N
N

N

HAL

open science

Deep learning for spatio-temporal multidimensional
signals: an application to transport mode detection

Hugues Moreau

» To cite this version:

Hugues Moreau. Deep learning for spatio-temporal multidimensional signals: an application to trans-

port mode detection. Other. Université de Lyon, 2021. English. NNT: 2021LYSECO051 .

03711716v2

HAL Id: tel-03711716
https://theses.hal.science/tel-03711716v2

Submitted on 1 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://theses.hal.science/tel-03711716v2
https://hal.archives-ouvertes.fr

UNIVERSITE
LYON

CENTRALELYON

THESE de DOCTORAT DE L’UNIVERSITE DE LYON
Opérée au sein de :

I’Ecole Centrale de Lyon

Ecole Doctorale 512
InfoMath

Spécialité de doctorat : Informatique

Soutenue publiquement le 17/12/2021, par :

Hugues Ivan Louis MOREAU

Deep Learning for Temporal Multidimensional Signals -
an application to Transport Mode Detection

Devant le jury composé de :

Liming Luke CHEN Président
Professeur, Université d’Ulster

Hongying MENG Rapporteur
Professeut, Université de Brunel

Xi ZHAO Rapporteur
Professeur, Université de Jiaotong de Xi’An

Alice OTHMANI Examinateur
Maitre de conférences, Université Paris Est

Marielle MALFANTE Examinateur
Ingénieur chercheur, CEA LIST

Liming CHEN Directeur de thése
Profeseur, Ecole Centrale de Lyon

Andréa VASSILEV Invité

Ingénieur de recherche, CEA LETI

Numéro d’ordre NNT : 2021LYSEC51

Acknowledgements

I never really understood the heartfelt messages that usually open the manuscripts I read. From outside, it
felt pretended, as if it was an impersonal list of tributes a PhD candidate owed to their colleagues. I never
saw how wrong I was, until I had to reflect to my own work in its entirety. I realize that a thesis is never a
single person’s work, and how much the presence and personalities of my colleagues taught me.

Please know that my gratitude is not feigned. For the most part.

Thank you Andrea, for your critical eye. Without you I would not be half as rigorous as I am today. Thank
you also for your availability and your sincere willingness to help.

Thank you Liming for helping me to take a step back on my work, and for guiding me through the arcane
of academics.

Thank you Viviane, for being so understanding. I did appreciate working with you.

Thank you Christelle, for helping correcting the trajectory of the thesis, and avoiding what could have been
a disappointing descent into mediocrity.

Thank you to my immediate colleagues for the multiple interesting technical discussions and insights about
the problems I had to solve: Thibault, Alex, Nicolas, Jéréme, Adrien B., Thomas; and in particular to
Dimitri, Adrien V., and Régis, for helping me proofread this manuscript. Thank you to all my colleagues in
CEA in general, for their warm welcome and their helpfulness.

Thank you all.

Abstract

Transport Mode Detection (TMD) is a classification problem where the goal is to infer the transport mode
of a user from GPS signals or inertial sensors, with applications such as carbon footprint tracking, mobility
behaviour analysis, or real-time door-to-door smart planning. Traditionally, the method for solving this
problem involved training a Machine Learning classifier on handcrafted features.

In this thesis, we will tackle Transport Mode Detection using Deep Neural Networks, a class of algorithms
which offers the possibility to learn the features automatically from data. By attempting to use Deep
Learning on TMD, we will tackle several different research questions: firstly, whether to preprocess the
signals by computing a spectrogram, or stick to a one-dimensional sequence. We will show that computing a
spectrogram does simplify the problem, thereby helping the network not to overfit on a simple problem. The
second question to answer is data fusion, or, how to merge the data from different sensors. We propose a
benchmark of different data fusion methods used with Deep Neural Networks and conclude that no method
outperforms the others. Lastly, we will focus on Canonical Correlation Analysis to show that, when it
is applied to features of deep neural networks, the canonical components are equal to the classification
components of the network.

ii

Résumé

La Détectiuon du Mode de Transport (Transport Mode Detection, TMD) est un probléme de classification
dont le but est de déterminer le mode de transport emprunté par un utilisateur a partir de signaux GPS
ou de capteurs inertiels, et dont les applications vont de l'estimation d’empreinte carbone a ’analyse de
comportement de déplacements, en passant par la planification d’itinéraire en temps réel. Traditionnellement,
la résolution de ce probléme passait par I'entrainement d’un classifieur avec des descripteurs calculés en
fonction de connaissances pré-établies du domaine.

Dans cette thése, nous nous attaquerons au probléme de la Détection du Mode de Transport a 'aide de
réseaux de neurones profonds, un type d’algorithme qui apprend a calculer les descripteurs les plus adaptés
au probléme a résoudre. Ce faisant, nous rencontrerons plusieurs questions de recherche : d’abord, nous
chercherons & savoir s’il nous faut passer par un spectrogramme, ou si le réseau peut traiter les signaux
bruts. Nous montrerons que, dans notre cas, calculer un spectrogramme permet de simplifier le probléme
de classification a résoudre, ce qui évite au réseau de surapprendre. La deuxiéme question & résoudre est de
savoir comment intégrer les informations en provenance de différents capteurs, un probléme appelé fusion
de données. Nous proposons une évaluation de différents algorithmes de fusion de données par réseaux de
neurones et concluons que, pour notre probléme, aucune méthode ne dépasse significativement les autres.
Enfin, nous nous intéresserons a une opération appelée Analyse des Corrélations Canoniques (Canonical
Correlation Analysis, CCA) pour montrer que, lorsqu’on lapplique aux descripteurs appris par des réseaux
de neurones, les composantes canoniques sont égales aux composantes de classification.

iii

Contents

1 Introduction

1.1 Context and Motivation L
1.1.1 Temporal signals e e
1.1.2 A brief overview of recent Computer Vision history
1.1.3 A collaboration with an applied research laboratory

1.2 The problem of Transport Mode Detection and its application

1.3 The proposed approach and contributions oo Lo

1.4 Outline of the manuscript

Related works, datasets, and baseline

2.1 Stateof theart L
2.1.1 Datacleaning e e e e e e
2.1.2 Point-level feature computation Lo
2.1.3 Segmentation e
2.1.4 Trajectory-level feature computation Lo
2.1.5 Classification: classical Machine Learning
2.1.6 Classification: Deep Learning
2.1.7 The problem of the evaluation oo

2.2 Datasets e
2.2.1 The GeoLife dataset
2.2.2 The SHL 2018 challenge
2.2.3 SHL 2019 and 2020 challenges
2.2.4 The TMD Dataset e

2.3 Baselines e
2.3.1 Transport Mode Detection as a classification problem
2.3.2 GeolLife Baseline
2.3.3 SHL Baseline e

2.4 Conclusion L

Preprocessing

3.1 Introductory example: How padding segments can disturb the learning process

3.2 An overview of preprocessing in the literature L.
3.2.1 Audio processingo e
3.2.2 Failure prediction in rotating machines oL oL
3.2.3 Physiological signals Lo
3.2.4 Human Activity Recognition
3.2.5 Transport Mode Detection. Lo o
3.2.6 Conclusion of the literature study Lo

3.3 Evaluation of preprocessing methods Lo

3.4 Understanding why spectrograms are more effective 0000
3.4.1 Which frequencies are useful for classification 7 0.
3.4.2 Computing the average of gradients 0.

B WO e

Nelio Jl e e =]

LW NN DN = = s e e
(G20 B e BINaEEN B N G R e R an N @)

3.5 Conclusion e 62
Global Pooling 63
4.1 The different types of global poolingo 63
4.2 Evaluation metrics e e e e 64
4.3 Results. e e 65
4.3.1 Comparison of the alternatives to the flatten step 65
4.3.2 Comparison with the state of theart 0oL 66
4.4 Conclusion 68
Data fusion 69
5.1 Data Fusion modes in deep learning oL Lo o 69
5.2 An inventory of fusion modes L 70
5.2.1 Early fusion e 70
5.2.2 Intermediate fusion L e 71
5.2.3 Latefusion 76
5.3 A benchmark of fusion modes 78
5.4 Decorrelated networks oL 81
5.4.1 Principle 81
5.4.2 Experimental protocol L 82
543 Results 85
5.4.4 Why did the decorrelation loss not help o oL 86
5.5 Evaluations on the test set L L 87
5.6 Conclusion 87
A study on Canonical Correlation Analysis 88
6.1 Introduction e 89
6.1.1 Notations and definitions 89
6.1.2 Deep features L 90
6.1.3 A general presentation of Canonical Correlation Analysis 91
6.2 Related works L 92
6.3 An application of canonical correlation analysis to deep features. 93
6.3.1 Measuring the canonical correlations to quantify the similarity between sensors 94
6.3.2 Demonstrate that the network keeps the power 95
6.3.3 Influence of the network initialization 97
6.4 The equality between the first canonical components and the class components 98
6.4.1 Introduction: A glance at canonical variables 100
6.4.2 Projection experiments L L e 102
6.4.3 An explicit measurement of subspace similarity 0oL 106
6.4.4 Partial conclusion: the proximity between class and canonical components 116
6.5 The causes of the equality 117
6.6 How the equality between class and canonical components implies that a CCA fusion is ineffective122
6.7 An implementation of CCA fusion with SHL 122
6.8 Varying the layer where features are extracted 124
6.9 Conclusion e e e 125
Conclusion 128
7.1 Summary of the contributions L oL 128
7.1.1 Preprocessing of input segments o 128
7.1.2 Global Pooling methods L 128
7.1.3 DataFusion e 129
7.1.4 Canonical Correlation Analysis for data fusion 129
7.2 Future work 129
7.2.1 Semi, self, or unsupervised learning L 129
7.2.2 Domain Adaptation 130

Automatic sensor selection

B.1 Data fusion for sensor selection
B.2 Three known scenarios
B.3 Conclusion

Random Search for hyperparameters on the GeoLife dataset
C.1 Experimental setup
C2 Results. e
C.3 Influence of the architecture
C.4 Conclusion

The curious behaviour of the spectrogram of the orientation
D.1 An observation: irregular learning of the network
D.2 Why does the network learn so irregularly 7
D.3 Why does the behaviour depend so much on the random seed ?
D.4 Why are we even talking about this 7

vi

A Methodology: Computing a F1 score from an Intersection over Union

156

158
158
158
160

161
161
162
166
168

List of Figures

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10

2.11
2.12

2.13

2.14

The outline of a classic Transport Mode Detection algorithms, along with a few examples of
each step. e 7
An illustration of the meaning of the axes in a smartphone: the referential of the sensor
(b, Yb, 2») and the de-rotated, or NED (North, Fast, Down) coordinate system. Reproduced

from [B4]. . . e 8
A few examples of monomodal portions of trajectories in the GeoLife dataset. The start of
the trajectory is set to be the origin Lo 14

The histogram of all the orientations between two successive GPS points in the GeoLife
dataset. The fact that the 0°, 90°, 180°, and 270° values are over-represented indicate that
most of the trajectories follow the orientation of the grid-like road system. 15
The histogram of the durations of each monomodal segment in the GeoLife dataset. As
expected by the intuition, the Walk segments are typically quite short (less than 15 minutes),

while the train segments can be extremely long (more than three hours). 15
Some example of signals from the SHL 2018 dataset, for each of the 8 classes and for three
sensors: a) norm of the accelerometer b) norm of the magnetometer c¢) barometric pressure . 18

A scatter plot of the samples from the accelerometer measurements of the TMD dataset,
depending on their number of points and total duration. The diagonal lines illustrate the

iso-frequencies (average frequency in the sample), in Hz. 19
The outline of our methodology. As we cannot explore the whole search space, we simply
explore along a few chosen directions, changing one type of option at a time. 20

The separation of a trajectory with the GeoLife dataset. Each trip is composed of triplegs;
each tripleg correspond to a single transport mode. When two consecutive points are distant
more than a certain threshold (chosen to be equal to 20 minutes in our case), we break it into
two neighboring trips. L 21
An overview of 200 distributions obtained by splitting by users. Depending on the realizations,
the proportion of each class can vary greatly: in the validation and test sets, the first quartile
is always at least twice lower than the third quartile. In extreme cases, one set can completely

lack one class. e 23
The architecture of the GeoLife baseline model 24
The confusion matrix of the GeoLife model, on the test set. We can see that there is a high

confusion between the classes "Car&taxi" and "Bus": merging together these classes will
improve the performance considerably. L L Lo 27
The cumulative proportion of each class versus time. The class proportion is computed on a
moving window of 1,500 samples, with a stride of 50. We can see the end of the dataset is
devoid of Car segments. L e 28
The histogram of the classes in each set (lines) for each splitting (columns). The train/validation
split made by the organizers of the challenge is balanced, but it does not take the chronological
order into account. A train/val split does, but the train set lacks run segments. A val/train

split of the samples is both rigorous and balanced enough. As the test set is already split by

the organizers of the challenge, its content does not depend on the splitting. 28

vii

2.15 An illustration of the preprocessing step with the norm of the accelerometer data from a
running segment. The 2.3 Hz frequency band appears in the middle of the spectrogram due
to the log scale for the frequencies. This 2.3 Hz frequency is approximately the frequency at
which one foot touches the ground. The use of the log-energy on the bottom right-hand corner
allows to better displays the 1.15 Hz band, which is the period of the right leg movement (with
the SHL 2018 dataset, the phone is kept in the right pocket of the user).

2.16 The architecture of the baseline SHL model

2.17 A bar plot of each individual sensors corresponding to the results in table 2.5. The error bars
denote the standard deviation over five random initializations of the network.

2.18 An histogram displaying the values of the three axes of the Gravity sensor. We can see that
the phone is upright when the user walks (the extreme values in the negative region of the y
axis are mainly from walk segments); the phone lies flat, with the screen facing up or down,
when the user drives (the car segments are extreme values of the z-axis, both positive and
negative); and that the phone is not often on the side (the extreme values of the x-axis are
not the most represented). See fig. 2.2 for an illustration of the meaning of the axes. Note
that the phone was in the user’s pocket when the dataset was recorded.

2.19 An example of signal that shows how the slight noise in the norm of the gravity discloses the
class for the most obvious modes (here, a Bike segment).

2.20 The computation of the orientation quaternion.

2.21 The confusion matrices of models using (a) the norm of the accelerometer (b) the y axis of
the gyrometer (c) the norm of the magnetometer (d) the w axis of the orientation quaternion,
with the SHL validation dataset.

3.1 The different kinds of padding. Zero-padding simply adds zeros until the maximum length
is reached, Reflection reverses a copy of the segment and adds it at the end, while wrapping
simply duplicates the segment until the maximum length is reached.

3.2 The validation accuracy versus the size of each segment (the shorter the segment, the more
zeros it will be padded with). Adding zeros is not particularly detrimental to the classification
performance, which means the network learnt to ignore the zeros, missing potentially relevant
information. Intervals bins are obtained using equidistant separations between 0 and the 90-th
percentile e

3.3 The main hypothesis we want to verify ([152]): leaving the data intact is worse when the
number of samples is low, and better when the dataset is large.

3.4 The type of preprocessing used, depending on the total duration, number of samples, or
number of subjects of the dataset (N/M: Not Mentioned; combination denotes the use of
several types of features). Figure generated using the code and data from [196]. We would
like to thank Y. Roy for providing us access to the code.

3.5 A bar plot representation of table 3.4. Best view in color.

3.6 The average power spectrum per class (only half of the spectrum is shown). Note the close-
ness of the fundamentals for the Walk, Run, and Bike classes, the Dirac comb shape of the
Run spectra, and the sharp components at 21, 25, and 30 Hz for Bus signals (corresponding
respectively to 1260, 1500 and 1800 rpm, the usual rotation speeds of an engine). Best view
N color e e

3.7 An example of discontinuity. Note how the periodic components at the end of the segment
leave patterns that remain noticeable with the log-power, and not with the raw power.

3.8 An illustration of the data degradation process: we set eight consecutive lines to zero in the
48 X 48 SPeCtTograms.o e e e e e e e e e e

3.9 The F1 per class of a network that was trained on clean (a) or degraded (b) data and evaluated
on degraded data, depending on the frequency band removed by the degradation. The width
of the curves denote the standard deviation across five random initializations. The log scale
for the frequencies make the intervals uneven when expressed in Hertz, while they had the
same size (eight pixels) on the spectrogram. Lo

3.10 the reason why we compute the gradient of a log-probability: for many samples, the gradient
of the probability are too low to account for in an average..

viii

3.11
3.12

3.13
3.14

3.15
3.16

3.17
3.18

4.1

5.1
5.2

5.3

5.4

5.5

5.6
5.7

5.8

5.9

5.10

5.11

5.12

5.13

An example of saliency map with a single Run segment.
An illustration with artificial data of what we want be careful to when averaging the gradients:

summing different versions of the same motif, at different time steps, might destroy it.
An illustration of the axis shuffling with a spectrogram from a Run segment. On top of each

spectrogram is the name of the shuffled axis
The gradient of each class.
A focus on some gradients from figure 3.14. oL Lo
The histogram of the predictions on the validation set after we added the gradient for a given

class a certain amount of times. To display this graph, we re-weighted the samples so that

the bars appear balanced when the dataset is untouched.
the three experiments we will lead to show the network classifies some classes linearly.

The results of the three experiments described in fig. 3.17. The first experiment (a) shows the

Running segments can be classified linearly with little error; while the two others demonstrate

that the network actually behaves linearly. 00

Why a global pooling method allows a network to process inputs with different shapes. This
idea originally comes from Computer Vision ([142]) , but was unknown in TMD.

the three early concatenations L
An overview of the difference between frequency and time concatenations, and feature con-

catenation. As the features learnt in the final feature map still retain some spatial consistency

(a), a network using frequency and time concatenations (b) can still distinguish between the

features from each sensor. The main difference with feature concatenation (c) is that the

network can now learn sensor-specific convolution filters, which was impossible with the two

early fusion methods. L
A sanity check of our attention mechanism. We can see that, when a network was trained

with obstructed samples, it learns to ignore constant portions of the spectrogram by assigning

them no attention Lo L
An illustration of the architectures of the baseline attention (5.4a) and the selective fusion

(5.4D).
The mean and standard deviation of different late fusion methods, as a function of the pro-

portion of epochs where the sensor-specific models are learnt separately.
A naive way to force the features to be complementary.
An illustration of why we cannot use a simple L1 norm to separate the features of two bases.

The same point P has two coordinates X1 = (z1,y1,21) and Xo = (22,¥2, 22) in the red

and blue coordinate systems (respectively), and the corresponding features do not match (e.g.

1 # x2). Note that in this illustration, the two bases correspond exactly, that is, it is

possible to recompute exactly the features (xs,ys2, 22) using 1,1, 21; and inversely. In the

general case, a complete alignment of the bases might not be possible, but the CCA offers

mathematical guarantees that we obtain the best alignment possible.
The complete architecture of the networks we forced to produce decorrelated features.

The reason why the features that are used to compute a decorrelation loss are extracted before

any dropout is applied. Dropout, by removing some of the features at random, destroys the

correlation between realizations. Lo Lo
The performance of a neural network using a decorrelation loss computed using the theoretical

expression of the CCA. e
The performance of a neural network using a decorrelation loss computed using the a DeepCCA

network.o
The scalar products between the classification and decorrelation losses at every batch, on the

classic CCA network e
The scalar products between the classification and decorrelation losses at every batch, on the

two-layer, deep CCA network

ix

%)

6.1

6.2
6.3

6.4

6.5
6.6

6.7
6.8

6.9

6.10

6.11

6.12

6.13

6.14

6.15

6.16

The class components are the n. vectors formed by the lines of the weight matrix W of the
last FC layer. o o e e 90
The extraction of deep features 90
An illustration of the CCA operation. X; and X, are two 2-dimensional feature spaces
representing the same five samples (two points sharing the same colour correspond to the
same sample represented with different features). Note that if By, By are rotations in our
example, they can be any base change in the general case. 91
Fach figure displays the correlation coefficient between each of the couple of canonical vari-
ables, generated with the SHL dataset. Two curves (whether dotted or plain) sharing the same
colour were computed using the same pair of networks, before (dotted) and after the train-
ing (plain). The different colors represent different couples of networks (we do not compute
an average because the number of components we kept to get to a full-rank feature matrix

changes between initializations). L Lo L o 94
Each figure displays the average correlation coefficient between each of the couple of canonical

variables, generated with the SHL dataset. 95
the correlation between each of the features and the power of the input signal 96

The correlation between different versions of trained and untrained networks, with SHL data. 98
The principle of the equality between class components and the first canonical components
on a three-class problem. The colours in the different feature matrices denote the different
information about the three classes. The feature vectors will undergo a matrix multiplication
(denoted by the arrows under the left matrix); and the rows of the matrix the features are
multiplied by are the class components. Similarly, the arrows under the matrix of the canonical
variables represent matrix M in equation 6.2. Lo oL 99
An illustration of the problem of the comparison of two families of vectors (components), F'
and G. (6.9a) shows we cannot compare the elements one-to-one, and (6.9b) shows the need
for a robust measure (for instance, the dimension of the subspace spanned by family F'JG

would not be a good measure). Lo 99
The first 16 pairs of canonical variables between two initializations of Resnet-50 models trained
on CIFAR-10. The colour indicates the class. 100
The first 16 pairs of canonical variables between two initializations of the accelerometer model.
The colour indicates the class. 101
The first 16 pairs of canonical variables between an accelerometer and a gyrometer models.
The colour indicates the class. L 101
The first 16 pairs of canonical variables between an accelerometer and a magnetometer models.
The colour indicates the class. 102
The principle of the subspace projection experiment, illustrated with the projection on the

most correlated components (red curve in fig. 6.15): P, = Bl_l.IQS.Bl projects X; onto a
linear space with dimension ns. The value of ng is a parameter we will modify in our experiments. 103
The performance of the networks after projecting their features on subspaces with varying
dimensions, on the CIFAR (a) and SHL (b) validation sets. The top row indicates the valida-
tion performance of the network as-is, while the bottom row indicates the performance when
retraining the classification layer on a projected training set. For each curve, the experiment
was repeated 5 times, and the standard deviation is given by the width of the curve (which
is sometimes too small to see). The dotted line highlights the performance with the n. most
correlated components. Best view incolor. L oo 104
The classification performance of classification layer using features projected on a subspace
with varying dimension, when the CCA is computed thanks to data from another sensor. As
in fig. 6.15, one can see that the performance with the n. most correlated components is close
to the performance with all components. The graphs in the diagonal were generated using
the same protocol as the first row of graphs in fig. 6.15b. The dotted line highlights the
performance with the n, most correlated components L. 105

6.17

6.18

6.19

6.20

6.21

6.22

6.23

6.24

6.25

6.26

6.27

6.28

6.29

6.30

6.31

Why a simple classification measurement is not enough. In this example, the projection on
the canonical components (yellow arrow) does not change the prediction of the network for
the green sample, for both predictions (pink arrows) land on the same side of the decision
boundary. In this example, the logits (the coordinates of the projections of the points on
the blue plane) are changed by the projection on the first canonical components. Despite
the canonical components (red) being quite far from the class components (blue plane), the
classification accuracy is unchanged. L oL oL
An illustration of the projection on CCA components with toy data. Figure 6.18a illustrates
three steps equivalent to the projection on the ng canonical components (whitening, orthogonal
projection, and inverse whitening), while fig. 6.18b illustrates how the kernel is not orthogonal
to the image of the projection
Why the class components are relatively unaffected by the projection on the first canonical
components, despite appearing quite far from its image: the components are closer to the
image than to the kernel of the projection 0L
An illustration of the measure of the angle. Component C; (yellow, behind the red plane)
is quite close to the y axis, which means it is almost orthogonal to the subspace spanned
by the canonical components (xOz plane, in red). Hence, the angle (in green) between this
component and its projection on the plane (in red) will be high. On the other hand, component
(5 is closer to the plane, ant the angle between this component and its projection is smaller.
We compute an average for all class components, and use this average to characterize the
proximity between the subspace and the class components
The average angle between a class components and its projection on the first (a) or last (b)
Ng COMPONENtS. oL e e e
An illustration of the principle of the random projections experiment. When two subspaces
are close (e.g. the yellow and green), the norms of the projections of a random vector will
be close to each other. Inversely, when the subspaces are far from each other, the correlation
coefficient between the norms will be low. L oo
The correlation between the norms of random vectors projected on the subspace of class
components and their projection on the first (a) or last (b) ns components.
The distance between the class components and the first ng components of the image of diverse
projections. We display the average over three runs, the width of the curve denotes three times
the standard deviation.o L
The Frobenius distance between the image of the projection and the class components, with
SHL data. We display the average over three runs, the width of the curve denotes three times
the standard deviation.
The distance between the class components and the first n, components of the kernel of diverse
projections. We display the average over three runs, the width of the curve denotes three times
the standard deviation.o L
The Frobenius distance between the kernel of the projection and the class components, with
SHL data. We display the average over three runs, the width of the curve denotes three times
the standard deviation.
the different types of correlation between samples illustrated with synthetic data: inter-class
correlation (left versus right) and intra-class correlation (top versus down)
The average of the absolute values of the correlations between (a) the first 10 CCA components
(b) the 10 class logits (c) 10 directions chosen with a random orthogonal projection, with three
networks trained on the CIFAR dataset with a different seed.
The average of the absolute values of the correlations(a) the first 8 CCA components (b) the 8
class logits (c) 8 directions chosen with a random orthogonal projection, with the SHL dataset.
For each sensor, we create three different initializations of a network using the sensor. As
expected by the intuition, the accelerometer and gyrometer feature and predictions are closer
to each other than they are close to the magnetometer.
An example of class shuffling on synthetic data (the colour represents the class). Random
shuffle destroys the correlation, and class-shuffle allows to destroy intra-class correlations while
keeping inter-class clustering intact. L L L o

xi

6.32

6.33

6.34

6.35

6.36

B.1

C.1

C.2

C.3

C4

C.5

C.6

D.1

The distance between the class components and the first ns components of the image of diverse
projections computed on clean or shuffled data. We display the average over three runs, the
width of the curve denotes three times the standard deviation.
The Frobenius distance between the the class components and the image of the projection
computed from clean and shuffled data. We display the average over three runs, the width of
the curve denotes three times the standard deviation.
The distance between the class components and the first n; components of the kernel of diverse
projections computed on clean or shuffled data. We display the average over three runs, the
width of the curve denotes three times the standard deviation.
The Frobenius distance between the the class components and the kernel of the projection
computed from clean and shuffled data. We display the average over three runs, the width of
the curve denotes three times the standard deviation.
The performance when projecting the features from every layer using the sensor on top on
the n. most correlated components. The CCA is computed from the sensor on the left, using
features from the same layer. The experiment is repeated across three network initializations,
the standard deviation is given by the width of the curve. We pay attention not to use twice
the same initialisation when using twice the same sensor.

The weights of each sensor in the three scenarios for different automatic sensor selection
methods. Error bars indicate the standard deviation between each of the five runs. The values
of the weights in the last scenario are decreasing because we sorted them (as the sensors are
equivalent, we wanted to see if the network listened to only one sensor).

Swarm plots representing the influence of several hyperparameters from random search. Each
black dot represents one neural network. Subfigure (a) represents an example of significant
choice: N = 3 blocks is strictly better, performance-wise. (b) and (c) are examples of unim-
portant hyperparameters: using savitzky-golay filters, for instance, is the same as using no
filtering. e e
Swarm plots representing the influence of several hyperparameters from random search. Each
black dot represents one neural network. L Lo Lo
The swarm plots representing the influence of all hyperparameters from random search. Each
black dot represents one neural network. Lo
The classic (left) and residual (right) architectures we used for the Random Search. The
classic architecture comes directly from [104]|, while the second one is inspired from ResNet
[150]. . - o o
Swarm plots detailing the influence of the architecture, in terms of performance (a), number
of weights (b), and number of operations (¢). Each black dot represents one neural network .
The performance of each type of network as a function of the number of parameters.

The validation F1-score of 30 initializations of the same model working with full-size spectro-
grams of the Oriy, signal 0L

xii

List of Tables

2.1

2.3
2.2
2.4

2.5

3.1

3.2

3.3

3.4

3.5

4.1

4.2

5.1

5.2

6.1

An overview of the labeled data in the datasets from the literature. The notation in bold
3x and 4x for the durations and number of data points refers to the fact that several mea-
surements are simultaneous, using phones placed at different positions at the same time. The
distances from the three SHL challenges were estimated proportionally to the duration of the
complete SHL dataset (15,000 km for 2,800 h, [117]).
The chosen hyperparameters for the training of both models
The number of triplegs in each subset of the GeoLife dataset.
An overview of the most recent works using the GeoLife dataset. Along with the performance
metric (as provided by the cited works), we outline the qualitative particularities that imply
the method might have higher (green text) or lower (red text) performance in a real-life
scenario. The asterisks (*) denote the values we recomputed using the reported per-class
results from the publications. See appendix A to know how we computed an average F1 from
the per-class ToU in [65]. L
The validation F1-score per signal. The best result isin bold.

The validation F1l-score of each type of padding. Zero-padding is particularly detrimental to
the model performance.
A summary of the publications that compared the one-dimensional convolutions on raw data
to two-dimensional convolutions on spectrograms, scalograms, or the Fourier Transform of the
signal. The lines are ordered by number of samples, approximately
A summary of the most common representation found in every domain we studied.
The validation Fl-score (%) per preprocessing method. For each signal, the highest result is
in bold, and the second highest result is underlined00
The validation Fl-score of a network trained on clean data and evaluated on spectrograms
whose axis were shuffled (see fig. 3.13). We repeated the evaluation with five random initial-
izations of the network.

The effectiveness of each kind of pooling, in terms of performance, computational resources,
and training and inference time. For each result, we display the average and the standard
deviation, over H TUnso L e e e e e
The comparison of the performance, number of weights, and number of operations required
for a single inference (forward pass) of the networks in the literature. This is a reproduction
of table 2.4, which we presented in chapter 2, except that we added the number of weights
and parameters. The question marks (?) denotes the publication which did not leave enough
details to obtain a precise estimation of the number of weights and operations. AD denotes
the presence of additional data.

The mean and standard deviation of the validation F1l-score of each method, for different
fusion modes e
The results on the held-out test set. We repeated our training process five times and display
the average and standard deviation Lo L Lo

A summary of the notations we will use in this chapter

xiii

6.2

6.3
6.4

C.1

The distances we use to compute the proximity between class and canonical components.

U e R"™™U and V € R™™V are two orthonormal bases for two subspaces of R”, ||.||r is the
Frobenius norm, |||« is the nuclear norm, and 7'r is the trace of a matrix 113
The parameters of the SVM classifier 0 o 123
The results of a CCA fusion, using diverse combination of sensors with the SHL dataset. The
table displays the average and standard deviation over five random runs 123
The search space of random search for the GeoLife architecture 162

Xiv

Chapter 1

Introduction

1.1 Context and Motivation

1.1.1 Temporal signals

A temporal signal (or sometimes signal) , simply the recording of a physical quantity over time. This
measurement may come from any source: audio (barometric pressure sensors), seismographs, inertial sensors,
physiological signals, etc. Since the 19th century, theories such as signal processing produced analytical tools
in order to understand a signal’s properties and modify them.

Historically, these tools were mostly used for domains where the signals were already measured, such as
automation or audio processing. However, the increasing availability of data, in addition to the development
of algorithms encoding these operations in off-the-shelf libraries, make it possible to apply signal processing
algorithms in any domain where a measure is regularly repeated. In particular, by extracting a meaningful
and compact representation of often high-dimensional temporal data, signal processing proved valuable for
the Machine Learning community. For instance, we will see that one way to classify the transport mode of a
user is to train a Machine Learning model (e.g., SVM) on the spectral coefficients of the signal. But for the
last few years, these interpretable features have been questioned by the apparition of a type of algorithms
which is able to learn the feature extraction step from raw data.

1.1.2 A brief overview of recent Computer Vision history

In the years 2000, the classical approach in classification of images was quite different from what it is today.
It consisted of mainly two steps: first, compute handcrafted features to encode the information present in
the image (Local Binary Patterns, Scale Invariant Feature Transform, etc.). Then, use a Machine Learning
model (mainly SVM) to classify this series of features. If Convolutional Neural networks already existed [1],
the advent of the kernel methods somewhat made CNNs temporarily obsolete.

This was until 2008, when a team of researchers decided to gather a huge dataset for Image classification.
They collected enormous amounts of natural images from the Internet and organized the annotation process
using Amazon Mechanical Turk. The project involved more than 50,000 people across 167 countries [2], all
this in order to produce a dataset that would act as a reference in the Computer Vision community. In order
to compare the different image classification algorithms, they also organized from 2010 and onwards a yearly
challenge, the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC), for which participants had to
classify one million images from the dataset.

In 2012, the first ranking submission to the challenge was the one by Krizhevsky et al. [3] who, thanks
to Convolutional Neural Networks, outstandingly won the competition. Given that the sole neural network
participation ranked first, and given the wide margin by which this submission won [4] (the error rate went
from 25 % to 16 %), it was not long until the research community experimented with neural networks,
and, upon seeing the good results of these methods, switched to a new standard. Deep neural networks
quickly became the go-to approach, for image classification and many other applications. One interesting
property which explains this popularity is the generalization capability of these deep models: a network

Chapter 1 — Introduction

trained on ImageNet (a pretrained network) will prove useful for many other Computer Vision problems.
More importantly, this utility goes beyond the cases where one can simply use the network as-is: to make use
of a pretrained network, one can decide to use its weights as a starting point to begin the learning process on
the new problem [5]; or, they can remove the classification layer of the network, to use the features produced
by the network as encodings for the images they want [6, 7]. These models are so useful that the deep
learning libraries Pytorch and Tensorflow include functions to download ImageNet-pretrained networks for
the practitioners to use as they choose.

Nowadays, the research in Computer vision focuses mostly on Deep Neural Networks, with new archi-
tectures for classification [8, 9], training processes that require lesser amounts of (labelled) data, such as
transfer learning or self-supervised learning [10], or even the generation of realistic images, with the advent
of Generative Adversarial Networks (GANs) [11].

Without even reaching the current state of the art in computer vision, creating a Deep model which is
as versatile and powerful as the ImageNet models would prove useful for many real-life applications and
industrial researchers. Among them is the LSSC, the laboratory which financed this thesis.

1.1.3 A collaboration with an applied research laboratory

The thesis is organized in collaboration with an applied research institution named CEA, Commissariat
a UEnergie Atomique et aux Energies Alternatives (Commission for Nuclear and Alternative Energies).
Originally created after the Second World War to develop the nuclear energy for industrial applications,
this organization became a tool for the French state to develop its industry, and in particular, to close the
gap between academic research and the industrial world. Nowadays, this institution is a country-wide actor
in diverse research domains (engineering, telecommunications, nuclear physics, etc.), and it is a recognized
actor in many applied research communities.

We will spare the reader the whole organization chart of departments, services, and laboratories that
the CEA is made of, to focus on the laboratory I was in. The LSSC (Laboratoire Signaux et Systémes de
Capteurs, Sensor Systems and Signals Laboratory) is a team of fifteen research engineers who work within
a department that specializes in embedded sensors. The whole department works like an R&D service for
private companies: when an industrial actor has an idea about a technological product they want to develop
and would like to obtain a prototype, they contact the CEA. To do so, the organization either design the
appropriate sensors internally or make use of existing ones. The LSSC, in turn, is tasked with the design
of the software that will process the information from these sensors. Many of the sensors produce temporal
sequences of measures, and the typical treatments involve signal processing and Machine Learning. Other
activities of the laboratory include the production of studies or the participation in research projects financed
by public research agencies. To give a few ideas of the variety of the type of problems the laboratory has to
solve, here are a few examples of projects delivered by the LSSC in the last years:

e the classification of stress type from physiological signals (heart rate, electro-dermal conductance, etc.)
[12]

e the detection of early dysgraphia using recordings of a child’s writing [13]
e the tracking of cable shape of cable transportation from cable tension signals [14]
e the classification of the transport mode of a person using smartphone measurements [15]

When they face a classification problem, the research engineers usually rely on classical Machine Learning
and handcrafted features. In particular, when they deal with problems that are under-represented in the
literature, the laboratory may not be able to afford to have an engineer focus on creating problem-specific
features. Benefiting from a deep model producing general-purpose features, like in Computer Vision, would
prove extremely valuable for the laboratory, if not for the whole research community. This thesis will not be
enough to reach this goal, but it will nonetheless provide a few useful indications in this direction. We will
try to pave the way for smarter use of neural networks with temporal signals.

As we cannot work on all possible problems, we decided to focus on a single classification problem, a
problem called Transport Mode Detection (TMD). We will concentrate our experiments on this problem,

Chapter 1 — Introduction

and we will use the literature to know which conclusions apply to the general case, and which are proper to
our problem.
The choice of this problem relies on several reasons:

e Firstly, it is a problem involving temporal signals where some temporal features (frequency bands) are
important, without solving the problem entirely.

e It is multimodal, in the strictest definition of the word (i.e., the problem does not involve a single
sensor with several channel, but different sensors).

e Lastly, having a practical solution was interesting for the CEA.

1.2 The problem of Transport Mode Detection and its application

Transport Mode Detection (TMD) is a family of classification problems in which an algorithm has to predict
the transport mode of a given user, using several signals. The exact list of possible transport modes may vary
depending on the application (most research papers use between four and eight modes), but most applications
include at least the most common ones, such as Walk, Bus, Train, or Car, for instance. The signals are
collected from an embedded device (either the sensors of a mobile phone, or a dedicated device), and
processed by a TMD Algorithm. In practical applications, this algorithm is implemented either in a client-
server fashion (the device sends the raw data to a server that runs the transport Mode Detection) or directly
runs on the embedded device. The algorithm may run either in real-time (predicting the transport mode
instantaneously), or return a delayed prediction, after the user ended their trip. The practical implementation
of the algorithm translates into specific constraints for the programmer: if the algorithm runs in an embedded
device or in real-time, it should have low computational requirements; if the algorithm runs in a client-server
fashion, privacy guarantees are appreciable [16].

When returning delayed predictions, the algorithm most usually starts from a complete trajectory, par-
titions it into single-mode segments, and predicts the transport mode of each of these segments. Some
algorithms directly work with a trip that may contain several transport modes, and return the sequence of
all the transportation modes the user took. Other algorithms use only classification, that is, they return only
a single class. This may happen either because the trajectory is known to contain only a single mode from
the start; or because the algorithm makes its predictions on segments so short they can assume the segment
to be unimodal with little errors (typically, a segment duration of one minute is enough, given that the
typical duration between two mode transitions is 20 minutes). In the next chapter, a review of the literature
will allow us to explain how one uses Machine Learning to this goal.

This field has several applications, such as smart trajectory planning, city-wide transportation studies, or
even carbon footprint estimation. An example of the latter application is the project led by the LSSC before
the beginning of the thesis, in collaboration with another French institution, the IFPEN (Institut Francais
du Pétrole et des Energies Nouvelles, French institute for petrol and new energies). This organization wanted
to develop an app for anyone to estimate the greenhouse gas and pollutant emissions of their car trajectories,
and help the users reduce their CO5 emissions. Concretely, the application detects the beginning and end
of every user trip or waits for user input to classify the transport modes of a trajectory. After the end of
the trip, the app uses a Machine Learning model to predict the transport mode of the user and computes
an estimation of the greenhouse gas emitted during the travel given the trajectory duration, the type of
vehicle involved, and the driving style of the driver (if applicable). After the project, the institute continued
developing this app on their own and, nowadays, it is available for download under the name Géco air for
Android and Apple!.

We could mention that Transport Mode Detection is already implemented by default in Android phones
[17]: Android proposes an API available for use by any application which was granted permission by the
user?. However, we do not know how does this API behaves internally, or what features or models it relies on.
The closest official information comes from a page from 2015 which mentions the use of Machine Learning

1Sadly, the author of this manuscript did not receive any compensation for the promotion of this product.
2This applies only for applications developed after mid-2020, which means the applications that have not been updated
before this date still do not need any permission to use the activity recognition.

Chapter 1 — Introduction

and Bluetooth signals [18]. A study from 2018 [19] shows that the performance of this API is far from perfect.
Another imperfection of this implementation is the fact that the class granularity is rough: among the eight
labels returned by the API, there are six TMD classes (still, walking, running, bicycle, in a vehicle), but all
the vehicles belong to a single class. This means that despite existing practical implementations, TMD is
not a solved problem. We will see in the next chapter all the recent improvements in the academic domain.

1.3 The proposed approach and contributions

In this thesis, we are investigating how the paradigm of deep learning, which proves successful in computer
vision, can be used and adapted to handle the TMD problem while dealing with various temporal signals. The
proposed approach is therefore Deep Learning-based as opposed to traditional Machine Learning approaches
which require manually handcrafting features.

In doing so, we have to address several scientific questions:

e How to preprocess temporal signals to use deep neural networks ? We study the bibliography to find
which representations are used in different subfields of deep learning and perform a comparison of
different representations ourselves. Finally, we try to understand what does the computation of a
spectrogram bring to our model.

e How to merge data from different sensors ¢ After an empirical benchmark of different fusion methods
in the literature, we study in detail one fusion method we found in the literature, an algorithm based
on a statistical operation named Canonical Correlation Analysis.

Our attempt to answer these questions led to the following contributions:

e We exhibit one reason why spectrograms are better than the raw data for a neural network: they allow
to simplify the problem of Transport Mode detection.

e We introduce the use of global pooling in the domain of deep learning for Transport Mode Detection,
which allows us to use convolutional networks with inputs of any size.

e We establish a benchmark of different data fusion algorithms in the literature.

o We demonstrate that using Canonical Correlation Analysis to perform data fusion, as done in literature
do, is equivalent to a much more simple operation: considering the class logits of the networks.

1.4 Outline of the manuscript

The present manuscript will try to cover the different types of problems a practitioner faces. Usually, when a
research team tries to design an algorithm to solve a practical problem, they have to answer several questions:
which sensors to use, how to preprocess the data, how to choose hyperparameters for the network (including
how to choose an architecture), how to make sure they evaluate their model properly etc. Without giving
definitive answers, we will cover each of these subjects and give some indications for future researchers. The
organization of the manuscript will reflect these choices.

First, chapter 2 will present the state-of-the-art, the datasets we use (the Geolife and SHL datasets),
and the two baselines our work will use in the next chapters.

In chapter 3, we will look at the problem of the preprocessing. After a brief introduction showing how
simple preprocessing step (the choice of a good padding for shorter segments) can change the performance,
we will spend some time to know whether one should use their one-dimensional sequence of data points as
is, if they should compute the one-dimensional spectrum of the signal, or if they had better using time-
frequency diagrams. To do so, we will first review the type of preprocessing used with one-dimensional
signals in different fields of application, before trying to do the comparison ourselves. Finally, we will show
that the spectrograms (the time-frequency diagrams) allow simplifying the TMD problem by making the
classification of the easiest classes linear.

Chapter 1 — Introduction

When the sensors and the form of the input are chosen, one decision that often comes to practitioners
is the choice of an architecture for the network. Chapter 4 will be devoted to one particular decision: the
choice of a pooling function for the network.

A decision that also comes with the architecture selection is the choice of the architecture to merge the
data from different sensors, a problem called data fusion, which we will cover in chapter 5. We will start
by implementing several data fusion architectures from the literature to compare them and conclude that,
in our case, most data fusion methods are equivalent. We will try to improve on the different methods by
forcing the networks to learn complementary features, and we will show that in fact, the networks decide
better by themselves what is the optimal amount of correlation between their feature.

However, the tool we use to produce complementary features, Canonical Correlation Analysis (CCA),
is not devoid of interest. The final chapter will be devoted to the study of this operation. Mainly, we
will demonstrate that when we apply CCA to the features from a neural network, this operation implicitly
recomputes the classification logits which are the inputs of the softmax layer. The main implication is that
a data fusion relying on CCA can safely be replaced by a much more simple operation, which is to the sum
of logits of each network before computing the probabilities.

Chapter 2

Related works, datasets, and baseline

This chapter is in three parts: section 2.1 will present an overview of the literature in Transport Mode
Detection (TMD). Then, section 2.2 will review the most important TMD datasets available in the literature.
Finally, section 2.3 will focus on the two datasets we used. For each of them, we will show the network we
will build our experiments upon.

2.1 State of the art

Transport Mode Detection is a well-studied subject in the research community. Similarly to the literature,
this thesis will focus on TMD from GPS or inertial sensors (accelerometer, gyrometer, magnetometer), even
though other sensors are available: some works focus on Transport Mode Detection using the signal received
from radio towers [20], Wifi signal [21], potentially along Bluetooth [22, 23|, or even sound [24, 25]. The
first two are not very present in the literature because of their limited performance, while the sound is rarely
used because of important privacy concerns. Hence, we will focus on the two types of sensors that are the
most commonly used in the literature: GPS signals and inertial sensors.

As figure 2.1 shows, many works follow a common structure: Cleaning, Point-level feature computation,
Segmentation, and either Trajectory-level classification using classical Machine Learning algorithms; or using
a pure Deep Neural Network.

The next pages will detail what these steps consist of, and what are the different alternatives used in the
literature. This section will not try to compare the different alternatives, mainly because there are multiple
datasets or problems to consider (the exhaustive list of reasons that present an effective comparison will be
provided at the end of the section). However, we will compare the publications relying on the same dataset
when presenting our baselines, in section 2.3.

2.1.1 Data cleaning

When dealing with signals that are are known for being noisy (such as GPS signals [26]), most research
works use Kalman filters [27], Savitzky-Golay filters [28], particle filters [29], or outlier detection thanks to
clustering techniques [27] to clean the data. Some approaches also remove the trajectory from the dataset
if its speed or acceleration is above a realistic threshold given the class of the trajectory (for instance, the
maximum speed and acceleration for the bus’ class are set to 120 km/h and 2 m/s* respectively in [28]).

For inertial sensors, we notice the use of Butterworth filters [30], or undersampling [31] to work with
smaller amounts of data. But many choose to simply ignore this step (see [32, 33] for instance).

The possible options to clean a signal seem to come mainly from signal processing. In addition, given
that the works that ignore the cleaning step do not report suffering from the noise in the data, we think there
is little to gain by improving the cleaning of the signal. Combined with the fact that the signal processing
research domain is well-theorized, and much more stable than the Machine Learning or Artificial Intelligence
one, we expect to see little improvements of this step in a near future.

The relevance of this step might not even be obvious at a first glance because it is sometimes done by
those who gather the dataset as part of the curation step (such as the SHL dataset we will present later).

Chapter 2 — Related works, datasets, and baseline

Series of (Tat; I points Legend
(doc;, Mag;, etc.); Examples

| GPS
fner{'a‘at‘ Sensors

Data cleaning

(ec; Preprocessing

Point-level feature
computation

spee

peed, acceleration, efe
NED, spectrograms

Segmentation

Trajectory-level

v feature computation

Classification iverage speed. me
CNN, RNN, efc. Third quartile, standard devia

|

Classification
SV Random Forest,
etc.

' Class (car, walk, efc.) QJ

Figure 2.1: The outline of a classic Transport Mode Detection algorithms, along with a few examples of each

step.

Chapter 2 — Related works, datasets, and baseline

Z

¢

Yb
x, (MNorth)

¥y (East)

v e: Earth
n: Local NED

Figure 2.2: An illustration of the meaning of the axes in a smartphone: the referential of the sensor (xy, yp, 2p)
and the de-rotated, or NED (North, Fast, Down) coordinate system. Reproduced from [54].

Il

>
Xh

b: Smartphone Basis

We include it here for two reasons: First, researchers might still have to perform cleaning themselves in some
cases (the GeoLife database, which we will present later, is one example). Second, forgetting it might result
in a mismatch between the academic and industrial practices. Even if it is more convenient for academic
comparisons to share clean datasets, we must keep in mind that the practitioners will have to deal with this
additional work [34].

2.1.2 Point-level feature computation

This step consists in computing a representation of the input data which encodes the information more
explicitly than the raw representation. This is where the differences between GPS and inertial sensors are
the most important. In fact, every problem has its own point-level processing.

GPS signals: When dealing with GPS data, researchers often convert the (lat, long) into more significant
values. Those features are computed at each timestamp. Speed and acceleration are used universally. Other
point-level features include distance [35, 36, 37|, jerk (the time derivative of acceleration [27, 37]), or delta-
bearing (the angle difference at each time step, sometimes called bearing rate) [27, 37].

The works of Endo et al. [38] and Zhu et al. [39] are fairly original: the compute heatmaps of the
GPS measurements. They use a fixed-size grid centred on the barycenter of the GPS. Endo et al. [38]
demonstrated that the discretization into grid cells helps the algorithm to be resilient to noise.

Apart from these two exceptions, the speed, bearing, and their time derivatives are the only point-level
features that have seen any use in the literature since the emergence of transport mode detection in the
years 2000. The improvements in the feature computation all belong to the trajectory-level features (section
2.1.4) or, more importantly, to the architectures of deep networks and their training (section 2.1.6). Hence,
we expect this step to keep being stable throughout the years for GPS signals.

Inertial sensors: With inertial sensors, the most common preprocessing is the computation of the
norm (or magnitude) of the triaxial signal: norm = /a2 +y? + 22, [31, 30, 32, 40, 41, 42, 43, 44]. As
these sensors measure in their own referential (see fig. 2.2), there might be a need to express them with a
referential that does not depend on the movements of the phone. To do so, researchers often convert into the
North-East-Down (NED hereafter) coordinate system, using the real-time orientation [45] (sometimes under
the name derotated features [46]). The NED signals are often considered in addition to the raw signals from
the sensor’s referential (see fig. 2.2 for an illustration of this referential), [33]. In addition, the Euler angles
are sometimes added to the orientation quaternion [45, 47].

We mention seeing the gradients [46] and integrals of signals [48, 49]. We also notice the computation
of the Fourier Transform [25, 33] or Spectrograms (two-dimensional diagrams consisting of sequences of
Short-Term Fourier Transform [31, 50, 25, 51, 52, 53])

Why is computing a FFT not part of the trajectory-level feature computation step: The border between
point-level and trajectory-level features is not crystal clear (the spectrogram, for instance, offers an interesting
in-between), and one could argue that computing the Fourier spectrum of a signal is already computing
trajectory-based features. For our application, the clearest difference between the two is in the dimensionality
of the data: the number of point-level features may change if the input sequences have different lengths, while
the number of trajectory-level features remains constant. For example, the full spectrum has a number of

Chapter 2 — Related works, datasets, and baseline

points that is equal to the number of points of the input trajectory in the temporal domain, while the power
in a series of fixed frequency bands will always output the same number of values, no matter the frequency
resolution of the input sequence. Hence, in this work, the Fourier transform is part of the point-level features,
and the energies in different frequency bands are considered as trajectory-level features.

The rare publications that do justify their choice of a point-features use either an a priori reasoning on the
contribution of each type of features (like we will do partly in section 2.3.3), a measure of the consumption
of each sensor, or an empirical measure of the performance. This last criterion necessitates particular
caution: there would be nothing wrong with a research domain being purely empirical, but measuring the
generalization ability of a model is not as straightforward as it seems, and we will see that many works can
be criticized on that aspect. Note that we will dedicate a chapter (chapter 3) to the choice between raw
temporal data and spectrograms.

2.1.3 Segmentation

The goal of segmentation is to separate a potentially multimodal trip into several portions with a single
transport mode. This step is often skipped, most research works (including us, or [28, 55]) prefer using the
ground truths to be sure to work on segments containing one transport mode. This corresponds to a simpler
version of the real-life problem, where we do not consider the errors added by the segmentation algorithm.
Those who segment using the data typically rely on walk detection (a small walk is usually necessary between
two modes, [35]) or the PELT algorithm [56, 57]. See [58] for interesting considerations on segmentation
algorithms in trajectory analysis.

Some researchers work on a semantic segmentation problem: semantic segmentation is, like classification,
a type of supervised problem, as they both require some amounts of labelled data to create a model able to
make predictions on unseen data. However, classification is a type of problem where the model returns only
a single prediction per sample. For semantic segmentation, the model returns a localization of the different
classes present in each input sample, to a resolution that can go up to one label per input data point.
This problem is well studied in computer vision and other research domains, and multiple Machine Learning
models or neural networks exist to return more than one prediction. Surprisingly, however, most of the works
in the TMD literature do not use any of these semantic segmentation-specific models. Instead, they apply a
classification algorithm to small windows of the trajectory [30, 59, 57, 31, 45, 42, 60, 61, 62]. Note that these
approaches are only possible because the data we use is sequential in nature: using moving windows might
not be feasible with two-dimensional (or even three-dimensional) data for complexity reasons. Some [59,
63] predict the mode using partitions of the segment into windows of different lengths (each window length
creates a new partition of the segment), and obtain a prediction at each timestep with a majority voting.
For those who output a sequence of predictions, an additional step is sometimes present: a correction of the
prediction sequence using either an explicit transition matrix [59, 61], rules [62, 64] or a HMM [31, 45, 42,
60].

We found only one publication using semantic segmentation techniques in the literature: Li et al. [65]
used an architecture similar to UNet ([66]) in order to process in one forward pass the trajectories with
potentially several transport modes. They also use a semi-supervised training and a post processing step to
smooth the predictions. We will see that many ideas in the recent TMD literature are directly adapted from
the Computer Vision literature after a delay of several years. Hence, we expect to see a development of the
semantic segmentation in TMD in the next few years.

2.1.4 Trajectory-level feature computation

For classical Machine-learning approaches, trajectory-level feature computation has two objectives:

e Get back to a fixed-size feature vector, usable by machine learning models: the number of point-level
features is often proportional to the length of the input trajectory, while the number of trajectory-level
features is constant.

e Extract meaningful information from the features: for example, with GPS signals, the standard devi-
ation of the speed is more meaningful than the speed of, let us say, the fourth point of the trajectory.

Chapter 2 — Related works, datasets, and baseline

The computation of the mean, standard deviation, minimum, and maximum of each point-level feature is
universal. In the case of the noisy GPS signals, the maximum and minimum are often replaced by percentiles,
which are more robust to errors [27, 67]. Other used operations are the computation of the median [68],
interquartile range [69], the number of zero crossings of the temporal signal [70, 48], kurtosis [69], frequency
energy bands [71], autocorrelation coefficients [67, 72|, or maximum and index of the maximal coefficient
of the autocorrelation function [73]. Some of these rarer trajectory-level features are computed using the
spectrum of the point-level feature signal. This is the case of the most important frequency [74, 31|, the center
of gravity of the spectrum [73], spectral entropy [31, 70, 69], the coefficients of the wavelet decomposition
[75], or cepstral coefficients [76].

Some trajectory-level features do not rely on a specific point-level feature, such as the stop rate and
direction change rate [35|, tripleg duration [77]. Several works also improve the predictions using features
from external sources, like the weather [78] or the closeness to train lines [79] and/or bus stops [80, 81, 82].
The additional information needed to compute these last three features is obtained from sources such as
Open Street Map [80, 82] or Baidu Map [81]).

Given the large majority of features used, some works decide to use automatic feature selection, whether
by adding features one by one [27, 70, 83], by a global analysis of the correlations between features [31, 84,
44], or using PCA [85, 86].

2.1.5 Classification: classical Machine Learning

For classical Machine-learning approaches, the state of the art is Random Forests [27, 87, 70, 87, 62, 88, 44]
and SVM [89, 82, 70]. Other classifiers include XGBoost [51, 74, 90, 91], decision trees [92, 93] NaiveBayes
[71], Multi Layer Perceptron [38, 81, 71, 87], KNN [67, 85|, HMM [94], Gradient Boosting [48, 75|, logistic
regression [95], statistical models [93], or even rules [96] and fuzzy rules [97, 98]. Many works [77, 48, 99,
100] compare several Machine Learning classifiers. In these works, XGBoost, Random Forest, and SVM are
often among the best performing classifiers.

One may also use an ensemble of different Machine Learning classifiers [31, 84, 48]. After each model made
its prediction, the final decision is made with a Hidden Markov Model [31, 84], a Multi-Layer Perceptron
[48], or a simple majority voting [41].

Sometimes, the classification is hierarchical: a first classifier distinguishes two groups of classes from each
other (for instance, the motorized modes, such as car, bus, train, against the others), and a second and third
classifier are trained to recognize the class on each subgroup. This is done to simplify each classification
problem, and can be noticed in [59, 40, 76, 90, 101].

Surprisingly, when researchers report the reasons to choose a model, they mostly mention performance
alone, measured using the accuracy, the F1 score, or even the AUC. Apart from the hierarchical classifiers
and (fuzzy) rules, domain knowledge is never used to choose or even design a classifier. It seems that the
only source of improvement to this step is the advances in Machine Learning. However, the progress in this
direction has slowed down since the advent of deep learning: it seems that neural networks have become the
most active source of inspiration for TMD.

2.1.6 Classification: Deep Learning

Within deep learning-based approaches, there is a great diversity of neural networks: we note the existence
of Convolutional Neural Networks [102, 103, 28, 104, 57, 105, 37, 52, 47, 106], which extract representations
that are independent from the position of the motif along the temporal axis. We see Recurrent Neural
Networks (RNNs, [33, 107]), or LSTMs [108, 109, 110, 43, 111] (a specific kind of RNNs). The architecture
may even integrate both convolutional layers and recurrent layers, such as in [112, 99, 39, 113, 114, 115,
78]. In these situations, the convolutional layers are often closer to the input data, to extract the features:
we saw only one counterexample (that is, one work where the LSTM layer is closer to the input than the
convolutional layers are [116]), and with limited results [117].

This organization of the networks (convolutional layers first, and recurrent layers afterwards) is consistent
with the role of each type of network:

e Convolutional layers are more suited to extract representations from raw data. The convolution layers
learn representations which are invariant to the location of the motif, while the pooling layers provide

10

Chapter 2 — Related works, datasets, and baseline

valuable dimension reduction
e Recurrent networks are more suited to classify sequential information.

RNNs and LSTMs are not often used on raw data ([108, 109, 43] are notable exceptions). Most of
the time, they are used either on handcrafted features ([46, 33, 107, 95]) or after a series of convolution
layers ([112, 39, 113, 114, 115, 78]). This mirrors the use of RNNs in the general literature: For instance, in
Natural Language Processing (before the advent of transformer architectures), the recurrent neural networks
used features from word embedding such as Word2Vec [118], which were trained in an unsupervised setting.
To sum up, in TMD, extracting meaningful features from the raw data seems to be the prerogative of
Convolutional networks.

In some occasions, ensemble of deep models are used [28, 37, 51, 46]. We can also notice the use of
attention mechanisms, [119, 120]. However, these works may use different names, and/or different imple-
mentations from the "baselines" of attention [121, 122]

We do not notice the presence of ensembles of RNNs. This may be due to the fact that Recurrent
architectures take longer to train than convolutional ones, due to their low degree of parallelism [122].

We should also mention the works of [105] who used Generative Adversarial Networks (GAN) to generate
samples from the least represented class in order to produce a balanced version of the dataset. They compare
the performance of an ensemble of CNNs trained on the augmented dataset to a single CNN trained on an
oversampled version of the original dataset and notice the ensemble method has a higher performance for all
of the five classes they considered. In a similar fashion, [123] created a conditional GAN for which a classifier
makes a prediction on the sample, and the discriminator sees both the prediction of the classifier and the
sample to say whether it is real or fake. In addition, [124] considered a particular type of GANs, where the
discriminator did not have to only predict if the sample was real or fake, but it also had to predict the class
of the real samples. Hence, the discriminator’s output had 5 + 1 classes (Walk, Car, Bike, Bus, Train, for
real samples, and Fake). Finally, we should mention the works of [125], who used Adversarial Autoencoders,
[126], a variant of the classic Autoencoder where the discriminator has access to the latent vector of the
autoencoder and learns to distinguish it from a random Gaussian variable so that the Autoencoder fools the
discriminator and generates latent representations that follow this distribution.

Some [102, 38, 81, 57, 110, 127, 65] use autoencoders to extract features from trajectories but, curiously,
only four [57, 110, 127, 65] make use of additional unlabeled data. These works are called semi-supervised:
that is, they use samples without their labels to teach their models to process the data, along with a fraction
of labelled samples to learn a classification boundary. Making use of the unlabeled data is useful in many
industrial applications because collecting the labels is often the most expensive part of the dataset creation
process. In the case of TMD, collecting unlabeled data allows the user not to label their transport mode
constantly, which might translate into more frequent recordings. The fact that so little publications made
use of unlabeled data is surprising in TMD because the most famous GPS transport mode database (the
GeoLife database) contains a majority of unlabeled samples. In a similar fashion, the works of [55], who
uses unsupervised clustering with a convolutional autoencoder in order to create features from trajectories.
They realize that the clusters they computed align fairly well with the classes of the dataset, even though
they never made use of the labels to compute the clusters.

We also mentioned how some publications used data from other sources (the positions of bus lines [81]
or the weather [78]). However, to the best of our knowledge, none used GPS data from other sources to help
training a semi-supervised model.

Currently, this step is the main source of innovation in TMD. It benefits most from Computer Vision,
which is the main driving force in the research in Deep Learning. We can even notice that the improvements
in deep learning take a few years before being adapted in TMD: the semi supervised work were published
in 2018 ([57]), 2020 ([127]), and 2021 ([65]); and the works involving GANS date from 2019 ([124, 125])
and 2020 ([123, 105]). This is why we think one obvious direction of research in TMD is to keep bringing
to this domain the innovations from the general Deep Learning community, and in particular, Computer
Vision. Given that the recent trends in computer vision involve using GANs [11], training the networks using
self-supervised losses [10], the use of transformer architectures [9], or semantic segmentation [128], we could
expect these domains to emerge in TMD, possibly after a few months or years of acclimation.

However, there is one domain which we think will not appear in TMD: the use of simulated data. In
Computer Vision, many works generate data with graphical engines to increase the amount of data they

11

Chapter 2 — Related works, datasets, and baseline

train their model with. When we look at simulation data in Computer vision, we can see that the creation
of simulated data relies on realistic simulated images obtained from graphical software like Blender, from
graphical engines of video games, both including rich libraries of objects and textures. The important point
is that the software used for the creation of artificial images is already available, with open licenses and a
documentation allowing easy reuse. In the case of signals from GPS or inertial sensors, several sensor-specific
reasons prevent an effective simulation:

1. The GPS signals should, ideally, incorporate the noise of the real signals that is due the reflection of
the signal on buildings.

2. For accelerometers or gyrometers, if it is possible to model the movements of a human skeleton, a
realistic simulation should also take into account the fact that the sensor is not fixed rigidly to the
user’s body. Instead, a typical smartphone is usually in the user’s pocket or bag, and a realistic
simulation should model the bouncing of the sensor’s support.

3. For the signal from magnetometers, a realistic simulation should take into account the different per-
turbations: presence of electrical engines of trains or subways, fluctuation of the magnetic field of the
Earth inside the metallic cabin of a vehicle, etc.

In all three cases, the physical laws governing the phenomena are well known. However, there is a
substantial difference between knowing the theory and making a practical simulator: before using artificial
data, the TMD research community should learn how to generate artificial data realistically and efficiently.
One could also think of using GANs to generate artificial data, but this approach is, to the best of our
knowledge, currently unexplored in TMD.

The efficient generation of artificial samples is a technological lock that prevents to adapt the use of
simulated data in TMD. Hence, before even trying to import the literature on the use of synthetic data
from Computer vision, one should additionally develop a realistic simulator. The other domains (GANs,
transformers, focusing on semi-supervised, self-supervised, or even unsupervised networks) are easier to adapt
from Computer Vision. This is why we think that the research in the next years will focus on using less
(labelled) data, before trying to leverage the power of artificial datasets.

2.1.7 The problem of the evaluation

Even though every classification algorithm is systematically evaluated to be compared to the state of the
art, in practice, comparing approaches of different works is not as easy as one could think, for four reasons:

1. The first one is the fact that there is no ImageNet for TMD: many researchers conduct a study
in which they sample new data (by leading an entire data collection campaign) and perform some
Machine Learning, but without publishing their dataset [87, 79, 129, 130, 82, 92, 131, 40, 132, 133,
134, 110]. This makes the comparisons harder: if, for instance, the data comes from a city with lenient
speed limits, the cars and buses will tend to drive faster, and the distinction between motorized modes
and bikes will be easier. In addition, if the data is recorded under the direct supervision of a researcher
(such as in [130], for example), chances are that the subject will be aware they are surveyed, and act
differently than they would have in their daily lives (this is the Hawthorne effect, [135]). These two
examples illustrate the need to compare performances on the same dataset, as one cannot quantify
the effect of these differences, nor can they enumerate all possible sources of performance discrepancy
between two datasets.

2. Even when two papers work on the same dataset, they might not use the same set of classes: for
instance, in one of the datasets we will use (the GeoLife dataset), many classes originally present in
the set form an extreme minority of the samples (motorbike, car, boat). This is why the creators of
the dataset advise the researchers to remove some classes and to merge others [89]. However, given
the varying applications of TMD, some researchers decided to merge more classes than the original
recommendation. This leads to a situation where, despite working on the same dataset, two publications
work on different problems. To know how a change in the categories employed would affect the results,
one could look at the confusion matrix (fig. 2.12). For instance, if two modes are frequently confused

12

Chapter 2 — Related works, datasets, and baseline

with each other, merging them would cause the model’s performance to increase. This applies to the
merger of {car & taxi} with bus [28, 57, 109] and, to a lesser extent, to the merger of the classes train
with subway. A similar reasoning could be made about the removing of the two rail modes (train and
subway), as [108] do (leaving only four modes, {walk, bike, car, bus}): not only are these modes no
longer confused with each other, but they are not even confused with the car or the bus. As one could
expect, the number of classes employed correlates negatively to a model’s performance (see table 2.4
in section 2.3.2).

3. The third hurdle to an efficient comparison is the use of multiple scores to evaluate the classifiers. Some
works (including recent ones [127, 55]) use the accuracy, that is, the proportion of samples that are
correctly classified. Yet, the accuracy is biased towards the most frequent classes [136]. To illustrate it,
let us use the famous example of a classification system that considers a given individual, and predicts
the presence of a rare disease that touches 0.1% of the population. If this system always predicted
that the individual was healthy, it would have an accuracy of 99.9%, despite being obviously flawed.
In TMD, the classes are not unbalanced to this degree, but the disproportion is large enough to make
the accuracy score unreliable (see fig. 2.10 and 2.14, along with table 2.2). When considering the
Transport Mode Detection publications using GPS signals, the works that use an appropriate measure
are the slight minority: one work computes the AUC [108], and some research publications use the
Fl-score [27, 28, 28, 105]. Worse, we sometimes even see some direct comparison between different
scores: a recent survey Sadeghian et al. [137] (table 2) cited the results from [28, 57] by putting their
resulting F1-score in the "accuracy" column of their table (which also contains true accuracy scores).

4. Finally, the last hurdle is an efficient splitting between the training, validation, and test set. Not all
research works use a three-set separation, many works preferring to only use one train and one validation
set, to compare their validation score against the state of the art. This leads to an obvious risk of
overfitting, as the hyperparameters one chose might be specific to the dataset the model was evaluated
on to some extent (this point is further reinforced by the fact that many publications do not display
any standard deviation, see table 2.4). The second downside is that the creation of a test set leaves
a bit less data for training, which means a model trained without a test set benefits from a training
size that is inappropriately larger than what it should be. We should note that in several publications,
the validation set (the set that is used to choose the Machine Learning algorithm or calibrate the
hyperparameters) is called test set [38, 127]. Even for those who do use a separate test set to compare
their results against the state-of-the-art, the separation between the sets is primordial. With the two
datasets we will use, computing the training, validation, and test set is not straightforward, and there
are pitfalls one must be careful of in order to avoid hidden overfitting sources. We will present these
in the next section.

Normally, a test set is used to evaluate the generalization ability of a model. Each time one uses any
dataset to select a model, they have a small chance to select improvements that are proper to this very
dataset, instead of choosing a model that generalizes well. We can use a test set to choose between a handful
of publications, because the probability of choosing a model that is better on this particular test set is low.
However, if every publication uses the test set to select the best model, the probability to overfit to this set
increases significantly. In other words, if we compare publications on the validation set, our comparison will
be biased towards the publication that did the most evaluations on the validation set.

This is why the organization of a challenge, with common rules and hidden test set, is so important: the
fact that the test set is unavailable is a strong guarantee against overfitting, no matter how rigorous the
participant are, or how much the validation score of the publication is. A challenge guarantees to avoid a
situation where there are so many qualitative precautions to keep track of that numerical results lose any
meaning (a situation that somewhat happened for the GeoLife dataset, see section 2.3.2).

When working with these datasets, we will use the F1-score that takes the imbalance into account, and
will follow the recommendations of the GeoLife dataset creators [89] when multiple choices of classes are
present. However, comparing the approaches relying on GPS signals to the literature will be difficult. When
we will work with a dataset from a challenge, we can at least choose to be in the exact conditions of the
challenge, using the "hidden’ test set (which labels have been released since) only once, to compare ourselves
against the participants. In the next sections, we will present the datasets the publications base their results

13

Chapter 2 — Related works, datasets, and baseline

on, including the two datasets we used (the GeoLife dataset, and the SHL 2018 challenge), and, the baselines
that most of the experiments rely on.

2.2 Datasets

This section is devoted to the presentation of the main public datasets in TMD. If we only chose to use two
of them (the GeoLife and the SHL 2018 datasets), we explain why we did not choose the others. Table 2.1
summarizes the different datasets.

2.2.1 The GeolLife dataset

The GeoLife database [89, 138, 139] was collected between 2007 and 2012. The GPS signals of 180 partic-
ipants living in five different cities of China were recorded during their commutes, in order to study their
behaviours when travelling. Unfortunately, the need for labelled data did not appear immediately, and only
one tenth of the trajectories of the database is labelled (in the subsequent, we will only refer to the labelled
data, unless otherwise specified). The dataset is an ensemble of trajectories, each trajectory being a series
of (latitude, longitude, timestamp) points. Each labelled trajectory has one or more transport modes, and
each change between modes has an associated timestamp, so that each point can be attributed a label. The
transport modes (classes) in the dataset are: walk, bike, car, taxi, bus, train, subway, boat, airplane, motor-
cycle. An overview of the dataset is available in table 2.1. We follow the recommendations of the GeoLife
user guide [89], removing the classes, boat, airplane, and motorcycle, and merging together the classes tazi
and car. Figure 2.3 gives some examples of trajectories in the dataset. One can see that most of them follow
the straight lines of the street networks (most streets are oriented either on the North to South axis or on a
West to East axis) using the histogram of the angles in fig. 2.4. Finally, a histogram of the different classes’
trajectories durations is available in fig. 2.5. One important thing to note is that the data points are not
sampled at the same rate: some trajectories have a sampling rate of 1 or 2 Hz, while some others can go
down to 0.02 Hz on average.

walk bike car&taxi
2.5 4
£ 000 81
=
o -0.01 4 2.0+ 6
©
(=
B -0.02 1 15 4 44
o
S 0.03
= ~0.031 2
= 1.0 4
3 _ -
g 0.04 04
-g _0.05 4 0.5 +
4 27
> —0.06 4 0.0 1
T T T T T T T T T T —4 T T T T T
-0.02 0.00 0.02 0.04 -1.5 -1.0 -0.5 0.0 0.5 1.0 -100 -7.5 -50 =25 0.0
bus subway train
— 14 4 i
£ 2.01 0
3 1s 121
- =27 —50
2 10 4
b 1.0
8 8 -100 4
= | 6 1
3 0.0 -150 4
D 0.5 47
=
5 104 24 -200 4
=
> -1.54 1 —250 -
T T T T T T T T T T T T T
0 1 2 3 -5 0 5 —100 -50 0 50 100 150
% (West-East) coordinate (km) x (West-East) coordinate (km) x (West-East) coordinate (km)

Figure 2.3: A few examples of monomodal portions of trajectories in the GeoLife dataset. The start of the
trajectory is set to be the origin

14

Chapter 2 — Related works, datasets, and baseline

90°

— walk
—— bike
—— car&taxi
bus
—— subway
—— train

180°

270°

Figure 2.4: The histogram of all the orientations between two successive GPS points in the GeoLife dataset.
The fact that the 0°, 90°, 180°, and 270° values are over-represented indicate that most of the trajectories
follow the orientation of the grid-like road system.

mm walk
0.35 mm bike
mm carftaxi
0.30 4 bus
EN subway
m train
0.25
c
e
£ 0.201
o
2
a
0.15
0.10 '
0.05 - .
-I'._-.
| — i
I
0.00 -
0 30 60 90 120 150 180+

duration (min)

Figure 2.5: The histogram of the durations of each monomodal segment in the GeoLife dataset. As expected
by the intuition, the Walk segments are typically quite short (less than 15 minutes), while the train segments
can be extremely long (more than three hours).

15

91

Dataset GeoLife [89) SHL 2018 [140] | SHL 2019 [141] | SHL 2020 [117] TMD [19]
Number of users 69 1 1 3 16
Total duration 5,000 h 272 h 3x 272 h 4x 312 h 32 h
Total trajectories 116,000 km 1,200 km 500 km 1,700 km unknown
length (estimated)
Average interval 7s 0.01s between 0.2 and 10s
between two data points ’ (depending on the sensor)
Median interval 925 0.01s between 1s and 10s
between two data points ’ (depending on the sensor)
Accelerometer, Magnetometer,
Accelerometer, Magnetometer, Gravity, Linear Acceleration,
. Gravity, Linear Acceleration, Gyrometer, Orientation quaternion,
Sensors GPS Gyrometer, Orientation quaternion, Pressure, Sound, Light,
Pressure Step detector, internal
sensors, etc.
Position of the sensor unconstrained Pocket Pocket, Bag Pocket, Bag unconstrained
Torso Torso, Hand
Number of channels 3 20 59
Total number of 10,000 16,000 3200, 000 4%220,000 248
trajectories
Total number of data 6 6
points in the database 2.5 x 106 9.6 x 107 3x3.2 x 107 4x1.1 x 10® 1.4 > 107 0 3.3 x 10
(depending on the sensor)
(for each channel)

Classes

Walk, Bike, Bus,
Car & Taxi, Subway,
Train

Still, Walk, Bike,
Run, Bus, Car,
Subway, Train

Still, Walk, Bus,
Car, Train

Table 2.1: An overview of the labeled data in the datasets from the literature. The notation in bold 3x and 4x for the durations and number of data
points refers to the fact that several measurements are simultaneous, using phones placed at different positions at the same time. The distances from

the three SHL challenges were estimated proportionally to the duration of the complete SHL dataset (15,000 km for 2,800 h, [117]).

QUI[ase(pur ‘sjosejep ‘SyIom pajeey — g Iojdey)

Chapter 2 — Related works, datasets, and baseline

2.2.2 The SHL 2018 challenge

The Sussex-Huawei Locomotion challenge 2018 is a competition organized by the University of Sussex, UK,
in collaboration with Huawei. The participants were given a series of 16,310 consecutive annotated recordings
of embedded sensors and had to classify some 5978 samples of a test set. Each recording is 60-seconds long,
and contains data from 7 sensors, and 20 channels: three axes (z, y, z) for the accelerometer, magnetometer,
gravity, linear acceleration (acceleration minus gravity), and gyrometer; one orientation quaternion (z, y, 2,
w), and a recording of the barometric pressure. The accelerometer, gyrometer, magnetometer, and pressure
are said to be real sensors, because they were recorded directly from a sensor, in contrast to the linear
acceleration, gravity, and orientation, which are said to be wirtual sensors (that is, sensors whose value are
computed by the phone system). Each signal was recorded at 100H z, so that one sample to classify is a set
of 20 vectors of size 60 x 100 = 6000 points. There are 8 classes available: Still, Walk, Run, Bike, Car, Bus,
Train, Subway, and figure 2.6 displays some examples of signals from samples of all classes. The participants
had to design an evaluation protocol to train and evaluate their models on the 16,310 annotated samples, and
submitted their predictions on the 5978 test samples for evaluation. Then, the organizers of the challenge
evaluated all these predictions and established a ranking of the participants, before releasing the annotations
on the whole dataset. Our protocol mimics this setting: the annotations on the 5978 test samples are used
only once in chapter 5.

2.2.3 SHL 2019 and 2020 challenges

The data used to set up the SHL 2018 challenge come from a larger dataset. This dataset gathers the data
of three users, who were asked to record the data from four phones at once: one in their pocket, one in their
hand, one in their bag, and one on their torso. They also equipped the users with a RGB camera taking a
picture every 30 seconds, so that they could review the photos to correct any labelling mistakes.

In 2018, 2019, and 2020, three challenges were organized with different subsets of this dataset. In 2018, the
challenge was a simple classification problem: the training and testing data are samples from the first user,
using only the phone in their pocket. In 2019, the challenge was a transfer learning problem: the organizers
released the data from the pocket, bag, and torso phones of the first user, and asked the participants to train
a model predicting the transport mode using the data from the phone in the user’s hand [141]. To help with
the validation, a small amount of hand-phone data was also provided.

In 2020, the challenge was still a transfer learning problem, but this time, the participants were to transfer
to new users. The organizers released the data from the first user (four positions), along with a small amount
of data from the two other users, and asked to predict the transport modes of the two other users [117].
Using the same set of classes as the 2018 challenge, the best test Fl-scores of the SHL 2020 challenge were
88.5 %, 79.0 %, and 77.9 %. As the first-ranking participation used the labelled data from the second and
third users to train their final model (this data was originally intended for validation only), we can say that
a Fl-score of 77.9 % to 79.0 % is more representative of the real-life performance of the best algorithms.

These challenges are interesting but, given that they include a transfer learning dimension, we chose not
to explore them. In this manuscript, we will focus on well-known supervised classification.

2.2.4 The TMD Dataset

In 2017, the University of Bologna started recording a dataset to act as a benchmark for transport mode
detection. They asked sixteen volunteers to record the data from their phones’ sensors using an application
they created for the occasion, and recorded this data to publish it the following year [19]. They adequately
named their dataset TMD (for Transport Mode Detection). This dataset contains about thirty hours of
data, shared approximately equivalently between five modes: Still, Walk, Car, Bus, and Train.

In addition to the user imbalance (similarly to the GeoLife dataset, each user has their own class balance),
this dataset suffers from an extreme frequency imbalance: contrary to the SHL dataset (where the sampling
frequency is 100 Hz across the whole dataset), the TMD dataset has a sampling frequency which ranges
from 0.2 to 200 Hz (fig. 2.7). This is why we did not make use of this dataset: if we had to filter only the
segments with a similar sampling frequency, we would have been left with an extremely small dataset. And
we did not consider the fact that each segment is not necessarily sampled regularly (which fig. 2.7 does not
show).

17

Chapter 2 — Related works, datasets, and baseline

— Run
@
E
T 14 100 4
2
[
E 124 80 1
5
k] 60 4
Y 10 A
I+
o 407
£ 87
%5 20 1
E 6
8 04 ! | !
c
= Bike Car Train Subway
4 254
£ 17.5 4
=
207 15.0
£ X
© 15 4 12.5 4
]
8
© 10 10.0
@
5 7.5
s 54)
E 5.0 4
g r r T r T T T T T r T r r r r T
0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60
tis) t(s) tis) t(s)
(a)
Bus Walk Still Run

=
2 54 4 50 4
g 57.5 7 54
E 52 4
§ 5501 48 + 52 4
@ 50
& 525
1 46 50 4
E 50,0 4 8
= 46 a8
S 475 1 44 il
E
5 45.0 441
2 T T ; T T i ; i T T T — 461 T T T
. Bike Car Train Subway
P 150 {
5 120 A
T 52 A 125 1501
c
§ 501 100 100 4
5 100 4
g 48 | 80 4 75 4
£ 161
= 50 50 4
5 4 60
E 25
0 20 40 60 0 20 a0 60 0 20 40 60 0 20 40 60
t(s) t(s) t(s) tis)

+1.007e3 Bus Walk +9.95e2 still Run
06 995.4 008 996.75
= X
05 -25
E 0.02 996.25
H
g 995.0 012 14 996,00 | 10 5
504 0.00
H 994.8 4 995.75
5
g 03 —0.02 995.50
E 994.6

995.25 4
—0.04

Bike Train Subway

Car

999.5 986.0 4 1014 1017.75 4
999.0 1017.50

985.5 <
998.5 1013 1017.25 4
9080 985.0 1017.00 4

- 1012

[1016.75 4

997.5 984.5 +
1011 1016.50 4

20 30 40 50 20 30 40 50 60 0 10 20 30 4 50 60
tls) tls) tls) tis)

atmospheric pressure (hPa)

°
5
o
g
°
5
~
S
8
&
a
-
o
g
°
3

Figure 2.6: Some example of signals from the SHL 2018 dataset, for each of the 8 classes and for three
sensors: a) norm of the accelerometer b) norm of the magnetometer c) barometric pressure

Chapter 2 — Related works, datasets, and baseline

user 1
] user 2
102 4 user 3
1 + user4
user 5

101! 4 user 6
E| -
3 user 7 / &
] user 8 b4

#

] o/
100 e user 9 e
f user 10 .
] .
1 user 11 .

+ userl2 .

total duration (min)

1071 5
F user 13
] + |userl4 '/*
10-2 4 * user 15
1 + wuserl6 P
K N ///
o1 10° 101 02 103 10* 10°
n_points

Figure 2.7: A scatter plot of the samples from the accelerometer measurements of the TMD dataset, depend-
ing on their number of points and total duration. The diagonal lines illustrate the iso-frequencies (average
frequency in the sample), in Hz.

There are ways to use convolutions on irregularly sampled data (like point-clouds [128, 142]), and the
use of these types of networks could have offered a solution. They are, however, slightly out of scope for our
work. We could also think of leveraging this diversity through Transfer Learning, or Few-shot learning: the
general idea would be to find a way to leverage both the huge amount of data in the SHL challenges and the
diversity of the TMD dataset. We are not sure exactly how one should proceed, however, and this might be
an option for future work. But for now, let us focus on the work we did perform. The next section presents
the networks that tackle TMD on the GeoLife and SHL datasets.

2.3 Baselines

In this thesis, we focus on the GeoLife and SHL 2018 datasets. Compared to the state of the art, and
contrary to many publications in TMD and elsewhere, we do not aim to improve a classification score by
introducing an new algorithm or computational step. Instead, we will focus on evaluating the choices made
in the literature, so that a new practitioner does not have to evaluate them all empirically.

For each dataset, we develop an approach, a baseline which will serve as a starting point for our other
experiments. After a general introduction of our framework (section 2.3.1), we will present the two datasets
we focused our work on the GeoLife (section 2.3.2) and the SHL 2018 datasets (section 2.3.3)

Methodology

In the next chapters, we will evaluate several types of choices: type of preprocessing, architecture, sensors
used, etc. In order to make the comparisons, we will rely on one model per dataset which we present here.
Figure 2.8 illustrates our experiments: for every type of parameter choice (each choice corresponding roughly
to a chapter), we will change only the concerned parameters and leave all the others equal as their baseline
versions.

19

Chapter 2 — Related works, datasets, and baseline

Sensor choice
Preprocessing

Baseline

Figure 2.8: The outline of our methodology. As we cannot explore the whole search space, we simply explore
along a few chosen directions, changing one type of option at a time.

Why choosing a CNN ? This thesis focuses on processing temporal signals with deep neural networks.
One could think that the Recurrent Neural networks are more suited to this problem, yet, we use Convolu-
tional Neural Networks in all our experiments. The reason for this is that we are mainly interested in the
computation of temporal features. As we mentioned in section 2.1.6, RNNs (and LSTMs) are mostly used
to process high-level information, with a relatively low number of temporal steps. In other words, the inputs
of these networks are much higher-level abstractions than the raw data. On the other hand, computing
features from raw data requires handling data with no abstraction whatsoever. For instance, a segment of
the SHL dataset has 6,000 points, and one point in itself has very little meaning. This is why we will focus
on CNNs, whose convolutions demonstrated their ability to extract lower-level features in several different
domains [143, 144, 145].

2.3.1 Transport Mode Detection as a classification problem

Our goal is to use some labelled data in order to learn to assign a transport mode to unknown data. Using
Machine Learning vocabulary, this is a classification problem: we use a certain amount of labelled samples
to train a classifier that will predict the transport mode used during the recording of an unseen segment:
class(segment;) € {walk, bike, bus, car, train, subway, etc.}

Some additional preprocessing is applied so that the data can be fed to a machine learning model. To
train and test properly the model, the dataset will be split into train, validation and test sets. A fraction
of the data with the associated labels will be used to train the machine learning model to predict the class
of an unseen segment. This is the train set. We usually have a wide choice when selecting preprocessing
functions. In addition, machine learning models generally involve several hyperparameters, e.g., number of
filters, or number of layers, that need to be chosen. These hyperparameters are optimized and chosen in
evaluating the variants of the machine learning models on previously unseen segments, the validation set.
Once we have chosen every possible parameter using the validation set, we use the last part of the dataset
(test set) to evaluate the generalization of the learned model against the state of the art. The following

20

Chapter 2 — Related works, datasets, and baseline

trip

AL
4 N
tripleg
- ———. -
-— A tj+1 —tj > threshold
(latg, longy, to) :
P

Transport modes .
— car -
— walk

([atj, !ang!, fJ)

Figure 2.9: The separation of a trajectory with the GeoLife dataset. Each trip is composed of triplegs; each
tripleg correspond to a single transport mode. When two consecutive points are distant more than a certain
threshold (chosen to be equal to 20 minutes in our case), we break it into two neighboring trips.

algorithm shows how we use the three datasets:

Require: Three datasets Xt qin, Xval, Xtest, for training, validation, and testing; a list of hyperparameters
sets Ly, to evaluate.
best _score <0
best _hyperparameters < ()
for h in L; do
Create a deep learning model with hyperparameters h
Train the model on Xiqin
Evaluate the model on X,,;, measure the Fl-score score,q;
if best _score < score,q then
best _score < score,q
best _hyperparameters < h
end if
end for
Create a deep learning model with hyperparameters best hyperparameters
Train the model on Xirqin
Evaluate the model on X;.,;, measure the Fl-score score;qs:
return scoreg.s; for comparison with the state-of-the-art

2.3.2 GeolLife Baseline

Preliminary definitions

Figure 2.9 illustrate how we get to a classification problem: the dataset contains a series of trajectories (each
trajectory being a series of measurements points, such as (lat,long) for GPS signals. Each trajectory has
to be divided into trips: series of points that are likely recorded in one go (we chose GPS points such that
two consecutive points are distant by less than 20 minutes, as in [35]). Each trip is made of one or several
triplegs: series of points sharing a single transport mode. This setting corresponds to a more simple version
of the problem, where we know triplegs to have only one mode. In real-life applications, we could consider
applying segmentation algorithms like in [81, 57, 35].

The triplegs might still have different lengths, but a model sometimes requires all inputs to have the
same shape. When this is the case, we cut triplegs into fixed-shape segments. When we use a model that
can deal with arbitrary-sized inputs, segments are equal to triplegs. Thus, a model only classifies segments.

21

Chapter 2 — Related works, datasets, and baseline

Preprocessing

We begin by computing the speed and acceleration of each point. This way, our data is not dependent on
the precise location of the trajectory. We remove the data points which acceleration or speed are deemed
unrealistic given the annotated transport mode (we reused the values from [28]). We considered adding the
bearing [28], but it turned out using this feature did not increase the performance of our model. As the
sampling rate is irregular, we interpolate linearly our data points (T = 2s), so that a difference between two
consecutive points always has the same meaning. We realized when writing these lines that the interpolation
step was absent from the literature and that we should have at least evaluated it before moving on. However,
the comparisons we will make in the next chapters all use the interpolated dataset, which means they are
still relatively valid.

We do not apply any other cleaning or filtering, for we found these to be unnecessary during the Random
Search (see appendix C).

Data Preparation and Splitting

Etemad [27] showed that the way the segments are split between the different sets (training, validation, test)
can have a huge influence on performance: when a tripleg is split into several segments and the segments of
a single trajectory can go in both the training and the test set, the trained model will be likely to have seen
parts of all trajectories in the dataset, which will cause it to overfit.

In his experiments, Etemad found the F1 score can vary by 20 percentage points between a training
scenario in which the users are correctly split (71 %), compared to a scenario in which the fragments of a
given trajectory can go in different sets (91 %). This result is not surprising, as mobility trajectories have a
high degree of regularity [146, 147, 148]. Ideally, we should train a prediction model using the trajectories
from a set of users and test the generalization skills of the trained model on those of unseen users. This
means that we need first to assign the trajectories of each user to one set among training, validation or
test (as in [27, 38, 28, 57]). This corresponds to the most realistic setting, where an algorithm predicts the
transport mode of unseen users.

As an illustration, here is a pseudo-code of the separation into users:

Require: A list L,zers of users, each user being a list of trips.
Randomly split the list Lsc,s into three lists {Lfrain pval ptest 1
for s in {train,val,test} do
Ltm’pleg 0
for each user w in LS ,,,., do
Split the trips of u into triplegs and segments,
Add the triplegs to the list:
Ltripleg < Ltripleg U Usplit
end for
end for
return the three tripleg lists Ly ipieq Obtained for {train,val, test}

But in practice, with the GeoLife dataset, this method leads to extremely imbalanced sets, as users have
different habits when it comes to transportation. In some cases (depending on the seed used to initialize
the splitting process), splitting the dataset by users can even produce validation or test sets that completely
lack one class. To show this, we realized 200 separations with different seeds initializing the random process,
and looked at the effect it would have on the final distribution (fig. 2.10). While the median is centered
around the correct distribution, the quartiles show a high variance. In the validation and test set, the third
quartile is at least twice higher than the first quartile. This distribution variance is a problem for comparison,
because the performance of imbalanced models will strongly depend on the distribution, even when using
measures like the F1 score: if the hardest classes to classify are present more often, the recall for this class
will not change, but the precision of all the classes will be lower, which will, in turn, lower the F1 score.

This is why we only split the sets by tripleg: we first separate triplegs between train (64% of the
trajectories), validation (16%), and test (20%), before segmenting the triplegs into segments. This method
is less realistic than splitting the sets by users, but it allows to produce sets with similar distributions
consistently, given that each tripleg has a unique class. The following pseudo-code explains how we split by

22

Chapter 2 — Related works, datasets, and baseline

train set val set
4000 4 x
2000
3500 X
n 3000 1
& 1500 A
@
‘@ 2500
=
5 2000 %
g 1000 ®
o
2 1500
E
=3
£ 1000 500 1
”" == &
. = ol L
- - - - v v . . - - v "
walk bike car&taxi bus subway train walk bike car&taxi bus subway train
test set Total distribution
% —
2000
T 4000
n
o
o
21500
5 3000
s
° X
1000
£ 2000
=1
c
500
1000
j l ,_l
0 0 M

walk bike car&taxi bus subway train walk bike car&taxi bus subway train

Figure 2.10: An overview of 200 distributions obtained by splitting by users. Depending on the realizations,
the proportion of each class can vary greatly: in the validation and test sets, the first quartile is always at
least twice lower than the third quartile. In extreme cases, one set can completely lack one class.

triplegs:
Require: A list Lysers Of users, each user being a list of trips
Create a list L5 of trips by merging all users
Randomly split the list Lyyips into three lists {Lipdom, Ly Liest
for s in {train,val,test} do
X, 0
for each trip ¢ in Lj,,;,; do
Split the trip t into triplegs and,
Add the triplegs to the set:
X X Utsplit
end for
end for
return the three tripleg sets Xirqin, Xval, Xtest

We did not realize it at the time, but there might have been a solution to split by users while still keeping
a similar class distribution between sets. For instance, this problem looks similar to the knapsack problem (a
classic Computer Science problem where we are given a list of items, each having a weight and a value, and
we must choose the items to maximize the total value while keeping within predefined weight bounds), and
we could have tried searching for solutions in the literature. Or, we could have been less subtle: the speed of
the script computing the 200 splits is enough for us to use a brute-force solution, trying random splits until
one is well distributed enough. Using such brute-force solutions might seem surprising and inelegant, but we
must keep in mind that if elegance is desirable, it must not get in the way of actually solving the problem.
However, we did not consider these options at the time of experimenting.

In any way, splitting by tripleg is different from a split by segments: in this case, the segments are
assigned a set (among train, val, and test) at random and independently, it means the two fragments of the
same trip can go in different sets. This separation is the most likely to result in data leakage and, to the
best of our knowledge, is not justified in any way.

23

Chapter 2 — Related works, datasets, and baseline

Parameter value (GeoLife) value (SHL)
learning rate 1072 1073
regularization parameter 3.1073 1073
batch size 128 64
non-linearity ReLU ReLU
optimizer Adadelta [149] Adam
max number of epochs 2000 50
patience 100 /

Table 2.3: The chosen hyperparameters for the training of both models

*
FC6
FC 16) t
- Block C Conv X X filters, size = 3, stride = 1
i X filters, size = 3, stride =2
b
Block 32
BatchNorm
L Conv C
N S Dropout = 0.2
Block 16
; Conv C FcX ;Ur\]lglﬁg;l;l r:: [l::ad(’)utput layer
Block 8
\
Conv 4
|
Figure 2.11: The architecture of the GeoLife baseline model
walk | bike | car & taxi | bus | subway | train
total 4517 | 1731 1459 2129 632 200
train 2890 | 1108 934 1362 405 128
validation | 723 277 233 341 101 32
test 904 346 292 426 126 40

Table 2.2: The number of triplegs in each subset of the GeoLife dataset.

Baseline architecture

The CNN on the GeoLife dataset uses the speed and acceleration features to classify a segment. The input
is a one-dimensional signal (the values are stacked along the time axis), two-channel signal (one channel for
the speed, one channel for the acceleration). Its architecture is inspired by ResNet [150] and is given in fig.
2.11. To train our neural network, we use a weighted version of the cross-entropy loss: the loss of every

24

Chapter 2 — Related works, datasets, and baseline

segment is given a weight that is inversely proportional to the number of elements in this segment’s class on
the training set (which is proportional to the proportion on the whole dataset, see section 2.3.2). The goal
of this procedure is to compensate for the class imbalance in the dataset. We also apply early stopping: we
stop the training process when the loss on the validation set did not increase for more than a fixed number
of epochs (chosen to be 100, see table 2.3), and we keep the model which minimized the validation loss for
testing. Usually, this minimum loss is reached between epoch 100 and 600.

A nontrivial comparison with the literature

As we mentioned in section 2.1.7, comparing the performance of two publications in TMD is not easy, and
the literature on the GeoLife dataset exhibits many of these discrepancies that prevent a fair evaluation:
different number of classes, biased metrics, and separation between train, validation, and testing.

If our experiments in the next chapters use the 6-class problem recommended by the GeoLife creators [89],
we still tried to compare the performance of this baseline model to the literature. When there are different
valid methods for comparisons, (number of classes, F1-score versus AUC), we repeat the training and testing
and display the test result each time (we allow to use the test set several times here because this will not
result in a choice of a number of classes or error measure). However, we kept using the hyperparameters
found using the 6-class problem. We also enumerate each element that might change translate into higher or
lower performance in the real case: allowing the trajectories to have several transport modes, for instance,
is an element that means the reported score will be more realistic of the performance of a real-life TMD
algorithm because the error measure includes a step (the segmentation of trips into triplegs with a single
class) which might decrease the score in the real case. On the other hand, splitting the training and validation
sets by segments means the score is likely to be inflated, or dubious.

Note that the meaning of the scores differ slightly depending on the exact problem solved by the publi-
cation: a method for which the transport mode may vary will look at each point of the segment and count
the number of points for which the model returned the correct class in order to compute a performance score
(Accuracy, F1, AUC, etc.). Yet, a publication working with the hypothesis that a trip can only have a single
mode only counts the number of ¢rips that are classified correctly. In this manuscript, we put the two scores
side by side and allow ourselves to compare, for instance, a F1 on points to a F1 on trips.

As table 2.4 shows, the four GeoLife baselines look acceptable, but there are so many of these exceptions
to consider that the numerical score loses its meaning. We also display the confusion matrix of the GeoLife
model on the 6-class problem in figure 2.12. As one can see, some classes are fairly easy to distinguish from
the rest (the Bike, Train, and Walk classes), while others couple of classes are harder to discriminate (car &
taxi versus bus and, to a lesser extent, subway versus walking or train).

25

Chapter 2 — Related works, datasets, and baseline

ted
model reporte classes remarks
score
No enti of the splitti
LSTM | embedding [108] 94.5 % AUC 4 o mention of Lhe spitting
No test set
Our GeoLife Baseline 97.1 £ 0.3% AUC 4 /
No additi 1 inf ti
Convolutional LSTM 78] 80.67 % F1 4 o addiona’ mormation
No test set
Additional inf tion: th
Convolutional LSTM [78] 83.97 % F1 4 frional normanion: weather
No test set
Our GeoLife Baseline 87.1+1.1% F1 4 /
The trajectories are
not segmented
Convolutional Auto Encoder [57] 76.4 % F1 5 Additional information:
Unlabeled GeoLife data
No test set
The trajectories are
80.4* % F1 not segmented
Convolutional Auto Encoder 67.7 % IoU 5 Additional information:
with skip-connections [65] (average Intersection Unlabeled GeoLife data
over Union) No mention of the splitting
No test set
The trajectories are
not segmented
Additi 1 infa tion:
Fully-connected Autoencoder [81] 93.44 % F1 5 ttlonatin Orltﬂé ot
Bus stops position
Incorrect splitting
No test set
They did not use
Unsupervised Convolutional any labels to
80.5 Acc. 5
Autoencoder [55] % Ace compute the clusters
No mention of a validation set
CNN ensemble (7 models) [28] 84.0 % F1 5 No test set
semi-supervised LSTM ensemble [127] 91.5 + 0.41% Acc. 5 No test set
91.9% % F1 - No mention of the splitting
LSTM + Wavelet features [109] 92.7 % Acc. 5 No test set
Our GeoLife Baseline 83.9+1.1% F1 5 /
Random Forests [27] 71 % F1 No test set
Our GeoLife Baseline 81.8 £ 0.9% F1 /
AE + Logistic Regression [38] 67.9 % Acc. 7 No test set
Our GeoLife Baseline 74.1+0.7% F1 7 /

Table 2.4: An overview of the most recent works using the GeoLife dataset. Along with the performance
metric (as provided by the cited works), we outline the qualitative particularities that imply the method
might have higher (green text) or lower (red text) performance in a real-life scenario. The asterisks (*)
denote the values we recomputed using the reported per-class results from the publications. See appendix

A to know how we computed an average F1 from the per-class IoU in [65].

26

Chapter 2 — Related works, datasets, and baseline

walk

80
bike

car&taxi 60

Ground Truth
||1e23y

o
c
@

40

subway

train

walk bike car&taxi bus subway train
Predicted

Figure 2.12: The confusion matrix of the GeoLife model, on the test set. We can see that there is a
high confusion between the classes "Car&taxi" and "Bus": merging together these classes will improve the
performance considerably.

2.3.3 SHL Baseline

Separation of the training and validation sets

With the SHL 2018 challenge, the test set is already split from the rest, but the separation between train
and validation was left to the participants. We choose to have 13,000 samples in the training set, and 3,000
samples in the validation set. This division corresponds roughly to an 80/20 separation. However, similarly
to the GeoLife dataset, there is a caveat to consider before running the first training. This time, it is not
about user separation (there is only one user in the database), but about the trip separation problem which
holds here too.

As noticed by Widhalm et al. [42], if one randomly assigns segments to either of the sets, the segments
in the validation set will be too close to segments in the train set: for each segment in the validation set,
chances are that at least one segment from the training set was recorded right before or after it. They even
show the autocorrelation coefficient of the standard deviation of the norm of the accelerometer is equal to
25% of the maximum at ¢t = 10min, which means the training and validation samples must be well-separated.

A random split leads to possible overfitting: as the validation set is too close to the train set, the validation
performances will be unrealistic. To illustrate, in the experiments from [42], the differences between a correct,
rigorous splitting and a random one are significant, between 7 and 11 percentage points in F1-score.

In order to have a realistic evaluation, the segments of the training set must be as far as possible from
segments from the validation set. The first idea to split the data in a time-consistent fashion is to sort
the database chronologically, take the first 13,000 samples for training, and leave the last 3,000 samples for
validation. However, this method leads to a high imbalance between the training and validation set. The
reason behind this is the following: the distribution of the different transport modes changes with time (see
fig. 2.13 for an illustration). In particular, the 'Car’ class is absent from the end of the dataset. If one
chooses to take the last 3,000 for validation, the validation set will practically lack this particular class. To
achieve better class balance, we still sort the samples chronologically, but we use the first 3,000 samples for
validation, and the last 13,000 samples for training.

Preprocessing

The 2018 SHL Challenge asked candidates to give one prediction per timestamp (that is, to output 6,000
predictions per sample) but, as only 4% of the samples of the database have more than one mode, we work
on a simpler problem: each sample in the dataset is assigned a single transport mode, which is the mode at
t = 30s.

We did not consider cleaning the data, for two reasons:

e Firstly, cleaning was found to be ineffective on the GeoLife dataset (appendix C), and GPS signals are
more noisy than embedded sensors [26].

27

Chapter 2 — Related works, datasets, and baseline

1.0 4

0.8 1

e
o
L

proportion

o
S
|

0.2 9

0.0 -
8000 10000 12000 14000 16000

sample index

Figure 2.13: The cumulative proportion of each class versus time. The class proportion is computed on a
moving window of 1,500 samples, with a stride of 50. We can see the end of the dataset is devoid of Car
segments.

train/val split valftrain split
the first 80 % of the data the last 80 % of the data
are in the train set are in the train set challenge split
025 025 025
02 4 02 4 02 4

015 4

015 +

train

01

0.05

oo -

g @ @ g B gf @f g gt @t g O eP @™ et ot g @t g O o @ ot

o i i

02 4

015 4

o1+

0.05

00 -
aot o @ et g Of oF @

el ot @ et g of eP @

ot

o W et e g J“@“cﬁﬂ L "

test

it

o gt et g o o (@

o

Figure 2.14: The histogram of the classes in each set (lines) for each splitting (columns). The train/validation
split made by the organizers of the challenge is balanced, but it does not take the chronological order into
account. A train/val split does, but the train set lacks run segments. A val/train split of the samples is both
rigorous and balanced enough. As the test set is already split by the organizers of the challenge, its content
does not depend on the splitting.

Chapter 2 — Related works, datasets, and baseline

80

raw spectrogram

0.0
5.6
11.2

@
=3

£ spectrogram 186
o W 222
4 —> I3

334

38.8
44.4
50.0

20

9 15 21 27 33 39 45 51 58
tis)

£

10 20 30 40 50 60
t (sec) PR
resizing

(logarithmic

/ interpolation)

power of legarithmic interpolation

log power of logarithmic interpolation

leg()

f{Hz)

f(Hz)
=
s

2 8 14 21 27 33 39 46 52 5B 8 14 21 27 33 39 46 52 58
tis) tis)

Figure 2.15: An illustration of the preprocessing step with the norm of the accelerometer data from a running
segment. The 2.3 Hz frequency band appears in the middle of the spectrogram due to the log scale for the
frequencies. This 2.3 Hz frequency is approximately the frequency at which one foot touches the ground.
The use of the log-energy on the bottom right-hand corner allows to better displays the 1.15 Hz band, which
is the period of the right leg movement (with the SHL 2018 dataset, the phone is kept in the right pocket of
the user).

e Secondly, no publication working on the SHL dataset found that cleaning the data helped a classification
algorithm. Some works do apply some filtering, but they either do it to accelerate the computation
(e.g., subsampling [31, 45]), or they apply the filtering without evaluating this step ([30, 76])

We repeat the preprocessing protocol in [50]. Each temporal signal is first converted into a spectrogram
using a moving Short-Term Fourier Transform (STFT) window. The samples are 6,000 points-long segments
(60 seconds at 100 Hz), and we use 5 seconds-long windows with 4.9s overlap. We obtain spectrograms with
550 points on the time axis, and 250 points on the frequency axis. Then, the spectrograms are rescaled
into 48 x 48 pixels. If the choice of a smaller resolution is done in order to reduce the complexity of the
problem, we assume that this precise resolution was chosen to fit exactly the architecture of the network:
with the successive size reductions due to convolution and pooling steps, a 48 x 48 spectrogram fits exactly
and leaves no ’leftover pixel line’. The time axis is rescaled linearly, while the frequency axis is rescaled using
a logarithmic interpolation (similarly to the mel scale). This allows to give more importance to the lowest
frequencies as walking, running, and cycling generate sharp components between 1 and 2 Hz (see chapter 3).

We also rely on the architecture in [50]: the Convolutional Neural Network has three convolutional layers
and two fully-connected layers, as fig. 2.16 shows. The convolution filters are 3 x 3, in order to process the
two-dimensional spectrograms. The hyperparameters used are given in table 2.3.

29

Chapter 2 — Related works, datasets, and baseline

Conv X X filters with size 3x3

C 64
onv Dropout with probability p

Dropout p
Fully-connnected,

Conv 32 FCX X output neurons

Conv 16

Figure 2.16: The architecture of the baseline SHL model

Stride =2

Training protocol

To generate the comparisons between parameters or choices, the network is trained for 50 epochs on the
training set, before being evaluated on the validation set. Each evaluation is repeated 5 times (with a new
random seed every time), the mean and standard deviation of the validation F1 score are given as a result.
The hyperparameters for the training can be found in table 2.3. Once the hyperparameters are found, we
test the best method against the state of the art by training the model with the union of the train and
validation set, and evaluating the results on the test set. The results on the test set will appear in chapter
5, after we tried improving on the baseline.

Evaluation of the sensors

The attentive reader noticed that there are several sensors in the GeoLife dataset, and that we did not
precise which sensors we would use. Our baseline network uses only one sensor as is (we will address the
problem of data fusion in chapter 5), but we will not repeat out experiments with each axis of the seven
sensors available.

To know which sensors to choose, we decide to evaluate all the sensors individually by training a network
using one sensor at a time. For each sensor available (accelerometer, gyrometer, etc.) we consider every
possible axis (z, y, 7z, with the possible addition of w for the orientation quaternion), in addition to the
norm of these axes (computed using the euclidean norm). The norm is hoped to represent an orientation-
independent version of the signals. For each signal, we compute a log-power spectrogram, using a log axis.
We then evaluate them individually. Table 2.5 shows the norm of the accelerometer is the single best signal
available. Even though the accelerometer is the best sensor, the linear acceleration and gravity follow closely.
This is no surprise, as those three signals are closely correlated to each other. The non-negligible differences
between the x,y, z axes of each sensor might be due to the fact that some orientations of the phone are
more likely than others (fig. 2.18). The pressure signal is surprisingly effective at distinguishing between
transport modes. This sensor manages to reliably capture the periodic disturbances from walk, run, or bike
segments (see fig. 3.6 in chapter 3), and somehow retains enough information to classify most of the other
modes (Still, Car, Bus, Subway, Train).

30

Chapter 2 — Related works, datasets, and baseline

sensor Acc LAcc Gra Gyr Mag Ori Pressure
T 87.24 +£0.53 | 83.97+0.80 | 85.19+0.26 | 81.31 +0.57 | 71.14 £ 0.67 | 73.82 £1.24
y 87.22+£0.72 | 86.22+0.84 | 84.44£0.22 | 81.05+1.25 | 73.63 +£0.82 | 74.37 £1.25
z 84.18+0.77 | 85.36 £0.69 | 83.34 £0.54 | 79.32+£1.32 | 73.17+£1.03 | 75.46 £ 0.51 | 76.35+ 0.67
norm | 89.14£0.65 | 81.01 £0.50 | 47.67 £ 3.27 | 76.52 £ 0.68 | 66.81 £ 0.47 | 42.05 £ 0.97
w 78.54 £ 1.07
Table 2.5: The validation F1-score per signal. The best result is in bold.

Average and standard deviation over 5 runs

x y z . onorm W w

-
. l
1 e I !
v ol
1
,)
(N D
)
70
60
50
40
30 " " - ? T y T
Accelerometer Gravity Linear Gyrometer Orientation Magnetometer Pressure
Acceleration Vector

validation F1 (%)

Figure 2.17: A bar plot of each individual sensors corresponding to the results in table 2.5. The error bars
denote the standard deviation over five random initializations of the network.

Concerning the accelerometer, the norm of the acceleration vector has a better performance than any of
its individual axes, which shows the orientation-independent signal is better than the orientation-dependent
components. For the norm of the magnetometer, however, the result is the opposite: each of the individual
axes could play the role of a compass, giving information about the way the phone moves, which particularly
helps with most dynamic transport modes (Walk, Bike, Run). For instance, if the user is on a bike and has
their leg moving with a 2H z period, the y axis of the magnetometer will display a strong 2H z components.
When we compute the norm of the magnetometer, we obtain the strength of the magnetic field and loose this
compass-like information. However, this is not a problem in our setting, because we always use the norm of
the magnetometer in conjunction with the accelerometer signal, which is already efficient enough to classify
the classes for which the phones moves the most.

Two other surprisingly high performance signals are the norm of gravity and the norm of the orientation
vector. In theory, these two signals are constant (equal to 1 for the norm of the orientation vector, and
9.81m.s~2 for the gravity). In practice, these values are never exactly constant: when zooming in on the
most dynamic transport modes (Walk, Bike, Run), we can see some periodic patterns (fig. 2.19). The motif
is quite noisy, but the frequency of the signal is the same as the fundamental of the individual axes (see fig.
3.6). These patterns may have a negligible amplitude in the temporal domain, but we use spectrograms with
the log of the energy: this representation allows us to convey these small patterns to the network. With the
other classes, however (Still, Car, Bus, Train, Subway), these signals look like plain noise, and the classifier
is almost always wrong.

31

Chapter 2 — Related works, datasets, and baseline

X axis
. sl Bike E Train
= 0.044 . Walk m Car H Subway
g N Run Bus
g
& 0.02 4
a
0.00 - -
Yy axis
I . still Bike E Train
- 0.044 e walk B Car E Subway
] k N Run Bus
5
a
o 0.02 4
=%
L e g
0.00 -
Z axis
sl Bike HEE Train
= 0.047 e walk B Car N Subway
.é I EEE Run Bus
2 1 |
o 0.02 1
=%
0.00 - e o ‘ ‘
-10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0
value (m/s?)

Figure 2.18: An histogram displaying the values of the three axes of the Gravity sensor. We can see that
the phone is upright when the user walks (the extreme values in the negative region of the y axis are mainly
from walk segments); the phone lies flat, with the screen facing up or down, when the user drives (the car
segments are extreme values of the z-axis, both positive and negative); and that the phone is not often on
the side (the extreme values of the x-axis are not the most represented). See fig. 2.2 for an illustration of
the meaning of the axes. Note that the phone was in the user’s pocket when the dataset was recorded.

Gra (Bike, index=214)

N s

I”“H f’“ "”“m I b \\” 'II\\

|\M||\| | .‘.'l 1
Hh'll"fh"y ‘ |||| |‘||!| ‘l I “' o

0 10 20 0 0 50 0
tish

Figure 2.19: An example of signal that shows how the slight noise in the norm of the gravity discloses the

class for the most obvious modes (here, a Bike segment).

Sensor choice

We start with the norm of the accelerometer (|Acc]), for it is the single best signal available (table 2.5). As

in [50], we add the y-axis of the gyrometer (Gyry).

32

Chapter 2 — Related works, datasets, and baseline

But those two sensors only measure the inertial dynamics. To add a different kind of information, we
choose to use the norm of the magnetometer. This signal does not change much on the exterior, and varies
greatly around metal objects and strong electrical currents. In particular, when the sensor (and hence the
user) is inside a car, a bus, a train, or a subway, the value of this signal can jump up to 200uT (whereas
it remains around 40uT', the value of Earth’s magnetic field, when the sensor is left outside). One could
argue against this choice because when considered alone, the norm of the magnetometer is worse than any
of its three individual axes (z,y, z, table 2.5). This is because the axes can act as a compass, thus retaining
information about the dynamics of the movement. Computing the norm destroys this precious information.
However, this is not a problem in our setting as we always use the magnetometer along with other inertial
sensors (accelerometer and gyrometer).

As a sanity check, we add the w component of the orientation vector (Ori,,), to have an example of a
virtual sensor. The orientation quaternion is a representation of the orientation of a referential that, contrary
to the Euler angles, prevents the loss of a degree of freedom because of the gimbal lock. As indicated by
its name, the quaternion has four dimensions, Ori,, Oriy, Ori,, Ori,,, computed using the coordinates of a
vector around which the phone rotates (see fig. 2.20):

Ori, = x.cos(0/2)
Ori, = y.cos(6/2)
Ori, = z.cos(0/2)
Oriy = sin(6/2)

XV, Z

Figure 2.20: The computation of the orientation quaternion.

In short, this signal gives some information about the amount of rotation the phone records. Note
that we ignore how is this sensor computed in practice, even though we assume it involves the gyrometer,
magnetometer, and possibly the accelerometer. This is why, when we will consider a fusion of different
sensors, we expect this signal to carry similar information to at least the gyrometer and magnetometer:
adding the orientation to the triplet (|Acc|, Gyry, |Mag|) should not improve results significantly.

The confusion matrices of baseline models using |Acc|, Gyry, |[Mag|, and Ori,, individually are displayed
in figure 2.21. As with Transport Mode Detection from GPS signals, the performance differs depending on
the class to classify: running segments are classifier almost perfectly using the accelerometer (which is not
surprising given the simplicity of the problem [140]), while train and subway classes are harder to distinguish
from each other. To a lesser extent, these two modes are also confused with the Still class. Depending on
the sensors, the Car and Bus classes might also be hard to tell each other apart.

33

Chapter 2 — Related works, datasets, and baseline

final F1: 89.1

100 final F1: 81.2

20 00 02 07 10 94 40
el ¢ 00 L2 80 29 00 21 o0 4 1 50
0.0 H 06 00

96.3 ¥ 0.0 00

0.0 M 0.0

= _ 60 £ 60
E 05 1.0 x5 93.2 [3 05 =
o £]
E 8 B 5
; 0.0 0.0 4.6 = g [78.1 123 g
[c] 40 5 40
0.0 0.2 0.0 6.7 E 10.7
00 00 03 1 d .9 20 . y 02 20 11 [EKN 11 20
00 00 10 356
" o 0
Bike Car Bus TrainSubway Bike Car Bus TrainSubway
Predicted Predicted
(a) norm of the accelerometer (b) y axis of the gyrometer
final F1: 80.4
80
02 2.0 80
0.0
: 60 . 0
E] B 3 £l 08 00 00 1L e
£ o F o
2 S T a
3 w = 3 .3 m 18 15 7. =
5 "5 40
12.6 14
20 20
o 0
still - walk Bike Car TrainSubway Bike Car Bus TrainSubway
Predicted Predicted
(¢) norm of the magnetometer (d) w axis of the orientation

Figure 2.21: The confusion matrices of models using (a) the norm of the accelerometer (b) the y axis of the
gyrometer (c) the norm of the magnetometer (d) the w axis of the orientation quaternion, with the SHL
validation dataset.

A focus on the results of the challenge

Contrary to the GeoLife dataset, those who participated in the challenge had to use the F1l-score, and their
evaluation by a hidden test set guaranteed the comparability of the results.

The most successful methods were the two submissions from the Joseph-Stephan Institute, ranking first
and second on the unseen test set [31, 45]. Both approaches relied on computing a broad set of features:
statistical (mean, standard deviation, skewness, kurtosis, min, max, etc.) and frequency features (frequency
of the highest power component, energy in predefined frequency bands, etc.). These features were computed
on raw data, norm, and de-rotated signals (aligned on the North-East-Down coordinates). A feature selection
step took place before using the features for classification. The only difference between them is that the
approach from [45] used a XGBoost model for classification, while [31] trained several Machine Learning
models, along with a Deep Neural Network, to predict the output. Then, a Hidden Markov Model was
trained to return the final prediction from the predictions of all the individual models. This allowed them
to gain one and a half points: the Fl-scores of these approaches were 92.41 % and 93.86 % with XGBoost
and the ensemble models (respectively).

The next best participation [50] is the one that we started from for our baseline. Ito et al. used
spectrograms, with a log-scale for the frequencies. The ’images’ containing the log of the power were then
given to a 2-dimensional CNN for classification. This pure-deep learning approach is the one we selected,
but the participation only used two sensors: the accelerometer with gyrometer. For each classification, the
spectrograms from these two sensors were concatenated along their ’frequency’ axis, to form a single image
that was to be classified by a single network. This approach seems unusual, but chapter 5 explains how this
procedure is not as cumbersome as it seems. In the challenge, this approach ranked third, with 88.83 %
F1-score on the test set.

Several other participants did submit a prediction to the challenge. Similarly to the Transport Mode

34

Chapter 2 — Related works, datasets, and baseline

Detection literature, some used traditional ML algorithms with handcrafted features, others relied on Recur-
rent Neural Networks, or a combination of CNN and RNN. Wang et al. [140] published a complete synthesis
of the challenge participations along with the results. However, they did not conduct any experiments to
assess the importance of each choice that can be made.

After the end of the challenge. Since the end of the challenge, other publications have worked on
this dataset. Gjoreski et al. [84] improved the model that scored first in 2018 [31]. By adding another
neural network to the prediction models, they managed to improve the Fl-score on the SHL test set by one
percentage point, up to 94.9%.

Using the dataset without adopting the same constraints. Some publications also worked in a
similar setting (e, using the same data, without evaluating on the same train/val/test split) as the challenge:

Richoz et al. [25] designed a 1-dimensional CNN working on a sequence of FFT segments from the
different sensors. Using the inertial sensors (accelerometer, magnetometer, gyrometer), they obtained a 79.4
% Fl-score with a 1-dimensional convolutional neural network working on Discrete Fourier Transforms. Even
if their evaluation methodology is different, the results will be fairly close to ours (section 3.3, chapter 3).

Qin et al. [115] combined handcrafted features with features from a CNN and gives them to a LSTM.
The resulting classifier achieved an average Fl-score of 98.0 % (this result was recomputed using table 10
in [115]). However, they explicitly stated splitting the train and validation sets using a random split from
sklearn, which hides potential overfitting (see section 2.3.3 or [42])

Drosouli et al. [85] studied the performance of different Machine Learning models with several sets of
features, and obtain a surprising Fl-score of 99.5% with k-nearest neighbours on a broad set of features.
Here too, we argue that their performance is likely to be overestimated, for three reasons:

e they did not mention having a correct train/val split (section 2.3.3), nor cite the publication that first
noticed the problem on the SHL 2018 challenge [42].

e the best classifiers were worse when dimensionality reduction was used, yet, dimensionality reduction
is often used to reduce overfitting.

e the best classifier is k-nearest neighbours, an algorithm that relies on explicitly memorizing every
sample in the train dataset.

These two examples highlight one fundamental issue for a fair comparison of different methods in terms of
performance: the experimental protocol; e.g., dataset, number of classes, recording conditions, etc. matters
greatly.

2.4 Conclusion

This chapter was the occasion to present the problem of Transport Mode Detection. We began by displaying
an overview of the state of the art, and the typical steps a TMD algorithm follows. Then, we reviewed the
available datasets, and made the distinction, between those we would use and the databases we would leave
for others to work on. Finally, we presented our methodology, along with the networks we will use in our
experiments.

The literature review showed that there were many improvements to be made before making valid com-
parisons. We will try to be cautious to these so that we do not make the same mistakes as our predecessors:
we use a hidden test set, a score (the F1) that is not biased towards the most frequent classes, and to give
the standard deviation to know whether a result is significant.

The way figure 2.8 illustrated our methodology prompts an idea: one could wonder if instead of optimizing
the performance on each of the axes independently, we could formulate a single optimization problem that
encompasses the entirety of all possible choices one could make. Alas, this is not an idea that occurred to
us at the time we made the experiments. Pursuing this idea might be a possibility for future work.

Now that we have mentioned all the concepts needed to understand our works and underlined all the
pitfalls we paid attention to, we can present the experiments in themselves, starting with the choice of an
adequate preprocessing for the network.

35

Chapter 3

Preprocessing

When dealing with the SHL dataset, the input data we work with are series of 1-dimensional data points,
but we switched to spectrograms. We based our approach on one of the submissions [50], but did we do well?
Are we sure the network cannot learn the best hidden representation itself, as it generally does with images?
We could think that a neural network needs no help to learn automatically the best representations. Alas, a
neural network is not always optimal. For example, the researchers of Google who solved the protein folding
problem this year [151] relied on the extensive use of domain knowledge-related representations.

After a quick example illustrating the shortcomings of one of the preprocessing steps used in the literature
(section 3.1), we will focus the rest of the chapter on the use of signal processing treatments. Four ways of
representing a signal exist in the literature: using the raw sequence of temporal values, computing the one-
dimensional spectrum using the Fourier Transform, using a two-dimensional spectrogram (a time-frequency
diagram using the Short-Term Fourier Transform), or a 2D scalogram (a time-frequency diagram using a
wavelet decomposition of the signal). Given that the raw data and the spectrograms are the two most
common representations in the literature, we will focus on these two, and try to answer the question: when
should we compute spectrograms, and when should we stick to one-dimensional temporal data? We will
begin by a review of the use of each preprocessing with deep learning in different domains in section 3.2.
Then, we will use the SHL dataset to establish a comparison between the representations in section Section
3.3. We will see that the spectrograms are better than temporal representations, at least in our case. Finally,
we will try to understand why spectrograms are better than raw, temporal data. The section 3.4 will provide
some answers: the spectrograms allow to simplify the classification problem.

3.1 Introductory example: How padding segments can disturb the
learning process

Before tackling the complex subject of knowing whether the spectrograms are more useful, we will show
a very simple improvement to the padding some works from the literature use: if we see publications use
zero-padding, we will show we can increase the performance by a few points by padding using a replicated
version of the segment itself.

When we use a Convolutional neural network with segments of different sizes (eg the GeoLife dataset),
we are often required to find a way to get back to fixed-size segments. Padding is the action of filling a short
segment with well-chosen values so that the segment reaches a desired shape. This action can be required
on two occasions:

e When the model requires a fixed-size input [28], the most common approach is to cut the triplegs that
are too long, which inevitably generates segments that are shorter than the limit. This requires to pad
those segments so that they have the same lengths as the others.

e When the model can deal with segments of arbitrary shape, one problem arises: to accelerate the
training, the common practice is to parallelize the computation and to submit to prediction a set of 64
or 128 samples (a batch). This requires putting all segments into a single tensor, which is impossible

36

Chapter 3 — Preprocessing

Padding | Validation F1
Zero 777+ 1.5%
Reflection | 80.2+£1.6%
Wrapping | 80.3 +1.6%

Table 3.1: The validation F1-score of each type of padding. Zero-padding is particularly detrimental to the
model performance.

when the segments have different lengths. One could simulate the batch computation by sending each
segment one after the other and computing the weight update once after a certain number of segments
are processed, but doing so would increase greatly the training times. This is why even with the
baseline we presented in chapter 2 (which can use segments of different lengths) we pad all the short
segments so that they reach the length of the longest segment in the batch.

There are several ways to pad short segments. One could pad using zero-values (like in [28, 57]), but we
will show that this disturbs the learning process. To demonstrate it, we compare this padding to two methods
consisting of padding using the data from the input segment itself (see fig. 3.1). We tried padding with a
reflection of the segment (adding a reversed copy of the segment after the original), or simply repeating the
segment until the maximum length is reached.

Zero-padding

Reflection i

Wrapping

Figure 3.1: The different kinds of padding. Zero-padding simply adds zeros until the maximum length is
reached, Reflection reverses a copy of the segment and adds it at the end, while wrapping simply duplicates
the segment until the maximum length is reached.

Using the GeoLife baseline architecture, we compared the three kinds of padding shown in fig. 3.1:

e Zero-padding, where zeros are added to the shorter segments until they reach the correct length, as in
[28, 57].

o Wrapping, where segments are padded using their own data
e Reflection, which consists in padding the segments using a time-reversed version of the segment itself.

As table 3.1 shows, padding with zeros is particularly detrimental to the performance of our model.
However, one can wonder which padding is better between wrapping and reflection. Wrapping creates
discontinuities in the data, but this is the only artefact it introduces: otherwise, wrapping only uses data
from the segment itself. On the other hand, reflection removes some of the meaning of the data (i.e, and
acceleration becomes a breaking), but it does not introduce any discontinuity.

In general, padding by wrapping works well when using a global pooling operation: because convolutions
can only see patterns locally, if the input data is periodic, the output of a convolution will be periodic, with
the same period. When considering the whole convolution blocks, only the layers with a stride different
from 1 will affect the period of the features. This means a global max-pooling layer will output the same

37

Chapter 3 — Preprocessing

result whether the input segment was padded by wrapping or not padded at all. Conversely, zero-padding
and reflection-padding create new patterns that might be interpreted as significant by the network. One
could think that using a reflection is better than wrap the segment around because the former introduces
no artificial discontinuities. However, the GeoLife model has a particularity: during the random search for
hyperparameters (appendix C), we contemplated adding a cleaning step using median or Savitzky-Golay
filters, and it turns out these filters did not improve the performance. This means the GeoLife network
is naturally robust to noise in the data, which is why it is not affected by the discontinuities brought by
wrapping the segments around.

One could wonder why zero-padding is worse than the rest. Two mutually exclusive hypotheses could be
formulated to explain this phenomenon:

e A long series of zeros is interpreted as being meaningful by the model, and disturbs its predictions.

e The model notices the long series of zeros in the learning process, and, upon seeing they are uncorrelated
with the segment’s classes, somehow learns to ignore the end of a segment during the training process,
which cause it to miss relevant information

Proportion of segments

25 %
0.95 - 20 %
. 15 %
® 10%
e 5%

o
o
=]

accuracy
L

0.85 &0

0.80 4

segment length

Figure 3.2: The validation accuracy versus the size of each segment (the shorter the segment, the more zeros
it will be padded with). Adding zeros is not particularly detrimental to the classification performance, which
means the network learnt to ignore the zeros, missing potentially relevant information. Intervals bins are
obtained using equidistant separations between 0 and the 90-th percentile

To know which one is true, we compute the accuracy for segments with different lengths (using the fact
that the shorter the segment, the more zeros it will be padded with). If the former hypothesis was true, we
would see the performance to be correlated negatively with the number of zeros. The performance would
be correlated positively with the length of a segment, resulting in a decreasing curve when displaying the
performance versus the number of zeros. Note: in this experiment, and this experiment only, we computed
the accuracy, because some bins are devoid of certain classes, and the Fl-score is not defined when the
number of samples from one of the classes is zero. Figure 3.2 shows that the curve is quite irregular, which
means the model learnt to ignore zeros at the end of segments, at the price of also ignoring the end of relevant
segments.

Even though some works did use zero-padding, choosing an alternative padding method is an obvious
decision when it is clearly exposed as a choice. However, a less clear choice is to know if the network will see
raw segments or if we apply some kind of signal processing treatment (e.g., computing the spectrum), and
the rest of the chapter is devoted to this preprocessing.

38

Chapter 3 — Preprocessing

3.2 An overview of preprocessing in the literature

The recent advent of Deep Learning sparked enthusiasm in a diversity of domains. Quantity of researchers
tried to use a learning algorithm to replace the old approaches based on domain knowledge. However,
this domain knowledge does not always disappear completely. In particular, in domains that involve signal
processing, we often see deep neural networks applied mostly on either the raw data, or on spectrograms.
This section is devoted to a quick overview of the use of the different representations in different research
domains.

If there are four representations we will focus on (raw data, FFT, spectrograms, scalograms), we would
want to answer the following question: when is it more interesting to compute a representation for the
network, and when should we leave the network alone? In this regard, we will consider that the FFT,
spectrograms, and scalograms all consist in computing features along the temporal axis ourselves, while
leaving the data unprocessed lets the network learn the optimal features to compute. One key hypothesis
that will structure this study: the fact that it is better to let the network learn which temporal features to
extract itself when the number of samples is high, and that it is better to compute the frequency features
(FFT, spectrograms, scalograms) when the number of samples does not allow the network to find an optimum
that generalizes well ([152] fig. 3.3).

Performance

Raw data

Frequency
features

Number of samples

Small number of Large number of samples
samples (e.g. 1,000) (e.g. 1,000,000)

Figure 3.3: The main hypothesis we want to verify ([152]): leaving the data intact is worse when the number
of samples is low, and better when the dataset is large.

When looking at figure 3.3, one particular question comes to mind:
Isn’t that obvious ?

Many researchers know that classical Machine Learning models, based on handcrafted features, see their
performance increase at a slower rate when the number of samples increases than deep neural networks
[153]. In other words, when the number of samples increases, the slope of the curve of the performance is
higher for deep neural networks than for Machine Learning algorithms relying on handcrafted features. The
use of deep learning on FFT, spectrograms, or scalograms could be thought of as a middle ground between
handcrafted features, for which an expert selects the interesting values a classifier will work with; and deep
neural networks that compute their own features from the immense variety of the raw data.

However, the choice representation does not follow this reasoning: for instance, the Fourier transform
is bijective, which means there is, in theory, as much information in the spectrum of a signal as in the
original signal. In general, spectrograms often have more pixels than the input segment. We do not say that
computing a spectrogram creates new information (there is actually some redundancy in the values of pixels
in a spectrogram), but we argue that the idea that frequency representation reduces the amount of data
the network works with is not straightforward. What changes between representations is only the semantic
meaning of the data points in the segment or spectrum.

39

Chapter 3 — Preprocessing

In addition, the reasoning we presented in the last paragraph and in fig. 3.3 is, to the best of our
knowledge, not the subject of many research works. At first, we will try to use the literature to know
whether this hypothesis is verified.

We will rely on summary papers, and when available, on direct comparisons of the performance of different
representations. However, some of these comparisons (including the one we will lead in the next section)
suffer from a common flaw: they work with a fixed architecture, and many of them do not say how this
architecture was found. In our case, when we worked with the SHL Dataset, our baseline architecture comes
from a participation that worked exclusively with spectrograms [50]. This means that the architecture is likely
to be optimized for this exact representation, and that evaluating 1-dimensional temporal representations
with it will result in suboptimal performances. To establish a fair comparison, we would need to reproduce
the hyperparameter and architecture search for each representation (similarly to [111]). We could also
look at the challenges: as they consist in giving the same time window to several teams to optimize their
performance, we could compare the result each representation manages to get. However, one must keep
in mind that even the challenges are not perfect, because the number of researchers working on the same
participation may vary, and we do not know how much time and computational resources each team devoted
to its participation.

When no comparisons are available, we will try to know which representation is used the most often
(given that researchers often make many choices that are not written in publications). However, even
this information is not easy to gather: many summary papers focus on neural networks architectures and
disregard the network input. This information is either hidden in the detailed list of publications the review
cites [154, 155], or simply absent from the review [156, 157, 158]. We will also try to mention the approaches
that stand out from the rest due to their originality.

The present section does not aim to be exhaustive (there are too many research subjects to cover), but
only to provide an overview of the use of spectrograms in the literature. We will try to cover four research
domains we chose for their diversity: audio processing (section 3.2.1); analysis or vibration signals for rotating
machinery (section 3.2.2); physiological signals (mainly EEG and ECG, section 3.2.3); and Human Activity
Recognition (section 3.2.4). Finally, we will detail the use of representations in Transport Mode Detection
in section 3.2.5, and conclude on some opening remarks in section 3.2.6.

3.2.1 Audio processing

In 2015-2016, reviews [159, 160] indicate that, for audio processing (whether it is speaker identification,
speech transcription, etc.), the golden standard was use recurrent models (either Hidden Markov Models or
RNNs), applied on features named Mel-Frequency Cepstral Coefficients (MFCC) [161, 162]. These features
are obtained the following way:

e Compute the Fourier Transform of the signal.

e Compute the energy of the signal in an overlapping series of frequency bands. The ranges of the bands’
scale with the logarithm of the frequency (mel scale).

e Compute the log of the power.
e Compute the Discrete Cosine Transform (DCT), which plays the role of an "inverse Fourier Transform".

These features have the property that any convolution filtering applied to the raw data can be separated
linearly from the signal in the feature space, and they represent an example of features that are specially
handcrafted for a specific domain.

During the last years, reviews noticed an increase in the amount of research works using deep neural
networks [163, 164]. Some networks use the raw data [165, 166, 143], but most of them rely on some kind
of spectral features such as spectral bank features [167, 168, 169], or spectrograms [170, 171|. However, the
use of MFCCs still occurs in more recent works [172].

We did study two speech recognition challenges in detail: the CHIME challenge (both the fifth edition
[173], and the sixth [174], for they are extremely similar), and the Airbus challenge [175].

For the fifth CHiME challenge, the organizers provided a baseline relying on MFCCs [176], and the
participations that improved the results on one of the tasks either build upon this baseline ([177]), or

40

Chapter 3 — Preprocessing

rely on complex knowledge-based models. For our subject of interest, no deep learning model on raw data
outperformed the MFCC-based models. A similar conclusion can be drawn from the sixth CHiME challenge,
for which none of the participants managed to outperform baselines using MFCCs with GMM and HMM
([174, 178]). Both challenges had about 100,000 utterances (an utterance is an uninterrupted sequences of
words, or even sentences, which is used to count the number of samples in a speech dataset).

This conclusion also applies to the Airbus challenge [175], where the participants had to perform Auto-
matic Speech Recognition of sentences pronounced by airport controllers and pilots, involving both technical
terms and non-native speakers. The best submissions in this challenge used MFCCs, along with other
problem-specific features we will not present here. The Airbus challenge has 50 hours of data, which repre-
sents about 18,000 utterances if we estimate an utterance to last 10 seconds. For both the Airbus and the
CHIiME challenges, the dataset size is too small for deep learning to even start being relevant.

In addition to the challenges, a publication performing different comparisons is extremely important for
us. Pons et al. [152]. tackled audio tagging for music, a task where the model must choose appropriate
tags to characterize a song: the tone, the style, the type of instruments, etc. This can be considered as a
classification problem where we can assign multiple classes to any sample. They used prior knowledge to
design two architectures, one using spectrograms, and one using temporal data. They concluded that the
raw data had the best performance, but the most important conclusion is when they used smaller portions of
the dataset: if the original dataset had a million songs for 50 tags, they tried using only 500,000 and 100,000
songs to train the models. With the smaller versions of these training sets, the two architectures perform
identically. They concluded by saying that the raw, temporal data are better when the number of samples
is high (when the network can use the mass of data to extract the features itself), but the spectrograms are
comparatively better when the number of samples is low, and the network needs help extracting the relevant
features. However, their results are not extremely significant, and the difference between the increase rates
(the difference between the slopes of the red and blue curves in fig. 3.3) are hard to observe in the results
they provide.

Finally, we should mention the works of [143], who designed a convolutional network whose first layer was
particular: instead of using the classic, discrete convolution, the values of the first convolutional filters are
computed using the formula of a given wavelet. Only the two parameters that compute the wavelet are learnt
by gradient descent. Their network, dubbed SincNet, is able to focus on the frequencies relevant to speech
understanding better than the classic CNN. Also, when the authors added noise in a specific frequency band,
SincNet ignored the noise faster than the classic CNN. For us, the most interesting is not their network,
but the following derived result: at the end of the training, the classic CNN did learn to ignore the noise
extremely well: the average Fourier spectrum of the first convolutional filters displays a low power at the
frequencies in which the noise was added. In other words, the first layer of a CNN with discrete filters can
‘see’ the interesting frequencies in the signal and ignore the irrelevant frequencies. Provided, of course, that
this layer is long enough to capture interesting frequencies (the layers were 250-points long in the original
architecture).

If we could not draw any conclusions from challenges, a review of the literature indicates that both
spectrograms and temporal representations are used. One paper showed that the raw data is better than the
spectrograms when the dataset has more than 500, 000 samples, and one of them tell us that one-dimensional
convolutions on raw data do notice the interesting frequencies by themselves, and learn to ignore the useless
ones. This seems to indicate that one-dimensional convolutions could effectively re-learn the same features
like the ones we compute with spectrograms, provided the number of samples is high enough.

3.2.2 Failure prediction in rotating machines

Rotating machinery is widely used in a large number of industries. Given how extensive the utilization of
this equipment is, some researchers try to design algorithms to predict a breaking from acceleration signals.
In order to produce a dataset, the typical method is to use an experimental testbed: the researchers keep
an engine functioning in a laboratory until one of the roll bearing breaks. Meanwhile, they place a sensor
(most often an accelerometer) on the engine (or close to it), and record the vibration signals. They obtain
the datasets of 1,000 to 30,000 samples in total [179, 180, 181, 182, 183], and add labels to solve one of two
tasks:

e predict the Remaining Useful Life (RUL) of the bearing using the acceleration signal: if, for instance,

41

Chapter 3 — Preprocessing

the network is presented a segment recorded seven hours before the bearing breaks, it should predict
that the engine can keep running for seven hours before a preventive repair is needed. This is a
regression problem, as the objective is a continuous value.

e predict the exact source of the fault (diagnosis), which is a classification problem.

In addition to the classic Machine learning, producing handcrafted features inspired by signal processing
knowledge, this field has seen the use of several neural networks for automatic classification. According
to reviews [155, 184], if some approaches use raw, temporal data (such as [185]), most networks work on
spectrograms, or on scalograms. We also see the use of the Hilbert—Huang Transform (HHT, [186]), a signal
processing operation aiming at finding the instantaneous frequencies of harmonics in the signal. We did find
one work using convolutions with the one-dimensional FFT [187], which is rare because most publications
use either the raw, 1-dimensional temporal representation or the two-dimensional spectrograms/scalograms.

Most of the publications work using only one type of wavelet, but [188] did a comparison of the perfor-
mance of a network trained on scalograms (Morlet wavelets), along with spectrograms and concluded that
the scalograms were the best, then came the spectrogram, and the HHT was the worst. Another comparison
is the one from [179] who designed a network similarly to [143]: the first convolutional layer uses continuous
filters from a diversity of wavelet families, and the scale parameter of these wavelets are learnt by gradient
descent. They compared different families of wavelets to the classic CNN using discrete filters, and concluded
that the Laplace wavelets were the best, significantly above the classic CNN (which was on par with the other
families they evaluated: Morlet and Mexican hat wavelets). Finally, the sinusoidal network (the network
using continuous filters based on the Fourier basis) was significantly worse than the rest. However, they did
not draw any conclusion relating these results to physics. The Airbus challenge has 50 hours of data, which
represents about 18,000 utterances if we estimate an utterance to last 10 seconds. of their problem.

Sadly, we could not find any comparison involving the temporal representations. The fact that spectro-
grams and scalograms are more popular than raw representations [155] might be an indication that these
representations are better, but it might also be due to the fact that researchers tried the spectrograms
more often due to prior experience with these diagrams. In this domain, we cannot conclude whether the
hypothesis we presented is verified.

3.2.3 Physiological signals

The human body generates a great number of signals: heart rate (ElectroCardioGram, ECG), brain waves
(ElectroEncephaloGram, EEG) etc. Many research works try to design automated diagnostic models that
use these signals to know if a given patient suffers from a disease, or sometimes to try to predict the state
of the patient (sleep, emotions, etc.).

Both approaches are present: the use of raw signals [189, 190, 191, 192]; as well as spectrograms [193,
194] or scalograms [195]. For EEG signals, reviews [196, 197] indicate that both preprocessing methods are
used in similar proportions. However, this conclusion does not apply uniformly to all types of problem. For
instance, in EEG for brain-Computer Interface, most works using deep networks focus on spectrograms [198].

The extensiveness of the theoretical background surrounding these signals allows the authors to rely more
on expert knowledge to create new preprocessing methods. For instance, with EEG processing, different
families of frequencies are known to exist in the brain [199, 197]: alpha (8 — 13Hz), beta (13 — 30H z), etc.
This pushed some authors to create a preprocessing where they compute the energy in predefined frequency
intervals. For each frequency band, they project the recordings of the power from the different electrodes
on a 2D plane, using a projection that translates as best as possible the physical position of the electrode
on the patient’s head. They obtain one "image" per band, and stack the images like channels in an RGB
image. This image is then given to a 2D CNN [200, 201] for classification. In this example, the role of the
CNN is mainly to extract spatial features, because the convolution filters run on the two dimensions of the
image, and not along the temporal axis. Hence, it would make sense to consider this preprocessing to belong
to the spectrograms category, for the temporal features (the type of feature encoding we are interested in)
are extracted when the energies in different frequency bands are computed.

However, the reasoning we made comes from the very specific need to know how the temporal features are
computed: the existing reviews do not categorize this preprocessing as spectrograms. A thorough analysis
would review each paper in detail, to know exactly where does the paper fit in, but such a work is too vast

42

Chapter 3 — Preprocessing

for us to pursue, and we will only rely on the number of raw and spectrograms/scalograms publications to
know whether the networks compute the temporal features themselves or not. In addition, some works are
quite hard to classify, such as the creation of a 2-dimensional matrix symbolizing the similarities between
two points of the temporal input signal [202].

Another hurdle to the proper accounting of the number of representations is that this number does
not depend only on the performance of each method. For instance, with ECG processing, spectrograms
are used less often [203], because the temporal signal is composed of an extremely stereotyped motif, and
no wavelet family corresponds: trying to encode an ECG recording with wavelets would scatter on many
different frequencies, even though the signal consists in repeating the same pattern with varying frequencies.
Hence, the frequencies we observe with spectrograms using such bases do not translate the frequency of
the heartbeat, but depend more on the shape of the motif [204]. However, we argue that this kind of
information might still be useful, because one study [194] does report that 2D convolutions on spectrograms
are better than a heavily optimized one-dimensional CNN for heart disease classification, on a dataset with
2,500 samples and five classes. This pushes us to question whether the absence of spectrograms (with this
database at least) is due to a worse performance, or if this preprocessing was merely left unstudied because
of prior reasoning.

Finally, Hussein et al. provide us with another evaluation that is interesting to our case: they compare
the raw data to scalograms (they argue that scalograms are better than spectrograms). They do not mention
which family of wavelets they used to compute the scalograms, but the comparison is still useful to us: they
evaluated many architectures from Computer Vision (ResNet, AlexNet, VGG, etc.) on these scalograms,
and all of them are significantly better than the one-dimensional convolutions on raw data. They used three
datasets with about 100,000 samples each to detect epileptic seizure, a two-class imbalanced problem.

Other

Frequency-domain

Raw EEG

N/M . as . . .* . H .

Combination

LU L L e e e e LB e L L L LA e L e
0 10° ¢ 10 10f 107 10 107 10 10 10 1% 100 100 107 100 100 10° 102 10¢
Recording time {min) Number of samples Number of subjects

Figure 3.4: The type of preprocessing used, depending on the total duration, number of samples, or number
of subjects of the dataset (N/M: Not Mentioned; combination denotes the use of several types of features).
Figure generated using the code and data from [196]. We would like to thank Y. Roy for providing us access
to the code.

In this domain, it seems that both approaches coexist, and figure 3.4 shows that the choice of a prepro-
cessing method is not related to the size or complexity of the dataset. However, the extensiveness of this
research domain prevents us from reading all the publications in detail, which hinders the analysis.

3.2.4 Human Activity Recognition

Human Activity Recognition (HAR) is a classification problem in which the classifier must distinguish be-
tween the activities, in a broad sense, of a subject. The classes are among the most common activities a
random person can take: Walking, running, sitting, going upstairs or downstairs, playing sports, etc.

As transportation is part of the daily routine for most of the population, TMD can be seen as a subset
of Human Activity Recognition, and some HAR datasets include classes that are transport modes (Walking,

43

Chapter 3 — Preprocessing

being in a vehicle, running, etc.). However, the low granularity of the transport modes is often too low to
use these bases for TMD, or at least without adaptation.

Many types of sensors are used for the problem, and most of them are not interesting for the question at
hand: RGB or depth map videos, point clouds, position of a skeleton of the individual, etc. We will focus
on accelerometers, for which computing a spectrogram makes sense.

The reviews we found [185, 205] do not even acknowledge the use of spectrograms. It is true that the
majority of the publications use one-dimensional convolutions on raw signals [206, 207, 208, 209, 210, 211,
212, 213, 214, 215, 216, 207].

Since the publication of the reviews, some works did use spectrograms [217, 218]. However, some publi-
cations that use spectrograms are not usable for our problem, because the employed network is not known
to extract features from the data (e.g., Alsheikh et al. implemented a Deep Belief Networks [219]). Our
problematic is about deep learning, and we want to know if the network is able to extract relevant features
from the data. If the network used is unable to extract features from itself, it is obvious that the raw data
will be inadequate.

With deep convolutional networks, a preprocessing that is surprisingly common is the stacking of one-
dimensional segments to form a two-dimensional image [211, 220, 221|: for instance, if we start from six
one-dimensional signals with 7" = 100 samples each, we obtain a 6 x 100 matrix to perform 2D convolu-
tions on. In a similar fashion, [220] stacks the 1D Discrete Fourier Transform of segments into a 2D matrix
which is then given to a 2D CNN. In some situations, the stacking occurs along three dimensions: Zheng
et al. [221] uses signals from eight triaxial accelerometers. Instead of creating a one-channel T' x 24 image,
they create a T' x 8 image with three channels, each channel being one axis of the sensor (z,y,z). Con-
catenating the signals into an image to perform two-dimensional convolutions might seem weird at a first
sight, because the order of the signals has an influence. This is why Jiang and Yin [220] also introduced
an algorithm that replicates the input signal and orders them in such a way that every couple of signals
is represented exactly once. For instance, if we wanted to create a 2D matrix out of nine one-dimensional
signals (which we will call 1,2...9), their algorithm would return the following concatenation of signals:
1,2,3,4,5,6,7,8,9,1,3,5,7,9,2,4,6,8,1,4,7,1,5,8,2,5,9,3,6,9,4,8,3,7,2,6,1. Even if the network uses
2D convolutions, we will consider this preprocessing to be equivalent to a one-dimensional convolution on
raw segments.

There are also works that introduce their own preprocessing: Some [222] use images called recurrence
plots [223], two-dimensional matrices where the (7, j) indicates a measure of the distance between the samples
x; and z; in the segment. Memmesheimer [224] simply plots the signal (using libraries such as matplotlib),
records the image, and applies a CNN to solve an image classification problem. Arigbabu et al. [225] start
by reshaping the temporal segment into a 2D matrix (samples 1 to 10 go into the first column, samples 11 to
20 go in the second, etc.), and compute the two-dimensional FFT of the matrix. They compare their results
to a 1-dimensional CNN working on raw data and show their method is better on a six-class, 10,000-samples
dataset. The diversity of the preprocessing methods make the classification into clear categories harder. One
might be tempted to argue to classify some of these methods into one category or the other, but, as these
method are quite uncommon in the literature, and as they do not appear to be competitive in any direct
comparison, we will simply not consider them any longer.

Finally, to complicate things even further, we also see publications which mention using a 2D CNN, but
without giving the actual preprocessing they used [226]. For others, the lack of details even prevent us to
know the type of the network in unexpected ways. For example, Chen and Xue [227] concatenate three one-
dimensional Discrete Cosine Transforms of the signals into a two-dimensional matrix, and compares three
filter sizes for the first layer: 13 x 1, 13 x 2, 13 x 3. Given that the input ’image’ has a resolution of 256 x 3,
we could think that the last filter size makes the network equivalent to a 1-dimensional CNN. However, the
first convolutional layer can be configured to use padding. If the layer did use a nonzero padding, this leaves
room for the 13 x 3 filter to move along the second dimension, and the first layer is effectively 2D. If, on the
other hand, there is no padding, the network is actually equivalent to a one-dimensional CNN, where the
input has three channels.

However, we can find three comparisons that are useful to us: Gholamrezaii et al. [228] compared the
stacking of 1D raw signals and stacking of the FFT of these signals. A two-dimensional CNN performed
better with the FFT on a dataset of 10,000 samples and eight classes. We should mention that they split

44

Chapter 3 — Preprocessing

the datasets by users, which means their results are trustworthy.

The second comparison is the one made by Hur et al. [218], who used datasets with thousands of samples
and six to twelve classes to compare four preprocessing methods from the literature, and they concluded
that their performance order with CNN was the following (in decreasing order):

1. 2D concatenation of one-dimensional temporal signals

2. Spectrograms

w

. Signal plot (with e.g. matplotlib)
4. Recurrence plot

They also introduce their own preprocessing, a modification of the concatenation of input signals, which
improves slightly the results. However, we argue that their work is dubious, for reasons similar to the ones
we developed in chapter 2: not only they did not mention splitting by user (there are tens of users in every
dataset, all with the same class balance) or in a time-consistent fashion, but, the separation of continuous
temporal recordings into fixed-size windows is done with non-negligible overlapping (33 to 50 %, depending
on the dataset). This means the networks they trained have a chance of overfitting. The overfitting is even
more plausible if we know that they claim to reach a performance of 100,00% on one of the four datasets
they considered.

Lastly, Zheng et al. used a 2D CNN on three types of preprocessing [221]: an image plot (e.g. matplotlib)
of the signal, a spectrogram, and a concatenation into an image. They used a dataset of 7,000 samples and
eight classes and concluded that the spectrogram and concatenation were equally important, and that the
concatenation they used was better. One could argue that the fusion method is they used for spectrograms
and signal plots is questionable: in both cases, they computed one image per axis (x,y, z) per sensor and
put the images side by side. In this case, the width of the image, for instance, denotes both the time and
the axis (z,y, z) of the sensor. We could think that the concatenation of 1D signals into an image is the only
method where the concatenation axes (depth/channels for z, y, z and height for sensor) do not already have a
meaning to understand the signal; and that this is why it is better. However, we will see in chapter 5 (fig. 5.2)
that the fusion method for spectrograms and image plots is actually relevant. Here, the authors explicitly
mention using non-overlapping windows, and the splitting of the samples into training and validation sets
follows the chronological order (similarly to the process we explained with the SHL dataset). This means
their work is likely to be trustworthy.

To conclude the part on HAR, we should say that even though most of the publications work with
convolutions along the temporal axis, some publications using 2D convolutions on spectrograms do exist,
even though they have been found slightly worse than the temporal representation.

3.2.5 Transport Mode Detection

We devoted a section to point-level feature computation in the second chapter, but this time, we will focus
especially on temporal representations versus frequency features.

With GPS signals, we argue that all works relied on raw representations, despite the fact that no network
used the raw latitude and longitude as an input to their networks. One could argue that computing a speed
and acceleration is different from using raw data. However, this section primarily makes the distinction
between the temporal representation and the frequency ones (FFT, spectrograms, scalograms). Given that
the real-time speed and acceleration have a similar meaning to the real-time position, we think that computing
the speed and acceleration still counts as using the temporal representation. If it is theoretically possible to
estimate the spectrum (and thus, to compute a spectrogram) from irregular data (such as the GPS signals),
we found no mention of a deep neural network trained on GPS spectrograms. As a matter of fact, some
publications use spectral features to feed a Machine Learning classifier [71], or computed the coefficient from
the wavelet decomposition in conjunction with the features from a neural network using temporal data [109],
but these methods are the minority.

With inertial sensors, the small amount of publications simplify our analysis: to the best of our knowledge,
no publications used deep networks with the TMD dataset [19]. This leaves only the three SHL challenges,
which we will present in detail.

45

Chapter 3 — Preprocessing

SHL 2018

In the SHL 2018 challenge, the best submission [31] used statistical features, feature selection, and an
ensemble of Machine Learning classifiers. However, we are not interested in knowing whether Machine
Learning outperforms Deep Learning, which is why we will systematically ignore the submissions that do not
use a deep neural network in all three SHL challenges. In 2018, five submissions optimized the architecture to
use raw (temporal) representations, and even the best of them (83.2% test Fl-score, [140]) was 5 percentage
points under the only submission that used spectrograms (88.8% test F1-score, [140]). This implies that the
spectrograms bring something unique, allowing them to exceed the effect of architecture, or sensor selection.
Thus, for our tests, we expect the difference between temporal and spectrogram representations to be superior
to 5 percentage points.

SHL 2019

In 2019, the results are not so clear: the first deep submission did use both the FFT and the raw data, but
they reported that the results were almost equivalent when only the FFT was used [120]. If we look only at
deep learning approaches, the two submissions that used spectrograms ranked third and sixth [141], while
the two submissions that used convolutions on temporal data ranked second and seventh. Two submissions
ranked fourth and fifth with LSTMs on raw data, but we are not sure if we should take them into account:
contrary to CNNs Recurrent Neural Networks are not known to extract features efficiently from raw data.

In 2019, one team [111] compared the performance of 2D convolutions on spectrograms, 1D convolutions
on raw data, and LSTM on raw (temporal) data. If we are not interested in the fact that the LSTM was the
best by a small margin, the fact that the spectrograms and raw representations have the same performance
on this 3 x 200, 000 samples database is valuable to us: it means that the intersection between the blue and
red curves in fig. 3.3 is located around this number of samples. In addition, the final validation performance
they report is fairly close to the test result after the challenge, which make their work more trustworthy.
However, this team used only the Accelerometer and Linear Acceleration (Acceleration minus Gravity) for
their tests.

SHL 2020

Like the previous year, the results of the 2020 challenge are hard to interpret. The winners of the challenge
were the only ones to use some of the data from the unseen users as training data (the organizers intended
this data to serve for validation only), which is why we will not consider their submission. The second,
fourth, and seventh deep submission used spectrograms, while the third, fifth, and sixth used raw data. In
this challenge, there do not seem to be a clear influence of the type of preprocessing on the final performance.

In short, for the SHL 2018 challenge (16,000 samples), the results clearly indicate that spectrograms are
better-suited. For the 2019 and 2020 challenges (3 x 200,000 and 4 x 220,000 samples, respectively), both
representations seem to have equal performances.

3.2.6 Conclusion of the literature study

During this study in section 3.2, we tried to know whether it was best to compute the temporal features
using signal processing operations (FFT, spectrograms, scalograms) when the number of samples is small,
and whether a network would learn better features with the raw data when the number of samples is large.
We looked at three types of indications: challenge organizations, direct comparisons, and tendencies in the
research domains. The frequency of use of the preprocessing methods in diverse domains (table 3.3) does not
seem to be extremely helpful in our case: some domains (e.g. the study of rotating machinery) rely manly on
spectrograms, some (such as ECG or HAR), on raw data, and some of them, finally, see both representations
be used, without a clear link to dataset size (as fig. 3.4 illustrates for EEG). The only challenge that we
could consider effectively were the SHL challenges, where the 2018 edition did see the spectrograms yield
better results, and the 2019 edition seemed to imply that the two representations are equivalent. This seems
to confirm the conclusion by Pons et al.: the first challenge took place with a "small" dataset, while the two
following editions used a dataset for which the two representations are similar. The different comparisons
we found are presented in table 3.2. The only domain for which we can say anything is the Human Activity

46

Chapter 3 — Preprocessing

Recognition, where the hypothesis from Pons et al. does not seem to be verified. Even is we except the works
from Hur et al. [218] because of doubts we have on its rigour, it seems that computing frequency information
does help when the number of samples is less or equal to a few thousands. Note that even if Gholamrezaii et
al. did not evaluate spectrograms but the stacked Discrete Fourier Transforms of the signals, given the high
difference between the performance of DFT and raw data (about ten percentage points on accuracy scores),
we assume it is unlikely that spectrograms are so much worse than the DFT that they are actually inferior
to the stacked segments (the two other comparisons found a difference of performance between two and five
percentage points between the methods).

. which representation number of number of
Ref. input type problem is better 7 samples classes
Temporal > Spectrograms 1,000,000 50
[152] Audio music tagging Temporal = Spectrograms 500,000 50
Temporal = Spectrograms 250,000 50
[111] | Accelerometers TMD Temporal = Spectrograms | 3 x 200,000
Temporal > Spectrograms 50,000 9
[218] | Accelerometers HAR Temporal > Spectrograms 20,000 12
Temporal > Spectrograms 10,000
Temporal > Spectrograms 7,000
[228] | Ao eromerers HAR FFT > Temporal 10,000 8
[221] | Accelerometers HAR Temporal > Spectrograms 7,000 8
Scalograms > Temporal 144,000 2
[229] EEG Epilepsy detection | Scalograms > Temporal 100,000 2
Scalograms > Temporal 126,000 2
H di
[194] ECG clzzzgﬁcjfiisj Spectrograms > Temporal 2,500 5

Table 3.2: A summary of the publications that compared the one-dimensional convolutions on raw data to
two-dimensional convolutions on spectrograms, scalograms, or the Fourier Transform of the signal. The lines
are ordered by number of samples, approximately

problem i sopation | Tyl b
Audio Spectrograms & Temporal | 1,000 to 500,000
EEG Spectrograms & Temporal | 1,000 to 1,000,000

ECG Temporal 500 to 10,000

Rotating machinery Spectrograms 1,000 to 30,000

HAR Temporal 3,000 to 50,000

TMD (GPS) Temporal 10,000

TMD (inertial sensors) | Spectrograms & Temporal | 10,000 to 500,000

Table 3.3: A summary of the most common representation found in every domain we studied.

However, the fact that these works use different datasets means that we cannot compare them as-is: the
threshold number of samples (after which the raw data is better) might change from one domain to another,

47

Chapter 3 — Preprocessing

and even between datasets. We argue that this is because measuring the number of samples is limited, for
two reasons:

e [t does not take into account the complexity of the problem to solve. 50,000 sample are enough to
learn to recognize written digits in images, but certainly not for general-purpose, ImageNet-like, image
classification. We sometimes see a number of samples per class (we often see that neural networks
should be preferred to traditional Machine Learning models when the number of samples is higher
than 1,000 per class, because it is the number of images per class in ImageNet [230]), but this is still
not enough: for TMD, classifying Run segments versus Still ones is much easier than, say, Train versus
Subway segments.

e The definition of what constitutes ’one sample’ is not as clear as it seems. When looking at the
mathematical theorems that guarantee a convergence when the number of samples goes to the infinity,
all of them state that the samples must be independent from each other. To give an example, duplicating
a dataset as is doubles the number of samples, but it does not bring any additional information. This
has very practical consequences: when preparing the SHL 2019 challenge, the organizers decided that
the classification would be done on 5-second samples instead of 60-second ones. As a consequence,
the SHL 2019 challenge has 12 times more "samples" available for each position. Does it means
that the available information was multiplied by 12 in this operation ? We think not'. Even in the
SHL 2018 dataset, the high temporal regularity of the samples [42] means that the samples are far
from being independent: we said there were 13,000 labeled samples available to train the model, but
as these samples are redundant, if we were to filter the samples to keep only a subset of mutually-
independent segments, the number of samples should be lower. Note that this reasoning applies mainly
to temporal data (especially when several samples are extracted from an single sequence, such as the
SHL comparison or the EEG and HAR comparisons in table 3.2), to images extracted from a video
sequence [231], or to multi-user data (a dataset where a single user is present carries less information
than a dataset with a representative set of users). Finally, we sometimes see researchers performing
data augmentation, and counting the number of augmented samples in the set [232] (for instance,
adding the horizontal reflection of RGB images in a 10,000-sample dataset results in a 20,000-sample
dataset). We do not know if the augmented versions of already-existing samples bring more or less
information than new, unseen samples.

Counting the samples is not incorrect, but these reasons explain that the number of samples is both
problem-specific and dataset-specific: if one drew a conclusion on a given dataset (for instance, finding the
exact number of samples for which using spectrograms is equivalent to raw representations), these findings
would likely not hold if they changed the objective (the classes to recognize) or the data collection process
(the diversity in the samples).

Using the literature, we tried confirming the hypothesis from Pons et al., according to which giving the
raw, temporal segments to a network is better than computing spectrograms when the number of samples is
large enough, but the spectrograms yield better performances when the number of samples is low. If the use
of each preprocessing method in the literature does not answer our question, the direct comparisons and the
challenges indicate that the hypothesis seems to be true. However, we did not find a single reference proving
the hypothesis by itself, as the work from Pons et al. does not exhibit figure 3.3 in its entirety. This is why
we will make a comparison ourselves.

3.3 Evaluation of preprocessing methods

This section presents the comparisons of the spectrograms, FFT, and raw data representations on the SHL
2018 dataset. We compare the different methods to preprocess four signals from the SHL dataset: |Acc|,
Gyry, |Mag|, Ori,. We consider the 1-dimensional temporal data, and different kinds of spectrograms. For
each signal, we also compute the power spectrum using the Fast Fourier Transform (FFT), to obtain the
power associated to each of the 6,000 frequencies. As the input signal was real, we obtain a symmetric curve,

IThe following editions of the challenge still contain more data because the organizers added data from other locations
(backpack, torso, hands) to the samples from 2018, which were recorded with the phone in the user’s pocket. However, we
argue that the mere splitting into shorter segments does not bring significantly new information.

48

Chapter 3 — Preprocessing

which will go through a 1-dimensional CNN. This is intended to be halfway between the one-dimensional
temporal representation and the computation of frequencies of the spectrogram representations. For the
results in the ’temporal” and 'FFT’ categories (and for these results only), the network uses 1-dimensional
convolutions, with filters of size 3. All the other parameters remain similar to the parameters presented in
chapter 2 and, in particular, the baseline network working on spectrograms relies on 3 x 3 convolutional

filters.

mode “2::1?;;” power scale (;I’Z;) | Acel Gyry |Mag| Oriy,
temporal 6000 70.20£1.63 | 64.71£2.74 | 7.49+£10.32 | 39.65 £ 2.26
FFT 6000 80.57+£1.30 | 74.30£0.72 | 55.99 £1.53 | 64.27£1.57
spectrogram none linear 550, 250 | 84.55+1.03 71.81 £0.64 63.64 £ 0.96 2.29 + 0.00
spectrogram none log 550, 250 | 87.88 £ 0.68 79.89 +£1.30 64.81 £0.85 | 43.35 £+ 33.56
spectrogram linear linear 48, 48 81.98 £0.75 58.42 +£1.31 45.97 +1.88 2.29 + 0.00
spectrogram linear log 48, 48 86.33 £1.00 77.06 +1.32 56.53 £ 0.68 75.03 +2.08
spectrogram | log-freq. linear 48, 48 84.46 £ 0.63 69.19 + 0.89 53.36 £1.41 2.29 £ 0.00
spectrogram | log-freq. log 48, 48 88.83+0.71 | 82.64+0.68 | 67.36 -0.49 | 78.39+1.79

Table 3.4: The validation Fl-score (%) per preprocessing method. For each signal, the highest result is in
bold, and the second highest result is underlined

Average and standard deviation over 5 runs

full-size spectrogram
raw power
= log power

‘I_I_lﬁ

Figure 3.5: A bar plot representation of table 3.4. Best view in color.

small spectrogram, linear axis
raw power
= log power

small spectrogram, log axis
raw power
= log power

i 1l

Mag_norm ori_w

== temporal (1D)
FFT (1D)

validation F1 (%)

Acc_norm

Table 3.4 gives the results the evaluation of each preprocessing method. Note that the results in table 3.4
are similar to those obtained by Richoz et al. [25] with a different neural network architecture: with three
sensors (accelerometer, magnetometer, gyrometer), they obtained a Fl-score of 79.4 %. For the record, we
reproduced their approach (frequency concatenation of FFT segments), with our setting (architecture pre-
sented in chapter 2, Fourier transforms of 60-seconds long segments instead of 5s), and obtained a validation
Fl-score of 81.44 + 1.06%. The closeness of the results is not surprising, as using sixty seconds instead of
five to make a prediction actually brings little additional information [141].

Switching to the norm of the FFT is strictly better than using raw, temporal representations. This
difference might be due to the fact that the power spectrum better separates patterns from noise (see fig.
3.6).

49

Chapter 3 — Preprocessing

mean power spectrum of Acc_norm mean power spectrum of Gyr_y
107 A — Still — Car 107 4 I — Car
Walk Bus Walk Bus
— FRun — Train —— Run — Train
10° |l Bike — Subway), Bike — Subway
3 Lp 107 5
10% 10% o
10t 10° o
T T T T T T T T T T T T
o 10 20 30 40 50 o] 10 20 30 40 50
mean power spectrum of Mag_norm mean power spectrum of Ori_w
3
1o — Still — Car — Still — Car
Walk Bus 2 Walk Bus
10% 4 — Run — Train 10 —— Run — Train
Bike — Subway Bike — Subway
lD!] 101 -
lD; _ 10] -
3 \/""'"‘”‘\/“ﬂ 107
T T T T T T T T T T T T
0 10 20 30 40 50 0 10 20 30 40 50
mean power spectrum of Ori_norm mean power spectrum of Pressure
lDl —
— Still — Car — Still — Car
| Walk Bus 10° § Walk Bus
— Run — Train —— Run — Train
Bike — Subway Bike —_— Subway
| | 10° 4
1y
lD-: 4
101 -
10-: =
At oot :..,M
107t 4 10! o
T T T T T T T T T T T T
] 10 20 30 40 50 0 10 20 30 40 50
f{Hz) fHz)

Figure 3.6: The average power spectrum per class (only half of the spectrum is shown). Note the closeness
of the fundamentals for the Walk, Run, and Bike classes, the Dirac comb shape of the Run spectra, and the
sharp components at 21, 25, and 30 Hz for Bus signals (corresponding respectively to 1260, 1500 and 1800
rpm, the usual rotation speeds of an engine). Best view in color

As expected, using spectrograms seems better, in most cases, than using a power spectrum, or even a
temporal segment, and the difference between spectrograms and temporal data (about 25 points on average)
is higher than the difference between the two optimized approaches of the challenge (five points between
the spectrograms [50] and the best temporal representation [113]). One notable exception, however, is the
raw, full-size spectrogram, with the orientation vector. This method has an impressive standard deviation,
because two of the five initializations were failure cases that did not learn efficiently and had a Fl-score of
2.8% (which is the score of a classifier that predicts the most occurring mode). The others had a Fl-score
of 76.4 + 1.6%, which is closer to what one could expect given the results of the other sensors. We will look
at this unexpected behaviour in the appendix (chapter D).

Using the log of the power is strictly better than the raw power for the accelerometer, gyrometer, mag-
netometer: the average gain obtained by switching from the raw power to the log power is 7.66 percentage
points. For the case of the Orientation, using the log power is even mandatory. This is due to a particularity

50

Chapter 3 — Preprocessing

of the signal: contrary to other sensors, the orientation vector is subject to sharp changes: all scalars may
be replaced by their opposite between one timestamp and the following one. As these scalars are defined up
to a sign, the information stays the same if the whole quaternion is multiplied by —1. But the individual
signals are still affected. On a frequency level, this translates into a sharp, but localized, maximum. When
computing spectrograms, those maxima prevent the network from seeing anything else. Switching to the
log-power allows to dampen these maxima, so that the network works with relevant information.

Orientation vector

(Walk segment) Power spectrum of the orientation vector
1.00 - 103
0.75 4
102 4
0.50
0.25 1 | 10] .
0.00 — X
—y 100 4
—-0.25 2
—0.50 - —w 1071
—— norm
-0.75 A
0 10 20 30 40 50 60 0 10 20 30 40 50
t(s) f (Hz)
=12
Raw power of Oriy 0.000007 Log power of Oriy
0.000006 -14
0.000005
g g e
] 0.000004 @
= 3
o o -18
L 0.000003 2
0.000002 -20
time 0.000001 time —29
0.000000

Figure 3.7: An example of discontinuity. Note how the periodic components at the end of the segment leave
patterns that remain noticeable with the log-power, and not with the raw power.

Using a logarithmic interpolation for the frequency axis allows to effectively reduce the size of the data
without altering the signal as a linear interpolation does. This might be due to the fact that interpolating
linearly a (550, 250) spectrogram into a (48, 48) matrix erases the difference between the fundamental
frequency of the Walk and Bike segments (the fundamental frequencies for the Bike, Walk, and Run classes
are at 0.9, 1.15, 1.3H z, respectively). A log scale preserves the distinction between these modes by giving
more room to the lower frequencies.

However, we should mention that this section is not entirely fair: to perform our comparison, we used
the baseline architecture, a network which comes from a publication using spectrograms [50]. This means
that the different hyperparameters (learning rate, number of layers, etd.) are likely to be optimized for
spectrograms. Using these same hyperparameters for temporal representations (and FFT) is likely to yield
suboptimal results, which leads to a bias in favor of spectrograms. A more rigorous approach would perform
a hyperparameter search for each representation independently. The fact that we found results similar to
Richoz et al. despite having different networks might indicate that the architecture has little influence on
the performances. However, the difference in performance we found in out experiments (about 20 percentage
points on average) is much higher than the difference between the best 1D CNN of the challenge (83%
test F1) and the only 2D CNN (88% test F1) [140]. The results of the challenge allow us to be sure that
spectrograms are better, but our experiments alone are not enough to reach this conclusion.

51

Chapter 3 — Preprocessing

3.4 Understanding why spectrograms are more effective

We have seen that the spectrograms seem to be the most efficient representation for the SHL 2018 challenge,
but we do not know why. We did display a graph (fig. 3.6) which shows some of the classification information
can be found in the spectrum of the signal, but this figure, as pretty as it is, is not a guarantee that the
network actually relies on this specific information. In this section, we will focus on a network using the
spectrogram of the norm of the accelerometer; and try to know which information the network exploits.

3.4.1 'Which frequencies are useful for classification ?

We first want to know what are the frequencies exploited by the spectrogram, To do so, we try obfuscating
the frequencies (fig. 3.8): we set eight lines of pixels (corresponding to frequencies) to zero in the every
spectrogram, and ask the network to predict the class of the noisy samples. We will vary the frequency
interval we set to zero to see which frequencies are the most useful: the more important the corresponding
frequencies, the worse the performance when this information disappears. We evaluate two type of networks:

e networks that were trained on normal data: we train one network on pristine data, and evaluate it on
a degraded validation set.

e networks that were trained on noisy data: for each frequency band we remove, we train the network
on a degraded version of the train set, and evaluate it on a degraded validation set. We use the same
degradation (we set to zero the same frequency bands) for the training and validation sets.

erasing lines 1 to 8 erasing lines 5 to 12 erasing lines 9 to 16 erasing lines 41 to 48

hihihi h!
t t t t

Figure 3.8: An illustration of the data degradation process: we set eight consecutive lines to zero in the
48 x 48 spectrograms.

If the first experiment matters the most to us (we want to understand the frequency a normal network

uses), the evaluation of networks trained on degraded data allow us to see whether there is another way to
solve the problem that the one the network chose. Given the strong differences in the frequencies that are
proper to each class, we display the Fl-score per class. Figure 3.9 displays the results. For the network
trained on clean data (fig. 3.9a), the only understandable curves are the Run and the Walk ones: they are
almost to their maxima for all but two of the intervals ([1 — 2.6Hz] and [1.8 — 4.4Hz]), meaning that the
network bases its predictions on these frequencies to predict if the user is walking and running. The other
curves are harder to interpret given their irregularity.
For the network trained on degraded data (fig. 3.9b), we cannot draw class-specific conclusions for the
opposite reasons: we can see that the network learnt to ignore the noise because the performance is generally
much higher than the performance of a network that did not see the degraded data during its training. At
best, we could say that there is a slight decrease in performance for the Run and Walk classes for the two
bands between 1 and 4 hertz, but the difference (a few percentage points) is much smaller than the variations
in the curves for the other classes, which we cannot assign meaning to. The only affirmation we can deduce
is that there are enough redundancies in the spectrogram for the network to ignore partially the loss of
information: the lowest average Fl-score in fig. 3.9b is 86.23 + 1.50%, which is not far from the network
trained and evaluated on clean data (88.83 4+ 0.71%).

We cannot conclude on the data each class needs, but we can draw an additional conclusion about figure
3.9b: given that setting the [20 — 50H z] to zero during the training process does nor affect the performance
much (the average Fl-score of the network is 88.61 + 0.94%), we could have undersampled the signal to

52

Chapter 3 — Preprocessing

20 x 2 = 40Hz (the x2 factor comes from the Shannon theorem), without loosing too much information.
This means that the sensors that recorded the SHL dataset could have run at 40 Hz instead of 100, saving
valuable amounts of energy. A practitioner trying to implement an practical device could have this conclusion
in mind to help increase the autonomy of the device.

I 0.95 4
— still

walk 0.90 1
— Run
— ?:re 0.85 4 M
Bus Walk
—— 0.80 + — Run \/—/_—
— subway Bike
0754 — Car
Bus

-
o
i
o
o

o
o

o
o

=3
S
L

F1 score
F1 score

T
& & P P @ P P S P L N Y O A AR N o
ha) N bal hg G’\/ B ,\b' Y P o> o N} o e G‘\/ e ,\.b’ Y N o
o o e’-"x u*’q & o @f SO S S GQQ o 0"’;\ e?’o & o P LA LI
N A N A < A A & Q \,{!/ Q% h A A3 N A A W & Qr Qq,- QQ
removed interval (Hz) removed interval (Hz)

(a) (b)

Figure 3.9: The F1 per class of a network that was trained on clean (a) or degraded (b) data and evaluated
on degraded data, depending on the frequency band removed by the degradation. The width of the curves
denote the standard deviation across five random initializations. The log scale for the frequencies make the
intervals uneven when expressed in Hertz, while they had the same size (eight pixels) on the spectrogram.

However, when designing this experiment, we did a mistake, which was to reproduce a protocol from
Computer Vision (obfuscation, [233]) without thinking why this protocol was not adapted to our signals:
when setting a series of frequencies to zero, we create a discontinuity, a border in the frequencies. In other
words, the difference between clean data and noisy data is a feature in itself, like the value of any other pixel
of the spectrogram. We assume this is why the performance of the "Still’ class is almost always zero when
the network did not learn to ignore the noise: it interprets the discontinuity in frequency as a meaningful
signal, while it expects to see no (or close to zero) energy when the user is not moving. We assume that in
Computer Vision, this is not as much of a concern because occlusion is a natural phenomenon in images.
Some Computer Vision training protocols even hide a fraction of the image to make the network more
resilient to occlusion [234].

To improve our protocol, we could have considered changing the data degradation protocol: instead of
setting the desired segments to zero, we could have replaced the data with a linear interpolation of the closest
valid frequencies. However, the main conclusion that we can make is that the network relies heavily on the
1 — 4H z interval to detect the Run and Walk classes. The next chapter will be the occasion to precise how
the spectrogram computation make the problem easier for the network to solve.

3.4.2 Computing the average of gradients
Saliency maps

Deep models usually are known to suffer from a lack of immediate interpretability [235]. To be able to
know what a network relied on to classify a given image, several works produce a saliency map, that is, an
image with the same size as the input, which values differ from zero in the regions which contribute to the
network’s conclusion. Let us consider a spectrogram X which is the input of our network, and choose a
class y. To know what are the regions contributing to the classification as y, we generate a saliency map by
computing the gradient of the log-probability of the class y: Vxlog(p,). We obtain the saliency map which

53

Chapter 3 — Preprocessing

has the same shape as X, with both positive and negative values®. If one value is positive (resp. negative),
it means that increasing the scalar in the corresponding position in the input increases (resp. decreases) the
probability p,.

Remark 1: Contrary to the training process of the network, in which we compute the gradient of loss with
relation to the network’s weights, here, we compute the gradient of log-probability with relation to the input.
Remark 2: in this manuscript, we only apply salience to compute the gradient of the log-probability of the
class the spectrogram belongs to (ground truth), but we could have computed the gradient of another class
(and in particular, the class the network predicted in case of a mistake).

One could wonder why we do not compute the gradient of the probability directly, and choose to focus on
the log-probability. This protocol is common to many saliency maps publications, even the first publication
computing saliency maps used the class logits. In our case, we do so because the probabilities are computed
with a softmax of the logits: as fig. 3.10 illustrate, their gradient are often too close to zero. When we will
add the saliency maps to each other, if we added the gradients of the probabilities, many spectrograms for
which the model is certain (p, = 0 or p, = 1) would simply not account in the average.

1.0

0.8

High gradient

0.6 1

0.4 1

Low gradient

0.2

0.0

-10.0 -7.5 -5.0 =2.5 0.0 2.5 5.0 7.5 10.0

Figure 3.10: the reason why we compute the gradient of a log-probability: for many samples, the gradient
of the probability are too low to account for in an average.

In the literature, there is a large diversity in the family of methods to create a meaningful saliency map.
We presented the most baseline saliency map, but several alterations exist, such as removing the negative
gradients [144]. We will not go through a complete inventory of the different saliency maps in the literature,
because a recent paper [236], demonstrated both theoretically and experimentally that methods like Decon-
vNet or Guided BackPropagation (GBP) partially reconstructed the input image instead of highlighting the
elements the network based itself upon. As the most basic saliency map did not suffer from this flaw, we
will consider only this technique. Even though its usefulness has been questioned [237, 238, 239, 240], we
will demonstrate the relevance of this method for our application.

2Some [144] consider the absolute value of the saliency map to differentiate between the informative regions (high absolute
value) from the low-informative ones (values close to zero), a treatment we will not use.

54

Chapter 3 — Preprocessing

original_data saliency
raw data true class: Run a positive gradient increases the
prediction: Run p=1.0000 probability of class ‘Run’

frequency (Hz)
® %
02
s 3
8 8
'
.
=g
.
.
|
\ -1
-
=
.
I ¥
°
S

frequency (Hz)

2 8 14 20 25 31 37 43 48 54 2 8 14 20 25 31 37 43 48 54
[10 20 30 40 50 60 time (s) time (s)

Figure 3.11: An example of saliency map with a single Run segment.

Figure 3.11 displays an example of such saliency maps. When looking at this example, it seems that
the saliency map correctly translates the useful frequency band we saw being used in the previous section.
However, we would like to use a method for which we do not have to look at samples one by one. We would
like to compute an average of saliency maps per class, but we are not yet sure that such an average makes
sense. Figure 3.12 illustrates the main problem we face: computing an average only makes sense if every
input pixel has the same meaning. Given that the position of a point on the time axis does not change
the meaning of the information much, a pattern might be present anywhere along this axis. By summing
the 48 x 48 values of the spectrogram, we run the risk to sum different instant of the same pattern, hereby
destroying it. This problem is not a concern for the frequency axis, because two patterns which have different
positions on the frequency axis have different meanings.

To summarize, we need to make sure that no interesting patterns on the time axis are destroyed. In
the next section, we will demonstrate that the temporal variations we observe in the gradients are not used

much by the network.
ﬁ + |ﬁ + @ + g

Figure 3.12: An illustration with artificial data of what we want be careful to when averaging the gradients:
summing different versions of the same motif, at different time steps, might destroy it.

Hypothesis verification: the network uses mainly the frequencies

To verify whether the time axis is relevant, we will use a data degradation that leaves one axis intact: the
shuffle (see fig. 3.13 for an illustration). We select all the lines (resp. columns) of the spectrogram, and
shuffle their order at random (with uniform probability, independently for each spectrogram). By doing so,
we completely destroy any pattern that appeared on this axis. Then, we ask a network trained on clean data
to predict the class of degraded versions of the validation samples. Given that the shuffle operation made
the axis useless, if the network still obtains a good performance, it means that the respective positions of
the lines (resp. columns) do not play an important role in the network’s prediction. Inversely, the lower the
performance, the more important the position on the axis we just shuffled. We also consider shuffling both

55

Chapter 3 — Preprocessing

axes to provide an additional verification.

time

t

Figure 3.13: An illustration of the axis shuffling with a spectrogram from a Run segment. On top of each
spectrogram is the name of the shuffled axis

clean time | shuffled time

clean frequencies | 89.0 £1.6% | 80.7+0.7%

shuffled frequencies | 21.7 +2,7% | 24.4 + 3.8%

Table 3.5: The validation F1-score of a network trained on clean data and evaluated on spectrograms whose
axis were shuffled (see fig. 3.13). We repeated the evaluation with five random initializations of the network.

Table 3.5 gives the result. We can see that the decrease in performance is much higher when shuffling
the frequency axis (there is a difference of about sixty points between each result of the top line and their
bottom counterpart) than the difference when shuffling the time axis (left versus right). The fact that there
is (relatively) little difference between the spectrograms and their time-shuffled counterparts means that the
time axis : the interesting patterns seem to be located in majority along the frequency axis. Figure 3.12
does not happen in our case: the network saw the input signals wee stationary and does not seem to search
for temporal variations in the signals’ spectra. In other words, the fact that the temporal organization of
the spectrogram values are much less important than the organization on the frequency axis mean that we
can safely sum the gradients of spectrograms.

56

Chapter 3 — Preprocessing

Understanding the sum of gradients

Walk Run
0.05 0.1
0.01
N
z 0.00 0.00 0.0
—
-0.01
-0.05 -0.1
0.02 0.01 0.01
N
z 0.00 0.00 0.00
—
—0.02 —0.01 -0.01
0.01
0.01
~
T 0.00 0.00
-
-0.01
-0.01

Figure 3.14: The gradient of each class.

Now that we know we will destroy little information by summing gradients, we can proceed to compute the
average of gradients: for each of the eight classes, we gather the training samples belonging to the class,
compute the saliency map using the gradient of the log-probabilities, and average the gradient for each
class. The result is in figure 3.14 (a zoom on the most interesting frequencies is provided in fig. 3.15), and
displays several interesting patterns. Firstly, to predict the Walk class, the network is mostly influenced by
the [1.8 — 2.0Hz] and the [3.0 — 3.4Hz] bands. On the other hand, a high power in the [1.4 — 1.6 Hz] and
[2.3 — 2.6 H z] bands will strongly reduce the probability of the network classifying the sample as walking. We
assume that the negative bands come from the interactions between classes: if the sample exhibits a sharp
component at 2.6 Hz (We remind the reader that the fundamental frequencies for the Bike, Walk, and Run
classes are at 0.9, 1.15, and 1.3H z, respectively, but the highest power is at 1.8, 1.15, and 2.6 H z for these
three modes). This is further shown by the fact that the Run gradient is at its highest for the [2.6 — 3.0H z]
band, one line above the lowest value for the Walk gradient. The same goes for the [1.1 — 2.6Hz] band,
which contributes to the Bike class.

Surprisingly, if the Bus class displayed strong components at 21, 25, and 30H z (fig. 3.6), the network
seems to only use the 25Hz band: the intervals [19.8 — 22.2Hz] and [28.0 — 35.3Hz| seem to contribute
negatively to the Bus class. Most importantly, these bands are not the ones to have the highest absolute
value in the whole gradient: their contribution does not seem to outshine the other frequencies’ influences.

Also, please note how strong the gradients for the Walk and Run classes are (the maximal values of these
two classes’ gradients are five to ten times higher the value of the other classes’). We could assume that any
model looking at the frequencies can at least classify these two classes. We will see that it is the case, at
least for the Run class. But before proceeding, we need to make sure that the gradients we just computed
are relevant.

57

Chapter 3 — Preprocessing

0.06

0.04

0.02

0.00

-0.02

f (Hz)
W WNNNE P O
OB WOR O BN
i

el
ﬁg
—_— = [—_— =

-0.04

—0.06

- 0.10
§:§: B 0.05
= %ﬁ%z - TEOEEEEEE———— 0.00
=351
g;ﬁli -0.05
6.9 = T T T —0.10
16 30 42 56
t(s)
Bike
§Z§E = B = Eapw | 0.02
85
CEEE
::g_ %%] 0.00
16
18
2.0 —0.02
56
19.8 0.01
22.2
_ 250
N 28.0
::E_ g%g 0.00
397
44.5

T T v y —0.01
16 30 42 56
tis)

Figure 3.15: A focus on some gradients from figure 3.14.

A sanity check: Going further towards the gradients

For many classes (Still, Car, Train, Subway), the gradients are fairly hard to interpret. To make sure that all
our gradients make sense, we will try to evaluate the predictions of the network when we add the gradients of
each class to all the samples in the validation dataset. If the gradients are relevant and actually encompass
the important frequencies, we will observe a shift in the predictions, such that the networks predict the class
the gradient comes from. To be able to compare the speeds of the prediction shifts across classes, we do not
consider the gradient themselves (gC)CE{Walh Bus,etc.}» but the normalized gradients (Hggﬁ)o To save time,
we also add the gradients by batches of 20 (we whose this value to be a compromise between the resolution
of the figure and the execution speed of the code). The following pseudo-code algorithm shows the outline
of our experiment:
Require: A list of gradients (gc)ce{waik,Bus,etc.}> @ step size (chosen to be 20)
for every class ¢ do
predictions _history. + ()
while 90 % of the predictions do not belong in the same class do
for every sample in the dataset do
sample < sample + step _size % g./||gc||2
end for
Record the predictions Lpredictions On this new dataset

o8

Chapter 3 — Preprocessing

predictions _history. < predictions__historye | J{ Lpredictions }
end while
end for
return the lists (predictions _history.). which show the prediction shift

Sill Walk

Proportion

T T T T T T
200 300 400 500 600 700

Bike

10

1]

0.6

0.4

Proportion

0.2

0.0

T T T T
100 120 140 160 180

Proportion

T T T T T T T
o 250 500 750 1000 1250 1500 1750

Train Subway

Proportion

T
200 300 400 100 200 300 400 500
projection along the gradient axis projection along the gradient axis

Figure 3.16: The histogram of the predictions on the validation set after we added the gradient for a given
class a certain amount of times. To display this graph, we re-weighted the samples so that the bars appear
balanced when the dataset is untouched.

Figure 3.16 gives the result: for many classes, adding repeatedly the gradient to the whole set does push
the predictions towards the class the gradient was computed with. The only exception is the Still class,
for which adding the gradient more than forty times actually decreases the probability for a sample to be
classified as Still. We assume this is due to the fact that once we add the gradient a sufficient amount
of times, the power of some of the frequency bands becomes overwhelmingly positive, which the networks
interprets as seeing a high-energy segment: in short, the network sees the phone move.

On the other hand, the Walk and Run gradients’ addition push the predictions towards the respective
class extremely fast, even though we made sure all gradients had the same norm.

The fact that the gradients are enough to push the direction for seven of the eight classes indicate that
they carry some meaning about the network’s predictions. In the following section, we will demonstrate that
the network behaves linearly to identify the Run class.

59

Chapter 3 — Preprocessing

Measuring the linearity of the network

Given how fast adding the gradients for the Run and Walk classes caused a prediction shift, and given that
these two modes are easy to distinguish using the signal’s frequencies, we might wonder if a neural network
really learns complex features learn to classify these easy classes. In particular, we will show that the network
behaves like a linear classifier for the Run class. To show it, we will use three experiments, which fig. 3.17
illustrates:

e Experiment 1: We create a linear classifier which class prototypes (the vectors used to compute the
class logits) are the classes’ gradients. This is intended to show if the classification problem admits a
linear solution.

e Experiment 2: We project the validation dataset onto the subspace spanned by the eight gradients
(that is, we force the samples to be linear combinations of these eight gradients), and ask the (nonlinear)
neural network to classify this altered set. If the network is linear, the predictions will not change after
the projection.

e Experiment 3: We project the validation dataset along the subspace spanned by the eight gradients
(that is, we 'remove’ the gradients from the samples), and ask the network to classify this altered set.
If the network is linear, the predictions will change drastically after the projection.

Gradient B Subspace spanned by

sample /v the eight gradients
Projection along

the subspace (exp. 3) r

Ly

Ly

Experiment 1: L, > Lpg,
the predicted class is A

Gradient A

Figure 3.17: the three experiments we will lead to show the network classifies some classes linearly.

60

Chapter 3 — Preprocessing

Average F1: 41.08 %

ground_truth

Train

Subway

Run Bke Car Bus Train Subway
prediction

(a) linear classifier

Average F1: 21.04 %

Average F1: 34.24 %

ground_truth
ground_truth

sl Walk Bke Car Bus Train Subway
prediction

Walk Bike Car Bus Train Subway
prediction

(b) projection onto the subspace (c) projection along the subspace

Figure 3.18: The results of the three experiments described in fig. 3.17. The first experiment (a) shows

the Running segments can be classified linearly with little error; while the two others demonstrate that the
network actually behaves linearly.

Figure 3.18 displays the results of the three experiments. Each time, we look at the resulting confusion
matrix. For experiment 1, we should look at both lines and columns to assess the performance of a linear
classifier. But when looking at the fate of the predictions (experiments 2 and 3), we should look at the lines

of the matrix (the samples actually belonging in the class), to know whether the alterations we introduced
disturbed the network. The results are the following:

e Experiment 1 (fig. 3.18a) shows that a linear classifier discriminates the Run class extremely well,
apart from a slight confusion with the Bike segments. This is an indication that the problem is linearly
separable using the network’s gradients.

o Experiment 2 (fig. 3.18b) shows that if we were to project the samples on the gradients, the prediction
of the network on the Run segments would be unchanged, a strong indication that the problem of
classifying the Run segments versus the rest is solved by the network using a linear decision boundary.

e Experiment 3 (fig. 3.18¢c) shows that the Run segments are misclassified as Walk when we remove the
Run class’ gradient. On the other hand, the Walk segments are well classified even after removing the
gradient, an indication that the network is does not behave linearly to discriminate this class.

Experiments 2 and 3 demonstrate that the network using the norm of the accelerometer behaves like a

61

Chapter 3 — Preprocessing

linear classifier for the Run class. This shows one of the interest of the spectrogram representation: compared
to a high-dimensional temporal representation, spectrograms helps make the problem easier to solve.

To sum up, this section just showed that the spectrograms seem to obey the behaviour described in figure
3.3: they make the problem more simple, thereby improving the performance when the number of samples
is low.

In particular, we said that the spectrograms made the classification problem linear for the Run class,
but this is not exactly what we wanted: we wanted to know what did the spectrograms change with respect
to the temporal representations. If the problem of classifying Running spectrograms was almost linear,
but the problem of classifying raw, temporal representations of Running segments was ezactly linear, then
the spectrogram would not have made the problem easier. Sadly, we cannot directly compute an average
of gradients in the temporal domain, because the phase will prevent the most important frequencies from
aligning with each other.

There are other ways we could have pursued our work: we could choose to do an architecture search for
each representation. Or, we could have decided to study the hypothesis that came from the study of the
literature, which is that spectrograms are better suited for smaller datasets than temporal representations
(for instance, we could have reduced the number of samples to see if the performance difference between
representations increases).

3.5 Conclusion

After a small introduction aiming to improve the padding used in several works of the literature, we focused on
the difference between raw representations and spectrograms. We concluded our overview of the literature by
saying that that spectrograms seem to be most useful when the number of samples is low, before implementing
a comparison ourselves with the SHL dataset. We tried understanding what did the spectrograms bring, and
we saw spectrograms made the classification problem more simple for the network. If the conclusions of the
literature study apply to any temporal signal, the fact that a network behaves linearly for one class seems
proper to TMD: in the case where the signals are not stationary, we would expect the decision boundary to
be much more complex than a mere linear function.

Figure 3.3 seems to be verified by both the bibliography and the experiments we led. Our original question
was: "should we use spectrograms ?". Our bibliographic study and experiments indicate that, unless we
work with a million-samples dataset, the answer is ’yes’. In other words, without a huge database, we need
to help the networks by computing a representation that simplifies the problem.

62

Chapter 4

(Global Pooling

In its most basic form, a Convolutional Neural Network is usually made of two types of layers: the con-
volutional layers, which process 1-dimensional signals, 2D images, or even 3D tensors [241]; and the Fully-
Connected layers, using fixed-size vectors. We use the term ’fixed size’ because a convolution can use inputs
or outputs of any size, provided their number of dimensions match the type of convolution. However, the
one or two-dimensional signals all have an extra ’channel’ axis that does have a fixed size, which means that
the inputs and outputs of a 1D convolutional layer are actually a two-dimensional tensor. The ’channel’ axis
is different from the others because it encodes the type of information present at a given location (while the
other axes encode the location on the 1D or 2D tensor). This is why we will think of the vectors of the fully
connected layers are zero-dimensional representations: they encode information about the whole segment.

To obtain this global representation from local (1D or 2D) features, one needs to use an operation that
effectively removes one (or two) of the axes. This section is devoted to the study of the pooling operations,
the replacements for the flatten step. In this short chapter, section 4.1 will present the types of pooling
available, section 4.2 will develop the choice of metrics we focused on to assess the efficiency of the network
a given pooling method produces, while section 4.3 presents the results and compares our network to the
state of the art. We will see that we obtain a particularly efficient network: we reach performance levels
that compare to the state of the art with only 11,000 parameters. If the alternatives we present here are
well known in the Computer Vision community [142], our contribution is to bring them to the domain of
Transport More Detection.

4.1 The different types of global pooling

Historically, the flatten layer appearing with Convolutional Neural Networks is the flatten operation [1],
which simply aligns all the values of a tensor into a vector. But in 2015, the Resnet architecture introduced
the use of an average along the two dimensions of the image [150]. In our case, if X} . is the two-dimensional
matrix at the end of the last convolution layer (¢ being the index along the ’time’ dimension, while ¢ is the
index along the ’channel’ dimension), the average of the features would be equal to Y, = % Z;Bl Xt e
Alternatively, we could use a maximum (Y. = mazico.7—1 (Xt.c)), but a more general option would be to
use the generalized mean [242]:

Y, = (% Z;*Ol (ch)ac)l/ac.

This expression uses one parameter o, > 0 for each channel ¢, which are learnt by gradient descent like
any of the other weights. When «, = 1, the expression is equal to the arithmetic average. When «a, — +00,
the generalized mean converges towards the maximum of the (Xi.)iep. 7. In order to avoid numerical
instability, a small term! was added to the input tensor X. In practice, the values of o, are initialized
following N (5,1), a normal distribution with an average of 5 and a unit standard deviation. The choice of a
distribution is arbitrary, the only constraint being that we do not want o, to be negative before the learning
even begins (if a. < 0, the expression is equivalent to using a generalization of the harmonic mean, which is

Lthe lowest value we could use was 5.10~°, which seems quite high

63

Chapter 4 — Global Pooling

close to 0 when one of the features X, is close to zero, which makes the associated channel useless). The
value of all the a, seems to converge between 0 and 5 during the training process.

Now, these pooling methods are said to be global, because they use an entire feature map and return
a single, fixed-size vector. However, local variants of these pooling methods exist: a local pooling uses a
feature map as an input, and returns another feature map, where every pixel is the maximum (or the mean,
etc.) of a certain number of input pixels at the corresponding position in the input feature map. As an
example, many neural networks do include several local maxpooling layers to reduce the dimensionality of
the intermediate feature maps. We do not include these methods in our experiments, but we assume their
efficiency (in terms of either classification performance or computational requirements) in between the global
pooling and the flatten step (which we could understand as performing absolutely no pooling). However,
a local pooling layer would lack a key perk that global pooling methods have: the ability they provide to
process inputs of arbitrary sizes.

As Wang et al. [142] mention, the choice of a global pooling allows to use segments of any length as
inputs of a network. As we said, the convolutional layers can use inputs of any size (provided the number of
channels match), while the number of features in the FC layers is fixed. However, contrary to the flatten step,
the global pooling operations allow obtaining the same number of features no matter how many time steps
T the input segment had. This means that no matter how long is the input segment, the fully connected
layers will receive a segment with a fixed size (see fig. 4.1). This is why the baseline architecture for the
GeoLife database, which we presented in chapter 2 is able to process segments of different sizes.

T*C

Flatten |

The size dependson T
(duration of the segment)

T /
S
C \ \
Average \L The size does not depend on
Max along time T anymore
Generalized Mean J c

Figure 4.1: Why a global pooling method allows a network to process inputs with different shapes. This
idea originally comes from Computer Vision ([142]) , but was unknown in TMD.

4.2 FEvaluation metrics

To evaluate the diverse measures we will employ, we will look at three types of values: classification perfor-
mance (validation F1), but also at the number of weights and operations of a network.

One might wonder why we focus on these measures and not on running times, for instance. To understand
the reasoning that led us to choose these values, we will take an example with a practical use case. Let us
consider the example of the application which made us focus on Transport Mode Detection in the first place:
an automatic carbon footprint estimator on a smartphone. When dealing with embedded devices, most
neural networks are trained offline (on a computer) on prerecorded data, and sent to embedded devices for
inference. This method relies on the fact that the training is the most computationally intensive step. In a
real use-case scenario, the end-user would download an application containing the trained model, and record
the beginning and end of their trips. The application would automatically estimate the transport mode of
the user to compute an estimation of the greenhouse gas the trip emitted.

Compared to cloud-based applications which off-load computational steps to remote servers, this embed-
ded classifier design keeps the user’s privacy while still operating regardless of network coverage (the GPS
coverage is different from the phone network or broadband such as 3G, 4G, etc.). However, if this embedded
classifier is not resource-efficient, the application will end up draining the battery of the end-users, who might
choose not to use it. There are publications that manage to embed neural networks efficiently, (see [243],
for instance), however, a heavy network with many parameters is always a hurdle to efficient embedding.
Many real-time applications also consider another parameter: the inference time. For instance, a network

64

Chapter 4 — Global Pooling

detecting objects in videos should be able to process more than one image per second to make sure to avoid
misdetection. Similarly, a network that works in a client-server architecture (as in [109]) needs to be quite
fast because it will process the trajectories from all users at once. However, in our case, the transport mode
of a user does not change too often (the average duration of a tripleg is 28 and 24 minutes in the GeoLife
and SHL 2018 datasets, respectively), and a model is to process the trips of a single user. This is why an
application does not need to run more than once per minute to get accurate results.

This is why our main concern is the number of weights of a network (which influences the memory
the network will require) and the number of operations (which condition the battery consumption of the
network), in addition to the performance. We do include training and evaluation times as an illustration,
even though these results depend heavily on the device. For instance, GPUs are more optimized for parallel
processing, such as convolutions. The number of parameters and operations, however, is independent of the
implementation, and provides an objective measure for comparison.

Hardware and practical setup

We trained the models on a server with an Nvidia tesla V100 GPU (32 Gb of memory), Cuda version was
10.2, and a 40-core Intel Xeon Gold 6230 CPU @ 2.10GHz with 190 Gb of RAM. The evaluation times were
measured on a CPU, a 4-core Intel i7-7820 @ 2.90 GHz with 32 Gb of RAM. However, those running times
are not absolute measures: some devices are better optimized for different types of operations. The only
objective measurements are the number of parameters and operations, which do not depend on the device.
For each result (Fl-score, training times), we repeat the training and evaluation process 5 times, changing
the seed each time. We display the average and standard deviation for each result. We computed the number
of operations using the code from [244]. When the input shape may vary, we used the median length of a
segment in the dataset, which is 500 points for the interpolated dataset (in our case) and 200 points for the
original GeoLife dataset ([108, 109]).

4.3 Results

4.3.1 Comparison of the alternatives to the flatten step

We compared three alternatives to the Flatten, namely Maximum, Mean, and Generalized Mean. As table
4.1 shows, on the GeoLife dataset, only the flatten step is worse than the rest, in terms of performance,
computational requirements, and training and testing time. We assume that the worse performance of the
flatten step is due to the fact that this pooling has to process shorter segments. When a segment is long, the
networks that use a flatten step see a smaller fraction of the segments than networks using a global pooling,
which means the classification is less likely to be precise.

As for the running times, table 4.1 shows us that the use of alternatives to the flatten step make the
complete training process longer, as the convergence is slower with these architectures. Given that most
applications rely on training the model offline (on a computer), the training time of a model is not a
major concern. More interesting is the inference time: we can see that the operations do not change
the duration, notwithstanding the global pooling operations requiring much fewer operations for a single
inference. We hypothesize this equality in running times is due to the fact that the flatten operation relies
on a matrix multiplication, an operation that can be parallelized with any modern library. Alternatively,
our implementation of these operations may be insufficiently optimized. Either way, the fact that the global
pooling operations are as fast as the flatten is not much of a concern to us because Transport Mode Detection
does not require real-time inferences.

The number of weights of the network (which determines the memory size required to fit the network
in any device) and the number of operations (which we use as a proxy for the energy consumption of the
model) are both smaller for the global pooling operations, which is why we will favour these operations for
our application.

65

Chapter 4 — Global Pooling

Pooli Validation number of | operations training time (min) epochs to inference
oolng F1l-score parameters (FLOPs) alning time convergence | time (ms)
Flatten 4 4
(segments of 1,024 points) 77.0 £1.6% 7.6 x 10 9.4 x 10 7.8+0.7 113 £ 17 1.92+0.13
Generalized Mean 80.9 +1.0% 1.1 x 104 3.3 x 104 4394+ 7.3 538 £ 114 1.94 +0.04
Average 80.2 + 1.3% 1.1 x 10% 3.3 x 10* 78.7+ 34.6 1161 +£ 571 1.81 +0.04
Maximum 80.3+1.6% | 1.1 x 10% 3.3 x 10% 16.8 2.7 262 + 66 1.85 + 0.06

Table 4.1: The effectiveness of each kind of pooling, in terms of performance, computational resources, and
training and inference time. For each result, we display the average and the standard deviation, over 5 runs

4.3.2 Comparison with the state of the art

When looking at table 4.1, we see that the choice of a pooling operation has a significant impact on the
computational requirements of the network (number of parameters and operations), which was why ResNet
introduced a global average for initially [150]. We even obtain a network with 11,000 parameters and 33,000
floating-point operations. To the novice, this might seem a lot, and it still represents much more than
any other Machine Learning algorithm (save maybe k-nearest neighbours). But it is actually a minuscule
number for a deep network: in image processing, models usually have several millions of parameters, and
even a model like SqueezeNet, which has been developed to reduce as much as possible the memory footprint,
has 400,000 parameters [245]. Here, the model for the GeoLife dataset has 40 times fewer parameters. Even
compared to the other works in the TMD literature (table 4.2), our network is four to 100,000 times smaller
than the other networks, while still retaining similar performance levels. This is partly because most of the
other networks are either classification CNN using the more expensive flatten step ([28, 57, 55]), or LSTMs,
which rely on a costly matrix series of multiplications ([108, 109]).

66

Chapter 4 — Global Pooling

Number of

reported Number of .
model score woichts operations classes remarks
& (FLOPs)
No mention of
1.1 x 108 4.2 x 108 L
LSTM i 1 4.5 % A 4 the splitting
S + embedding [108] 94.5 % AUC (100 x p) (10,000 x o) lv(splitting
No test set
1.1 x 10% 3.3 x 104
Our GeoLife Baseline 97.1 £ 0.3% AUC 4 /
() (0)
No additi 1 dat
Convolutional LSTM [78] 80.67 % F1 ? ? 4 © additional data
No test set
AD: weath
Convolutional LSTM [78] 83.97 % F1 ? ? 4 o weather
No test set
1.1 x 104 .3 x 10?
Our GeoLife Baseline 87.1+1.1% F1 0 3.3 0 4 /
(p) (0)
The trajectories are
. 4.1 x 10* 6.4 x 108 not segmented
Convolutional Auto Encoder [57] 76.4 % F1 (4 % p) (100 o) 5 AD: Unlabeled GeoLife data
No test set
The trajectories are
. % not segmented
COI?VOIUt.lonal Aut(.) Encoder 80.4 0%7}?1 ? ? 5 AD: Unlabeled GeoLife data
with skip-connections [65] 67.7 % IoU . . . o
No mention of the splitting
No test set
The trajectories are
not segmented
Fully-connected Autoencoder [81] 93.44 % F1 ? ? 5 AD: Bus stop positions
Incorrect splitting
No test set
They did not use
Unsupervised Convolutional 3.9 x 10° 7.2 x 106 any labels to
80.5 % Acc. 5
Autoencoder [55] (40 x p) (100 x o) compute the clusters
No mention of a val. set
7x2.6x106 | 7x1.7x 107
CNN ensemble (7 models) [28] 84.0 % F1 (1,000 x p) (1,000 X o) 5 No test set
semi-supervised LSTM ensemble [127] 4x32x10% | 4x5.2x108 :
1. A41% Acc. No test set
(4 models) 915 £ 0.41% Acc (100 x p) (10,000 x o) 5 o st s
91.9* % F1 8.1 x 106 7.3 x 109 No mention of the splitting
LSTM + Wavelet features [109) 92.7 % Acc. (1,000 x p) | (100,000 x 0) | ° No test set
1.1 x 10% 3.3 x 104
Our GeoLife Baseline 83.9+1.1% F1 5 /
(p) (0)
Random Forests [27] 71 % F1 50 trees ? 6 No test set
1.1 x 104 3.3 x 104
Our GeoLife Baseline 81.8 +0.9% F1 6 /
(p) (0)
AE + Logistic R ion [38] 67.9 % Acc 2.7 x 10° 52 x 10° 7 No test set
+ Logistic Regression 9 % Acc. (10 x p) (10 x o) o test se
1.1 x 10% 3.3 x 104
Our GeoLife Baseline 74.1+0.7% F1 ®) (0) 7 /

Table 4.2: The comparison of the performance, number of weights, and number of operations required for a
single inference (forward pass) of the networks in the literature. This is a reproduction of table 2.4, which
we presented in chapter 2, except that we added the number of weights and parameters. The question marks
(?) denotes the publication which did not leave enough details to obtain a precise estimation of the number
of weights and operations. AD denotes the presence of additional data.

67

Chapter 4 — Global Pooling

4.4 Conclusion

This short chapter presented the global pooling operations, the replacements to the flatten step. We looked
at the pooling methods in the Computer Vision literature and transferred it to a TMD problem. Not only can
we use them to increase the performance of our model, but we can also reduce its size to an extreme degree,
reaching as low as 11,000 parameters. For future work, it might be interesting to try to use architecture
compression to obtain an even smaller network.

68

Chapter 5

Data fusion

When we presented the publication that serves as our SHL baseline [50], we mentioned that the way they
merged data from two different sensors is surprising: they mention simply putting two spectrograms side
by side to form a single image. Merging the information from different signals, a problem called Data
Fusion, is the problem we will try to tackle in this chapter. If most of the works in Multimodal Deep
Learning focus on videos (with both RGB images and sound) or images with text, this problem touches any
Machine Learning dealing with multiple sensors. In particular, the inertial sensors of the SHL dataset we
selected (accelerometer, magnetometer, gyrometer and orientation vector) for Transport Mode Detection.
This chapter is devoted to the evaluation of diverse Data Fusion architectures on the SHL dataset. Our
main contribution is to establish a benchmark that proves that, on Transport Mode Detection, no data
fusion method is significantly better than the others.

In the first section, we provide a brief overview of the fusion methods used in multimodal deep learning.
Then, section 5.2 presents a list of data fusion architectures we selected for evaluation. Section 5.3 displays
the results of the comparison, and mainly conclude that no fusion method strictly outperforms the others. In
section 5.4, we experiment with a novel fusion method that tries the sensor-specific layers to generate features
that are complementary between sensors. If the fusion method in itself does not increase the performance,
we use it to show that the networks are able to learn the right amount of redundancy by themselves. Finally,
section 5.5 concludes by an evaluation of the best fusion method we found on the SHL test set, which we
did not use until now.

5.1 Data Fusion modes in deep learning

As we said earlier, all research works processing different sensors merge the data one way or another. Most
approaches rely on simple fusion modes: Early fusion (concatenation of input signals [50, 246, 223, 247]),
intermediate fusion (concatenation of representation coming from different sensors [248, 206]), or late fusion
(average of predictions [249, 25])

Some approaches are sensor-specific, either because they work on textual data [250, 251] and rely on
the specific structure of the medium; or because they create an explicit alignment between sensor data with
different ranges (eg an RGB camera looking forward and a LIDAR sensor gathering information from all
directions) [248, 252], which is not applicable in our case as the signals from different sensors are already
synchronized.

Others train an autoencoder to reproduce one sensor from the other, and use these autoencoders to
generate features that will be processed by a classifier [253]. This approach relies on the fact that minimizing
the variation of information between the different sensors’ features helps to build efficient features [254]. If
this method helps to train a classifier that is robust to missing data, the resulting classifier is worse when all
the sensors are available. In our case, as we assume the sensors function properly most of the time, we will
not consider this method.

But some methods are still relevant: for instance, Li et al. [255] design a network that merges the infrared
and RGB information for depth estimation. Their network, baptized IVFuseNet, is halfway between an early
and intermediate fusion, for it gathers two sensor-specific convolution modules (one for RGB images and

69

Chapter 5 — Data fusion

one for depth map), and one series of convolution layers that uses the internal representation of the first two
modules to return a prediction.

Wang et al. [256] work with audiovisual videos, and noticed that in some cases, adding the audio to
the RGB video only makes the model overfit more. They start from an optimization problem (when each
network returns a prediction, find the optimal weights to minimize the overfitting), and derive a formula to
produce weights so that the overfitting of the different sensor-specific networks is reduced.

Chen et al. [257] designed a network that uses a combination of features from RGB videos and Inertial
Measuring Units (accelerometers). The model starts by computing features from sensor-specific channels.
Then a dedicated module produces coefficients between 0 and 1 that will be multiplied by these features.
The channels are then multiplied by their respective coefficients, depending on the usefulness of each sensor
for a given sample.

Liu et al. [258] tried to conceive a network that does not require every sensor to be good every time,
considering that some of them may have blind spots. Their approach is a modification of a late fusion (they
have several sensor-specific models that can return a prediction), with a specific loss that leaves untouched
the weights of a model if it is not confident in its prediction.

These methods are always better on the dataset each publication considered, but most works provide
little comparisons with other methods if any. In general, most of the publications which deal with multiple
sensors compare their architecture to a small subset of baselines, and those subsets do not always overlap
between publications. Reviews exist to identify the different fusion modes [259, 260], but they only report
the performance of each method on its dataset. We provide a clear comparison of the different fusion modes,
including the most basic ones.

However, we should mention that our work are not exhaustive: multimodal data fusion is an extremely
broad topic, and there are methods that we did not consider. As an example, Paul Liang, a PhD student at
Carnegie Mellon University, recently published a reading list on multimodal deep learning [261], that includes
as many as 500 publications. As a comparison, we only thirteen algorithms, amore thorough investigation
would likely require a complete thesis in itself.

5.2 An inventory of fusion modes

We selected several data fusion methods that are relevant in our setting for comparison. The names may
vary, some methods might even not be named. One important note: most of these modes are equivalent to
our baseline architecture when a single modality is used (if they leave the possibility to use a single sensor).
The exceptions are the bottleneck filters (section 5.2.1) and attention (section 5.2.2).

5.2.1 Early fusion

Early fusion modes consist in giving all signals to a single neural network. The only difference between them
is how the input signals are put together before they are processed by the neural network.

e Time concatenation: the input spectrograms are concatenated along their temporal axis.

e Frequency concatenation: the input spectrograms are concatenated along their frequency axis (after
log interpolation).

e Depth concatenation: the signals are put together like the channels of a RGB image: each convolution
filter of the input layer has access to the same portion of all signals at the same time.

Figure 5.1 illustrates these three methods.

70

Chapter 5 — Data fusion

time concatenation frequency concatenation

depth concatenation

frequency

Convolution filter of
the first layer

Figure 5.1: the three early concatenations

Note that early fusion is not always possible for every problem. As Moya-Rueda et al. notice [214], using
these modes require having the sensors synchronized (which implies having the same frequency) in order for
the fusion to be relevant, because temporal measures of different sensors are put on the same level.

At first, concatenating signals along their time or frequency axis seems surprising, as the resulting ’spec-
trogram’ is not homogeneous. A convolutional network using such inputs would have no way to know from
which sensor comes a given pattern. However, these fusions are similar to a more relevant setting: features
concatenation. In order to understand this idea, one should look at a characteristic of convolutional neural
networks: even if the receptive field of a given neuron is large, in practice, the features obtained after each
convolutional layer retain the spatial information. In other words, the features at a given location of a feature
map will be mainly influenced by the patterns at the corresponding location in the input spectrogram (or
image), to the extent that one can use a classification dataset to train a segmentation network, and obtain
acceptable results with minimal modifications to the classification architecture [262, 263]. As we use a flatten
layer to obtain a single feature vector, the scalars of the vector each have a distinct spatial origin. Given
that the operation that follows is a matrix multiplication, the network can adapt the weights of the Fully-
Connected Layer to make the distinction between features coming from each location of the spectrogram. In
particular, with time or frequency concatenations, the network can still distinguish the information coming
from each sensor, even if its convolution filters browse the whole spectrogram. An illustration is available in
fig. 5.2.

Bottleneck filters

Bottleneck filters (as can be seen in eg [246, 264]) are a special type of filters aiming to replace a convolution
layer. We begin by concatenating the spectrogram depth-wise (similarly to depth concatenation). We then
replace the first convolutional layer (containing 16 3 x 3 filters that could see all sensors) with a succession
of two particular layers: the first one contains only a 1 x 1 filter, that can see all the sensors and returns
a feature map with a depth of 1. This layer will have to learn a good combination of the input modalities.
The second layer contains 16 filters with size 3 x 3 which will see the combination learnt by the first layer.
The feature computation happens here. No activation function is added between these two layers. The idea
is to separate the fusion of sensors (first layer) from the feature computation, as those steps happen at the
same time (in the first convolutional layer) with depth concatenations.

5.2.2 Intermediate fusion

Intermediate fusion consists in merging together the features produced by different sensor-specific networks,
so that a single classification network can process them. As it requires the classifier to have some kind of
internal representation, it is most adapted for deep architectures.

71

Chapter 5 — Data fusion

Feature concatenation

The idea behind feature fusion is to let the convolutional layers compute features, before giving both features
to the next layer. The rationale behind this method is to allow each convolution module to generate its own
relevant features. For RGB-D images, concatenating features from the RGB image and features from the
depth map is better than a depth concatenation [248].

Given the remark made in the previous section, this method seems similar to the time and frequency
concatenations. There are two differences between the architectures (fig. 5.2):

e the Feature concatenation allows the network to have a series of convolution filters dedicated to each
modality, whereas the input concatenations impose the network to have the same convolutional filters.

e With frequency and time concatenations, the convolution filters can go close to the border of the
signals, which means some of the features will come from both sensors. This is impossible with feature
concatenation, where the different sensor’s features are not merged until after the last convolutional
layer.

These reasons explain why the feature concatenation is expected to be better than the frequency or time
concatenations.

72

Chapter 5 — Data fusion

Receptive
field 2 Sensor 1

Receptive

field 1 Sensor 2

T A\ —7
\}'0;4 Weights of the
- e
AN Fully-Connected

N
[]

layer

(a) How a neural network learns local (b) Frequency concatenation
features

Sensor 1

I O I O O
T

LTI PP lT]

(c) Feature concatenation

Figure 5.2: An overview of the difference between frequency and time concatenations, and feature concate-
nation. As the features learnt in the final feature map still retain some spatial consistency (a), a network
using frequency and time concatenations (b) can still distinguish between the features from each sensor. The
main difference with feature concatenation (c¢) is that the network can now learn sensor-specific convolution

filters, which was impossible with the two early fusion methods.

73

Chapter 5 — Data fusion

Attention

The key idea behind attention is to allow the network to allocate a different importance to every feature,
depending on the sample. The implementation is similar to one the from [119] and [121]: for each pixel
of the final feature map of each sensor, the network produces a scalar between 0 and 1, which encodes
the importance to assign to the feature. The scalar is multiplied to the feature, the results are aggregated
(summed) over the spatial dimensions and sensors, and fed into the next fully connected layer (see fig. 5.4a).
This allows the network to modulate the importance it gives to each sensor, depending on the sample it has
to classify.

We can illustrate the behaviour of our attention mechanism by looking at the attention when the input
samples are flawed. During the training time, we hide the bottom-left hand corner of the spectrogram: a
quarter of the pixels are set to zero. Then, at test time, we submit clean spectrograms, along with their
obstructed version, and compare the attention maps with these two samples.

When we compare a clean sample with its obstructed counterpart, the network learns to distinguish
between clean and obstructed spectrograms: we can see that, when the network dedicates some attention to
the bottom right weights on a clean sample (fig. 5.3a), setting the values to zero removes all the attention:
our network learnt to ignore the noise in a representation (fig. 5.3b). Obviously, when the network does not
dedicate any attention to the bottom right-hand corner, obstructing this part of the image doe not change
the attention map.

74

Chapter 5 — Data fusion

GT: Bus GT: Bus GT: Bus GT: Bus
predicted: Bus predicted: Bus predicted: Bus predicted: Bus
Acc_norm Acc_norm 00 Gyry 0.0

Gyr_y
-6 -6
-8 -8
-10 -10
-12 -12
-14 -14
-16 -16
-18 -18
4 0 20 3 0

attention attention

-25
-5.0
-5
-100
125
-15.0
-175
0 10 20 30 40 —200

-25
-5.0
-75
-100
-125
-15.0
-175
0 10 20 30 40

-200

attention
Acc_norm

attention
0.35 Gyr.y

tent Acc_norm
0.40 oy . :
035 . 030
030 . 025
025 % 020
020 % 015
015 . 010
010 . 005
0.05 X

0 1 2 3 4

3 a 0 1 2

(a) A clean sample of Bus (b) the same sample, with one corner obstructed

GT: Walk
predicted: Walk
[

yry
2
GT: Walk GT: Walk
0 predicted: Walk predicted: Walk
‘Acc_norm Gyr_y
-2 2 i 2
-4 o ; o
-6 -2 o -2
i o » .
" -5 -
“10 h —
0 40

attention
Gyr_y

1 20 3)
0175 attention attention
Acc_norm Gyr_y.

0150 0200 0200

0175 0175
0125

0150 0150
0.100

0125 0125
0075 0100 0100
0,050 0075 0075
0.025 0050 0050

0025 0,025

2 3 a

predicted: Walk
Acc_norm

o 10 20

attention
Acc_norm

0175
3

0150
B 0.125
, 0100

0075
3

0050
A 0025

o 1z 3

(¢) A clean walk sample

o 1

2 3 a o 1 2 3 4

(d) The obstructed Walk sample

Figure 5.3: A sanity check of our attention mechanism. We can see that, when a network was trained with
obstructed samples, it learns to ignore constant portions of the spectrogram by assigning them no attention

Note that for this experiment to work, submitting obstructed samples during the training is essential: if

all the training samples were clean, the network would not know that a uniform, zero-square corresponds to
noise, and it would pay attention to these regions.

Selective fusion

Chen et al. [257] conceived a neural network that is based on attention (called ’soft attention’ network),
with a notable variant: the network still produces a scalar between 0 and 1 for each pixel of each sensor-
specific feature map; these scalars are still multiplied to their corresponding features, but features are not

aggregated. The rescaled features are instead flattened, and given to the next FC layers. Figure 5.4b
illustrate this architecture

75

Chapter 5 — Data fusion

Sensor 1 Sensor 2 Sensor 1 Sensor 2

—]

FE 25

Conv Conv

Size:5x5x 64

flatten

flatten

Size: 1600 Size: 1600

concat

CTTTITTTT seenxooo

FC nx1600

l Size: mx 1600

softmax

Size:5x5x1
0.

£y

Element-wise
X multiplication

broadcast
multiplication

Size:5x5x64

flatten concat flatten

|

ete. etc..

(a) (b)

Figure 5.4: An illustration of the architectures of the baseline attention (5.4a) and the selective fusion (5.4b).

5.2.3 Late fusion

Late fusion methods rely on using only the predictions (logits or probability vector) of different sensor-specific
models. As they allow to use any type of model (both Machine Learning and Deep Learning), these methods
are the most flexible category.

o Probability fusion: Each network produces a probability vector (after the softmax), indicating the
prediction of the network. With the probability fusion, we simply compute an average of probabilities.
If p’ is the probability network i assigns to class ¢, the final probability vector of the ensemble of the
n models is given by

VC, Pec = %Z?:l Pi-

Logits fusion: To merge the logits, we extract the vector before the softmax. This vector of logits
indicates whether the sample is likely to belong to each class (the higher the logit of one class, the
more likely the sample is to belong to this class). We compute the average, for each class, of the logit
each network assigns to each class, before using a softmax to obtain a single output probability.

Weighted fusions: With the two previous modes (probabilities and logits fusion), the average was
unweighted, which means a 'bad’ sensor is given as much importance as a relevant one. To avoid it, we
try letting the network learn the weight to assign to each sensor. With both methods, we compute a
weighted sum of the predictions of the sensor-specific models. For instance, the weighted probabilities
average is:

Ve,pe =Yg cipl , where Y1 oy = 1.

76

Chapter 5 — Data fusion

The implementation of this mechanism is not straightforward, as the a; have to remain within [0, 1] and
sum to one. In order to learn the coefficients of a weighted sum, each network coefficient is obtained
using a softmax of real-valued weights:

Vi ap = RS

Thus, the parameters w; can be learnt on R by gradient descent, and the «; can be between 0 and 1,
and sum to one.

Learn to combine modalities in multimodal deep learning

Liu et al. [258] noticed that sensors might not be relevant everytime, and instead carry only a partial
information. However, in most settings, the sensor-specific networks are trained to predict right every time,
leading to possible overfitting.

They design a loss function that aims to reduce the penalty for sensors that are not confident in their
prediction. They start by considering a model that simply computes the class-wise product of the probabil-
ities each model returns: p. = [[;pl. If gt is the index of the ground-truth class, the cross-entropy loss is
given by:

L = —log(pgt) = — 3 log(py,)

They introduce a coefficient ¢’ (for all classes ¢) as follows:

4 = [Hj;ﬁi(l - pﬁ)}ﬁ/(n_l)

where n 1s the number of sensors and f is a hyperparameter that controls the intensity of the correction.
Its value must be between 0 and 1 and was set to 0.5 in our experiments.

This coefficient is used to help compute a new loss:

L=—3 g, log(p})

The general idea is that when a sensor i is sure that the sample belongs to the class ¢, the probability p’
will be close to 1, which means the coefficients (¢?);; will be close to zero. This means the loss will leave
the models j alone and change the weights of model 1. v

Note that this approach is equivalent to replacing the probabilities pi by (pi)qz with a model that
computes a product of the sensor-specific probabilities and a classic cross-entropy loss.

Gradient Blend

When studying networks using audiovisual content (videos), Wang et al. [256] noticed a particular phe-
nomenon: in most cases, adding audio data to the image model does not help. In fact, the image-specific
model is so good that adding the audio only make the whole model overfit. They start from a model where
the final probability p. is a linear combination of the probabilities p’, and solve an optimization problem to
find optimal weights from expressions of the train and validation losses at ¢ = 0 (before the training) and at
the end of the training

For each sensor i, define:

O = (Llregn — Lyeh) — (Lirein, — £yeL)

G =Lyl — el

The relative weights of each sensor are given by: w; = 82

Their method, named Gradient Blend is likely to succeed in our case, because one signal (the accelerom-
eter) is significantly better than the others, especially the magnetometer.

However, Gradient Blend requires using a validation loss to compute each weight. To avoid contamination
and to allow for a fair comparison, we will not use our validation set to compute the validation loss. Instead,
we estimate it by further splitting our train set into two subsets: the first one gathers 80% of the training
set and is used to train the weights of the sensor-specific networks, while the other 20% are used to compute
the ’validation’ losses that will give the weights of the models. When the global network is training (that is,
when all the weights w; are defined), the two parts of the training set are merged back together, and used
to tune the weights by gradient descent. As a result, we can evaluate this global model on our validation set
safely.

7

Chapter 5 — Data fusion

Late fusion modes: is it better to train the models separately or jointly ?

The methods belonging to the ’late fusion’ category rely on generating one model per sensor, and merging the
predictions of each complete model. When using Deep Learning models, a new option arises: the different
models can be trained either separately (each model tries to do its best using the sensor it has access to),
or jointly (all models share a common loss function). However, this choice is not binary: one can decide to
begin with a separate training, before finetuning the models jointly. We did not consider the opposite, that
is, to begin with a joint training, and end with a separate one. As the late fusion models share a common
loss at test time, separating the models mid-training seems unlikely to yield good results. To know which
proportion of joint training is optimal, we used the following protocol: we start with the four sensors, and
for each fusion method that allows doing so (the late fusions), we train the network separately during a
proportion p of 50 the epochs, before merging the models, and training them together for the remaining
1 — p of the epochs. Table 5.1 shows the result: for the logits and weighted logits methods, no proportion
is statistically better than the others. The same applies for Gradient Blend, although the performance is
significantly lower. For this mode, we had to do an exception: as we need to train the sensor-specific models
separately at least once (so that the parameters O;, G; make sense), p = 0 corresponds to 1 epoch where the
models are trained separately. For all the other modes, p = 0 means that the models are trained jointly.

For the methods that deal with probabilities, training the individual models together impacts the per-
formance negatively, even if the collective training is as short as 5 epochs (corresponding to p = 0.9). For
the weighted probabilities, the explanation is the following: a neural network always tries to maximize the
output probability of the correct class, on average, on the whole dataset. As probabilities are bounded
(within [0, 1]), and because the «; stay the same for all the samples, the only way a network can increase
the average correct probability on the training set is by increasing the weight «; of the best sensor-specific
network available (the accelerometer network): the networks overfit. At the end of the training, the global
network only assigns a weight of 1 to this sensor, and a weight of zero to all the other sensors, which is why
its performance is equal to the performance of a single network using the accelerometer signal. We confirmed
this by explicitly looking at the weights the network assigned to each model (results not shown).

This is not the case with weighted logits, for similar reasons: in order to maximize the output probability
on the training set, the network can tune the logits, which are easier to work with since they are not bounded.
As the logits change from a sample to the other, this prevents the network to listen to only a single modality.

For the next experiments, the proportion will be set to p = 0.5 for the logits, weighted logits, and gradient
blend fusion, and to p = 1 for the probabilities fusion. Choosing p = 1 for the weighted probabilities fusion
is irrelevant, for this method is equivalent to a mere probabilities fusion when p = 1 (all models are trained
separately, the weight are not updated and left equal to their starting value of %) This is why we also choose
to set p = 0.5 for the weighted probabilities.

val F1

—— probas weighted probas —— Gradient Blend
| — scores — weighted scores

0.0 0.1 02 03 04 0.5 06 07 08 09 10
separate proportion

Figure 5.5: The mean and standard deviation of different late fusion methods, as a function of the proportion
of epochs where the sensor-specific models are learnt separately.

5.3 A benchmark of fusion modes

Table 5.1 gives the results of each fusion method, applied to four sensor combinations. We notice that, given
the standard deviation of the experiments, most fusion methods have statistically similar performances. Two

78

Chapter 5 — Data fusion

of them, however, seem particularly worse than the rest: bottleneck filters and attention. Without being
exceptionally bad, the methods Gradient Blend, Learn to Combine, and weighted probabilities also yield
consistently worse results than the others. This is all the more surprising that all the methods from the
literature had rationales that apply to our case, and that these methods succeeded in their respective tasks.
If the works that compare two basic fusion methods sometimes report that these methods have similar
performance (about one percentage point in [256, 255, 265]), some also report differences in the fusion
methods (|25, 258, 119]). In all cases, the more complex methods we took from the literature should have
differed from the rest.

Maybe our models are not deep enough: for instance, given that there are only two fully-connected layers,
only two layers separate the intermediate fusion from the late fusion methods. The same goes for the fact
that there are only three convolutional layers. Also, the decision boundary might be "too simple": if the
network classifies the Run class using a linear boundary (section 3.4), chances are that the other classes are
detected using a "simple" expression of the input data. In this case, all fusion methods would be equivalent
because they would all equate to merging the input features.

Finally, a third hurdle to an efficient comparison is the size of the training dataset: one could argue that
complex methods require more training samples to be efficient, but achieve better results on larger datasets
(an opinion which we somewhat illustrated in fig. 3.3)

If one still wanted to follow our conclusions, we could give them the following advice: as most fusion
methods have the same performance, we recommend using the most simple ones: time, frequency, or feature
concatenations; feature concatenation; probabilities average (where all models are trained separately), logits
average.

79

08

early fusion

intermediate fusion

late fusion

method time freq depth Bottleneck features Selective attention robas | logits Weighted | Weighted | Gradient | Learn to
concat. | concat. | concat. filters Fusion p g probas logits Blend combine
|ACC| Gur 90.89 90.46 90.57 88.70 90.83 90.01 84.11 90.26 90.95 88.85 90.89 89.18 90.10
YTy +0.57 +1.08 +0.94 +1.30 +1.54 +0.41 +1.30 +0.56 +0.37 +0.54 +1.13 +1.10 +0.66
|Acc| |Ma | 90.78 91.37 91.83 85.83 91.74 90.62 86.67 90.75 91.66 88.04 92.17 89.53 87.37
’ 9 +0.66 +0.49 +0.35 +4.45 +0.46 +1.03 +1.01 +0.77 +1.35 +0.93 +0.59 +0.64 +0.65
Acc|, Gyry, 91.36 92.13 91.91 87.01 91.87 92.39 87.85 92.33 92.55 89.40 92.98 89.47 89.56
y
|[Mag| +0.74 +0.90 +0.88 +2.16 +0.64 +0.87 +1.05 +0.61 +1.08 +0.55 +0.37 +0.92 +0.98
|Accl|, Gyry, 92.32 92.30 91.23 84.59 92.51 92.93 87.56 92.43 92.83 89.43 93.01 89.36 91.41
[Magl|, Oriw +1.18 +0.54 +1.25 +5.52 +1.01 +0.60 +0.62 40.40 +0.19 +0.49 +0.36 +1.24 +1.11

Table 5.1: The mean and standard deviation of the validation F1-score of each method, for different fusion modes

uoisnj eye(] — ¢ I9jdey)

Chapter 5 — Data fusion

5.4 Decorrelated networks

5.4.1 Principle

When observing the results (see table 5.1), we can notice an interesting pattern: with many of the "simple"
fusion methods (frequency and depth concatenation, features fusion, logits and weighted logits) the combi-
nation of the norm of the accelerometer and the norm of the magnetometer seem better than accelerometer
and gyrometer, even though the gyrometer is better individually than the magnetometer (see the results in
table 2.5 in chapter 2). One obvious explanation is that the norm of the magnetometer carries a different
kind of information from the accelerometer: the latter is mainly affected by the dynamics of the sensor; while
the former changes mostly when the user is inside a metallic cabin. This can be confirmed by noting that
the average power spectra of accelerometer and gyrometer signals are much more similar to each other than
the accelerometer and magnetometer (fig. 3.6). If choosing different input sensors leads to better results, we
might increase the performance of a network by forcing it to learn decorrelated features. We will develop
this idea in the rest of section 5.4.

The first idea that comes to mind is to use a simple L1 loss to prevent the features of both networks
from being too close to each other: if X; and X5 are feature matrices extracted from the first and second
network, respectively (see fig. 5.6), the weights of the network would be trained with an additional constraint:
L = —|X; — X3, in addition to the cross-entropy (classification) loss.

LCTOSSEI’![TD}J}’

1600 1600
flatten flatten
Convolution Convolution
layers layers
A48 x 48 % 1 A8 x 48 x 1

Sensor 1 Sensor 2

Figure 5.6: A naive way to force the features to be complementary.

81

Chapter 5 — Data fusion

X2 <\Z
Y1

Figure 5.7: An illustration of why we cannot use a simple L1 norm to separate the features of two bases.
The same point P has two coordinates X; = (x1, 91, 21) and Xo = (x2,ys, 22) in the red and blue coordinate
systems (respectively), and the corresponding features do not match (e.g. &1 # x2). Note that in this illus-
tration, the two bases correspond exactly, that is, it is possible to recompute exactly the features (z2, yo, 22)
using x1,¥1, z1; and inversely. In the general case, a complete alignment of the bases might not be possible,
but the CCA offers mathematical guarantees that we obtain the best alignment possible.

However, comparing two features as if they existed in the same space make no sense: for instance, if
the scalars of the first feature are a mere permutation of the features of the second one, the vectors will
look different while representing the same information (see fig. 5.7). In order to compare them, we need
an operation that finds a base change that aligns the coordinates as much as possible. We use Canonical
Correlation Analysis (CCA) [266], an operation which finds two base changes (B, Bg, one for each set of
features), such that the correlation between features is maximized. This operation has already been used
for data fusion [249, 267], but in a way that makes it almost useless (the next chapter explains why). In our
case, to force the features to be different, the loss now tries to separate the features after the base change:
as the new features are expressed in the same base, we can separate them using a L1 loss, which will ensure
the information they carry is different. The weights of the sensor-specific convolution layer are trained with
a sum of classification loss and decorrelation loss: if Xy, and X5 are the feature matrices after the two
sensor-specific convolutional layers, and X| = B; X; and X} = By X5 are the result of the base change after
CCA, the complete loss is:

L =CELoss+ uLgecorr
It is the addition of the classic cross entropy loss and a novel term, we name decorrelation loss:
Laecorr = _|X{ - Xé| = _|BlX1 - BQX2|a

As for p, it is a hyperparameter we will try to optimize.

At test time, the decorrelation loss is not used, and the network is similar to the feature concatenation
network. The original CCA operation is only defined for two sets of features. If expansions of the operation
exist for more than two sensors [268], we will first use only the two-sensor CCA. We focus on the accelerometer
with the magnetometer, even if we will consider the accelerometer with gyrometer for the comparison with
other fusion methods.

The next section presents the many additional changes we needed to apply before obtaining significant
results and the two ways we found to compute the Canonical Correlation Analysis.

5.4.2 Experimental protocol

Even if we introduced a computation of new variables with the same meaning in figure 5.6, to decorrelate
the feature efficiently we would need to change the place where the features are extracted: in fig. 5.6, the

82

Chapter 5 — Data fusion

features are "too close" to the classification layer. For reasons we can only develop in the next chapter, if
we tried applying a L1 loss to make the features more distant from each other, we would directly go against
the classification loss. This is why we extract the features one layer before. Now, in our implementation, the
features are only extracted after the flatten step (see fig. 5.8). The reason why the features are extracted
before the dropout is not insignificant: if the features X7, X5 were extracted after the dropout layer, we would
risk having the phenomenon described in fig. 5.9. This is why the features are computed after the flatten
step, and before the first dropout and fully connected layer. We considered applying the decorrelation loss
to features extracted even sooner (between convolution layers), but the sheer number of features prevented
the CCA from converging.

[’CrossEntropy
FC8
Dropout 0.25
256
(e D
Liecorr = _lxi - Xél
X1 X!
1
128 2 128
FC 128 FC 128
CCA
Dropout 0.5 Dropout 0.5
1600
X, X, 1600
flatten flatten
5x5x64 5X5X64

Convolution Convolution

layers layers

48 x 48 x 1 48 X 48 X 1
Sensor 1 Sensor 2

Figure 5.8: The complete architecture of the networks we forced to produce decorrelated features.

83

Chapter 5 — Data fusion

Xz Distribution (no dropout)
Sample with dropout -
_ st pri —)
(p=0.5, 1t trial) -)
* o g /
/, Sample without dropout
v
1 -
= Sample with .dropout X
(p=0.5, 2" trial) 1
/
f"/ ,//
‘_;, _ -

Figure 5.9: The reason why the features that are used to compute a decorrelation loss are extracted before
any dropout is applied. Dropout, by removing some of the features at random, destroys the correlation
between realizations.

Now that we know where to extract the features, we can compute the aligned representations. We found
two ways to do so:

e classic CCA: Canonical correlation analysis offers an explicit solution, relying on inverses of covariance

matrices. We use the implementation from [269] the following way: at every batch, after the features
are computed, we use the whole training set to evaluate the correlation matrices on the complete
dataset, and deduce the feature matrices X, X} for the current batch. Then, the decorrelation loss
uses these feature matrices on this batch to train the weights of the network. At every batch, we
compute the explicit CCA between the two sets of features on the training set. We then use the base
changes By, By to evaluate the loss on the features from the current batch. To compute the CCA, we
use the code from Raghu et al. [269].

deep CCA: the previous method has two drawbacks: first, it requires to use the whole training set to
compute the result of the CCA operation. Secondly, the CCA objective is computed using a script
outputting the base changes. There is a risk that between two batches, the result of the CCA (and
thus, the expression of the loss) could change dramatically. To avoid this, we replace the explicit
CCA computation with an iterative solution. We use deep CCA (]270]), a neural network that tries
to maximize the correlation between two feature matrices. Deep CCA consists of two Fully Connected
neural networks, both of them using a vector as an input (in our case, a vector of 1,600 features for
each network) and outputs a vector of smaller dimension (chosen arbitrarily to be equal to 128). In
between, we tried using one, two, or three fully-connected layers with a hidden feature size of 256.
The weights of these deep CCA networks are trained to maximize the correlation of the features, while
the decorrelation loss tries to minimize the correlation between them. However, the decorrelation loss
only changes the weights that participated in the computation of the features (i.e., the weights of the
convolutional layers). To enforce some continuity of the CCA between the batches, we alternate one
batch of deep CCA with one batch of the classification network.

Note that we used the code from the original publication ([270]). In practice, the computation of the
loss requires the correlation matrix to be full rank, which is only possible if there are more samples
than features in the feature matrices X 2. As these matrices have 128 features each, we set the batch
size to 512 for deep CCA networks. We made sure that this hyperparameter does not change the
performance of the baseline networks (the networks that each use one sensor) before implementing it
for deep CCA models.

We presented the list of caveats we need to consider before implementing a decorrelation loss in practice.
Now that we can run the networks, let us see if the decorrelation loss actually improves the performance of
the network.

84

Chapter 5 — Data fusion

5.4.3 Results

As we said in the previous section, we train two networks using a loss equal to CELoss + L gecorr, Where
 is a hyperparameter we will change. For all our results, we will consider the following values for u:
[~1071,—10°, —1071, —1072,0,1072,107%,10°, 101, 10%): we use a logarithmic scale with a factor of 10 (the
borders of the interval were chosen so that the loss goes under 80 %). Notice also the fact that we consider
p = 0, which corresponds to a situation where there is no decorrelation loss. we also add the negatives
values for p, which correspond to cases where we force the networks to produce correlated (i.e., redundant)
features. We will look at the difference between p = 0 and g > 0 to know if a decorrelation loss helps the
network. Similarly, if the performances are higher for <0, than for g = 0, this means that we help the
network y forcing its features to be more correlated.

As we mentioned in the previous section, in the case of the deep CCA networks, we consider having one,
two, and three fully-connected layers to compute the correlated components.

80

70 4

val F1

60 1

50 1

40 4

30 4

-10.0 -1.0 0.1 -0.01 0.0 0.01 0.1 Lo 10.0 100.0

Figure 5.10: The performance of a neural network using a decorrelation loss computed using the theoretical
expression of the CCA.

95
— 1layer

2 layers
— 3layers

90 1

85 1

80 1

751

val F1

70 4
65 4

55 4

-10.0 -1.0 -0.1 -0.01 0.0 0.01 0.1 1.0 10.0 100.0

Figure 5.11: The performance of a neural network using a decorrelation loss computed using the a DeepCCA
network.

As figures 5.10 and 5.11 indicate, .When the values of p are too high in absolute values, the classification
performance decreases dramatically, because the decorrelation term is so high that the objective starts to
become so important the network neglects the classification task. More interesting is the allure of the curves;
they look to be constant in the interval p € [—1,1], and decrease when p is out of these borders. This
implies that a network is able to know automatically know how much it should correlate its features. We
will demonstrate this fact in the next section.

85

Chapter 5 — Data fusion

5.4.4 Why did the decorrelation loss not help

In this section, we will try to know whether the networks are helped or impaired by a decorrelation loss.
To do so, we will measure the scalar product between the gradients of the two losses. The weight of a
neural network, put side by side, form an immense vector in a space of extremely high dimension (typically
thousands to billions). To train the network, we compute the gradient of the cross-entropy loss, and move
the weights of the network in this direction on an infinitesimal distance. We repeat this process at every
batch until the network eventually stops improving its performance.

In our case, we have two losses: the cross-entropy loss, for classification, and the decorrelation loss. We
can quantify their agreement by looking at the scalar product of the losses’ gradients. If the two gradients
pull the weights in the same direction (resp. opposite directions), the scalar product between them will
be positive (resp. negative). In short, the scalar products between the gradients quantify the agreement
between their respective losses.

We compute the scalar product between the gradients at each batch of the whole training process and
display it to know whether our intuition was true. We train two models with y = 0 to know if decorrelating
the features helps or impairs the networks. As an illustration, we display the scalar products of the gradients
of the losses for each of the sensor-specific layers, and for the complete network (the union of the sensor-
specific layers and the last fully-connected layer in fig. 5.8)

Acc_norm Mag_norm Complete network

scalar product

0o 500 1000 0 500 1000 0 500 1000
loss evaluation index loss evaluation index loss evaluation index

Figure 5.12: The scalar products between the classification and decorrelation losses at every batch, on the
classic CCA network

Mag_norm Complete network
1.0 1.0

0.5 1 054 ¢

004 & 0.0 { Ry ¥geai s

scalar product

i o R A DN
“ |05 - ARt —054 . ¥

T T T =1.0 - T T =1.0 = T T

0 500 1000 0 500 1000 0 500 1000
loss evaluation index loss evaluation index loss evaluation index

Figure 5.13: The scalar products between the classification and decorrelation losses at every batch, on the

two-layer, deep CCA network

The results are presented in figures 5.12 and 5.13. They differ for the classic and deep CCA models.
For the classic model, we see that the scalar product between the loss is mostly positive and close to 1 (its
theoretical maximum). This means that the decorrelation and classification losses pull the network in the
same direction. For the deep CCA model, however, the sign of the scalar product changes a bit more between
positive and negative values. However, given that the deep CCA networks are learning at the same time as
the classification model, we cannot be sure that they reach the (the whole point of using neural networks
was to have a slow-moving model to compute the CCA), we cannot conclude from the deep CCA networks
because we cannot be sure that their decorrelation loss is actually relevant.

Starting from the observation that a couple of different sensors perform better than a couple of similar
sensors, we tried to force the networks to produce features that are complementary across sensors. We notice
that forcing the networks to produce decorrelated features does not help it to improve their performance,
because the networks are perfectly able to optimize the good amount of redundancy themselves.

86

Chapter 5 — Data fusion

5.5 Evaluations on the test set

If the data fusion method does not seem to change the results much, we might wonder if adding two sensors
(magnetometer and orientation) to the two sensors of the baseline (accelerometer and gyrometer) helps the
network. To compare our approach against the state of the art, we select the best fusion method and sensor
combination in table 5.1 (that is, a weighted logit fusion of the four sensors), and train it 5 times on the
union of train and validation sets, before evaluating the F1 score on the held-out test set of the challenge. to
choose the "best" data fusion method, we simply choose the method that has the best average performance.
Even if there is a likely risk of this choice relying on insignificant measurements, we need to select a single
method and see no other reasons to choose than maximizing the average validation performance.

Approach Models fusion method Sensors F1-score
Four-sensor fusion CNN weighted logits ﬁcc’ Gy 89.96 + 0.07%
ag, Ori
Baseline [50] CNN frequency Acc, Gyr 88.83%
concatenation
Best SHL 2018 submission [31] ML + DL ensemble HMM on predictions All 93.86%
Posterior improvement [84] ML + DL ensemble HMM on predictions All 94.9%

Table 5.2: The results on the held-out test set. We repeated our training process five times and display the
average and standard deviation

As Table 5.2 shows, the results are surprising: not only the F1-score is still significantly lower than it was
on the validation set (89.964+0.07% and 93.01+0.36, respectively), but it is barely superior to the baseline we
chose (88.83%). In practice, the use of additional sensors (and the energy consumption that comes with it)
might not justify the performance gain (about one percentage point). These two Deep Learning approaches
are still inferior to the methods in [31, 84|, which use an ensemble of Convolutional Neural Networks and
Machine Learning models with handcrafted features, and merge the predictions of the models by giving
them to a meta-classifier (a Hidden Markov Model). In practice, halving the error might be worth the extra
complexity and computational costs of implementing handcrafted feature computation and using all sensors.

5.6 Conclusion

In this chapter, we focused on the choice of a data fusion architecture to take into account the information
from all four sensors we chose. The most important contribution of this chapter is the benchmark we
realised: we selected thirteen data fusion algorithms in the literature to evaluate them and found that no
one was particularly better than the others. Afterwards, we tried designing a novel algorithm that forces
the networks to learn complementary information, which did not yield results that differ significantly from
the other architectures. However, we demonstrated that the networks learn to correlate the features by
themselves, and trying to intervene in one way or another is only detrimental. Finally, we wanted to see if
adding two sensors to the original publication, as well as changing the fusion method, could increase the test
performance. If we noticed an increase compared to the publication we based our baseline on, the increase
in performance was too low to justify the additional complexity.

87

Chapter 6

A study on Canonical Correlation
Analysis

In the previous chapter, we mentioned a data fusion method relying on CCA we found in the literature.
Canonical Correlation Analysis operation has had many uses with deep learning, the most important of
which is to quantify the similarity between representations of deep networks. However, this chapter will
focus on the properties of CCA when applied to data fusion of features from deep networks. To use this
fusion method with deep networks, Imran et al. and Ahmad et al. [249, 267] proceed as follows:

1. Train one neural network per sensor (each training occurs separately) to solve the classification problem.
2. Extract the feature matrices from the last layer of the networks, which we call X7, X5.

3. Use CCA to compute the aligned representations X, XJ.

4. Use a Machine Learning classifier (e.g. SVM) to classify the sum X] + X}

However, the results they obtain with this method are not much better than the other data fusion methods,
and we could wonder whether this method is really relevant. The main conclusion is that the fusion method
relying on CCA is equivalent to a simple sum of the logits at the end of the network.

Section 6.1 will serve as a detailed introduction to the properties of CCA. Then, we will present an
overview of the use of this operation in the Deep Learning literature in section 6.2, before applying CCA to
our networks to draw some interesting conclusions on our problem in section 6.3. The rest of the chapter is
devoted to a more complex reasoning. To understand it, we have three affirmations:

e (A): The classes are well separated in the feature space.
e (B): The first canonical components are close to a linear combination of the class components.
e (C): The fusion method relying on CCA is equivalent to a simple sum of logits.

If proposition (C) is the one that matters the most to us, we want to understand where it comes from. There
are three ways to show C: we can demonstrate it directly using experiments; we can also show that B is
true and B = C, or we show that A is true and A = B (knowing that we already have B — ().

A is fairly easy to demonstrate: given that the classification layer of a network is linear, the classes are
well separated if and only if the classification performance is high. Contrary to A, showing proposition B
experimentally is not trivial, which is why we will present it first: section 6.4 will prove it experimentally.
Once we have a solid set of experiments to know whether B is true, we will show how A = B in section
6.5. After this, we will finally come to the proposition that motivates this chapter, the fact that a CCA
fusion is approximately the same as a sum of the class logits (C'). Section 6.6 will explain why B — C,
while section 6.7 shows C' experimentally.

The last section (section 6.8) will try to see what happens when we consider extracting features from
earlier layers and conclude that the reasoning this chapter is about is likely to be specific to the the features
from the last layer.

88

Chapter 6 — A study on Canonical Correlation Analysis

6.1 Introduction
This chapter uses many specific notations and definitions, and the present section explains them: section

6.1.1 gives the first definitions, section 6.1.2 introduces the process of feature extraction from deep neural
networks, and section 6.1.3 presents the CCA operation itself with some of its properties.

6.1.1 Notations and definitions

variable set, definition

X, Rnxs features matrix of network 1
v s samples, n dimensions

class weights of network 4
W, R7eXn ne classes, n input features
v each row j is the class component

associated to the jt class
b; R™e class bias
Yi R Vo € ?éis,syb:gi&ijm +b
Y; R#x e logits matrix
ZX‘ X R Xn; covariance .matrix of
iy the feature matrices X; and X;
B; R xm basis change
P R projection (P.P = P)
U,v Rnxm orthonormal families of vectors

m vectors in dimension n

E Rmxm eigenvectors of a n X n matrix
ITL Xn OTL Xn—n
I R™*™ Vng € [l.n], I = o ° °
Onfnsxns Onfnsxnfns

Table 6.1: A summary of the notations we will use in this chapter

89

Chapter 6 — A study on Canonical Correlation Analysis

Iy
Foreachclass1 < ¢ = n,
n
Ve = Z VVE,cxi + bi n
i=1
Class components v
[—— .
ne % —
14 y
¥

Figure 6.1: The class components are the n. vectors formed by the lines of the weight matrix W of the last
FC layer.

CCA works with samples from a vector space R™ and involves many concepts from linear algebra. Table 6.1
explains some of the notations we will use later.

A component from a feature space is both a vector of this feature space and the linear application that
consists in projecting a vector onto the line spanned by that vector. Hence, a series of m components in R™
can be expressed as a matrix in R™*™. For instance, in the following sections, we will consider the n. class
components, which form the weight matrix W € R™*" of the last classification layer (see fig 6.1).

6.1.2 Deep features

Neural network
(all layers but the last)

Last layer softmax

Deep features class logits probabilities

Xl € Rnlxs Yl € Rncxs Pl e [OJl]ans

softmax ——

FC

yi=Wix +b

canonical variables

X, =B X,
X{ € R™Mxs
CCA
X’ € RﬂzXS
X} =B, X, 2
FC softmax ——
Y2 =Wax;+bs
X2 €]anxg }/2 =]R"(:XS P2 € [0’1]11()(5

Figure 6.2: The extraction of deep features

90

Chapter 6 — A study on Canonical Correlation Analysis

To compute deep features from any input, we select the features used by the last layer of the network.
These features are classified by a fully connected layer, before the softmax which gives the final probability.
The fully-connected layer is linear (y; = Wi.z1 + b1). In other words, for each class ¢, computing the logit
corresponding to this class is equivalent to computing a scalar product with the ¢** row of W. We call each
of these vectors the class components. See figure 6.1 for an illustration.

6.1.3 A general presentation of Canonical Correlation Analysis

The Canonical Correlation Analysis (CCA, [266]) aims to find linear combinations of coordinates with
maximal correlation between two datasets. Let X; and X5 be two feature matrices with s samples and
n1 and ny features, respectively (X; € R™" %% and X, € R™**)L. Let us set n = min(ny,nz). CCA finds
two basis change matrices By, By € R"*™ which produce two new sets of features X! = B; X; € R™** such
that:

e The covariance matrices of X] and X} are diagonal

e The diagonal coefficients of the correlation matrices of X7 and X} are maximal. In other words, the
correlation between the i*" row of X{ and the i*" row of X} is maximal.

X1

® Xi=8 second canonical components
* X,=BiXz (less correlated)

L,

* First canonical
components

CCA minimizes the (most correlated)

distances in blue

Figure 6.3: An illustration of the CCA operation. X; and X5 are two 2-dimensional feature spaces represent-
ing the same five samples (two points sharing the same colour correspond to the same sample represented
with different features). Note that if By, By are rotations in our example, they can be any base change in
the general case.

Note that computing the solution assumes that the covariance matrices of both X; are invertible so that
we can have n decorrelated components in X/. In practice, to have ’enough’ components, we use PCA to
keep 99.99% of the variance and remove zero-variance components, similarly to [271]. This is somewhat
similar to SVCCA [269], except that we willingly keep the low variance components, which were considered
noisy (and hence, removed) by SVCCA.

The new features X/ are called the canonical variables, while the basis changes B} are called canonical
components. Figure 6.3 illustrates this operation. The components are ordered: the first row of X{ and the
first row of X/ represents the most correlated linear combination of features one can find. The second row
of these matrices represents the second most correlated linear combinations, subject to the second row being
decorrelated with the first row, and so on. We will focus on the most correlated components that is, the first
ns features in X7 for some ng € [1..n]. The canonical components can be expressed the following way [272]:

IThe notation X; is sometimes used to denote the i-th row or column of matrix X. If we except figure 6.1, we will not use
this notation in this chapter, and X; and X2 will always denote the first and second feature matrices (with their respective
networks and sensors).

91

Chapter 6 — A study on Canonical Correlation Analysis

B, =% % Ey (6.1)

Where E; is the set of eigenvectors of the matrix E)_(%?l Ex,x, E;é Xy X X, EZQ , ordered by descending
eigenvalue. The same goes for Bs.

The canonical variables have an interesting property: they are invariant to invertible linear transforma-
tions.

Theorem 1. Invariance to linear transformations [272]:
LeAt X, € R™*5 X, € R™%5 be feature matrices, M € R™*™ an invertible transformation, b € R™*1,
and X1 = My X1 + by. Let us compute CCA a first time on the couple (X1, X2) to obtain X1 = B1X1, then

compute CCA a second time on the couple (Xl,Xg) to obtain X1 = By.X,. Then:
[] Xll = X{
[] Bl = BlM

It should be noted that only the canonical variables (the X/) are invariant to linear transformations.
The canonical components (the B;) are not, because they end up cancelling the transformation applied to
X;. This distinction will prove useful at the very end of this chapter. However, CCA only covers the linear
relationships between sets of variables: if, for instance, each element of X5 is the square of the corresponding
element in X7, CCA will not see the relationship between the feature matrices. Some improvements have
been suggested in the literature to cover a broader range of relationships between sets of features, the
most famous of them being kernel CCA [273|. However, this chapter will focus mostly on classical, linear,
Canonical Correlation analysis.

To conclude this section, let us sum up the hypotheses we work with:

e The features are extracted from classification networks. In future work, we might consider generalizing
to features extracted from unsupervised networks (autoencoders) or self-supervised networks, but we
do not think our experiments generalize to handcrafted features.

e We extract features from the last layer of a network. One experiment in section 6.8 briefly brushes the
subject of features from other layers, but without drawing any complete conclusion.

e We work with only two feature matrices at once, that is, we will not use generalizations of CCA to
more than two feature matrices [268].

e We limit our analysis to the baseline, linear CCA, and we do not use recent variations such as PWCCA
[274] nor kernel CCA [273].

6.2 Related works

The idea of applying CCA to any two feature matrices existed before the emergence of neural networks [275,
276, 271, 277, 278, 279]. The idea is the same as with deep features: extract the feature matrices X, X5 using
handcrafted features, compute the canonical variables X1, X4, and use them for the application (classification
[276, 277], source separation [271], etc.).

Remark: for classification, there are two ways to use CCA on deep features. When the canonical compo-
nents are given to the Machine Learning model, the model receives either the sum of components X + X/ or
the concatenation of the two feature matrices (X 1 Xé) We focus on the sum in our explanations because
this is what the researchers did with deep features [249, 267], but the reasoning is the same when the sum
is replaced with a concatenation.

With the recent advent of deep learning, it was only a matter of time before researchers tried to use CCA
fusion on deep features. The most important field of application is to use CCA to quantify the similarity
between representations of deep networks. Multiple publications already studied network similarity to find
constants in the behaviour of all deep models. A complete inventory is out of scope for this work, because
we mostly pursue the works [280] and [281]. We will just mention that many of these works compared the

92

Chapter 6 — A study on Canonical Correlation Analysis

predictions of two networks [282], or their correctness [283]. The works we are interested in mostly study
the deep features that precede the logit layer.

In 2017, Raghu et al. popularized Canonical Correlation Analysis (CCA) in the Deep Learning research
community. This operation had several applications in the last few year, the most important of which is
to demonstrate that networks learn from the bottom first [269] (the earlier layers stabilize before the layers
close to the output). In addition, they published their code, which we reused partly to compute the CCA
numerically.

On Linear Identifiability of Learned Representations

Roeder et al. [280] studied the representations learnt by unsupervised or self-supervised models. They
showed that the representations learnt by two neural networks are equal up to a linear transformation if the
networks solve the problem perfectly. By using canonical correlation analysis, they show that the equality up
to a linear transformation is close to being achieved in several unsupervised learning problems: they compute
the correlation of the canonical variables X] and X} and find that this correlation is relatively close to 1.
This means that recomputing the features from one network using the features from the other is feasible: if

B1X1 = X{ =~ Xé = BQXQ,

then B;lBle should be close to Xs.

Their claim is valid for broader tasks than mere supervised classification (they work on tasks like self-
supervised learning and word embedding), but we focus on classification because we can compare the canon-
ical components to class components, and/or canonical variables to class logits. However, they provide
a mathematical formulation for tasks such as classification, semantic segmentation, word embedding, etc.
(section 2 of [280]); which could allow to generalize the concept of "class components" beyond classification.
This formulation could be used to adapt the reasoning to other problems.

Exploring the Interchangeability of CNN Embedding Spaces

McNeely-White et al. [281] generated additional results on ImageNet classification. Mainly, they select
a broad diversity of architectures, and compute the accuracy when they replace the features X, with an
approximation using the features from the first network: instead of measuring the accuracy when the logits
use clean data (Ya = WoXo+b2), they replace the features Xy with W; W1X;1 (where W; denotes the Moore-
Penrose pseudo-inverse of W5) and classify these recomputed features using the fully-connected classification
layer of network 2 (with weights and biases Wa and be, respectively). They obtain that the loss of accuracy is
relatively small (a few points on average), indicating that the reconstructed features are close to the original.

The formula X5 ~ VV2Jr W1 X, looks extremely similar to the previous one (X2 ~ By B X 1). In fact, if
we had, Xy = W;Wle, we would have, Yo = Wy Xy = W1;X7 = Y;. This would mean that the correlation
between the class logits is perfect, which would imply that CCA puts these components first. Obviously, the
claim Y7 = Y5 does not hold in practice, but the correlation between logits happens to be high enough so
that the CCA picks up the logits first.

When McNeely-White et al. state that the two results are linked, they might not have realized that the
fact that the proximity they measured is Xo = W;’ Wi X is the main reason why the canonical variables
X1, X} are close to each other in the experiments from Roeder et al. This is a direction we will pursue
in section 6.4.3 after we present how CCA can help us make interesting conclusions on Transport Mode
Detection.

6.3 An application of canonical correlation analysis to deep features

This section will illustrate how we can use CCA to understand better the features from the neural network.
We will use the CCA to show that the accelerometer and gyrometer are more similar to each other than
the accelerometer and magnetometer (a fact that was not demonstrated until now) in section 6.3.1. We will
also demonstrate that the architecture of the network allows the information about the power of the input
signal to appear in the network’s features in section 6.3.2, and, finally, we will see that the initialization of
a network does not impact the features after the training (section 6.3.3).

93

Chapter 6 — A study on Canonical Correlation Analysis

6.3.1 Measuring the canonical correlations to quantify the similarity between
sensors

In chapter 2, we said that the accelerometer and gyrometer were close because they both encode the dynamics
of the phone. We also added that the accelerometer was quite different from the norm of the magnetometer.
Canonical Correlation Analysis gives us a way to quantify this difference. We consider two networks and
compare the correlations of the couples of canonical variables.

The most extreme case is when the two feature matrices are equal up to a linear relationship. In this
case, the canonical variables are exactly equal, and their correlation coefficient is equal to 1. In general, the
closer the correlation is to 1, the closer the features are to each other.

However, when considering two independent multidimensional distributions, computation of CCA will
often yield a positive (nonzero) correlation, because the number of samples is finite: there is always a
way to find a direction with at least some correlation between the feature matrices. To take into account
the finiteness of data, we compare correlation between features to the correlation between two random
(independently-drawn) normal feature matrices: after we computed the PCA (after we kept 99.99 % of the
variance), we generate a couple of feature matrices filled with independent, normal random variables (zero
mean, unit variance). If we had an infinite number of samples, it would be impossible to find any correlated
components within the feature matrices, and the correlation between canonical variables would be zero.
But as the number of samples is finite, it is possible to find canonical components even if feature matrices
were generated independently. We will compare the correlation obtained with these simulated curves to
the correlation obtained with deep features in order to quantify the correlation which is simply due to the
finiteness of the number of samples.

— trained
------- untrained

.. gaussian
noise

—— trained
-+ untrained

—— trained
untrained

gaussian
noise

gaussian
noise

Acc_norm

T

0 20 40 60 80 100 120 0 20 40 60 80 100 120

— trained
------- untrained

— trained — trained
------- untrained \ - untrained

gaussian S gaussian

gaussian
" noise noise " noi

noise

Mag_norm

e

0 20 4 60 80 100 120 0 20 4 60 8 100 120 0 20 4 60 80 100 120
component number component number component number
Gyr_y Acc_norm Mag_norm

Figure 6.4: Each figure displays the correlation coefficient between each of the couple of canonical variables,
generated with the SHL dataset. Two curves (whether dotted or plain) sharing the same colour were
computed using the same pair of networks, before (dotted) and after the training (plain). The different colors
represent different couples of networks (we do not compute an average because the number of components
we kept to get to a full-rank feature matrix changes between initializations).

Figure 6.4 displays the results.In this figure, we represent the average correlation between features from
trained networks (networks after the training process), but also between untrained networks, that is, between
two networks that have just been initialized (we use the Glorot initialization [284]). To emphasize, as the
weights of an untrained network were not modified by any training procedure, the untrained networks’
predictions are entirely random.

94

Chapter 6 — A study on Canonical Correlation Analysis

As we can see in fig. 6.4, the correlations after training are higher than before training, which means
the two networks’ features got closer during the training process, as the dashed curves are consistently lower
than the plain curves. In addition, the fact that the correlations from the last components obtained using
untrained networks (coloured dotted curve) are similar to the last correlations of random Gaussian variables
(black dotted curves) indicates that there is only a little difference between the latest components and two
independent Gaussian variables.

untrained trained

1.0 10

0.281 0.127 0.312 0.192
Gyry +0.008 +0.003 08 Gyry £0.003 +0.003 08

0.281 0.125 0.312 0.201

Acc_narm +0.008 +0.003 AcC_norm -SRE] +0.002

0.127 0.125 0.2 0.192 0.201 .3 0.2
Mag_norm +0.003 +0.003 Mag_norm +0.003 +0.002 +0.

0.0
Gyr_y Acc_norm Mag_norm Gyr_y Acc_norm Mag_norm

0.0

Figure 6.5: Each figure displays the average correlation coefficient between each of the couple of canonical
variables, generated with the SHL dataset.

These curves are interesting, but they are quite hard to compare to each other. To be able to compare
sensors, we simply compute the average of all the values in every curve and display the averages in fig. 6.5.
We made the distinction between trained (left) and untrained (right) cases. In particular, we can see that
the average correlation between the accelerometer and magnetometer (0.245) is lower than the correlation
between the accelerometer and gyrometer canonical variables (0.335). As a side note, we should mention
the fact that the correlation of the untrained accelerometer and magnetometer (0.194) is lower than the
untrained accelerometer and gyrometer (0.315). As the weight of an untrained network does not depend
on the sensor the network will use, the only reason for this mismatch in correlations to exist is that these
correlations translate similarities with the input data. These remarks finally confirm our intuition: the
accelerometer is closer to the gyrometer than it is close to the magnetometer.

6.3.2 Demonstrate that the network keeps the power

The previous section measured the similarity of features but did little to understand what does this similarity
rely on. In particular, we could see that the features from two untrained networks still kept some correlated
components, despite being processed by completely random weights. In this section, we will illustrate one
property of the input signal we can find in the network’s features: the input power can be found in the
networks’ features. From a statistical point of view, the power of a signal is equal to its standard deviation if
its mean is zero (which we assume in the following): P = + 23:1 X?. To show the input power can be found
in the network’s features, we simply compute the standard deviation from the raw, temporal measurements
of each sample and measure the correlation with every feature from the neural network. We also display the
correlation between the feature matrices and the power of the original, one-dimensional time signal (seen
as a feature matrix with one column). The plain curves in fig. 6.6 denote the set of correlations between
features of the canonical basis and the power of the signal. As we can see, most of the values are quite far
from +1 or -1, which mean that the power is not present in all the features of the network. However, when
computing the component which is the most correlated to the power with CCA, we find that this component
is quite close to one, which means that a linear combination of features is often enough to reconstruct the
power.

95

Chapter 6 — A study on Canonical Correlation Analysis

correlation between correlation between correlation between
input power and features input power and features input power and features
Gyr_ y Acc_norm Mag_norm
1.0 4 The most correlated component 1.0 4 The most correlated component 1.0+ The most correlated component

with the power has a correlation of: With the power has a correlation of. with the power has a correlation of:
0.976 +/-0.001 (trained) 0.979 +/-0.003 (trained) 0.547 +/-0.020 {trained)

0.924 +/-0.007 (untrained) 0.975 +/-0.004 {untrained) 0.807 +/- 0.051 {untrained)

0.5 4

0.04

correlation
correlation
correlation

—-1.01 correlation between each feature -1.01 correlation between each feature -1.01 correlation between each feature
—— of the trained network —— of the trained network —— of the trained network

and the power (ordered) and the power (ordered) and the power (ordered)

~154 correlation between each feature 15 correlation between each feature —15 correlation between each feature
: —— of the untrained network : —— of the untrained network —— of the untrained network
and the power (ordered) and the power (ordered) and the power (ordered)

T T T T T T T T T T T T T T T T T T
o 20 40 60 80 100 120 0 20 40 60 80 100 120 0 20 40 60 80 100 120

component index component index component index

Figure 6.6: the correlation between each of the features and the power of the input signal

To understand how this data is available in the features, let us list the operations that occur between the
input and the features:

e Convolution (convolution layers)

Adding a bias (convolution and fully-connected layers)

ReLU nonlinearity (convolution and fully-connected layers)

MaxPooling

Multiplication by a fixed matrix (fully-connected layers)
e Dropout

In particular, all but one of them (the addition of a bias) have he following property:

flaz) = af(x),Ya> 0

Despite looking similar to the linearity, this property does not mean the network is linear. However, its
validity for most of the network operations is interesting. Let us forget (temporarily) that the addition of a
bias is an operation in our network, and assume that all the operations verify the property. As this property
is stable by composition (if f and g verify it, f o g will verify it), the whole network does verify it. This
means that if we multiply all the values of one signal by a positive constant «, the features of this signal
will all be multiplied by this same value. Similarly, the signal’s power would also be multiplied by «. In
other words, the amplitude of the input signal influences both the power and the features produced by the
network. What this means is that the signals’ power is correlated to the amplitude of the network’s features.
The presence of bias addition does disturb the reasoning, but the disturbance is not strong enough for the
power to be completely erased from the feature embeddings. For instance, figure 6.6 shows that there exist
an adequate linear combination of features that creates a value that is well correlated with the power.

There is one important point to make: the explanation we just gave is true whether the network is trained
or not. This means that the power of the signal is available even before the network started training. Figure
6.6 confirms it experimentally: there exist a linear combination of the 128 features that allows computing
the power with reasonable precision from features of untrained networks. Note that this is true only because
the operations we used in our network let the information about to the signal’s power go through them, and
we might reach a different conclusion with other properties (fundamental frequency, entropy, etc.).

As the power of the signal is available from the beginning of the learning process, chances are that the
network uses this easily accessible information as soon as the training starts, especially given how relevant
it is to the problem of transport mode detection. It might be interesting to know if this stands for other
deep learning problems. However, one must be aware of the fact that not all recent "building blocks" of
neural networks obey this rule: attention (whether classical attention or multi-head attention), or squeeze-
and-excitation blocks [8] are notable counter-examples.

96

Chapter 6 — A study on Canonical Correlation Analysis

For our problem, the power of an input signal is an extremely important feature. The fact that it is
available from the start may explain why the networks reach a good performance level with relatively little
epochs (for instance, a network using the norm of the accelerometer reaches a F1 score of 80% in the first
five epochs, before eventually reaching values of about 89%). However, with different networks (such as the
transformers relying on attention), the power might not be available from the start. The network may still
be able to learn to recompute the power eventually, or any other feature that is useful for classification, but
the convergence may be slower to reach. In other words, we think the simplicity of our network did help it
to reach a good performance efficiently.

6.3.3 Influence of the network initialization

In the literature, multiple lines of work can attest that the seed used for the random initialization of network
weights has little influence on the final performance (we are not talking about the random law the weights
are initialize from, but about the difference between two realizations of the same law). The fact that many of
our own experiments have standard deviations of about one percentage point (with the noticeable exception
of the networks using the orientation vector in section 3.4, or in appendix D) confirms this fact. To evaluate
the effect of network training, we could try to look at fig. 6.4 where the colour of the curves denotes the
networks from which the features come. For instance, the dotted and plain blue curves in the bottom-left
hand corner of the figure denote the correlations between features from the same couple of networks using
the norm of the magnetometer, before and after training (respectively). We could try to see if the colours
for which the dotted curve is higher are also the colours for which the plain curves are higher (i.e., if the
couples of networks that produce correlated features before the training still produce correlated features after
it), but the difference between the curves is not high enough for us to distinguish anything. To see things
better, we keep on measuring the feature obtained by different networks before and after they are trained,
but we colourize things differently. We realize four comparisons, depending on the networks the features are
extracted from:

e Two trained networks coming from different initializations (blue curve)

e The features from the same network, before and after training (green curve)

e The features from one untrained network and a different trained network (red curve)
e Two untrained networks (black curve)

For each comparison, we extract the features, compute the canonical variables X, X}, and measure the
component-wise correlation coefficient. We obtain a decreasing curve because the canonical variables are
ordered. For three SHL sensors (accelerometer, magnetometer, gyrometer), we repeat the experiment for
three random network training processes (which means there are three couples of networks to compare for
the green and red curves). Figure 6.7 displays the resulting correlation curve. The similarity (measured with
CCA) between any trained network and its untrained version is the same as the similarity between a trained
network and any untrained network. In other words, we bring one additional experiment supporting the fact
that the initialization of the weights has little influence on the network post-training.

97

Chapter 6 — A study on Canonical Correlation Analysis

Gyr_y Acc_norm Mag_norm
10 = trained with trained 1.0 = trained with trained Lo = trained with trained
'|| === trained with untrained (same network) '_---- trained with untrained (same network) ===- trained with untrained (same network)
ll':\ -+ -+ trained with untrained (different network) -+ trained with untrained (different network) -+ trained with untrained (different network)
08 '.‘ V' ==+ untrained with untrained 08 %'~ =+ untrained with untrained 08
. » X . .
b
"
.
o tw
0.6 BN 0.6 0.6
RN
i
Y
0.4 %a 0.4

0.4 4

0.2 0.2 0.2 4

0.0 0.0 0.0 4

o 20 40 60 80 100 [20 40 60 80 100 o 20 40 60 80 100
Figure 6.7: The correlation between different versions of trained and untrained networks, with SHL data.

In this section (6.3), we used CCA to prove three things:
e the accelerometer is closer to the gyrometer than the magnetometer
e the features of the network allow it to see the input signal’s power, even before the training

e the features of a network do not depend on its initialization

These affirmations represent examples of conclusions we can obtain by applying CCA to deep features.
However, we were originally interested in CCA to perform the fusion between features from different sensors.
The application of CCA is developed in the next section, to demonstrate that this fusion method is irrelevant.

6.4 The equality between the first canonical components and the
class components

This section aims to show that the class components can be found with a linear combination of the first
canonical components (proposition B of our introduction, see fig. 6.8 for an illustration). It is fairly long,
and organized on thee major parts: subsection 6.4.1 displays a first plot of the first couples of canonical
variables, which allows us to get an insight of what proposition B actually means. Subsection 6.4.2 displays
some experiments we call projection experiments, that can be found in the literature and used to demonstrate

B. Finally, subsection 6.4.3 will serve both to introduce better experiments to demonstrate B, and use it to
actually establish the proposition.

98

Chapter 6 — A study on Canonical Correlation Analysis

Feature matrix X; Canonical variables X
Firstn,
features components
- -~
cca
sanples —>
Class 1 Class 2 Class 3

Class1 Class2 Class 3

Figure 6.8: The principle of the equality between class components and the first canonical components on
a three-class problem. The colours in the different feature matrices denote the different information about
the three classes. The feature vectors will undergo a matrix multiplication (denoted by the arrows under the
left matrix); and the rows of the matrix the features are multiplied by are the class components. Similarly,
the arrows under the matrix of the canonical variables represent matrix M in equation 6.2.

Proposition B is "The first canonical components are close to a linear combination of the class compo-
nents", and it is equivalent to:

AM € R™*" Wy = MI' B, (6.2)

In equation 6.2, matrix M denotes the linear transformation that are referred to in the words "up to a
linear transformation". In our experiments, we are not interested in computing matrix M explicitly, but we
want to know how close are the first two terms of the equation. Figure 6.9 illustrates how we will measure
the similarities of components up to a linear transformation: we compare the subspaces spanned by the two
families of components.

Subspace containing both

families of vectors A Family F Space spanned by 2
x family F -

F1 = F1
|
‘I \

F2
g S =]
Gl T ~
G2 \
Space spanned by
Family G family &

(a) (b)

Figure 6.9: An illustration of the problem of the comparison of two families of vectors (components), F' and
G. (6.9a) shows we cannot compare the elements one-to-one, and (6.9b) shows the need for a robust measure
(for instance, the dimension of the subspace spanned by family F'|JG would not be a good measure).

As we mentioned earlier, the experiments we describe in this section are purely empirical, i.e., we do
not give a theoretical guarantee that the linear layer keeps all correlated components. However, even if our
experiments are empirical, we will draw conclusions that might apply to any classification network. In order
to show how general our claims are, we will use the CIFAR-10 Dataset, a Computer Vision dataset where
the network has to recognize the object among 10 possible classes in 60,000 low-resolution RGB images
(with size 32 x 32 x 3). We used the code from [285], which implemented the same hyperparameters and
architecture as ResNet-50 [150].

99

Chapter 6 — A study on Canonical Correlation Analysis

6.4.1 Introduction: A glance at canonical variables

To illustrate our intuition, we start by plotting the values of the 16 most correlated components between
each couple of features. For each component 4, we plot the i*" component of X| versus the i*" component
of X). We repeat the process for CIFAR (figure 6.10), and for SHL (figures 6.11, 6.12, and 6.13). Firstly,
we can notice that the first components from each sensor are more correlated than the later components,
as expected. Secondly, the correlations are higher in the case of features coming from two identical sensors,
and that the correlations between accelerometer and gyrometer are higher than the correlations between
accelerometer and magnetometer: this comes directly from the results we showed in section 6.3.1.

Finally, for the problem that matters to us, it looks like we can easily separate several classes from the
others with these variables, which is an indication in favour of the proximity between canonical and class
components. However, if these graphs give clues indicating that the first canonical variables are equal to the

logits, they do not prove anything: we will present the proof in the next sections.

Figure 6.10: The first 16 pairs of canonical variables between two initializations of Resnet-50 models trained

canonical variables n°1

canonical variables n°2

canonical variables n°3

canonical variables n°4

canonical variables n°5

canonical variables n°8

canonical variables n°6

i

canonical variables n°7

canonical variables n°9

canonical variables n°10

canonical variables n°11

canonical variables n°12

canonical variables n°13

canonical variables n°14

canonical variables n°15

canonical variables n°16

]
w®w o w

X3

on CIFAR-10. The colour indicates the class.

100

X3

%

Chapter 6 — A study on Canonical Correlation Analysis

lAce|

|Acc|

lAcc]

|Acc]

Figure 6.11: The first 16 pairs of canonical variables between two initializations of the accelerometer model.

canonical variables n°1

canonical variables n°2

canonical variables n°3

canonical variables n°4

*

2

canonical variables n°5

canonical variables n°6

canonical variables n°8

canonical variables n°7

canonical variables n°9

canonical variables n°10

canonical variables n°11

canonical variables n°12

canonical variables n°13

canonical variables n°14

canonical variables n°15

canonical variables n°16

still & car

]
e Walk Bus
® Run ® Train
Bike ® Subway
JAcc]| JAce| JAcc| JAcc

The colour indicates the class.

Acc|

lAce|

JAcc|

Acc|

Figure 6.12: The first 16 pairs of canonical variables between an accelerometer and a gyrometer models. The

canonical variables n°1

canonical variables n°2

canonical variables n°3

canonical variables n°4

r s

canonical variables n°5

canonical variables n°6

canonical variables n°7

canonical variables n°8

canonical variables n®9

canonical variables n°12

canonical variables n°10

canonical variables n°13

canonical variables n°14

canonical variables n°15

canonical variables n°16

| ar
- @ Walk Bus
" e Run ® Train
Bike ® Subway
Gyry Gyry Gyry Gyry

colour indicates the class.

101

Chapter 6 — A study on Canonical Correlation Analysis

canonical variables n°1 canonical variables n°2 canonical variables n°3 canonical variables n°4

JAcc|

canonical variables n°5 canonical variables n°6 canonical variables n°7 canonical variables n°8

|Ace|

canonical variables n°10 canonical variables n°11 canonical variables n°®12

JAcc]

canonical variables n°13 canonical variables n°14 canonical variables n°15 canonical variables n°16

sl e Car
Walk Bus
® Run ® Train
Bike ® Subway

|Ace|

IMag| [Mag| [Mag]| [Mag|

Figure 6.13: The first 16 pairs of canonical variables between an accelerometer and a magnetometer models.
The colour indicates the class.

6.4.2 Projection experiments

A more rigorous (but not perfect) experiment is to project the feature matrices on the most correlated
components to see if this affects the classification performance. We will reproduce and extend the experiments
from [269] (Figure 2 from this work). We start from two trained networks, we extract the hidden features
from the last layer of the first one, then we project on a subspace of inferior dimension n,, before re-injecting
the features in the network to measure the performance.

The rationale we adopt is that if the performance is intact, it means that the n. class components are
unaffected by the projection. In other words, it means that the n. class components belong in the subspace
spanned by the ng most correlated components. Fig.6.14 illustrates this experiment in the case of the
projection on the n, most correlated components. Note that when we use all features, we project on the
original space, i.e., we leave the data unchanged. The difference between the end of the curves (performance
on pristine data) and the rest (altered data) will indicate the proximity between the considered subspace
and class components. We will see in section 6.4.3 and later that this rationale is imperfect in the case of
the CCA experiments, but we nevertheless present it for three practical reasons:

e The experiments are going to be relevant later on (section 6.8).
e It is always useful to make sure results from the literature are reproducible (here, from [269], fig. 2).

e These experiments seem to contradict with what we will say in later sections (section 6.4.3), and one
needs to understand fully an idea before attempting to criticize it.

In addition, the flaws of these experiments are theoretical, i.e., we did not observe a difference in conclusion
between the present projection experiments and the more rigorous alternatives we will present later on.
This is why we will anticipate slightly and accept the conclusions of the projection experiments: we will
demonstrate in section 6.4.3 that the conclusions are true.

The dimension of the subspace and the way of choosing the subspace will vary. To choose the components,
we will use seven methods (three of them coming from [269)]):

1. The most correlated components found with CCA (CCA_highest), as in [269]. This subspace should be
equal to the subspace spanned by the class components when ny, = n..

2. The least correlated components (CCA_lowest): if the most correlated components are the class com-
ponents, the components with the lowest correlation should not include any relevant information for
the problem.

102

Chapter 6 — A study on Canonical Correlation Analysis

Last layer
X
| Comparison of
L ’—| ,—| EF 5 the classification
x By xI xB,"1 y=Wr+b L performance
r n ’ 1
Xl Xipruj leroj
CCA
X2 . Ly Ongnon,
. -
x B, discarded I, =
On—nsxns On—nsxn—ns

Figure 6.14: The principle of the subspace projection experiment, illustrated with the projection on the
most correlated components (red curve in fig. 6.15): P; = Bl_l.I;}S.Bl projects X7 onto a linear space with
dimension ns. The value of ng is a parameter we will modify in our experiments.

3. CCA with random components (CCA_random): one may argue that the CCA curve is above the others
in [269] because CCA allows creating decorrelated components, which would mean that its components
are less redundant than random directions. If this was the case, selecting random CCA components
would be better than selecting components with a random projection.

4. PCA: Kamoi et al. [286] showed that the n. components with the most variance are the components
that will be used for classification. We project the features on the components with the most variance
to validate their findings.

5. A set of ng features chosen randomly (random_keep), as in [269], for comparisons.

6. A random orthogonal projection of features (random_projection). Comparing the random selection
of n components versus the projection on n components shows that the standard basis of R™ (the set
ofzy = [100..],z5 = [010..],...)% does not play a particular role (i.e. selecting the values of n
features is not particularly meaningful).

7. The ng features with the highest activation in absolute value (max_activation), as in [269]. These
features are sometimes said to be more efficient at capturing the information than random features
[269].

To save time, we do not consider all the possible number of components: because we want a high resolution
around n., we only considered the 2 x n, first components (where n. is the number of classes, 8 for SHL
and 10 for CIFAR), and, after that, the number of components which are powers of 2 (16,32, ...), up to the
maximal number of components (128 for SHL, 64 for CIFAR)

In addition to this, after measuring the performance of the layer when using projected features, we also try
retraining the classification layer on a projected version of the validation set, with the same hyperparameters
as the initial training of the network. The goal of this retraining is to illustrate the difference between the
components a network actually uses for classification and the components that carry a piece of information
the problem. If the performance of the retrained layer is low, this means we can be sure that the projection
removed all useful information. If only the performance of the original layer is low, this only means that we
got rid of the information that was used by the network.

Note that the CCA operation requires two databases. In fact, when we use CCA, we use a second matrix
of features X5, but only to compute X (we discard X}). In the first experiment (fig. 6.15) this second
network is another initialization of a network working with the same sensor, while the second experiment
(fig. 6.16) shows results obtained with two networks using different sensors.

2this basis is most often called canonical basis, a name we will not use for obvious reasons.

103

Chapter 6 — A study on Canonical Correlation Analysis

Similarity between identical sensors

CIFAR

— ccA highest
CCA_random
CCA_lowest

— pcA

—— max_activation

— random_proj
random_keep

101
+# components kept

Acc_norm

Mag_norm

0.8 1y

07

0.6

05

previous layer

03

02

01

0.0

0.8

0.0

PO SN (N

0.6

0.4

02

0.0

0.8

0.6

0.4

02

0.0

—— CCA_highest
CCA_random
CCA_lowest

— PCA

—— max_activation

— random_proj
random_keep

100 10! 102
components kept

10!
components kept

100 10! 102
components kept

(a) (b)

Figure 6.15: The performance of the networks after projecting their features on subspaces with varying
dimensions, on the CIFAR (a) and SHL (b) validation sets. The top row indicates the validation performance
of the network as-is, while the bottom row indicates the performance when retraining the classification layer
on a projected training set. For each curve, the experiment was repeated 5 times, and the standard deviation
is given by the width of the curve (which is sometimes too small to see). The dotted line highlights the
performance with the n. most correlated components. Best view in color.

Figure 6.15 displays what happens when we project the features from different subspaces. Here, we compute
the canonical components (red, yellow, and orange curves) using features from a different initialization of
the same sensor. We can draw several conclusions from it:

The performance of the projection on the n. highest variance components (pca, green curve): this
verifies the findings of Kamoi et al. [286], the n. components with the highest variance are the class
components.

Similarly to Figure 2 from [269], the most correlated components (cca_highest, red curve) are more
useful for the classification problem than a random choice of components from the standard basis.

The red curve (performance of the components with the highest correlation) is almost at its maximum
for n. components even before retraining, there is almost nothing to gain after n. components. This
validates the claim from [281]: these components correspond to the subspace used by the classification
layer.

The yellow curve (the components with lowest correlations), is under all the others. Before retraining,
the performance of a projection on the ng components with the lowest correlation is minimal, even
when we select half the components. After retraining, the performance of these components is still well
under the performance of random components: selecting the least correlated components effectively
removed most of the classification information.

The orange curve (random CCA components) is lower than the random choice of features (blue curves).
This means that the performance of the components with the highest correlation is not due to an en-
coding of the information which is 'more compact’ than random directions. If one of the methods were
redundant, it would mean that adding directions would not change: we would need to add more dimen-
sions to effectively cover the same space, and the curve of the redundant representation would appear

104

Chapter 6 — A study on Canonical Correlation Analysis

to the right of the curve of an efficient encoding. In our case, the curve of random CCA components
appears to the right (or to the bottom, as the curves increase), which means that reason why the red
curve is higher than the random directions is not due to the fact that any two CCA components are
non-redundant, but to the fact that the first components are particular. Additionally, the standard
deviation of this curve is unusually high: as the CCA operation isolates the class components from the
rest, selecting some of its components at random creates extremes situations: either a classification
component is selected, or it is not. The standard deviations of the other random methods are not as
high because the random choices allow spanning partly the class components.

e Before retraining, the two blue curves are equivalent, this indicates that the standard basis of R™ do
not play any specific role in regards to classification.

Similarity between two different sensors

We now lead experiments to verify the most important affirmation: the fact that the most correlated com-
ponents are equal to the class components, even when the correlation is computed across sensors. This
time, when computing CCA, we use features from a network using different sensors. In this section, we
do not include any of the other dimensionality reduction methods (PCA, random projection and selection
of components, maximal activation components) because those methods work with only one database: the
results would be the same as the curves presented in fig. 6.15.

data from Gyr_y data from Acc_norm data from Mag_norm

CCA with Gyr_y
F1l

CCA with Acc_norm
F1

£
£
=3
!:\
3
=z
=
=}
= H
§ —— CCA_highest
0.1+ CCA_random
: E CCA_lowest
0.0+ - 0.0 4 - 0.0 4 =
T T T T T T T T T
10° 10t 102 10° 10! 102 10° 10! 10?
components kept # components kept # companents kept

Figure 6.16: The classification performance of classification layer using features projected on a subspace with
varying dimension, when the CCA is computed thanks to data from another sensor. As in fig. 6.15, one
can see that the performance with the n. most correlated components is close to the performance with all
components. The graphs in the diagonal were generated using the same protocol as the first row of graphs
in fig. 6.15b. The dotted line highlights the performance with the n. most correlated components

Figure 6.16 shows that the performance is maximal when the number of components is slightly higher

105

Chapter 6 — A study on Canonical Correlation Analysis

than 10. However, contrary to fig. 6.15b, the performance is off by a few points when the number of selected
components is equal to 8, the number of classes. This means that the equality between most correlated
components and classification vectors is less strong than in the previous case when the CCA was computed
from the same sensor. Still, the performance with only 8 components is high enough for us to conclude that
the components computed with CCA overlap significantly with the class components.

Could these experiments be useful in Architecture Compression ¢

The action of projecting the intermediate features on a well-chosen subspace has already been explored to
reduce the size of a (trained) network while keeping the performances intact (this is called network pruning,
or sometimes architecture compression). For instance, one can choose the subspaces thanks to PCA [287],
or maximum activation [288]. Depending on the case, the network may or may not be retrained after the
projection. Using CCA is another way to choose which subspaces will be removed. Fig. 6.15 shows that
reducing the dimension thanks to CCA (red line) is as efficient as using the PCA (green line). However,
CCA is less convenient to use, as it requires training two networks instead of one. As a consequence, we
think that using PCA is better suited than CCA to prune a single-sensor network, which means that CCA
is not at the same level as the state of the art in this domain. However, one may think of using the CCA to
prune two networks using different sensors: the CCA might select more relevant information than a PC on
each of the two networks separately.

In any way, the experiments we led in the present section may only be used to demonstrate the claim
we are interested in: the class components are close to the first canonical components, up to a linear
transformation (B).

6.4.3 An explicit measurement of subspace similarity
Why the projection experiments are not enough

The projections experiments seemed persuasive enough, but they had two major drawbacks:

The first one is that these experiments relied on classification performance. They looked at the classifica-
tion performance of a projected version of the features and concluded that the components the features were
projected on were equal to the class components if the classification accuracy is the same as the accuracy of
the original features. Yet, to classify a sample, the network simply takes the highest logit among all the class
logits. For example, if a projection divides all logits by two (see fig. 6.17), the classification performance
will be untouched, even though the image of the projection is quite far from the classification subspace.
Granted, in practice, the probability for a vector space to distort all logits equally while being much different
from the space spanned by class components is small, but this probability is not zero. The second flaw is
that even though we used the training samples to compute the components and we projected the validation
features on these components to measure the performance, the SHL dataset is only composed of one user.
The experiments risk over-fitting to this very user, and one might have not obtained similar results if the
validation samples came from another distribution. In short, the previous experiments indicate a relationship
between the ng most correlated components and classification performance on the SHL validation dataset,
but do not prove that these components are equivalent to class components all the time.

This is why we will try to use an experiment that is without blind spots. Instead of comparing the class
logits Y7 and canonical variables X1, we will compare the class components W; to the canonical components
B;. In other words, instead of comparing the effect each of these transformations has on the data, we will
compare the transformations themselves.

106

Chapter 6 — A study on Canonical Correlation Analysis

component
found via CCA

original sample

the sample belongs
Decision Boundary

in class 2

the sample belongs
inclass 1

subspace spanned by
the class components

Figure 6.17: Why a simple classification measurement is not enough. In this example, the projection on the
canonical components (yellow arrow) does not change the prediction of the network for the green sample, for
both predictions (pink arrows) land on the same side of the decision boundary. In this example, the logits
(the coordinates of the projections of the points on the blue plane) are changed by the projection on the first
canonical components. Despite the canonical components (red) being quite far from the class components
(blue plane), the classification accuracy is unchanged.

Why subspace distances do not work as-is with canonical components

If one were to measure the distance between the canonical components and the class components, one would
see that the subspaces seem quite far from each other. As we will show later on, at a first glance, the class
components seem to be closer to a random subspace than to the canonical components. This result directly
contradicts the projection experiments (along with the findings from [280]).

To understand what goes wrong in such reasoning, one must look at what happens when we project a
vector on CCA components. If By are the canonical components, the projection on the first ns canonical
components can be expressed by z — Bfllﬁs Biz. The image of the projection (that is, the set of all y € R™
such that Jz,y = By 1[:}SB1:1:) is equal to the vector space spanned by the first n, canonical components,
while the kernel of the projection (the set of all « such that Bl_l.T;‘Sle = 0) is equal to the vector space
spanned by the last n — ns canonical components.

In section 6.1, eq. 6.1, we said that the canonical components can be expressed by: B; = ElZ;(j)/(zL , where
the (E;);=1,2 are eigenvectors of matrices we will not present here. We only need to know the eigenvectors
are orthonormal: FE;.E;) = I. This means the projection of a vector on the canonical components is
not orthogonal: as By = ElE;(%?l, the projection X — P;.X (where P, = By '.I".B) is a projection
(P, = P1.Py), but it is not orthogonal (P;.P,' # I). As Fig. 6.18 and 6.19 illustrate, this means that the
kernel of the projection is not orthogonal to its image.

Yet, all the distances between subspaces rely on an implicit assumption: for every subspace U, the farthest
subspace from U we can find is its orthogonal complement. The orthogonal complement of U, which we note
U+, is a vector space of dimension n —mg which contains all the points in R™ that are orthogonal to vectors
of U. What matters to us is that the distances we use verify: mazyd(U, V) = d(U, U'). But with the
projection on canonical components, this is not the case: when we think about a projection, we would expect
the farthest point to the image of the projection to be its kernel. In the case of an orthogonal projection,
this consideration would not be a problem: the kernel of the projection is the orthogonal complement of its
image. But when considering the canonical components, the kernel and the image are no longer orthogonal
to each other, which is why the distances we used are not relevant. To summarize grossly, it is almost as if
keeping the first n. components was not equivalent to removing the last n — n. components.

107

Chapter 6 — A study on Canonical Correlation Analysis

There are two ways to show the phenomenon is strong enough to take place numerically. The first one
is simply to compute the distance to the kernel of the projection instead of its image. In other words, we
measure the distance between the last n — n. components of B; and the n, components of W;. Figure 6.26
will show that this measure indicates that the kernel of the projection P; is much farther to the subspace
spanned by the vectors of W; than any random vector space.

The second method is consists of simply solving the problem, i.e., to get back to equivalent orthogonal
components. One could try straightforwardly to design a distance that takes this anisotropy into account
in the expression of the distances (similarly to a Mahalanobis distance), but a more simple approach is to
make sure that the basis change matrices B; are orthogonal. To do so, we simply whiten the data: before
computing CCA, we replace X; by X, = E}%?lX . Whitening has been used in the Machine Learning
community when using features that have significantly different variances, but we use it here on features
from deep neural networks. This way, the covariance matrix of X is the identity, and B, = B; Z;/ ;1 =Fis
orthogonal. Now, comparing the whitened data to the class components make no sense: the class cc;mponents
were trained to process the original data. This is why we compare the whitened data to a modified version
of the class components: we replace W7 with W, = Wy Eﬁ(/i x,- In our experiments, we made sure that this
change does not alter the predictions numerically.

original data whitened data
_1/2 complete projection
XXy ¢
141 = original data
> « image of the projection
. —— kernel of the projection
-
T s
xET.I5.E
projected data projected whitened data
\\\\
+1/2
xZy }'2’
141

(a) (b)

Figure 6.18: An illustration of the projection on CCA components with toy data. Figure 6.18a illustrates
three steps equivalent to the projection on the ng canonical components (whitening, orthogonal projection,
and inverse whitening), while fig. 6.18b illustrates how the kernel is not orthogonal to the image of the
projection

108

Chapter 6 — A study on Canonical Correlation Analysis

Critical direction
(kernel is close)

Unimportant direction
(kernel is still far)

»

Class components

Image of the
projection

Kernel of the
projection

Figure 6.19: Why the class components are relatively unaffected by the projection on the first canonical
components, despite appearing quite far from its image: the components are closer to the image than to the
kernel of the projection

To sum up, as By = Z;(%?l E,, the projection on the first CCA components (z — B;IIZLLSBZ-QC) can be
thought of as a sequence of three operations (fig. 6.18a):

1. whitening (z — Z;(%flx)

2. orthogonal projection on the n, first eigenvalues of E; (v — E, I" E;x)

3. inverse whitening (z — Zﬁ(/me)

By whitening the data, we end up cancelling the first and third operation, such that the complete projection

T — BiTBix is orthogonal. One might argue that computing the canonical components from whitened data
is not equivalent to computing the canonical components from the original features. To be true, the first
(original) canonical components and the class components are far from each other if "far" is defined using an
isotropic measure (such that the farthest space is the orthogonal complement). With a distance that takes
into account the anisotropy of the projection (fig. 6.19), the first canonical components are close to the class
components.

Another way to understand the whitening operation is to say that replacing X; by X, = E;éle and

Wi by W, = W, E;/i x, is equivalent to distorting the feature space so that the kernel of the projection
on CCA components is orthogonal to the image of the projection (the components themselves). This is the
same principle as saying the Mahalanobis distance (1/(z —y)X~1(z — y)T) distorts the feature space so that
the covariance of the data is spherical.

Experiments in the remainder of the section demonstrate that CCA on whitened data creates components
that are close to the modified class components.

Experimental protocol

The experiments in the remainder of the section 6.4.3 have three objectives:

e Establish that the distance between the first canonical components and the class components is high
if the canonical components are computed as-is (which we mentioned at the beginning of section 6.4.3
without proving it).

e Demonstrate that the last canonical components (the kernel of the projection on the first components)
are disproportionately far from the class components (i.e., show that fig 6.19 happens in practice).

e Show that whitening the features solves the problem.

109

Chapter 6 — A study on Canonical Correlation Analysis

We compare the canonical components found with CCA on the original data By to the class components
W1, and we repeat this process with the whitened data (él, Wl) Each time, we use Gram-Schmidt to
obtain orthonormal bases, before comparing the bases using different measures of the distance between the
class components and the canonical components.

Now, distances computed on these high-dimensional data are hard to interpret. To provide some elements
for comparison, we add two baselines:

e random orthogonal projection: the first ny, components of an orthogonal projection chosen at ran-
dom.

e PCA: Kamoi et al [286] showed that the highest variance components are equal to the class components,
and used this fact for outlier detection. If the canonical components are as close to the class components
as the principal components, we will consider it to be enough for practical applications.

Note: We do not try to use whitened data with these two baseline comparisons, because these projections
are already orthogonal: there is no need to distort the space even further. Additionally, computing the PCA
of whitened data makes no sense, as the covariance of the whitened data is the identity.

For each of these four comparisons (CCA, whitened CCA, random projection, PCA), we show that the
first n. projection components are equal to a linear combination of the class components. To do so, we
will consider the distances between the first ns projection components and the class components, where ng
gradually increases from 1 to the dimension of the subspace.

An illustration of the anisotropy

The next pages will be the occasion to demonstrate rigorously both the fact that whitening is needed and
the fact that the first canonical components are close to the class components, up to a linear relationship
(B). However, the previous explanation involved concepts that might be fairly unusual, and this novelty
might translate into experimental errors: there are chances that we did something wrong without noticing it.
Before tackling the full proof with mathematical distances in section 6.4.3, we will validate the results using
methods that are less rigorous, but easier to understand, than the experiments we lead in the section before.
If these measures are not real distances, they still give indicate how close can two subspaces be. Like the
distances, they have the property that the farthest element to any subspace is its orthogonal complement.

N x

»

Subspace spanned by the
canonical components

Figure 6.20: An illustration of the measure of the angle. Component C; (yellow, behind the red plane) is
quite close to the y axis, which means it is almost orthogonal to the subspace spanned by the canonical
components (zOz plane, in red). Hence, the angle (in green) between this component and its projection
on the plane (in red) will be high. On the other hand, component Cs is closer to the plane, ant the angle
between this component and its projection is smaller. We compute an average for all class components, and
use this average to characterize the proximity between the subspace and the class components

110

Chapter 6 — A study on Canonical Correlation Analysis

average angle between

the class components and the average angle between

the class components and the

image of the projection P, = B8, kernel of the projection Py = By4m:B;
2
m2 &=
3n/8
3n/8 1
4
74
n8 4
— CCA /8 ccA
CCA_whitened CCA whitened
— Pca — pcA
ol — random_proj —— random_proj
T T T T T 0- T T T T T
1 3 10 30 64 1 3 10 30 64
number of selected components ns number of selected components ns

(a) (b)

Figure 6.21: The average angle between a class components and its projection on the first (a) or last (b) ng
components.

Angle between components With CIFAR, we plot the average angle between the n. = 10 class compo-
nents and their projection on the subspaces (see fig. 6.20 for an illustration). As fig 6.21a shows, the angle
between the class components and their projection is still quite high® with n = 10 conserved dimensions.
This is because two random directions are likely to be orthogonal in high dimension. We want to draw
attention to two behaviours:

e The red curves (non-whitened CCA components) have different behaviours depending if we are looking
at the first (fig. 6.21a, left) or last (fig. 6.21b, right). The distance between the image of the projection
(the most correlated components) look to be extremely far from the 'PCA’ curve in green. On the other
hand, the distance between the last components (kernel of the projection) is extremely similar to the
"PCA’ curve. This illustrates one of the seeming inconsistencies we observe because the components
are not orthogonal.

e The pink curve (n, most correlated components, after whitening) is similar to (albeit higher than) the
curve of the highest variance components, whether we are looking at the image or the kernel of the
projection. As we already know that highest variance components are close to class components [286],
this experiment tends to conclude to the proximity between CCA and class components.

Projection of random vectors To confirm the previous results, we resorted to another measure of
proximity between components. We generate 10,000 random vectors on the unit sphere, and we project
these vectors on each subspace we want to compare to the class components. If one subspace is close to the
class component subspace, the norms of both projections will vary in the same amounts (if one norm is high,
the other will be high). In other words, the correlation between the 10,000 couples of norms will be close to
1. This is illustrated by the green and yellow subspaces in fig. 6.22. On the other hand, if the subspaces are
very different from each other, the correlation is low (close to zero or even negative, c¢f. the yellow versus red
subspaces in fig. 6.22). Figure 6.23 provides the results: again, the most correlated components (red, left
figure) are not different from the random directions, while the canonical components created from whitened
features are (pink).

Shigher than the distance between the class components and random components.

111

Chapter 6 — A study on Canonical Correlation Analysis

/l Random vectors € R128x10000
= CCA

P Projected vectors J € [RBx10000
L
Random . @
Vector Norms lJ € R1¥10000
Corr(| Norms |)= —0.043
Corr(| Norms)= 0.753

Figure 6.22: An illustration of the principle of the random projections experiment. When two subspaces are
close (e.g. the yellow and green), the norms of the projections of a random vector will be close to each other.
Inversely, when the subspaces are far from each other, the correlation coefficient between the norms will be
low.

. L Correlation of random projections between
Correlation of random projections between the class components and the

the class components and the

. N kernel of the projection Py =B B,
image of the projection Py = BTH*B;

— CCA

0.8 CCA_whitened
PCA
random_proj

0.0 4

0.6 4

—0.2 4

0.4 1

—0.4 4

0.2 1

—0.6 4
0.0

— CCA
CCA_whitened

_o8{ — PCA

—— random_proj

1 3 10 0 64 1 3 10 30 64
number of selected components ng number of selected components ns

Figure 6.23: The correlation between the norms of random vectors projected on the subspace of class
components and their projection on the first (a) or last (b) ns, components.

Distance Experiments

Subspace distances In this section, we will see how to compare the n. components of Wj to the first
n. components of By rigorously, and without relying on any dataset. From a more abstract point of view,
the problem is the following: we have two families of vectors, F' (the first canonical components) and G
(the class components), belonging in the same vector space. We want to know whether there is a linear
relationship between the vectors of F' and the vectors of G. As we mentioned at the beginning of section 6.4
simple one-to-one comparison is not enough to cover all possible linear relationships. To do so, we compare
the subspaces spanned by each of these families. If the subspaces are equal, this means that we can compute

112

Chapter 6 — A study on Canonical Correlation Analysis

the vectors of G (resp. F') using vectors that belong in a basis of the subspace spanned by F' (resp. G). In
other words, if F' = (f;)i1>i>n, and G = (g;)1>j>ng, the equality of the subspaces implies:

Vi € [Long], 3(mij)1zjone fi = 3275 mijg

The matrix M = (m; ;); ; is the matrix we were looking for in eq. 6.2.

We will use continuous distances: for instance, the comparison cannot rely on the rank of the family
F | G because the rank is not robust to small variations, as fig. 6.9b illustrates. We find orthonormal bases
for the subspaces spanned by F' and G using Gram-Schmidt (which we name U and V'), and we use distances
from the literature between subspaces applied on these bases.

If U and V are two subspaces of R” with dimensions m, my, respectively?, we make use of the following
three distances to measure the distance between two subspaces of R":

e Frobenius distance [289]: |[UUT — VV ||z where ||.||r is the Frobenius norm

e nuclear distance [289]: [[UUT — VV T||, where ||.||, is the nuclear norm

e Wang-Wang-Feng Subspace distance [291]: \/max(my,my) — Tr(UUTVVT), where Tr is the
trace of a matrix

Note that these distances all rely on UU T, the orthogonal projection on subspace U. In particular, the
first two distances derive from the norm of a difference of projection matrices [289], hence their names.

These distances are bounded, but the bound depends on the dimension of the subspaces. For instance,
the maximal WWZF-SSD distance between two subspaces U, V' is inferior or equal to:

Vmaz(dim(U), dim(V)).

To be able to compare distances when the number of dimensions varies, we display the normalized
distances: we divide each distance by the maximal value it could take given the dimensions of the spaces.
Table 6.2 displays the maximal value, for each of the distances we use.

Distance Expression maximal value
Frobenius WOUT —VVT|Fp mu+my /o
nuclear vt -vvT|. mu+my /\/3

WWF-SSD /maz(my,my) —Tr(UUTVVT) /maz(my,my)

Table 6.2: The distances we use to compute the proximity between class and canonical components. U &€
R™™MU and V € R™™™V are two orthonormal bases for two subspaces of R, ||.||F is the Frobenius norm,
[|.]|« is the nuclear norm, and T'r is the trace of a matrix

4Note that we use a matrix U € R™"*™ to denote both a vector space of dimension m in R™ and an orthonormal basis for
this space (U U = I,,). The distances we use do not depend on the choice of a basis for the spaces [289, 290].

113

Chapter 6 — A study on Canonical Correlation Analysis

normalized Frobenius distance between . .
the class components and the normalized nuclear distance between
the class components and the

image of the projection Py = BB, image of the projection Py — B8,
n

1.0
0.9 4
0.8 4
0.7 4
0.6 4
0.5
CCA — CCA
0.4 CCA_whitened 0.4 4 CCA_whitened
— PCA — PCA
—— random_proj —— random_proj
0.3 1
1 3 10 30 64 1 3 10 0 64
number of selected components ns number of selected components ns

normalized WWF_SSD between
the class components and the

image of the projection P, =B7'I™"B,

10
0.9
0.8
0.7
0.6
05
— CCA
CCA_whitened
0.4 —
—— PCA
—— random_proj

1 3 10 30 64
number of selected components ns

Figure 6.24: The distance between the class components and the first n, components of the image of diverse

projections. We display the average over three runs, the width of the curve denotes three times the standard
deviation.

114

Chapter 6 — A study on Canonical Correlation Analysis

normalized Frobenius distance with normalized Frobenius distance with normalized Frobenius distance with
the image of the projection the image of the projection the image of the projection
data from Acc_norm data from Gyr_y data from Mag_norm
] %_Q 1]
c ——_%—_—x
s 091 0.9 1% -]
gl 0.9
u
g 08
& 0.8 08 |
13 - .
o 0.7 —— random_proj 07 4 —— random_proj —— random_proj
2 CCA_whitened : CCA_whitened 0.7 CCA_whitened
U 06 — PCA —— PCA — PCA
“ — cca 0.6 7 — cca — cca
0.6 1
1 2 4 8 16 32 64 128 1 2 4 8 16 3‘2 64 128 1 2 4 8 16 32 64 128
10 -t——‘*—-‘-—ﬁ 1 ~__,~ - -_}-_,—x——::‘:
> 09 . | __,/—’—
2 0.9 : 0.9
)
0.8
13 081 0.8
g
= 0.7 4 —— random_proj 074 —— random_proj —— random_proj
6 CCA_whitened : CCA_whitened 0.7 CCA_whitened
Y o6 — Pca — PCcA — PcA
— 0.6 1 f— —
ccA ccA 06 1 ccA
T T
1 2 4 8 16 32 64 128 1 2 4 8 16 32 64 128 1 2 4 8 16 32 64 128
101 1.0 4 1.0 4
0.9
e 0.9 4 09 1% ~ -
o —— random_proj
L3 0.8 1 0.8 CCA_whitened
= : 0.8
ST — Pca
£] .
S 0.7 —— random_proj 074 —— random_proj — CCA
:: cCA_whitened : CCA_whitened 0.7
g 069 — PCA —— PCA
0.6
cca cca 06 |
T T
1 2 4 8 16 32 64 128 1 2 4 8 16 32 64 128 1 2 4 8 16 32 64 128
number of selected components ns number of selected components ns number of selected components ns

Figure 6.25: The Frobenius distance between the image of the projection and the class components, with
SHL data. We display the average over three runs, the width of the curve denotes three times the standard
deviation.

Distances between the image of the projection and the class components Figures 6.24 and 6.25
display the distances between subspaces with a varying number of dimensions and the subspace spanned
by the class components. Note that for the sake of clarity, we display only the Frobenius distance with the
SHL networks, the curves with the other distances have a similar aspect. In each of the experiments, even
the minimal distance seems to be quite high: between 0.3 and 0.4 for CIFAR 10, and about 0.6 with SHL.
This is a specificity of the high dimensionality of the feature space. Even if the distance is continuous, the
sheer number of dimensions tends to pull points away from each other, which makes us unlikely to see small
distances. To show it, one can look at how a random projection is consistently far away from the class
components. This is why the distances between CCA and class components should not be compared to 0
and 1, but the baselines (PCA components and random components). The display of distances between 0
and 1 is mostly useful to compare distances with a varying number of kept components.

About the baselines, one can notice the first point of our argumentation: the distance between canonical
components and class components (red) is similar to the distance between random components and class
components (blue). This is why a direct measurement is misleading. By whitening the data, we can reach
distance levels (in pink) that are closer to the distance between the highest variance components and class
components (green). We should note that there remains a significant difference between the two.

Distances between the kernel of the projection and the class components In this section, we
display the distance between the class components and the kernel of the projection P, = By 1[2531, which
is no other than the last ns components of the basis By (as a reminder, the image of the projection is the
subspace spanned by the first ns components).

Figure 6.26 displays the distances between the kernel of diverse projections and the subspace spanned by
the class components. Compared to the previous section, the meaning of closeness are reversed: if the kernel
and the class components are close, the class components are the first to be erased by the projection.

As we mentioned in section 6.4.3, we can see that the kernel of the projection on the last ng canonical
components (red) is as far from the class components as the projection on the lowest variance components

115

Chapter 6 — A study on Canonical Correlation Analysis

(green). Whitening the data (pink) slightly lowers this distance, but the curve is still significantly higher than
the distance to random components. For the three non-random curves (CCA, whitened CCA, and PCA), the
distance between the last ny components only gets lower when ng becomes greater than n —ng = 56 (whith
the CIFAR dataset, with n = 64 features and n. = 8 classes) when the last components start including the
class components themselves.

1000

0975

0950

0925

0900

0875

0.850

0825

normalized Frobenius distance between
the class components and the
kernel of the projection Py =B71/2:B,

— cca
CCA_whitened

— PcA

—— random_proj

normalized nuclear distance between
the class components and the
kernel of the projection Py =B /%B;

— ccA
CCA_whitened

—— PCA

—— random_proj

1 3 10 30
number of selected components ns

1 3 10 30 64
number of selected components ns

normalized WWF_SSD between
the class components and the
kernel of the projection Py = B{ /"B,

— cca
CCA_whitened

— random_proj

1 3 10 0
number of selected components ns

Figure 6.26: The distance between the class components and the first ns components of the kernel of diverse
projections. We display the average over three runs, the width of the curve denotes three times the standard

deviation.

normalized Frobenius distance with
the kernel of the projection

data from Acc_norm

normalized Frobenius distance with
the kernel of the projection
data from Gyr_y

normalized Frobenius distance with
the kernel of the projection
data from Mag_norm

1.00 1.02 100
£
1.00
5 o098 0.8
i 0.98
S 096
< 0.96 0.96
£
S 0.949 — random_proj 0.94 4+ — random_proj —— random_proj
< ccA_whitened 0.92 CCA_whitened 0.94 ccA_whitened
g 0.92 1 — pca —— PCA —— PCA
— cca 0907 — cca — cca
0.90 092
1 2 4 8 1 3 1 2 e 8 1 32 64 128 1 2 4 8 1 m 64 18
1.00 102 100
> 1.00
o 0o 0.98
& 0.98
0.96
£ 0.96 096
£ 0941 — random_proj 0.94 4+ —— random_proj —— random_proj
3 CCA_whitened 0.92 cca_whitened 094 cca_whitened
O 0921 — pca — pcA — pca
— cca 0907 — cca — cca
0.90 092
1 2 4 8 1 3 1 2 e 8 1 32 64 128 1 2 4 8 1 m 64 18
100
1.00 Loz
E
s 098 1.00 098
! 0.98
g o096
= 0.96 0.96
5§ 0941 — random_proj 0.94 1 — random_proj — random_proj
‘2 CCA_whitened 0.92 CCA_whitened 0.94 CCA_whitened
o 0927 — pca — PcA — pcA
© — cca 0907 — cca o2] — cca
0.90 0.88 :

1 2 4 8 1 X

number of selected components ns

1 2 4 8 16 3z 64 128

number of selected components ns

1 2 4 8 16 32 & 18
number of selected components ns

Figure 6.27: The Frobenius distance between the kernel of the projection and the class components, with
SHL data. We display the average over three runs, the width of the curve denotes three times the standard

deviation.

6.4.4 Partial conclusion: the proximity between class and canonical components

In this section, we demonstrated that the class components are equal to a linear combination of the first n,.
canonical components (proposition B of our introduction). This affirmation was not trivial to establish: we
first used the projection experiments in the literature (section 6.4.2), before criticizing them because they
rely on a classification performance. We introduced an important caveat that one needs to care about before
using more rigorous experiments: the fact that the canonical components are not orthogonal implies the

116

Chapter 6 — A study on Canonical Correlation Analysis

need for us to whiten the features before using distances that assumed the farthest subspace to any subspace
is its orthogonal.

This section was the longest and the most complex of the chapter. Now that we know that proposition
B takes place in practice, we will study its causes, and demonstrate that the fact that the classes are well
separated in the feature space (A) implies the proximity between the class and the first canonical components
(B).

6.5 The causes of the equality

This section is devoted to showing that A = B. To write it explicitly, we will show that the fact that the
classes are well separated in the feature space (A) is enough to cause the class components to become close
to a linear combination of the first canonical components (B). In short, we will modify anything but A, and
see that B still occurs.

To detail the concepts we need to use, one could look at fig. 6.28, which explains the difference between
inter-class correlation and intra-class correlation. The results in the previous section (the fact that CCA
picks up the class components) show that there is some kind of correlation, which means that the top-left
scenario is impossible. Similarly, the fact that the networks have reliable performance (70 to 90 % F1 score)
means that the down-left scenario is unlikely: there must be a linear way to split the classes and hence, some
kind of inter-class correlation. We are left with two scenarios: either the top-right scenario, in which there
is no intra-class correlation between the logits, and CCA only picks up class components because the two
networks are good at classifying the samples; or the down-right scenario, which implies that two different
networks assign similar logits to a sample, a similarity which goes beyond simply belonging in the right class.

Absence Presence
of inter-class correlation of inter-class correlation

Absence
of intra-class correlation
X2
X2

X2

Presence
of intra-class correlation
X2

Figure 6.28: the different types of correlation between samples illustrated with synthetic data: inter-class
correlation (left versus right) and intra-class correlation (top versus down)

Among the conditions that enable this observation, the easiest to verify empirically is the first one: the
class logits of different networks are more correlated than other components, whether across initializations or
sensors. After the networks are trained, we look at the logits of each class on the validation set. For instance,
fig. 6.29b tells us that the correlation of the class logits predicted by the first and second initializations
averaged over the 10 CIFAR classes, is 0.90.

117

Chapter 6 — A study on Canonical Correlation Analysis

CCA components correlation (10 components)

of 10000 09107

1{ om0z 10000

2{ os093 03094

09093

03094

10000

class scores correlation

Average absolute value of the correlations with a
random orthogonal projection on 10 components
(average over 100 trials)

1.0000

039031

08982

08982

05032

10000

Figure 6.29: The average of the absolute values of the correlations between (a) the first 10 CCA components
(b) the 10 class logits (c¢) 10 directions chosen with a random orthogonal projection, with three networks
trained on the CIFAR dataset with a different seed.

CCA components correlation (8 components) class scores correlation

090 090

0 096 096

Gyry1 100
2 097
0 050
Acc_norm 1 091

2 090

Mag_norm 1

2

097

100

090

0.90

0.90

090

090

1.00

097

097

091

090

097

100

097

100 094 094

094 100 095

094 095 100

04100 092 o093

Gyry1{0s2 100 09
24093 084 100
0

Acc_norm 1
2
0

Mag_norm 1

2

0.0
0o 1 2 0o 1 2 0 1 2 o 1
Gyry Acc_norm Mag_norm Gyry

2 o 1
Acc_norm

) 1
Mag_norm

Average absolute value of the correlations with a
random orthogonal projection on 8 components
(average over 100 trials)

10

Acc_norm 1
2 04
0

Mag_norm 1

0.0

1
Mag_norm

1
Gyry Acc_norm

Figure 6.30: The average of the absolute values of the correlations(a) the first 8 CCA components (b) the
8 class logits (¢) 8 directions chosen with a random orthogonal projection, with the SHL dataset. For each
sensor, we create three different initializations of a network using the sensor. As expected by the intuition,
the accelerometer and gyrometer feature and predictions are closer to each other than they are close to the
magnetometer.

As CCA find components with maximal correlation, and as the logits can be obtained with a linear
combination of the features, the correlation of the n. first CCA components will be higher than the correlation
of the n. class logits. However, fig. 6.29 and 6.30 show the correlations of the class logits are quite close to
the correlation of CCA components, they are much closer to each other than to a random linear combination
of features. This seems to indicate that the organization of the features is the one of the bottom scenario
in fig. 6.28: there are strong intra-class correlations within the data. However, such a strong correlation
between logits is not necessary, and the new experiments are there to prove it.

To verify this, we do not use synthetic data, because there is a risk that the CCA bases its calculation
on statistical properties from X;, Xo which we are not aware of. To account for it, we use an operation
that removes the correlations while keeping the statistical properties of each random variable intact: the

118

Chapter 6 — A study on Canonical Correlation Analysis

shuffle. We simply take each feature vector (the rows of X; and X5), and assign them a new position at
random in the matrix, with uniform probability. This way, any of the statistical properties of X; (mean,
standard deviation, moments of any order) are kept (they do not depend on the order of the samples in the
matrix), but the correlations between the features are destroyed, because the alignment between samples
is broken: any sample in X; faces a random sample in the database in X5. Now, shuffling completely at
random is not extremely interesting to us, because such a shuffle would create canonical components that
are completely devoid of meaning. We wanted to measure the importance of class clustering. To account
for class membership, we use a class shuffle: when we assign each sample z a new position, we make sure
the new position is the position of a sample in the same class as . This way, any sample from X; will
only face a sample at random belonging to the same class as x. If class clustering is the only reason why
canonical components are close to class components (top-right scenario in fig. 6.28), then computing the
CCA between class-shuffled feature matrices X7, X5 would not change the result. On the other hand, if the
phenomenon we observe is due to intra-class correlations, then computing CCA on class-shuffled data would
show considerably less proximity between class-shuffled and normal data.

original data shuffled data class-shuffled data

F o

s i *

X2
X2

N\

X1 X1 X1

Figure 6.31: An example of class shuffling on synthetic data (the colour represents the class). Random shuffle
destroys the correlation, and class-shuffle allows to destroy intra-class correlations while keeping inter-class
clustering intact.

normalized Frobenius distance between normalized nuclear distance between normalized WWF_SSD between
the class components and the the class components and the the class components and the
image of the projection P; =B, image of the projection Py = By B image of the projection Py = 87478,

o L
\ os roa A\

054 — ccA \ 7/ — coa \ 05
— random_proj \ |/ — random_proj \ /
ccA_whitened \ // CCA whitened \ | /
044 — dean — dean 04
T rnuttes N - vV
- shuffied - shuffied -

1 3 10 30 64 1 H 10 E) 6 1 3 10 E 64
number of selected components ns number of selected components ns number of selected components ns

Figure 6.32: The distance between the class components and the first ng components of the image of diverse
projections computed on clean or shuffled data. We display the average over three runs, the width of the
curve denotes three times the standard deviation.

119

Chapter 6 — A study on Canonical Correlation Analysis

normalized Frobenius distance with normalized Frobenius distance with normalized Frobenius distance with
the image of the projection the image of the projection the image of the projection
data from Acc_norm data from Gyr_y data from Mag_norm
10
£
5 o9
S
S o8
<
£
S o7 —— random_proj oy —— random_proj —— random_proj
< CCA_whitened . CCA_whitened 0.7 CCA_whitened
O 06 — PCA — PCA — PCA
° — A 0.6 — cca — cca
064
P S S Y AR T2 a8 1w m & wue 1 2 a8 15 @ e ue
10 10
R 0.9
&
2 oe 08
e
E o7 —— random_proj oy —— random_proj —— random_proj
v} CCA_whitened . CCA_whitened 0.7 CCA_whitened
C e — PcA — PCA — pcA
0.6 —
CCA CCA 064 CCA
P S S Y AR T2 a8 1w m & wue 1 2 a8 15 @ e ue
10 - 10
E -
09
g‘ 0.9
g
s 08 08
£
5 o7 —— random_proj oy —— random_proj —— random_proj
bt CCA_whitened . CCA_whitened 0.7 CCA_whitened
g os — PCA — PCA — PCA
_ 0.6 — _
CCA CCA 064 CCA
Tz a8 w @ w oue 12 a8 1w m & wue 1 2 a8 15 @ e ue
number of selected components ns number of selected components ns number of selected components ns

Figure 6.33: The Frobenius distance between the the class components and the image of the projection
computed from clean and shuffled data. We display the average over three runs, the width of the curve
denotes three times the standard deviation.

. normalized nuclear distance between normalized WWF_SSD between
normalized Frobenius distance between the class components and the the class components and the
the class components and the Kemnel of the projection P; B, (38, kernel of the projection Py = BB,
kernel of the projection P; = BB,
1.00 100

— pca — PCA
— cca — cea 0921 — cca

— random_proj — random_proj — random_proj

CCA whitened 2 cca_whitened CCA_whitened
086 — clean 075 — dean — dean
== dass-shuffled === dassshuffled 090{ === dass-shuffied
e shuffied shuffied
084
1 3 10 B o4 T 3 0 EY 61 1 3 o
number of selected components ns number of selected components ns number of selected components ns

Figure 6.34: The distance between the class components and the first ny components of the kernel of diverse
projections computed on clean or shuffled data. We display the average over three runs, the width of the
curve denotes three times the standard deviation.

120

Chapter 6 — A study on Canonical Correlation Analysis

normalized Frobenius distance with
the kernel of the projection
data from Acc_norm

normalized Frobenius distance with
the kernel of the projection
data from Gyr_y

normalized Frobenius distance with
the kernel of the projection
data from Mag_norm

102 100

1.00

S — =

0.96

0944 — random_proj 094
CCA_whitened 092
0924 __ pca

— cca

—— random_proj
CCA_whitened 0.94
— PCA
— cca

—— random_proj
CCA_whitened

— PCA

— cca

CCA from Acc_norm

0.90

102 1.00
1.00

°
©
3

0.98
0.96

0941 — random_proj 094
CCA_whitened 092

—— random_proj
CCA_whitened 004

— random_proj
CCA_whitened

CCA from Gyr_y

092 PCA — PCA —— PCA
— cca 0901 — cea — A
090 092
1 2 a4 8 1 2 w18 12 4 8 1 @ & 1 12 4 8 1 @ & us
1.00 102 Loo
£ | s [=
5 . 100 T mmmE——— | gl | RNl e
E‘ 0.98 0.98 AR
o E 098
o 0.96 %
= 0.96 0.96
E 0944 — random_proj 0.94 + — random_proj —— random_proj
b4 CCA_whitened 092 CCA_whitened 0.94 CCA_whitened
S 0921 — pca —— PCA —— PCA

— CCA 0.90 — CCA
0.90 0.88 0.92
1 2 8 1 2 e e 1 2 8 5 2 @ wus 1 2 5 1. 2 e ue

3 3
number of selected components ns number of selected components ns

— cca

}
number of selected components ns

Figure 6.35: The Frobenius distance between the the class components and the kernel of the projection
computed from clean and shuffled data. We display the average over three runs, the width of the curve
denotes three times the standard deviation.

We repeat the experiments from section 6.4.3, except that we also compute the CCA components from
shuffled and class-shuffled data (shuffling the data does not change anything for PCA). When considering
shuffied data, the canonical components are equivalent to random components. But when considering the
class-shuffled canonical components, the curve is relatively close to the curve with normal data, while still
significantly distinct. It looks like the distance between the class-shuffled curve and the normal curve is
much smaller than the distance between normal and random curves. This is why we think that class
clustering accounts for the majority of the proximity we observe: class clustering does play a major role in
the proximity we observe, but it is not the only factor. Intra-class correlations have little influence over the
canonical components. In other words, even if the logits were not correlated, the CCA would still put the
class components first.

Now, when we say "A = B", one might wonder how much A needs to be true for B to take place.
tha is, if the equality between the class and the first canonical components (B) might only occur in extreme
cases when the classes are extremely well separated. For instance, the SHL network with the accelerometer
data reaches 90 % validation F1-score, similarly to the CIFAR 10 network. However, figure 6.33 shows that
B still happens with the gyrometer and magnetometer features, which have validation performances of 80 %
and 66 %, respectively.

Now, one could argue that these sensors are still similar to each other: in chapter 3, figure 3.6 shows
that the norm of the magnetometer still carries some information about the dynamics of the phone (we see
traces of a 2H z Dirac comb in the norm of the magnetometer), a piece of information that is prevalent in the
accelerometer and gyrometer signals. One could argue that with networks where modalities are much more
different to each other (for instance, audio and video, or text and image), the results might not hold. These
critics are entirely valid, and the lack of reproduction with other signals is the improvement we estimate to
be the most important for this chapter.

But for now, let us pursue with the SHL and CIFAR datasets. On these problems at least, we showed that
B (the fact that class components are equal to the first canonical components up to a linear relationship)
happens in practice and that A = B. The next sections will show how these propositions relate to the
CCA fusion we presented at the beginning of the chapter.

121

Chapter 6 — A study on Canonical Correlation Analysis

6.6 How the equality between class and canonical components im-
plies that a CCA fusion is ineffective

The fact that the networks we consider have good classification accuracies means that the classes are well
separated in the feature space (A). The previous sections demonstrated that the class components are equal
to the canonical components up to a linear transformation (B, section 6.4) and that A = B (section
6.5). This short section aims to show how B implies C' (the fact that a CCA fusion is equivalent to a sum
of logits).

Let us assume that we have B: the first canonical components are equal to a linear combination of the
class components. This means that the classification information is kept in these components and that the
other components are less informative about the classification problem.

Now, one could argue that there might still remain some information that is relevant to the classification
problem in the n—n, last canonical components. They would be right. In fact, if we train a classifier on these
last components, we will obtain a nonzero classification accuracy. However, we argue that this information
is less practical, less effective, than the class components. To show it, let us focus on the classification layer
in the network. As this layer is linear, it means that the network optimized the classification layer to classify
the hidden features.

Now, in the general case, the full set of weights of a network is not always able to reach 100 % accuracy,
so a neural network does not always find the perfect weights to solve a given problem. But the classification
layer is linear: it means that we know it is able to reach an optimum easily (a linear problem is convex, and
gradient descent always finds the optimum of a convex problem).

Note that the full, rigorous, mathematical guarantees applies only to the case where the features that
train the linear classifier are fixed. In the case of a neural network, the input features of the classification
layer still change during the training, as the weights of the other layers are optimized. There might be
a possibility for the hidden features to move away from the classification layer, and the classification layer
might be unable to catch up to them. To summarize it is possible that the classification layer and the features
play a cat-and-mouse game, without the former ever reaching the latter. According to this possibility, at
every instant ¢, the classification layer is suboptimal to classify the hidden features. However, we argue that
this possibility is unlikely to happen in practice for two reasons:

e Neural networks learn their earlier layers first [269], which means that the classification layer will
eventually catch up to the hidden features, even if the beginning of the training got the features
farther from the class components.

e Linear, Multi-layer models (mathematical approximations of neural networks) trained by gradient
descent are known to ’align the layers’ ([292]). In other words, the hidden features have been shown
to move towards the class components, and vice-versa.

To sum up, the class components are directly optimized to focus on the most useful components, and their
behaviour is simple enough (linear) for us to assume safely that finding the optimum is feasible.

In other words, given that the class components are the components that classify the best the features, a
novel classifier that sees the hidden features will likely look at the class components. When the classifier is
presented with canonical variables X1, X%, this means it will look at the first n. features first. And when the
classifier sees a sum of canonical variables X| + X}, it will look at the first components of the sum. As the
first canonical components are equal to a linear combination of the class logits, this means the classifier will
look at a sum of logits first. Now given that the neural network optimized its logits for linear classification,
it is unlikely that the classifier learns much more than what the network learnt: the classifier using features
that are essentially a sum of logits will not be likely to reach better performances than the mere sum of
logits.

6.7 An implementation of CCA fusion with SHL

Up to now, we have shown that the separation of the classes in the feature space (A4) imply that the CCA
recomputes the logits (B), which implies that the CCA fusion is equivalent to a sum of logits (C'). We know

122

Chapter 6 — A study on Canonical Correlation Analysis

that A takes place in practice because the performance of the networks is high (at least 66 % F1-score), and
we know that B occurs thanks to the complex distance experiments we led in section 6.4. To conclude this
chapter, we aim to demonstrate experimentally that the fusion method relying on the canonical variables
computed from deep features is equivalent to a sum of the logits obtained from the network (C).

We implement a classic CCA fusion and compare it to the performance of a model which merges the
data using a sum of logits. Note that even though we call this model a classifier in the rest of the section,
we do not train it in itself, because it relies on interpretable logits of trained networks. In order to reduce
the variance of the results, and given that both methods use networks that are trained using a single sensor,
we re-use the neural networks: each couple of networks is used once for the CCA fusion, and once for the
sum of logits. This way, we remove one source of randomness in the experiment. However, we still repeat
the experiment (training of a couple of networks) five times. The following pseudo-code algorithm details
the experimental protocol:

Require: A couple of sensors s, ss.

for i in {1,2,3,4,5} do
Train a first neural network on data from s;, record the embedded training features X,
Train a second neural network on data from s,, record the embedded training features X,
Compute the PCA on each of X; and Xs, keep only 99.99 % of the variance
Compute the canonical variables X|, X}
Train a SVM classifier to classify the sum X] 4+ X}, measure its validation performance
Measure the validation performance of a classifier which only considers the sum of the output logits of
the two trained networks

end for

return the mean performance of the CCA fusion and sum of logits classifier.

Parameter value
C (regularization parameter) 1.0
kernel RBF (v = axi\/ﬁ)
multiclass strategy One-versus-rest

Table 6.3: The parameters of the SVM classifier

To classify the sum of canonical variables, we use a SVM classifier which parameters are given in table
6.3. Table 6.4 gives the results. Surprisingly, the CCA fusion is slightly worse than a simple sum of logits.
We assume that SVM overfits to the data®. The reasoning in the previous section omitted an important
point: when we said that the last layer of a network is optimized to the features of the network, we must keep
in mind that the network only sees the training data. Nothing prevents the network or the SVM classifier
to overfit, and they might not overfit the same way.

. . Restricted
Sum of logits | CCA fusion CCA fusion

|Acel, Gyr, | 90.76 +0.87% | 88.66 +0.35% | 88.90 + 0.70%
|Acc|, |Mag| | 91.27 +0.31% | 90.67 +0.40% | 90.32 + 0.55%

Table 6.4: The results of a CCA fusion, using diverse combination of sensors with the SHL dataset. The
table displays the average and standard deviation over five random runs

To check this hypothesis, we use only the first components: instead of asking SVM to classify the samples
using all the components in the sum X{ + X3, we select the first n. components of this sum (n. = 8 with the
SHL dataset), and train the SVM to classify the samples using the selected components ((X] + X%) * I'<).

5We tried this regularization parameter C: we first experimented using a search with a log scale between 10~% and 10%,
with a step factor of x1/10, which resulted in having the optimal C equal to 1.0. Then, we experimented using a linear scale
in [0.1,5.0] with a step of 0.1. As the difference in performance between the optimal (C' = 1.7) and the default (C' = 1.0)
regularization parameters was less than 0.05%, we kept using the default value. We did not try changing the other parameters.

123

Chapter 6 — A study on Canonical Correlation Analysis

The result is in the column 'restricted CCA fusion’ in table 6.3. The fact that the performance of this method
is the same as the performance of the CCA fusion with full components means that the trained SVM uses
only the first n. components, which is a strong indication that the n. most correlated components are the
most interesting for classification.

6.8 Varying the layer where features are extracted

In this experiment, we try to see what is the influence of the layer the features are extracted from. To repeat,
this section does not appear in the A => B = (reasoning that serves as a frame for the second half of
this chapter. However, this is one important hypothesis we made in section 6.2 to work with when we talk
about B.

Previously, we mostly focused on features from the ultimate layer of the network, features from which
the class logits can be obtained with a simple linear transformation. What about the feature from earlier
layers? If we were to apply the fusion method described in [267, 249], would it be relevant?

This experiment is similar to the projection experiments in section 6.4, except that we always choose to
project on a subspace with n. dimensions, where n. is the number of classes. The z-axis now denotes the
layer the features come from. The fact that we resort to projection experiments is only because there is no
obvious equivalent to the class components in the other layers than the last. We use experiments we know
to be imperfect because we found no other way to explore the question.

When there is a correspondence between CCA components and class logits, it is likely that the method
described in [267, 249] will be equivalent to a simple logits average. In other words, when the performance of
the original network is unchanged when the features are projected onto a n.-dimensional subspace, the CCA
operation only picks up directions which are the inverse image of the class logits by the transformation of the
layers. Figure 6.36 provides the results: before the last layer of the network, the accuracy drops significantly,
which means that proposition B does not really apply to features from earlier layers.

Please note that fig. 6.36 does not guarantee that applying CCA to other layers is better than an average
of logits. It only means the reason why the results are equal no longer holds. The methods may have
equal results for different reasons (or due to mere coincidence), and applying CCA may even be worse than
computing an average. In fact, we hypothesize that classifying the most correlated components will be worse
because the features that are used are not optimized for direct classification. However, the exact experiments
to demonstrate it are out of scope for this work.

124

Chapter 6 — A study on Canonical Correlation Analysis

Gyr_y Acc_norm Mag_norm
0.7

08 06
0.6 05
04
04 04 03
02
01
00 0.0

CIFAR

07

0.6

o
@
°
®

o
o

0.4

CIFAR
accuracy

Acc_norm
Fl-score

o
=

03

02

o
N

o

N

02 01

Fid S 00 0.0

kS 07

0.6

06 05
0.4

Mag_norm
Fl-score

03

02 02 02

0.1

Figure 6.36: The performance when projecting the features from every layer using the sensor on top on the
n. most correlated components. The CCA is computed from the sensor on the left, using features from the
same layer. The experiment is repeated across three network initializations, the standard deviation is given
by the width of the curve. We pay attention not to use twice the same initialisation when using twice the
same sensor.

6.9 Conclusion

A comment on the meaning of deep features

We would like to come back on one of the consequences of proposition B (the proximity between the first
canonical components and the class components). We opened this thesis by saying that features from deep
neural networks could eventually replace the handcrafted features. If features from deep networks are more
effective than handcrafted feature, this means that the features from deep networks encode more interesting
properties about the signals (properties that we can compute explicitly, like the power; properties that are
harder to express mathematically; and properties that we are unaware of, but are nonetheless important to
a general-purpose classification problem). If a neural network reliably computed a feature from a signal (a
feature that is not covered by the class components), this feature would appear in several initializations of
the network, which means the CCA would find it and put it first.

However, we observed that the CCA only puts first the class components. in other words, it seems that
the networks only learns what we need it to learn: the classification information. The results from Kamoi
et al. (classification information accounts for most of the variance of deep features [286]) also go in this
direction.

This seems to contradict the very rationale of feature extraction computer vision. An incredible amount of
works used these deep features and reliably showed how these features outperformed the classical handcrafted
features from computer vision. We do not question the validity of the many papers which relied on the use
of deep features. To show how these works are compatible with our results, we can say that knowing the
logits is already a lot.

To be more precise, let us take an example and consider a typical example of the use of deep features:
the works of Gu and Tresp [293]. One of their findings states that the feature embeddings can act as a
classifier for new semantic concepts. For instance, one can use an ImageNet-pretrained model to detect
the presence of reptile scales in an image, even though there is no class to encode this precise concept (the
scale class designates the tool). To do so, one can regroup a series of images containing scale patterns, and

125

Chapter 6 — A study on Canonical Correlation Analysis

compute their feature using any pretrained model, and compute a simple average of these vectors. To know
if a new, unseen image has scale patterns in it, one can just measure the distance between the vector of the
unseen image and the average vector computed earlier, and apply a simple threshold. As we said, we be-
lieve these results to be completely valid and compatible with our hypothesis (the classification information
summarizes most of the information present in deep features). We said that there was no class explicitly
encoding the presence of reptile scales, but there are many classes of reptiles which happen to have scale
patterns in them: lizards (green_lizard, alligator_lizard, and frilled_lizard are valid ImageNet
classes), crocodiles (African_crocodile, American_alligator), snakes (thirteen ImageNet classes repre-
sent snakes®), etc. Knowing the classification information could prove useful to distinguish scale patterns:
if it looks like a lizard and a snake, chances are the image has scales in it. By averaging the encoding of
images with scale patterns, we might just average the class components for the classes of scaled animals.

This explanation looks convincing, but we must raise a warning: we do not state that this is what
happens in practice, as we lead no experiment to prove either the hypothesis (the classification information
summarizes most of the information present in deep features) or its application to the works of Gu and Tresp
[293] (the average vector for a concept correlates with the classes covering this concept). The explanation we
gave is only one way to solve the apparent contradiction between the results we presented and the current
use of neural networks as feature extractors.

If the only information present in the last features was the classification information (and we cannot
underline this if enough), we could give a piece of practical advice to a research team who would want
to create a dataset equivalent to ImageNet with other sensors: they would need to have extremely diverse
classes. This way, features extracted from the last layers would still carry relevant information. Were
the classification problem to be only partial, the last layers would not be extremely useful. In this case, a
researcher willing to use such a model could resort to retraining the model (pretraining improves convergence
speeds even if the classification semantics do not intersect [5, 171]) or to use features from other layers than
the last, similarly to [294, 295].

In other words, the unproven hypothesis we just formulated states that one of the key explanations for
the success of ImageNet-pretrained models is not only the amount of data but also the diversity of labels the
models were trained with.

How to build a dataset with many labels ?

If building a dataset with a large number of samples is quite straightforward, one could wonder how to gather
a large number of varied classes. We can think of various ways, each of them having specific qualities and
drawbacks:

e firstly, one could include rarer classes (such as motorbike, boat, for TMD). However, this first option
changes the problem because it introduces classes that are extremely unlikely in the dataset (see [296]
for examples of solutions).

e one could also add annotations to encompass a type of problem that is more general (for instance,
solving general Human Activity Recognition instead of merely TMD). This solution might not help to
learn better features for the original problem if the two problems are too different or decorrelated.

e the next solution is to increase the granularity of the labels: instead of asking a network to predict
whether the user is in a bus, we could ask whether the bus has an electrical engine or a combustion
engine, for instance. However, this requires to have access to levels of precision that are hard to achieve.

e Finally, one could also ask a network to guess information about the user (such as the gender [297]),
but such a technology would harm the privacy of the users in such a direct fashion that we estimate
preferable not to follow this way.

For instance, young adults are known to be on average lcm taller in the morning [298] due to changes
in the mechanical properties of the spine. We could hypothesize that asking a neural network to predict the
time of the day would force it to exploit some information about the posture of the individual.

Gthunder_snake, ringneck_snake, hognose_snake, green_snake, king_snake, garter_snake, water_snake, vine_snake,
night_snake, boa_constrictor, rock_python, Indian_cobra, green_mamba, sea_snake and horned_viper

126

Chapter 6 — A study on Canonical Correlation Analysis

With this last example, we are approaching the domain of self-supervision, where we ask a network to
solve a problem created by researchers, as a pretext to learn interesting features. A dissertation on the exact
delimitation of self-supervised learning is out of scope for this work, but we will nonetheless say that we expect
self-supervision to also be useful in helping the network to learn a useful general-purpose representation, as
it has been with Natural Language Processing.

Summary and future work

We began this chapter with a presentation of Canonical Correlation Analysis and showed how this tool helps
us to understand the features different neural networks learnt: we obtained a quantitative measure showing
that the accelerometer is closer to the gyrometer than to the magnetometer, and we demonstrated that the
network had access to the power of the original signal even before its training, a piece of information it could
exploit to solve the TMD problem. We devoted a large portion of the chapter to show why this operation
would likely not revolutionize data fusion with deep features: we showed that when the classes are well
separated in the feature space, the CCA recomputed the class components. We showed that this implied
the fact that a CCA fusion was equivalent to a sum of logits, and finally demonstrated experimentally the
ineffectiveness of this fusion method. We briefly tackled the subject of understanding what happens with
CCA on features from intermediate features, and showed that the reasoning we led for features from the last
layer would likely not hold for other layers.

We hypothesize that we would observe the main result (the sequence of implications) generalizing well to
any two networks (either networks using the same sensor or networks using different sensors) because section
6.5 showed that simply having relatively well-separated classes in the feature space is enough for CCA to
put the class components first. However, to the current date, no experiment backs up this claim. Leading
these experiments with other multimodal sensor problems could be part of future work. Another possibility
for future work could be to work on unsupervised problems, using the theoretical formulation introduced by
Roeder et al. Alternatively, we could think about generalizing the present results to the improvements of
CCA we mentioned: PWCCA [274], CKA [299], or kernel-CCA [300]. Finally, the last way to continue the
work would be to verify the difference of meaning between deep features and class logits, and in the case our
hypothesis is proven, one could verify how to reconcile it with the current use of deep networks as feature
extractors.

127

Chapter 7

Conclusion

7.1 Summary of the contributions

This thesis is aimed at exploring Deep Learning for Transport Mode Detection. If our original goal was to
produce a general-purpose feature extractor, the lack of a "go-to" methodology quickly pushed us to try to
know how to use deep networks in practice. To do so, we focused on two major research questions: How to
preprocess the input signals 7 And how to merge the data from different sensors ? During this work, we
reached the following conclusions:

7.1.1 Preprocessing of input segments

We dedicated our first chapter (chapter 3) to the preprocessing one can apply to the input data before
sending it to a network. We began by improving the padding of short segments we found in the literature
(replacing the zero-padding with a wrapping), before trying to answer a question: should we leave our input
segments intact, or should we compute a Fourier Transform, spectrogram, or scalogram, for the network to
use? Surprisingly, this decision is not explored much in the literature. One publication did conclude that the
most efficient representation depended on the number of samples: it seems that when the dataset is small,
computing the spectrograms helps the network. If the dataset is large and varied, we ought to let the network
earn its own features. By looking at the literature, we saw that the hypothesis seems to be verified, but we
could not conclude. Given the lack of definitive proofs we had, we tried making the comparison ourselves. If
the comparison "spectrogram versus raw data" was biased in favour of spectrograms, the comparison of the
FFT and raw data demonstrated that computing the FFT does help the network. We also justified each of
the steps of the computation of the spectrograms: resizing, log scale for the frequencies, and computation of
the log of the energy. In a last section (section 3.4), we wanted to go beyond the empirical comparisons. We
showed that the spectrograms made the problem linear for one of the classes, thus simplifying the problem.
However, this simplification only happened because there was a way to solve the problem using frequency
features linearly, and we expect this last result to apply only to Transport Mode Detection.

7.1.2 Global Pooling methods

In chapter 4, we studied one choice in the architecture design of neural networks. All convolutional architec-
tures used in TMD required a flatten step to obtain a fixed-size vector from a one-dimensional sequence of
representations. We introduced the use of Global Pooling methods from the Computer Vision literature in
Transport Mode Detection. Not only did it allow to use segments of any size, but it also resulted in a signifi-
cant decrease in the memory and computational requirements. The convolutional model we obtained to work
on the GeoLife dataset could be reduced to 11,000 parameters, an extremely low memory size compared to
the millions of weights neural networks usually have.

128

Chapter 7 — Conclusion

7.1.3 Data Fusion

The problem of Transport Mode Detection sometimes involves more than one sensor. Chapter 5 talked about
the choice of an architecture to efficiently merge information about each sensor. The literature is extremely
vast, and we selected several algorithms which had a rationale that we could apply to our problem. However,
none of them did succeed in outmatching the most basic data fusion methods. We tried forcing the network
to learn complementary features, and failed. But this failure proved useful: we showed that if providing
a network with different signals helps it more than redundant signals, trying to sway it out of learning
redundant features is ineffective. The network seems able to choose by itself the right optimum between
redundancy and complementarity.

7.1.4 Canonical Correlation Analysis for data fusion

The last chapter (chapter 6) studied one specific data fusion method in detail, an algorithm that relied on a
statistical operation named Canonical Correlation Analysis. Any classification network that succeeds in its
task (i.e., that has a high accuracy) will produce features that disentangle the classes: the classes are said to
be well separated in the feature space. Our contribution was to demonstrate that this separation influenced
the CCA, and made the operation recompute the class components first. Doing so was not easy, and we
demonstrated the need to whiten the data in the process. Once we were sure that the CCA recomputed
the same components as the classification layer, we came back to the original data fusion algorithm that
interested us in the first place and demonstrated our main point: given that the CCA operation recomputes
the same information as the classification layer, using CCA to perform data fusion is equivalent to using the
class logits returned by the classification layer. Sadly, we showed that our whole reasoning was likely to be
proper to the very last layer of the network, and we expect it not to hold for earlier layers. We concluded
with some remarks on the fact that the reason why a network trained on ImageNet produces good general-
purpose features is that this dataset has a good variety of classes. Pre-training a network to do the same for
other signals requires similarly a dataset with a large and diverse set of classes.

Some of these problems were extremely vast, to the point that several chapters of this manuscript (pre-
processing, multimodal fusion) could have been complete theses in themselves. Others would have deserved
some experiments on more problems than only Transport Mode Detection.

What to retain from this thesis 7

Our experiments participate in reaching two general conclusions that might be useful for a future practitioner:

e Neural networks work best with spectrograms when the number of samples is ’small’, and we should
let the network learn its own features when the number of samples is large enough.

e To be able to use a neural network as a feature extractor, not only do we need to train it using a
dataset with many samples, we also need the dataset to have many classes.

7.2 Future work

There are many ways one could pursue the present work. Obviously, all the possible avenues we presented in
the conclusions of the diverse chapters are valid ways to pursue the work at a lower level, we will not repeat
them here. What we will do instead, is presenting higher-level research questions. Two major avenues might
be interesting both for TMD, and for the types of problem practitioners usually deal with:

7.2.1 Semi, self, or unsupervised learning

In this thesis, all the neural networks were trained using a set of labelled examples, and the network had to
learn to classify all of them. This process is called supervised learning, for the labels directly tell the network

129

Chapter 7 — Conclusion

what to learn. However, in practice, data is often cheap to record (the researcher only needs to passively
leave the sensor running); while the labels are harder to obtain: usually, labelling requires the intervention
of one or more human annotator(s) who will tell which class corresponds to each sample. To avoid it, several
lines of work try to make use of unlabelled data, for example using auto-encoders which learn how the data
look like by trying to compress it ([125, 65]). These techniques are said to be semi-supervised, for the network
is trained by taking into account the unlabeled samples (for example, with an auto-encoder), and learning
to classify the labelled ones with a supervised criterion. The GeoLife dataset provides a convenient dataset
with a portion of unlabelled data, to experiment with such approaches.

Recent improvements of semi-supervised algorithms involve more than trying to compress the unlabeled
samples. In these works, the network learns to solve a pretext task, a problem which is not directly of any
use for the classification but forces it to learn meaningful features along the way. For instance, the network
can be asked to guess if two patches come from the same image, or if one image is the reflection of the other.
This is called self-supervised classification, because we still use a label to train the network, but the label
can be extracted from the raw data itself without the intervention of an annotator [10]. Alternatively, we
could also pursue the unsupervised avenue, where most of the learning process involves no label at all (such
as the unsupervised clustering in [55]).

7.2.2 Domain Adaptation

Domain adaptation is simply the activity that consists of learning to use data from other sources, where the
data or labels are easier to obtain [301, 302]. This "other source" can be an external dataset, or a dataset
generated using a simulator. We already explained that the design of a simulator for TMD or even HAR is
an additional technological barrier to overcome before applying domain adaptation to such data. However,
one can apply domain adaptation techniques immediately by trying to use data from another context. For
instance, learning to adapt to one user using data from other users (such as [303] does) can be thought of as
domain adaptation. This problem even has its own datasets, for the data from the SHL 2019 and SHL 2020
challenges are still readily available and open for anyone to experiment with.

One subfield of domain adaptation that could be interesting to pursue for practitioners is few-shot learning
[304]: this type of problem consists in starting from a model trained on a diverse and massive dataset (e.g.,
ImageNet); and using a handful of samples per class (sometimes 1, sometimes 5, never more than 10) to find
ways to adapt this model to the new classification problem. Labelling less than a hundred samples in total
would be ideal for practitioners but, to the best of our knowledge, few-shot learning is not explored for TMD
or even HAR. As applying few-shot learning to our problems is both unexplored and useful in practice, it is
the ideal research problem to tackle for longer-term works.

Convolutional networks mostly took off thanks to Computer Vision and the dataset ImageNet. However,
building this dataset was an extremely long process, which involved thousands of hours of tedious work [2].
Computer Vision, in turn, influenced many classification tasks, such as TMD, which still nowadays rely on
heavily supervised data. In this regard, Natural Language Processing (NLP) is valuable: from the start,
the representations of words were learnt from unsupervised sequences of words [305, 118], and even today,
current models are taught using no labels [306]. The existence of NLP shows it is possible to learn efficient,
general-purpose representations with little to no human intervention. Let us hope that we can make other
domains follow this example.

130

Bibliography

1]
2]

3]

4]

[5]

6]

7]

8]

19]

[10]

[11]

[12]

[13]

Y. LeCun et al. “Backpropagation Applied to Handwritten Zip Code Recognition”. In: Neural Compu-
tation 1.4 (Dec. 1989). Number: 4, pp. 541-551. 1sSN: 0899-7667. DOI: 10.1162/neco.1989.1.4.541.

Fei-Fei Li. How we’re teaching computers to understand pictures. en. 2015. URL: https://www.ted.
com/talks/fei_fei_1li_how_we_re_teaching_computers_to_understand_pictures (visited on
06,/22/2021).

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “ImageNet classification with deep convolu-
tional neural networks”. en. In: Communications of the ACM 60.6 (May 2017). Number: 6, pp. 84-90.
I1SSN: 0001-0782, 1557-7317. DOI: 10.1145/3065386. URL: https://dl.acm.org/doi/10.1145/
3065386 (visited on 07/19/2021).

Olga Russakovsky et al. “ImageNet Large Scale Visual Recognition Challenge”. en. In: International

Journal of Computer Vision 115.3 (Dec. 2015). Number: 3, pp. 211-252. 1ssN: 1573-1405. DOL: 10.

1007 /s11263-015-0816-y. URL: https://doi.org/10.1007/s11263-015-0816-y (visited on
07/19/2021).

Maithra Raghu et al. “Transfusion: Understanding Transfer Learning for Medical Imaging”. In: arXiv:1902.07208
[es, stat] (Feb. 2019). URL: http://arxiv.org/abs/1902.07208 (visited on 06/14,/2019).

Ali Sharif Razavian et al. “CNN Features Off-the-Shelf: An Astounding Baseline for Recognition”. en.
In: 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Columbus, OH,
USA: IEEE, June 2014, pp. 512-519. 1sBN: 978-1-4799-4308-1. DOI: 10.1109/CVPRW.2014.131. URL:
https://ieeexplore.ieee.org/document/6910029 (visited on 07,/23/2021).

Jeff Donahue et al. “DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recogni-
tion”. en. In: International Conference on Machine Learning. PMLR, Jan. 2014, pp. 647-655. URL:
http://proceedings.mlr.press/v32/donahuel4.html (visited on 07/23/2021).

Jie Hu et al. “Squeeze-and-Excitation Networks”. en. In: arXiv:1709.01507 [cs] (Sept. 2017). URL:
http://arxiv.org/abs/1709.01507 (visited on 12/21/2018).

Salman Khan et al. “Transformers in Vision: A Survey”. In: arXiv:2101.01169 [cs] (Feb. 2021). URL:
http://arxiv.org/abs/2101.01169 (visited on 05/12/2021).

Spyros Gydaris et al. “CVPR 2020 Tutorial on Annotation-Efficient Learning: Few-Shot, Self-Supervised,
and Incremental Learning Approaches”. In: 2020 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). online, 2020. URL: https://annotation-efficient-learning.github.io/
(visited on 07/19/2021).

Tan Goodfellow et al. “Generative Adversarial Nets”. In: Advances in Neural Information Process-
ing Systems. Ed. by Z. Ghahramani et al. Vol. 27. Curran Associates, Inc., 2014. URL: https :
//proceedings.neurips.cc/paper/2014/file/5cal3e9b122f61£8£06494c97blafccf3-Paper. pdf.

Oumayma Sakri et al. “A Multi-User Multi-Task Model For Stress Monitoring From Wearable Sen-
sors”. In: 2018 21st International Conference on Information Fusion (FUSION). July 2018, pp. 761—
766. DOI: 10.23919/ICIF.2018.8455378.

Laurence Casteran et al. “Identification de deux sous-types de dysgraphies a partir de ’analyse de
paramétres cinématiques et statiques de I’écriture d’enfants typiques et porteurs d’une dysgraphie”.
fr. In: ANAFE - Approche Neuropsychologique des Apprentissages Chez L’enfant (2021). URL: https:
//hal.univ-grenoble-alpes.fr/hal-03101924 (visited on 08/05/2021).

131

https://doi.org/10.1162/neco.1989.1.4.541
https://www.ted.com/talks/fei_fei_li_how_we_re_teaching_computers_to_understand_pictures
https://www.ted.com/talks/fei_fei_li_how_we_re_teaching_computers_to_understand_pictures
https://doi.org/10.1145/3065386
https://dl.acm.org/doi/10.1145/3065386
https://dl.acm.org/doi/10.1145/3065386
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
http://arxiv.org/abs/1902.07208
https://doi.org/10.1109/CVPRW.2014.131
https://ieeexplore.ieee.org/document/6910029
http://proceedings.mlr.press/v32/donahue14.html
http://arxiv.org/abs/1709.01507
http://arxiv.org/abs/2101.01169
https://annotation-efficient-learning.github.io/
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://doi.org/10.23919/ICIF.2018.8455378
https://hal.univ-grenoble-alpes.fr/hal-03101924
https://hal.univ-grenoble-alpes.fr/hal-03101924

Chapter 7 — BIBLIOGRAPHY

[14] N Saguin-Sprynski, L Jouanet, and M Billeres. “Monitoring system for cable transportation”. In:
International Journal of Condition Monitoring 9.2 (July 2019). Number: 2, pp. 46-49. DOI: 10.1784/
204764219826793785.

[15] Andrea Vassilev. “Data Mining Applied to Transportation Mode Classification Problem:” en. In: Pro-
ceedings of the 4th International Conference on Vehicle Technology and Intelligent Transport Systems.
Funchal, Madeira, Portugal: SCITEPRESS - Science and Technology Publications, 2018, pp. 36-46.
ISBN: 978-989-758-293-6. DOIL: 10 .5220/0006633300360046. URL: http://www.scitepress.org/
DigitallLibrary/Link.aspx?doi=10.5220/0006633300360046 (visited on 08/02,/2021).

[16] Umer Majeed, Sheikh Hassan, and Choong Seon Hong. Vanilla Split Learning for Transportation
Mode Detection using Diverse Smartphone Sensors. June 2021.

[17] ActivityRecognitionClient |textbackslashtextbar Google Play services. en. July 2021. URL: https://
developers.google.com/android/reference/com/google/android/gms/location/ActivityRecognitionClient’
hl=fr (visited on 07/28,/2021).

[18] Activity Recognition API. en. July 2021. URL: https ://developers . google . com/ location -
context/activity-recognition?hl=fr (visited on 07/29/2021).

[19] Claudia Carpineti et al. “Custom Dual Transportation Mode Detection by Smartphone Devices Ex-
ploiting Sensor Diversity”. en. In: arXiv:1810.05596 [cs, stat] (Oct. 2018). URL: http://arxiv.org/
abs/1810.05596 (visited on 01/03/2019).

[20] Timothy Sohn et al. “Mobility Detection Using Everyday GSM Traces”. en. In: UbiComp 2006: Ubiqui-
tous Computing. Ed. by Paul Dourish and Adrian Friday. Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer, 2006, pp. 212-224. 1SBN: 978-3-540-39635-2. DOI: 10.1007/11853565_13.

[21] Arash Kalatian and Bilal Farooq. “Mobility Mode Detection Using WiFi Signals”. In: 2018 IEEE
International Smart Cities Conference (ISC2). Sept. 2018, pp. 1-7. DOL: 10.1109/1ISC2.2018.
8656903.

[22] Vlad C Coroami, Can Tiirk, and Friedemann Mattern. “Poster: Exploring the Usefulness of Bluetooth
and WiFi Proximity for Transportation Mode Recognition”. en. In: (2019), p. 4.

[23] Paulo Ferreira, Andriy Zabolotny, and Joao Barreto. “Bicycle Mode Activity Detection with Bluetooth
Low Energy Beacons”. In: 2019 IEEE 18th International Symposium on Network Computing and
Applications (NCA). Sept. 2019, pp. 1-4. DOI: 10.1109/NCA.2019.8935030.

[24] Lin Wang and Daniel Roggen. “SOUND-BASED TRANSPORTATION MODE RECOGNITION
WITH SMARTPHONES”. en. In: (2019), p. 5.

[25] S. Richoz et al. “Transportation Mode Recognition Fusing Wearable Motion, Sound, and Vision
Sensors”. In: IEEFE Sensors Journal 20.16 (Aug. 2020). Number: 16, pp. 9314-9328. 1sSN: 1558-1748.
DOI: 10.1109/JSEN.2020.2987306.

[26] GPS.gov: GPS Accuracy. Sept. 2019. URL: https://www.gps . gov/systems/gps/performance/
accuracy/ (visited on 09/26,/2019).

[27] Mohammad Etemad. “Transportation Modes Classification Using Feature Engineering”. en. In: arXiv:1807.10876
[cs, stat] (July 2018). URL: http://arxiv.org/abs/1807.10876 (visited on 12/14/2018).

[28] Sina Dabiri and Kevin Heaslip. “Inferring transportation modes from GPS trajectories using a con-
volutional neural network”. In: Transportation Research Part C: Emerging Technologies 86 (Jan.
2018), pp. 360-371. 1SSN: 0968-090X. DOI: 10.1016/j .trc.2017.11.021. URL: http://wuw.
sciencedirect.com/science/article/pii/S0968090X17303509 (visited on 12/14/2018).

[29] Lin Liao et al. “Learning and inferring transportation routines”. en. In: Artificial Intelligence 171.5-6
(Apr. 2007). Number: 5-6, pp. 311-331. 1sSN: 00043702. DOI: 10.1016/j.artint.2007.01.006. URL:
http://linkinghub.elsevier.com/retrieve/pii/S0004370207000380 (visited on 12/20/2018).

132

https://doi.org/10.1784/204764219826793785
https://doi.org/10.1784/204764219826793785
https://doi.org/10.5220/0006633300360046
http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0006633300360046
http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0006633300360046
https://developers.google.com/android/reference/com/google/android/gms/location/ActivityRecognitionClient?hl=fr
https://developers.google.com/android/reference/com/google/android/gms/location/ActivityRecognitionClient?hl=fr
https://developers.google.com/android/reference/com/google/android/gms/location/ActivityRecognitionClient?hl=fr
https://developers.google.com/location-context/activity-recognition?hl=fr
https://developers.google.com/location-context/activity-recognition?hl=fr
http://arxiv.org/abs/1810.05596
http://arxiv.org/abs/1810.05596
https://doi.org/10.1007/11853565_13
https://doi.org/10.1109/ISC2.2018.8656903
https://doi.org/10.1109/ISC2.2018.8656903
https://doi.org/10.1109/NCA.2019.8935030
https://doi.org/10.1109/JSEN.2020.2987306
https://www.gps.gov/systems/gps/performance/accuracy/
https://www.gps.gov/systems/gps/performance/accuracy/
http://arxiv.org/abs/1807.10876
https://doi.org/10.1016/j.trc.2017.11.021
http://www.sciencedirect.com/science/article/pii/S0968090X17303509
http://www.sciencedirect.com/science/article/pii/S0968090X17303509
https://doi.org/10.1016/j.artint.2007.01.006
http://linkinghub.elsevier.com/retrieve/pii/S0004370207000380

Chapter 7 — BIBLIOGRAPHY

[30]

31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Anindya Das Antar et al. “A Comparative Approach to Classification of Locomotion and Trans-
portation Modes Using Smartphone Sensor Data”. en. In: Proceedings of the 2018 ACM International
Joint Conference and 2018 International Symposium on Pervasive and Ubiquitous Computing and
Wearable Computers - UbiComp ’18. Singapore, Singapore: ACM Press, 2018, pp. 1497-1502. ISBN:
978-1-4503-5966-5. DOI: 10.1145/3267305.3267516. URL: http://dl.acm.org/citation.cfm?
doid=3267305.3267516 (visited on 03/11/2019).

Martin Gjoreski et al. “ Applying Multiple Knowledge to Sussex-Huawei Locomotion Challenge”. en. In:
Proceedings of the 2018 ACM International Joint Conference and 2018 International Symposium on
Pervasive and Ubiquitous Computing and Wearable Computers - UbiComp ’18. Singapore, Singapore:
ACM Press, 2018, pp. 1488-1496. 1SBN: 978-1-4503-5966-5. DOI: 10.1145/3267305.3267515. URL:
http://dl.acm.org/citation.cfm?doid=3267305.3267515 (visited on 02/01/2019).

Ali Akbari et al. “Hierarchical Signal Segmentation and Classification for Accurate Activity Recog-
nition”. en. In: Proceedings of the 2018 ACM International Joint Conference and 2018 International
Symposium on Pervasive and Ubiquitous Computing and Wearable Computers - UbiComp ’18. Singa-
pore, Singapore: ACM Press, 2018, pp. 1596-1605. 1SBN: 978-1-4503-5966-5. DOI: 10.1145/3267305.
3267528. URL: http://dl.acm.org/citation.cfm?doid=3267305.3267528 (visited on 03/11,/2019).

Beidi Zhao, Shuai Li, and Yanbo Gao. “IndRNN based long-term temporal recognition in the spatial
and frequency domain”. en. In: Adjunct Proceedings of the 2020 ACM International Joint Conference
on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium
on Wearable Computers. Virtual Event Mexico: ACM, Sept. 2020, pp. 368-372. ISBN: 978-1-4503-8076-
8. DOI: 10.1145/3410530.3414355. URL: https://dl.acm.org/doi/10.1145/3410530.3414355
(visited on 10/16,/2020).

Neoklis Polyzotis et al. “Data Lifecycle Challenges in Production Machine Learning: A Survey”. In:
ACM SIGMOD Record 47.2 (Dec. 2018). Number: 2, pp. 17-28. 1SsN: 0163-5808. pDoI: 10. 1145/
3299887.3299891. URL: https://doi.org/10.1145/3299887.3299891 (Visited on 07/21/2021).

Yu Zheng et al. “Learning transportation mode from raw gps data for geographic applications on
the web”. en. In: Proceeding of the 17th international conference on World Wide Web - WWW 08.
Beijing, China: ACM Press, 2008, p. 247. 1SBN: 978-1-60558-085-2. DOI: 10.1145/1367497.1367532.
URL: http://portal.acm.org/citation.cfm?doid=1367497.1367532 (visited on 12/14/2018).

Yu Zheng et al. “Understanding transportation modes based on GPS data for web applications”.
en. Ini: ACM Transactions on the Web 4.1 (Jan. 2010). Number: 1, pp. 1-36. 1sSN: 15591131. DOI:
10.1145/1658373.1658374. URL: http://portal.acm.org/citation.cfm?doid=1658373.1658374
(visited on 12/14/2018).

Ali Yazdizadeh, Zachary Patterson, and Bilal Farooq. “Ensemble Convolutional Neural Networks for
Mode Inference in Smartphone Travel Survey”. en. In: (2019), p. 8.

Yuki Endo et al. “Classifying spatial trajectories using representation learning”. en. In: International
Journal of Data Science and Analytics 2.3-4 (Dec. 2016). Number: 3-4, pp. 107-117. 1sSN: 2364-415X,
2364-4168. DOI: 10.1007/s41060-016-0014- 1. URL: http://link. springer . com/10. 1007/
s41060-016-0014-1 (visited on 01/24,/2019).

Yida Zhu et al. “DenseNetX and GRU for the sussex-huawei locomotion-transportation recognition
challenge”. In: Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive
and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable
Computers. UbiComp-ISWC 20. New York, NY, USA: Association for Computing Machinery, Sept.
2020, pp. 373-377. 1SBN: 978-1-4503-8076-8. DOI: 10.1145/3410530.3414349. URL: https://doi.
org/10.1145/3410530.3414349 (visited on 10/13/2020).

Meng-Chieh Yu et al. “Big data small footprint: the design of a low-power classifier for detecting
transportation modes”. en. In: Proceedings of the VLDB Endowment 7.13 (Aug. 2014). Number: 13,
pp. 1429-1440. 1SsN: 21508097. DOI: 10 . 14778 /2733004 . 2733015. URL: http://dl. acm. org/
citation.cfm?doid=2733004.2733015 (visited on 01,/21/2019).

133

https://doi.org/10.1145/3267305.3267516
http://dl.acm.org/citation.cfm?doid=3267305.3267516
http://dl.acm.org/citation.cfm?doid=3267305.3267516
https://doi.org/10.1145/3267305.3267515
http://dl.acm.org/citation.cfm?doid=3267305.3267515
https://doi.org/10.1145/3267305.3267528
https://doi.org/10.1145/3267305.3267528
http://dl.acm.org/citation.cfm?doid=3267305.3267528
https://doi.org/10.1145/3410530.3414355
https://dl.acm.org/doi/10.1145/3410530.3414355
https://doi.org/10.1145/3299887.3299891
https://doi.org/10.1145/3299887.3299891
https://doi.org/10.1145/3299887.3299891
https://doi.org/10.1145/1367497.1367532
http://portal.acm.org/citation.cfm?doid=1367497.1367532
https://doi.org/10.1145/1658373.1658374
http://portal.acm.org/citation.cfm?doid=1658373.1658374
https://doi.org/10.1007/s41060-016-0014-1
http://link.springer.com/10.1007/s41060-016-0014-1
http://link.springer.com/10.1007/s41060-016-0014-1
https://doi.org/10.1145/3410530.3414349
https://doi.org/10.1145/3410530.3414349
https://doi.org/10.1145/3410530.3414349
https://doi.org/10.14778/2733004.2733015
http://dl.acm.org/citation.cfm?doid=2733004.2733015
http://dl.acm.org/citation.cfm?doid=2733004.2733015

Chapter 7 — BIBLIOGRAPHY

[41]

[42]

[43]

[44]

[45]

|46]

[47]

48]

[49]

[50]

Jian Wu et al. “A Decision Level Fusion and Signal Analysis Technique for Activity Segmentation and
Recognition on Smart Phones”. en. In: Proceedings of the 2018 ACM International Joint Conference
and 2018 International Symposium on Pervasive and Ubiquitous Computing and Wearable Computers
- UbiComp ’18. Singapore, Singapore: ACM Press, 2018, pp. 1571-1578. 1SBN: 978-1-4503-5966-5. DOTI:
10.1145/3267305.3267525. URL: http://dl.acm.org/citation.cfm?doid=3267305.3267525
(visited on 03/11/2019).

Peter Widhalm, Maximilian Leodolter, and Norbert Brandle. “Top in the Lab, Flop in the Field?:
Evaluation of a Sensor-based Travel Activity Classifier with the SHL Dataset”. In: Proceedings of
the 2018 ACM International Joint Conference and 2018 International Symposium on Pervasive and
Ubiquitous Computing and Wearable Computers. UbiComp ’18. New York, NY, USA: ACM, 2018,
pp- 1479-1487. 1sBN: 978-1-4503-5966-5. DOI: 10.1145/3267305.3267514. URL: http://doi.acm.
org/10.1145/3267305.3267514 (visited on 01/21/2019).

Bjorn Friedrich et al. “Transportation mode classification from smartphone sensors via a long-short-
term-memory network”. en. In: Adjunct Proceedings of the 2019 ACM International Joint Conference
on Pervasive and Ubiquitous Computing and Proceedings of the 2019 ACM International Symposium
on Wearable Computers. London United Kingdom: ACM, Sept. 2019, pp. 709-713. 1SBN: 978-1-4503-
6869-8. DOI: 10.1145/3341162.3344855. URL: https://dl.acm.org/doi/10.1145/3341162.
3344855 (visited on 07/16/2021).

Md Sadman Siraj et al. “UPIC: user and position independent classical approach for locomotion and
transportation modes recognition”. en. In: Adjunct Proceedings of the 2020 ACM International Joint
Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International
Symposium on Wearable Computers. Virtual Event Mexico: ACM, Sept. 2020, pp. 340-345. ISBN:
978-1-4503-8076-8. DOI: 10.1145/3410530.3414343. URL: https://dl.acm.org/doi/10.1145/
3410530.3414343 (visited on 07/16/2021).

Vito Janko et al. “A New Frontier for Activity Recognition: The Sussex-Huawei Locomotion Chal-
lenge”. In: 2018, pp. 1511-1520. DOI: 10.1145/3267305.3267518.

Masud Ahmed et al. “POIDEN: position and orientation independent deep ensemble network for
the classification of locomotion and transportation modes”. en. In: Adjunct Proceedings of the 2019
ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of
the 2019 ACM International Symposium on Wearable Computers. London United Kingdom: ACM,
Sept. 2019, pp. 674-679. ISBN: 978-1-4503-6869-8. DOI: 10 .1145/3341162 . 3345570. URL: https :
//dl.acm.org/doi/10.1145/3341162.3345570 (visited on 07/16/2021).

Chan Naseeb and Bilal Al Saeedi. “Activity recognition for locomotion and transportation dataset
using deep learning”. en. In: Adjunct Proceedings of the 2020 ACM International Joint Conference on
Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on
Wearable Computers. Virtual Event Mexico: ACM, Sept. 2020, pp. 329-334. 1SBN: 978-1-4503-8076-8.
DOI: 10.1145/3410530.3414348. URL: https://dl.acm.org/doi/10.1145/3410530 . 3414348
(visited on 07/16/2021).

B. Alotaibi. “Transportation Mode Detection by Embedded Sensors Based on Ensemble Learning”.
In: IEEE Access 8 (2020), pp. 145552-145563. 1sSN: 2169-3536. DOI: 10.1109/ACCESS . 2020.3014901.

Anindya Das Antar, Masud Ahmed, and Md Atiqur Rahman Ahad. “Recognition of human locomotion
on various transportations fusing smartphone sensors”. en. In: Pattern Recognition Letters (Apr. 2021).
ISSN: 0167-8655. DOI: 10.1016/j.patrec.2021.04.015. URL: https://www.sciencedirect.com/
science/article/pii/S0167865521001549 (visited on 05/26/2021).

Chihiro Ito et al. “Application of CNN for Human Activity Recognition with FFT Spectrogram of
Acceleration and Gyro Sensors”. en. In: Proceedings of the 2018 ACM International Joint Conference
and 2018 International Symposium on Pervasive and Ubiquitous Computing and Wearable Computers
- UbiComp ’18. Singapore, Singapore: ACM Press, 2018, pp. 1503-1510. 1SBN: 978-1-4503-5966-5. DOTI:
10.1145/3267305.3267517. URL: http://dl.acm.org/citation.cfm?doid=3267305.3267517
(visited on 03/11/2019).

134

https://doi.org/10.1145/3267305.3267525
http://dl.acm.org/citation.cfm?doid=3267305.3267525
https://doi.org/10.1145/3267305.3267514
http://doi.acm.org/10.1145/3267305.3267514
http://doi.acm.org/10.1145/3267305.3267514
https://doi.org/10.1145/3341162.3344855
https://dl.acm.org/doi/10.1145/3341162.3344855
https://dl.acm.org/doi/10.1145/3341162.3344855
https://doi.org/10.1145/3410530.3414343
https://dl.acm.org/doi/10.1145/3410530.3414343
https://dl.acm.org/doi/10.1145/3410530.3414343
https://doi.org/10.1145/3267305.3267518
https://doi.org/10.1145/3341162.3345570
https://dl.acm.org/doi/10.1145/3341162.3345570
https://dl.acm.org/doi/10.1145/3341162.3345570
https://doi.org/10.1145/3410530.3414348
https://dl.acm.org/doi/10.1145/3410530.3414348
https://doi.org/10.1109/ACCESS.2020.3014901
https://doi.org/10.1016/j.patrec.2021.04.015
https://www.sciencedirect.com/science/article/pii/S0167865521001549
https://www.sciencedirect.com/science/article/pii/S0167865521001549
https://doi.org/10.1145/3267305.3267517
http://dl.acm.org/citation.cfm?doid=3267305.3267517

Chapter 7 — BIBLIOGRAPHY

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

Ryoichi Sekiguchi et al. “Ensemble learning for human activity recognition”. en. In: Adjunct Pro-
ceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing
and Proceedings of the 2020 ACM International Symposium on Wearable Computers. Virtual Event
Mexico: ACM, Sept. 2020, pp. 335-339. 1SBN: 978-1-4503-8076-8. DOI: 10.1145/3410530 .3414346.
URL: https://dl.acm.org/doi/10.1145/3410530.3414346 (visited on 10/13,/2020).

Chihiro Ito, Masaki Shuzo, and Eisaku Maeda. “CNN for human activity recognition on small datasets
of acceleration and gyro sensors using transfer learning”. en. In: Adjunct Proceedings of the 2019
ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of
the 2019 ACM International Symposium on Wearable Computers. London United Kingdom: ACM,
Sept. 2019, pp. 724-729. 1SBN: 978-1-4503-6869-8. DOI: 10.1145/3341162.3344868. URL: https:
//dl.acm.org/doi/10.1145/3341162.3344868 (visited on 07/16/2021).

Kei Yaguchi et al. “Human activity recognition using multi-input CNN model with FFT spectro-
grams”. en. In: Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive
and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wear-
able Computers. Virtual Event Mexico: ACM, Sept. 2020, pp. 364-367. 1SBN: 978-1-4503-8076-8. DOI:
10.1145/3410530.3414342. URL: https://dl.acm.org/doi/10.1145/3410530.3414342 (visited
on 07/16/2021).

Beidi Zhao et al. “A Framework of Combining Short-Term Spatial/Frequency Feature Extraction
and Long-Term IndRNN for Activity Recognition”. en. In: Sensors 20.23 (Jan. 2020). Number: 23,
p. 6984. DOI: 10.3390/520236984. URL: https://www.mdpi.com/1424-8220/20/23/6984 (visited
on 08/05/2021).

Christos Markos and James J.Q. Yu. “Unsupervised Deep Learning for GPS-Based Transportation
Mode Identification”. In: 2020 IEEE 23rd International Conference on Intelligent Transportation
Systems (ITSC). Sept. 2020, pp. 1-6. DOI: 10.1109/ITSC45102.2020.9294673.

R. Killick, P. Fearnhead, and 1. A. Eckley. “Optimal Detection of Changepoints With a Linear Com-
putational Cost”. In: Journal of the American Statistical Association 107.500 (Dec. 2012). Num-
ber: 500, pp. 1590-1598. 1ssN: 0162-1459. DOI: 10.1080/01621459 . 2012 . 737745. URL: https:
//doi.org/10.1080/01621459.2012.737745 (visited on 05/22/2019).

Sina Dabiri. “Semi-Supervised Deep Learning Approach for Transportation Mode Identification Using
GPS Trajectory Data”. en. PhD Thesis. Virginia Polytechnic Institute and State University: Virginia
Polytechnic Institute and State University, 2018. URL: https://vtechworks.lib.vt.edu/handle/
10919/86845.

Adrian C. Prelipcean, Gyozo Gidofalvi, and Yusak O. Susilo. “Measures of transport mode seg-
mentation of trajectories”. en. In: International Journal of Geographical Information Science 30.9
(Sept. 2016). Number: 9, pp. 1763-1784. 1SsN: 1365-8816, 1362-3087. DOI: 10.1080/13658816.2015.
1137297. URL: http://www . tandfonline . com/doi/full/10.1080/13658816 .2015. 1137297
(visited on 07/12/2021).

Kensaku Akamine et al. “SHL Recognition Challenge: Team TK-2 - Combining Results of Mul-
tisize Instances-”. en. In: Proceedings of the 2018 ACM International Joint Conference and 2018
International Symposium on Pervasive and Ubiquitous Computing and Wearable Computers - Ubi-
Comp ’18. Singapore, Singapore: ACM Press, 2018, pp. 1557-1562. 1SBN: 978-1-4503-5966-5. DOI:
10.1145/3267305.3267523. URL: http://dl.acm.org/citation.cfm?doid=3267305.3267523
(visited on 03/11/2019).

Vito Janko et al. “Cross-location transfer learning for the sussex-huawei locomotion recognition chal-
lenge”. en. In: Proceedings of the 2019 ACM International Joint Conference on Pervasive and Ubiqui-
tous Computing and Proceedings of the 2019 ACM International Symposium on Wearable Computers
- UbiComp/ISWC ’19. London, United Kingdom: ACM Press, 2019, pp. 730-735. 1SBN: 978-1-4503-
6869-8. DOI: 10.1145/3341162.3344856. URL: http://dl.acm.org/citation.cfm?doid=3341162.
3344856 (visited on 10,/13/2020).

135

https://doi.org/10.1145/3410530.3414346
https://dl.acm.org/doi/10.1145/3410530.3414346
https://doi.org/10.1145/3341162.3344868
https://dl.acm.org/doi/10.1145/3341162.3344868
https://dl.acm.org/doi/10.1145/3341162.3344868
https://doi.org/10.1145/3410530.3414342
https://dl.acm.org/doi/10.1145/3410530.3414342
https://doi.org/10.3390/s20236984
https://www.mdpi.com/1424-8220/20/23/6984
https://doi.org/10.1109/ITSC45102.2020.9294673
https://doi.org/10.1080/01621459.2012.737745
https://doi.org/10.1080/01621459.2012.737745
https://doi.org/10.1080/01621459.2012.737745
https://vtechworks.lib.vt.edu/handle/10919/86845
https://vtechworks.lib.vt.edu/handle/10919/86845
https://doi.org/10.1080/13658816.2015.1137297
https://doi.org/10.1080/13658816.2015.1137297
http://www.tandfonline.com/doi/full/10.1080/13658816.2015.1137297
https://doi.org/10.1145/3267305.3267523
http://dl.acm.org/citation.cfm?doid=3267305.3267523
https://doi.org/10.1145/3341162.3344856
http://dl.acm.org/citation.cfm?doid=3341162.3344856
http://dl.acm.org/citation.cfm?doid=3341162.3344856

Chapter 7 — BIBLIOGRAPHY

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

Michael Sloma, Makan Arastuie, and Kevin S. Xu. “Activity Recognition by Classification with Time
Stabilization for the SHL Recognition Challenge”. en. In: Proceedings of the 2018 ACM International
Joint Conference and 2018 International Symposium on Pervasive and Ubiquitous Computing and
Wearable Computers - UbiComp ’18. Singapore, Singapore: ACM Press, 2018, pp. 1616-1625. ISBN:
978-1-4503-5966-5. DOI: 10.1145/3267305.3267530. URL: http://dl.acm.org/citation.cfm?
doid=3267305.3267530 (visited on 03/11/2019).

Hitoshi Matsuyama et al. “Short Segment Random Forest with Post Processing Using Label Con-
straint for SHL Recognition Challenge”. en. In: Proceedings of the 2018 ACM International Joint
Conference and 2018 International Symposium on Pervasive and Ubiquitous Computing and Wearable
Computers - UbiComp ’18. Singapore, Singapore: ACM Press, 2018, pp. 1636-1642. 1sBN: 978-1-4503-
5966-5. DOI: 10.1145/3267305.3267532. URL: http://dl.acm.org/citation.cfm?doid=3267305.
3267532 (visited on 03/11/2019).

Shuai Li et al. “Smartphone-sensors Based Activity Recognition Using IndRNN". en. In: Proceedings
of the 2018 ACM International Joint Conference and 2018 International Symposium on Pervasive
and Ubiquitous Computing and Wearable Computers - UbiComp ’18. Singapore, Singapore: ACM
Press, 2018, pp. 1541-1547. 1SBN: 978-1-4503-5966-5. DOI: 10.1145/3267305 . 3267521. URL: http:
//dl.acm.org/citation.cfm?doid=3267305.3267521 (visited on 03/11/2019).

M. Amac Guvensan et al. “A Novel Segment-Based Approach for Improving Classification Perfor-
mance of Transport Mode Detection”. en. In: Sensors 18.1 (Jan. 2018). Number: 1 Publisher: Mul-
tidisciplinary Digital Publishing Institute, p. 87. 1SSN: 1424-8220. DOI: 10.3390/s18010087. URL:
https://www.mdpi.com/1424-8220/18/1/87 (visited on 03/02/2022).

Zhishuai Li et al. “A Semi-supervised End-to-end Framework for Transportation Mode Detection by
Using GPS-enabled Sensing Devices”. In: IEEE Internet of Things Journal (2021), pp. 1-1. ISSN:
2327-4662. por: 10.1109/JI0T.2021.3115239.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-Net: Convolutional Networks for Biomedical
Image Segmentation”. en. In: arXiv:1505.04597 [cs] (May 2015). URL: http://arxiv.org/abs/1505.
04597 (visited on 02/27/2019).

Zhibin Xiao et al. “Identifying Different Transportation Modes from Trajectory Data Using Tree-
Based Ensemble Classifiers”. en. In: ISPRS International Journal of Geo-Information 6.2 (Feb. 2017).
Number: 2, p. 57. 1SSN: 2220-9964. DOI: 10.3390/1jgi6020057. URL: http://www.mdpi.com/2220-
9964/6/2/57 (visited on 12/14/2018).

Swapnil Sayan Saha et al. “Supervised and Neural Classifiers for Locomotion Analysis”’. en. In: Pro-
ceedings of the 2018 ACM International Joint Conference and 2018 International Symposium on
Pervasive and Ubiquitous Computing and Wearable Computers - UbiComp ’18. Singapore, Singapore:
ACM Press, 2018, pp. 1563-1570. 1SBN: 978-1-4503-5966-5. DOI: 10.1145/3267305.3267524. URL:
http://dl.acm.org/citation.cfm?doid=3267305.3267524 (visited on 03/11/2019).

Swapnil Sayan Saha et al. “Position independent activity recognition using shallow neural architecture
and empirical modeling”. en. In: Adjunct Proceedings of the 2019 ACM International Joint Conference
on Pervasive and Ubiquitous Computing and Proceedings of the 2019 ACM International Symposium
on Wearable Computers. London United Kingdom: ACM, Sept. 2019, pp. 808-813. 1SBN: 978-1-4503-
6869-8. DOI: 10.1145/3341162.3345572. URL: https://dl.acm.org/doi/10.1145/3341162.
3345572 (visited on 07/16/2021).

Arash Jahangiri and Hesham A. Rakha. “Applying Machine Learning Techniques to Transportation
Mode Recognition Using Mobile Phone Sensor Data”. In: IEEE Transactions on Intelligent Trans-
portation Systems 16.5 (Oct. 2015). Number: 5, pp. 2406—2417. 1sSN: 1558-0016. DO1: 10.1109/TITS.
2015.2405759.

Heikki M#enpéd, Andrei Lobov, and Jose L. Martinez Lastra. “Travel mode estimation for multi-
modal journey planner”. In: Transportation Research Part C: Emerging Technologies 82 (Sept. 2017),
pp- 273-289. 1SSN: 0968-090X. DOI: 10.1016/j.trc.2017.06.021. URL: http://www.sciencedirect.
com/science/article/pii/S0968090X17301808 (visited on 05/22/2019).

136

https://doi.org/10.1145/3267305.3267530
http://dl.acm.org/citation.cfm?doid=3267305.3267530
http://dl.acm.org/citation.cfm?doid=3267305.3267530
https://doi.org/10.1145/3267305.3267532
http://dl.acm.org/citation.cfm?doid=3267305.3267532
http://dl.acm.org/citation.cfm?doid=3267305.3267532
https://doi.org/10.1145/3267305.3267521
http://dl.acm.org/citation.cfm?doid=3267305.3267521
http://dl.acm.org/citation.cfm?doid=3267305.3267521
https://doi.org/10.3390/s18010087
https://www.mdpi.com/1424-8220/18/1/87
https://doi.org/10.1109/JIOT.2021.3115239
http://arxiv.org/abs/1505.04597
http://arxiv.org/abs/1505.04597
https://doi.org/10.3390/ijgi6020057
http://www.mdpi.com/2220-9964/6/2/57
http://www.mdpi.com/2220-9964/6/2/57
https://doi.org/10.1145/3267305.3267524
http://dl.acm.org/citation.cfm?doid=3267305.3267524
https://doi.org/10.1145/3341162.3345572
https://dl.acm.org/doi/10.1145/3341162.3345572
https://dl.acm.org/doi/10.1145/3341162.3345572
https://doi.org/10.1109/TITS.2015.2405759
https://doi.org/10.1109/TITS.2015.2405759
https://doi.org/10.1016/j.trc.2017.06.021
http://www.sciencedirect.com/science/article/pii/S0968090X17301808
http://www.sciencedirect.com/science/article/pii/S0968090X17301808

Chapter 7 — BIBLIOGRAPHY

[72]

73]

[74]

[75]

|76]

[77]

78]

[79]

[80]

[81]

[82]

Peter Widhalm et al. “Tackling the SHL recognition challenge with phone position detection and
nearest neighbour smoothing”. en. In: Adjunct Proceedings of the 2020 ACM International Joint
Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International
Symposium on Wearable Computers. Virtual Event Mexico: ACM, Sept. 2020, pp. 359-363. ISBN:
978-1-4503-8076-8. DOI: 10.1145/3410530.3414344. URL: https://dl.acm.org/doi/10.1145/
3410530.3414344 (visited on 07/16/2021).

Peter Widhalm, Maximilian Leodolter, and Norbert Briandle. “Ensemble-based domain adaptation
for transport mode recognition with mobile sensors”. en. In: Adjunct Proceedings of the 2019 ACM
International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2019
ACM International Symposium on Wearable Computers. London United Kingdom: ACM, Sept. 2019,
pp. 857-861. 1SBN: 978-1-4503-6869-8. DOI: 10.1145/3341162.3344857. URL: https://dl.acm.org/
doi/10.1145/3341162.3344857 (visited on 07/16,/2021).

Hong Lu et al. “Locomotion recognition using XGBoost and neural network ensemble”. en. In: Adjunct
Proceedings of the 2019 ACM International Joint Conference on Pervasive and Ubiquitous Computing
and Proceedings of the 2019 ACM International Symposium on Wearable Computers. London United
Kingdom: ACM, Sept. 2019, pp. 757-760. 1SBN: 978-1-4503-6869-8. DOI1: 10.1145/3341162.3344870.
URL: https://dl.acm.org/doi/10.1145/3341162.3344870 (visited on 07/16,/2021).

Tarek Bin Zahid and Sadman Ishraq Mohiuddin. “A Fast Resource Efficient Method for Human Ac-
tion Recognition”. en. In: Proceedings of the 2018 ACM International Joint Conference and 2018
International Symposium on Pervasive and Ubiquitous Computing and Wearable Computers - Ubi-
Comp ’18. Singapore, Singapore: ACM Press, 2018, pp. 1589-1595. 1SBN: 978-1-4503-5966-5. DOI:
10.1145/3267305.3267527. URL: http://dl.acm.org/citation.cfm?doid=3267305.3267527
(visited on 03/11/2019).

Yugo Nakamura et al. “Multi-Stage Activity Inference for Locomotion and Transportation Analyt-
ics of Mobile Users”. en. In: Proceedings of the 2018 ACM International Joint Conference and 2018
International Symposium on Pervasive and Ubiquitous Computing and Wearable Computers - Ubi-
Comp ’18. Singapore, Singapore: ACM Press, 2018, pp. 1579-1588. 1SBN: 978-1-4503-5966-5. DOI:
10.1145/3267305.3267526. URL: http://dl.acm.org/citation.cfm?doid=3267305. 3267526
(visited on 03/11/2019).

Pino Castrogiovanni et al. “Smartphone Data Classification Technique for Detecting the Usage of
Public or Private Transportation Modes”. In: IEEE Access 8 (2020), pp. 58377-58391. I1SSN: 2169-
3536. DOI: 10.1109/ACCESS.2020.2982218.

Huang qiu et al. “ConvLSTM based Transportation Mode Learning from raw GPS trajectories”. en.
In: IET Intelligent Transport Systems (Feb. 2020). 1ssN: 1751-956X, 1751-9578. DOI: 10.1049/iet-
its.2019.0017. URL: https://digital-library.theiet.org/content/journals/10.1049/iet-
its.2019.0017 (visited on 03/05,/2020).

Thomas Kjeer Rasmussen et al. “Improved methods to deduct trip legs and mode from travel surveys
using wearable GPS devices: A case study from the Greater Copenhagen area”. en. In: Computers,
Environment and Urban Systems 54 (Nov. 2015), pp. 301-313. 1ssN: 0198-9715. por: 10.1016/j .
compenvurbsys.2015.04.001. URL: https://www.sciencedirect.com/science/article/pii/
S0198971515000423 (visited on 07/13/2021).

J. Rodriguez-Echeverria, S. Gautama, and D. Ochoa. “A methodology for train trip identification in
mobility campaigns based on smart-phones”. In: 2017 IEEE First Summer School on Smart Cities
(S3C). Aug. 2017, pp. 141-144. por1: 10.1109/S3C.2017.8501397.

X. Zhu et al. “Learning Transportation Annotated Mobility Profiles from GPS Data for Context-Aware
Mobile Services”. In: 2016 IEEE International Conference on Services Computing (SCC). June 2016,
pp. 475-482. DOL: 10.1109/SCC.2016. 68.

F. Asgari and S. Clemencon. “Transport Mode Detection when Fine-grained and Coarse-grained
Data Meet”. In: 2018 3rd IEEE International Conference on Intelligent Transportation Engineering
(ICITE). Sept. 2018, pp. 301-307. pOI: 10.1109/ICITE.2018.8492673.

137

https://doi.org/10.1145/3410530.3414344
https://dl.acm.org/doi/10.1145/3410530.3414344
https://dl.acm.org/doi/10.1145/3410530.3414344
https://doi.org/10.1145/3341162.3344857
https://dl.acm.org/doi/10.1145/3341162.3344857
https://dl.acm.org/doi/10.1145/3341162.3344857
https://doi.org/10.1145/3341162.3344870
https://dl.acm.org/doi/10.1145/3341162.3344870
https://doi.org/10.1145/3267305.3267527
http://dl.acm.org/citation.cfm?doid=3267305.3267527
https://doi.org/10.1145/3267305.3267526
http://dl.acm.org/citation.cfm?doid=3267305.3267526
https://doi.org/10.1109/ACCESS.2020.2982218
https://doi.org/10.1049/iet-its.2019.0017
https://doi.org/10.1049/iet-its.2019.0017
https://digital-library.theiet.org/content/journals/10.1049/iet-its.2019.0017
https://digital-library.theiet.org/content/journals/10.1049/iet-its.2019.0017
https://doi.org/10.1016/j.compenvurbsys.2015.04.001
https://doi.org/10.1016/j.compenvurbsys.2015.04.001
https://www.sciencedirect.com/science/article/pii/S0198971515000423
https://www.sciencedirect.com/science/article/pii/S0198971515000423
https://doi.org/10.1109/S3C.2017.8501397
https://doi.org/10.1109/SCC.2016.68
https://doi.org/10.1109/ICITE.2018.8492673

Chapter 7 — BIBLIOGRAPHY

[83] Gulustan Dogan et al. “Where are you?: human activity recognition with smartphone sensor data”. en.
In: Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous
Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers. Vir-
tual Event Mexico: ACM, Sept. 2020, pp. 301-304. 1SBN: 978-1-4503-8076-8. DOI: 10.1145/3410530.
3414354. URL: https://dl.acm.org/doi/10.1145/3410530.3414354 (visited on 07/16/2021).

[84] Martin Gjoreski et al. “Classical and deep learning methods for recognizing human activities and
modes of transportation with smartphone sensors”. en. In: Information Fusion 62 (Oct. 2020), pp. 47—
62. ISSN: 1566-2535. DOI: 10.1016/j.inffus.2020.04.004. URL: http://www.sciencedirect.com/
science/article/pii/S1566253520302566 (visited on 10/14/2020).

[85] Ifigenia Drosouli, Athanasios Voulodimos, and Georgios Miaoulis. “Transportation mode detection
using machine learning techniques on mobile phone sensor data”. In: Proceedings of the 13th ACM
International Conference on PErvasive Technologies Related to Assistive Environments. PETRA ’20.
New York, NY, USA: Association for Computing Machinery, June 2020, pp. 1-8. 1SBN: 978-1-4503-
7773-7. DOL: 10.1145/3389189.3397996. URL: https://doi.org/10.1145/3389189 .3397996
(visited on 10/29,/2020).

[86] Somayeh Dodge, Robert Weibel, and Ehsan Forootan. “Revealing the physics of movement: Comparing
the similarity of movement characteristics of different types of moving objects”. en. In: Computers,
Environment and Urban Systems 33.6 (Nov. 2009). Number: 6, pp. 419-434. 1SsN: 01989715. DOI:
10.1016/j . compenvurbsys.2009.07.008. URL: http://linkinghub.elsevier.com/retrieve/
pii/S0198971509000556 (visited on 12/14/2018).

[87] Mohsen Rezaie. “Knowledge inference from smartphone GPS data”. en. MA thesis. Concordia Univer-
sity, Apr. 2018. URL: https://spectrum.library.concordia.ca/983733/ (visited on 07/19/2019).

[88] Bjorn Friedrich, Carolin Liibbe, and Andreas Hein. “Analyzing the Importance of Sensors for Mode
of Transportation Classification”. en. In: Sensors 21.1 (Jan. 2021). Number: 1, p. 176. DOI: 10.3390/
$21010176. URL: https://www.mdpi.com/1424-8220/21/1/176 (visited on 03/10/2021).

[89] Yu Zheng et al. GeoLife User Guide. 2012. URL: https://www.microsoft.com/en-us/research/wp-
content/uploads/2016/02/User20Guide-1.2.pdf (visited on 01/21/2019).

[90] Yi-Ting Tseng et al. “Hierarchical classification using ML /DL for sussex-huawei locomotion-transportation
(SHL) recognition challenge”. en. In: Adjunct Proceedings of the 2020 ACM International Joint Con-
ference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International
Symposium on Wearable Computers. Virtual Event Mexico: ACM, Sept. 2020, pp. 346-350. ISBN:
978-1-4503-8076-8. DOI: 10.1145/3410530.3414347. URL: https://dl.acm.org/doi/10.1145/
3410530.3414347 (visited on 07/16/2021).

[91] Stefan Kalabakov et al. “Tackling the SHL challenge 2020 with person-specific classifiers and semi-
supervised learning”. en. In: Adjunct Proceedings of the 2020 ACM International Joint Conference on
Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on
Wearable Computers. Virtual Event Mexico: ACM, Sept. 2020, pp. 323-328. 1SBN: 978-1-4503-8076-8.
DOI: 10.1145/3410530 .3414848. URL: https://dl.acm.org/doi/10.1145/3410530.3414848
(visited on 10/13,/2020).

[92] Mariana Avezum, Jens Klinker, and Bernd Bruegge. “Transportation Mode Recognition on Multi
Modal Routes based on Mobile GPS Data”. In: 2019 4th International Conference on Intelligent
Transportation Engineering (ICITE). Sept. 2019, pp. 141-146. pDo1: 10.1109/ICITE.2019.8880187.

[93] Muhammad Awais Shafique and Eiji Hato. “Incorporating MNL Model into Random Forest for Travel
Mode Detection”. en. In: Mehran University Research Journal of Engineering and Technology 40.3
(July 2021). Number: 3, pp. 496-501. 1sSN: 2413-7219. DOI: 10 .22581/muet1982.2103.04. URL:
https://publications . muet . edu . pk/index . php/muetrj/article/view /2156 (visited on
07/07/2021).

[94] Philippe Nitsche et al. “Supporting large-scale travel surveys with smartphones — A practical ap-
proach”. en. In: Transportation Research Part C: Emerging Technologies 43 (June 2014), pp. 212-221.
ISSN: 0968090X. DOI: 10.1016/j.trc.2013.11.005. URL: https://linkinghub.elsevier.com/
retrieve/pii/S0968090X13002325 (visited on 07/23/2019).

138

https://doi.org/10.1145/3410530.3414354
https://doi.org/10.1145/3410530.3414354
https://dl.acm.org/doi/10.1145/3410530.3414354
https://doi.org/10.1016/j.inffus.2020.04.004
http://www.sciencedirect.com/science/article/pii/S1566253520302566
http://www.sciencedirect.com/science/article/pii/S1566253520302566
https://doi.org/10.1145/3389189.3397996
https://doi.org/10.1145/3389189.3397996
https://doi.org/10.1016/j.compenvurbsys.2009.07.008
http://linkinghub.elsevier.com/retrieve/pii/S0198971509000556
http://linkinghub.elsevier.com/retrieve/pii/S0198971509000556
https://spectrum.library.concordia.ca/983733/
https://doi.org/10.3390/s21010176
https://doi.org/10.3390/s21010176
https://www.mdpi.com/1424-8220/21/1/176
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/User20Guide-1.2.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/User20Guide-1.2.pdf
https://doi.org/10.1145/3410530.3414347
https://dl.acm.org/doi/10.1145/3410530.3414347
https://dl.acm.org/doi/10.1145/3410530.3414347
https://doi.org/10.1145/3410530.3414848
https://dl.acm.org/doi/10.1145/3410530.3414848
https://doi.org/10.1109/ICITE.2019.8880187
https://doi.org/10.22581/muet1982.2103.04
https://publications.muet.edu.pk/index.php/muetrj/article/view/2156
https://doi.org/10.1016/j.trc.2013.11.005
https://linkinghub.elsevier.com/retrieve/pii/S0968090X13002325
https://linkinghub.elsevier.com/retrieve/pii/S0968090X13002325

Chapter 7 — BIBLIOGRAPHY

195]

[96]

[97]

98]

199]

[100]

[101]

[102]

[103]

[104]

[105]

Elton F. de S. Soares, Carlos Alberto V. Campos, and Sidney C. de Lucena. “Online travel mode
detection method using automated machine learning and feature engineering”. In: Future Generation
Computer Systems 101 (Dec. 2019), pp. 1201-1212. 1SsN: 0167-739X. por: 10. 1016/ j . future .
2019.07.056. URL: http://www.sciencedirect.com/science/article/pii/S0167739X19305874
(visited on 08/06,/2019).

Y. Shen et al. “A Method of Traffic Travel Status Segmentation Based on Position Trajectories”. In:
2015 IEEFE 18th International Conference on Intelligent Transportation Systems. Sept. 2015, pp. 2877—
2882. DOI: 10.1109/ITSC.2015.462.

Anke Sauerlander-Biebl et al. “Evaluation of a transport mode detection using fuzzy rules”. In: Trans-
portation Research Procedia. World Conference on Transport Research - WCTR 2016 Shanghai. 10-15
July 2016 25 (Jan. 2017), pp. 591-602. 1SSN: 2352-1465. DOI: 10.1016/j . trpro.2017 .05 . 444,
URL: http://www.sciencedirect.com/science/article/pii/S82352146517307512 (visited on
07/18/2019).

Rahul Deb Das and Stephan Winter. “A fuzzy logic based transport mode detection framework in
urban environment”. In: Journal of Intelligent Transportation Systems 22.6 (Nov. 2018). Number: 6,
pp- 478-489. 18SN: 1547-2450. DOI: 10.1080/15472450.2018.1436968. URL: https://doi.org/10.
1080/15472450.2018.1436968 (visited on 07,/24/2019).

Yanjun Qin, Chenxing Wang, and Haiyong Luo. “Transportation recognition with the Sussex-Huawei
Locomotion challenge”. en. In: Adjunct Proceedings of the 2019 ACM International Joint Conference
on Pervasive and Ubiquitous Computing and Proceedings of the 2019 ACM International Symposium
on Wearable Computers. London United Kingdom: ACM, Sept. 2019, pp. 798-802. 1SBN: 978-1-4503-
6869-8. DOI: 10.1145/3341162 . 3344862. URL: https://dl.acm.org/doi/10.1145/3341162.
3344862 (visited on 07/16/2021).

Sunidhi Brajesh and Indraneel Ray. “Ensemble approach for sensor-based human activity recogni-
tion”. en. In: Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive
and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wear-
able Computers. Virtual Event Mexico: ACM, Sept. 2020, pp. 296-300. 1SBN: 978-1-4503-8076-8. DOTI:
10.1145/3410530.3414352. URL: https://dl.acm.org/doi/10.1145/3410530.3414352 (visited
on 07/16/2021).

Samuli Hemminki, Petteri Nurmi, and Sasu Tarkoma. “Accelerometer-based transportation mode
detection on smartphones”. en. In: Proceedings of the 11th ACM Conference on Embedded Networked
Sensor Systems - SenSys '13. Roma, Italy: ACM Press, 2013, pp. 1-14. 1SBN: 978-1-4503-2027-6. DOTI:
10.1145/2517351.2517367. URL: http://dl.acm.org/citation. cfm?doid=2517351.2517367
(visited on 03/02/2022).

Hao Wang et al. “Detecting Transportation Modes Using Deep Neural Network”. en. In: IEICE Trans-
actions on Information and Systems E100.D.5 (May 2017). Number: 5, pp. 1132-1135. 1ssN: 0916-
8532, 1745-1361. DOL: 10.1587/transinf.2016EDL8252. (Visited on 12/14/2018).

Rui Zhang et al. “Classifying transportation mode and speed from trajectory data via deep multi-
Scale learning”. In: Computer Networks 162 (Oct. 2019), p. 106861. 1sSN: 1389-1286. DOI: 10.1016/
j . comnet . 2019 . 106861. URL: http : //www . sciencedirect . com/ science /article /pii/
$1389128618314397 (visited on 07/22/2019).

Andréa Vassilev. “Reconnaissance des modes de transport par apprentissage profond a partir de
signaux GPS”. Lille, France, 2019.

Linchao Li et al. “Coupled application of generative adversarial networks and conventional neural
networks for travel mode detection using GPS data”. en. In: Transportation Research Part A: Policy
and Practice 136 (June 2020), pp. 282-292. 1SSN: 0965-8564. DOI: 10.1016/j.tra.2020.04.005.
URL: https://www.sciencedirect.com/science/article/pii/S0965856420305607 (visited on
07/15/2021).

139

https://doi.org/10.1016/j.future.2019.07.056
https://doi.org/10.1016/j.future.2019.07.056
http://www.sciencedirect.com/science/article/pii/S0167739X19305874
https://doi.org/10.1109/ITSC.2015.462
https://doi.org/10.1016/j.trpro.2017.05.444
http://www.sciencedirect.com/science/article/pii/S2352146517307512
https://doi.org/10.1080/15472450.2018.1436968
https://doi.org/10.1080/15472450.2018.1436968
https://doi.org/10.1080/15472450.2018.1436968
https://doi.org/10.1145/3341162.3344862
https://dl.acm.org/doi/10.1145/3341162.3344862
https://dl.acm.org/doi/10.1145/3341162.3344862
https://doi.org/10.1145/3410530.3414352
https://dl.acm.org/doi/10.1145/3410530.3414352
https://doi.org/10.1145/2517351.2517367
http://dl.acm.org/citation.cfm?doid=2517351.2517367
https://doi.org/10.1587/transinf.2016EDL8252
https://doi.org/10.1016/j.comnet.2019.106861
https://doi.org/10.1016/j.comnet.2019.106861
http://www.sciencedirect.com/science/article/pii/S1389128618314397
http://www.sciencedirect.com/science/article/pii/S1389128618314397
https://doi.org/10.1016/j.tra.2020.04.005
https://www.sciencedirect.com/science/article/pii/S0965856420305607

Chapter 7 — BIBLIOGRAPHY

[106]

[107]

[108]

[109]

[110]
[111]

[112]

[113]

[114]

[115]

Massinissa Hamidi, Aomar Osmani, and Pegah Alizadeh. “A multi-view architecture for the SHL
challenge”. en. In: Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive
and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable
Computers. Virtual Event Mexico: ACM, Sept. 2020, pp. 317-322. 1SBN: 978-1-4503-8076-8. DOI:
10.1145/3410530.3414351. URL: https://dl.acm.org/doi/10.1145/3410530.3414351 (visited
on 07/16/2021).

Longfei Zheng et al. “Application of IndRNN for human activity recognition: the Sussex-Huawei
locomotion-transportation challenge”. en. In: Adjunct Proceedings of the 2019 ACM International
Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2019 ACM Interna-
tional Symposium on Wearable Computers. London United Kingdom: ACM, Sept. 2019, pp. 869-872.
ISBN: 978-1-4503-6869-8. DOI: 10.1145/3341162.3344851. URL: https://dl.acm.org/doi/10.
1145/3341162.3344851 (visited on 07/16,/2021).

H. Liu and I. Lee. “End-to-end trajectory transportation mode classification using Bi-LSTM recur-
rent neural network”. In: 2017 12th International Conference on Intelligent Systems and Knowledge
Engineering (ISKE). Nov. 2017, pp. 1-5. DOI: 10.1109/ISKE.2017.8258799.

James J. Q. Yu. “Travel Mode Identification With GPS Trajectories Using Wavelet Transform and
Deep Learning”. In: IEEE Transactions on Intelligent Transportation Systems (2019), pp. 1-11. 1sSN:
1558-0016. DOI: 10.1109/TITS.2019.2962741.

Arman Golshan et al. “Master thesis in Microdata Analysis”. en. In: (2021), p. 31.

Azzam Alwan, Vincent Frey, and Gaél Le Lan. “Orange labs contribution to the Sussex-Huawei
locomotion-transportation recognition challenge”. en. In: Adjunct Proceedings of the 2019 ACM In-
ternational Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2019
ACM International Symposium on Wearable Computers. London United Kingdom: ACM, Sept. 2019,
pp. 680-684. 1SBN: 978-1-4503-6869-8. DOI: 10.1145/3341162.3344860. URL: https://dl.acm.org/
doi/10.1145/3341162.3344860 (visited on 07/16,/2021).

Yida Zhu, Fang Zhao, and Runze Chen. “Applying 1D sensor DenseNet to Sussex-Huawei locomotion-
transportation recognition challenge”. en. In: Proceedings of the 2019 ACM International Joint Con-
ference on Pervasive and Ubiquitous Computing and Proceedings of the 2019 ACM International
Symposium on Wearable Computers - UbiComp/ISWC ’19. London, United Kingdom: ACM Press,
2019, pp. 873-877. 1SBN: 978-1-4503-6869-8. DOI: 10.1145/3341162.3345571. URL: http://dl.acm.
org/citation.cfm?doid=3341162.3345571 (visited on 10/16/2020).

Yuta Yuki et al. “Activity Recognition Using Dual-ConvLSTM Extracting Local and Global Features
for SHL Recognition Challenge”. en. In: Proceedings of the 2018 ACM International Joint Conference
and 2018 International Symposium on Pervasive and Ubiquitous Computing and Wearable Computers
- UbiComp ’18. Singapore, Singapore: ACM Press, 2018, pp. 1643-1651. 1SBN: 978-1-4503-5966-5. DOTI:
10.1145/3267305.3267533. URL: http://dl.acm.org/citation.cfm?doid=3267305.3267533
(visited on 03/11,/2019).

Aomar Osmani and Massinissa Hamidi. “Hybrid and Convolutional Neural Networks for Locomo-
tion Recognition”. en. In: Proceedings of the 2018 ACM International Joint Conference and 2018
International Symposium on Pervasive and Ubiquitous Computing and Wearable Computers - Ubi-
Comp ’18. Singapore, Singapore: ACM Press, 2018, pp. 1531-1540. 1SBN: 978-1-4503-5966-5. DOI:
10.1145/3267305.3267520. URL: http://dl.acm.org/citation.cfm?doid=3267305. 3267520
(visited on 03/11/2019).

Y. Qin et al. “Toward Transportation Mode Recognition Using Deep Convolutional and Long Short-
Term Memory Recurrent Neural Networks”. In: IEEE Access 7 (2019), pp. 142353-142367. I1SSN:
2169-3536. DOI: 10.1109/ACCESS.2019.2944686.

140

https://doi.org/10.1145/3410530.3414351
https://dl.acm.org/doi/10.1145/3410530.3414351
https://doi.org/10.1145/3341162.3344851
https://dl.acm.org/doi/10.1145/3341162.3344851
https://dl.acm.org/doi/10.1145/3341162.3344851
https://doi.org/10.1109/ISKE.2017.8258799
https://doi.org/10.1109/TITS.2019.2962741
https://doi.org/10.1145/3341162.3344860
https://dl.acm.org/doi/10.1145/3341162.3344860
https://dl.acm.org/doi/10.1145/3341162.3344860
https://doi.org/10.1145/3341162.3345571
http://dl.acm.org/citation.cfm?doid=3341162.3345571
http://dl.acm.org/citation.cfm?doid=3341162.3345571
https://doi.org/10.1145/3267305.3267533
http://dl.acm.org/citation.cfm?doid=3267305.3267533
https://doi.org/10.1145/3267305.3267520
http://dl.acm.org/citation.cfm?doid=3267305.3267520
https://doi.org/10.1109/ACCESS.2019.2944686

Chapter 7 — BIBLIOGRAPHY

[116] Bjorn Friedrich, Carolin Liibbe, and Andreas Hein. “Combining LSTM and CNN for mode of trans-
portation classification from smartphone sensors”. en. In: Adjunct Proceedings of the 2020 ACM In-
ternational Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020
ACM International Symposium on Wearable Computers. Virtual Event Mexico: ACM, Sept. 2020,
pp. 305-310. 1SBN: 978-1-4503-8076-8. DOL: 10.1145/3410530.3414350. URL: https://dl.acm.org/
doi/10.1145/3410530.3414350 (visited on 07/16,/2021).

[117] Lin Wang et al. “Summary of the sussex-huawei locomotion-transportation recognition challenge
2020". en. In: Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive
and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable
Computers. Virtual Event Mexico: ACM, Sept. 2020, pp. 351-358. ISBN: 978-1-4503-8076-8. DOI:
10.1145/3410530.3414341. URL: https://dl.acm.org/doi/10.1145/3410530.3414341 (visited
on 10/13/2020).

[118] Tomas Mikolov et al. “Efficient Estimation of Word Representations in Vector Space”. In: arXiv:1301.3781
[es] (Jan. 2013). URL: http://arxiv.org/abs/1301.3781 (visited on 05/27/2019).

[119] Jun-Ho Choi and Jong-Seok Lee. “Confidence-based Deep Multimodal Fusion for Activity Recogni-
tion”. en. In: Proceedings of the 2018 ACM International Joint Conference and 2018 International
Symposium on Pervasive and Ubiquitous Computing and Wearable Computers - UbiComp ’18. Singa-
pore, Singapore: ACM Press, 2018, pp. 1548-1556. 1SBN: 978-1-4503-5966-5. DOI: 10.1145/3267305.
3267522. URL: http://dl.acm.org/citation.cfm?doid=3267305.3267522 (visited on 03/11,/2019).

[120] Jun-Ho Choi and Jong-Seok Lee. “EmbraceNet for activity: a deep multimodal fusion architecture for
activity recognition”. en. In: Adjunct Proceedings of the 2019 ACM International Joint Conference on
Pervasive and Ubiquitous Computing and Proceedings of the 2019 ACM International Symposium on
Wearable Computers. London United Kingdom: ACM, Sept. 2019, pp. 693—698. 1SBN: 978-1-4503-6869-
8. DOI: 10.1145/3341162.3344871. URL: https://dl.acm.org/doi/10.1145/3341162.3344871
(visited on 07/16,/2021).

[121] Kelvin Xu et al. “Show, Attend and Tell: Neural Image Caption Generation with Visual Attention”.
en. In: International Conference on Machine Learning. PMLR, June 2015, pp. 2048-2057. URL: http:
//proceedings.mlr.press/v37/xucl5.html (visited on 05/20,/2021).

[122] Ashish Vaswani et al. “Attention is All you Need”. In: Advances in Neural Information Processing
Systems 30. Ed. by I. Guyon et al. Curran Associates, Inc., 2017, pp. 5998-6008. URL: http://
papers.nips.cc/paper/7181-attention-is-all-you-need.pdf (visited on 03/11,/2020).

[123] Lukas Giinthermann, Ivor Simpson, and Daniel Roggen. “Smartphone location identification and
transport mode recognition using an ensemble of generative adversarial networks”. en. In: Adjunct
Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing
and Proceedings of the 2020 ACM International Symposium on Wearable Computers. Virtual Event
Mexico: ACM, Sept. 2020, pp. 311-316. 1SBN: 978-1-4503-8076-8. DOI: 10.1145/3410530.3414353.
URL: https://dl.acm.org/doi/10.1145/3410530.3414353 (visited on 07/16,/2021).

[124] Ali Yazdizadeh, Zachary Patterson, and Bilal Farooq. “Semi-supervised GANs to Infer Travel Modes
in GPS Trajectories”. en. In: Journal of Big Data Analytics in Transportation (July 2021). 1SSN: 2523-
3564. DOI: 10.1007/s42421-021-00047-y. URL: https://doi.org/10.1007/s42421-021-00047-y
(visited on 11/22/2021).

[125] Dmitrijs Balabka. “Semi-supervised learning for human activity recognition using adversarial autoen-
coders”. en. In: Adjunct Proceedings of the 2019 ACM International Joint Conference on Pervasive
and Ubiquitous Computing and Proceedings of the 2019 ACM International Symposium on Wearable
Computers. London United Kingdom: ACM, Sept. 2019, pp. 685—688. 1SBN: 978-1-4503-6869-8. DOI:
10.1145/3341162.3344854. URL: https://dl.acm.org/doi/10.1145/3341162.3344854 (visited
on 07/16/2021).

[126] Alireza Makhzani et al. “Adversarial Autoencoders”. In: arXiv:1511.05644 [cs] (May 2016). URL:
http://arxiv.org/abs/1511.05644 (visited on 07/16,/2021).

141

https://doi.org/10.1145/3410530.3414350
https://dl.acm.org/doi/10.1145/3410530.3414350
https://dl.acm.org/doi/10.1145/3410530.3414350
https://doi.org/10.1145/3410530.3414341
https://dl.acm.org/doi/10.1145/3410530.3414341
http://arxiv.org/abs/1301.3781
https://doi.org/10.1145/3267305.3267522
https://doi.org/10.1145/3267305.3267522
http://dl.acm.org/citation.cfm?doid=3267305.3267522
https://doi.org/10.1145/3341162.3344871
https://dl.acm.org/doi/10.1145/3341162.3344871
http://proceedings.mlr.press/v37/xuc15.html
http://proceedings.mlr.press/v37/xuc15.html
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://doi.org/10.1145/3410530.3414353
https://dl.acm.org/doi/10.1145/3410530.3414353
https://doi.org/10.1007/s42421-021-00047-y
https://doi.org/10.1007/s42421-021-00047-y
https://doi.org/10.1145/3341162.3344854
https://dl.acm.org/doi/10.1145/3341162.3344854
http://arxiv.org/abs/1511.05644

Chapter 7 — BIBLIOGRAPHY

[127] James J. Q. Yu. “Semi-supervised deep ensemble learning for travel mode identification”. en. In:
Transportation Research Part C: Emerging Technologies 112 (Mar. 2020), pp. 120-135. 1SsN: 0968-
090X. por: 10.1016/j.trc.2020.01.003. URL: https://www.sciencedirect . com/science/
article/pii/S0968090X19309416 (visited on 07/13/2021).

[128] R. Qi Charles et al. “PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation”.
en. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI:
IEEE, July 2017, pp. 77-85. ISBN: 978-1-5386-0457-1. DOI: 10.1109/CVPR. 2017 .16. URL: http:
//ieeexplore.ieee.org/document/8099499/ (visited on 08/05/2019).

[129] Xiaoyuan Liang and Guiling Wang. “A Convolutional Neural Network for Transportation Mode De-
tection Based on Smartphone Platform”. en. In: 2017 IEEFE 14th International Conference on Mobile
Ad Hoc and Sensor Systems (MASS). Orlando, FL: IEEE, Oct. 2017, pp. 338-342. 1sBN: 978-1-5386-
2324-4. DOI: 10.1109/MASS . 2017 .81. URL: http://ieeexplore.ieee.org/document/8108764/
(visited on 03/11/2019).

[130] F. Taia Alaoui et al. “Urban Transportation Mode Detection from Inertial and Barometric Data in
Pedestrian Mobility”. In: IEEE Sensors Journal (2021), pp. 1-1. 1SsN: 1558-1748. por: 10.1109/
JSEN.2021.3065848.

[131] Michael P. J. Camilleri et al. “§VJA\ textbackslashtextbackslashdot{G}\textbackslashtextbackslashdot{G}$
— A Thick-Client Smart-Phone Journey Detection Algorithm”. In: arXiv:1908.10725 [cs] (Aug. 2019).
URL: http://arxiv.org/abs/1908.10725 (visited on 09/03/2019).

[132] Minh Hieu Nguyen, Jimmy Armoogum, and Cédric Garcia. “Experiment on mobility survey using
smartphone in Hanoi, Vietnam”. In: Aug. 2019.

[133] Adam Bako. “Transport Mode Detection and Classification from Smartphone Sensor Data Using
Convolutional Neural Networks”. en. In: (2020), p. 63.

[134] Filip Biljecki, Hugo Ledoux, and Peter van OQosterom. “Transportation mode-based segmentation and
classification of movement trajectories”. en. In: International Journal of Geographical Information Sci-
ence 27.2 (Feb. 2013). Number: 2, pp. 385-407. 1sSN: 1365-8816, 1362-3087. DOI: 10.1080/13658816.
2012.692791. URL: http://www.tandfonline.com/doi/abs/10.1080/13658816.2012.692791
(visited on 07/15/2021).

[135] Philip Sedgwick and Nan Greenwood. “Understanding the Hawthorne effect”. en. In: BM.J (Sept.
2015), h4672. 1sSN: 1756-1833. DOL: 10.1136/bmj.h4672. URL: https://www.bmj.com/lookup/doi/
10.1136/bmj .h4672 (visited on 07/15/2021).

[136] Laszlo A. Jeni, Jeffrey F. Cohn, and Fernando De La Torre. “Facing Imbalanced Data—Recommendations
for the Use of Performance Metrics”. en. In: 2018 Humaine Association Conference on Affective Com-
puting and Intelligent Interaction. Geneva, Switzerland: IEEE, Sept. 2013, pp. 245-251. 1SBN: 978-
0-7695-5048-0. DOI: 10.1109/ACII.2013.47. URL: http://ieeexplore. ieee. org/document /
6681438/ (visited on 07/15/2021).

[137] Paria Sadeghian, Johan Hakansson, and Xiaoyun Zhao. “Review and evaluation of methods in trans-
port mode detection based on GPS tracking data”. en. In: Journal of Traffic and Transportation
Engineering (English Edition) (July 2021). 1SSN: 2095-7564. DOI: 10.1016/j. jtte.2021.04.004.
URL: https://www.sciencedirect.com/science/article/pii/S2095756421000623 (visited on
07/15/2021).

[138] Yu Zheng et al. “Mining interesting locations and travel sequences from GPS trajectories”. en. In:
Proceedings of the 18th international conference on World wide web - WWW ’09. Madrid, Spain:
ACM Press, 2009, p. 791. 1SBN: 978-1-60558-487-4. DOI: 10.1145/1526709 . 1526816. URL: http:
//portal.acm.org/citation.cfm?doid=1526709.1526816 (visited on 07,/08/2020).

[139] Yu Zheng et al. “Understanding mobility based on GPS data”. en. In: Proceedings of the 10th in-
ternational conference on Ubiquitous computing - UbiComp ’08. Seoul, Korea: ACM Press, 2008,
p. 312. 1SBN: 978-1-60558-136-1. DOI: 10.1145/1409635.1409677. URL: http://portal .acm.org/
citation.cfm?doid=1409635.1409677 (visited on 07/08/2020).

142

https://doi.org/10.1016/j.trc.2020.01.003
https://www.sciencedirect.com/science/article/pii/S0968090X19309416
https://www.sciencedirect.com/science/article/pii/S0968090X19309416
https://doi.org/10.1109/CVPR.2017.16
http://ieeexplore.ieee.org/document/8099499/
http://ieeexplore.ieee.org/document/8099499/
https://doi.org/10.1109/MASS.2017.81
http://ieeexplore.ieee.org/document/8108764/
https://doi.org/10.1109/JSEN.2021.3065848
https://doi.org/10.1109/JSEN.2021.3065848
http://arxiv.org/abs/1908.10725
https://doi.org/10.1080/13658816.2012.692791
https://doi.org/10.1080/13658816.2012.692791
http://www.tandfonline.com/doi/abs/10.1080/13658816.2012.692791
https://doi.org/10.1136/bmj.h4672
https://www.bmj.com/lookup/doi/10.1136/bmj.h4672
https://www.bmj.com/lookup/doi/10.1136/bmj.h4672
https://doi.org/10.1109/ACII.2013.47
http://ieeexplore.ieee.org/document/6681438/
http://ieeexplore.ieee.org/document/6681438/
https://doi.org/10.1016/j.jtte.2021.04.004
https://www.sciencedirect.com/science/article/pii/S2095756421000623
https://doi.org/10.1145/1526709.1526816
http://portal.acm.org/citation.cfm?doid=1526709.1526816
http://portal.acm.org/citation.cfm?doid=1526709.1526816
https://doi.org/10.1145/1409635.1409677
http://portal.acm.org/citation.cfm?doid=1409635.1409677
http://portal.acm.org/citation.cfm?doid=1409635.1409677

Chapter 7 — BIBLIOGRAPHY

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

Lin Wang et al. “Summary of the Sussex-Huawei Locomotion-Transportation Recognition Challenge”.
en. In: Proceedings of the 2018 ACM International Joint Conference and 2018 International Sym-
posium on Pervasive and Ubiquitous Computing and Wearable Computers - UbiComp ’18. Singa-
pore, Singapore: ACM Press, 2018, pp. 1521-1530. 1SBN: 978-1-4503-5966-5. DOI: 10.1145/3267305.
3267519. URL: http://dl.acm.org/citation.cfm?doid=3267305.3267519 (visited on 01,/21,/2019).

Lin Wang et al. “Summary of the Sussex-Huawei locomotion-transportation recognition challenge
2019”. en. In: Proceedings of the 2019 ACM International Joint Conference on Pervasive and Ubiqui-
tous Computing and Proceedings of the 2019 ACM International Symposium on Wearable Computers
- UbiComp/ISWC ’19. London, United Kingdom: ACM Press, 2019, pp. 849-856. 1SBN: 978-1-4503-
6869-8. DOI: 10.1145/3341162.3344872. URL: http://dl.acm.org/citation.cfm?doid=3341162.
3344872 (visited on 09/17,/2019).

X. Wang et al. “Two-Stream 3-D convNet Fusion for Action Recognition in Videos With Arbitrary
Size and Length”. In: IEEFE Transactions on Multimedia 20.3 (Mar. 2018). Number: 3, pp. 634-644.
ISSN: 1520-9210. DOI: 10.1109/TMM.2017.2749159.

Mirco Ravanelli and Yoshua Bengio. “Speech and Speaker Recognition from Raw Waveform with
SincNet”. In: arXiv:1812.05920 [cs, eess] (Feb. 2019). URL: http://arxiv.org/abs/1812. 05920
(visited on 11,/20/2019).

Matthew D. Zeiler and Rob Fergus. “Visualizing and Understanding Convolutional Networks”. en. In:
Computer Vision — ECCV 2014. Ed. by David Fleet et al. Lecture Notes in Computer Science. Cham:
Springer International Publishing, 2014, pp. 818-833. 1SBN: 978-3-319-10590-1. poI: 10.1007/978-
3-319-10590-1_53.

Gulrukh Turabee, Yuan Shen, and Georgina Cosma. “Interpreting the Filters in the First Layer of
a Convolutional Neural Network for Sleep Stage Classification”. en. In: Advances in Computational
Intelligence Systems. Ed. by Zhaojie Ju et al. Advances in Intelligent Systems and Computing. Cham:
Springer International Publishing, 2020, pp. 142-154. 1SBN: 978-3-030-29933-0. pOI: 10.1007/978-
3-030-29933-0_12.

Marta C. Gonzalez, César A. Hidalgo, and Albert-Laszlo Barabési. “Understanding individual human
mobility patterns”. en. In: Nature 453.7196 (June 2008). Number: 7196, pp. 779-782. 1sSN: 1476-4687.
DOI: 10.1038/nature06958. URL: https://www.nature.com/articles/nature06958 (visited on
06,/25,/2019).

Chaoming Song et al. “Limits of Predictability in Human Mobility”. en. In: Science 327.5968 (Feb.
2010). Number: 5968, pp. 1018-1021. 1ssN: 0036-8075, 1095-9203. pOI: 10.1126/science.1177170.
URL: https://science.sciencemag.org/content/327/5968/1018 (visited on 06/25/2019).

Y. Huang et al. “Exploring Individual Travel Patterns Across Private Car Trajectory Data”. In: I[EEE
Transactions on Intelligent Transportation Systems 21.12 (Dec. 2020). Number: 12, pp. 5036-5050.
ISSN: 1558-0016. DOI: 10.1109/TITS.2019.2948188.

Matthew D. Zeiler. “ADADELTA: An Adaptive Learning Rate Method”. In: arXiv:1212.5701 [cs]
(Dec. 2012). URL: http://arxiv.org/abs/1212.5701 (visited on 03/14/2019).

Kaiming He et al. “Deep Residual Learning for Image Recognition”. In: 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). 2016, pp. 770-778. URL: http://openaccess.
thecvf . com/content _cvpr_2016/html/He _Deep_Residual _Learning_CVPR_2016_paper.html
(visited on 05/06,/2019).

John Jumper et al. “Highly accurate protein structure prediction with AlphaFold”. en. In: Nature
(July 2021), pp. 1-11. 1sSN: 1476-4687. DOI: 10.1038/s41586-021-03819-2. URL: https://wuw.
nature.com/articles/s41586-021-03819-2 (visited on 07/27,/2021).

Jordi Pons et al. “End-to-end learning for music audio tagging at scale”. In: arXiv:1711.02520 [cs,
eess[(June 2018). URL: http://arxiv.org/abs/1711.02520 (visited on 12/13/2019).

Pin Wang, En Fan, and Peng Wang. “Comparative analysis of image classification algorithms based
on traditional machine learning and deep learning”. en. In: Pattern Recognition Letters 141 (Jan.
2021), pp. 61-67. 1sSN: 0167-8655. DOI: 10.1016/j . patrec.2020.07 .042. URL: https://www.
sciencedirect.com/science/article/pii/S0167865520302981 (visited on 10/05/2021).

143

https://doi.org/10.1145/3267305.3267519
https://doi.org/10.1145/3267305.3267519
http://dl.acm.org/citation.cfm?doid=3267305.3267519
https://doi.org/10.1145/3341162.3344872
http://dl.acm.org/citation.cfm?doid=3341162.3344872
http://dl.acm.org/citation.cfm?doid=3341162.3344872
https://doi.org/10.1109/TMM.2017.2749159
http://arxiv.org/abs/1812.05920
https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.1007/978-3-030-29933-0_12
https://doi.org/10.1007/978-3-030-29933-0_12
https://doi.org/10.1038/nature06958
https://www.nature.com/articles/nature06958
https://doi.org/10.1126/science.1177170
https://science.sciencemag.org/content/327/5968/1018
https://doi.org/10.1109/TITS.2019.2948188
http://arxiv.org/abs/1212.5701
http://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
http://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
https://doi.org/10.1038/s41586-021-03819-2
https://www.nature.com/articles/s41586-021-03819-2
https://www.nature.com/articles/s41586-021-03819-2
http://arxiv.org/abs/1711.02520
https://doi.org/10.1016/j.patrec.2020.07.042
https://www.sciencedirect.com/science/article/pii/S0167865520302981
https://www.sciencedirect.com/science/article/pii/S0167865520302981

Chapter 7 — BIBLIOGRAPHY

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

[167]

[168]

[169]

Lin Shu et al. “A Review of Emotion Recognition Using Physiological Signals”. eng. In: Sensors (Basel,
Switzerland) 18.7 (June 2018). Number: 7. 1SsSN: 1424-8220. DOIL: 10.3390/s18072074.

Samir Khan and Takehisa Yairi. “A review on the application of deep learning in system health
management”. en. In: Mechanical Systems and Signal Processing 107 (July 2018), pp. 241-265. 1SSN:
0888-3270. DOI: 10.1016/j.ymssp.2017.11.024. URL: http://www.sciencedirect.com/science/
article/pii/S0888327017306064 (visited on 11/19/2019).

Oliver Faust et al. “Deep learning for healthcare applications based on physiological signals: A review”.
In: Computer Methods and Programs in Biomedicine 161 (July 2018), pp. 1-13. 1sSN: 0169-2607. DOTI:
10.1016/j.cmpb.2018.04.005. URL: http://www.sciencedirect.com/science/article/pii/
S0169260718301226 (visited on 10/11/2019).

Gen Li et al. “Deep learning for EEG data analytics: A survey”. en. In: Concurrency and Computation:
Practice and Experience 32.18 (2020). Number: 18, €5199. 1SSN: 1532-0634. DOI: 10.1002/cpe.5199.
URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5199 (visited on 09/01/2021).

Manuel J. Rivera et al. “Diagnosis and prognosis of mental disorders by means of EEG and deep
learning: a systematic mapping study”. en. In: Artificial Intelligence Review (Mar. 2021). 1SSN: 1573-
7462. DOIL: 10.1007/s10462-021-09986-y. URL: https://doi.org/10.1007/s10462-021-09986-y
(visited on 09/01,/2021).

Zhen-Hua Ling et al. “Deep Learning for Acoustic Modeling in Parametric Speech Generation: A
systematic review of existing techniques and future trends”. In: IEEFE Signal Processing Magazine
32.3 (May 2015). Number: 3, pp. 35-52. 1SSN: 1558-0792. DOI: 10.1109/MSP.2014.2359987.

S. Karpagavalli and Edy Chandra. “A Review on Automatic Speech Recognition Architecture and
Approaches”. In: 2016. DOT: 10.14257/ijsip.2016.9.4.34.

Tara N. Sainath et al. “Improvements to Deep Convolutional Neural Networks for LVCSR?”. In: 2013
IEEE Workshop on Automatic Speech Recognition and Understanding. Dec. 2013, pp. 315-320. DOI:
10.1109/ASRU.2013.6707749.

Haytham Fayek. Speech Processing for Machine Learning: Filter banks, Mel-Frequency Cepstral Co-
efficients (MFCCs) and What’s In-Between. en. Apr. 2016. URL: https://haythamfayek.com/2016/
04/21/speech-processing-for-machine-learning.html (visited on 12/04/2019).

Hendrik Purwins et al. “Deep Learning for Audio Signal Processing”. In: IEEE Journal of Selected
Topics in Signal Processing 13.2 (May 2019). Number: 2, pp. 206-219. 1SsN: 1941-0484. por1: 10.
1109/JSTSP.2019.2908700.

Daniel Michelsanti et al. “An Overview of Deep-Learning-Based Audio-Visual Speech Enhancement
and Separation”. In: IEEE/ACM Transactions on Audio, Speech, and Language Processing 29 (2021),
pp. 1368-1396. 18SN: 2329-9304. DOI: 10.1109/TASLP.2021.3066303.

Ronan Collobert, Christian Puhrsch, and Gabriel Synnaeve. “Wav2Letter: an End-to-End ConvNet-
based Speech Recognition System”. In: arXiv:1609.03198 [cs] (Sept. 2016). URL: http://arxiv.org/
abs/1609.03193 (visited on 01/12/2021).

Dario Bertero and Pascale Fung. “A first look into a Convolutional Neural Network for speech emo-
tion detection”. In: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). Mar. 2017, pp. 5115-5119. por1: 10.1109/ICASSP.2017.7953131.

William Chan et al. “Listen, attend and spell: A neural network for large vocabulary conversational
speech recognition”. In: 2016 IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP). Mar. 2016, pp. 4960-4964. DOI: 10.1109/ICASSP.2016.7472621.

Yu Zhang, William Chan, and Navdeep Jaitly. “Very deep convolutional networks for end-to-end
speech recognition”. In: 2017 IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP). Mar. 2017, pp. 4845-4849. DOI: 10.1109/ICASSP.2017.7953077.

Suyoun Kim, Takaaki Hori, and Shinji Watanabe. “Joint CTC-attention based end-to-end speech
recognition using multi-task learning”. In: 2017 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). Mar. 2017, pp. 4835-4839. DOI: 10.1109/ICASSP.2017.7953075.

144

https://doi.org/10.3390/s18072074
https://doi.org/10.1016/j.ymssp.2017.11.024
http://www.sciencedirect.com/science/article/pii/S0888327017306064
http://www.sciencedirect.com/science/article/pii/S0888327017306064
https://doi.org/10.1016/j.cmpb.2018.04.005
http://www.sciencedirect.com/science/article/pii/S0169260718301226
http://www.sciencedirect.com/science/article/pii/S0169260718301226
https://doi.org/10.1002/cpe.5199
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5199
https://doi.org/10.1007/s10462-021-09986-y
https://doi.org/10.1007/s10462-021-09986-y
https://doi.org/10.1109/MSP.2014.2359987
https://doi.org/10.14257/ijsip.2016.9.4.34
https://doi.org/10.1109/ASRU.2013.6707749
https://haythamfayek.com/2016/04/21/speech-processing-for-machine-learning.html
https://haythamfayek.com/2016/04/21/speech-processing-for-machine-learning.html
https://doi.org/10.1109/JSTSP.2019.2908700
https://doi.org/10.1109/JSTSP.2019.2908700
https://doi.org/10.1109/TASLP.2021.3066303
http://arxiv.org/abs/1609.03193
http://arxiv.org/abs/1609.03193
https://doi.org/10.1109/ICASSP.2017.7953131
https://doi.org/10.1109/ICASSP.2016.7472621
https://doi.org/10.1109/ICASSP.2017.7953077
https://doi.org/10.1109/ICASSP.2017.7953075

Chapter 7 — BIBLIOGRAPHY

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

[180]

[181]

[182]

[183]

[184]

Ying Zhang et al. “Towards End-to-End Speech Recognition with Deep Convolutional Neural Net-
works”. In: arXiv:1701.02720 [cs, stat] (Jan. 2017). URL: http://arxiv.org/abs/1701.02720
(visited on 11/26,/2019).

Kamalesh Palanisamy, Dipika Singhania, and Angela Yao. “Rethinking CNN Models for Audio Clas-
sification”. In: arXiw:2007.11154 [cs, eess] (July 2020). URL: http://arxiv.org/abs/2007.11154
(visited on 10/07,/2020).

Han Zhang et al. “Thunder Signal Detection via Deep Learning”. en. In: Journal of Physics: Conference
Series 1828.1 (Feb. 2021). Number: 1, p. 012023. 1SSN: 1742-6588, 1742-6596. DOI: 10.1088/1742-
6596/1828/1/012023. URL: https://iopscience.iop.org/article/10.1088/1742-6596/1828/1/
012023 (visited on 04/06,/2021).

Keisuke Kinoshita et al. “A summary of the REVERB challenge: state-of-the-art and remaining
challenges in reverberant speech processing research”. In: FURASIP Journal on Advances in Signal
Processing 2016.1 (Jan. 2016). Number: 1, p. 7. 1SSN: 1687-6180. DOI: 10.1186/s13634-016-0306-6.
URL: https://doi.org/10.1186/s13634-016-0306-6 (visited on 11/28/2019).

Shinji Watanabe et al. “CHiME-6 Challenge:Tackling Multispeaker Speech Recognition for Unseg-
mented Recordings”. In: arXiv:2004.09249 [cs, eess] (May 2020). URL: http://arxiv.org/abs/
2004.09249 (visited on 07/30/2021).

Thomas Pellegrini et al. “The Airbus Air Traffic Control speech recognition 2018 challenge: towards
ATC automatic transcription and call sign detection”. In: arXiv:1810.12614 [cs, eess] (Oct. 2018).
URL: http://arxiv.org/abs/1810.12614 (visited on 11,/28/2019).

Jon Barker et al. “The fifth "CHiME’ Speech Separation and Recognition Challenge: Dataset, task and
baselines”. In: arXiv:1803.10609 [cs, eess] (Mar. 2018). URL: http://arxiv.org/abs/1803.10609
(visited on 11,/27/2019).

Sonal Joshi et al. “CHiME 2018 Workshop: Enhancing beamformed audio using time delay neural
network denoising autoencoder”. en. In: CHiME 2018 Workshop on Speech Processing in Fveryday
Environments. ISCA, Sept. 2018, pp. 46-48. DO1: 10.21437/CHiME.2018-10. URL: http://www.
isca-speech.org/archive/CHiME_2018/abstracts/CHiME_2018_paper_joshi.html (visited on
07/30/2021).

Results of the sizth CHiME challenge. en. July 2021. URL: https://chimechallenge.github.io/
chime6/results.html (visited on 07/30/2021).

Tianfu Li et al. “WaveletKernelNet: An Interpretable Deep Neural Network for Industrial Intelligent
Diagnosis”. In: arXiv:1911.07925 [cs] (Nov. 2019). URL: http://arxiv.org/abs/1911.07925 (visited
on 11/20/2019).

Patrick Nectoux et al. “PRONOSTIA: An experimental platform for bearings accelerated degradation
tests.” en. In: Denver, Colorado, United States, June 2012, p. 9.

Hai Qiu et al. “Wavelet filter-based weak signature detection method and its application on rolling
element bearing prognostics”. en. In: Journal of Sound and Vibration 289.4 (Feb. 2006). Number:
4, pp. 1066-1090. 18SN: 0022-460X. DOI: 10. 1016/ j . jsv.2005.03.007. URL: http: //www .
sciencedirect.com/science/article/pii/S0022460X0500221X (visited on 11,/18/2019).

Wade A. Smith and Robert B. Randall. “Rolling element bearing diagnostics using the Case Western
Reserve University data: A benchmark study”. en. In: Mechanical Systems and Signal Processing 64-
65 (Dec. 2015), pp. 100-131. 1SsN: 0888-3270. DOI: 10.1016/j.ymssp.2015.04.021. URL: http:
//www.sciencedirect.com/science/article/pii/S0888327015002034 (visited on 11/22/2019).

Turbofan engine degradation simulation data set - Data.gov. Nov. 2019. URL: https://catalog.data.
gov/dataset/turbofan-engine-degradation-simulation-data-set (visited on 11/18/2019).

Ruonan Liu et al. “Artificial intelligence for fault diagnosis of rotating machinery: A review”. en.
In: Mechanical Systems and Signal Processing 108 (Aug. 2018), pp. 33-47. 1SsN: 0888-3270. DOTI:
10.1016/j.ymssp.2018.02.016. URL: http://www.sciencedirect.com/science/article/pii/
S0888327018300748 (visited on 11/19/2019).

145

http://arxiv.org/abs/1701.02720
http://arxiv.org/abs/2007.11154
https://doi.org/10.1088/1742-6596/1828/1/012023
https://doi.org/10.1088/1742-6596/1828/1/012023
https://iopscience.iop.org/article/10.1088/1742-6596/1828/1/012023
https://iopscience.iop.org/article/10.1088/1742-6596/1828/1/012023
https://doi.org/10.1186/s13634-016-0306-6
https://doi.org/10.1186/s13634-016-0306-6
http://arxiv.org/abs/2004.09249
http://arxiv.org/abs/2004.09249
http://arxiv.org/abs/1810.12614
http://arxiv.org/abs/1803.10609
https://doi.org/10.21437/CHiME.2018-10
http://www.isca-speech.org/archive/CHiME_2018/abstracts/CHiME_2018_paper_joshi.html
http://www.isca-speech.org/archive/CHiME_2018/abstracts/CHiME_2018_paper_joshi.html
https://chimechallenge.github.io/chime6/results.html
https://chimechallenge.github.io/chime6/results.html
http://arxiv.org/abs/1911.07925
https://doi.org/10.1016/j.jsv.2005.03.007
http://www.sciencedirect.com/science/article/pii/S0022460X0500221X
http://www.sciencedirect.com/science/article/pii/S0022460X0500221X
https://doi.org/10.1016/j.ymssp.2015.04.021
http://www.sciencedirect.com/science/article/pii/S0888327015002034
http://www.sciencedirect.com/science/article/pii/S0888327015002034
https://catalog.data.gov/dataset/turbofan-engine-degradation-simulation-data-set
https://catalog.data.gov/dataset/turbofan-engine-degradation-simulation-data-set
https://doi.org/10.1016/j.ymssp.2018.02.016
http://www.sciencedirect.com/science/article/pii/S0888327018300748
http://www.sciencedirect.com/science/article/pii/S0888327018300748

Chapter 7 — BIBLIOGRAPHY

[185]

[186]

[187]

(188

[189]

[190]

[191]

[192]

[193]

[194]

[195]

[196]

[197]

Jindong Wang et al. “Deep learning for sensor-based activity recognition: A survey”. en. In: Pattern
Recognition Letters. Deep Learning for Pattern Recognition 119 (Mar. 2019), pp. 3-11. 1SsN: 0167-
8655. DOI: 10.1016/j.patrec.2018.02.010. URL: https://www.sciencedirect.com/science/
article/pii/S016786551830045X (visited on 09/02/2021).

Mans Klingspor. Hilbert Transform : Mathematical Theory and Applications to Signal processing.
eng. 2015. URL: http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva- 122736 (visited on
10/09/2019).

Olivier Janssens et al. “Convolutional Neural Network Based Fault Detection for Rotating Machinery”.
en. In: Journal of Sound and Vibration 377 (Sept. 2016), pp. 331-345. 1SsN: 0022-460X. po1: 10.
1016/ j . jsv.2016.05.027. URL: http://wuw . sciencedirect . com/science/article/pii/
S0022460X16301638 (visited on 11/19/2019).

David Verstraete et al. “Deep Learning Enabled Fault Diagnosis Using Time-Frequency Image Anal-
ysis of Rolling Element Bearings”. en. In: Shock and Vibration 2017 (2017), pp. 1-17. 1sSN: 1070-9622,
1875-9203. por: 10.11565/2017/5067651. URL: https://www.hindawi . com/journals/sv/2017/
5067651/ (visited on 11/22/2019).

Rui Qiao et al. “A novel deep-learning based framework for multi-subject emotion recognition”. In:
2017 4th International Conference on Information, Cybernetics and Computational Social Systems
(ICCSS). July 2017, pp. 181-185. DOL: 10.1109/ICCSS.2017.8091408.

Robin Tibor Schirrmeister et al. “Deep learning with convolutional neural networks for EEG decoding
and visualization”. en. In: Human Brain Mapping 38.11 (2017). Number: 11, pp. 5391-5420. I1SSN:
1097-0193. poI1: 10.1002/hbm.23730. URL: https://onlinelibrary.wiley.com/doi/abs/10.
1002/hbm. 23730 (visited on 10/25/2019).

Li Wang et al. “Temporal-spatial-frequency depth extraction of brain-computer interface based on
mental tasks”. en. In: Biomedical Signal Processing and Control 58 (Apr. 2020), p. 101845. I1SSN:
1746-8094. poI: 10.1016/j.bspc.2020.101845. URL: http://www.sciencedirect.com/science/
article/pii/S174680942030001X (Visited on 02/18/2020).

Mohamed Limam and Frederic Precioso. “Atrial fibrillation detection and ECG classification based
on convolutional recurrent neural network”. In: 2017 Computing in Cardiology (CinC). Sept. 2017,
pp- 1-4. po1: 10.22489/CinC.2017.171-325.

Trieu Hai-Nguyen Le et al. “Feature Extraction Techniques for Automatic Detection of Some Specific
Cardiovascular Diseases Using ECG: A Review and Evaluation Study”. en. In: 7th International
Conference on the Development of Biomedical Engineering in Vietnam (BME7). Ed. by Vo Van Toi
et al. IFMBE Proceedings. Singapore: Springer, 2020, pp. 543—-549. 1sBN: 9811358583. DOI: 10.1007/
978-981-13-5859-3_94.

Jingshan Huang et al. “ECG Arrhythmia Classification Using STFT-Based Spectrogram and Con-
volutional Neural Network”. In: IEEE Access 7 (2019), pp. 92871-92880. 1sSN: 2169-3536. DOI: 10.
1109/ACCESS.2019.2928017.

Xiang Li et al. “Emotion recognition from multi-channel EEG data through Convolutional Recur-
rent Neural Network”. In: 2016 IEEE International Conference on Bioinformatics and Biomedicine
(BIBM). Dec. 2016, pp. 352-359. DOL: 10.1109/BIBM.2016.7822545.

Yannick Roy et al. “Deep learning-based electroencephalography analysis: a systematic review”. en.
In: Journal of Neural Engineering 16.5 (Aug. 2019). Number: 5, p. 051001. 1sSN: 1741-2552. DOI:
10.1088/1741-2552/ab260c. URL: https://iopscience. iop.org/article/10.1088/1741-
2552/ab260c (visited on 09,/01/2021).

Ali Al-Saegh, Shefa A. Dawwd, and Jassim M. Abdul-Jabbar. “Deep learning for motor imagery
EEG-based classification: A review”. en. In: Biomedical Signal Processing and Control 63 (Jan. 2021),
p. 102172. 18SN: 1746-8094. DOI: 10.1016/j.bspc.2020.102172. URL: https://www.sciencedirect.
com/science/article/pii/S1746809420303116 (visited on 02/11/2021).

146

https://doi.org/10.1016/j.patrec.2018.02.010
https://www.sciencedirect.com/science/article/pii/S016786551830045X
https://www.sciencedirect.com/science/article/pii/S016786551830045X
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-122736
https://doi.org/10.1016/j.jsv.2016.05.027
https://doi.org/10.1016/j.jsv.2016.05.027
http://www.sciencedirect.com/science/article/pii/S0022460X16301638
http://www.sciencedirect.com/science/article/pii/S0022460X16301638
https://doi.org/10.1155/2017/5067651
https://www.hindawi.com/journals/sv/2017/5067651/
https://www.hindawi.com/journals/sv/2017/5067651/
https://doi.org/10.1109/ICCSS.2017.8091408
https://doi.org/10.1002/hbm.23730
https://onlinelibrary.wiley.com/doi/abs/10.1002/hbm.23730
https://onlinelibrary.wiley.com/doi/abs/10.1002/hbm.23730
https://doi.org/10.1016/j.bspc.2020.101845
http://www.sciencedirect.com/science/article/pii/S174680942030001X
http://www.sciencedirect.com/science/article/pii/S174680942030001X
https://doi.org/10.22489/CinC.2017.171-325
https://doi.org/10.1007/978-981-13-5859-3_94
https://doi.org/10.1007/978-981-13-5859-3_94
https://doi.org/10.1109/ACCESS.2019.2928017
https://doi.org/10.1109/ACCESS.2019.2928017
https://doi.org/10.1109/BIBM.2016.7822545
https://doi.org/10.1088/1741-2552/ab260c
https://iopscience.iop.org/article/10.1088/1741-2552/ab260c
https://iopscience.iop.org/article/10.1088/1741-2552/ab260c
https://doi.org/10.1016/j.bspc.2020.102172
https://www.sciencedirect.com/science/article/pii/S1746809420303116
https://www.sciencedirect.com/science/article/pii/S1746809420303116

Chapter 7 — BIBLIOGRAPHY

[198] F. Lotte et al. “A review of classification algorithms for EEG-based brain—computer interfaces: a 10
year update”. en. In: Journal of Neural Engineering 15.3 (Apr. 2018). Number: 3, p. 031005. 1SsN: 1741-
2552. DOI: 10.1088/1741-2552/aab2f2. URL: https://doi.org/10.1088%2F1741-2552%2Faab2f2
(visited on 10/24/2019).

[199] Pouya Bashivan et al. “Learning Representations from EEG with Deep Recurrent-Convolutional Neu-
ral Networks”. In: ICLR 2016 (Feb. 2016). URL: http://arxiv.org/abs/1511.06448 (visited on
12/03/2019).

[200] Weizheng Qiao and Xiaojun Bi. “Ternary-task convolutional bidirectional neural turing machine for
assessment of EEG-based cognitive workload”. en. In: Biomedical Signal Processing and Control 57
(Mar. 2020), p. 101745. 1SSN: 1746-8094. DOIL: 10.1016/j.bspc.2019.101745. URL: http://www.
sciencedirect.com/science/article/pii/S174680941930326X (visited on 12/02/2019).

[201] Cosmin Stamate, George D. Magoulas, and Michael S. C. Thomas. “Deep Learning Topology—Preserving
EEG-Based Images for Autism Detection in Infants”. en. In: Proceedings of the 22nd Engineering
Applications of Neural Networks Conference. Ed. by Lazaros Iliadis et al. Proceedings of the Inter-
national Neural Networks Society. Cham: Springer International Publishing, 2021, pp. 71-82. ISBN:
978-3-030-80568-5. DOI: 10.1007/978-3-030-80568-5_6.

[202] J. Wang et al. “A Weighted Overlook Graph Representation of EEG Data for Absence Epilepsy
Detection”. In: 2020 IEEE International Conference on Data Mining (ICDM). Nov. 2020, pp. 581—
590. por: 10.1109/ICDM50108.2020.00067.

[203] Selcan Kaplan Berkaya et al. “A survey on ECG analysis”. In: Biomedical Signal Processing and Con-
trol 43 (May 2018), pp. 216-235. 1SSN: 1746-8094. pOI: 10.1016/j .bspc.2018.03.003. URL: http:
//www.sciencedirect.com/science/article/pii/S1746809418300636 (visited on 10/18/2019).

[204] Shenda Hong et al. “Opportunities and challenges of deep learning methods for electrocardiogram
data: A systematic review”. en. In: Computers in Biology and Medicine 122 (July 2020), p. 103801.
ISSN: 0010-4825. DOI: 10.1016/j . compbiomed.2020.103801. URL: https://www.sciencedirect.
com/science/article/pii/S0010482520301694 (visited on 08/31/2021).

[205] Zehua Sun et al. “Human Action Recognition from Various Data Modalities: A Review”. In: arXiv:2012.11866
[es] (July 2021). URL: http://arxiv.org/abs/2012.11866 (visited on 09/02/2021).

[206] Ming Zeng et al. “Convolutional Neural Networks for Human Activity Recognition using Mobile
Sensors”. In: Nov. 2014. 1SBN: 978-1-63190-024-2. URL: https://eudl.eu/doi/10.4108/icst.
mobicase.2014.257786 (visited on 09/27/2019).

[207] Tahmina Zebin, Patricia J Scully, and Krikor B. Ozanyan. “Human activity recognition with inertial
sensors using a deep learning approach”. In: 2016 IEEE SENSORS. Oct. 2016, pp. 1-3. DOI: 10.1109/
ICSENS.2016.7808590.

[208] Heeryon Cho and Sang Min Yoon. “Divide and Conquer-Based 1D CNN Human Activity Recognition
Using Test Data Sharpening”. en. In: Sensors 18.4 (Apr. 2018). Number: 4, p. 1055. DOI: 10.3390/
$18041055. URL: https://www.mdpi.com/1424-8220/18/4/1055 (visited on 10/01/2019).

[209] Connor Daly. “Recognition and Synthesis of Object Transport Motion”. In: arXiv:2009.12967 [cs]
(Sept. 2020). URL: http://arxiv.org/abs/2009.12967 (visited on 09/29/2020).

[210] Nils Y. Hammerla, Shane Halloran, and Thomas Ploetz. “Deep, Convolutional, and Recurrent Models
for Human Activity Recognition using Wearables”. In: arXiv:1604.08880 [cs, stat] (Apr. 2016). URL:
http://arxiv.org/abs/1604.08880 (visited on 09/18/2019).

[211] Chi Yoon Jeong and Mooseop Kim. “An Energy-Efficient Method for Human Activity Recognition
with Segment-Level Change Detection and Deep Learning”. en. In: Sensors 19.17 (Jan. 2019). Number:
17, p. 3688. DOI: 10.3390/519173688. URL: https://www.mdpi.com/1424-8220/19/17/3688 (visited
on 09/30/2019).

[212] Mingqi Lv, Wei Xu, and Tieming Chen. “A hybrid deep convolutional and recurrent neural network for
complex activity recognition using multimodal sensors”. In: Neurocomputing 362 (Oct. 2019), pp. 33—
40. 18sN: 0925-2312. DOI: 10.1016/j.neucom.2019.06.051. URL: http://www.sciencedirect.com/
science/article/pii/80925231219309361 (visited on 09/02/2019).

147

https://doi.org/10.1088/1741-2552/aab2f2
https://doi.org/10.1088%2F1741-2552%2Faab2f2
http://arxiv.org/abs/1511.06448
https://doi.org/10.1016/j.bspc.2019.101745
http://www.sciencedirect.com/science/article/pii/S174680941930326X
http://www.sciencedirect.com/science/article/pii/S174680941930326X
https://doi.org/10.1007/978-3-030-80568-5_6
https://doi.org/10.1109/ICDM50108.2020.00067
https://doi.org/10.1016/j.bspc.2018.03.003
http://www.sciencedirect.com/science/article/pii/S1746809418300636
http://www.sciencedirect.com/science/article/pii/S1746809418300636
https://doi.org/10.1016/j.compbiomed.2020.103801
https://www.sciencedirect.com/science/article/pii/S0010482520301694
https://www.sciencedirect.com/science/article/pii/S0010482520301694
http://arxiv.org/abs/2012.11866
https://eudl.eu/doi/10.4108/icst.mobicase.2014.257786
https://eudl.eu/doi/10.4108/icst.mobicase.2014.257786
https://doi.org/10.1109/ICSENS.2016.7808590
https://doi.org/10.1109/ICSENS.2016.7808590
https://doi.org/10.3390/s18041055
https://doi.org/10.3390/s18041055
https://www.mdpi.com/1424-8220/18/4/1055
http://arxiv.org/abs/2009.12967
http://arxiv.org/abs/1604.08880
https://doi.org/10.3390/s19173688
https://www.mdpi.com/1424-8220/19/17/3688
https://doi.org/10.1016/j.neucom.2019.06.051
http://www.sciencedirect.com/science/article/pii/S0925231219309361
http://www.sciencedirect.com/science/article/pii/S0925231219309361

Chapter 7 — BIBLIOGRAPHY

[213]

[214]

[215]

[216]

[217]

[218]

[219]

[220]

[221]

[222]

[223]

[224]

[225]

Andrey Ignatov. “Real-time human activity recognition from accelerometer data using Convolutional
Neural Networks”. en. In: Applied Soft Computing 62 (Jan. 2018), pp. 915-922. 1SSN: 1568-4946. DOT:
10.1016/j.aso0c.2017.09.027. URL: https://www.sciencedirect.com/science/article/pii/
$1568494617305665 (visited on 09/02/2021).

Fernando Moya Rueda et al. “Convolutional Neural Networks for Human Activity Recognition Us-
ing Body-Worn Sensors”. en. In: Informatics 5.2 (June 2018). Number: 2, p. 26. DOI: 10 . 3390/
informatics5020026. URL: https://www.mdpi.com/2227-9709/5/2/26 (visited on 10/01/2019).

Madhuri Panwar et al. “CNN based approach for activity recognition using a wrist-worn accelerome-
ter”. In: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology
Society (EMBC). July 2017, pp. 2438-2441. pDOI: 10.1109/EMBC.2017.8037349.

Francisco Javier Ordénez and Daniel Roggen. “Deep Convolutional and LSTM Recurrent Neural
Networks for Multimodal Wearable Activity Recognition”. en. In: Sensors 16.1 (Jan. 2016). Number:
1, p. 115. DOI: 10.3390/516010115. URL: https://www.mdpi.com/1424-8220/16/1/115 (visited on
10/29/2020).

Jen-Yung Tsai et al. “Deep Learning Model to Recognize the Different Progression Condition Pat-
terns of Manual Wheelchair Users for Prevention of Shoulder Pain”. en. In: Advances in Physical
Ergonomics and Human Factors. Ed. by Ravindra S. Goonetilleke and Waldemar Karwowski. Ad-
vances in Intelligent Systems and Computing. Springer International Publishing, 2020, pp. 3-13. ISBN:
978-3-030-20142-5.

Taeho Hur et al. “Iss2Image: A Novel Signal-Encoding Technique for CNN-Based Human Activity
Recognition”. en. In: Sensors 18.11 (Nov. 2018). Number: 11, p. 3910. DOI: 10.3390/s18113910. URL:
https://www.mdpi.com/1424-8220/18/11/3910 (visited on 10/08/2019).

Mohammad Abu Alsheikh et al. “Deep Activity Recognition Models with Triaxial Accelerometers”. en.
In: Workshops at the Thirtieth AAAI Conference on Artificial Intelligence. Mar. 2016. URL: https:
//wwu.aaai.org/ocs/index.php/WS/AAAIW16/paper/view/12627 (visited on 09/23/2019).

Wenchao Jiang and Zhaozheng Yin. “Human Activity Recognition Using Wearable Sensors by Deep
Convolutional Neural Networks”. en. In: Proceedings of the 23rd ACM international conference on
Multimedia - MM ’15. Brisbane, Australia: ACM Press, 2015, pp. 1307-1310. 1SBN: 978-1-4503-3459-4.
DOI: 10.1145/2733373.2806333. URL: http://dl.acm.org/citation.cfm?doid=2733373.2806333
(visited on 09/30/2019).

Xiaochen Zheng, Meiqing Wang, and Joaquin Ordieres-Meré. “Comparison of Data Preprocessing
Approaches for Applying Deep Learning to Human Activity Recognition in the Context of Industry
4.0”. en. In: Sensors 18.7 (July 2018). Number: 7, p. 2146. DOI: 10.3390/s18072146. URL: https:
//www.mdpi.com/1424-8220/18/7/2146 (visited on 10/04/2019).

Jianjie Lu and Kai-Yu Tong. “Robust Single Accelerometer-Based Activity Recognition Using Modi-
fied Recurrence Plot”. In: IEEFE Sensors Journal 19.15 (Aug. 2019). Number: 15, pp. 6317-6324. 1SSN:
1558-1748. DOI: 10.1109/JSEN.2019.2911204.

Otévio A. B. Penatti and Milton F. S. Santos. “Human activity recognition from mobile inertial
sensors using recurrence plots™. In: arXiv:1712.01429 [cs] (Dec. 2017). URL: http://arxiv.org/abs/
1712.01429 (visited on 10/02,/2019).

Raphael Memmesheimer, Nick Theisen, and Dietrich Paulus. “Gimme Signals: Discriminative signal
encoding for multimodal activity recognition”. In: 2020 IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS). Oct. 2020, pp. 10394-10401. por: 10.1109/IR0S45743.2020.
9341699.

Olasimbo Ayodeji Arigbabu. “Entropy Decision Fusion for Smartphone Sensor based Human Activity
Recognition”. In: arXiw:2006.00367 [cs] (May 2020). URL: http://arxiv . org/abs/2006 .00367
(visited on 09/01,/2020).

148

https://doi.org/10.1016/j.asoc.2017.09.027
https://www.sciencedirect.com/science/article/pii/S1568494617305665
https://www.sciencedirect.com/science/article/pii/S1568494617305665
https://doi.org/10.3390/informatics5020026
https://doi.org/10.3390/informatics5020026
https://www.mdpi.com/2227-9709/5/2/26
https://doi.org/10.1109/EMBC.2017.8037349
https://doi.org/10.3390/s16010115
https://www.mdpi.com/1424-8220/16/1/115
https://doi.org/10.3390/s18113910
https://www.mdpi.com/1424-8220/18/11/3910
https://www.aaai.org/ocs/index.php/WS/AAAIW16/paper/view/12627
https://www.aaai.org/ocs/index.php/WS/AAAIW16/paper/view/12627
https://doi.org/10.1145/2733373.2806333
http://dl.acm.org/citation.cfm?doid=2733373.2806333
https://doi.org/10.3390/s18072146
https://www.mdpi.com/1424-8220/18/7/2146
https://www.mdpi.com/1424-8220/18/7/2146
https://doi.org/10.1109/JSEN.2019.2911204
http://arxiv.org/abs/1712.01429
http://arxiv.org/abs/1712.01429
https://doi.org/10.1109/IROS45743.2020.9341699
https://doi.org/10.1109/IROS45743.2020.9341699
http://arxiv.org/abs/2006.00367

Chapter 7 — BIBLIOGRAPHY

[226] Kavya Sree Gajjala et al. “Comparative Performance Study on Human Activity Recognition with
Deep Neural Networks”. en. In: Intelligence Science IIl. Ed. by Zhongzhi Shi, Mihir Chakraborty,
and Samarjit Kar. IFIP Advances in Information and Communication Technology. Cham: Springer
International Publishing, 2021, pp. 241-251. 1SBN: 978-3-030-74826-5. DOI: 10.1007/978-3-030-
74826-5_21.

[227] Y. Chen and Y. Xue. “A Deep Learning Approach to Human Activity Recognition Based on Single
Accelerometer”. In: 2015 IEEE International Conference on Systems, Man, and Cybernetics. Oct.
2015, pp. 1488-1492. DOI: 10.1109/SMC. 2015 263.

[228] Marjan Gholamrezaii and Seyed Mohammad Taghi Almodarresi. “Human Activity Recognition Using
2D Convolutional Neural Networks”. In: 2019 27th Iranian Conference on FElectrical Engineering
(ICEE). Apr. 2019, pp. 1682-1686. DOI: 10.1109/IranianCEE.2019.8786578.

[229] Ramy Hussein et al. “Semi-dilated convolutional neural networks for epileptic seizure prediction”.
en. In: Neural Networks 139 (July 2021), pp. 212-222. 1sSN: 0893-6080. DOI: 10.1016/j .neunet.
2021.03.008. URL: https://www.sciencedirect.com/science/article/pii/S0893608021000885
(visited on 04/07/2021).

[230] Pete Warden. How many images do you need to train a neural network? en. Dec. 2017. URL: https:
//petewarden.com/2017/12/14/how-many- images-do-you-need-to-train-a-neural-network/

(visited on 08/27/2021).

[231] Saleh Shahinfar, Paul Meek, and Greg Falzon. ““How many images do I need?” Understanding how
sample size per class affects deep learning model performance metrics for balanced designs in au-
tonomous wildlife monitoring”. en. In: Ecological Informatics 57 (May 2020), p. 101085. 1sSN: 1574-
9541. DOI: 10.1016/j.ecoinf.2020.101085. URL: https://www.sciencedirect.com/science/
article/pii/S1574954120300352 (visited on 07/26,/2021).

[232] Guto Leoni Santos et al. “Accelerometer-Based Human Fall Detection Using Convolutional Neural
Networks”. en. In: Sensors 19.7 (Jan. 2019). Number: 7, p. 1644. DOI: 10.3390/s19071644. URL:
https://www.mdpi.com/1424-8220/19/7/1644 (visited on 08,/28,/2020).

[233] Zhuotun Zhu, Lingxi Xie, and Alan L. Yuille. “Object Recognition with and without Objects”. en.
In: arXiv:1611.06596 [cs] (Nov. 2016). URL: http://arxiv . org/abs/1611.06596 (visited on
02/15/2019).

[234] Terrance DeVries and Graham W. Taylor. “Improved Regularization of Convolutional Neural Networks
with Cutout”. In: arXiv:1708.04552 [cs| (Nov. 2017). URL: http://arxiv.org/abs/1708.04552
(visited on 01/07/2020).

[235] Grégoire Montavon, Wojciech Samek, and Klaus-Robert Miiller. “Methods for interpreting and un-
derstanding deep neural networks”. en. In: Digital Signal Processing 73 (Feb. 2018), pp. 1-15. ISSN:
1051-2004. por: 10.1016/j.dsp.2017.10.011. URL: http://www.sciencedirect.com/science/
article/pii/S1051200417302385 (visited on 02/18,/2020).

[236] Weili Nie, Yang Zhang, and Ankit Patel. “A Theoretical Explanation for Perplexing Behaviors of
Backpropagation-based Visualizations”. en. In: International Conference on Machine Learning. PMLR,
July 2018, pp. 3809-3818. URL: http://proceedings .mlr .press/v80/niel8a.html (visited on
08,/02/2021).

[237] Beomsu Kim et al. “Why are Saliency Maps Noisy? Cause of and Solution to Noisy Saliency Maps”.
In: 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW). Oct. 2019,
pp. 4149-4157. por: 10.1109/ICCVW.2019.00510.

[238] Yi-Shan Lin, Wen-Chuan Lee, and Z. Berkay Celik. “What Do You See? Evaluation of Explainable
Artificial Intelligence (XAI) Interpretability through Neural Backdoors”. In: arXiv:2009.10639 [cs]
(Sept. 2020). URL: http://arxiv.org/abs/2009.10639 (visited on 09/23/2020).

[239] Suraj Srinivas and Francois Fleuret. “Gradient Alignment in Deep Neural Networks”. In: arXiv:2006.09128
[cs, stat] (June 2020). URL: http://arxiv.org/abs/2006.09128 (visited on 06/17,/2020).

149

https://doi.org/10.1007/978-3-030-74826-5_21
https://doi.org/10.1007/978-3-030-74826-5_21
https://doi.org/10.1109/SMC.2015.263
https://doi.org/10.1109/IranianCEE.2019.8786578
https://doi.org/10.1016/j.neunet.2021.03.008
https://doi.org/10.1016/j.neunet.2021.03.008
https://www.sciencedirect.com/science/article/pii/S0893608021000885
https://petewarden.com/2017/12/14/how-many-images-do-you-need-to-train-a-neural-network/
https://petewarden.com/2017/12/14/how-many-images-do-you-need-to-train-a-neural-network/
https://doi.org/10.1016/j.ecoinf.2020.101085
https://www.sciencedirect.com/science/article/pii/S1574954120300352
https://www.sciencedirect.com/science/article/pii/S1574954120300352
https://doi.org/10.3390/s19071644
https://www.mdpi.com/1424-8220/19/7/1644
http://arxiv.org/abs/1611.06596
http://arxiv.org/abs/1708.04552
https://doi.org/10.1016/j.dsp.2017.10.011
http://www.sciencedirect.com/science/article/pii/S1051200417302385
http://www.sciencedirect.com/science/article/pii/S1051200417302385
http://proceedings.mlr.press/v80/nie18a.html
https://doi.org/10.1109/ICCVW.2019.00510
http://arxiv.org/abs/2009.10639
http://arxiv.org/abs/2006.09128

Chapter 7 — BIBLIOGRAPHY

[240]

[241]

[242]

[243]

[244]

[245]

[246]

[247]

[248]

249

[250]

[251]

252

[253]
[254]

Harshay Shah, Prateek Jain, and Praneeth Netrapalli. “Do Input Gradients Highlight Discriminative
Features?” In: arXiv:2102.12781 [cs, stat]/ (Feb. 2021). URL: http://arxiv.org/abs/2102.12781
(visited on 03/10/2021).

David Griffiths and Jan Boehm. “A Review on Deep Learning Techniques for 3D Sensed Data Classi-
fication”. en. In: Remote Sensing 11.12 (Jan. 2019). Number: 12, p. 1499. DOI: 10.3390/rs11121499.
URL: https://wuw.mdpi.com/2072-4292/11/12/1499 (visited on 08/26/2019).

Giorgos Tolias, Ronan Sicre, and Hervé Jégou. “Particular object retrieval with integral max-pooling of
CNN activations”. In: arXiv:1511.05879 [cs] (Nov. 2015). URL: http://arxiv.org/abs/1511.05879
(visited on 04/03,/2019).

Shigeng Zhang et al. “Towards Real-time Cooperative Deep Inference over the Cloud and Edge End
Devices”. In: Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
4.2 (June 2020). Number: 2, 69:1-69:24. pDOI: 10.1145/3397315. URL: https://doi.org/10.1145/
3397315 (visited on 12/10/2020).

Vladislav Sovrasov. sovrasov/flops-counter.pytorch. Jan. 2020. URL: https://github. com/sovrasov/
flops-counter.pytorch (visited on 01,/22/2020).

Forrest N. Iandola et al. “SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and \ textback-
slashtextless0.5MB model size”. In: arXiv:1602.07360 [cs] (Nov. 2016). URL: http://arxiv.org/abs/
1602.07360 (visited on 02/02/2021).

Biao Wang et al. “Deep separable convolutional network for remaining useful life prediction of machin-
ery”. en. In: Mechanical Systems and Signal Processing 134 (Dec. 2019), p. 106330. 1sSN: 0888-3270.
DOI: 10.1016/j.ymssp.2019.106330. URL: http://www.sciencedirect.com/science/article/
pii/S0888327019305515 (visited on 11/05/2019).

Zhen Qin et al. “Imaging and fusing time series for wearable sensor-based human activity recognition”.
In: Information Fusion 53 (Jan. 2020), pp. 80-87. ISSN: 1566-2535. DOI: 10.1016/j.inffus.2019.06.
014. URL: http://www.sciencedirect.com/science/article/pii/S1566253519302180 (visited
on 09/03/2019).

Saurabh Gupta et al. “Learning Rich Features from RGB-D Images for Object Detection and Segmen-
tation”. en. In: Computer Vision — ECCV 2014. Ed. by David Fleet et al. Lecture Notes in Computer
Science. Cham: Springer International Publishing, 2014, pp. 345-360. 1SBN: 978-3-319-10584-0. DOI:
10.1007/978-3-319-10584-0_23.

Javed Imran and Balasubramanian Raman. “Evaluating fusion of RGB-D and inertial sensors for mul-
timodal human action recognition”. en. In: Journal of Ambient Intelligence and Humanized Computing
11.1 (Jan. 2020). Number: 1, pp. 189-208. 1ssN: 1868-5145. DOI: 10.1007/s12652-019-01239-9.
URL: https://doi.org/10.1007/s12652-019-01239-9 (visited on 03/09/2020).

Lin Ma et al. “Multimodal Convolutional Neural Networks for Matching Image and Sentence”. In:
Proceedings of the IEEE International Conference on Computer Vision. 2015, pp. 2623-2631. URL:
https://openaccess.thecvf.com/content_iccv_2015/html/Ma_Multimodal_Convolutional _
Neural ICCV_2015_paper.html (visited on 10/12/2020).

Mustafa Sercan Amac et al. “Procedural Reasoning Networks for Understanding Multimodal Proce-
dures”. In: arXiv:1909.08859 [cs] (Sept. 2019). URL: http://arxiv.org/abs/1909.08859 (visited
on 09/25/2019).

Di Feng et al. “Leveraging Uncertainties for Deep Multi-modal Object Detection in Autonomous
Driving”. In: arXiv:2002.00216 [cs] (Feb. 2020). URL: http://arxiv.org/abs/2002.00216 (visited
on 02,/10,/2020).

Jiquan Ngiam et al. “Multimodal Deep Learning”. en. In: ICML. Jan. 2011. (Visited on 10/12/2020).

Kihyuk Sohn, Wenling Shang, and Honglak Lee. “Improved Multimodal Deep Learning with Variation
of Information”. In: Advances in Neural Information Processing Systems 27. Ed. by Z. Ghahramani
et al. Curran Associates, Inc., 2014, pp. 2141-2149. URL: http://papers.nips.cc/paper/5279-
improved-multimodal-deep-learning-with (visited on 06/17/2020).

150

http://arxiv.org/abs/2102.12781
https://doi.org/10.3390/rs11121499
https://www.mdpi.com/2072-4292/11/12/1499
http://arxiv.org/abs/1511.05879
https://doi.org/10.1145/3397315
https://doi.org/10.1145/3397315
https://doi.org/10.1145/3397315
https://github.com/sovrasov/flops-counter.pytorch
https://github.com/sovrasov/flops-counter.pytorch
http://arxiv.org/abs/1602.07360
http://arxiv.org/abs/1602.07360
https://doi.org/10.1016/j.ymssp.2019.106330
http://www.sciencedirect.com/science/article/pii/S0888327019305515
http://www.sciencedirect.com/science/article/pii/S0888327019305515
https://doi.org/10.1016/j.inffus.2019.06.014
https://doi.org/10.1016/j.inffus.2019.06.014
http://www.sciencedirect.com/science/article/pii/S1566253519302180
https://doi.org/10.1007/978-3-319-10584-0_23
https://doi.org/10.1007/s12652-019-01239-9
https://doi.org/10.1007/s12652-019-01239-9
https://openaccess.thecvf.com/content_iccv_2015/html/Ma_Multimodal_Convolutional_Neural_ICCV_2015_paper.html
https://openaccess.thecvf.com/content_iccv_2015/html/Ma_Multimodal_Convolutional_Neural_ICCV_2015_paper.html
http://arxiv.org/abs/1909.08859
http://arxiv.org/abs/2002.00216
http://papers.nips.cc/paper/5279-improved-multimodal-deep-learning-with
http://papers.nips.cc/paper/5279-improved-multimodal-deep-learning-with

Chapter 7 — BIBLIOGRAPHY

[255]

(256

[257]

258

259

[260]

[261]

[262]

[263]

[264]

265

[266]

267]

268

[269]

Yuqi Li et al. “IVFuseNet: Fusion of infrared and visible light images for depth prediction”. en. In:
Information Fusion 58 (June 2020), pp. 1-12. 1SSN: 1566-2535. DOI: 10.1016/j.inffus.2019.12.014.
URL: http://www.sciencedirect.com/science/article/pii/S1566253519301034 (visited on
03,/11,/2020).

Weiyao Wang, Du Tran, and Matt Feiszli. “What Makes Training Multi-Modal Networks Hard?”
In: arXiv:1905.12681 [es] (May 2019). URL: http://arxiv . org/abs/1905. 12681 (visited on
06,/24,/2019).

Changhao Chen et al. “Selective Sensor Fusion for Neural Visual-Inertial Odometry”. en. In: 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA,
USA: IEEE, June 2019, pp. 10534-10543. 1SBN: 978-1-72813-293-8. DOT: 10.1109/CVPR.2019.01079.
URL: https://ieeexplore.ieee.org/document/8954338/ (visited on 03/12/2020).

Kuan Liu et al. “Learn to Combine Modalities in Multimodal Deep Learning”. In: arXiv:1805.11730
[cs, stat] (May 2018). URL: http://arxiv.org/abs/1805.11730 (visited on 04/05/2019).

Jing Gao et al. “A Survey on Deep Learning for Multimodal Data Fusion”. en. In: Neural Computation
32.5 (May 2020). Number: 5, pp. 829-864. 1SsN: 0899-7667, 1530-888X. DOI: 10.1162/neco_a_
01273. URL: https://www.mitpressjournals.org/doi/abs/10.1162/neco_a_01273 (visited on
07,/02,/2020).

Jia Liu et al. “Urban big data fusion based on deep learning: An overview”. In: Information Fusion
53 (Jan. 2020), pp. 123-133. 1SSN: 1566-2535. DOL: 10.1016/j.inffus.2019.06.016. URL: http:
//www.sciencedirect.com/science/article/pii/S1566253519301393 (visited on 09/05/2019).

Paul Liang. Reading List for Topics in Multimodal Machine Learning. Sept. 2021. URL: https://
github.com/pliang279/awesome-multimodal-ml (visited on 09/22/2021).

Bolei Zhou et al. “Learning Deep Features for Discriminative Localization”. In: 2016, pp. 2921-2929.
URL: https://www.cv-foundation.org/openaccess/content_cvpr_2016/html/Zhou_Learning_
Deep_Features_CVPR_2016_paper.html (visited on 11/14/2019).

Bolei Zhou et al. “OBJECT DETECTORS EMERGE IN DEEP SCENE CNN S”. In: 2015.

Xinxin Han et al. “The Effect of Axis-Wise Triaxial Acceleration Data Fusion in CNN-Based Human
Activity Recognition”. en. In: IEICE Transactions on Information and Systems £103.D.4 (Apr. 2020).
Number: 4, pp. 813-824. 1SSN: 0916-8532, 1745-1361. DOI: 10. 1587 /transinf . 2018EDP7409. URL:
https://www.jstage.jst.go.jp/article/transinf/E103.D/4/E103.D_2018EDP7409/ _article
(visited on 10/23/2020).

Joao Carreira and Andrew Zisserman. “Quo Vadis, Action Recognition? A New Model and the Kinetics
Dataset”. In: 2017, pp. 6299-6308. URL: http://openaccess . thecvf . com/content _cvpr_2017/
html/Carreira_Quo_Vadis_Action_CVPR_2017_paper.html (visited on 03/11/2020).

Harold Hotelling. “Relations Between Two Sets of Variates”. en. In: Breakthroughs in Statistics:
Methodology and Distribution. Ed. by Samuel Kotz and Norman L. Johnson. Springer Series in Statis-
tics. New York, NY: Springer, 1992, pp. 162-190. 1SBN: 978-1-4612-4380-9. DO1: 10.1007/978-1-
4612 -4380-9 _14. URL: https://doi.org/10.1007/978-1-4612-4380-9 _14 (visited on
07/05,/2021).

Zeeshan Ahmad and Naimul Khan. “Human Action Recognition Using Deep Multilevel Multimodal (
$M~2$) Fusion of Depth and Inertial Sensors”. In: IEEE Sensors Journal 20.3 (Feb. 2020). Number:
3, pp. 1445-1455. 1SSN: 2379-9153. DOI: 10.1109/JSEN.2019.2947446.

J. R. KETTENRING. “Canonical analysis of several sets of variables”. In: Biometrika 58.3 (Dec.
1971). Number: 3, pp. 433—451. 1sSN: 0006-3444. DOI: 10.1093/biomet/58.3.433. URL: https:
//doi.org/10.1093/biomet/58.3.433 (visited on 07/05/2021).

Maithra Raghu et al. “SVCCA: Singular Vector Canonical Correlation Analysis for Deep Learning
Dynamics and Interpretability”. In: Advances in Neural Information Processing Systems 30. Ed. by
I. Guyon et al. Curran Associates, Inc., 2017, pp. 6076-6085. URL: http: //papers . nips . cc/
paper/7188-svcca-singular-vector-canonical-correlation-analysis-for-deep-learning-
dynamics-and-interpretability.pdf (visited on 11/05/2019).

151

https://doi.org/10.1016/j.inffus.2019.12.014
http://www.sciencedirect.com/science/article/pii/S1566253519301034
http://arxiv.org/abs/1905.12681
https://doi.org/10.1109/CVPR.2019.01079
https://ieeexplore.ieee.org/document/8954338/
http://arxiv.org/abs/1805.11730
https://doi.org/10.1162/neco_a_01273
https://doi.org/10.1162/neco_a_01273
https://www.mitpressjournals.org/doi/abs/10.1162/neco_a_01273
https://doi.org/10.1016/j.inffus.2019.06.016
http://www.sciencedirect.com/science/article/pii/S1566253519301393
http://www.sciencedirect.com/science/article/pii/S1566253519301393
https://github.com/pliang279/awesome-multimodal-ml
https://github.com/pliang279/awesome-multimodal-ml
https://www.cv-foundation.org/openaccess/content_cvpr_2016/html/Zhou_Learning_Deep_Features_CVPR_2016_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2016/html/Zhou_Learning_Deep_Features_CVPR_2016_paper.html
https://doi.org/10.1587/transinf.2018EDP7409
https://www.jstage.jst.go.jp/article/transinf/E103.D/4/E103.D_2018EDP7409/_article
http://openaccess.thecvf.com/content_cvpr_2017/html/Carreira_Quo_Vadis_Action_CVPR_2017_paper.html
http://openaccess.thecvf.com/content_cvpr_2017/html/Carreira_Quo_Vadis_Action_CVPR_2017_paper.html
https://doi.org/10.1007/978-1-4612-4380-9_14
https://doi.org/10.1007/978-1-4612-4380-9_14
https://doi.org/10.1007/978-1-4612-4380-9_14
https://doi.org/10.1109/JSEN.2019.2947446
https://doi.org/10.1093/biomet/58.3.433
https://doi.org/10.1093/biomet/58.3.433
https://doi.org/10.1093/biomet/58.3.433
http://papers.nips.cc/paper/7188-svcca-singular-vector-canonical-correlation-analysis-for-deep-learning-dynamics-and-interpretability.pdf
http://papers.nips.cc/paper/7188-svcca-singular-vector-canonical-correlation-analysis-for-deep-learning-dynamics-and-interpretability.pdf
http://papers.nips.cc/paper/7188-svcca-singular-vector-canonical-correlation-analysis-for-deep-learning-dynamics-and-interpretability.pdf

Chapter 7 — BIBLIOGRAPHY

[270]

[271]

[272]

[273]
[274]

[275]

276

[277]

278

[279]

[280]

[281]

[282]

[283)]

[284]

[285]

Galen Andrew et al. “Deep Canonical Correlation Analysis”. en. In: Proceedings of the 30th In-
ternational Conference on Machine Learning. PMLR, May 2013, pp. 1247-1255. URL: https://
proceedings.mlr.press/v28/andrewl3.html (visited on 09/23/2021).

Nicolle M. Correa et al. “Canonical Correlation Analysis for Data Fusion and Group Inferences”. In:
IEEE Signal Processing Magazine 27.4 (2010). Number: 4, pp. 39-50. 1SSN: 1558-0792. DOI: 10.1109/
MSP.2010.936725.

“Canonical Correlation Analysis”. en. In: Applied Multivariate Statistical Analysis. Ed. by Wolfgang
Hérdle and Léopold Simar. Berlin, Heidelberg: Springer, 2007, pp. 321-330. ISBN: 978-3-540-72244-1.
DOIL: 10.1007/978-3-540-72244-1_14. URL: https://doi.org/10.1007/978-3-540-72244-1_14
(visited on 04/19/2021).

S. Akaho. “A kernel method for canonical correlation analysis”. In: ArXiv (2006).

Ari Morcos, Maithra Raghu, and Samy Bengio. “Insights on representational similarity in neural

networks with canonical correlation”. en. In: Advances in Neural Information Processing Systems 31

(2018), pp. 5727-5736. URL: https://papers.nips.cc/paper/2018/hash/a7a3d70c6d17a73140918996d03c014f -
Abstract.html (visited on 12/18/2020).

M. Haghighat, M. Abdel-Mottaleb, and W. Alhalabi. “Discriminant correlation analysis for feature
level fusion with application to multimodal biometrics”. In: 2016 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). Mar. 2016, pp. 1866-1870. DOI: 10.1109/ICASSP.
2016.7472000.

Quan-Sen Sun et al. “Feature fusion method based on canonical correlation analysis and handwritten
character recognition”. In: ICARCV 2004 8th Control, Automation, Robotics and Vision Conference,
2004. Vol. 2. Dec. 2004, 1547-1552 Vol. 2. po1: 10.1109/ICARCV.2004.1469081.

Mustafa Zuhaer Nayef Al-Dabagh et al. “Face Recognition System Based on Fusion Features of Local
Methods Using CCA”. In: 2020 8th International Electrical Engineering Congress (iEECON). Mar.
2020, pp. 1-4. por: 10.1109/iEECON48109.2020.229489.

N. S. Lakshmiprabha. “Fusing Face and Periocular biometrics using Canonical correlation analysis”.
In: arXiv:1604.01683 [cs|] (Mar. 2016). URL: http://arxiv.org/abs /1604 .01683 (visited on
06/22/2021).

Tahsina Farah Sanam and Hana Godrich. “FuseLoc: A CCA Based Information Fusion for Indoor
Localization Using CSI Phase and Amplitude of Wifi Signals”. In: ICASSP 2019 - 2019 IEEFE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP). May 2019, pp. 7565-7569.
DOI: 10.1109/ICASSP.2019.8683316.

Geoffrey Roeder, Luke Metz, and Diederik P. Kingma. “On Linear Identifiability of Learned Repre-
sentations”. In: arXiv:2007.00810 [cs, stat] (July 2020). URL: http://arxiv.org/abs/2007.00810

(visited on 02/22/2021).

David McNeely-White et al. “Exploring the Interchangeability of CNN Embedding Spaces”. In: arXiv:2010.02323
[cs] (Feb. 2021). URL: http://arxiv.org/abs/2010.02323 (visited on 02/22/2021).

David McNeely-White, J. Ross Beveridge, and Bruce A. Draper. “Inception and ResNet features are
(almost) equivalent”. en. In: Cognitive Systems Research 59 (Jan. 2020), pp. 312-318. 1ssN: 1389-0417.
DOI: 10.1016/j.cogsys.2019.10.004. URL: https://www.sciencedirect.com/science/article/
pii/S1389041719305066 (visited on 05/06,/2021).

Horia Mania et al. “Model Similarity Mitigates Test Set Overuse”. In: Advances in Neural Information
Processing Systems. Ed. by H. Wallach et al. Vol. 32. Curran Associates, Inc., 2019. URL: https:
//proceedings.neurips.cc/paper/2019/file/48237d9f2dea8c74c2a72126c£63d933-Paper. pdf.

Xavier Glorot and Yoshua Bengio. “Understanding the difficulty of training deep feedforward neural
networks”. en. In: (), p. 8.

3.2.2 ResNet_ Clifar10 - PyTorch Tutorial. Dec. 2020. URL: https://pytorch-tutorial.readthedocs.
io/en/latest/tutorial/chapter03_intermediate/3_2_2_cnn_resnet_cifar10/ (visited on
12/17/2020).

152

https://proceedings.mlr.press/v28/andrew13.html
https://proceedings.mlr.press/v28/andrew13.html
https://doi.org/10.1109/MSP.2010.936725
https://doi.org/10.1109/MSP.2010.936725
https://doi.org/10.1007/978-3-540-72244-1_14
https://doi.org/10.1007/978-3-540-72244-1_14
https://papers.nips.cc/paper/2018/hash/a7a3d70c6d17a73140918996d03c014f-Abstract.html
https://papers.nips.cc/paper/2018/hash/a7a3d70c6d17a73140918996d03c014f-Abstract.html
https://doi.org/10.1109/ICASSP.2016.7472000
https://doi.org/10.1109/ICASSP.2016.7472000
https://doi.org/10.1109/ICARCV.2004.1469081
https://doi.org/10.1109/iEECON48109.2020.229489
http://arxiv.org/abs/1604.01683
https://doi.org/10.1109/ICASSP.2019.8683316
http://arxiv.org/abs/2007.00810
http://arxiv.org/abs/2010.02323
https://doi.org/10.1016/j.cogsys.2019.10.004
https://www.sciencedirect.com/science/article/pii/S1389041719305066
https://www.sciencedirect.com/science/article/pii/S1389041719305066
https://proceedings.neurips.cc/paper/2019/file/48237d9f2dea8c74c2a72126cf63d933-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/48237d9f2dea8c74c2a72126cf63d933-Paper.pdf
https://pytorch-tutorial.readthedocs.io/en/latest/tutorial/chapter03_intermediate/3_2_2_cnn_resnet_cifar10/
https://pytorch-tutorial.readthedocs.io/en/latest/tutorial/chapter03_intermediate/3_2_2_cnn_resnet_cifar10/

Chapter 7 — BIBLIOGRAPHY

[286]

[287]

288

[289)]

[290]

[291]

[292]

293

[294]

[295]

[296]

[297]

298]

[299]

300]

Ryo Kamoi and Kei Kobayashi. “Why is the Mahalanobis Distance Effective for Anomaly Detection?”
In: arXiv:2003.00402 [cs, stat] (Feb. 2020). URL: http://arxiv.org/abs/2003.00402 (visited on
03,/05,/2020).

I. Garg, P. Panda, and K. Roy. “A Low Effort Approach to Structured CNN Design Using PCA”. In:
IEEE Access 8 (2020), pp. 1347-1360. 1sSN: 2169-3536. DOI: 10.1109/ACCESS.2019.2961960.

Jonathan Frankle and Michael Carbin. “The Lottery Ticket Hypothesis: Finding Sparse, Trainable
Neural Networks”. en. In: Sept. 2018. URL: https://openreview.net/forum?id=rJ1-b3RcF7&
noteId=ryemP68v2m (visited on 12/18/2020).

Alan Edelman, Tomas A. Arias, and Steven T. Smith. “The Geometry of Algorithms with Orthog-
onality Constraints”. en. In: STAM Journal on Matriz Analysis and Applications 20.2 (Jan. 1998).
Number: 2, pp. 303—-353. 1ssN: 0895-4798, 1095-7162. DOI: 10.1137/S0895479895290954. URL: http:
//epubs.siam.org/doi/10.1137/S0895479895290954 (visited on 10/09/2020).

Xichen Sun and Qiansheng Cheng. “On Subspace Distance”. en. In: Image Analysis and Recogni-
tion. Ed. by Aurélio Campilho and Mohamed Kamel. Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer, 2006, pp. 81-89. I1SBN: 978-3-540-44896-9. DOI: 10.1007/11867661_8.

Liwei Wang, Xiao Wang, and Jufu Feng. “Subspace distance analysis with application to adaptive
Bayesian algorithm for face recognition”. en. In: Pattern Recognition 39.3 (Mar. 2006). Number:
3, pp- 456-464. 1SsN: 0031-3203. DOI: 10. 1016/ j . patcog . 2005 .08 . 015. URL: http://www .
sciencedirect.com/science/article/pii/S003132030500381X (visited on 08/28,/2020).

Ziwei Ji and Matus Telgarsky. “Gradient descent aligns the layers of deep linear networks”. In:
arXiv:1810.02032 [cs, math, stat] (Feb. 2019). URL: http://arxiv.org/abs/1810.02032 (visited on
09/13/2021).

Jindong Gu and Volker Tresp. “Semantics for Global and Local Interpretation of Deep Neural Net-
works”. In: arXiv:1910.09085 [es] (Oct. 2019). URL: http://arxiv.org/abs/1910.09085 (visited on
11/05,/2019).

Bingyi Cao, Andre Araujo, and Jack Sim. “Unifying Deep Local and Global Features for Image
Search”. In: arXiw:2001.05027 [cs] (Sept. 2020). URL: http://arxiv.org/abs/2001.05027 (visited
on 07/02/2021).

Artem Babenko and Victor Lempitsky. “Aggregating Deep Convolutional Features for Image Re-
trieval”. In: arXiv:1510.07493 [cs] (Oct. 2015). URL: http://arxiv.org/abs/1510.07493 (visited
on 07/02/2021).

Ruy Luiz Milidia and Luis Felipe Miiller. “SeismoFlow — Data augmentation for the class imbalance
problem”. In: arXiv:2007.12229 [cs] (Sept. 2020). URL: http://arxiv.org/abs/2007.12229 (visited
on 09/03/2020).

Mohammad Malekzadeh et al. “Protecting Sensory Data against Sensitive Inferences”. en. In: Pro-
ceedings of the 1st Workshop on Privacy by Design in Distributed Systems - W-P2DS’18 (2018),
pp. 1-6. DOL: 10.1145/3195258.3195260. URL: http://arxiv.org/abs/1802.07802 (visited on
01,/21/2019).

J Nixon. “Intervertebral Disc Mechanics: A Review”. en. In: Journal of the Royal Society of Medicine
79.2 (Feb. 1986). Publisher: SAGE Publications, pp. 100-104. 1ssN: 0141-0768. por: 10 . 1177/
014107688607900211. URL: https://doi.org/10.1177/014107688607900211 (visited on 01,/29,2022).

Simon Kornblith et al. “Similarity of Neural Network Representations Revisited”. en. In: International
Conference on Machine Learning. PMLR, May 2019, pp. 3519-3529. URL: http://proceedings.mlr.
press/v97/kornblith19a.html (visited on 12/18,/2020).

Huaxiu Yao et al. “Revisiting Spatial-Temporal Similarity: A Deep Learning Framework for Traffic
Prediction”. en. In: Proceedings of the AAAI Conference on Artificial Intelligence 33.01 (July 2019).
Number: 01, pp. 5668-5675. 1SSN: 2374-3468. DOI: 10.1609/aaai.v33101.33015668. URL: https:
//ojs.aaai.org/index.php/AAAI/article/view/4511 (visited on 06/03,/2021).

153

http://arxiv.org/abs/2003.00402
https://doi.org/10.1109/ACCESS.2019.2961960
https://openreview.net/forum?id=rJl-b3RcF7¬eId=ryemP68v2m
https://openreview.net/forum?id=rJl-b3RcF7¬eId=ryemP68v2m
https://doi.org/10.1137/S0895479895290954
http://epubs.siam.org/doi/10.1137/S0895479895290954
http://epubs.siam.org/doi/10.1137/S0895479895290954
https://doi.org/10.1007/11867661_8
https://doi.org/10.1016/j.patcog.2005.08.015
http://www.sciencedirect.com/science/article/pii/S003132030500381X
http://www.sciencedirect.com/science/article/pii/S003132030500381X
http://arxiv.org/abs/1810.02032
http://arxiv.org/abs/1910.09085
http://arxiv.org/abs/2001.05027
http://arxiv.org/abs/1510.07493
http://arxiv.org/abs/2007.12229
https://doi.org/10.1145/3195258.3195260
http://arxiv.org/abs/1802.07802
https://doi.org/10.1177/014107688607900211
https://doi.org/10.1177/014107688607900211
https://doi.org/10.1177/014107688607900211
http://proceedings.mlr.press/v97/kornblith19a.html
http://proceedings.mlr.press/v97/kornblith19a.html
https://doi.org/10.1609/aaai.v33i01.33015668
https://ojs.aaai.org/index.php/AAAI/article/view/4511
https://ojs.aaai.org/index.php/AAAI/article/view/4511

Chapter 7 — BIBLIOGRAPHY

[301] Cheng Ouyang et al. “Data Efficient Unsupervised Domain Adaptation for Cross-Modality Image
Segmentation”. In: arXiw:1907.02766 [cs, eess] (July 2019). URL: http://arxiv.org/abs/1907.
02766 (visited on 07/08/2019).

[302] Sagie Benaim et al. “Domain Intersection and Domain Difference”. In: arXiv:1908.11628 [cs] (Aug.
2019). URL: http://arxiv.org/abs/1908.11628 (visited on 09/02/2019).

)

[303] S. Matsui et al. “User adaptation of convolutional neural network for human activity recognition”.
In: 2017 25th European Signal Processing Conference (EUSIPCO). Aug. 2017, pp. 753-757. DOL
10.23919/EUSIPC0.2017.8081308.

[304] Yaqing Wang et al. “Generalizing from a Few Examples: A Survey on Few-shot Learning”. en. In:
ACM Computing Surveys 53.3 (July 2020). Number: 3, pp. 1-34. 1ssN: 0360-0300, 1557-7341. DoOI:
10.1145/3386252. URL: https://dl.acm.org/doi/10.1145/3386252 (visited on 09/17/2020).

[305] Jeffrey Pennington, Richard Socher, and Christopher Manning. “Glove: Global Vectors for Word
Representation”. en. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP). Doha, Qatar: Association for Computational Linguistics, 2014, pp. 1532—
1543. po1: 10.3115/v1/D14-1162. URL: http://aclweb.org/anthology/D14- 1162 (visited on
07/01/2021).

[306] Matthew E. Peters et al. “Deep Contextualized Word Representations”. In: Proceedings of the 2018
Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers). New Orleans, Louisiana: Association for Compu-
tational Linguistics, June 2018, pp. 2227-2237. DOI: 10. 18653 /v1/N18 - 1202. URL: https: //
aclanthology.org/N18-1202 (visited on 10/15/2021).

[307] Amirata Ghorbani and James Zou. “Neuron Shapley: Discovering the Responsible Neurons”. In:
arXiw:2002.09815 [cs, stat] (Feb. 2020). URL: http://arxiv . org/abs/2002.09815 (visited on
03,/04,/2020).

[308] Marc Claesen and Bart De Moor. “Hyperparameter Search in Machine Learning”. In: arXiv:1502.02127
[cs, stat] (Feb. 2015). URL: http://arxiv.org/abs/1502.02127 (visited on 03/05/2019).

[309] Li Yang and Abdallah Shami. “On hyperparameter optimization of machine learning algorithms:
Theory and practice”. en. In: Neurocomputing 415 (Nov. 2020), pp. 295-316. 1sSN: 0925-2312. DOI:
10.1016/j .neucom.2020.07.061. URL: https://www.sciencedirect.com/science/article/pii/
$0925231220311693 (visited on 09/17/2021).

[310] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. “Neural architecture search: A survey”. In:
The Journal of Machine Learning Research 20.1 (2019). Number: 1, pp. 1997-2017.

[311] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. “Practical Bayesian Optimization of Machine
Learning Algorithms”. In: Advances in Neural Information Processing Systems. Vol. 25. Curran Asso-
ciates, Inc., 2012. URL: https://proceedings.neurips.cc/paper/2012/hash/05311655a15b75fab86956663e1819cc
Abstract.html (visited on 09/17/2021).

[312] James Bergstra and Yoshua Bengio. “Random Search for Hyper-Parameter Optimization”. In: Journal
of Machine Learning Research 13.Feb (2012). Number: Feb, pp. 281-305. 1ssN: ISSN 1533-7928. URL:
http://www.jmlr.org/papers/v13/bergstral2a.html (visited on 07/08/2019).

[313] A. Caduff et al. “Exploring the Limits of Vanilla CNN Architectures for Fine-Grained Vision-Based
Vehicle Classification”. en. In: Proceedings of the 22nd Engineering Applications of Neural Networks
Conference. Ed. by Lazaros Iliadis et al. Proceedings of the International Neural Networks Society.
Cham: Springer International Publishing, 2021, pp. 202-212. 1SBN: 978-3-030-80568-5. DOI: 10.1007/
978-3-030-80568-5_17.

[314] Ilja Manakov, Markus Rohm, and Volker Tresp. “Walking the Tightrope: An Investigation of the
Convolutional Autoencoder Bottleneck”. In: arXiv:1911.07460 [cs] (May 2020). URL: http://arxiv.
org/abs/1911.07460 (visited on 10/07/2020).

[315] fei fei li fei fei. Stanford University CS231n: Convolutional Neural Networks for Visual Recognition.
July 2021. URL: http://cs231n.stanford.edu/ (visited on 07/21,/2021).

154

http://arxiv.org/abs/1907.02766
http://arxiv.org/abs/1907.02766
http://arxiv.org/abs/1908.11628
https://doi.org/10.23919/EUSIPCO.2017.8081308
https://doi.org/10.1145/3386252
https://dl.acm.org/doi/10.1145/3386252
https://doi.org/10.3115/v1/D14-1162
http://aclweb.org/anthology/D14-1162
https://doi.org/10.18653/v1/N18-1202
https://aclanthology.org/N18-1202
https://aclanthology.org/N18-1202
http://arxiv.org/abs/2002.09815
http://arxiv.org/abs/1502.02127
https://doi.org/10.1016/j.neucom.2020.07.061
https://www.sciencedirect.com/science/article/pii/S0925231220311693
https://www.sciencedirect.com/science/article/pii/S0925231220311693
https://proceedings.neurips.cc/paper/2012/hash/05311655a15b75fab86956663e1819cd-Abstract.html
https://proceedings.neurips.cc/paper/2012/hash/05311655a15b75fab86956663e1819cd-Abstract.html
http://www.jmlr.org/papers/v13/bergstra12a.html
https://doi.org/10.1007/978-3-030-80568-5_17
https://doi.org/10.1007/978-3-030-80568-5_17
http://arxiv.org/abs/1911.07460
http://arxiv.org/abs/1911.07460
http://cs231n.stanford.edu/

Chapter — BIBLIOGRAPHY

[316]

317]

318

[319]

[320]

[321]

Mara Graziani, Henning Muller, and Vincent Andrearczyk. “Interpreting Intentionally Flawed Models
with Linear Probes”. en. In: 2019 IEEE/CVF International Conference on Computer Vision Workshop
(ICCVW). Seoul, Korea (South): IEEE, Oct. 2019, pp. 743-747. 1SBN: 978-1-72815-023-9. DOI: 10.
1109/ICCVW.2019.00096. URL: https://ieeexplore. ieee.org/document/9022025/ (visited on
10/08/2020).

Sanjeev Arora et al. “Implicit Regularization in Deep Matrix Factorization”. In: Advances in Neural
Information Processing Systems 32. Ed. by H. Wallach et al. Curran Associates, Inc., 2019, pp. 7413~
7424. URL: http://papers.nips.cc/paper/8960-implicit-regularization-in-deep-matrix-
factorization.pdf (visited on 10/23/2020).

Sanjeev Arora et al. “A Convergence Analysis of Gradient Descent for Deep Linear Neural Networks”.

In: arXiv:1810.02281 [cs, stat] (Oct. 2019). URL: http://arxiv.org/abs/1810.02281 (visited on
10/23,/2020).

Thomio Watanabe and Denis F. Wolf. “Image classification in frequency domain with 2SReL.U: a
second harmonics superposition activation function”. In: arXiv:2006.10853 [cs] (June 2020). URL:
http://arxiv.org/abs/2006.10853 (visited on 06,/22/2020).

Guillaume Alain, Nicolas Le Roux, and Pierre-Antoine Manzagol. “Negative eigenvalues of the Hessian
in deep neural networks”. In: arXiv:1902.02366 [cs, math, stat] (Feb. 2019). URL: http://arxiv.
org/abs/1902.02366 (visited on 11/26,/2019).

Anna Choromanska et al. “The Loss Surfaces of Multilayer Networks”. en. In: (), p. 13.

155

https://doi.org/10.1109/ICCVW.2019.00096
https://doi.org/10.1109/ICCVW.2019.00096
https://ieeexplore.ieee.org/document/9022025/
http://papers.nips.cc/paper/8960-implicit-regularization-in-deep-matrix-factorization.pdf
http://papers.nips.cc/paper/8960-implicit-regularization-in-deep-matrix-factorization.pdf
http://arxiv.org/abs/1810.02281
http://arxiv.org/abs/2006.10853
http://arxiv.org/abs/1902.02366
http://arxiv.org/abs/1902.02366

Appendix A

Methodology: Computing a F1 score
from an Intersection over Union

In this section, we will demonstrate how we computed a F1l-score in table 2.4 from the per-class Intersection
over Union (IoU) in [65].

Firstly, let us consider one class, and work with per-class scores. TP is the number of true positives,
F P the number of false positives (the points that were classified as this class but without actually belonging
to it) and F'N the number of false negatives (points that the classifier did not detect as belonging to the
class we considered). The Intersection over Union (IoU) is a score that compares the prediction of the
network (TP + F'P), to the number of data points (pixels or, in our case, time steps, TP + FN). The
number of samples in the intersection of these two sets is T'P, while the number of samples in their union is
TP+ FN + FP. Hence,

_ TP
10U = mprpn+rp

The F1 score is computed by taking the per-class recall and precision:

1
F1=

1 1 1
5(Recall + Precision)

Knowing that :

TP

TP+ FN
TP

TP+ FP

Recall =

Precision =

We obtain:

2

TP+FN TP+FP
(Srp + T 1p)

2.TP

" TP+FN+ TP+ FP
oTP

T 9TP{FN + FP

Fl1=

If we call the error £ = FP+ FN

TP
TP+ E/2
TP
TP+E

F1

IoU

156

Chapter A — Methodology: Computing a F1 score from an Intersection over Union

The last two lines show us that the IoU score is harsher than the F1 score. However, it is not enough yet
to know by how much. To find one from the other, simply say that:

TP
ToU = ——
U=Tp1E
TP TP+ E
i
2 oU—
TPzIOUE-F?
TP+E TP
_ IOU% + = (ToU + (1= IoU)
E. TP
TP =IoU(TP+) + —- (1~ IoU)
TP TP — JoU
7E:[OU+2(72)
TP+ E TP+ Z
F1
FlzIoU—i—T(l—IoU)
1 ToU
Fl(l— -+ "2y =1
(2—!— 2) oU

1
F1§(1 + IoU) = IoU

210U

Fl= ——
1+ IoU

We obtain the F1 score per class. We only have to compute the mean across classes to get the average F1

157

Appendix B

Automatic sensor selection

Some of the fusion methods we presented in chapter 5 allow us to explicitly assign a weight to each of the
sensors used. We wondered if these methods could be used to let a neural network automatically select the
optimal sensor combination among all the sensors we had. The idea would be to give all possible signals to
a network for classification and to look at which sensors were chosen at the end of the training.

B.1 Data fusion for sensor selection

Each fusion method has a different way of assigning importance to a sensor. The general idea is that we
obtain a positive value for each sensor which is higher if the sensor is important.

e bottleneck filters: The first layer of the network makes an explicit combination of spectrograms. If a
coeflicient is close to zero, this will mean the network ignores the corresponding sensor. There is no
limit, however, to the values each coefficient can take. In particular, the network can use negative
values, which still allows conveying information from the sensor. We record the absolute value of the
weight to assess the importance of each sensor

e attention: For each sensor, the attention assigns one weight (between 0 and 1) per input pixel and for
each sample. We simply average the values of these weights over the number of pixels and the number
of samples, to obtain one value between 0 and 1 per sensor.

e selective fusion: Similarly to attention, we compute one average per sensor.

e weighted probabilities fusion: The network explicitly computes a single weight per sensor, we simply
record this weight.

e Gradient blend: Similarly, we use the weight computed by gradient blend as-is. Even though these
weights do not indicate which sensor is useful (the weights are computed to reduce overfitting), but we
still check if they have meaning nonetheless.

e weighted scores fusion: Contrary to the weighted probabilities, one weight is not enough to know which
sensor impacts most of the decision. The reason for this is that scores can be systematically higher for
one sensor. To account for scores variation, we multiply each weight (between 0 and 1) by the standard
deviation of all the scores returned by each sensor.

B.2 Three known scenarios
Before giving all the sensors to the network, we want to make sure that the networks are able to correctly

evaluate the sensors when the usefulness of these sensors is already known (from the experiments in the
previous). We evaluate three scenarios:

158

Chapter B — Automatic sensor selection

o Accelerometer + Gyrometer: As the gyrometer brings a small increase to the performance of the model
when added to the accelerometer (about 2 percentage points), we expect the networks to favour the
accelerometer most, while still listening at the gyrometer to some extent.

o Accelerometer + Norm of the Orientation: The norm of the orientation is almost useless, so we expect
the network to only listen to the accelerometer.

o Four times the accelerometer: the network needs to select the best sensor, and should ignore the
redundancies. To test the network’s ability to ignore redundant information, we create a scenario with
four sensors, and each of these sensors is a copy of the norm of the accelerometer. Ideally, the network
should affect a weight of zero to all but one of the sensors each time. Note: if the network chooses
to listen to a single accelerometer, but this accelerometer is not the same between initializations (eg
the network listens at the first accelerometer during the first run, and to the last accelerometer the
next run), the average weight per accelerometer will not show that a single accelerometer was selected
each time. In order to avoid this situation, and instead of identifying the weights by their initial order,
we order them by value. In other words, accelerometer 1 is always the accelerometer with the highest
weight (or average weight), accelerometer 2 is the second highest, etc. It doesn’t matter whether with
one initialization the 2nd copy of the norm has been selected or the 3rd, etc. What matters is that
only one copy is selected each time. In the end, we expect that the mean of the highest weights should
exceed largely the others.

The results are displayed in fig. B.1. For the first scenario (accelerometer and gyrometer, first line), all
networks but the weighted probabilities fusion succeed to give some importance to the gyrometer. For the
second scenario, only Gradient Blend fails the test: others assign a small value to the useless sensor. For
the third scenario, only the weighted probabilities method succeeds clearly. One could argue that selective
fusion also passes the test, but the standard deviations in the weights of the second and third weights are
still quite high, indicating that some runs still fail nonetheless.

As the 'weighted probabilities” method did not succeed with the first scenario, none of the methods we
used succeeded in all three scenarios. Selecting the sensors automatically by giving them all to a single
network seems unlikely to succeed.

attention selective_fusion weighted_scores weighted_probas GBlend Bottleneck filters
100

006
o8 4
015 4 2
075 2
004 o ‘ 06 o
o010 4
030 0a d
2+ 1 1
002 4
005 4 a2s 4 o] ‘
0o 0o b o T oo - + o oo -

Acc_norm Gyr y Acc_norm Gyry Acc_norm Gyry Acc_norm Gyry Acc_norm Gyr_y Acc_norm Gyr_y

Acc_norm
Gyr_y

020 o 100

030 4

025 4

Acc_norm
Qori_norm
= ° ° °
2 B 4 E
| 1 |
s = = =
2) 5 i}
| L . |
< “ - =
L |
=

000 < -
Accnorm Ori_norm Accnorm Ori_norm Acc_morm Ori_norm Acc_morm Ori_norm Accnorm Ori_norm Accnorm Ori_norm
100

o015 4 204
004 o 075 4
15
o010 4
030 o
00z 104
005 o 4
os 025
o0 - o0 - 00 - 000 -
1 2 3 a

Figure B.1: The weights of each sensor in the three scenarios for different automatic sensor selection methods.
Error bars indicate the standard deviation between each of the five runs. The values of the weights in the
last scenario are decreasing because we sorted them (as the sensors are equivalent, we wanted to see if the
network listened to only one sensor).

A(cim:rm
Acc_norm
Acc_norm

Acc_norm

159

Chapter B — Automatic sensor selection

B.3 Conclusion

Even with an evaluation of each of the individual sensors (see section 2.3.3), choosing an optimal sensor
combination is a non-trivial combinatorial problem. We could cite works that rely on the intelligent removal
of features to evaluate their usefulness (see [307], for instance), and how they can be adapted to sensor
selection. However, these works are out of scope for this chapter.

For the automatic sensor selection, our rationale was more to use what we had developed as data fusion
methods, and see what happens. As this method did not pass the tests we set up for it, we see no other
choice than simply keeping the sensors we selected using prior knowledge. We realize that the idea which
pushed us to experiment in this direction was that a neural network would always find the best combination
of sensors. The results show that neural networks are not necessarily optimal, nor efficient.

Several works did try to quantify the energy spent using each sensor by trying to get rid of each of them,
and seeing if the loss of performance is acceptable given the time, or energy saved by not using them [40,
133, 131]. However, these methods rely on evaluating each sensor combination once.

160

Appendix C

Random Search for hyperparameters on
the GeoLife dataset

Deep neural networks are trained by the update of thousands, or even millions of values called parameters
of the network. However, the training process is guided by a handful of variables specified by the user at
the beginning of the training process. These variables, which remain constant all the way through, are
called hyperparameters. Finding the optimal combination of values for the hyperparameters is a common
problem to all Machine Learning practitioners, and hyperparameter optimization has become a separate field
of research ([308, 309]). We could also consider Neural Architecture Search ([310]), a type of problem where
the researchers try to optimize the architecture of a network (number of filters and layers, organization of
the operations etc.) using methods that are specific to deep neural networks.

There are several competing methods in the literature [309], and, in particular, Bayesian optimization
([311]) is a popular option for hyperparameter selection. However, we selected Random Search for its
simplicity and ease of implementation. This short chapter is devoted to presenting how we found the
hyperparameters of the baseline architecture for the GeoLife dataset.

C.1 Experimental setup

The most straightforward way to know which combination of hyperparameters is the most optimal is to test
all combinations. Unfortunately, this method, named grid search, has a complexity that grows exponentially
with the numbers of hyperparameters to evaluate. For instance, in our case, this would mean evaluating
nearly six million combinations, with only thirteen hyperparameters to choose (see table C.1 for a list of all
possible hyperparameters). This is wasteful if we consider that some hyperparameters will end up having a
low influence on the performance.

Random Search [312] is a method that relies on the independent sampling of a set of hyperparameters. To
avoid iterating over the low-influence hyperparameters as grid search does, Random search simply consists
of setting intervals for each hyperparameter, and selecting a series of hyperparameters at random, uniformly,
to evaluate the architecture. After a significant number of sets of hyperparameters are evaluated, one should
see different trends when they plot the performance against the diverse hyperparameter values.

161

Chapter C — Random Search for hyperparameters on the GeoLife dataset

hyperparameter possible values chosen value
.. none, max-min,
normalisation p-robust (1, 5, and 10 percentile) none
filtering none, median, none
savitzky-golay (order 3, 9 points)
segment size 256, 512, 1024 1024
signal s . speed,
types speed, acceleration, bearing [28§] acceloration
learning rate 0.01, 0.03, 0.1, 0.3, 1.0, 3.0 0.01
regularization 1.1074, 3.10%, 1.10-3 3.10-3
parameter 3.1073, 1.1072, 3.10—2 :
batch size 8, 16, 32, 64, 128 128
number of
conv blocks 1,2,3,4 3
architecture classic, residual residual
(see fig. C.4) ’
size of the
first block 8, 16, 32, 64 16
number of
hidden FC layers 1,2 1
size of the
FC layers 8, 16, 32, 64, 128 16
dropout 0, 0.1, 0.2, 0.3, 0.4, 0.5 0.2

Table C.1: The search space of random search for the GeoLife architecture

There are many hyperparameters to set in order to create our GeoLife neural network. We decided to
be broad and include many of them (see table C.1 for an exhaustive list): architecture (number of layers,
number of filters per layer, ...), learning process (e.g., learning rate, batch size). We also included several
values that are not hyperparameters per se, but might have an influence on the final performance: what
signals to include (speed only; speed and acceleration; or speed, acceleration, and bearing [28]), how to
normalize the data (no normalization, max-min, or p-robust using the first, fifth, or tenth percentile); or
input data cleaning (no cleaning, median filter with size 3, or Savitzky-Golay filter with 9 points and order
3). Contrary to the GeoLife model we presented in chapter 2, all the architectures we used in the Random
Search required the input segments to have the same size. We saw in chapter 4 how to make use of segments
of any size, but for now, we keep on having fixed-size segments. One work [28] used 200 points-long segments
on the uninterpolated dataset, which is why we compare similar values: 256, 512, and 1024 points-long
segments. The hardware we used is the same as the one we described in chapter 4 (section 4.2).

C.2 Results

We created and trained 562 models with hyperparameters drawn uniformly, and looked at the influence
of each of the hyperparameters separately from the rest. When a clear trend was observed (see fig. C.1
for examples), we chose the best hyperparameter; and we opted for the less complex solution (in terms of
computational requirements or number of parameters) when no clear choice could be made (which happened
for the input filtering and signal normalization). We select the best hyperparameters visually, table C.1
displays the values we chose.

162

Chapter C — Random Search for hyperparameters on the GeoLife dataset

0.9

0.8

zfﬁﬁﬁ

0.4

val F1

4
number of blocks

(a)

0.9 0.9

0.8 0.8

0.7 0.7
— —
s o
g g

0.6 0.6

0.5 0.5

.
.
0.4 n - 0.4
median none savitsky-golay none max-min p-robust robust
filtering (lst percentile) (Sth percentl]e) (loth percentlle)
normalization
(b)
(c)

Figure C.1: Swarm plots representing the influence of several hyperparameters from random search. Each
black dot represents one neural network. Subfigure (a) represents an example of significant choice: N = 3
blocks is strictly better, performance-wise. (b) and (c¢) are examples of unimportant hyperparameters: using
savitzky-golay filters, for instance, is the same as using no filtering.

163

Chapter C — Random Search for hyperparameters on the GeoLife dataset

val F1

val F1

val F1

0.9
0.8
0.7
0.6
0.5
i 3
H
0.4
256 512 1024
segment_length

(a) segment length
0.9
0.8
0.7

’ .

0.5

.

—d M A}

. :

0.4
8 16 32 64 128
batch_size
(c) batch size

0.9

3

o

f%?

[speed (m/s), acc (m/s?),
bearing (rad/s)]

[speed (m/s),
acc (m/s?)]
columns

[speed (m/s)]

(e) type of inputs

0.9
0.8
0.7
o
&
g
0.6
0.5
0.4
0.01 0.03 0.1 0.3 1.0 3.0
learning rate
(b) learning rate
“ %
o ?
os
os
os
e o
wehtecre
(d) architecture
0.9
0.8

val F1

0.5

-4

0.0003 0.001 0.003 0.01
alpha_L2

0.0001

(f) regularization parameter

Figure C.2: Swarm plots representing the influence of several hyperparameters from random search. Each
black dot represents one neural network.

164

Chapter C — Random Search for hyperparameters on the GeoLife dataset

0.9 0.9
0.8 -1 0.8
k-
0.7 b 0.7
o o
i .
g g
0.6 0.6
0.5 0.5
T .
0.4 04
8 16 32 64 1 2
start_filter size FC layers
(a) size of the first block (b) number of hidden FC layers
0.9 0.9
08 o 08] . .
1 A
0.7 3 k. 07 L
jnd jnd
2 2
0.6 0.6
p
0.5 0.5
. 4
M * 1 —_—
04 04
16 32 64 128 0.0 0.1 0.2 0.3 0.4 0.5
size of the FC layer(s) dropout

(c) size of the FC layers (d) dropout

09
08 - o

| +
z
©
S

05

04

0 1 2

seed

(e) seed

Figure C.3: The swarm plots representing the influence of all hyperparameters from random search. Each
black dot represents one neural network.

165

Chapter C — Random Search for hyperparameters on the GeoLife dataset

| Block C | ™~
e Conv G \\. Conv 16
- 1 Block C
Conv C m
Block 16 dropout T ® Block 32
i
[BN | /
v /
Conv C //
d
Block 16 : V% Block 64
d
s
/

Block 16 Block 128
Conv X X filters, size = 3, stride = 1 BatchNorm
[dropout |

FC 16 X filters, size = 3, stride = 2 Dropout =0.2 FC 18
dropout dropout
stride = 2 FCX Fully-connnected,
FC6 X neurons in the output layer FC6

Figure C.4: The classic (left) and residual (right) architectures we used for the Random Search. The classic
architecture comes directly from [104], while the second one is inspired from ResNet [150].

C.3 Influence of the architecture

The architecture of a network is the most determinant hyperparameter to its performance, which is why we
will spend some additional time to evaluate it, even though the architecture type was one of the parameters
covered by random search. We remind the reader that we chose between the two architectures depicted in
fig. C.4: the ’classic’ architecture, using a regular sequence of layers, coming from [104], and a slightly more
complex one, using residual connections [150]. The result of the random search is that both architectures
have similar performances (fig. C.5a).

166

Chapter C — Random Search for hyperparameters on the GeoLife dataset

Number of parameters

residual dassic esidwal dassic

Figure C.5: Swarm plots detailing the influence of the architecture, in terms of performance (a), number of
weights (b), and number of operations (c). Each black dot represents one neural network

When looking at the results of the Random Search (fig. C.5), the classic architecture seems better: it
has similar performances (fig. C.5a), while having fewer parameters (fig. C.5b) and operations (fig. C.5¢)
than the residual architecture.

However, we will see that the residual architecture is in fact, more efficient than the classic one. Here,
we use similar architectures as in fig. C.4, except that the number of input in a convolution layer is set
to 2, 4, 8, 16, and 32. We trained five models with each architecture, with each number of filters. The
results are illustrated in fig. C.6, which contrast with the result of the random search (fig. C.5a): for an
equal number of filters, the residual block significantly outperforms the classic convolution. We hypothesize
that this is due to the choice of hyperparameters: even if we focused on medians and quartiles to look
for tendencies, we somehow selected, unwillingly, a combination of hyperparameters that works better with
residual blocks. In particular, a small number of filters is detrimental to the classic architecture only. We
missed this interaction between hyperparameters because of the visualisation in the Random Search. This
illustrates one of the limits of the univariate analysis we adopted by plotting the results. Alternatively,
maybe that the use of ANOVA could have separated the influence of the interactions of the variables, as it
did in a previous study [210].

167

Chapter C — Random Search for hyperparameters on the GeoLife dataset

0.8 //

0.7

—— residual architecture
—— classic architecture
—— averages

standard deviations

T

val F1
o
o

0.5

0.4

104 10°
weights

Figure C.6: The performance of each type of network as a function of the number of parameters.

C.4 Conclusion

This chapter was dedicated to our implementation of Random Search. There are two points to retain: firstly,
the type of cleaning of the GPS signal does not seem to influence the performance much, which means the
network is fairly robust to the noise of the GPS signal. Secondly, we showed an example of the shortcomings
of Random Search: choosing one type of architecture (the regular one) with a small number of filters leads to
surprisingly low performance levels. This is due to the interaction between variables, which Random Search
does not take into account.

Here, we must say that the choice of a value for each hyperparameter was not the most rigorous: we
simply displayed the graphs of the performance (see fig. C.1) and selected manually the value that looked
best. As hyperparameter selection algorithms are usually employed to reduce the tediousness of manual
selection, resorting to manual selection of parameters halfway through is counterproductive. Worse, when
we say that a hyperparameter does not influence the performance, we rely on a visual inspection of the
figures. Given that we have hundreds of samples, we could have employed statistical tests to assert the
significance of each parameter.

We mentioned Bayesian optimization in our introduction, but the most important is to find an optimiza-
tion method that takes into account the interaction between variables.

168

Appendix D

The curious behaviour of the
spectrogram of the orientation

In chapter 3 (table 3.4 and figure 3.5), we presented a network a 250 x 550 spectrogram with the log-power,
computed from the w axis of the orientation vector. Out of the five models we trained, two learnt nothing
and kept a validation F1 of 2.8% (the score of a classifier that predicts the most occurring mode). The three
others had a Fl-score of 76.4 + 1.6%. This chapter is devoted to the study of this discrepancy.

The discrepancy we observed is surprising: usually, the influence of the randomness is quite small (most
of our experiments lead to F1 sores that have a standard deviation of one to two percentage points). This
stability is not proper to our experiments, for many publications found empirically that the seed has little
influence on the final performance (typical standard deviations in the performances of deep neural networks
are below a handful of percentage points, see [127, 313] for a few examples). Things become even more
surprising when we look at the rate of convergence of the networks.

D.1 An observation: irregular learning of the network

Some of the time, the validation F1 score plateaus at 2.8%, and before reaching higher values, of about 70%.
It turns out that leaving only 50 epochs was too short for these networks. We tried letting 30 networks
learn for 200 epochs instead: fig. D.1 shows most of them learnt to generalize fairly well after only 100
epochs. The shape of the curve, however, is highly unusual: the performance remains constant for some of
the epochs, before seeing its performance suddenly spike, only to reach its maximum in about 10 epochs.
Moreover, this does not happen for all networks: depending on the initialization, some networks learn right
away. This phenomenon seems to only occur for the full-size spectrograms with the log of the energy: with
the Ori,, spectrograms with raw power (which also seemed to fail to learn anything in chapter 3), the abrupt
performance increase does not seem to happen: we tried extending the learning period up to 1,000 epochs
instead of 200, but the networks could not generalize.

Two questions emerge from the curves in figure D.1: why does the network learn so irregularly ? and
why are the results so different between two different random seeds?

169

Chapter D — The curious behaviour of the spectrogram of the orientation

0.8

0.7 4
06 |
0.5 4

0.4

validation F1

0.3

0.2

0.1+

0.0 1

T T T T T T
o 25 50 75 100 125 150 175 200
epoch number

Figure D.1: The validation F1-score of 30 initializations of the same model working with full-size spectro-
grams of the Ori,, signal

D.2 Why does the network learn so irregularly ?

In many works (see [150, 5, 314], for instance), the loss as a function of time is fairly regular: it starts
by decreasing abruptly, and, as the time increases, it keeps decreasing, albeit at a slower rate. The classic
representation of a loss curve is a decreasing exponential (such as the one in the Stanford Course on Deep
Learning [315]). Usually, only external actions from the researcher (such as lowering the learning rate [150]
or freezing some weights [269]) change the rate of convergence of the curve to such degrees. In our case, we
keep using the same learning process, without alterations, for the entire 200 epochs.

Without providing a full explanation, we can give some insights about it: Firstly, the fact that the F1-
score seems to remain constant at the beginning of the learning process does not mean that nothing happens.
As gradient descent occurs, the weights are being changed, but this does not seem to change the loss by
much. We make the hypothesis that the network starts by overfitting, that is, memorizing the inputs one
by one. When we train one network to learn randomized labels (which corresponds to pure overfitting or
memorization), the training decreases exponentially, but its decrease rate is very slow: the training loss is
equal to 2 after the first epoch, and equal to 0.5 after 5,000 epochs. As a comparison, when using clean
labels, the training loss reaches the same value after 50 epochs only. This means that the decrease in the
loss function is not likely to remain invisible after only fifty epochs. But this does not mean that the
network learns nothing: Graziani et al. [316] showed that when training models on randomized labels, the
models still learn some discriminant feature with their first layers (the memorization only takes place in the
intermediate layers). In other words, even overfitting networks learn some discriminant features. We do not
know if this behaviour appears because the features help the network in his memorization task, or if it is a
by-product of the properties of gradient descent [292, 317, 318]. What matters to us is that if this behaviour
takes place in our problem, this means the networks takes some time to develop features while beginning to
memorize the samples, and suddenly finds a way to use the features that generalizes well. However, we do
not confirm this reasoning with any experiment, and we only have assumptions so far.

D.3 Why does the behaviour depend so much on the random seed
?

When looking at the performance curves in fig. D.1, it seems that the speed at which the network learns
depends on the initial random seed: most networks learn quite fast, but some take more time (ten to fifty
epochs) to really start generalizing. Some others did not even start learning at the end of the 200 epochs.
This high variability is, to the best of our knowledge, unheard of in deep learning (see [319], fig. 8, for

170

Chapter D — The curious behaviour of the spectrogram of the orientation

an example of different learning curves of the same initialization). Even with our other experiments, the
learning curves did not seem to change much when we changed the initial random seed.

In our case, there are three sources of randomness in the training process of our neural networks: the
initialization of the weights, the selection of samples in the training set to form a batch, and the dropout
during the training (Dropout is turned off for evaluation). However neural networks (for the weight initial-
ization), Stochastic Gradient Descent (for the batch formation), and Dropout have been used for years, and
we cannot think of any publication attesting that one of these three sources of randomness has a significant
impact on the final performance. The question remains unanswered.

D.4 Why are we even talking about this ?

It might seem unusual to linger over a behaviour we know to be extremely marginal. We could handwave
it away as a statistical outlier, an inconsistency of a virtual signal computed from unknown heuristics, and
used to solve a sub-sub-field of research that only matters to a handful of practitioners. We will not do it.
In fact, we believe this example to be precious.

There is still much to be understood about deep learning. We see publications trying to model the ability
of neural networks to find global minima from using mathematical considerations [320] or mathematical
models from theoretical physics [321]. In this regard, having an example where things do not work is
helpful: it could help us understand why things work. If we could pin down the exact reason why all
these inconsistencies appear here and not with other neural networks, we might answer these broad research
questions about neural networks. Granted, the reason might be peculiar to TMD, or this very sensor. But
even in this case, knowing this reason might help us to learn more about other sensors, or even images, and
the reason why they work so well with deep networks.

This is another proposition to add to the never-ending list of interesting avenues for future work.

171

	Introduction
	Context and Motivation
	Temporal signals
	A brief overview of recent Computer Vision history
	A collaboration with an applied research laboratory

	The problem of Transport Mode Detection and its application
	The proposed approach and contributions
	Outline of the manuscript

	Related works, datasets, and baseline
	State of the art
	Data cleaning
	Point-level feature computation
	Segmentation
	Trajectory-level feature computation
	Classification: classical Machine Learning
	Classification: Deep Learning
	The problem of the evaluation

	Datasets
	The GeoLife dataset
	The SHL 2018 challenge
	SHL 2019 and 2020 challenges
	The TMD Dataset

	Baselines
	Transport Mode Detection as a classification problem
	GeoLife Baseline
	SHL Baseline

	Conclusion

	Preprocessing
	Introductory example: How padding segments can disturb the learning process
	An overview of preprocessing in the literature
	Audio processing
	Failure prediction in rotating machines
	Physiological signals
	Human Activity Recognition
	Transport Mode Detection
	Conclusion of the literature study

	Evaluation of preprocessing methods
	Understanding why spectrograms are more effective
	Which frequencies are useful for classification ?
	Computing the average of gradients

	Conclusion

	Global Pooling
	The different types of global pooling
	Evaluation metrics
	Results
	Comparison of the alternatives to the flatten step
	Comparison with the state of the art

	Conclusion

	Data fusion
	Data Fusion modes in deep learning
	An inventory of fusion modes
	Early fusion
	Intermediate fusion
	Late fusion

	A benchmark of fusion modes
	Decorrelated networks
	Principle
	Experimental protocol
	Results
	Why did the decorrelation loss not help

	Evaluations on the test set
	Conclusion

	A study on Canonical Correlation Analysis
	Introduction
	Notations and definitions
	Deep features
	A general presentation of Canonical Correlation Analysis

	Related works
	An application of canonical correlation analysis to deep features
	Measuring the canonical correlations to quantify the similarity between sensors
	Demonstrate that the network keeps the power
	Influence of the network initialization

	The equality between the first canonical components and the class components
	Introduction: A glance at canonical variables
	Projection experiments
	An explicit measurement of subspace similarity
	Partial conclusion: the proximity between class and canonical components

	The causes of the equality
	How the equality between class and canonical components implies that a CCA fusion is ineffective
	An implementation of CCA fusion with SHL
	Varying the layer where features are extracted
	Conclusion

	Conclusion
	Summary of the contributions
	Preprocessing of input segments
	Global Pooling methods
	Data Fusion
	Canonical Correlation Analysis for data fusion

	Future work
	Semi, self, or unsupervised learning
	Domain Adaptation

	Methodology: Computing a F1 score from an Intersection over Union
	Automatic sensor selection
	Data fusion for sensor selection
	Three known scenarios
	Conclusion

	Random Search for hyperparameters on the GeoLife dataset
	Experimental setup
	Results
	Influence of the architecture
	Conclusion

	The curious behaviour of the spectrogram of the orientation
	An observation: irregular learning of the network
	Why does the network learn so irregularly ?
	Why does the behaviour depend so much on the random seed ?
	Why are we even talking about this ?

