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Abstract

Mobility in conventional ad-hoc networks is a challenge due to the constant invalidation

of end-to-end paths. We deal with mobile ad-hoc networks where humans are the main

carriers of mobile devices. A good understanding of human mobility patterns aids the

design of a realistic mobility model as a tool for evaluating network protocols.

Conventional models for evaluating network protocols in early ad-hoc networks (e.g.,

random walks, random waypoints, random directions) fail to properly capture human

mobility. In fact, recent studies have shown that human mobility is influenced by

personal habits, social relationships, environmental features, and locations preferences.

Therefore, a realistic model should be able to include these features.

In this regard, we develop a heuristic to characterize human mobility based on the

spatial, temporal, and connectivity features using real traces. Consequently, we uncover

temporal dynamic movement clusters associated with individual users. We also study

the distribution of the travel distance, pause time, angle of movement, contact duration,

and inter-contact duration. Motivated by our findings, we proposed a new synthetic

mobility model that mimics realistic features of human mobility. We validate the model

by comparing its synthetic traces against real mobility measurements.

Moreover, in a smart-campus environment, networks support applications for en-

vironmental monitoring and indoor/outdoor positioning, sometimes with a large de-

ployment of sensors. Considering the limitation of sensors such as battery limitation,

dynamicity, and low computing clock rate, sensor clocks need to have a common time
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to perform information fusion algorithms, implement energy management protocols, or

real-time processing for safety applications.

Given this, we proposed a pulse-coupled distributed clock synchronization algorithm

for wireless sensor networks to reduce the clock skew due to the ambient conditions,

mobility, or manufacturing defects. In our algorithm, sensors measure time differences by

only exchanging zero-bit pulse instead of packets. Therefore our algorithm is lightweight

and robust to the failure of the sensors in the network. The proposed algorithm is

compared to previous work under static and mobile settings, and the results show that

it can reduce the clock skew, especially in a dynamic environment with high uncertainty

in clock drift and unexpected topological changes like vehicular networks.
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Synthèses en Français

Cette thèse traite des réseaux dynamiques dans lesquels les utilisateurs sont des entités

mobiles. Dans ce type de réseaux, la mobilité provoque des ruptures de chemin et des

changements dans la topologie du réseau. De même, il est nécessaire d’avoir une notion

commune du temps parmi les terminaux du réseau pour l’implémentation d’algorithmes

de fusion de données, de protocoles de gestion de l’énergie, et la fourniture de services

en temps réel.

Pour ces raisons, la thèse caractérise les caractéristiques spatio-temporelles et de con-

nectivité de la mobilité humaine dans les réseaux sans fil en utilisant des traces réelles.

En conséquence de la caractérisation, nous découvrons des modèles cachés appelés clus-

ters de mouvement dynamique temporel. Nous avons donc proposé un nouveau modèle

de mobilité qui génère des modèles de mobilité humaine similaires aux caractéristiques

observées dans les traces de mobilité réelles. Ce modèle sert d’outil d’évaluation pour

l’analyse et l’évaluation des protocoles de réseau. Nous proposons également un al-

gorithme de synchronisation d’horloge à couplage d’impulsions qui tolère les impacts

de la mobilité des utilisateurs et utilise un minimum de ressources informatiques sans

sacrifier la précision de la synchronisation. L’algorithme a considérablement réduit le

skew et le décalage de l’horloge par rapport à l’algorithme précédent et peut donc être

utilisé pour mettre en œuvre des algorithmes de fusion de données pour la surveillance

environnementale, les protocoles de gestion de l’énergie ainsi que les services en temps

réel. La thèse est structurée en deux parties : La partie I traite de la caractérisation de
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la mobilité humaine et de la conception du modèle de mobilité proposé, tandis que la

partie II étudie la synchronisation d’horloge dans les réseaux dynamiques et propose un

algorithme de synchronisation d’horloge couplé à des impulsions.

Dans la partie I de la thèse, nous menons une étude approfondie sur les caractéris-

tiques spatio-temporelles et de connectivité de la mobilité humaine, qui comprennent :

La distance de déplacement, l’angle de déplacement, le temps de pause, la durée d’inter-

contact et la durée de contact. Nous analysons deux ensembles de données de localisation

et un ensemble de données de contact provenant de trois campus universitaires (KAIST,

NCSU et Cambridge) au niveau du grain fin afin de mieux comprendre les propriétés de

la mobilité humaine et de découvrir des modèles cachés.

Pour ce faire, nous avons développé une heuristique pour extraire les emplacements

de mouvements stationnaires et groupés à partir des ensembles de données étudiés. Nous

extrayons les distributions de différentes caractéristiques de mobilité observées à partir

des traces de mobilité réelles. Nous adaptons la meilleure distribution à chacune des

données empiriques. Ensuite, nous évaluons les paramètres de chaque distribution.

Motivés par les résultats de notre analyse, nous avons proposé un nouveau modèle

synthétique de mobilité appelé Escape Path Mobility Model (EPOM). L’EPOM est

composé de cinq sous-modèles (à savoir, domicile, études, cafétéria, sport et hors campus)

en plus du sous-modèle de transport et d’obstacles. Un nœud se déplace entre les sous-

modèles en utilisant le sous-modèle de transport et utilise le sous-modèle d’obstacle

pour générer des chemins de fuite lorsqu’il rencontre un obstacle sur sa trajectoire de

déplacement. Nous avons démontré que le modèle EPOM pouvait recréer les modèles

statistiques observés dans les traces réelles étudiées à travers une série de simulations.

Dans la partie I de la thèse, nous traitons de la synchronisation d’horloge, qui est une

pierre angulaire pour l’implémentation d’algorithmes de fusion de données, de protocoles

de gestion de l’énergie, et la fourniture de services en temps réel. Nous avons proposé

un algorithme de synchronisation d’horloge distribuée par couplage d’impulsions pour
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les réseaux de capteurs sans fil afin de réduire le décalage d’horloge dû aux conditions

ambiantes, à la mobilité ou aux défauts de fabrication.

L’algorithme étend le travail proposé dans Han [2018] en développant une tech-

nique d’apprentissage adaptative qui compense le décalage et la dérive de l’horloge.

L’algorithme est composé de trois fonctions principales : fonctions d’initialisation, de

réception et de transition d’état. L’algorithme fonctionne par cycles, donc à chaque

cycle, il estime les compensations de décalage et de dérive. Il accorde plus de poids

aux estimations récentes en exploitant l’heuristique de la nouvelle méthode proposée

pour effectuer la compensation du décalage et de la dérive. La méthode d’apprentissage

adopte une approche adaptative dynamique pour choisir une valeur optimale du facteur

de pondération λ. Pour évaluer l’algorithme, nous avons dérivé une limite analytique

sur le décalage d’horloge dans deux cas : Premièrement, lorsque seule la correction du

décalage est appliquée dans le théorème 1 et deuxièmement lorsque les corrections du

décalage et de la dérive sont appliquées dans le théorème 2. Nous évaluons également

l’algorithme par le biais d’une série de simulations et le comparons avec les travaux

antérieurs de Han [2018], et de Fugger et al. [2015] dans des paramètres statiques et

mobiles, et les résultats ont montré qu’il a réduit le skew d’horloge, en particulier dans

un environnement dynamique avec une grande incertitude dans la dérive de l’horloge et

des changements topologiques inattendus comme le réseau de véhicules. La robustesse

de l’algorithme proposé dans des contextes réalistes comme le réseau de véhicules et le

scénario de marche aléatoire en intérieur a montré que les techniques de synchronisation

couplées par impulsion s’adaptent aux environnements difficiles.
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Chapter 1

General Background

1.1 Introduction

In wireless networks, humans are the main carriers of wireless devices. A better under-

standing of human mobility patterns in wireless networks aids the design of a realistic

mobility model as a tool for evaluating network protocols. Several factors are attributed

to the dynamics of human mobility in wireless networks, for instance in Wireless Local

Area Networks (WLANs) people make a decision to move between wireless access points

to search for better connection, social relationships influence people ability to meet which

in turn creates contact opportunities in Delay-Tolerant Networks (DTNs). Similarly, hu-

man social attraction and job conditions influence vehicles’ movement toward points of

interest, impacting traffic flow in Vehicular Ad-Hoc Networks (VANETs).

Most of the existing models for evaluating networking protocols in the early ad-hoc

networks were based on the synthetic, conventional mobility models like a random walk

Lawler and Limic [2009], random waypoint Johnson and Maltz [1996], and the random

direction model Bettstetter [2001], just a few to mention. Several studies have been con-

ducted on their adaptability in the next generation mobile networks like DTNs, VANETs,

and Wireless Sensor Networks (WSNs), which show human mobility characterized by

13
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intentional mobility as opposed to the random assumptions in the conventional models.

The most widely studied of all conventional models is the random waypoint Broch

et al. [1998]. Nevertheless, the movement patterns generated by the model consist of

random locations separated by random distances. However, the movement pattern of

humans is not completely random; instead, it shows dependencies Munjal et al. [2012].

Similarly, Random walk models generate mobility patterns in which mobile nodes display

a completely random behavior that can only be seen in a few wireless networks like sensor

network for animal tracking Dominguez-Morales et al. [2016]; Sanchez [1998]).

However, several studies have shown that human mobility is rarely random González

et al. [2008]. Therefore, random-based models fail to analyze the protocols in the

infrastructure-less-based networks like wireless mobile ad-hoc networks (MANETs), DTNs,

and WSNs accurately. Though we cannot completely rule out the statistical similarities

of random walks and human movement Rhee et al. [2008]; Lee et al. [2009]. To develop

more realistic models that capture human mobility, which is influenced by a person’s

personal habits, social relationship, environmental features, and locations preferences

Aschenbruck et al. [2011], the research communities have made efforts to analyze real

mobility traces, and this leads to the design of many synthetic models Rhee et al. [2009];

Munjal et al. [2011].

Recent studies on mobility models have focused on using real mobility traces to

develop more realistic synthetic models. These studies became successful with the help

of open-source projects like CRAWDAD Henderson [2020] and Microsoft Research Zheng

et al. [2008] that provide free access to the archived realistic mobility traces recorded

from different experiments at different locations: campuses, conferences, shopping malls,

and tourist parks, to mention a few. CRAWDAD alone provides free access to over 125

datasets.

In the previous studies by Kim et al. [2006]; Hui et al. [2005]; Kotz and Essien

[2002], synthetic mobility models based on user mobility characteristics extracted from



15

wireless network traces syslog was presented. The models use Wi-Fi access points, which

have a higher granularity of mobility trajectories. Considering the nature of DTNs,

mobility models developed from empirical features with higher granularity (order of

100m) cannot be used to account for small travel distances and angle of travel in a

geo-location at which user spent most of its time. GPS-based data related to human

mobility are made available to ease granularity constraints, and their use is growing

exponentially Zignani and Gaito [2010]. With this development, analysis, design, testing,

and evaluation of wireless networks and their protocols at fine-grain level became possible

when an appropriate synthetic model is used.

This thesis carried out an in-depth analysis of the spatial, temporal, and connectiv-

ity features of human mobility in infrastructure-less wireless networks to develop a syn-

thetic mobility model for smart campus wireless network protocol design and evaluation.

We conducted a comprehensive analysis of realistic datasets for Bluetooth encounters,

user associations to the mobile wireless networks, and Global Positioning System (GPS)

tracklogs traces at the fine-grain level to understand the properties of human mobility

better and to uncover hidden patterns. Interestingly, we have uncovered time-varying

human mobility patterns associated with a dynamic evolution of movement clusters in

which a user undergoes many short walks within his community domain. The empirical

statistical features of such dynamic evolving clusters shed light on the realistic feature of

human mobility, which can be exploited to predict user location and optimization of lo-

calization systems. Motivated by our findings on the Spatio-temporal dynamic clusters,

coupled with our in-depth analysis on the connectivity features of realistic traces, we

proposed a new synthetic realistic mobility model as a tool for the performance analysis

and design of protocols in wireless networks. The proposed model closely mimics the

empirical features of the studied real traces Rhee et al. [2009]; Scott et al. [2009].

Moreover, in time-based environmental monitoring and positioning applications, the

ability of sensors to accurately estimate a target object’s physical location depends on its
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ability to synchronize the value of its clock to a common global value for efficient execu-

tion of fusion algorithms. Some of the existing positioning and localization systems use

a reference station node to synchronize the clock of the participating nodes Sidorenko

et al. [2019]; Gustafsson and Gunnarsson [2003]. However, when the location of a sensor

node is uncertain, the master node could not be able to broadcast synchronization pack-

ages to all nodes, so that a universal clock consensus may be unattainable. Additionally,

the failure of a reference node leads to the total failure of the network synchronization.

There is a need for a better approach to handle the limitations of the centralized systems

mentioned above.

In this thesis, we proposed a distributed algorithm for synchronization among sen-

sors without any absolute reference high-accuracy clock. Our work extended the work

presented in Han [2018] by proposing a learning technique, which helps to reduce a clock

offset and drift. Our algorithm is based on a temporal exponential smoothing of cor-

rection terms, which is able to tolerate significant network changes during execution.

The offset compensation part of the algorithm ensures a common notion of time among

nodes while the drift compensation reduces clock skew. We have evaluated the algorithm

under a series of simulations in dynamic and static configurations. The results show a

significant improvement over previous algorithms in reducing clock offset and drift.

In a general sense, the first part of the thesis conducted an in-depth analysis of

human mobility. It proposed a tool for the evaluation of wireless network protocols.

Similarly, in the second part, we proposed a distributed clock synchronization algorithm

for dynamic networks, which is the cornerstone for an efficient data fusion in indoor

or outdoor time-based localization systems and environmental monitoring for effective

learning in a smart campus environment.
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1.2 Research Objectives

The general objectives of the thesis are twofold:

1. To develop a synthetic mobility model for the design and analysis of wireless net-

work protocols

2. To develop a distributed clock synchronization algorithm for wireless networks to

support efficient data fusion.

The specific objectives of the thesis are:

1. To investigate the spatial, temporal, and connectivity features of human mobility

in wireless networks using realistic and synthetic traces to uncover hidden patterns

that best characterize human mobility.

2. To integrate the observed mobility features in the design of a new mobility model

that could be used to analyze and evaluate protocols in wireless networks.

3. To implement a distributed clock synchronization algorithm that tolerates impacts

of node mobility.

4. To design an optimal algorithm that utilizes minimum computational resources

without sacrificing the synchronization accuracy.

5. To develop a new technique of reducing short-term fluctuations due to the unpre-

dictable changes in the clock drift

1.3 General Outline

The thesis consists of two main parts; the first part presents an analysis of spatial,

temporal, and connectivity features in human mobility. It proposed a new mobility

model for the design and evaluation of wireless network protocols. In the second part,
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we present a distributed clock synchronization algorithm, which performs offset and drift

compensation to improve precision accuracy.



19

Part I
Characterization of Human
Mobility and Design of
Mobility Model.





Chapter 2

Introduction

This chapter presents a brief background on the characterization of human mobility

features and the design of mobility models. It describes the objectives of the first part

of the thesis, followed by the contributions of the thesis. Finally, the outline of the

characterization of human mobility and the design of human mobility is presented.

2.1 Background

Communication in MANETs is performed in a peer-to-peer fashion using short-range

mobile devices via technologies like Bluetooth and Wi-Fi. In a smart campus scenario,

some static nodes are used as part of the network. In this type of setting, peer-to-peer

contact opportunities are the driving factor for information forwarding, which can be

fully understood by studying human mobility since humans are the main mobile device

carrier. Some models attempt to account for a statistical feature of human mobility

but are based on intuition more than reliable information about the mobility features

and their respective distributions. We adopted a different approach of characterizing

such features by developing a modeling framework that applies formal statistical learn-

ing techniques to extract connectivity distributions of contact duration, inter-contact
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duration, and contact per hour for model calibration. In this regard, we validate our

model by comparing our results against real mobility measurements.

Similarly, in addition to the connectivity metrics, we define a formal framework for

extracting spatial and temporal features of human mobility from the user traces. The

spatial features refer to the trajectory pattern in physical space while the temporal fea-

ture is related to the time-varying feature of user mobility Pirozmand et al. [2014]. Our

analysis of these features unveils a hidden pattern that evolved with a unique trajectory

pattern over time in a community. We observed that users’ trajectories are characterized

by temporal clusters, which evolve over time. The user spent a long time within such

clusters and took many short walks within the vicinity of the community. We develop a

technique for the extraction of movement trajectories characterized by the observed pat-

tern from GPS-track logs and extensively analyze the mobility features associated with

the clusters and the entire domain. The studied mobility features related to clusters are

travel distance distribution, and angle of movement.

Several models have been developed to characterize human mobility patterns in wire-

less networks Kim et al. [2006]; Zignani and Gaito [2010]; Hsu et al. [2007]; Nguyen

et al. [2011]. However, due to human mobility’s complexity and dynamic nature, syn-

thetic models that closely mimic realistic mobility are in tremendous demand for a more

accurate evaluation of networking protocols. Our study characterizes mobility features

within the movement clusters and whole domain as opposed to the existing studies that

characterize features of the whole domain only. To the best of our knowledge, this

is the first approach to analyze both connectivity, spatial, and temporal features at a

microscopic level with a small granularity in one study.

2.2 Objectives

The specific objectives of this part of the thesis are:
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1. To investigate the spatial, temporal, and connectivity features of human mobility

in wireless networks using realistic and synthetic traces to uncover hidden patterns

that best characterize human mobility.

2. To integrate the observed mobility features in the design of a new mobility model

that could be used to analyze and evaluate protocols in wireless networks.

2.3 Contributions

The emergent wireless networks characterized by intermittent connections like human-

centric sensing networks, where humans carry nodes, have motivated research on human

mobility patterns. However, the design and performance evaluation of such systems’

protocols is cost-effective, requiring large-scale test-beds. Hence simulation becomes the

most effective tool for the evaluation of network protocols. In this regard, a realistic

synthetic mobility model is needed to evaluate the performance of different networking

protocols.

In this part of the thesis, we conduct a comprehensive study on the characteristics

of human movement based on the spatial, temporal, and connectivity features. Conse-

quently, we uncovered time-varying human mobility patterns associated with dynamic

movement clusters in which the user undergoes many short walks within his commu-

nity domain. Inspired by the uncovered features, we proposed a realistic mobility model

based on the realistic human mobility features observed from the studied real traces Rhee

et al. [2009]; Scott et al. [2009]. The proposed model is generic enough to be fine-tuned

with a few parameters to show matching characteristics with the realistic human traces.

Moreover, in this thesis we deal with the application scenario of campus environment,

in which the campus users’ devices forward messages to each other using peer-to-peer

opportunistic communication.
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2.4 Outline

Chapter 3 presents the background knowledge on the use of real traces to develop a

synthetic mobility models. It gives an overview of different mobility models in the form

of related classes. In Chapter 4, we conducted a characterization of the spatial, temporal,

and connectivity features of human mobility using real traces. Consequently, we uncover

the value(s) of the parameter(s) for the distribution of the inter-cluster travel distance,

intra-cluster travel distance, intra-cluster angle of movement, pause time, inter-contact

time, and contact time as observed from the studied real traces. A detailed description

of the proposed model is presented in Chapter 5. The model domain, initial location

selection, trip schedule, displacements, and pause time selection are detailed in the

second section of Chapter 5. The third section describes the model implementation. In

Chapter 6 we validate our model and show that the model is generic enough to be fine-

tuned with a small number of parameters and show matching characteristics with the

realistic traces. Finally, we present the conclusion, contributions, and future perspective

of this part of the thesis in Chapter 7



Chapter 3

Related Works

3.1 Introduction

In this chapter, we review existing works on human mobility characterization and mo-

bility models. We focus on the works that characterize human mobility features using

real-world mobility traces and synthetic mobility models.

3.2 Real-world Mobility Traces

Several research works have been recently committed to characterizing human mobility

patterns based on real mobility traces González et al. [2008]; Zignani and Gaito [2010];

Aschenbruck et al. [2011]; Galati et al. [2015]. The availability of wireless network traces

on the repositories like CRAWDAD Henderson [2020] and Microsoft Zheng et al. [2008]

have ease access to the achieved traces. The two main categories of real traces are

the location-based and contact based. In the location-based traces, a simultaneous user

location is recorded from the GPS readings, user’s association with Wi-Fi access point,

or cellular base station. The contact-based traces, on the other hand, are generated from

the set of pair-wise contacts of short-range wireless technology like Bluetooth and Wi-Fi
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without recording the location of the contacts.

To be more precise, the location-based traces are used in the study of human mobil-

ity patterns due to the trajectory records contained in the traces, whereas contact-based

traces are used to characterize contact patterns between individuals. The location-based

traces can be used to characterize both mobility and contact patterns in some circum-

stances. In this regard, the location-based traces need to be subjected to pre-processing to

extract contact logs starting from the initial location. In our study we use location-based

traces Rhee et al. [2009] to characterize user mobility patterns and contact-based trace

Scott et al. [2009] to characterize contact patterns between two nodes to avoid possible

approximation errors in pre-processing of location-based traces to extract contact details.

The use of both the location-based and contact-based traces aids the characterization of

spatio-temporal and connectivity features of human mobility.

Several works have been presented, which use real traces to extract human mobil-

ity features. In some studies, the extracted features are used in the development of a

synthetic mobility model. Kim et al. [2006] studied a large trace of mobile devices associ-

ating with Access Point (AP) in a WLAN. The study extract tracks of users associating

with AP. In this type of trace, the mobility feature of WLAN users is difficult to predicts

because user’s trajectories are not part of the logged data; only users association with

the AP is recorded. Therefore, a technique for estimating user trajectories has to be

devised. Kim et al. [2006] therefore, suggest three methods for extracting a physical

movement trajectory from an AP trace: the triangle centroid, time-based centroid, and

kalman filter. Additionally, the work describes a technique for extracting pause time

at various locations. A pause time is the stay time of a user associated with an AP.

The model also defines how to extract a hotspot locations from the WLAN traces. The

main idea is to use the concept of pause time and assign a 2-D Gaussian distribution

of popularity weight at each pause location, which creates a small mountain (peak of

the Gaussian distribution) equivalent to the pause time duration. Later, the mountains
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are aggregated for all users, the hotspot regions are identified as those regions with

popularity weight higher than a fixed threshold. Finally, a mobility model is proposed

that reproduces the physical movement trajectory, pause time distribution, and hotspot

localization similar to the empirical features in the studied trace. However, their user’s

transition probabilities computation does not consider location distances.

The trajectories of over 100,000 anonymized mobile phone users were analyzed by

González et al. [2008]. In their effort to explore the statistical properties of the popu-

lation’s mobility patterns, a distance between user’s positions at consecutive calls were

measured. It follows that the distribution of the displacement over all users follows a

truncated power-law. Nevertheless, modeling mobility using calls record has the prob-

lem of spatial and temporal bias measurement due to the variation in the placement

of cellular towers. Additionally, two users with similar mobility dynamics might have

different mobility ratings due to the variation in their call frequency.

Zignani and Gaito [2010] analyze few GPS-based traces to infer human mobility pat-

terns. The use of GPS-based traces in the study has an impact on the granularity of the

trajectories. The work proposed a clustering algorithm, which extracts geo-location from

individual user traces. The clustering algorithm considers two points to be connected

when the distance between them is less than 25 m as against 100 m set in Lee et al.

[2008]. When distance that connect points within a cluster is small, more fine-grain

clusters that enable characterization of movement features within a small location like

library and conference room are generated.

A study on human mobility patterns from the traces of environments with a definite

and highly organized structure, such as shopping malls, is proposed in Galati et al.

[2015]. The traces consist of contacts between devices carried by people in the shopping

mall. Finally, a routing protocol for DTNs is designed based on the statistical feature

observed from the real traces. Additionally, they validate the proposed mobility model

based on the user mobility characterization of the real traces. However, the model needs
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to be validated using location-based traces for a better mobility pattern prediction.

3.3 Synthetic Mobility Models

In this section, a brief review of the related works on synthetic models is presented. We

grouped the related works into the following classes: The conventional models, pedestrian

walk models, Pedestrian Mixed with vehicular models, and Obstacle-based models. The

classification is made in such a way that each class shared similar features in terms of

its purpose and the target mobility metrics. Suppose a model has multiple features

such that it can belong to multiple classes. In that case, we focus on the model’s main

characteristics to place it in a more appropriate related class.

3.3.1 Conventional models

This class of models is targeted at modeling mobility in short-range, multi-hop wireless

networks, i.e., MANETs. These models are generic, synthetic, and can be described

using a set of mathematical rules.

One of the most widely used conventional models is the random walk mobility model

Lawler and Limic [2009]; Clementi et al. [2011], which is characterized by the lack of in-

tentional mobility that affects the notion of movement trajectory. Random walk models

generate mobility patterns in which mobile nodes display a completely random behav-

ior. With this regard, only a few wireless networks (e.g., sensor network for animal

tracking Dominguez-Morales et al. [2016]; Sanchez [1998]) can display such kind of ran-

domness. In contrast, the majority of wireless networks strictly obey certain mobility

rules. The random walk is classified into discrete and continuous. In discrete random

walks Clementi et al. [2011], the simulation environment is composed of points in n-

dimensional space for all possible positions of a node in the environment. In continuous

random walks, the simulation environment is a continuous sub-region of n-dimensional
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spaces Santi [2012]. Levy flight is an example of a continuous random walk. In the levy

flight model, the length of steps is distributed according to a heavy-tailed probability

distribution, specifically to a power law of the form y = x−α with 1 < α < 3.

The random waypoint, Johnson and Maltz [1996]; Broch et al. [1998]; Chiang and

Gerla [1998] on the other hand, is considered the first synthetic model that attempts

to model the intentional human movement, which is not captured in the random walk

models. It is implemented as the default mobility model in the most widely used network

simulators: the Network Simulator (Ns2), Global Mobile Information System Simulator

(GloMoSim), and Opportunistic Network Simulator (ONE) Tkk/Comnet [2013] as part

of its movement models. Nevertheless, the movement patterns generated by the model

consist of random locations separated by random distances. However, the movement

pattern of humans is not completely random; instead, it shows dependencies Munjal

et al. [2012]. Some simple fixes and modifications to the random waypoint presented in

Yoon et al. [2003] still fails to capture a realistic behavior for intentional human mobility

to some locations due to the strength of a social relationship or connection. For instance,

a student going to the class for the lecture, going to the cafeteria to eat or visiting a

friend at the nearby dormitory.

In the random walk and random waypoint models, the node’s movement is not re-

stricted to a pathway. The Manhattan mobility model Bai et al. [2003] on the other

hand, restricts the movement of a node to the pathway in the simulation area.

We can easily integrate these models into wireless network simulator, but on the

other hand, they do not capture an application-specific aspect of mobility (e.g., presence

of geographical constraints like obstacles and road constraint in vehicular networks), and

hence lacks realism.

3.3.2 Pedestrian Mobility Models

Lee et al. [2009] proposed Self-Similar Least-Action Walk (SLAW) that employs the
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concept of fractal waypoints, Least Action Trip Plan (LATP), and a walker model to

generate regular patterns of daily human mobility. In the SLAW model, the movement

of an individual is independent of any other person’s movement. The model generates

the fractal waypoints separated by gaps that follow a power-law distribution. Then,

LATP is used to order travels between the fractal waypoints. The community (cluster)

idea is addressed using a walker model that assigned some destinations to a node and

restricts its movement within the destinations unless necessitated by a higher priority

event. The SLAW model is based on daily routines like going to the office or attending

a lecture. However, the model did not capture the time of occurrence of an event and

the repetitiveness observed in the people’s realistic daily activities. A variant of SLAW

called Map-based SLAW is presented in Schwamborn and Aschenbruck [2013] which

proposed geographic restriction to the SLAW model.

Munjal et al. [2011] presents the Simple way to model human mobility (SMOOTH).

SMOOTH mimics real patterns of human mobility by relaxing an assumption of random

mobility with a notion of a mobility influence, (i.e., node’s mobility is influenced by

factors like cluster size). The model studies seven Mobility statistical features: the flights

(trip from one location to another without a pause or change of direction), inter-contact

time, pause time, long flight due to popularity, closest mobile node visits, community

interaction, and mobile node distribution. The simulation space in Munjal et al. [2011] is

a free space without restricting obstacles that are not always realistic in an environment

like a campus setting characterized by buildings of different shapes and sizes.

Small World In Motion (SWIM) Mei and Stefa [2009] is a simple mobility model

designed to reproduce contact patterns between individuals. In SWIM, each node is

assigned a home location chosen randomly and uniformly within the simulation area. In

the beginning, the node does not know any location unless it visited it; once it visited the

location, the location is added among the most popular location known by the node. The

possibility of revisiting the location is higher than unvisited locations. speed selection
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is simple and straightforward such that once a node has chosen its next destination, it

starts moving towards it following a straight line and with a speed that is proportional

to the distance between the starting point and the destination. The destination selection

for node i is described as follows: let hi be the initial home of a node i. When i visited

location C (i.e. a cell not a point), it meets other nodes at C represented by seen(C).

node i would assign a weight to location C as follows:

w(C) = α.distance(hi, C) + (1− α).seen(C) (3.1)

where distance(hi,C) is a function that decays as a power law as the distance between

node i and cell C increases, α is a constant in [0:1], the larger is α, the more the node will

tend to go to places near its home. The smaller is α, the more the node will tend to go to

popular places. SWIM is evaluated theoretically and through simulation by testing its

ability to reproduce human contact patterns. In Mei et al. [2011] a variation of SWIM

is proposed aimed at capturing the user interest when associating home location to the

node.

The Weighted random waypoint mobility model presented in Hsu et al. [2005] cap-

tures preferences in choosing a destination to characterize pedestrian mobility patterns

in a campus environment. The main ideas behind the model are the observation that

different buildings in a university campus have different degrees of popularity (uneven

waypoint popularity). Similarly, such popularity evolve with time (time-varying popu-

larity) and also location dependent pause time distribution. The model was calibrated

with the data generated from a mobility survey of a random set of 268 students. In this

model, the initial node position is computed based on the popularity using the Markov

chain model; after spending the location-dependent pause time, the node chooses an-

other destination based on the five-step Markov chain transition matrix continuous in

this order for the time of the simulation. Though some of the assumptions in the model
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are realistic about the campus environment, the fact that all students behave identi-

cally is unrealistic since, in the real world, people display different stochastic mobility

behavior.

Hsu et al. [2007] proposed the Time-Variant Community (TVC) mobility model for

wireless mobile networks. The model is tuned to display empirical features observed from

WLAN traces (i.e., skewed location visiting and periodic re-appearance) of nodes at the

same location. The model addressed the concept of skewed location visiting by creating a

community for each node; each node visits its community more often than other locations

outside its community. The concept of community helps to model node heterogeneous

movement patterns. It achieves Period re-appearance by defining two-movement periods

called the concentration movement period and normal movement periods. At each time

instant, a node is either in the concentration movement period or normal movement

period. A node can only visit its community concentrated area in the concentration

movement period while it can visit other places outside its community when in the normal

movement period. The model was evaluated by comparing the theoretical results and

the simulation results to the real traces of WLAN. They show that the model achieved

its purpose of reproducing the observed features in the real traces (i.e., skewed location

visiting and periodic re-appearance). The TVC model was evaluated using a custom

discrete-time simulator with an unobstructed and unconstrained movement path, which

does not reflect a more realistic movement domain.

Social mobility models were presented in Musolesi et al. [2004]; Herrmann [2003].

Hrabčák et al. [2017] presents a Students Social Based Mobility Model (SSBMM). The

daily routine of student life inspired their work. The model distinguishes between the

student’s free time and the mandatory time upon which social and school activities

are simulated. They compare their model with the classical random walk model, even

though the random walk model cannot capture repetitiveness and heterogeneity of time

and space.
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The model under this category refers to as human walk models designed to models

pedestrian movement in various environments. The main focus of walker models is the

macro-mobility decisions, which include deciding the next destination to visit. Mobility

is influenced by location popularity in the SLAW, SMOOTH, and SWIM models. Sim-

ilarly, the TVC model mimics community using skewed location visiting and periodic

re-appearance. All of the models assume that the movement area is free space without

obstacles and the nodes are not restricted to defined movement routes.

3.3.3 Pedestrian Mixed with Vehicular Mobility Models

Ekman et al. [2008] presents a Working Day Model (WDM) for DTNs that mimics the

workers’ daily activities like going to the office, going for evening activities, or return-

ing home. The model uses map-based movement on the concept of sources-destination.

It also uses a timescale to switch between different submodels. The WDM model has

four main submodels (i.e., home activity, office activity, evening activity, and transport)

submodels. The transport submodel has three submodels (i.e., bus, car, and walk) sub-

models that a node chose to move between the home, office, and evening activity places.

The choice of a mode of transport depends on the probability of owning a car. Depend-

ing on the preferred mode of transport, a node move from its current location toward

the destination with a constant speed through the shortest route calculated using the

Dijkstra algorithm. The WDM was implemented as an extension to the Opportunistic

Network Environment (ONE) simulator Tkk/Comnet [2013] as a combination of many

mobility models controlling the movement of the nodes going to work, their homes, and

meeting their friends. It was validated by showing that the distribution of the contact

duration, inter-contact duration, and contacts per hour of the synthetic traces generated

by the model resembles that of iMote traces from the Cambridge university experiment.

The model does not cover the impacts of a floor, walls, and other constraints which

affect nodes mobility.
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An extension to WMD is presented in the real-life mobility model (RLMM) Gorawski

and Grochla [2013]. The model differentiates between the working days and the weekend

day. The weekly periodic repetitive features were achieved by defining multiple states

and their influence on users’ mobility and behavior. The steps described in the model are

at-home, at-work, at-popular-place, regular-travel, and alternative-travel. Every node

has a fixed initial location called home, at which it starts its transition to visit other

fixed locations like a workplace. The node often takes a longer travel distance during

the weekend, which gives it power law-like characteristics. The travel speed is selected

according to the commute distance with the pedestrian movement (1.25m/s), the fast

pedestrian or cyclist movement (5m/s), the car/bus slow movement (8.3m/s), and the

car/bus fast movement (11.1m/s). The model was evaluated in BonnMotion tool for

generating different mobile scenarios Aschenbruck et al. [2010] using inter-contact times

and some metrics defined in the BonnMotion project like the average degree of temporal

dependence, the average degree of spatial dependence, total links, and etc. However,

the model does not consider movement restrictions on maps and does not involve social

interactions.

Zheng et al. [2010] introduced the Agenda Driven Mobility Model (ADM) that is

used to simulate a mobile ad hoc network in an urban scenario. In ADM, the node’s

movement solely depends on its agenda, which describes its activities and locations of the

activities. The individual agenda is generated from various distributions derived from

the data obtained from the National Household Travel Survey (NHTS) (U.S. Department

of Transportation, 2007). The geographic information is inserted into the model in the

form of maps, roads, locations, and addresses extracted from WLAN traces, or real maps

from GIS database like TIGER (the U. S. Census Bureau’s Topologically Integrated

Geographic Encoding and Referencing database). Each node moves at speed decided

by the road traffics. The model was compared to the Random waypoint in terms of

routing performance metrics like delivery ratio and average path. More evaluation with
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the realistic traces would make a great contribution.

These types of models integrate human walk models and vehicle movement models.

They aimed at mimicking the decision of a pedestrian to move using alternative methods

of transport such as walking, cycling, cars, or bus. The models assume restriction of

movement on roads to improve realism. The models do not assume obstacles like standing

pedestrian or road diversion and therefore lack the mechanism for obstacle avoidance.

3.3.4 Obstacle-based Models

The Obstacle Mobility (OM) model proposed by Jardosh et al. [2005] models the en-

vironmental obstructions which affect both movement and signal propagation. In this

model, the node’s paths and destinations are constructed from a Voronoi diagram based

on the obstacle position on a campus-like simulation area.

As an extension to Jardosh et al. [2005] is proposed in Papageorgiou et al. [2009],

the model allows nodes to move around the obstacle but not limited to a defined path.

The model only considers rectangular obstacles that limited its ability to capture the

realistic feature of an environment with obstacles of different shapes and sizes.

A random obstacle-based mobility model for DTN is proposed in Wu et al. [2011]. In

this model, the node moves from the initial location to the destination via the shortest

path if there is no obstacle along the path; otherwise, the node recursively selects the

other node’s location close to the obstacle and moves forward. This operation is repeated

until the node reaches its destination. This model considers obstacles with a rectangular

shape. Similarly, in the absence of a node close to the obstacle, an unnecessary trip

would be made, especially when the destination is just behind the obstacle.

Wang et al. [2017] proposed an obstacle-based mobility model that generates a

smooth trajectory of a Bezier curve for escaping obstacles. Human mobility trajec-

tories for escaping obstacles like building or road diversion are not always smooth curves

in real scenarios. In addition to that, the model did not capture movement to attraction
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factors such as points of interest which represents human social behavior.

These models’ movement area is characterized by obstructing bodies of different

shapes and sizes. The mechanisms for escaping obstacles are integrated as part of the

model. However, most of these models do not assume restriction of movement on the

road.

3.4 Conclusion

We present background knowledge on the use of real traces to develop synthetic mobility

models. We complement our background study with a comprehensive overview of the

related works on synthetic mobility models in the form of classes. The classification of

synthetic mobility models with related features would ease access to the existing models

for research purposes.

Moreover, trace-based models exploit real mobility traces while synthetic models

can be run independently from real mobility traces. Nevertheless, we can have a more

realistic model by calibrating the parameters of some synthetic models based on real-

world mobility traces. However, a characterization of the mobility features model is

the first step toward achieving this goal. In the next chapter, we characterize mobility

features from the location and contact-based real traces.



Chapter 4

Characterization of Human

Mobility

4.1 Introduction

Due to the dynamic nature of human mobility, a thorough investigation of its charac-

teristics features is in tremendous need. Despite the fact that various aspects of human

mobility patterns have been characterized in recent studies, yet due to the difficulty

to acquire large-scale human mobility data, several features do not get the required

consideration. The features that require a thorough investigation include some of the

fundamental features like travel distance, pause time, and intra-cluster features such

as the intra-cluster travel distance, and direction of movement in the cluster. People

move around their physical environment (whole domain), but the movement concen-

trates around their community or point of interest. Consequently, one or more movement

clusters are formed over time.

However, our primary focus is on the characteristics features within the movement

cluster (intra-cluster features), though we explicitly analyze some of the fundamental

features for the whole domain (inter-cluster features), which include: the connectivity

37
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features (i.e., contact and inter-contact time), the spatial feature (i.e., travel distance),

and the temporal feature (i.e., pause time). The intra-cluster feature like direction of

movement has not been given much attention by the researcher community despite its

impacts on the human mobility patterns. To the best of our knowledge there is a lack

of research on this feature, all of the previous works either investigate the direction of

movement for the whole domain Kim et al. [2006]; Nunes [2012] or assume the movement

to be random within the cluster Hsu et al. [2007]. The concept of community in our study

is the location at which a user spent much of his time exploring neighboring locations.

Therefore, the concept should not be confused with that in a social community, which

mean a group of people sharing physical location, ideas, or common goals.

We use the daily GPS track log collected from two different university campuses

(NCSU and KAIST) for the location-based trace Rhee et al. [2009]. Garmin GPS 60CSx

handheld receivers are used for data collection which are WAAS (Wide Area Augmenta-

tion System) capable with a position accuracy of better than three meters 95 percent of

the time, in North America. The GPS receivers take reading of their current positions

at every 10 seconds and record them into a daily track log. The data is available at

Henderson [2020]. We are interested in the stationary locations at which users stay.

For the contact-based trace, we use the Bluetooth encounters between mobile nodes

from the Cambridge-city-students iMote experiment Scott et al. [2009]. The data consist

of 10641 contacts between iMote devices carried by students for the duration of about

11.43 days. The data is available at Henderson [2020] repository. We are interested in

the duration at which two devices are in contact with each other (contact duration) and

the time between two consecutive contacts between two devices (inter-contact time).
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4.2 Extracting Dynamic Clusters from the GPS Tracklogs

In this section, we explain the procedures for extracting clusters from an individual

trace at which the user spent a long time exploring neighboring locations. Generally,

human trajectories can be viewed as a mixture of stationary and movement locations.

A stationary location is a fixed position at which a user stay with zero velocity. A node

spends more time at the stationary location while only spend a small amount of time

at the movement or transit location. We focused on the stationary locations because it

is in the stationary location that the user decides to visit the next location closed to it

or far away from it. Even in the set of stationary locations, we are more interested in

those connected by a distance less than a certain threshold, which we refer to as dynamic

clusters.

The GPS coordinates that belong to the transit locations at which a user pauses

briefly on its way to the destination do not belong to the stationary locations and

therefore need to be removed from the trace. Section 4.2.1 explains the method used to

remove the transit locations from the trace.

4.2.1 Removing Transit locations

Some of the coordinates from the GPS traces do not belong to stationary locations

rather they belong to the transit locations at which user stays briefly on its way to its

destination. So we use a simple rule to identify locations at which a node is in transit.

We set a speed threshold ∆s such that if a node speed between two GPS positions is

greater than the threshold ∆s, we remove the next position from the original trace since

the position is part of the transit points. We set ∆s = 0.5 m/s to remove positions at

which a user is on transit. This value is reasonable considering the time granularity of

30 seconds in the studied trace and the assumed average human velocity of 1.3 m/s in

the literature. We further extract the actual waypoints by deleting all transit locations
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at which a node pause time is less than the time threshold ∆t. These locations are

also considered as part of the transit locations at which a node stays on its way to

the destinations. After this processing, the output trace consist of only sequences of

node stationary locations. In the next subsection, we extract locations that belong to a

common geographic cluster where the user stay in the same coarse location.

4.2.2 Clustering

we need to extract movement clusters from the stationary locations associated with each

user. Several methods of clustering exist for grouping similar elements into a common

cluster Xu and Wunsch [2008]. We use the hierarchical method in our study . The two

hierarchical clustering methods are divisive and agglomerative clustering; the divisive

clustering is good for identifying large clusters while the agglomerative clustering is for

identifying small clusters. We opted for the agglomerative method since we aim to get

insights into the evolution of small clustered locations at which a user takes intentional

(not random) steps close enough to be considered its new evolved cluster over time.

Small clusters enable us to understand the movement patterns within small locations

like lecture rooms or restaurants. The hierarchical algorithm is explain as follows:

Given a set of N items to be clustered and an NxN distance (or similarity) matrix, the

basic processes of hierarchical clustering are Johnson [1967]:

1. Assign each item to its own cluster so that if you have N items, you now have N

clusters, each containing just one item. Let the distances (similarities) between

the clusters equal the distances (similarities) between the items they contain.

2. Find the closest (most similar) pair of clusters and merge them into a single cluster

so that now you have one less cluster.

3. Compute distances (similarities) between the new cluster and each of the old clus-

ters.
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4. Repeat steps 2 and 3 until all items are clustered into a single cluster of size N.

We run the above algorithm using a single linkage method, sometimes called con-

nectedness or minimum method, and created location clusters based on the similarity

of the closest pair of locations. A trajectory point is connected to another point if the

distance between them is less than 20 m. This enable us to generate clusters at fine

grain to better analyse movement patterns at smaller locations like a lecture room or

restaurant.

4.3 Estimation of Pause time from Real Traces

Pause Time is the stay time of a user associated with a location. To extract a Pause

time from the GPS mobility traces, we follow the following procedure:

1. Pre-process GPS tracklogs to extract the real stationary locations.

2. Estimating the elapse time (i.e., the sum of the pause time and the duration of

travel)

3. Estimate min and max speed

4. Estimate node speed

5. Evaluate the pause time using Equation (4.6)

The pre-processing technique of extracting stationary locations is described in sec-

tion 4.2.1. Next, estimating the elapse time, ei between two consecutive points pi and

pi+1 is very straight forward, since our trace has timestamp at each location. The elapse

time between two points is the difference of the time ti+1 at position pi+1 and ti at

position pi respectively:

ei+1 = ti+1 − ti (4.1)
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The speed between two consecutive encounter with time ti and time ti+1 is.

speedi = disti
timei

(4.2)

Moreover, the average speed of pedestrians in the educational environment was eval-

uated in Rastogi et al. [2011], which depends on the walking area like sidewalks, wide

sidewalks, and precincts. We assume the students at the KAIST and NCSU campuses

walk using sidewalks, which has an average speed of approximately 1.20m/s, So we set

the mins and maxs speed at 0.2m/s and 2.2m/s respectively.

mins ≤ speed ≤ maxs (4.3)

At each interval, we test the speed value, and if the return speed is within the range,

we assume that the node does not pause at the observed location. If the return speed

is less than the min speed, we assume that the node paused at that location. If the

computed speed is greater than the max speed, we ignore the interval as it does not

reflect reality, or the node uses alternative means of transport like a bike.

We evaluate node speed at the position pi to pi+1 as the difference between the

Euclidean distance between the two locations and time.

speedi = distancei
timei

(4.4)

= ‖ pi+1 − pi ‖
‖ ti+1 − ti ‖

(4.5)

Finally, the pause time is evaluated as the difference between the elapsed time and
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travel duration:

pauseT imei = ei − travelDurationi (4.6)

= ei −
disti

speedi
(4.7)

Where speedi represents an average speed evaluated by exponential smoothing on the

current speed speedi and the previous estimates speedi−1:

speedi = λ ∗ speedi + (1− λ)speedi−1 (4.8)

4.4 Fitting Distribution to the Empirical data

In this section, we explain the procedures follows to identify the distribution that best fits

the empirical data of the contact duration, inter-contact time, travel distance, pause time,

and intra-cluster angle of movement. We aim to determine the appropriate distribution

that best fits our empirical data to estimate the value(s) of parameter(s) for the distribu-

tion and calibrate them in the proposed mobility model. We used Kolmogorov-Smirnov

(KS) Goodness-of-Fit Test in poweRlaw R package Clauset et al. [2009] to decide if a

sample comes from a population with a specific distribution. The poweRlaw R package

implements maximum likelihood estimators for a variety of heavy tailed distributions. It

uses goodness-of-fit based approach to estimate the lower cut-off for the scaling region.

The Kolmogorov-Smirnov test is based on the empirical distribution function (ECDF).

Given N ordered data points x1, x2, ..., xN, the ECDF is defined as

EN = n(i)
N

(4.9)

Where n(i) is the number of points less than Xi and the Xi is ordered from the

smallest to the largest value. It is a step function that increases by 1
N at the value of
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each ordered data point.

Generally, we start with the choice of distributions family, then we estimate the

parameter(s) of the best fitted distribution using goodness of fit statistical tests.

4.4.1 Choice of distributions family

Depending on the nature of empirical data, an appropriate distribution family that fit

the uncensored data needs to be determined at the initial stage. Several methods can

be used as a guide, including graphical techniques or analytical expressions such as

Pearson’s K criterion. At the first step, we applied the graphical techniques to select

the distribution that fits the empirical data, using four continuous distributions: the

weibull, log normal, exponential, and power law in our evaluation. Seldom the graphical

view may not clearly determine the most fitted distribution, so we proceed to the KS

Goodness-of-Fit Test to determine the most fitted distribution.

4.4.2 Estimating Distribution Parameter(s)

After choosing the parametric distribution that can mathematically represent our empir-

ical data, we need to estimate the parameters of such distribution. Several methods exist

in the literature, but in this study, we deployed the method of Maximum Likelihood Es-

timation and KS Goodness-of-Fit Test. The first method begins with the mathematical

expression known as a likelihood function of the empirical data; the mathematical ex-

pression contains the unknown parameters. We need to evaluate the parameters’ values

that maximize the sample likelihood, otherwise called Maximum Likelihood Estimation

(MLE). In the second approach, we match empirical frequencies with the parametric

model that fits the data (e.g., the power law, log-normal, Weibull, and exponential)

distribution.

We used the Kolmogorov-Smirnov test as follows:

H0: The empirical data follow a specified distribution



45

H1: The empirical data do not follow the specified distribution.

C = max
1≤i≤N

(
F (Xi)−

i− 1
N

,
i

N
− F (Xi)

)
(4.10)

Where F is the theoretical cumulative distribution of the continuous distribution

such as power law, log-normal, Weibull, and exponential distribution.

We reject the null hypothesis regarding the distribution only if the test statistic C

is greater than the critical value obtained from the KS table in Appendix F. We use

0.05 significant level throughout the estimation. The critical value is evaluated for each

distribution using the ntrails (number of observations) from the KS table and compared

with the respective test statistics C derived using a bootstrap_p() function in poweRlaw

package of R software Gillespie [2015].

4.4.3 Inter-Cluster Travel Distance Distribution

The travel distance is one of the fundamental spatial features of human mobility. Our

goal is to extract sequences of geographic displacements users travel during a time period.

These sequences of displacements are helpful to the understanding of the travel schedules

of an individual. We explain how we generate sequences of destination waypoints in

Section 4.2.1. To extract the distances between these locations for the whole domain, we

measure the Euclidean distance between consecutive locations for each individual trace.

We start with the KAIST trace, its aggregate distribution of the inter-cluster travel

distance, and the fitted parametric distributions are shown in Figure 4.1a. After fitting,

we evaluate how best the parametric models for the class of Log-normal, Power-law,

Exponential, and Weibull fit our empirical data. This is done by examining the graphical

view of the distributions, and when the graphical method fails to distinguish the best

distribution that fits the empirical data clearly, we proceed to other techniques like

Maximum Likelihood Estimation or KS Goodness-of-Fit Test (see Section 4.4 for more
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details). Following this procedure, the KAIST inter-cluster travel distance distribution,

which reflects the whole domain, follows a power-law distribution with the exponent α

= 1.735462. The Ks test for the inter-cluster distance is shown on Table 4.1

Figure 4.1b shows the power-law distribution with an exponential cut-off fits to the

KAIST inter-cluster distance. The power-law feature of travel distance indicates that

people usually visit close locations more often than far away locations. This feature also

gives more insight into the students’ mobility patterns; we can understand that many

students visit closer popular locations like cafeterias, sports fields, shopping malls, and

friends that are within similar geographical locations, while only few student frequently

visit far away locations.

Similarly, for the NCSU trace, the distributions of inter-cluster travel distance and

the parametric models are plotted in Figure 4.2a. We determine that its inter-cluster

distance follows exponential distribution with the parameter λ = 0.01227271 as shown in

Figure 4.2b. We observed that the limited number of traces in NCSU traces influenced

the exponential decay of the inter-cluster distribution.

Dist gof ntails crit.V al. Remark

lognorm 0.02613176 6693 0.0166 Rejected
power law 0.03166393 1062 0.0417 Accepted

Table 4.1: KAIST Inter-Cluster Distance gof Table
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(a) Four (4) distributions fit to the KAIST inter-cluster distance trace

(b) Power-law fits to the KAIST inter-cluster distance trace

Figure 4.1: Figure 4.1a shows four (4) different distributions that fit the KAIST trace
inter-cluster distance, the power-law, and log-normal distributions closely fit the empir-
ical data more than the Weibull and exponential distributions. Finally, the distribution
for the inter-cluster distance of the KAIST trace is found to be power-law distribution
with an exponential cut-off as shown in Figure 4.1b.
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(a) Four(4) parametric models fitted to the NCSU Trace

(b) The exponential distribution fits to the NCSU Trace

Figure 4.2: Figure 4.2a shows four (4) different distributions that fit to the NCSU inter-
cluster distance. From the graphical view, it appears that the empirical data matches
with all distributions except power-law but after KS-test, the data follows an exponential
distribution except at the tail as shown in Figure 4.2b.
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4.4.4 Intra-Cluster Travel Distance Distribution

In this section, we focused on the travel distances between consecutive locations within a

cluster at which a node spent a long time exploring neighboring locations. We observed

that at least two or more of such clusters evolve overtime on each individual daily trace.

We emphasize that a clear understanding of the Spatio-temporal features of the

dynamic clusters would enormously help in characterizing human mobility and would

be a great tool for the design of realistic mobility models, which serve as a tool for the

network design and protocols performance evaluation.

Dist gof ntails crit.V al. Remark

lognorm 0.01564494 815 0.04764 Accept
power law 0.03181678 1900 0.03120 Reject

Table 4.2: KAIST Intra-Cluster Distance gof Table

After fitting the parametric models with the observed KAIST intra-cluster travel

distance data, the distribution that best fits the data turns out to be log-normal dis-

tribution with the parameters 2.29989493, 0.8685148 for the log mean and log standard

deviation, respectively, as shown in Figure 4.3c and KS test on Table 4.2. This shows

students take repeated short walks around some popular locations like classes, libraries,

dormitories.

Moreover, for the NCSU trace, a similar distribution that follows a log-normal distri-

bution with the parameters 3.1651969 and 0.5044682 for the log mean and log standard

deviation, respectively, were observed. Figure 4.4a shows the four parametric models

fitted on the empirical data, and Figure 4.4b visualized the best-fitted distribution after

the KS Test.

To get more insight into the direction of the cluster short walks, we study the angle

of movement in each dynamic cluster in the next section.
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(a) Four (4) distributions fit to the KAIST intra-cluster distance
data

(b) Power-law distribution fits to the KAIST intra-cluster dis-
tance data

(c) Log-normal distribution fits to the KAIST intra-cluster dis-
tance data

Figure 4.3: Figure 4.3a shows four (4) different distributions fitted to the KAIST intra-
cluster distance trace; all distribution fits the empirical data, but power-law and log-
normal show better matching features. Figure 4.3b and Figure 4.3c visualize the two
related distributions. Finally, the distribution for the intra-cluster distance of the KAIST
trace is found to be log-normal distribution as shown in Figure 4.3b.
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(a) Four (4) distributions fit to the NCSU intra-cluster distance data

(b) Log-normal distribution fits to the NCSU intra-cluster distance data

Figure 4.4: Figure 4.4a shows four (4) different distributions fitted to the NCSU intra-
cluster distance. We can see that the empirical data closely follows the log-normal
and Weibull distribution. Still, after a goodness-of-fit test, we found that log-normal
distribution is more plausible than the Weibull distribution. Figure 4.4b shows the
log-normal model fitted to the empirical data.
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4.4.5 Intra-Cluster Direction of Movement

The direction of movement within clusters has not been given attention by the research

community despite its impacts on the mobility patterns within the community. Never-

theless, some related works reported an aggregate distribution of movement directions

for the whole domain instead of movement clusters Hsu et al. [2007]; Nunes [2012]. This

study takes a different approach by investigating the direction of movement in dynamic

clusters to understand the realistic movement directions within the clusters.

Figure 4.6 shows the distribution of the movement direction within clusters from

NCSU trace with a bin size of 1◦. We measure the direction of each movement by its

movement duration. We can see that the direction of movement is biased symmetric

toward some preferred directions. It shows that the movement within a dynamic clus-

ter favors some direction of the popular locations. The symmetry in the distribution

was expected due to the possible return of nodes to their main locations after exploring

neighboring close-by points of interest. We can also deduce that students visit com-

mon locations around their homes and classes, which resulted in the similar aggregated

distribution of angles with bias symmetry to angles between 90◦-150◦ and 240◦-330◦ re-

spectively. We can see that nodes move to other sides as well but with smaller frequencies

than the direction of the point of interest. It implies that geographical restrictions like

constraint movement on roads are not the driving factor for the bias symmetry of the

movement angle distribution. Similarly, the aggregate distribution for the whole domain

is shown in Figure 4.5. The figure shows the distribution is similar to that of the normal

distribution; though it has a small symmetry shape, but the direction of movement is

almost uniformly distributed within the domain.
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Figure 4.5: The uniform distribution of Direction Angle for the whole domain (NCSU
trace). The x-axis represents the Angular (Units are in degrees) and y-axis is the density
of movement toward a given direction. The bin size is 1◦. Each direction is weighted by
the duration of its movement.

Figure 4.6: The bias symmetry distribution of Direction Angle for the dynamic clusters
(NCSU trace). The x-axis represents the Angular (Units are in degrees) and y-axis is
the density of movement toward a given direction. The bin size is 1◦. Each direction is
weighted by the duration of its movement.
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4.4.6 Pause Time Distribution

Pause time distribution is one of the temporal features of human mobility, which plays

a vital role in the diffusive nature of human mobility. It dictates the amount of time

a node spent at a location with zero or close to zero velocity. Though it is assumed

to be a random value chosen from a uniform distribution in some conventional models

like Random walk, recent studies have presented different results suggesting a fat-tail

distribution González et al. [2008] [Song, SLAW]. Figure 4.7a shows the pause time

distribution for the KAIST campus empirical data and the four parametric models.

After the KS test we found that power-law distribution is plausible, and hence there

is no enough evidence to support its rejection, and hence we accepted the hypothesis

that the empirical data follows a power-law distribution. It is shown graphically in

Figure 4.7b. The KS test is also shown in Table 4.3. We can see that the power-law

has a threshold value (xmin) of four minutes(240s), cut-off value of P(∆t) = 16hrs, and

exponent value α = 1.94. The power-law pause time distribution indicates a scale-free

characteristic.

However, the NCSU trace has a slightly different distribution with the same power-

law but with an exponential cut-off. The value of the exponent α = 1.97. We can see

from Figure 4.8b how an exponential decay out-weight the power-law decay toward the

end of the distribution. We suspect the limited number of traces in the NCSU dataset

to have contributed to the exponential decay. This power-law feature in the NCSU

data distribution is interesting as it implies the scale-free characteristic, just like in the

KAIST trace. In Table 4.4, the results of KS test is shown.

Dist gof ntails crit.V al. Remark

power law 0.02367702 850 0.04665 Accept
exponential 0.1315407 386 0.06922 Reject

Table 4.3: KAIST Pause Time gof Table
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(a) 4 Distribution fit to KAIST Trace

(b) Power Law fit to KAIST Trace

Figure 4.7: This figure shows the Pause time distribution for the KAIST trace. All
parametric models are fitted to the empirical data in 4.7a. The power law distribution
that is more plausible than other distributions is shown on 4.7b
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(a) 4 Distribution fit to NCSU Trace

(b) Power Law fit to NCSU Trace

Figure 4.8: This figure shows the Pause time distribution for the NCSU trace. All
parametric models are fitted to the empirical data in 4.8a. The power law distribution
is more plausible than other distributions as shown on 4.8b
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Dist gof ntails crit.V al. Remark

Power law 0.04570027 850 0.04665 Accept
exponential 0.14460256 189 0.09893 Reject

Table 4.4: NCSU Pause Time gof Table

4.4.7 Analysis of the Connectivity Features

This section characterize the connectivity features observed in the empirical data from

iMotes experiments at the Cambridge university Scott et al. [2009]. The data contain

traces of Bluetooth sightings by groups of users carrying small device (iMote) for five

days.Our goal is to extract the distribution of contact duration and inter-contact time

from the dataset for further analysis. It follows that in Opportunistic Networks, each

contact between the network devices is assumed to increase the possibility of forwarding

a bundle closer to its destination. In this regard, an in-depth understanding of the

statistical properties of contacts and inter-contacts time is a great tool for designing and

analyzing networks with intermittent connections.

The contact duration measures the time elapsed between the start and end of con-

tact between two devices, while the inter-contact time represents the time between two

contacts between two devices. Interestingly, the data is processed in a format that makes

it easier to extract the features using simple heuristics. Figure 4.9 shows the aggregate

CCDF distribution for the inter-contact duration of the empirical data. The distribution

follows a power-law distribution with the exponent α = 1.4, but the power-law decay is

overweight by an exponential decay toward the end of the distribution. The distribution

is called a truncated power law, which is similar to the results presented in Lee et al.

[2009]. The power feature of the inter-contact time distribution is interesting because it

dictates the scale-free properties of an opportunistic network. This power-law condition

has been proved in Chaintreau et al. [2007] to impact a finite delay for all oblivious

forwarding algorithms as long as the exponent is greater than 1, which is the case in

Figure 4.9



58 4.4. FITTING DISTRIBUTION TO THE EMPIRICAL DATA

Figure 4.9: shows power-law distribution with different values of lambda fitted on the
Cambridge iMotes trace Inter-contact time distribution.

Figure 4.10: shows power-law distribution with different values of lambda fitted on the
Cambridge iMotes trace Contact time distribution
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Figure 4.10 shows the aggregate CCDF distribution for the contact duration of the

empirical data. We can see that the distribution of the contact time follows power-law

distribution after almost 13 minutes. The distribution for the shorter contacts follows

an exponential distribution, but after few minutes, the distribution follows a power-law

distribution with the exponent α = 2.5.

4.5 Conclusion

We conduct a characterization of human mobility’s spatial, temporal, and connectivity

features using real traces. To achieved this, we proposed heuristics for extracting sta-

tionary locations and dynamic clusters from individual traces. The heuristic extensively

explains how to extract movement and stationary locations from the individual traces.

We have uncovered a new characteristic feature in the human mobility patterns referred

to as dynamic movement clusters. In our analysis, we employed statistical techniques

for fitting the empirical data to the best fit distribution. Consequently, we determine

the value(s) of the parameter(s) for the distribution of the inter-cluster travel distance,

intra-cluster travel distance, intra-cluster angle of movement, pause time, inter-contact

time, and contact duration as observed in the studied real traces.





Chapter 5

EPOM: Design and

Implementation

5.1 Introduction

In this chapter, we introduce the Escape Path Mobility Model (EPOM). We start with

a detailed description of the model, which explains the model’s spatial domain, initial

location, trip schedule, inter-cluster movement, intra-cluster movement, and pause time.

Then, we present how a user switches between intra-cluster and inter-cluster movements

to explore cluster locations and the whole domain. Finally, we explain the implemen-

tation details of the model on the ONE simulator, different submodels, including the

obstacle submodel algorithm.

5.2 Model Specifications

5.2.1 Spatial Domain

The Spatial domain is a two dimensional bounded region R. Given any node i, the

location of node i in the spatial domain R at time t denoted by Li,t is the position
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of i at time t in the spatial domain R, expressed in two-dimensional coordinates as

L(x,y)i,t. The spatial domain is divided into a number of communities denoted by c.

c∈{1..Nc}, where Nc is the total number of communities in the domain. A community

is a rectangular sub-region within the main simulation domain with a fixed size. The

concept of a dynamic cluster in our model reflects the most frequently visited locations

where a node spent a long time with zero velocity and performs many short walks

within the community. It means a node can belong to more than one cluster within

its community over time. Similarly, a node can visit other communities and generate

clusters at some locations over time. In any of the two cases, we observed that a node

takes short walks to explores its neighbors with more chances of visiting close neighbors

than distant neighbors. This type of movement is mostly influenced by necessity and,

therefore, its direction is not completely random in nature.

5.2.2 Initial location

We define the initial position of nodes by associating each node with a fixed location on

the simulation domain using uniform node distribution. We refer to the initial location as

home, denoted by H. At the start of the simulation, each node belongs to the community

of its home location.

5.2.3 Trip Schedules

A node starts its trip from the initial location by generating trip schedules for the day.

This trip schedule can be within its community (i.e. intra-cluster movement mode) or

outside its community (i.e. inter-cluster movement mode) or both. The node uses a

two-state Markov model in Figure 5.3 to switch between modes, which models node

heterogeneity in movement area. It means a node’s movement is not confined within a

bounded community but can move out of the community.

Depending on the movement mode, a node chooses its next waypoint from the list
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Figure 5.1: The figure shows the five-step Markov Model for location switching. The
colored rectangles represent different locations a user may visits. The lines represent
transition probabilities between locations, and the self-loop indicates the probability of
staying in the same location.

of defined popular locations (i.e., home, school, cafeteria, playground, and off-campus)

using a transition matrix defined by the five-step Markov model. Figure 5.1 helps to

model the concept of location preference. Each step in the Markov model represents

one submodel. Each submodel consists of different locations in the simulation domain;

as shown in Figure 5.2. The transport submodel serves the function of switching be-

tween submodels, and the obstacle submodels ensure a collision-free transition in case

of obstruction along the movement path.

After choosing the destination waypoint coordinates using the location switching

Markov model in Figure 5.1, a node generates the shortest path using the Dijkstra

algorithm and move to the destination with speed chosen uniformly at random in an

interval [Vmin - Vmax]. When it reaches the destination, it pauses for time uniformly

chosen at random from the pause time distribution of that location. Note that pause

time is location dependant, i.e., pause time in the classroom is different from the pause

time at the cafeteria. After the pause time, it decides to explore its neighborhood places



64 5.2. MODEL SPECIFICATIONS

Figure 5.2: Submodels: The large rectangles represent the submodels (i.e. home, study,
cafeteria, sport and off campus). The line connecting them is a transport submodel.
The red shapes are obstacles which affect both mobility and signal propagation.

within the community or switch to inter-cluster movement. The probability of intra-

cluster movement is higher than inter-cluster movement.

5.2.4 Travel Distance

The travel distance or jump size is the length of movement displacement, which depends

on the movement mode. There are two different movement modes. The inter-cluster

and intra-cluster movement modes are described below.

5.2.4.1 Intra-cluster Movement

We use an intra-cluster movement to capture the movement within the community.

When a node stays in its community and undertakes many short walks to explores its
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neighboring locations, it creates a cluster within its community. It can create more

than one cluster depending on the proximity of the locations visited and the time spent

within the community. This phenomenon is called neighborhood exploration similar to the

observed phenomenon in the empirical data. Generally, when a node is in intra-cluster

mode, it either visits a point of interest within its community with higher probability

or generates a travel distance chosen from a log-normal distribution bounded by the

community size. Next, it walks with an angle biased toward popular locations within the

interval [0, 2π[ (intra-cluster location preferences). Our choice of log-normal distribution

was motivated by the fact that the empirical distribution of the intra-cluster travel

distance is found to be log-normally distributed. The log-normal jump size means many

short walks and fewer longer walks, and the bias symmetry direction of movement directs

the movement of nodes toward the location of popular waypoints in the community.

5.2.4.2 Inter-Cluster Movement

When a node changes its mode to inter-cluster movement, it can move to any location in

the domain with a higher probability of visiting popular locations. The travel distance

is chosen from the truncated power-law distribution bounded by the main domain R

size instead of the log-normal distribution in the intra-cluster movement. Note that

whenever a node visits any location, it is associated with that community and guided

by conditions defined in Section 5.2.4.1. That means a node can generate a dynamic

cluster in the community or otherwise.

5.3 Model Implementation

The Escape Path Obstacle-based Movement model was implemented on the Opportunis-

tic Network Environment (ONE) simulator Keränen et al. [2009]; Tkk/Comnet [2013]

as a collection of different submodels. The ONE supported different movement models
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Figure 5.3: Two steps Markov Model for switching between the inter-cluster and intra-
cluster movements

like the Random Waypoint Movement (RWP), Map-Based Movement (MBM), Short-

est Path Map-Based Movement model (SPMBM), and Route-Based Movement model

(RBM). The MBM is a special type of RW in which nodes move along the map paths

defined in Well-Known Text (WKT) files. We use OpenJUMP Geographic Information

System (GIS) program Project [2008] to define the location of obstacles, homes, classes,

cafeterias, playgrounds, shops, and points of interest for off-campus activities in form of

WKT files. We create a main movement model that inherited the Extended movement

model of ONE and controlled the movement of nodes going to school, going to the cafe-

teria, going to sport, going shopping, or similar activities outside the campus and finally

returns home to sleep. The main model orders and switches between submodels pass the

control to the submodels responsible for different activities, facilitates the movement to

the destination by giving information about the destination to the transport submodels,

and decides on the probability to walk or use a bus based on the setting configuration.
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5.3.1 Sub Models

In this section, we describe different submodels implemented in the proposed model.

5.3.1.1 Home Submodel

Home is the starting point of the simulation. Initially, a predefined location is assigned

to each node in the home location file. These locations are used for sleeping or nodes’

free time. Daily routine activities of a node start in the morning when it wakes up from

the sleeping state. Each node is assigned a wakeup time, which determines when the node

should wake up from the sleeping. The wakeup time obeys a normal distribution with

the mean seven o’clock and configurable standard deviation. After waking up, a node

would check its lecture schedules and decide whether to go for a lecture or do some in-

home activities like cocking, watching morning headlines, laundry services, and visiting

a friend nearby dormitory, etc. These short walks account for the possible evolution

of the first dynamic cluster. Some nodes leave their home without doing any internal

activities. Depending on the time of the day and a node lecture schedules, a node can

switch to other submodels from home. For example, a node may switch to the sport

submodel in the evening to play games, and it can switch to eating submodel for dinner

or switch to off campus submodel for shopping or visiting a friend in another location.

This flexibility of EPOM captures social influence and heterogeneity in time and space.

5.3.1.2 Study Submodel

We assigned specific locations on the map as a lecture rooms. If the node is in the

lecture room, it walks into the lecture room and pauses for the lecture duration. The

pause time distribution is location-dependent in our model. The pause time for the

lecture is different from the pause time at the cafeteria. However, the pause time at non

popular locations is derived from the truncated power-law distribution observed in the

empirical data. We turn off the pause time completely during the lecture period for 80
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percent of the nodes; only 20 percent can make some movement within the lecture room;

this is to capture realistic behavior of students for changing desks or forming discussion

groups. After the lecture, a node decides to walk to the laboratory for a practical or

library to read. This internal movement is modeled as an intra-cluster walks within

the vicinity of the study area with the libraries, laboratories, and other study-related

locations as points of interest.

5.3.1.3 Eating Submodel

Some strategic locations on the map are defined as cafeterias. When it’s time for lunch

or dinner, a node may switch to eating submodel and move to the cafeteria to eat. While

in the cafeteria, a node waits, makes some intra-cluster walks, and gets served, then

eats and switches to another submodel. During the eating activities in a large cafeteria,

we observed a large crowd of students within a confined location; hence, the need for

collision avoidance to allow smooth flow of students. Our obstacle submodel ensures

collision-free movement within the simulation domain.

5.3.1.4 Sport Submodel

We define some points on the map as playgrounds; the time for sport is also defined. A

node in the sport submodel spends some time at the playground watching or doing some

random intra-cluster movements around the vicinity of the playground.

5.3.1.5 Off-Campus Submodel

The off-campus submodel models all activities not included in the above four submodels.

These activities include shopping, evening walk, or visiting friends. We define some

Points of Interest (PoI) on the map edges as meeting points. We have two types of

PoIs; location preferences PoI and Bus Normal PoI with uniform preferences. Mobile

nodes visit such locations in a group to capture group mobility characteristics and social
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influences of human mobility and individually capture independent mobility freedom.

5.3.1.6 Transport Submodel

This submodel is used to move between different submodels when a node switched mode.

We define two means of transport in our model: walking and bus riding. Most nodes

walk while a bus is mostly used for an off-campus activities. The probability of moving

with a bus is configured in the setting. The heterogeneity in the transport submodel has

a great impact on the performance of routing protocols; high-speed nodes can deliver

messages to longer-distance destinations quickly.

Bus service is accessible by the node at predefined bus stops. Initially, the node walks

to the nearest bus station, wait for the bus; when the bus arrives, the node enters the

bus and drop at the bus stop nearest to its destination, the node switches to a walking

submodel to complete its journey to the final destination.

The nodes in our model move on the map; this is another aspect of realism. The

maps contain the location information of homes, classes, cafeterias, playgrounds, shops,

PoIs, and bus stops. The map data is essential for restricting the movement of the nodes

to specific areas, which helps to increase node localization. It is used to distribute nodes

in the simulation area uniformly.

5.3.1.7 Obstacle submodel

The obstacle submodel describes how the EPOM model handles collision avoidance be-

tween nodes and other obstructing objects along their movement path. In the case of a

static obstacle with zero speed like a pedestrian standing on the road, at the middle of

the corridors, or any other static object, we define the location of different obstacles on

the map using OpenJUMP geographic information system program as in Figure 5.4.

The transport submodel moves the node from the current location (e.g., home) to

the destination (e.g., class). Dijkstra shortest path algorithm is used to calculate the
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Figure 5.4: An example of visualization of a mobility scenario. The red irregular polygons
mimic random obstacles. The blue numbered icons stands for nodes. The gray line stands
for normal trajectories without obstacles and the green line represents a new trajectory
created by node E96 using Escape path mobility model.

shortest path from the current location to the destination. We have two scenarios here:

in the first scenario, there is no obstacle(s) on the path, while in the second scenario,

an obstacle exists along the shortest path. In the first scenario, a node would follow the

shortest path to its destination without obstruction, but in the second scenario, a node

would explore the logic in Algorithm 1 to generate an escape path using the following

transitions:

1. Move along the shortest path trajectories until an obstacle is reached, keeping a

minimal distance to the obstacle

2. Generate escape path using Algorithm 1

3. Complete the movement to the next obstacle (in case of more than one obstacles)

or destination
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4. Repeat 2 and 3 until the final destination is reached.

Algorithm 1 Escape Path Movement for node i
Initially escapeVertex = ∅, neighbors = ∅, distToDest = ∅.

1: get obstacle’s vertices
2: escapeVertex := nearest vertex
3: repeat
4: move to the escapeVertex
5: neighbors := neighbor vertices
6: escapeVertex := nearest neighbor
7: until distToDest(escapeVertex) ≤ distToDest(all neighbors)
8: move to the destination

Figure 5.5: A snapshot of the Escape Path generated with Algorithm 1 from the ONE
simulator

Algorithm 1 avoids collision with an obstacle by generating an escape path as shown

in Figure 5.5. In Algorithm 1, line 1 gets the coordinates of an obstacle’s vertices V

=(A,C,D,F,E,B). Note that the shape of an obstacle determines the number of vertices.

In line 2, a user finds the nearest vertex A. It moves to vertex A in line 4. It finds the

neighbors of vertex A (i.e., B and C) in line 5 and set the next escape vertex to the
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nearest neighbor B in line 6. It then checks the condition in line 7; if the distance from

its current location A to the destination is less than the distance from its neighbor C and

B to the destination, it moves directly to the destination (line 8); otherwise, it returns

to line 3. Considering a human movement behavior of walking beside the edges of an

obstructing body until it passes the section of the obstacle that blocks it, the algorithm

behaves similarly by creating a path beside (not on the edges) the edges of the obstacle.

Some of the existing works have proposed a bezier curve Wang et al. [2017] or branching

to the closest neighbor node Wu et al. [2011], which is not always realistic because a

human path of escaping obstacle cannot always be curved, just like an isolated obstacle

may not have a closer neighbor.

5.4 Conclusion

We present a detailed description of the proposed model. We described the model

domain, initial location selection, trip schedules, inter-cluster movement, intra-cluster

movement, pause time, and collision avoidance with obstacle submodel. These details

are sufficient enough to describe any mobility model. Additionally, we discuss the imple-

mentation of the proposed model on ONE simulator as a collection of submodels, which

handles several routines. In the next chapter, an evaluation of the proposed model would

be presented.
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Model Validation and Results

Discussion

6.1 Introduction

This chapter validates the EPOM model presented in the previous chapter. We discuss

some important results obtained from simulation runs with the proposed model and

other models for comparison. Finally, we present a performance evaluation of routing

protocols using different routing performance metrics.

6.2 Validation

In this section, we show that our conceptual model (EPOM) is generic enough to be

fine-tuned with a few parameters to show matching characteristics with the KAIST and

NCSU GPS traces Rhee et al. [2009], in terms of the spatial features: travel distance and

direction of movement as well as the temporal feature ( i.e pause time). We also show

that EPOM connectivity features matched that of imote real traces Scott et al. [2009]

in terms contact duration, and inter-contact time distribution.
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6.2.1 settings

Our simulation environment is a map of the Universite Paris-Saclay (i.e. Universite

Paris Sud, IUT, and Centrale Supélec), edited using OpenJUMP geographic information

system program with 1000 nodes moving on the area of roughly 5000X3000m2. We

created different WKT files for the map roads, homes, lecture rooms, cafeterias, sport,

off-campus activities locations, POIs, and obstacles. See Figure 6.1 for the map.

Each node is assigned with a unique home location on the map as its initial location,

a wake-up time drawn from a normal distribution. After the wake-up, a node starts to

walk using the current mobility model, switches to different locations from the current

location using the five (5) steps markov model depending on the time of the day. See

Table 6.1 for the list of simulation parameters.

We simulate a Random waypoint model on the same size simulation area with 1000

nodes uniformly distributed. Each node randomly chooses a waypoint and move with a

speed of 0.5 - 1.5m/s. When it reaches the destination, it pauses for 1 - 3600s; both the

speed and pause time are uniformly distributed.

The simulation was run for the length of T = 5 · 105s, which is approximately five

days. We assume all events are uniformly distributed over a longer period of time and

consider the probability of an event of length x, p(x). We record only events that begin

and end within the observed interval. We create the Complementary Cumulative Den-

sity Function (CCDF, P[X > x]) for the distribution of contact duration, inter-contact

time, inter-cluster travel distance, intra-cluster travel distance, intra-cluster movement

direction and pause time.
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Figure 6.1: The Map of universite Paris Saclay (IUT, Centrale Superlec, and ENS)
edited using OpenJump program. The Well-known text (wkt) geometry representation
is used to develop the map.

Parameter V alue

Number of Nodes 1000
Simulation Length 500,000 sec
Transmit Range 10 m

Obstacle path Transmit Range [5, 10] m
World Size 5000 x 3000 m2

Walking speed [0.5, 1.5] m/s
Bus Speed [7, 10] m/s

Transmit Speed 250 kbps
Routing Protocol Epidemic
Interface type Simple Broadcast Interface
Buffer Size 50 mb
Message Size [500 kb, 1 mb]

Message Interval [25, 35] sec
Message TTL 1,430 sec

Table 6.1: Part I summary of the simulation parameters
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6.2.2 Spatial Characteristics

We start with the intra-cluster travel distance feature being one of the most important

aspects of our study. To account for the dynamic clusters, the main simulation domain

is divided into communities of equal size denoted by c. c∈{1..Nc}, where Nc is the total

number of communities in the domain. During the analysis of real traces, we find out

that each individual walker is associated with an average of three dynamic clusters per

day as shown in Figure 6.2 depending on the degree of the repetitiveness of the user’s

schedule, this type of temporal mobility feature can be exploited to predict the possible

user location. Similarly, it can be exploited by the opportunistic routing protocol to

schedule package forwarding.

After tuning our model, it generates matching clusters with the KAIST data. Fig-

ure 6.3 shows one-day dynamic clusters of node four generated from the EPOM synthetic

traces.

Next, we show that the EPOM synthetic trace replicates the neighborhood exploration

observed in the real traces. In our model, at each time instant, a node is either in inter-

cluster or intra-cluster movement mode controlled by the two-step Markov model in

Figure 5.3. When a node is in the intra-cluster movement mode, it explores the point

of interest within its community and walks to the preferred POIs or generates a travel

distance chosen from a log-normal distribution bounded by the community size. The

direction of movement is chosen from a bias direction symmetry distribution in the range

[0, 2π[, see Figure 4.6. The log-normal distribution of the intra-cluster travel distance

means nodes visit closer locations more frequently than distant locations.
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Figure 6.2: Number of dynamic clusters per trace file in KAIST traces. The average of
three clusters is generated by each individual user

Figure 6.3: The figure shows the synthetic clusters generated by Node four (4) in the
EPOM model. The red numbers represent mobile nodes, the green points indicate way-
points, and the green lines represent the node trajectories. We can see the concentrated
waypoints as dynamic clusters.
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Figure 6.4 shows the intra-cluster travel distance generated from the proposed model

compared to that of the empirical data. The x-axis represents the travel distance in

meters and the y-axis represents the cumulative probability. The figure shows that the

curve for the two distributions is similar for a longer period of time but slightly differs

at the tail, which is due to the community size in the simulation domain. Therefore,

EPOM replicates intra-cluster travel distance as observed in the KAIST empirical data.

We show the travel distance for the main domain by analyzing an inter-cluster travel

distance distribution generated by the EPOM synthetic trace and compare it with the

empirical distribution observed from the empirical data. This is the approach adopted

by most of the existing works in Altman et al. [2004]; González et al. [2008].

Figure 6.5 shows the inter-cluster travel distance distribution for the KAIST, EPOM,

and RWP traces. The distribution of the EPOM and KAIST traces fits the truncated

power-law distribution. It shows that users tend to undertake many short walks in a

community and occasionally take long-distance walks. We also note that such short

distance walks that evolve over time are the consequence of intra-cluster movements.

In contrast, the curve for the conventional RWP model fits uniform distribution, which

does not differentiate between short and long walks. This feature does not resemble the

realistic nature of human mobility patterns.

Figure 6.6 shows the distribution of direction angle generated from the synthetic

traces of the EPOM model. The distribution is similar to the distribution of NCSU

trace in Figure 4.6. The main take-home message from the two distributions is that

movement within the dynamic clusters is bias toward some POIs and popular locations

within the community.
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Figure 6.4: Intra-Cluster Travel Distance for the EPOM and KAIST traces. Both curves
follow a log-normal distribution, meaning people visit some preferred nearby locations
more than far distant locations.

Figure 6.5: The figure shows the Inter-Cluster Travel Distance for the EPOM, KAIST,
and RWP models. The curves for the EPOM model and KAIST traces exhibit power-law
decay for a long period, supporting the realistic nature of the human mobility pattern for
taking short walks more than a long journey. The RWP curve is uniformly distributed
and does not differentiate between short walks and long journeys.
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Figure 6.6: The bias symmetry distribution of Direction Angle for the EPOM clusters.
The x-axis represents the Angular (Units are in degrees) and y-axis is the density of
movement toward a given direction. The bin size is 1◦. Each direction is weighted by
the duration of its movement.

6.2.3 Temporal characteristics

Analysis of user’s temporal locations at a certain period gives us insight into the possi-

bility of predicting user’s location, how long a user could stay at a given location, i.e.,

the pause time., when the user is expected to return to a given location, i.e., the return

time and why a user exhibit a skewed visiting behavior to some locations, i.e., dynamic

community walk.

We study the pause time distribution of the KAIST campus traces in Rhee et al.

[2009] and tune the EPOM model to generate pause time distribution similar to the

empirical distribution observed. Figure 6.7 shows the pause time distribution of the
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KAIST and EPOM traces. The distribution follows power-law decay with a heavy tail.

It means students spent a long time at some locations such as lecture rooms but stayed

for a shorter time at most locations like shopping malls and cafeterias. This distribution

is consistent with the distribution of pause time observed in Dartmouth campus real

traces in Kim et al. [2006].

The fact that users pause for a longer time at some preferred location also indicates

that users predominantly take short walks within the vicinity of such locations, hence the

possibility of creating a movement cluster. We observed that users are associated with

an average of three dynamic clusters over the period of one working day, which evolve

over time as shown in Figure 6.2. This fact is true for all users, with the exception of

stationary users.

Figure 6.7: The Pause Time Distribution of the KAIST and EPOM traces. The figure
indicates that humans mostly stay short in most places they visited and stay at few
locations.

6.2.4 Connectivity features

This subsection investigates how closely the EPOM model reproduces the distribution of

the empirical data for the connectivity metrics. We compare the distribution generated
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by the EPOM, iMote, and Random Waypoint traces on each plot.

Figure 6.8: The figure shows the distribution of contact time for the EPOM, iMotes, and
RWP model. The EPOM model follows power-law distribution for a long time, just like
the iMotes traces, but RWP follows exponential distributions with very short contacts

Figure 6.8 shows the aggregate distribution of contact duration for the EPOM, iMote,

and RWP. Each plot shows the complementary cumulative distribution function of a

contact duration using a log-log scale. We see that EPOM distribution follows power-

law decay for a long time, similar to the distribution of iMote traces. This result is

consistent with most of the research on human mobility contact distribution Pirozmand

et al. [2014]. The distribution of RWP consists of a much shorter time with exponential

decay. The power-law feature of contact duration indicates that more nodes have contact

opportunities for a shorter time while only a few nodes stay connected for a longer time.

A DTN routing algorithm can be designed to exploit this feature in conjunction with

the spatial-temporal features of human mobility to decide on the best way to route a
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message from the source to destination.

Figure 6.9 shows the inter-contact (ICTs) time distribution for the EPOM, iMote

traces, and RWP. The figure shows that both curves of EPOM and iMote traces exhibit

power-law decay with exponential cut-off, unlike RWP that entirely follows exponential

distributions. The distribution of ICTs for the EPOM is also consistent with the feature

of the realistic ICTs discovered in Chaintreau et al. [2007]. The power-law nature of

ICTs plays an important role in DTNs as it fundamentally impacts the behavior of

networking protocols Chaintreau et al. [2007]. Though shorter inter-contact time means

more frequent connection, nodes with longer intercontact times are possibly assumed to

have new data to share.

Figure 6.9: The figure shows the distribution inter-contact time distribution for the
EPOM, iMotes, and RWP model. It shows that both the EPOM and iMote traces
curves exhibit power-law decay with exponential cut-off, unlike RWP, which entirely
follows an exponential distribution.

Figure 6.10 presents the contacts for each simulation hour, which shows the repet-
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itiveness of hourly activities. We use 43200 seconds (12 hours) as working day length.

The contact per hour of RWP is uniform throughout the simulation. Observe the repet-

itive behavior of the EPOM model, which captures student daily routine activities that

took place at specific hours of the day.

Figure 6.10: The distribution of contacts for each simulation hour, for two working
days. The EPOM model has shown repetitiveness of hourly activities, unlike RWP,
which shows uniform distribution of activities for each hour.

6.3 Conclusion

In this chapter, we validate our proposed model. We show that the model is generic

enough to be fine-tuned with a few parameters to show matching characteristics with

the real traces. After extensive simulation, the model generates matching dynamic

movement clusters with the KAIST traces. It reproduces distributions of intra-cluster

travel distance and direction angle of movement similar to the distributions uncovered in

the analyzed traces. Similarly, it produces matching distributions of inter-cluster travel

distance, pause time, inter-contact time, contact duration, and contact per hour with

that of the analyzed traces.



Chapter 7

Conclusion and Future Work

7.1 Introduction

In this chapter, we summarized the contributions of the first part of the thesis on the

characterization of human mobility and design of mobility model. We suggest further

works that could extend our findings and further validate our claims.

7.2 Conclusion and Contributions

We conduct an in-depth study of human mobility patterns using realistic datasets for

Bluetooth encounters, user associations to the mobile wireless networks, and Global

Positioning System (GPS)tracklogs traces at the fine-grain level to understand the prop-

erties of human mobility better and to uncover hidden patterns. Consequently, we have

discovered time-varying human mobility patterns associated with a dynamic evolution

of movement clusters. We proposed a new synthetic mobility model called EPOM. We

demonstrated that the EPOM model could recreate the statistical patterns observed in

the studied real traces through series of simulations. We have also shown that the EPOM

model can be used to evaluate routing protocols performance in wireless networks.
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7.3 Future Work

We intend to extend the proposed model by designing an efficient predicting framework

for human mobility. The new framework would exploit the existing and new uncovered

features of human mobility to predict the user’s next displacement, stay duration, and

possible contact. The framework would be an excellent tool for transport agencies and

network designers. Little have been done on the effects of obstacle on the signal propa-

gation; We intend to extensively investigate the effects of obstacles (buildings, canopy,

etc.) on signal propagation.

7.4 Publications

1. Bakura, S.A, Lambert, A., and Nowak, T. (2020). An Obstacle-Aware Mobility

Model for Campus Delay Tolerant Networks. 2020 Zooming Innovation in Con-

sumer Technologies Conference, 26-27 May, 2020. Novi Sad, Serbia.

2. A submitted Journal paper. Title: "EPOM: Escape Path Obstacle-based Mobility

Model for Campus Delay Tolerant Network". Journal Journal of Advance Trans-

portation. Date Submitted : 22nd June, 2021.
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Part II
Clock Synchronization



Chapter 8

Introduction

In a smart campus scenario, users are passive beneficiaries of the services, active par-

ticipants, and data explorers. In part I, we have characterized the mobility patterns of

the users and exploit the mobility features to design a new synthetic mobility model for

network protocols performance evaluation. In this part, we proposed a distributed clock

synchronization algorithm for efficient information fusion in a campus wireless sensor

network.

The use of sensors in a smart campus for environmental monitoring generates large

hyperlocal data Prandi et al. [2019] that can better inform campus users (i.e., students,

professors, administrators, and visitors) experience interacting with the campus space.

The hyperlocal data like temperature level within a particular building recorded by

thermal sensors, pictures snapped by surveillance cameras fixed at strategic locations

to enhance students’ safety, etc., is less reliable if only one sensor is used to record the

data. More than one sensor is needed for the data gathering to increase data quality,

reliability, and coverage, and then data fusion techniques are applied. Additionally,

campus mobility plays a vital role in easing access to the campus environment. In this

regard, a common notion of time among moving vehicles helps deliver services such

as emergency interventions to avoid collisions, infotainment, navigation systems, and

89
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etc. Our proposed peer-to-peer distributed clock synchronization algorithm is aimed to

provide a common notion of time amongst the distributed sensors for an efficient data

fusion.

8.1 Motivation

Sensor networks are characterized by frequent changes in the network topology over time.

Some of the critical factors that cause changes in the network topology include node mo-

bility and changes in environmental conditions. However, despite all these challenges, a

common notion of time among nodes is essential for data fusion algorithms. Some data

fusion algorithms use timestamp package to estimate time measurement, which affects

the accuracy of the measurement, as a shift between the time of measurement must be

considered; hence the fusion imprecision is increased Han [2018]; Li et al. [2015]; Aky-

ildiz et al. [2002]. Two techniques of synchronization are widely adopted ; (1) physical

reference clock such as Global Synchronization for Satellite Navigation System Scopigno

and Cozzetti [2009] and (2) virtual reference clock established using distributed clock

synchronization algorithms Fugger et al. [2015]; Han [2018]. In the first approach, a

Line of Sight (LOS) is required between the reference node (e.g., satellite) and the slave

nodes, which may not always be available. Additionally, the failure of the reference node

leads to the total loss of the network synchronization. On the other hand, a reference

node is not required in the second approach; instead, all network nodes calculate and

adjust their physical clocks based on exchanged information. In this regard, distributed

approach is more robust in an environment with many obstructions, canopies, and indoor

mobility. Moreover, most sensors are powered by a battery with limited power, which

needs to be efficiently managed to prolong the network lifetime Ye et al. [2002]. Hence,

the need for an optimal distributed synchronization algorithm that utilizes minimum

computational resources without sacrificing the synchronization accuracy.



91

8.2 Background

Clock synchronization (e.g., Scopigno and Cozzetti [2009]; Sommer and Wattenhofer

[2008]; Simeone and Spagnolini [2007]; Aissaoua et al. [2017]; Fugger et al. [2015];

Charron-Bost et al. [2015]; Han et al. [2018]) is an active research topic, which is cate-

gorized into reference-based and distributed algorithms. In reference-based algorithms

Scopigno and Cozzetti [2009]; Sommer and Wattenhofer [2008]; Aissaoua et al. [2017],

a reference node called master is used to broadcast synchronization packages to the

slave nodes. Each slave, upon reception of the reference clock’s value, updates its local

clock accordingly. Reference-based algorithms are centralized, which means failure of the

master node can lead to the loss of synchronization for all slave nodes. Considering the

resource-scarce nature and topological changes of WSNs, such techniques are unreliable.

Distributed algorithms use the concept of consensus between network nodes. Consensus

allows each node to update its local clock value based on the time information received

from its neighbors such that all nodes in the system will asymptotically converge to a

common consensus value (i.e., agree on a common value).

Simeone and Spagnolini Simeone and Spagnolini [2007] presented a pulse-coupled

synchronization algorithm that generates a correction term in each round. In their

model, nodes have discrete-time clocks with phase-locked loop oscillators, constant and

homogeneous frequencies. Függer et al. Fugger et al. [2015] improve upon Simeone and

Spagnolini [2007] by presenting an algorithm for both unidirectional and bidirectional

dynamic networks with clock frequencies not necessarily constant or homogeneous. The

correction term cor1
i (k) was used in Fugger et al. [2015] for compensating skew. However,

it is also beneficial to compensate for clock drift, which can vary due to changing ambient

conditions. As a step to better take into account clocks drift, Han et al. Han et al. [2018]

proposed a timewheel algorithm with an additional correction term cor2
i (k).
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8.3 Objectives

The specific objectives of this part of the thesis, dealing with clock synchronization, are:

1. To implement a distributed clock synchronization algorithm that tolerates impacts

of node mobility.

2. To design an optimal algorithm that utilizes minimum computational resources

without sacrificing the synchronization accuracy.

3. To develop a new technique of reducing short-term fluctuations due to the unpre-

dictable changes in the clock drift

8.4 Contributions

This part of the thesis proposed an algorithm that improves the work presented in Han

et al. Han [2018]. We develop an exponential smoothing average algorithm for offset

correction and drift compensation using present and previous time estimates. To ensure

prediction accuracy in our algorithm, we develop an automatic and adaptive selection

procedure for choosing the exponential decay term. Traditionally, the algorithm places

exponential weights on previous estimates, with higher weights on more recent estimates.

Still, due to the dynamic nature of WSNs, we study the impacts of different values of

the smoothing factor on the performance of our algorithm. With this approach, short-

term fluctuations characterized by unpredictable changes in clock drift are reduced as

compared to the previous work Fugger et al. [2015]; Han [2018].

8.5 Outline

In Chapter 9, we review the existing distributed clock synchronization algorithms related

to our study. We discuss the state-of-the-art methods and highlights their strength,
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shortcomings, and the need for improvement. Chapter 10 presents the clock synchro-

nization problems, the system model and describes the proposed clock synchronization

algorithm. We detail the three main functions of our algorithm: the sending function,

receiving function, and timer function. Additionally, we discussed how the new technique

performs the offset compensation, drift compensation, and adaptive weight factor selec-

tion. Finally, a mathematical analysis and proofs for the clock skew and convergence

rate were presented. The simulation results and comparison of the proposed method

with the existing works were presented in Chapter 11. Finally, we present a general

conclusion, contributions, and the future perspective in Chapter 12





Chapter 9

Related Works

9.1 Introduction

This section focused on the non-centralized distributed clock synchronization algorithms

to which our proposed algorithm belongs. Later in the chapter, an overview of more

related algorithms is presented. Several works have been done on distributed clock

synchronization algorithms, which can be classified into package based and non-package

based. The package-based techniques Rome [2001]; Sommer and Wattenhofer [2008];

van Greunen and Rabaey [2003]; Ganeriwal et al. [2003]; Aissaoua et al. [2017]; Dolev

et al. [1995]; Lamport and Melliar-Smith [1985] are based on the concept of exchanging

data information (i.e., timestamp, global time, frequency, or some system parameters)

between neighboring nodes, which is used to decide on a common value with which each

node updates its clock.

Rome [2001] presents a timestamp synchronization algorithm which embedded time-

stamped information in a package. The time offset is derived from the calculation of the

round-trip delay between the transmitters and receivers.

A lightweight time synchronization algorithm was presented by van Greunen and

Rabaey [2003] to reduce protocol overheads. The algorithm works by creating a spanning
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tree for the network with n nodes; then, it performs pair-wise synchronization along with

n-1 nodes of the spanning tree. Ganeriwal et al. [2003] proposed Timing-Sync Protocol

using a hierarchical approach. It operates in two phases; first, the level discovery in which

all nodes at the high level (i.e., level 0) broadcast messages to the nodes at the lower

level (i.e., level 1), the operation is repeated until all nodes in the network have been

reached. Second, the round-trip synchronization operation where all nodes synchronize

their clocks to the parent/root node in the tree.

Despite the efforts made on the package-based techniques, message delivery might

not be reliable for larger networks due to their dynamic nature and resource scarcity Wu

et al. [2011].

As a remedy to the package-based algorithms’ problems, pulse-coupled synchroniza-

tion algorithms were proposed Simeone and Spagnolini [2007]; Fugger et al. [2015]; Han

[2018].

Simeone and Spagnolini [2007] presented a pulse-coupled synchronization algorithm

that generates a correction term in each round. In their model, nodes have discrete-time

clocks with phase-locked loop oscillators, constant and homogeneous frequencies.

Fugger et al. [2015] improves the work of Simeone and Spagnolini [2007] by proposing

an algorithm for uni-directional and bi-directional dynamic networks with clock frequen-

cies not necessarily constant or homogeneous.

The correction term cor1
i (k) was used in Fugger et al. [2015] for compensating both

clock skew and clock drift. However, the sole use of cor1
i (k) is not efficient because

clock drift can vary due to changing ambient conditions like temperature. After all,

the characteristics of the quartz clock are influenced by temperature changes in the

environment Ogrizovic et al. [2012].

As a step to solve this problem, Han [2018] proposed a timewheel algorithm with

an additional correction term cor2
i (k) for compensating drift and thus increasing the

precision of clock synchronization. Our algorithm improves the timewheel algorithm
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proposed in Han [2018], it proposed an adaptive exponential smoothing technique for

compensating the clock offset and drift. Thereby making our new algorithm adaptive to

unexpected fluctuations of clock drift due to node mobility, which causes variations in

the network topology and environmental conditions or changes in ambient conditions.

9.2 State-of-the-Art

Considering the number of literature in clock synchronization algorithms, coupled with

numerous assumptions specific to each class of algorithm, it’s a good approach to con-

centrate on those more related to our proposed algorithm. This section presents details

on WSNs clock synchronization algorithms that used the Average consensus technique

to compensate for the clock time-varying variables (i.e., clock offset and clock drift).

The goal of consensus algorithms is to ensure all agents in the network agreed on a

common value. Therefore, each agent i maintains its own estimate xi(t) of the objective

over time, which should asymptotically converge to a common limit c within the range

of the input values. The Average consensus adds the constraint that the common limit

c should be the average of the inputs values.

A consensus-based protocol, referred to as Average TimeSync (ATS), for synchro-

nizing the clocks of a wireless sensor network was presented by Schenato and Fiorentin

[2011]. The algorithm was realized by cascading two consensus algorithms such that

the first consensus synchronizes clock speed (i.e., clock drift), and the second consensus

synchronizes the clock offsets. These two variables in WSNs are mathematically mod-

eled by Equation (9.1). So every node i in a WSN is associated with its own local clock

whose first order dynamics is given by model in Equation (9.1).

τi(t) = αit+ βi, (9.1)

Where τi is the local clock reading, αi and βi are the frequency and offset of the local
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physical clock, respectively. Note that the absolute time t is not available to the nodes, so

the values of the variables αi and βi for node i cannot be directly computed but logically

derived using relative information of the local clock of node i with respect to another

node j. Moreover, αi and βi may not be the same for all sensors due to manufacturing

defects or ambient conditions. To solve the problem of the local clock, each sensor i

maintains a virtual reference clock (software clock) given by Equation (9.2).

τ̄i(t) = ᾱit+ β̄i, (9.2)

and each sensor keeps an estimate of the virtual time using a linear function of its own

local clock as

τ̄i(t) = ᾱi(t)τi(t) + β̄i, (9.3)

The ATS main goal is to find (ᾱi, β̄i) for each sensor such that the difference between

the estimate τ̄i and the virtual reference clock τ̄ converged to a common consensus value.

This is achieved using the offset compensation to evaluate the best value of β̄i and the

drift compensation to evaluate the best value of ᾱi respectively.

Relative Drift Estimation in ATS: Each sensor i estimates its relative drift

αij = αj

αi
from the package it receives from its neighbors j ∈ Ni, where Ni is the number

of its neighbors. The package received from j at time update k is a tuple of [IDj , ᾱj(tk),

β̄j(tk), τi(tk) ], where IDj is the unique identifier of the sensor j. The communication

between sensor i and its neighbor j is assumed to be instantaneous otherwise the protocol

most be modified to account for the transmission delay, which is one of the limitation of

ATS.

Drift Compensation: As soon as sensor i receives the tuple package from sensor

j, it estimates the value of its ᾱj(tk) as follows:

ᾱi(k) = ραᾱi(k − 1) + (1− ρα)ᾱij(k)ᾱj(k − 1) (9.4)
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The value of ᾱij is obtained using Equation (9.5)

ᾱij(k) = ραᾱij(k − 1) + (1− ρα)
τnewj − τ oldj
τnewij − τ oldij

(9.5)

ρα ∈ (0, 1) is a tuning parameter use to tune the trade-off between a fast rate of conver-

gence (ρα close to zero) and a high noise immunity (ρα close to unity). The values τnewj

and τ oldj are the present and previous value of the node j local time recorded by node i

at the time of package reception.

Offset Compensation: It is assumed that after the drift compensation algorithm

is applied, all local virtual clock estimators will eventually have the same drift, i.e., they

run at the same speed. what remains is to compensate for the time difference, which is

achieved using Equation (9.6)

β̄(k) = β̄(k − 1) + (1− ρβ)(τ̄j(k)− τ̄i(k)), (9.6)

Where τ̄j(k− 1) and τ̄i(k− 1) are computed at the same time instant. Some of the main

limitations of ATS are its inability to handle transmission delay and its asymmetric

nature. There is a need for a protocol that can implement symmetric communication

between nodes or handle transmission delay.

Garone et al. [2015] proposed a Clock synchronization protocol for wireless sensor

networks with bounded communication delays (RoATS), which improves the ATS pro-

tocol by integrating two concurrent algorithms for a drift compensation and offset com-

pensation. The main contribution is the implementation of symmetric communication

between neighbor nodes to achieve robustness against communication delays.

Drift Compensation: At time update k, node i and node j execute drift com-

pensation by exchanging the first package, then each node computes its drift estimate

and resend the calculated estimate as the second package, upon reception of the second

package, each node performs symmetric drift compensation and compensate the effect
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of drift change on the offset using Equation (9.7)

ᾱi(k) = αi(k − 1) + [1− ρα]µ(k)Γα(k) (9.7)

ᾱj(k) = αj(k − 1)− [1− ρα]µ(k)Γα(k)

Where ρα ∈
(
1− 2αmin

αmax+αmin , 1
)
, µ(k) is the update direction of ᾱ(k) and Γα(k) is the

magnitude of the correction. The RoATS, converges the virtual clock τ̄(k) even in the

presence of delay but the additional communication step makes it a resource-consuming

protocol, which can affect the scarce resources of the sensor network.

Offset Compensation: In RoATS sensors compensate for the time difference con-

sidering delay but in one direction (asymmetric) as opposed to the drift compensation

that uses symmetric estimation. In this regard, when node j sent a single package to

node i at update time k, node i stores its virtual clock τ̄i(k) as well as virtual clock of

node j extracted from the received package as τ̄j(kh − δh), where δk is the transmission

delay bounded from above by δh ≤ δmax. Finally node i performs offset compensation

as follows:

ᾱi(k) = ᾱ(k)− [1− ρα][τ̄j(kh − δh)− ᾱi(k)] (9.8)

with the assumption that the interval between the transmission of two consecutive offset

compensation package is upper bounded by

kh+1 − kh ≤ ∆thmax (9.9)

The above package-based algorithms proposed an interesting paradigm but extensive

communication and packages exchange make them more complex to be adapted in a

sensor network with sparse resources like energy and memory. These motivated some

work in pulse-couple clock synchronization, allowing sensors to exchange zero-bit pulse

and synchronize their clock with local information from its neighbor’s pulse.
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In Fugger et al. [2015] a pulse-coupled clock synchronization algorithm is proposed.

They solve the open question posed by Simeone and Spagnolini [2007], which requires

solving a clock synchronization in dynamic networks in the presence of non-zero clock

drift. This solution reduces the assumption that the network stays connected over time.

They proposed a correcting term with which all nodes adjust their clock and predict the

next pulse time. The next time pulse is given as:

ti(k + 1) = ti(k) + Ti(k + 1) + corr1(k + 1) (9.10)

where (1− ρ) ≤ Ti(k + 1) ≤ (1 + ρ) and the correcting term corr1
i (k + 1) is a weighted

average of the time differences of received round k pulses given by

corr1
i (k + 1) = [εk+1]

∑
j∈Ini(k+1)

[Wk+1]i,j(tj(k)− ti(k)) (9.11)

Where the Weights [Wk+1]i,j ∈ [0,1] for j ∈ Ini(k + 1) and Weight εk+1 ∈ [0, 1). In

Fugger et al. [2015], a round number k is assumed to be known by all sensors even

though the round estimated by different sensors can be slower or faster depending on

the sensor clock; this may not always be realistic. In addition to that, their is need for

drift compensation to compliment the correcting term corr1
i (k + 1).

9.2.1 Time Wheel Algorithm

Han [2018] improves the clock synchronization algorithm presented by Fugger et al. [2015]

and proposed an algorithm named a time wheel algorithm. In this algorithm, the round

numbers are assumed not to be known by sensors; instead, each sensori broadcast a value

Pi∈Z, 0 ≤ P ≤ pmax − 1. The value pi serves a similar role as ki, which increase every

round, except when pi reaches pmax, it returns to zero for the next round. Han [2018]

also proposed a drift compensation technique to reduce clock drift due to the mobility,
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ambient conditions, or manufacturing defects. The time wheel algorithm operates in

rounds. Sensori broadcast a pulse pi to its neighbors at the beginning of round ki. Upon

reception of the pulses from its neighbors j, sensori records the local time of the pulses,

converges the timing and switched to the next round. A sensor i uses a circular buffer

called time wheel wi to record the pulse pj from neighboring sensor j. The structure

of time wheel is depicted on Figure 9.1. Each sensor executes the time wheel algorithm

Figure 9.1: When sensor i receives a pulse with a tag pj from sensor j, it appends the
physical local clock time ci to the list of pj-th slot of wi

divided into three parts: initial function, receive function, and state transition function.

Each part is triggered by different events. The most important part of the consideration

in our study is the Timer set function of the algorithm. The timer set function is used

to estimate the counter value for the next pulse τ(k + 1) as follows:

τi(k + 1) = τi(k) +R+ corr1
i + corr2

i , (9.12)

Where R is a constant representing the time period between the next and present rounds.

Though all sensors use the same value of R but the next round pulse τ(k+1) may not be

the same due to the frequency variations. So the correcting terms corr1
i and corr2

i are

the adjustment of the clock offset, and the clock drifts to reduce the clock skew. Note

that the correcting term corr2
i is the improvement proposed by Han [2018] on the work
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of Fugger et al. [2015].

9.2.1.1 Offset Compensation

To compensate for the clock offset, sensori estimates its correcting term as a time differ-

ence between the average pulse of the neighboring sensors and the pulse of sensori itself

in round k. This can be represented as follows:

Corr1
i (k) = 1

|Ini(k + 1)|
∑

j∈Ini(k+1)
(τj(k)− τi(k)) (9.13)

Where |Ini(k + 1)| represents the number of incoming pulses at the k + 1 − th round

and ∑j∈Ini(k+1) (τj(k) - τi(k) is evaluated by averaging the values in the current slot

of time wheel wi. We observe that using simple averaging to estimate correcting offset

does not provide stable estimates due to the unexpected changes in clock drift due to

the mobility and ambient conditions. Consequently, we propose a learning technique

that utilizes previous rounds history to estimate a more accurate value of the correcting

term. Details of our proposed algorithm is presented in the next Chapter.

9.2.1.2 Drift compensation

After an offset compensation, it is assumed that all sensors converge their time to a

common value but possibly with different clock cycles. To make sure all sensors has

common clock cycle, an estimate of the time period R (in terms of the number of clock

ticks) (R + corr2
i (k)) in the current round is derived as follows:

corr2
i (k) =

(
τi(k) + corr1

i (k)
) 1
R
−R (9.14)

The correcting term in Equation (9.14) must be delayed until after some rounds l oth-

erwise, the algorithm would not converge. Additionally, after a long run with the drift

correction, the algorithm is affected by inertia due to the averaging nature of the correct-
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ing term corr2
i (k). To get rid of these limitations, we proposed a new drift compensation

technique, which utilizes the present and previous time to estimate the value of a correct-

ing term for drift compensation, which does not necessarily need to be delayed for some

number of rounds. Hence reduces the clock drift, offset, and improve clock precision.

The technique also corrects the impacts of inertia associated with the correcting term

in Equation (9.14)

9.3 Conclusion

We present an overview of the existing distributed clock synchronization algorithms.

We also review the existing state-of-the-art techniques widely adopted in the existing

works. For each method, we discuss its strength, shortcomings, and where it needs

improvements. We note that clock synchronization is required to implement energy-

efficient and fault-tolerant protocols in a dynamic network. Therefore, synchronization

algorithms that reduce the clock skew and offset in a dynamic network in the presence

of scarce resources are of tremendous need. The next Chapter introduces our proposed

pulse-coupled synchronization algorithm.



Chapter 10

Proposed Algorithm

This Chapter presents our solution for the clock synchronization problem. It describes

the system model for the proposed algorithm. A detailed description of the synchroniza-

tion functions, offset compensation, drift compensation, adaptive decay factor selection,

and mathematical analysis of the new algorithm is presented.

10.1 Problem Description

The goal of clock synchronization is to make the virtual clock signal start at different

sensors at the same time; the virtual clock of the sensors should be synchronized. The

instantaneous difference between the readings of any two clocks (ticks) is called their

skew. If the skew is null (and stays null), then the synchronization is achieved, and all

the network nodes share the same common time.

The local physical clocks of the sensors may not run at the same frequency due

to the ambient conditions, mobility, and manufacturing defects. The most common

phenomenons that cause clocks to run at different frequencies and eventually diverge

from the reference clock or their neighbors is the clock drift (see Fig. 10.1), the time

difference between the clock period of node i and the clock period of node j at round k,

105
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Figure 10.1: Virtual clocks of node i and j. Clock skew accumulates and grows after
several rounds if no correction is applied, eventually the clocks of the nodes would
diverge.

and is given by drift(k) = |Ti(k)− Tj(k)|, where Tx(k) is the period of node x at update

round k. The accumulated drift (time difference between clock periods or difference in

clock frequency) modifies the skew. Figure 10.1 shows the evolution of virtual clocks of

nodes i and j. Notice the growth of the clock skew on each round; it makes the clocks

of the nodes diverge if synchronization is not applied. We need to minimize the clock

drift and the clock skew as much as possible to enable clocks of the nodes to runs on the

same frequency.

10.2 System Model

We consider a finite set of nodesN = {1, 2, . . . , N} communicating by exchanging pulses.

Each node is equipped with an imperfect local clock evolving in the time-base τ = [0,∞).

An environment is modeled by a set of scenarios (communication graphs) Gt = (N , Et),

t ∈ τ . Where N is a set of nodes and Et is a set of directed edges. The evolution of

different communication graphs at different time instant is considered as mobility. Node i
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receives messages from node j at time t only if a relation (i, j) ∈ Et exist between the

node i and node j. We consider execution of an algorithm on a scenario Gt as sequence

of events (ek)k≥0 triggered at nodes (ik)k≥0 in the current states (sk)k≥0 at times (tk)k≥0.

At the initial state, each node triggers its first event at time t = 0. The state transition

function maps a state and an event to a new state. Then, all nodes move to the next

state from its current state (s 7→ s′) using the state transition function. A node uses the

sending function to send a pulse to its neighbors; likewise, it uses the receiving function

to receives pulses from the neighboring nodes. The received pulses changes the node’s

internal state.

Assumptions

1. At any time instant t, a pulse sent by node i is received by node j only if (i, j) ∈ Et.

2. Time between sending and receiving a pulse is assumed to be zero. The assumption

is reasonable if the message contains only a zero bits.

3. All nodes are equipped with a local physical clock µi(c). The variable c is a counter

that is initiated to 0 increases over time whenever the local physical clock ticks

while µi is a function that subsumes manufacturing defects, hardware differences,

and different temperatures for quartz oscillators. We assumed the local physical

clock tick to be 1. The sensor i read real-time ti as follows:

ti(k) =
τi(k)∑
c=1

µi(c) (10.1)

Assuming that

(1− %)µ ≤ µi(c) ≤ (1 + %)µ (10.2)

where % represents the bound of the clock period and µi(c) is the time period of

the clock cycle.
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4. Count-down timer ∆ci: each node is equipped with a count-down timer ∆ci, de-

creasing whenever the counter ci increases. The value of ∆ci is set using the timer

set function; whenever ∆ci reaches 0, an event etim∈ ε is triggered. Then, ∆ci

stays at zero until it is set up again.

10.3 Synchronization AlgorithmWith an Exponential Weight

(SAWEW)

This section introduces our proposed algorithm and how it performs offset compensation,

drift compensation, and dynamic adaptive weight selection. Our algorithm adopted the

time wheel round structure presented in Han [2018]. Firstly, nodes start in round k = 0

and broadcast a pulse in round k−1, wait for the time duration Ti(k) (R) before moving

to the next round. All nodes use the same value for R, but the waiting time and next

round start time for each node may not be the same due to the manufacturing defects

and clock drifts. Therefore, pulses of the nodes are not perfectly synchronized with each

other and hence require correction.

Each sensor i runs Algorithm 2, which has three main functions triggered by different

events. See Section 10.3.1 for more detail.

10.3.1 Algorithm description

Algorithm 2 consists of three main parts: Initial function, receive function, and state

transition function. Different events trigger each function; these events are the ebeg

triggered at the beginning of the local algorithm, erec triggered when a sensor receives

a message, and etim is triggered when the timer in a sensor reaches a certain value.
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Algorithm 2 State transitions for node i
Initial function

1: if ebeg then
2: wi = TimeWheel(Smax)
3: pi = 0
4: ci = 0
5: Ptb = PreTimeBuffer(Gt)
6: sending_function(pi)

Receive function
7: if erec then
8: Obtain pj from rec
9: Append ci to the list in pj

10: Append ci to the i− th slot of P tb
11: τ(k + 1) = timer_set_function(wi, τ(k))
12: ∆ci = τ(k + 1) − ci

State transition function
13: if etim then
14: Clear the pi− th slot
15: Pi = (Pi + 1) mod (Pmax)
16: sending_function(pi)

10.3.1.1 Initial function

At the beginning (lines 1–5), when an event is an ebeg (line 1), node i initializes an empty

timewheel wi (line 2) with a maximum slot Smax then reset round number pi to zero

(line 3) and initiate local physical clock counter at 0 (line 4). In (line 5) it initializes an

empty previous time buffer and broadcasts a pulse Pi to all its neighbors in (line 6).

10.3.1.2 Receive function

At (line 7) When an event is a received event (erec), the node i receives a pulse from

a node j (line 8), it appends the current value of ci to the j-th slot of the time wheel

(line 9) and also appends ci to the i-th slot of previous time buffer (ptb) (line 10) then

predicts the time period for its next pulse (line 11) and set its timer to τi(k+1) - ci (line

12). The detail of the timer set function is in section 10.3.2. At this stage, the iterative

process starts. Node i waits for the time period of its timer; whenever its timer reaches
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zero, it executes its state transition function and starts the next round.

10.3.1.3 State transition function

The Node i empties the current slot pi since its values are used and no more needed in

the next round (line 14). It updates the value of pi (line 15) and finally broadcast pulse

Pi in (line 16).

10.3.2 Timer Set Function

In Algorithm 2, the timer set function estimates the value of count down timer ∆ci for

the next round τi(k + 1) as follows:

τi(k + 1) = τi(k) +R+ C′′esi(k) + Cdri(k), (10.3)

where R is the constant representing the time between the next and present rounds,

C′′esi(k) and Cdri(k) are the adjustment of time to compensate for the clock offset and

drift.

10.3.3 Offset Compensation

The purpose of this stage is to make all nodes converge their clock time to a common

consensus value. In each round k, node i broadcasts a pulse to its neighbors j and receives

its neighbors’ pulses at the same round; using the received pulses node i calculates and

compensates its clock offset using Equation (10.4).

C′esi(k) = λ Cavgi(k) + (1− λ)C′esi(k− 1), (10.4)

where C ′avgi
(k) is the average time difference between pulses of the neighboring nodes j

and the pulse of the node i in round k, C ′esi
(k−1) is the exponentially weighted estimate

at the previous round k− 1 while λ represents the adaptive weight factor which controls
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the closeness of the interpolated value C ′esi
(k) to the most recent estimate. The values of

λ lies between 0 and 1: 0< λ <1. Observe that, Equation (10.4) is a Single Exponential

Smoothing, which is applicable for time series with low fluctuations. In a highly dynamic

environment, clock drift due to the ambient condition can change frequently. To address

this phenomenon, we derive the Double Exponential Smoothing (DES) that is used for

our analysis as Equation (10.5). The DES is represented in the Equation (10.5) as

C ′′es(k).

C ′′es(k) = λC ′es(k) + (1− λ)C ′′es(k − 1). (10.5)

We can see that in Equation (10.5) the C ′′es(k) is an exponential weighted estimated of

the single exponential smoothing C ′es(k). It ensures accurate prediction even when the

time series shows trends, as in the case when a clock frequently drifts due to the change

in ambient condition. Similarly, Cavgi(k) in Equation (10.4) is computed as

Cavgi(k) = 1
|Ini(k + 1)|

∑
j∈Ini(k+1)

(τj(k)− τi(k)) (10.6)

Where |Ini(k + 1)| represents the number of incoming pulses at the k + 1 − th round

and ∑j∈Ini(k+1) (τj(k) - τi(k) is evaluated by averaging the values in the current slot of

time wheel wi. Equation (10.4) is recursively written as Equation (10.7)

C ′esi
(k) = λ

k−1∑
n=0

(
(1− λ)nCavgi(k − n)

)
+ (1− λ)kC ′esi

(k − k) (10.7)

Equation (10.7) shows that C ′esi
(k) is an exponentially weighted average of all previous

corrections. Refer to Appendix D for the derivation of Equation (10.7).

Note that after the offset compensation, all network clocks have converged to a common

clock, possibly with different clock cycles due to the frequency variation (drift errors)
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as in Equation (10.8).

ti(k) + C ′esi
(k) ≈ tj(k) + C ′esj

(k). (10.8)

10.3.4 Drift Compensation

In this stage, we need to ensure all nodes clocks converge their clock rate to a common

global clock cycle, this is achieved by correcting the time period Ti(k + 1) for all nodes

such that T global ≈ Ti(k+1) + Cdri
≈ Tj(k+1) + Cdrj

Where Cdri
is the drift correction

for the node i. We obtain the approximation of the common clock cycle T global as

T global = λ
(
τi(k)− τi(k − 1)

)
+
(
(1− λ)(R)

)
(10.9)

Where λ denotes the adaptive weight factor, R is the constant which represents the time

period between current round (k) and next round (k + 1), τi(k) and τi(k − 1) are the

time estimates for the present round k and previous round k − 1 respectively. Finally,

the drift correction Cdri
(k) is computed in Equation (10.10)

Cdri(k) =
(
λ(τi(k)− τi(k − 1)) + ((1− λ)(R))

)
−R (10.10)

10.3.5 Adaptive Exponential Weight selection

This stage describes how the proposed algorithm selects the best value of adaptive weight

factor (λ) for prediction. This parameter plays a vital role in the performance of the

algorithm; it dictates the closeness of the predicted value to the most recent estimate.

Our approach was motivated by several research works, which show the influence of

recent clock skew more than the prior ones due to the change in ambient conditions

Sommer and Wattenhofer [2008]; Simeone and Spagnolini [2007]; Aissaoua et al. [2017].

Our algorithm operates in two stages; the first state is called learning stage while
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Figure 10.2: Adaptive λ selecting phases. The algorithm executes the learning stage and
prediction stage concurrently. The value of λ estimated in the learning stage is used in
the prediction stage for prediction.

the second stage is the prediction stage. Both stages execute concurrently such that

the learning stage only evaluates the best value of λ and forwards it to the prediction

stage for onward prediction. Note that learning occurs only at specific round intervals

referred to as learning period. During the learning period, the algorithm maintains the

existing λ value until the end of the current learning stage; it then replaces the existing

λ with the new value only when the new λ value differs from the existing value. Refer

to Figure 10.2 for a pictorial representation of the stages.

To evaluate the best value of λ at each learning interval, we generate 49 different

values of λ within the interval [0, 1: 0.02] with 0.02 as the first value and 0.98 as the

last value. For each value, we generate time series, and for each series, we calculate the

Mean Squared Error (MSE), then we choose the λ value with small MSE to minimize

the prediction errors and forward it to the prediction stage for onward prediction. The

MSE is used to measure the prediction accuracy of the algorithm with different λs.

Equation (10.11) presents MSE.

MSE(k) =
k∑
i=0

(xk − (x̄)(k))2

k
(10.11)

where x is the observed value in round k, x̄ is the predicted value of DES in the same

round.
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10.4 Mathematical Analysis

This section analyze the effect of Synchronization AlgorithmWith an Exponential Weight

(SAWEW) in two instances

1. With only C′esi(k) (offset compensation)

2. With both C′esi(k) and Cdri(k) (offset + drift compensation)

Before we begin the main proof let us understand some of the system properties

1. The real-time ti and sensor i local clock counter is related by

ti(k) =
τi(k)∑
c=1

µi(c) (10.12)

where τi(k) is the local physical clock counter for sensor i at the time of k-th

pulse broadcast. ti(k) is the real-time of k-th pulse broadcasted by sensor i while

µi(c) represents time period of clock cycle. The time period of clock cycle µi(c) is

bounded by the inequality

(1− %)µ ≤ µi(c) ≤ (1 + %)µ (10.13)

2. The local tick number of sensor i at which it receives the pulse of sensor j at round

k is denoted by τ ij(k). With assumption of negligible or zero transmission delay

between sensor i and sensor j, sensor i reads the clock timing of the pulse from

sensor j within the bound.

τ i
j (k)−1∑
c=1

µi(c) ≤ tj(k) ≤
τ i

j (k)∑
c=1

µi(c) (10.14)

Note that, Equation (10.14) holds only when sensor i receives pulse from sensor j

in round k.
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Lemma 1. Local clock difference τ ji (k) - τi(k) and the time difference tj(k) - ti(k) is

related as

τ ji (k)− τi(k) = (tj(k)− ti(k)))/βji (k) + αji (k), (10.15)

where βij ∈ [ µ(1- %), µ(1+ %)] and αij(k) ∈ [-1, 1].

Proof. See Appendix A

Lemma 2. The local clock difference τ ji (k+ 1) - τi(k) and the time difference tj(k+ 1)

- tj(k) is related as

τi(k + 1)− τi(k) = (ti(k + 1)− ti(k)))/βi(k) + αi(k), (10.16)

where βi ∈ [ µ(1- %), µ(1+ %) ] and αi(k) ∈ [-1, 1].

Proof. See Appendix B

10.4.1 Convergence Analysis of SAWEW with C′esi(k) only

Let’s begin with some basic concepts considered in the proof. The state variable x(k) is

control by linear recursive law define as

x(k) = A(k).x(k − 1). (10.17)

where A(k) is a row stochastic matrix whose entries are all non-negative and its row

sums are all 1. A(k) is given by

A(k) =
n∑
j=1

Ai,j(k) = 1. (10.18)

It can also be written in terms of product matrix as:

P (k) = A(k).A(k − 1)......A(1). (10.19)
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Now, considering only C′es(k), SAWEW algorithm estimates its counter value for the

next pulse τ(k + 1) recursively as:

τi(k + 1)− τi(k) = λ
k−1∑
n=0

(
(1− λ)n( 1

|Ini(k − n)|
∑

j∈Ini(k−n)
τ ij(k − n)− τi(k − n))

)
+R

(10.20)

Where λ is a weight factor, R is the original number of clock ticks between pulses.

We use the definition of Dobrushin semi-norm define on the real vector x to calculate

maximum pulse skew differences of sensors in round k.

δ(x) = max
i,j
|xi − xj | . (10.21)

We set the vector x = t(k). where t(k) is a column vector, and also set t(k) = [t1(k),

.....,tn(k)]T . With help of Dobrushin semi-norm properties under the following condition

define on vector x and y∈Rn, and any scaler m.

• 1. δ(x) ≥ 0,

• 2. δ(mx)= |m|δ(x), and

• 3. δ(x + y) ≤ δ(x) + δ(y)

We calculate an upper bound of the maximum pulse skew. The network Gt is interpreted

as A(k) in order to estimate the averaging operation of sensors. A(k) is represented as:

A(k)i,j =


λ
∑k−1
n=0

(
(1− λ)n 1

|Ini(k−n)|

)
+ (1− λ)k 1

|Ini(0)| (i,j) ∈ V

0 else
(10.22)

Lemma 3. Matrix A(k) is stochastic since its row summation∑n
j=1Ai,j(k) is equal to

one for 1≤ j ≤ n.

Proof. See Appendix E
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The Dobrushin semi-norm is defined on the real matrix A as follows:

δA = sup
x∈Rn,δ(x)6=0

δ(Ax)
δ(x) . (10.23)

Lemma 4. Equation (10.20) can be transform to real time in matrix form as

t(k + 1) = A(k)t(k) + b(k) + c(k), (10.24)

where A(k) represent weighted adjacency matrix, which satisfy

Ai,j(k) =


λ
∑k−1
n=0

(
(1− λ)n 1

|Ini(k−n)|

)
+ (1− λ)k 1

|Ini(k−k)| ifj ∈ Ini(k − n)

0 else,
(10.25)

bi(k) = βi(k)
βji (k)

(
A(k)t(k)i − t(k)i

)
, (10.26)

ci(k) = (−αi(k) + αji (k) +R)βi(k). (10.27)

with existence of some βi(k), βji (k) ∈ [ µ(1- %), µ(1+ %) ] and αi(k), ᾱi(k) ∈ [-1, 1].

Proof. Substitute the value of τ ji (k) - τi(k) from Lemma 2 in Equation (10.20), we get

τi(k + 1)− τi(k) = λ

k−1∑
n=0

(
(1− λ)n 1

|Ini(k − n)|

∑
j∈Ini(k−n)

(τ i
j (k − n)− τi(k − n)

)
+R

= λ

k−1∑
n=0

(
(1− λ)n 1

|Ini(k − n)|

∑
j∈Ini(k−n)

(tj(k − n)− ti(k − n))/βi
j(k − n) + αj

i (k − n)
)

+R

= λ

k−1∑
n=0

(
(1− λ)n 1

|Ini(k − n)|

∑
j∈Ini(k−n)

(tj(k − n)− ti(k − n))/βi
j(k − n)

)
+

λ

k−1∑
n=0

(
(1− λ)n 1

|Ini(k − n)|

∑
j∈Ini(k−n)

αj
i (k − n)/

)
+R (10.28)
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The lower bound can be calculated by using largest value of βji (k) and smallest value of
αji (k) i.e µ(1+ %) and -1. substituting these values gives

τi(k + 1)− τi(k) = λ

k−1∑
n=0

(
(1− λ)n 1

|Ini(k − n)|

∑
j∈Ini(k−n)

(tj(k − n)− ti(k − n))/µ(1 + %)
)
−

1
|Ini(k − n)|

∑
j∈Ini(k−n)

1
)

+R

= λ

k−1∑
n=0

(
(1− λ)n 1

|Ini(k − n)|
1

µ(1 + %)

∑
j∈Ini(k−n)

(tj(k − n)− ti(k − n))
)
− 1 +R

(10.29)

The upper bound can be calculated using smallest value of βji (k) and largest value of αji (k) i.e

µ(1-%) and 1. The result is Equation (10.30)

τi(k + 1)− τi(k) = λ

k−1∑
n=0

(
(1− λ)n 1

|Ini(k − n)|
1

µ(1− %)
∑

j∈Ini(k−n)

(tj(k − n)− ti(k − n))
)

+ 1 +R

(10.30)

Combining Equation (10.29) and Equation (10.30) shows the existence of β̄ij ∈ [ µ(1- %), µ(1+

%)] and ᾱij(k) ∈ [-1, 1] such that

τi(k + 1)− τi(k) = λ

k−1∑
n=0

(
(1− λ)n 1

|Ini(k − n)|βji (k)

∑
j∈Ini(k−n)

(tj(k − n)− ti(k − n))
)

+ αji (k) +R

(10.31)
Combining Lemma 2 and Equation (10.31), gives

τi(k + 1)− τi(k) = λ

k−1∑
n=0

(
(1− λ)n βi(k)

|Ini(k − n)|βj
i (k)

∑
j∈Ini(k−n)

(tj(k − n)− ti(k − n))
)

+
(
αj

i (k) + αj
i (k) +R

)
βi(k)

(10.32)

Let γi(k) = ( βi(k)
β̄j

i
(k) ) - 1 ). where γi(k) is the minimal positive entry for the matrix A(k)

putting γi(k) in Equation (10.32) and adding ti(k) on both sides of the Equation (10.32) gives

ti(k + 1) = λ

k−1∑
n=0

(
(1− λ)ntj(k − n)

)
+ λ

k−1∑
n=0

(
(1− λ)n γi(k − n)

|Ini(k − n)|

∑
j∈Ini(k−n)

(tj(k − n)− ti(k − n))
)

+

(
− αj

i (k) + αj
i (k) +R

)
βi(k) (10.33)
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ti(k + 1) = (A(k)t(k))i + γi(k)
(

(A(k)t(k)i − ti(k))
)

+
(
− αji (k) + αji (k) +R

)
βi(k)

(10.34)

or in vector form as Equation (10.24)

Lemma 5. Semi-norm of b(k) is

δ(b(k)) = δ

((
βi(k)
βij(k)

− 1
)

((A(k)t(k))− t(k))
)
≤ 4%

1− % + δ(k) (10.35)

where δ(k) represent clock skew δ(t(k)) in round k.

Proof. Using Dobrushin semi-norm define on real vectors X by

δ(X) = maxi,j |xi − xj | . (10.36)

Since A(k) is a stochastic matrix, i.e, ∑j [A(k)]i,j = 1. suppose we have ti1 and ti2 such

that δ(k) = (ti1(k) - ti2(k)), then ti2(k) ≤ A(k)t(k) ≤ ti1(k), which implies

δ ((A(k)t(k))− t(k)))i ≤ δ(k) (10.37)

The value ( ( βi(k)
β̄j

i (k)
) - 1) is within the bound

− 2%
1 + %

≤

βi(k)
β̄ij

)− 1

 ≤ + 2%
1− % (10.38)

Considering Equation (10.37) and Equation (10.38) with Equation (10.26), we get Equa-

tion (10.39)

− 2%
1− %δ(k) ≤ bi(k) ≤ 2%

1 + %
δ(k) (10.39)

which means,

δ(b(k)) ≤ maxi1bi1(k)−mini2bi2(k) ≤ 4%
1− %δ(k) (10.40)
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Lemma 6. By assuming the original number of clock ticks between pulses R>2, the

maximum difference of the vector c(k) is

δ(c(k)) ≤ (4 + 2%R)µ (10.41)

Proof. If R >2, we have ci(k) ≥0 in Equation (10.27), therefore ci(k) is within the bound:

(−2 +R)µ(1− %) ≤ ci(k)) ≤ (2 +R)µ(1 + %) (10.42)

Which shows that

δ(c(k)) ≤ max
i1,i2
|ci1(k)− ci2(k)|

≤ (2 +R)µ(1 + %)− (−2 +R)µ(1− %)

= (4 + 2%R)µ.

(10.43)

Theorem 1. The clock skew δ(k) is within a bound:

δ(k) ≤
(

1− γ + 4%
1− %

)k
δ(0) + (4 + 2%R)µ(1− (1− γ)k

γ
(10.44)

Proof. Transforming Equation (10.20) to precision domain using Lemma 6 and Lemma

7 we get:

δ(k + 1) ≤
(
δ(A(k)) + 4%

1− %)

)
δ(k) + δ(c(k)) (10.45)
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The right hand side of Equation (10.44) gives:

δ(k) ≤
k−1∏
n=0

(
δ(A(k)) + 4%

1− %

)
δ(0) +

k−1∑
l=0

(k−1∏
n=l

δ(A(n))δ(c(k))
)

=
(

1− γ + 4%
1− %

)k
δ(0) + (4 + 2%R)µ

k−1∑
l=0

(1− γ)k−l

≤
(

1− γ + 4%
1− %

)k
δ(0) + (4 + 2%R)µ(1− (1− γ)k

γ
,

(10.46)

Assume γ > 4%
1−% , and let k → ∞ and find

lim
k→∞

δ(k) ≤ (4 + 2%R)µ
γ
. (10.47)

10.4.2 Convergence Analysis of SAWEW with C′esi(k) + Cdri(k)

Lemma 7. Equation (10.20) can be written as Equation (10.48) considering Cdri(k)

τi(k + 1)− τi(k) =
(
λ

k−1∑
n=0

(1− λ)n
(

(
1

|Ini(k − n)|

∑
j∈Ini(k−n)

τ i
j (k − n)− τi(k − n))−

(
1

|Ini(k − 1− n)|

∑
j∈Ini(k−1−n)

τ i
j (k − 1− n)− τi(k − 1− n))

))
λ+ (1− λ)R

(10.48)

Lemma 8. Equation (10.48) can be reformulated in matrix form as

t(k + 1) = A(k)t(k) + b(k) + c(k) (10.49)

With

Ai,j(k) =


λ
∑k−1
n=0

(
(1− λ)n 1

|Ini(k−n)|

)
ifj ∈ Ini(k − n)

0 else
(10.50)
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and

bi(k) = λβi(k)
βji (k)

((
A(k)t(k)i − t(k)i

)
−
(
A(k − 1)t(k − 1)i − t(k − 1)i

))
(10.51)

and

ci(k) = (−αi(k)− αi(k − 1) + λ(αji (k)) + λ(αji (k − 1)) + (1− λ)R)βi(k) (10.52)

with existence of some βi(k), βji (k) ∈ [ µ(1- %), µ(1+ %) ] and αi(k), ᾱi(k) ∈ [-1, 1].

Proof. Substitute the value of τ ji (k) - τi(k) from lemma 2 in Equation (10.48), we get

τi(k + 1)− τi(k) =
(
λ

k−1∑
n=0

(1− λ)n
(

(
1

|Ini(k − n)|

∑
j∈Ini(k−n)

τ i
j (k − n)− τi(k − n))−

(
1

|Ini(k − 1− n)|

∑
j∈Ini(k−1−n)

τ i
j (k − 1− n)− τi(k − 1− n))

))
λ+ (1− λ)R

=
(
λ

k−1∑
n=0

(1− λ)n(
1

|Ini(k − n)|
(tj(k − n)− ti(k − n))/βi

j(k − n) + αj
i (k − n)−

(
1

|Ini(k − 1− n)|
(tj(k − 1− n)− ti(k − 1− n))/βi

j(k − 1− n) + αj
i (k − 1− n)

)
λ+ (1− λ)R

=
(
λ

k−1∑
n=0

(1− λ)n(
λ

|Ini(k − n)|
(tj(k − n)− ti(k − n))/βi

j(k − n) +
λ

|Ini(k − n)|

∑
j∈Ini(k−n)

αj
i (k − n)−

(
λ

|Ini(k − 1− n)|
(tj(k − 1− n)− ti(k − 1− n))/βi

j(k − 1− n) +
λ

|Ini(k − 1− n)|

∑
j∈Ini(k−1−n)

αj
i (k − 1− n)

)
+ (1− λ)R

(10.53)

The lower bound can be calculated by using largest value of βji (k) and smallest value of
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αji (k) i.e µ(1+ %) and -1. substituting the values in Equation (10.53) gives

τi(k + 1)− τi(k) =
(
λ

k−1∑
n=0

(1− λ)n(
λ

|Ini(k − n)|
(tj(k − n)− ti(k − n))/(1 + %)µ−

λ

|Ini(k − n)|

∑
j∈Ini(k−n)

1−

(
λ

|Ini(k − 1− n)|
(tj(k − 1− n)− ti(k − 1− n))//(1 + %)µ−

λ

|Ini(k − 1− n)|

∑
j∈Ini(k−1−n)

1
)

+ (1− λ)R

=
(
λ

k−1∑
n=0

(1− λ)n(
λ

|Ini(k − n)| (1 + %)µ
(tj(k − n)− ti(k − n))−

(
λ

|Ini(k − 1− n)| (1 + %)µ
(tj(k − 1− n)− ti(k − 1− n))

)
+ λ(−1) + λ(−1) + (1− λ)R

=
(
λ

k−1∑
n=0

(1− λ)n(
λ

|Ini(k − n)|βj
i (k − n)

(tj(k − n)− ti(k − n))−

(
λ

|Ini(k − 1− n)|βj
i (k − 1− n)

(tj(k − 1− n)− ti(k − 1− n))
)
− λαj

i (k)− λαj
i (k − 1) + (1− λ)R

(10.54)

With similar derivation, the upper bound can be calculated using smallest value of βji (k)

and largest value of αji (k) i.e µ(1-%) and 1. The result is Equation (10.55)

τi(k + 1)− τi(k) =
(
λ

k−1∑
n=0

(1− λ)n( λ

|Ini(k − n)|βji (k − n)
(tj(k − n)− ti(k − n))−

( λ

|Ini(k − 1− n)|βji (k − 1− n)
(tj(k − 1− n)− ti(k − 1− n))

)
+ λαji (k) + λαji (k − 1) + (1− λ)R

(10.55)

Combining Equation (10.54) and Equation (10.55) shows the existence of β̄ij ∈ [ µ(1-

%), µ(1+ %)] and ᾱij(k) ∈ [-1, 1] such that

τi(k + 1)− τi(k) =
(
λ

k−1∑
n=0

(1− λ)n( λ

|Ini(k − n)|βji (k − n)
(tj(k − n)− ti(k − n))−

( λ

|Ini(k − 1− n)|βji (k − 1− n)
(tj(k − 1− n)− ti(k − 1− n))

)
+ λαji (k) + λαji (k − 1) + (1− λ)R

(10.56)
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Combining lemma 1 and Equation (10.56) resulted to Equation (10.57)

ti(k + 1)− ti(k) =
(
λ

k−1∑
n=0

(1− λ)n( λβi(k)
|Ini(k − n)|βji (k − n)

(tj(k − n)− ti(k − n))−

( λβi(k)
|Ini(k − 1− n)|βji (k − 1− n)

(tj(k − 1− n)− ti(k − 1− n))
)

+
(
− (αi(k)− αi(k − 1) + λαji (k) + λαji (k − 1) + (1− λ)R

)
βi(k)

= λβi(k)
βji (k)

(
λ

k−1∑
n=0

(1− λ)n( 1
|Ini(k − n)| (tj(k − n)− ti(k − n))−

( 1
|Ini(k − 1− n)| (tj(k − 1− n)− ti(k − 1− n))

)
(
− (αi(k)− αi(k − 1) + λαji (k) + λαji (k − 1) + (1− λ)R

)
βi(k)

(10.57)

Let γi(k) = λβi(k)
βj

i (k)
putting γi(k) in Equation (10.57) and adding ti(k) on both sides of the Equation gives

ti(k + 1) =
(
λ

k−1∑
n=0

(1− λ)n 1
|Ini(k − n)|

(tj(k − n)
)

+ γi(k)λ
k−1∑
n=0

(1− λ)n
(

(
1

|Ini(k − n)|
(tj(k − n)− ti(k − n))−

(
1

|Ini(k − 1− n)|
(tj(k − 1− n)− ti(k − 1− n))) + (−(αi(k)− αi(k − 1) + λ(αj

i (k)
)

+(
− (αi(k)− αi(k − 1) + λ(αj

i (k)) + λ(αj
i (k − 1)) + (1− λ)R

)
βi(k)

=
(
λ

k−1∑
n=0

(1− λ)n 1
|Ini(k − n)|

(tj(k − n)
)

+ λ

k−1∑
n=0

(1− λ)n
(

(
γi(k)

|Ini(k − n)|
(tj(k − n)− ti(k − n))−

(
γi(k)

|Ini(k − 1− n)|
(tj(k − 1− n)− ti(k − 1− n))

)
+
(
− (αi(k)− αi(k − 1) + λ(αj

i (k)) + λ(αj
i (k − 1)) + (1− λ)R

)
βi(k)

(10.58)

or in vector form

t(k + 1) = A(k)t(k) + γi

(
(A(k)t(k)i − t(k)i)− (A(k − 1)t(k − 1)i − t(k − 1)i)

)
+(

− (αi(k)− αi(k − 1) + λ(αji (k)) + λ(αji (k − 1)) + (1− λ)R
)
βi(k) (10.59)
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Lemma 9. Semi-norm of b(k) is

δ(b(k)) = δ

((
λβi(k)
βij(k)

− 1
)

((A(k)t(k))− t(k))
)
≤ 4%λ

1− % + δ(k) (10.60)

where δ(k) represent clock skew δ(t(k)) in round k.

Proof. Using Dobrushin semi-norm define on real vectors X by

δ(X) = maxi,j |xi − xj | . (10.61)

Since A(k) is a stochastic matrix, i.e, ∑j [A(k)]i,j = 1. suppose we have ti1 and ti2 such

that δ(k) = (ti1(k) - ti2(k)), then ti2(k) ≤ A(k)t(k) ≤ ti1(k), which implies

δ ((A(k)t(k))− t(k)))i ≤ δ(k) (10.62)

The value ( ( λβi(k)
β̄j

i (k)
) - 1) is within the bound

− 2%λ
1 + %

≤

λβi(k)
β̄ij

)− 1

 ≤ + 2%λ
1− % (10.63)

Considering Equation (10.62) and Equation (10.63) with Equation (10.51), we get Equa-

tion (10.64)

− 2%λ
1− %δ(k) ≤ bi(k) ≤ 2%λ

1 + %
δ(k) (10.64)

which means that,

δ(b(k)) ≤ maxi1bi1(k)−mini2bi2(k) ≤ 4%λ
1− %δ(k) (10.65)

Lemma 10. By assuming the original number of clock ticks between pulses R>2, the
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maximum difference of the vector c(k) is

δ(c(k)) ≤ ((4λ+ 2%R− 2%Rλ)µ (10.66)

Proof. If R >2, we have ci(k) ≥0 in Equation (10.52), therefore ci(k) is within the bound:

(−2λ− λR+R)µ(1− %) ≤ ci(k)) ≤ (2λ− λR+R)µ(1 + %) (10.67)

Which shows that

δ(c(k)) ≤ max
i1,i2
|ci1(k)− ci2(k)|

≤ (2λ− λR+R)µ(1 + %)− (−2λ− λR+R)µ(1− %)

= (4λ+ 2%R− 2%Rλ)µ.

(10.68)

Theorem 2. The clock skew δ(k) is within a bound:

δ(k) ≤
(

1− γ + 4%λ
1− %

)k
δ(0) + ((4λ+ 2%R− 2%Rλ)µ1− (1− γ)k

γ
(10.69)

Proof. Transforming Equation (10.48) to precision domain using Lemma 9 and Lemma

10 we get:

δ(k + 1) ≤
(
δ(A(k)) + 4%λ

1− %)

)
δ(k) + δ(c(k)) (10.70)
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The right hand side of Equation (10.44) gives:

δ(k) ≤
k−1∏
n=0

(
δ(A(k)) + 4%λ

1− %

)
δ(0) +

k−1∑
l=0

(k−1∏
n=l

δ(A(n))δ(c(k))
)

=
(

1− γ + 4%λ
1− %

)k
δ(0) + (4λ+ 2%R− 2%Rλ)µ

k−1∑
l=0

(1− γ)k−l

≤
(

1− γ + 4%λ
1− %

)k
δ(0) + (4λ+ 2%R− 2%Rλ)µ1− (1− γ)k

γ
,

(10.71)

Assume γ > 4%λ
1−% , and let k → ∞ and find

lim
k→∞

δ(k) ≤ ((4λ+ 2%R− 2%Rλ)µ
γ
. (10.72)

In this section, we present a mathematical analysis of the proposed clock synchroniza-

tion algorithm. The upper bound on the clock skew for the offset and drift compensation

have been derived. For the drift compensation, the clock skew is bound above by the

term

lim
k→∞

δ(k) ≤ ((4λ+ 2%R− 2%Rλ)µ
γ
. (10.73)

as derived in Equation (10.72). The term 2%Rλ < 2%R ∀λ except λ = 1. Similarly

λ ≤ 1. It follows that the term (4λ + 2%R − 2%Rλ) < 4 except when λ = 1. Therefore,

the clock skew δ(k) is guaranteed below 4µγ

10.5 Conclusion

This chapter presents our solution to the clock synchronization problems, the system

model and describes the proposed clock synchronization algorithm. We detail the three

main functions of the proposed algorithm: the sending function, receiving function,

and timer function. Additionally, we discussed how the new algorithm performs the
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offset compensation, drift compensation, and adaptive weight factor selection. Finally, a

mathematical analysis and proofs for the clock skew and convergence rate were presented.

In the next chapter, the performance of proposed algorithm is evaluated. The pro-

posed is compared with the previous work by Han [2018] and Fugger et al. [2015] in

static and dynamic settings.



Chapter 11

Simulation Results

This chapter presents the results of extensive simulations conducted under different

settings and parameter values. We compare the proposed algorithm with the previous

works in Fugger et al. [2015], and Han [2018] in terms of different evaluating functions

under static and highly dynamic environment with drifting clocks.

11.1 Simulation Environment

The simulation environment is written in the JAVA programming language and runs on

the Windows 10 operating system with Intel(R) Core(TM) i5-4300M CPU (2.60GHz,

2.60 GHz) processor and 8 gigabyte RAM.

11.1.1 Evaluation Functions

The evaluation functions used to compare the proposed algorithm and the previous works

are as follows:

129



130 11.2. STATIC ENVIRONMENT

11.1.1.1 Maximum Phase Difference

This Maximum Phase Difference function is calculated using Equation (11.1) by consid-

ering pulses from the neighboring sensors j to the target sensor i in the same round k:

δ(k) = Maxi,j |ti(k)− tj(k)| . (11.1)

The value of the function determines how well the nodes in the network synchronized

their clocks and determine the clock skew. We need to have a small and stabilized time

value of the phased difference between rounds for better synchronization.

11.1.1.2 Round Duration

Round duration dictates the strength of an algorithm to tolerate changes in a network

topology. This function is tested under different mobility settings in the simulation.

Equation (11.2) is used to calculate the round duration.

durationi(k) = ti(k + 1)− ti(k). (11.2)

11.1.1.3 Pulse Generation Time

Pulse time shows how different pulses broadcasted by different sensors in each round

converge to a common interval. Pulses broadcasted by the same sensor are shown with

the same color.

11.2 Static Environment

We evaluate the performance of the proposed algorithm under static settings by de-

ploying sensor nodes at the initial strategic locations with no consideration to the node

mobility. We consider two scenarios; the first scenario uses a sparsely connected network

while the second scenario considers a densely connected network. We want to show that
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our algorithm adapts to both scenario.

11.2.1 Sparse Scenario

In this setting, ten sensors were randomly scattered in an area of 100 x 100 m2 as shown

in Figure 11.2. We set different sensing ranges for each sensor, enabling a sensor to

detect pulses from its neighboring sensors. The average connectivity density ‖E‖‖N‖ is set

to 4 per node. Sensor i exchanges pulses with sensor j only within the distance r ∈ R,

bounded within a range: r(1 − ε) ≤ ri ≤ r(1 + ε). We set the sensing range variation

value ε = 0.5 and the average sensing range for all sensors to r = 30 m. The algorithm-

related parameters are summarized in Table 11.1. All sensors wake up at time 0 and

starting to broadcast at time Ti(0). We compare the following algorithms:

1. Clock synchronization using corr1 + corr2 ( Han [2018]), See Section 9.2.1

2. Clock synchronization using C ′′es + Cdr ( Bakura et al. [2020]), See Section 10.3

The first algorithm is the algorithm proposed by Han [2018], which improves corr1

Fugger et al. [2015] by proposing additional corr2 for drift compensation. Henceforth,

corr2 would be used to refer to the first algorithm (corr1 +corr2). The second algorithm

is our proposed algorithm that improves corr2 by implementing learning techniques for

offset and drift compensation to improve clock precision and reduce clock skew. Similarly

Ces would be used to refer to the second algorithm (C ′′es + Cdr).

Figure 11.1 shows a comparison between corr2 and Ces in terms of maximum phase

difference. The x-axis represents simulations rounds. The time on the y-axis represents

the maximum phase difference (skew) in each round. For better synchronization, we

need to have a small and stabilized value of time. We can see that in the first seven-

round, corr2 phase difference increases because its drift correction has to be delayed

until after some number of rounds (i.e., round filter), but as soon as its drift correction

is enabled, the phase difference reduces with increase in rounds. On the other hand,
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Figure 11.1: Maximum Phase Difference between Rounds for Ces and corr2 for a Sparsely
connected scene. The Ces converges to a stable common time after few rounds of fluctu-
ations; the corr2 takes more rounds before it stabilizes. The Ces was able to maintained
small phase difference in a sparsely connected scene.

Ces converges its phase difference to a smaller and stable value after just a few rounds

of fluctuations. There is no need for a round filter in Ces, which reduces the initial

fluctuations observed in the corr2. Considering the scenario in which sensors have a

limited number of neighbors, Ces utilizes the previous history to increase prediction

accuracy.



133

Figure 11.2: The figure shows 10 nodes for sparsely connected Scene in the Simulation

Figure 11.3: The figure shows 10 nodes for a densely connected Scene in the Simulation
Parameter Value
Maximum slot for Corr2 2
Average connectivity 4 nodes
Clock period R 0.03
Sensor frequency variation |δi| ≤ 30 %
Round frequency variation |δk| ≤ 1 %
Ti(k) R(1 + δi + δk)
Sensing range variation ε 0.5

Table 11.1: Part II Summary of simulation parameters
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Figure 11.4: Maximum Phase Difference between Rounds for Ces and corr2 for a densely
connected scene. The corr2 has converged to a common interval after few rounds similar
to the Ces. After many rounds, corr2 phase differences became smaller than that of Ces
due to the higher connectivity.

11.2.2 Dense Scenario

In this section, we consider a more connected scene in which sensors have more neigh-

bors. The environment is the same with Section 11.2.1 only that we have changed the

average connectivity density ‖E‖‖N‖ to six nodes and the average sensing range to r = 40m.

With these changes in the connectivity density and sensing range, the network becomes

more connected than the sparse scene. Figure 11.3 shows the dense scenario with ten

nodes scattered in the simulation area. Figure 11.4 shows the comparison between the

Ces and Corr2 in terms of phase difference between rounds. The Corr2 has dramati-
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cally converged its phase difference to a smaller and common interval after few rounds

of execution; this behavior is attributed by more number of pulses due to the higher

connectivity, unlike in a sparsely connected network. The Ces converges its phase differ-

ence prior to the Corr2 but with a large phase value. Note that, in a dynamic network,

dense connectivity is not always guaranteed, hence the need for an algorithm capable of

utilizing limited connectivity without sacrificing the clock precision.

11.3 Dynamic Environment

This section considers a dynamic environment with a highly dynamic communication

graph and unpredictable changes in clock drift. In the first scenario, we set different val-

ues of the clock drift to test the edge cases of both Ces and Corr2. In the second scenario,

we run both algorithms under different mobile settings: the uncorrelated random walk,

and vehicular mobility. Both scenarios reflect a more realistic nature of mobile sensor

networks in which a sensor changes neighbors as it changes location, and the network’s

connectivity may dramatically change over time. A good algorithm should tolerate these

uncertainties while maintaining a common notion of time among the participating nodes.

11.3.1 Changes in Clock Drift

In this experiment, we run different simulations using different values of δi and δk as in

Table 11.2. The δi and δk are frequency varying variables, δi is applied once while δk is

applied at each round. At the start of the simulation, each sensor uses a different value

of δi; δk is changed at the start of each round. We test different cases to verify how each

algorithm handle uncertainties of clock drift changes. Figure 11.5 shows the results of

different test cases in terms of average phase difference in each case. We can observe

that Corr2 errors grow with the increase in clock drift varying variable δk unlike Ces,

which stabilizes within an interval. The figure also shows that the Ces has smaller value
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of clock skew when both When δk and δi are higher i.e it can tolerate uncertainties in

the clock drift with higher value of δk and δi as well. Therefore, the Ces is best suited

in an environment with uncertainties in clock drift compared to the Corr2.

Test1 Test2 Test3 Test4 Test5
δi,max ≤ 20% ≤ 15% ≤ 10% ≤ 5% ≤ 0%
δk,max ≤ 0% ≤ 5% ≤ 10% ≤ 15% ≤ 20%

Table 11.2: Values of the clock drift under different test scenarios.

Figure 11.5: The figure shows the average phase difference under different values of δi
and δk. The error of Corr2 increases with the increase in δk unlike Ces

11.3.2 Uncorrelated Random Walk

In this scenario, we simulate random walk movement using a simple four-direction un-

correlated random walk. The environment is similar to Section 11.2.2 only that we add

node mobility. Each sensor moves in one of the four directions with a randomly chosen

speed in the range S ∈ [1, 1.14]m/s to reflect the realistic human mobility in an indoor

environment. We observe that at some time instants, a sensor may disconnect from its
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neighbors or have fewer neighbors than in static settings. The result of the simulation

is shown in Figure 11.6. The figure shows that Ces converges its phase difference to

a smaller value and within an interval, but due to the changes in the communication

graph, the frequency fluctuates in some rounds. The Corr2 has more phase fluctuations

as compared to Ces as its compensation technique places equal weight to the previous

round estimates, unlike Ces, which implements a learning technique to decide on the

appropriate weight of the previous and present round estimates for the next pulse pre-

diction. In this regard, the Ces adapts to a network with dynamic topology due to

mobility.

Figure 11.6: The figure shows the Maximum phase difference for the Ces and Corr2in
each round when nodes move using random walk model. Both algorithms fluctuate due
to disconnection of nodes but the Ces has less fluctuation and smaller time compared to
the Corr2
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11.3.3 Vehicular Mobility

In this scenario, we simulate a more realistic environment using a vehicular network. We

used the Simulation of Urban MObility (SUMO) simulator for the traffic of an area in

the French city of Les Ulis. SUMO is an open-source, highly portable, microscopic road

traffic simulation package designed to handle large road networks Nishad and Pandey

[2018]. The map of the area was downloaded from Open Street Map OpenStreetMap

contributors [2019].

The first scenario considers a static vehicle network of 50 nodes randomly scattered with

an average connectivity of 3 neighbors per vehicle as depicted in Figure 11.7. Each

vehicle is assigned with a different sensing range of an average 300 m. A communication

between a given vehicle and its neighbor is guaranteed only if a neighbor is within the

distance ri ε R, bounded within a range: r(1- ε) ≤ ri ≤ r(1+ ε). We set the time period

Ti(k) to R(1+δi+δk). δi and δk are frequency varying variables, δi is applied once when

a vehicle initialized while δk is applied at each round. We set ε = 0.5 and the number of

timewheel slot to 2 for corr2. Under this setting, we study the pulse time generation

Parameter Value
Number of vehicles 50
Sensing Range 300 m
Area 1000 X 1200 m2

Sensing range Variation ∈ 0.5
Maximum slot 2
Average connectivity 3
Maximum vehicle speed 14 m/s
Maximum vehicle acceleration 2.6 m/s2

Vehicle frequency variation |δi| ≤ 20%
Round frequency variation |δk| ≤ 1%

Table 11.3: Summary of Vehicular network simulation parameters

to understand further the convergence of different pulses broadcasted in each round.

Pulses with different colors are broadcasted by different vehicles. Figure 11.8 presents
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Figure 11.7: Vehicle Network with 50 vehicles

pulses of vehicles if only offset compensation is applied. Observe that, though pulses are

trapped within one interval, the interval did not decrease with an increase in rounds. In

Figure 11.9, Corr2 is able to converge the pulses toward the middle of the simulation

after many rounds of fluctuations as shown in Figure 11.4. However, in Figure 11.10,

Ces pulses are successfully trapped in one interval throughout the simulation after just

a few rounds fluctuations. The discovery phase in our technique helps in choosing an

optimal adaptive value of λ that enhances prediction accuracy of Ces. This shows the

ability of Ces to tolerate short-term fluctuations of clock drift and therefore make it a

suitable algorithm in a dynamic network with possibly unpredictable node clock drift

changes.
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Figure 11.8: Pulse time for each round using Corr1 only. Pulses with different colors
belong to different vehicles. The pulses diverged throughout the simulation.

Figure 11.9: Pulse Time for each round using Corr2. The pulses diverged initially but
converged to a common value after some rounds.
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Figure 11.10: Pulse Time for each round using Ces. The pulses converged to a common
value after few rounds.

In the second scenario, we consider vehicles moving with a maximum speed of 14 m/s

and the acceleration of 2.6 m/s2. All vehicles change routes according to the route file

generated using DUAROUTER scripts in SUMO. A vehicle decelerates when turning

back or the traffic light is red. At the end of the simulation, we generate a Floating

Car Data (FCD) trace file with attributes like the vehicle id, speed, and position used

for the evaluation. In Figure 11.11, we compare corr1, corr2 and Ces algorithms in

terms of Maximum Phase Difference in each round. Observe that corr2 converges to

a stable common frequency after almost 16 rounds, indicating its inability to handle

random uncertainty of clock drift in this type of setting. corr1 is able to minimize

round fluctuations but with a high value of phase difference. The Ces stabilizes to a

common stable frequency with small deviation throughout the simulation with a small

value of phase difference and tolerates inertia’s effect even after a long run. This property

account for low skew of Ces as compared to corr1 or corr2 in a more dynamic settings.

Moreover, toward the end of the simulation, the convergence of the corr2 to a smaller

time value is a worthy consideration. Better performance is achieved after many rounds
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Figure 11.11: The figure shows a Comparison of Maximum Phase Difference for Corr1, Corr2
and Ces for a vehicular network. The Ces has stabilized to a smaller time value, but at some
rounds, it experiences short fluctuations due to vehicle disconnections or change in ambient
conditions. The corr2 only stabilizes toward the end of the simulation.

when the clock skew is significantly reduced. The most interesting feature of the Ces

is quick synchronization, the corr2 synchronizes slowly until the skew is low with a

minimal phase difference. Figure 11.12 shows the round duration for corr1, corr2 and

Ces. Observe that Ces maintains a stable round duration after few rounds of fluctuation,

unlike corr2 which takes many rounds before stabilizing to common round duration. The

instability of the corr1 at some intervals is not surprising because corr1 has only offset

correction, making it vulnerable to drift changes. After 15 rounds, we change vehicles

speed and the round-varying variable δk, thereby increasing the chances of a topology
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Figure 11.12: The figure shows a comparison of Round Duration for moving vehicles
using Ces”, Corr2 and Corr1. It shows how each algorithm tolerates sudden changes in
the communication graph. The Ces maintains a common time value for all rounds even
when the network is shaken by changing vehicles speed and the round-varying variable
δk.

change and frequency variations. Even after these modifications, Ces is able to maintain

common round duration after small deviation better than corr1 and corr2.

11.3.4 Impacts of the exponential decay factor λ on the performance

of Ces

We investigate the impact of different values of the exponential decay factor λ on the

performance of the proposed algorithm using a static vehicle setting. Figure 11.13 shows

the maximum phase difference of the proposed algorithm using different values of an
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Figure 11.13: Pulse time for each round using corr1

exponential decay factor (λ).

We can observe that with a small value of λ, the previous estimate has more impacts

on the predicted clock value, causing a negative impact on the clock-skew as in the case

of a λ = 0.3; the time for the skew increases as the rounds increase. On the other

hand, a higher value of λ influences recent estimates which helps to reduce the clock

skew and keep phase difference at a steady-state; this can be seen with λ = 0.9. So a

higher value of a λ gives a moderately stabilized skew but with random fluctuations of

phases in each round and a higher value time difference. We need to keep the time for

the phase difference minimal without fluctuations. Our adaptive approach solves the

problem as shown in the figure. The adaptive λ maintains a smaller and stable common

value for the phase difference after just a few rounds because it uses the best λ value in

the prediction phase at each round to estimate the next pulse time, hence improves the

prediction accuracy of the algorithm.
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11.4 Conclusion

In this chapter, we validate the proposed algorithm under different environmental set-

tings and investigate its performance. The proposed algorithm is compared with the

previous work of Han [2018] and Fugger et al. [2015]. The results have shown that the

proposed algorithm has reduced the clock skew compared to the previous techniques.

The proposed algorithm has been shown to tolerate higher uncertainties in clock drift

and handles unexpected topological changes in a dynamic environment by using a sen-

sor’s local history to predicts the next round pulse. The algorithm adapts to both static

and dynamic settings, making it the best candidate for an efficient data fusion algorithm

in both cases.





Chapter 12

Conclusion and Future Work

12.1 Introduction

In this chapter, we summarized the contributions of the Second part of the thesis. We

suggest further works that could extend our findings and further validate our claims.

12.2 Conclusion and Contributions

We proposed a pulse-coupled clock synchronization algorithm, which uses a learning

technique to improve clock synchronization accuracy. The proposed algorithm places

more weight on the recent estimates by exploiting the heuristics in the newly proposed

method to conduct the offset and drift compensation. The learning method adopts a

dynamic adaptive approach for choosing an optimal value of the weight factor λ; the

learning phase decides on the optimal value and forwards it to the prediction phase

for the subsequent prediction. The proposed algorithm has been compared with the

previous work of Han [2018], and Fugger et al. [2015] under static and mobile settings,

and the results have shown that it has reduced the clock skew, especially in a dynamic

environment with high uncertainty in clock drift and unexpected topological changes like
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the vehicular network. The robustness of the proposed algorithm in realistic settings like

the vehicular network and the indoor random walk scenario has shown that pulse-coupled

synchronization techniques adapt to challenging environments; hence the need for more

study on the pulse-coupled synchronization approaches.

We intend to evaluate the proposed algorithm using a real-world sensor network. The

intended sensor test-bed for the evaluation would simulate static and mobile scenarios to

extensively investigate the impact of each setting on the performance of our algorithm.

We also intend to experiment with a large-scale sensor network to pave the way for

implementing our algorithm in a smart campus sensor network with a large number of

static and mobile nodes. We would select appropriate communication hardware, followed

by a number of simulated scenarios.

12.3 Publications

1. Bakura, S.A, Lambert, A., and Nowak, T. (2020). Clock Synchronization with

Exponential Smoothing for Dynamic Networks. 54th Annual Conference on Infor-

mation Sciences and Systems (CISS), 18-20 March, 2020. Princeton University,

USA.

2. Bakura, S.A, Lambert, A., and Nowak, T. (2020). Clock Synchronization with

Adaptive Weight Factor for Mobile Networks. 28th Mediterranean Conference on

Control and Automation (MED’2020), 16-18 September, 2020. Saint Raphael,

FRANCE



Chapter 13

Conclusion for the Thesis

13.1 General Conclusion

This thesis deals with two problems in the wireless network: Mobility modeling and

clock synchronization in the wireless sensor network. In the first part of the thesis, We

conduct an in-depth analysis of the human mobility features. Consequently, we dis-

cover a new feature characterized by temporal dynamic movement clusters. Motivated

by the finding, we develop a synthetic mobility model, used as a tool for the design

and evaluation of wireless network protocols. The proposed model is evaluated using

the real traces Rhee et al. [2009]; Scott et al. [2009]. It shows matching characteris-

tics in terms of the distribution of the inter-cluster travel distance, intra-cluster travel

distance, intra-cluster angle of movement, pause time, inter-contact time, and contact

time with that of the studied real traces. In the second part of the thesis, we proposed

a distributed pulse-coupled clock synchronization, improving the work by Han [2018].

The proposed algorithm implements a learning technique for offset and drift compensa-

tion. Additionally, we proposed an adaptive method for selecting the optimal value of

a weight factor λ for efficient prediction. The simulation results have shown that the

proposed algorithm has significantly reduced clock skew compared to the previous work
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in Han [2018] and Fugger et al. [2015]. Our twofold approach has dual benefits: firstly,

it developed a realistic tool for the design and performance evaluation of networks with

intermittent connections. Secondly, it designs an algorithm that ensures a common no-

tion of time among WSNs node for an efficient implementation of data fusion algorithm,

energy management, and real-time safety and infotainment applications.

13.2 Contributions

In this thesis, we achieved the following objectives:

• In Chapter 4, we conducted an in-depth analysis of the spatial, temporal, and con-

nectivity features of human mobility and uncovered a new feature characterized by

temporal dynamic movement clusters. The synthetic mobility models can exploit

this feature to better predict the next location, stay location, and the opportunistic

connection of the mobile nodes.

• We explain the details of the proposed synthetic mobility model that integrate the

observed features and re-produce matching characteristics with the real traces Rhee

et al. [2009]; Scott et al. [2009] in Chapter 5. An evaluation of the performance of

routing protocols was conducted in Chapter 6.

• Chapter 10 proposed a new clock synchronization algorithm that uses a learning

technique to predict round pulses. The algorithm performs the offset and drift

compensation to ensure a common notion of time among the network nodes and

makes each node’s clock run at the same frequency with a negligible drift. The

algorithm has been adopted in static and dynamic settings.

• The simulation results in Chapter 11 has shown that the proposed technique has

reduced the clock skew compared to the previous works in Fugger et al. [2015]

and Han [2018], especially in a dynamic setting with drifting clocks and topology
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changes. The algorithm is able to converge the pulses of the moving vehicles in a

vehicular network with better accuracy in the presence of unpredictable changes

in the clock drift.

13.3 Future Work

This thesis has made limited contributions regarding the characterization of human

mobility features, design of mobility model for network protocols evaluation, and devel-

opment of an algorithm for efficient data fusion algorithm, real-time safety applications,

and resource management protocols in WSNs. There are still many opportunities to

improve this work through

13.3.1 Human Mobility Prediction Framework

A good understanding of the human mobility features is an excellent tool for an accurate

prediction framework. We intend to extend the proposed model by designing an efficient

predicting framework. The new framework would exploit the existing and new uncovered

features of human mobility to predict the user’s next movement location, stay duration,

and possible contact. The framework would be an excellent tool for transport agencies

and network designers.

13.3.2 Effects of Obstacles on the Signal Propagation

Our obstacle model is more of trajectory estimation and collision avoidance. Little have

been done on the effects of obstacle on the signal propagation; we intend to exten-

sively investigate the effects of obstacles (i.e., the high-rise buildings, long tunnels, tree

canopies, and etc.) on the signal propagation.
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13.3.3 Experiment on Appropriate Test-bed

The proposed clock synchronization algorithm has been evaluated using simulation;

though the result is encouraging, a more realistic evaluation environment is needed.

We intend to evaluate the proposed algorithm using a real-world sensor network. The

intended sensor test-bed for the evaluation would simulate static and mobile scenarios

to extensively investigate the impact of each scene on the performance of our algorithm.

13.3.4 Large-scale Sensor Network

Our use case environment (i.e., smart-campus) is characterized by a large number of

static and mobile sensors. In this regard, we intend to experiment with a large-scale

sensor network. We would select appropriate communication hardware with different

scenarios to simulate.
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Appendix A

Proof of Lemma 1

According to Equation (10.14)

τ i
j (k)−1∑
c=1

µi(c) ≤ tj(k) ≤
τ i

j (k)∑
c=1

µi(c) (A.1)

and
τi(k)−1∑
c=1

µi(c) ≤ ti(k) ≤
τi(k)∑
c=1

µi(c) (A.2)

Combining (A.1) and (A.2) we have

τ i
j (k)−1∑
c=1

µi(c)−
τi(k)∑
c=1

µi(c) ≤ tj(k)− ti(k) ≤
τ i

j (k)∑
c=1

µi(c)−
τi(k)−1∑
c=1

µi(c) (A.3)

if τ ij(k) -1 ≥ τi(k), the left hand side of Equation (A.3) can be reformulated as

τ i
j (k)−1∑
c=1

µi(c)−
τi(k)∑
c=1

µi(c) =
τ i

j (k)−1∑
c=τi(k)+1

µi(c)

≥ (τ ij(k)− τi(k)− 1)(1− %)µ

(A.4)

155



156

if τ ij(k) -1 ≤ τi(k), the left hand side of (A.3) can be derive with similar derivation,

τ i
j (k)−1∑
c=1

µi(c)−
τi(k)∑
c=1

µi(c) = −
τi(k)∑

c=τ i
j (k)

µi(c)

≥ −(τi(k)− τ ij(k) + 1)(1− %)µ

= (τ ij(k)− τi(k)− 1)(1− %)µ

(A.5)

Combining Equation (A.4) and (A.5), we have

τ i
j (k)−1∑
c=1

µi(c)−
τi(k)∑
c=1

µi(c) ≥ (τ ij(k)− τi(k)− 1)(1− %)µ (A.6)

with similar derivation as Equation (A.6), the right hand side of Equation (A.3) is

τ i
j (k)∑
c=1

µi(c)−
τi(k)−1∑
c=1

µi(c) ≤ (τ ij(k)− τi(k) + 1)(1 + %)µ (A.7)

Combining Equation (A.6), Equation (A.7) with Equation (A.3), we have

(τ ij(k)− τi(k)− 1)(1− %)µ ≤ tj(k)− ti(k) ≤ (τ ij(k)− τi(k) + 1)(1 + %)µ (A.8)

From Equation (A.8), we get

tj(k)− ti(k) = (τ ij(k)− τi(k)− αij(k))/βij(k) (A.9)

With βij ∈ [ µ(1- %), µ(1+ %)] and αij(k) ∈ [-1, 1].

τ ji (k)− τi(k) = (tj(k)− ti(k)))/βji (k) + αji (k), (A.10)

Hence Proof
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proof of Lemma 2

The timing of the pulse from sensor j to i is received as discrete time event. Using

Equation (A.1), we get:

τi(k+1)−1∑
c=1

µi(c) ≤ ti(k + 1) ≤
τi(k+1)∑
c=1

µi(c) (B.1)

and
τi(k)−1∑
c=1

µi(c) ≤ ti(k) ≤
τi(k)∑
c=1

µi(c) (B.2)

Combining Equation (B.1) and Equation (B.2) we have

τi(k+1)−1∑
c=1

µi(c)−
τi(k)∑
c=1

µi(c) ≤ ti(k + 1)− ti(k) ≤
τi(k+1)∑
c=1

µi(c)−
τi(k)−1∑
c=1

µi(c) (B.3)

if τi(k+1) ≥ τi(k)+1, the left hand side of Equation (B.3) is

τi(k+1)−1∑
c=1

µi(c)−
τi(k)∑
c=1

µi(c) =
τi(k+1)−1∑
c=τi(k)+1

µi(c)

≥ (τi(k + 1)− τi(k)− 1)(1− %)µ

(B.4)
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if τi(k+1) -1 ≤ τi(k), the left hand side of Equation (B.3) is

τi(k+1)−1∑
c=1

µi(c)−
τi(k)∑
c=1

µi(c) = −
τi(k)∑

c=τi(k+1)
µi(c)

≥ −(τi(k)− τi(k + 1) + 1)(1− %)µ

≥ (τi(k + 1)− τi(k)− 1)(1− %)µ

(B.5)

With Equation (B.4) and Equation (B.5) we have

τi(k+1)−1∑
c=1

µi(c)−
τi(k)∑
c=1

µi(c) ≥ (τi(k + 1)− τi(k)− 1)(1− %)µ (B.6)

With Similar derivation, the right hand side of Equation (B.3) is

τi(k+1)∑
c=1

µi(c)−
τi(k)−1∑
c=1

µi(c) ≥ (τi(k + 1)− τi(k) + 1)(1 + %)µ (B.7)

Combining Equation (B.6) and Equation (B.7) with Equation (B.3), we get.

(τi(k+ 1)− τi(k)− 1)(1− %)µ ≤ ti(k+ 1)− ti(k) ≤ (τi(k+ 1)− τi(k) + 1)(1 + %)µ (B.8)

From Equation (B.8), we get

ti(k + 1)− ti(k) = (τi(k + 1)− τi(k)− αi(k))βi(k) (B.9)

With βi ∈ [ µ(1- %), µ(1+ %)] and αi(k) ∈ [-1, 1].

hence proof.
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Appendix C

Derivation for Equation (10.7)

let C′esi(k) be the value of exponentially weighted average for sensor i at round k, where

0< λ <1. λ is called the weighting factor. We need a starting value for C′esi(k− 1) which

can be

- a specified target value C, C′esi(k− 1) = 0. or

- The first estimate of Cavgi(k), C′esi(k− 1) =Cavgi(k)

Observe that C′esi(k) is a weighted average of all previous estimates, for example using

Equation (10.4), if

K = 1:

C′esi(1) = λCavgi(1) + (1− λ)(C′esi(0))

= λCavgi(k) + (1− λ)C′esi(k− 1)
(C.1)

K = 2:
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C′esi(2) = λCavgi(2) + (1− λ)(C′esi(1))

= λ(1− λ)(0)Cavgi(2) + λ(1− λ)(1)Cavgi(1) + (1− λ)(2)C′esi(0)

= λ(1− λ)(k−2)Cavgi(k) + λ(1− λ)(k−1)Cavgi(k− 1) + (1− λ)(k)C′esi(k− 2)

K = 3:

C′esi
(3) = λC′esi

(3) + (1− λ)(C′esi
(2))

= λ(1− λ)(0)C′esi
(3) + λ(1− λ)(1)Cavgi(2) + λ(1− λ)(2)Cavgi(1) + (1− λ)(3)C′esi

(0))

= λ(1− λ)(k−3)Cavgi(k) + λ(1− λ)(k−2)Cavgi(k− 1) + λ(1− λ)(k−1)Cavgi(k− 2)+

(1− λ)(k)C′esi
(k− 3)

(C.2)

We can recursively write the general form of C′esi(k) for 0< λ <1 as

C′esi(k) = λ
k−1∑
n=0

(
(1−λ)nCavgi(k− n)

)
+(1−λ)kC′esi(k− k)+(1−λ)kC′esi(k− k) (C.3)
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Appendix D

proof of Equation (10.7) by

induction

1. Proposition:

τi(k + 1) =
(
τi(k) + C′esi

(k)
)

+R

= τi(k) + λ

k−1∑
n=0

(
(1− λ)n

(
1

|Ini(k + 1− n)|
∑

j∈Ini(k+1−n)

(τj(k − n)− τi(k − n))
))

+

(1− λ)kC′esi
(k− k) +R

(D.1)

for all k ≥ 0

2. Base case:

Let k=1.

L.H.S. τi(k + 1) = τi(2)

τi(2)=( τi(1)+C′esi
(1) ) +R. From Equation (D.1)
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R.H.S. substituting 1 for k in Equation (D.1)

= τi(1) + λ

1−1∑
n=0

(
(1− λ)0

(
1

|Ini(1 + 1− 0)|
∑

j∈Ini(1+1−0)

(τj(1− 0)− τi(1− 0))
))

+

(1− λ)1C′esi
(1− 1) +R

= τi(1) + λ

0∑
n=0

(
(1− λ)0

(
1

|Ini(1 + 1− 0)|
∑

j∈Ini(1+1−0)

(τj(1− 0)− τi(1− 0))
))

+

(1− λ)1C′esi
(1− 1) +R

= τi(1) + λ

(
1. 1
|Ini(2)|

∑
j∈Ini(2)

(τj(1)− τi(1))
)

+ (1− λ)C′esi
(0) +R

= τi(1) +
(
λCavgi(1) + (1− λ)C′esi

(0)
)

+R

= (τi(1) + C′esi
(1)) +R

(D.2)

Note that from Equation (10.6), the expression ( 1
|Ini(2)|

∑
j∈Ini(2) (τj(1) - τi(1)) ) is equivelent

to C′esi
(k) if k = 1. Similarly from Equation (C.1) the expression ( λ Cavgi(1) + (1- λ)C′esi

(0) )

is equivelent to C′esi
(1) when k = 1. Since L.H.S. and R.H.S. are the same, then base case holds,

therefore the formula is true for k=1.

3. Assumption:

Since it’s true for k=1, let’s sssume that it’s true for all numbers up to M.

Assume k = M :

τi(M + 1) =
(
τi(M) + C′esi

(M)
)

+R

Substituting M for K in Equation (D.1) gives

= τi(M)+λ
M−1∑
n=0

(
(1−λ)n

(
1

|Ini(M + 1− n)|
∑

j∈Ini(M+1−n)

(τj(M−n)−τi(M−n))
))

+(1−λ)MC′esi
(M−M)+R
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= τi(M) + λ

(
(1− λ)0

( 1
|Ini(M + 1− 0)|

∑
j∈Ini(M+1−0)

(τj(M − 0)− τi(M − 0))
)

+

λ

(
(1− λ)M−1

( 1
|Ini((M + 1)− (M − 1))|

∑
j∈Ini((M+1)−(M−1))

(τj(M − (M − 1))− τi(M − (M − 1)))
)

+

(1− λ)M C′esi (M−M) +R

= τi(M)+λ(1−λ)0
( 1
|Ini(M + 1)|

∑
j∈Ini(M+1)

(τj(M)−τi(M))
)

+λ(1−λ)M−1
( 1
|Ini(2)|

∑
j∈Ini(2)

(τj(1)−τi(1))
)

+

(1− λ)M C′esi (0) +R

= τi(M) + λ(1− λ)0Cavgi (M) + λ(1− λ)M−1Cavgi (1) + (1− λ)M C′esi (0) +R

(D.3)

4. Induction step:

if it’s true for k = M, then it should be true for k= M+1.

We need to show it also holds true for M+1

τi((M + 1) + 1) =
(
τi(M + 1) + C′esi(M + 1)

)
+R (D.4)

Substituting M+1 for K in Equation (D.1) to show that, the result is the same with

Equation (D.4)

= τi(M+1)+λ
(M+1)−1∑
n=0

(
(1−λ)n

(
1

|Ini((M + 1) + 1− n)|
∑

j∈Ini((M+1)+1−n)

(τj((M+1)−n)−τi((M+1)−n))
))

+

(1− λ)(M+1)C′esi
(M + 1)− (M + 1)) +R

(D.5)
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= τi(M + 1) + λ

(
(1− λ)0

( 1
|Ini((M + 1) + 1− 0)|

∑
j∈Ini((M+1)+1−0)

(τj((M + 1)− 0)− τi((M + 1)− 0))
)

+

λ

(
(1−λ)M−1

( 1
|Ini((M + 1) + 1− (M − 1))|

∑
j∈Ini((M+1)+1−(M−1))

(τj((M+1)−(M−1))−τi((M+1)−(M−1)))
)

+

λ

(
(1− λ)M

( 1
|Ini((M + 1) + 1−M))|

∑
j∈Ini((M+1)+1−M))

(τj((M + 1)−M)− τi((M + 1)−M)))
)

+

(1− λ)M+1C′esi (M + 1)− (M + 1)) +R

= τi(M+1)+λ(1−λ)0
( 1
|Ini(M + 2)|

∑
j∈Ini(M+2)

(τj(M+1)−τi(M+1))
)

+λ(1−λ)M−1
( 1
|Ini(3)|

∑
j∈Ini(3)

(τj(2)−τi(2))
)

+

λ(1− λ)M
( 1
|Ini(2)|

∑
j∈Ini(2)

(τj(1)− τi(1))
)

+ (1− λ)M+1C′esi (0) +R

= τi(M + 1) + λ(1− λ)0Cavgi (M + 1) + λ(1− λ)M−1Cavgi (2) + λ(1− λ)M Cavgi (1) + (1− λ)M+1C′esi (0) +R

(D.6)

Considering Equation (C.2), result of Equation (D.6) is a recursive form of C′esi(k) with

k = M+1. Therefore Equation (D.6) gives

=
(
τi(M + 1) + C′esi(M + 1)

)
+R (D.7)

Note that, the derived result of Equation (D.6) is the same with Equation (D.4)

5. Conclusion:

Since it works for k=1, and if it works for k = M then it also works for k = M+1, the

the formula works for all k∈R

�



Appendix E

proof of Lemma 3

We now show that at any round k each row of A(k) sums up to value 1. consider

the Figure 1 which shows communication graph for network G with four nodes after

6 rounds of an execution of SAWEW algorithm. each node chooses the weight of 1/3.

choosing any arbitrary round, we need to show that the exponentially weighted sums of

A(k) row equals 1.

Figure E.1: Communication Graph for Network G with for Nodes
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let k = 3. λ = 4
5 or 0.8, 1-λ = 1

5 or 0.2

Equation (10.22) becomes

A(3)i,j =


λ

(
(1− λ)0 1

|Ini(3)| + (1− λ)1 1
|Ini(2)| + (1− λ)2 1

|Ini(1)|

)
+ (1− λ)3 1

|Ini(0)| (i,j) ∈ V

0 else
(E.1)

substituting the values for λ and 1-λ in Equation (E.1) gives

A(3)i,j =


4
5

(
1
5

0 1
3 + 1

5
1 1

3 + 1
5

2 1
3

)
+ 1

5
3 1

3 (i,j) ∈ V

0 else
(E.2)

After a little algebra, Matrix A(k) is represented as



0 1 2 3 sums

0 0 1
3

1
3

1
3 1

1 1
3 0 1

3
1
3 1

2 1
3

1
3 0 1

3 1

3 1
3

1
3

1
3 0 1
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KS Table
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Figure F.1: Kolmogorov-Smirnov test Table
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Titre: Modèles de mobilité et synchronisation d’horloge dans les réseaux sans fil.
Mots clés: Modèle de mobilité, Synchronisation d’horloge, Couplage par impulsions,

Réseaux tolérants aux délais, Réseau de capteurs, Réseau dynamique.

Résumé: La mobilité dans les réseaux
ad-hoc conventionnels est un défi en rai-
son de l’invalidation constante des chemins
de bout en bout. Nous traitons, dans
cette thèse, spécifiquement des réseaux mo-
biles ad-hoc où les humains sont les princi-
paux porteurs d’appareils mobiles commu-
nicants. Une bonne compréhension de la
mobilité humaine permet la conception d’un
modèle de mobilité réaliste en tant qu’outil
d’évaluation des protocoles de réseau.
Les modèles conventionnels d’évaluation des
protocoles des premiers réseaux ad hoc (par
exemple, random walks, random waypoints,
random directions) ne parviennent pas à
simuler correctement la mobilité humaine.
Des études récentes ont montré que la mo-
bilité humaine est influencée par les habi-
tudes personnelles, les relations sociales,
les caractéristiques environnementales et les
préférences de localisation. Par conséquent,
un modèle réaliste devrait inclure ces carac-
téristiques.
À cet égard et à l’aide de traces réelles,
nous avons développé une heuristique pour
définir un modèle de mobilité humaine
basée sur des caractéristiques spatiales,
temporelles et de connectivité. Nous avons
remarqué des clusters de mouvements dy-
namiques temporels associés à des utilisa-
teurs individuels. Nous avons étudié la dis-
tribution de la distance parcourue, du temps
de pause, de l’angle de déplacement, de
la durée de contact et de la durée d’inter-
contact. Motivés par nos résultats, nous
avons proposé un nouveau modèle de mo-
bilité qui imite de manière réaliste les car-
actéristiques de la mobilité humaine. Notre
modèle a été validé en comparant ses traces

synthétiques à des mesures de mobilité
réelles.
Dans un environnement de campus intelli-
gent, les réseaux prennent en charge les ap-
plications de surveillance environnementale
et de positionnement intérieur/extérieur,
parfois avec un déploiement important de
capteurs. Compte tenu des limitations des
capteurs telles qu’autonomie énergétique,
capacité de calcul limité, et la dynamique,
les horloges des capteurs doivent être syn-
chronisées pour exécuter des algorithmes de
fusion de données, mettre en œuvre des pro-
tocoles de gestion de l’énergie ou un traite-
ment temps réel des applications où la sécu-
rité est importante.
Compte tenu de cela, nous avons proposé
un algorithme de synchronisation d’horloge
distribuée à couplage d’impulsions pour des
réseaux de capteurs sans fil. Notre al-
gorithme permet de réduire les décalages
d’horloge dus aux conditions ambiantes, à la
mobilité ou aux défauts de fabrication. Pour
ce faire, les capteurs mesurent les différences
de temps en échangeant uniquement des im-
pulsions au lieu de paquets.
Par conséquent, notre algorithme est léger
et robuste à la défaillance de capteurs du
réseau. L’algorithme proposé est comparé
aux travaux antérieurs avec des paramètres
statiques et mobiles. Les résultats montrent
qu’il peut réduire le décalage d’horloge,
en particulier dans un environnement dy-
namique avec une dérive d’horloge impor-
tante et des changements topologiques inat-
tendus comme ceux apparaissant dans les
réseaux de véhicules.



Title: Patterns of Mobility and Clock Synchronization in Wireless Networks.

Keywords: Mobility model, Clock synchronization, Pulse-coupled, Delay tolerant net-
work, Sensor network, Dynamic network.

Abstract: Mobility in conventional ad-
hoc networks is a challenge due to the con-
stant invalidation of end-to-end paths. We
deal with mobile ad-hoc networks where hu-
mans are the main carriers of mobile de-
vices. A good understanding of human mo-
bility patterns aids the design of a realistic
mobility model as a tool for evaluating net-
work protocols.
Conventional models for evaluating network
protocols in early ad-hoc networks (e.g.,
random walks, random waypoints, random
directions) fail to properly capture human
mobility. In fact, recent studies have shown
that human mobility is influenced by per-
sonal habits, social relationships, environ-
mental features, and locations preferences.
Therefore, a realistic model should be able
to include these features.
In this regard, we develop a heuristic to
characterize human mobility based on the
spatial, temporal, and connectivity features
using real traces. Consequently, we un-
cover temporal dynamic movement clusters
associated with individual users. We also
study the distribution of the travel distance,
pause time, angle of movement, contact du-
ration, and inter-contact duration. Moti-
vated by our findings, we proposed a new
synthetic mobility model that mimics realis-
tic features of human mobility. We validate

the model by comparing its synthetic traces
against real mobility measurements.
Moreover, in a smart-campus environment,
networks support applications for environ-
mental monitoring and indoor/outdoor po-
sitioning, sometimes with a large deploy-
ment of sensors. Considering the limita-
tion of sensors such as battery limitation,
dynamicity, and low computing clock rate,
sensor clocks need to have a common time to
perform information fusion algorithms, im-
plement energy management protocols, or
real-time processing for safety applications.
Given this, we proposed a pulse-coupled dis-
tributed clock synchronization algorithm for
wireless sensor networks to reduce the clock
skew due to the ambient conditions, mobil-
ity, or manufacturing defects. In our al-
gorithm, sensors measure time differences
by only exchanging zero-bit pulse instead
of packets. Therefore our algorithm is
lightweight and robust to the failure of the
sensors in the network. The proposed algo-
rithm is compared to previous works under
static and mobile settings, and the results
show that it can reduce the clock skew, espe-
cially in a dynamic environment with high
uncertainty in clock drift and unexpected
topological changes like vehicular networks.
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