCA recomputed
the same components as the classi�cation layer, we came back to the original data fusion algorithm that
interested us in the �rst place and demonstrated our main point: given that the CCA operation recomputes
the same information as the classi�cation layer, using CCA to perform data fusion is equivalent to using the
class logits returned by the classi�cation layer. Sadly, we showed that our whole reasoning was likely to be
proper to the very last layer of the network, and we expect it not to hold for earlier layers. We concluded
with some remarks on the fact that the reason why a network trained on ImageNet produces good general-
purpose features is that this dataset has a good variety of classes. Pre-training a network to do the same for
other signals requires similarly a dataset with a large and diverse set ofclasses.

Some of these problems were extremely vast, to the point that several chapters of this manuscript (pre-
processing, multimodal fusion) could have been complete theses in themselves. Others would have deserved
some experiments on more problems than only Transport Mode Detection.

What to retain from this thesis ?

Our experiments participate in reaching two general conclusions that might be useful for a future practitioner:

ˆ Neural networks work best with spectrograms when the number of samples is 'small', and we should
let the network learn its own features when the number of samples is large enough.

ˆ To be able to use a neural network as a feature extractor, not only do we need to train it using a
dataset with many samples, we also need the dataset to have manyclasses.

7.2 Future work

There are many ways one could pursue the present work. Obviously, all the possible avenues we presented in
the conclusions of the diverse chapters are valid ways to pursue the work at a lower level, we will not repeat
them here. What we will do instead, is presenting higher-level research questions. Two major avenues might
be interesting both for TMD, and for the types of problem practitioners usually deal with:

7.2.1 Semi, self, or unsupervised learning

In this thesis, all the neural networks were trained using a set of labelled examples, and the network had to
learn to classify all of them. This process is calledsupervised learning, for the labels directly tell the network
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what to learn. However, in practice, data is often cheap to record (the researcher only needs to passively
leave the sensor running); while the labels are harder to obtain: usually, labelling requires the intervention
of one or more human annotator(s) who will tell which class corresponds to each sample. To avoid it, several
lines of work try to make use of unlabelled data, for example using auto-encoders which learn how the data
look like by trying to compress it ([125, 65]). These techniques are said to besemi-supervised, for the network
is trained by taking into account the unlabeled samples (for example, with an auto-encoder), and learning
to classify the labelled ones with a supervised criterion. The GeoLife dataset provides a convenient dataset
with a portion of unlabelled data, to experiment with such approaches.

Recent improvements of semi-supervised algorithms involve more than trying to compress the unlabeled
samples. In these works, the network learns to solve apretext task, a problem which is not directly of any
use for the classi�cation but forces it to learn meaningful features along the way. For instance, the network
can be asked to guess if two patches come from the same image, or if one image is the re�ection of the other.
This is called self-supervisedclassi�cation, because we still use a label to train the network, but the label
can be extracted from the raw data itself without the intervention of an annotator [10]. Alternatively, we
could also pursue theunsupervisedavenue, where most of the learning process involves no label at all (such
as the unsupervised clustering in [55]).

7.2.2 Domain Adaptation

Domain adaptation is simply the activity that consists of learning to use data from other sources, where the
data or labels are easier to obtain [301, 302]. This "other source" can be an external dataset, or a dataset
generated using a simulator. We already explained that the design of a simulator for TMD or even HAR is
an additional technological barrier to overcome before applying domain adaptation to such data. However,
one can apply domain adaptation techniques immediately by trying to use data from another context. For
instance, learning to adapt to one user using data from other users (such as [303] does) can be thought of as
domain adaptation. This problem even has its own datasets, for the data from the SHL 2019 and SHL 2020
challenges are still readily available and open for anyone to experiment with.

One sub�eld of domain adaptation that could be interesting to pursue for practitioners is few-shot learning
[304]: this type of problem consists in starting from a model trained on a diverse and massive dataset (e.g.,
ImageNet); and using a handful of samples per class (sometimes 1, sometimes 5, never more than 10) to �nd
ways to adapt this model to the new classi�cation problem. Labelling less than a hundred samples in total
would be ideal for practitioners but, to the best of our knowledge, few-shot learning is not explored for TMD
or even HAR. As applying few-shot learning to our problems is both unexplored and useful in practice, it is
the ideal research problem to tackle for longer-term works.

Convolutional networks mostly took o� thanks to Computer Vision and the dataset ImageNet. However,
building this dataset was an extremely long process, which involved thousands of hours of tedious work [2].
Computer Vision, in turn, in�uenced many classi�cation tasks, such as TMD, which still nowadays rely on
heavily supervised data. In this regard, Natural Language Processing (NLP) is valuable: from the start,
the representations of words were learnt from unsupervised sequences of words [305, 118], and even today,
current models are taught using no labels [306]. The existence of NLP shows it is possible to learn e�cient,
general-purpose representations with little to no human intervention. Let us hope that we can make other
domains follow this example.
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Appendix A

Methodology: Computing a F1 score
from an Intersection over Union

In this section, we will demonstrate how we computed a F1-score in table 2.4 from the per-class Intersection
over Union (IoU) in [65].

Firstly, let us consider one class, and work with per-class scores.TP is the number of true positives,
FP the number of false positives (the points that were classi�ed as this class but without actually belonging
to it) and FN the number of false negatives (points that the classi�er did not detect as belonging to the
class we considered). The Intersection over Union (IoU) is a score that compares the prediction of the
network (TP + FP ), to the number of data points (pixels or, in our case, time steps,TP + FN ). The
number of samples in the intersection of these two sets isTP, while the number of samples in their union is
TP + FN + FP . Hence,

IoU = T P
T P + F N + F P

The F1 score is computed by taking the per-class recall and precision:

F 1 =
1

1
2 ( 1

Recall + 1
P recision )

Knowing that :

Recall =
TP

TP + FN

Precision =
TP

TP + FP

We obtain:

F 1 =
2

( T P + F N
T P + T P + F P

T P )

=
2:TP

TP + FN + TP + FP

=
2TP

2TP + FN + FP

If we call the error E = FP + FN

F 1 =
TP

TP + E=2

IoU =
TP

TP + E
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The last two lines show us that the IoU score is harsher than the F1 score. However, it is not enough yet
to know by how much. To �nd one from the other, simply say that:

IoU =
TP

TP + E
TP
2

= IoU
TP + E

2

TP = IoU
TP + E

2
+

TP
2

= IoU
TP + E

2
+

TP
2

(IoU + (1 � IoU ))

TP = IoU (TP +
E
2

) +
TP
2

(1 � IoU )

TP
TP + E

2

= IoU +
T P

2 (1 � IoU )

TP + E
2

F 1 = IoU +
F 1
2

(1 � IoU )

F 1(1 �
1
2

+
IoU

2
) = IoU

F 1
1
2

(1 + IoU ) = IoU

F 1 =
2IoU

1 + IoU

We obtain the F1 score per class. We only have to compute the mean across classes to get the average F1.
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Automatic sensor selection

Some of the fusion methods we presented in chapter 5 allow us to explicitly assign a weight to each of the
sensors used. We wondered if these methods could be used to let a neural network automatically select the
optimal sensor combination among all the sensors we had. The idea would be to give all possible signals to
a network for classi�cation and to look at which sensors were chosen at the end of the training.

B.1 Data fusion for sensor selection

Each fusion method has a di�erent way of assigning importance to a sensor. The general idea is that we
obtain a positive value for each sensor which is higher if the sensor is important.

ˆ bottleneck �lters : The �rst layer of the network makes an explicit combination of spectrograms. If a
coe�cient is close to zero, this will mean the network ignores the corresponding sensor. There is no
limit, however, to the values each coe�cient can take. In particular, the network can use negative
values, which still allows conveying information from the sensor. We record the absolute value of the
weight to assess the importance of each sensor

ˆ attention : For each sensor, the attention assigns one weight (between 0 and 1) per input pixel and for
each sample. We simply average the values of these weights over the number of pixels and the number
of samples, to obtain one value between 0 and 1 per sensor.

ˆ selective fusion: Similarly to attention, we compute one average per sensor.

ˆ weighted probabilities fusion: The network explicitly computes a single weight per sensor, we simply
record this weight.

ˆ Gradient blend: Similarly, we use the weight computed by gradient blend as-is. Even though these
weights do not indicate which sensor is useful (the weights are computed to reduce over�tting), but we
still check if they have meaning nonetheless.

ˆ weighted scores fusion: Contrary to the weighted probabilities, one weight is not enough to know which
sensor impacts most of the decision. The reason for this is that scores can be systematically higher for
one sensor. To account for scores variation, wemultiply each weight (between 0 and 1) by the standard
deviation of all the scores returned by each sensor.

B.2 Three known scenarios

Before giving all the sensors to the network, we want to make sure that the networks are able to correctly
evaluate the sensors when the usefulness of these sensors is already known (from the experiments in the
previous). We evaluate three scenarios:
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ˆ Accelerometer + Gyrometer: As the gyrometer brings a small increase to the performance of the model
when added to the accelerometer (about 2 percentage points), we expect the networks to favour the
accelerometer most, while still listening at the gyrometer to some extent.

ˆ Accelerometer + Norm of the Orientation : The norm of the orientation is almost useless, so we expect
the network to only listen to the accelerometer.

ˆ Four times the accelerometer: the network needs to select the best sensor, and should ignore the
redundancies. To test the network's ability to ignore redundant information, we create a scenario with
four sensors, and each of these sensors is a copy of the norm of the accelerometer. Ideally, the network
should a�ect a weight of zero to all but one of the sensors each time.Note: if the network chooses
to listen to a single accelerometer, but this accelerometer is not the same between initializations (eg
the network listens at the �rst accelerometer during the �rst run, and to the last accelerometer the
next run), the average weight per accelerometer will not show that a single accelerometer was selected
each time. In order to avoid this situation, and instead of identifying the weights by their initial order,
we order them by value. In other words, accelerometer 1 is always the accelerometer with the highest
weight (or average weight), accelerometer 2 is the second highest, etc. It doesn't matter whether with
one initialization the 2nd copy of the norm has been selected or the 3rd, etc. What matters is that
only one copy is selected each time. In the end, we expect that the mean of the highest weights should
exceed largely the others.

The results are displayed in �g. B.1. For the �rst scenario (accelerometer and gyrometer, �rst line), all
networks but the weighted probabilities fusion succeed to give some importance to the gyrometer. For the
second scenario, only Gradient Blend fails the test: others assign a small value to the useless sensor. For
the third scenario, only the weighted probabilities method succeeds clearly. One could argue that selective
fusion also passes the test, but the standard deviations in the weights of the second and third weights are
still quite high, indicating that some runs still fail nonetheless.

As the 'weighted probabilities' method did not succeed with the �rst scenario, none of the methods we
used succeeded in all three scenarios. Selecting the sensors automatically by giving them all to a single
network seems unlikely to succeed.

Figure B.1: The weights of each sensor in the three scenarios for di�erent automatic sensor selection methods.
Error bars indicate the standard deviation between each of the �ve runs. The values of the weights in the
last scenario are decreasing because we sorted them (as the sensors are equivalent, we wanted to see if the
network listened to only one sensor).
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B.3 Conclusion

Even with an evaluation of each of the individual sensors (see section 2.3.3), choosing an optimal sensor
combination is a non-trivial combinatorial problem. We could cite works that rely on the intelligent removal
of features to evaluate their usefulness (see [307], for instance), and how they can be adapted to sensor
selection. However, these works are out of scope for this chapter.

For the automatic sensor selection, our rationale was more to use what we had developed as data fusion
methods, and see what happens. As this method did not pass the tests we set up for it, we see no other
choice than simply keeping the sensors we selected using prior knowledge. We realize that the idea which
pushed us to experiment in this direction was that a neural network would always �nd the best combination
of sensors. The results show that neural networks are not necessarily optimal, nor e�cient.

Several works did try to quantify the energy spent using each sensor by trying to get rid of each of them,
and seeing if the loss of performance is acceptable given the time, or energy saved by not using them [40,
133, 131]. However, these methods rely on evaluating each sensor combination once.
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Appendix C

Random Search for hyperparameters on
the GeoLife dataset

Deep neural networks are trained by the update of thousands, or even millions of values calledparameters
of the network. However, the training process is guided by a handful of variables speci�ed by the user at
the beginning of the training process. These variables, which remain constant all the way through, are
called hyperparameters. Finding the optimal combination of values for the hyperparameters is a common
problem to all Machine Learning practitioners, and hyperparameter optimization has become a separate �eld
of research ([308, 309]). We could also consider Neural Architecture Search ([310]), a type of problem where
the researchers try to optimize the architecture of a network (number of �lters and layers, organization of
the operations etc.) using methods that are speci�c to deep neural networks.

There are several competing methods in the literature [309], and, in particular, Bayesian optimization
([311]) is a popular option for hyperparameter selection. However, we selected Random Search for its
simplicity and ease of implementation. This short chapter is devoted to presenting how we found the
hyperparameters of the baseline architecture for the GeoLife dataset.

C.1 Experimental setup

The most straightforward way to know which combination of hyperparameters is the most optimal is to test
all combinations. Unfortunately, this method, named grid search, has a complexity that grows exponentially
with the numbers of hyperparameters to evaluate. For instance, in our case, this would mean evaluating
nearly six million combinations, with only thirteen hyperparameters to choose (see table C.1 for a list of all
possible hyperparameters). This is wasteful if we consider that some hyperparameters will end up having a
low in�uence on the performance.

Random Search [312] is a method that relies on the independent sampling of a set of hyperparameters. To
avoid iterating over the low-in�uence hyperparameters as grid search does, Random search simply consists
of setting intervals for each hyperparameter, and selecting a series of hyperparameters at random, uniformly,
to evaluate the architecture. After a signi�cant number of sets of hyperparameters are evaluated, one should
see di�erent trends when they plot the performance against the diverse hyperparameter values.
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hyperparameter possible values chosen value

normalisation none, max-min,
p-robust (1, 5, and 10 percentile)

none

�ltering none, median,
savitzky-golay (order 3, 9 points)

none

segment size 256, 512, 1024 1024

signal
types

speed, acceleration, bearing [28] speed,
acceleration

learning rate 0.01, 0.03, 0.1, 0.3, 1.0, 3.0 0.01

regularization
parameter

1:10� 4 ; 3:10� 4 ; 1:10� 3

3:10� 3 ; 1:10� 2 ; 3:10� 2 3:10� 3

batch size 8, 16, 32, 64, 128 128

number of
conv blocks

1, 2, 3, 4 3

architecture
(see �g. C.4)

classic, residual residual

size of the
�rst block

8, 16, 32, 64 16

number of
hidden FC layers

1, 2 1

size of the
FC layers

8, 16, 32, 64, 128 16

dropout 0, 0.1, 0.2, 0.3, 0.4, 0.5 0.2

Table C.1: The search space of random search for the GeoLife architecture

There are many hyperparameters to set in order to create our GeoLife neural network. We decided to
be broad and include many of them (see table C.1 for an exhaustive list): architecture (number of layers,
number of �lters per layer, ...), learning process (e.g., learning rate, batch size). We also included several
values that are not hyperparametersper se, but might have an in�uence on the �nal performance: what
signals to include (speed only; speed and acceleration; or speed, acceleration, and bearing [28]), how to
normalize the data (no normalization, max-min, or p-robust using the �rst, �fth, or tenth percentile); or
input data cleaning (no cleaning, median �lter with size 3, or Savitzky-Golay �lter with 9 points and order
3). Contrary to the GeoLife model we presented in chapter 2, all the architectures we used in the Random
Search required the input segments to have the same size. We saw in chapter 4 how to make use of segments
of any size, but for now, we keep on having �xed-size segments. One work [28] used 200 points-long segments
on the uninterpolated dataset, which is why we compare similar values: 256, 512, and 1024 points-long
segments. The hardware we used is the same as the one we described in chapter 4 (section 4.2).

C.2 Results

We created and trained 562 models with hyperparameters drawn uniformly, and looked at the in�uence
of each of the hyperparameters separately from the rest. When a clear trend was observed (see �g. C.1
for examples), we chose the best hyperparameter; and we opted for the less complex solution (in terms of
computational requirements or number of parameters) when no clear choice could be made (which happened
for the input �ltering and signal normalization). We select the best hyperparameters visually, table C.1
displays the values we chose.
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(a)

(b)
(c)

Figure C.1: Swarm plots representing the in�uence of several hyperparameters from random search. Each
black dot represents one neural network. Sub�gure (a) represents an example of signi�cant choice: N = 3
blocks is strictly better, performance-wise. (b) and (c) are examples of unimportant hyperparameters: using
savitzky-golay �lters, for instance, is the same as using no �ltering.
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(a) segment length (b) learning rate

(c) batch size (d) architecture

(e) type of inputs (f) regularization parameter

Figure C.2: Swarm plots representing the in�uence of several hyperparameters from random search. Each
black dot represents one neural network.
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(a) size of the �rst block (b) number of hidden FC layers

(c) size of the FC layers (d) dropout

(e) seed

Figure C.3: The swarm plots representing the in�uence of all hyperparameters from random search. Each
black dot represents one neural network.
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Figure C.4: The classic (left) and residual (right) architectures we used for the Random Search. The classic
architecture comes directly from [104], while the second one is inspired from ResNet [150].

C.3 In�uence of the architecture

The architecture of a network is the most determinant hyperparameter to its performance, which is why we
will spend some additional time to evaluate it, even though the architecture type was one of the parameters
covered by random search. We remind the reader that we chose between the two architectures depicted in
�g. C.4: the 'classic' architecture, using a regular sequence of layers, coming from [104], and a slightly more
complex one, using residual connections [150]. The result of the random search is that both architectures
have similar performances (�g. C.5a).
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(a) (b)

(c)

Figure C.5: Swarm plots detailing the in�uence of the architecture, in terms of performance (a), number of
weights (b), and number of operations (c). Each black dot represents one neural network

When looking at the results of the Random Search (�g. C.5), the classic architecture seems better: it
has similar performances (�g. C.5a), while having fewer parameters (�g. C.5b) and operations (�g. C.5c)
than the residual architecture.

However, we will see that the residual architecture is in fact, more e�cient than the classic one. Here,
we use similar architectures as in �g. C.4, except that the number of input in a convolution layer is set
to 2, 4, 8, 16, and 32. We trained �ve models with each architecture, with each number of �lters. The
results are illustrated in �g. C.6, which contrast with the result of the random search (�g. C.5a): for an
equal number of �lters, the residual block signi�cantly outperforms the classic convolution. We hypothesize
that this is due to the choice of hyperparameters: even if we focused on medians and quartiles to look
for tendencies, we somehow selected, unwillingly, a combination of hyperparameters that works better with
residual blocks. In particular, a small number of �lters is detrimental to the classic architecture only. We
missed this interaction between hyperparameters because of the visualisation in the Random Search. This
illustrates one of the limits of the univariate analysis we adopted by plotting the results. Alternatively,
maybe that the use of ANOVA could have separated the in�uence of the interactions of the variables, as it
did in a previous study [210].
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Figure C.6: The performance of each type of network as a function of the number of parameters.

C.4 Conclusion

This chapter was dedicated to our implementation of Random Search. There are two points to retain: �rstly,
the type of cleaning of the GPS signal does not seem to in�uence the performance much, which means the
network is fairly robust to the noise of the GPS signal. Secondly, we showed an example of the shortcomings
of Random Search: choosing one type of architecture (the regular one) with a small number of �lters leads to
surprisingly low performance levels. This is due to the interaction between variables, which Random Search
does not take into account.

Here, we must say that the choice of a value for each hyperparameter was not the most rigorous: we
simply displayed the graphs of the performance (see �g. C.1) and selected manually the value that looked
best. As hyperparameter selection algorithms are usually employed to reduce the tediousness of manual
selection, resorting to manual selection of parameters halfway through is counterproductive. Worse, when
we say that a hyperparameter does not in�uence the performance, we rely on a visual inspection of the
�gures. Given that we have hundreds of samples, we could have employed statistical tests to assert the
signi�cance of each parameter.

We mentioned Bayesian optimization in our introduction, but the most important is to �nd an optimiza-
tion method that takes into account the interaction between variables.
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Appendix D

The curious behaviour of the
spectrogram of the orientation

In chapter 3 (table 3.4 and �gure 3.5), we presented a network a250� 550 spectrogram with the log-power,
computed from the w axis of the orientation vector. Out of the �ve models we trained, two learnt nothing
and kept a validation F1 of 2.8% (the score of a classi�er that predicts the most occurring mode). The three
others had a F1-score of76:4 � 1:6%. This chapter is devoted to the study of this discrepancy.

The discrepancy we observed is surprising: usually, the in�uence of the randomness is quite small (most
of our experiments lead to F1 sores that have a standard deviation of one to two percentage points). This
stability is not proper to our experiments, for many publications found empirically that the seed has little
in�uence on the �nal performance (typical standard deviations in the performances of deep neural networks
are below a handful of percentage points, see [127, 313] for a few examples). Things become even more
surprising when we look at the rate of convergence of the networks.

D.1 An observation: irregular learning of the network

Some of the time, the validation F1 score plateaus at2:8%, and before reaching higher values, of about70%.
It turns out that leaving only 50 epochs was too short for these networks. We tried letting 30 networks
learn for 200 epochs instead: �g. D.1 shows most of them learnt to generalize fairly well after only 100
epochs. The shape of the curve, however, is highly unusual: the performance remains constant for some of
the epochs, before seeing its performance suddenly spike, only to reach its maximum in about 10 epochs.
Moreover, this does not happen for all networks: depending on the initialization, some networks learn right
away. This phenomenon seems to only occur for the full-size spectrograms with the log of the energy: with
the Ori w spectrograms with raw power (which also seemed to fail to learn anything in chapter 3), the abrupt
performance increase does not seem to happen: we tried extending the learning period up to 1,000 epochs
instead of 200, but the networks could not generalize.

Two questions emerge from the curves in �gure D.1: why does the network learn so irregularly ? and
why are the results so di�erent between two di�erent random seeds?
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Figure D.1: The validation F1-score of 30 initializations of the same model working with full-size spectro-
grams of the Ori w signal

D.2 Why does the network learn so irregularly ?

In many works (see [150, 5, 314], for instance), the loss as a function of time is fairly regular: it starts
by decreasing abruptly, and, as the time increases, it keeps decreasing, albeit at a slower rate. The classic
representation of a loss curve is a decreasing exponential (such as the one in the Stanford Course on Deep
Learning [315]). Usually, only external actions from the researcher (such as lowering the learning rate [150]
or freezing some weights [269]) change the rate of convergence of the curve to such degrees. In our case, we
keep using the same learning process, without alterations, for the entire 200 epochs.

Without providing a full explanation, we can give some insights about it: Firstly, the fact that the F1-
score seems to remain constant at the beginning of the learning process does not mean that nothing happens.
As gradient descent occurs, the weights are being changed, but this does not seem to change the loss by
much. We make the hypothesis that the network starts by over�tting, that is, memorizing the inputs one
by one. When we train one network to learn randomized labels (which corresponds to pure over�tting or
memorization), the training decreases exponentially, but its decrease rate is very slow: the training loss is
equal to 2 after the �rst epoch, and equal to 0.5 after 5,000 epochs. As a comparison, when using clean
labels, the training loss reaches the same value after 50 epochs only. This means that the decrease in the
loss function is not likely to remain invisible after only �fty epochs. But this does not mean that the
network learns nothing: Graziani et al. [316] showed that when training models on randomized labels, the
models still learn some discriminant feature with their �rst layers (the memorization only takes place in the
intermediate layers). In other words, even over�tting networks learn some discriminant features. We do not
know if this behaviour appears because the features help the network in his memorization task, or if it is a
by-product of the properties of gradient descent [292, 317, 318]. What matters to us is that if this behaviour
takes place in our problem, this means the networks takes some time to develop features while beginning to
memorize the samples, and suddenly �nds a way to use the features that generalizes well. However, we do
not con�rm this reasoning with any experiment, and we only have assumptions so far.

D.3 Why does the behaviour depend so much on the random seed
?

When looking at the performance curves in �g. D.1, it seems that the speed at which the network learns
depends on the initial random seed: most networks learn quite fast, but some take more time (ten to �fty
epochs) to really start generalizing. Some others did not even start learning at the end of the 200 epochs.
This high variability is, to the best of our knowledge, unheard of in deep learning (see [319], �g. 8, for
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an example of di�erent learning curves of the same initialization). Even with our other experiments, the
learning curves did not seem to change much when we changed the initial random seed.

In our case, there are three sources of randomness in the training process of our neural networks: the
initialization of the weights, the selection of samples in the training set to form a batch, and the dropout
during the training (Dropout is turned o� for evaluation). However neural networks (for the weight initial-
ization), Stochastic Gradient Descent (for the batch formation), and Dropout have been used for years, and
we cannot think of any publication attesting that one of these three sources of randomness has a signi�cant
impact on the �nal performance. The question remains unanswered.

D.4 Why are we even talking about this ?

It might seem unusual to linger over a behaviour we know to be extremely marginal. We could handwave
it away as a statistical outlier, an inconsistency of a virtual signal computed from unknown heuristics, and
used to solve a sub-sub-�eld of research that only matters to a handful of practitioners. We will not do it.
In fact, we believe this example to be precious.

There is still much to be understood about deep learning. We see publications trying to model the ability
of neural networks to �nd global minima from using mathematical considerations [320] or mathematical
models from theoretical physics [321]. In this regard, having an example where thingsdo not work is
helpful: it could help us understand why things work. If we could pin down the exact reason why all
these inconsistencies appear here and not with other neural networks, we might answer these broad research
questions about neural networks. Granted, the reason might be peculiar to TMD, or this very sensor. But
even in this case, knowing this reason might help us to learn more about other sensors, or even images, and
the reason why they work so well with deep networks.

This is another proposition to add to the never-ending list of interesting avenues for future work.
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