
HAL Id: tel-03714130
https://theses.hal.science/tel-03714130v1

Submitted on 5 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Essays on statistical equilibrium and competition in
local public goods : philosophical explorations and

empirical perspectives
Juan C. Melo

To cite this version:
Juan C. Melo. Essays on statistical equilibrium and competition in local public goods : philosophical
explorations and empirical perspectives. Economics and Finance. Université Panthéon-Sorbonne -
Paris I, 2022. English. �NNT : 2022PA01E018�. �tel-03714130�

https://theses.hal.science/tel-03714130v1
https://hal.archives-ouvertes.fr


 
 
 
 
 
 

UNIVERSITÉ PARIS I PANTHÉON SORBONNE 
UFR 02  

Centre d'Économie de la Sorbonne 
 

THÈSE 
Pour l’obtention du titre de Docteur en Sciences Économiques 

Présentée et soutenue publiquement 
le 22 FÉVRIER 2022 par 

Juan C. MELO 
 

Essays on Statistical Equilibrium and Competition in Local 
Public Goods  

Philosophical Explorations and Empirical Perspectives 
 
 
Sous la direction de : 
Annie L. COT, Professeur émérite 
Université Paris I Panthéon Sorbonne 

 
Membres du Jury  
Duncan FOLEY, Professeur émérite 
New School for Social Research 
Rapporteur  
 
Alan KIRMAN, Professeur émérite et directeur d’études 
Aix-Marseille University, École des Hautes Études en Sciences Sociales 
Rapporteur  
 
Antoine MANDEL, Professeur des Universités 
Université Paris I Panthéon Sorbonne 
 
Ellis SCHARFENAKER, Maître de conférences 
University of Utah  



L’université Paris 1 Panthéon-Sorbonne n’entend donner aucune approbation, ni
improbation aux opinions émises dans cette thèse; elles doivent etre considerées
comme propres à leur auteur.



Preface

In the 19th century, physicists interested in studying the properties of matter faced
the formidable challenge of thinking about how to predict the behavior of large
collections of atoms moving through space and haphazardly bouncing off each other
in a closed container. The collections were so large, on the order of 1023, that it
seemed hopeless to try to track them individually by using Newton’s laws of motion.
James Clerk Maxwell, inspired by the growing number of statistical regularities
that were being found in social data, notably by figures like Laplace, John Graunt,
and Edmund Halley, proposed to tackle the challenge by taking censuses of atom
populations. Starting out with the hypothesis that atom properties were gaussian, he
soon realized, along with Ludwig Boltzmann, that exponential distributions were
better suited for studying the bulk-scale properties of matter from a ‘social-statistical’
perspective. This led to the development of statistical mechanics, a field which has
seen a recent upsurge of interest in the social sciences.

In many ways, the use of statistical physics ideas in the social sciences is a story
about returning home, and as with any repatriation, it can be complex to navigate.
The current interest in applying statistical physics concepts and models in the social
sciences comes as a result of three main developments. The first is the increase in
computational power and the amount of data available. The second is the realization
that social institutions and collections of individuals interactively self-organize into
complex structures, which do not seem to be easily graspable by control-theoretic
or mechanistic perspectives. The third is the rise of interdisciplinary collaborations
between economists, physicists, sociologists, biologists, and information theorists,
amongst others, under the umbrella of complex systems science.

Independently of econophysicists and other social physicists, economists work-
ing in the classical political economy tradition have been exploring different ways of
theorizing markets and economic institutions through the lens of statistical mechanics
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frameworks for the past thirty years. Duncan Foley’s 1994 paper A statistical equilib-
rium theory of markets was the first attempt in economics to theorize decentralized
exchange and market transactions in terms of statistical equilibrium distributions.
In a 2017 paper, Ellis Scharfenaker and Duncan Foley proposed an exponential
probability distribution to study decentralized economic environments and market
feedback processes. This is the quantal response statistical equilibrium (QRSE)
distribution, which is used and studied in detail throughout this dissertation. The
QRSE distribution is as much a theory of decentralized economic interaction as it
is a descriptive probability model, similar to the well-known Gaussian and Laplace
distributions, but also flexible enough to accommodate significant skew in the data.

This dissertation interweaves two distinct but interdependent projects. The first
is the application of the statistical equilibrium framework for studying local public
goods data. It constitutes a first step in a longer term project aimed at building a
statistical mechanics picture of the complex and evolving process of local government
fragmentation across the spectrum of urban locales in the US. The second is a
philosophical exploration of the nature of principle-based inference in economic
statistical equilibrium models. The results of this philosophical analysis, decidedly
structured from the practitioner’s point of view and reflective of the procedural
knowledge involved in estimating statistical models, pave the way for future research
at the intersection of semantic theories of information, statistical mechanics and
political economy.

The dissertation is structured as follows. Chapter 1 provides an overview of the
general themes of complex systems thinking in economics, complemented by relevant
historical and philosophical perspectives. The goal of this chapter is to discuss, within
a broad complex systems science view, some of the major implications that come
about from the use of information-theoretic methods in economics. Chapter 2
provides a detailed and pedagogical introduction to maximum entropy methods and
social statistical mechanics. It discusses historical, philosophical, and formal aspects.
Presented in essay format, these two chapters serve as a general introduction to
complexity and maximum entropy methods for this dissertation, and they are also
the synthesis of my current understanding of these topics.

Chapter 3 studies the distribution of school district expenditures in the US
public education market using a statistical equilibrium framework. I implement
the QRSE model in order to provide a novel empirical treatment of the Tiebout
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hypothesis, and to examine the role of inter-jurisdictional competition and household
choice in shaping observed expenditure patterns. I find that educational returns and
expenditures in school districts across the US exhibit distinctively peaked, positively
skewed distributions. I fit the QRSE model to the pooled sample for the 2000-2016
period and study the role that competition and choice scale parameters play in
shaping the equilibrium outcome. Bayesian inference and Markov Chain Monte
Carlo (MCMC) sampling are used to recover posteriors for the unknown parameters
in the model. The sample used covers all public school districts in the US for the
2000-2016 period.

In Chapter 4, I examine the distinct role played by Tiebout and sorting incentives
in shaping the observed distributions of educational expenditures. The distinctively
peaked and positively skewed distributions of school district expenditures are ex-
plained in terms of the complex interaction between jurisdictional competition and
households’ drive towards stratification on the basis of income and property values.

Chapter 5 studies the structure of modal and principle-based inference in Max-
Ent probability models. It builds on Marc Lange’s recent account of ‘non-causal‘
explanations in the philosophy of physics. I propose a distinct set of features that can
be used to identify principle-based inference and discuss its applicability to existing
statistical research in both physics and political economy.
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Chapter 1

The complexity view in economics

1.1 General complexity themes

Complex systems science studies how large collections of components interacting
locally at various scales self-organize into distinct global patterns and behaviors.
At the core of complexity science lies the idea that wholes are irreducible to their
parts, and that the analysis and prediction of complex whole-part dynamics in social,
biological and physical systems requires novel inter- and trans-disciplinary methods.

The first major theme that defines the complexity view is the study of interactions.
The components of complex systems can be seen to interact in a myriad of ways
with each other, and with their environment. Complexity science resists the idea
that such interactions should be studied through compartmentalized and isolated
reductionist frameworks. It is not just a question of eliciting the networked and
hierarchical relationships that exist between a system’s components, but also of
understanding how patterns of strong and weak interdependence lead to distinct
statistical regularities and signatures.

A second major theme is emergence. The non-trivial global patterns that emerge
out of networked local interactions impose barriers to traditional linear and statistical
thinking. Air and vapor molecules combine to form tornadoes, billions of neurons in
the brain interact to produce cognition, and global but brittle networks of banking
institutions and balance sheets inadvertently tip polities into financial collapse and
political crisis. The study of emergence in complex systems can be approached
through dynamical, statistical and computational counterparts.
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Fig. 1.1 Emergence of communities and structure in weighted networks. See the model
originally proposed by Kumpula et al. (2007), which studies the relationship between network
topology and interaction strengths. Image taken from Dirk Brockmann’s ‘Complexity
Explorables’ (CC BY-NC-ND 4.0). For Brockmann’s interactive version of this list of
examples see: https://complexityexplained.github.io/.

The problem of analyzing the emerging and time-dependent behavior of complex
systems having more than two degrees of freedom leads to the third major theme,
which is that of dynamical systems analysis and chaos. The interaction of independent
linear-predictable components leads to wholes exhibiting non-linear and chaotic
trajectories in a system’s phase space. The are two main types of dynamical systems:
differential equations and iterated maps (or difference equations). Nonlinear systems
with more than two degrees of freedom are often impossible to solve analytically,
due to the fact that the principle of superposition fails majorly in these contexts.
This is another way of stating that in nonlinear systems the whole is precisely not
equal to the sum of its parts. For systems exhibiting chaotic behavior, small errors
in the measurement of initial conditions get amplified over time and the systems
become effectively unpredictable. Like stable dynamical systems, chaotic systems
tend to attractors, but these are often found to be complex and difficult topological
spaces (Albin and Foley, 1998; Strogatz, 2018). Common examples of nonlinear and
chaotic systems are the double pendulum, the weather and financial markets.

Complexity science points to the limits of analyzing such systems in terms of
reduced form dynamical-law approaches. The barriers that such systems pose to

https://complexityexplained.github.io/
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Fig. 1.2 Bird flocking is a common example of emergent collective behavior. Individual birds
interact via local and inter-connected neighborhoods, which are used to propagate directional
cues and achieve global coordination.

dynamicists have spawned deep methodological reflections, and have led naturally to
the development of geometric/topological, computational and statistical alternatives.

A fourth major complexity theme is self-organization. The qualitative study of
nonlinear dynamics and interaction opens up new intuitions about the processes
that drive stable pattern formation in complex systems. The term ‘self-organization’
alludes to the notion that such patterns emerge without the intervention of central
or external controllers (De Domenico et al., 2019); these are collective but non-
teleological phenomena. The theme of self-organization provides a convenient con-
ceptual basis for analyzing functional structures, such as the formation of crystalline
patterns in matter, the evolving morphologies of living organisms (Rajapakse and
Smale, 2017; Turing, 1952), swarming, and socioeconomic segregation (Schelling,
2006), to give a few examples. The dynamics of ‘self-organizing’ processes often
lead to unstable equilibria and ‘critical states’ that put systems on ‘the verge of chaos’.
The aggregate properties of self-organized systems are usually well characterized by
fractals, and exponential or heavy-tailed distributions.

The fifth major theme is adaptation. Complex systems actively respond to their
environment. "Living organisms display behavior that is qualitatively different from
chaotic systems like geological or meteorological interactions. They are highly
structured, and have powerful homeostatic mechanisms that stabilize important
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Fig. 1.3 The double pendulum is a classic example of chaotic motion in dynamical systems.
Unlike single pendular systems (B), double pendulums (B) are highly sensitive to initial
conditions. Two double pendulums suspended from the same initial conditions will quickly
diverge in their trajectories.

aspects of their behavior . . . Human beings, for example, seek solutions to problems,
which may involve an exploration of the state space which does not have the repetitive
features of chaotic motions. In solving a problem, a human being may pursue one
approach, exhibiting one type of behavior, for a while, and then determine that this
approach is a dead end, and suddenly ( from the point of view of an external observer)
shift to a qualitatively different type of behavior embodying an alternative approach to
the problem" (Albin and Foley, 1998). Adaptation explains "the difference between
a ball that rolls to the bottom of a hill and stops and a bird that adapts to wind
currents while flying" (De Domenico et al., 2019). Thus, the theme of adaptation in
complexity sciences studies processes of learning and psychological development,
the formation of social ties and cooperative behavior, as well as genetic evolution
and natural selection. Adaptation leads to the robustness and resilience attributes that
we commonly associate with living organisms and social formations. This concept
lies at the basis of the notion of complex adaptive systems in biology and the social
sciences.

The sixth and seventh major themes are computational complexity and interdis-
ciplinarity. Complexity science seeks for general and universal principles through
cross-disciplinary mathematical and computational approaches. Schinckus (2021)
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makes the important point that this cross-disciplinary perspective can be historically
understood a response to the increasing balkanization of knowledge and scientific
research. I will elaborate on these two themes with greater detail in the following
sections.

Fig. 1.4 The English botanist Robert Brown (1827) observed how pollen seeds suspended
in water swarmed following irregular and motions. The complex many-body system which
produces brownian motion cannot be accounted for by looking at the individual equations
of motion. When faced with complex many-body problems, physicists take a census of the
population’s energy and reason in terms of statistics. Einstein inferred the existence of atoms
through his statistical molecular theory of liquids (1905).



6 The complexity view in economics

1.2 Economic complexity

1.2.1 Themes in economic complexity

In September 1987 , twenty people came together at the Santa Fe Insti-
tute to talk about "the economy as an evolving, complex system." Ten
were theoretical economists, invited by Kenneth J. Arrow, and ten were
physicists, biologists, and computer scientists, invited by Philip W. An-
derson. The meeting was motivated by the hope that new ideas bubbling
in the natural sciences, loosely tied together under the rubric of "the
sciences of complexity," might stimulate new ways of thinking about
economic problems. For ten days, economists and natural scientists took
turns talking about their respective worlds and methodologies. While
physicists grappled with general equilibrium analysis and noncoopera-
tive game theory, economists tried to make sense of spin glass models,
Boolean networks, and genetic algorithms.

(Arthur, 1997)

The three major themes that emerged out of SFI’s interdisciplinary exploration of
economic questions were set forth in the 1988 volume The economy as an evolving
complex system (Anderson, 1988). David Pines notes that SFI originally established
three working groups on the topics of ‘Cycles’, ‘Webs’, and ‘Patterns’ (see Schinckus,
2021). ‘Cycles’ focused on nonlinear deterministic behavior and chaos, ‘Webs’
focused on interaction and emergence, particularly as viewed through the lens of
network science and agent-based modeling. And ‘Patterns’ focused on studying
the statistical properties and invariants of complex economic systems. Schinckus
(2021) notes that one finds a decreasing interest in deterministic chaos throughout
the evolution of the SFI’s economics research program.

1.2.2 Econophysics

Propelled by the vision that market-driven processes are complex, high-dimensional,
dynamic and stochastic systems, econophysics began to develop in the early 1990s
as a powerful alternative for conducting empirical work. The heavy influx of ‘quants’
and physicists into asset management firms also supported this development, along
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with an increasing demand for renewed interdisciplinary research at the intersection
of physics, biology, game theory and economics. The Santa Fe Institute continues to
play a key role in supporting econophysics related research.

Roughly defined, econophysics is concerned with the application of "modeling
and computational methods coming out of statistical physics to the empirical study
of economic and financial processes" (Schinckus, 2016). As discussed by Schinckus,
one can broadly identify two main traditions in the econophysics literature. The
first is what Schinckus calls the "purely statistical" or "stylized facts approach",
concerned with the description of the distinct statistical signatures that characterize
emergent aggregate patterns in economic environments (e.g. power law, exponential
and heavy-tailed distributions). This work has turned out to be immensely important,
in that it began to cast light on the inadequacy of using Gaussian frameworks for
modeling sources of variation around central tendencies in economic variables.

The second approach Schinckus terms "agent-based econophysics". This bottom-
up simulation approach starts by specifying a theoretically or intuitively determined
microeconomic environment that is then simulated to obtain emergent macro patterns
and stationary distributions. Agent-based econophyisics emphasizes the explicit
modeling of interactive phenomena such as information diffusion in economic
networks and dynamic exchange protocols with learning agents, to give a few
examples (Chakrabarti et al., 2006). An important aspect of these models is that they
are able to encode structural, recursive and temporal features all at once.

1.2.3 Maximum entropy methods and the distribution of profit
rates

Parallel to the developments in the econophysics literature highlighted in the previous
section, which for the most part were carried out by physicists, a growing body
of empirical research has emerged in the past thirty years at the intersection of
heterodox political economy, non-walrasian economics, information theory and
statistical mechanics. This literature sets itself apart in that it is not a tabula rasa
attempt to apply statistical physics ideas to the study of economic processes. This
line of work attempts to recover and put to empirical scrutiny, using the frameworks
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of information-theoretic statistical mechanics, well-established hypotheses from the
stock of the classical1 and non-walrasian traditions (Scharfenaker, 2020a).

A criticism that this literature offers regarding both simulation-based and statisti-
cal approaches, arising out of econophysics, is the loose application of symmetry and
ergodicity concepts. For example, as when Yakovenko treats money and financial
flows as a conserved form of energy in order to derive the Pareto-Exponential laws
for US income distributions (Dragulescu and Yakovenko, 2000b).

A major catalyst for the development of this line of reasoning came out of the
work of Farjoun and Machover (1983). In Farjoun and Machover (1983), the authors
critique the deterministic treatment of economic aggregates in classical political
economy and propose a probabilistic framework capable of capturing the presence
of chance fluctuations around a central tendency in the profit rate. Their research
gave new (statistical) life to the Smithian and Marxian hypotheses of the long-run
equalization of the profit rate, and to the classical idea that observed rates gravitate
around a "natural quantity". Their theoretical considerations led them to conjecture
a gamma density for the profit rate stationary distribution, but this turned out to be
unconvincing since the gamma distribution is constrained to the positive domain and
negative profit rates are far from being uncommon in modern capitalist economies
(Scharfenaker and Semieniuk, 2017).

This led others to propose new statistical descriptions of the firm profit rate
distribution. Alfarano et al. (2012a), using US data for the 1980-2006 period, propose
a Subbotin (exponential-power) distribution along with a drift-diffusion process to
describe the underlying firm competitive dynamics. Scharfenaker and Semieniuk
(2017) , building on the work of Farjoun and Machover (1983), examined profit rate
data for US firms in the 1962-2014 period and found that the statistical equilibrium
distribution organizes into an asymmetric Laplace distribution, a special case of the
asymmetric Subbotin distribution (Yang, 2018). While Alfarano et al. (2012a) and
Scharfenaker and Semieniuk (2017) agree that the statistical dispersion law for the
profit rate follows a mean absolute deviation2 and not a squared mean deviation3, the
two approaches differ in their interpretations. Scharfenaker and Semieniuk (2017)
derive the statistical equilibrium distribution via maximum entropy inference but
don’t provide a macro-dynamic characterization for the competitive process. They

1Classical political economy
2|y�µ|a
3(y�µ)2
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see the observed patterns as supporting evidence for the classical hypothesis of the
long-run equalization of profits and the Smithian theory of competition.

1.2.4 Quantal response statistical equilibrium

In subsequent work, Scharfenaker and Foley (2017) propose a principle-based deriva-
tion of the observed profit rate distribution. This is the quantal response statistical
equilibrium model (QRSE) which is used in this dissertation. The QRSE is a prob-
abilistic model that aims to capture the impact of an underlying decision-theoretic
context on the emergent properties of the competitive process. The model is general
enough to be applied to the study of a broad set of decentralized economic environ-
ments driven by feedback and entry/exit dynamics. Its behavioral component takes
the form of a quantal choice function that captures trade-offs between utility and
entropic uncertainty.

An important element to note about the QRSE is that it’s a theoretical model,
but it’s also a probability distribution. If you look at it independently of the theory
that underpins its derivation, it’s a Laplace-Normal type density that can be used to
describe highly peaked and skewed data. So it has both theoretical and descriptive
components. I treat the question of principle-based inference in more detail in
chapters 2 and 5.

1.3 A note on econometrics

Empirical research in economics is tasked with the difficult problem of providing
explanations and statistical characterizations of observed outcomes in complex and
constantly evolving socio-economic environments which have a large number of
degrees of freedom.

In econometrics, we find a wide array of approaches. Some approaches attempt
to solve inverse causal inference problems, in which researchers attempt to identify
the underlying causal structure of the data generating process from observed patterns,
and others, particularly in applied microeconometrics, are more concerned with
studying forward causal questions, in which one studies the "effects of causes" as
opposed to the "causes of effects" (Gelman and Imbens, 2013).
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Contemporary microeconometrics is predominantly concerned with solving for-
ward causal inference problems (Imbens and Wooldridge, 2009). Some of the more
notable approaches that have been used in impact evaluation and policy analysis are
randomized control trials, propensity score matching, double-difference or difference-
in-difference techniques, instrumental variable regression, quantile regression, as
well as structural and reduced-form approaches to a lesser extent (Khandker et al.,
2009). Can conditional cash-transfer programs to poor inner-city households improve
educational outcomes for a well-defined cohort of students? Does new infrastructure
raise welfare in a particular city? These are the sort of questions being answered
by this literature, often complemented by qualitative approaches that help ground a
better understanding of the communities or cohorts studied. This type of research is
closer to the type of empirical and qualitative work that one finds in social psychol-
ogy or in the medical sciences. The main difference being that its conclusions are
largely localized to specific cohorts and as such may be of limited external validity
and replicability.

In relation to the spectrum that goes from ‘reverse-causal’ to ‘forward-causal’
approaches, empirical macroeconomic research and applied general equilibrium
(AGE) analysis has historically held a scientifically anomalous position. The history
of the relationship between macroeconomic analysis and probability is complex,
and is full of ironies and pragmatic contradictions. As Morgan (1990) points out,
the so called ‘probabilistic revolution’ did not take place until the appearance of
Trygve Haavelmo’s The Probability Approach in Econometrics (1999). Up until
then, early econometricians made use of statistical methods but rejected altogether
a direct application of the mathematical theory of probability; a blatant paradox,
given that probability theory is the very basis upon which statistical inference and
phenomenological investigations in the sciences are built.

Trading notions of causality for notions of ‘identification’, ‘exogeneity’ and
‘endogeneity’, the macroeconometric approach that emerged out of the Cowles com-
mission in the 1950s favored the study of the invariant properties of simultaneous
equation models (Hoover, 2008). It’s important to note that the Cowles econome-
tricians were well aware of the inherent complexity of the phenomenon they were
trying to tackle. Economic quantities are simultaneously determined and they are
embedded in a complex network of causal relations for which ordinary least squares
regressions can only provide biased estimates. In econometrese, this came to be
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understood as the problem of ‘identifying the causal directionality of regression
estimates’ (Hoover, 2005).

In retrospect, the key historical question that emerges is the following: how
have economists historically responded to the challenges of modeling and making
sense of social complexity ?

In macroeconometrics, the focus on the challenges of ‘identification’ led to
convoluted statistical techniques for the estimation of parameters in simultaneous
equation models, such as indirect least square methods, limited-information maxi-
mum likelihood, and full-information maximum likelihood (see Anderson and Rubin,
1949; Hood et al., 1953; Koopmans et al., 1950). Another important set of modeling
approaches emerged in the 1950s which emphasized a recursive causal ordering in
the structural determination of macro variables (Simon, 1977; Wold, 1954).

These approaches dominated the field until the 1970s, when Lucas and Sargent
argued against the alleged invariance of the relationships estimated in SEM models.
Their critique was primarily waged against Keynesian macroeconometric models
with adaptive expectations. The reappraisal of dynamic concerns as being central to
forecasting resurfaced old debates regarding the relationship between an unobserv-
able microeconomic domain and observable macroeconomic aggregates (see Hoover,
2008; Lucas and Sargent, 1981). The line of reasoning proposed by real business
cycle theory eventually coalesced around the development of Dynamic Stochastic
General Equilibrium (DSGE) models.

In what amounts to an odd methodological ploy, the introduction of DSGE
modeling transferred the analysis of macroeconomic behavior from the realm of
SEM models with adaptive expectations to the realm of stochastic optimal control
theory with rational expectations. Policy interventions in the economy could be
better studied, so they have argued, by solving for the optimal path of a bizarre
functional in a predictable dynamic programming environment4 (see Kydland and
Prescott, 1982; Rotemberg and Woodford, 1997; Smets and Wouters, 2007).

4See Klein (2015) for a historical treatment of the introduction of optimal control theory and
dynamic programming into the Muthian rational expectations program.
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1.4 Looking ahead: aggregate dynamics or informa-
tion ?

Looking back at some of the historical responses that economists have given to the
task of modeling economic data, one sees that a common objective of the different
approaches has been that of identifying the causal structure or the dynamic behavior
of economic aggregates. The use of statistical physics ideas in the social sciences can
make a significant contribution to meet that challenge, but it’s also worth reflecting on
how such tools might be opening up previously discarded doors for conceptualizing
inference problems in economics. And by this I am not referring to methods transfer
or applications, but to the order of knowledge we wish to obtain from economic
data. The point of view defended in this dissertation is that information-theoretic
and complexity methods invite us to reconsider the relevance of certain dynamicist
and aggregative conceptions for making sense of the large streams of data currently
available.

Gaining information from complexity economic models also requires being able
to attribute semantic content to the patterned regularities we observe and sample.
The question of ‘principles’ is really just a question of the meaning of information.
As information-theoretic approaches continue to gain ground, it’s worth reflecting
on what the possible space of semantics looks like for statistical physics models in
economics.

Two aspects of the complexity view must be considered in order to establish that
perspective. First, it’s important to bear in mind that the increase in computational
power, and the fact that we now have the ability to ask machines questions about our
datasets, is a condition and not an idiosyncratic feature of contemporary scientific
thought. The success of the SFI approach to economic thinking has largely come as
a result of the rise in computational power, the ability to simulate complex dynamics
and social-structural formations, and to tackle high-dimensional inference problems
on personal computers. Second, information-theory, social statistical mechanics and
the ‘complexity view’ inevitably erode on the autonomy of the economics discipline.
This can be framed in a positive light. Manfred Eigen, a German biophysical
chemist, stated that "life is an interplay of energy, entropy, and information to be
jointly studied by physicists, biologists, chemists, and information theorists" (Eigen,
2013). The SFI program has made significant strides in having economists join that
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group over the past thirty years, and in doing so it has heralded an era of complexity
economics (also recently with the help of INET).

A distinguishing feature of the complexity economics approach is that it shares
a common language with other disciplines, in particular dynamical systems theory,
information theory, and statistical physics. A less discussed feature is that complexity
economists are mining for new formulations of social and economic energy. As they
do so, the question of determining the scientific and politico-economic principles that
support such energy formulations seems to be ‘up for grabs’. Attributing meaning
to such models naturally leads to political and philosophical divergences, which is
what makes approaching these methods so much more difficult (but also interesting)
in the social sciences.

The next two sections address this question by pointing to how the space of
possible semantics is a function of the cognitive landscapes afforded by complexity
methods, but also of the regions of mathematics in which we choose to house social
thought.

1.5 The cognitive-historical question

There are two ways of looking at the history of complexity thinking in economics.
The first one, as suggested by Arthur’s quote above, is to think of the emergence
of complexity economics as a transdisciplinary phenomenon that was facilitated by
the Santa Fe Institute (SFI) in the late 1980s and early 1990s. There is certainly
some truth to that view, but it has the problem that it suggests casting the history of
economic thought into a ‘pre-complexity’ period and a proper ‘complexity’ period
that starts in the 1990s with the SFI research agenda. While this historical take may
be more congenial for explaining the recent rise of econophysics and agent-based
modeling, it does not give full credit to the fact that complexity is a foundational
concept for economic thinking, taking roots as far back as Adam Smith and the
physiocrats, and permeating at the core of modern schools of economic thought,
including general equilibrium theory, Keynesianism, and Austrian ‘catallactics’
(Hayek et al., 1948).

What is true, nonetheless, is that emergence of the "Santa Fe approach" has
challenged and put a considerable strain on the idea that economic phenomena can
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be suitably understood through a mono-disciplinary framework. Contemporary com-
plexity economists often have to answer the question: "Is this economics"? Upon due
reflection, one should be able to comfortably answer: "Yes and No". "Yes" because
complexity economics sheds new light on market processes, public goods allocation
problems, financial time series, economic networks, and political-economic ques-
tions. "No" because the resulting analyses and contributions often pertain as much
to the realm of economic theory as they do to sociology, anthropology, computer
science, sociobiology, probability and statistics.

There are several important elements to consider with respect to the call for
the de-balkanization of economic knowledge that comes out of the SFI approach
(see Schinckus, 2021). The first is that the rise of new interdisciplinary modeling
strategies for studying economic processes leads not only to epistemic regime shifts
(in a manner that could be easily reconstructed by historians and philosophers of
science), but also to the development of novel cognitive landscapes within which
natural, information and social scientists are led to collectively negotiate their vision
of social reality.

Nancy Nersessian has recently championed the ‘cognitive-historical’ method for
understanding the evolution of theories and representations in science. She notes
that scientists, as much as anyone else, "reason by carrying out thought experiments
on internal models" (Nersessian, 1992). She proposes studying conceptual change in
science by taking seriously the cognitive foundations of scientific reasoning, which is
possible by analyzing the ways in which analogical, simulative (computational), and
procedural reasoning both support inference and are productive of novel modes of
representation. "The cognitive literature agrees with the position that analogies em-
ployed in conceptual change are not ‘merely’ guides to reasoning but are generative
in the reasoning processes in which they are employed" (Nersessian, 2010).

Discussions of conceptual change have largely faded from the literatures
on science in part because the way philosophers framed the problem
led to increasingly sterile debates and because the move of historians to
more social and cultural accounts of science left the mistaken impression
that such facets are at odds with the cognitive dimensions of scientific
practice. (Nersessian, 2010)
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Developing a thorough review and treatment of the ‘cognitive-historical’ method
is beyond the scope of the current paper and discussion of economic complexity,
but I bring it up for two main reasons. The first is that it helps to characterize the
way in which the SFI approach to economic thinking has intervened only sparsely
at the level of propounding new economic theories (in the sense of building full-
fledged paradigms). Rather, it can be argued that it has intervened more concretely
at the level of supplying a landscape, in the form of computational representations
and statistical frameworks, within which novel theory can develop, or in which
long-established economic propositions can be recodified to meet the demands
of contemporary scientific cognition (which is heavily data-driven). The quantal
response statistical equilibrium (QRSE) model explored in this dissertation, for
example, is precisely an attempt to recodify Smith’s theory of competition within
a modern information-theoretic and probabilistic framework. In doing so, it brings
long-established intuitions about feedback processes and statistical variation in
economic variables to bear on the current landscapes of the complexity view.

It’s also important to put into historical perspective the asymmetries that exist
between current and earlier attempts to theorize and model economic complexity.
The use of fast digital computers, large datasets, as well as simulation and graph-
theoretic (network) methods, are not mere ‘guides’ or ’heuristics’ to deductive
reasoning, but constitutive of new modes of scientific cognition. This idea fully
unpacks the deeper content behind Waldrop’s comment that "scientists are beginning
to think about more and more complex systems simply because they can think about
them" (Waldrop, 1993).

Thus, we may think of the general complexity themes (introduced above), and the
emerging themes of economic complexity, as ‘scientific-cognitive’ schemas within
which new or ‘updated’ economic thinking can take place. It has often been said that
to understand modern science one needs to let go of ‘common sense’ and ‘intuition’
(Chomsky, 1993). While this is true, for example, in the sense that our everyday day
intuition about physical objects offers no direct guidance for understanding quantum
effects or electromagnetism, this type of argument overlooks the fact there exists
such a thing as ‘scientific intuition’. The core of that intuition is built collectively
from the analogies, images, narratives, inference procedures, mathematical models
and computational structures used to study any given object.
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Nersessian argues that scientific cognition should be understood as lying on a
continuum with ordinary day-to-day cognition, in the sense that they both operate by
‘manipulating and simulating alternative scenarios in mental models’ (Nersessian,
1992). The key difference is that in the case of scientific cognition, the analogies and
models used are not stored as functional sensorimotor components in the brain, but
rather need to be discovered, imagined, or abstracted from empirical observation.
Furthermore, scientific cognition is often distributed amongst groups of researchers,
tools, labs, and publishing networks. So it is a form of active, conscious and non-
automated cognition. This picture of scientific practice lends itself well to empirical
research within the field of the psychology of science (Nersessian et al., 2003).

"For example, in investigations of analogies used as mental models of a domain, it
has been demonstrated that inferences made in problem-solving depend significantly
upon the specific analogy in terms of which the domain has been represented. One
example . . . is the study where subjects constructed a mental model of electricity in
terms of either an analogy with flowing water or with swarming objects, and then
specific inferences (sometimes erroneous) could be traced directly to the analogy"
(Gentner and Gentner, 2014; Gentner and Smith, 2012; Nersessian, 1992).

In economics, we have a recent ‘natural experiment’ version of the Gentner study.
As Kirman (2010) notes, the failure to predict or anticipate the 2008 financial crisis
can be directly traced to the erroneous models about the financial system which were
collectively held by the economics discipline, bankers, regulators, and the public
at large. "The recent near-collapse of the world’s banking system does not seem to
correspond to the collective result of individual banks optimising in isolation and
unconsciously coordinating on a disastrous solution. What is involved is a great
deal of local interaction, of transmission of information, views and expectations
from one actor to the other. Large systems with micro-characteristics of this sort
are studied in physics, biology, and also sociology. There, it is recognised that the
system may switch rapidly from one phase to another and that this will be dependent
on its internal organisation and not on some exogenous shock" (Kirman, 2010).

Kirman’s point is essential because it points to the fact that what can make
the event of the crisis accessible, from a cognitive point of view, is building an
understanding of the events that led up to the near-collapse of the banking system in
terms of networks, contagion, trust, and norm-formation. The themes of contagion
and networks provide a scientific basis, in the form of complexity schemas, upon
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which new theories about financial crises can be developed, or in which older theories
(e.g. Minsky) can be recodified using tools such as agent-based modeling and graph
theory.

Economies are complex high-dimensional living processes which are notoriously
difficult to theorize and fathom. The approach taken historically by 20th century
economics was to rely on pure mathematics and deductive reasoning in order to
reach deep knowledge about processes for which there is often no available source
of scientific intuition. One of the key ideas that I would like to outline here is that
the availability of such scientific intuition depends, not only on theory, but also
crucially on existing data sources, computational power, compelling narratives, and
analogies. From this point of view, it would be anachronistic, for example, to indict
early general equilibrium theorists on the claim that they failed to acknowledge or
‘cognize’ the complexity of the economy. That said, I don’t think that holds for the
rational expectations theorists, who developed their line of reasoning side by side
with Herbert Simon and the artificial intelligence revolution in computer science
(Klein, 2015).

1.6 Semantic issues in computational complexity

1.6.1 Methods of approximation and partial information

Economics and operations research sit on the boundary between the discrete and the
continuous. Linear programming methods rely on convexity and divisibility condi-
tions. When indivisibilities are taken into account (for example logical decisions, or
the limited precision of agent response functions), integer programming and other
combinatorial methods may be more appropriate.

In classical physics, when researchers numerically solve a partial differential
equation they are ‘approximating the continuous with the discrete’, the ‘infinite
with the finite’. But one can also take the opposite direction; given that "continuous
structures are often cleaner, more symmetric, and richer than their discrete counter-
parts (for example a planar grid has a much smaller degree of symmetry than the
whole euclidean space)", it is natural to consider embedding discrete structures in
continuous differentiable spaces when studying complex systems (Lovász, 2010).
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Researchers often have to settle for numerical solutions to a problem whose
underlying structure is taken to be continuous, given that closed-form solutions
are unavailable. This means that the result obtained inevitably involves partial
information. An often quoted illustration is the common problem of computing
the numerical approximation to a continuous integral (Traub, 2003). Since real or
complex-valued functions cannot be directly processed by a digital computer, the
effective numerical approximation proceeds by sampling the integrand at a finite
number of points. Partial information is also usually contaminated by round-off
errors and noise, and can be expensive to obtain in terms of computational costs.
The field of information-based complexity (IBC), for example, studies the optimal
algorithms and computational complexity of continuous problems for which the
available information is partial, contaminated, or ‘priced’. Common problems that
IBC tackles in physics, finance, and engineering are path integration, partial and
ordinary differential equations, nonlinear dynamics, integral equations, fixed-points,
and high-dimensional integration (Traub, 2003). The statistical tools explored in this
dissertation are one of such class of information-theoretic methods that may be used
for inferring efficient solutions to continuous and discrete problems where partial
knowledge and uncertainty are present.

Questions regarding ‘methods of approximation’ can and often do get muddled
with semantic issues. Does it exist in a continuum or does it live in a ‘quantized’
discrete state-space ? In many contexts, the structure is considered well known and
given, so that questions of representation recede into the background and the discrete
vs. continuous dilemma becomes a pragmatic modeling issue. The genetic code, for
example, is a discrete biological structure. And as Lovász (2010) notes, "simple basic
questions like finding matching (genetic) patterns, or tracing consequences of flipping
over substrings, sound more familiar to the graph theorist than to the researcher
of differential equations. Questions about the information content, redundancy,
or stability of the code may sound too vague to a classical mathematician, but a
theoretical computer scientist will immediately see at least some tools to formalize
them".

1.6.2 Discrete and computational representations

The realization that the building blocks of nonlinear dynamics and chaos (in systems
with many degrees of freedom) could not be simply fathomed out of traditional ‘laws
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of motion’ has opened up deep questions regarding the mathematical foundations of
complex systems analysis. "The invention of the high-speed computer", as Strogatz
(2018) points out, "was a watershed in the history of dynamics. The computer
allowed one to experiment with equations in a way that was impossible before, and
thereby to develop some intuition about nonlinear systems. Such experiments led to
Lorenz’s discovery in 1963 of chaotic motion on a strange attractor. Lorenz studied
a simplified model of convection rolls in the atmosphere to gain insights into the
notorious unpredictability of the weather".

The recourse to simulation and computational methods for studying the quali-
tative behavior of nonlinear and chaotic systems has given way to the idea that the
underlying systems, whether they be physical, biological or social, can be repre-
sented as the abstract computational devices capable of simulating their broad range
of behavior. This follows from the fact that abstract computational devices can be
seen as being able to mimic the complex mapping that takes a dynamical system
from initial conditions to its finite number of point attractors. Initial conditions are
the ‘input’ to the abstract machine, and the qualitative equilibrium behavior is the
‘output’ or pattern associated with that input. Thus abstract machines are studied as
being capable of simulating, computing and representing the behavior of complex
dynamical systems for which the underlying functions and ‘laws of motion’ are
unstable, partially known, or unknown altogether.

A fundamental question that arises for the complexity researcher is that of
defining what type of computational device that ‘abstract machine’ should be, and
of specifying the mathematical or concrete space over which the device is taken
to be performing its computations. It is at this point that a dilemma seems to
emerge between continuous and discrete methods, and by the same token, between
topological and combinatorial alternatives. By ‘topological’ I mean methods that
study and leverage the geometrical properties of continuous differentiable spaces,
and by ‘combinatorial’ I mean methods that confront ways of efficiently exploring
the full state-space of systems whose variables take on a fine set of countable values.
Brute-force combinatorial optimization methods can be computationally expensive
and subject to the curse of dimensionality. The unavailability of the ‘local properties’
of differentiable functions may impose the need to compute function values for all
possible combinations when searching for equilibrium points in any given problem.
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From a semantics point of view, the evolution of the methods we use for sim-
ulating and approximating solutions to complex nonlinear systems open up new
avenues for hypothesizing about the fundamental nature of the processes in question.
If the methods are discrete and combinatorial, then their continued and success-
ful use might invite a reevaluation of the abstract or concrete spaces over which
‘computations’ or ‘functional mappings’ are thought to be taking place.

Do information and computation play essential roles at the foundations of
physics? Of biology? Of economics? If so, does this imply the fundamentally
discrete and combinatorial nature of the system in question ? Not necessarily.

In the context of classical physics, the use of cellular automata5 to approximate
the behavior of continuous dynamical problems does not force a reinterpretation
of the spacetime continuum in terms of bits and discrete graph-theoretic structures.
In other fields, such as in economics, the introduction of discrete and information-
theoretic perspectives do suggest a reevaluation of core theoretical assumptions. A
well known example is the work of Herbert Simon, whose analysis of the effective
computational planning procedures of firms led to a cognitive reevaluation of the
capacities of the economic agent, and to the concept of bounded rationality which
lies at the heart of behavioral economics (Simon, 1957). A lesser well-known
example is the work of Peter Albin, whose detailed sociological field work on the
structural and decision-making organization of the factory work-floor led him to
propose a "model for the organization of computations as a model for social and
economic organization" Albin (1975). For Albin, the revolutions in information-
oriented occupations and technologies constituted an important regime shift in the
fundamental structure of the economy (Albin and Foley, 1998).

In his concern for capturing with a high level of fidelity the structural transfor-
mations of the new ‘information economy’ we can place Albin side by side with
the efforts of economists in the Schumpeterian tradition, in particular those working
on models of technical innovation and its effect on aggregate growth (see Freeman,
Clarke, and Soete, 1992; Dosi, 1981; Nelson and Winter, 1982; Best, 1990). We
can also relate him to a broader sociological perspective that sought to character-
ize information-related structural changes in the composition of the post-war labor
markets (see Beinger, 1986).

5Cellular automata "may be characterized in analogy with the behavior of dynamical systems (e.g.
Ottt 1981): simple rules exhibit simple point or limit cycles, while complex rules exhibit phenomena
analogous to strange attractors" (Wolfram, 1983).
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Other examples include the work of Edward Ames and Ariel Rubinstein. In
Automation and Group Structures in Certain Economic Adjustment Mechanisms,
Edward Ames shows how a Hurwicz type adjustment mechanism can be shown
to have the structure of automata and finite semigroups (Ames, 1983). In Finite
Automata Play the Repeated Prisoner’s Dilemma, Ariel Rubinstein studies two-
person games in which each player is restricted to carry out his strategies by finite
automata (Rubinstein, 1986).

It frequently turns out that the automata closely resemble real-world
counterparts, while the logic of their interactions corresponds closely
to intuition. In such cases, one operates with a literal and direct image
of the reference system—but an image, metaphor, or model that is
susceptible to deep and rigorous analysis. (Albin, 1998)

1.7 Pooh, the tortoise and the hare

The point to take away from the previous section is that the choice of formalisms,
and their underlying mathematical spaces, can end up determining in fundamental
ways the space of possible semantics for our propositions. So if we choose to ground
our modeling strategies in discrete, graph-theoretic, and computational structures,
the knowledge to be gained will depend on our ability to map those elements into
real world targets. A much simpler way to put it is simply to state that the choice of
equilibrium concepts ends up determining our view of the world.

In discussing the disenchantment that came about with equilibrium concepts in
economics following the 2008 crisis, Foley (2017) draws an analogy from A. A.
Milne’s Winnie-the-Pooh. In A. A. Milne’s classic, Pooh attempts to steal the honey
from a bees’ nest by floating himself to the top of a tree. Helplessly suspended in the
air, he is attacked by a swarm of bees. He then philosophically concludes that these
must have been "the wrong sort of bees".

What is also at stake in Pooh’s story is the issue of adjusting our expectations
about what’s to be found in the honey. Can we let social reality be the arbiter of the
space of possible outcomes and the choice of equilibrium concepts? Or should we
insist on tapping into the field of mathematical analysis in order to axiomatically
constraint the space of possible solutions? Samuel Bowles, for example, has ad-
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Fig. 1.5 Winnie-the-Pooh: The Wrong Sort of Bees, by A.A. Milne

vanced a methodological program in which he proposes to view the outcomes of
social interaction as the Nash-Cournot equilibria of specific games (Bowles, 2009;
Foley, 2017). It is not immediately salient that what makes this proposal powerful is
the idea that we can treat the problem of game-theoretic specification as an ‘inverse
problem’. By ‘inverse’ I mean the task of inferring a specification for the underlying
game from observed outcomes. The outcomes that can be mapped into any given
game are the emergent institutional structures and collective action problems that we
observe.

Complementarily to the Bowles program, we can also ask: what are the possible
‘computational devices’ or ‘graphs‘ which compute observed socio-structural out-
comes? That might be important because the game-theoretic formulation still leaves
open the question of causal and functional content. Within the complexity quarters,
it is at the level of defining the mathematical foundations of the abstract machines
that ‘solve’ nonlinear complex systems where a road split often shows up. In one
direction, you find the high-road of topology and analysis. In the other, there is a
combinatorial trail which is computationally expensive and messy. In the latter case,
what one deems ‘computable’ requires careful attention to the social and logical
properties of whatever device we take to be ‘performing the actual computations’.
The analysis perspective, on the other hand, aims to provide proofs of computability
which can be settled on mathematical grounds alone.

It is interesting to consider, for example, how Stephen Smale’s work on theoretical
economics led him straight into foundational questions in the theory of computation.
His interest in dynamic convergence to equilibrium led him to work on global Newton
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algorithms, and to research on average stopping times for simplex algorithms in
linear programming (see Hirsch et al., 2012; Smale, 1976). This work sought to
give a ‘differentiable dynamics’ version of the combinatorial methods that had been
pioneered before by Herbert Scarf and C. Eaves (Eaves, 1971; Scarf, 1967). The
work of Scarf and Eaves had shown how to translate Sperner’s classical existence
theorems into concrete computational procedures for approximating fixed points. In
further work with M. Shub, Smale’s approach of translating numerical optimization
problems into geometric ones broke new ground in the theory of real computational
complexity (real as in taking place in Rn). "Smale always emphasized that he looks
at algorithms as mathematicians do, in terms of real numbers, and not as computer
scientists do, in terms of a finite number of bits of information" (Hirsch et al., 2012).

The story of the tensions that arise between combinatorial and analysis perspec-
tives is like Zeno’s version of the race between the tortoise and the hare; the tortoise
wins the race by fiat. And we should be happy that the tortoise is able to frame the
race in such terms because that is ultimately what sustains progress in advanced
mathematics. But in economics, it’s also worth exploring the possibility of letting
the hare win for once. If anything, because we might be surprised by the results.

Fig. 1.6 Zeno’s paradox. The tortoise always remains slightly ahead of the hare, no matter
how many times it tries to catch up.

Mathematics has infinitely many representations from which to choose from.
In framing the problem of choosing equilibrium concepts and finding functional
specifications as ‘inverse problems’, we can let observations, data, and scientific
imagination guide our explorations for the right sort of formalisms. The next chapter
discusses maximal entropy methods and how they can be used to find ‘informationally
efficient’ representations in the social sciences.
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Fig. 1.7 Discrete approximation.



Chapter 2

Entropy, inference, and Boltzmann
distributions

2.1 Probability distributions

Complex social, biological, and economic systems are often well described by
exponential and heavy-tailed probability distributions. Some examples are the dis-
tributions of profit rates, city populations, and financial market fluctuations (see
Peterson et al., 2013; Sornette, 2007). Among the reasons for distinguishing distribu-
tions is that they may be linked to different mechanisms, and examining their entire
shape gives clues to the processes at play. Often, if data is not missing, finding the
shape of a distribution can be as simple as looking at a histogram or fitting a suitable
mathematical function. Fitting an available probability model can be followed up by
thinking about why that particular function is a good fit. That is, what are some of
the reasons that could lead a system to exhibit that particular shape.

The study of distributions goes back to Abraham De Moivre and Laplace. During
the time of De Moivre and Laplace a central problem in science was that of finding
universal "error curves". Laplace showed how fluctuations in social statistics could
be described by the normal distribution, which had originally been proposed by De
Moivre in his Doctrine of Chances (1718) as a method for approximating binomial
coefficients. The problem of finding a law of errors was commonly encountered in
astronomy and geodesy, where the goal was to describe variations in measurement
from a true physical quantity, e.g. the distance to the moon (Geraci and Borja, 2018).
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The study of Laplace’s eponymous distribution (1774), which is a non-normal error
curve, has recently received renewed interest. Laplace and Normal distributions both
belong to the exponential family. What distinguishes them is the specification of
their error functions; the Laplace is an exponential of the numerical magnitude of
the error, while the Normal is an exponential of the square of the error (see Kotz and
Kozubowski, 2001).

Fig. 2.1 On the left, the Laplace distribution: fx =
k
2 e�k|x|. On the right, the Normal

distribution: fx =
1p

2ps e�x2/2s2 . Reproduced from Kotz and Kozubowski (2001)

One reason for using a Laplace distribution over a Normal distribution is if
there is heterogeneity in the measurement of errors. Geraci and Borja (2018) give
the example of astronomers in different locations trying to measure the distance
to a celestial object. Every astronomer is trying to measure the same quantity, but
inevitably their measurements will have different variance. So if you look at the
datasets of each astronomer, they will likely be Normal. But if you’re tasked with
collecting the measurements of all the astronomers into a single histogram, you
will likely obtain a Laplace like curve. Observer-instrument variability is hence one
possible reason for using the Laplace distribution. This distribution commonly shows
up in hydrology, in finance, in speech and pattern recognition, and more recently, in
statistical political economy and the industrial organization literatures (see Bottazzi
and Secchi, 2005).

There are cases in which it might be of interest, not only to find the appropriate
shape of a distribution, but to find out what generative principles could be leading to
its distinctive statistical signature. Barabási and Albert (1999), for example, have
shown how dynamic network models can lead to scale-free power law distributions.
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Scharfenaker and Foley (2017) show how a principle of market feedback leads to a
Laplace-Normal type curve for the distribution of profit rates.

Principle-based derivations are better understood as inverse problems. They
are inverse because the goal is to infer the set of possible underlying mechanisms
or rules that generate the data. ’Principle’ simply means that we are using a de-
scription which is general enough to encompass a wide set of possible functional
or dynamic specifications. Information-theoretic statistical mechanics provides a
powerful framework for solving inverse problems, particularly those in which the
data is exponentially distributed. The method of constrained entropy maximization
is a variational principle which yields an informationally efficient solution to the
inverse problem.

As an entry point, one can think of it as the task of finding the rule which yields
the right "law of errors", call it pk. Constrained optimization of the Boltzmann-Gibbs-
Shannon (BGS) entropy functional S [{pk}] =�Â pk log pk leads to the exponential
Boltzmann distribution pk µ e�bHk . Similar to the distinction between the Normal
and the Laplace distributions, what distinguishes different Boltzmann densities is
what goes in the exponent. In statistical mechanics this is known as the energy
functional or hamiltonian. The objective is to find out what should go in that
exponent, proceeding cautiously if you will, by imposing as little structure as possible
on the problem from the outset. The following sections discuss and motivate this
task in detail.

2.2 Complex systems, statistical physics and maxent

In complexity science we confront systems which have many degrees of freedom.
The behavior of a system S may be characterized as depending on a set of variables
{x j}, for j = 1,2, . . .N. When aiming for a probabilistic description of S, in which
we are not describing or computing the individual trajectories of each x j, the first
natural question to ask is the following: What is the joint probability distribution
P({x j}) of all these variables ? In the simplest view, we ask what that P is at any
given point in time. That is, what is the joint probability of the variables from which
we can sample a cross-sectional snapshot of the system ?
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From the point of view of statistical physics, the x j s are the microscopic state
variables for the system’s components, such as atoms and molecules. A central goal
of statistical physics is to build a bridge that takes us from an understanding of what
microscopic components are doing to a macro-level description of the emergent
collective behavior of a large number of interacting parts.

The micro to macro bridges of complexity science are foremost statistical and
not deductive. The building materials required for the assembly of such complex-
ity bridges are: i) some working knowledge, or hypotheses, about the principles
governing micro-level interaction, and ii) probability and data.

There is an emerging simplicity and universality that comes out of the problem of
describing complex systems in terms of a joint distribution P({x j}). New variables
and equations emerge which have the remarkable property of being applicable to
a broad range of systems across different scales, and across physical, social and
biological domains. In classical physical systems, such as ideal gases, the statistical
analysis of large numbers of molecules moving randomly and independently within
a volume leads to the emergence of deterministic laws and constants, e.g. the ideal
gas law (see Feynman, 1965). The pressure on a section of a gas volume, due to the
independence and collective randomness of its particles, turns out to be the average
force exerted by all the particles, divided by the relevant area.; P = hFi

A . Thus, in such
systems, the effects are ’additive’ and unsurprising. What is interesting, however,
is the notion that a physical constant emerges from the statistical aggregation of
random particle collisions on a piece of wall (Bialek, 2017).

For classical deterministic systems, what does the work in guaranteeing the
emergence of constants, or in determining that averages can be effectively regarded
as exact numbers, is the central limit theorem (CLM) (see Fischer, 2010). In a
nutshell, what the CLM says is that the mean value of a large number of independent
observations will follow a Normal (bell-shaped) distribution. But more crucially
for physicists, it states that as the number of observations tends to infinity (N ! •),
the variance of the distribution will shrink and tend to disappear. Since the systems
considered by classical physics often contain a very large number of particles, on the
order of Avogadro’s number (1023), variations around the average can be effectively
ignored. This is how determinism and constants emerge within a probabilistic
framework, and it’s what allows physicists to focus on their equations, and avoid the
need to constantly amend key distributional assumptions (physical laws are stable).
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In the social and biological world, where randomness is constrained by distinct
principles of interaction and organization (e.g. feedback), one needs to handle the
CLM with care. Furthermore, in such contexts what ends up being of fundamental
interest is the type of variation we perceive around the mean. In the same way that
what distinguishes a falling rock from a bird is the latter’s adaptive capabilities, what
distinguishes measurements of living organisms from measurements of solids is the
former’s non-normal statistical variance. At any limit, zero or infinite variance are
not effective recipes for sustaining biological and social organization.

The most interesting systems that can be studied by a statistical physics frame-
work are precisely those which are driven by collective behavior, and which show
emergent patterns and statistical properties that turn out not to be scaled up versions
of the individual components. Social and biological systems are fundamentally
driven by organized collective behavior. Some common examples are herding in
markets (Kirman, 1993), patterns of correlated neural firing (Schneidman et al.,
2003), antibody diversity in the immune system (Mora et al., 2010), animal conflict,
linguistic pattern formation, bird flocking, species abundance, and voting (Lee et al.,
2015). In the next section, as a first example, I discuss the problem of understanding
bird flocking from a statistical point of view. I summarize and use the discussion
from Bialek et al. (2012), which provides a pedagogical entry point but is also a
concrete scientific application.

2.2.1 Bird flocks, criticality and statistics

Birds flock to forage and migrate collectively. Local interactions between birds
within a flock lead to emergent patterns of global coordination. The global emergent
patterns are both highly robust and fragile; an adaptive functional trait which provides
benefits for foraging and safety from predation (Bialek et al., 2012). The emerging
patterns are collectively robust in the sense that they can withstand perturbations
of the flock’s individual parameters, and they are fragile in the sense that they are
poised near critical points in their phase space. To melt an ice cube, or bring water to
boil, one needs to fine-tune some sort of temperature control. Collective biological
phenomena, such as bird flocks, appear to ’self-tune’ in a distributed fashion towards
near-critical points. "Rather than being dictated by a leader or in response to a
common stimulus, the collective patterns of flock dynamics tend to be self organized,
and arise from local interactions between individuals, which propagate information
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through the whole group. Flocks, schools and swarms also are highly responsive
and cohesive in the face of predatory threat. This balance between order and high
susceptibility points to the idea of criticality" (Mora and Bialek, 2011; Munoz, 2018).

A statistical snapshot of the flock (e.g. of size N) should give us information
about, not only their average speeds, but also about variations in their directions.
Assuming that the cohesive tendency of the flock is partially maintained by a per-
sistent average speed for all the birds, we could focus (for example) on studying
variations in their directionality. In this bird flocking scenario, and referring back
to the problem of finding the system’s joint distribution P({x j}), for two degrees of
freedom, we can take the set {x j} to be the set of individual bird velocities. So we
appropriately redefine the set to consider as {~s j}, where~s j =

~v j
|~v j| are the normalized

bird velocities.

Fig. 2.2 (A) Bird flocking event. (B) Velocity vectors from snapshot. Graph from Bialek
et al. (2012)

What statistical theory of directional ordering for the flock can be derived from a
set of measurements taken in field observations 1 ?

To answer the question in a simple manner we need to define, or make an
assumption about, key properties that can characterize directionality in the flock.
Are birds looking to their neighbors when deciding where to move ? Or are they
computing some high-dimensional and complex non-linear function in real time ? If
each bird can choose amongst d possible (vector) orientations, the set of possible

1Field observations for flocks use stereometry to obtain the 3D positions of birds at different
points in time (see Cavagna et al., 2008)
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distributions (the lists of individual velocities) is of size dN . Considering that real
flocks can have over 1000 birds, even if we defined them to be Tetris-like in their
ability to choose directions, the number of possible distributions would turn out
to be quite large. Considering a simplified model of say 2-5 birds from the outset
could be potentially be misleading, since what we’re trying to understand is precisely
how the local behavioral interactions of many birds lead to the observed collective
coordination patterns. Thus, number (the size of the flock) matters.

Building a probabilistic model of the flock inevitably involves imparting parsi-
mony into our description. If we believe that birds look to their neighbors to decide
where to go, the simplest structuring principle that we can track (measure) is the
correlation between velocities in the flock. This is given by the cross-correlation
matrix Ci j =

⌦�!si ·�!s j
↵
. The symbol h·i indicates the average; if the average is taken

over a specific distribution P we write h·iP.

Out of all the possible distributions P({~si}), which is the one that is consistent
with the field measurements of the flock’s bird-to-bird correlations, but otherwise as
random or as unstructured as possible ? As phrased by Bialek (2017), translating
"as random as can be" into probability terms means maximizing the entropy of the
distribution. If we impose no structure on P, in order to reduce the entropy, then we
would find that P is ⇠ Uniform; yielding a gaseous picture of the flock. The idea of
imposing a minimal structure on the distribution follows from the commitment to
make our description as parsimonious as possible. This is not only motivated from
an inference and tractability perspective, but theoretically from the expectation that
what leads to the observed global coordination patterns is a simple principle of local
interaction, and not some complex nonlinear function of the birds’ trajectories.

In considering this problem, with the aim of testing the probability model on
flocks of European starlings (Sturnus vulgaris), Bialek et al. (2012) obtain the
Boltzmann-Gibbs type distribution:

P({~si}) =
1

Z
��

Ji j
 � exp

"
1
2

N

Â
i=1

N

Â
j=1

Ji j~si ·~s j

#
(2.1)

The distribution of 2.1 is a ’maximum entropy distribution’ because it is the
simplest one we can obtain by injecting minimal structure into what would otherwise
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be a uniform measure. The term Z
��

Ji j
 �

is the normalizing factor and the parameter
Ji, j gives a measure for the strength of coordination between any pair of birds.

Boltzmann-Gibbs distributions are ubiquitous in statistical mechanics. The key
point to understand about this general distribution is that it gives the probabilities for
the system’s possible configurations ({~s j}) in terms of its energy functional. This
can be the total energy of the system, or a potential. For a single degree of freedom
x j with energy H (x j), the general form is given below in 2.2:

P(x j) =
1
Z

e�bH (x j) =
e�bH (x j)

ÂN
j=1 e�bH (x j)

(2.2)

When working with systems which we know can be suitably described by a
Boltzmann distribution, such as Bialek’s bird flock, the direct dependence on the
energy functions means that we can often amplify our assumptions about the forces
driving the system simply by expanding the term in the exponent. So if we consider
two potentials acting on a single degree of freedom, for example, we would obtain
something like P(x j) µ eb1H1(x j)+b2H1(x j). If we are committed to an (initial) parsi-
monious probabilistic description, we would like to make that sum in the exponent
as informationally efficient as possible. So if complex causal structure and nonlin-
earities need to be considered, they can be incorporated either by adding/modifying
the potentials in the exponent, or via a maximum entropy derivation (amongst other
methods). Hence, the subtlety lies not only in the use of the entropy functional, but
also in the idea that we can regularize our knowledge about the world and obtain
likelihoods for our data by a simple rule of exponentiation 2.

In the flocking example considered here, keeping track of the pairwise directional
correlations between birds is enough to generate the candidate distribution. Physicists
will recognize this maximum entropy (henceforth maxent) distribution as relatable to
models of spontaneous magnetization and local interaction among individual spins
(equation 2.1 above). In particular, as Bialek et al. (2012) elaborates, this distribution
corresponds to the classical Heisenberg model. The Heisenberg model describes a
set of unit spins in R3 placed on the nodes of a d-dimensional lattice and has the
following Hamiltonian (Wu, 1982):

2This latter idea is what motivates the use of the Boltzmann distribution or ’softmax’ function
for normalizing the output of artificial neural networks in multinomial classification tasks. John S.
Bridle introduced the term ’softmax’ (see Bridle, 1990)>. For a review of recent work lying at the
intersection of statistical mechanics and deep learning see Bahri et al. (see 2020)
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H ({~si}) =�1
2 Â

i, j
Ji j~si ·~s j (2.3)

As Bialek further notes, it is useful to know to which statistical physics model
the maxent distribution can map to, as this allows us to leverage the well studied
properties of that model to make further inferences about the flock.

Note that the conclusion that the classical Heisenberg model is the appropriate
one that we can use to describe Bialek’s flock of European starlings arrives as a result
of imposing the simplest possible structure on the full set of possible distributions
P({~s j}). So that what we are solving, following this sequence of reasoning, is an
inverse problem. "The fact that equilibrium statistical mechanics is the prototype
of maximum entropy models encourages us to think that the maximum entropy
construction defines an effective ’energy’ for the system" (Bialek, 2017). The
inverse nature of the problem lies in that the problem is set up so as to ’recover’ a
specification of the energy functional from field measurements of the bird-to-bird
velocity correlations.

However, if the distribution in 2.1 is the one to be used, this implies estimating
the matrix of parameters Ji, j. The inference problem can be simplified by introducing
a mean-field approximation. Bialek does this by assuming that each bird in the flock
only experiences an average ’social force’ J from its first nc nearest neighbors. This
reduces the distribution to:

P({~si}) =
1

Z (J,nc)
exp

2

4J
2

N

Â
i=1

Â
j2ni

c

�!si ·~s j

3

5 (2.4)

With this simplified model, there are only two parameters to be estimated from
the data; J and nc. Knowledge of the inferred Hamiltonian can be used to elaborate a
dynamical description and simulate the flock, using d�!si

dt . This mechanical-dynamical
extension for modeling the flock will generally take the form of a Brownian type
process: d�!si

dt =� ∂H
∂�!si

+noise.

A key point to make at this juncture is that although we know the flock to be non-
ergodic; the inferred Hamiltonian can be used to construct a dynamic ergodic sampler,
from the trajectories ~si(t), which converges to the stationary maxent distribution.
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Depending on the Hamiltonian, the process may or may not follow detail balance
conditions, or markovian properties.

This is a rather tricky point that is still seems sparsely discussed in the literature,
but my current understanding is that the process is ergodic with respect to the MaxEnt
distribution. So it is an inferential and ’bootstrapping’ type of device that can be
used for sampling plausible dynamics from the stationary distribution.

It’s reasonable to do this because the flock, as Bialek suggests, seems ’poised
at criticality’ and exhibits ’punctuated equilibria’. Meaning that if we measure the
bird-to-bird correlations over several photograms of a film of the flock flying in
cohesion, the estimates are unlikely to vary dramatically, up to the point where a
predator shows up or something major happens. It is in this sense that we are able
to build a ’statistical equilibrium’ understanding of the flock, without implying that
the system is in lifeless thermal equilibrium. Thus, self-organized criticality and the
concept of punctuated equilibrium, or the idea that living systems experience long
periods of quiescence followed by abrupt change, are two fundamental notions that
motivate the application of statistical mechanics and statistical equilibrium reasoning
for studying social and biological systems (see Munoz, 2018) .

2.2.2 Why birds ?

I chose the bird flocking example of Bialek et al. (2012) because it provides an
integrated treatment of both maximum entropy and statistical physics approaches
for building statistical descriptions of complex social systems driven by principles
of local interaction and adaptive behavior. Furthermore, despite the mathematics
involved, a flock of birds is a concrete visual object that is easier to think about than
other lower or higher-dimensional examples. Also, it is aesthetically pleasing and
fascinating to look at. Below I summarize some key methodological points to take
away, before discussing potential social-economic applications of Bialek’s bird flock
model, and how those type of extensions could be supported and justified within
the broader ’complexity view’ that I have been motivating throughout. In the next
section I provide a more exhaustive and didactic treatment of the maximum entropy
principle.
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Key learnings from the starlings:

• By imposing a minimal structure on the space of all possible bird velocity
distributions, it’s possible to build a parsimonious probabilistic model that can
be tested with field data of bird-to-bird correlations.

• The ‘efficient’ energy functional recovered can be mapped to well known
statistical physics models (e.g. Heisenberg, Ising, etc.) in order to explore and
simulate plausible dynamics.

• The bulky inference procedure of having to estimate a large matrix of parame-
ters, as well as measure all pairwise bird-to-bird correlations, can be greatly
simplified by using a mean field approximation. This is a variational procedure
that approximates a difficult hamiltonian by a more tractable one. This reduces
the number of parameters to two; the global strength of interaction (J), and
the size of the bird neighborhoods driving the flock’s coordination pattern (nc).
Surprisingly, by measuring a single number (the observed correlation), it is
possible to recover the entire distribution of velocities P({~si}).

• The estimation procedure for this problem is far more involved than its concep-
tualization. It can be done using maximum-likelihood methods, as in Bialek
et al. (2012). Or using Bayesian estimation and MCMC sampling, as is done
for the local public goods model in this dissertation.

The Heisenberg model of ferromagnetic interaction inferred by Bialek and his
team allowed them to study the flock as an information propagation mechanism.
Their results show evidence that the starlings do not directly ‘communicate’ across
long distances (nc was estimated to be around 11), and that the flock achieves
velocity coordination independently of how ‘congested’ it is; "interactions are ruled
by topological order rather than metric distance" (Bialek et al., 2012). In the same
way that electron spins may align without long-range interaction in a ferromagnet, the
flock propagates directional order by relying on the transmissibility of correlations
between neighborhoods of fixed size.

Thus, Bialek and his team find evidence for the emergence of a nontrivial topolog-
ical constant which structures information propagation in the flock. Crucially for the
discussion broached here, I think it’s important to note just how reliant this finding
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was on the commitment to impose the least structure possible on the inferential
problem from the outset, and on the motivation to obtain the most parsimonious
probabilistic description possible that could match the data.

2.2.3 Animal models and analogical transfer

One of the major themes that I have tried to motivate throughout the different
discussions in this dissertation is the idea that the ‘complexity view’ provides novel
schemas for thinking and making inferences about social systems. I pointed to
those schemas as being ‘cognitive’ because they are not merely aides to deductive
reasoning, but constitutive of the conceptual, computational and statistical territories
within which new insights can emerge.

In social science, and economics in particular, where scientific intuition is ex-
tremely difficult to build and stabilize across research groups and institutions, it is
worth reflecting on what social animal models can do for us in terms of grounding
meaningful images of human social behavior. Animal models, as the work of Alan
Kirman and others has shown (see Kalenscher and Van Wingerden, 2011; Kirman,
2010), provide rich descriptive moulds that can be adapted in order to gain knowledge
about processes of herding and information diffusion in economic contexts.

Statistical physics models, and in particular models of magnetism such as the
Ising model, provide a common currency for building analogical transfers between
social animal and human behavior, in an empirically testable way that goes beyond
a mere metaphorical assertion. Statistical physics models of social dynamics have
attracted a great deal of attention in recent years, with topics as diverse as opinion
dynamics, cultural dissemination, herding in financial markets, complex social
networks, linguistic evolution, consensus dynamics and voting (see Castellano et al.,
2009).

Considering the bird flocking example, if we wanted to build a human social-
economic application, the key for building any analogical transfer would lie in
specifying the space of interaction. The starlings interact in 3D space, which is what
makes the bird flock phenomenon intuitive and easily graspable. Human interactions,
in particular those that support fads and herding, take place in networked virtual
spaces with metrics that may be difficult to define (See Kirman (2010) for a discussion
on how to define network metrics for social and economic applications). If one finds
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a suitable metric and underlying decision-theoretic space, it becomes possible to
start thinking about how to adapt the prototype. The interpretation of the degrees
of freedom will vary depending on the application: "a binary variable will indicate
yes/no to a political question in opinion dynamics, two synonyms for a certain object
in language evolution, two languages in competition, whether somebody has been
reached by a rumor or not, etc. . . " (Castellano et al., 2009). The set of questions that
could be studied in such a model is broad : "What are the fundamental interaction
mechanisms that allow for the emergence of consensus on an issue ? What favors
the homogenization process? What hinders it ?" (Ibid.).

2.2.4 Disciplinary tensions

A point of tension for the introduction of maxent and statistical physics methods
in economics, from a disciplinary perspective, comes up at the level of justifying a
commitment to solving inverse problems. This point of tension is perhaps stronger
than the one that arises simply from the application of frameworks and analogies
drawn from the stock of physics models.

There are two layers to this tension. The first one has to do with the modeling of
economic rationality and the choice of equilibrium concepts. As Kirman points out
in his Ants paper;

While the economist is prepared to accept that insects may follow some
mechanical rule of behavior which may have evolved so as to be close
to optimal, or may be locally optimal in the space of possible strategies,
if the same model is applied to economic agents, he usually requires
that the behavior should be fully and consciously optimizing. (Kirman,
1993)

Thus, at one level, the requirement that analogical transfers from other fields
conform to optimality conditions seems to force economists into adopting a view
which may end up contradicting the model’s original insights. This type of view, for
example, has led some researchers to define information propagation in terms of fully
optimizing behavior; "An informational cascade occurs when it is optimal for an
individual, having observed the actions of those ahead of him, to follow the behavior
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of the preceding individual without regard to his own information" (Bikhchandani
et al., 2021; Parker and Prechter, 2005).

It’s important to remember that maximum entropy is a principle, but it’s also
a quantity; systems appear to us in our measurements as operating at specific
information-theoretic entropies. Why this should be the case is an open problem
in information theory (see Landauer, 1996), but in studying social and biological
systems, we leverage that fact in order to extract ‘efficient’ knowledge about the
system.

The idea of extracting knowledge directly from the data, bringing to bear as few
theoretical assumptions as possible, is difficult to sell wholesale in the economics dis-
cipline. An even less palatable proposal for many economists, and some philosophers
of science, is the idea that such knowledge is a form of conjectural explanation.

This is the second, and perhaps more fundamental level, at which tensions arise.
One may be able to convince some neoclassical economists of not injecting om-
niscient agents into the nodes of an Ising model, but it will be harder to convince
researchers, across many schools of thought, of treating the challenge of defin-
ing interaction networks and microeconomic energy functionals as an open-ended,
context-specific, data-driven inverse problem. This issue goes as far back as the
‘measurement without theory debate’ (see Morgan, 1990). An incrementalist ap-
proach to modifying model assumptions is unlikely to nudge economics into a more
stable interdisciplinary equilibrium.

Social animal models and statistical physics prototypes, along with maximum
entropy and other Bayesian variational methods, can be used as a common currency
by researchers of all disciplines to pose questions and test hypotheses about economic
data. The complexity view provides a steady source of analogies, concepts, jargon, as
well as powerful computational and statistical methods for building general scientific
intuition. In a more recent discussion, Kirman has argued for the need to adopt
an ecology of methods, and to study ‘noisy systems of interacting agents’. This
idea is relatable to the maxent perspective; a noisy system is a system that has both
probabilistic and deterministic components. The maximum entropy principle asks:
What is the simplest structure that we can impose on a system’s distribution, but let
it otherwise be ‘as random as can be’ ? In setting up the problem in this fashion, the
as random as can be part is what allows us to uncover the type of noise peculiar
to the system in question. And since noise can come in many shapes and forms, it



2.3 Maximum entropy : a variational principle 39

seems reasonable to want to know what its kind is, and to understand how it relates
to the system’s functioning.

2.3 Maximum entropy : a variational principle

When dealing with problems where there is uncertainty with respect to what statistical
physics prototype to use, or where the microeconomic energy functionals need to
be adapted or revised, it is worth considering what the least biased approach is that
will lead us to a parsimonious solution. The increasing availability of numerical,
analytic, and computational tools, has made it possible to solve for the maximum
entropy (maxent) model that reproduces the behavior of large collective systems
(Lee and Daniels, 2018). Having solved the inverse problem, the researcher can
focus on finding an appropriate mapping to a prototype that can support simulation
and further inference. She may either draw from the stock of statistical physics
models, or decide to propose a new energy functional which may be grounded
in well established behavioral, sociological and economic theories (See Aoki and
Yoshikawa (2011) and Gallegati et al. (2008) for complementary perspectives in
economics).

Pairwise maxent models, such as the Ising, or binomial maxent choice models,
offer good starting points for exploring a wide range of economic datasets. Their
conceptual simplicity and generality makes them particularly attractive for tackling
questions of self-organization and statistical feedback in decentralized market envi-
ronments. In the following sections I provide an overview of the classical maximum
entropy inference problem. I also provide a set of concrete and didactic examples
that can help get a feel for how it works.

2.3.1 What is information entropy ?

The concept of information entropy was introduced by Shannon in his famous
1959 paper: A mathematical theory of communication (1959). It provides a unique
measure of uncertainty which conforms to elementary consistency principles. The
Shannon entropy of the probability distribution p(s), over possible states s 2 G of a
system, is given by:
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S[p] =� Â
s2G

p(s) log p(s) (2.5)

The states s can be the outcomes of a k-sided die, letter arrangements in a word,
the orientation of spins in a ferromagnet, or the entry/exit decisions of investors
in a financial asset, to name a few examples. Entropy is at a maximum when the
distribution is structureless. If we consider a noisy source, for example a random
number generator, this means that each output of the program will be ‘maximally
surprising’ to us, and after recording a large number of trials the histogram will be
uniform. At zero entropy, there is no surprise, and the observations will all pile up
into a single bin. The measurements we have of social and biological systems will
tend to fall somewhere in between, and by thinking in information-theoretic terms,
we can link the usual ‘law of errors’ to a specific quantity; the entropy.

Depending on how much structure we are willing to impart on an otherwise
uniform distribution, the entropy will vary. Thus, our state of knowledge about the
source is naturally encoded by that quantity: entropy reduction results in knowledge
gain. This was Shannon’s fundamental insight, and the maximum entropy procedure
provides an avenue for making our knowledge gain as ‘efficient’ as possible. The
classical treatment and exposition of the maxent principle is given in Jaynes (1957).

2.3.2 Dies and uncertainty

The simplest example of the application of the maxent principle is the problem of
assigning a distribution to a six-faced die. Suppose we rolled the die a large number
of times, and recorded an average of 4.5. From knowledge of that average, what
distribution does the maximum entropy principle prescribe ? In the absence of any
constraints, our best guess would be a uniform density. To make a prediction that is
consistent with the available information, but that is otherwise as least structured as
possible, we maximize the entropy subject to a single moment constraint, and normal-
ization. For i 2 {1,2,3,4,5,6}, and pi = p(i), we maximize S =�Â6

i=1 pi loge(pi)

subject to Â6
i=1 pi = 1 and Â6

i=1 ipi = 4.5. Using the method of Lagrange multipliers,
this yields the distribution shown in figure 2.3.

This example provides a simple entry point, but it doesn’t really tell us why we
should use the Boltzmann-Gibbs-Shannon entropy as the objective function in the
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Fig. 2.3 Maxent assignment for a six-faced die with an observed average of 4.5. Reproduced
from Sivia and Skilling (2006)

maximization problem, nor why the procedure should work at all (Sivia and Skilling,
2006). The following examples, found in(Gull and Skilling, 1984; Jaynes, 1986;
Sivia and Skilling, 2006), along with a brief discussion on some relevant critical
points, provide deeper justifications of the principle.

2.3.3 Kangaroos and logical consistency

Consider the following probability problem:

• Information : A third of all kangaroos have blue eyes, and a quarter of all
kangaroos are left-handed.

• Question : On the basis of this information alone, what proportion of kanga-
roos are both blue-eyed and left-handed?

The four possible states of a kangaroo are:

{(blue, left),(blue, right),(not blue, left),(not blue, right)} (2.6)

Skilling and Sivia use a 2⇥ 2 contingency table to represent the situation. I
reproduce it below in figure 2.4.

In the table above, p1 = x, which is the probability that the question asks us to
find. The information given tells us that p1 + p2 = P(blue) = 1/3 and p1 + p3 =
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Fig. 2.4 (a) The probabilities for the four possibilities: p1, p2, p3, p4; (b) parameterization in
terms of a single variable x, where x = p1. Reproduced from Sivia and Skilling (2006).

P(left) = 1/4. The set is exhaustive: p1 + p2 + p3 + p4 = 1. If we have no reason
to assume that having blue eyes and handedness are correlated, we would expect
that P(blue, left) = P(blue)P(left) = 1/12. In this case the preferred solution that
we’re seeking is independence of eye-color and handedness. If we want to make the
genetic outcome of our kangaroos ‘as random as can be’ then we should make their
traits independent. It is natural to ask, as Sivia states, what function could serve as a
good variational principle to obtain the preferred solution. So if we cast the problem
of finding {pi} as a constrained optimization problem, what should be the function
that we use ?

Skilling (1988) proved that the only functions which give uncorrelated assign-
ments are those monotonically related to the Shannon entropy. I reproduce the table
from Sivia and Skilling (2006) below, which shows how different functions perform
in finding the optimal value for x, and the implied correlations between kangaroo
traits (figure 2.5).

Thus, the use of the entropy functional can be motivated from the point of view
of information theory, as was done by Shannon, but also axiomatically from the
point of view of logical consistency. The canonical axiomatic treatment was given
by Shore and Johnson (1980). Other possible motivations can be approached from
the point of view of group theory (Jaynes, 2003), as well as through arguments
of exchangeability and sufficient statistics; see De Finetti (1974); Diaconis and
Freedman (1980); Porta Mana et al. (2017); Skyrms (1987).
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Fig. 2.5 Different candidates for the variational principle. See Gull and Skilling (1984).
Table from Sivia and Skilling (2006)

2.3.4 Monkeys and multiplicity

Another justification for the use of the entropy functional as a variational principle,
given by Jaynes (1986), uses a combinatorial argument and a rowdy team of monkeys.
Supposing we have to assign distinct probabilities to {xi} possible states, and that we
require those assignments to be consistent with a set of constraints, such as x being
positive ( f (x)> 0), or x taking on some average value, we can ask the monkeys to
help us out by having them throw balls at random into a boxed 1D grid partitioned
by the {xi}. The situation is displayed below in figure 2.6.

Call the set of constraints C . We set up of a large number of trials, with hopefully
a big crowd of monkeys, and after each trial we assess whether the assignment is
consistent with C and store it into memory. The ones that are not consistent we
throw out, so that we have a list L of recorded candidate assignments. Since the
monkeys have no particular ‘axe to grind’, as Sivia says, we can be confident that
they really are being arbitrary in choosing where to aim. And after a large number
of trials, some assignments l 2 L will turn out to be more common than others.
Intuitively, the preferred solution will be the assignment l̂ that shows up the most
in our list. So the monkeys are helping us build an assignment that is, not only ‘as
random as can be’, but also optimal in the sense that we can determine which one is
the most frequent.

If there are m boxes in the grid, and n balls are handed to the team of ball-
scattering monkeys, then there will be a large number possible ways for them to
create an assignment ( as long as n >> m). For each trial, the frequencies of ball
counts ni in each box yields a histogram {pi}; pi = ni/n and n = Âm

i=1 ni. Since
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Fig. 2.6 Maxent monkeys

the assignments are distinct permutations of a multiset of m distinct elements, the
number of possible assignments is given by the multinomial coefficient, which tells
us the number of histograms that can be created by the monkeys from the n balls. So,
for example, if we had sets of size five that could be built from the letters a,b,c; they
would look like {a,a,a,b,b} or {a,b,a,c,b}. And their histograms: {3a,2b,0c} and
{2a,2b,1c}. The number of possible histograms F is hence given by the multinomial
formula in equation 2.7 below:

F({pi}) =
 

n
n1,n2, . . . ,nm

!
=

n!
n1!n2! . . .nm!

=
n!

(np1)!(np2)! . . .(npm)!
(2.7)

Taking the logarithm of F and using Stirling’s approximation log(n!)⇡ n log[n]�
n, we obtain:

log(F) = log


n!
(np1)!(np2)! . . .(npm)!

�
⇡�n

m

Â
i=1

log [pi] pi = nS (2.8)
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where S is the Boltzmann-Gibbs-Shannon (BGS) entropy. Since S is monotone
in the expected frequencies of the distinct histograms, we can use it as a variational
principle for finding out which one will be the most common. This is then another
route for showing that the use of the entropy functional makes for a good objective
function to use in a constrained optimization problem, when we’re interested in
obtaining the combinatorially most likely distribution of a random variable, subject
to a set of constraints C .

2.3.5 Probability boards

The monkeys will not be happy about the derivation of a variational principle, because
it puts them out of work. And perhaps there’s a reason why some people choose not
to stop at the monkey cage when they go to the zoo: they can be difficult to work
with despite their probabilistic reliability. But it’s worthwhile taking a moment to
compare their ball-scattering scheme to the functioning of Galton’s board, which is
displayed below in figure 2.7.

Fig. 2.7 The Galton board.
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Galton was fascinated by the demonstration that the normal bell curve could be
shown to emerge by dropping a large number of beads into a vertical board with
interweaved rows of pegs. The beads, similar to the ball-scattering scheme, are
chaotic and bounce off the pegs arbitrarily as they fall. However, they are not free
to enter anywhere at the top. The beads enter at the center, and the board also has a
fixed width. Thus, one should expect the mode of the histogram of beads to be at the
center as well, and since the bouncing down of the beads is effectively random, they
should fall symmetrically around that mode. The bell curve arises due to the chaotic
movement of the beads, but more crucially, it is the work of the constraints which
give it its distinct shape (unimodal-symmetric with a fixed variance).

Maximizing the entropy functional S[{pi}] subject to specific mean and variance
constraints, as in the Galton board, also yields a Gaussian distribution. The compari-
son has meaning beyond a practical demonstration of the principle, it also points to
the fact that the Galton board is a model of variance and chance fluctuations around
a central tendency. In a physical board or simulation, other distributions can be
obtained by altering the shape of the beads or the board’s structure, e.g. by placing
two holes at the top to create a bimodal distribution.

What the information-theoretic perspective tells us is that it is enough to specify
a set of constraints and their expected values in order to recover the full shape of a
distribution. And this is what makes maxent, in a somewhat caricatural but practical
sense, an adjustable pegboard for building probability distributions. The comparison
of these two examples should also point to the fact that often, in the absence of
tractable variational principles, we might have to rely on simulators and samplers to
obtain the required solutions.

Fig. 2.8 A (biased) maxent board.
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2.3.6 Critical points

In 1957, E.T Jaynes published two important papers proposing the maximum entropy
principle (MEP), in which he showed that it is possible to interpret statistical me-
chanics in terms of information theory. This work successfully synthesized the ideas
of Laplace, Bayes, Boltzmann, Gibbs, Jeffreys, Cox and Shannon, into a coherent
framework for probabilistic reasoning and data analysis. Jaynes’ synthesis led to
the so called ’subjective turn’ in statistical mechanics, in which the latter came
to be viewed by supporters of the MEP as a general form of statistical inference.
This newly founded perspective sparked a debate between ‘objectivists’ and ‘sub-
jectivists’, both in statistical physics and Bayesian probability theory. Jaynes was a
staunch defender of the Laplacian-Bayesian interpretation of probability, and of the
maximum entropy method, but he was also a working physicist who made important
contributions to quantum electrodynamics (QED) and to radiation theory. The goal
of grounding quantum physics within the broader purview of information-theory and
principles of logical consistency has historically been, and continues to be, a strong
motivation for certain physicists to push the boundaries of our thinking about what
lies at the intersection of the ’objective’, the ’subjective’ and the ’computable’. This
latter motivation is also what makes Jaynes akin, not only to probability thinkers, but
also to scientists such as Von Neumann, Lorenz, and David Deutsch, whose work
has made it possible to think rigorously about the problem of reconciling theories of
computation and numerical approximation with natural laws 3.

Naturally, the idea of interpreting statistical mechanics in terms of information
theory was not met without strong criticism. I will not deal here the physics side of
the critiques to the MEP; the major arguments and debates can be found in Dias and
Shimony (1981); Uffink (1995). I will focus here only on three major critical points
that have been addressed at the MEP (maxent), and which I think are relevant for the
discussions broached in this paper.

Insufficient reason and homogeneity

The first critical point has to do with the ‘non-committal’ aspect of maxent, and its
relation to the historical principle of insufficient reason. In order to properly frame
the critiques, I quote below Jayne’s original (verbal) formulation:

3See Deutsch (1985) for his proof that led to the modern theory of quantum computation.
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The principle of maximum entropy may be regarded as an extension
of the principle of insufficient reason (to which it reduces in case no
information is given except enumeration of the possibilities xi ), with
the following essential difference. The maximum-entropy distribution
may be asserted for the positive reason that it is uniquely determined
as the one which is maximally noncommittal with regard to missing
information, instead of the negative one that there was no reason to think
otherwise. Thus the concept of entropy supplies the missing criterion of
choice which Laplace needed to remove the apparent arbitrariness of the
principle of insufficient reason, and in addition it shows precisely how
this principle is to be modified in case there are reasons for ’thinking
otherwise’. (Jaynes, 1957)

It becomes clear reading Jayne’s statement that any attempt to justify the pro-
cedure should make sure to delineate it from the historical principle of insufficient
reason, so that, as Shore and Johnson wrote, the entire effort doesn’t come across
as an attempt to suggest that it is "a reasonable and systematic way to throw up our
hands" (Beneš, 1965; Shore and Johnson, 1980).

The principle of insufficient reason (pir) was first articulated by Jakob Bernoulli,
which states that if we are ignorant of the different ways that an event can occur,
and we do not have a compelling reason to believe that anyone way will occur
preferentially over the other, all events are to be regarded as being equally likely.
Part of the controversy that ensued, and which persists to this day, has to do with this
baggage carried from Bernoulli’s inheritance. What poses a problem in Bernoulli’s
enunciation is the ‘equally like’ part, as it implies a modern reading of the inferential
norm as the ‘principle of the uniform distribution’. Keynes was famously opposed to
Bernoulli’s pir, renamed it the Principle of Indifference, and devoted an entire section
of his A Treatise on Probability to challenge its plausibility and logical coherence;

If every probability was necessarily either greater than, equal to, or less
than any other, the Principle of Indifference would be plausible. For if
the evidence affords no ground for attributing unequal probabilities to
the alternative predications, it seems to follow that they must be equal. If,
on the other hand, there need be neither equality nor inequality between
probabilities, this method of reasoning fails. (Keynes, 1921)
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The issue that is at stake here is that of the metric on which the maxent probability
assignment is built. Consider, once again, the example of the ‘maxent probability
board’, and imagine that instead of having equally spaced bins waiting for the
beads at the bottom, your board came with bins of different sizes, with some maybe
complicated but nonetheless determinable ratios. What the maxent principle says
is that in the absence of any further structure, the histogram p(x) that expresses
complete ignorance about the possible values of x is given by the ratios of the
variable bin widths. In this atypical and idealized example, the maxent assignment
is then proportional to the measure structure of the board floor. If we call that
non-homogenous measure m(x), then p(x) µ m(x).

Considerations of how to translate the maxent procedure to variable metrics
allowed Jaynes (1963) to extend the principle to the continuous setting, by modi-
fying the entropy functional so that it takes into account the problem’s underlying
geometry:

S⇤ =�
Z

p(x) log


p(x)
m(x)

�
dx (2.9)

This is known as the Shannon-Jaynes entropy in the literature. In practice, unless
there really is an unwieldy geometry to worry about, the differential entropy or the
kullback-leibler divergence (with respect to uniform density) can be used without
safeguard in the continuous setting to arrive at the preferred solution (see Dimitrov,
2007; Golan, 2018).

Bayesian updating

Some supporters of maxent, Skyrms notes, "go so far as to give it the status of a
principle of Bayesian logic, on a par with additivity of probability or Bayes’ rule
of conditioning. Some of its detractors claim that it is almost inconsistent with
Bayesian methodology. Much of the debate appears to proceed on the assumption,
tacit or explicit, that maxent is an inductive rule, i.e. as a rule for updating subjective
probabilities" (Skyrms, 1987). For critiques of maxent understood as an updating
rule, see: Friedman and Shimony (1971); van Fraassen (2011) .

The inductive-bayesian interpretation of the maxent rule was in part driven by the
introduction of the Shannon-Jaynes entropy discussed in the previous section. The
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fact that the maxent optimization procedure can be cast as the problem of minimizing
the distance between two distributions was also a contributing factor in making this
view possible (Kullback and Leibler, 1951).

An inductive bayesian agent updates prior probabilities by using bayes’ rule:
P(H | D) = P(D|H)P(H)

P(D) . The rule defines a computation, since updating is a form of
dynamics on the underlying probability space. A maxent updater would move from
the prior distribution P(H) to a posterior distribution P(H|D), not via Bayes, but
by finding P(H,D) via constrained optimization, and then evaluating P(H|D). The
only simple way to get out of this historically convoluted discussion is to realize
that the idea of maxent as a form of conditioning is a conflation in terms. The
entropic variational principle is used to specify the probability space on which
bayesian computation takes place. Thus, from the researcher’s point of view, maxent
enters concretely at the level of solving a likelihood dilemma (what probability
model to choose?), in a way that is consistent with a set of knowledge-based or
empirical constraints. See Skyrms (1987) and Giffin and Caticha (2007) for historical
discussions and more recent attempts of casting the maxent principle as a form of
‘minimal information conditioning’.

The search for rigid priors

In decision theory, mathematical analysis shows that once the sampling
distributions, loss function, and sample are specified, the only remaining
basis for a choice among different admissible decisions lies in the prior
probabilities. Therefore, the logical foundations of decision theory can-
not be put in fully satisfactory form until the old problem of arbitrariness
(sometimes called "subjectiveness") in assigning prior probabilities is
resolved. (Jaynes, 1968)

The plausibility of Jaynes’ deterministic hypothesis, that different people follow-
ing an identically priored bayesian inference scheme will reach identical conclusions
when presented with the same data and information, hinges on the existence of a
canonical uniform and ‘rigid’ prior. For the maxent principle, this seems to come
at the expense of putting homogeneity and uniformity over ‘non-committalness’
with respect to missing information. What defines a state of ‘complete ignorance’?
Attempts to give an answer to this question led to important formal explorations
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on the part of Jaynes. To let the probability assignments be ‘as random as can be’,
one should be willing to end up with an assignment of the form m(x) = µ

dx . To
take the board example again, the latter expression simply means that the propor-
tional sizes of the bins catching the beads at the bottom vary as a function of the
possible outcomes. The Shannon-Jaynes entropy functional is able to recover that
assignment for Lebesgue measurable spaces. For other more extreme situations, if
‘non-committalness’ is to be preserved, new mathematical explorations might be
called for. And not in the sense of asking for a measure that is ‘good for all purposes’,
but in finding one that is appropriate to specific scientific problems and contexts.
The path taken might involve not only revising what is meant by uniformity and
‘uninformativeness’, but also by independence. 4.

Certainly, there are both normative and formal components to the maxent princi-
ple. The normative part is related to the desideratum to remain non-committal and
to let the probability assignments be ‘as random as can be’. The formal part has to
do with the choice of the variational concept to be used in the constrained optimiza-
tion problem. The good balance between the two is struck when the choice of the
functional S is governed by the willingness to find ways to remain non-committal
with respect to missing information in any given context, and for solving a specific
problem.

Non-exponential families and varieties of entropy

Of all the challenges that can be faced by classical maxent methods, the most piercing
are those which point to issues with the optimality of the variational principle, or
which question the relevance of the BGS entropy concept itself. Is there something
lacking in a framework that always yields exponential solutions ? Can we use
the method to infer bi-modal distributions ? What about distributions with power-
law tails ? The question of how a probability assignment behaves at the tails of
possible outcomes is very important, because if you’re trying to obtain a solution
which is ‘as random as can be’, you don’t want to rule out extreme but likely
events. The method’s ability to recover unimodal distributions which are highly
peaked might give the false impression that it is generally applicable to all models,

4A case in point of this kind of situation was the formalization of free probability and quantum
probability, where not only measures change, but also the classical axioms of the probability calculus
are altered. See Deutsch et al. (2000).
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but maximizing the BGS functional can lead to poor results if the data is multi-
modal or heavy-tailed. Exponential assignments will effectively give vanishing
and possibly inaccurate probabilities at the very far end of the range of possible
outcomes; e�very extreme event ⇡ 0.0 (see Bryson, 1974). The solution could involve
employing a mixture of exponential models, but that might imply that the constraints
inferred are not efficient with respect to a single BGS entropy functional. So can one
hope to define informational efficiency in such a model ?

Fig. 2.9 Heavy-tailed distributions. Exponential tails go to zero faster than heavy tails.

A vast literature has emerged in recent years in statistical mechanics that focuses
on tackling this issue. Nonexponential distributions can be inferred by maximizing
another form of entropy, as opposed to the BGS form. Among these nontraditional
entropies are those of Tsallis, Rényi, and others (see Aczél and Kannappan, 1978;
Amari, 1985; Rényi, 1961; Tsallis, 1988) . The Tsallis entropy gives a mathematical
generalization of the BGS entropy, and takes the following form:

Sq ({pi}) =
k

q�1

 
1�

W

Â
i

pq
i

!
(q 2 R;S1 = SBG) (2.10)

The q parameter is an ’entropic index’ which allows for that generalization, and
subsumes the BGS functional under a broader (infinite) class; limq!1 Sq = SBG.

It’s important to note that Tsallis’ motivation for developing this new entropy
functional also stems from the need to uncover a variational principle suitable for
inferring probability assignments. But the point of view from which this is done
departs radically from the Jaynesian program, and poses an important challenge
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to its central motivations and justifications (which were discussed in the previous
sections). For readers unfamiliar with the maxent literature, their distinction could
be easily missed by the fact that both programs are about entropy maximization.
The key to their divergence is succinctly phrased by Peterson et al. (2013) in the
following quote:

"A nonexponential distribution that is derived from a Max Ent principle
requires that there be nonextensivity in either an energy-like or entropy-
like term; that is, it is nonadditive over independent subsystems, not
scaling linearly with system size. Tsallis and others have chosen to
assign the nonextensivity to an entropy term, and retain extensivity in
an energy term".

To get a more intuitive sense of what this entails, it’s worth going back to the
caricatural maxent board example, or to Jayne’s monkeys. What Tsallis proposes,
from the point of view of choosing/building a maxent probability assignment, is to
tweak the beads and the pegs of the board. As for the Jaynes example, the Tsallis
program suggests that when studying complex systems which exhibit weak chaos and
important long-range interactions, we should be hiring a different team of monkeys
(Tsallis and Brigatti, 2004). A second, more faithful way to portray the issue: The
Tsallis program opens up a catalog for choosing the maxent board, or the monkey
team, out of a possibly infinite variety. The Tsallis version of these examples is
displayed below in figure 2.10.

Tsallis’ proposal for ‘tweaking the pegs of the board’, or ‘picking monkey teams
from a league’, is motivated by the objective of supplying dynamical-law foundations
to the statistical mechanics of non-equilibrium and strongly interacting complex
systems.

It is the natural (or artificial or social) system itself which, through its
geometrical-dynamical properties, mandates the specific informational
tool–entropy–to be meaningfully used for the study of its thermostatisti-
cal and thermodynamical properties. (Tsallis and Brigatti, 2004)

This point of view is established by Tsallis on physical grounds, as it stipulates
that the q parameter should be determined a priori from microscopic dynamics. For
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Fig. 2.10 (A) Some weakly chaotic maxent boards. (B) The job market for entropic monkeys.
Which q?

dynamicists interested in modeling non-equilibrium systems through anomalous (e.g.
non-markovian) diffusion processes that converge to power-law distributions, the
theory is more than compelling; it’s also beautiful. Tsallis’ nonextensive statistical
mechanics has been used to study the fat-tailed data of options pricing, financial
volumes and returns, risk aversion, among other economic phenomena. In physics
settings, it has been applied to phenomena as diverse as solar winds, high energy
particle collisions, black holes and quantum gravity (see Beck, 2009; Beck et al.,
2006).

But the point that I want to discuss here is the extent to which this program seems
to pose a direct challenge to the information-theoretic foundations of the Jaynesian
(‘classical’ maxent program) in social and biological contexts. There is a reason to
why Shannon looses credit in Tsallis’ limit (lim

q!1
Sq = SBG ). For Tsallis, it’s important

to be able to find a variational principle for inference which does not tamper with
the laws of thermodynamics, and which retains the extensivity and conservation of
energy. A crucial point to keep in mind is that physicists have strong and justified
reasons for seeking solutions that are fully consistent with a dynamical-law approach,
and to consider the idea of non-extensive energies as blasphemous. After all, it’s
the fact that Tsallis carves energy in stone, but lets entropy take a parametric form,
which makes the program so appealing to swaths of physicists working in the most
esoteric confines of non-equilibrium statistical mechanics.
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But from the point of view of the Jaynesian statistical mechanic, the introduction
of the q parameter runs at odds with the principle of letting things ‘be as random
as can be’ and with the desideratum of remaining non-committal with respect to
missing information. If the microscopic dynamics are known, then it can be said
that nature ‘chooses’ q, but what happens in contexts where the dynamics are not
known or where we have strong reasons to believe that the deepest knowledge we
can gain about a system is not dynamic but combinatorial and information-theoretic
(e.g. in genetics)? The prospect of calibrating q or estimating it from the data seems
to impose too much structure and to run against the logical consistency requirements
established by (Shore and Johnson, 1980).

In the classical maxent program, if there is anything to be adjusted, it should
be the energy functional. In social and economic settings, for example, there is no
intrinsic reason to assume that quantities should be conserved or energies extensive
(see Scharfenaker, 2020a). It follows that the question of how to modify the energy
functional within the limits of BGS is the central and nontrivial data modeling
challenge faced by those working with the classical maxent approach. It is in holding
this position that the mining of probabilistic descriptions which are informationally
efficient and non-biased becomes possible.

When considering how to address the issue of nonexponential and power law
assignments, or when dealing with long-tailed skew in the distributions, other routes
are possible which do not involve using non-extensive entropies. For nonexponentials,
one route is to work with the logarithms of probabilities and to employ a nonextensive
energy term. This is the strategy adopted by (Peterson et al., 2013) in deriving
distributions with power-law tails from the BGS functional. They report obtaining
good fits for a broad range of phenomena, such as links in social networks, protein-
protein interactions, and terrorist attack severity.

When long-tailed skew seems hard to account for using a standard maxent
procedure, another strategy, recently explored by Scharfenaker and Foley (2021a),
is to discard the mean as a sufficient statistic for recovering the distribution. This
effectively drops the assumption that the system’s quantity is ‘conserved’, and allows
instead for a complex nonlinear energy functional to determine the predictive mean.
This strategy turned out to be particularly important for the empirical work presented
in this dissertation, as it allowed me to account for the skew in the data in terms of
two distinct but interacting forces; residential sorting and competition in the local
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public goods setting. Such a move would not have been ‘legal’ in the Tsallis program,
and maximizing a nonextensive entropy would have led to a ‘market feedback energy’
difficult to interpret in economic terms, due to the presence of hyper-parameters.

From the perspective of analyzing the data, it could be worthwhile to compare
the two approaches and see what insights could be gained. The Tsallis program
provides a new plethora of anomalous and non-markovian diffusion processes that
can meaningfully complement a classical maxent analysis, by providing richer dy-
namical prototypes and samplers. The perspective I have tried to outline throughout
this paper is that it is possible to use such complements without being committed to
the ontological implications of the dynamical-law perspective.

2.4 Boltzmann densities and microeconomic energy
functionals

2.4.1 An integrated perspective for economic statistical mechan-
ics

Having discussed what I think are the most relevant and important foundations for the
application the Boltzmann-Gibbs-Shannon (BGS) variational principle in economic
data analysis, in this section I propose a simple integrated perspective that brings all
the elements together. Let me briefly recapitulate some key points.

The application of statistical equilibrium methods and statistical physics, in the
context of social and biological systems, can be approached by appealing to the
concepts of self-organized criticality and punctuated equilibria. While these concepts
remain highly speculative, concrete evidence for their plausibility can be found by
looking at the evolution of empirical histograms of complex social systems data.
Data analysis can reveal time invariance in the distinctive statistical signatures of
economic variables, thus opening the door to statistical equilibrium reasoning.

The BGS variational principle can be used to uncover or mine the system’s
‘informationally efficient’ energy functional. But it can also be used to hypothesize
new energy functionals and to test their empirical plausibility. In both cases one is
trying to solve an ‘inverse’ problem. The semantics of the energy concept employed
have to be settled on a context-specific basis, and by appealing to relevant and well-
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established social, economic or biological theories. My discussion of the complexity
view has been an attempt to open up a philosophically rigorous route for liberating
economic energy concepts from strict disciplinary bounds.

The energy functionals recovered can be mapped to well known statistical physics
models. This can lead to dynamic analysis as a method for exploring (sampling)
possible evolutions of the state variables, or to institutional/structural analysis through
the use of agent based models, or even verbal models.

An added bonus that comes from the use of well established statistical physics
models, is that they can serve as common currency for mediating complexity concepts
across physical, biological, and economic domains. The study of animal models
can spark rigorous reflections on processes such as herding, opinion dynamics, and
conflict. In the mapping that connects the structural and behavioral patterns of distinct
phenomena across scientific domains, what emerges is literally a social-statistical
view of the natural world.

2.4.2 Approaching the optimization procedure

In considering then the BGS entropy as the unique measure of uncertainty which
retains the consistency requirements and non-committalness that have been discussed
throughout, the elementary optimization procedure looks as follows for the discrete
case. The entropy S[p] of a distribution p(s), giving the probability assignments for
s 2 G possible configurations of a system T is:

S[p] =� Â
s2G

p(s) log p(s) (2.11)

If S[p] = 0, we can expect a single configuration s to repeat itself indefinitely.
The system is ‘minimally surprising’. Conversely, at maximum entropy and in the
absence of any structure on S, T is ‘maximally surprising’. BGS entropy measures
our ignorance about T , not how chaotic it is. In considering the constraints and
structure that we can impose on G, we start by asking: How is the system measured
? How is it observable ? Usually we will not be dealing with raw measurements of
the states s but with a set of functions or features fk(s). These can be, for example,
assigned spins to the particles of a ferromagnet, to the firing of neurons in a temporal
bin, or to the entry/exit decisions of firms in some specific economic environment.
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What is of interest to us is usually a set of moments {h fk(s)i}, where the fk are
organizing functions which we use to reduce our uncertainty about T ( h⇤i is the
expectation operator).

With this in mind, one way to motivate the procedure is to consider it as the
concrete task of forming expectations about the values that the features fk(s) can
take. So we form a set of expectations E = {h fk(s)i}.

The k expectations formed will naturally depend on our probability assignment
p(s), as follows:

h fki= Â
s2G

p(s) fk(s) (2.12)

Prior to working with the data, we can consider E as taking on a set of placeholder
values {Ek} in order to optimize the BGS functional and find an informationally
efficient p(s). The standard procedure is to use the method of Lagrange multipliers,
and set up the Lagrange functional L :

L [p] =� Â
s2G

p(s) log p(s)�
K

Â
k=1

lk (Ek �h fki) (2.13)

In solving for the fixed point by taking the partial derivatives with respect to lk,
the resulting probability assignment p(s) is the ubiquitous Boltzmann distribution:

p(s) =
e�H(s)

Z
(2.14)

The entropy is a convex function of p, and the constraints are linear in p, so
the optimization problem is convex and the solution is unique. The denominator is
the normalizing constant or partition function Z = Â

s2G
e�H(s). By taking the relative

negative log-likelihood of p(s), we obtain an informationally efficient ’energy’ or
Hamiltonian for T :

H(s) =�
K

Â
k=1

lk fk(s) (2.15)
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Apart from belonging to the exponential family, there’s nothing peculiarly id-
iosyncratic about the distribution p(s). Nonetheless, we should ask: How is this
informationally optimal ? How is this not an ad hoc solution ? It’s not obvious.

A phenomenon seldom discussed in statistics courses is our ability to build
expectations about measurable quantities in order to efficiently process available
information. The expectations Ek = h fki are the minimally sufficient statistics re-
quired to build a predictive distribution p(s). They are ‘sufficient’ in the sense that
measurement of any other average will be irrelevant and superfluous in our ability
to recover the full distribution p(s) (see Porta Mana et al., 2017). For example, if
we have some variable x, knowledge of a sample mean x̄ and its variance s2

data is
enough to recover the full shape of the normal bell curve, under the assumption that
we can interpret the data as coming from that model. So it’s not only a question of
obtaining sufficient statistics, but of situating the signal in the appropriate probability
model, i.e. attributing meaning to a collection of data points.

The reason this isn’t obvious is due to the semantic component, but also because
we can recover the full distribution even if those are the only two quantities we have.
So if you share with a friend your x̄ and s2

data, she’ll be able to predict the shape of
your normal dataset, and compute other statistics (for her own reasons), without you
having to share the entire dataset. So there’s a strong element of data compression
and signal-processing.

What fully specifies p(s) is knowledge of the parameters lk. The optimal values
are those that that make our expectations Ek as close as possible to the observed
averages, taken over R samples in a dataset D :

h fkidata =
1
R Â

s2D

fk(s) (2.16)

In finding the optimal {lk}, we are trying to minimize a divergence between our
predictive distribution p(s) and the empirical distribution pdata(s). This can be done
via the Kullback-Leibler functional:

DKL (pdata kp) = Â
s

pdata log
✓

pdata (s)
p(s)

◆
(2.17)
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The KL functional is minimized at the point where our expectations Ek match
the data (see Lee and Daniels, 2018):

∂DKL

∂lk
= Â

s
pdata (s)

∂ (�H(s)� logZ)
∂lk

= 0 (2.18)

) h fkidata = h fki (2.19)

We can then propagate uncertainty into our solution by using bayesian methods
and MCMC sampling. Apart from recovering the optimal set {l ⇤

k }, which is also
the set of maximum-likelihood (MLE) estimates (see Golan, 2018), we might want
to predict distributions which take input from other regions of the parameter space.
We can’t do that with a single parameter estimate, so we need distributions for the
parameters; p(lk). Hence, the complementarity of bayesian methods is crucial.

2.4.3 Principle-based search

In these last two sections I discuss the question of how to establish economic
semantics for the inferred energy functional or ‘economic Hamiltonian’. To start, the
first thing to note is that the energy is a linear combination of the organizing functions
fk; H(s) = ÂK

k=1 lk fk(s). This does not imply, however, that the organizing functions
should be linear. They can be nonlinear functions of the state s, e.g. tanh(s).

Furthermore, there are instances in which we may want to consider how another
system B interacts with the system in question, but we have no way of measuring
directly that interaction. So B, for example, can be a microeconomic or decision-
theoretic system, and we want to know how different configurations b 2 B might
contribute to the shape of the inferred distribution p(s), which may refer to the
probabilities of a macroeconomic state variable. If we have a working theory about
B, one way to do this is to hypothesize a function b(s) in our set of expectations Ek,
and to optimize the joint entropy of both systems. This is the strategy followed by
the quantal response model used in this dissertation (Scharfenaker and Foley, 2017).
If the relationship between microeconomic configurations and the macroeconomic
states were linear, we would be able to fit a regression line through a scatter plot
of their features or their related parameters. But since this is usually not the case,
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one way to study the complex coupling of agent systems and macro variables is
to find an energy functional of the form H(s,b(s)), where b(s) might be some
microeconomic nonlinear function which we use to organize our expectations about
s. It is this recursive aspect which can make the inference of suitable statistical
physics prototypes more challenging in macroeconomic applications. For a thorough
discussion of the behavioral model used in the quantal response (QRSE) model see
Foley (2020).

The key question is then that of determining what functions fk(s) can be used to
form expectations about a system’s possible configurations s. The fifth chapter in this
dissertation explores the question of whether reasoning in terms of general principles
can provide a basis for predicting economic distributions. The main outcome of this
exploratory philosophical project has been the realization that the same discussion
can be broached in terms of model-based inference in cognitive neuroscience (Friston,
2009; Gottwald and Braun, 2020; Khemlani and Johnson-Laird, 2013), or in terms
of semantic theories of information (Floridi, 2005).

To further motivate why the question of semantics and principle-based inference
is important for statistical equilibrium reasoning, consider two simple examples:
playing football (soccer) and avoiding fire. A player who scores a header during a
corner kick has the remarkable ability of predicting the ball’s trajectory and spin as
it swerves through the air. Talented players can predict the trajectories with great
accuracy from information of initial conditions (the first few seconds of the corner
kick). This ability comes from years and years of training.

Now consider the situation in which a hiker infers the distal presence of fire
from the proximal information that there is smoke (Sequoiah-Grayson, 2007). What
allows the hiker to infer the presence of fire is the knowledge that "smoke means
fire", her mental map of the forest, as well as a basic qualitative understanding of
what smoke looks like (a gray and chaotic looking suspension of particles). Crucially,
this is not an inferential process that involves reasoning in terms of aerodynamics or
initial conditions. So clearly there are contexts where dynamic expectations may not
reveal any meaningful information about an unfolding process.

This example is revealing because it helps to situate the applicability of principle-
based statistical equilibrium reasoning in contexts where the use of dynamicist
concepts might be misleading. The point is not to say that dynamic models are
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uninformative, but to emphasize that principle-based search can be a good starting
point for finding the right context in which to situate plausible and relevant dynamics.

2.4.4 Mining for energy

There are other scenarios in which a mapping for the relevant statistical physics
prototype may be more readily available, or in which it will can be obtained as a
solution to an inverse problem by imposing only relevant statistical constraints on
the procedure.

In Lee and Daniels (2018), for example, it is shown how solving an inverse
maxent procedure can yield the energy functional for an Ising model. Consider a
set of binary action vectors or spins {si} with two possible values: e.g. up/down,
(1,-1) , or entry/exit. Take as the set of constraints the mean action and the pairwise
correlations;

hsii= hsiidata (2.20)

⌦
sis j
↵
=
⌦
sis j
↵

data (2.21)

Via the Lagrangian optimization procedure,

∂L [p]
∂ p(s)

=� log p(s)�1+
N

Â
i<j

Jijsisj +
N

Â
i

hisi (2.22)

,we obtain p(s) = e�H(s)/Z, where

H(s) =�
N

Â
i<j

Jijsisj �
N

Â
i=1

hisi (2.23)

This is the well studied Ising model in statistical physics, which is also known
in the literature as the pairwise maxent model (Ising, 1925). If we drop the mean
action constraint, we obtain the Heisenberg model used in Bialek et al. (2012). In
general, the hi parameter measures the strength of an external field acting on si, and
Jij measures the pairwise coupling strength. So hi gives the ‘intrinsic’ tendency of
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each spin or action vector to maintain a particular direction, and Ji j tells us about the
strength of their coordination.

In social science applications, the multinomial and interactive character of Ising-
type model lends itself well for studying highly correlated decision-theoretic envi-
ronments. Lee et al. (2015), for example, derive an Ising spin glass model from the
observed pairwise correlations among supreme court justices’ votes. Stauffer (2008)
discusses similarities between the Ising model and Schelling’s famous segregation
model. They also make the important point that it is only until recently that we
have come to observe the strong similarities between models of ferromagnetism in
physics and models of residential segregation and community formation in analytical
sociology.

Also inspired by the applicability of interactive physics prototypes, Vinković
and Kirman (2006) study a surface tension model that explains clustering dynamics
in Schelling type segregation. While not motivated from a maxent or information-
theoretic perspective, one can see the complementarity between the approaches.
Sylvain Barde, for example, develops a ‘maxent prediction’ of Schelling segregation
patterns by setting up the inference problem as a bayesian image restoration task
(Barde, 2015). In a nutshell, the approach taken by Barde is to take the emergent
segregation pattern as the true image which is hidden by noise and to predict the
outcome from minimal information about initial conditions. In another paper, Barde
also builds a ‘maxent prediction’ for Kirman’s Ant model, in which the limiting
distribution of the asymmetric recruitment of ants into two food sources is given
by a beta distribution (Barde, 2012). The drawback to Barde’s approach is that it’s
not motivated by the search for an informationally efficient representation of the
underlying process. In the context of herding models, it could be interesting for
future work to study what set of parsimonious constraints or principles could lead
to the beta distribution, either by optimizing a BGS functional or other varieties of
entropy.

With respect to the research presented in the next two chapters (papers), the
appropriate statistical physics prototype sought would be one capable of capturing
the complex and evolving process of jurisdictional fragmentation in the US. In the US,
the system of local governments is not static and evolves as a function of residential
choice and local political preferences. "In 1952, the Census Bureau reported a
total of 116,755 local governments. By 2017, 90,075 remained through a complex
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system of dissolutions, mergers, and new additions. Nearly 50,000 independent
school districts were dissolved or merged over 60 years, while almost 25,000 net
special districts were created. General purpose local governments (counties, cities,
towns/townships) remain relatively unchanged over time by comparison. The local
government landscape is dynamic with some areas seeing very little change and
others seeing complete transformations"(Goodman, 2019).

This is really a phenomenon into which we have no adequate visibility at the
moment, and which is poorly captured by econometric techniques and applied general
equilibrium analysis (see Nechyba, 2020). The Tiebout-QRSE model takes a first
step in exploring the possible space of informationally efficient energy functionals.
The empirical results point to the need to include/test additional potentials related to
the housing market, to federal and state spending, and to the growing share of the
private school market. I suspect that a useful starting point for finding prototypes
would be to look for models of fracture in physical systems, but this is a question for
future research.



Chapter 3

A Statistical Equilibrium Model of
Public School Expenditures

3.1 Introduction

3.1.1 Tiebout Competition

A central problem in the economic analysis of the provision of local public goods is
the lack of incentives of voters to reveal their true demand. Tiebout (1956) proposed
to study the problem of local public goods through a quasi-market model in which
consumer-voters express their preferences for local public goods by moving in and
out of local jurisdictions.The Tiebout hypothesis states that local jurisdictions will
tend to sort into homogenous blocks with respect to demand for local public goods
and tax levels, when these are taken to be a form of prices in the model. The core
idea behind this hypothesis is that a Tiebout sorting equilibrium, if it exists, will
eliminate inefficiencies associated with demand diversity; households will not be
forced to pay higher tax levels than they would otherwise prefer, nor are they are
able to free-ride on neighboring households’ relatively higher contributions to the
local tax-service package.

Tiebout’s 1956 paper was, and continues to be, an important catalyst for renewed
research in the analysis of decentralized government finance. Tiebout’s major
contribution was to challenge the standard belief of the time that there was no
market-based solution to the problem of local public goods provision. He did so by
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placing geographic location and mobility at the core of the analysis, and by using
the latter as a proxy for choice and preference revelation.

There is no way in which the consumer can avoid revealing his prefer-
ences in a spatial economy. Spatial mobility provides the local-goods
counterpart to the private market’s shopping trip. Tiebout (1956)

While Tiebout (1956) agreed with Musgrave (1939) and Samuelson (1954), that
the determination of federal government expenditures could only have a political
solution, he argued for explaining variations in local government expenditures in
terms of decentralized sorting mechanisms (a market analogy) and not by alluding to
simple majority voting schemes.

Tiebout’s hypothesized mechanism of competition, when seen though the lens of
neoclassical equilibrium models, may be understood as having three essential traits
(Nechyba, 2020). The first is that when local communities are viewed as analogous
to competing firms, decentralization will allow for the optimal provision of public
services in the presence of heterogeneous household demands. The second is the
notion that competition will reduce incentives for local governments to behave like
‘Leviathans’ (Jha, 2020). The latter notion rests on the belief that the decentral-
ized procurement and provision of local public goods will counter the tendency of
governments to arbitrarily extract higher taxes from their residents (Brennan and
Buchanan, 1980; Jimenez and Hendrick, 2010). A third feature implies that in
’equilibrium’, the Tiebout mechanism will lead households to sort (to some degree)
on the basis of ability-to-pay and household income. This latter feature is, of course,
far from being unequivocally desirable. The characterization of Tiebout sorting as
an optimal outcome, possessing intrinsic merit mostly on account of its capacity to
bring about productive efficiencies, turns out to be at odds with basic legal notions
regarding citizens’ rights to education (Jha, 2020). An equilibrium in which public
school expenditures and quality are highly correlated with household characteristics
presents non-negligible moral and legal challenges. The scope of these challenges
has been duly evidenced by the continued legal battles and policy debates over
funding inequities in the US public education system for the past 50 years (Baker,
2021; Hertert et al., 1994). The fact that the optimal outcome in a highly idealized
formulation of the Tiebout hypothesis turns out to be fundamentally at odds with
what may be desirable at the policy or household level (or is at the very least highly
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contestable), does not rule out the possibility that sorting and the rationing of gov-
ernment resources are in fact shaped by Tiebout-like forces. It does however pose
serious challenges to the modeling and specification of the microeconomic primitives
which drive the competitive process.

One of the fundamental problems that comes out of the use of applied general
equilibrium models is that they force us to consider observed economic distributions
as resulting chiefly and mechanically from the interaction of optimizing agents
(households and governments) whose preferences are fully satisfied. This is a
modeling strategy that rules out a priori the possibility that agents’ expectations will
remain unfulfilled in equilibrium.

In the context of the economic analysis of the determinants of heterogeneity
in public school expenditure levels and demand, where much of the theoretical
and policy debates center around the explicit recognition that education markets
are structured by complex political and production processes, the requirement that
fully optimizing behavior be consistent with observed equilibria is hard to sustain.
Furthermore, in the absence of plausible characterizations for the microeconomic
and political environments, it is hard to see how any useful insights may be extracted
from the study of general equilibrium forces and outcomes.

This concern has steered the Tiebout and education finance literature towards a
path of building models of increased mathematical and computational complexity,
where elements such as heterogenous voting preferences and non-financial inputs
are incorporated in order to provide richer descriptions that are more empirically
relevant, as well as plausible from a microeconomic perspective (Kuminoff et al.,
2010; Nechyba, 2003).

There has been a recent shift in the literature from building general equilibrium
models to building computational equilibrium models that straddle a wide spec-
trum covering both purely theoretical and empirically motivated formulations. As
Nechyba (2020) notes, all such models start by explicitly specifying the underlying
mathematical structure of the economic environment being modeled. That is, they
provide a fully structural specification for household preferences, school production
functions, distributions for household characteristics in the model (such as income),
as well as mathematical descriptions for the political process (voting models), the
fiscal environment, and the housing and private school markets. Through simulation
studies, the study of the equilibrium outcomes in these models is then expected to
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yield meaningful policy insights, and to provide a sandbox for experimenting with
out-of-sample policy interventions.

The problem is that the relevance of these simulation studies hinges on the
empirical plausibility of the elaborate microeconomic structure that is being used
to represent the underlying mechanics of the data generating process, and on the
confidence we may have in the model’s parameters to adequately capture empirically
relevant processes. But if we consider the fact that the task of determining the empir-
ical plausibility of any given model specification for complex social environments
with large degrees of freedom may be ill-posed and underdetermined (Scharfenaker
and Foley, 2017), then it is hard to see how the route of increasing model complexity
in fully micro-founded general (or computational) equilibrium models is likely to
yield unambiguous and normatively unbiased results. There is a very broad con-
tinuum of models and solutions that are consistent with any set of circumstantial
data and evidence (Golan, 2018). And misspecification can show up either at the
level of functional forms (production and preference functions), criterion or decision
functions, the specification of voting models, as well as priors for stochastic inputs
in the model (e.g. household characteristics).

This paper takes an alternative approach that makes use of maximum entropy
methods and a statistical equilibrium framework to model and study the effect of
competition in shaping the distributions of local government education expenditures
for the period of 2000-2016 in the United States. The advantages of this maximum
entropy/statistical equilibrium framework are plenty, but a central one that we con-
sider here is that it allows us to study the competitive dynamics of the US public
education market (a complex social systems with large degrees of freedom) without
having to commit a priori to a heavy mathematical scaffolding of the underlying
microeconomic environment. Rather, it allows is to study one plausible way in which
the probabilistic structure of school district expenditures can be seen to emerge from
a pair of parsimonious behavioral and institutional constraints that we place on the
underlying microeconomic environment.
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3.1.2 Unintended Outcomes, Market Efficiency and Tiebout Sort-
ing

One of the interesting aspects of Tiebout’s original 1956 formulation is that it remains
non-committal with respect to any specific equilibrium model formulation, even if it
highlights a set of stylized facts and features that the hypothetical competitive process
should meet. But as the history of the empirical tests of the Tiebout hypothesis has
shown (Edel and Sclar, 1974; Nechyba, 2020; Oates, 1969), it is not truly possible to
test all of the assumptions of the larger Tiebout hypothesis at once without running
into contradictions. For example, testing the assumption of residential mobility
alongside the capitalization of fiscal variables into housing prices may run against
Tiebout’s larger efficiency hypothesis (since the presence of capitalization is evidence
for the existence of excess demand for housing in the jurisdiction where taxes and
local service levels are being capitalized) (Epple and Nechyba, 2004a)>. Similarly,
as we pointed above, the existence of Tiebout sorting is to be better understood
as a potentially unexpected macroeconomic outcome (to at least some section of
households). Seen under this light, the prospect of being able to reconcile the
underlying political contradictions of the education market with the assumption
of fully maximizing households in a general equilibrium model seems far-fetched.
That said, we believe there is need and ample room to focus on some aspects of
the Tiebout hypothesis, and that it is possible to study the empirical support for the
general claim that expenditures in local public goods are heavily shaped (and at least
partially explained) by competitive forces and a boundedly rational arbitrage that
takes place at the household level in terms of education consumption.

This paper applies the theoretical framework of the Quantal Response Statistical
Equilibrium (QRSE) model developed in Scharfenaker and Foley (2017). As men-
tioned above, the approach taken by the paper is not fully agnostic with respect to
microeconomic structure, as it utilizes an entropy constrained model of residential
mobility and jurisdictional choice as the baseline characterization of household
behavior. This baseline model makes the behavioral assumption that households try
to maximize the rate of return on tax expenditures (considered as prices for local
education services), under the constraint of a limited capacity to process market
and political signals. In the context of low-income and inner-city households, we
put forward the idea that this limited capacity may also be interpreted as a form of
restricted economic agency. The basic outline of this behavioral model is very similar
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to the one found in Sims’ rational inattention program (Sims, 2003). Through the
inclusion of an information-theoretic constraint on the utility maximizing program of
households, this baseline specification delivers a meaningful probabilistic description
of household behavior.

3.1.3 Sample and Paper Structure

The statistical equilibrium distribution of the QRSE model presented here is a
positively skewed unimodal distribution of the household rate of return for local
tax expenditures, with four parameters T , S, µ , and a that qualitatively predict
the observed data and give insights into the possible range of variation across sub-
sampling schemes. We use US public education finance data for all school districts
in the period of 2000-2016. We then apply Bayesian inference and MCMC sampling
to fit the observed distribution for the entire period to the theoretical QRSE model,
and to recover posterior distributions for the four unknown parameters.

The paper consists of 5 sections. Section 2 provides a description of the data
used and presents empirical the frequency distributions for the key fiscal and expen-
diture variables used in building the model. Section 3 puts our application of the
QRSE model into context by discussing fiscal decentralization, Smith’s theory of
competition, and the measurable implications of the Tiebout hypothesis. Section 4
then develops the paper’s QRSE treatment of Tiebout competition and derives the
statistical equilibrium density for the local per pupil rate of return on tax and service
charges, which we term educational returns. Section 5 describes the Bayesian
estimation of the model, and discusses results for the four main parameter estimates.

3.2 School District Variables

3.2.1 Data

This paper uses data from the National Center for Education Statistics’ Common
Core of Data, the US Census Bureau Small Area Income and Poverty Estimates, and
the US Department of Education’s EDFacts initiative 1.

1This data has been made available in a harmonized format in a publicly available API by the Urban
Institute, which provides a convenient and reliable interface to all the major federal dataset. Education



3.2 School District Variables 71

We consider a sample of local expenditures in primary and secondary education,
local taxes, enrollment and population estimates for all 50 US states and school
districts (on average ~ 13,500), in the 2000-2016 period. We excluded a total of 233
data points (roughly 0.1% of the dataset), 58 of which were due to extreme value
observations attributable to data entry error, and the remaining 175 due to missing
values in one of the outcome variables. The total number of observations for all 50
US states and school districts (on average 13,500) is N = 229,553. The outcome
variable we are seeking to characterize is defined as:

x =
Total Local Education Expenditures

Enrollment
� Total Local Taxes and Charges

Population
(3.1)

The outcome variable x is the household per pupil rate of return on tax and
service charges, which we term educational returns. The variable Total Local
Education Expenditures is aggregated from a large set of expenditure categories in
primary and secondary education (K-12) that include instruction, textbooks, pupil
support services, staff , transportation, administration, maintenance, food services,
utilities, supplies, and technology. We denote the variable Total Local Education
Expenditures, scaled by enrollment, as k .

The variable Total Local Taxes and Charges aggregates the following revenue
categories: Private contributions, fines and forfeits, property sales, rents and royal-
ties, sales and services, individual and corporate income taxes, general fees, public
utility taxes, general sales taxes, and property taxes. We denote the variable Total
Local Education Expenditures, scaled by school district population, as t .

Due to constraints from missing data or comparability across regions and years,
this paper works with aggregate local revenue categories, without excluding general
fees or service charges.

3.2.2 Empirical Distributions of x

Below we present the marginal empirical distribution for x, as defined in formula
??, for the period 2000� 2016. In figure 3.2 we plot a stacked histogram with

Data Portal (Version 0.10.0), Urban Institute, accessed February, 2021,https://educationdata.
urban.org/documentation/, made available under the ODC Attribution License.

https://educationdata.urban.org/documentation/
https://educationdata.urban.org/documentation/


72 A Statistical Equilibrium Model of Public School Expenditures

the empirical density for each year in the pooled sample. The stacked histogram
reveals the persistent organization of educational returns into highly peaked asym-
metric distributions with positive skew. The pattern variance in the right tails is
particularly revealing of disequilibrium fluctuations in the Tiebout sorting process.
Fatter right tails with positive skew, we believe, might constitute a strong signal of
inter-jurisdictional sorting in the Tiebout sense.

Fig. 3.1 Marginal distribution of x (in thousands) for the period 2000-2016. Histogram and
Box-Plot.

A visual inspection of these distributions points to the asymmetric Subbotin or
exponential power distribution (Alfarano et al., 2012b) as a potential candidate for
modeling the statistical equilibrium density and for approximating the empirical fre-
quencies of school district educational returns in the period considered (Scharfenaker
and Semieniuk, 2015)>.

While these may be good candidates for characterizing highly skewed and
peaked distributions, in general, their specifications would not allows us to draw
straightforward theoretical conclusions from estimates of their location, scale and
shape parameters. In sections 4 and 5, we show how the maximum entropy derivation
of the QRSE model leads to a marginal density function f̂x whose parameter estimates
can be directly linked to the impact of competition and households incentives on
jurisdictional sorting and expenditure levels.
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Fig. 3.2 Stacked histogram plots of the educational returns variable x (in thousands). 2000-
2016. The stacked histograms reveal the time invariance of the statistical equilibrium
distributions for the different years that make up the pooled sample.

3.3 Free Competition and The Tiebout Hypothesis

3.3.1 Smith’s Theory of Competition

In the classical Smithian theory of competition, profit-seeking agents make the choice
to enter or exit lines of production based on the market’s prevailing rate of return.
Unlike general equilibrium models, where prices and rates of return are understood
as static market clearing quantities in a pure exchange economy, competitive price
and rate discovery in the Smithian conception follows a process governed by negative
feedbacks. As producers enter profitable lines of production they tend to lower the
profit rate by crowding the output and supply of that particular good. Eventually, this
forces relocation of capital and resources into other sectors, pushing the rate back to
attractive levels (Scharfenaker and Foley, 2017; Shaikh, 2016; Smith, 1937).

This homeostatic process, in which rates are pushed up and down as resources
enter and relocate throughout sectors in the economy, has the particular advantage
that it lends itself well to a probabilistic interpretation (Farjoun and Machover,
1983). Observed prices and returns can be effectively seen as gravitating around a
fundamental central tendency. If we think in terms of probability distributions, we
may suitably express a rate’s theoretical fundamental value or its ’natural’ (regulating)
level as the distribution’s location parameter. Similarly, the extent to which observed
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rates vary and the intensity with which they respond to exit and entry decisions may
be suitably captured by variance and scale parameters.

In this paper we seek to link this theory of free competition to Tiebout’s original
account of the role that inter-jurisdictional competition plays in determining equilib-
rium levels for local fiscal and expenditure variables, as well as for household choice.
Our proposition departs radically from the education finance literature in that we
propose a statistical understanding of equilibrium, and do not follow the requirement
that parameter estimates be interpreted as operating at fully efficient margins. This
leaves open the possibility that households’ expectations and preferences might
remain unfulfilled in equilibrium. But because the equilibrium is statistical, and not
static, this does not constitute a barrier for analysis. The framework considered here
allows us to study how such departures from optimality and efficiency may relate
to the distinct statistical features of expenditure levels in decentralized education
markets, such as positive skew and sharp pre-modal decay.

3.3.2 The Tiebout Hypothesis

In his 1956 paper, Tiebout laid out a set of highly abstract assumptions for his model
of local public goods competition, which he also called "a pure theory of local
expenditures". The model’s assumptions may be summarized as follows:

1. Consumer-voters have full mobility and knowledge of prevailing expenditure
patterns in neighboring communities.

2. Mobility is a proxy for consumer-voter choice.

3. There is a large number of communities from which to choose.

4. There is an optimal community size, given demand conditions and fixed
resources.

5. Tax-service packages are set according to consumer-voter preferences.

Given that Tiebout’s model postulates consumer-voters as choosing tax-service
packages by moving in and out of communities, and that the levels of these public
goods packages are determined by local governments in response to demand (i.e
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migration inflows and outflows), we can see how the Smithian framework applies.
In the context of education expenditures, we assume that inhabitants are looking for
high rates of return to their decision to locate or relocate to a particular community.
We take these rates of return to be proportional to the difference between the per
capita local tax rate and per pupil local expenditures that consumer-voters face in
the local public goods market. For the purposes of this paper, we take these market
units to be school districts. Competitive school districts will offer attractive per pupil
expenditure rates, and low per capita tax rates and service charges. As consumer-
voters crowd districts with good schools and low taxes, the rates of educational
returns return will adjust accordingly, and under the assumptions of full mobility and
rational incentives to fulfill expectations in a local public goods payoff, the iterative
process of rate adjustment and migration flows will stabilize expenditures into the
observed patterns.

The outcome variable x, the per pupil rate of return on local tax spending and
charges, which we termed educational returns is defined by the difference:

x = k � t

where k is the total local expenditure per pupil, scaled by the school district’s
enrollment, and t the total local tax and charge burden, scaled by the district’s
population. In the next section we delve deeper into our statistical treatment of
Tiebout competition and derive the QRSE density f̂x.

3.4 Local Public School Expenditures and Household
Choice

3.4.1 Statistical Equilibrium Modeling and Maximum Entropy
Inference

The highly peaked and positively skewed patterns of the outcome variable x for the
2000-2016 period suggests the existence of a central tendency in the distribution
along with non-symmetric deviations from its mean. Asymmetric Exponential Power
Distributions (AEPD) and Skewed Exponential Power Distributions (SEPD) (Al-
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farano et al., 2012b; Mundt and Oh, 2019; Scharfenaker and Semieniuk, 2017) are
good candidates to model this kind of data. But because we need a constructive
probabilistic description that is phenomenologically relevant, as well as theoreti-
cally interpretable in its parameters, we implement a Quantal Response Statistical
Equilibrium (QRSE) model to fit this data.

The notion of statistical equilibrium has been widely used in physics and infor-
mation theory (Jaynes, 1957, 1983). A statistical equilibrium for a quantity x takes
the form of a probability density function fx; it represents the most likely distribution
for the outcome variable given a set of theoretical and empirical conditions. It can
be derived by maximizing the entropy H[ fx] =�Â

x
fx log[ fx] subject to constraints

expressing relevant information, theory or observations. The methodology is most
commonly used in the context of bayesian statistics with the purpose of deriving in-
formative priors by feeding moment constraints and relevant background information
to the maximum entropy program. An important feature of the maximum entropy
program is that as long as the set of constraints provided describe a non-empty
convex set in the space of distributions, the maximum entropy program will yield an
optimal solution that can be used as the statistical equilibrium density of the model
(Golan, 2018; Scharfenaker and Foley, 2017). For more details on the derivation of
maximum entropy distributions see (Golan, 2018; Jaynes, 2003; Sivia and Skilling,
2006).

We can view single-state solutions to general equilibrium models as special cases
of this statistical equilibrium model. They represent degenerate probability densities
for the variable x where only the optimal solution is assigned a positive probability.
Such degenerate distributions, with all the probability mass concentrated around a
single point, also imply systems that operate with zero entropy.

Formally, the model we present here is a derived maximum entropy distribution
for the joint density of household jurisdictional choice and educational returns x.
Rather than giving full statistical content to the complete set of assumptions in the
Tiebout hypothesis, we use this derived probability model to examine Tiebout’s
intuition regarding the role of competition and household choice in shaping the
marginal distribution fx.
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3.4.2 A Logit Quantal Response Function for Household Choice

The general Quantal Response Statistical Equilibrium (QRSE) model presented here
links a set of household quantal actions a 2 A to the outcome variable x 2 R. This
could also be a vector ~x in Rn, but in this paper the variable x is a scalar, which
corresponds to the level of educational returns at the school district level. A is
be the binary action set A = {e,s} —where e stands for the entry of households
into a particular school district, and s for the exit. The interaction between the
hidden quantal action set A and the outcome variable x is modeled by the joint
distribution fx,a. The maximum entropy distribution fx,a represents a statistical
equilibrium where the inflow/outflow actions of households, represented by the set
A , are conditionally dependent on the educational returns rate x, but also shape it via
equilibrating forces and the negative feedback process which we defined as Smithian
and Tiebout-like competition. We define the payoff for the typical household by the
function

p(a,x) : A ⇥X ! R (3.2)

The payoff takes as input an action from the action set A , and a signal from the
state space of educational returns x 2 X . We use linear symmetric payoffs such that
p(e,x) =�p(s,x), as shown in equation 4.5.

p(e,x) = x�µ
p(s,x) = µ � x

(3.3)

The difference of the entry and exit payoffs is given by equation 3.4 below:

Dp(a,x) =
= p(e,x)�p(s,x)
= 2(x�µ)

(3.4)

This payoff structure contains a location parameter µ to express the fact that
households will have a tipping point for moving in or out of a particular school
district. Households will tend to move into districts where the level of educational
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returns is above this expectation µ and vice versa. Note that µ is not the average
rate, but the expectation that the households forms prior to relocation.

The first constraint that we impose on our statistical model of local education
returns is that it be micro-founded by a probabilistic theory of behavior. In other
words, we expect the entry and exit decisions of households to be non-deterministic
responses to variations in local expenditure patterns for the set of communities
that constitute the local public goods market. It is possible to think of this as
the assumption that households follow ‘mixed strategies’ in determining whether
to move in or out of a particular district. At times they will follow their payoff
maximizing action, but sometimes they won’t. We expect the probabilities of
observing a particular behavior to be proportional to the payoffs in equation 4.5, and
exclude the degenerate case in which households choose only the payoff maximizing
action with probability 1.

One way to derive the stochastic function which describes the micro-level be-
havioral component of the model is to impose a minimum entropy constraint on
the utility maximization program of the agent. The household payoff maximization
program and the associated Lagrangian take the forms shown below in equations 3.5
and 3.6.

max
fa|x�0Â

A

fa|xp(a,x)

s.t:

Â
A

fa|x = 1

�Â
A

fa|x log[ fa|x]� Hmin

(3.5)

L =�Â
A

fa|xp(a,x)�l

 

Â
A

fa|x �1

!

+T

 

Â
A

fa|x log[ fa|x]�Hmin

! (3.6)

This maximization program introduces the behavioral parameter of the model
T . In Scharfenaker and Foley (2017) it is described as a ‘behavior temperature’
parameter in analogy to statistical models of thermodynamic systems, but it can also
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be understood as a bounded rationality constraint. Maximizing the payoff subject to
a minimum entropy constraint is dual to the problem of maximizing the entropy of
the mixed strategy fa|x subject to a minimum payoff constraint. In that dual case, the
Lagrangian containts the term b

�
Âa fa|xp(a,x)�Umin

�
, which links the multiplier

b = 1
T to the minimum payoff constraint.

The solution to this programming problem yields a general logit quantal response
or Gibbs density, as in equation 3.7:

fa|x =
e

p(a,x)
T

ÂA e
p(a,x)

T

(3.7)

For the case of the binary action set A , the program yields the canonical QRSE
logit quantal response functions in 3.8 and 3.9.

fe|x =
1

1+ e�
Dp(a,x)

T

=
1

1+ e�
2(x�µ)

T
(3.8)

fs|x = 1� fe|x =
1

1+ e
2(x�µ)

T
(3.9)

This pair of stochastic quantal response functions take the shape of the cumulative
distribution function for the logistic distribution. The parameter T is the scale
parameter that expresses the sensitivity of the household choice rule to the difference
in the observed outcome from the subjective expectation (x�µ). The introduction
of µ allows us to model household behavior as ’chasing’ a central tendency in
the outcome variable x, and as having a ‘tipping point’ for the choice to enter
or exit a particular school district. In the context of Tiebout competition, these
stochastic choice rules should be conceived as representing conditional probabilities
for migration inflow or outflow into the ensemble of school districts for which
the parameter T is estimated. They are not ‘agent-level’ functions that additively
aggregate to the ensemble equilibrium distribution, but rather a meso-level description
that models the dependency of entry/exit flows on observed expenditure patterns and
local fiscal variables.
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Fig. 3.3 Quantal responses functions for probability of household entry/exit. At near zero
T the quantal response function takes resembles the heaviside step function. Under a zero
entropy assumption (T = 0), we would expect households to move into districts exclusively
in the case where x�µ > 0. This graph is illustrative (taking T =0.1 and T = 3 as examples).

3.4.3 The Competitive Feedback Constraint

In the canonical QRSE model from Scharfenaker and Foley (2017) which is applied
here, agents respond to payoff differentials by entering or exiting a particular eco-
nomic sector. In the Tiebout setting, household inflows into particular districts may
cause congestion in public school services and lead to a feedback effect where the
level of educational returns x will be reduced. Conversely, household outflows from
school districts will tend (over time) to push the educational returns rate back up. In
the QRSE model, this assumption takes the form of a congestion or ‘competitive
feedback’ constraint on the outcome distribution. The competitive feedback con-
straint is expressed as an inequality that limits the scale of the difference between
expected market rates conditional on entry and exit, as shown in 3.10.

0  fe E[(x�a)|e]� fs E[(x�a)|s] e (3.10)

This inequality expresses the idea that the expected jurisdictional market rates
will be higher conditional on entry than on exit——but that their difference is small
enough so that we wouldn’t expect an infinite inflow or crowding into a particular
district. This constraint allows us to parsimoniously model the simultaneous and
feedback driven relationship that exists between household choice and expenditure
levels in the local education market.
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The mean outcome level x̄ is then co-determined by a complex (non-reductive)
interaction between those two layers of the economic process. In practice we tend
to find that a 6= µ , which means that the market sustains unexpected outcomes and
unfulfilled expectations, an assumption that seems appropriate for the case of public
goods markets. The constraint in 3.10 can be unpacked in more detail using the form
in equation 3.11, where it is written as an expectation of the market outcome (x�a),
factored by the difference in mixed strategy probabilities D fa|x:

fe

Z
fx|e (x�a)dx� fs

Z
fx|s (x�a)dx

=
Z

fe|x fx (x�a)dx�
Z

fs|x fx (x�a)dx

=
Z

D fa|x fx (x�a) dx

=
Z

tanh
✓

x�µ
T

◆
fx (x�a) dx

 e

(3.11)

The tanh function arises from the definition of the logit quantal response func-
tions, as shown below in 3.12:

D fa|x = fe|x � fs|x

=

 
1

1+ e�
2(x�µ)

T

!
�
 

1

1+ e
2(x�µ)

T

!

=
e2(x�µ)/T �1
e2(x�µ)/T +1

= tanh
✓

2(x�µ)
2T

◆

= tanh
✓

x�µ
T

◆

(3.12)

Thus, the competitive feedback constraint can be written using the general form
written in 3.13, noting that D fa|x = tanh

⇣
x�µ

T

⌘
:
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Z
D fa|x fx (x�a) dx  e (3.13)

In the next subsection we explain how the assumptions of entropy constrained
behavior and the existence of a competitive feedback constraint determine, via the
maximum entropy program, the joint distribution fa,x.

3.4.4 QRSE Maximum Entropy Program and Density

The maximum entropy program for the QRSE model constrains the joint distribution
fa,x so that it is consistent with the following two propositions:

1. The behavioral property of a non-zero entropy rule for household jurisdictional
choice (entry/exit decisions).

2. The competitive feedback constraint that we postulate for the Tiebout-like
process in analogy with the Smithian theory of competition.

These conditions were formally defined in the previous two subsections. We
also constraint the distribution so that it meets the usual normalization condition:
R

fxdx = 1. Hence, the program maximizes the joint entropy of fa,x subject to
normalization, competitive feedback, and bounded household choice constraints.
We can express the joint entropy Hx.a in terms of the marginal entropy Hx and the
conditional or ’binary entropy’ Ha|x (Cover and Thomas, 2006), as shown in 3.14
and 3.15.

Hx.a = Hx+
Z

X

fx Ha|x dx (3.14)

Ha|x =�Â
A

fa|x log[ fa|x] (3.15)

Using the above decomposition, we can write the maximization program for the
QRSE model using the compact form shown below in equation 3.16.
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max
fx�0

Hx+
Z

X

fx Ha|x dx

st.
Z

fx dx = 1
Z

D fa|x fx (x�a) dx  e

(3.16)

Note that the second constraint parsimoniously encodes both the behavioral
and the market feedback constraints. The associated Lagrangian takes the form in
equation 3.17 below:

L [ fx,l ,g] = Hx+
Z

X

fx Ha|x dx

�l
✓Z

fxdx�1
◆

� g
✓Z

D fa|x fx (x�a) dx � e
◆

(3.17)

The multiplier associated to the competitive feedback constraint in the program
yields the g parameter for the candidate statistical equilibrium density, which mea-
sures the effect of the competitive feedback process on the marginal distribution
fx.

The solution to this maximum entropy program produces a predictive density f̂x

that is consistent with our description of Tiebout-like competition in local public
goods markets. The distribution f̂x predicts the marginal frequencies of the outcome
variable x and completes the theory by determining the conditional densities fx|e and
fx|s, the joint densitiy fx,a, a well as the expectations E[x|s] and E[x|e].

The solution f̂x takes the form of a Gibbs/Boltzmann distribution, shown below
in equation 3.18:
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f̂x =
eHa|x e�g(D fa|x) (x�a)

Z
(3.18)

where Z is the partition function.

Z =
Z

X

eHa|x e�g(D fa|x) (x�a) dx (3.19)

By expressing the g parameter as g = 1
S , we can rewrite the predictive marginal

density f̂x as below in 4.8:

f̂x =
eHa|x e� tanh( x�µ

T ) ( x�a
S )

Z
(3.20)

With this parametrization it is then possible to perform inference using two scale
parameters T and S, and two location parameters µ and a , which all have the same
dimension as the educational returns variable x. The scale parameter S accounts for
the concentration of educational returns around the mode that arises from the market
level process of jurisdictional competition, while the scale parameter T accounts for
the concentration of values that arises from the purposive behavior of households.

In the next section we provide details on the bayesian estimation of the model for
the pooled dataset using all US school districts in the period 2000-2016, and focus
our discussion on theoretically interpretable results for the four unknown parameters
T , µ , S and a .

3.5 Bayesian Estimation of QRSE Model

3.5.1 MAPs and Distance Measures

We use Bayesian inference to recover the values for the unknown parameter vector
G = [T,S,µ,a], for the full sample containing all US school districts in the 2000-
2016 period. The approach we followed in our estimation procedure was to first find
close to optimal values for the model by jointly minimizing the Kullback-Leibler
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divergence (DKL) between the observed marginal frequency f̄x and the inferred
theoretical frequency f̂x. This is equivalent to finding maximum a posteriori (MAP)
point estimates for G, given that maximizing the likelihood turns out to be equivalent
to minimizing the KL-Divergence (See Golan (2018)) . To find these MAPs we used
the available optimization packages found in the Python Scipy library (COBYLA
and SLSQP). Minimizing the functional in equation 3.21 yields the MAPs that we
then use as starting points for the MCMC sampler.

DKL
�

f̂xk f̄x
�
= Â f̂G;x log


f̂G;x

f̄x

�
(3.21)

Additionally, we use the Soofi information distinguishability statistic (Soofi ID;
See Soofi and Retzer (2002) for details and theory) to evaluate fit performance. The
Soofi ID is shown below in equation 4.11. Smaller values of the KL-Divergence
and of the Soofi ID imply better model fits and the Soofi ID in particular gives a
measure of how much informational content is explained (recovered) by the candidate
distribution.

ID
�

f̂x : f̄x
�
= 1� exp

⇥
�DKL

�
f̂xk f̄x

�⇤
(3.22)

3.5.2 Model Specification and Markov-Chain Monte Carlo Sam-
pling

We use the QRSE density itself as the likelihood for estimation, considering that
the sampler holds the data D fixed as it explores different probabilities for the
parameters in G via P(D|G). Alternatively, to justify this, one might simply note
that the likelihood is proportional to the sampling distribution ; L(G | x) µ fx|G. The
QRSE log-likelihood used for the sampler is shown below in 4.9:

log[ f̂x] = Ha|x� tanh
✓

x�µ
T

◆ ✓
x�a

S

◆
� log(Z) (3.23)

We directly compute the partition function Z by the sum in 4.10.
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Z = Â
X

eHa|x e� tanh( x�µ
T ) ( x�a

S ) (3.24)

We evaluate the log-likelihood in 4.9 by computing sequences of random samples
from the joint posterior distribution of G. In this paper we use a standard Metropolis-
Hastings algorithm (MCMC-MH; see Hogg and Foreman-Mackey (2018)). Our
code uses PyMC3 (Salvatier et al., 2015), an open source probabilistic programming
framework written in Python 2.

For each parameter, we run 3 chains with 30,000 iterations and 4,000 tuning
samples. All of the chains converged with R̂= 1. For more details on the convergence
statistic R̂ used see Vehtari et al. (2019). We show a plot of the chain sample traces
below in figure 3.4. In figure 3.5 we show pair plots of the posterior samples for the
four parameters, which do not appear to be correlated. We used truncated normal
priors centered near the MAP estimates for T and S, with lower and upper bounds
at 0.1 and 8 respectively. For µ and a we used normal priors centered near the
MAPs and specified large variances in order to explore reasonably wide ranges of
the parameter space. Given knowledge about the plausible ranges for the scale and
location parameters, along with the MAP estimates, this choice of weakly informative
priors seemed appropriate.

2Code used, data and MCMC sample traces will be made available in a public GitHub repository
for review. For details on the PyMC3 library see: https://docs.pymc.io/api/inference.html

https://docs.pymc.io/api/inference.html
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Fig. 3.4 Trace plots for MCMC samples obtained using the Metropolis-Hastings algorithm.
3 chains, 30,000 iterations per chain and 4,000 tuning samples. All US School Districts.
2000-2016.
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Fig. 3.5 Posterior pair plots for parameters T, S, µ and a .
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3.5.3 Results

Table ?? gives the summary statistics for the estimated parameters T, S, µ , and a . In
figure 3.6 we plot the four posterior distributions for the QRSE parameters, which
are unimodal, symmetric and have relatively wide standard deviations.

Posterior Estimates Summary

Parameter Mean (Sd) Mode 94 % HDI R̂

µ 8.66 (2.24) 7.78 [4.54, 12.9] 1.0
a 17.8 (2.24) 19.71 [13.61, 22.05] 1.0
T 2.1 (0.94) 2.17 [0.24, 3.7] 1.0
S 4.9 (1.01) 4.69 [3.01, 6.79] 1.0

Table 3.1 Summary statistics of estimated parameters T, S, µ , and a . The means, standard
deviations, 94% credible intervals and the convergence statistics R̂ from the MCMC samples
are reported. All US School Districts, 2000-2016.
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Fig. 3.6 Posterior distributions for T, S, µ , and a .All US School Districts. 2000-2016.
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3.5.4 Fits

In table table 3.2 we present summary statistics for the fiscal variables used in the
model, and for the educational returns variable x. In figure 3.7 we plot the line
histogram of x for the entire 2000-2016 period, alongside yearly time series for both
mean educational returns x and mean total expenditures t .

Summary Statistics

Variable Mean S.D. Min. Max.
Educational Returns (x) 14.27 6.30 -12.83 75.08
Total District Expenditures (k) 15.31 6.69 0.01 102.56
Taxes and Charges (t) 1.04 1.04 0.00 59.55

Table 3.2 Model variables (in thousands). All US School Districts, 2000-2016.

Fig. 3.7 Marginal distribution of x, and yearly line plot for x and k for the period 2000-2016.
The histogram excludes the upper 0.01 quantile (for visualization). Plotted in thousands. All
US School Districts. 2000-2016.

In 3.8 we fit the estimated QRSE model to the histograms of the observed
distribution of x for this ‘full ensemble case’, which covers all US school districts in
the 2000-2016 period. In figure 3.9 we plot the predicted joint action and outcome
densities fa,x, alongside the estimated quantal response functions, which predict the
conditional probability of entry and exit of households into districts given a certain
level of educational returns x. We discuss these results in the next subsection.
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Fig. 3.8 Line histogram of observed distribution for x (educational returns). Overlaid is the
fitted predictive marginal density f̂x. We excluded the upper 0.01 quantile (for visualization).
The Soofi ID/performance fit measure is shown. All US School Districts. 2000-2016.

Fig. 3.9 Left: Predictive entry and exit densities fa,x. Right: Household Quantal Response
Functions fa|x. The estimated ‘tipping point’ µ̂ is plotted with a dashed-dotted line.
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3.6 Discussion

Our central aim is to study the role that Tiebout-like competition may play in
explaining observed educational returns across school districts in the US. To do so we
implemented a quantal response statistical equilibrium (QRSE) model, which allowed
us to characterize competition between local jurisdictions as a complex negative
feedback process operating at both the household-level and market-level scales. The
QRSE model used in this paper parsimoniously characterizes the complex interaction
between household jurisdictional choice and the emergent statistical properties of
decentralized education markets in terms of the parameter vector G = [T,S,µ,a].
The observed distribution of educational returns is then explained via the predictive
distribution f̂x;G. In order to better understand the distinct role that both the scale (S
& T) and location (µ and a) parameters play in explaining observed patterns, it is
useful to plot variations to the individual parameters holding all others constant. We
do so below in figure 4.1.

The µ and a parameters are particularly relevant in understanding the positive
skewness of the statistical equilibrium distribution that we find for the full ensemble
case. The parameter a estimates a market-level statistical tendency that acts as the
barycenter around which the household-formed expectation µ fluctuates. To see how
this is built into the theory, note that in the competitive feedback constraint in 3.10,
we write the expectation as E[x�a] and not E[x]. In the case where households’
expectations of the local educational returns rate matches the market level tendency,
then a = µ . In that case the distribution is symmetrical and the estimated values for
a and µ also match the sample mean x̄. Whenever µ 6=a , then the QRSE distribution
is asymmetrical, and positive values for a �µ in particular will lend the distribution
a more or less sizeable positive skew. As shown in figure 4.1, both the behavioral
and market scale parameters T and S predict a lesser/larger concentration of values
around the mode, with lower values lending more peakedness to the distribution.

The QRSE model explains concentration around modal values as the consequence
of intense competition in decentralized public education markets. Both relatively
purposive households and market feedbacks work to stabilize educational returns
into their statistical equilibrium distribution. This understanding of competition
is consistent with the profit rate equalization hypothesis that one finds in classical
political economy, and which has been given modern statistical treatments in (Al-
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Fig. 3.10 Variations to individual parameter, holding all others constant. The baseline setting
is T = 5, S=5, and µ = a = 0.

farano et al., 2012b; Farjoun and Machover, 1983; Scharfenaker and Foley, 2017;
Scharfenaker and Semieniuk, 2017).

Our QRSE treatment shows concrete evidence that there are both sorting forces
and competitive forces at play in determining the equilibrium educational returns
rate. Tiebout sorting in particular educational markets might in fact be signaled by
distributions with heavy right tails and positive skew. We believe this to be the case
in the sense that ‘better sorted’ or more ’balanced’ subsamples in x will undoubtedly
contain a broader set of tax-service packages that households sort into via the local
public goods and housing markets. In our QRSE model and estimates, the Tiebout
‘sorting forces’ are captured by the size of the difference a�µ , while the competitive
forces are captured by the size and interaction of the T and S parameters. This leads
to future work needing to unpack how the a parameter is related to median household
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income and property values in school districts, given that high income and property
values push public school expenditures far beyond competitive or modal rates.



96 A Statistical Equilibrium Model of Public School Expenditures

3.7 Conclusion

Educational returns in school districts across the US for the 2000-2016 period exhibit
distinctively peaked, positively skewed distributions with right tails of variable width.
The shaping of their statistical equilibrium distribution is the outcome of an evolving
process of inter-jurisdictional competition, household residential sorting on the basis
of a broad set of characteristics (such as income), and shifting policy regimes at the
local, state and federal levels.

Using a statistical equilibrium framework, in this paper we sought to examine
the role played by inter-jurisdictional competition and household choice in shaping
the observed distribution of educational returns for a full ensemble case that covers
all US school districts in the 2000-2016 period. This is a considerably larger sample
than the ones found in other empirical treatments in the literature, which usually
focus on single states or regions. An important aspect of our empirical findings is
that it corroborates the need to divorce normative notions about market efficiency
from claims about the presence of Tiebout sorting and competition. We proposed a
parsimonious model that meaningfully captures the difference between competitive
and sorting forces via two sets of scale and location parameters.

Our empirical analysis also corroborates previous findings in the QRSE litera-
ture regarding the use of feedback constraints as meaningful characterizations of
competition in decentralized market settings. The histogram and model fit displayed
in this paper are clearly suggestive of the part played by decentralized competition
in sharpening modal peaks, and by elevated (far from competitive) market rates in
creating positive skew.



Chapter 4

Tiebout statistical equilibrium :
sorting and inter-jurisdictional
competition across urban locales and
income groups

4.1 Introduction

In 1956 Charles Tiebout proposed to study the decentralized provision of local
public goods by postulating the existence of an efficient competitive quasi-market
allocation operating at the jurisdictional level. In the competitive equilibrium alloca-
tion hypothesized by Tiebout (1956), local governments are construed as suppliers
competing with each other for the provision of local public goods, and voters as
’consumer-voters’ who reveal their demand by moving in and out of jurisdictions.

Central to the Tiebout hypothesis is the idea that residential mobility can be used
as a proxy for public goods demand. In the abstract formulation described by Tiebout
(1956), perfect household residential sorting on the basis of preferences for local
tax-service packages is hypothesized as an equilibrium condition.

The empirical education finance literature has struggled to make sense of the
strong evidence pointing to the incompatibilities between household sorting and
perfect inter-jurisdictional competition, along the lines defined by Tiebout. Generally,
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most papers take one of two approaches in addressing this issue. A first approach
focuses on measuring heterogeneity across and within jurisdictions, and on pairing
that analysis of variance with an analysis of fiscal capitalization in the housing market
(Dowding et al., 1994), or with any other measure that can signal the strong presence
of Tiebout incentives. This approach is constantly confronted with the difficulty
of distinguishing pure statistical from the type of sorting that is hypothesized to be
driven by Tiebout-like competition.

A second approach, in econometrics, starts by asking whether observed patterns
of local public goods expenditures satisfy the necessary conditions implied by a
general equilibrium Tiebout model (Epple et al., 1999). The strong condition of
satisfying necessary and deterministic equilibrium conditions has set researchers
along the path of building computable equilibrium models of increasing mathematical
complexity (Nechyba, 2020). The central aim of this type of approach is to predict
jurisdictional fragmentation and stratification, without sacrificing neoclassical choice
and allocation efficiency. The problem with generic static models is that they
specify conditions that are too strict to obtain a equilibrium distribution of the
outcome variable, and which are easily exchangeable for others. This exchangeability
of mathematical equilibrium conditions makes the models highly idiosyncratic,
and specific beyond what is needed to provide a meaningful statistical description
of Tiebout sorting and competition. For recent and thorough review of recent
developments in the Tiebout literature see (Epple and Nechyba, 2004b; Jha, 2020;
Nechyba, 2020). For econometric approaches to studying and testing the Tiebout
hypothesis see Dowding et al. (1994), and (Epple et al., 2010, 2001, 1978).

In the statistical equilibrium approach proposed here and in Melo (2021), which is
an extension to the local public goods setting of the model developed in Scharfenaker
and Foley (2017) and in Scharfenaker and Foley (2021a), a parsimonious model of
Tiebout’s quasi-market process is used to distinguish between the competitive and
the sorting forces at play in the US public education market.

Educational expenditures in school districts across the US for the 2000-2016
period exhibit distinctively peaked, positively skewed distributions with right tails of
variable width. The shaping of their statistical equilibrium distribution is the outcome
of a complex process of inter-jurisdictional competition, household residential sorting
on the basis of a broad set of characteristics (such as income), and shifting policy
regimes at the local, state and federal levels. The heavy positive skew and the sharp
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modal peaks observed in the empirical frequencies of school district expenditures
across urban locales and income groups are suggestive of the presence of both
Tiebout competition and income-based stratification.

In the complexity and political economy view taken in this paper, and in Melo
(2021), the assumptions and requirements of perfect competition are dropped in
favor a description of decentralized Tiebout competition as a type of probabilistic
negative feedback mechanism. Demand for local public goods is studied in terms of
the quantal entry/exit decisions of households into any given district, conditional on
the level of public school expenditures. The in- and out-migration that results due to
changes in expenditure levels or housing prices is reflected by the probabilities of
entry and exit of households into school districts. The relative magnitude of these
probabilities is determined by the size of the divergence between households’ funda-
mental expectation of the distribution’s central tendency and a market-determined
rate which may be driven by extra-competitive forces.

The paper is structured as follows. Section 2 summarizes the Tiebout Quantal Re-
sponse Statistical Equilibrium model (T-QRSE) studied in Melo (2021). Expanding
on that previous contribution, section 3 discusses the main implications of entropy
constrained behavior and competitive feedback in the Tiebout setting. Section 4
describes the datasets used, the subsampling strategy for urban locales and income
groups, and introduces the histograms of the school district expenditures data to be
explained. Sections 5 and 6 provide details on the Bayesian estimation procedure and
lay out the results of the inference procedure. The results are analyzed and discussed
in section 7.

4.2 Tiebout statistical equilibrium

4.2.1 The educational returns random variable

Following the development proposed in Melo (2021) this paper defines an educa-
tional returns random variable X . In the dataset, the observed values X = x are
defined as the difference between total district education expenditures and total
taxes/charges, each respectively weighed by the district’s student enrollment and
population counts. X can be understood as the household per pupil rate of return
on the district’s tax and service charges. Section 4 provides details on the census



100
Tiebout statistical equilibrium : sorting and inter-jurisdictional competition across

urban locales and income groups

datasets and fiscal variables used. The formula for the observed values x in the
dataset used takes the following form:

x =
Total Local Education Expenditures

Enrollment
� Total Local Taxes and Charges

Population
(4.1)

The educational returns random variable is taken to be distributed according to
a quantal response statistical equilibrium density with two scale and two location
parameters; X ⇠ QRS E (T,S,µ,a). The next two subsections summarize the con-
struction and the theoretical underpinnings of the QRSE density, and its application
to the local public goods setting. For notational convenience, fX(x) is written as fx

throughout the paper.

4.2.2 Maximum Entropy Inference

Maximum entropy methods provide a convenient interface for deriving distributional
assumptions on the basis of partial knowledge and information. A maximum entropy
distribution for a random variable X is obtained by maximizing the entropy of its
density function fx subject to a set of relevant moment constraints.

For x 2 X , the general maximum entropy program takes the form of constrained
optimization problem:

max
fx�0

Hx =�
Z

X

fx log[ fx]dx

st.
Z

X

fx dx = 1

Z

X

fx gc(x)dx = Fc, c = 1, . . . ,m

(4.2)

where Hx stands for the Shannon entropy functional. A constraint enters the
program in 5.11 as an expectation (over X) of a function gc(x) 2 C . The set C

constrains the derived distribution f̂x to take on specific higher-level moments which
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are deemed empirically or theoretically relevant. If there are m constraints, then
|C |= m.

The solution to this program yields a maximum entropy density f̂x with the
vector~l = [l1 · · ·lm] of Lagrange multipliers as parameters, whose values express
the marginal amount of information that the constraint contributes to reducing entropy
in the distribution (Scharfenaker, 2020b).

The general form for the solution, and the partition function Z, are shown below
in 5.12 and 5.13.

f̂x =
1
Z

el1g1(x)+ ···+ lmgm(x) (4.3)

Z =
Z

X

exp
h
l1 g1(x) + · · ·+ lm gm(x)

i
dx (4.4)

For standard references on solving this program via the method of Lagrange
multipliers see (Cover and Thomas, 2006; Golan, 2018; Sivia and Skilling, 2006) and
the mathematical appendix. For detailed discussions on the derivation of maximum
entropy distributions see (Golan, 2018; Jaynes, 2003; Sivia and Skilling, 2006).

4.2.3 T-QRSE

The QRSE model is a general probabilistic model of competition which provides a
parsimonious alternative to the deterministic treatment of equilibrium outcomes in
complex economic environments driven by negative feedbacks. The first develop-
ment of the canonical QRSE model appears in Scharfenaker and Foley (2017), and it
has been recently re-parametrized in Scharfenaker and Foley (2021a).

The Tieboutian Quantal Response Statistical Equilibrium model (T-QRSE) is a
joint probability model fa,x for the unobserved in- and out-migration decisions of
households across jurisdictional boundaries and the marginal educational returns
rate x (Melo, 2021). In the Tiebout setting, we consider a binary unobserved action
set a 2 A , where A = {e,s} and e and s stand for household in- and out-migration
respectively. The function fa|x is defined as households’ probability of in- and
out-migration conditional on the educational returns rate x. A household’s payoff
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p(a,x) takes as input an action from the action set A , and a signal from the state
space of educational returns x 2 X . We use linear symmetric payoffs such that
p(e,x) =�p(s,x). The payoff structure takes the form:

p(e,x) = x�µ
p(s,x) = µ � x

(4.5)

And fa|x takes the form of a logit quantal response function:

fe|x = 1� fs|x =
1

1+ e�
Dp(a,x)

T

=
1

1+ e�
2(x�µ)

T

(4.6)

For details on the derivation of this logit quantal response function see (Foley,
2020) and the mathematical appendix.

Formally, the joint probability model is obtained by maximizing the entropy of
fx,a subject to the moment constraint E

⇥
D fa|x(x�a)

⇤
 d , where D fa|x = fe|x � fs|x.

In the case with two actions and symmetric payoffs, D fa|x = tanh
⇣

x�µ
T

⌘
and the

moment constraint takes the form :

E
⇥

tanh
✓

x�µ
T

◆
(x�a)

⇤
 d (4.7)

The constraint argument D fa|x(x�a) in 4.7 encapsulates the postulate that dif-
ferences in the entry/exit probabilities of households across jurisdictional boundaries
have a non-zero impact on the statistical dispersion of the educational returns rate
around the average. This is a non-linear moment about two location parameters µ
and a which together determine the mean of the distribution. The scale of the impact
of household in- and out-migration on concentrating values of the distribution around
the mode is determined by T .

The maximum entropy distribution f̂x that is obtained on the basis of this moment
constraint, along with the usual positivity and normalization conditions, takes the
form:
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f̂x =
eHa|x e� tanh( x�µ

T ) ( x�a
S )

Z
(4.8)

where Ha|x = �Â
A

fa|x log[ fa|x] and Z is the partition function or integration

constant. Since fa|x fx = fa,x, the derivation of the marginal density f̂x completely
specifies the joint probability model1. Note that the solution has an added scale
parameter S, which together with T , accounts for concentration of values around the
mode. The size of a �µ determines the distribution’s skew; whenever a = µ the
distribution has a single location parameter and the distribution becomes symmetric.
In figure 4.1 we plot variations to the individual parameters, holding all others
constant.

Fig. 4.1 Variations to individual parameter, holding all others constant. The baseline setting
is T = 5, S=5, and µ = a = 0.

1See mathematical appendix
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The constraint in 4.7 provides a parsimonious probabilistic description of the
negative feedback process that can be seen to regulate average return rates in de-
centralized competitive economic environments. The next section discusses how
this competitive feedback process can be used to explain the positively skewed and
peaked distributions of educational returns in terms of Tiebout-like competition and
sorting.
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4.3 Quantal Response & Competitive Feedback

This section illustrates the main components of the joint probability model fa,x, and
lays out the main inferential implications for the local public goods setting.

The plot in the left of figure 4.2 shows the difference in quantal probabilities of in-
and out-migration of households across districts D fa|x. Whenever x > µ , fe|x > fs|x.
Similarly, whenever the educational returns rate drops below the household expecta-
tion µ , fs|x > fe|x. The scale or ’sensitivity’ of households to positive and negative
variations around µ is determined by the behavioral scale parameter T . In the usual
bounded rationality interpretation of this logit quantal response model, larger values
of T represent limited information-processing capacity; decision-makers face a the
trade-off between accuracy and uncertainty. In the Tieboutian context, this bounded
rationality model takes on a particular meaning. Given that households’ demand
is expressed by moving in and out of districts, the cost of decision-making is the
cost of comparing attainable public goods utility across jurisdictions and communi-
ties. Since µ is the fundamental expectation that households form about an average
level of public goods provision, suburban and high-income households inhabiting
communities with positively skewed expenditures may be facing a trade-off between
sorting on the basis of property values and provisioning public goods at competitive
rates. Large differences between the market-level rate a , which is driven by property
values, and µ , will hence leave households unfulfilled in terms of Tiebout expec-
tations. This greater uncertainty that is implied by the tradeoff between sorting on
the basis of income and competitive public goods provision is captured by larger
values of T . This is a curious but inevitable consequence of the information-theoretic
interpretation of Tiebout’s consumer-voter, whose decision space is the housing mar-
ket. Lower and middle income households whose jurisdictional choice set exhibits
narrower variance in terms of property values will hence have lower values of T .

The plot on the right of figure 4.2 shows the case of a balanced competitive
feedback process around µ = a . Whenever x > µ the probability of entry on that
outcome level rises. As x rises further the post-modal decay of fe,x ensures the
effectiveness of the market’s negative feedback by lowering the joint probability of
entry and higher returns. Symmetrically, on the other side, the decay of fs,x renders
improbable the possibility of constant exit at largely negative rates. The conceptual
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Fig. 4.2 Left: Plot of the difference in quantal response probabilities, with different values of
T . Right: A symmetric competitive feedback process centered at µ = a .

schema for this probabilistic competitive feedback process is shown below in figure
4.3.

Fig. 4.3 Conceptual illustration of probabilistic competitive feedback. Departures from µ
break symmetry in the process and create positive skew in the outcome variable.

In the case of fulfilled expectations (a = µ), the joint probabilities fe,x and fs,x

fall and rise symmetrically around the market average. When a > µ the size of
inflow probabilities above the average market rate dominates and the effectiveness
of the competitive feedback process is reduced. This case is illustrated in figure 4.4.
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Fig. 4.4 Joint action-outcome and marginal densities with balanced behavioral/market scales
and a > µ .

The dominance of large inflow probabilities above the expected Tiebout rate
µ helps explain positive skew in the distribution of educational returns. It also
signals the relatively weightier importance of sorting incentives in shaping the
outcome. The empirical literature has struggled to reconcile the Tiebout hypothesis
with the fact that household jurisdictional choice cannot be entirely attributable to
public goods incentives. The T-QRSE model proposed in this paper and in Melo
(2021) gives a probabilistic measure of the relative importance of both sorting and
Tiebout incentives in determining observed educational expenditures. School district
ensembles where the sorting forces dominate will show large positive skew, while
those where Tiebout-like competition dominates will tend to be more symmetric and
peaked around the average.

In an ideal purely Tieboutian statistical equilibrium the distribution of educational
returns takes the shape of a symmetric Laplace density with a location parameter at
µ , and low values for the behavioral and market scale parameters T and S. Under this
statistical perspective, perfect sorting is not an equilibrium outcome of the idealized
inter-jurisdictional competitive process, as this would imply a uniform distribution of
educational returns. But because what is proposed is a probability measure and not a
deterministic model, the two forces of competition and sorting can be statistically
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reconciled. The relative dominance of either varies across school district ensembles,
as the empirical results presented in this paper show. An important caveat to note
is that this model explains positive skew in the distribution of educational returns
as departures from an ideal Tiebout statistical equilibrium. The braking down of
symmetry in the competitive feedback process points to the relative importance that
other economic forces may have in shaping the equilibrium outcome.
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4.4 School District Data

4.4.1 Census and NCES Data

This paper uses data from the National Center for Education Statistics’ Common
Core of Data, the US Census Bureau Small Area Income and Poverty Estimates, and
the US Department of Education’s EDFacts initiative 2.

We consider a sample of local expenditures in primary and secondary education,
local taxes, enrollment and population estimates for all 50 US states and school
districts (on average ~ 13,500), in the 2000-2016 period. We excluded a total of 301
data points (roughly 0.1% of the dataset), 58 of which were due to extreme value
observations attributable to data entry error, and the remaining 245 due to missing
values in one of the outcome variables. The total number of observations for all 50
US states and school districts (on average ~ 13,500) is N = 272,152.

The outcome variable was defined as:

x =
Total Local Education Expenditures

Enrollment
� Total Local Taxes and Charges

Population

The variable Total Local Education Expenditures is aggregated from a large set
of expenditure categories in primary and secondary education (K-12) that include
instruction, textbooks, pupil support services, staff , transportation, administration,
maintenance, food services, utilities, supplies, and technology. The variable Total
Local Taxes and Charges aggregates the following revenue categories: Private
contributions, fines and forfeits, property sales, rents and royalties, sales and services,
individual and corporate income taxes, general fees, public utility taxes, general
sales taxes, and property taxes.

Due to constraints from missing data or comparability across regions and years,
this paper works with aggregate local revenue categories, without excluding general
fees or service charges. For the imputation of the urban local classifications, we used

2This data has been made available in a harmonized format in a publicly available API by the Urban
Institute, which provides a convenient and reliable interface to all the major federal dataset. Education
Data Portal (Version 0.10.0), Urban Institute, accessed February, 2021,https://educationdata.
urban.org/documentation/, made available under the ODC Attribution License.

https://educationdata.urban.org/documentation/
https://educationdata.urban.org/documentation/
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the EdBuild dataset. This dataset contains median household income in addition to
the fiscal and expenditure variables from the Urban Institute dataset 3. All values
have been adjusted for inflation.

4.4.2 Subsamples

Using US public education finance data for the period of 2000-2016, we subsample
school districts across four different urban locales: Town, Suburb, City, and Rural.
Structural elements of public school markets, such as median income, mobility,
demographic composition, and the varying presence of equity-based school finance
reform policies, are meaningfully correlated with these urban local classifications.
Additionally, for the period 2013-2016, we subsample the data using three distinct
income groups based on median household estimates at the school district level:
Low, Middle, and High. Details on how we defined these groups are provided in the
following subsections.

4.4.3 Urban Locales

Below we provide the definitions for the four urban locales studied in this paper
: Town, Rural, City and Suburb. These definitions are set by the ACS (American
Community Survey - Census) and the NCES (National Center for Education Statis-
tics). We use these categories to group the data into different statistical equilibrium
ensembles for the 2000-2016 period. In figure 4.5 we plot a stacked histogram of the
distributions of educational returns for the four urban locales.

• Town: Territories inside an urban cluster at varying distances from urbanized
areas.

• Rural: Census-defined rural territories at varying distances from urbanized
areas and urban clusters.

• City: Territories inside an urbanized area and inside a principal city.

• Suburb: Territories outside a principal city and inside an urbanized area.

3See http://data.edbuild.org/

http://data.edbuild.org/
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Fig. 4.5 Stacked histogram plots of the educational returns variable x. Urban Locales: Town,
Rural, City, Suburb. 2000-2016
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4.4.4 Income Groups for the period 2013-2016

Through the EdBuild dataset we obtained estimates for school district median house-
hold income for the period 2013-2016. These estimates can also be obtained directly
from the US Department of Education, the National Center for Education Statis-
tics (NCES), and the Education Demographic and Geographic Estimates (EDGE)
database.

Visual inspection and analysis of the distribution suggests a simple tripartite
division of the MHI range. We use the 0.25 and the 0.95 quantiles (respectively
41320�USD and 95844�USD). The cumulative density and the histogram for the
MHI variable, along with the category division lines, are plotted below in 4.6. In
figure 4.7 we plot the stacked histogram for the three income groups.

Fig. 4.6 Tripartite division of the median household income distribution for school districts.
2013-2016.
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Fig. 4.7 Stacked histogram plots of the educational returns variable x. Income Groups: Low,
Medium, High. 2013-2016. The stacked histograms suggest a marked difference in the
statistical equilibrium distribution for the three income groups.
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4.5 Bayesian Estimation

4.5.1 Model Specification and Markov-Chain Monte Carlo Sam-
pling

The QRSE log-likelihood used for the estimation procedure is shown below in 4.9:

log[ f̂x] = Ha|x� tanh
✓

x�µ
T

◆ ✓
x�a

S

◆
� log(Z) (4.9)

This follows the same approach taken in Melo (2021)for estimating the full
school district ensemble case. We directly compute the partition function Z as the
sum:

Z = Â
X

eHa|x e� tanh( x�µ
T ) ( x�a

S ) (4.10)

We evaluate the log-likelihood in 4.9 by computing sequences of random samples
from the joint posterior distribution of G = [T,S,µ,a]. In this paper we use a
standard Metropolis-Hastings algorithm (MCMC-MH; see Hogg and Foreman-
Mackey (2018)). Our code uses PyMC3 (Salvatier et al., 2015), an open source
probabilistic programming framework written in Python 4.

For each school district ensemble considered, we run 3 chains with 30,000
iterations and 4,000 tuning samples. All of the chains converged with R̂ = 1. For
more details on the convergence statistic R̂ used see Vehtari et al. (2019). We used
truncated normal priors centered near the MAP estimates for T and S, with lower
and upper bounds at 0.1 and 8 respectively. For µ and a we used normal priors
centered near the MAPs and specified large variances in order to explore reasonably
wide ranges of the parameter space. Given knowledge about the plausible ranges
for the scale and location parameters, along with the MAP estimates, this choice of
weakly informative priors seemed appropriate. The structure used for the bayesian
estimation of the model is summarized in figure 4.8.

4Code used, data and MCMC sample traces will be made available in a public GitHub repository
for review. For details on the PyMC3 library see: https://docs.pymc.io/api/inference.html

https://docs.pymc.io/api/inference.html
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Fig. 4.8 QRSE model structure and priors used for Bayesian Estimation.
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4.6 School District Ensembles

In the economic statistical equilibrium approach used in this paper, inference is
conducted by fitting the marginal predictive density of the outcome variable f̂x to
the histogram of a well defined ensemble of units of observation, which we defined
as district-level educational returns. Uncertainty around the explanatory values for
the parameters is recovered via Bayesian estimation of their posterior distributions.
Since estimates of the posteriors in the QRSE density reveal causal information about
the underlying competitive feedback process, and about departures in the data from
perfect Tiebout statistical equilibrium, specific knowledge is obtained by reasoning
about the ensemble-level properties which are implied by those values.

The stacked histograms in figure 4.9 reveal a persistent organization of educa-
tional returns into highly peaked asymmetric distributions with positive skew. The
sharp drops in the pre-modal densities are also revealing of the effect of minimum
expenditure levels and balanced district budgets in shaping the asymmetry of these
distributions. In the absence of policy floors, balanced budgets, and strong sorting
incentives, we would expect the distribution of educational returns to be closer to
a symmetric tent-like Laplace distribution, such as the ones that are observed for
firm profit rates. This is what the QRSE density predicts for the ’most decentralized’
competitive economic environments (See figure 4.1).
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Fig. 4.9 Stacked histogram of grouped yearly subsamples across the four urban locales.
2000-2016.
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Fig. 4.10 Stacked histogram of urban locale subsamples and the full ensemble of school
districts for the 2000-2016 period.
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4.7 Results

4.7.1 Urban Locales

This subsection presents the results of Bayesian estimation for the four urban locales
in the 2000-2016 period. The table in figure ?? gives the summary statistics for
the estimated parameters T , S, µ , and a . Figure 4.11 shows a forest plot with the
estimated 94% high-density intervals. For all urban locales, the model was also
estimated across four distinct year groupings: 2000-2003, 2004-2007, 2008-2011,
and 2012-2016. The line plot for the posterior means of this estimation case are
shown in figures 4.12 and 4.13. The high-density intervals for this latter case can be
found in the Appendix.

Posterior Estimates Summary

Locale Parameter Mean (Sd) 94 % HDI R̂

City S 3.62 (0.99) [1.67 , 5.41] 1.0
City T 2.75 (0.98) [0.93 , 4.62] 1.0
City a 18.23 (2.23) [14.05 , 22.46] 1.0
City µ 8.36 (2.24) [4.16 , 12.6] 1.0
Rural S 5.02 (1.0) [3.15 , 6.93] 1.0
Rural T 2.09 (0.93) [0.31 , 3.75] 1.0
Rural a 17.72 (2.23) [13.51 , 21.88] 1.0
Rural µ 8.69 (2.23) [4.48 , 12.84] 1.0
Suburb S 6.09 (1.01) [4.21 , 7.98] 1.0
Suburb T 2.48 (0.97) [0.62 , 4.27] 1.0
Suburb a 32.73 (2.24) [28.51 , 36.9] 1.0
Suburb µ 7.41 (2.24) [3.2 , 11.59] 1.0
Town S 3.14 (0.99) [1.25 , 4.99] 1.0
Town T 2.28 (0.96) [0.5 , 4.06] 1.0
Town a 14.17 (2.24) [9.86 , 18.27] 1.0
Town µ 8.87 (2.23) [4.7 , 13.06] 1.0

Table 4.1 Summary statistics of estimated parameters T , µ , S, and a . The mean, standard
deviation, 94% credible interval and the convergence statistics R̂ from the MCMC samples
are reported. Urban Locales: Town, Rural, City, Suburb. 2000-2016.
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Fig. 4.11 Forest Plot with 94 % HDI Intervals. The middle bar plots the interquartile range
for the posterior (0.25-0.75) and the median (central point). Urban Locales: Town, Rural,
City, Suburb. 2000-2016.

Fig. 4.12 Line plots for the estimated posterior means across four year groupings. Town and
Rural, 2000-2016.
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Fig. 4.13 Line plots for the estimated posterior means across four year groupings. City and
Suburb, 2000-2016.
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4.7.2 Income Groups

This subsection presents the results of Bayesian estimation for the three income
groupings (Low, Middle, High) in the 2013-2016 period. The table in figure ?? gives
the summary statistics for the estimated parameters T , S, µ , and a . Figure 4.14
shows a forest plot with the estimated 94% high-density intervals. We discuss the
implications of these results in the following section.

Posterior Estimates Summary

Income Parameter Mean (Sd) 94 % HDI R̂

Low S 4.04 (1.0) [2.12 , 5.88] 1.0
Low T 1.85 (0.9) [0.13 , 3.34] 1.0
Low a 14.96 (2.24) [10.8 , 19.2] 1.0
Low µ 8.88 (2.24) [4.63 , 13.02] 1.0
Middle S 5.8 (1.01) [3.89 , 7.66] 1.0
Middle T 2.12 (0.95) [0.35 , 3.84] 1.0
Middle a 18.79 (2.23) [14.68 , 23.04] 1.0
Middle µ 8.66 (2.23) [4.54 , 13.01] 1.0
High S 4.01 (0.99) [2.13 , 5.84] 1.0
High T 11.99 (1.0) [10.08 , 13.85] 1.0
High a 60.0 (2.24) [55.83 , 64.27] 1.0
High µ 1.01 (2.23) [-3.12 , 5.24] 1.0

Table 4.2 Summary statistics of estimated parameters T , S, µand a . The mean, standard
deviation, 94% credible interval and the convergence statistics R̂ from the MCMC samples
are reported. Income Groups: Low, Middle, High. 2013-2016.

In figures 4.17 and 4.20 we fit the estimated QRSE model to histograms of
the observed distributions of x for the four different locales, and the three income
groups, along with the joint action-outcome probabilities fa,x. The Soofi information
distinguishability statistic (Soofi ID; See Soofi and Retzer (2002)) is used to evaluate
fit performance. The Soofi ID is shown below in equation 4.11. Smaller values of
the KL-Divergence and of the Soofi ID imply better model fits and the Soofi ID in
particular gives a measure of how much informational content is recovered by the
candidate distribution. The histogram fits are shown in the next section to facilitate
discussion.
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Fig. 4.14 Forest Plot with 94 % HDI Intervals. The middle bar plots the interquartile range
for the posterior (0.25-0.75) and the median (central point). Income Groups: Low, Middle,
High. 2013-2016.

ID
�

f̂ : f̄
�
= 1� exp

⇥
�DKL

�
f̂ | f̄
�⇤

(4.11)
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4.8 Discussion

4.8.1 Tiebout sorting and competition across urban locales

Figure 4.15 shows the estimated quantal response difference D fa|x and joint action-
outcome probabilities fa,x for the rural and town locales. Figure 4.16 shows the same
plots for the city and suburb locales.

The estimated values of µ̂ constitute the typical households’ in- and out-migration
indifference points, where D fa|x = 0 and where fe,x = fs,x. These are then the esti-
mated Tieboutian competitive rates for the education public good in each submarket
ensemble.

Quantal response behavior and expectations appear as nearly identical across all
locales, but the scale and breaking down of symmetry in the competitive feedback
process is markedly different. Both the rural and suburb locales signal a relatively
heavier dominance of sorting incentives in shaping the distribution of educational
returns. In the suburb locale, the almost complete breakdown of competitive feedback
is driven by the high value of â . As was discussed in the section 3, the large distance
between µ and a can be understood in terms of unfulfilled public goods provisioning
expectations for households seeking to sort on the basis of income and property
values. This is a distinctive feature of the US public education market, where
expenditure levels tend to be monotonic in property values. The similarities between
the estimated quantal response functions reveal the role that states’ minimum per
pupil expenditure levels play in establishing the competitive Tiebout rate µ .
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Fig. 4.15 Estimated quantal response and competitive feedback. Mean posterior values are
used for plotting. Town and Rural, 2000-2016.
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Fig. 4.16 Estimated quantal response and competitive feedback. Mean posterior values are
used for plotting. City and Suburb, 2000-2016.
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Fig. 4.17 Histogram of observed distributions for x (educational returns). Overlaid are the
fitted marginal fx, entry fe,x, and exit fs,x distributions. Urban Locales: Town, Rural, City,
Suburb. 2000-2016.
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4.8.2 Tiebout sorting and competition across income groups

Note that in the case of the low and middle income groups, the estimated posterior
mean values for T̂ and µ̂ fall within a similar range as that estimated for the urban
locales case. This again gives supporting evidence to the ability of the T-QRSE
model to infer district expenditure floors in terms of the competitive Tiebout rate µ .
In a decentralized public goods setting, households may not want to pay above this
rate µ , but they are driven to do so by the higher property taxes which are levied
by districts in costlier housing markets. The basis for the interpretation of the high
value of T̂ in the context of high-income districts was discussed in section 3. The
results for this group, displayed in figures 4.19 and 4.20, point to a context in which
educational returns are driven entirely by stratification incentives and independently
of public competitive dynamics.

Fig. 4.18 Estimated household quantal response and competitive feedback. Mean posterior
values are used for plotting. Low and Middle income groups, 2013-2016.
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Fig. 4.19 Estimated household quantal response and competitive feedback. Mean posterior
values are used for plotting. High income group, 2013-2016.

Fig. 4.20 Histogram of observed distributions for x (educational returns). Overlaid are the
fitted marginal fx, entry fe,x, and exit fs,x distributions. Income Groups: Low, Middle, High.
2013-2016.
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4.8.3 Median property values and a

This final subsection provides supporting evidence for the hypothesis that â estimates
tend to be monotonic in income and property values. In figure 4.21 we plot school
district median property values (MPV) against the income and locale categories used
in the paper. In figure 4.22 we visually summarize the estimated posterior â means
for all the school district groupings considered.

Fig. 4.21 Distribution of median property values for all districts; 2013-2016. Plotted against
the income and urban locale categories.

Fig. 4.22 Visual summary of the estimated posterior means for a . All locales (2000-2016)
and income groups (2013-2016).



4.9 Conclusion 131

4.9 Conclusion

The impact of Tiebout and sorting incentives on education expenditures across the
urban-rural spectrum continues to be a central part of policy debates in the US. Using
a quantal response statistical equilibrium model, this paper provided an inferential
framework for estimating the relative importance of inter-jurisdictional competition
and property-value driven sorting in shaping observed expenditure patterns across
four urban locales for the period 2000-2016, and three income groups for the period
2013-2016. In Tiebout statistical equilibrium, sorting is a non-competitive outcome
that can be understood as households’ unfulfilled expectations with respect to a
minimum expenditure floor that is determined at the state level.



Chapter 5

Constructive statistical explanations:
testing causal and non-causal
principles in economic data with
MaxEnt

5.1 Introduction

In everyday language we call random these phenomena where we cannot
find a regularity allowing us to predict precisely their results. Generally
speaking there is no ground to believe that a random phenomenon should
possess any definite probability. Therefore we should have distinguished
between randomness proper (as absence of any regularity) and stochastic
randomness (which is the subject of probability theory). There emerges a
problem of finding the reasons for the applicability of the mathematical
theory of probability to the real world (. . . ) In applying probability
theory we do not confine ourselves to negating regularity, but from the
hypothesis of randomness of the observed phenomena we draw definite
positive conclusions. Kolmogorov (1983)

In section 1 I introduce the general model of statistical explanation as sub-
sumption under generality, following Hempel’s inductive-statistical schema. I then
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translate this schema into a template that uses the more familiar language of prob-
ability models and distributions. In section 2 I summarize the key properties of
constructive and non-constructive statistical explanations. Section 3 establishes the
paper’s working definitions of causal and non-causal explanations, and their role in
supporting inference and prediction. In section 4 I build on Brian Skyrms’ account
of the maximum entropy principle (MEP) as a form of stochastic hypothesizing,
and on Amos Golan’s infometrics framework, to describe the role of MaxEnt in
conducting modal inference, and in building constructive statistical explanations.
This section also discusses maximum entropy methods against the backdrop of of
Jayne’s information-theoretic and epistemic interpretation of statistical mechanics. In
section 5, I take up as an economic example the problem of adducing a constructive
statistical explanation for the observed distributions of firm profit rates, which are
well known to be Laplace shaped. I conclude by discussing the causal and non-
causal dimensions of the probabilistic competitive feedback constraint developed in
Scharfenaker and Foley (2017).

5.2 Statistical Explanation

5.2.1 The Inductive-Statistical Schema

Early accounts of statistical explanation were given by Hempel et al. (1965) and
Salmon (1971). The basic structure of Hempel’s Inductive-Statistical (IS) model of
explanation follows the general template of the well-known Deductive-Nomological
(DN) model; that of explanation as subsumption under generality. To explain an
event E is to provide an argument stating that on the premises that E pertains to some
well specified reference class, and that the statistical regularity in question holds, we
can infer with probability p(E) the occurrence of the explained event (Salmon, 1971;
Sklar, 1995).

In the same way that the DN model is meant to capture explanation by adducing
a deterministic (natural) law, the IS model explains by citing a ‘statistical regularity’
or ‘statistical law’ that explains the occurrence of E, with a certain level of ‘inductive
support’. The relationship between explanans and explanandum is not deductive,
hence the name "inductive-statistical’. The general templates for the DN and IS
models are displayed below in figures 5.1 and 5.2.
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Fig. 5.1 Deductive-Nomological (DN) Explanation Schema

. . . a DN explanation answers the question “Why did the explanandum-
phenomenon occur?” by showing that the phenomenon resulted from
certain particular circumstances, specified in C1,C2,. . . ,Ck, in accor-
dance with the laws L1, L2, . . . ,Lk. By pointing this out, the argument
shows that, given the particular circumstances and the laws in question,
the occurrence of the phenomenon was to be expected; and it is in this
sense that the explanation enables us to understand why the phenomenon
occurred. Hempel et al. (1965)

Fig. 5.2 Inductive-Statistical (IS) Explanation Schema

In the IS template above, Fa stands for ‘facts about a’. Thus, under the as-
sumption of Fa and the conditional probability rule Pr(G;F), we can infer Ga with
probability r. The (r) in the entailment bar is meant to express the level of ‘inductive
support’ for the explanatory schema.

5.2.2 Amending The IS Schema

What makes the general idea behind the DN and IS models relevant in describing
explanatory schemas is their appeal to notions of ‘statistical regularity’ and ‘law-
likeness’ in their explananda. Irrespective of the logical characterization used, the
general concept of subsumption under generality turns outto be extremely useful
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for exploring a host of philosophical issues related to the assertion of the ‘law-like’
aspect of the probability models that enter the explanans. As Salmon (1989) notes,
"the essence of scientific explanation can be described as nomic expectability - that
is, expectability on the basis of lawful connections".

There are naturally many issues to be raised against Hempel’s account and they
have been well documented in the philosophical literature (see Kitcher, 1989; Wood-
ward, 1989). For the purposes of this paper, the following are worth mentioning. The
first is that IS model construes statistical explanation as being inherently inductive; it
takes the form an inductive syllogism. But modern probabilistic and statistical mod-
eling, including both frequentist and bayesian statistics, can be shown to follow more
closely a deductive-statistical or hypothetico-deductive framework than a strictly
inductive scheme (Gelman and Shalizi, 2013). This straight-jacketing of the explana-
tory schema into an inductive inference framework fails to capture the separate roles
that probabilistic and statistical claims play in explaining the explanandum. The
second important limitation to mention in Hempel’s account is that it restricts good
explanations to those that are able to place high probability on the explanandum.
Thus, the IS schema runs into trouble when attempting to account for low-probability
events, such as a patient dying from the side effects of a medication that was meant
to be curing. The drug is itself a probability raiser for recovery, but the statistical
possibility of dying from the drug’s side effects is real, even if extremely low.

These core issues are, however, easily amendable. With regards to the first issue,
one can easily embed an inductive-statistical syllogism in a broader hypothetico-
deductive framework or theory. The inductive-statistical schema only becomes lim-
iting if one ignores the extra-statistical propositional base from which it is derived.
Only machines can be reduced to blind inductivism; practicing empirical researchers
inevitably weave together aspects of both deductive and inductive reasoning. Thus, I
take the general shape of the inductive-statistical schema, and of statistical explana-
tion as subsumption under generality, to be a useful characterization as long as it is
embedded in a broader hypothetico-deductive framework.

With respect to the issue that the explanans has to be probability raising, we
can drop the high probability requirement and simply ask that the explanans confer
any positive probability (p > 0) to the explanandum. In concrete probability terms,
this means that as long as the explanans is able to account for the occurrence of



136
Constructive statistical explanations: testing causal and non-causal principles in

economic data with MaxEnt

the observed event in any quantile of the theoretical distribution, then it counts as a
possible candidate for statistical explanation (henceforth SE).

5.2.3 Statistical Explanation as Subsumption Under Generality

The logical shape of the schema of explanation as subsumption under generality can
be suitably expressed using more transparent notation. We can simply take it to be a
form of statistical syllogism, such as the one below:

I is an F

P proportion of F are G

) the chance that I is a G is P

) I is a G with frequency P

(5.1)

This statistical syllogism is useful in that it points to the two main essential
components of a statistical explanation; the placement of the explanandum in a
specific reference class, and the appeal to a probability law in the explananda that
accounts for the chances or the observed frequencies of any particular event. The
key then behind this standard pattern of statistical explanation, as mentioned in the
previous sub-section, is the appeal to the nomic expectability of the outcome, under
the assumption that the theoretical relationship between the reference class and the
probability law for that reference class is suitably established. In the above example,
the reference class is F and the probability law is P . The explanandum, i. e. the
thing to be explained, is why I is G with frequency P. The core of the explanatory
work is achieved by these two main components; the citing of the probability law or
the statistical regularity, and the assertion that the random event belongs to a well
specified reference class.

Starting out with that simple structure for SEs, an important of philosophical
issues can begin to be addressed. How is the reference class established ? Is
it a classificatory kind ? A natural kind ? If the latter, are only natural kinds
genuine generators of real probabilities (Sklar, 1995) ? On what basis does the
posited probability law explain anything about the observed outcome ? Does the
probability law contain non-causal and/or causal content ? Or can it be posited
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as being statistically autonomous ? In order to better address these questions, in
the context of statistical equilibrium modeling, we can rewrite this general schema
of explanation as subsumption under generality using the language of probability
models and distributions. While it forces us to introduce some formal notation, it
will make the discussion and the paper’s arguments clearer.

5.2.4 Probability Models

Let me then briefly recall some working definitions of probability theory. A probabil-
ity model or stochastic process M consists of a probability space S = (W,F ,P) along
with a set of indexed random variables {Xi2I} defined on S. W is the sample space,
F the s -algebra of events (the collection of all subsets of W), and P a probability
measure on F . The random variable X : W �! R maps elements of F to a mea-
surable space, such as the real line, for which we can define a distribution function
FX(x) and a mass or density function fX(x). The distribution and density functions
relate the probabilities of events to the probabilities of well-behaved subsets of R. If
B is such a subset, and we define an event E = {w 2 W : X(w) 2 B}, then:

P(E) = P(X 2 B) =
Z

B
fX(x)dx

Note that F(x) = P(X  x). This means that we can obtain, for continuous
random variables on the real line, the density function via differentiation:

fX(x) =
d

du
FX(u)

����
u=x

= F 0
X(x) for all x 2 R

The two fundamental properties that a density function must meet are positivity
and normalization:

fX(x)� 0 8x
Z •

�•
fX(x)dx = 1
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In the case of mass functions and discrete variable we replace the above integral
with Âx fX(x) = 1. As will be discussed throughout the paper, the positivity and
normalization constraints are only two of the many possible constraints that we
may impose on fX . 1. There is a broader set of constraints that we may impose
on a probability model in order to derive distributions that meet certain theoretical
or empirical requirements. If the constraints are theoretically motivated, then they
will usually incorporate causal or modal information, i.e information about what
can and can’t happen in a given probability space, and about the causal hierarchies
and dependencies between variables. If the constraints are empirically motivated,
then they will be applied in order to restrict the density’s moments (e.g. variance or
kurtosis) to take on observed values. The application of such constraint rules is the
main subject of maximum entropy inference.

5.2.5 The Probabilistic Basis of Statistical Explanation

In an effort to translate the general structure of statistical explanation as subsumption
under generality using the standard language of probability models, we can start by
thinking of explanandums (i. e. the data to be explained) as observed probability
events, such as X = 1 or X < 0. The event is any assignment of a value or a set of
values to a random variable. Events such as "the coin lands heads", "the subject
is older than 25", "the patient recovered"; any declarative statement that can be
shown to be true or false or that may have a certain frequency of occurrence is then
subject to statistical explanation under this general rubric. In terms of probability
events, I now rewrite the explanatory schema of the statistical syllogism in 5.1 in the
following form:

T |= (W,F ,P)

E 2 F

I := E

P(E) = p

) P̄(I) = p

(5.2)

1For ease of notation, throughout the paper when I write fx, I am referring to fX (x) and P(X = x)
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The first line in 5.2 defines the idea that the probability model is derived from
some underlying theory T, or that the probability space S ‘models’ that theory. The
third line I := E constitutes the reference class assumption, in that it deems the
explanandum I as an observable event under the specified probability model. In
practice, we are more interested in explaining the distinct patterns and shapes of
distributions, and not of an isolated event or proposition. Using the same logical
structure of 5.2, we can write a more detailed and relevant template in terms of
probability distributions as follows:

T |= Y ⇠ D(Q;R)

{ fq ;q 2 Q}
fY,Q

f̂y

s( f̂y, f̄y) = d

) f̄y

(5.3)

The statistical syllogism in 5.3 provides a more complete benchmark to discuss
statistical explanation as subsumption under generality, and captures the idea that
inductive claims are embedded in a broader hypothetico-deductive framework. The
first line points to the derivation of the SE’s probability model from some background
theory T . The probability model here is expressed as a random variable Y that follows
some distribution D, parametrized by the vector Q. T defines D as being appropriate
or specific to a well-defined reference class R. The second and third lines make the
format more amenable to bayesian arguments by specifying priors for the model’s
parameters, and a joint distribution for the random variable and the parameters (Q
may also include latent variables in a bayesian formulation). The specification of the
joint distribution allows for the simulation of new data instances from the underlying
random process. Line 4 is the predicted marginal density of the theory T for the
observed distribution f̄y (the explanandum). In practice, a bayesian model will
produce a set of predictive densities { f̂y}Q|y that will range over the posterior values
of the estimated parameters. But for the purposes of this paper, this distinction will
not be crucial. Finally, line (5) specifies a threshold value d for some similarity
or distance measure s, which quantifies the ‘closeness’ between the empirical and
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the theoretical distributions (e.g. Kl-Divergence). An annotated version of this SE
syllogism is displayed below:

T |= Y ⇠ D(Q;R) : Distributional Assumption

{ fq} : Priors

fY,Q : Generative Model

f̂y : Prediction

s( f̂y, f̄y) = d : Similarity Measure

) f̄y : Observed Frequencies

Not all SEs will be of this kind. Some SEs might not be operating under a
bayesian framework, may not be ‘generative’ in the sense defined above, or may
not even attempt to make explicit the link between the explanatory background
theory T and the distributional assumption D. I use the sketch provided above as a
benchmark to distinguish between constructive statistical explanations (CSE) and
non-constructive statistical explanations (NCSE). Let me then call this benchmark
sketch the constructive SE schema. I term constructive statistical explanations
those SEs that follow this sketch and that make use of probability models whose
parameters are directly interpretable in terms of the causal/non-causal content of a
theory T. I will discuss the issue of causal and modal propositions in section 4, and
in section 6 I will show how maximum entropy methods can be used to incorporate
such propositions in the formal derivation of the predictive density function f̂y.

Those SEs that borrow their probability models from the general stock of statisti-
cal laws, or where the link between the distribution D and the observed frequencies f̄
relies only on moment matching and on a reference class assumption, I will call non-
constructive. The next sub-section will focus on clarifying this distinction, and on
giving some examples to ground the discussion. My objective here is not to approach
anything resembling a definitive account of ‘statistical explanations’ by creating two
mutually existing classes. There is a longstanding decline of systematic theories
of explanation in philosophy of science, which nudges us to favor deflationary and
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pragmatic accounts (Van Fraassen et al., 1980). Ultimately, it is more useful to speak
of varieties of statistical explanation, and to pragmatically relate them to general
aspects of actual scientific practice and to model-based reasoning. CSEs are one
such variety, which I aim in this paper to relate to maximum entropy inference and
to recent statistical equilibrium models in the social sciences.

5.3 Constructive Statistical Explanations

5.3.1 Key Properties

Following the exposition in the previous sub-section, I summarize in the table below
the key properties for my proposed definition of Constructive and Non-Constructive
Statistical Explanations (CSE & NCSE).

Fig. 5.3 Key Properties of CSEs

These proposed boundaries are soft. Some SEs will not fit strictly into these
molds, and in practice they may merge aspects of both. The categories provide a
benchmark against which we may compare specific examples. The main objective of
my account is to put a strong emphasis on the constructive/non-constructive role of
theory in specifying a probability model for the explanatory schema. The explanatory
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role is ultimately fulfilled by the proposed theory T, not by any statistical model as a
stand-alone object. The key problem is that of understanding how the distributional
assumption Y ⇠ D is built into the explananda; whether it is explicitly derived from
the background theory, or whether it is autonomously applied. This is the first
distinguishing property for CSEs. The second distinguishing property operates at
the level of causal inference. CSEs encode causal and modal propositions into the
predictive distribution f̂y, while NCSEs may have to rely on estimating conditional
causal effects.

The generative properties of an SE’s probability model is not a distinguishing
factor. Constructive SEs necessarily contain a joint distribution for all observed and
unobserved variables fY,Q, as well as a set of predictive distributions { f̂y}Q which
are compared to empirical distributions via a similarity/distance measure s. Non-
constructive SEs may be generative, but they may also be exclusively concerned with
predicting quantiles or specific moments via conditional distributions (e.g.P(Y |X) or
P(Y |Q)). I take this then to be an optional property for NCSEs. The latter distinction
turns out to be important in that some SEs may not be committed to explaining the
full shape of an empirical distribution. Their subsidiary relationship to the underlying
probability model may or not be problematic, that depends on the theory involved.
Thus, the constructiveness of CSEs does not rely on the complexity of the probability
model, but on the way that it accounts for model specification. Despite having a
rich probabilistic structure, a large host of bayesian and structural models may fail
in the task of supplying ‘constructive’ content to a statistical explanation if their
specification is uninterpretable in terms of the underlying theory. A more succinct
way to state the difference is that CSEs aim to show how probabilistic structure
can emerge at the level of observed outcomes from a model’s causal or modal
constraints. NCSEs, in contrast, may delegate probabilistic structure to subsidiary
distributional assumptions, to noise terms or ‘exogenous shocks’, or to complex
sampling processes.

Using the inferential frameworks from statistical mechanics and information
theory, along with modern probabilistic programming languages, it is becoming more
approachable for social scientists to propose constructive statistical explanations
that aim to show how probabilistic structure can emerge from the modal or causal
principles that regulate any given system. Constructive explanatory schemas allow
researchers to resolve theories about observables into distinctive statistical signatures
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with interpretable parameters. If there is anything to take away from the definition
of CSEs, it is this property. The resolution of theories into distinctive statistical
signatures in CSEs opens up a fertile ground for phenomenological investigation and
for counterfactual reasoning. A system’s observable stochasticity may in principle be
resolvable on deterministic or tychist terms, but it needs to be accounted for somehow
by the proposed explanatory schema. CSEs do so by proposing a probability law
whose parameters can be readily interpretable in terms of the underlying theory.
Non-Constructive SEs do so via an autonomous application of a probability law, in
which case the link between parameters and theory is settled outside of the derivation
of the probability model. As stated earlier, this may or may not be problematic, and
in practice usually constitutes a first step towards the probabilistic elaboration of a
theory’s core content.

5.4 Prediction, Causality and Modality

5.4.1 Prediction

I have been alluding to the role played by causal and modal propositions in building
constructive SEs, whose main output is a predictive distribution f̂y, but have not
properly defined these terms. In this section I will do so, in order to better understand
the predictive output of the CSE schema.

Predictions are statements about a future event, or a missing piece of information,
prior to the event taking place. Good predictions rely on good explanations, and
there is a dynamic relationship between the two. It is often said that predictions
are conjectures. But in what sense ? What distinguishes, for example, a scientific
prediction from an oracular statement ? What builds up their distinctive epistemic
status ? Scientific predictions are conjectural in the sense that they rely on plausible
explanations to state why a given event might go one way or the other. It is not just
that they state a possible unfolding of future events, but that based on the premises
supplied by the explanation on which they rely, they state a likely future to follow
some particular pattern. Let me give an example. When in 67 AD emperor Nero
visited the Oracle at Delphi, he was allegedly told :
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Your presence here outrages the god you seek . . . The number 73 marks
the hour of your downfall.

The oracle didn’t cite any causes or principles for why that should be the case,
and Nero interpreted the statement as meaning that he would live until the age of 73.
The statement was eventually considered as being fulfilled after the fact when the
Roman general Galba, who was 73 at the time, orchestrated a revolt and took over
Nero’s reign. Nero died by his own hand at age 30 after being exiled from power.

Such openly ambiguous and cryptic statements only support postdiction, or in-
terpretation after the fact, they are not useful in any practical sense. But they are
not useless because of their falsehood, nor because they may only be coinciden-
tally fulfilled, but because they do not rely on any underlying explanation. They
posit necessity ex nihilo, without citing causes or principles, and usually look like
counterfactuals without antecedents. While the cryptic statements of the oracle of
Delphi may seem remote to the modern reader, they are not too far off from the sort
of predictions and forecasts that are asked of economists and pundits in policy and
media outlets. Take, for example, a statement of the form ‘The economy will enter
into recession next year’ or ‘GDP is estimated to grow at a rate of 5% in Brazil’. If
taken purely at face value as counterfactual possibilities with no antecedent clauses,
these are purely speculative statements that carry no epistemic content. Now take a
statement of the form ‘If long term inflation expectations move persistently beyond
our goals, we will use our tools to preserve price stability’, delivered by Jerome
Powell (head of the US federal reserve) earlier this year. This latter statement has a
counterfactual and conditional structure that points to a reliance on an explanation
of some sort; presumably the Fed has some conjectures about how inflationary and
expectation dynamics work in the economy, based on which it predicts the possible
stabilizing impact of its policies.

The point that I want to make is that With respect to the statements that are
made about the future course of social systems, it is not always easy to distinguish
between empty predictive/statistical claims and predictions that carry defeasible
epistemic content. Furthermore, deciding what is deemed epistemically meaningful
in the social sciences is not so easily settled, given the reign of ‘as if’ placeholders
for theory and model-based reasoning, as well as the hard limits that complex
social systems with many degrees of freedom pose to concrete causal knowledge
and prediction. But if one is able to establish criteria for what constitutes a good
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explanation, then it becomes possible to make the distinction, independently of the
accuracy of the predictions which they may afford (Albin, 1998). In the account that
I give here, I take explanations to be epistemically meaningful whenever they supply
concrete causal and/or modal content, and if in supplying such content they provide
the conditions for intelligibility of the explanandum in terms of an underlying theory.
I hence take in this account intelligibility, and not accuracy, to be epistemically
more relevant for scientific explanation. Predictions are hence useful whenever they
rely on defeasible explanations that carry such type of content, and may turn out to
possess epistemic value even when vastly inaccurate. As an example of a inaccurate
prediction that turned out to be useful, Marletto (2021) cites Columbus’ 15th century
prediction that traveling westward from Europe one could reach the East Indies. The
prediction was incomplete and imprecise, but it drew from a good explanation: that
the Earth is round. Columbus’ prediction relied on a rough but nonetheless causal
assertion about the earth’s curvature and the possible paths and endpoints that a boat
of the time could reach when headed westwards from Europe.

There are, of course, the cases of spectacularly precise predictions that can come
about from the type of knowledge afforded by classical mechanics. An often cited
example in astronomy of a remarkable prediction that relied on causal/mechanistic
knowledge is Le Verrier’s discovery of Neptune. Le Verrier postulated the existence
of a hidden planet as a possible explanation for the irregular orbital motions of Uranus.
Using Newton’s laws of motion, the hypothesis of a hidden planet allowed Le Verrier
to explain Uranus’ ‘irregular motion’ in terms of gravity-induced disturbances. The
hidden planet was subsequently spotted to a high degree of accuracy by Johann
Gottfried Galle in 1846, based on Le Verrier’s calculations. This then established
Neptune’s existence as a celestial object (Bamford, 1996) . Another important
example worth mentioning in physics was Einstein’s early work on brownian motion.
In his 1905 paper "On The Movement of Small Particles Suspended in Stationary
Liquids Required By The Molecular-Kinetic Theory of Heat", Einstein proposed to
explain the irregular swarming motion of pollen seeds in water in terms of the kinetic-
molecular theory of heat. He hypothesized that, if the kinetic theory was true, small
but visible particles suspended in a liquid would be randomly bombarded by invisible
atoms. The kinetic and statistical laws governing the atomic collisions would then
explain the particle’s ‘irregular’ brownian path and hence the macroscopic process
of diffusion and drift. Jean Baptiste Perrin’s experimental results subsequently
confirmed Einstein’s equations and allowed him to reliably estimate the size of
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atoms, effectively raising their status from hypothetical to observable objects. The
explanation of macroscopic laws in terms of the kinetic theory was a matter of heated
debate between proponents of ‘energetics’ and ’atomists’ in the 19th century , but
Einstein’s and Perrin’s results decidedly tipped the balance in favor of the atomic
theory (Sokolov and Klafter, 2005; Stachel, 2005).

Not all predictions, however, necessarily rely on causal/mechanistic knowledge.
A well known example is the prediction of the neutrino, a subatomic particle first
proposed Wolfgang Pauli in 1930 in order to make the experimental results obtained
from studying beta decay processes consistent with the principle of energy conserva-
tion. The discovery of neutrinos relied entirely on the principles of conservation of
energy and momentum, independently of their quantum/mechanical characterization
which was only developed decades later (Cowan Jr et al., 1956; Marletto, 2021).
When I have been referring to the, ‘modal’ content of theories above, I am referring
to principles of this kind. The modal core of a theory specifies the conditions of
possibility and impossibility of certain processes without exploiting details about
micro-level laws. This does not mean that principle-based theories or discoveries
are discordant with causal content, but only that by virtue of their greater generality,
there is a broad set of causal descriptions that can plug into any given principle. The
ultimate arbiter is the data; causal theories compete under the constraints of higher
level principles to explain observations.

In the next sub-section I delve deeper into this distinction between causal and
non-causal explanations, which is central to my account, given that I have defined
CSEs as being based on theories that supply such content to their probability models.

5.4.2 Causal and Non-Causal Explanations

Causal explanations in physics, of the mechanistic sort, appeal to laws of motion.
Given a set of initial conditions and a formalism for describing a physical system
(e.g. the hamiltonian of a system of N classical particles), a set of dynamical laws
allows for the deterministic prediction of a system’s evolution in state space. When
I speak here of causal/mechanistic accounts I refer to accounts that are based on
dynamic-law approaches, such as the force laws of classical mechanics. Outside
of physics, in biology and in the special sciences (e.g economics), other concepts
of causation may be more relevant, such as activity-based accounts, counterfactual
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accounts, process theories and probabilistic causation (Pearl, 2009). In this paper I
refer more generally to explanations as being causal if they build upon descriptions
of a network of causal relations that is relevant to the explanandum’s reference class.
Thus I am steering away from focusing exclusively on reductionist, physicalist, or
strictly mechanistic accounts of causation. The latter I subsume under dynamical-law
approaches. I am more interested in clarifying the distinction between causal and
non-causal explanations, and in understanding how they both support the predictive
output of constructive statistical explanations.

The distinction between causal and non-causal explanations mirrors that be-
tween bottom-up and top-down approaches to scientific explanation (Kitcher, 1989;
Salmon, 1989). “An explanation taking a bottom-up approach describes the causal
processes, interactions, and (often hidden) mechanisms responsible for particular
occurrences or general regularities. In contrast, an explanation taking a top-down
approach subsumes the explanandum under some extremely general principles "
(Lange, 2016).The general principles of the top-down approach can be understood
as constraints on the causal regularities that a process may exhibit; they are modally
stronger and are often described as laws of laws. This distinction between natural
laws and principles is clearly stated by Feynman: “When learning about the laws
of physics you find that there are a large number of complicated and detailed laws,
laws of gravitation, of electricity and magnetism, nuclear interactions, and so on, but
across the variety of these detailed laws there sweep great general principles which
all the laws seem to follow. Examples of these are the principles of conservation”
(Feynman, 2017). And by Einstein, with respect to the principle of relativity:

The principle of relativity . . . is not to be conceived as a ‘ ‘complete sys-
tem", in fact, not as a system at all, but merely as a heuristic principle. . . .
It is only by requiring relations between otherwise seemingly unrelated
laws that the theory of relativity provides additional statements.

For example, the theory of the motion of electrons arises in the following
way. One postulates the Maxwell equations for vacuum for a system
of space-time coordinates. By applying the space-time transformation
derived by means of the system of relativity, one finds the transformation
equations for the electric and magnetic forces. Using the latter, and
applying the space-time transformation once again, one arrives at the
law for the acceleration of an electron moving at arbitrary speed from
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the law for the acceleration of the slowly moving electron (which is
assumed or obtained from experience). Thus, we are not dealing here at
all with a ‘ ‘system" in which the individual laws are implicitly contained
and from which they can be found by deduction alone, but only with a
principle that (similar to the second law of the theory of heat) permits
the reduction of certain laws to others. (Einstein, 1907)

What is important to note in the contrast between force laws and principles is
that the distinction has to do with their degree of necessity. The explanatory power
that can be derived from principles such as the conservation laws, the second law
of thermodynamics, or relativity, comes from the constraints that they establish on
the kinds of mechanical interactions that can and can’t happen. The added modal
strength (i.e. necessity) that such principles enjoy make them true independently
of the nomological details of the forces involved. This idea of ‘modal strength’
can be made more precise if we reason in terms of counterfactuals. Note that the
impossibility of a system that violates the conservation of energy is stronger than
the impossibility of a system, for example, that violates Newton’s gravity law. We
can think of a possible world where the conservation of energy law still holds, but
where the gravitational forces are repulsive rather than attractive2, or where they
have different constants, or obey different inverse force laws. Lange (2020) cites
the famous example of Paul Ehrenfest, who in 1917 ‘ ‘showed that had gravity been
an inverse-cube force or fallen off with distance at any greater rate, then planets
would eventually have collided with the sun or escaped from the sun’s gravity"
(Ehrenfest, 1917). What is interesting about the Ehrenfest example is that it requires
for Newton’s second law to hold, independently of the rate at which gravity falls
off with the distance. What the analysis of such counterlegals points to is that the
natural impossibility of an inverse-cube gravity force is not quite the same as that
of the second law, or of the conservation principles. There is a spectrum of modal
strength along which we may place accidents, natural laws, physical principles and
mathematical truths, each respectively ranging over a broader set of counterfactual
possibilities.

The question is then in what sense can non-causal principles be used as expla-
nations ? How do they supply content to the sort of statistical explanations and
predictions that I have been alluding to throughout the paper ? The straightforward

2This theory was actually proposed by Le Sage in the 18th century.
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answer is that they come in handy in contexts where we may ignore the nomological
and causal regularities that make up a complex process, but where we have some
sense of a broad and stable set of counterfactuals that the process may range over.
They may not predict the specific laws in a given physical context, as pointed out by
Jeans in the quote below, but in supplying a hypothetical space that bypasses and
constraints the lower level details ( without undermining them), they allow us to
predict what is possible and impossible in any given context.

The hypothesis of relativity predicts that a freely moving planet cannot
describe a perfect ellipse around the sun as focus. This prediction
is made on quite general grounds, just as the conservation of energy
predicts that a stream of water cannot flow uphill. But the conservation
of energy by itself is powerless to predict what will be the actual course
of a stream of water, and in precisely the same way the hypothesis of
relativity alone is powerless to predict what will be the orbit of a planet.
Before this or any other positive gravitational predictions can be made,
additional hypotheses must be introduced. (Jeans, 1921)

Non-causal explanations, however, can be useful beyond their ability to exclude
counterfactuals. It is possible to ask the question of how a system’s probabilistic
structure can emerge from modal principles alone. To clarify this point, consider
the problem in statistical mechanics of inferring the particle density per unit volume
nh of an ideal gas in a volume V as a function of height h. Suppose the gas has N
molecules and is contained in a an extremely tall tube of height H, held at a constant
temperature T , as illustrated in figure 5.4. This is an adaptation of Feynman’s well
known example in Feynman (1965).

Atoms with energy levels ei randomly collide in the tube and e 0i +De is the energy
level after each collision. If energy is conserved in this system, De constitutes an
energy exchange between the atoms. This process is illustrated below in figure 5.5.

What is the probability of finding any given molecule at a height h 2 [0,H] ?
Without detailed knowledge of the underlying mechanics of this gas we can try to
obtain the equilibrium distribution of h by using only ‘higher level laws’ such as
energy conservation and time-reversal symmetry for the forces involved. The energy
conservation principle is given by the additive identity in equation 5.4.
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Fig. 5.4 From (Feynman, 1965)

Fig. 5.5 From (Dragulescu and Yakovenko, 2000a)

e1 + e2 = e 01 + e 02 (5.4)

If we reason in terms of time-reversal symmetry by considering that in equilib-
rium, the probabilities of transition between microstates l and j in the gas must be
equal in reverse order, i.e. p j!l = pl! j, then the detailed balance equation in 5.5
simplifies to equation 5.6.

p12!1020 p(e1)p(e2) = p1020!12 p(e 01)p(e 02) (5.5)
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p(e1)P(e2) = p(e 01)p(e 02) (5.6)

The only stationary distribution for the energies that satisfies both the detailed
balance equations and the energy conservation law in 5.4 is the Boltzmann-Gibbs
distribution, an exponential function of the form:

p(e) =Ce�e/hei (5.7)

where hei is the mean energy level of the gas (Dragulescu and Yakovenko,
2000a; Landau and Lifshitz, 2013). Since h is a condition for the energy (the only
degree of freedom we’re considering), then by the previous argument the density is
proportional to the Boltzmann-Gibbs law; nh µ e�e/hei.

This leaves us with a great deal of uncertainty with respect to the underlying
causal process in the gas, as it is not a family of distributions but a family of functions
that is implied by this principle-based derivation. The ‘additional hypotheses’ that
Jeans pointed to in the earlier quote would need to enter here at the level of specifying
just what e is and how it depends on the degree of freedom h, and what a constant n0

would need to be in order to fully specify the distribution. If we introduce knowledge
that the gas tube stretches a very tall height from sea level to the atmosphere, and
if we’re only interested in studying the effect of gravitational potential energy, then
we can fully specify the formula and bring it down from a family of functions to a
family of distributions: nh = n0e�mgh/kT . If we know the weight of the molecules in
different gases, we can recover the specific exponentials for each, as shown in 5.6.

In the other direction, with knowledge of the energy function and the required
constants, the density can also be derived as direct consequence of the ideal gas law
P = nkT , where n = N/V , independently of any higher level constraints (Feynman,
1965). But having started with the top-down derivation first, it is clear that this is
not just coincidence. The modal principles tell us that independently of the causal
context and atmosphere in which we place the gas tube, for any given macrostate,
the probabilities of its possible microstates decrease exponentially as a function of
potential energy, which is a remarkable proposition.
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Fig. 5.6 From From (Feynman, 1965)

Note, however, that the detailed balance condition in 5.5 is stronger than what
is required to obtain a statistical equilibrium distribution (Lifschitz and Pitajewski,
1983). We may ask if it is possible to obtain the Boltzmann-Gibbs law in the
case where we only know what the mean energy value should be, as in the usual
case of ē = kT , which may be obtained using a thermometer. We can recover the
density p(e), exploiting only this measurement, by maximizing the entropy of the
energy e subject to normalization and the expected value of e (Golan, 2018). This
maximization program takes the form given below in 5.8:

max
p(e)�0

He =�Â
e

p(e) log[p(e)]

st.

Â
e

p(e) = 1

Â
e

e p(e) = ē

(5.8)

The associated Lagrangian L to this program is given below in 5.9:



5.4 Prediction, Causality and Modality 153

Le,l1,l2 = He +l0
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The first-order conditions to this optimization problem yield the statistical equi-
librium density for p(e):

p(e) = 1
Z

e�el1 (5.10)

where Z is a summation constant:

Z = e�1�l0 =
1

Â
e

e�el1

and l1 =
1

kT . Thus, via the maximum entropy formalism, in equation 5.10 we
recover the same distribution of energies as in 5.7 by alluding to energy conservation
alone and without recourse to time-reversal symmetry, which is too strong a condition
for obtaining the statistical equilibrium density. This means that if the molecules of
a gas follow some reversible stochastic processes, then their energy distribution will
be entropy maximizing, but a maximum entropy distribution of the energies does not
imply mechanical reversibility.

The important point to make is that the same functional form (Boltzmann-Gibbs)
appears in both derivations, not by mere accident or coincidence, but because of the
greater generality of the conservation principles. In terms of counterfactuals, this
means that the set of possible worlds that are energy conserving is broader than the
set of those in which the molecules of isothermal gases can be described by reversible
mechanical processes. We can continue to climb the ladder of generality and consider
a situation in which we have no knowledge whatsoever about the underlying system,
not even whether it is physical or not, but only that it emits some measurable and
quantizable quantity y whose empirical mean is ȳ. If we again maximize the entropy
subject only to normalization and the empirical mean constraint we will find that
fy µ e�yl , where l = 1

ȳ . Thus fy may as well describe the distribution of energies in
an isothermal gas, the distribution of money and income (Dragulescu and Yakovenko,
2000a), or the outcome probabilities of a biased die roll (Jaynes, 2003; Sivia and
Skilling, 2006). In that case, and in the absence of any other theoretical input or
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explanatory framework, what explains the shape of the distribution is an information-
theoretic and a statistical argument; there are no principles or causes involved. The
maximum entropy framework exploits the full combinatorial range of the state space
to recover the most likely distribution of states given the constraints, by finding the
argument that maximizes a functional of probabilities F ({pi}).

But the great generality that is afforded by this ‘distribution of distributions’,
or by any other deep combinatorial argument, cannot not supply the conditions for
explanation on its own; the weight is entirely on l . If what is needed is a constructive
statistical explanation of why a system is exponentially distributed, work must be
done to make the constraints in the derivation theoretically interpretable. What are
the counterfactual properties that a system must possess in order to be exponentially
distributed ? What modal content can we supply to the maximum entropy program
in order to obtain a family of distributions that contains our observations ? What
causal knowledge and constants could allows us to specify the density uniquely ?

By the arguments above, I have tried to show that what makes a statistical
explanation constructive is the theoretical interpretability of its predictive distribution
f̂y, in terms of both causal and non-causal constraints that are explicitly derived from
theory. And because I defined constructive statistical explanations as supporting both
causal and modal inference, a simple bottom-up/top-down distinction would have
been lacking.

5.5 Distributional Supposition and Statistical Auton-
omy

5.5.1 Distributional Supposition

The motivation behind providing the definitions of CSEs as given in the previous
sections is to make explicit the idea that statistical explanations embody a certain set
of distributional assumptions which may themselves be derived from an underlying
theory. Maximum Entropy (ME) methods provide one avenue for building CSEs,
but there are naturally other routes, some of which are direct bottom-up derivations
of frequencies. What makes ME methods central in my account is that they allow for
the incorporation of both causal and non-causal content into the predictive density
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f̂y. I have also tried to show why ‘non-causal’ or ‘modal’ content does provide
ground for building good explanations (Lange, 2016; Marletto, 2021), and why
it may support meaningful probabilistic inference in complex systems with many
degrees of freedom where knowledge of the causal nomological regularities is absent
or ill-determined. Since the weight of explanation lies entirely on the constraints, and
on how they are interpreted or constructed, the appeal to maximum entropy alone
usually does not constitute sufficient grounds for building constructive statistical
explanations. Thus, statistical explanations featuring maximum entropy distributions
that are derived on the basis of moment matching alone are not ‘constructive’ under
this account.

The work of (Jaynes, 2003; Rosenkrantz, 2012) and Golan (2018) has showed
how many of the methods coming out of statistical mechanics can be distilled into
general templates for conducting inference and plausible reasoning on the basis of
partial information. The generality of the resulting ‘epistemic statistical mechanics’
and ‘infometrics’ frameworks is fully established on information-theoretic and statis-
tical grounds, without appeal to physical or ergodic postulates. It is this particular
feature which broadens the scope of applicability of maximum entropy methods for
inverse inference problems and theory formation outside of physics.

This great generality of the ME methods affords the possibility of hypothesizing
about why quantities are distinctively distributed in the way that they are, in a way
that goes beyond information conditioning. The difference is subtle but non-trivial;
the conclusions that I can draw about x will be different if I use p(x|I) or q(x|I).
What reasons do I have to suppose p or q ? Bayesian updating alone will not answer
this question, as the answer requires the introduction of extra-statistical hypotheses.
Brian Skyrms has rightly termed MaxEnt a kind of stochastic hypothesizing. In
Skyrms (1987) he explains succinctly the distinction between the maximum entropy
principle and the bayesian updating rule, and uses the Stalnaker logic of subjunctive
conditionals to frame the discussion in terms of possible world semantics (Stalnaker,
1968). The procedure of bayesian updating takes us from one point in the interior
of the convex set of a probability distribution to another. MaxEnt supposition, in
contrast, moves us to a different chance distribution altogether.

A Warrenite asked to update on the piece of information that Oswald
didn’t kill Kennedy would come to the conclusion that someone else did;
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but when asked to suppose what the world would be like had Oswald
not killed Kennedy will not suppose that someone else would have.
The difference is often marked in ordinary language by the distinction
between indicative and subjunctive mood. (Skyrms, 1987)

While the use of Bayes’ rule, alongside the product and marginalization rules
of inference, tell us how to update probabilities given evidence, they do not tell us
how to assign prior probabilities or specify the likelihood. The distinction is not
one of methodological opposition. In practice, MaxEnt supplies the distributional
assumptions and Bayes conducts the inference. Or rather, MaxEnt provides a
systematic interface for plugging causal, modal and factual content into the inductive
scheme. In the absence of such content, the MaxEnt framework will yield uniform
priors and likelihoods; it is the information-theoretic version of the ‘principle of
insufficient reason’ (Hacking, 2006; Jaynes, 1957; Keynes, 1909; Stigler, 1986).

5.5.2 Statistical Autonomy

A subset of non-constructive statistical explanations have been described in the
philosophical literature as being ‘statistically autonomous’ (Ariew et al., 2015) or
‘really statistical explanations’ (Lange, 2013). What characterizes the statistical
autonomy of NCSEs in the account I give here is a subsidiary relationship to the
existing stock of probability models, and the explanation of specific events or regu-
larities in terms of ‘statistical fallout’, or as the consequence of a sampling process.
I may state that y is normally distributed, or that it follows a power law, without
citing the counterfactual properties that the data generating process must meet in
order to lead to that specific distribution. To give an example: Why in a class of
students do those with the lowest scores in the first term tend not to be the students
with the lowest scores in the second term? A possible explanation could be that
those who performed poorly in the first term dropped out. Or that a new substitute
teacher came in and was able to motivate them to work better (Lange, 2013). But
without alluding to such counterfactuals, we may simply explain this phenomenon
by pointing to a mean regression process in the population of students. Thus I may
think that grades or ages in a population of students are normally distributed and
allude to the properties of the normal distribution in order to explain deviations from
a presumably population-invariant mean.
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Galton famously used the normal curve to explain the mean regression tendencies
of hereditary traits (Hacking, 2006). He saw the properties of the normal curve as
giving him the tools necessary to solve the puzzle of intergenerational heredity.
Central to Galton’s distinctively statistical explanation was the idea that the normal
curve would hold generation after generation, i. e. that it was invariant. That would
explain why exceptional members would not typically have exceptional descendants.
But the principle of natural selection is presumably the causal factor that acts to
shape the probability of genetic traits in a population.

Statistically autonomous explanations thus provide one side of the story that can
be told about the explanandum, and can be supplemented or put into relation with
theories that seek to account for deeper causal/modal structure. In practice, such
statistically autonomous descriptions may constitute a necessary first step in the long
process of elaborating a theory’s probabilistic content. The structure of the data
generating process may end up being fully amenable to mechanistic treatment or may
end up being irreducibly probabilistic, as in the case of quantum theories (Bohm,
2004). For some, the ‘irreducibly probabilistic’ aspect of a theory may be a sort
of temporary status that subsists up to the point where the discovery of deeper and
deeper causal/modal principles peel off the layers of uncertainty and contingency.
As Hacking (2006) points out, ‘ ‘some authors find the question of reducibility of
deep importance, partly because it is a way of preserving deterministic metaphysics".
Hacking cites Poisson’s law of large numbers, Boltzmann’s H-theorem and much
of ergodic theory as examples. More contemporary examples are the Many-Worlds
Interpretations (MWI) of quantum mechanics (Carroll, 2021; Everett, 2012), as
well as David Deutsch’s and Chiara Marleto’s Constructor Theory (Deutsch, 2013;
Marletto, 2021).

Constructive probabilistic descriptions and explanations are phenomenologically
important because they force us to think about the deep nature of a process and to
come up with ways of understanding the conditions that give rise to their distinctive
statistical regularities. This concern goes beyond asserting long-term frequencies,
counting, updating or curve-fitting; it has deeper theoretical implications.

We see, then, that it is appropriate to speak about objectively valid
laws of chance, which tell us about a side of nature that is not treated
completely by the causal laws alone. Indeed, the laws of chance are
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just as necessary as the causal laws themselves. For example, the ran-
dom character of chance fluctuations is, in a wide variety of situations,
made inevitable by the extremely complex and manifold character of
the external contingencies on which fluctuations depend. . . The random
character of these fluctuations is quite often an inherent and indispens-
able part of the normal functioning of many kinds of things, and of
their modes of being. Thus, it would be impossible for a modern city to
continue to exist in its normal condition unless there were a tendency
towards the cancellation of chance fluctuations in traffic, in the demand
for various kinds of food, clothing, etc., in the times at which various
individuals fall sick or die. In all kinds of fields we find a dependence
on the characteristic effects of chance. (Bohm, 2004)

5.6 Constructive Statistical Explanations in Political
Economy

There is a growing body of research in analytical political economy applying sta-
tistical equilibrium and maximum entropy methods for the analysis of economic
distributions. See Yang (2018) and Scharfenaker (2020a) for thorough reviews.
Despite the focus on physics related examples in the previous sections, my main
motivation behind the development of the constructive explanatory schema is to
make a methodological contribution to this literature, and to explore some of the
philosophical implications of this line of thinking for political and economic analysis.
In this section I will focus on a single case that is relevant for the account of statistical
explanation provided in this paper; the problem of adducing a statistical explanation
for the empirical distribution of firm profit rates, which have been shown to be well
approximated by Laplace, Subbotin and QRSE distributions (Scharfenaker and Foley,
2017). In this example I will discuss how three different attempts at explanation
relate to the constructive explanatory schema that I have outlined throughout the
previous sections.
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5.6.1 Explaining Profit Rates

Suppose, for the sake of argument, that we have dataset of profit rates for some
well defined ensemble of firms over a certain period, as in figure 5.7. This data is
simulated by sampling a laplace distribution with mean and scale parameters equal
to 0 and 1 respectively.

Fig. 5.7 Laplace Profit Rates

Now, suppose we observe this empirical distribution of profit rates but don’t
know the sampling distribution, and that we wish to explain why it is distributed
in the way that it is. Thus, the histogram in figure 5.7 is the explanandum. I
consider three different theories that can been proposed to explain this kind of
data, which is distinctively peaked and shows sharp exponential decay around the
mode. These theories appear in the recent political economy literature; Alfarano and
Milaković (2008), Alfarano et al. (2012a) and Scharfenaker and Foley (2017). For
the QRSE theory, I use an updated parametrization which appears in Scharfenaker
and Foley (2021b). The thre theories considered are based on Smith’s classical thory
of compeition, but offer different statistical explanations.
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In the next subsection I briefly restate the maximum entropy formalism in more
general terms and introduce some shorthand notation, as it will help to clarify the
discussion, given the theories’ reliance on this approach.

General Maximum Entropy Formalism

A predictive statistical equilibrium distribution f̂x is obtained by maximizing the
entropy of a random variable X with density function fx, subject to a set of constraints
which encode empirical and theoretical information. A constraint enters the program
as an expectation (over X) of a function gc(x)2C . The set C is the set of constraints
that relate the underlying theory T , or empirical information, to the predictive
distribution f̂x. If there are m constraints, then |C |= m. The program takes the form:

max
fx�0

Hx =�
Z

X

fx log[ fx]dx

st.
Z

X

fx dx = 1

Z

X

fx gc(x)dx = Fc, c = 1, . . . ,m

(5.11)

For standard references on how this program is solved via the method of Lagrange
multipliers see (Borwein and Lewis, 1991; Golan, 2018; Sivia and Skilling, 2006).
The solution yields a maximum entropy density f̂x with a vector~l = [l1 · · ·lm] of
Lagrange multipliers as parameters. As pointed out by Scharfenaker (2020a), the
Lagrange multipliers associated with each constraint can be understood as ‘ ‘the
marginal amount of information a constraint contributes to the reduction of the
entropy of the statistical equilibrium distribution". The general form for the solution,
and the partition function Z, are shown below in equations 5.12 and 5.13.

f̂x =
1
Z

el1g1(x)+ ···+ lmgm(x) (5.12)

Z =
Z

X

exp
h
l1 g1(x) + · · ·+ lm gm(x)

i
dx (5.13)
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Note that E[gc(x)] = Fc. The constraint expectation values can be set to be both
equality or inequality constraints. In the latter case, then Fc  d , for some d . If the
support of X is discrete, the entropy and expectations are defined as sums over the
state space X .

Shorthand notation

In order to avoid repeating the formulation of the program for different theories, I
will state that a theory T ‘maximum entropy derives’ the predictive distribution f̂x

by the following shorthand notation: CT |=ME f̂x. When stated in this manner it is
implicit that the entropy of X is maximized subject to the normalization condition,
R

fx dx = 1, and that fx � 0.

If C = { /0}, then f̂x is a uniform distribution. if C = x̄, then it is an exponential
distribution with a single rate parameter l1; f̂x µ el1x. When C = {(x � µ)2},
then f̂x µ e�l1(x�µ)2

. In this latter case, if X is the real line and Fc = s2, then
l1 = 1/2s2; which recovers the standard Gaussian density.

Three Explanations

What are the counterfactual properties that the competitive process must possess
in order for profit rate data to be Laplace distributed ? In the context of the clas-
sical theory of competition, what set of constraints yields a constructive statistical
explanation for the data ? What type of set yields a statistically autonomous one ?

In previous sections, I defined a CSE as supplying either causal and/or modal
content to the predictive distribution that it uses to explain the observed frequencies.
A good explanation should contain a minimal set C that is both hard to vary, and
difficult to reduce further when considering some established knowledge about
the process involved (Deutsch, 2011). In the derivation of the Boltzmann-Gibbs
distribution for the energies of an isothermal gas, assuming time-reversal symmetry
was too strong a requirement for obtaining a stationary distribution, and energy
conservation alone was sufficient to yield the required family of distributions via
the maximum entropy program. In terms of counterfactuals, I pointed out that this
implies that the set of processes that are energy conserving is larger and contains the
set of processes that are mechanically reversible. When considering the statistical
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explanations that can be adduced to explain profit rate data, similar distinctions and
issues crop up.

I first consider the two alternatives provided by Alfarano and Milaković (2008)
and Alfarano et al. (2012a) to explain US firm profit rate data for the period 1980-
2006. Similar to Scharfenaker and Foley (2017), Alfarano and Milaković (2008)
understand the general competitive economic process as a type of congestion or
negative feedback mechanism.

In Smith’s classical theory of competition, the persistent entry and exit of firms
into distinct sectors pursuing profitable returns works to stabilize the profit rate
around a central tendency. Consequently, the two starting points for building a statis-
tical explanation based on the theory of classical competition are i) the hypothesis of
profit rate equalization, and ii) the postulation of a negative feedback or congestion
mechanism that can account for the dispersion of rates around a central tendency.
The first condition implies that f̂x should be a unimodal and relatively symmetric
distribution. If the empirical frequencies are extremely skewed, with heavy fat left
or right tails, or show more than one mode; this would be evidence against a profit
rate equalizing process. The data in figure 5.7 is not skewed, so this is not a concern.
But if it were, we would need to account for the ‘economic forces’, other than the
equalizing ones, which are pushing the rates far beyond or below the mode. The
second condition, which requires the postulate of a competitive feedback mechanism,
is harder to translate into statistical terms. It requires a description of the competitive
process which is capable of generating, through endogenous fluctuations, a laplacian
law of error for the dispersion of rates around the average. Unless one is only
interested in averages, this immediately rules out normality for f̂x.

It is form this point of view, which requires a unimodal symmetric distribution
with a laplacian dispersion law, that the authors in Alfarano and Milaković (2008)
set up a maximum entropy program with the constraint set C1 = {

��� x�µ
s

���
a
}, and a

constraint expectation value F1 = 1. The solution to this program is a symmetric
Subbotin distribution with a location parameter µ , a scale parameter s , and a shape
parameter a . The density is shown below in figure 5.8. For a = 1 and a = 2
the distribution reduces respectively to the Laplace and Normal densities. And for
a ! •, a ! 0, the Subbotin tends to Uniform and Delta distributions. The Laplace,
Subbotin and Normal fits to the simulated data are shown in figure 5.9. I will call
this Theory 1 (T1).
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Fig. 5.8 Densities Chart

The statistical explanations that can be built based on T1 are clearly statistically
autonomous; the parameters do not supply direct information about the causal or
modal principles which may be regulating the competitive processes in terms of the
classical theory. But T1 has the great virtue of recovering the laplacian dispersion
law with great accuracy, and is flexible enough to account for a wide range of
processes, including the fully deterministic case when a = 0. Since the Subbotin
recovers the Laplace, T1 opens up a discussion about the stability of a ⇡ 1 across
different samples and microeconomic environments. As the authors themselves note,
‘ ‘this prompts us to ask why the empirical shape parameter is close to unity, what
this implies about the competitive environment that firms are facing, and whether
variations in the shape parameter correspond to qualitative changes in the competitive
environment" (Alfarano and Milaković, 2008). Thus, this theory opens up the range
of microeconomic mechanisms which can be adduced as candidates for explanation,
and which are compatible with the classical theory of competition 3.

In an effort to account for the complex firm competition dynamics which generate
Laplace distributed profit rates, the authors extend T1 with a second theory T2

((Alfarano et al., 2012a)) that uses a stochastic drift-diffusion model, and which
3The firm profit rates of T1 are defined as the ratio of income flows to capital stock
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Fig. 5.9 Fits for the different theories proposed.

generates the Subbotin as the stationary distribution of the process. They propose a
time-homogenous diffusion on the real line of the form:

dXt =
D
2s

sign(Xt �µ)
����
Xt �µ

s

����
a�1

dt +
p

DdWt (5.14)

It is hard to reconcile this ergodic diffusion model with the classical theory of
competition, as outlined above, other than as a sampling construct for Subbotin
distributed data which decomposes competitive pressures into a mean-reverting term
and ‘idiosyncratic’ forces into a random dispersion term.

Good explanations are resilient to counterfactual variation, and following Oc-
cam’s razor, should be synthesized by a minimal set of defeasible (non-monotonic)
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propositions. In the case of T2, this is easy to state by simply considering the com-
petitive process as taking place over networks with time-varying topologies and
where the ordering of firm entry/exit decisions has some specified causal effect on
the statistical equilibrium distribution of profit rates. As an analogy, let alone as a
causal or non-causal description, the diffusion process of T2 is hard to swallow. The
time-invariance and Markov properties of the T2 diffusion process may be easily
swapped for others, while retaining the requirement for the statistical equilibrium
distribution to be Laplace. Note that this point is not about the falsifiability of the
theory, but about the minimal set of principles in a constraint set CT that can survive
a loaded round of counterfactual variation, while retaining the explanandum (i.e.
the shape of the data) fixed. T1 has the virtue that it opens a wide but statistically
constrained space for advancing microeconomic descriptions, while T2 drastically
narrows it.

The third theory I consider (T3), is the Quantal Response Statistical Equilibrium
(QRSE) model developed in Scharfenaker and Foley (2017) and Scharfenaker and
Foley (2021b). The QRSE theory advances a joint probability model fx,a for the
unobserved entry and exit decisions of firms into and out of competitive sectors, and
the marginal profit rate x. This theory sets up a maximum entropy program that
maximizes the joint entropy of the unobserved action and the profit rate variables,
subject the constraint set C3 = {D fa|x(x�a)}, with a constraint expectation inequal-
ity F1  d . In this theory, the function fa|x is based on a model of bounded rational
choice, and is defined as the mixed strategy of entry and exit of firms into/out of
competitive sectors, conditional on the profit rate x. Formally, for a discrete set of
actions a 2 A , and a payoff function p(a,x), the boundedly rational mixed strategy
fa|x is obtained by maximizing its entropy subject to minimum payoff value. In
shorthand notation: {p(a,x)} |=ME fa|x and F1 �Vmin.

In summary, the QRSE theory involves two entropy maximization programs, one
operating at the microeconomic level and the other at the macro or market-level:

• Micro Program: {p(a,x)} |=ME fa|x, F1 �Vmin

• Macro Program: {D fa|x(x�a)} |=ME f̂x, F1  d

Since fa|x fx = fa,x, the two programs completely specify a joint probability
model. If the action set is binary, and p(a1,x) = �p(a2,x), with a1 = entry and
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a2 = exit , this yields a familiar Gibbs or logit quantal response function with a scale
parameter T :

fa1|x = 1� fa2|x =
1

1+ e�
2(x�µ)

T

(5.15)

In this case, with two actions and symmetric payoffs, D fa|x = tanh
⇣

x�µ
T

⌘
and

the macro constraint set becomes C3 = {tanh
⇣

x�µ
T

⌘
(x�a)}. The QRSE predictive

density f̂x and fit to the simulated Laplace data are shown above in figures 5.8 and
5.9. The QRSE parameter vector contains two scale parameters T and S, and two
location parameters µ and a , which respectively operate at the micro and macro
levels;~l = [T,S,µ,a]. S is the inverse of the Lagrange multiplier l1 that comes out
of the solution to the macro ME program, which allows for expressing both scale
parameters in the same units as x, µ and a .

The QRSE translation of the classical theory of competition into stochastic terms
is parsimoniously condensed in the single constraint set C3, which Scharfenaker and
Foley (2017) define as a competitive feedback constraint. The expectation of this
constraint, F1  d , expresses the idea that the expected value of a market determined
rate a , weighted by the difference of entry/exit probabilities, is constrained to be
some positive but finite value. The constraint D fa|x(x�a) codifies the postulate that
differences in entry/exit probabilities of individual firms have a non-zero impact on
the statistical dispersion of the profit rate around the average. For very low values
of the behavioral scale parameter T , the QRSE density recovers Laplace shaped
data, and for high values it recovers Gaussian data, as long as the impact of the
overall competitive process which is captured by the market scale parameter S is
non-negligible. In the simulated fit in figure 5.9, T̂ = 0.9 and Ŝ = 1.4. If we set
T = 6 and S = 0.3, for example, the QRSE density recovers a well shaped symmetric
Gaussian around µ = a = 0, equivalent to T4 in the graph.

The mutual impact between the market level dispersion of the profit rate around a ,
and the dispersion of firm level expectations around µ , is advanced by Scharfenaker
and Foley (2017) as a causal principle in this theory. The effects of the competitive
feedback principle are directly traceable to estimated values of the model parameters
T , µ , and S. The parameter a , on the other hands, captures a residual statistical
autonomy in the model. Differences in entry/exit probabilities work to scale and
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push the market rate a , but these are only one of the many potential forces that may
be acting on the profit rate in a complex and high-dimensional competitive economic
environment.

5.7 Conclusion

Having set all the details down for discussion of T3, I conclude by considering the
following questions: To what range of counterfactual variation is the principle of
competitive feedback resilient? Is the principle of competitive feedback causal or
non-causal ? Why is T3 a constructive statistical explanation ?

With regards to the second question, T3 is constructive on two grounds. First,
the behavioral and market scale parameters directly trace the impact of the competi-
tive feedback process on equalizing profit rates, and hence on concentrating values
around the mode. The relative impact of the two scales of the economic process is
not decomposable in an additive manner, due to the mutual interdependence that
is established by the negative feedback mechanism. The principle of competitive
feedback implies a form of probabilistic causation, but it is not a mechanical speci-
fication, and does not offer a time-dependent stochastic dynamical law that could
account for the patterns of observed profit rates. And because the theory offers a joint
probability model of unobserved actions and observed outcomes, it can show via
simulation why and how a system constrained by the competitive feedback principle
can approximate a wide range of observed distributions, from Laplace to Normal.

Now let me address the first question. The generality that is afforded by the
probabilistic principle of competitive feedback, parsimoniously packed into the
constraint in C3, can be applied to a very wide set of samples and reference classes.
The principle is in fact so general, that some might retort that it is non-causal, in a
manner similar to conservation laws in physics. If by non-causal we mean the sort of
high-level principles that constraint local nomological regularities, I believe there is
a valid case to be made for such an account with respect to the QRSE constructive
explanation. The answer depends on what is deemed causal and non-causal in
complex economic environments, which is not an easy question to address. But let
me try to give an argument for why it can be deemed non-causal. In order to take it
as a non-causal principle one really has to suppose the general form D fa|x(x�a),
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independently of any detailed microeconomic specification. Taken in its most general
form, the principle may be put to test with actual data to see how well it ranges
over different decentralized competitive environments. For example, does it apply to
environments with different temporal orderings for entry/exit dynamics ? How does
it apply to decentralized markets that exhibit different fiscal and financial liquidity
conditions ? The recent QRSE literature, and my own work using it to study inter-
jurisdictional competition in the local US education market, have shown that its
range is quite wide. The question of its causal/modal interpretation ultimately hinges
on how far a particular use case is willing to go in specifying the microeconomic
potential D fa|x.
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Appendix A

Résumé de thèse

L’histoire de l’utilisation des idées de la physique statistique dans les sciences
sociales est une histoire de retour au pays. Les rapatriements peuvent être complexes
à gérer.

Au 19ème siècle, les physiciens intéressés par l’étude des propriétés de la matière
ont été confrontés au formidable défi de réfléchir à la façon de prédire le comporte-
ment de grandes collections d’atomes se déplaçant à travers l’espace en rebondissant
au hasard les uns sur les autres dans un récipient fermé. Les collections étaient
tellement grandes, de l’ordre de 1023, qu’il semblait désespéré d’essayer de les
suivre individuellement en utilisant les lois du mouvement de Newton.

James Clerk Maxwell, inspiré par le nombre croissant de régularités statistiques
qui étaient trouvées dans les données sociales, notamment par des personnalités
comme Laplace, John Graunt, et Edmund Halley, proposa de relever le défi en
recensant les populations d’atomes. Partant de l’hypothèse que les propriétés des
atomes étaient gaussiennes, il a rapidement réalisé, avec Ludwig Boltzmann, que
les distributions exponentielles étaient mieux adaptées à l’étude des propriétés de la
matière d’un point de vue "social-statistique".

Cette constatation a conduit au développement de la mécanique statistique, un
domaine qui a connu un regain d’intérêt pour les sciences sociales récemment. Ce re-
gain d’intérêt pour l’application des idées de la physique statistique dans les sciences
sociales est le résultat de trois évolutions principales. La première est l’augmentation
de la puissance de calcul et de la quantité de données disponibles. Le second est la
prise de conscience que les institutions sociales et les groupes d’individus s’auto-
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organisent de manière interactive en structures complexes qui complexes qui ne
semblent pas être facilement saisissables par des perspectives de théorie du contrôle
ou mécanistes. La troisième est l’essor des collaborations interdisciplinaires entre
économistes, physiciens, sociologues, biologistes et théoriciens de l’information,
entre autres, sous l’égide de la science des systèmes complexes.

Pendant les trente dernières années, les économistes politiques d’orientation
classiques ont, de manière indépendante, exploré différentes façons de théoriser
les marchés et les institutions économiques à travers le prisme de la mécanique
statistique. L’article de Duncan Foley de 1994 intitulé A statistical equilibrium
theory of markets a été la première tentative en économie de théoriser les échanges
décentralisés et les institutions économiques avec cette approche. Dans un article de
2017, Ellis Scharfenaker et Duncan Foley proposent une distribution de probabilité
exponentielle pour étudier les environnements économiques décentralisés. Il s’agit
de la distribution QRSE qui est utilisée et étudiée en détail dans cette thèse. La
distribution QRSE est autant une théorie de l’interaction économique décentralisée
qu’un modèle de probabilité descriptif, similaire à la distribution de Gauss et de
Laplace.

Cette thèse mêle deux projets distincts mais interdépendants. Le premier est
l’application du cadre de l’équilibre statistique à l’étude des données des biens
publics locaux. Il constitue une première étape d’un projet à plus long terme visant
à construire une image quantitative d’un processus complexe et évolutif, celui de
la fragmentation des gouvernements locaux aux États-Unis. Le second est une
exploration philosophique de l’inférence modale (basée sur des principes) dans le
cadre des modèles d’équilibre statistiques en économie. Cette analyse se situe à
l’intersection des théories sémantiques de l’information, de la mécanique statistique
et de l’économie politique.

Complexité et économie

La science des systèmes complexes étudie comment de grandes collections de
composants interagir localement à différentes échelles s’auto-organiser en modèles
et comportements globaux. Au cœur de la science de la complexité se trouve l’idée
que les touts sont irréductibles à leurs parties, et que l’analyse et la prédiction de la
dynamique complexe des parties entières dans les systèmes sociaux, biologiques et
physiques nécessitent de nouvelles inter- et méthodes transdisciplinaires.
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Le premier grand thème qui définit la vision de la complexité est l’étude des
interactions. Les composants des systèmes complexes peuvent être vus comme
interagissent de multiples façons les uns avec les autres et avec leurs environnement.
La science de la complexité résiste à l’idée qu’une telle les interactions doivent
être étudiées à travers des cadres réductionnistes isolés. Ce n’est pas seulement
une question de élucider les relations en réseau et hiérarchiques qui existent entre
les composants d’un système, mais aussi de comprendre comment les modèles
d’interdépendance forte et faible conduisent à des statistiques distinctes régularités
et signatures.

Un deuxième thème majeur est l’émergence. Les modèles globaux non triviaux
qui émergent des interactions locales en réseau imposent des obstacles à la pensée
linéaire et statistique traditionnelle. Molécules d’air et de vapeur se combinent pour
former des tornades, des milliards de neurones dans le cerveau interagissent pour pro-
duire de la cognition, et des réseaux bancaires mondiaux mais fragiles les institutions
et les bilans font basculer par inadvertance les politiques dans effondrement financier
et crise politique. L’étude de l’émergence dans les systèmes complexes peuvent être
abordés par des méthodes dynamiques, statistiques et homologues informatiques.

Le problème de l’analyse du comportement émergent et dépendant du temps des
des systèmes complexes à plus de deux degrés de liberté conduit à troisième grand
thème, qui est celui de l’analyse des systèmes dynamiques et chaos. L’interaction de
composantes linéaires prévisibles indépendantes conduit à des ensembles présentant
des trajectoires non linéaires et chaotiques dans un l’espace des phases du système.
Il existe deux principaux types de systèmes dynamiques : équations différentielles
et cartes itérées (ou différence équations). Systèmes non linéaires à plus de deux
degrés de liberté sont souvent impossibles à résoudre analytiquement, du fait que les
principe de superposition échoue majoritairement dans ces contextes. C’est une autre
façon de dire que dans les systèmes non linéaires le tout est précisément pas égal à la
somme de ses parties. Pour les systèmes présentant comportement chaotique, petites
erreurs dans la mesure de la les conditions s’amplifient avec le temps et les systèmes
deviennent efficacement imprévisible. Comme les systèmes dynamiques stables, les
systèmes chaotiques ont tendance à attracteurs, mais ceux-ci se révèlent souvent
complexes et difficiles espaces topologiques (Albin and Foley, 1998; Strogatz, 2018).
Des exemples courants de les systèmes non linéaires et chaotiques sont le double
pendule, le temps et les marchés financiers.
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La science de la complexité pointe les limites de l’analyse de tels systèmes dans
termes d’approches de loi dynamique de forme réduite. Les barrières que de tels les
systèmes posés aux dynamiques ont engendré des connaissances méthodologiques
profondes réflexions, et ont conduit naturellement au développement de alternatives
géométriques/topologiques, informatiques et statistiques.

Les trois grands thèmes qui ont émergé de l’interdisciplinarité de SFI l’exploration
des questions économiques ont été présentées dans le volume de 1988 L’économie en
tant que système complexe en évolution (Anderson, 1988). Notes de David Pines que
SFI a initialement établi trois groupes de travail sur les sujets de ‘Cycles’, ‘Webs’ et
‘Motifs’ (voir Schinckus, 2021). "Cycles" axés sur comportement déterministe non
linéaire et chaos, "Webs" axés sur l’interaction et l’émergence, en particulier vues à
travers le prisme de science des réseaux et modélisation à base d’agents. Et ‘Patterns’
axé sur étudier les propriétés statistiques et les invariants d’économies complexes
systèmes. Schinckus (2021) note que l’on trouve un intérêt décroissant pour le chaos
déterministe tout au long de la l’évolution du programme de recherche en économie
du SFI.

Propulsé par la vision que les processus axés sur le marché sont complexes,
systèmes de haute dimension, dynamiques et stochastiques, l’éconophysique a com-
mencé à se développer au début des années 1990 comme une puissante alternative
à la conduite travail empirique. L’afflux massif de "quants" et de physiciens dans
l’actif des sociétés de gestion ont également accompagné ce développement, une
demande croissante de renouvellement recherche interdisciplinaire à l’intersection
de la physique, de la biologie, théorie des jeux et économie. L’Institut Santa Fe
continue de jouer un rôle clé dans le soutien de la recherche liée à l’éconophysique.

Parallèlement aux développements de la littérature éconophysique mis en évi-
dence dans la section précédente, qui étaient pour la plupart menées par des physi-
ciens, un nombre croissant de recherches empiriques a a émergé ces trente dernières
années au carrefour des hétérodoxes économie politique, économie non walrasienne,
théorie de l’information et mécanique statistique. Cette littérature se distingue en ce
qu’elle est pas une tentative tabula rasa d’appliquer les idées de la physique statis-
tique à l’étude des processus économiques. Cette ligne de travail tente de récupérer
et soumettre à un examen empirique, en utilisant les cadres de mécanique statistique
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de la théorie de l’information, hypothèses bien établies à partir du stock de classique1

et traditions non walrasiennes (Scharfenaker, 2020a).

Une critique que cette littérature propose à la fois aux approches basées sur la
simulation et aux approches statistiques, issues de l’éconophysique, est l’application
lâche des concepts de symétrie et d’ergodicité. Par exemple, comme lorsque
Yakovenko traite l’argent et les flux financiers comme une forme d’énergie con-
servée afin de dériver les lois Pareto-Exponentielles pour les distributions de revenus
américaines. (Dragulescu and Yakovenko, 2000b).

Un catalyseur majeur pour le développement de cette ligne de raisonnement est
venu hors des travaux de Farjoun and Machover (1983). Dans Farjoun and Machover
(1983), les auteurs critiquent la traitement déterministe des agrégats économiques
dans la politique classique économique et proposer un cadre probabiliste capable
de capter présence de fluctuations aléatoires autour d’une tendance centrale taux
de profit. Leurs recherches ont donné une nouvelle vie (statistique) au Smithian et
au Marxian hypothèses d’égalisation de long terme du taux de profit, et aux idée
classique selon laquelle les taux observés gravitent autour d’une "quantité naturelle".
Leur théorie considérations les ont amenés à conjecturer une densité gamma pour le
profit taux de distribution stationnaire, mais cela s’est avéré peu convaincant puisque
la distribution gamma est contrainte au domaine positif et les taux de profit négatifs
sont loin d’être rares dans le capitalisme moderne. économies (Scharfenaker and
Semieniuk, 2017).

Complexité et probabilité

Les systèmes sociaux, biologiques et économiques complexes sont souvent bien
décrits par des distributions de probabilité exponentielles et à queue lourde. Quelques
exemples sont les distributions des taux de profit, les populations des villes et les
fluctuations des marchés financiers (voir Peterson et al., 2013; Sornette, 2007). L’une
des raisons de distinguer les distributions est qu’elles peuvent être liées à différents
mécanismes, et l’examen de leur forme entière donne des indices sur les processus
en jeu. Souvent, si les données ne manquent pas, trouver la forme d’une distribution
peut être aussi simple que de regarder un histogramme ou d’ajuster une fonction
mathématique appropriée. L’ajustement d’un modèle de probabilité disponible peut
être suivi en réfléchissant à la raison pour laquelle cette fonction particulière est un

1Économie politique classique



187

bon ajustement. Autrement dit, quelles sont certaines des raisons qui pourraient
amener un système à présenter cette forme particulière.

L’étude des distributions remonte à Abraham De Moivre et Laplace. À l’époque
de De Moivre et de Laplace, un problème central de la science était celui de trouver
des "courbes d’erreur" universelles. Laplace a montré comment les fluctuations
des statistiques sociales pouvaient être décrites par la distribution normale, ini-
tialement proposée par De Moivre dans sa Doctrine des chances (1718) comme
méthode d’approximation des coefficients binomiaux. Le problème de trouver une
loi d’erreurs était couramment rencontré en astronomie et en géodésie, où le but était
de décrire les variations de mesure à partir d’une vraie grandeur physique, par ex. la
distance à la lune (Geraci and Borja, 2018). L’étude de la distribution éponyme de
Laplace (1774), qui est une courbe d’erreur non normale, a récemment fait l’objet
d’un regain d’intérêt. Les distributions de Laplace et normale appartiennent toutes
deux à la famille exponentielle. Ce qui les distingue est la spécification de leurs
fonctions d’erreur ; le Laplace est une exponentielle de la magnitude numérique de
l’erreur, tandis que la Normale est une exponentielle du carré de l’erreur (voir Kotz
and Kozubowski, 2001).

L’une des raisons d’utiliser une distribution de Laplace sur une distribution nor-
male est s’il existe une hétérogénéité dans la mesure des erreurs. Geraci and Borja
(2018) donne l’exemple d’astronomes à différents endroits essayant de mesurer la
distance à un objet céleste. Chaque astronome essaie de mesurer la même quantité,
mais inévitablement, leurs mesures auront des variances différentes. Donc, si vous
regardez les ensembles de données de chaque astronome, ils seront probablement
normaux. Mais si vous êtes chargé de collecter les mesures de tous les astronomes
dans un seul histogramme, vous obtiendrez probablement une courbe de type Laplace.
La variabilité observateur-instrument est donc une raison possible d’utiliser la distri-
bution de Laplace. Cette distribution apparaît couramment en hydrologie, en finance,
en reconnaissance de la parole et des formes, et plus récemment, dans l’économie
politique statistique et les littératures d’organisation industrielle (voir Bottazzi and
Secchi, 2005).

Il y a des cas où il peut être intéressant, non seulement de trouver la forme
appropriée d’une distribution, mais de savoir quels principes générateurs pourraient
conduire à sa signature statistique distinctive. Barabási and Albert (1999), par
exemple, ont montré comment des modèles de réseaux dynamiques peuvent conduire
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à des distributions de loi de puissance sans échelle. Scharfenaker and Foley (2017)
montrent comment un principe de rétroaction du marché conduit à une courbe de
type Laplace-Normal pour la distribution des taux de profit.

Les dérivations basées sur des principes sont mieux comprises comme des prob-
lèmes inverse. Ils sont inverses car le but est de déduire l’ensemble des mécanismes
ou règles sous-jacents possibles qui génèrent les données. « Principe » signifie
simplement que nous utilisons une description suffisamment générale pour englober
un large éventail de spécifications fonctionnelles ou dynamiques possibles. La mé-
canique statistique de la théorie de l’information fournit un cadre puissant pour
résoudre les problèmes inverses, en particulier ceux dans lesquels les données sont
distribuées de manière exponentielle. La méthode de maximisation de l’entropie
contrainte est un principe variationnel qui donne une solution informationnellement
efficace au problème inverse.

Dans la science de la complexité, nous sommes confrontés à des systèmes qui
ont de nombreux degrés de liberté. Le comportement d’un système S peut être
caractérisé comme dépendant d’un ensemble de variables {x j}, pour j = 1,2, . . .N.
Lorsque l’on vise une description probabiliste de S, dans laquelle on ne décrivent ni
ne calculent les trajectoires individuelles de chacun x j, la première question naturelle
à se poser est la suivante : qu’est-ce que la distribution de probabilité conjointe
P({x j}) de tous ces variable ? Dans la vue la plus simple, nous demandons ce que P
est à un moment donné point dans le temps. Autrement dit, quelle est la probabilité
conjointe des variables à partir de laquelle nous pouvons échantillonner un instantané
en coupe du système ?

Du point de vue de la physique statistique, les x j s sont les variables d’état
microscopiques pour les composants du système, tels que les atomes et molécules.
Un objectif central de la physique statistique est de construire un pont qui nous
emmène d’une compréhension de ce que microscopique composants font à une
description au niveau macro de l’émergence comportement collectif d’un grand
nombre de pièces en interaction.

Les ponts micro-macro de la science de la complexité sont avant tout statistique
et non déductive. Les matériaux de construction nécessaires à la l’assemblage de
ces ponts complexes sont : i) des connaissances pratiques, ou hypothèses, sur les
principes régissant l’interaction au niveau micro, et ii) probabilité et données.
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Il y a une simplicité et une universalité émergentes qui sortent de la problème de
description de systèmes complexes en termes de distribution conjointe P({x j}). De
nouvelles variables et équations émergent qui ont pour propriété remarquable d’être
applicable à une large gamme de systèmes à différentes échelles, physiques, sociales
et biologiques. domaines. Dans les systèmes physiques classiques, comme les gaz
parfaits, l’analyse statistique d’un grand nombre de molécules se déplaçant au hasard
et indépendamment au sein d’un volume conduit à l’émergence de lois et constantes
déterministes, par ex. la loi des gaz parfaits (voir Feynman, 1965). le pression sur
une section d’un volume de gaz, en raison de l’indépendance et aléatoire collectif
de ses particules, s’avère être la moyenne force exercée par toutes les particules,
divisée par la surface concernée. ; P = hFi

A . Ainsi, dans de tels systèmes, les effets
sont "additif" et sans surprise. Ce qui est intéressant, cependant, c’est notion qu’une
constante physique émerge de la statistique agrégation de collisions aléatoires de
particules sur un pan de mur (Bialek, 2017).

Pour les systèmes déterministes classiques, qu’est-ce qui fonctionne dans garan-
tissant l’émergence de constantes, ou à déterminer que les moyennes peuvent effec-
tivement être considérées comme des nombres exacts, est l’élément central théorème
limite (CLM) (voir Fischer, 2010). En un mot, ce que dit la CLM, c’est que le
la valeur moyenne d’un grand nombre d’observations indépendantes suivra a Dis-
tribution normale (en forme de cloche). Mais plus crucialement pour physiciens,
il indique que comme le nombre d’observations tend à l’infini (N ! •), la vari-
ance de la distribution va rétrécir et avoir tendance à disparaître. Étant donné que
les systèmes considérés par physique classique contiennent souvent un très grand
nombre de particules, l’ordre du numéro d’Avogadro (10 23), les variations autour
du la moyenne peut être effectivement ignorée. C’est ainsi que le déterminisme et
constantes émergent dans un cadre probabiliste, et c’est ce qui permet aux physiciens
de se concentrer sur leurs équations et évite d’avoir à modifier constamment les
principales hypothèses distributionnelles (les lois physiques sont stables).

Dans le monde social et biologique, où le hasard est contraint par des principes
distincts d’interaction et d’organisation (ex. feedback), il faut manipuler le CLM
avec précaution. De plus, dans de tels contextes ce qui finit par être d’un intérêt
fondamental est le type de variation que nous percevoir autour de la moyenne. De la
même manière que ce qui distingue un chute de pierre d’un oiseau sont les capacités
d’adaptation de ce dernier, ce qui distingue les mesures d’organismes vivants des
mesures de solides est la statistique non normale du premier variance. Quelle que
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soit la limite, la variance nulle ou infinie ne sont pas des recettes efficaces pour
maintien de l’organisation biologique et sociale.

Décentralisation fiscale et l’hypothèse de Tiebout

Un problème central dans l’analyse économique de l’offre de biens publics est le
manque d’incitations des électeurs à révéler leur véritable demande. Tiebout (1956)
a proposé d’étudier le problème de biens publics locaux à travers un modèle de
quasi-marché dans lequel les électeurs-consommateurs expriment leurs préférences
pour les biens publics locaux en entrer et sortir des juridictions locales. L’hypothèse
de Tiebout stipule que les juridictions locales auront tendance à trier en blocs
homogènes avec respect de la demande de biens publics locaux et des niveaux de
taxation, lorsque ceux-ci sont considérés comme une forme de prix dans le modèle.
L’idée centrale derrière cette hypothèse est qu’un équilibre de tri de Tiebout, s’il
existe, éliminera les inefficacités associées à la diversité de la demande ; les ménages
ne seront pas obligés de payer des impôts plus élevés qu’ils ne le feraient préfèrent
autrement, ni ne sont en mesure de faire du free-ride sur les voisins contributions
relativement plus élevées des ménages au service fiscal local.

L’article de Tiebout de 1956 a été, et continue d’être, un important catalyseur
pour une recherche renouvelée dans l’analyse de l’administration décentralisée la
finance. La principale contribution de Tiebout a été de défier la norme croyance de
l’époque qu’il n’y avait pas de solution fondée sur le marché à la problème de la
fourniture de biens publics locaux. Il l’a fait en plaçant la localisation géographique
et la mobilité au cœur de l’analyse, et par en utilisant ce dernier comme proxy pour
la révélation des choix et des préférences.

Le consommateur ne peut en aucun cas éviter de révéler son préférences
dans une économie spatiale. La mobilité spatiale offre contrepartie de
produits locaux au voyage d’achat du marché privé. Tiebout (1956)

Le mécanisme hypothétique de concurrence de Tiebout, vu à travers les lentille
des modèles d’équilibre néoclassiques, peut être comprise comme ayant trois traits
essentiels (Nechyba, 2020). Le premier est que lorsque les communautés locales sont
considérées comme analogues à des concurrents entreprises, la décentralisation per-
mettra la fourniture optimale des services publics services en présence de demandes
hétérogènes des ménages. le deuxièmement, la notion que la concurrence réduira les
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incitations aux gouvernements à se comporter comme des ‘Léviathans’ (Jha, 2020).
Le dernier notion repose sur la conviction que l’approvisionnement décentralisé et la
fourniture de biens publics locaux contrera la tendance les gouvernements à prélever
arbitrairement des impôts plus élevés sur leurs résidents (Brennan and Buchanan,
1980; Jimenez and Hendrick, 2010). Une troisième caractéristique implique que
dans ’équilibre’, le mécanisme de Tiebout conduira les ménages à trier (à dans une
certaine mesure) sur la base de la capacité de paiement et du revenu du ménage. Ce
cette dernière caractéristique est, bien sûr, loin d’être sans équivoque souhaitable. La
caractérisation du tri de Tiebout comme un tri optimal résultat, possédant un mérite
intrinsèque principalement en raison de sa capacité pour générer des gains d’efficacité
productifs, s’avère en contradiction avec notions juridiques de base concernant les
droits des citoyens à l’éducation (Jha, 2020). Un équilibre dans lequel les dépenses
des écoles publiques et la qualité sont fortement corrélées aux caractéristiques des
ménages présente des défis moraux et juridiques non négligeables. La portée de ces
défis a été dûment mis en évidence par la poursuite des batailles juridiques et débats
politiques sur les inégalités de financement dans l’éducation publique américaine
système depuis 50 ans (Hertert et al., 1994; ?). Le fait que l’optimum résultat dans
une formulation hautement idéalisée de l’hypothèse de Tiebout s’avère fondamen-
talement en contradiction avec ce qui peut être souhaitable à au niveau de la politique
ou des ménages (ou est à tout le moins hautement contestable), n’exclut pas que le
tri et la le rationnement des ressources gouvernementales sont en fait façonnés par
des les forces. Elle pose cependant de sérieux défis à la modélisation et spécification
des primitives microéconomiques qui animent processus concurrentiel.

L’un des problèmes fondamentaux qui découle de l’utilisation de modèles
d’équilibre général est qu’ils nous obligent à considérer distributions économiques
comme résultant principalement et mécaniquement de interaction d’agents optimisa-
teurs (ménages et gouvernements) dont les préférences sont pleinement satisfaites. Il
s’agit d’une stratégie de modélisation qui exclut a priori la possibilité que les attentes
des agents restent insatisfaits à l’équilibre.

Dans le cadre de l’analyse économique des déterminants de hétérogénéité des
niveaux de dépenses et de la demande des écoles publiques, où une grande partie
des débats théoriques et politiques tournent autour de la la reconnaissance que
les marchés de l’éducation sont structurés par des politiques et des processus de
production, l’exigence d’une optimisation complète comportement cohérent avec les
équilibres observés est difficile à soutenir. De plus, en l’absence de caractérisations
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plausibles pour les environnements microéconomiques et politiques, il est difficile
de voir comment des idées utiles peuvent être extraites de l’étude des les forces
d’équilibre et les résultats.

Cette préoccupation a orienté la littérature sur Tiebout et le financement de
l’éducation vers une voie de construction de modèles de mathématiques et de com-
plexité de calcul, où des éléments tels que le vote hétérogène les préférences et les
intrants non financiers sont incorporés afin de fournir des descriptions plus riches
et plus empiriquement pertinentes, plausible d’un point de vue microéconomique
(Kuminoff et al., 2010; Nechyba, 2003).

Il y a eu un changement récent dans la littérature de la construction générale
modèles d’équilibre à la construction de modèles d’équilibre computationnels qui
à cheval sur un large spectre couvrant à la fois purement théorique et formula-
tions empiriquement motivées. Comme Nechyba (2020) notes, tous ces modèles
commencent par spécifier explicitement le sous-jacent structure mathématique de
l’environnement économique modélisé. Ce c’est-à-dire qu’ils fournissent une spéci-
fication entièrement structurelle pour le ménage préférences, fonctions de production
scolaire, distributions pour les ménages caractéristiques du modèle (telles que le
revenu), ainsi que des descriptions du processus politique (modèles de vote), du
budget l’environnement et les marchés du logement et des écoles privées. Par études
de simulation, l’étude des résultats d’équilibre dans ces on s’attend alors à ce que
les modèles fournissent des informations politiques significatives et fournir un bac à
sable pour expérimenter la politique hors échantillon interventions.

Le problème est que la pertinence de ces simulations études dépend de la plausi-
bilité empirique des structure microéconomique utilisée pour représenter la structure
sous-jacente mécanique du processus de génération de données, et sur la confi-
ance que nous pouvons avoir dans les paramètres du modèle pour saisir de manière
adéquate de manière empirique processus pertinents. Mais si l’on considère le fait
que la tâche de déterminer la plausibilité empirique d’un modèle donné spécification
pour les environnements sociaux complexes avec de grands degrés de la liberté
peut être mal posée et sous-déterminée (Scharfenaker and Foley, 2017), alors il est
difficile de voir comment la voie de l’augmentation de la complexité des modèles
dans modèles d’équilibre général (ou computationnels) entièrement micro-fondés
est susceptibles de produire des résultats non ambigus et non biaisés sur le plan nor-
matif. Il y a un très large continuum de modèles et de solutions cohérents avec tout
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ensemble de données circonstancielles et de preuves (Golan, 2018). Et une erreur de
spécification peut apparaître soit au niveau des formes fonctionnelles (production et
préférence fonctions), critères ou fonctions de décision, la spécification des modèles
de vote, ainsi que des priors pour les entrées stochastiques dans le modèle (par
exemple, les caractéristiques du ménage).

Cette thèse adopte une approche alternative qui utilise le maximum méthodes
d’entropie et un cadre d’équilibre statistique pour modéliser et étudier l’effet de la
concurrence dans la formation des distributions des dépenses publiques d’éducation
pour la période 2000-2016 États-Unis. Les avantages de cette entropie maxi-
male/statistique cadre d’équilibre sont nombreux, mais un cadre central que nous
considérons voilà qu’il nous permet d’étudier la dynamique concurrentielle des
USA marché de l’éducation publique (un système social complexe avec de grands
diplômes de liberté) sans avoir à s’engager a priori dans une lourde échafaudage
mathématique de la structure microéconomique sous-jacente environnement. Elle
permet plutôt d’étudier une façon plausible de la structure probabiliste des dépenses
des districts scolaires peut être vu émerger d’une paire d’actions comportementales et
institutionnelles parcimonieuses. contraintes que nous imposons à l’environnement
microéconomique sous-jacent.

L’un des aspects intéressants de la formulation originale de Tiebout en 1956 est
qu’il reste sans engagement à l’égard de tout formulation du modèle d’équilibre,
même s’il met en évidence un ensemble de faits et caractéristiques que le processus
concurrentiel hypothétique devrait rencontrer. Mais comme l’histoire des tests
empiriques du Tiebout hypothèse a montré (Edel and Sclar, 1974; Nechyba, 2020;
Oates, 1969), il n’est pas vraiment possible de tester toutes les hypothèses du plus
grand Tiebout hypothèse à la fois sans se heurter à des contradictions. Pour exemple,
en testant l’hypothèse de mobilité résidentielle parallèlement capitalisation des
variables budgétaires dans les prix des logements peut aller à l’encontre L’hypothèse
d’efficacité plus large de Tiebout (puisque la présence de capitalisation est la preuve
de l’existence d’une demande excédentaire de logement dans la juridiction où les
taxes et les niveaux de service locaux sont en majuscule) (Epple and Nechyba,
2004a)>. De même, comme nous pointé plus haut, l’existence du tri de Tiebout
est d’être mieux compris comme un résultat macroéconomique potentiellement
inattendu (à moins une partie des ménages). Vu sous cette lumière, le perspective de
pouvoir concilier les politiques sous-jacentes contradictions du marché de l’éducation
avec l’hypothèse d’une maximiser les ménages dans un modèle d’équilibre général
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semble farfelu. Cela dit, nous croyons qu’il est nécessaire et qu’il y a amplement de
place pour se concentrer sur certains aspects de l’hypothèse de Tiebout, et qu’il est
possible d’étudier le support empirique de l’affirmation générale selon laquelle les
dépenses en biens publics locaux sont fortement façonnées (et au moins expliquée
en partie) par des forces concurrentielles et un rationnel limité arbitrage qui a lieu au
niveau des ménages en termes de consommation d’éducation.

Cette thèse applique le cadre théorique de la Réponse Quantique Modèle d’équilibre
statistique (QRSE) développé dans Scharfenaker and Foley (2017). Comme men-
tionné ci-dessus, l’approche adoptée par le document n’est pas totalement agnostique
par rapport à la structure microéconomique, car elle utilise une entropie modèle
contraint de mobilité résidentielle et de choix juridictionnel la caractérisation de
base du comportement des ménages. Cette ligne de base modèle fait l’hypothèse
comportementale que les ménages essaient de maximiser le taux de rentabilité des
dépenses fiscales (considérées comme les prix des services d’éducation), sous la
contrainte d’une capacité limitée à traiter les signaux du marché et les signaux poli-
tiques. Dans le contexte de faible revenu et ménages des centres-villes, nous avons
avancé l’idée que ce la capacité peut également être interprétée comme une forme de
restriction économique agence. Les grandes lignes de ce modèle comportemental
sont très similaires à celui trouvé dans le programme d’inattention rationnelle des
Sims (Sims, 2003). Grâce à l’insertion d’une contrainte de la théorie de l’information
sur le programme de maximisation de l’utilité de ménages, cette spécification de
base fournit une description probabiliste du comportement des ménages.

Retours scolaires dans les districts scolaires à travers les États-Unis pour la La
période 2000-2016 présente des pics distincts, positivement biaisés distributions
avec des queues droites de largeur variable. La mise en forme de leur distribu-
tion d’équilibre statistique est le résultat d’une évolution processus de concurrence
inter-juridictionnelle, ménage résidentiel tri sur la base d’un large ensemble de carac-
téristiques (telles que revenu) et les régimes politiques changeants aux niveaux local,
étatique et fédéral niveaux.

En utilisant un cadre d’équilibre statistique, dans cet article, nous avons cherché
à examiner le rôle joué par la concurrence entre les juridictions et choix des ménages
pour façonner la distribution observée revient pour un cas d’ensemble complet qui
couvre tous les districts scolaires américains dans la période 2000-2016. Il s’agit
d’un échantillon considérablement plus important que le celles trouvées dans d’autres
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traitements empiriques de la littérature, qui se concentrent généralement sur des États
ou des régions uniques. Une aspect important de nos résultats empiriques est qu’ils
corroborent nécessité de dissocier les notions normatives sur l’efficacité du marché
des affirmations sur la présence du tri Tiebout et de la concurrence. Nous avons
proposé un modèle parcimonieux qui capture de manière significative la différence
entre la concurrence et le tri forces via deux ensembles de paramètres d’échelle et de
localisation.

Notre analyse empirique corrobore également les résultats précédents du QRSE
la littérature concernant l’utilisation des contraintes de rétroaction comme carac-
térisations significatives de la concurrence sur un marché décentralisé réglages.
L’histogramme et l’ajustement du modèle affichés dans cet article sont clairement
évocateur du rôle joué par la concurrence décentralisée dans l’accentuation des pics
modaux, et par un marché élevé (loin d’être concurrentiel) taux en créant un biais
positif.

Au cœur de l’hypothèse de Tiebout se trouve l’idée que la mobilité peut être
utilisée comme proxy de la demande de biens publics. Dans le formulation abstraite
décrite par Tiebout (1956), parfaite tri résidentiel des ménages sur la base des
préférences pour les les paquets de services fiscaux sont supposés être une condition
d’équilibre.

La littérature empirique sur le financement de l’éducation a du mal à donner
un sens des preuves solides montrant les incompatibilités entre le tri ménager et la
parfaite concurrence inter-juridictionnelle, ainsi que les lignes définies par Tiebout.
Généralement, la plupart des épreuves prennent l’un des deux approches pour ré-
soudre ce problème. Une première approche porte sur mesurer l’hétérogénéité entre
et au sein des juridictions, et sur associant cette analyse de variance à une analyse
de capitalisation sur le marché du logement (Dowding et al., 1994), ou avec autre
mesure qui peut signaler la forte présence de Tiebout des incitations. Cette approche
est constamment confrontée à la difficulté de distinguer le statistique pur du type de
tri qui est supposé être motivé par une concurrence de type Tiebout.

Une deuxième approche, en économétrie, commence par se demander si les les
modèles de dépenses en biens publics locaux satisfont aux conditions prises par
un modèle de Tiebout d’équilibre général (Epple et al., 1999). La condition forte
de satisfaire le nécessaire et les conditions d’équilibre déterministes ont placé les
chercheurs le long de la chemin de la construction de modèles d’équilibre calculables
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de croissance complexité mathématique (Nechyba, 2020). L’objectif central de
ce type d’approche est de prédire la fragmentation juridictionnelle et stratification,
sans sacrifier le choix et l’allocation néoclassiques Efficacité. Le problème avec
les modèles statiques génériques est qu’ils Caractéristiques des conditions trop
strictes pour obtenir un équilibre distribution de la variable de résultat, et qui sont
facilement échangeable contre d’autres. Cette échangeabilité des mathématiques
les conditions d’équilibre donnent les modèles très idiosyncratiques, et spécifique
au-delà de ce qui est nécessaire pour fournir une statistique significative description
du tri et de la compétition de Tiebout. Pour les récents et examen approfondi des
développements récents dans la littérature Tiebout voir (Epple and Nechyba, 2004b;
Jha, 2020; Nechyba, 2020). Pour des approches économétriques pour étudier et
tester l’hypothèse de Tiebout, voir Dowding et al. (1994) et (Epple et al., 2010, 2001,
1978).

Dans l’approche d’équilibre statistique proposée ici et dans Melo (2021), qui
est une extension des biens publics locaux mise en place du modèle développé dans
Scharfenaker and Foley (2017) et dans Scharfenaker and Foley (2021a), une approche
parcimonieuse modèle du processus de quasi-marché de Tiebout est utilisé pour
distinguer entre les forces concurrentielles et de tri en jeu dans le public américain
marché de l’éducation.
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