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Abstract

The present thesis deals with non Markovian linear-quadratic stochastic control prob-
lems. It is divided into three parts.

In the first part, we tackle stochastic Volterra control problems whose kernel can
be expressed as Laplace transform. Such assumptions is inspired from the rewriting of
fractional Brownian motion as infinite sum of Markovian processes. The optimal control
and value functions are expressed in terms of Banach valued Riccati equation whose
existence and uniqueness are proved.

In the second part, we revisit the celebrated multivariate Markowitz portfolio selec-
tion problem combined with rough volatility. The optimal control and efficient frontier
are derived in terms of explicit Hilbert valued Riccati operator. The completely explicit
feature of our analysis enables us to implement an easy numerical scheme that we illus-
trate in the the case of portfolio allocation with 2 assets, one rough H = 0.1 and one
smooth H = 0.45. Surprisingly our simulations were able to reproduce the buy rough
sell smooth strategy exhibited in [GH20a], thus providing an endogenous explanation
over this allocation.

Finally, the last part deals with the delayed control of stochastic differential equa-
tions. We solve a simplified version by means of Riccati PDEs whose existence and
uniqueness are derived, provided a condition combining the horizon, the delay, the drift
and the volatility is satisfied. A deep learning method is used to solve the Riccati PDEs
in the context of Markovitz portfolio selection with execution delay.

Keywords:  Linear-quadratic stochastic control, stochastic Volterra equations, Ric-
cati equations in Banach space, Infinite dimensional Lyapunov equation, integral op-
erator Riccati equation, stochastic Volterra equations, mean-variance portfolio theory,
rough volatility, correlation matrices, multidimensional Volterra process, non-Markovian
Heston, Stein—Stein and Wishart models, delayed equation, Riccati PDEs, Markowitz
portfolio allocation, deep learning, neural network.
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Résumé

La présente thése traite des problémes de contréle stochastique linéaire-quadratiques
non markoviens. Elle est divisée en trois parties.

Dans la premiére partie, nous abordons des problémes de controle de Volterra stochas-
tique dont le noyau peut étre exprimé sous forme de transformée de Laplace. Ces hy-
pothéses sont inspirées de la réécriture du mouvement brownien fractionnaire comme
somme infinie de processus markoviens. Les fonctions de commande de rétroaction et
de valeur optimales sont exprimées en termes d’équations de Riccati a valeur dans un
Banach dont 'existence et I'unicité sont prouvées.

Dans la deuxiéme partie, nous revisitons le célébre probléme de sélection de porte-
feuille multivarié de Markowitz o des actifs de différentes rugosités sont considérés. Le
controle optimal et la frontiére efficace sont dérivés en termes d’opérateur de Riccati a
valeur dans en espace de Hilbert. Le caractére explicite de notre analyse nous permet
de mettre en ceuvre un schéma numérique simple que nous illustrons dans le cas de
I’allocation de portefeuille avec 2 actifs, un rugueux H =~ 0,1 et un lisse H ~ 0,45. De
maniére surprenante, nos simulations ont pu reproduire la stratégie textit buy rough sell
smooth exposée dans cite glasserman2020, fournissant ainsi une explication endogéne
de cette allocation.

Enfin, la derniére partie traite du controéle retardé des équations différentielles stochas-
tiques. Nous résolvons une version simplifiée au moyen d’équations aux dérivées par-
tielles de type Riccati dont ’existence et 'unicité sont prouvées, a condition qu'une con-
dition combinant I’horizon, le retard, la dérive et la volatilité soit satisfaite. Une méthode
de résolution par réseaux de neurones est utilisée pour résoudre les équations de Riccati
dans le contexte de la sélection de portefeuille de Markovitz avec délai d’exécution.

Mots-clefs:  Controle stochastique linéaire-quadratique, équations de Volterra stochas-
tiques, équations de Riccati dans un espace de Banach, équations de Lyapunov, opérateur

intégral Equation de Riccati, équations stochastiques de Volterra, théorie du portefeuille

de variance moyenne, volatilité rugeuse, matrices de corrélation, processus de Volterra

multidimensionnel, Heston non-markovien, Modéles Stein—Stein et Wishart, équation

retardée, équations aux dérivées partielles de type Riccati, allocation de portefeuille

Markowitz, apprentissage en profondeur, réseau neuronal.
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Chapitre

[ntroduction (French version)

La thése est divisée en trois parties qui peuvent étre lues indépendamment. Dans la pre-
miére partie, nous fournissons un traitement exhaustif des problémes de controle linéaire-
quadratique pour une classe d’équations de Volterra stochastiques de type convolution,
dont les noyaux sont des transformées de Laplace de certaines mesures matricielles si-
gnées qui ne sont pas nécessairement finies. Ces équations ne sont en général ni mar-
koviennes ni semi-martingales, et incluent le mouvement brownien fractionnaire avec
un indice de Hurst inférieur & 1/2 comme cas particulier. Nous établissons la corres-
pondance du probléme initial avec un probléme markovien de dimension éventuellement
infinie dans un espace de Banach, ce qui nous permet d’identifier les variables d’état
controlées markoviennes. En utilisant un argument de vérification martingale combiné a
une technique de complétion des carrés, nous prouvons que la fonction de valeur est de
forme linéaire quadratique en ces variables d’état avec un controle optimal de rétroac-
tion linéaire. Des équations de Riccati & valeurs dans un de Banach non standard sont
exhibées. De plus, nous montrons que la fonction valeur du probléme d’optimisation de
Volterra stochastique peut étre approchée par celle des problémes linéaires-quadratiques
markoviens de dimension finie. L’existence de I’équation de Riccati & valeurs dans un
espace de Banach est rigoureusement étudiée. Dans la deuxiéme partie, nous étudions le
probléme de la variance moyenne de Markowitz en temps continu pour une classe multi-
variée de modeéles de Volterra affine et quadratique. Dans ce cadre de marché incomplet
non-markovien et non semi-martingale avec des coeflicients aléatoires non bornés, la
stratégie de portefeuille optimale est exprimée au moyen d'une équation différentielle
stochastique rétrograde de type Riccati. Dans le cas des modéles affines de Volterra,
nous dérivons des solutions explicites & ce BSDE en termes d’équations multidimen-
sionnelles de type Riccati-Volterra. Ce cadre comprend des modéles Heston rugueux
multivariés. Dans le cas quadratique, nous obtenons de nouvelles formules analytiques
et nous établissons leurs liens avec les équations de Riccati de dimension infinie. Cela
couvre les modéles de covariance de type Stein-Stein et Wishart. Les résultats numériques
sur un modeéle de Stein-Stein rugueux bidimensionnel illustrent I'impact des volatilités
rugueuses et des corrélations stochastiques sur la stratégie de Markowitz optimale. En
particulier pour les actifs positivement corrélés, nous constatons que la stratégie opti-
male dans notre modéle est une stratégie de type textit buy rough sell smooth. Dans
la troisiéme partie de la thése, nous considérons une classe de problémes de contréle
stochastique avec un controle retardé, a la fois en dérive et en diffusion. Le controle
optimal et la valeur du probléme sont décrits en termes d’un ensemble d’équations aux
dérivées partielles de type Ricatti dont l'existence et 1'unicité sont obtenues dans un
cadre simplifié. Une condition d’existence suffisante, émergeant directement de la struc-
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Chapitre 1. Introduction (French version)

ture retardée, est fournie. Un schéma d’apprentissage par réseau de neurones est proposé
et utilisé pour illustrer I'effet du retard sur le probléme d’allocation de portefeuille de
Markowitz avec retard d’exécution.

1.1 Controle sur les équations de Volterra

La premiére partie de la thése est consacrée au contréle des processus de Volterra sto-
chastiques d -dimensionnelless de la forme

t t
X7 :X0+/ K(t—s)b(Xﬁans—&—/ K(t—s)o(XS, ag)dWs,  (1.1.1)
0 0

oit W est un mouvement brownine réel, b,o : [0,7] x RY x R™ — R? des fonctions
affines :

b(t,x,a) = Bz + Ca,
o(t,z,a) = Dz + Fa,

et K un un noyau matriciel d x d’. Nous dotons la dynamique d’un cofit fonctionnel
T
J(a)=E / (X TQXY + (as) "Nay) ds + (X$) ' PX$| . (1.1.2)
0

Ici, B,C, D, F,Q, N, P sont des matrices de dimensions appropriées.

Notez qu’en définissant K = 1, I’équation (1.1.1) se réduit au cadre classique. Par
conséquent, un tel modéle généralise le cadre stochastique linéaire-quadratique standard.
Cependant, les méthodes habituelles pour les processus de Markov et le calcul stochas-
tique pour les semimartingales ne peuvent plus étre appliquées car un tel modéle ne
tombe pas dans le cadre semimartingale, comme on peut le voir avec le célébre noyau
fractionnaire de Riemann-Liouville Ky : t + t7#~1/2 avec H € (0,1/2). Par conséquent,
nous développons dans la suite quelques techniques pour traiter de tels modéles. Notre
approche consiste a réécrire le systéme (1.1.1) dans un espace dimensionnel infini ou la
dynamique est markovienne. Nous présentons d’abord quelques motivations.

1.1.1 Motivations

Du contréle d’un mouvement brownien au contréle d’un mouvement brow-
nien rugueux

Considérons le probléme de base du régulateur linéaire-quadratique perturbé par un
mouvement brownien W, et décrit par un systéme dynamique linéaire controlé sur R :

t
Xf‘:/asds—i—Wt, t>0,
0

et un cotlit quadratique fonctionnel sur un horizon fini pour minimiser le processus de
controle a valeur réelle o = (v )y

J(a) = IE[/OT (X7 +a§)dt].

Ce probléme LQ peut étre résolu explicitement par différentes méthodes, y compris la
programmation dynamique standard, le principe du maximum reposant sur le calcul

4



1.1. Controéle sur les équations de Volterra

stochastique It6. 11 est bien connu, voir par exemple [YZ99], que le contrdle optimal o*
est s’écrit comme une une rétroaction linéaire en 1’état controlé X* = X :

af = -T()X;, 0<t<T,

ou I' est solution positive déterministe d’une équation de Riccati. Ainsi le processus
d’état optimal associé X™* est un processus de Markov de retour & la moyenne. Suppo-
sons maintenant que le bruit W soit remplacé par un processus gaussien avec mémoire,
typiquement un mouvement brownien fractionnaire, ou plus généralement par un pro-
cessus de Volterra stochastique.

¢ ¢
X = / ozsds—i—/ K(t—s)dW,, t>0, K € L*0,T).
0 0

Une question qui se pose naturellement est de savoir comment la structure de la solution
est modifiée, et comment elle peut étre dérivée, sachant que dans ce cas, nous ne pouvons
pas appliquer directement le calcul stochastique pour les semi-martingales ainsi que les
méthodes usuelles pour les processus de Markov.

Controle de la chaleur dans une barre

Prenons maintenant un exemple (un peu) moins jouet. Supposons que nous ayons une
barre unidimensionnelle semi-infinie dont la température est décrite par le champ ¢, x €
Ry — T(t,x) et supposez que vous controliez le taux d’énergie o que la barre échange
avec 'extérieur & x = 0. Si la barre est isolée partout ailleurs, alors T est la solution du
probléme de controle

T (t,x) = 0pa T (¢, ), t,x >0,
T(t,0) = oy + Wy,
T(0,z) =0,
wl;ngo T(t,x) =0,

ou W indique un bruit blanc. En utilisant la transformation de Laplace, le lecteur peut
alors remarquer que T peut étre réécrit comme

t
T(t,z) = %/0 (t — 5) "2 /40D (o ds + dWV).

Par conséquent, garder par exemple la température a la position z* autour d’une cible
T} peut étre converti en un probléme de controle de type Volterra

¢
T‘X(t,x*):/ Ky (t — s)(asds + dWy),
0

T
J(0) =E / (T%(s,2%) — T?)* + o2ds|
0

ot Koo (t) = (£)"/? e=@)?/00),

tm

1.1.2 Revue de littérature

Le controle optimal des équations de Volterra stochastiques a été étudié dans [Yon06] via
la méthode du principe du maximum. Cela conduit & une caractérisation de la solution
en termes d’une équation de Volterra stochastique rétrogrades pour le processus adjoint.
Dans [AQD15], les auteurs utilisent également le principe du maximum avec le calcul de
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Malliavin pour obtenir une équation adjointe d’équations différentielles stochastiques
rétrogrades. Bien que le noyau considéré dans ces articles susmentionnés ne se limite pas
a étre de type convolution, les conditions requises n’englobent pas le cas ou K posséde
une singularité en zéro, excluant donc le cas d’un noyau fractionnaire avec le paramétre
H < 1/2. Plus récemment, une équation de Bellman étendue a été dérivée dans [HW19]
pour ’équation de Volterra controlée associée.

La solution au probléme de contrdle LQ comme dans (3.1.1) avec dérive controlée et
bruit additif a été obtenue dans [KBV03] lorsque le bruit est un mouvement brownien
fractionnaire avec paramétre de Hurst H > 1/2, et dans [DPD13] lorsque le bruit est un
processus gaussien général avec un contrdle optimal exprimé comme somme de la com-
mande de rétroaction linéaire bien connue pour le probléme de commande déterministe
linéaire-quadratique et de la prédiction de la réponse du systéme au futur processus de
bruit. Récemment, article [Wan18] a étudié le probléme LQ des équations de Volterra
stochastiques en fournissant des caractérisations du contréle optimal en termes d’un
systéme forward-backward, mais en laissant de coté leur solvabilité, et sous certaines hy-
pothéses de coefficients qui excluent les noyaux singuliers tels que le noyau fractionnaire
avec le paramétre H < 1/2.

1.1.3 Notre approche

Notre approche consiste principalement a faire I’hypothése que le noyau de Volterra K
est la transformée de Laplace

K(t) = / e " u(d), t>o0, (1.1.3)
Ry
d’une mesure matricielle d x d’ signée p satisfaisant
/ QAmﬂﬁmwm<m. (1.1.4)
Ry

Lorsqu’une telle hypothése est en vigueur, une chose naturelle a faire est d’approcher la
mesure 4 par une somme finie de Dirac

n
gt = ch(se?,
i=1
induisant ainsi une approximation pour le noyau K
K"(t) = / e %tu(dg), t>0. (1.1.5)
Ry

ou (zI); et (nf*); sont des suites appropriées de nombres réels positifs. Ensuite, 1'obser-
vation clé peut étre faite en observant qu’une telle approximation donne la réécriture de
X® comme une somme finie de facteurs

n

n,o _§ : ny i,

Xt - Ciy;, ’
i=1

ott chaque facteur Y;" est un processus d’Ornstein-Uhlenbeck markovien

{dY?’““ = =02V + (B, Y + Cay)dt + (D Y00 YW + Foy)dW,
Yon,i7a — 0
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Par conséquent, le probléme d’optimisation non-markovienne (1.1.1) - (1.1.2) en dimen-
sion d semble approchable par une suite de problémes d’optimisation markoviens en
dimension nd

AYHY = —0nYN 4 (Bp™(YY) 4 Coy)dt + (Du™(Y4*) 4 Foy)dWs, t<T,
Y(]nyil'a =0,

T
J"(a)=E [/0 (" (Y T Q" (V") + af Nag) ds + (u™ (Y7 ™)) T P(u" (Y£))
(1.1.6)

Notez que, par conséquent, nous sommes maintenant ramené au cas classique du controle
linéaire-quadratique stochastique ou la rétroaction optimale et la fonction de valeur
peuvent étre facilement dérivées. De toutes ces considérations, plusieurs questions se
posent

e Does the sequence of optimization problem (1.1.6) approximate the initial optimi-
zation problem (1.1.1)-(1.1.2)?

e Pouvons-nous caractériser la fonction valeur et le controle optimal ?

1.1.4 Nos contributions

Pour répondre & ces interrogations, nous établissons la correspondance du probléme
initial (1.1.1) - (1.1.2) avec un probléme de dimension infini markovien dans I’espace de
Banach L'(p).

Result 1: Représentation markovienne de la dynamique controlée

Fixez a € A. Supposons qu’il existe un processus progressivement mesurable tel
que X résout (1.1.1), P -p.s.. Alors, X* admet la représentation

Xp=Xo+ [ ud)ye o)
Ry

ou, pour chaque 6 € R,

t t
Y;"‘(O):/O e_e(t_s)b(s,X;’,as)ds—i—/o e =90 (s, X, g )dW,. (1.1.7)

En partant du résultat 1, on obtient alors que la fonction valeur est de forme qua-
dratique linéaire sur L'(u) avec un controle optimal linéaire également défini sur L' (p).
Ces derniers sont exprimés en termes d’équations de Riccati non-standard sur L'(u).
Pour voir cela, fixons quelques notations. On définit 'opérateur de retour & la moyenne
A™ agissant sur ¢ € L'(u) par

(A" @) (0) = —bp(0), 0 €Ry,
ainsi que le produit

(o) = / PO Tu(dB)TH(8), (1) € LMu) x L= (uT)

- / P(0)Tu(dB)(8), (po1h) € L®(1) x LM (uT).
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Pour tout noyau a valeur matricielle G, on note G 'opérateur intégral induit par G,
défini par :

(Go)(O) = | G(0,0)u(d")b(6").

Ry
On note alors que (1.1.7) peut étre réécrit
Y, = (A™YS + BYS + Coy) dt + (DY + Fay)dW;, Yy =0.

Aussi, a partir du résultat 1 on voit que la fonctionnelle de cotit (1.1.2) peut étre refor-
mulée dans L (p)

J(a)=E

T
[ (o @ven, vl o],
0

ou, par un léger abus de notations, C' et F' désignent les opérateurs constants induits
par les matrices C' et F :

(Ca)(0) =Ca, (Fa)(§)=Fa, 0€R,, acR™.

Leurs opérateurs adjoints C*, F* prennent la forme
C'g = C7 [ uld®)T9®). F'g = FT [ u(@®)Tg(0). g€ L"),

Compte tenu de la structure linéaire-quadratique du probléme, les résultats standard en
théorie du controle stochastique de dimension finie, voir [yong1999stochastique], ainsi
que dans les espaces de Hilbert, voir [Fla86 ; HT18], suggérent le résultat de vérification
suivant

Result 2: Théoréme de vérification

Supposons qu’il existe une fonction & valeur opérateurs auto-adjoints T' de L' (1)
dans L*°(p ") et. solution de 'équation de Riccati

I'r = 0
r, = —-0LA —([LA™) —Q - D*I',D — BT, — (B*I,)"
+ (C*Ty + F*T\D)* (N + F*T,F)" (C*T, + F*T\D), te [0,T).
Alors la fonoction valeur de (1.1.1)-(1.1.2) se réécrit
Ve = (DY),

et le controle optimale prend la forme

of = — (N + F*'T4F)" " (C*Ty 4+ F*T D) Y.

De plus, nous montrons que I est en fait un opérateur intégral dont le noyau symé-
trique associé satisfait ’équation de Riccati suivante :

IjT(evT) =0
ry(0,7) = O+1r(0,7)—Q—-DT f]Ri w(d0) T (0, 7" )u(dr") D
= BT [o, m(d0)TT(0,7) = [, Te(0,7)u(dr) B + Si(0)T Ny 'S (),
(1.1.8)
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Sy(1) = CT/

() 0, 7) + T [ () O 7 (') D
Ry

2
R+

Ny=N~+FT / 1(d0) Ty (0, 7)p(dr)F.

2
R+

Nous montrons un résultat d’existence pour ’équation de Riccati susmentionnée (1.1.8).

Result 3: Existence et unicité du noyau Riccati

Soit p une mesure matricielle d x d’ signée satisfaisant (1.1.4). Supposons que
QeSt, N-\,eST,

Pour au moins un A tel que A > 0. Alors il existe une unique solution I' €
C([0,T), L' (1 ® p)) & I'équation de Riccati (1.1.8) tel que I'y € S (p ® p), pour
tout t < T.

Enfin, nous montrons que la fonction valeur de le probléme d’optimisation de Volterra
stochastique (1.1.1) - (1.1.2) peut étre approché par une suite de problémes convention-
nels markoviens linéaire — quadratique de dimensions finies. Cela ouvre la porte & des
simulations numériques faciles & mettre en oeuvre.

Result 4: Approximation en dimension finie

Supposons que p satisfasse (1.1.4) et soit K comme en (1.1.3). Soit (K™),>1 une
suite de noyaux de la forme (1.1.5) avec des mesures respectives p" satisfaisant
(1.1.4), pour chaque n € N. Supposons (??) et que @ soit inversible. Notons V*
et V™ les fonctions valeurs optimales respectives de (1.1.1) - (1.1.2) et (1.1.6).
Si

|K™ — K|[z2(0,r) =+ 0, asn — o0,
Alors,

V™ - V* asn — co.

1.2 Markowitz rugueux

1.2.1 Quand Markowitz devient rugueux

Dans cette partie, nous étudions le probléme d’allocation de portefeuille de type Marko-
witz lorsque la volatilité devient rugueuse. Tout d’abord rappelons quel est le probléme
d’allocation de portefeuille de Markowitz. L’objectif est le suivant : supposons que vous
disposiez d’un ensemble d’actions que vous pouvez acheter et vendre. Bien siir leurs prix
peuvent évoluer aléatoirement mais vous avez développé un modéle et avez une esti-
mation de leurs dérives, de leurs volatilités, de leurs corrélations, etc. La question est
alors : comment puis-je assurer un certain rendement moyen pour mon portefeuille tout
en minimisant la volatilité de ce dernier ?

min Var(Xr).
]E(XT):’m

Nel
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Un vaste volume de recherche a été consacré a ce probléme et a son extension.
La modélisation des processus financiers s’est grandement améliorée depuis les travaux
fondateurs de Louis Bachelier ([Dav-+11]) et les marches aléatoires. Il est maintenant bien
établi depuis larticle fondateur de [GJR18a] que la volatilité des actifs est rugueuse et
mieux modélisée par un mouvement brownien fractionnaire avec un petit paramétre de
Hurst.

t
at%/ (t —s)T=12qw,, H =~ 0.1.
0

Evidemment, un investisseur avisé aurait tendance a préférer les actions & haut rende-
ment, & faible volatilité et non corrélées (voire anti-corrélées) mais la question de savoir
comment les investisseurs doivent prendre en compte la rugosité des actions reste ouverte.
La recherche sur 'optimisation de portefeuille dans des environnements fractionnaires
et rugueux est encore peu développée mais a gagné une attention croissante a travers les
articles récents de [FH18 ; BD20; HW20b|, qui considérent les modéles fractionnaires de
volatilité stochastique de type Ornstein-Uhlenbeck et Heston pour la fonction d’utilité,
et les travaux de [HW20a] ou les auteurs étudient le probléme de Markowitz dans un
modele de Volterra Heston, qui couvre le modéle de Heston rugueux [EER18]. La ques-
tion sur laquelle nous aimerions progresser est la suivante : Etant donné un marché
aux actifs multiples, comment la rugosité d’une action doit-elle étre prise en
compte dans 1’allocation du portefeuille ?

1.2.2 Un exemple avec deux actifs

Fix some horizon T > 0, and consider a financial market on [0, T] with a non-risky asset
SO

SO =1,

et deux actifs risqués S; = (S}, S?) : dS; = diag(S;) (o dt + 01dB;) oit B est un
mouvement brownien bidimensionnel. Ici o denote un processus a valeur dans R?*? que
l'on appelle volatilité stochastique, et A\ un processus a valeur dans R? appelé prime
de risque (= Tf;k) Pour travailler avec un modéle simple, supposons que les cours des
actions suivent

(1.2.1)

dsi = Si (0(Yj)%t+¥?d§§),
Yy Yo+ [y (t— )T 2dWi, i=1,2,

avec 0 < H; < Hy < 1/2 et une structure de correlations

B'=B', B*=pB'+V1-pB, W'=cB' +\/1-B",

ott (BY+, B%1) est un mouvement brownien bidimensionnel indépendant de B et n =
(n1,m2) la volatilité de volatilité.

Remark 1.2.1. Dans cette introduction, nous motivons notre travail avec le modéle
Stein-Stein a 2 actifs. On se référe a la partie I1I pour un traitement général des modéles
affine et quadratique.

Soient 7P, m} et 77 les montants respectivement investis dans l'actif non risqué et
actif risqué au moment t. If Ny = (N}, N?)T est le nombre d’actions détenues dans

10
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les actifs risqués, alors la dynamique de la richesse X; = N,'S; + 79 du portefeuille
autofinancé est donné par

dX; =N, dS;
:Ntleag(Sf) [(O’f)\f)dt + UtdBt}
=a/ (Mdt +dB;), Xo =19 €R,

ot nous avons défini a = o ' .

Remark 1.2.2. Le modele (1.2.1) implique

Y 0 (! 0o \ /eyt
o= , = .
Yap Yay/1—p? p \1—=p? 02Y>
Le probléme de sélection de portefeuille de Markowitz en temps continu consiste alors
a résoudre le probléme contraint suivant

V(m) = ;2& {Var(Xr) : s.t. E[X7] =m}

dXy = o (Mdt +dB;), Xo =m0 €R.

1.2.3 Des équations de Riccati a ’allocation de portefeuille

Notez que contrairement & la section 1.1, la dynamique de I’'état controlé X est marko-
vienne. Ainsi, il peut étre résolu avec la méthode classique du controle linéaire quadra-
tique. Nous avons les résultats suivants.

Result 5: Théoréme de vérification

Supposons qu’il existe un triplet solution (I, Z!, Z2) de I’équation de Riccati

{dft = T+ 2zt 0zl an+ (2) dBot (22) am),

FT 17

tel que
(H1) 0 < Ty < €? Js 7(s)ds et T, > 0, pour tout t < T,

(H2) Il existe un entier p > 2 tel que

]E[exp (a(p)/OT (|/\s|2—|—|Zsl|2—|—|Z§|2)ds)] < o0,

ol a(p) est une constante explicite.
Alors, le controle optimal est donné par

m — Foxo

of = (Mt Z OB (E - X)), € =Tp

et la valeur du processus de richesse optimal est

[0 —m[*

Vim) = V(X}) = Do

11



Chapitre 1. Introduction (French version)

Bien que la structure du résultat ci-dessus soit assez classique, notez la présence de
la condition (H2) qui nous permet d’unifier de nombreux résultats dans la littérature,
voir le tableau 5.1. En regardant de prés £, il est facile de voir que £* > m (rappelons
que xg < m). Ainsi, la dynamique de la richesse optimale controlée X* est régit par

dX7 = N+ Z1 + CZ}) (& — X)) (\edt + dBy).

De zo < m < & et de la continuité de X*, nous avons X* < £* sur [0, T]. Par conséquent,
pour saisir 'effet de la rugosité des actions sur la stratégie d’investissement, il faut
comprendre son effet sur Z' et Z2.

of = (Mt+2z}+0Z}) (€ -X]).

vecteur aléatoire a étudier (S

Pour ce faire, I'idée clé est d’observer que, si une telle solution existe, alors, elle admet la
représentation suivante d’une transformée de Laplace de la norme au carré d’une variable
gaussienne :

ro=Bfow (- [ (A2 e 0z as) |7l osisT

~ Gaussicnnc au carré

Or, si G ~ N(u,XY) est une variable gaussienne n-dimensionnelle, alors

exp (—u (u" (In +25u) " 'p))
det(I,, 1 25u)1/?

E (exp(—u|G[?)) = , u > 0.

D’aprés 'expression ci-dessus, on voit qu’une chose intuitive & faire est d’approximer

/ N+ ZL+ 022 ds ~m~ 12(;1% IN (s, 20|
=1

2

ou Gj/p = et

Hn = ]E[(GT/nv ) GT)|‘Ft]7 Xp = ]E[(GT/na ) GT)T(GT/na ) GT)|‘Ft]
Ainsi, on s’attend a
T
Iy —E exp / ‘)\ +Z1 —I—CZ2 ) ‘ ]-'t}

XD (=t (I + 250) " pin)
~ li ! .
ngréo det(I,, + 23,)1/2

Les questions naturelles sont donc
1. Vers quelles limites ces objets convergent-ils lorsque n — oo ?

e Quand n tend vers I'infini, les grandes matrices convergent vers les opérateurs.
Ainsi, un espace de dimension infini apparait : L?([0, 7).

2. Qui devrait jouer le role de p, ?

e Le forward process gi(s) = E[YS | ft}, s>t.

12
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3. Qui devrait jouer le role de %, 7
e grosso modo, le processus de covariance conditionnelle du forward process.

Pour répondre a ces questions, nous introduisons le cadre infini dimensionnel perti-
nent. Soit (-,-)z> un produit scalaire sur L? ([0, T],RN) tel que

(fi9)L2 :/o f(s) T g(s)ds.

Pour tout K € L? ([0, T)?, ]RNXN>, nous notons K l'opérateur intégral induit :

(Kg)(s) = / K (s, u)g(u)du.

On a alors le résultat suivant.

Result 6: Backward stochastique de type Riccati - Operateur de type

Riccati - Forward process

Soit t — W, la solution de ’équation de Riccati & valeur opérateur
U, =20,3,%,,  tel0,T],
L = N1 (1.2.3)
U= (Id—K) @T@(Id—K) ,
ou
e K est I'opérateur intégral induit par le noyau K = —2K(nC7T 0),

e 3, =(Id—K)'3,(Id — K)*,

e 3, est défini comme 'opérateur intégral associé au noyau.
SAu
Yi(s,u) = / K(s,z)n(U — 207 C)n" K (u,z) " dz, t<T,
t

ouU = (1,=; + 1i¢jcicj)19’jg2 and C = (c1,c2) "

Alors, le processus (', Z', Z?) defini par

'y = exp (¢ + (96, Wege)12), t<T,
z =0,
zZ} = 2((%.Kn)*g:) (1),

ot &; = In(det(P;:A;)), est solution de la Riccati (1.2.2).

1.2.4 Reésultats numériques

Par conséquent, le controle optimal est de la forme

o = ((0+201w K" g ) (1) (¢ = X77).

Facilement calculable
avec de Dalgébre linéaire !

13
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Enfin, nous affirmons que t +— 2C [¥,Kn|" g;(t) est facile & approcher avec de 1’algébre
linéaire de base. Les raisons sont les suivantes :

1. La fonction & valeur opérateur ¢t — W, est explicite;
2. les opérateurs et les fonctions peuvent étre stockés sous forme de matrices.

La premiére affirmation vient du résultat suivant.

Result 7: Explicite ¥

La solution ¥ de (1.2.3) est de la forme

U, — —(Id - I‘{)**@T (Id n 2@2@)71@(&1 - fc)fl, 0<t<T.

Enfin, expliquons la deuxiéme allégation. L’idée vient de ’argument limite présenté
dans la section 1.2.3 et est la suivante : supposons que H est un opérateur intégral
induit par un noyau H € L*([0,7]?) et f une fonction dans L?([0,7]). On procéde par
discrétisation :

(Hf)(s):/o H(s,r)f(r)dr;v%ZH(S,%)]‘(%), se{%,...,T}.

Ainsi les objets a stocker pour représenter 'opérateur H et I’élément f sont respective-
ment une matrice (H (iT/n, jT/n))1<i j<n et un vecteur (f(“L)),<; j<,. Chaque fois que
nous devons composer un opérateur intégral avec un autre, nous multiplions les matrices
impliquées et appliquons la mise & 1’échelle % Attention, lorsque 'opérateur n’est pas

de type intégral, par exemple :

(©F)(s) = 0f(s),

Alors la mise a ’échelle en T'/N n’est plus nécessaire. Dans un tel cas, Uopérateur est
simplement stocké sous forme de matrice Id,, ® 6 ou ® désigne le produit de kronecker.

Remark 1.2.3. Comme on [’a peut-étre remarqué, il y a un petit probléme lorsque
plusieurs opérateurs, qui sont la somme d’un opérateur intégral et d’un opérateur non
intégral, sont composés (ce qui est le cas de W ). Par exemple, supposons que

(H)(s) = 0f(s) + / H(s,r)f(r)dr,

alors H — 0 est un opérateur intégral mais pas 6.

Simulations numeriques : Nous partageons nos différentes simulations sur le modéle
(1.2.1) dans un notebook IPython *. Nous avons pu reproduire une stratégie de type buy
rough sell smooth dans le cas ou p > 0, c’est-a-dire lorsque les actions sont similaires
dans le sens ot leurs prix montent et descendent ensemble en moyenne. Voir la figure ?77.
A ce stade, il n’y a pas d’explication intuitive et claire quant & la raison pour laquelle une
telle allocation devrait donner des résultats supérieurs, méme si nous faisons une hypo-
thése dans [JMP20b]. Néanmoins, notre analyse tend vers une explication endogéne des
phénomenes observés, complémentaire de celles données dans [GH20b] ot des influences
exogenes telles que la compensation du risque d’événement idiosyncratique a court terme
sont données. Enfin notre analyse tend a montrer, selon [GH20b|, que la longueur de
I’horizon T' compte. Tester des données avec différents T' pourrait étre intéressant. Une
analyse plus approfondie est effectuée dans la partie III.

*https://colab.research.google.com/drive/1P _SYE3WgFgwUKpOo8uCBDdIC04XyxE2a?usp=
sharing
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1.3. Contréle avec retard

tem

0.3 1

0.2 1

0.14

0.0 1

—0.14

0.00 0.25 050 0.75 1.00 1.25 150 175 2.00
t

FIGURE 1.1 — p =0.7, HL = 0.08, H, =04, T =21, m =n =1, ¢, = —0.7. La
stratégie de type buy rough sell smooth décrite dans [GH20b] est retrouvée.

1.3 Contréle avec retard

La partie IV est consacré au contréle des systémes avec des retards. Le temps néces-
saire pour acquérir des informations, calculer la décision et exécuter les ordres rend les
retards dans les systémes de controle omniprésents. Différents effets des retards sur la
modélisation des flux de trafic, les processus chimiques, la dynamique des populations,
la chaine d’approvisionnement, la publicité ont été étudiés dans la littérature.

Dans un systéme contrélé retardé, ’état X et la commande « sont les deux com-
posants principaux qui peuvent présenter un retard. Lorsque le retard n’est présent
que dans la variable d’état, le probléme est maintenant bien compris. Une méthode
de résolution consiste a réécrire la variable d’état dans un espace de dimension infini
(Xt :s €[=d,0] = Xtys), voir [DM72], [FGG10] pour n’en nommer que quelques-uns.
Une situation beaucoup moins comprise est celle oil le retard entre dans la variable de
controle. Dans cette situation, deux approches principales ont émergé : la méthode de
l’état structurel et la méthode de [’état étendu, nous nous référons a [Ben+07, Partie II,
Chapitre 3| pour I'étude de ces ces méthodes dans le cas déterministe et [FF14] pour
Papproche de l’état structurel dans le cas stochastique. Pour une liste compléte des
références, voir aussi [FF14].

Dans nos travaux, nous cherchons & éclairer le cas non déterministe ot un retard
entre dans le controle, a la fois dans le terme de dérive et celui de volatilité. Dans notre
travail, nous considérons la classe suivante de probléme de contréle linéaire-quadratique
retardé stochastique

dXP = ay_q (bdt + odW,), 0<t<T,
Xo=2z, oas=7(s), s€[-d,0, zeR (1.3.1)
J(a) = E[(X7)?].

A Texception de [FF14], cette situation n’est pas traitée théoriquement ni numérique-
ment dans les références ci-dessus. La principale difficulté vient du fait que les problémes
d’optimisation avec un controle retardé appartiennent naturellement a la classe des pro-
blemes de contréle aux bord.

1.3.1 Résultats d’existence et de vérification

Notre approche est inspirée par 'approche de état étendu initiée par Ichikawa, voir
[Ich82], on l'idée clé est de passer de 'espace d’état initial, & savoir R, a l'espace de
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Hilbert de dimension infinie H = R x L?([—d, 0], R), doté du produit scalaire

0
(x,y)m = xoyo + / d;vl(s)yl(s)ds z,y € H.
Fpour chaque élément (z,u) € H, le premier élément = doit étre interprété comme la
textit position du systéme controlé, et le second s € [—d, 0] — u(s) comme I'historique du
controle. Notre prochain résultat étend les résultats déterministes de [Ale+71] et [Ich82]
au cas stochastique . La fonction valeur et le contrdle optimal de (1.3.1) sont exprimés
en fonction d’une fonctionnelle auto-adjointe P € C([0,T], L(H, H)) de la forme

(A (- Pi(t)z + f,od Piy(t, 5)y(s)ds
Py (2,9() = (plz(t,.)z + Pyt () + [°) Pzz(t,'75)v(5)ds> .

qui satisfait un ensemble d’équations aux dérivées partielles de type Riccati

- Plg(t,O)Q Plg(t,O)PQQ(t, S,O)
Pi(t) = ——* — P, = 1.3.2
11(t) Pyy(t,0) (Or — 05)(Pr2)(t, 5) Py (4,0) : (1.3.2)
Poo(t,s,0)Pag(t,0,7
@ = 0)(Pa)(t.s) = 0. (000, = 0,)(Pu)(t5.r) = SN0,
9 P
avec les condictions aux bords
Pia(t, —d) = bPi1 (1), Pyy(t, —d) = 0*Pr1(1), (1.3.3)
PQQ(t, S, —d) = bPlg(t, 8), PQQ(t, —d, ’I") = bPlz(t7 7’),
et les conditions terminales
Pll(T) = 1, Plg(T,S) :Pj (T,S) :PQQ(T,S,T) :0, (134)

pour presque tout s,7 € [—d7 O].

Result 8: Théoréme de vérification

Supposons qu’il existe une solution P a (1.3.2) - (1.3.3) - (1.3.4). Alors, le controle
optimal du probléme d’optimisation (1.3.1) prend la forme

—li<ra . ¢
== X" Pi1(¢,0 Poy(t,0,s — t)ald
o Pz”z(t,o){ £ Pulh )+lfd n(h,0,8 = 1)a 5}7

et la valeur optimale est donnée par
V(z) = (Poz, 2)m,

ol z = (z,7v) € H désigne I’état initial du systéme controlé.

L’étape suivante consiste & donner un résultat d’existence sur P = (Py1, P12, Py, Pa2).
Dans le cas sans délai, d = 0, bien que 1’on ne pénalise pas le controle, le probléme d’op-
timisation (1.3.1) admet un optimiseur pourvu que o # 0. En effet, plus « est agressif
pour amener X a 0, plus le deuxiéme moment de X augmente en raison du terme de dif-
fusion. Il est facile d’observer cela dans le classique probléme d’optimisation stochastique
LQ avec une volatilité controlée telle que

dXta = Oét(bdt + O'dVVt)7 t < T,
XO =,
J(a) = E[(XF)?],
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1.3. Contréle avec retard

ol le controle optimal prend la forme af = f%Xta* et la fonction valeur V; = e
Une découverte surprenante de nos travaux est la nécessité d’une contrainte plus res-
trictive sur le coefficient de diffusion lorsque la contrainte de retard n’est pas nulle,
d> 0.

Soit @ = (an)n>1 la suite

2
(t-T)%5

ap 21,
d (b)?2
An+1 :an_fn(;) ) n >0,

et N : (d,b,o) — inf{n > 1: a, > 0and a,+1 < 0}. Nous exprimons le résultat
d’existence sur P en fonction de la suite a.

Result 9: Existence de ¢t € [0,T] — P;

Supposons que 7' < N(d,b,c)d . Alors (1.3.2)-(1.3.3)-(1.3.4) admet une unique
solution P sur [0,7] avec 0 < P11(0) < 1.

1.3.2 Résolution d’EDP par réseaux de neurones

Nous proposons maintenant un algorithme pour approximer ¢ — P,. Comme P est carac-
térisée par un ensemble d’équations différentielles, nous décidons d’utiliser des réseaux
de neurones dans l'esprit de la littérature récente sur le sujet [SS18] et [RPK19] pour ne
citer que quelques-uns.

Rappelons quelques-unes des idées principales. Supposons que nous voulions simuler
une équation différentielle partielle non linéaire de la forme

Oyu 4+ N(u) =0, on Q,

1.3.5
u=g, on 02, ( )

ot A est un opérateur non linéaire,  un ensemble borné ouvert et g une fonction
défini sur la frontiére du domaine. L’idée clé est d’utiliser un réseau de neurones comme
substitut & la solution u & (1.3.5). Ainsi, appelons ¢t — u(t, ©) tel réseau, ou O désigne ses
coefficients et ¢ un élément générique de QU 09). La stratégie repose sur la minimisation
de la fonctionnelle

L(O,T) = La(0,T) + Ls(O,7T), (1.3.6)

ot L, et L sont définis comme
1 1
L£.(0,T)= 7 S0+ Nu(t,0))%, L£p(O,7T) = 7
e,

> lult,©) — g

I teTy

Les sous-ensembles 7, = T N et Ty =T N OS2 sont respectivement des sous-ensembles
de 2 et de 0€2.Nous résumons la procédure numérique dans ’algorithme 1.1.

La structure précise de (1.3.2)-(1.3.3)-(1.3.4) nous a conduit vers une structure de
réseau particuliére, voir figure 1.2.

Commentaire sur la méthode : La méthode Deep Galerkin offre une procédure facile
& mettre en oeuvre pour approximer les solutions de toute équation différentielle définie
sur un domaine 2 U 9€). Dans la partie IV, nous adaptons la méthode Deep Galerkin
pour résoudre le systéme d’EDPs (1.3.2) - (1.3.3) - (1.3.4) dans le contexte de l’allocation
de portefeuille de Markowitz avec délai d’exécution. Notez que dans ce cas, la dimension
de sortie est 4.
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Chapitre 1. Introduction (French version)

Algorithm 1.1 Schéma de résolution d’EDP par réseau de neurones

Initialisez : le learning rate 7 et le réseau de neurones u(-,0);

Pour chaque batch :
Echantillonnez 7 C 0QU Q;
Calculer le gradient de la fonction de perte (1.3.6) : VeL(0,T) =
Vo(L, +£1)(0.7):
Mettez a jour © <+ © —nVeL(0,T);

Retournez : L’ensemble des paramétres optimisés O*.

FIGURE 1.2 — Structure du réseau de neurones afin de résoudre (1.3.2)-(1.3.3)-(1.3.4).

Néanmoins, la méthode Deep Galerkin ne s’étend pas bien au cas ou I'espace d’entrée
est de grande dimension, disons 100 par exemple. Un tel cas est important car il est
courant en finance, en recherche opérationnelle, en physique, etc. Dans [HJW18], auteur
propose une autre approche basée sur la représentation de Feynman-Kac de certaines
PDE émergeant de systémes de particules. Ce type de méthode est bien adapté aux
problémes ot ’espace d’état est de grande dimension et I'interprétation physicienne est
basée sur des systémes de particules. Toutefois il présente plusieurs inconvénients :

e la nécessité d’'une formule de Feynman-Kac restreignant ainsi le type d’équations
différentielles solubles,

e la dimension de sortie ne peut pas facilement étre supérieure a 1,

e la solution n’est calculée que dans une petite zone du domaine.

Ainsi, nous considérons ces méthodes comme complémentaires et résumons certaines de
leurs caractéristiques dans le tableau 1.1.
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1.3. Contréle avec retard

dim. entrée > 1 dim. sortie > 1 toute eq. diff.

Deep backward ([HIW18§]) v X X
Deep Galerkin ([SS18]) X v v

TABLE 1.1 — Comparaison des schémas de résolution d’EDPs par réseaux de neurones.

1.3.3 Application a I’allocation de portefeuille de type Marko-
witz avec délai d’exécution

Nous appliquons maintenant notre schéma numérique & la sélection de portefeuille, voir

[Mar52b], avec délai d’exécution dans l’esprit du probléme de couverture des options

européennes présenté dans [FF14]. Le probléme de sélection de portefeuille en temps
continu consiste a résoudre le probléme contraint suivant

{ min,e 4 Var(X$)

s.t. E[X%] =c. (1.3.7)

ol X désigne la richesse de linvestisseur contrdlée par une stratégie d’investissement
«. Dans notre travail, nous étudions d’abord le cas d’un actif seul avec retard

{ AXP = ay_q ((oN) dt +odWy),  t€[0,T), (1.3.8)

Xo=1z09, a5="1s, Vs € [—d, 0],
oll a désigne le montant investi dans ’actif risqué, et A et ¢ sont des constantes repré-

sentant respectivement la prime de risque et la volatilité de 'actif risqué. Notez que seul
le cas avec un actif retardé permet une application directe du résultats 19 et 20 :

Result 10: Le cas d’un actif retardé

Supposons T' < dN(d, (c)), o), fixons £&* = ¢ — n* et

«_ K() + P1i(0)(z0 — ¢
"= 1— P11(0) ’

0
K(v) = /d’yst(O,s)dS.

Définissons a*(§) comme la stratégie d’investissement

— 1< . ¢
o (€") :W{(xg — £)Pia(t,0) + / ol (€) Poa(t,0, 5 — t)ds},
Py, (t,0) t—d
ou P désigne la solution de (1.3.2)-(1.3.3)-(1.3.4). alors, le probléme d’optimisa-
tion (1.3.7)-(1.3.8) admet o*(£) comme controle optimal admissible et la fonction
valeur est
P11(0)

Var(X$') = = Pu(0) (2o — c+ K(v))*

0
+/ nyQAQ(O,s)ds+/ Vs Vul22(0, s, 7)dsdr.
d [_dvo]z

Reésultats numeériques : Du résultat mentionné ci-dessus émerge une application di-
recte pour le schéma numérique présenté dans la section précédente. Voir les figures 1.3
et 1.4 pour quelques exemples.
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variance

1.0 1.2 1.4 1.6 1.8 2.0
yield

F1GURE 1.3 — Frontiére efficiente avec 0 =1, A= 0.5, T =5 et v = 0.

toa;

FIGURE 1.4 — Stratégies optimales et portefeuilles optimaux avec ¢ = 1.6, 0 = 1, A = 0.5,
et T = 5. Gauche : t — o, droite : t — X;. Notez l'effet de déstabilisation et le
supplément de volatilité induit par la fonction de retard. Notez également la tendance
& investir plus agressivement qu’a l'investisseur retardé, du fait du temps moindre pour
assurer le rendement promis. {*(d = 0.5) = 2.57, £*(d = 1) = 2.68, £*(d = 1.5) = 2.80,
& (d=2)=2097.

Pour explorer davantage ’effet du retard sur le probléme de controle, nous étudions
également, dans le chapitre IV, 'un des actifs avec retard et 'autre sans cas :

dX{ " = ay {(1 M) dt + 01 dWEY + By {(0aAa)dt + 02dW2},  t € [0,T],
Xo=1z9, Bs=1s SE [_d’ 0]7
<VV17 W2>t = pt,
(1.3.9)
ol « désigne le montant investi dans ’actif risqué non retardé, 8 le montant investi dans
Pactif retardé risqué, \; et o; sont des constantes représentant respectivement les primes
de risque et les volatilités de les actifs risqués.

En suivant I’approche heuristique de la section 6.2, nous définissons I’ensemble sui-
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1.3. Contréle avec retard

vant I’EDPs de type Riccati sur [0,7] x [—d,0]?

. Py5(t,0)?
Pii(t) = NP (t) + 4 1.3.10
11(t) = AT P (t) + Poy(t,0) ( )
P12(t O)PQQ(t S 0)
— 0)(Pra)(t,s) = AT Pra(t, 2
(0r — 05)(Pr2)(t, 5) = A1 Pra(t, s) + Pyy(t,0)
(at - a‘?)(PfZ)(tv S) = 07
Plg(t,S)Plg(t,T) ng(t,S,O)sz(t,O 7”)
O — 05 — 0p)(Pa2)(t,5,7) = A} —,
( t )( 22)( ) 1 Pll(t) P2A2(t70)
accompagnée des conditions aux limites, pour presque tout ¢, s € [0,T] x [—d, 0]
A
Plg(t, —d) = )\20’2 (1 — p)\;> Pn(t), P2A2(i'7 —d) = O'g (1 — p2) Pn(t), (1311)

A A
ng(t, S, —d) = /\20’2 (1 — p)\;> Plg(t, S), ng(t, —d, S) = )\20’2 (1 — p)\;) Plg(t, S),

et les contraintes terminales
Pll(T) = 1, Plg(T, S) = P2A2(T, S) = PQQ(T, S,’/‘) = 07 (1312)

for almost every s,r € [—d,0].

Nous sommes maintenant équipés pour présenter la stratégie optimale ainsi que la
fonction valeur du probléme (1.3.1) dans le cas de 2 actifs.

Result 11: Un actif retardé et un actif non retardé

Supposons qu’il existe une solution P a (1.3.10)-(1.3.11)-(1.3.12). Soit £&* = ¢c—n*
et

«_ KO+ Pu(0)(zo —0)
1— P11(0) ’

0
K(v) = /d’Yst(O, s)ds.

Définissons (a*(£*), 8*(£*)) comme

N &

A
al(€) = — { (G =+ 2Ba+ oo |

g1

BE(€) Pra(t, s — t)ds} .
d

S DS t
6:0 = 5 P (0 -9+ [ B OPult0.r - 0ar),
P2A2 (t, O) t—d
Alors, le probléme d’optimisation (1.3.7)-(1.3.9) admet (a*(£*), 5*(£*)) comme
stratégie optimale admissible et la fonction valeur est
Py1(0)

Var(X%*) = m (o —c+ K('Y))2

0
—|—/ Y2 Py (0, s)ds+/ VsYuPo2(0, s, r)dsdr.
d [—d,0]2

Simulations numeériques : La flexibilité du schéma d’apprentissage présenté dans la
section 2.3.2 permet une adaptation facile au nouvel ensemble d’EDPs de type Riccati
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(1.3.10) - (??) - (1.3.12). Voir la figure 1.5 pour voir l'interaction entre la fonction de
retard et la corrélation p, et le chapitre IV pour une analyse plus approfondie.

~ _ _
T m‘w \

| o o

QU 'w S ‘ ‘ SN e

N

o 1 P

! e ) M\/m

QU W \ ’&f“w""\ A ‘

e - il

s \ Sl \“ | 'j\ |

I R’ ”““"’\f‘\w le Pt W MMW"\«

7{ W MM\M'»" . ] o JWJ» A : J \}VM\\Q‘.MM\\/\ ) v\ﬂ%

FIGURE 1.5 -t +— (af, /), avec 01 = 092 = 1, A\; = A2 = 0.5 et T' = 5. Bleu : o*, orange :
5*. Les mémes réalisations de W et B ont été utilisés pour toutes les expériences. Notez
que plus les actifs sont corrélés positivement, plus I'actif non retardé est favorisé.
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Chapter

Introduction

The thesis is divided into three parts that can be read independently. In the first part,
we provide an exhaustive treatment of Linear-Quadratic control problems for a class
of stochastic Volterra equations of convolution type, whose kernels are Laplace trans-
forms of certain signed matrix measures which are not necessarily finite. These equa-
tions are in general neither Markovian nor semimartingales, and include the fractional
Brownian motion with Hurst index smaller than 1/2 as a special case. We establish
the correspondence of the initial problem with a possibly infinite dimensional Marko-
vian one in a Banach space, which allows us to identify the Markovian controlled state
variables. Using a refined martingale verification argument combined with a squares
completion technique, we prove that the value function is of linear quadratic form in
these state variables with a linear optimal feedback control, depending on non-standard
Banach space valued Riccati equations. Furthermore, we show that the value function
of the stochastic Volterra optimization problem can be approximated by that of conven-
tional finite dimensional Markovian Linear—Quadratic problems. The existence of the
Banach-valued Riccati equation is rigorously studied. In the second part, we study the
continuous-time Markowitz mean-variance problem for a multivariate class of affine and
quadratic Volterra models. In this incomplete non-Markovian and non-semimartingale
market framework with unbounded random coefficients, the optimal portfolio strategy
is expressed by means of a Riccati backward stochastic differential equation. In the case
of affine Volterra models, we derive explicit solutions to this BSDE in terms of multi-
dimensional Riccati-Volterra equations. This framework includes multivariate rough
Heston models. In the quadratic case, we obtain new analytic formulae for the the Ric-
cati BSDE and we establish their link with infinite dimensional Riccati equations. This
covers rough Stein-Stein and Wishart type covariance models. Numerical results on a
two dimensional rough Stein-Stein model illustrate the impact of rough volatilities and
stochastic correlations on the optimal Markowitz strategy. In particular for positively
correlated assets, we find that the optimal strategy in our model is a buy rough sell
smooth one. In the third part of the thesis, we consider a class of stochastic control
problems with a delayed control, both in drift and diffusion. The optimal control and
value of the problem are described in term of a set of Ricatti partial differential equa-
tions whose existence and uniqueness are obtained in a simplified setting. A sufficient
condition of existence, directly emerging from the delayed structure, is provided. A
deep learning scheme is proposed and used to illustrated the effect of the delay on the
Markowitz portfolio allocation problem with execution delay.
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2.1 Volterra control

The first part of the thesis is dedicated to the control of d-dimensional stochastic Volterra
processes of the form

t t
X7 =Xo+ / K(t—s)b(XS, as)ds + / K(t—s)o(X& as)dWs,  (2.1.1)
0 0

with W a real valued Brownian motion, b, : [0, 7] x R% x R™ — R of affine form:

b(t,z,a) = Bx + Ca,
o(t,z,a) = Dz + Fa,

and K a d X d’-matrix valued kernel. We endow the dynamic a cost functional

J(a)=E /OT (X TQX2 + (o) "Nag) ds + (X$) T PXS| . (2.1.2)

Here, B,C, D, F,Q, N, P are matrices of suitable dimensions.

Note that by setting K = 1, equation (2.1.1) reduces to the classical setting. There-
fore, such model generalizes the standard Linear-Quadratic stochastic framework. How-
ever, usual methods for Markov processes and stochastic calculus for semimartingales
can no longer be applied as such model do not fall in the semimartingale framework, as
it can be seen with the celebrated Riemann-Liouville fractionnal kernel K : t —s tH—1/2
with H € (0,1/2). Consequently, we develop in the following some techniques to treat
such models. Our approach consists in lifting the system (2.1.1) in a infinite dimensional
space where the dynamic is Markovian. But let us first present some motivations.

2.1.1 Motivations

From controlling a Brownian motion to controlling a rough Brownian motion
Consider the basic linear-quadratic regulator problem with Brownian motion noise W,
described by a controlled linear dynamical system on R:

t
X = / asds+ Wy, t2>0, (2.1.3)
0

and a quadratic cost functional on finite horizon to minimize over real-valued control
process a = (a)y

J(a) = E[/OT (X7 +a§)dt].

This LQ problem can be explicitly solved by different methods including standard
dynamic programming, maximum principle or spike variation methods relying on It6
stochastic calculus, and it is well-known, see e.g. [YZ99], that the optimal control o* is
in linear feedback form w.r.t. the optimal state process X* = X :

af = —T(t)X}, 0<t<T,

where I' is a deterministic positive function solution to a Riccati equation, and thus the
associated optimal state process X* is a mean-reverting Markov process. Suppose now
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2.1. Volterra control

that the noise W is replaced by a Gaussian process with memory, typically a fractional
Brownian motion, or more generally by stochastic Volterra processes.

t t
X = / ozsds—i—/ K(t —s)dW,, t>0, K € L*0,T).
0 0

A question that is naturally arising is how the structure of the solution is modified, and
how it can be derived, knowing that in this case, we cannot directly apply stochastic
calculus for semimartingales and usual methods for Markov processes.

Heat control in a bar

Let us now provide a (little bit) less toyish example. Suppose you have a semi-infinite
one-dimensional bar whose temperature is described by the field ¢, € Ry — T(¢,x)
and assume you control the rate of energy a the bar is exchanging with the exterior at
x = 0. If the bar is insulated everywhere else, then T is solution to the boundary control
problem

WT(t,x) = 0. T(t, x), t,x >0,
T(t,0) = oy + Wy,
T(0,2) =0,
Zlgrolo T(t,z) =0,

where W denotes a white noise. Using the Laplace transform, the reader may then
notice that T' can rewritten as

1 t
T(t.) = 2= /0 (t — )12~/ A0 (o ds + dW,),

As a result, keeping for instance the temperature at position z* around a target T} can
be cast as a Volterra control problem

t
T‘X(t,a:*):/ Ko (t — 8)(asds + dWy),
0

T
J(a)=E / (T%(s,2*) — TF)? 4+ a2ds| ,
0

where K« (t) = (%)1/2 e~ (@")?/(4t)

t

2.1.2 Literature review

The optimal control of stochastic Volterra equations has been considered in [Yon06] by
maximum principle method leading to a characterization of the solution in terms of a
backward stochastic Volterra equation for the adjoint process. In [A@15], the authors
also use the maximum principle together with Malliavin calculus to obtain a correspond-
ing adjoint equation as a standard backward SDE. Although the kernel considered in
these aforementioned papers is not restricted to be of convolution type, the required
conditions do not allow singularity of K at zero, hence excluding the case of a fractional
kernel with parameter H < 1/2. More recently, an extended Bellman equation has been
derived in [HW19] for the associated controlled Volterra equation.

The solution to the LQ control problem as in (3.1.1) with controlled drift and additive
noise has been obtained in [KBV03] when the noise is a fractional Brownian motion with
Hurst parameter H > 1/2, and in [DPD13] when the noise is a general Gaussian process
with an optimal control expressed as the sum of the well-known linear feedback control
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for the associated deterministic linear-quadratic control problem and the prediction of
the response of the system to the future noise process. Recently, the paper [Wanl§]
investigated LQ problem of stochastic Volterra equations by providing characterizations
of optimal control in terms of some forward-backward system, but leaving aside their
solvability, and under some coefficients assumptions that preclude singular kernels such
as the fractional kernel with parameter H < 1/2.

2.1.3 Our approach

Our approach mainly consists in making the hypothesis that the Volterra kernel K is
the Laplace transform

K(t) = / e "u(d), t>o0, (2.1.4)
Ry
of a signed d x d'~measure u satisfying
/ @Amﬂﬂmwm<m. (2.1.5)
Ry

When such assumption is in force, a natural things to do is to approximate the measure
© with a finite sum of Dirac

n

prpt = g,

=1

thus inducing an approximation for the kernel K
K"(t) = / e %tu(dg), t>0. (2.1.6)
Ry

where (2'); and (n'); are appropriate sequences of non-negative real numbers. Then the
key observation can be made by observing that such approximation yields the rewriting
of X as a finite sum of factors

n

n,o __ ny i,

Xt _E CZ-Y; ’
i=1

where each factor Y;" is a Markovian OU-process

{dY = =07V (BY, Y 4 Cay)dt + (D Ly Y™ + Foy)dW,
YO’IL,l,OL — O

Consequently, the non-Markovian optimization problem (2.1.1)-(2.1.2) in dimension d
seems to be approachable through sequence of Markovian optimization problems in
dimension nd

AV = =07V 4 (Bu™(Y)") 4+ Coy)dt + (D™ (V") + Foy)dW;,  t<T,
Yvon,i,oc — 0,

S (a) =E [/0 (" (V)T QU™ (Y)) + af Nag) ds + (" (Y1) T P(u" (Y1)

(2.1.7)

Note that, as a result, we are now back to the classical realm of stochastic linear-
quadratic control where the optimal feedback and the value function can be derived
easily. From all these considerations, several question arise
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e Does the sequence of optimization problem (2.1.7) approximate the initial opti-
mization problem (2.1.1)-(2.1.2) ?

e Can we characterize the value function and the optimal feedback control ?

2.1.4 Our contributions

To answer these interrogations, we first draw the correspondence of the initial problem
(2.1.1)-(2.1.2) with an infinite dimensional Markovian one in the Banach space L ().

Result 12: Markovian representation of the controlled dynamic

Fix a € A. Assume that there exists a progressively measurable process such
that X solves (2.1.1), P-a.s., . Then, X* admits the representation

X& = X+ /R w(dOYY,2(0), (2.1.8)

where, for each 6 € R,

0

t t
Yf‘(@):/o e_g(t_s)b(s,Xg,as)ds—i—/ e =90 (s, X, g )dW,. (2.1.9)

Starting from Result 12, we then obtain that the value function is of linear quadratic
form on L!(u) with a linear optimal feedback control also on L!(u). These latter are
expressed in terms of non-standard L!(p)-valued Riccati equations. To see this, let us
fix some notations to work with. We define the mean-reverting operator A™" acting on

¢ € L*(u) by
(A™"0)(0) = —0p(0), 0 €R,, (2.1.10)

and set the dual pairing
(o) = / SO Tu(dB) (), (1) € LMu) x L=(uT)
- / $(0) p(d0)p(0),  (o,0) € L= () x L1 (™).

For any matrix—valued kernel G, we denote by G the integral operator induced by G,
defined by:

(Go)(0) = [ G(0,0)u(d6")b(6").

Ry
Then note that (3.2.10) can be rewritten
AY® = (A™Y? + BY? + Coy) dt + (DY + Fay) dW;, Y& =0.
Also, from Result (12) we see that the cost functional (2.1.2) can be reformulated in

L (p)

T
J(a) = E /O (Y2, Q™) +al Nay) ds| (2.1.11)
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where, by a slight abuse of notations, C' and F' denote the respective constant operators
induced by the matrices C' and F:

(Ca)(0) =Ca, (Fa)(0)=Fa, 0cRy, aecR™.
Their adjoint operators C*, F* take the form
C'g = C7 [ uld®)T9®). F'g = FT [ u(@®)Tg(0). gL,

Given the linear—quadratic structure of the problem, standard results in finite-dimensional
stochastic control theory, see [YZ99, chapter 7], as well as in Hilbert spaces, see [F1a86;
HT18], suggest the following verification result

Result 13: Verification theorem

Assume there exists auto-adjoint operator valued function T' from L!(u) into
L>=(u") solution to the Riccati equation

I'r = 0
r, = —-0LA — (LA™ —Q — D*I',D — BT, — (B*T,)"
+ (C*Ty + F*T\D)* (N + F*T,F)" (C*T, + F*T\D), te [0,T].
Then the value function of (2.1.1)-(2.1.2) reads

Vta = <Yta ’Ftha >u7

and the optimal feedback control takes the form

of = — (N + F*'T4F) " (C*Ty + F*T D) Y.

Furthermore, we show that I' is actually an integral operator whose associated sym-
metric kernel satisfies the following Riccati equation :

I.‘T(G, 7) = 0
ry(0,7) = (@+7)(0,7)-Q—-DT fRi (d6") T Ty (0, 7" p(dr") D
— BT [, w(d0")TTe(0',7) =[5, Te(0,7")u(dr") B + S (0)T NS, (7),
(2.1.12)
where

Sy(t) = CT/

R+

1(d0)TTy(0,7) + FT / 1(d0) T, 7 )u(dr') D

2
R

Ny=N+FT / 1(d0)TT4(0, 7)u(dr) .

2
R+

We show an existence result for the aforementioned Riccati equation (4.1.1).

Result 14: Existence and uniqueness of Riccati kernel

Let p be a d x d’-signed matrix measure satisfying (3.2.3). Assume that
Qest, N-\,,eST, (2.1.13)

for some A > 0. Then, there exists a unique solution T' € C([0,T], L' (1 ® p)) to
the kernel Riccati equation (4.1.1) such that Ty € S% (1 ® p), for all ¢ < T
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2.2. Rough Mean-Variance

Finally, we show that the value function of the stochastic Volterra optimization
problem (2.1.1)-(2.1.2) can be approximated by that of conventional finite dimensional
Markovian Linear—Quadratic problems, which opens the door for easy to implement
numerical simulations.

Result 15: Finite dimensional approximation

Assume that p satisfies (3.2.3) and let K be as in (3.2.2). Let (K™),>1 be a
sequence of kernels of the form (3.3.19) with respective measures p™ satisfying
(3.2.3), for each n € N. Assume (4.2.6) and that @ is invertible. Denote by V*
and V™ the respective optimal value functions of (2.1.1)-(2.1.2) and (2.1.7). If

||Kn — K”LQ(O,T) = O, as n — oQ, (2114)
then,

Vit —V*, asn — oo. (2.1.15)

2.2 Rough Mean-Variance

2.2.1 When Markowitz gets rough

In this part, we study the mean-variance portfolio selection problem combined when
volatility gets rough. Let’s recall what is the Markowitz portfolio allocation problem.
The goal is the following: assume you have a set of stocks that you can buy and sell.
Of course their prices can move randomly but you have developed a model and have a
guess about their drift, their volatility, their correlations, etc. The question is then :
How can I ensure a certain average yield for my portfolio while minimizing the volatility
of my wealth ?

min  Var(Xr).
]E(XT)=m

A vast volume of research has been devoted to this problem and its extension. In
parallel, financial process modeling have greatly improved since the seminal work of Louis
Bachelier ([Dav+11]) and random walks. It is now well-established since the seminal
paper by [GJR18a] that volatility is rough, modeled by fractional Brownian motion with
small Hurst parameter.

t
Ut%/ (t—s)A=12qw,,  H=~0.1.
0

Obviously, a clever investor would tend to prefer stocks with high yield, low volatility and
uncorrelated (or even anti-correlated) but the question of how investors should take into
account the roughness of stocks remains open. The research on portfolio optimization in
fractional and rough environments is still little developed but has gained an increasing
attention with the recent papers of [FH18; BD20; HW20b]|, which consider fractional
Ornstein-Uhlenbeck and Heston stochastic volatility models for power utility function
criterion, and the work by [HW20a| where the authors study the Markowitz problem
in a Volterra Heston model, which covers the rough Heston model of [EER18]. The
question we would like to shed some lights on is the following: Given a market with
multiple assets, how is the roughness of a stock should be taken into account
in portfolio allocation ?
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2.2.2 An example with two stocks

Fix some horizon T > 0, and consider a financial market on [0, 7] with a non-risky asset
SO

SY =1,
and two risky stocks S; = (S},52) : dS; = diag(S;)(o¢\dt + 04dB;) where B is a two
dimensional Brownian motion. Here ¢ denotes a R?*? valued process called stochastic

volatility, and A a R? valued stochastic called market price of risk (= %) In order to
work with a simple model, assume that stock prices follow

(2.2.1)

asi = Si (o(Yti)?dHYgng),
Vi = Yo+ [y (= o)V 2ndWi, =12,

with 0 < Hy < Hs < 1/2 and some correlation stucture

B'=B', B*=pB'+1-pB, W'=cB +\/1-cB",
where (BY+, B>1) is a two dimensional Brownian motion independent of B and 7 =

(n1,m2) the volatility of volatility.

Remark 2.2.1. In this introduction we motivate our work with the 2-assets Stein-Stein
model. We refer to Part 111 for a general treatment of the affine and quadratic models.

Let mP, m} and 77 be the amounts respectively invested in the non-risky asset and
the risky assets 1 and 2 at time ¢. If N; = (N}, N?)T is the number of shares owned in
the risky assets, then the dynamics of the wealth X; = N, S; + 7 of the self-financing
portfolio is given by

dX, =N,"dS,
=N, diag(S;)[(o¢\e)dt + 01d By
:OétT (/\tdt + dBt), Xo=1x9 € R,

where we have set o = o ' 7.

Remark 2.2.2. Model (2.2.1) implies

Y 0 N 0 \ ' /oyt
o= , = .
Yap Yor/1—p? p 1-p? 02>
The Markowitz portfolio selection problem in continuous-time then consists in solving
the following constrained problem

Vim) = iI€1Jf4 {Var(X7) : s.t. E[X7] =m} (2.2.2)

dX; = OttT ()\tdt + dBt), Xo=xp €R.

2.2.3 From Riccati equations to portfolio allocation

Note that unlike in Section 2.1, the dynamics of the controlled state X is Markovian.
Thus, it can be solved with classical method from linear quadratic control. We have the
following result.
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2.2. Rough Mean-Variance

Result 16: Verification theorem

Assume that there exists a solution triplet (I', Z1, Z?) to the Riccati BSDE

ary = Tu[[n+2l+Czpfd+ () B+ (22)" awi], 093]
Mo = .
such that

(H1) 0 < Ty < €? Js 7($)ds and Ty > 0, for all t < T,

(H2) There exists a p > 2 such that

E[exp (a(p>/0T(|As|2+\z;|2+|z§|2)ds)] <o, (224)

with a(p) being an explicit constant.
Then, the optimal investment strategy is given by

m — Foxo

of = W+ Z+CR)(E - X7), €= T (2.2.5)
and the value of the optimal wealth process is
20 = m]
—1lo

Although the structure of the above result is quite classical, note the presence of
condition (H2) which enables us to unify numerous results in the literature, see Table
5.1. Looking closely at £* it is easy to see that £&* > m (recall that o < m). Thus, the
dynamics of the controlled optimal wealth X™* reads

dX; = (M +Z} + CZ7) (€" — X[ ) (Medt + dBy).

From xg < m < £* and the continuity of X*, we have X* < ¢* on [0,T]. Consequently,
to grasp the effect of the roughness’s of stocks upon the investment strategy, one needs
to understand its effect on Z' and Z2.

aof = (M+2/+CZ7) (& -X7).

random vector to study eRy

To do so, the key idea is to observe that, if such solution exists, then, it admits the
following representation of a Laplace transform of a squared norm of a Gaussian variable:

T, = ]E{exp(—/tT(‘)\s—i—Zsl+CZ82‘2)ds) | 7], o<e<T

=~ squared Gaussian
Or, if G ~ N(u,X) is a n-dimensional Gaussian variable, then

exp (—u (1" (In +25u) " 'p))

> 0.
det (I, + 25u)1/? U=

E (exp(—u|G|*)) =
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From the expression above, one sees that an intuitive thing to do is to make the approx-
imation

T n
/ As + Z2 + sz\zds A0ty Gy~ IN (s S0

t i=1

2
)\iT/n + Zle/n + C’Zz'zT/n and

where G/, =
tin = E[(Gr/ns ... GT)|F, 20 =E[(Gr/n, ., Gr) (Gryn, o GT)|F).
A a result, we expect

=g ep ([ (15207 )as) | 7]
t
exp(—

~ lim (HI (In + 2En)71,un)
n—o0 det([n + 2En)1/2

The natural questions are then

1. To what limit do these object of size n converge as n — oo 7

e As n tends to infinity, big matrices converge to operators. Thus, a natural
infinite dimensional space appears : L?([0,T]).

2. Who should play the role of p,, 7
e the forward process gi(s) = E[Y; | ]-"t}, s>t

3. Who should play the role of 3, 7
e roughly speaking, the conditional covariance process of the forward process

To answer these questions we introduce the relevant infinite dimensional setting. Let
(-,+)r2 be inner product on L? ([O,T],RN) that is

T
(a)e = [ )7 gls)ds.
0
For every K € L? ([0, T)?, RNXN>7 we denote by K the integral operator induced :

(Kg)(s) = / K (s, u)g(u)du.

We then have the following result.
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2.2. Rough Mean-Variance

Result 17: Riccati BSDE - Riccati operator - Forward process

Let t — W, be the solution of the operator Riccati equation

U, =20,3,%,, tel0,T),
= 5 =1 (2.2.7)
Uy —— (Id—K) 07Te (Id—K) :
where
e K is the integral operator induced by the kernel K = —2K(nCTe),
e 3, =(Id- K)'=,(Id - K)~*,

e Y, is defined as the integral operator associated to the kernel.
sAu
Yi(s,u) = / K(s,2)n(U —2CTC)n" K (u,2) " dz, t<T,
t

where U = (1,=; + 1i7éjcicj)1gi,jg2 and C = (c1,¢9) "

Then, the process (I‘, AN Z2) defined by

'y = exp (¢ + (96, Wege)r2), t<T,
Zl =0,
zp = 2((Z:Kn)*g)(t),

where ®; = In(det(P¢A;)), is solution to the Riccati BSDE (2.2.3).

2.2.4 Numerical results

Consequently, the optimal control is of the form

oi = ((©+201wHn )g) () (6= X77).

Numerically tractable with
simple linear algebra !

Finally, we make the claim that ¢ — 2C [, Kn]" g(t) is easy to approximate with basic
linear algebra. The reasons are the following :

1. The operator valued function ¢ — W, is explicit;
2. Operators and functions can be stored as matrices.

The first claim comes from the next result

Result 18: Explicit ¥

The solution operator ¥ of (2.2.7) is of the form

o, — —(Id - f{)f*@T (Id + 2@2}@)71@(&1 - K)fl, 0<t<T.

Finally, let us explain the second claim. The idea comes from the limit argument
presented in Section 2.2.3 and is the following : assume H is an integral operator induced
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by a kernel H € L%([0,7)?) and f a function in L?([0,T]). We proceed by discretization

/Hsr ZH ZT), sE{%,...,T}.

Thus the objects needed to be stored in order to represent the operator H and the
element f are respectively a matrix (H (iT/n, jT/n))1<;,j<n and a vector (f(:L))1<; j<n.
Each time we need to compose an integral operator with another one, we multiply the
matrices involved and apply the % scaling. Beware when the operator is not of the
integral type, for instance :

(©F)(s) = 0f(s),

as the T/N scaling is not needed anymore. In such a case, the operator is simply stored
as a matrix Id,, ®60 where ® denotes the kronecker product. Note that when non-integral
operators are composed, the % scaling is not needed.

Remark 2.2.3. As one may have noticed, there is a little issue when several operators
that are the sum of an integral operator and a non-integral operator are composed (which
is the case of W in our case). For instance assume that

(HFf)(s) / H(s,r)f(r)dr,

then H — 0 is an integral operator but not 6.

Numerical simulations: We share our various simulations on the model (2.2.1) in
an IPython notebook*. We were able to reproduce a buy rough sell smooth strategy
in the case where p > 0, i.e. when stocks are similar in the sense that their prices
move up and down together on average. See Figure ?7. At this stage, there is no clear
explanation as of why such allocation should yield superior results, even if we make
some hypothesis in [JMP20b|. Nonetheless, our analysis tends toward an endogenous
explanation to phis phenomena, complementary to the ones given in [GH20b| where
exogenous influences such as compensation for near-term idiosyncratic event risk are
given. Finally our analysis tends to show, in accordance to [GH20b], that the length
of the horizon T" matters. Testing data with different T could be an interesting line of
work. To see more in depth analysis, see III.

tem

0.3 1

0.2 1

0.1

0.0 4

=0.11

0.00 0.25 050 0.75 1.00 1.25 150 175 2.00
t

Figure 2.1 - p=0.7, H, =0.08, H, =04, T =21, 91 =2 =1, ¢; = —0.7. The buy
rough sell smooth strategy as described in [GH20b] is recovered.

*https://colab.research.google.com/drive/1P _SYE3WgFgwUKpOo8uCBDdIC04XyxE2a?usp=
sharing
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2.3. Control with delay

2.3 Control with delay

Part IV is devoted to the control of systems with delays. The time needed to acquire
information, compute decision and execute make delays in control systems ubiquitous.
Various effects of delays on traffic flow modelling, chemical processes, population dy-
namics, supply chain, advertising have been studied in the literature.

In a delayed controlled system, the state X and the control o are the two main
components which can present a delay feature. When the delay is only present in the
state variable, the problem is now well understood as it suffices to lift the state variable
to the infinite dimensional space (X;,s € [-d,0] — X;ys), see [DMT72], [FGG10] to
name just a few. A much less understood situation is when the delay enters the control
variable. In this situation, two main approaches have emerged: the structural state
method and the extended state method, we refer to [Ben+07, Part II, Chapter 3] for
the study of these latter in the deterministic case and [FF14] for the structural state
approach in the stochastic case. For a complete list of references see also [FF14].

In our work, we aim at shedding some lights on the non deterministic case where
a delay enters the control, both in drift and volatility. In our work, we consider the
following class of stochastic delayed linear-quadratic control problem

dXta = Ot_( (bdt + O'th) 5 0 S t S T,
Xo=z, as=n1(s), s€[-d,0], zeR (2.3.1)
J(a) = E[(X$)?].

Except in [FF14], this situation is not treated theoretically nor numerically in the refer-
ences above. The main difficulty comes from the fact that optimization problems with
a delayed control naturally belong to the class of boundary control problems.

2.3.1 Verification and existence results

Our approach is inspired from the extended state approach initiated by Ichikawa, see
[Ich82], where the key idea is to lift the initial state space, namely R, to the infinite
dimensional Hilbert space H = R x L?([—d, 0], R), endowed with the inner product

0

@wH=mm+/)m@mst vy e H
—d

For each element (x,u) € H, the first element z is to be interpreted as the position

of the controlled system, and the second one s € [—d,0] — u(s) as the history of the

control. Our next result extends to the stochastic case deterministic results in [Ale+71]

and [Ich82|. The value function and optimal control of (2.3.1) are expressed in terms of

a self-adjoint bounded positive operator valued function P € C([0,T],L(H, H)) of the
form

0

Py (x,9() Pu(®)z + _y Pra(t, s)y()ds .

Pialt, )a + Pyy(t, )y() + [°, Pas(t, - s)(s)ds

which satisfies a set of Riccati partial differential equations

5 _ Plg(t,()) _ Plg(t,O)PQQ(t,S,O)
Py (t) Pyy(1,0) (Or — 0s)(Pr2)(t, 5) = Py 4,0) , (2.3.2)
(0 = 05)(Pgy)(t,5) =0, (0 — 05 — Or)(Pa2)(t,5,7) = il ;2?)(525)(75, O’T),
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together with boundary conditions

Plg(t, —d) = bPll(t), P2A2(t, —d) = 0'2P11(t), (233)
ng(t, S, —d) = bPlg(t, S), ng(t7 —d, 7") = bPlg(t7 T),

and final conditions
P (T) =1, P1o(T, s) = Py (T, 5) = Poa(T, 5,7) = 0, (2.3.4)

for almost every s,r € [—d,0].

Result 19: Verification theorem

Assume that there exists a solution P to (2.3.2)-(2.3.3)-(2.3.4). Then, the optimal
control of optimization problem (2.3.1) is

—li<r—d . /t
F=——=—3 X P1(t,0 Poo(t,0,5 — t)aid
at P2A2(t,0) { t 11( ) )+ o 22( , U, S )as S ¢,

and the optimal value is given by
V(z) = (Poz,2)H, (2.3.5)

where z = (x,7) € H denotes the initial state of the controlled system.

The next step is to give an existence result on P = (Pi1, P12, Pysy, P22). In the case
without delay, d = 0, although we do not penalize the control, the optimization problem
(2.3.1) admits an optimizer provided o # 0. Indeed, the more « is aggressive in bringing
X to 0, the more the second moment of X increases due to the diffusion term. It is easily
observable in the classical LQ stochastic optimization problem with controlled volatility
such as

AXE = ay(bdt + odW,),  t<T,
XO = Z,
J(o) =E[(X7)?),

2
where the optimal control reads o} = —U%Xf‘ and the value function V; = =10z,

A surprising finding in our work is the necessity for a more restricting constraint on the
diffusion coefficient when the delay feature is not null, d > 0.
Let a = (apn)n>1 denotes the following sequence

ap = ].7
{ 4 (2.3.6)

anyn —an—2 (2, n>o0,

and define N : (d,b,0) — inf{n > 1:a, > 0 and a,11 < 0}. We express the existence
result on P in term of the sequence a.

Result 20: Existence of t € [0,T] — P;

Assume T < N(d,b,0)d . Then (2.3.2)-(2.3.3)-(2.3.4) has a unique solution P
on [0, 7] with 0 < Py, (0) < 1.
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2.3. Control with delay

2.3.2 Deep learning scheme for PDEs

We now propose an algorithm to approximate ¢t — P;. As P is characterised by a set
of differential equations, we decide to make use of neural networks in the spirit of the
emerging Physics Informed Neural Networks (PINNs) and Deep Galerkin literatures, see
[SS18] and [RPK19] to name just a few.

Let us recall some of the main ideas. Assume we want to simulate a nonlinear partial
differential equation of the form

Ou 4+ N(u) =0, on Q,

2.3.7
u=g, on 012, ( )

where N is a nonlinear operator, € a bounded open subset and g a function on the
boundary of the domain. The key idea is to use a neural network as a surrogate to
the solution u to (2.3.7). Thus, let us call ¢t — u(t, ©) such network, where © denotes
its coefficients and t a generic element of 2 U 0€2. The strategy rely on minimizing the
following loss functional over mini batches:

L(O,T) = Lu(0,T) + L;(6,T), (2.3.8)
where £, and L are defined as
> 10+ Nu(t, ©)),  L(©,T) \TI > Jult,©) — g(t)]*.
teT, teTy

The subsets 7, = T NQ and Ty = T N IS are respectively random subsets of 2 and 0f2.
We summarize the numerical procedure in Algorithm 2.1.

0,7)=
£l |T|

Algorithm 2.1 Deep learning scheme to solve PDEs

Initialize: the learning rate n and the neural network u(-, ©);

For each batch:
Randomly sample 7 C 90Q U ;
Compute the gradient’s loss (2.3.8): Vo£L(©,T) = Ve(L, +L)(O,T);
Update © < © —nVeoL(0,T);

Return: The set of optimized parameters ©*.

The precise structure of (2.3.2)-(2.3.3)-(2.3.4) led us toward a tailored-made algo-
rithm.

Comments on the method: The Deep Galerkin method offers an easy to implement
procedure to approximate solutions of any differential equations on the whole domain QU
09). In theory they allow a high dimensional output space, although more investigations
are expected on this topic. In Part IV, we adapt the Deep Galerkin method to solve the
system of PDEs (2.3.2)-(2.3.3)-(2.3.4) in the context of Markowitz portfolio allocation
with execution delay. Note that in this case the output dimension is 4.

Nonetheless, the Deep Galerkin method does not extend well to the case where
the input space is high dimensional, say 100 for instance. Such case is important as
it is common in finance, operational research, physics, etc. In [HJW18], the author
suggests an another approach based on the Feynman-Kac representation of certain PDEs
emerging from particle systems. This kind of method is well suited for high dimensional
problem whose physicist’s interpretation is based on particle systems but suffer from
several drawbacks:
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ONOXC)

Figure 2.2 — Structure of the model used to solve (6.2.9)-(6.2.10)-(6.2.11).

e the need for a Feynman-Kac formula thus restricting the kind of differential equa-
tions solvable,

e the output dimension cannot easily be greater than 1,
e the solution is only computed in a small area of the domain.

Thus, we view these methods as being complementary and sum up some of their char-
acteristic in Table 2.1

dim. input > 1 dim. output > 1 Any diff. eq.

Deep backward ([HJW18]) v X X
Deep Galerkin ([SS18]) X v v

Table 2.1 — Comparison of neural networks schemes to solce PDEs.

2.3.3 Application to Markowitz portfolio allocation with execu-
tion delay

We now apply our numerical scheme to the mean-variance portfolio selection, see [Mar52b],
with execution delay in the spirit of the problem of hedging of European options with
execution delay presented in [FF14]. The Mean-Variance portfolio selection problem in
continuous-time consists in solving the following constrained problem

min, e 4 Var(X$) (2.3.9)
s.t. E[X$] =c. o

where X® denotes the wealth of the investor controlled by an investment strategy «. In
our work, we first study the one asset with delay case

(2.3.10)

AXE = p_q ((oN)dt + cdWy),  te[0,T],
Xo =10, Q5="s, Vs € [—d, 0],
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2.3. Control with delay

where a denotes the amount invested in the risky asset, and A and o are constants
representing respectively the risk premium and the volatility of the risky asset. Note
that the one delayed asset case allows for a direct application of Results 19 and 20:

Result 21: One delayed asset case

Assume T' < dN(d, (o)), 0), set £&* = ¢ —n* and

« K(y)+ P1i(0)(zo — )
"= 1— P, (0) ’

0
K(v) = /d'ysPlg(O,s)ds.

Define a*(§) as the investment strategy

—li<r— " i
( =W{<X? ~€)Palt0)+ [ al(©Pa(t0.s —t>ds}7
P2*2(t, 0) t—d
where P denotes the solution to (2.3.2)-(2.3.3)-(2.3.4). Then, the optimization
problem (2.3.9)-(2.3.10) admits a*(&) as an admissible optimal feedback strategy
and the optimal value is
Pi1(0)

Var(Xg') = T—Pu(0) (xo — c+ K (7))

0
+ / ’y‘?PQ‘Q(O, S)dS + / VS'YuP22(Oa S, T)der‘
d [_d10]2

Numerical resutls: From the aforementioned result emerges a direct application for
the numerical scheme presented in the previous section. See Figures 2.3 and 2.4 for some
examples of interests.

variance

1.0 1.2 1.4 1.6 1.8 2.0
yield

Figure 2.3 — Efficient frontier with o =1, A=0.5, T =5 and v = 0.

To further explore the effect of the delay on the control problem we also study, in
Chapter IV, the one asset with delay and one without case:

dX{ P = ap {(o1 M) dt + 01 dWE Y + By {(Gada)dt + 02dW2},  t € [0,T),
Xo =120, Bs=7s s€[=d,0]
<W17 W2>t = pt,
(2.3.11)
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Figure 2.4 — Optimal strategies and optimal portfolios with ¢ = 1.6, ¢ = 1, A = 0.5,
and T" = 5. Left: ¢t — o, right: ¢t = X;. Note the destabilization effect and the
supplement of volatility induced by the delay feature. Note also the tendency to invest
more aggressively the delayed investor has, as she has less time to ensure the promised
yield. £*(d =0.5) =2.57, *(d=1) = 2.68, £*(d = 1.5) = 2.80, £*(d = 2) = 2.97.

where o denotes the amount invested in the risky undelayed asset, 8 the amount invested
in the risky delayed asset, ,and A; and o; are constants representing respectively the risk
premiums and the volatilities of the risky assets.

Following the heuristic approach of Section 6.2, we define the following set of Riccati-
PDEs on [0,T] x [—d, 0]?

Pii(t) = MNPy (t) + ];1:2((2,(3)2, (2.3.12)
(0= 0)(Pra)(t) = NPra(t o)+ D200,
(0r = 0s)(Psy)(t, 5) = 0,
(9 — 05— 3,)(Pao) (t,5,7) = X2 Pu“ﬁj;)z(t, r) ., Palt ;22)(523)@,0,7”),
accompanied by the boundary conditions, for almost any ¢, s € [0,T] x [—d, 0]
Pia(t, —d) = Az02 <1 - /Jii) P (t), Py (t,—d) = 03 (1 —p®) Piu(t), (2.3.13)

A
ng(t, S, —d) = /\20’2 <1 — pl) Plg(t, S), ng(t, —d, 8) = )\20’2 (1 — p)\l) Plg(t, 8),
2

and the terminal constraints
Pll(T) = ]., P12(T, S) = Pj (T, S) = PQQ(T, 8,7") = 0, (2314)
for almost every s,r € [—d, 0].

We are now equipped to present the optimal strategy and value of problem (2.3.1)
in the 2-assets case
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2.3. Control with delay

Result 22: One delayed asset and one undelayed asset case

Assume there exists a solution P to (2.3.12)-(2.3.13)-(2.3.14). Set &* = ¢ —n*
and

«_ K() + P1i(0)(z0 — ¢
"= 1— P, (0) ’

0
K(v) = /d’ysPlg(O,s)ds.

Define (a*(£*), 5*(£*)) as the investment strategy

at(© =~ {207 -+ 0280 at o2 [ 8Pl - s}

01

516 = 5t a0 (0 -0+ [ g ©Pa(t0.r —tar).

Then, the optimization problem (2.3.9)-(2.3.11) admits (a*(£*),8*(£*)) as an
admissible optimal feedback strategy and the optimal value is

Var(Xg") = 11}”20) oK ()

0
+/ 7?P2»2(0, s)ds+/ VsYuPa2(0, s, 7)dsdr.
d [—d,0]2

Numerical simulations: The flexibility of the deep learning scheme presented in Sec-
tion 2.3.2 allows for an easy adaptations to the new set of Riccati PDEs (2.3.12)-(2.3.13)-
(2.3.14). See Figure 2.5 to see the interaction between the delay feature and the corre-
lation p, and Chapter IV for a more in depth analysis.

g hlL = Ai _ “n‘
! AT ‘t"“ il “u‘ "\"“
! Ww%w W M‘w-m
< e o o
o h'L k’\\ M\}\
Il ‘VVMM “‘f\‘r“"\v\ ! “
QU | W"ﬂ'\‘\:"’w "M\ . ‘V’-,N”mM f’ M\\lm%m% -
[\. HL ) W = m) -
o \ \\
M\M L k ‘ﬂm\ ) “\
g i ﬁ/ MMM\ Ml WLV \_,ﬂ,.‘\,,,,%_\‘ 1W\M'WW‘WV\‘“M\&

Figure 2.5 — t — (of,Bf), with 01 = 02 = 1, Ay = Ay = 0.5 and T' = 5. Blue : o,
orange : (*. The same realizations of W and B were used for all experiments. Note
that the more positively correlated the assets are, the more favored the undelayed asset
is.
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Volterra control
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Chapter

Linear—Quadratic control for a class
of stochastic Volterra equations:
solvability and approximation

Abstract We provide an exhaustive treatment of Linear—Quadratic control problems
for a class of stochastic Volterra equations of convolution type, whose kernels are Laplace
transforms of certain signed matrix measures which are not necessarily finite. These
equations are in general neither Markovian nor semimartingales, and include the frac-
tional Brownian motion with Hurst index smaller than 1/2 as a special case. We establish
the correspondence of the initial problem with a possibly infinite dimensional Marko-
vian one in a Banach space, which allows us to identify the Markovian controlled state
variables. Using a refined martingale verification argument combined with a squares
completion technique, we prove that the value function is of linear quadratic form in
these state variables with a linear optimal feedback control, depending on non-standard
Banach space valued Riccati equations. Furthermore, we show that the value function
of the stochastic Volterra optimization problem can be approximated by that of con-
ventional finite dimensional Markovian Linear—Quadratic problems, which is of crucial
importance for numerical implementation.

Keywords: Stochastic Volterra equations, linear-quadratic control, Riccati equations
in Banach space.

3.1 Introduction

Let us consider the basic problem of controlling the drift a of a real-valued Brownian
motion W

t
X7 = / asds + W, t2>0, (3.1.1)
0

in order to steer the system to zero with minimal effort by minimizing over a finite
horizon the cost functional

J(a) = E[/OT (1x7)? +af)dt].
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Chapter 3. Linear—Quadratic control for a class of stochastic Volterra equations:
solvability and approximation

This problem fits into the class of linear-quadratic (LQ) regulator problem, and can
be explicitly solved by different methods including standard dynamic programming,
maximum principle or spike variation methods relying on It6 stochastic calculus. It is
well-known, see e.g. [YZ99, Chapter 6], that the optimal control o* is in linear feedback
form with respect to the optimal state process X* = X< :

af = T(OXF, 0<t<T,

where T is a deterministic nonnegative function solution to a Riccati equation, actually
explicitly given by I'(¢t) = tanh(T —¢), and thus the associated optimal state process X*
is a mean-reverting Markov process.

Suppose now that the noise W is replaced by a Gaussian process with memory, ty-
pically a fractional Brownian motion, or more generally by stochastic Volterra processes.
It is then natural to ask how the structure of the solution is modified, and how it can be
derived, knowing that, in this case, usual methods for Markov processes and stochastic
calculus for semimartingales can no longer be applied.

Stochastic Volterra processes appear in different applications for population dynam-
ics, tumour growth, or energy finance, and provide suitable models for dynamics with
memory and delay, see [BNBV11; GLS90; Sch06]. These processes have known a growing
interest in finance with the recent empirical findings on rough volatility in [GJR18b].
Stochastic Volterra equations have been studied by numerous authors, see [AJLP19;
MS15; PP90] and the references therein.

In this paper, we address the optimal control of d-dimensional stochastic Volterra
equations of the form:

t
X = go(t)+/ K(t = 5)(b(s, X2, 0,)ds + 0(s, X2, 0,)aW, ), (31.2)
0

where go is a deterministic function and K is a (convolution) matrix-valued kernel of
the form

K(t):/ e~ u(d), t> 0,
Ry

for some signed matrix measure p. Our framework covers the case of the fractional
kernel K (t) = t#~1/2/T(H +1/2) with H < 1/2, arising from the Mandelbrot-Van Ness
representation of the fractional Brownian motion with Hurst index H. We shall mainly
focus on the case where the coefficients b and ¢ are in linear form with respect to the
state and control arguments, and the cost to be minimized is of linear-quadratic form.
Since the (controlled) stochastic Volterra process (3.1.2) is neither Markovian nor a
semimartingale, it is natural to consider Markovian lifts for which suitable stochastic
tools and control methods apply. Inspired by the Markovian representation of frac-
tional Brownian motion introduced in [CC98], and more recently generalized to several
un—controlled stochastic Volterra equations in [AJEE19a; CT18; HS19], we establish
the correspondence of the initial problem with a lifted Markovian controlled system
(Y¥)iepo,r) taking its values in the possibly infinite-dimensional Banach space L' ().
Next, in the LQ case, i.e., when b, o are of linear form, and the cost function is linear-
quadratic, we prove by means of a refined martingale verification argument combined
with a squares completion technique, that the value function is of quadratic form while
the optimal control is in linear feedback form with respect to these lifted state variables.
The coeflicients of the quadratic and linear form of the value function and optimal control
are expressed in terms of a non-standard system of integral operator Riccati equations
whose solvability (existence and uniqueness) is proved in [AJMP19a]. A related infinite-
dimensional Riccati equation appeared in [AS13] for the minimization problem of an
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energy functional defined in terms of a non-singular (i.e. K(0) < oo) completely mono-
tone kernel. We stress that, although there exists several results for LQ control problems
in infinite-dimension, and even for Volterra processes (see [BCM12]), they cannot be ap-
plied in our Banach-space context as they only concern Hilbert spaces. As detailed
above, the first contribution of our paper lies in the rigorous derivation of the optimal
solution for the stochastic Volterra control problem. A second important feature of our
approach is to provide a natural approximation of such solution by a suitable discretiza-
tion of the measure p, leading to conventional finite-dimensional L.Q control problems,
which involve standard matrix Riccati equations that can be numerically implemented.

The paper is organized as follows. In Section 3.2, we formulate the control problem,
justify the correspondence with the lifted Markovian system in the Banach space L!(u),
and formally derive the Riccati equation. Section 4.2 presents the main results:

1. the analytic expression and solvability of the value function and optimal control in
terms of a Banach-space valued Riccati equation. We illustrate our general result
on the LQ regulator example mentioned in the beginning of the introduction with
a fractional noise with Hurst parameter H < 1/2;

2. a general stability result for the solution of the stochastic Volterra control problem
with respect to the kernel and its application for the approximation of the solution.

In Section 3.4, we prove a general existence result for SDEs with Lipschitz coefficients
in Banach spaces, which is used in particular to get the existence of an optimal control
for the LQ Volterra control problem. In Section 3.5, we provide a refined martingale
verification theorem for L(Q control problem in our context, which mainly relies on Itd’s
formula for quadratic functions in Banach spaces. The proof of the solvability result 1
is completed in Section 3.6, and that of the stability result 2 is detailed in Section 3.7.

Related literature. The optimal control of stochastic Volterra equations has been
considered in [Yon06] by maximum principle method leading to a characterization of
the solution in terms of a backward stochastic Volterra equation for the adjoint process.
In [A@15], the authors also use the maximum principle together with Malliavin calculus
to obtain a corresponding adjoint equation as a standard backward SDE. Although the
kernel considered in these aforementioned papers is not restricted to be of convolution
type, the required conditions do not allow singularity of K at zero, hence excluding the
case of a fractional kernel with parameter H < 1/2. More recently, an extended Bellman
equation has been derived in [HW19] for the associated controlled Volterra equation.

The solution to the LQ control problem as in (3.1.1) with controlled drift and additive
noise has been obtained in [KBV03] when the noise is a fractional Brownian motion with
Hurst parameter H > 1/2, and in [DPD13] when the noise is a general Gaussian process
with an optimal control expressed as the sum of the well-known linear feedback control
for the associated deterministic linear-quadratic control problem and the prediction of
the response of the system to the future noise process. Recently, the paper [Wanl§]
investigated L.Q problem of stochastic Volterra equations by providing characterizations
of optimal control in terms of some forward-backward system, but leaving aside their
solvability, and under some coefficients assumptions that preclude singular kernels such
as the fractional kernel with parameter H < 1/2.

Notations. For a Banach space B, L?([0,T],B) denotes the space of measurable and
square integrable functions from [0, 7] to B.

For any d x d;-matrix valued measure p1 on Ry, we denote by |u1] its total variation,
which is a scalar nonnegative measure, refer to [GLS90, Section 3.5] for more details.
The space L' (1) consists of ui-a.e. equivalence classes of |p;|-integrable functions ¢ :
R, — R endowed with the norm lolloru) = fR+ |1](dO)|(0)|, where we identify
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the function ¢ with its class of equivalence. For any such ¢ the integral

/R 111 (d0)0(6)

is well defined by virtue of the inequality

/ 111 (d6) 0(6)
Ry

< / lal(@) @),

see |[GLS90, Theorem 5.6]. If 15 is a d x de-matrix valued measure, the space L (1 ® o)
consists of p; ® po-a.e. equivalence classes of |p1| ® |uz|-integrable functions ® : Ri —
R endowed with the norm [|[® 11 (,ep,) = S || (d0)|@ (8, 7)[| 2| (d6) < oo. For
any such @, the integral
i (d0) (0, T)pa(d7)
R

+

is again well defined by virtue of [GLS90, Theorem 5.6]. Both (L'(u1), || - [[11(4)) and
(L'(p1 ® p2)s || - L1y ops)) are Banach spaces, see [Rud06, Theorem 3.11]. We also

denote by L*(u1) the set of measurable functions ¢ : Ry — R%, which are bounded
u1-a.e., and by L (u1 ® pe) the set of measurable functions & : Ri — R4 which are
bounded 11 ®p2-a.¢, that we endow with their usual norms [|1)[| oo (., ) and || ®|| Loo (11, @ pus)-

3.2 Formulation of the problem and preliminaries

Let (,F,F = (F;)i>0,P) be a filtered probability space supporting a one dimensional
Brownian motion W. Fix T > 0 and d,d’, m € N. We consider a controlled d-dimensional
stochastic Volterra equation

t t
X7 =go(t) + / K(t—s)b(s, X, as)ds + / K(t—s)o(s, X, as)dWs, (3.2.1)
0 0
where « is an element of the admissible set

A= {a :Q x [0,T] — R™ progressively measurable such that sup E [|ozt|4] < oo} ,
0<t<T

go : [0,T] — R? is a measurable function, K : [0,T] — R is a measurable kernel,
and b,o : [0,T] x R x R™ — R? are of affine form:

b(t,x,a) = B(t) + Bx + Ca,
o(t,z,a) =~(t) + Dx + Fa,

where B,D € R¥*? O, F € RY*™, and B,v:[0,T] — R? are measurable functions.
We are chiefly interested in the case where K is the Laplace transform

K(t) = / e 'u(do), t>0, (3.2.2)
Ry
of a signed d x d'~measure u satisfying

/R (1 A 971/2) |1l (d) < o, (3.2.3)
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3.2. Formulation of the problem and preliminaries

where |p| denotes the total variation of p. While condition (3.2.3) does not exclude
tij(Ry) = £oo for some i < d, j < d’, or equivalently a singularity of the kernel K at

0, it does ensure that K € L2([O,T],RdXdl) and that |p| is o-finite, see Lemma 3.A.1.
The former implies that the stochastic convolution

£ / K- )W,
0

is well defined as an It6 integral, for every ¢ < T, for any progressively measurable
process £ such that

supE [|§t\2] < 00.
t<T

Indeed,

t
B | [ (- 9Plelds] < KT s E (6] <o

for every t < T'. The convolution

t— /t K(t — s)&ds,
0

is also well defined for every ¢t < T, by virtue of the Cauchy—Schwarz inequality.

We can now make precise the concept of solution to the controlled equation (3.2.1).
By a solution to (3.2.1), we mean an F-adapted process X with continuous sample
paths such that (3.2.1) holds for all ¢ < T, P-almost surely. Under (3.2.2)-(3.2.3),
assuming that (3, v are measurable and bounded, Theorem 3.4.2 shows that the controlled
stochastic Volterra equation (3.2.1) admits a unique continuous solution X%, for any
continuous input curve gg, and any admissible control @ € A. Furthermore, it holds
that

sup E [|Xt"‘|4] < oo. (3.2.4)

0<t<T

Remark 3.2.1. Notice that due to the possible singularity of the kernel K, and in
contrast with standard stochastic differential equations, the solution X to the controlled
stochastic Volterra equation does not satisfy in general the usual square integrability
condition of the form: E[supg<,<r |X§|?] < co. For this reason, we impose the stronger
condition sup,.r E[|a|t] < oo for the set of admissible controls A, which will turn out
to be crucial for the martingale verification result, see Section 3.5. O

We consider a cost functional given by

T
J(a) = E[ / F(xe, as)ds], (3.2.5)
0
where the running cost f has the following quadratic form
f(z,a)=2"Qr+a ' Na+22"L, (3.2.6)

for some @ € Si,N € ST and L € R%. Here Si denotes the set of d-dimensional
nonnegative symmetric matrices. Note that by virtue of (3.2.4), J(«) is well defined for
any o € A. The aim is to solve

= inf . 2.
Vo= inf J() (3.2.7)

Before going further, let us mention several kernels of interest that satisfy (3.2.2)-
(3.2.3).
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Example 3.2.1. 1. Smooth kernels: if |pi;j(Ry)|] < oo, for every i = 1,...,d,j =
1,...,d, then (3.2.3) is satisfied and K is infinitely differentiable on [0,T]. This
is the case, for instance, when pu(df) = Y71, ci'dgn(df), for some ¢} € R and
0 e Ry, i=1,...,n, which corresponds to

n
K(t) = Z cre 0t
i=1

2. The fractional kernel (d=d' =1)

tH-1/2
Ky(t) = TH+12) (3.2.8)
for some H € (0,1/2), which is the Laplace transform of
97H71/2
wy(do) = de, (3.2.9)

I'(H +1/2)[(1/2 — H)

and more generally the Gamma kernel K(t) = Ky (t)e™ St for H € (0,1/2) and
¢ € R for which
0= 0)(9)

T(H +1/2)T(1/2— H) ao.

p(df) =

3. If K1 and Ks satisfy (3.2.2), then so does K1 + Ko and K1 Ko with the respective
measures i1 + p2 and py x po. When uy, us satisfy (3.2.3), it is clear that py + pa
also satisfies (3.2.3). This condition is satisfied for the convolution py * pe provided
f[l’m)2(9+7)71/2u1(d0)u2 (dr) < oo, which is the case for instance if either p1 (R4)
or ua(Ry) are finite.

4. If K is a completely monotone kernel, i.e. K is infinitely differentiable on (0,00)
such that (—1)" K™ (t) is nonnegative for each t > 0, then, by Bernstein’s theorem,

there exists a nonnegative measure p such that (3.2.2) holds, see [GLS90, Theorem
5.2.5].

O

3.2.1 Markovian representation

The solution X of (3.2.1) is in general neither Markovian nor a semimartingale as
illustrated by the Riemann—Liouville fractional Brownian motion
1 ' H—1/2
t— ————— t—s)" 2dW,, H € (0,1/2],
F(H+1/2)/O( ) 0,1/2]

which is Markovian and a martingale only for H = 1/2. Inspired by the Markovian
representation of fractional Brownian motion introduced in [CC98|, and more recently
generalized to several un—controlled stochastic Volterra equations for kernels of the form
(3.2.2), see [AJEE19a, Section 4]; [CT18, Section 5.1]; [HS19]; we establish in the fol-
lowing theorem, by means of stochastic Fubini’s theorem, the correspondence of (3.2.1)
with a possibly infinite dimensional Markovian controlled system of the form

aveo) = (0¥ 0) + b (¢ o, plar)V(r),00) )
+5 (t, S, (A7) (7)., ozt) AW, (3.2.10)
Yo = o,
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where the coefficients b : [0, T] x RY x R™ — RY 5 : [0,7] x R x R™ — R? are defined
by

with ~
B =B+ Bgy and 5=+ Dgo.

Theorem 3.2.1. Let go, 5,7 be bounded functions on [0,T] and K be given as in (3.2.2)
such that (3.2.3) holds. Fix o € A. Assume that there exists a progressively measurable
process X that solves (3.2.1), P-a.s., for each t < T, and that (3.2.4) holds. Then, for
each t <T, X{* admits the representation

X =aolt)+ [ utdnye ). (3:211)

where, for each 6 € Ry,

t t
Yo (0) = /0 e 00=9)p(s, X ay)ds + /0 e 0o (s, X a)dW,.  (3.2.12)

In particular, Y can be chosen to have continuous sample paths in L' (u), satisfies

supE [||Yta||‘il(u)} < 0, (3.2.13)
t<T
sup sup |Y;*(0)| < oo, (3.2.14)
t<T 0€Ry

and for each 0 € Ry, t — Y,*(0) solves (3.2.10). Conversely, assume that there ezists a
process Y continuous in L' (i) solution to (3.2.10), i.e., such that

Y, (0) = /0 e-"(f-S)B(s, /R u(dT)yg(T),as> ds

t
+ / 670(1578)5_ <5’/ /J,(dT)Y;a(T), as) dVVS7 P &® n— a.e. (3215)
0 R4

for each t < T, and that (3.2.13) holds. Then, the process X< given by (3.2.11) is a
continuous solution to (3.2.1) such that (3.2.4) holds.

Proof. Fix t < T and set Z = fot b(s, X, ag)ds + fot o(s, X%, as)dWs. We first plug
(3.2.2) in (3.2.1) to get

X~ golt) = /Ot K(t — 5)dze = /Ot (/R+ M(de)e—f’(t—S)) dze.

An application of stochastic Fubini’s, see [Ver12, Theorem 2.2], yields

/Ot </R+ u(de)e—“t—s)) Az = /R+ 1u(d6) (/Ot e—9<t—5>dzg> :

where the interchange is possible since by Jensen’s inequality on the normalized measure
(L A0~ u(db)/ fR+(1 AT Y2 u(dr) the term

/R + < /0 2o [d<za>s]> " o
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is bounded from above, for some ¢ > 0 by,

1— 672015 1/2
c\/sup ()P +Elar 2] + E 1 X2 ) ( | = (o) Iu(d9)>

r<T

which is finite due to the inequality

(1—e20t) 1

< Z

20 -2

condition (3.2.3), the boundedness of v, the admissible set .4 and the estimate (3.2.4).
The interchange is justified similarly for the drift part. If follows that

(tvat) (1aet), (3.2.16)

Xp =00+ [

R

uta) (/ t ez ) = gnlt) + [ o)y o)

where Y,*(6) is given by (3.2.12) and corresponds to the variation of constants formula
of (3.2.10). The claimed continuity statement together with (3.2.13)-(3.2.14) are proved
in Lemma 3.4.1. The converse is proved along the exact same lines by working them
backward. O

Remark 3.2.2. An alternative lift approach, in the spirit of [AJEE19a; EER18; HW19;
JO19; VZ18], consists in introducing the double-indexed (controlled) processes
G¢(u)=E {X{j —/ K(u—s)b(s, X, as)ds ‘ .7-}] , 0<t<u<T.
t
The control problem can then be reformulated in terms of the infinite dimensional con-

trolled Markov process {G¢(.),t € [0, T} with Ité dynamics

dG¢(u) = K(u—t) (b(t, X;', ap)dt + o(t, X, o)dWy), 0<t<u<T.

3.2.2 Formal derivation of the solution

Thanks to Theorem 3.2.1, the possibly non-Markovian initial problem can be formally
recast as a degenerate infinite dimensional Markovian problem in L!(x) on the state
variables Y given by (3.2.10). To see this, we define the mean-reverting operator A™"
acting on measurable functions ¢ € L'(u) by

(A™ ) (0) = —0p(0), 0 € R, (3.2.17)

and consider the dual pairing
(o) = / PO)Tu(d0)TH(O), (i) € LM () x L=(uT).

For any matrix—valued kernel G, we denote by G the integral operator induced by G,
defined by:

(Go)(0) = | G(0,0)u(d")p(6").

Ry

Notice that when G € L°(u® u), the operator G is well-defined on L' (x), and we have
G € L°°(u") for ¢ € L' (p). In this case, (¢, Gy),, is well defined for all ¢, € L' (p).
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When G € L'(u ® p), the operator G is well-defined on L*(u), and we have G¢ €
LY(p"), for ¢ € L>(p). In this case (G¢, ), is well defined for all ¢, 1) € L>(p).

To fix ideas we set go = 8 = =0 and L = 0. Noting that relation (3.2.15) is the
mild form of the linear controlled dynamics in L (1),

AY; = (A™Y + BY + Cay) dt + (DY® + Foy) dW,, Y& =0,

we see that the optimization problem (3.2.7) can be reformulated as a Markovian problem
in L'(p) with cost functional,

J(o) =E

T
/ (Y2, QY™+ al Nay) ds} : (3.2.18)
0

where, by a slight abuse of notations, C' and F' denote the respective constant operators
from R™ into L*°(p) induced by the matrices C' and F:

(Ca)(0) =Ca, (Fa)(§)=Fa, 6€R;, acR™.

Their adjoint operators C*, F* from L'(u") into R™ take the form

C*g = CT/]R p(d0)"g(0), F*g = FT/]R w(do) g(0), geL'(u").

+

Given the linear—quadratic structure of the problem, standard results in finite-dimensional
stochastic control theory, see [YZ99, Chapter 6], as well as in Hilbert spaces, see [F1a86;
HT18], suggest that the optimal value process V* associated to the functional (3.2.18)
should be of linear—quadratic form

Ve = (T,
with an optimal feedback control a* satisfying
of = — (N + FT4F) ' (C'Ty 4+ F*TyD) Y, 0<t<T,

where T'; is a symmetric operator from L'(x) into L>(u'), and solves the operator

Riccati equation:
'y = 0
I, = —-IA™" — (I A™)* —Q — D*T,D — B'T, — (B*I,)"
+ (C*T + F*Ty,D)* (N + F*T'\F)" ' (C*T, + F*T,D), te0,T].

In particular, when I is an integral operator, this formally induces the following Riccati
equation for the associated (symmetric) kernel I' valued in L'(u ® p):

rr0,7) = 0
(0, 7) (6 +7)T4(6,7) = Q = D7 [ga (') TTo(8, 7' )u(dr') D
= BT [p, w(dd") (0, 7) = [y, Te(0,7)u(dr) B + Si(0)T Ny 'S (7),
(3.2.19)

where
St(T):CT/ u(d@)TFt(Q,T)JrFT/ w(do) (0", 7" u(dr') D
0 RZ

Ny=N+FT / 1(d0) TT(0, 7)u(dr)F,

2
R
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and provides an optimal control in the form

of = N7 [ SO0y @), 0<i<T
+

Although the aforementioned infinite dimensional results provide formal expressions
for the solution of the problem, they cannot be directly applied, since they concern
Hilbert spaces. Here the infinite dimensional controlled process Y takes its values
in the non reflexive Banach space (L'(u), | -|lr1(u)). The rigorous derivation of the
solution is the first main objective of the present paper. Our second goal is to show how
to obtain an analytic finite-dimensional approximation of the original control problem
after a suitable discretization of the operator Riccati equation.

3.3 Main results

We collect in this section our main results.

3.3.1 Solvability: optimal control and value function

Let o € A. Given the linear-quadratic structure of the problem and the formal analysis
of Section 3.2.2, it is natural to consider a candidate optimal value process (V;*);<r of
linear-quadratic form in the state variable Y given by (3.2.15), that is

Ve = [ ¥ ) T0. )Y () + 2 / AL(6)T (d0)Y(6) + x(3.3.1)

where the functions ¢ — Ty, A;, x; are solutions, in a suitable sense, of the following
system of Riccati equations:

Li(0,7) = (0+7)T(0,7) —Ri(T)(6,7), rr(0,7)=0
A(6) = BAB) — Ra(t, T, A0)(6), Ar(6) =0 (3:3.2)
Xt = —Rg (t, Fta At)a XT = 0,

where we defined

Ra(T)(0,7) = Q+DT/

1(d0) (8, 7 )u(dr')D + BT / 1(d0) T 7)
R

2
+ R+

+ /OOC 00, ") u(dr')B — S(I)(0) T N~HD)S(T) () (3.3.3)
Ra(t.TA)0) = L+ Quolt) + BT [ ua0)TA@)+ [ T0.7lar)B)
0 0

o / u(d8") DO, 7 )u(dr' )3 (t) = S(D)(6) T N (D)~ h(t, T,(8)3.4)

+

Ra(t,TA) = g0(t)" Qao(0) +3(0)" |

[ () O 750

+

+ BT /OOO w(d0)TAG') — h(t,T,A)N(T) " h(t,T,A), (3.3.5)
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with

SI)(r)=CT /OOO u(de)Tr(e,T)JrFT/R w(do) (0, T u(dr' ) D

M) = N+ FT [ ulao) T0.utdn)F (33.6)
h(t,T,A)= CT / h w(dd)TAB) + FT / w(d0) "0, 7)u(dT)A(t).
0 ]Ri

The two following definitions specify the concept of solution to the system (4.2.2).

Definition 3.3.1. Let I : Ri — R such that T € L®(p® u). We say that T is
symmetric if

L@, 7)=I(10)", pou—ae.
and nonnegative if
[, £ n(ds) D6 o) = 0, for all € L ).
R
We denote by Si(u ® p) the set of all symmetric and nonnegative T' € L™ (1 @ ).

Remark 3.3.1. The integral operator T' associated to a symmetric kernel L (u® p) is
symmetric, in the sense that

<50,F1/J>;n = <7/}ar<»0>m 0, € Ll(/‘)'
Moreover, the nonnegativity of I' translates into
(0. T¢)y > 0, e Ll(n).
O

Definition 3.3.2. By a solution to the system (4.2.2), we mean a triplet (I';A,x) €
C((0,7], (@ ) x C([0, T}, L} (u)) x C([0,T), R) such that

T
ry(0,7)= / e~ DGR (T,)(0, 7)ds, 0<t<T, pn®p—ae(33.7)
t
T
Ay(9) = / e VIR, (5, Ty, Ay)(6)ds, 0<t<T, p—ae  (3.3.8)
t
T
Xt = / Rs(s,Ts, Ag)ds, 0<t<T, (3.3.9)
t

where R1, Ra and R3 are defined respectively by (4.2.3), (3.3.4) and (3.3.5). In particular

N(T;) given by (4.2.4) is invertible for allt <T.

The existence and uniqueness of a solution to the Riccati system follows from [AJMP19a],
and is stated in the next theorem. Its proof is given in Section 3.6.

Theorem 3.3.1. Let go, 3,7 be bounded functions on [0,T]. Assume that p satisfies
(3.2.3) and that

Qest, N-)\I,eST, (3.3.10)
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for some X\ > 0. Then, there exists a unique triplet (I, A,x) € C([0,T], L (1 ® p)) x
C([0,T), LY (")) x C([0,T],R) to the system of Riccati equation (4.2.2) such that (4.2.5),
(3.3.8), (3.3.9) hold and I'y € S4 (@ p), for all t < T. Furthermore, there exists some
positive constant M > 0 such that

/|u|(d7’)|f‘t(9,7)|§ M, p—ae, 0<t<T. (3.3.11)
Ry

Remark 3.3.2. Since I'y € S (1 ® p), we have I'y € L' (p ® p) N L>®(u @ p), for all
t < T. Similarly, Ay € L*(nT) N L=®(u"). To see this, it suffices to observe that since
A€ C([0,T), LY (u")), it is bounded in L*(u"). Combined with the boundedness of T in
LY (@ ), the estimate (4.2.7) and the boundedness of the coefficients, we obtain

|R1(Ft)(977-)| + ‘RQ(tv]-—‘tht)(eﬂ < c, M®N_a'e'7 t §T7
for some constant c. Finally, from (3.3.8), we get that Ay € L>®(u"), for allt <T. O

Remark 3.3.3. The process V¢ given by (3.3.1) is well-defined and continuous, due
to the continuity of (T, A, x), that of Y from Theorem 3.2.1 together with the bounds
(3.2.14) and Remark 4.3.1. O

Our first main result addresses the solvability of the problem (3.2.7). Theorem 3.3.2
establishes the existence of an optimal feedback control of linear form and provides an
explicit expression for the value function in terms of the solution to the Riccati equation.
The proof is collected in Section 3.6 and builds upon the results developed in Sections
3.4 and 3.5.

Theorem 3.3.2. Let 3,7 be bounded functions on [0,T] and go continuous. Fiz K, p
as in (3.2.2)-(3.2.3). Under (4.2.6), let (T, A, x) be the solution to the system of Riccati
equation (4.2.2) produced by Theorem 4.2.1. Then, there exists an admissible control
o* € A with corresponding controlled trajectory Y as in (3.2.15) such that

ot = ~NC) (e Tod) + [ STHO@Y ) (3312

Ry
for allt <T. Furthermore, o™ is an admissible optimal control, in the sense that

> .
Jnf J(a) = J(a"),

Y s the optimally controlled trajectory of the state variable and Vt‘)‘* given by (3.3.1)

is the optimal value process of the problem, that is

Ve = inf E
acAs(a*)

T
/ F(X, ay)ds ‘ ft] . 0<{<T, (3.3.13)
t

where Ay(a) = {a/ € A: o) = a,, s <t}.

Remark 3.3.4. From (3.3.13), it follows that at initial time t = 0, the optimal value
Vo is equal to Vo = VOC“* = X0, hence

T
V() = / Rg(t7rt,At)dt.
0

In particular, for a constant initial condition go(t) = Xo for some Xy € RY, we have

Vo= X, U(T)Xo + ®(T)Xo + &(T),
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for suitable functions U, ® &, which corresponds to the usual linear—quadratic form in
Xo. However, because of the possible non-Markovianity of the problem, for t > 0, the

optimal value Vto‘* 18 not necessarily linear—quadratic in Xf‘* as in the standard case.
O

The following example treats the LQ regulator problem (3.1.1) with a general Volterra
noise.

Example 3.3.1. Let us consider a controlled equation with Volterra noise

t t
Xt‘":/ asds—l—/ K(t — s)dWs,
0 0

T
J(@)=E l/ (QXZ+ Naﬁ)ds] :
0
where K (t) = Jo° e % [i(df). Notice that X can be recast as
t
X = / K(t —s) (Casds + vdWs) ,
0

where K is the row vector (1,K), C = (1,0)T and v = (0,1)T. The kernel K is the
Laplace transform of the 1 x 2-matriz measure p = (60(d6), 1(df)). An application of
Theorem 3.3.2 gives an optimal control of feedback form in Y :

1

i =~y 0.0 ) +

T(6,0)Y2(6)7i(d6) |, (3.3.14)
Ry

where I is solution to the real-valued infinite dimensional Riccati equation
T
I(0,7) = / e WFIETD (Q —T4(0,0)N~'T5(0,7)) ds, fi®ji—ae., te][0,T],
t
and Y(0) = (Y,1(0),Y2(0)" = fg e~ 06— (Catds +vdWs). In particular,
t
v20) = [ e aw,
0

t t
Vo = [t = X = [ Ka—saw, = x; = [ v20)an)
+

where X* = X, and the last equality holds by stochastic Fubini’s theorem. Plugging
the expressions of Y and Y? into (3.3.14) yields

«_ L . > B PO
i == (10,07 + [ (0.0~ 100,00 Y2 0)i(a9) )

which is the sum of a feedback form in X*, and a second term capturing the non Marko-
vianity of X, as for example in the case of a fractional noise with Hurst parameter H
< 1/2. Note that T'(0,0) satisfies the standard Riccati equation in LQ control problem.
One can also note that when K =1 then [i(df) = 8o(df), which implies that the optimal
control takes the standard feedback form af = —%Ft(0,0)Xt*. O

Remark 3.3.5. Conventional linear—quadratic models, see for instance [YZ99, Chapter
7], are naturally nested in our framework. Indeed, they are recovered by setting d = d’
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and p = 0oly, which corresponds to K(t) = 1. In this case, the Riccati equations for
I'(0,0), A(0), x reduce to the conventional matriz Riccati equations and Y* = X¢ so that
we recover the usual expression for the optimal control (3.3.12) and the value function

af = =N(T(0)) 7" (A(t.T0(0,0),A4(0)) + STO)X] )
Vi = X, T4(0,0)X; + 2X, At(0) + x4
(]

Conventional linear—quadratic models can also be recovered by considering a kernel
which is a weighted sum of exponentials as detailed in the following example. This will
turn out to be of crucial importance in the next section.

Example 3.3.2. We setd=d =m =1 and

n

K"(t) =Y cpe (3.3.15)

3
i=1

for somen €N, ¢ e R,07 >0, 4=1,...,n. This corresponds to (3.2.2) with u(df) =

Yoy €0on (dB) and Theorem 3.2.1 gives the representation

X = gy () + ) ey, (3.3.16)
i=1
where Y™ :=Y*(0") are such that

n n
dY;n’i’a — | = Q?Y;tmi’a + B(t7 Z C;L}/t'f%j,a, atﬂ dt + 5(75, Z C?Yt”’j’a) Oét)th
= = (3.3.17)

Y =0, i=1,...,n.

Whence, the problem reduces to a conventional linear-quadratic control for the finite-
dimensional controlled system (Y™"*)1<i<y,. In particular, the system of Riccati (4.2.2)
reduces to a a standard one in finite-dimension. For instance the equation for T' reduces
to the standard n x n—matriz Riccati equation

Iy = -Q"—(B")'T} —T}B" — (D") TP D"
+ (FM)TTpD" + (C)TTE) (N + (F)TTRF™) ™ (F™) TTpD™ + (C™) 1Y)
. =0,
(3.3.18)
where the coefficients (B™,C™, D™, F", N",Q") € R™" xR" x R™*" x R" x R} xS
are defined by

B'; = Bci —0]'6i;, Di; = Dcf,
Ccrr = Ccf, F!'= Fc},
ii= @ N"= N,
foralll1 <i 5 <n. O

Remark 3.3.6. The proofs of Theorems 4.2.1 and 3.5.2 can be easily adapted to account
for a multi-dimensional Brownian motion and time-dependent bounded coefficients. [
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3.3.2 Stability and approximation by conventional LQQ problems

The second main result of the paper concerns the approximation of the possibly non-
Markovian control problem by sequences of finite dimensional Markovian ones, which
is of crucial importance for numerical implementations. The main idea comes from
the approximation of the measure p, appearing in (3.2.2), by simpler measures ", or
equivalently approximating K by simpler kernels K™ given by

K"(t):/R e % u(dg), t>0. (3.3.19)

We also authorize the approximation of the input curve go. By substituting (K, go) with
(K™, g&), the approximating problem reads

Vo' = inf J"(a) (3.3.20)

where

Jm = inf E
(@) = inf

T
/ (X2 QX 4+ 2L X + ol Nay,) ds] :
Ot . (3.3.21)
XY= gi(t) +/ K™(t — s)b(s, X', as)ds Jr/ K™t —s)o(s, X, ag)dWs.
0 0

The following theorem establishes the stability of stochastic Volterra linear—quadratic
control problems. Its proof is given in Section 3.7.2.

Theorem 3.3.3. Let 3,7 be bounded and measurable functions on [0,T] and go be
continuous. Assume that p satisfies (3.2.3) and let K be as in (3.2.2). Let (g§)n>1 be
a sequence of continuous functions and (K™),>1 be a sequence of kernels of the form
(3.3.19) with respective measures p" satisfying (3.2.3), for each n € N. Assume (4.2.6)
and that @ is invertible. Denote by V* and V™ the respective optimal value processes
given by Theorem 3.3.2 for the respective inputs (go, K) and (g3, K™), forn > 1. If

K™ — K|[z200r) = 0 and |lgg — golle20,ry — 0, asn — o0, (3.3.22)
then,
Vi =V, asn— oo, (3.3.23)

with a rate of convergence given by
Vi = Vg1 < e(llgh — gollaomy + 1K™ = Kllaom ). (3.3.24)
for some positive constant ¢ independent of n.

Combined with Example 3.3.2, Theorem 3.3.3 provides an approximation of linear—
quadratic stochastic Volterra optimal control problems by conventional Markovian linear—
quadratic models in finite dimension. To ease notations we restrict to the case d = d' =
m = 1, for higher dimension matrices need to be replaced by tensors in what follows.
The idea is to approximate g by a discrete measure p™ as follows. Fix n > 1 and
(1} )o<i<n @ partition of Ry. Let p™(df) = 7" ¢}'dgn (d6) with

2

;' ;'
= / w(dz) and O} = in/ Ou(dd), i=1,...,n. (3.3.25)
n G Jn

n
i—1
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Then, for a suitable choice of the partition (n}")o<i<n, we obtain the convergence
K™ — K|z20r) — 0, asn— oo,

where K™ is given by (3.3.15), see for instance [AJEE19b, Proposition 3.3 and Remark
3.4]. In particular, for the fractional kernel Ky given by (3.2.8), an even n, and the
geometric partition 7! = ri ™2 fori = 0,...,n, for some r, > 1, the coefficients (3.3.25)

with gy as in (3.2.9) are explicitly given by

1-a (a=1)(1+n/2) 2—«
o (ry=% = D)y, CE l1-a Tn_ — 1Ti—1—n/2’ i=1,....n,
¢ Ta)T(2 — «) " o 2—apie—1 "

where o := H + 1/2. If the sequence (r,),>1 satisfies
rnd1 and nlnr, — oo, asn — oo,

then,
K™ — Kullz20r) = 0, asn— oo,

see [AJ19a, Lemma A.3|. In practice, the free parameter r,, can be chosen by minimizing
the L? norm between K™ and Ky, for instance if n = 20, setting 759 = 2.5 yields very
good approximations for the un-controlled stochastic Volterra equation, see [AJ19a]
for a more detailed practical study. For each n, the approximate control problem is
a conventional linear quadratic one in finite dimension for the state variables (3.3.17)
with the standard n x n matrix Riccati equation (3.3.18). This allows to numerically
solve the Riccati equations and simulate the process X™* given by (3.3.16), leading to
computation of the value function V" and the optimal control ™ as in (3.3.12) with u
replaced by u”.

3.4 An infinite dimensional SDE with Lipschitz coeffi-
cients

We aim to establish the existence of a solution to the stochastic Volterra equation and
that of an admissible optimal control. For this, we shall study more generally the
existence and uniqueness of a solution to an infinite dimensional stochastic differential
equation (SDE) in L*(u). Throughout this section, we fix t € [0,T], d,d’,n € N, p > 2,
a d x d’-measure satisfying (3.2.3), and W denotes an n—dimensional standard Brownian
motion.

Let us consider the infinite dimensional SDE in L (u):

dYs = (A™Y, +6(s,Ys))ds + 2(s, Yo )dWs, Y, = €, (3.4.1)

on [t, T], where A™" is the mean-reverting operator as defined in (3.2.17), the inputs &
€ LY(u), and 6 : [0,T] x Q x LY (u) — L*(u), ¥ : [0,T] x Q x LY () — L>=(u)".

We look for L!(u)-valued solutions to (3.4.1) in the strong probabilistic sense and in
the mild analytical sense. More precisely, given a filtered probability space (Q2, F, (Fs)s>o0, P)

supporting a n dimensional Brownian motion W, we say that a progressively measurable
process Y is a (mild) solution to (3.4.1) on [t, T if for each s € [t,T],

T.(0) = ¢ Vg(0)+ [ e 5w o) O
b (3.4.2)
+/ e 0TI (u, V) (0)dW,, w— a.e.,

t
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such that

sup E [Hf@”’zl(u)} < 00. (3.4.3)

t<s<T

The following theorem establishes the strong existence and uniqueness of a solution
to (3.4.2) under Lipschitz conditions.

Theorem 3.4.1. Fix p > 2 and t < T. Assume that § and ¥ are progressively mea-
surable and that there exists positive constants crq, cLip, and a progressively measurable
process ¢ with

sup E[|s[?] < oo,

t<s<T
such that for all y,y' € L'(u), andt < s < T,
10(s,9)(O)] + |2(5,9)(0)] < cra (1+ |ps] + yllLruB,4-4)
16(5,9)(8) — 8(5,)(O)] + [S(5,9)(0) — S5, ) O < criplly — ¥l (3:45)

P® i —a.e. Then, for any F;—measurable random variable IE[||£||’L’1(#)] < 00, there exists
a unique strong solution Y to (3.4.2) on [t,T| such that (3.4.3) holds.

Proof. The proof is an application of the contraction mapping principle. We denote by
Sﬁ r the space of progressively measurable processes Y : Q x [t,T]| — L' (u) such that

Plsp, = sup B [Tl 0] "
¥llsy,, i= sup (1501 ] < 0.

(8¢l llsr,.) is a Banach space. We consider the following family of norms on S}
IV]ls := sup e CVE [||ff [ ]1/’” A>0
YT et SHLHw) ’ '

For every Y € Sfj 7 define a new process TY by

(T9).(6) = e eVe(0) + [ 0=, T, (0)du

t
+ / e =N (0, V) (0)dW,,
t
= I,(0) + I1,(0) + I114(0), pw—ae, t<s<T.

Since the norms |- [|s» and [|- |[x are equivalent, it is enough to find A > 0 such that 7
defines a contraction on (877, || - [[x). That is, we look for A >0 and M < 1 such that

ITY = TZ|x <MY —Z|5, Y,ZeSl,. (3.4.6)
Step 1: We first prove that T(Sf)T) C Sf,T. Fix Y ¢ Sf)T andt < s <T. TY is again
progressively measurable. Jensen’s inequality applied to the convex function || - ||1£1(#)
leads to

NVl gy < 377 (Il gy + MLy + ITIL ) -

Since E[||§||1£1(H)] < 00, we have
]E[||15||Pil(u)} =K [lle‘(')“‘“fll’zwﬂ <E {||§||1£1(N)} < 00,
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where we used the bound e~ ?¢~*) < 1, since y is supported on R;. Three successive

application of Jensen’s inequality on the normalized measures

(LA 6712 u(d6) du e 200wy
R OAT () G0 [feztngy

'

yield for a constant ¢ that may vary from line to line

HHSHPU W) |12[ (dB)
(w) R
+

/ 06— (0, V) (0)du

t

s - p
<o [ lul(as) (1n60072) | [Tt 500, ) @)
]R+ t
s - p/2
< c/ |11l (d6) (1A9<P*1>/2) / e~ 205~ 5(u, ¥,,)(0) 2du
<

c/ ul(@0) (1.7 00=72)
Ry
s _ s (p—2)/2
« / =206 50, V) (6) [P ( / 62"<H>dv) .
t t

Taking expectation combined with the growth condition (3.4.4) and the fact that Y €
S;r leads to

P . p v (|1P
B (I g,) < (1+ s Blou) 171, )
s P/2
></ |21 (dO) (1 /\9(”71)/2> </ ezo(su)du>
R+ t

1 — e—20(s—t)\ P/?
_ 1 A g1/ .
/ ul(ao) (1 A 0=72) -

Similarly, combining the same Jensen’s inequalities with the Burkholder-Davis-Gundy

inequality, we get
P
( [ ultao) ) ]
Ry

[ lultasyanoor2)
R
s _ t (p—2)/2
X / e~ 2R [|Z(u,Yu)(9)|p} du (/ 6_29(5_”)dv)
t s

1— 6720(570 p/2
w-v/2) (L= 70
C/R+|u|(d9)(m9 )( 5 )

where the last inequality follows from the growth condition (3.4.4) and the fact that
Y € 8. Recalling inequality (3.2.16), we get that

(-ty2) (L= e 20N\ 1/2
1|(d6) (1 A 6@~ <> gc/ ul(d) (17 6712) (3.4.7
e ) (F5 [ 1uican) ( ) 3.47)

S
E {HIIISH%(M)} =E / e 06N (0, Y,)(0)dW,du

t

IA

IA
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which is finite due to condition (3.2.3). This shows that
E {HIISH;(M)} YE [||IIISH’£1(M)} < ¢ < .

Combining the above proves that ||Ti;||8fT < oo and hence T : 877 — 877
Step 2: We prove that there exists A > 0 such that (3.4.6) holds. Let Y,Z & Sir

such that ||Y[|y and ||Z||» are finite. Similarly to Step 1, Jensen and Burkholder-Davis—
Gundy inequalities combined with the Lipschitz condition (3.4.5) lead to

ITY = TZ|Z < MW|Y - Z|]%,

where
s s (p—2)/2
M) = C/ || (dB) (1 A 0(”71)/2) / e 20(s—u) g=Ap(s—u) gy, </ eQe(Sv)dv> .
R+ t t

By the dominated convegence theorem, recall (3.4.7), M () tends to 0 as A goes to +oc.
We can therefore choose A\g > 0 so that (3.4.6) holds with M ()\g) < 1. An application of
the contraction mapping theorem yields the claimed existence and uniqueness statement
in (87|l - llsr,.) together with (3.4.3). O

Example 3.4.1. Fiz o € A, the conditions (3.4.4)-(3.4.5) are satisfied for the following
specification of 6 and X:

5(s,w,y)(0) = bo(s,w,0) + By (s,w, 0, T)u(dr)y(r) + Co(s,w, 0)as(w)

Ry
Y(s,w,y)(0) = vo(s,w,0) + Dy (s,w, 0, 7)u(dr)y(T) + Fo(s,w, 0)as(w),
Ry
where
[bo(s,0)] + [70(s,0)| + |Co(s,0)| + |Fo(s,0)| < ¢, PRu—ae., t<s<T, (3.4.8)
[Bo(s,0,7)[ + |Do(s,0,7)| < ¢, Popu@p—ae, t<s<(T49)
for some constant c. O

The existence and uniqueness of a strong solution to the stochastic Volterra equation
(3.2.1) readily follows from Theorem 3.4.1 when combined with Theorem 3.2.1. To prove
continuity of the solution we need the following lemma.

Lemma 3.4.1. Let Z, = fot bsds + fot osdW,, 0 <t < T, such that b and o are progres-
swwely measurable and

sup E [|be|*] + supE [|oy|*] < oc.
t<T t<T

Then, the process

t
Y,(0) = / e % =%dz,, #eR,,
0
solution in the mild sense to
dY, = A™Y,ds+dZ,, Y, = 0,

admits a continuous modification in L'(u) and satisfies (3.2.13)-(3.2.14).
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Proof. The bound (3.2.13) follows along the lines of the estimates in step 1 of the proof
of Theorem 3.4.1 with p = 4, for getting (3.4.3), by successive applications of Jensen
inequalities. Let us now show (3.2.14) and the continuity statement. Fix § € Ry and
t <T. An integration by parts leads to

t
Y, (0) = e "2, + 9/ e =) (7, — Z,)ds.
0

The Kolmogorov—Chentsov continuity criterion, yields that for each ¢ € (0,1/4), the
process Z admits a version with ¢-Holder sample paths on [0, 7). We identify Z with
this version so that

|Zt(w) - Z«S(w)‘ < CT7C(LU)|t - 8|<? Sat < T7

for some cr ¢(w) > 0. Using this inequality and another integration by parts yields
_ t
Y, (0,w)| < erc(w)e ¢ +cT7C(w)9/ e %S du
0

¢
= cT’C(w)C/ e S~ du.
0

This proves (3.2.14). Furthermore,
_ T
sup |Y;(6,w)| < CTVC(W)C/ e PuuS~du,
t<T 0

where the right hand side is in L(|u|) by virtue of the Cauchy—Schwarz inequality
and Lemma 3.A.1. Since ¢ — Y;(6,w) is continuous for each § € R,, the dominated
convergence theorem yields that the process Y is continuous in L*(p). O

Theorem 3.4.2. Let go be continuous, 5,7 be bounded measurable functions on [0,T]
and K be a kernel as in (3.2.2) such that (3.2.3) holds. Fix an admissible control a € A.
The stochastic Volterra equation (3.2.1) admits a unique continuous and adapted strong
solution X% such that (3.2.4) holds.

Proof. Existence, uniqueness and (3.2.4) are straightforward from Theorem 3.4.1 com-
bined with Theorem 3.2.1 and Example 3.4.1 for the coefficients

bo(s,0) = B(s)+ Bgo(s), Bo(s,0,7)=DB, Cy(s,0,7)=C,
Y0(s,0) = v(s) + Dgo(s), Do(s,0,7) =D, Fy(s,0,7)=F.

The statement concerning the continuity of X is a direct consequence of the continuity
of V¢ established in Lemma 3.4.1 and the converse direction in Theorem 3.2.1. O

3.5 A martingale verification theorem

We first derive an Ito formula for quadratic functions in L (u).

Lemma 3.5.1. Fiz a d x d'-matriz measure p on Ry such that |u| is o-finite, and t €
[0,T]. LetY be a L'(u)-valued progressively measurable processes solution in the mild
sense to

dY, = A™Y, + byds + osdW,, t<s<T, Y,=¢, (3.5.1)
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for € € LY (1) and some progressively measurable b, o valued in L™ (u) and satisfying

T T
/ Hbs||Loo(H)ds—|—/ [08l2 (s < 00, P —aus. (3.5.2)
t t

Assume that Y is bounded in s € [t,T], P® u-a.e, and has continuous sample paths in
LY(p). Let T',A € C([t, T), L*(p @ p)) x C([t,T],L*(uT)) be solutions to

[,(0,7) = (6+7)T.(0,7) — RL(0,7), L<s<T, peu-aec.

Ay(0) = OA,(0) — R2(0), t<s<T, p—ae (3.53)

with Ty € L®(u® p), Ar € L®(u"), and for some measurable functions s — R! and
R? walued respectively in L™ (u @ p) and L>®(u"), such that

T T
/ ”R;”Lw(N@M)dS + / HRf”La@(MT)dS < Q. (354)
t t

Then, for allt < s <T, T, € L®(u® ), A € L>®(u'), so that the processes
Ugl = <}A}Saf‘sffs>u = <f‘s?9a?9>;¢7 Us2 = <3787/~\s>/t = <K35)~/s>u77 t<s< T,

are well defined, where T is the integral operator associated to the kernel T. Furthermore,
we have fori = 1,2,

dU! = Alds + XLdWy, t<s<T, (3.5.5)

where

A; = _<}75;R;i>s>u + <st—S7Js>N,T + <f‘sY:97bs>pT + <f‘SbS,Y;>#T7

Z; = <fs§75,05>#7 + <f‘sas»}~/s>p"'7
A2 = (Y, RY), + (A, b) 2?2 = (A, 05),7,

S
where RY is the integral operator associated to the kernel R'.

Proof. We illustrate the proof only for U2, that of U follows along the same lines. The
idea is to apply Ito’s formula 8 by 6. By virtue of the inequality |u(B)| < |u|(B), for any
Borel set B, and the o-finiteness of |¢|, an application of the Radon—-Nikodym theorem

yields the existence of a measurable function h : R, — R such that
p(d0) = h(0)]pl(d0) (3.5.6)

with |h(f)| = 1, for all # € R?, and || € L*(|u|), see for instance [GLS90, Lemma 3.5.9].
Recall that by definition of a mild solution to (3.5.1), we mean that

Y, (0) = e ?C=0¢(6) + / ) e 0=, (0)du

t

+/ e—e(s—u>gu(9)qu, t<s<T, PRu-—a.e. (3.5.7)
t

Fix t < T, and observe that the solution A to (3.5.3) is given by

T
As(0) = e T=9IA1(6) —|—/ e PR (O)du, t<s<T, u-—ae.,

S
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which implies, with (3.5.4), that A, € L®(uT), ¢t < s < T, together with the boundedness
of s — Ag:

T
sup |Ay(6)] < HATHLOO(NT)—i_/ |R2|| oo (urydu < oo, p—ae. (3.5.8)
t

t<s<T
Moreover, since Y is bounded in s, we have

sup |Yi(0)] < oo, P®pu—ae. (3.5.9)
t<s<T

Define the P ® p-nullset

N = {(w, ) : such that either (3.5.7) or (3.5.3) or (3.5.8) or (3.5.9) does not hold}.

Let (w, ) € Q x Ry \N and observe that s — Y(6,w) and s — A(6) solve:

dY, (0, w) = (—eﬁ(e,w) n bS(H,w)) ds + 04(8,w)dW,,

dA,(0) = (em) - Ri(e)) ds.

An application of Ito’s formula to the process u2(6,w) : s — Ay (0)Th(8)Y,(6) gives

uw?(0,w) = u(0,w) +/: 65(9,w)du+/tSAu(0)Th(9)au(0,w)qu, t < 3.5.10)

with
Ga(0,w) = —R2(0) " h(0)Vu(0,w) + Au(6) " h(0)bu(6,w).

All the quantities appearing on the right hand side of (3.5.10) are well-defined thanks to
the integrability assumptions (3.5.2)-(3.5.4) on the coefficients (b, o, R?) and the bound-
edness in s of (A,,Y;) from (3.5.8)-(3.5.9). Whence, (3.5.10) holds P ® p almost every-
where. Next, by the boundedness (resulting from the continuity) of s — Y in L*(y), s
— A, in L*(uT), and again by the integrability conditions (3.5.2)-(3.5.4) on (b, o, R2),
all the terms appearing in (3.5.10) are in L'(|u|) so that an integration with respect to
the 6 variable against || combined with the identity (3.5.6) and the stochastic Fubini’s
theorem, see [Ver12, Theorem 2.2], lead to (3.5.5). O

The next theorem establishes a martingale verification result for the possibly non-
Markovian optimization problem (3.2.1)-(3.2.7).

Theorem 3.5.1. Let 3,7 be bounded functions on [0,T], go continuous and N € ST'.
Fix K, v as in (3.2.2)-(3.2.3). Assume that:

1. there exists a solution (T, A, x) € C([0,T], L*(p@u))xC([0,T], L (uT))xC([0, T], R)
such that (4.2.5), (3.3.8), (3.3.9) hold, and T'y € S% (u® p), for all t < T, together
with the estimate (4.2.7),

2. there exists an admissible control process a* € A such that (3.3.12) holds for all
t<T.

Then, o is an optimal control, Y given by (3.2.10) is the optimally controlled trajec-
tory of the state variable and V" given by (3.3.1) is the optimal value process of the
problem, in the sense that (3.3.13) holds, for allt <T.
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Proof. Step 1. For any « € A, we know from Theorem 3.4.2 that there exists a contin-
uous solution X to (3.2.1) such that (3.2.4) holds. Let us then define the continuous
process

t
M _/ FOX2 0 ds + Ve = [ (0 - al) TR (a, — ad)ds,
0

where f is the quadratic function in (3.2.6), V' is the process given by (3.3.1) from
the solution (I', A, x) to the Riccati equation (4.2.2), o* is given by (3.3.12), and N by
(4.2.4), recall Remark 3.3.3. The main point is to check that M is martingale for any
a € A. Indeed, if this the case, then, for each t < T, the equality E[M%|F;] = M} leads
to

Jifa) =V =E

/T(as — )TNy (ay — al)ds ’ ft] , (3.5.11)

where we have set Ji(a) = E {ft & ag)ds ’ Ft}, and used V7 = 0, due to the
vanishing terminal condltlons of (T, A, @) and the continuity of V. Since N € S* and
I is S% (1 ® p) valued, then N e ST so that the right hand side of (3.5.11) is always

nonnegative and vanishes for o = a*. Fix now ¢ < T, and observe that V" = V' for
all o € Ai(a*). We then deduce from (3.5.11) that

V) =t )

which is the relation (3.3.13), and shows that o* is an optimal control.

Step 2. We now prove that M“ is indeed a martingale by means of 1t6’s formula. To
ease notations, we drop the superscript a from X and Y. The process V¢ is written
as

Ve =Ul+2U +x4, 0<t<T,
where
Utl = <}/;)I‘t}/t>p,a Ut2 = <At7Y2>HT

and we recall that Y is bounded in (¢, 6) from (3.2.14), and has continuous sample path
in L'(p) by Theorem 3.2.1. From (3.2.14), and the admissibility condition on o € A
combined with Cauchy-Schwarz inequality, it is clear that the drift b; := 8(¢)+BY;+Cay,
and the diffusion coefficient o; := (t) + DY; + Foay of Y take values in L°(u), and
satisfy the integrability condition (3.5.2). Moreover, from (4.2.7), and since ¢ € [0, 7]
+ Ty, A; are bounded (by continuity) in L'(p ® p) and L' (u"), we see that t — R} :=
R1(Ty) is valued in L= (u®p), t — R? := Ra(t, Ty, Ay) is valued in L°(u "), and satisfy
(see Remark 4.3.1):

fgg [”R%HLO"(u@#) + ”Ri%”L‘”(#T)} < 0,

which clearly implies the integrability condition (3.5.4). We can then apply Lemma 3.5.1
on U', U2. Recalling that I' is symmetric, this yields, after re-arranging the quadratic
and linear terms in Y and «, using the equation for T' in (4.2.2) and applying Fubini’s
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theorem:

qUt = / YO)Tu(d0)T (STON(T) T S(T)(7) - Q) u(dr)Yi(r)dt

+

R

+ / ) Tulado)” ( / RECGETCSEORS / u(do'frt(e',T'm(dv/mt)) dt

2
+

+o FT / 1(d0) T T4(8, 7)p(dr) Faydt
R

2
+

+2a:< S(Ft)(T)M(dT)K(THFT/ u(dT)TFt(H,T)u(dTW(t)> di
Ry R

2
+

+ <&(t)T /]R u(de')Trt(e’,T’)u(dT’)a(tOdt + Hpdw,,

:
with
H = 20(t, X0 )T / 1(d0) T4 (6, 7)u(dr)Yi (7).
=2

Similarly, using the equation for A in (4.2.2) we get

qU? = / Yi(6)T u(de)T (S ()TN (L) h(t, Ty, Ag) — L)t
Ry

+af (CT /R u(d&’)TAt(G’)>dt+B(t)T /R 1(d0)TAL(0)dt + H2AW,

+

where
1} = o(t, Xi0) [ uld)A,00).
Ry
Now we write that

tha = (XtTQXt + O[tTNOét — (Ozt — aI)TNt(at — Oé:) + LTXt + Xt) dt + dUtl + 2dU752

Completing the squares for the terms in «, observing that

XJQXt:/

[ YO (a0)TQudr) Vi) + 200)T [ (d)Yi(0) + o) Qanl).

+ Ry

LTX, = LT/R 1(d0)Y,(0) + LT go(t),
+

using the equation for y in (4.2.2), and adding all the above makes the drift in M®
vanish so that
dMy = (H/} +2H}) dW,.

This shows that M is a local martingale. To argue true martingality, successive ap-
plications of Jensen and Cauchy—Schwarz inequalities combined with the bound (4.2.7)
yield, for a constant c,

T T
/ E[|H,|?] dschZ‘/ E[(1+|Xs|2+|as|2) ||ys|\§1(u)} ds
0 0

T 1/2
chQ/O E[(1+|XS|4+|as|4)]1/2E[||YS||§1(H)] ds
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which is finite due to (3.2.4), (3.2.13) and the admissibility of . Since A € C([0,T], L (u")),
we get similarly that

T
/ E [|HZ[?] ds < .
0

Whence, by the Burkholder-Davis-Gundy inequality, M is a true martingale, and the
proof is complete. O

Remark 3.5.1. Theorem 3.5.1 is still valid if one adds a linear quadratic terminal cost
to the cost functional (3.2.5), that is

T
J(a)=E [/ f(X% ag)ds + (X TPXS +2U T X%,
0

provided the terminal conditions of the system of Riccati equations (4.2.2) are updated
to

Lp(0,7) =P, Arp(0) =U+ Pgo(T), xr=go(T)" Pgo(T) +2U " go(T).

The main technical difficulty resides in Assumption 1. If K has no singularities at 0,
then one can still construct continuous solutions to (4.2.2). However, in the presence of
a singularity, the solution t — T'y inherits the singularity of the kernel and is no longer
continuous but only lies in L'([0,T], L*(p ® p)). O

3.6 Proof of solvability result

Proof of Theorem 4.2.1. First, the existence and uniqueness of a solution T € C([0, T, L' (u®
1)) to the Riccati equation (4.2.5) satisfying the estimate (4.2.7) and such that I'; €

St (u® p), for all t < T, follow from [AJMP19a, Theorem 2.3].
Second, we note that equation (3.3.8) for A is a Lyapunov equation of the form

T
U.(0,7) = / e DGR W.)(0,7)ds, t<T, p®p—ae  (3.6.1)
t
where

F(s,9)(6,7) = Qs(6,7) + Di(t‘?)T/ pa(d) "W (', ") pa(dr') D (7)

2
R+

+le(0)T/ ul(de’)T\IJ(H’,T)—k/ W0, 7" g (dr") B2 (7),(3.6.2)
Ry R

+

where u;, i = 1,2, d;; X djo-matrix valued measures on R, with
du=d, dio=d, dy=dyp=1 p=p p=0,

and with coefficients
Qu(6.7) =L+ Quo(t) + | Tu(6.~)u(dr")F
R+

— SO TNT)TET [ p(dd) T, ) pldr e,

2
R

Bl() =B~ CN{I)'ST)(#),  Bi(6)=Di(6) = Di(®) =0.
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From [AJMP19a, Theorem 3.1], we then get the existence and uniqueness of a solution
A€ C([0,T], L (1)) to the equation (3.3.8). Finally, we notice that the right hand side
of equation (3.3.9) for x, does not involve x. Therefore, the existence and the continuity
of x follow upon simple integration, which is justified by the boundedness of gq, 3,7,
that of A in L'(u") and that of T in L'(u ® ) together with the bound (4.2.7). O

Proof of Theorem 3.3.2. The result is a direct consequence of Theorem 3.5.1 once we
prove that conditions 1-2 are satisfied. Condition 1 follows from Theorem 4.2.1. It
remains to prove condition 2, i. e. that there exists a progressively measurable process
a* € A associated to a controlled SDE Y € L'(u) such that (3.3.12) holds, and
sup,<7 E [|o |*] < co. To this end, we consider the coefficients 4, ¥ as in Example (3.4.1)
with

bo(t,0) = B(t) — CN(Ty) " h(t, Ty, Ay)
Yo(t,0) =(t) — FN(Ty) " 'h(t, Ty, Ay)
Bo(teo’): — CN(Ty)~L8(I,)(0')

(
Do(t,0,0") = D — FN(I',) "' S(I') ()
Co(t,0) = Fo(t,e) =0.

)"
)"

By the boundedness of 3,7, go, on [0, T], the continuity hence the boundedness on [0, T
of I'in L' (p®p) and A in L (") together with the bound in Theorem 4.2.1, the previous
coefficients satisfy (3.4.8)-(3.4.9). Whence, for any p > 2, Example 3.4.1, combined with
Theorem 3.4.1, yields the existence of a process Y* with initial condition Y = 0, for the
coefficients 4, ¥ as defined above and such that (3.4.3) holds. One can therefore define
a process a* by

af = —N(Ty) ™! (h(ul“hAt) +

Ry

S(Te)(0)p(df)Y," (9)> ;

and see, again from the boundedness on [0, T] of (I, A) in L'(u® p) x L' (") together
with the bound (4.2.7), that

Ella;[P] < (14 M*) sup E[||Y;[5. 0<t<T,
0<t<T

(M)] ’

which is finite due to (3.4.3). In particular, for p = 4, we get that o* lies in A.
Finally, by construction, the coefficients of Y* can be re-written in terms of a* as

S(t,w.Y7) = B(0)+ B | u(@®)¥; (6) + Ca,
Ry

L(t,w ) =7+ D [ u(dd)Y] () + Foy,
Ry

which means that Y* = V", and ends the proof. O

3.7 Stability and approximation

In this section, we prove Theorem 3.3.3 starting with a priori L?—estimates for the
controlled stochastic Volterra equation before approximating the value function.
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3.7.1 A-priori L?>—estimates for stochastic Volterra equations

Let X be the solution produced by Theorem 3.4.2. We provide an explicit bound for
E [||X“||%2(07T)}, which is finite due to (3.2.4). For this, let us introduce the resolvent

of the second kind R of a scalar kernel k, defined as the unique L'([0, 7], R) solution to
the linear convolution equation

R(t) = k(t) + /Ot k(t — s)R(s)ds = k(t) + /Ot R(t — s)k(s)ds, t<T.

Recall that the resolvent R exists, for any kernel k € L'(]0, T], R), see [GLS90, Theorems
2.3.1 and 2.3.5].

Lemma 3.7.1. Fiz K € L*([0,T],R™*?), o € A, go € L*([0,T],R%) and B,y €
L2([0,T),RY). If X is a progressively measurable process satisfying (3.2.1) with

E [IX* 132001 < o0, (3.7.1)
then, it holds that
E[IX1B20m)| < emr(go K@) (1+ IRl io,m))
where ¢ is a constant only depending on (T, B,C,D, F),
m (g0, K, @) = llgoll 720y + 1K 17201 (||5||2L2(0,T) + 71720,y JrE[”O‘”zL?(O,T)])

and R is the resolvent of ¢|K|*.

Proof. Throughout the proof, we make use of the notations (f*g)(t) = fot f(t—9)g(s)ds

and (f *xdZ); = fg f(t — 8)dZs, and ¢ will denote a constant depending exclusively
on (T,B,C,D, F) that may vary from line to line. We first observe that by Jensen’s
inequality

X203 201 < 5llgoll320.0) + 5IE * (B4 Ca)l|32(0.0) + 5IK * BX*|320.1)
+ 5| K « DX“dW [|32(0.1) + 5 K * (v + Fa) dW |72 1)
=5(I+II+II1+ IV + V).

An application of Young and Cauchy—Schwarz inequalities yields

II< C”K”QLZ(&T) (HﬁHQL?(O,T) + ||0‘||2L2(0,T)> :

Successive applications of Cauchy—Schwarz, Tonelli’s theorem and changes of variables
lead to

T t
ITI < c/ / |K(t — s)]?| X|dsdt
0 0
T t
= c/ | K (s) 2| X7, |Pdsdt
0 0
T T
o [ IKGP [ 1xp s
0 s
T s
c/ |K(T—s)|2/ X 2duds
0 0

T
—c / K(T = )P X® 25,0 ds.
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Taking the expectation, we get
E[IL +101] < ¢ K[300,7) (18132007 + E [lel20,r)))
T
e [ IR = )P [IX7 ) ds.
0

Similarly, [t6’s isometry combined with Tonelli’s theorem and multiple changes of vari-

ables give
T t
//|K(t—s)|2|X§“|2dsdt]
0 0

T
= IDP [ KT = 9PE[IX" 10,0 .

E[IV] = |D|*E

Another application of It6’s isometry and Young’s inequality shows that
E[V] < e[| KI* * (1 + [F*[af?) 171 07
< llK 20,1y (132001 +E [lel320.m)] ) -
Combining the above yields
E[IX°1320.m)] < ellgolaoz + el K120z (1813202 + 11E20.2) + E [ladlEzo )

T
e [ IR =) PR [IX7Er ) ds
0
< emr(go, K, ) (1 + || R 21 0,7))

where the last line follows from the generalized Gronwall inequality for convolution
equations with R the resolvent of ¢|K|?, see [GLS90, Theorem 9.8.2|. O

Lemma 3.7.2. Fixn € N. Let K, K™ € L*([0,T],R™"), o € A, go, g% € L2([0,T],R%)
and B,y € L2([0,T],Rd/). Assume that there exist two progressively measurable pro-

cesses X and X™ satisfying (3.2.1) and (3.7.1) for the respective inputs (go, K, ) and
(95, K™ «). Then,

E[I1X" = X[2200m)| < ema (14 1R 110) (3.72)
where
ma = llg8 = 9ol 0.2y + 1K™ = K302y (B [1XW2027] + B [lallEzomy] )
and R" is the resolvent of c|K™|?. If in addition
90 — goll 20,0y = 0, 1K™ = Kl[L2¢0,1) = 0, (3.7.3)

as n — oo, then,
E[|x" - X||’§2(07T)} 50, asn— oo. (3.7.4)
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Proof. Fix t <T. We start by writing
X = X{" = (90(t) — g5 (1)) + /Ot (K(t—s) = K"(t = 5)) (BX; + Ca) ds
- /075 K"(t —s)B(X? — Xs)ds
+ / (K(t— )~ K"(t — 5)) (DX, + Fay) dV,

t
- / K"(t — s)D(X™ — X,)dW,
0
=1 +1IL + IIL, + IV, + V..

In the sequel, ¢ denotes a constant independent of n that may vary from line to line.
Repeating the same argument as in the proof of Lemma 3.7.1, we get

E (I3 0.7y + IVIE201)| < K™ = K200y (E [1X132017 ] +E [lel320)] ) -

which is finite due to Lemma 3.7.1. Similarly,
T
B (I + IVIsom)] < ¢ [ 1KMT = 9PE[IX7 = Xla() ds

Combining the above and invoking [GLS90, Theorem 9.8.2] for the generalized Gronwall
inequality for convolution equations yields the estimate (3.7.2). We now prove that its
right hand side goes to 0, as n goes to infinity. We first note that R — R in L, by
virtue of the continuous dependence of the resolvent on the kernel combined with the
L?—convergence of (K™),>1 in (3.7.3), see [GLS90, Lemma 9.3.11]. Consequently, the
sequences (|| R"||z1(0,7))n>1 and (|[K™||z2(0,7))n>1 are uniformly bounded in n, that is

sup | R"|| 1o,y + sup [[K™ [ z2(0,1) < o©. (3.7.5)
n>1 n>1

Thus, it follows from (3.7.2) that it is enough to prove that m, — 0 to get the claimed
convergence (3.7.4). This is straightforward from (3.7.3) and the proof is complete. [

3.7.2 Approximation of the value function

The proof of Theorem 3.3.3 now follows from the two following lemmas. In the sequel, we
work under the assumptions of Theorem 3.3.3 and we recall the expressions of J", X™®
in (3.3.21). To ease notations, we drop the « superscripts.

Lemma 3.7.3. Let a € A. Under (3.3.22) we have

2
(@) = (@) < e (2 + (E [lelz 0] ) ) (gt = goll3z0r) + 1K™ = Kl20m))

where ¢ is a constant independent of n.

Proof. Fix a € A, we start by writing

T
J(a) = J"(a) =E /0 (XX, — (X)TQX!)ds| +E

T
/ (X, — X;’)TLds]
0

T
=E / (X —XM)TQ(X 4+ XM)ds| +E
0

T
/ (X, — XS)TLds]
0

=I+1I
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so that
| (@) = J™(@)> < 2 (I + I1%) .

We let ¢ denote a constant independent of n that may vary from line to line. Successive
applications of Cauchy-—Schwarz inequality and Lemma 3.7.2 yield

T < B [|IX = X" 30,0

<c(t+ 1R pom) (1+E [lal0.m)]) (195 = 901320 + 1K™ = Kl320.r))

where R™ is the resolvent of ¢|K™|?. By virtue of the L? convergence of the kernels

(K™)n>1 in (3.3.22), ||R™|| 1 (0,7 is uniformly bounded in n, see (3.7.5). Whence,

I’ <c (1 +E [||04H%2(0,T)D <||93 — goll720m) + 1K™ — K||2L2(0,T)) .
Similarly, we get from Lemmas 3.7.1 and 3.7.2
P <c(E[IX1Ba 0 | +E [IX" 3201 ) E[IX = X" P20

<ec (1 + (E [||04%2(0,T)D2> (Hgg - 90||%2(0,T) + | K™ — K||2L2(0,T)) )

where the last inequality follows from the fact that sup,,»; E [||X"||%2(0 T)} < 00, since

E {HX” — X||2L2(0 T)} — 0 from Lemma 3.7.2. Combining the above yields the desired
estimate. |

Lemma 3.7.4. Assume (4.2.6), (3.3.22) and that Q is invertible. Let o and o™ be
the optimal controls produced by Theorem 3.3.2 respectively for the problem (3.2.5) and
its approzimation (3.3.20). There exists a constant k£ > 0 such that

E [lo” 20,1 | +SWE [la™ [Fa0,m)| < & (3.7.6)

Proof. Under (4.2.6), there exists ¢ > 0 such that
la|> < ca" Na, a€R™.

Denoting by X" = X" it follows that

E [lla" |2 01| < (1V OB

/T ()" Naz* + (X2 +Q7'D) ' Q (X1 +Q7'1)) ds}
0

=(1Ve) (J"(@™)+LTQ'L)
<(1Vve)(JUO)+LTQ'L),

for all n € N, where the last inequality follows from the optimality of a™* and 0 cor-
responds to the admissible control oy = 0, for all s < T.  Applying Lemma 3.7.3,
with @ = o™ = 0, we obtain the convergence of the un-controlled functional cost:
lim;, o J™(0) = J(0), which ensures that J"(0) is uniformly bounded in n. We then

deduce the existence of a constant & such that (3.7.6) holds. O

The proof of Theorem 3.3.3 is now straightforward.
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Proof of Theorem 3.3.3. Fix an arbitrary € > 0, and let ¢, > 0 to be determined later.
First note that Lemma 3.7.4 ensures the existence a constant x > 0 such that for all
n € N:

Vs :aneng (o) = inf J™(a),

v : efAJ (3.7.7)
0= Jeu () T aed, (),

where A, = {a e A: ]E[Ha”%g(o 1) < £}. Under condition (3.3.22), there exists n. € N
such that for every n > n. we have ||g% —gOH%Q(O’T) +|| K™ — KH%g(O’T) < ¢.. By Lemma
3.7.3, it follows that for any a € A, and n > n.,

[J(a) = T (@) < c(2+ K%)ee = e,

Combined with (3.7.7), this gives (3.3.23) and also (3.3.24).
O

by choosing c. = m

3.A An elementary lemma

Lemma 3.A.1. Let K be given as in (3.2.2), and K defined by
K(t) :/ e %l (df), t>0.
Ry
Assume that (3.2.3) holds, then

T T
/ |K(s)]*ds < / K(s)?ds < 0.
0 0

Furthermore, |u| is o-finite.

Proof. Since, |K(t)| < K(t), for all t > 0, it is clear that fOT |K(s)|?ds < fOT K (s)%ds.
Furthermore,

IK||L20,1) = H/ e 0| p|(dh)
Ry L2(0,T)

</ H679(~)‘ mes _/ ﬂ‘ 1(d6)
= Jr, 2om) w, V20 W

which is finite due to inequality (3.2.16) and condition (3.2.3). To prove that |u| is
o-finite, we observe that R, = U,en|[0, n] such that for each n > 1,

1 n 1 n
l((0,n)) = / 14l(d6) + / l(d6) < / 1l(d8) + v / 612 u|(d6)

<V [ (AA8T12)p(d0) < ox.
R

5
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Chapter

Integral operator Riccati equations
arising in stochastic Volterra control
problems

Abstract We establish existence and uniqueness for infinite dimensional Riccati equa-
tions taking values in the Banach space L'(u ® p) for certain signed matrix measures p
which are not necessarily finite. Such equations can be seen as the infinite dimensional
analogue of matrix Riccati equations and they appear in the Linear—Quadratic control
theory of stochastic Volterra equations.

Keywords: Infinite dimensional Lyapunov equation, integral operator Riccati equa-
tion, linear-quadratic control, stochastic Volterra equations.

4.1 Introduction

Fix d,d’,m € N and p a d x d’-matrix signed measure pu. This paper deals with the
infinite dimensional Riccati equation

FT(H, ’7') = 0
Iy(0,7) = (0+7)T(0,7)-Q—DT Jrz pu(df") T (0", 7" pu(dr") D
= BT fo n(d6")TTo(0,7) = [, Te(0,7)u(dr) B+ Sp(6) "N, 'Sy (),
(4.1.1)
where

Sy(t) = CT/

u(de) L0 1)+ FT [ ude!) L0l D,
R

2
R+

N,=N+ FT/ 1(d0) T (0, 7)p(dr) F,
R}
and B,D € RY*4 O, F € R Q € R”% and N € R™*™, and T is the transpose
operation. Here p is not necessarily finite and satisfies

/ (LAO7Y2)|u|(df) < o0, (4.1.2)

R4
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where |p| denotes the total variation of p. We look for solutions I": [0, 7] x Ri — R4
with values in L' (u®pu) (see the precise definition in Section 4.2) to ensure that equation
(4.1.1) is well-posed.

In particular, if d = d’ = 1 and p(df) = Y., 6gn (df), (4.1.1) reduces to a n x n-
matrix Riccati equation for I'* = (I'(0}", 07))1<i,j<n, only written componentwise. Such
matrix Riccati equation appears in finite dimensional Linear-Quadratic (LQ) control
theory, see e.g. [YZ99, chapter 7]. (One could also recover d x d-matrix Riccati equation
by setting d = d’ and p = 1;0.)

For more general measures p, e.g. with infinite support, (4.1.1) can be seen as the
infinite-dimensional extension of matrix Riccati equations and one could expect a connec-
tion with LQ control in infinite dimension. This is indeed the case, and our motivation
for studying the Riccati equation (4.1.1) comes from infinite dimensional lifts of LQ
control theory of non-Markovian stochastic Volterra equations. Setting

K(t):/ e " u(d), t>o0,
Ry

one can consider the controlled d-dimensional stochastic linear Volterra equation
t t
X = / K(t— s)(BXS + Cozs)ds + / K(t— s)(DXs + Fozs)dVVs,
0 0

where W is a one dimensional Brownian motion and « is a suitable control taking its val-
ues in R™. Observe that the integrability condition on the measure p allows singularity
of the kernel K at 0, and includes the case of a fractional kernel K (t) = t7~1/2 with
Hurst parameter H € (0,1/2) with a corresponding measure (df) = cz6~7=1/24d, for
some normalizing constant cy. The linear-quadratic control problem consisting in the
minimization over « of the cost functional

J(a) = E[/OT (X[ QX, + a,TNat)dt},

can be explicitly solved using the Riccati equation (4.1.1), see [ATMP19b].
When D = F = 0, the Riccati equation (4.1.1) also enters in the computation of the

Laplace transform of tr ( fOT ZSTQZSds), where Z is the d X n-matrix valued Gaussian
process

t t
Zy = 7 —l—/ K(t —s)BZds —|—/ K(t—s)CdW,, t>0,
0 0

and W is a m X n matrix Brownian motion, see [AJ].
The Riccati equation (4.1.1) can be also connected to an operator Riccati equation
as follows. We denote by

e L'(u) the Banach space of p-a.e. equivalence classes of |u|-integrable functions ¢
: Ry — R endowed with the norm [l = [, [11(d0)|e(0)],

e L>°(u) the space of measurable functions from R, — R% | which are bounded
p-a.e.,

and introduce the dual pairing:

(O ::/R 0(0) " p(d0) T (0), (@) € LY () x L¥(u"). (4.1.3)
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Given any bounded kernel solution I" to (4.1.1), let us consider the corresponding linear
integral operator T : [0, 7] x L'(u) — L*(u") defined by

(T0) (6) = / L0, T pldr)p(r), te[0,T), ¢ e Li(u).

It is then straightforward to see that T' solves the operator Riccati equation on L (1):

'r = 0
I, -, Am" — (TyA™")" — Q — D*TyD — B*T;, — (B*T})"
+ (C*T + F*T,D)* (N + F*T\F)" " (C*T, + F*T,D), te 0,7,
(4.1.4)
where A™" is the mean-reverting operator acting on measurable functions ¢ € L (i) by

(A™")(0) = —0p(0), 0 Ry,

B, D are the integral operators on L! (1) (defined similarly to I') induced by the constant
matrices B, D, and by misuse of notation, C', F’ denote the respective constant operators
on R™ induced by the matrices C, F:

(Ca)(0) =Ca, (Fa)(@) =Fa, 0€R;, a€cR™.

Here the symbol * denotes the adjoint operation with respect to the dual pairing. The
last equation (4.1.4) is more in line with the formulation of operator Riccati equations
appearing in LQ control theory in Hilbert or Banach spaces, see [CP74; DP84; Fla86;
GTO05; Las05; Kos16; HT18; Art19|.

Let us also mention that a related infinite-dimensional Riccati equation appeared
in [AS13] for the minimization problem of an energy functional defined in terms of a
non-singular (i.e. K(0) < oo) completely monotone kernel.

The main contribution of the paper is to establish the existence and uniqueness of
a solution to the kernel Riccati equation (4.1.1). The aforementioned results on the
solvability of Riccati equations in infinite dimensional spaces cannot be directly applied
in our setting for two reasons. First, they are valid for Hilbert and reflexive Banach
spaces, while L!(p) is in general not reflexive, unless p has finite support, and mostly
apply to the cases without multiplicative noise, i.e., D = 0, and without control on the
diffusion coefficient, i.e. F' = 0, with the noticeable exception in [HT18]. Second, they
concern the operator Riccati equation (4.1.4), which is not enough for our purposes, as
we still need to argue that I' is an integral operator induced by some bounded symmetric
kernel function T" satisfying (4.1.1). We will therefore work directly on the level of the
kernel Riccati equation (4.1.1) (which will also be referred to as integral operator Riccati
equation) by adapting the technique used in classical finite-dimensional linear-quadratic
control theory
cite[Theorem 6.7.2]yong1999stochastic with the following steps: (i) we first construct a
sequence of Lyapunov solutions (I');>o by successive iterations, (ii) we then show the
convergence of (I');> in L' (u®p), (iil) we next prove that the limiting point is a solution
to the Riccati equation (4.1.1), (iv) we finally prove the continuity and uniqueness for
the Riccati solution. We stress that such method has already been applied to prove
the existence of operator Riccati equations of the form (4.1.4) in Hilbert spaces (see
[HT18]) and in reflexive Banach spaces (see [Art19]). However, for the kernel Riccati
equation (4.1.1), the proof is more intricate. The reason is that we need to establish
the convergence of the kernels (I‘i)izo which is a stronger requirement than the usual
convergence of the operators (I‘i)izo. As a consequence, we obtain that the sequence of
integral operators (I‘i)izo converges to some limit which is also an integral operator.
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The paper is organized as follows. We formulate precisely our main result in Sec-
tion 4.2. Section 4.3 establishes the existence of a solution to an infinite dimensional
Lyapunov equation. Section 4.4 is devoted to the solvability of the Riccati equation.
Finally, we collect in the Appendix some useful results.

4.2 Preliminaries and main result

Let us first introduce some notations that will be used in the sequel of the paper. For
any di; X dig-matrix valued measure p1, and dsy; X dag-matrix valued measure po on
R, the Banach space L'(u; ® po) consists of y; ® ug-a.e. equivalence classes of || ®
|z |-integrable functions ® : RZ — R% %' endowed with the norm NP2ty ops) =
Jr2 |p11(d0)|®(6, 7)||p2](df) < co. For any such ®, the integral

2

/R 111 (d6) T ® (0, 7)12(d)

2

2
is well defined by virtue of [GLS90, Theorem 5.6]. We also denote by L (1 ® pa) the
set of measurable functions & : Ri — RI1>21 which are bounded 1 ® po-a.e.

We shall prove the existence of a nonnegative symmetric kernel solution to the Riccati
equation (4.1.1) in the following sense.

Definition 4.2.1. Let T : R% — R4 such that T € L®(u® p). We say that T is
symmetric if

L@, 7)=TI(10)", ueu-—ae.
and nonnegative if
[, #® @) IO u(dr)otr) = 0. for all g€ L (a).
7

We denote by ST (u®@p) the set of all symmetric and nonnegative I' € L>®(u®p), and we
define on S% (@ p) the partial order relation I'' =, T'? whenever (I'' —T'%) € S (p®@ p).

Remark 4.2.1. Si(ég ® &) reduces to ST, the cone of symmetric semidefinite d x d-
matrices. (]

Given a kernel I'; we define the integral operator I' by

(Te)(6) = / T8, )u(dr)(r). (4.2.1)

Ry

Notice that when I' € L!(u ® p), the operator T is well-defined on L>(u), and we have
Lo e LY (u'"), for o € L>(p). In this case (Tp, 1), (recall (4.1.3)) is well defined for
all p,% € L>®(u). Moreover, when I' € L>°(u ® p), the operator I' is well-defined on
L(u), and we have T'p € L>®°(u") for ¢ € L*(u). In this case, (p,T'y), is well defined
for all p,v € L'(u).

Whenever I' € L™ (p ® p) is a symmetric kernel, we have

(0. TY) = (0, L), w,1p € L(p),

and T is said to be symmetric. For I' € Si(u ® p), the nonnegativity reads

(e, T), > 0, Vee L'(w).
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The kernel Riccati equation (4.1.1) can be compactly written in the form
L0,7) = (0+7)0w(0,7)—R(,)(6,7), T'r(0,7)=0 (4.2.2)

where we define

R(D)(0,7) = Q+DT/ M(dHI)TF(GI,TI)u(dT/)D+BT/ w(do) T, T)
R2

¥ R
+ /R 00, ") u(dr')B — S(T) ()T N~HT)S(T)(r) (4.2.3)
with
ST)(r) =cCT fJR+ w(do) 1O, 7)+ FT fRi w(do"TT(0', 7" pu(dr") D Y
N(I) = N+FT fRQJr w(d9) TT(0, 7)p(dr)F. (424)

The following definition specifies the concept of solution to the kernel Riccati equation
(4.2.2).

Definition 4.2.2. By a solution to the kernel Riccati equation (4.2.2), we mean a func-
tion T € C([0,T), L* (u ® u)) such that

T
Iy(0,7)= / e OFNE=DR(T,) (6, 7)ds, 0<t<T, p®p-—ae. (4.2.5)
¢

where R is defined by (4.2.3). In particular N(T';) given by (4.2.4) is invertible for all
t<T.

Our main result is stated as follows.

Theorem 4.2.1. Let u be a d x d’'-signed matriz measure satisfying (4.1.2). Assume
that

Qest, N-\,eST, (4.2.6)

for some X\ > 0. Then, there exists a unique solution T € C([0,T],L*(p ® u)) to the
kernel Riccati equation (4.2.2) such that T'y € S‘j_(u ® ), for allt < T. Furthermore,
there exists some positive constant M such that

/ @00, 7)| < M, p—ae., 0<t<T. (4.2.7)

Ry

The rest of the paper is dedicated to the proof of Theorem 4.2.1. Lemmas 4.4.6 and
4.4.7 provide the existence of a solution in C([0, T], L' (1 ® 1)) such that T'; € ST (p®@ p),
for all ¢ < T. The uniqueness statement is established in Lemma 4.4.8.

4.3 Infinite dimensional Lyapunov equation

Fix dq1,dy2,d21,d22 € N. For each ¢ = 1,2, we let u; be a d;; X d;o-matrix valued
measure on R, and we define the scalar kernel

Ki(t):/R e~ 1;](df), t>0, (4.3.1)
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which is in L2([0,T],R) provided that yu; satisfies fR+ (LA 07Y2)|1;|(d) < oo (which
we shall assume in this section), see [AJMP19b, Lemma A.1].

We first establish the existence and uniqueness for the following infinite dimensional
Lyapunov equation:

T
U.(0,7) = / eGP W) (0,7)ds, t<T, i ® ps—ae. (4.3.2)
¢
where

F(s,0)(0,7) = Qs(0,7) + D;(Q)T/ 1 (d6)Y T (0, ") po(dr") D3 ()

2
R+

+BO)T /R 1 (AT, ) + /R W0, 7)o (dr) B2 (7),(4.3.3)

+

for some coefficients Q, B, B2, D', D? satisfying suitable assumptions made precise in
the following theorem.

Theorem 4.3.1. Let Q : [0,T] x Ri — RI X421 pe o measurable function and for each
i=1,2, B, D : [0, T] xRy — RY2%1 pe two measurable functions. Assume that there
exists k > 0 such that

2
Qs(0,7)| + Y _IBLO)| + IDLO) <k, dt@m @ps—ae.  (4.34)
i=1

Then, there exists a unique solution ¥ € C([0,T], L' (11 ® p2)) to (4.3.2)-(4.3.3). In
particular,

SUp [ Vel 21 (uy opn) < 0©- (4.3.5)
t<T

Furthermore, there exists a constant k' > 0 such that

/ (A0, (0,7) < Ky pio— e, t<T, (4.3.6)
Ry
[ ml@nw@ni<w, p-ae, t<T. (43.7)
Ry

Remark 4.3.1. Since the solution U satisfies (4.3.5), (4.3.6) and (4.3.7), it follows that
|[F(U)(0,7)] <e¢, dt@u®p—ae.

for some constant ¢. Combined with (4.3.2), one gets that W, € L (u; ® pe), for all
t<T. U

The proof of Theorem 4.3.1 follows from the three following lemmas.

Lemma 4.3.1. Under the assumptions of Theorem 4.5.1, there exists a unique L*(u3 ®
p2)-valued function t € [0, T] — U, satisfying (4.3.5), and such that (4.3.2)-(4.3.3) hold.

Proof. The proof is an application of the contraction mapping principle. We denote by
Br the space of measurable and bounded functions ¥ : [0,7] — L'(u1 ® p2) endowed
with the norm

15y == sup Wil L1 (uyous) < 00
t<T
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The space (Br, || - ||z, ) is a Banach space. We consider the following family of norms on
BTI
195 o= sup e T 11y gpnys A > 0.
t<T

For every ¥ € By, define a new function ¢ — (70); by

T
(T‘I’)t(ev T) = / e_(0+T)(S_t)F(S7 ‘I,S)(e7 T)dS, M1 & M2 — a.€.,

t

where F is given by (4.3.3). Since the norms |||z, and || -||x are equivalent, it is enough
to find A > 0 such that 7 defines a contraction on (Br, || - ||x). We thus look for A > 0
and M < 1 such that

HT\I/—T(I)H)\ S]W'H\I’—(I)H)\7 \I/7®€BT (438)

Step 1: We first prove that 7 (Br) C By. Fix ¥ € By and ¢t < T. An application of
the triangle inequality combined with the assumption (4.3.4) leads to

T
IT0) sy < 5 [ al@0)al(ar) [ e 050
+

T
[ lal(@)al(ar) [ O o ds
t

+

T
[ i@l [ e @0 [ )@
R2 t Ry

T
. / 122 (6) 2] (dr) / (0475~ / 10 (6, 7 | (dr"),
Rﬁ_ t ]R+
= KZ(It + IIt + IIIt + IVt)

Recalling the definition (4.3.1), an application of Tonelli’s theorem and Cauchy—Schwarz
inequality yields

T
sup It = sup/ Kl(S — t)Kz(S — t)dS S ||K1HL2(O,T)||K2||L2(O,T)7
t<T t<T Jt

which is finite due to [AJMP19b, Lemma A.1]. Similarly,

sup Il < 1|52 1 K1l 22 0,1) |1 K2l 20,7 < o0

t<
Now, as e~ 7=t < 1, and e ¢t < 1, for s > t, and #,7 € R, another application of
Tonelli’s theorem leads to

supIIIt S ||\I/||BT||K1HL1(O,T) < 00, and supIVt S H\IJHBT||K2||L1(O7T) < oQ.
t<T t<T

Combining the above inequalities proves that |7 ||z, < co and hence T : Br — Br.

Step 2: We prove that there exists A > 0 such that (4.3.8) holds. Fix A > 0 and
U, ® € Sy such that |||, and ||®|| are finite. Similarly to Step 1, the triangle inequality
and Tonelli’s theorem lead to

sup e T [(TW)y = (TR)e]| 11 (uysopa) < MA) sup e XTI Wy — 4| 11 (100
t<T t<T
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where

T
M) = K;/ e (K1 (s) + Ka(s) + K1 (s)Ka(s)) ds.
0
By the dominated convergence theorem, M (A) tends to 0 as A goes to +00. We can
therefore choose Ao > 0 so that (4.3.8) holds with M(\g) < 1. An application of the
contraction mapping theorem yields the existence and uniqueness statement in (Br, || -
llz) such that (4.3.2) holds, p1 ® pa—a.e., for all ¢ < T. The interchange of the

quantifiers is possible due to the continuity of ¢ — U.(0,7) p1 ® po-a.e., which ends the
proof. O

Lemma 4.3.2. The function ¥ constructed in Lemma 4.3.1 satisfies the estimates
(4.3.6)-(4.3.7).

Proof. We only prove (4.3.7), as (4.3.6) follows by the same argument. Integrating
(4.3.2) over the 7 variable leads to

T
/ W0, 7)p2(dr) = / / e OIE=D p(s W) (0, T)dspa(dr), t < T, py — ¢43.9)
R+ R+ t

Let us define the p1-null set
N ={0 € Ry : (4.3.9) does not hold},

and fix # € R. \N and ¢ < T'. The triangle inequality on (4.3.9) and assumption (4.3.4)
yields

T
[ leal@nieo.ni <o [ @) [ e 000as
R, Ry t
T
b [ ) [ €O 1oy s
Ry t
T
o [ usliar) [ e @0 [ @) @' nlds
Ry t Ry
T
o [ ) [T e [ a6, s,
Ry t Ry
Using the bound e=?¢~% < 1, an application of Tonelli’s theorem gives

T
/ |u2<d7>|\1:t<em>sf«u(1+sup||\lfs||p<m®u2)) |+ Ra)as
RJr s<T 0
(4.3.10)

T
+/~§/ KQ(S*t)\/ || (A7) |V (0, 7")|ds.
t R,
After a change of variable, we get that the function f? defined by
0= [ Ildnvr@nl <.
Ry
satisfies the convolution inequality
t
Ft) <ertr / Kot — 5)°(s)ds,
0
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with cr = £ (14 sup,ep Vsl 11 (uyopis)) fOT (1+ Ka(s))ds < oo. It follows from (4.3.5)
that ff(t) is finite y; ® dt-a.e., so that an application of the generalized Gronwall

inequality for convolution equations, see [GLS90, Theorem 9.8.2], yields the estimate
(4.3.7). O

Lemma 4.3.3. Under the assumptions of Theorem 4.3.1, let t € [0,T] — U, be such
that (4.3.2) holds, with (4.3.5), (4.3.6) and (4.3.7). Then, ¥ € C([0,T], L' (11 ® p2)).

Proof. We first observe that by virtue of the boundedness of the coefficients (4.3.4) and
the estimates (4.3.5), (4.3.6) and (4.3.7), we have

|F(s,:)(0,7)] <e¢, dt®p® pe— ae. (4.3.11)

for some constant ¢, where F' is given by (4.3.3). Fix s < ¢ < T. Using (4.3.2), we write
¢
W(0,7) = 0i0,7) = [ OO P )6, 7)ds

T
+ / (e—<9+f><u—8> - e_(9+7)(“_t)) F(u,,)(0,7)ds
t

= IS t(e,T) —+ IIS#I(H,T)

)

11 Quo—a.e. Integrating over the 6 and 7 variables and successive applications of Tonelli’s
theorem and Cauchy—Schwarz inequality together with the bound (4.3.11) lead to

t
Leilr e < [ Kalu = s)Rafu - 5)du
< || Kill 20,65 | K2l 22(0,6-s)-
By virtue of the square integrability of K; and K», the right hand side goes to 0 as s 1 .

Similarly, using also that e~ (+7)(u=s) < e=(0+7)(u=1) e get

T
1L ¢l L1 (i @pn) < c/ (Ki(u—t)Ka(u—t) — K1(u—s)Ka(u — s)) du
t

T—t
:c/o (R () Ra(u) — Kot — s+ u)Ka(t — s + w) du
:c/o ) (Ki(u) — K1 (t — s +u)) Ka(u)du

T—t

+c Ki(t — s+ u) (Ka2(u) — Ka(t — s +u)) du
0

= C(]-S,t + 25’,5).

The right hand side goes also to 0 as s 1 t. To see this, an application of Cauchy—Schwarz
inequality gives

- 1/2
1, < (/ (Kl(u) —Kl(t—s+u))2du> | K2l L2(0,7)-
0

Since K is an element of L2, it follows from [Brel0, Lemma 4.3] that
T

lim [ |Ki(u+h) — Ky(u)*du =0, (4.3.12)
h—0 Jgo
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showing that 15, converges to 0 as s goes to t. Interchanging the roles of K; and Ko,
we also get the convergence 2, ; — 0 as s T ¢. Combining the above leads to

Vs —Wellor(piops) — 0, assTt.

Similarly, we get the same conclusion when s | ¢, and the proof is complete. O

4.4 Solvability of the Riccati equation

The main goal of this section is to prove Theorem 4.2.1, i.e., the existence and uniqueness
of a function T' € C([0, T], L*(p®p)) satisfying the kernel Riccati equation (4.2.5) (recall
Definition 5.5.1), and the estimate (4.2.7). This is obtained by adapting the technique
used in classical linear-quadratic control theory

cite[Theorem 6.7.2]yong1999stochastic to our setting with the following steps:

1. Construct a sequence of Lyapunov solutions (I'*);>o by successive iterations,

2. Establish the convergence of (I'');>¢ in L*(1 ® ),

3. Prove that the limiting point is a solution to the Riccati equation (4.2.5),

4. Derive the estimate (4.2.7), the continuity and the uniqueness for the Riccati

solution.

4.4.1 Step 1: Construction of a sequence of Lyapunov solutions
(I

Lemma 4.4.1. Let ¥ € C([0,T], L' (u®pu)) denote the solution to the Lyapunov equation

(4.3.2) produced by Theorem 4.3.1 for the configuration

dii =do1 =d, dig=dp=4d, H1 = pho2 = [,
{ B =B =B D'=D?=D. (44.1)

and under the condition

{ . |Qs£9»7)| < kK dAt@E®p—ae.
|Bs(0)| +|Ds(0)] < K, dt®@p-—ae.

(4.4.2)
IfQ, € S4(u®@ p) for allt <T, then
1. t+— U, is a non-increasing S% (u ® p)-valued function w.r.t the order relation =,,.

2. t— fRi 1(d0) T, (0, T)p(dT) is a non-increasing S% -valued function on [0,T).

Proof. Note that under (4.4.1), the Lyapunov equation (4.3.2) is invariant by trans-
position and exchange of § and 7. By uniqueness of the solution, we deduce that
U, (0,7) = Uu(1,0) ", p® pae., for all t < T. Fix ¢ € L*(u) and t < T, and con-
sider the following equation
{dnw) = (= 0%.0) + fy, Bor)u(an)Va(r))ds + ( fy, Do(r)p(dr)Va(r) )dWW,
Yi(0) = (0),

which admits a unique L!(u)-valued solution such that

sup_E[IVallLs,) < oo, (4.4.3)
t<s<T
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4.4. Solvability of the Riccati equation

see [AJMP19b, Theorem 4.1]. Recall the bold notation G in (4.2.1) for the integral
operator generated by a kernel G. Note that, by virtue of Remark 4.3.1, Uy € L>®(u®u),
so that W, : L' () — L>®(uT), for all s < T. This shows that s — (Y;, lIlsffS)# is well-
defined P-a.s. An application of It6’s formula (see [AJMP19b, Lemma 5.1]) to the
process s — (ﬁ, 111512)“ yields, due to the vanishing terminal condition for ¥, and after
successive applications of Fubini’s theorem:

T
0= <907 ‘Ilt(p>,u - / <Ysa Q5Y3>,ud5
t

T _ N ~
+ /t R+YS(9)Tu(d9)TDS(9)T / p(d0") T (0, T u(dr" ) Ys (7AW (4.4.4)

2
R

T _ - ~
- / Yo(0) T u(d0) "0 (O, 7 )u(dr') | Da(r)u(dr)Yi(r)dW..
t RZ R4

It is straightforward to check that the local martingales terms are in fact true martingales
due to the boundedness conditions (4.4.2), (4.3.6) and the moment bound (4.4.3). Thus,
taking the expectation on both sides of (4.4.4) yields that

T
<507 ‘I’t50>lt = E / <Y53Qsifs>pd5
t

i

which ensures the positiveness and the non increasingness of ¢ — (¢, ¥¢p), for any
¢ € L*(p), since s = Qy is S (u ® p)-valued. This proves Assertion 1. Next, by
considering the sequence of L'(u)-valued functions (¢"(0) = 2z1[1 /n,00)(0))n>1 for arbi-

trary z € RY \{0}, using that ¥, € L'(u ® i), and taking the limit, we obtain that
t > [oo pu(d6) T W (6, 7)p(dr) is a non increasing S¢ -valued function. This proves Asser-
¥

tion 2 and concludes the proof. O

From now on, we work under assumption (4.2.6). We construct a sequence of Lya-
punov solutions (I'*);>o by induction as follows.

e Initialization: Let T° € C([0,T), L' (1 ® p)) be the unique solution given by Theo-
rem 4.3.1 to the following Lyapunov equation
v, =) e OO R T (0, 7)ds,
Fo(M)(®,7) =Q+DT Jz2 w(dd) T, ") pu(dr") D
+
+BT Je. w(do) T, 1) + Ju, DO, 7")pu(dr") B.
Since Q € S%, an application of Lemma 4.4.1-2 yields that F'© [, u(d0")TT9(0', 7/ )u(dr')F €
+
S, for all t <T'. Combined with the assumption N — AI,,, € ST, we obtain

N+ FT/ wW(d0) T )l dr' ) F — Ay € ST, t<T.
R

2
+

e Induction: for i € N, having constructed I'" € C([0,T], L' (1 ® u)) such that

N+FT /R (o) T T u(dr ) F — AL, € ST, t<T. (4.4.5)
+
and
/ lp|(dn)|TL0,7)| < ki, p—ae, t<T, (4.4.6)
Ry
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for some & > 0, we define
-1
Oi(r) =— (N +FT / M(de’)Tri(e',T’)u(dT’)F> (4.4.7)
RY

X (FT / w(do) T 7 p(dr YD + CT / u(def)r;’(afm)) ,
R2 R,
together with the coefficients
Qi(0.7) = Q +0,(0) 'NOy(7), Bi(r)=B+C0y(r), Di(r)=D + FOi(t}48)
Since I'" € C([0,T], L' (1 ® 1)), we have

sup ||F7t;||L1(H®H) < 00.
t<T

Combined with the estimate (4.4.6), this yields the existence of ¢; > 0 such that
Qi) <c, p—ae., t<T.

This implies that the coefficients Q*, Bf, D' satisfy (4.4.2). Therefore, Theorem 4.3.1
can be applied to get the existence of a unique solution T € C([0,T], L' (1 ® p)) to
the following Lyapunov equation
i, ) = f e~ O+ By (5, TH1) (0, 7)ds,
Fi(s,T)(0,7) = Qi(0, T) + Di(0)" Joo u(d0") (0", 7" )u(dr") Di(r

) (4.4.9)
+B{(0)T J, n ()T, 7 )+ Jo, DO, 7)p(dr') Bi(7),

such that the estimate (4.4.6) holds also for 1. Furthermore, since Q! clearly lies in
S4(pu® p), for all t < T, Lemma 4.4.1-2 yields that (4.4.5) is satisfied with I'} replaced
by Tit!, for all ¢ < T. This ensures that the induction is well-defined.

4.4.2 Step 2: Convergence of (T'%);>o in L'(u® )

Lemma 4.4.2. Fori € N and for a scalar function & € L= (|u|) define the matriz-valued
functions

W = [ oI Ol VO = [ o) T O,
R2 RY

Then,

1. (Z/{i)i>0 is a non-increasing sequence (meaning L[ZH <Uj,ieNandt <T)of

monotone non-increasing functions on the space C([0,T),S%), converging pointwise
to a limit denoted by U;

2. (Vi(f))po is a uniformly bounded sequence of functions on the space C([0,T], Rd/Xd/),

converging pointwise to a limit denoted by V(£), for any scalar function £ €
L=(lpl)-

Proof. Throughout the proof we consider the intermediate scalar sequences

Ui(e) = Ty, 0),m  and  Vi(p,) = Ty, ¥),r, t<T, i€N, @€ L™,
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4.4. Solvability of the Riccati equation

which are well-defined since I'} € L' (pu ® ) for all t < T. We also set ©~! = 0, and for
i > 0, and define

Ai :Fi_]_'\iJrl, pz :@ifl _ei’

where we recall that © is given by (4.4.7). Straightforward computations, detailed in
Lemma 4.A.2 and Remark 4.A.1, yield that A’ solves the Lyapunov equation:

Ai(0,7) = [ eI E (s ALY, T)ds,
Fi(t,A)0,7) = 1%5(9 ™)+ Di(O)" fuz w(dd) AW T)pu(dr)Di(7)  (4.4.10)
)" fe, 1(d6’ N 7)+ fo, MO, 7)u(dr') Bi(7),
where

2y (0,7) = pi(0)" (N +FT /R  n(d’) Ty, T’)u(dT’)F> pi(T).

e Fix i € N. Since Qi € S (u® ), an application of Lemma 4.4.1-1 on (4.4.10) shows
that ¢ — A is a non-increasing S¢ (1 ® p)-valued function. Thus, for any ¢ € L' (),

(2, T00), > (9, T00), > (o, Thp) > (o, Ty, >0, t<T, ieN,

Since for all t < T, T is also an element of L'( ® p), the density of simple functions in
L*>(u) with respect to the uniform norm, implies that

0 < UM () < Ui (p) <UL () <UQ().

for all ¢ € L>(x). This implies that the sequence of functions (U%(¢));>0 is non-
increasing, nonnegative and converging pointwise to a limit that we denote by U;(p) for
any t € [0,T]. Furthermore, ¢ — Uj(p) is continuous, for all i € N and ¢ € L>®(u),
thanks to the continuity of t — T'; in L' (u®pu), see Lemma 4.3.3. The claimed statement
1 for U now follows by evaluating with ¢(¢) = z, where z ranges through RY

e Since I'! — T € S‘i(,u ® ) for any i < j, an application of the Cauchy-Schwarz
inequality (see Lemma 4.A.1) yields

o (T3 =T3) )2 < (o0 (T = 1) @ (s (T =T ) 0y 0090 € L ()11

Invoking once again the density of simple functions in L (u) with respect to the uniform
norm and the fact that for all t < T, Ty € L' (u ® ), (4.4.11) gives

(Vo) — Vo) < (Uie) - Ui(0) (Uiw) ~ Ui ®)) . .6 € L=(u).

Whence, the sequence of real valued functions (t = Vi, 1/1)) is uniformly bounded.

i>0
Furthermore, this also shows that the sequence (¢ — Vi'(¢,v)), ., is a real-valued Cauchy
sequence that converges pointwise to a limit that we denote by Vi(p, 1), for any ¢, €
L*>(p). To obtain the continuity of V¥(¢,1), note that I'} — T'Y € S% (u ® ) for any
t<sand I — T} € S% for any s < ¢, which allows us once again to apply the Cauchy
Schwarz inequality (see Lemma 4.A.1) coupled with the density argument to obtain for
any s,t € [0,77:

Vi, ) = Vi, 1) < (Ui() — Ui()) (Ui () — Ui () .

Consequently, the continuity of U?(y) for any ¢ € L>(u) implies that of Vi(ip, 1) for
any ¢,% € L>®(u). Fix £ € L*(|u|), the claimed statement 2 for V(§) now follows by

evaluating with ¢(0) = z and ¢¥(0) = £(0)z’, where z, 2’ range through RY. O
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Lemma 4.4.3. There ezists a constant k > 0 such that for every i € N and t € [0, T

<k p-—ae. (4.4.12)

| rie.outn)
Ry

Proof. Lemma 4.4.2 ensures that there exists a constant M > 0 such that for every i € N

sup
t<T

V sup
t<T

/R u(d9) TTE(6, 7)u(dr)

2
+

/ e O u(df) TTHO, T)pu(dT)| < M.(4.4.13)
2
Fix i € N. We proceed as in the proof of Lemma 4.3.2 to bound the quantity gi(6) =
‘fﬂh FiH(Q,T)M(dT)’. By construction T'**! solves (4.4.9), so that an integration over
the T-variable combined with (4.4.13) and the triangle inequality yield

gt (0) <4rT + 4 /T(l +IK(t=9)]) (g:(0) + 9.7 (0)) ds,  (44.14)

where 7 is a constant only depending on B, D, N and M. Let us now show the desired
inequality (4.4.12). For n > 0, let us define

G} (0) = sup

i=0,...,n

/ 1(0, 7)u(dr)
Ry

The inequality (4.4.14) yields for every ¢ > 0
T
G 0) < 4rT + 4r/ (1+2|K(t —s)|) GE(0)ds.
¢

Consequently, the generalized Gronwall inequality implies that there exists a constant ¢
only depending on B,C,D,F,N,T, K and M such that for every n € N, t € [0,T] we
have |G} ()| < ¢ for p-almost every 6 and ¢ € [0,T]. O

Lemma 4.4.4. The sequence of functions (U");>o converges uniformly on C([0,T],S%)
to its simple limit U introduced in Lemma 4.4.2.

Proof. From Lemma 4.4.2, we have that (Z/{i)izo is a non increasing sequence of contin-
uous functions converging pointwise to . To obtain the uniform convergence it suffices
to show that U is continuous and apply Dini’s theorem. To do so our strategy is to show
that ¢ — U, solves an equation whose solutions are continuous.

Step 1. Equation satisfied by U. By definition I'"*! is solution to (4.4.9), thus by
integrating over 7,0 and applying Fubini’s theorem we get

{MZH = ftT Ey(t,r) (U™Y) dr,

- 4 . ) , , 4.4.15
Fi(t,r) U™t =T1(t,r) +IT'(t,r) + IIT*(¢,7) + IIT*(¢,7) T, ( )

where
F(tr) = [0 u(a0) T Qi6,m)u(dr)e T,
&
= </ 6‘9“‘%<d9>TD:‘<9>T> i+ ( Di(ﬂu(dﬂe-m—ﬂ) ,
Ry k.
I (t,r) = </ 6_9“_”u(d9)TB£(0)T> Vi(e' =),
Ry
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with B, D" and Q° defined as in (4.4.8). The pointwise convergences and the uniform
bounds stated in Lemma 4.4.2 allow us to apply the dominated convergence theorem to
(4.4.15) to get

{Lft = Ji Flt.r) W)r, (4.4.16)
F(t,ryU) =1(t,r)+IL(t,r) +II1(t,r) +I1L(t, )T,
where

I(t,r

)

= K(r—t)"QK(r —t) +O(t,r) " NO(t,r),

(t,7)
I1(¢,r) (DK (r—t)+ FTo(t, ))TL{T (DK(T—t)-l-FT(:)(t,r))’
LI(t,r) =V, (7)) (BE (L= 1)+ CT6(1.1)).
(t,?“) (N+FTZ/[ F) (FT[/[TDK(T,t) CTV ( (t— r)))

Step 2. Continuity of t — Uy. We first observe that by virtue of Lemma 4.4.2 ¢ — U,
and ¢t — V, are bounded on [0, T] so that there exists ¢ > 0 such that

‘F(t,r)(U)‘ <c(l+|K(r—t)P), t<r<T (4.4.17)
Fixing t < s < T, it follows from (4.4.16) that
s T
—Us = /t F(t,r) (U)dr + / (F(t,r) U) — F(s,r) (U)) dr

= ]-t,s + 2t,s'
By (4.4.17),

Lol S e (s =1+ 1K s )

By virtue of the square integrability of K, the right hand side goes to 0 as ¢ 1 s. Similarly,
using u' Qu — v Qv = (u+v) " Q(u — v), we get

T
12, gc/ K(r—t) — K(r — )| |[K(r — ) + K(r — 8)| dr
° T
+c/ V(e ) = V(e =) dr

<A+ By,

where ¢ is a constant. The first term can be easily handled with Cauchy-Schwarz in-
equality

T
vy <2e|IK |22 0 / K(r+ s —t) — K(r)dr,

which shows that A, , converges to zero as ¢ goes to s, recall (4.3.12). For the second
term note that for alli e N, t <s<r <T,

L, wa T 0. Pyutar)e =0 [ o) T, yutar)ee
RY 1]

(4.4.18)
< essSUP/eg,

/R u(do) T (0, 7')

§K}I_((r—s)—f?(r—t) ,

/ e—r(r—t) _ e—T(r—s)Lul(dT)
Ry
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where x is the uniform bound from Lemma 4.4.3 and
K(t) = / e % ul(dh), t>0. (4.4.19)
Ry
Taking the limit ¢ — oo in (4.4.18) and invoking Lemma 4.4.2; we obtain
Vr(e.(t—r)) _ Vr(e'(s—r))’ <k ’I_((r —s5) - K(r— t)| )

Thus, similarly as for A; ; we get that B, s converges to 0 as t goes to s. As a result U
is continuous. O

Lemma 4.4.5. For any t <T, (I'Y);>¢ is a Cauchy sequence in L*(p & p).
Proof. Let t < T and i < j. Let ©7,B7, DI be defined as in (4.4.8) for any j € N.

Then cumbersome but straightforward computations, detailed in Lemma 4.A.2, yield
that Ay? =T’ — T/ solves the Lyapunov equation
AY () =[] e DT R (s, A (0, 7)ds,
Fi(t,A)(0,7) =Q7°(0, T) +D]7 (0 O)" Joz 1 d9’)TA(9’,T’)M(dT’)Difl(T)
+B]7( )" S, n(de’ TA(H’ )+ Jo, DO )u(dr) B (1)
+5,(0 ) £ (1) + p (0)7S7 (7),
(4.4.20)
where
pii = @il _@i-1,
070(0,7) = p (0)T (N + FTUF) p (7),

SY(r) =T [ udd) T 7+ FTUD + (N + FTUF) L (),
+

and U is defined as in Lemma 4.4.2. We will show that HA?HLI(;@M —0asi,j — oo by
successive applications of Gronwall inequality and by showing that p*/ is small enough.
For this, we fix € > 0 and we denote by ¢ > 0 a scalar independent of i, j, ¢, 7 and 6 that
may vary from line to line throughout the proof.

Step 1. We bound the terms |p} (1) and ‘fﬂh Aij(G,T)p(dT)’, We first write

.. . —1 X _ .
P (1 )—<(N+FTugF) — (N +FUF) 1) (FTugD+CT/

p(do’) T T))
Ry
~(N+FTUiF)” <FT (ug’ - ug') D+CT / w(dd)TAY (0, 7)

R
(4.4.21)

By the uniform convergence of the sequence of functions (Ui)po, obtained in Lemma
4.4.4, one can find n’ € N such that -

u —uj

+ ’(N + FTL{th)il — (N + FTUZF)_I‘ <e t<T, i,j>14.4.22)

where the bound for the second term comes from the matrix identity A=! — B~1 =
B~1(B — A)A~!. Furthermore, it follows from Lemmas 4.4.2 and 4.4.3 that

Ui | v ¢ p—ae, t<T, i20. (4.4.23)

| Tie.mntan)| <
Ry
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Combining the previous identity with (4.4.22) and (4.4.21) yields

AZ(0, T)u(dr)
Ry

oY (7)< e <6+

), pw—ae., t<T, ij>n.

In addition, (4.4.23) yields that
©;0)| <e¢, p—ae, t<T, i>0, (4.4.24)

which in turn implies

/ e "m0 101(0)] |ul(d0) < K'K(s—1), s<t<T, i>0,
Ry

where K is given by (4.4.19). Fix 4,57 > n’ and t < T. Combining all the above and
integrating equation (4.4.20) over the 7 variable leads to
) ds, p—a.e.

An application of the generalized Gronwall inequality for convolution equation with R
the resolvent of ¢(1 + K?), see [GLS90, Theorem 9.8.2], yields

B T
/ AV (0, T)u(dr)| < c/ (1+ KQ(S —t)) (e +

| av@. )
Ry

AY(8,7)pldr)

. <ec (T + ||I_(||%2(O,T)> (1 + HR”Ll(O,T)) , M= a.e.(4.4.25)
+

Step 2. Plugging (4.4.22), (4.4.23), (4.4.24), and (4.4.25) into (4.4.21), we obtain

[ e e o lultar) <r (e (1 B(s =) + 187 o) - (4426)

Ry

Finally by plugging (4.4.23), (4.4.24), (4.4.25) and (4.4.26) into (4.4.20) and integrating
over the 6§ and 7 variables we obtain

1A 2 (o) SC/ L+ K2t = 5)) (e + A7 l2 () ds.
t

Another application of the generalized Gronwall inequality for convolution equations
yields that

||Aij||L1(u®u) <ec <T+ HRZHQL?(O,T)) (1 + HRHLl(o,T)) .

This proves that (I'});> is a Cauchy sequence in L'(u ® p) for every t € [0, 7). O

4.4.3 Step 3: The limiting point of (I"});>o solves the Riccati
equation

Lemma 4.4.6. Assume that (4.2.6) holds. For each t < T, denote by T'; the limiting
point in L'(u ® i) of the sequence (Fi)»o obtained from Lemma 4.4.5. Then, t — Ty

solves the Riccati equation (4.2.5) with

fgg 1Tl (uop) < +oo. (4.4.27)
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Proof. Fix t < T. By virtue of the L'(u ® u1) convergence,
Ti(0,7) = Te(8,7) n®p—ae.

Furthermore the boundedness of (i,t) — ‘fRZ w(dd)TTO, 7)u(dr)
+
and (i.£,7) > | f, 1(d0) TT}(6,7)

4.4.9) ensures that there exists a constant ¢ > 0 such that [T%(6, 7)| < ¢ [ e~ 0+ (=t gs <
( t\M t

(IVT)(LA(0+7)7") since 1 —e % < (1v¢) (LA67!). Hence the dominated conver-
gence theorem yields

(0r1,0) > | [y, Ti(0, 7)u(dr)

, see Lemmas 4.4.2 and 4.4.3, combined with equation

/}R w(d0) (6, 7)u(dr) — | u(d6)TTy(0,7)pu(dr),

2 2
+ R

/]R w(df) 16, 7) — 1(df) ' T4(h,7) and / Ti0, 7)u(dr) — T8, 7)p(dr), p—ae.

2 2 2 2
+ L Lt RY

Thus, as ¢ — oo we have

0i(0) - O4(0) = (N + BT / u(d@)TFt(e,T)u(dT)F> 7
R

.
X (F /R
Bi(6) — B+ C"O.(0)
Di(9) — D+ FTO,(0)

2
+

1(d0)TT4(0, ) pu(dr)D + CT /
R+

e

2
+

By plugging these convergences into (4.4.9) we obtain that the limit T solves

T
L'v(0,7) :/ e~ DR (0, 7)ds, ©Rp— a.e. (4.4.29)
t
with

ﬁt(ﬂ, T)=Q + O:(0)NO(T) + /R Ly(0,7)u(dr) (B + CT@t(T))

.
+(B+CT04(0)) / w(df)"T,(6,7)
Ry
-
L (D+FT0,(0) / 1(d6) T4 (6, 7)u(dr) (D + FTO4()) .
=
By using the expression of © exhibited in (4.4.28), we get that ﬁt(e, 7) = R(T:)(0,7),
where R is given by (4.2.3), so that (4.4.29) is the desired Riccati equation. Finally,
the uniform bounds obtained in Lemmas 4.4.3 and 4.4.4 and plugged into (4.4.29) imply
(4.4.27).
O

4.4.4 Step 4: Continuity and uniqueness

We now establish the estimate (4.2.7) for the solutions of the Riccati equation, which in
turn implies continuity.
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Lemma 4.4.7. Assume that there exists a L'(u ® p)-valued function t — Ty such that
(4.2.5) holds with (4.4.27). Then, the estimate (4.2.7) holds and T € C([0,T], L' (u®pu)).
If in addition Q € Si, then T'y € Si(u ®u), forallt <T.

Proof. The proof of the estimate follows the same lines as that of Lemma 4.3.2, with
constant coefficients. The only difference is the nonlinear term

V0, 7) = /tTe—<9+f><s—t)5(rs)(e)TN—1(rs)S(rs)(r)ds,

which we can bound as follows. Let S(I')(s)(0) = |F[|DIITs | 1 (peop) +1C fR+ || (dm")|T(0, 7).

Integration over the 7-variable, using the bound e—?(*—*)

for a constant ¢ that may vary from line to line

< 1 and Tonelli’s theorem give

T A A
/ l(dr) Va6, 7)) < / 1l (dr) / e~ OB 3(T) (5)(8)|N 1| 5(T) (5)(7)ds
Ry t

R

T
< esup ||r8||L1(,L®#>/ (14 K(s))ds
s<T 0

T
tesup [Lalgsguen [ (14 K(s=0) [ Il e 0,7)lds,
s<T t Ry
where K is defined as in (4.4.19). The first four terms appearing in fR+ || (dT)| T (0, 7)|

lead to inequality (4.3.10), with (', K, , c) instead of (¥, K, i, x). Adding the previous
bound for the fifth nonlinear term yields

T
/R l(dr) a6, )] <c <1+ sup |rs||L1(m®m> / (14 K(s))ds
.

s€[0,T]
T —

+c/ (1+K(s—t))/ | (@) [T (6, 7Y ds.
t R+

The claimed estimate now follows from the generalized Gronwall inequality for convolu-
tion equations, see [GLS90, Theorem 9.8.2].

To argue continuity, we recall that the Riccati equation (4.2.5) can be recast as a
Lyapunov equation as in (4.4.29). The claimed continuity is therefore a consequence of
Lemma 4.3.3 provided that the coefficients of (4.4.29) are bounded, which amounts to
showing that the functions t fRi w(d®) Ty (0, 7)u(dr) and (t,0) — fR+ 40, 7)u(dr)
are bounded. The boundedness of the former is ensured by (4.4.27) and that of the latter
follows from the estimate (4.2.7). If in addition Q € Sle then Lemma 4.4.1 applied for
(4.4.29) yields that T'; € Si(u ®@ p) for any t < T. O

Finally, exploiting once more the correspondence with the Lyapunov equation, unique-
ness for the Riccati equation is obtained as a consequence of Theorem 4.3.1 and Lemma 4.4.1.

Lemma 4.4.8. There exists at most one solution to (4.2.5) such that (4.2.7) and (4.4.27)
hold.

Proof. Let T'* and I'” be two solutions of (4.2.5) such that (4.2.7) and (4.4.27) hold.
For i € {a,b}, observe that I' can be recast as a solution to a Lyapunov equation with
bounded coefficients in the form (4.4.9). As a result, A = I'* — I'® can be written as
a solution to the following Lyapunov equation with bounded coefficients (see Lemma
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4.A.2 for details):
A (0,7) = J, e OFIETOE, (5, A,)(6,7)ds,
Fu(t,A)(0,7) = Q¢ (0,7) + Dy(0)" [ro u(d8)TA(O',7")pu(dr") Dy(T)
+
+BY(0)" [i, n(d0") AW, )+ g, A, 7)pu(dr')BE(7)
+S2(0) T p (1) + pt(0) T S (),

(4.4.30)

where

pab =0 — (ab7
(6,7) = pi(6)" <N+FT /

SPh(ry=c" /

R

+(N+FT/]R2+

The fact that the coefficients are bounded comes from (4.2.7) and (4.4.27) on I'* and
I'’. Now, one can note similarly as in (4.4.21) that p? can be re-written as

o (r) = <N+FT/RZ+
. <FT/R

((NF/
o

= A(7) + B(7),

] u(dﬂ’)TF?(ﬂ’,T’)u(dT')F> pit(T),
()T ) + BT [ udorso u(ar) D+

2
RY

u(d)T5(0', 7 )u(dr') F ) O%(r).

—1
u(de’ﬁrf(f)',r’)u(dr')F)

u(d8')T A, 7 u(dr')D + CT / u(do')T A0, r>>
1 Ry

u(de'Fr%(acT')de')F) <N+FT / u<d0'>TF?<9/m/>u<dT'>F> )
&

p(do") T, ") p(dr') D + CT/ M(d9’)TF?(9’J)>

2
+ R+

which is linear in A since B(7) can be rewritten as

N+FT/
R%
:‘(NJFFT/
R}

x N—|—FT/

R

Consequently, A = I'* —T"* is solution to a homogeneous linear Lyapunov equation with
bounded coeflicients, and no affine term. Thus, the generalized Gronwall inequality for
convolution equations, see [GLS90, Theorem 9.8.2] ensures that [|A¢l/z1(ugu) = 0 for
every t € [0, T], which proves uniqueness.

u(de’fri’(a’m’)u(m')F) - <N+FT / u<d0’>Trz<ecT'>u<dT’>F>
R
u<d0’>Tr$<9',T'>u<dT'>F> (FT /R u(do')T <At<9'm'>>u<dT'>F>

2
+

u(de’frz(e’n/)u(dr')F) .

2
+
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4.A. Some elementary results

4.A Some elementary results

Lemma 4.A.1. Let ¥ € Si(u ® w), and ¥ its corresponding linear integral operator.
Then for any o, € L*(p)

(0, TY)2 < (0, W), (), W),
Proof. Since ¥ € Si(,u ® ), then for any ¢, € L'(u) and A € R we have
[, GO+ X0(0) d6) B0, Tlar) (o) + A7) = 0.
2
By expanding the square we obtain a non negative second order polynomial in A whose

discriminant must be non positive. This combined with ¥(6,7) = W¥(7,6)" yields the
claimed inequality. O

Lemma 4.A.2. Let (I'");>0 be the sequence defined in (4.4.9). Then for any 1 <i < j,
AW =T% —T7 is solution to
A% (9, 7) - Lf_i—(a+r)(s_t>ﬂ?(s, AF)(0,7)ds, »
FL(EA)0.7) = QP (0.7) + DI ()T fya nlde") 7A@, )p(dr) D] ()
+B]THO)T Jo, n(d8)TAW 7) + [y, AB. 7 )u(dr")B] " (7)
+S7(0) o) (1) + 017 (0) TS (7),
(4.A.1)
where

gl — i1 _ @il
139(0,r) = ot (6)T (N L FT /
sim=c™ [

Ry

+(N+FT/R

Remark 4.A.1. Note that when j = i+ 1, then S?0tY) = 0. Indeed, in such case we
have

SiD(9) =CT /

Ry

) u(de’)TFi(H’»T’)u(dT’)F> pi (1),

w(do T, 7) + FT / w(doTL (O, 7 u(dr") D+
RY

(') T, 7 uldr ) F )05 (7).

2
+

J(d0)TE (0, 7) + FT / 1(d0)TTE (0, 7)Y DI~ (7) + NO ()

2
R

™ [ wias)ri@ )+ FT [ uag) T D
Ry R

2

2
+ N+FT/
R

u(dG’)Tfi(ﬁ’,T’)u(dT')F> oi(r) = 0.
As a consequence, in the particular case where j = i+ 1, A" = A+ s solution to
(4.4.10). O

2
+

Proof. Let t € [0,T)], for almost every 6,7 we have
A (0,7) =T3(0,7) = T7(6,7)
T g - T g .
= / =+ (=) (1;%5(9,7) + (199(r,0)) + 1 (0,7) + 111;%5(@,7)) ds,
t
(4.A.2)
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where I9° I19% and IIIY* are defined as follows
196,7) = [ 6B () - [ T, ) B )
Ry Ry

= [ ave. B )+ [ T B )~ B )

R

= [ AV B @) + [ 16O )
Ry

Ry

p(d") T (0, T)p(dr ) DT () *fol(@)T/ p(d") "TL(0, 7)p(dr) DI (7)

2
R+

I199(0, 7) =Di~(9) " /
=2
—pi-1(6)" / j(d6')T A (9, 7)u(dr") DI (7)
2
FIOTFT [ (at) T aldr ) F ()
=2
+ I (O)TFT / u(do') T (O, ') DI (7)
)
+ DiL(e)T / j(d0) DLW ) () Fp ()
=
II7°(0,7) = Qi4(0,7) — QI~1(8, 1)
— p3(6) TN (r) + o3 ()T NOI (1) + 011 (O)Np¥ (1)

By plugging the expressions of 1Y% I1%° TIT° into (4.A.2) we obtain (4.A.1). O
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Chapter

Markowitz portfolio selection for
multivariate affine and quadratic
Volterra models

Abstract This paper concerns portfolio selection with multiple assets under rough co-
variance matrix. We investigate the continuous-time Markowitz mean-variance problem
for a multivariate class of affine and quadratic Volterra models. In this incomplete non-
Markovian and non-semimartingale market framework with unbounded random coe-
flicients, the optimal portfolio strategy is expressed by means of a Riccati backward
stochastic differential equation (BSDE). In the case of affine Volterra models, we derive
explicit solutions to this BSDE in terms of multi-dimensional Riccati-Volterra equations.
This framework includes multivariate rough Heston models and extends the results of
[HW20a|. In the quadratic case, we obtain new analytic formulae for the the Riccati
BSDE and we establish their link with infinite dimensional Riccati equations. This
covers rough Stein-Stein and Wishart type covariance models. Numerical results on a
two dimensional rough Stein-Stein model illustrate the impact of rough volatilities and
stochastic correlations on the optimal Markowitz strategy. In particular for positively
correlated assets, we find that the optimal strategy in our model is a ‘buy rough sell
smooth’ one.

Keywords: Mean-variance portfolio theory; rough volatility; correlation matrices;
multidimensional Volterra process; Riccati equations; non-Markovian Heston, Stein—
Stein and Wishart models.

5.1 Introduction

The [Mar52a] mean-variance portfolio selection problem is the cornerstone of modern
portfolio allocation theory. Investment decisions rules are made according to a trade-
off between return and risk, and the use of Markowitz efficient portfolio strategies in
the financial industry has become quite popular mainly due to its natural and intuitive
formulation. A vast volume of research has been devoted over the last decades to extend
Markowitz problem from static to continuous-time setting, first in Black-Scholes and
complete markets ([ZL00]), and then to consider more general frameworks with random
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coefficients and multiple assets, see e.g. [Lim04], [CW14], or more recently [IP19] for
taking into account model uncertainty on the assets correlation.

In the direction of more realistic modeling of asset prices, it is now well-established
that volatility is rough [GJR18a|, modeled by fractional Brownian motion with small
Hurst parameter, which captures empirical facts of times series of realized volatility
and key features of implied volatility surface, see [ALV07; Fukll]. Subsequently, an
important literature has focused on option pricing and asymptotics in rough volatility
models. In comparison, the research on portfolio optimization in fractional and rough
models is still little developed but has gained an increasing attention with the recent
papers of [FH18; BD20; HW20b|, which consider fractional Ornstein-Uhlenbeck and
Heston stochastic volatility models for power utility function criterion, and the work by
[HW20a] where the authors study the Markowitz problem in a Volterra Heston model,
which covers the rough Heston model of [EER18].

Most of the developments in rough volatility literature for asset modeling, option
pricing or portfolio selection have been carried out in the mono-asset case. However,
investment in multi-assets by taking into account the correlation risk is an importance
feature in portfolio choice in financial markets, see [BPT10]. Inspired by the recent
papers [AJ19b; AJLP19; CT19; RT19] that consider multivariate versions of rough
Volterra volatility models, the basic goal of this paper is to enrich the literature on
portfolio selection:

(i) by introducing a class of multivariate Volterra models, which captures stylized
facts of financial assets, namely various rough volatility patterns across assets,
(possibly random) correlation between stocks, and leverage effects, i.e., correlation
between a stock and its volatility.

(ii) by keeping the model tractable for explicit computations of the optimal Markowitz
portfolio strategy, which can be a quite challenging task in multivariate non-
Markovian settings.

Main contributions. In this paper, we study the continuous-time Markowitz problem
in a multivariate setting with a focus on two classes: (i) affine Volterra models as in
[AJLP19] that include multivariate rough Heston models, (ii) quadratic Volterra models,
which are new class of Volterra models, and embrace multivariate rough Stein-Stein
models, and rough Wishart type covariance matrix models, in the spirit of [AJ19b;
CT19]. We provide:

e A generic verification result for the corresponding mean-variance problem,
which is formulated in an incomplete non-Markovian and non-semimartingale
framework with unbounded random coefficients of the volatility and market price
of risk, and under general filtration. This result expresses the solution to the
Markowitz problem in terms of a Riccati backward stochastic differential equa-
tion (BSDE) by checking in particular the admissibility condition of the optimal
control. We stress that related existing verification results in the literature (see
[Lim04], [JSM12], [CW14], [Shel5]) cannot be applied directly to our setting, and
we shall discuss more in detail this point in Section 5.3.

e Explicit solutions to the Riccati BSDE in two concrete specifications of multi-
variate Volterra models exploiting the representation of the solution in terms of a
Laplace transform:

1. the affine case: the optimal Markowitz strategy is expressed in terms of
multivariate Riccati-Volterra equations which naturally extends the one ob-
tained in [HW20a]. We point out that the martingale distortion arguments
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used in [HW20a] for the univariate Volterra Heston model, do not apply in
higher dimensions, unless the correlation structure is highly degenerate.

2. the quadratic case: our major result is to derive analytic expressions for the
optimal investment strategy by explicitly solving operator Riccati equations.
This gives new explicit formulae for rough Stein-Stein and Wishart type co-
variance models. These analytic expressions can be efficiently implemented:
the integral operators can be approximated by closed form expressions involv-
ing finite dimensional matrices and the underlying processes can be simulated
by the celebrated Cholesky decomposition algorithm.

e Numerical simulations of the optimal Markowitz strategy in a two-asset rough
Stein-Stein model to illustrate our results.* We depict the impact of some param-
eters onto the optimal investment when one asset is rough, and the other smooth
(in the sense of the Hurst index of their volatility), and show in particular that for
positively correlated assets, the optimal strategy is to “buy rough, sell smooth",
which is consistent with the empirical backtesting in [GH20Db].

Outline of the paper. The rest of the paper is organized as follows: Section 5.2
formulates the financial market model and the mean-variance problem in a multivariate
setting with random covariance matrix and market price of risk, and defines the general
correlation structure. We state in Section 5.3 our generic verification result, which can
be seen as unifying framework for previous results obtained in related literature. Section
5.4 is devoted to affine Volterra models where we derive an explicit expression for the
optimal Markowitz strategy. In Section 5.5, we consider the class of quadratic Volterra
models, and we show how to solve the infinite-dimensional Riccati equations that appear
in the closed-form expressions of the optimal portfolio. Numerical illustrations on the
behavior of the optimal investment in a two-asset rough Stein-Stein model are given in
Section 5.6. Finally, the proof of the verification result and other technical lemmas are
postponed to the Appendices.

Notations. Given a probability space (2, F,P) and a filtration F = (F;);>¢ satisfying
the usual conditions, we denote by

L ([0, T],RY) = {Y : Q% [0,T] = RY, F — prog. measurable and bounded a.s.}
T

L2([0,T),RY) = {Y :Q x [0,T] = R?, F — prog. measurable s.t. E[/ |Ys|pds] < oo}
0

Sg°([0, 7], RY) = {Y Q% [0,T] = RY, F — prog. measurable s.t. sup |V;(w)| < co a.s.} .
T

t<

Here | - | denotes the Euclidian norm on RY.  Classically, for p € [1,00], we de-
fine Lg’l“([o, T],Rd) as the set of progressive processes Y for which there exists a se-
quence of increasing stopping times 7, 1T oo such that the stopped processes Y™ are in
L2([0,T],RY) for every n > 1, and we recall that it consists of all progressive processes
Y s.t. fOT Y;|Pdt < oo, a.s. To unclutter notation, we write L2'°°([0,T]) instead of
LP¢(0, T], R?) when the context is clear.

*The code of our implementation can be found at the following link.
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5.2 Formulation of the problem

FixT > 0,d, N € N. We consider a financial market on [0, T] on some filtered probability
space (Q, F,F := (Ft)1>0,P) with a non-risky asset S°

dsY = S¥r(t)dt,
with a deterministic short rate r : Ry — R, and d risky assets with dynamics
dSt = dlag(St) [(T(t)].d + O'tAt)dt + O'tdBt] y (521)

driven by a d-dimensional Brownian motion B, with a d x d-matrix valued stochastic
volatility process o and a R%-valued continuous stochastic process \, called market price
of risk. Here 14 denotes the vector in R? with all components equal to 1. The market is

typically incomplete, in the sense that the dynamics of the continuous volatility process
o is driven by an N-dimensional process W = (W1, ..., W™)T defined by:

Wf=Cl B, +1/1-CJCyB;"*, k=1,...,N, (5.2.2)

where C), € R? s.t. C;Ck < 1, and B+ = (B+!,...,BYM)T is an N-dimensional
Brownian motion independent of B. Note that d(W*); = dt but W* and W7 can be
correlated, hence W is not necessarily a Brownian motion. Observe that processes A
and o are F-adapted, possibly unbounded, but not necessarily adapted to the filtration
generated by W. We point out that F may be strictly larger than the augmented
filtration generated by B and B' as we shall deal with weak solutions to stochastic
Volterra equations.

Remark 5.2.1. In our applications, we will be chiefly interested in the case where A
is linear in oy, and where the dynamics of the matriz-valued process o is governed by a
Volterra equation of the form

¢ ¢
ot = go(t) —|—/ wu(t, s,w)ds —|—/ x(t,s,w)dWs. (5.2.3)
0 0

The class of models that we shall develop in Sections 5.4 and 5.5 includes in particular
the case of Volterra Heston model when d = 1 with A\y = 0oy, for some constant 6, as
studied in [HW20a], and the case of Wishart process for the covariance matrix process
Vi = o0, , as studied in [CW14]. The class of models that we will develop in Sections
5.4 and 5.5 includes in particular the case of

1. multivariate Volterra Heston models based on Volterra square-root processes, see
[AJLP19, Section 6], we refer to [RT19] for a microstuctural foundation. When d
= 1, we recover the results of [HW20a], which cover the case of the rough Heston
model of [EER19].

2. multivariate Volterra Stein-Stein and Wishart type in the sense of [AJ19b], where
the instantaneous covariance is given by squares of Gaussians. Under the Marko-
vian setting, we recover a similar structure as in the results of [CW1/4].

Mean-variance optimization problem. Let m; denote the vector of the amounts

invested in the risky assets S at time t in a self financing strategy and set a = o 7.

Then, the dynamics of the wealth X of the portfolio we seek to optimize is given by

dXP = (r) X + o M)dt + o/ dB;, t>0, X§=mz€R. (5.2.4)
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By a solution to (5.2.4), we mean an F-adapted continuous process X * satisfying (5.2.4)
on [0,7] P-a.s. and such that

E[sup |X{|?] < oc. (5.2.5)
t<T

The set of admissible investment strategies is naturally defined by

A= {a e L2"([0,T],R?) such that (5.2.4) has a solution satisfying (5.2.5)}.

The Markowitz portfolio selection problem in continuous-time consists in solving the
following constrained problem

V(im):= 1r€1Jf4 {Var(Xr) : s.t. E[X7] =m}. (5.2.6)

given some expected return value m € R, where Var(Xr) = E[(X7 — IE[XT])Q] stands
for the variance.

5.3 A generic verification result

In this section, we establish a generic verification result for the optimization problem
(5.2.6) given the solution of a certain Riccati BSDE. We stress that our mean-variance
problem deals with incomplete markets with unbounded random coefficients o and A\, so
that existing results cannot be applied directly to our setting: [Lim04] presents a general
methodology to solve the MV problem for the wealth process (5.2.4) in an incomplete
market without assuming any particular dynamics on o nor that the excess return is
proportional to o. However, a nondegeneracy assumption is made on oo ", see [Lim04,
Assumption (A.1)]. The main verification result in [Lim04, Proposition 3.3|, based on a
completion of squares argument, states that if a solution to a certain (nonlinear) Riccati
BSDE exists, then the MV is solvable. The difficulty resides in proving the existence
of solutions to such nonlinear BSDEs (see also [LZ02] for similar results in complete
markets).

Here, we assume that the excess return is proportional to o (instead of the nonde-
generacy condition) and state a verification result in terms of solutions of Riccati BSDEs
(completion of squares, ie LQ problem with random coefficients). A verification result
depending on the solution of a Riccati BSDE is also stated in [CW14], but the admis-
sibility of the optimal candidate control is not proved. We also mention the paper of
[JSM12] where the authors adopt a BSDE approach for general semimartingales, but
focusing on situations in which the existence of an optimal strategy is assumed. In our
case, the existence of an admissible optimal control is obtained under a suitable expo-
nential integrability assumption involving the market price of risk and the Z components
of the BSDE, which extends the condition in [Shel5].

Our main result of this section, Theorem 6.3.1 below, can be seen as unifying frame-
work for the aforementioned results, refer to Table 5.1. For the sake of presentation, we
postpone its proof to Appendix 5.A.

We define C € RV*? by

C=(Cy,....Cx)", (5.3.1)

where we recall that the vectors C; € R? come from the correlation structure (5.2.2).
We will use the matrix norm |A| = tr(AT A) in the subsequent theorem.
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Random coef. Unbounded coef. degenerate ¢ Incomplete market

[LZ02] v X X X
[Lim04] v X X v
[Shel5] v v X X
Theorem 6.3.1 v v v v

Table 5.1 — Comparison to existing verification results for mean-variance problems.

Theorem 5.3.1. Assume that there exists a solution triplet (T, Z1, Z?) € S°([0, T, R)
x L2'([0,T],RY) x LE'°([0,T],RYN) to the Riccati BSDE

{dl‘t = Tu[(=20t) + [\ + 2+ CZ2 e+ (21) T B+ (22) " Wi,

ry = 1,
(5.3.2)
such that
(H1) 0 < Ty < e2Jo ") and T, >0, for allt < T,
(H2)
T 2 2
]E{exp (a(p)/ (N + |22+ 22] )ds)] < 00, (5.3.3)
0
for some p > 2 and a constant a(p) given by
_ 2 2
alp) = max[p (3+1C)),3(8p>—2p) (1+|C] )]. (5.3.4)

Then, the optimal investment strategy for the Markowitz problem (5.2.6) is given by the
admissible control

of = —(\+ 2L+ CZ) (X —gren ), (5:3.5)
where
_ — [T r(t)dt
g = mzToer o T (5.3.6)
1— F0€72 Jo r()dt
Furthermore, the value of (5.2.6) for the optimal wealth process X* = X is
o [T r(t)dt |2
V(m) = Var(X%) = Ty [0 — me™ o TOR7 (5.3.7)
1—Tge 2 S r(t)dt
Proof. We refer to Appendix 5.A. O

Remark 5.3.1. By setting Z! = T',Z!, i = 1,2, the BSDE (5.3.2) agrees with the one
in [CW14, Theorem 3.1]:

1 2
dr, = Ft[(—Qr(t) A+ S Z +CZt

*)]ae+ (2) " aBi+ (22) Taw,
and justifies the terminology Riccati BSDE.
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In the sequel, we will provide concrete specifications of multivariate stochastic Volterra
models for which the solution to the non-linear Riccati BSDE (5.3.2) can be computed in
closed and semi-closed forms, while satisfying conditions (H1) and (H2). The key idea is
to observe that, first, if such solution exists, then, it admits the following representation
as a Laplace transform:

r, = E[exp(/tT (2r(s)—|)\S+Z§+CZf]2)ds) ‘}}}, 0<t<T

In the special case where )\ is deterministic, then the solution to (5.3.2) trivially exists
with Z' = Z2 = 0, and condition (H1) and (H2) are obviously satisfied when X is nonzero
and bounded. In the general case where A is an (unbounded) stochastic process, the
admissibility of the optimal control is obtained under finiteness of a certain exponential
moment of the solution triplet (I, Z!, Z2) and the risk premium ) as precised in (H2).
Such estimate is crucial to deal with the unbounded random coefficients in (5.2.4), see
for instance [HW20a; SZS14; Shel5] where similar conditions appear. If the coefficients
are bounded, such condition is not needed, see [Lim04, Lemma 3.1].

Our main interest is to find specific dynamics for the volatility o and for the market
price of risk A such that the Laplace transform can be computed in (semi)-explicit form.
We shall consider models as mentioned in Remark 5.2.1, where all the randomness in A
comes from the process W driving o, and for which we naturally expect that Z' = 0.
We solve more specifically this problem for two classes of models:

1. Multivariate affine Volterra models of Heston type in Section 5.4. This extends
the results of [HW20a] to the multi dimensional case and provides semi-closed
formulas.

2. Multivariate quadratic Volterra models of Stein-Stein and Wishart type in Section
5.5 for which we derive new closed-form solutions.
5.4 Multivariate affine Volterra models

We let K = diag(K7y,...,K,) be diagonal with scalar kernels K; € L2([0,T],R) on the
diagonal, v = diag(v1,...,v4) and D € R4 such that

D;j >0, i#j.
We assume that o in (5.2.3) is given by o = +/diag(V), where V = (V1,..., V)T is
the following Rifvalued Volterra square-root process

Vi = go(t) + /Ot K(t —s)DVids + /Ot K(t — s)vy/diag(Vs)dWs. (5.4.1)

Here gg : Ry — Ri, W is a d-dimensional Brownian motion and the correlation structure

with B is given by
Wi=p;B" +/1—p?B>" i=1,...,d, (5.4.2)

for some (p1,...,pq) € [~1,1]¢. This corresponds to a particular case of the correlation
structure in (5.2.2) with N = d, and C; = (0,...,p;,...,0)". Furthermore, the risk

premium is assumed to be in the form \ = (01 VVI 04V Vd)T, for some 6; > 0, so
that the dynamics for the stock prices (5.2.1) reads

dS; = S; (r(t) + 0;V}) dt + S;\/VidB], i=1,....d. (5.4.3)
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We assume that there exists a continuous Rid—valued weak solution (V,.S) to (5.4.1)-
(5.4.3) on some filtered probability space (2, F, (F):>0,P) such that

supE[[ViP] < o0, p>1. (5.4.4)
t<T

For instance, weak existence of V' such that (5.4.4) holds is established under suitable
assumptions on the kernel K and specifications gy as shown in the following remark.
The existence of S readily follows from that of V.

Remark 5.4.1. Assume that, for each i = 1,...,d, K; is completely monotone on
(0,00)",and that there exists v; € (0,2] and k; > 0 such that

h T
/ KZ2(t)dt —|—/ (Ki(t+h) — K;(t))*dt < k;h?, h>0. (5.4.5)
0 0
This covers, for instance, constant non-negative kernels, fractional kernels of the form
tH=1/2 JD(H +1/2) with H € (0, 3], and ezponentially decaying kernels =5t with 3 > 0.

Moreover, sums and products of completely monotone functions are completely mono-

tone, refer to [AJLP19] for more details.

o If go(t) = Vo + fot K(t — s)b°ds, for some Vo,b° € RL, then [AJLP19, Theorem
6.1] ensures the existence of V' such that (5.4.4) holds,

e In [AJEFE19a], the existence is obtained for more general input curves gy for the
case d = 1, the extension to the multi-dimensional setting is straightforward.

Exploiting the affine structure of (5.4.1)-(5.4.3), see [AJLP19], we provide an explicit
solution to the Riccati BSDE (5.3.2) in terms of the Riccati-Volterra equation

wi(t) = / Kot — s)Fy((s))ds, (5.4.6)
Fi(¢) = —07 — 20;p;v9p" + (D T9); + %‘2(1 —209) (W2, i=1,....d, (5.4.7)

and the R%valued process

9:(8) = go(s) +/0 K(s —u)DV,du +/0 K (s —u)vy/diag(Vy,)dW,, s> t5.4.8)

One notes that for each, s < T, (g¢(s)):<s is the adjusted forward process

a(s) = B[Vi— [ K(s—u)DVidu | 7],

Lemma 5.4.1. Assume that there exists a solution ¢ € C([0,T],R?) to the Riccati-
Volterra equation (5.4.6)-(5.4.7). Let (I, Z', Z*) be defined as

I = exp (2 ftT r(s)ds—}—Z?:l ftT Fi(w(T—s))gi(s)ds),
7zl =, (5.4.9)
ZP = T =t/ Vi, i=1,...,d, 0<t<T,
where g = (g*,...,g%)" is given by (5.4.8). Then, (I',Z',Z?) is a S§°([0,T],R) x
L2([0,T],RY) x L2([0, T), RY)-valued solution to (5.3.2).

TA function f is completely monotone on (0, c0) if it is infinitely differentiable on (0, c0) such that
(=1)"f™(t) >0, for all » > 1 and t > 0.
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Proof. We first observe that the correlation structure (5.4.2) implies that C' in (5.3.1) is
given by C' = diag(p1, ..., pa). Set

Gt:2/ ds+Z/ $)gi(s)ds, t<T.

Then, " = exp(G) and
1
dry =T, (th + §d<G)t). (5.4.10)

Using (5.4.8), and by stochastic Fubini’s theorem, see [Ver12, Theorem 2.2], the dynamics
of GG reads as

d T d
Gy = ( — ot ZF — )i+ Z/t Fy((T — 9)) K (s — 1)ds Y Djini)dt

i=1

+ Z/tT Fi((T — 5))Ki(s — t)dsvi\/ VidW}

i=1

d d d
= (~2r() - AT )V 3w (T )Y DV )t

i=1 j=1
+ ZW Vidwy,

where we changed variables and used the Riccati—Volterra equation (5.4.6) for ¢ for the
last equality. This yields that the dynamics of ' in (5.4.10) is given by

d 2
dl, = T (—2r +ZV¢ : —t))+ZDji¢j(T_t)+%(d]i(T—t))Q))dt
j=1
+ Iy Z A ViAW
d
=T, [( =2r(t) + > V(0 + pivit (T — 1)) dt + (zf)Tth} : (5.4.11)

where we used (5.4.7) for the last identity. Finally, observing that

d
|Ae + 28 + Czﬂz = Z (0; + piviy" (T — t))2 |28
i=1
together with I'r = 1, we get that (', Z!, Z?) as defined in (5.4.9) solves the BSDE
(5.3.2).
It remains to show that (T, 2%, Z2) € S°([0,T],R) x L2([0,T],R%) x LZ([0,T],R%).
For this, define the process

M; = T';exp (/tT ( —2r(s) + Z ViO; + pivip (T — s))Q)ds), t<T.

i=1
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An application of 1t6’s formula combined with the dynamics (5.4.11) shows that dM; =
M (Z2)TdW;, and so M is a local martingale of the form

M, = S(ZTiW‘(T s)z/l-\/VjidW;).

Since 1 is continuous, it is bounded so that a straightforward adaptation of [AJLP19,
Lemma 7.3] to the multi-dimensional setting, recall (5.4.4), yields that M is a true
martingale. Since My = 1, writing E[Mr|F;] = M,, we obtain

d

T, = E[exp (/tT (2r(s) = Y Vi(0; + pavit (T — s))2)ds) | ]—"t}, t < T(5.4.12)

i=1

which ensures that 0 < Ty < e? I r(s)ds P _ g.s., since V € Ri. As for Z2, it is clear
that it belongs to L2([0,T],R?) since T and 1 are bounded and ]E[fOT PO des} < o0
by (5.4.4). O

The following remark makes precise the existence of a continuous solution to the
Riccati-Volterra equation (5.4.6)-(5.4.7).

Remark 5.4.2. Assume that K satisfies the assumptions of Remark 5.4.1.

o If1—2p? >0, then [AJLP19, Lemma 6.3] provides the existence of a unique solu-
tion ¢ € L2([0,T),R%). Continuity of such solution can then be easily established,
since as opposed to [AJLP19, Lemma 6.5], (5.4.6) starts from 0.

o Ifd=1and 1 —2p? <0, [HW20a, Lemma A.4] establishes the existence of a
continuous solution 1.

Using Theorem 6.3.1, we can now explicitly solve the Markowitz problem (5.2.6) in
the multivariate Volterra Heston model (5.4.1)-(5.4.2)-(5.4.3). The next theorem extends
[HW20a, Theorem 4.2] to the multivariate case. Notice that the martingale distortion
argument in this cited paper is specific to the dimension d = 1, and here, instead, we
rely on the generic verification result in Theorem 6.3.1.

Theorem 5.4.1. Assume that there exists a solution 1 € C(]0,T],R?) to the Riccati-
Volterra equation (5.4.6)-(5.4.7) such that

2 2 1104\2 a
jnax, max (07 + 029 (1)) < ) Jorsomep>2. (5.4.13)

where a(p) is given by (5.3.4) and the constant a > 0 is such that E [exp (a fOT Zle Vsids)} <

0o. Assume that g§(0) > 0 for some i < d. Then, the optimal investment strategy for the
mazimization problem (5.2.6) in the multivariate Volterra Heston model (5.4.1)-(5.4.2)-
(5.4.3) is given by the admissible control

aft = = (O + pt (T = 1)) Vi (X7 = gren 08} 1< < d, (5.4.14)

where & is defined as in (6.5.6), the wealth process X* = X by (5.2.4) with A =
(91\/ Vi, ...,9d\/ﬁ)—r, and the optimal value is given by (6.5.7) with Ty as in (5.4.12).
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Proof. First note that under the specification (5.4.9), the candidate for the optimal
feedback control defined in (5.3.5) takes the form

af = —(M+ ZE+CZ2) (X7 — grem I r(9)ds)
::«%&+MWW@—ﬂMﬁ%@;_85ﬁM@@D

1<i<d

It then suffices to check that the assumptions of Theorem 6.3.1 are verified to ensure
that such o* is optimal and to get that (6.5.7) is the optimal value. The existence
of a solution triplet (I', Z1, Z%) € S([0,T],R) x L2([0,T],R%) x LZ([0,T],RY) to the
stochastic backward Riccati equation (5.3.2) is ensured by Lemma 5.4.1. In addition,
(5.4.12) implies that 'y < €2 Jo r(®)ds gince g5(0) > 0 for some i < d by assumption and
V' is continuous. Thus condition (H1) of Theorem 6.3.1 is verified. As for condition
(H2) of Theorem 6.3.1, note that

d d
a(p) (A + |21+ |227) = al) Do Vi (02 + v2u'(1)?) < oV,
3 i=1

which implies that E [exp (a(p) fOT (\)\S|2 + |Z51|2 + |Zf|2) ds)} < oo and ends the
proof. O

Remark 5.4.3. Condition (5.4.13) concerns the risk premium constants (01,...,04).
Fora > 0, a sufficient condition ensuring E[exp (a fOT Zle Vsids)] < o0 is the existence
of a continuous solution 1) to the Riccati-Volterra

F= [ K=ot (DI, + 56

see [AJLP19, Theorem 4.3]. In the one dimensional case d = 1, such existence is
established in [HW20a, Lemma A.2] for the case where go(t) = Vy + mfot K(t — s)ods,
¢>0,D=—kanda < 5

202

Remark 5.4.4. Note that in the one dimensional case the condition (5.4.13) can be
made more explicit by bounding ¢ with respect to 0. Indeed since —0? < 0 we get from
[AJEE19¢, Theorem C.1] that 1 is non-positive. Furthermore, the fact that v is solution
to the following linear Volterra equation

t 1/2
X0 = [ K== 0+ (D= 200) + (0= 22 0(6))x(o) ),

leads to, see [AJEE19c, Corollary C.4],

T
sup || < |6 / Rp(s)ds,
0

t€[0,T)

where Rp is the resolvent of KD. Consequently, a sufficient condition on 6 to ensure
(5.4.13) would be

T
I <1—|—(01/)2/0 RD(s)ds> < %.
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Remark 5.4.5. In order to numerically implement the optimal strategy (5.4.14), one
needs to simulate the possibly non-Markovian process V' and to discretize the Riccati-
Volterra equation for . [AJ19a; AJEE19c] develop a taylor-made approzimating pro-
cedure for the stochastic Volterra equation (5.4.1) (resp. the Riccati-Volterra equation
(5.4.6) ), using finite-dimensional Markovian semimartingales (resp. finite-dimensional
Riccati ODE’s). An illustration of such procedure on the mean-variance problem in the
univariate Volterra Heston model for the fractional kernel is given in [HW20a, Section

5/.

5.5 Multivariate quadratic Volterra models

Before we introduce the class of multivariate quadratic Volterra models, we need to
define and introduce some notations on integral operators.

5.5.1 Integral operators
Fix T > 0. We denote by (-,-)> the inner product on L? ([O,T],RN) that is
T
e = [ 1T a(s, g€ 2 (0.TLRY).

We define L2 ([O,T]Q,]RNXN) to be the space of measurable kernels K : [0,7]? —

RY*N guch that
T T
/ / |K(t,s)|*dtds < oo.
o Jo

For any K,L € L? ([0, T)?, RNXN) we define the x-product by
T
(K D(s) = [ KoLz ()€ 0.7,
0

which is well-defined in L? ([0, T]2,RNXN> due to the Cauchy-Schwarz inequality. For

any kernel K € L? ([O, T)?, RNV*N ), we denote by K the integral operator induced by
the kernel K that is

(Kg)(s) = /OT K(s,u)g(u)du, g€ L? ([O,T],RN).

K is a linear bounded operator from L2 ([O,T],RN) into itself. If K and L are two

integral operators induced by the kernels K and L in L? ([0, T2, RN*N ), then KL is

the integral operator induced by the kernel K % L.
We denote by K* the adjoint kernel of K for (-,-) 2, that is

K*(s,u) = K(u,s)", (s,u)€[0,T)?

and by K™ the corresponding adjoint integral operator.
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Definition 5.5.1. A kernel K € L? ([0,T]2,RNXN) is symmetric nonnegative if K =
K* and

T T
| [ 567K auds >0, vr ez (0.118Y).
0 0

In this case, the integral operator K is said to be symmetric nonnegative and K = K™
and {(f,Kf)r2 > 0. K is said to be symmetric nonpositive, if (—K) is symmetric
nonnegative.

We recall the definition of Volterra kernels of continuous and bounded type in the
terminology of [GLS90, Definitions 9.2.1, 9.5.1 and 9.5.2].

Definition 5.5.2. A kernel K : Ri — RM*N s 4 Volterra kernel of continuous and
bounded type in L? if K(t,s) = 0 whenever s >t and

T T
sup / |K(t,s)|?ds < 0o, and lim |K (u+ h,s) — K(u,s)|*ds = 0, u <T5.1)
tefo,17 Jo h=0 Jo

Any convolution kernel of the form K (¢, s) = k(t—s)1s<; with k € L? ([O7 T},RNXN)

satisfies (5.5.1), we refer to [AJ19b, Example 3.1| for additional examples. Note that
(s,t) — K(s,t) is not necessarily continuous nor bounded.

For completeness, we collect in Appendix 5.B.1 below standard results for integral
operators and their resolvents.

5.5.2 The model

In this section, we assume that the components of the stochastic volatility matrix ¢ in
(5.2.1) are given by 0¥ = 'yi—']—-Y, where v;; € RY and Y = (Y1,...,Y™M)T is the following
N-dimensional Volterra Ornstein—Uhlenbeck process

t t
Y: = go(t) +/ K(t, s)DYSdS—i—/ K(t,s)ndWs, (5.5.2)
0 0

where D, n € RNV go: Ry — RY is locally bounded, W is a N-dimensional process

as in (5.2.2), i.e.,
Wf =Cl B, +1/1—ClCyB;", (5.5.3)

where C € R% such that CiCy <1, k=1,...,N,and K : [0,T]®> — RV*N s a
Volterra kernel of continuous and bounded type in L? as in Definition 5.5.2. We stress
that the process W is not necessarily a IN-dimensional Brownian motion due to the
possible correlations.

Furthermore, the risk premium is assumed to be in the form

N =0Y, t<T,

for some © € R 50 that the dynamics for the stock prices (5.2.1) reads as

N d d
dsi = §i (r(t) + 3 nyj@f’w;@yt’“)dt + 8IS L VidBl, i=1,...,d(55.4)
k=1 j=1 j=1
The appellation quadratic reflects the quadratic dependence of the drift and the
covariance matrix of log S in Y. Such models nest as special cases the Volterra extensions
of the celebrated [SS91] or [SZ99] model and certain Wishart models of [Bru91] as shown
in the following example.
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Example 5.5.1. (i) The multivariate Volterra Stein-Stein model:
For N =d, K = diag(K',...,K?%) and v;; = Bije; with B;; € R such that Z?:l ij =1

and (e1,...,eq) the canonical basis of R?, we recover the multivariate Volterra Stein-
Stein model defined by

dsi = Si(r() + X5 ey B VIV )dt + iV 5, BiydBY,

Y= gh()+ [y Ki(ts) X5, DYYds + [y K (8 syn'dWi, i=1,....d,

and C; = p;i(Bi1,...,Bia) " to take into account the leverage effect. Recall that W is
possibly correlated and is not necessarily a Brownian motion.

(i) The Volterra Wishart covariance model:

Using the vectorization operator, which stacks the columns of a matriz one underneath
another in a vector, see [AJ19b, Section 3.1], one can recover the Volterra Wishart
covariance model for N = d?:

ds,
Y,

with §o : [0,T] — R 4 suitable measurable kernel K : [0,T]> — R™?, o d x d
Brownian motion W and

i T / Lij s
WY = p;.B + l—piijijB’”, ,j=1,...,d,

for some p;; € R4 such that p;-gpij <1, fori,j =1,...,d, where B is a d x d-

diag(Sy) [r(t)14dt + Y;dB;], So € RY,
do(t) + [y K(t,s)DY,ds + [y K(t,s)ndWs,

dimensional Brownian motion independent of B. Here the process Y is d x d-matriz
valued.

Remark 5.5.1. Note that with (5.5.3), there are no restrictions on the correlations
between Y and the stocks S* in (5.5.2) and (5.5.4), in contrast with the correlation
structure (5.4.1) of the multivariate Volterra Heston model. Moreover, the models in
Example 5.5.1 allow us to deal with correlated stocks in contrast with the multivariate
Heston model in (5.4.3) where no correlation between the driving Brownian motion of
the assets S* and S7 is allowed in order to keep the affine structure.

Since K is a Volterra kernel of continuous and bounded type in L?, there exists a
progressively measurable R™ x R%-valued strong solution (Y,S) to (5.5.2) and (5.5.4)
such that

supE[|Y3P] < o0, p>1.
t<T
Indeed, the solution for (5.5.2) is given in the following closed form

Y :go(t)+/0 Rp(t, s)go(s)ds+/0 (K(t,s) + Rp(t, s))ndWs, (5.5.5)

where Rp is the resolvent of K D, whose existence is ensured by Lemma 5.B.2-1 below,
we refer to Appendix 5.B.1 for more details on the resolvents. The existence of S readily
follows from that of Y and is given as a stochastic exponential. In the sequel, we will
assume that the solution Y is continuous. Additional conditions on K, in the spirit of
(5.4.5), are needed to ensure the existence of continuous modification, by an application
of the Kolmogorov-Chentsov continuity criterion, for instance, as shown in the following
remark.
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Remark 5.5.2. For s <t and p > 2, an application of Jensen and Burkholder-Davis-
Gundy’s inequalities yield

E[I(Y: ~ g0(0)) = (Vs — 90(s))P) < (1 + sup E[Y2]"] )

t T p/2
v (/ K (¢, 7)) dr+/0 K (t,7) — K(s,7)] dr) .

This shows that (Y — go) admits a continuous modification, by the Kolmogorov-Chentsov
continuity criterion, provided that

t T
/ |K(t,r)|2dr+/ K () — K (s,7)2dr < clt — 5|7,
s 0

for some v > 0.

5.5.3 The explicit solution

In this section, we provide an explicit solution for the Markowitz problem for quadratic
Volterra models, and our main result is stated in Theorem 5.5.1 below.

Exploiting the quadratic structure of (5.5.2)-(5.5.4), see [AJ19b], we provide an ex-
plicit solution to the Riccati BSDE in Lemma 5.5.2 below, in terms of the following

family of linear operators (¥;)o<¢<7 acting on L? ([O7 7], RN):

o, = —(Id - K)_*@T (Id + QGEtGT)_l@(Id - K)_l, 0<t<T, (5.5.6)

where F™* = (F71)~*, and K is the integral operator induced by the kernel K =
K(D —2nCT7O) and X; the integral operator defined by

S =1d-K)'s,(1d- K)™*, tel0,T), (5.5.7)

with 3; defined as the integral operator associated to the kernel
sAu
Ye(s,u) = / K(s,2)n(U —2CTC)n" K (u,z) " dz, tel0,T], (5.5.8)
t

where U = 400 = (Lisy + 145 (C1)TCy) oy oy

We start by deriving some first properties of ¢t — W,, namely that it is well-defined,
strongly differentiable and satisfies an operator Riccati equation under the following
additional assumption on the kernel:

T
sup/ |K (s,t)|?ds < oo. (5.5.9)
0

t<T

We recall that ¢t — W, is said to be strongly differentiable at time ¢ > 0, if there exists
a bounded linear operator ¥, from L? ([O, 7], RY ) into itself such that

. ; G2
lim —||Wypp — Oy — hWylop =0, where [|G|lop = sup _—.
h—0 h i P feL2([0,T),RY) [ £1lz2
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Lemma 5.5.1. Fiz a kernel K as in Definition 5.5.2 satisfying (5.5.9). Assume that
(U—-2C7C) € S¥. Then, for each t < T, ¥, given by (5.5.6) is well-defined and is a

bounded linear operator from L? ([O, 7], RN) into itself. Furthermore,

1. (©70lId + W¥,) is an integral operator induced by a kernel (s, u) such that

sup/ [ (s, u)|Pdsdu < oo, (5.5.10)
<7 J[o,1)2

2. For any f € L? ([O,T],RN>;

(ef1)(8) =(~0TOld + K T,)(f1,)(0),
where 1; 1 s = 1;<,.
3. t — W, is strongly differentiable and satisfies the operator Riccati equation

U, = 20,3, 0, t€[0,T]

= (Id—f{)_*@T@ (Id—K’)_l (5:5.11)

where 3 is the strong derivative of t — X, induced by the kernel
(s, u) = —K{(s, tn(U — 2CTC)T]TK(U, ', ae. (5.5.12)
Proof. The proof is given in Appendix 5.B.2. O

We are now ready to provide a solution for the Riccati-BSDE (5.3.2). For this, denote
by g the process

t ¢
g1(s) = Li<s (go(s) +/ K(s,u)DY,du —|—/ K(s,u)ndVVu). (5.5.13)

0 0

One notes that for each, s < T, (g¢(s)):<s is the adjusted forward process
S
gi(s) = E[YS - / K(s,u)DY,du | }‘t}, s>t

t

We also denote the trace of an integral operator F by Tr(F) = fOT tr(F (s, s))ds, where

tr is the usual trace of a matrix, and we define the function ¢ by

o = Tr(‘I’tAt) —2r(t)
= [ tr (©@TOK(s,t)nUn" K(s,4)") ds
= Jotrp 0 (Ge(s, ) K (u, )nUn " K (s, 8) ) dsdu — 2r(2),
or =0,

(5.5.14)

where A, is the integral operator induced by the kernel given by

Ay(s,u) = —K(s,t)nUn" K(u,t) ", u,s <T.
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Lemma 5.5.2. Fiz a kernel K as in Definition 5.5.2 satisfying (5.5.9). Assume that
(U=2CTC) € SY. Let W be the operator defined in (5.5.6). Then, the process (', Z*, Z*)
defined by

Ly = exp (¢ + (96, Yege)L2),
zZl =0, (5.5.15)
ZE = 2((%:Kn)*g)(1),
where g and ¢ are respectively given by (5.5.13) and (5.5.14), is a Sg°([0,T],R) x
L2([0,T],R%) x L2([0, T), RY)-valued solution to the Riccati-BSDE (5.3.2).

Proof. Set Gy = ¢+ + (9¢, P+9¢) 1.2, so that I'y = exp(G;) and
1

To obtain the dynamics of G it suffices to determine the dynamics of the process ¢t —
(96, ¥1ge) 12
Step 1. In this step we prove that the dynamics of ¢t — (g¢, ¥yg;) 12 is given by

d(ge, ¥igt) 12 = (<9t7 Uigi)re + A M+ 20\ CZ2 + Tr(‘I’tAt)>dt +(Z7) T d55.17)
We first note that

T
(9t ¥t gt) 2 Z/ g:(s) T (®1g1)(s)ds,
0
and compute the dynamics of ¢ — g;(s)" (¥;g;)(s). For fixed s < T, it follows from
(5.5.13) and the fact that Y; = ¢:(t), that
dgi(s) = —0i—sg:(t)dt + K (s,t)Dg(t)dt + K (s, t)ndWy.

Together with Lemma 5.5.1-3, we deduce that ¢ — (¥;g,)(s) is a semimartingale with
the following dynamics

d(W4g:)(s) = (W19,) (s)dt + (¥1dgy)(s)
= (Wge)(s)dt — Py (s, t)ge(t)dt + (R, K (-,t)Dgy(t))(s)dt + (¥, K (-, t)ndWy)(s).

Here, we used the fact that Id§, = 0: indeed, for every f € L?([0,T],R%) we have
(Idé:)(f) = (f(-)14=.) = 0p2. Moreover,

d{g.(s),(¥.g.)(s))e = —tr (@T@K(S, tnUn " K (s, t)T)dt

T
+/ tr (v (s, ) K (u, t)nUn" K(s,t)")dudt
t T
= tr (@TGAt(s,s))dtf/ tr (1 (s, u) Ay (u, s))dudt

= —tr ((q/tj\t(., 5))(5)).
Whence, combining the previous three identities, we get

d (9:(5) " (Lege)(5)) = dge(s) " (1:)(5) + ge(s) "d(Wrg:)(5) + d{g.(s), (¥.9.)(5))e
= —0i=sge(t) " (R1ge)(s)dt + ge(t) "D K (5,) " (Wrge)(s)dt

+ 90(8) T (Wege) (s)dt — gu(s) Tehu(s, 0)ge (D)t + go(s) T (W, K (-, 1) Dgy (1)) (s)dt

— tr ((\IltAt(-,s))(s))
+ AW, 0" K(s,t) T (®19:)(s) + ge(s) T (RK (-, t)ndWy)(s)

- [I(s) +TI(s) + ITI(s) + IV (s) + V(s) + VI(s) |dt + VII(s) + VIII(s).
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We now integrate in s. First, using Lemma 5.5.1-1 we get that
T T
/ [L(s) +IV(s)]ds = —ge(t) " (Trg0)(t) — gt(t)T/ Ye(t, u)ge(u)du
0 t

T
= AT = 20,07 /t Wt u)ge (w)du
M A —2g:(t) T (&, + 0T 01d)g,) ().

On the other hand, since, ¥* = ¥, we have

/O [1K(s) + V()]s = 20,7 (((KD)"®,)g1) (1)

Therefore, summing the above, using Lemma 5.5.1-2, and the definition of K, we get

/T [I(s) + IV (s) + II(s) + V(s)]ds = A\ A\ — 2g:(t) " ((\Ilt +07eld - ((KD)*)lIlt)gt> ()
0
A A+ 4g:(6) T (KnCTO)*®,)g,)(t)

M A 420\ CZ2.

Finally, observing that
T . T .
/ IIL(s)ds = (g, Woge) 12, / VI(s)ds = Tr(\IltAt>,
0 0
T T
/ [VII(s) + VIII(s)|ds = (Z7) dW,,
0

we obtain the claimed dynamics (5.5.17).
Step 2. Plugging the dynamics (5.5.17) in (5.5.16) yields

dry

T :{(bt,T —Tr (‘I’tAt) + (g6, C1g4) 12 +
t

(ZQ)TUZ2
A A +2Ajozf}dt
3

1 2
+ (22)" am.
By (5.5.14), we have: 1 = —2r(t). From the definition of Z2, we have

GV ] (o)) 0] 0 (wur)’a) 0

= *2<gt7 (‘I’tAt‘I’t)gt>L2-

Thus, using the Riccati relation (5.5.11), we get
. . * T *
2= (g0, (&0~ WA )g)re = 4[(ZKn) ) (0)] CTO((wEKn) 00) (1)
= (z))TcoTz2.
Combining 1,2 and 3 yields

dr'y

= (7 2r(t) + |\ + Z} + C’Zt2|2)dt+ (Z2)Tdw,.
t

This shows that (T, Z!, Z?2) solves (5.3.2).
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Step 3. Tt remains to check that (T, Z1, Z%) € S3°([0, 7], R)x L&([0, T], R%)x L2([0, T],R™).
For this, observe that since ¥ is a nonpositive operator over [0,7], we have the bound
0 < T, < el 2r(9)ds_ Finally, to show that Z2 € L([0,T],R), it is enough to show that

]E[/OT’/tTK(s,t)Tgt(s)ds)zdt} < 00,
and E[/OT‘/(&T]Z K(v,t)th(v,s)gt(s)dvdsrdt} < 00.

This follows from the fact that K and ¢ satisfy (5.5.1)-(5.5.10) respectively, and

T
sup  E[|g:(s)]*] < sup \go(s)|2(1+sup/ |RD(s,u)|2du) < 00,
0<t<s<T s<T s<T Jo

where Rp is the resolvent of K D. O
From Theorem 6.3.1, we can now explicitly solve the Markowitz problem (5.2.6) in
the quadratic Volterra model (5.5.2), (5.5.3) and (5.5.4), see Theorem 5.5.1 below. In

order to verify condition (H2) of Theorem 6.3.1, we will first need the following lemma
whose proof is postponed to Appendix 5.B.3.

Lemma 5.5.3. Let the assumptions of Lemma 5.5.2 be in force. Assume |D—2nCTO|x
HKH%Q([&T]Q) <1, then

T
AP+ 122+ | 22 < (o) <|gs(8)|2 +/ lgs(U)|2dU> , s<T, ©cR{5%18)
0
where k(©) = c|O2(1 + |O|*&(O)) with ¢ > 0 independent of © and

4
#(0) = |f(©)] x ”K”%%[O,T]?) .
L—1fO) x 1K 11720192y

Proof. See Appendix 5.B.3. O

‘We now arrive to the main result of this section.

Theorem 5.5.1. Fiz a kernel K as in Definition 5.5.2 satisfying (5.5.9) and assume
that (U —2CTC) € SY. Let a(p) be as in (5.3.4) and k the function defined in Lemma
5.5.3. Assume that there exists © € RN such that

E{exp (a(p)ﬁ(@) /OT (|gs(s)|2 + /OT |gs(u)|2du)ds)} < 00, (5.5.19)

for some p > 2. Assume that gi(0) > 0 for some i < d. Then, the optimal investment
strategy for the Markowitz problem (5.2.6) is given by the admissible control

o = —((0+20 1@ K" ) ) (1) (Xp" —g7e” Jr0E) (55.20)

where £ is defined in (6.5.6), and the optimal value is given by (6.5.7) with Ty as in
(5.5.15).
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Proof. First note that under the specification (5.5.15), and \; = OY; = Og(t), the
candidate for the optimal feedback control defined in (5.3.5) takes the form

0f = — (M + 2+ 0Z2) (X" — gem )y
((@ +2C ['I’tKn]* )gt) (t) (X?* —&e” ft,T T‘(S)ds).

It thus suffices to check that the assumptions of Theorem 6.3.1 are verified to ensure
that o*(&*) is optimal and to get that (6.5.7) is the optimal value. The existence
of a solution triplet (I', 21, Z%) € S([0,T],R) x L2([0,T],R?) x LZ([0,T],RY) to the
stochastic backward Riccati equation (5.3.2) is ensured by Lemma 5.5.2. In addition,
we have

Ty = E[@fOT (2r(s)—‘)\4g+Z§+CZ§|2>ds} _ E[efoT [2r(s)—|((®+QC[\IISK77]*)95)(s)‘2}ds:|7

which implies that Iy < e? Jo s gince g4(0) > 0 for some i < d by assumption.
Thus condition (H1) of Theorem 6.3.1 is verified. Condition (H2) follows directly from
Lemma 5.5.3 and (5.5.19). The proof is complete. O

The following lemma provides a general sufficient condition for the existence of ©
satisfying (5.5.19). Without loss of generality, we assume that D = 0 in (5.5.2).% Define
Z(s,u) = (59s(s), gs(u)) " for any s,u € [0,T], which we view as a random variable in
L2([0,T)?,R?Y). TIts mean is given by u(s,u) = E[Z(s,u)] = (#90(s),90(u)) " and its
covariance kernel by

Y((s,u), (t,7)) =E [(Z(s, u) — E(Z(s,u))) (Z(t,r) — E(Z(t,r)))T] , s,u,t,r € 0,7,

which is symmetric and nonnegative. It follows from assumption (5.5.1) that ¥ is contin-
uous on [0, T]* so that an application of Mercer’s theorem, see [SW09, Theorem 1 p.208],
yields the existence of a countable orthonormal basis (¢"),>1 in L2([0,T]?,R*") and a
non increasing sequence of nonnegative numbers (A\"),>1, with A — 0, as n — oo, such
that

S((s,w), (£7) = > A" (s, u)e™ (t,7) . (5.5.21)

n>1

In addition, we observe by virtue of (5.5.1) that

Z N = tr(Z) :% /OT </OS tr (K (s, z2)nUn" K(s, z)T) dz> ds (5.5.22)

_ + /OT (/OT (/Ou tr (K (s, 2)nUn" K(s,2)") dZ) dS) du < oco.

Lemma 5.5.4. Set D =0. Let a > 0 be such that 2a < % Then,

E[exp (a/OT (|gs(s)|2+/0T |gs(u)|2du)ds)} < oo0.

In particular, (5.5.19) holds if 2a(p)K(©) < 5+ for some p > 2.

fIf D # 0, then making use of the resolvent kernel Rp of KD, we reduce to the case D = 0 as
illustrated on (5.5.5) by working on the kernel (K + Rp) instead of K.
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Proof. We refer to Appendix 5.B.4. O

Remark 5.5.3. In practice, as A1 < tr(X), it follows from Lemma 5.5.4 and (5.5.22),
that a sufficient condition for the existence of © satisfying (5.5.19) would be

2a(p)r(0) < tr(lz_:)

For instance, for the fractional convolution kernel K (t,s) = 1o<¢(t — )7 ~1/2 we have
fOT fOT |K(t,5)2dsdt = T?"+1. Consequently tr(X) > n?(T?H + T>H+1)) and the con-
dition on © reads

R(©) < (2a(p)y? (T + T2HH)) =L,

The following corollary treats the standard Markovian and semimartingale case for
K = Iy and shows how to recover the well-known formulae in the spirit of [CW14].

Corollary 5.5.1. Set K(t,s) = Inls<; and go(t) = Yo for some Yy € RY. Then, the
solution to the Riccati BSDE can be re-written in the form

Ty =exp (¢ + Y, PY;), and Z}=2n' BY,, (5.5.23)

where P : [0,T] — RY*N and ¢ solve the conventional system of N x N-matrix Riccati
equations

P, =0T0+P((29CT0 - D)+ (2nCTO — D) P, 4+ 2P,(n(U —2CTC)n ") P,
Pr =0,

b = —2r(t) —te(PmUn"), tel0,T],

or = 0.

Furthermore, the optimal control reads
af = — (@ + ZC(Dn)TPtY;> (Xg* e I T<S>d3). (5.5.24)

Proof. For K(t,s) = Inls<t,

Ys :YtJr/SDYudu+/snqu, s>t

t t

so that the adjusted forward process reads

gu(s) = E[Y, - /t DYydu | Fi| = Li,Ye,
and the solution to the Riccati BSDE can be re-written in the form

Ty =exp (¢ + (g6, Wege)12) = exp (¢r + Y, PYy),

where P, = ftT('Iltlt)(s)ds with the R -valued indicator function 1; : (s) = (ly<s, ..., li<s) |
We now derive the equations satisfied by P and ¢. First we have K1 = 0 and

T
B= -+ [ A

T T
= — (\I’flt)(t) +[ (\I’flt)(s)ds — /t wt(S, t)ds
=1+4+2+3.
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Using Lemma 5.5.1-2 and the expression K (s,u) = Lu<s(D —2nCTO) we get
1=(-0T6ld+ K ¥,)(1)(t)=-0"70+ (D—-2CTe) P,

Furthermore, Lemma 5.5.1-3 and Zt(s, u) = Li<csnun(U — 20TC)n" yield

2:/tT(\ilt1t)(s)ds - /tT(lIltZtlIltlt)(s)ds

_ ( /t ('I'tlt)(s)ds> n(U =207 " ( /t (\Iltlt)(s)ds>

= P,(n(U —2CTC)n")P..

Moreover, by using Lemma 5.5.1-1-2, we obtain

33— _ /tT Yi(s,t)ds = —(¥; + O Oid)* (1) = —(K*¥,)*(1)(t) = —P,(D — 2nC" ©).

This proves the equation for P, and that of ¢ is immediate. Finally to prove the formula
of Z% in (5.5.23) and «* in (5.5.24) it suffices to observe the following identity

(%, Kn)*g:)(t) =n' BYs.

O

5.6 Numerical experiment: rough Stein-Stein for two
assets
We illustrate the results of Section 5.5 on a special case of the two dimensional rough

Stein-Stein model as described in Example 5.5.1. We consider a four dimensional Brow-
nian motion (B!, B2, B+, B%1) and define

B'=B', B?*=pB'+\/1-p?B% W'=¢B"+,/1-cBY",

for some p € [—1,1], and ¢; € [-1,1], i = 1,2.
For simplicity we set = 0, and consider two stocks of price process S! and 52 with
the following dynamics®

dsj = Si6,(Yj)%dt + SV, dB],
7 7 t — i .
Yt = YO + m fO (t - S)HZ 1/277¢dWs, 1= 1, 2,
with H* > 0, n;,60; > 0 and Y €R.
Although the framework of Section 5.5 allows for a more general correlation structure

for the Brownian motion, the model is already rich enough to capture the following
stylized facts:

e the two stocks S?, i = 1,2, are correlated through p,

e cach stock S° has a stochastic rough volatility |Y?| with possibly different Hurst
indices H;,

$This corresponds to Example 5.5.1-(1) with (811, 812, 821, 822) = (1,0,p,4/1 —p2) and © =
B~ diag (01, 02).
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e cach stock S’ is correlated with its own volatility process through ¢; to take into
account the leverage effect.

Our main motivation for considering the multivariate rough Stein-Stein model is to
study the ‘buy rough sell smooth’ strategy of [GH20b] that was backtested empirically:
this strategy consisting in buying the roughest assets while shorting on the smoothest
ones was shown to be profitable. We point out that the numerical simulations for the one
dimensional rough Heston model carried in [HW20a] by varying the Hurst index H could
not provide much insight on such strategy, apart from suggesting that the vol-of-vol has
a possible impact on the ‘buy rough sell smooth strategy’. Our quadratic multivari-
ate framework allows for more flexible simulations, with a richer correlation structure
compared to multivariate extensions of the rough Heston model, recall Remark 5.5.1.
Our results below provide new insights on the strategy by showing that the correlation
between stocks plays a key role.

Our present goal is to illustrate the influence of some parameters, namely the horizon
T, the vol-of-vol 1 and the correlation p between the stocks, onto the optimal invest-
ment strategy when two assets, one rough and one smooth with H; < Hs, are at stakes.
To ease comparison, we set ¢; = co = —0.7 for the leverage effects, Y§ = Y@ and
we normalize the vol-of-vols by setting n; = 12. We consider the evolution of optimal
vector of amount invested into each stock, i.e., t + 7} (recall that of = o7} with
o = diag(Y1,Y?)B and a* is given by (5.5.20)). 7 being a stochastic process, we also
consider the deterministic function ¢ — ((©+2C [, Kn]")Yo)(t)(£*), where £* is defined
in (6.5.6), to help us in our analysis.

For our implementation of a* given by (5.5.20), we discretize in time the operators
acting on L2, so that the kernel of the operator ¥ in (5.5.6) is approximated by a finite
dimensional matrix (see for instance [AJ19b, Section 2.3| for a similar procedure) and the
Gaussian process (g;(s))i<s<r defined in (5.5.13) is simulated by Cholesky’s decomposi-
tion algorithm. We refer to the following url for the full code and additional simulations.

Our observations from the simulations are the following.

1. Horizon 7: With the goal of understanding the effect of the horizon 7" on the
investment strategy, we fix all parameters but 7" with p = 0. The results are illustrated
on Figures 6.5a-6.5b-5.1c and 5.2a-5.2b-5.2c. We can distinguish 3 regimes:

e T <« 1 : When the investment horizon is close to the end, the rough asset is
overweighted over the smooth one.

e T =~ 1: A transition appears, as the smooth asset is first overweighted and then
the rough asset becomes overweighted as we approach the final horizon.

e T > 1: The smooth asset is overweighted all along the experiment, letting its
first position only when the maturity is close, suggesting that the transition point
becomes closer to T as T' grows.

One possible interpretation of this transition is the following. Rough processes are more
volatile than smooth processes in the short term but less volatile in the long term, since
their variances evolve approximately as t*. Thus, when there is not much time left, it
seems natural to look for rough processes to obtain some performance. Conversely, the
more time we have, the more we favor the smooth asset.

2. Vol-of-vol n: The volatility of volatility seems to have the opposite effect of the
horizon T over the investment strategy as shown on Figures 5.3a-5.3b.
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Figure 5.1 — Effect of the horizon T on the optimal allocation strategy. When the

horizon T approaches, the rough stock in blue is preferred. When T is big enough and
the horizon far enough the smooth stock in green is preferred. (The parameters are:
H1 = 0087 H2 = 0.4, p = 0,’!71 =T = 1,01 = —07)

e 1) < 1: The smooth asset and then the rough asset are successively overweighted.

e 17> 1 : The rough asset is overweighted.

It is quite natural to expect the vol-of-vol to have an inverse effect when compared to
the horizon T, since increasing the vol-of-vol is similar to accelerating the time scale at a
certain rate depending on H (think of the self-similarity property of fractional Brownian
motion).

3. Correlation p:
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Efficient frontier V(m) = 12 (m = Xo), T =

0.5

— H;=01
Hi=025
Hi=0.35

— H=05
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Figure 5.2 — The efficient frontier in the case where both assets have the same roughness
H, = Hy = H. When the horizon T is small, the rough stocks allows for lower variance.
When T increases we observe a transition and an inversion of the relation order. Indeed,
when T increases, it is the smoothest stocks that allow for a lower variance.
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(b)y n=1.8

0.50 0.75

Figure 5.3 — As the vol-of-vol 7 increases, it is as if the horizon 7" was decreasing and the
rough stock in blue begins to be preferred. H; = 0.08, H, =04, T =2.1,p = 0,¢; =

-0.7.

e p < 0 : In the case of negatively correlated assets it is natural to expect the
following strategy : pick both assets in order to be protected from volatility and
benefit from the drift. So we expect the case p < 0 to be similar from p = 0 except
that the transition from 7' < 1 to T > 1 should appear at a greater T. This is
what we observe on Figures 5.5a-5.5b-5.5c. We interpret this evolution towards
the equally weighted portfolio as the possibility to be protected from volatility by

holding both assets.

p > 0 : when the two stocks are positively correlated with p > 0, there is no

minimization of variance through diversification by going long in both assets. Thus
in the case a positively correlated assets, it is natural to expect the emergence of a
starker choice between the assets. In the p > 0 case, see Figures 77-77, we observe
a buy rough sell smooth strategy as the one empirically found in [GH20b].

As a further line of research, we see two interesting paths :
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Figure 5.4 — p = 0.7, when the two assets are positively correlated we recover the buy
rough sell smooth strategy as it is described in [GH20b]. (the parameters are: H; = 0.08,
HQ = 04, T = 21, m =" = ]., C; = —07)

e A theoretical study of influence of the parameters onto the investments strategies.

e An empirical study testing the different conjectures made about the influence of
some parameters such as 1,7, p, H, etc.

Our numerical results extend to larger horizon 7. For instance, in Figure 5.6, we took
a maturity of T' = 20 years, although we noted that a smaller = 0.1 had to be chosen
to avoid any blow-up, in accordance with Remark 5.5.3.

5.A Proof of the verification result

In this section, we provide a detailed proof of Theorem 6.3.1. It is well-known that
Markowitz problem (5.2.6) is equivalent to the following max-min problem, see e.g.
[Pha09, Proposition 6.6.5]:

2
V(m) = maxmin {E[|X3 — (m —n)[*] - n*}. A,
(m) = maxmin {E||X7 — (m—n)["| - (5.A.1)
Thus, solving problem (5.2.6) involves two steps. First, the internal minimization prob-
lem in term of the Lagrange multiplier 1 has to be solved. Second, the optimal value of
7 for the external maximization problem has to be determined. Let us then introduce
the inner optimization problem:

V() = gleiﬂE“X% - gﬂ, £€R. (5.A.2)

First, we provide a verification result for the inner optimization problem (5.A.2) via
the standard completion of squares technique, see for instance [LZ02, Proposition 3.1],
[Lim04, Proposition 3.3] and [CW14, Theorem 3.1].

Lemma 5.A.1. Assume there exists a solution triplet (I', Z*, Z*) € Sz°([0,T],R)
x L2'°([0,T],RY) x L2'¢([0,T],R™) to the Riccati BSDE (5.3.2) such that Ty > 0, for
allt <T. Fiz £ € R, and assume that there exists an admissible control a*(§) satisfying

aj(€) = — (N + 2L+ 0Z2) (X;“*@) —¢e” fff"(S)dS) , 0<t<T. (5.A3)

Then, the inner minimization problem (5.A.2) admits a*(§) as an optimal feedback con-
trol and the optimal value is

T 2
V(&) = To o — g f 7% (5.A.4)
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tem te (B1)7T((© + 2CIWKN]")1)(t)(§)
0.204 141 — H1=0.08
' — H2=04
0.18- 137
0.16 124
0.14 4
1.1
0.124
1.0
0.10 1
0.0 0.1 0.2 03 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5
t t
(a) T=05
tem 20 te (B71)T((© +2CIWKn] ") 1)(1)(E)
0.40 4 ' — H1=0.08
— H2=04
0.35 4 184
0.30
1.6 4
0.25 1
0.20 1.4
0.15
1.2
0.10
0.05 1.0
00 02 04 06 08 1.0 12 14 00 02 04 06 08 10 12 14
t t
(b) T =15
06 tem te (B7H)T((© + 2CIVKN]1")1)(1)(E)
404 — H1=0.08
— H2=04
0.5
3.5
0.4
3.0
0.3 254
0.2 2.0
0.1 154
0.0 1.0
0.0 05 1.0 15 2.0 25 0.0 05 1.0 15 2.0 25
t t
(C) T=24

Figure 5.5 — Effect of the horizon T on the optimal allocation strategy when the two
assets are negatively correlated (p = —0.4), H; = 0.08, Hy = 0.4. As T increases the
smooth stock in green is more and more weighted in comparison to the rough one in blue.
But the transition takes more time compared to the case p = 0, see Figures 6.5a-5.1c.
m =mn2 = 1,¢; = —0.7. Note the beginning of the blow-up when 7' reaches T' = 2.4, as
it could be foreseen by the condition of Lemma 5.5.4.
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te

{

—— H1=0.08
— H2=04

0.0

25

5.0

75 100 125 150 175 20.0
t

te Xe

—— riskless asset
—_— X
m=Xo(1.05") = 2.65

0.0

2.5

5.0 75 10.0 125 15.0 17.5 20.0
t

Figure 5.6 — Simulation for a larger horizon T' = 20 years. Note that a smaller 1 had to
be chosen in accordance with Remark 5.5.3. (The parameters are: Hy = 0.08, Hy = 0.4,
p=0,m =n=0.1¢ =-0.7.)

Proof. Let us first define X& = Xp—&e™ I ()4 for any o € A. Then, by Itd’s lemma
we have

dXe = (r(t)f(to‘ +a) N)dt+a)dB;, 0<t<T, X§ = xg— e~ Jo r(s)ds

As a result, X* and X have the same dynamics and X% = X% — & so that problem
(5.A.2) can be alternatively written as

To ease notations, we set hy = X\, + Z} + CZZ. For any a € A, 1t6’s lemma combined
with (5.3.2) and a completion of squares in « yield

a(Te X2 [*) = (2T = 20(0) + B m)dt + T K0P ((21) TaB + (22) Tawn)
4T (2)”(3 (r() X+ of M) + o) at)dt + oI, X%, dB,
+20/ (Z} +CZ}) Xpdt
— (ap + m X)) Ty (o + W X dt
+ 20 Xpal dB, + T X7 [P ((2)) TdB, + (22)Taw,).
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5.A. Proof of the verification result

As a consequence, using I'r = 1, we get
Sal2 Sal2 r San T S
| X3 =To|X§| +/ (as + he X)) Toos + hs X)ds
r ~O r Sal2 T T
+/ o, X%/ dB, +/ or,|X°| ((Z;) dB, + (22) dWs).
0 0
Note that the stochastic integrals
. - . - . - 2
/ o, Xa] dB,, / r.|xe|* (24" dB., / r, (Xg) (z2) " aw,
0 0 0

are well-defined since X is continuous, (o, Z*, Z2) are in L2'°°([0, T]) and " in Sg°([0, T], R).
Furthermore, they are local martingales. Let {7x}x>1 be a common localizing increasing
sequence of stopping times converging to T'. Then,

Yo 2 o2 AT Fay T el
E[|X#nr, ] =Tol X5 +E[/0 (s + heX2) Ty (e + 0o X2)ds].

Since a € A, X satisfies (5.2.5), and so E [SUPth |Xf‘|2] < 00. An application of the

dominated convergence theorem on the left term combined with the monotone conver-
gence theorem on the right term, recall that I is Si—valued, yields, as k — oo,

T
E||%8[’] :F0|Xg\2+E[/O (s + 7o X2) T, (g + ho X2)ds|

Since Ty is positive definite for any s < 7', we obtain that the optimal strategy a*(§) is
given by (6.5.4) and the optimal value of (5.A.2) is equal to

ga” 2 — [T r(s)ds|2
V(€) = To|lXg O = Do|Xo — ge™Jo ()|,
which gives (5.A.4). O

We next address the admissibility of the candidate for the optimal control.

Lemma 5.A.2. Assume that there exists a solution triplet (U, Z', Z%) € S3°([0,T],R) x
L2'°([0, T, RY) x L2'°°([0,T),RY) to the Riccati BSDE (5.3.2) such that (5.3.3) holds
for some p > 2 and a constant a(p) given by (5.3.4). Then, for any & € R, there exists
an admissible control process a*(§) satisfying (6.5.4).

Proof. Fix £ € R. We first prove that there exists a control a*(§) satisfying (6.5.4). For
this, we prove that the corresponding wealth equation (5.2.4) admits a solution. As in
the proof of Lemma 5.A.1, it is enough to consider the modified equation

dX; = (r(t)X; + N AKX)dt + (A, X7) TdB,, Xp = mo—ge I T()s,

where Ay = — (A + Z} + CZ?), and then set X; = X+ te” i r(s)ds, By virtue of
It6’s lemma the unique continuous solution is given by

t T ¢
X; = X exp (/0 (r(s) + AJ A5 — %)d& —|—/O ASTdBS).

Setting o (€) := A, X}, we obtain that a*(¢) satisfies (6.5.4) with the controlled wealth
X" = X*  The crucial step is now to obtain the admissibility condition (5.2.5).
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For that purpose, observe by virtue of (5.3.3), that the Doléans-Dade exponential
& ( fo A;rst) satisfies Novikov’s condition, and is therefore a true martingale. Whence,
successive applications of the inequality ab < (a?+b?)/2 and Doob’s maximal inequality
yield, for some constant K > 0 which may vary from line to line,

~ t (.. )\TA ds|2p —_ [t AIASd tATdB
E[ sup |Xt*|p] < KE[ sup ’efo (r()+2] 42) ‘| } +K]E[ sup ‘e Jo Z7dst o As dBs
te[0,T] te[0,T] te[0,T

8

AT A,

< KE [efOT 2p ds:| +KE |:e—p JE AT Acds+2p [T A;rst}

=K(1+2),

which is finite since

1<E

T
exXp (a(p)/ (|)‘s|2 + |Zsl|2 + |Z§‘2) ds)] < o9,
0

and, by virtue of the Cauchy-Schwarz inequality,

9 < (]E |:e(8p2—2p) 5T AjASdsDUQ (E [e—sf ST AT Ads+ap [T Adele/Q

< (E[e® foT(wHZi\2+|Zf\2>ds})” " X1 < o,

where we used Jensen’s inequality to bound

AJAs =\ + Z; + CZ2P < B(INJ* + 1 Z5 P +|CZ217) < 301+ [CP)(INsl? + 1257 + | Z2P),

together with assumption (H2) and Novikov’s condition to the Doléans-Dade exponen-
tial £(4p fo AldB,). Finally, to get that a*(¢) is admissible, we are left to prove that

a*(€) € L2([0,T],RY). Let 2/p 4 1/¢ = 1, by Hélder’s inequality we obtain

T T B
E / ok (&)|%ds | = / |ASX§|2ds]
0 0
B T
<E| sup [ [ 1.Pds
te[0,T) 0

1/4

2/p T q
<|E| sup |X;]P E / |Ag|?ds
t€[0,T] 0
2/p T
<C|E| sup X7 E / (INsl? + 122 +122) ds
te[0,7] 0

< 00,

g 1/4

where the last term is finite due to condition (5.3.3) and the inequality |2|? < cgel*l.
The proof is complete. O

Finally, combining the above, we deduce the solution for the outer optimization
problem (5.2.6) under a non-degeneracy condition on the solution I to the Riccati BSDE,
yielding Theorem 6.3.1.
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Proof of Theorem 6.3.1. From Lemmas 5.A.1 and 5.A.2, we have that the max-min
problem (6.5.2) (which is equivalent to the Markowitz problem (5.2.6)) is equivalent
to

max J(n),  with J() = To|Xo — (m — e o "% — 2.

n
Furthermore, condition (H1): Ty < €2 I 7(s)ds " ensures that the quadratic function J is

strictly concave. This yields that the maximum is achieved from the first-order condition
J'(n*) = 0, which gives

Toe™ jOT r(s)ds (wo —me— jOT r(s)ds)

= 1— F0€_2 fOT r(s)ds ’

and thus £&* = m —n* is given by (6.5.6). We conclude that the optimal control is equal
to o* = o*(£*) as in (5.3.5), and by (6.5.2), the optimal value of (5.2.6) is equal to V'(m)
= V(&%) — (n")?, given by (6.5.7). 0

5.B Proofs of some technical lemmas

5.B.1 Reminder on resolvents of integral operators

Lemma 5.B.1. Let K satisfy (5.5.1) and L € L*([0,T)?,RY*N). Then, K « L satisfies
(5.5.1). Furthemore, if L satisfies (5.5.1), then, (s,u) — (K * L*)(s,u) is continuous.

Proof. An application of the Cauchy-Schwarz inequality yields the first part. The second
part follows along the same lines as in the proof of [AJ19b, Lemma 3.2]. O

For a kernel K € L2([0,T)?,RY*Y), we define its resolvent Ry € L2([0, T]?, RY*)
by the unique solution to

Rr =K+ K xRy, KxRr =Ry« K. (5.B.1)
In terms of integral operators, this translates into
Rr=K+ KRy, KRr=RrK.
In particular, if K admits a resolvent, (Id — K) is invertible and

(Id— K)™' =1d + Ry, (5.B.2)

where Id denotes the identity operator, i.e. (Idf) = f for all f € L? ([O,T],RN).

The following lemma establishes the existence of resolvents for the two classes of
kernels introduced above.

Lemma 5.B.2. Let K € L? ([0, T]2,RNXN>. K admits a resolvent if either one of the
following conditions hold:

1. K is a Volterra kernel of continuous and bounded type in L? in the sense of Def-
inition 5.5.2. In this case, the resolvent is again a Volterra kernel of continuous
and bounded type.

2. K is symmetric nonpositive in the sense of Definition 5.5.1 and (s,u) — K(s,u)
18 continuous.

Proof. 1 follows from [GLS90, Lemma 9.3.3, Theorem 9.5.5(i)]. 2 follows from an appli-
cation of Mercer’s theorem, see [AJ19b, Section 2.1]. O
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5.B.2 Proof of Lemma 5.5.1

Fix t <T. We start by proving that ¥, is well defined and is a bounded linear operator
from L? ([07 T], ]RN) to L2 ([07 T], RN). First, since K is a Volterra kernel of continuous

and bounded type in I? sois K , and Lemma 5.B.2-1 yields the existence of its resolvent
R such that

T T
sup/ |R(s,u)|ds < oo, sup/ |R(s,u)|du < o. (5.B.3)
0 0

s<T u<T

In particular, denoting by R the integral operator induced byAR7 we obtain that (Id— K )
is invertible with an inverse given by (Id — K)~' = Id + R, recall (5.B.2). Next, we
prove that (Id +20%,07) is invertible. It follows from (5.5.7) that

A~ %

S, =Id+R)=(d+R*=%,+ %R + RS, + RS.R.
Whence, 3 is an integral operator generated by the kernel
Y=+ Sk R 4+ RS + R* Xy x R, (5.B.4)

Since K satisfies (5.5.1) and (U —2CTC) € SY, ¥, defined in (5.5.8) is clearly a sym-

metric nonnegative kernel. Combined with (5.B.4), we get that ¥; is symmetric nonneg-
ative. Successive applications of Lemma 5.B.1 yield that (s,u) — 3¢(s, u) is continuous.
Therefore, (_2@§t®‘r) is symmetric nonpositive and continuous so that an application
of Lemma 5.B.2-2 yields the existence of its resolvent RY. In particular, (Id+ 2@X~]t@T)

is invertible with an inverse given by (Id + RP), recall (5.B.2). Combining the above,
we get that ¥, is well-defined, and satisfies

U, = —(Id+ R)*0" (Id + R®)0(1d + R)
—-0'eld-R0T0-0"T0R-RO0"TRP0—-0TRPOR  (5.B.5)
~R'©"RPOR- R ©"OR-0TRY0,
showing that ¥; is a bounded operator.

1: From (5.B.5), we see that (©T©OId + W¥,) is an integral operator whose kernel is of
the form

Y =-ROTO-0T0R- RO xR0 - O0TR® xOR
~ROTxR®xOR—- R OT «xOR—- 0T ROO.
Then, from [AJ19b, Lemma C.1] we get that

sup/ |RE (5, u)*dsdu < oo,
t<T J[0,T]2
which, combined with (5.B.3) ensures (5.5.10).
2: Fix f € L? ([O,T],RN) and t <T. We first argue that
RO(t,.) =0 and R(s,u) =0, for any s < u. (5.B.6)

Indeed, since K is a Volterra kernel, its resolvent R is also a Volterra kernel so that
R(s,u) = 0 whenever s < u. This, combined with the fact that ¥,(¢,-) = 0 and (5.B.4),
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yields that 3(t,-) = 0, so that RP(t,-) = 0 by virtue of the resolvent equation (5.B.1).
Using the relations (5.B.6), we compute

(6TOR) (f1)(1) = €6 /O R(t, 5)f(s)Lu(s)ds = O,
(@TR?@) (fl)(t) = 7 / TR?(t, $)Of(s)1y(s)ds = 0, (5.B.7)
0

T T
(67 RPOR) (f1)(1) = O / / RO (1, u)OR(u, ) ()14(s)duds = 0.
0 0
Thus, (5.B.7) combined with (5.B.5) and the resolvent’s relations R = K + KR and
R =K +K'R yield
—(©TOId+ ¥,)(f1)(t) =(R'©T0+ ROTR°0+ ROTRPOR+ R ©TOR)(f1,)(t)
=~ (K@) (f1)(1)

which proves the second claim 2.

3: Under (5.5.9), [AJ19b, Lemma 3.2| yields that ¢ ~— X is strongly differentiable on
[0, T] with a derivative given by ¢ — ¥, induced by the kernel (5.5.12). Whence, it follows

from (5.5.7), that ¢ — 3, is also differentiable such that 3; = (Id— K) 1'3,(1d— K’)‘*.
Thus, (5.5.6) yields that ¢ — ¥, is strongly differentiable with a derivative given by

¥, =2(ld— K)*07(1d + 20%,07)"165,07(Id + 20%,0T)10(1d — K)~!
=20, 3, V,.
Finally, evaluating (5.5.8) at t = T, yields that Xr(s,u) = 0 for all s,u < T, leading to
Sr = 0 so that Uy = — (Id - f{)f* NG (Id - fc)fl. This proves (5.5.11).

5.B.3 Proof of Lemma 5.5.3
We start with a lemma to bound the kernel 3.

Lemma 5.B.3. Let f(©) = D —2nC T O and assume that |f(©)| x ||KH%2([O 2y < 1.
Then there exists a constant ¢ > 0 such that

sup || S 172 jo,772) < e(1 + £(8)), (5.B.8)
t<T
where k is defined as
4
4(0) = LFO) x 1K1z 10,192 (5.B.9)
1= [f(©)] x ||K||%2([0,T]2) .

Proof. Let R denote the resolvent kernel of K = K f(©) as in the proof of Lemma 5.5.1.
First note that the relation (Id — K)~! = Id + R yields

Hit"%’-’([O,T]?) =[[(1d = K) ™" % S x (Id — K)_*H%’-’([O,T]?)
=||X; + Rx% + S xR+ R4+ R”%Q([O,T]?)
§23(H2t”%2([0,ﬂ2) + ||R*Et||2L2([0,T]2)

+ 1% *RH%P([O,T]Q) +[|R* % *R||%2([07T]2)>'
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An application of the Cauchy-Schwarz inequality combined with Tonelli’s theorem im-
plies that

1K * HI| p2((0,712) <IIK||L2(0,792)[[H ]| L2([0,712), K, H € L*([0, T, RV *{5,B.10)
so that
126117 2 0, 7y2) <2° <||Et||%2([(),T]2) R * el 720172y + 156 % RlI72 (0,02 + 1R * e % RH%?([O,T]?))
<83 0.2y (1+ 1BIZ 2o + 1Bl Eaqor))

<elZellZ 2 (jo,1p2) (1 + HRH%Z’([O,T]?)) ;

where ¢ > 0 is a constant independent of ¥ and R. Thus, to obtain (5.B.8) it is enough

A FEC P F:q P 2
to show that ||RH%2([O,T]2) < (1f(@)><|KL|i([01T] )

successive Picard’s iteration to R = K + K x R yields

u) = ZK*n(S,U Z (s,u), (5.B.11)

2
> . For this, note that applying
)

2([0,1)2

where K*™ is the (n)-fold +-product of K by itself. Combining (5.B.10) and (5.B.11)
together with the submultiplicativity of the Frobenius norm yields

IRz o2y < Y /A (©)™ [I(K(s,u) £(©))*"|dsdu

1<n,m<oco

< Z LFO ™ K™ 20,292 1™ 122 0,72)

1<n,m<oco

0o 2
= <Z If(@)”IIK*”Iliz([o,T]2)>

n=1

- 2
< <Z |f(9)n||K||2Ln2([o,T]2)>
n=1

(O IE oy )’
S\ =IO KR gorp) )

This proves the desired inequality on R and the claimed inequality (5.B.8) follows. [

We can now complete the proof of Lemma 5.5.3.
Proof of Lemma 5.5.3. Fix s < T and © € R™Y . We first note that

2 2 % 2
INsl? 27 + [ Z2]" =|0gs(s)]* + 4 |(XsKn)" g5) (s)] "
Using 5.5.1-1, and denoting by 1P the operator induced by the kernel 15 there, we write

(B Kn)* g5) (5)|" = | — (T OKn)" g.)(s) + (WP K1) gs)(s)|?
=[1+2]
<2011 +[2).
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An application of the Cauchy-Schwarz inequality combined with (5.5.9) leads to

T T
< 92|00 2 sup / K (2, )Pl / 192(w) .
w'<T JO 0
(5.B.12)

2
T
1P = ‘— / K (z,5) "0 0g,(2)dz
0

Similarly,

2P = ( [ ( | xo. sﬁws(m)dr) gs<z>dz>2
<Jy? ( / / K(r, )15, z>|2drdz> ( / : |gs<z>|2dz>
<P sup / "Ik u’>|2dr< / ' / ' |ws<r,z>|2drdz> ( / i |gs<z>|2dz) |

where we stress that 15 is the only term on the right hand side depending on ©. Let us
now show that there exists a constant ¢ > 0 independant of © such that

T T
sup / / [ (r, 2)|2drdz < c|©]*(1 + |0]*4(9)), (5.B.13)
sef0,71J0  Jo
where £ is defined as in (5.B.9). Recall from (5.B.5) that we have
Py =-ROTO-0TOR-R 0T «RP0 —O0TR® xOR
~ROTxR®xOR- R OT x0OR— 0T ROO.

Thus, recalling (5.B.3), there exists a constant ¢ > 0 independent of © such that

T T
sup / / [vs(r, 2)|?drdz < c|®* [ 1+ sup / / |R® (s, u)*dsdu (5.B.14)
s€[0,T] telo,71Jo Jo

To obtain (5.B.13), it is enough to show that

T T
sup / / RO (s, u)2dsdu < c|O*(1 + i(6)), (5.B.15)
0

tel0,7]Jo

for some constant ¢ > 0 not depending on © and & defined in (5.B.9). For this recall
that RY is the resolvent of —20%,0T which implies that R® = (Id +20%,07)~! —Id.
Since, for each t < T, ©%,07 is a positive symmetric operator on L2([0, 7], RY) induced
by a continuous kernel, an application of Mercer’s theorem, see [SW09, Theorem 1,
p-208], yields the existence of a countable orthonormal basis (ef'q)n>1 of L*([0,T], R%)
such that

205 (s,u)0 = Y AMgero(s)ero(w),

n>1

where )‘29 >0, for all n > 1. Consequently

—Ae en n
B = 3 (ool

n>1
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which yields

[ 1mes s = ke
S, U sau = — s
o Jo T (1+Afe)?

n>1
T T
<> (o) = / / 1203, (s,u)O " [2dsdu
n>1 , 0 0
T T
§4|9|4sup/ / 1% (s, u) > dsdu
t<TJo Jo
< [O1'(1 + #(6)).

where the last inequality comes from Lemma 5.B.3. Consequently, inequality (5.B.15)
combined with (5.B.14) yield inequality (5.B.13). Finally, the claimed bound (5.5.18)
follows by recollecting inequalities (5.B.13) and (5.B.12).

5.B.4 Proof of Lemma 5.5.4

Proof. Recalling the decomposition (5.5.21), the process Z admits the following Karhunen-
Loeve representation

Z(s,u) =Y &ue"(s,u),  s,u€(0,T), (5.B.16)

n>1

where (§,,)n>1 is a sequence of independent Gaussian random variables with mean y,, =
(11, €") L2([0,1)2,r2~ and variance A", for each n € N. Now observe that the representation

(5.B.16) combined with the orthogonality of (e,),>1 in L2([0,T]%,R*Y) yields

T T
a / <|gs<s>2+ / |gs<u>|2du)ds=a|zizqo,Tp,Rzm:Zaﬁi,

n>1

so that the independence of (&,),>1 leads to

E leXp <a /OT (Isrs(S)l2 + /OT Igs(U)IQdU> d8>

=E |exp Zafi (5.B.17)

n>1

= [T E [exp (a&?)]

n>1

a;Li

eT—2ax™

nl;[l V1= 2a\"

where the last equality follows from the fact that ¢2 is chi-squared distributed and
0 < 1—2a\" < 1— 2a)\! by hypothesis. We now argue that the right hand side of
(5.B.17) is finite. For the denominator, due to the inequality >, -, A" < 0o, we obtain
that [[,>,(1 —2aA™) > 0. For the numerator, since A" — 0, as n — oo, (m)n>1
is uniformly bounded by a constant ¢ > 0 so that an application of Parseval’s identity
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2
[T exv (52 ) < exp (callul2a o rp om) )
1—92ax\ ) = L2([0,T7%,R*Y)

= exp ( ( / : / : (;2|go(s>2 + |go<u>|2) dsdu>>
1

= exp (ca <T + T) |90||2L2([0,T],RN)> < o0

The proof is complete. O

5.C Additional proof for the martingale property

For completeness, we adapt [AJLP19, Lemma 7.3] to the multi-dimensional setting to
prove that the local martingale

t d
M, = Mos(—/0 Zwi(T—s)uiMdW§>.
=1

is a true martingale. For this we set U = fo Vsds and we observe that, thanks to
stochastic Fubini’s theorem, integrating (5.4.1) yields

t t
U} :/ gi(s)ds +/ Ki(t—s)Zlds
0 0

with

t t
Z;':/ (DVS)ids—i—/ vin/VidW?.
0 0

Proof. Since M is a nonnegative local martingale, it is a supermartingale by Fatou’s
lemma. Whence to obtain the true martingality it suffices to show that E[Myp] = 1
for any T € R;. To this end, fix T > 0 and define the stopping times 7,, = inf{t >
0: fot Vids > n for some i < d} AT. Novikov’s condition, recall that 1 is bounded on
[0,T] being continuous, yields that M™ = M, . is a uniformly integrable martingale
for each n. Whence,

L= Mg = Ep[M7'] = Ep [Mr1,, >7] + Ep [M7, 15, <7],

where we made the dependence of the expectation on P explicit. Since Ep [Mr1,,>7] —
Ep [M7] as n — o0, by dominated convergence, in order to get that Ep[My] = 1, it
suffices to prove that

Ep[M. 1, <7] =0, asn— oo. (5.C.1)

To this end, since M ™ is a martingale, we may define probability measures Q" by

d n
Q" _ e

dP '

By Girsanov’s theorem, the process W = (W™! ... W™4) defined by

Wn’i :W1+/ 15§T”wi(T_S)Vi V Vsidsa 1= 17"'7d7
0
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is a Brownian motion under Q". Furthermore, under Q", we have
U; :/ g(l)(s)ds+/ K;(t—s)Z}ds
0 0

20 = [ (OV)s = Lo 1T = Vs + [ iV
0 0

and we observe that, due to the boundedness of ¢, the drift of Z™ under Q" satisfy a
linear growth condition in U for some constant x; independent of n. An application of
the generalized Gronwall inequality for convolution equations would yield the moment
bound

]EQ" [|UT|2] < 77("%7 T7 Kv go)a

where 7(kr, T, K, go) does not depend on n, see for instance [AJ19¢c, Lemma 3.1]. We
then get by an application of Chebyshev’s inequality

Ep [M‘rn]-‘rngT] = Qn(Tn < T)

d
< ZQ” (UZT > n)

=1

d
1 .

<> 5Ee (U3

=1

1 2
= ko [|Ur[?]

1
S EU(KL7T7 K7 gO)

Sending n — oo, we obtain (5.C.1), proving that M is martingale. O
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Chapter

Linear-quadratic stochastic delayed
control and deep learning resolution

Abstract We consider a class of stochastic control problems with a delayed control,
both in drift and diffusion, of the type dX; = a;_q(bdt + odW;). We provide a new
characterization of the solution in terms of a set of Riccati partial differential equations.
Existence and uniqueness are obtained under a sufficient condition expressed directly
as a relation between the horizon 7' and the quantity d(b/c)?. Furthermore, a deep
learning scheme™ is designed and used to illustrate the effect of delay on the Markowitz
portfolio allocation problem with execution delay.

Keywords: Linear-quadratic stochastic control; delay; Riccati PDEs; Markowitz
portfolio allocation.

6.1 Introduction

The control of systems whose dynamic contains delays on the state and/or control has
attracted the attention of the optimization and engineering communities in the last
decades due to its wide variety of applications, allowing to tackle problems where the past
of a system influences its present or where an agent controls a system with a latency. As
a non-exhaustive list of applications we may cite the following papers, classified by their
applications domain: Engineering ([TG99], [Huz+02]); Advertising ([Set74], [Pau77],
[GRMO5], [GMS09]); Learning by doing with memory effect ([dAVV12]); Growth model
with lags between investment decision and project completion ([AZ99], [Hal+77|, [JDO07],
[Bam08], [BFG12|); Investment ([Tsoll]|, [KP82]). More recently, the introduction of
delayed control together with mean-field effects was studied ([Car+18], [FZ19]) and new
machine learning methods have been designed to numerically solve stochastic control
problems with delay ([HH21|). We also refer to the monograph [Sip+11] to find literature
on the various effects of delays on traffic flow modelling, chemical processes, population
dynamics, supply chain, etc.

In the optimal control community, two main approaches have emerged: the structural
state method and the extended state method, and we refer to [Ben+07, Part II, Chapter
3] for the study of the latter in the deterministic case and [FF14] for the structural state

*The code is available in a IPython notebook.
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Chapter 6. Linear-quadratic stochastic delayed control and deep learning resolution

approach in the stochastic case. Let us also mention the paper by [FF14] for an overview
and exhaustive list of references.

In this paper, we aim at studying the challenging case where there is a delayed
control both in the drift and volatility. Except in [FF14], this situation is not treated
theoretically nor numerically in the references above. The main difficulty comes from
the fact that the natural formulation of a control problem with delayed control involves
a boundary control problem. Indeed, assume for instance that X denotes a state variable
following the simple dynamic X, = ai—gq, where o denotes the control. For any time ¢
and index s € [—d, 0], set us(s) = arys, the memory of the control a. Then, note that
Orur(s) = Ogue(s) and ug(0) = o Thus, the natural infinite dimensional formulation of
the controlled system is

Xt = MUt
(0r — Os)ur(s) = 0,

Boundary constraint { Bu; = ay,

State eq. on (X, u) {
Initial conditions { ug(s) =7, Xo ==,

where t,s € [0,T] x [—d,0], Mu := u(—d), Bu := u(0) and v is the initial value of
the control over [—d, 0]. Consequently, any delayed controlled problem where the delay
appears in the control variable can be recast as a boundary control problem whose ge-
ometry is parametrized by the delay d, see Figure 6.1.

Main contributions. Our goal is to shed some lights on the difficulty related to de-
layed control on the volatility and to provide a practical and simple tool for designing a
numerical scheme practitioners can play with. In this paper, we study the most simple
linear-quadratic control problem with delayed control both in drift and volatility. The
optimal feedback control and the value function are given in terms of Riccati partial
differential equations and the extended state (z,u) € H = R x L2([0, T],R), where = de-
notes the position and s € [—d, 0] — u(s) the memory of the control. The existence and
uniqueness of these latter are proven under a condition, emerging from the delay feature,
involving the drift b, the volatility o, the delay d and the horizon T'. Finally, we adopt a
deep learning approach in the spirit of the papers by [RPK19] (Physics Informed Neural
Network) and [SS18] (Deep Galerkin) to propose a numerical scheme. Our results are
illustrated on the celebrated Markowitz portfolio allocation problem where we take into
account execution delay. We believe the semi-explicit resolution of infinite dimensional
control problem by means of deep learning method will open the door to several inter-
esting applications such as quick simulations of richer models, precise benchmarking of
reinforcement learning algorithms, etc.

Outline of the paper. The rest of the paper is organized as follows: In Section 6.2
we formulate the stochastic delayed control problem and derive an heuristic approach
through a lifting in an infinite dimensional space, namely the extended state space in
the spirit of [Ich82], but without the use of semi-group theory. We state in Section 6.3
a verification theorem and prove existence and uniqueness results for the Riccati PDEs.
A deep learning based numerical scheme with two applications on Markowitz portfolio
allocation is given in Section 6.4, with a detailed analysis of the effect of the delay feature
on the allocation strategy.

Notations.
Given a probability space (2, F, P), a filtration F' = (F;);>0 satisfying the usual condi-
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tions and a < b two real numbers, we denote by
b
L*([a,b],R) = {Y :a,b] — R, s.t. / V3 |2dt < oo}7

L% ([a,b],R) = {Y : Q % [a,b] = R, F — prog. measurable s.t. E

b
/|Yt|2dt <oo}.
a

Here | - | denotes the Euclidian norm on R or R%, and H = R xL?([0, T],R) denotes the

extended state space endowed with the scalar product (z,y) g = oo +fi)d x1(8)y1(s)ds.
For any z = (z,u) € H, we use the notation zp = z and z; = u.

6.2 Formulation of the problem and heuristic approach

Let (2, F,F := (F)i<0, P) be a complete filtered probability space on which a real-valued
Brownian motion (W;);<¢ is defined and consider the simple system defined on [0, 7] by
the following dynamics

de( = Q¢ (bdt + O'th) 5 0 S t S T, (6 9 1)
XO:J:’ O[SZ’Y(S), s € [_d70]a -
endowed with the cost functional
J(a) =E[(X3)"] . (6.22)

where v € L?([—d, 0],R) and a models the control chosen in the set of admissible strate-
gies A:

A= {a € L2([0,T],R) such that (6.2.1) has a solution satisfying E [sup |Xt‘l|2} < oo} .
t<T

For any 0 < a < b < T, we also define the set A, as the restriction of A to L2([a,b],R).

Remark 6.2.1. At this point, we may expect a priori that the optimization problem
(6.2.1)-(6.2.2) admits an optimizer provided o # 0, even if the control is not directly
penalized. The intuition behind this a priori belief is that, the more « is aggressive in
bringing X to 0, the more the variance of X increases due to the diffusion term. It is the
case in the classical LQ stochastic optimization problem with controlled volatility such
as

dXtOé = Oét(bdt + O'th), t < T,
Xo =,
J(a) = E[(X7)?],

2
where the optimal control reads o = —U%Xf‘ and the value function V; = =Tz 4
surprising finding in our paper is the necessity for a more restricting condition on the
diffusion coefficient due to the delay feature, see Proposition 6.3.2.

Remark 6.2.2. In the rest of the paper we focus on the one dimensional case with
delayed control both in drift and volatility which features the main difficulties related
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to the presence of the delay. Although Proposition 6.3.2 concerning the existence and
uniqueness of a Riccati-PDE system does not directly extend to the multidimensional
case, the verification Theorem can easily be adapted to the multidimensional case with
delayed state and control.

The first step consists in lifting the dynamics in the infinite dimensional Hilbert
space H = R x L2([0, T],R), where the system is naturally Markovian. To do so, denote
ut(8) = apqs for any t < T and s € [—d, 0], a transport of the control. The dynamics
(6.2.1) then reads

Zo = (2.7), (6.2.3)

where Z¢ is defined as the H = R x L?([0, T'], R)-valued random process Z* = (X, u(+))

and
. 0 bé_d o 0 U(S_d . 0
=0 %) el ) e=l)

Let V be the value function

V(t,z) = V(t (z,u)) = ddl E((zp)j] = inf E[(X7)’], z€H,

a€A T

{ dZ& = AZ&dt + BZ8dW, + Cday,  0<t<T,

where Z“ denotes the solution to (6.2.3) starting from z = (z,u) at time ¢. Then,
assuming V € C12 ([O7 T] x L? ([-d,0)) 7R), the dynamic programming principle reads

V(t,z)= inf E[V(t+h,Z,)]

QEAL t+h

= inf E

OLE»At,t«{»h

t+h t+h
Vit 2) + / OV (5, 2%Vds + / 0.V (s, 2VdZe
t t

1 t+h
by [ BV zaz,
t

= inf E

a€A¢ 11 h

t+h t+h
Vit z) + / OV (s, Z3)ds + / 0,V (s, Z(AZSds + Cday)
t t

b

1 t+h
by [ BV zaz),
t

Note that 1p(-) = Opz. As a result, simplifying by V (¢, z), dividing by h and letting
h — 0 yields (informally) the Hamilton-Jacobi equation

oV + in%{aZVAeragV(Bz@Bz)} =0, t<T, =z¢€lL?*[~d,0,R),
a€ (6.2.4)
V(T,z) = 22.

Recall that in equation (6.2.4), we have 2z1(0) = u(0) = «. Let us now assume that the
value function V is of the following form

V(t, z) = <Pt27 2)H,

where P € C([0,T], L(H, H)) is a self-adjoint bounded positive operator valued function
of the form

Pt : (xa’}/()) = (

Pii(t)z + [°, Pio(t, s)y(s)ds
Pio(t, )2 + Py (t,)7() + [ Paa(t, -, 5)7(s)ds |
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6.2. Formulation of the problem and heuristic approach

Thus, for any z = (x,u) € H such that u(0) = o and ¢t < T, equation (6.2.4) reduces to

(Piz, 2)u + gfel%“PtA% 2)u + (Piz, Az)p + (P, Bz, Bz)y} = 0. (6.2.5)

Furthermore, using the boundary condition u(0) = « together with integration by part,
we have

0

(Prz, Az)i = (Po2)o(A2)o + /_ (PN (A (5)ds

= bu(—d) (Pn(t)x + [d Pyo(t, s)u(s)ds) + axPia(t,0) — u(—d)xPyo(t, —d)

0
Pyy(t,0, s)u(s)ds
d

—x /Od 0sP12(t, s)u(s)ds + a/
—u(—d) /Od Pyo(t,—d, s)u(s)ds — /2 /Od O0s Paa(t, s, r)u(s)u(r)dsdr

0
+ a?Pyy(t,0) — u(—d)?Pyy(t, —d) — /daspjz(t, s)ds,
(6.2.6)

and
(PiBz, B2) iy = 0® Py (t)u(—d)>. (6.2.7)

Remark 6.2.3. In (6.2.6), along with the integration by part, formulas such as udsu =
dsu? were (formally) used. However, as it appears in the verification Theorem 6.3.1,
the feedback optimal control obtained is as reqular as the controlled process X and thus
as reqular as the Brownian motion W. This is why our approach is only heuristic and
justifies the need for the verification Theorem 6.3.1.

As a consequence, the minimizer of the Hamiltonian in (6.2.5) reads
1 0
a*(t,2) = ———= <9:P12(t,0) —|—/ Py (t, 0, s)u(s)ds) . (6.2.8)
Py, (t,0) —d

Remark 6.2.4. Note that when d — 0, then o*(t,z) — — X% which agrees with the
optimal strategy in the undelayed case.

Combining (6.2.5), (6.2.6) and (6.2.7) yields the set of Riccati partial differential
equations

. Plg(t,O) P12(t,O)P22(t,S,O)
Pi1(t) = —0s)(P12)(t,s) = , 2.
11 (1) Pyy(t,0) (Or — 95)(Pr2)(t, s) Py (4,0) (6.2.9)
Poo(t,s,0)Pas(t,0,7
(at—as)(PQQ)(tvs) =0, (at—as—ar)(Pﬂ)(t’s’T) = 22( P ) 22( )’
7 (tv O)
accompanied by the boundary conditions
Pys(t,—d) = bP11 (1), Py, (t, —d) = o*Py; (1), (6.2.10)
Pzg(t, S, —d) = b1312(t7 S)7 ng(t, —d, 7’) = bplg(t, T),
and the final conditions
Pll(T) = 1, P12(T, 3) = PQ*Q(T, S) = PQQ(T, S,’I‘) = 07 (6211)

for almost every s,r € [—d,0].
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Remark 6.2.5. Looking at the expression (6.2.8), we can already guess some effects of
the existence of a delay on the optimal strategy. Indeed, from (6.2.10) one notes that
Py = b, Py, =~ 02, Py = b2, and we may write

—bx
o?(1+d(b/o)?)
In Section 6.4, we illustrate numerically the various effects of the delayed control through
two examples of Markowitz portfolio allocation with execution delay.

-1
o~ F(bx +db’a) ~

Note that due to the existence of the delay, the value function is independent of
the control chosen after T' — d, so that Pia(t,s) = Pxy(t,s) = Paa(t,s,r) = 0 whenever
t+s>T—dort+r >T—d. Similarly, the optimal control defined in (6.2.8) is ill
defined on [T'— d, T so we decide to set to zero the control after time T'— d and rewrite

Lo 0
a*(t,z) = — =T (xPu(t,()) +/ ng(t,O,s)u(s)ds) . (6.2.12)
Py, (t,0) —d
Thus, to make sense of the set of Ricatti partial differential equations (6.2.9)-(6.2.10)-
(6.2.11) and the optimal control (6.2.12), we adopt the convention 02/0 = 0 and define
the concept of solution as follows

Definition 6.2.1. A j-uplets P = (P11, P12, Pyy, P22) is said to be a solution to (6.2.9)-
(6210)—(6211) Zf Py [O,T] — R, P22,P2A2 : [O,T] X [—d, O] — R and Poy [O,T] X
[—d,0]? — R are piecewise absolutely continuous functions satisfying (6.2.9)-(6.2.10)-
(6.2.11) with Pyy(t) > 0 for anyt <T —d.

The reason we chose piecewise absolutely continuous functions as our set of functions
is because we expect the kernel P to be discontinuous. To illustrate this consideration,
cut the domain D into three pieces D = [0,T] x [—d,0]?> = D, U D, U D, as represented
in Figure 6.1, with

D, =[0,T — d] x [—d,0]?,
Dy={(t,s,r) €D st. t>T—d, t+sVr<T-—d},
D.={(t,s,r) €D st. t>T—-d, t+sVr>T—d}
and note that, necessarily, P12, Py, and P are null on D, but not on the remaining
domain, see also the numerical simulations in Figure 6.5.
In the next section, we provide a proof of the existence and uniqueness of system

(6.2.9)-(6.2.10)-(6.2.11), and a verification theorem yielding rigorously the optimal con-
trol and value of (6.2.1)-(6.2.2).

6.3 Verification and existence results

In this section, we establish a verification result for the optimization problem (6.2.1)-
(6.2.2).

Theorem 6.3.1 (Verification Theorem). Assume that

1. There exists a solution P to (6.2.9)-(6.2.10)-(6.2.11) in the sense of Definition
6.2.1,

2. The control strategy defined as

t

_1 _ .
of =——t=T=d d{X;“ Pi1(t,0) +

= Poo(t —t)akds . 6.3.1
Pa(t.0) (b0 alds}. (631

t—d

where X denotes the controlled state is an admissible control.
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Figure 6.1 — Left: Cross section of D along r = 0. Right: full domain D =D, UD,UD..

Then the optimization problem (6.2.1)-(6.2.2) admits (6.3.1) as an optimal feedback con-
trol. Furthermore, for z = (x,v) € H, the value is given by

0 0
V(z) = Py1(0)z? + 21/ Py5(0, s)ysds + / Py, (0, 8)72ds
—d —d

+/ Vs YuPo2(0, s,7)dsdr (6.3.2)
[—d,0]?

= (Poz,2)H.

Proof. The proof is a basic application of the martingale optimality principle, see [EK81].
Let o € A and define

t

¢
V& = P (t)(X2)? + 2x/ Pis(t,s — t)asds + / Py, (t, s — t)alds
t—d

t—d

+ / Pys(t,s —t,r — t)asa,dsdr (6.3.3)
[t—d, ]2

= (P2 2 ) -

An application of Itd’s formula to (6.3.3) combined with differentiation under the integral
symbol, authorized by the assumed boundness of P and its derivatives, yield

t
v :{1,5()(?)2 +2 <2tXtaat + 3 X g+ X[ / 4t(s)asds>
t—d
t t
+ 5taf_d + a—a6(s) / asds + oy / Ti(s)asds
t—d t—d

t
+ / 8:(s)alds + / 9 (s, u)asaudsdu}dt + ZZFdWh,
t—d [t—d,t]2
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where we have set

1, = Py (t) 2, = Pi5(t,0)

3t = 2bP11(t) - Plg(t, —d) 4t(5) = (8t - 83)(E2)(t, S — t)

5, = 02Py1(t) — Py (t, —d) 6:(s) = (bP12(t, ") — Paa(t, -, —d)) (s — t)
7.(s) = Pyy(t,0,5 — t) 8:(s) = (0 — 8:)(Pyg,)(t, s — 1)

9;(s,1) = (0 — Os — Or)(Pa2)(t,s — t, 7 — 1),

and

t

Zta = 20at,d (Xélpll(t) +/
t

asPia(t, s — t)ds) .
—d

Then, using the set of constraints (6.2.9)-(6.2.10)-(6.2.11) together with (6.3.1) and a
completion of the square in « yield

4V = (Pa(t,0) (an — T(@))?) dt + Z7dW,,

where T () is defined as

t

Tl = it X patt0) + [

asPo(t,0,s — t)ds}, t<T.
sz(ta O) t—d

Note that since the kernels P,’s are bounded and the control o* is assumed to be ad-
missible, a* € LE([0,T],R), X is continuous and the stochastic integral [; Z&dW, is
well posed. Furthermore it is a local martingale. Thus, there exists a localizing increas-
ing sequence of stopping times {7 }r>1 converging to T such that fo'AT’“ Z&dWs is a
martingale for every k > 1. Then, for any & > 1

E [Vy,,] Vi +E

/0 " P50 (s — T(a)s)2ds] .

Note that ¢ + V,* is continuous since P is bounded and o € L2([—d,T],R). Thus,
an application of the dominated convergence theorem on the left term (recall that
E [sup;<p |[X??] < o0, a € LE([-d,T],R) as a € A) combined with the monotone
convergence theorem on the right term yields, as £k — oo

E (V) = E[(X§)%] = V§* +E

T
/O Py (5,0) (s — T(a)s)st] .

Note that here we used the assumption Py, (¢,0) > 0 on [0,T]. Since Py, is non-negative,
we obtain that the optimal strategy is given by a* and that the optimal value equals
(6.3.2). O

Proposition 6.3.1. Assume that there exists a bounded 4-uplets P solution to (6.2.9)-
(6.2.10)-(6.2.11) in the sense of Definition 6.2.1. Then (6.3.1) defines an admissible
control.

Proof. Let v € L*([—d,0],R). To prove the claim, note that it suffices to show that the
equation
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oy = ;ifzf(tT’a)d {Plz(t7 0) (;v + fot as—q(bds + odWS)) + f:_d asPo(t,0,s — t)ds}7

as =", s € [—d,0],
(6.3.4)
admits a solution in L2([0,7],R) and that the process X, then defined as

t
Xi=x+ / as_q(bds + adWy), t<T, (6.3.5)

0
satisfies E [supt<T |Xt\2] < 00. To prove the first point, consider the linear operator ¢

on L2([0,T],R) defined as, for any a € L2([0,T],R)

1 t t
¢(a)t = W{Plg(t,o) (l‘ +/0 ds_d(bds + UdWS)) + /t_d &SPQQ(t,O,S — t)ds},

where a; = 1,<0v + lisoas. For A <0, we endow L2([0, T], R) with the norm ||alj2 =

T ¢=As|q,|2ds. Then, for any a,a’ € L2([0,T],R), we have
0 F

T
H¢W)—¢@0H§A=Ell;emkﬂws—¢ﬂf%2d%

<2(T+11).

(6.3.6)

An application of Jensen’s inequality on the normalised measure % on [0, s], combined

with ﬂ < (1VT)(1AXY), and the Burkholder-Davis-Gundy inequality lead to

- VO ae| Prz(s,0) st]

P22(5a 0)

/ (Gp_q — al._,)(bdr + cdW,.)

2 s 2
< sup | D12(5:0) / (G —a;d)bdr) ds
s<T | Pz (8, O 0
2
+E / (/ _q—a )O’dW?“) ds} }

<c(1AXHE l/o e M (ap—a — ar—d)zdr] 5

P12 (S,O)
Py, (s,0)

1 /S
_ (G — @) Pya(r,0,8 — r)dr
P2A2(87 0) s—d

. Furthermore, we have

2
ds]

where ¢ > 0 depends only on b, 0,7 and sup,<

T
1I <E / e
0

P 2 T s 2

< sup ‘22(5’ 0.r) E / e N / (G, —a..)dr| ds

s<T Py, (s,0) 0 0

re[—d,0]
T
<E(IANHE / e (a, —al)%dr|,
0
where ¢ > 0 depends only on 7" and sup <7t % . Consequently, (6.3.6) reduces

re[—d,0]
to

l¢(a) = d(a)lI3 5 <(c+E)AAXT)]la—a'[3 1.

149



Chapter 6. Linear-quadratic stochastic delayed control and deep learning resolution

As aresult, for A large enough, ¢ is a contraction on the Banach space (L]%([O, T],R), |- |2,,\),
thus proving the existence of o € L2([0,T],R) solution to (6.3.4). Finally, an application
of Burkholder-Davis-Gundy’s inequality to (6.3.5) yields E [sup,<4 |X;|?]. The proof is
thus complete. O

Next, we give a sufficient condition for the existence of P = (P11, P12, Py, P22) in
terms of b,0,d and T. Let a = (ay,)n>1 be the sequence defined as

ao = 17
{ 4 (6.3.7)

anpn —an—2 (2, n>o0

an

Let us denote N : (d,b,0) ~ inf{n > 1:a, > 0 and a,+1 < 0}. Clearly, N is a well
defined finite valued function on R* whose image is not restricted to {0}.

Proposition 6.3.2. Assume N(d,b,c) > 2 and T < N(d,b,0)d . Then (6.2.9)-
(6.2.10)-(6.2.11) has a unique solution in the sense of definition 6.2.1 on [0,T] with
0 < an(apo) < P11(0) < 1.

Proof. See appendix 6.A. O
Remark 6.3.1. Note that when d = 0, the sufficient condition above reduces to o # 0.

Let us give some intuition as of why the delay feature induces the condition on the
coefficients described above to ensure existence. We focus on the first slice [T'— 2d,T —
d] x [—d, 0] of the domain, where the solution P is not trivial.

First, note that since Py, is a transport

of Py which takes the form Py, (t,s) = t
0'2P11(t + s 4+ d)lt-l-s-‘rdST = 021t+s+d§T-
On this slice, the kernel P;; can be ex-
pressed in the following integral form

oo (2) [ (P4 :

(6.3.8) 0
for t € [T—2d,T —d]. Looking at Pj5(-,0),

we have

P12(t70):b—0_2/T_dP12(x,0) &T_d

X Poo(x,t — x,0) dz,
—— ————

<b?

see also (6.A.4). On the right, we rep-
resent the value of the normalized ker- D
nel Py5/b in the different areas of the do-
main [T — 2d,T] x [—d,0]. If we visual-
ize the evolution of the normalized ker-
nel Pj2/b in a backward way on the slice
[T — 2d,T — d], we see that this term is

equal to a transport of its value on the
Pio(T—d,s)
b

boundary = 1, represented by
the blue arrows, minus the integral of a
positive source term which is independent
of t € [T — 2d,T — d] g Pll(t).

150



6.4. Deep learning scheme

Consequently, the delay d > 0 makes the integral term in (6.3.8) independent of

te[T—2d,T—d — Pi1(t) and of the order of d (3)2. If this quantity is too large, the
kernel Py can then reach negative values, thus making Py, negative on the next slice
[T —3d, T —2d] and therefore preventing the system (6.2.9)-(6.2.10)-(6.2.11) from having
a solution. Repeating this argument from slice to slice of size d in a backward manner
induces the aforementioned sufficient condition. Note that these arguments break down
when d = 0. These arguments are precisely developed in Appendix 6.A.

6.4 Deep learning scheme

6.4.1 A quick reminder of PINNs and Deep Galerkin method
for PDEs

In order to solve (6.2.9)-(6.2.10)-(6.2.11), we will make use of neural networks in the
spirit of the emerging Physics Informed Neural Networks (PINNs) and Deep Galerkin
literatures, see [SS18] and [RPK19| to name just a few. We first recall some of the main
ideas. Assume we have a nonlinear partial differential equation of the form

Ou+ N(u) =0, on Q,

6.4.1
u =g, on 0f, ( )

where N is a nonlinear operator, {2 a bounded open subset and g a function on the
boundary of the domain. The main idea is to approximate the solution u to (6.4.1) by
a deep neural network. Let us call ¢t — wu(t,®) this network, where © and ¢ denote
respectively its parameters and a generic element of Q U 0€2. The goal is to find a ©
so that ¢ — u(t, ©) satisfies (6.4.1). To do so, the idea is to proceed by minimizing the
mean square error loss

LO,T)= (@ T)+Ls(O,7),

L,(0,T) = Z| 9, + N)u(t,0)*1cq,
‘T| teT
‘7—| Z |u t @ I 1t€893

teT

where Ly is the loss associated with the initial and boundary constraints on 012, £, the
loss associated to the PDE constraint d,u + A (u) = 0 on  and 7 a random subset of
oNuUQ.

6.4.2 A tailor-made algorithm for Riccati partial differential equa-
tions

Although (6.2.9)-(6.2.10)-(6.2.11) naturally fits the framework of PINNs, we make use
of the structure exhibited on the operator P to build a tailor-made algorithm to approx-
imate the system of Riccati transport PDEs (6.2.9)-(6.2.10)-(6.2.11).

Step 1: We define one neural network for each kernel Pyq, P12, Py, P22, as described
in Figure 6.2. Note that usually a unique neural network is used as a surrogate to the
function that is to be approximated.

Step 2: We build specific loss functionals for each of our neural networks. To illustrate
this, consider for instance the constraint imposed on the derivative of ¢t — Py (t):

Pio(t,0)?

PH( ) 22(t70)

€ 10,7). (6.4.2)
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Chapter 6. Linear-quadratic stochastic delayed control and deep learning resolution

ONOXC)

Figure 6.2 — Structure of the model used to solve (6.2.9)-(6.2.10)-(6.2.11).

Note here that, as in the previous sections, we use the convention 02/0 = 0. As a result
(6.4.2) can be rewritten as

: Pio(t,0)?
P(t) = =— "~ t<T—-d
ul) Pyy(t,0) B 7

Pi(t)=0, t>T—d.

Thus, a natural contribution to the total loss function to enforce (6.4.2) would be

1 P13(01,1,0)%)
L11(011, 012,04 = — 0y P11(011,t) — ——"—— 0,7
11( 11, Y12, 227T) |7-| ; < t 11( 11, ) PQA (62A27t7 0) ’ T - [ ’ ]’

and the natural gradient descent step associated to the constraint (6.4.2) would be
0 +0; =1V, L11(O11,012,05,T), i€ {11,12,22},

Consequently, the constraint (6.4.2) a priori entails the updating of Pq, P12 and Py,. In

- 2
particular, it requires to compute the gradient of (©12,04,) — >, .1 % which

is expected to be highly unstable as t,s — Px,(¢,s) vanishes for t + s > T —d. To
2
mitigate this issue, the term ¢ — % is considered as an exogenous source term
22 227"

for P;; which is fixed when we train Pj;.

Pio(t,0)?

Pult) = Py, (t,0)
22\

,t €[0,T).
Seen as a fixed exogenous source term when P;; is trained

To implement this idea, a second set of neural networks (P (6y)) ke{11,12,92,22} 1 initial-

ized with ©, = Oy, for k € {11,12,22, 22} at initialization. These additional networks
are then used as surrogates to the right-hand side source terms and will not be used for
the computation of the gradients of the losses. They will only be updated at the end of
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6.4. Deep learning scheme

each batch training. Consequently, the gradient descent scheme implemented for each
batch T is the following:

Ou O —1Ve,, (£11(O11,612,65,T) + £{(011, 7))

O15 « O12— Ve, (LIy(O12 (1)22,@22,7)+c12(é11,@12,7)+c{2<@12rr))
L, (05, T)+ 532(@117 O, T) + £§2(92“2’ T))

O2 Oz — Ve, (L5(On, 022,02, T) + Lh(O12, 022,022, T) + L5022, 7))

Step 1
O5 < O5 —1Ve,,

Step 2 {ék O ke{11,12,92,22},
(6.4.3)

where the £7’s stand for the residual loss, the £Y’s stand for the boundary loss and the
Ezf’s stand for the final loss. The precise definitions of the losses are given below.

For each neural network Py, (0y), k € {11,12, 22,22}, a follower network is initialized
Pi(O4), k € {11,12,22,22}. These follower networks serve as surrogate for the source
terms in (6.2.9)-(6.2.10)-(6.2.11). They condition the loss functionals that are used to
train the Pj’s and are updated at the end of each batch as described in Algorithm 6.1.

Losses of Pji:

2
= Piy(t,0,015)?
L11(011,012,04) <5tP11 (t,011) — ) ;
ITI t; Py, (t,0,04,)
L1011, T) = il Z ( (Pu(t,©11) = 1)° 14— T)
teT
Losses of Pjs:
P(tO@ ) Pas(t,5,0,025) |
512(@12,@227@22, = Z ( 05)Pya(t,5,012) — 12 12 \¢, 8, U, D22 ) ’
tseT ( 0 @ )
- 2
L]5(011,012,T) = |7-| > (P12 (t,5,012) — bPu(t, @11)) Ls=o0,t0,
t,seT
£{2(@1277—) Z (Pia(t,s,012)% 1 7).
|T| t,s€T
Losses of Py,:
L3 (O3, T) = | Z )Psy(t, s @22)) )
t,s€T
2
E (@11,@22,T Z <P22 (t,5,05) -0 Pll(t 611)) Ls=0,tT,
tsET
L] (05, T) == > (Pplt;s,05)Li—r).
‘T| t,s€T
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Chapter 6. Linear-quadratic stochastic delayed control and deep learning resolution

Losses of Py3:

. L - 2
& 1 P5y(t,0,7,©092) Pas(t, 5,0, 022)
L55(0922,022,T) = — <(3t — 05 — 0r)Py(t,8,7,092) — 2 = ,
|T| t,;T P2A2(t»0> @2&)
~ 1 - N 2
L£5(012,09,T) = 7 > (P22(t78,7“, O22) — bP22(t,8,@12)) Lr—o,t£T
t,s,reT
1 - N 2
+ Z (P22(t7 5,7, 092) — bPas(t, 1, @12)) ls—0,t2T,
|T| t,s,r€T
1
L£],(02,T) = Il Z (Paa(t, s,7,©22)* 14=r) .
t,s,reT

Algorithm 6.1 Deep learning scheme to solve (6.2.9)-(6.2.10)-(6.2.11)

Initialize: the learning rate 7, the neural networks P(©) = (P(©%))r and
P(©) = (Pr(O))k- )
Copy the weights O + Oy, k € {11,12,22,22}

For each batch:
Randomly sample 7 C 9Q U Q;
Compute the gradient Vo £ (O, O, T) as in (6.4.3);
Update © «+ © — Vo L(0,0,7);
Update © + ©;
Return: The set of optimized parameters ©*.

6.5 Applications to mean-variance portfolio selection
with execution delay

6.5.1 One asset with delay

We now aim at solving the celebrated example of mean-variance portfolio selection, see
[Mar52b|, with execution delay in the spirit of the problem of hedging of European
options with execution delay presented in [FF14]. We present here the settings. Let us
consider a standard Black-Scholes financial market, composed of a risk-less asset with
zero interest rate

SY =1, telo,T],
and a risky asset with dynamics
dSt:St{(O'A)dt+O'th}, t e [O,T‘]7

where A and o are constants representing respectively the risk premium and the volatility
of the risky asset. At every time ¢ € [0,T] the investor chooses, based on the information
Fi, to allocate the amount of money a; € R into the risky asset. However, due to
execution delays this order will be executed at time ¢ +d. Set N2 (respectively N;) the
number of risky (respectively risk-less) shares held at time ¢. Then, given an investment
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6.5. Applications to mean-variance portfolio selection with execution delay

strategy a € A, the value (X?)te[o 7] of the portfolio, that we suppose self-financing,
follows the dynamics

dX{ = N2dS; + (dN{)S; + (dN})S?
=0 , self-financing

= NtSt {(O’A)dt + O'th} .

At—d

Consequently, the controlled state equation of the portfolio’s value is of the form

dX¢ = ap_q((oN)dt + odW,),  t€[0,T],
XO = Xy, Qg = Vs, Vs € [_d’ 0]’

with 2o > 0 and v € L?([—d,0],R). The Mean-Variance portfolio selection problem in
continuous-time consists in solving the following constrained problem

{ minge 4 Var(X3) (6.5.1)

s.t. E[X¢] =c.

It is well-known that problem (6.5.1) is equivalent to the following max-min problem,
see [Pha09, Section 6.6.2]

. o _ 2 2
?ggggﬂE{(XT (c—n)?] -2 (6.5.2)

Thus, solving problem (6.5.1) involves two steps. First, the internal minimization prob-
lem in terms of the Lagrange multiplier n has to be solved. Second, the optimal value
of 7 for the external maximization problem has to be determined. Thus, with £ = c¢—n,
we first define the Inner optimization problem:

min B [(X% - 5)2] . (6.5.3)

Note that, by setting Xo = X — &, the inner problem (6.5.3) fits into the delayed LQ
control problem analysed in Section 6.3. We first solve the inner optimization problem
(6.5.3) in the following lemma.

Lemma 6.5.1. Fixn € R and { = c—n. Assume T < dN(d, (o)), o) and define a*(§)
as the investment strategy

* __1t§T—d a* ¢ *
ay €3] _Pjg(t,()){(Xt —&)Pio(t,0) + /t,d oy (&) Paa(t,0,s — t)ds}, (6.5.4)

where P denotes the solution to (6.2.9)-(6.2.10)-(6.2.11) in the sense of Definition 6.2.1.
Then, the inner minimization problem (6.5.3) admits a*(§) as an admissible optimal
feedback strategy and the optimal value is

Vo(€) =P11(0)(zo — €)* + R(zo — &), (6.5.5)

where R(7y) denotes the cost associated to the initial investment strategy v on [—d, 0]

0 0
R(zx,v) =2x/ ~vsP12(0, s)ds +/ 7§P2A2(0,s)ds —|—/ Vs YuP22(0, s,7)dsdr.
—d d [—d,0]2
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Chapter 6. Linear-quadratic stochastic delayed control and deep learning resolution

Proof. First, note that Proposition 6.3.2 yields the existence and uniqueness of a solu-
tion P to (6.2.9)-(6.2.10)-(6.2.11). Furthermore the admissibility of a*(£) results from
Proposition 6.3.1. For any a € A, define X;* = X;* —¢. Then, by It6’s formula we have
dX{ = ap_q ((oN)dt +odW,),  t€[0,T],
onxoié} Qs = Vs, Vs € [7da0]

As a result, X* and X® have the same dynamics and X% = X7 — £ so that problem
(6.5.3) can be alternatively written as

iy | (7).

Thus, the optimality of a*(§) and the value (6.5.5) are immediately given by the verifi-
cation theorem 6.3.1. O

Theorem 6.5.1. Assume T < dN(d,(c)),0). Then, the optimal investment strategy
for the maximization problem (6.5.1) is given by a*(£*) defined in (6.5.4) with &* = c—n*
and

«_ KO+ Pu(0)(zo —¢)

n )
1—P;;(0
. 1(0) (6.5.6)
K(v) = / ~vsP12(0, s)ds.
—d
Furthermore, the value of (6.5.1) is
« P1(0
Var(xXg') = 1O (g — et K ()2
1— P11(0)
(6.5.7)

0
+/ 'ySQPQAQ(O,s)ds—f—/ Vs YuP22(0, s,7)dsdr.
d [—d,0]2

Proof. As T < dN(d, (o)), o), Proposition 6.3.2 ensures the existence and uniqueness
of a solution P to (6.2.9)-(6.2.10)-(6.2.11). From Lemma 6.5.1 and (6.5.2), we have that
the max-min problem (6.5.2), which is equivalent to (6.5.1), reduces to

max {Vo(c — 1) - 772}

= max { P11 (0) (a0 — (¢ = 0)* + Rlwo — (= m).7) — v’ .
Furthermore, since T' < dN(d, (o), o), Proposition 6.3.2 ensures 0 < P11(0) < 1 so that
the maximization problem is strictly concave. Consequently, n* given by (6.5.6) is the
optimal parameter. Setting £&* = ¢ —n* in (6.5.4) and (6.5.5) results in the optimality
of a*(&*), and the optimal value (6.5.7) for the mean-variance problem (6.5.1). O

Remark 6.5.1. In the absence of pre-investment strategy, v = 0, we recover the usual
form of the efficient frontier formula

Var(X$') = TP (0 Pl;f?zo) (2o — 0)2.

Our observations from the simulations are the following.
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6.5. Applications to mean-variance portfolio selection with execution delay

Efficient frontier: In Figure 6.3, we plot the efficient frontier for different de-
lays d. Note that the greater the delay, the greater is the variance. This could have
been foreseen by observing that, when the initial control is set to 0, i.e. v = Opz, the
value function takes the form V(z,07:) = P11(0)2?, see (6.3.2). As the value func-
tion is clearly an increasing function of the delay, the terminal variance of the portfolio
Var(X$") = 15},171(10()0) (zo — ¢)? is also an increasing function of the delay.

Destabilization effect : In Figure 6.4, we plot different scenarios of portfolio
allocation. We observe a destabilization effect and a supplement of volatility induced
by the delay feature. We also note the tendency to invest more aggressively for greater
values of the delay, as the investor has less time to ensure that the promised yield is
achieved. We propose the following interpretation: In the classical setting, where d = 0,
if Y* denotes the optimal portfolio value process, the optimal investment strategy is of
the form af = —U%(Ya* — p*) for a certain constant p* > c. It can then easily be shown
that Y* < p*. Thus, the optimal strategy consists in aiming from below at a fixed target
w*. When d > 0, the optimal control is composed of an additional inertial term

t

i) =gt (8 - e)pateo) +

Py, (t,0) a2 (&)Pas(t,0,s — t)ds },

Usual mean-reverting term
New inertial term
so that, contrary to the case where d = 0, the optimal control does not cancel when the
target £* is attained. Also, note that at every time ¢, the agent doesn’t have any control
on the near future from ¢ to ¢ + d.

Kernel P : In Figure 6.5, we plot the kernels Pi1, Pi2, Py,, and Pp3. Note the
discontinuity between D, and D, also described in Figure 6.1.

variance

1.0 1.2 1.4 1.6 1.8 2.0
yield

Figure 6.3 — Efficient frontier with 0 =1, A=0.5, T =5 and v = 0.

6.5.2 One asset with delay and one without

To further explore the effect of the delay on the control, we now study a toy example
where the investor has two investment opportunities, one with a delayed execution and
one without. More precisely, consider the following portfolio dynamic

dXt(a’ﬂ) = {(UlAl)dt + Ulthl} + ﬁtfd {(UQ)\Q)dt + 0.2th2} 5 t e [O,T],
XO = X, BS = Vs, s € [_d7 0]3
<W17 W2>t = pta
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2.25
2.004

% 1751

1
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1.251
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0.75 A

-2 -1 0 1 2 3 4 5 0 1 2 3 4 5

()

Figure 6.4 — Different scenarios of the optimal portfolio with ¢ = 1.6, 0 = 1, A = 0.5,
and T" = 5. Left: ¢t — o, right: ¢t — X;. Note the destabilization effect and the
supplement of volatility induced by the delay feature. Note also the tendency to invest
more aggressively the delayed investor has, as she has less time to ensure the promised
yield. £*(d =0.5) =2.57, £*(d=1) = 2.68, £*(d = 1.5) = 2.80, £*(d = 2) = 2.97.

where 79 > 0 and v € L?([—d,0],R), together with the same optimization objective
(6.5.1) as before. Here, oy and (3; correspond respectively to the amounts of money the
investor decides to invest at time ¢ in the undelayed and the delayed risky assets. The
constants \; and o; represent respectively the risk premium and the volatility of the
risky asset i. Following the heuristic approach of Section 6.2, we define the following set
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o
o

-1.5  -1.25 -1 -0.75 -05 -0.25 -1.5  -1.25 -1 -0.75 -05 -0.25
d d

(b) Right: ¢ — Py, (¢,s). Left: t, s — Paa(t,s,0).

Figure 6.5 — Numerical results of Algorithm 6.1 with o =1, A=0.5,d=1.5,and T' = 5.

of Riccati-PDEs on [0, T] x [—d, 0]?
Pi5(t,0)?

Pii(t) = NPy (t) + =, 6.5.8
11(t) = AL P (t) Py (4,0) (6.5.8)
P12 (t, O)P22 (t, S, 0)
—0,)(P, =\P
(O0r = 0)(Pr2)(t, 5) = AT Pia(t, s) + Put0)
(0r = 05)(Ps,)(t, 5) = 0,
Plg(t,S)Plg(t,T) PQQ(t,S,O)PQQ(t,O,T)
8, — 05 — 0,)(Paa)(t,5,7) = N2 ,
( t )( 22)( ) 1 P11<t) P2“2(t70)
accompanied by the boundary conditions, for almost any ¢, s € [0,T] x [—d, 0]
A
P12<t, —d) = )\20’2 (1 — p)\—:> Pll(t), P2A2(t, —d) = O'g (1 - p2) Pll(t), (659)

A A
P22<t, S, —d) = )\20‘2 (1 — p)\—:> Plz(t, S), ng(t, —d, S) = )\20’2 <1 - p>\—:> Plg(t, S),

and the terminal constraints
P11(T) = 1, Plg(T, S) = PQAQ(T, 8) = PQQ(T, 8,7‘) = 0, (6510)

for almost every s,r € [—d, 0].
As in the previous section, we first solve the inner optimization problem 6.5.3.

Lemma 6.5.2. Fixn € R and £ = ¢ —n. Assume (6.5.8)-(6.5.9)-(6.5.10) admits a
piecewise absolutely continuous solution with Py,(t) > 0 for any t < T —d, and define
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the couple (a*, 5*) (§) as the investment strategies

A A !
0i© =~ {20 9+ 0250yt s [ g Ralt s - s ).

01

516 = 5t a0 (0 -9+ [ g ©Pa(t0.r - har).

where X* denotes the state process X @ 8) . Then, the inner minimization problem
(6.5.3) admits (a*(&), 5*(€)) as an optimal feedback strategy and the optimal value is

VO(E) :Pll(o)(xo - 5)2 + R(‘TO - 577)3

where R(7y) denotes the cost associated to the initial investment strategy v on [—d, 0]

0

0
R(z,7) :230/ s P12(0, s)ds —|—/ 782P2*2(0,s)d5 +/ YsYuP22(0, s, 1)dsdr.
—d —d [~d,0]2

Proof. The proof is similar to the one of Lemma 6.5.1. O

Finally, the parameter n* and efficient frontier Var(X}.) = f(c) are given by the same
formulas (6.5.6) and (6.5.7) as in in the mono-asset case, v being the pre-investment
strategy of the delayed asset.

Remark 6.5.2. One surprise that emerges is that the "buy the good stock sell the bad
one” criterion is unchanged for the delayed asset. Indeed, the sign of the control for
this asset is still given by the sign of 1 — p%, that fizes the sign of the Pio and Pag,

as it would be in the case without delay', see the boundary conditions (6.5.9). But this
threshold disappears in the undelayed asset’s control as now only the term 2—1 remains

in the mean-reverting term.

Numerical simulations: To exhibit the effect of the correlation p, we generate
two independent Brownian motions (W}) | and (Bt)te[o,T] and define the Brownian

motion (Wf)

tel0,T

tefo, 7] 8

W2 = pW}+/1-p2B;, tel0,T).

We then compare different scenarios with different values of correlation p and delay d
while fixing W' and B. The numerical simulations can be found in Figures 6.6, 6.7 and
6.8. As it could have been expected, we see from (6.5.9) and Figure 6.6, that the greater
p is, the more favored the undelayed asset is.

* A P, A * * * A2 P, A * *
TWhen d = 0, recall that o} = 01(11_:)2) (1- pﬁ)(é —X/) and g* = 02(14’_’;2) 1- pi)(g - X7)
with P being a positive function and £* > X™*. Thus, in the classical setting, the buy or sell thresholds

are (1 — p;—f) and (1 — pi—;)
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Figure 6.6 — t — (af,5;), with 01 = 090 = 1, A\ = Ay = 0.5 and T' = 5. Blue : o,
orange : (*. The same realizations of W and B were used for all experiments. Note
that the more positively correlated the assets are, the more favored the undelayed asset

is.
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Figure 6.7 —t — X}, with o1 =02 =1, \1 = A2 = 0.5, T =5 and d = 1.5 for p = —0.7,
0 and 0.7. The same realizations of the Brownian motions W' and B was used for all
experiments.

Figure 6.8 —t — X}, with oy =02 =1, A\ = A2 =0.5, T =5 and p = —0.7 for d = 1.5,
1 and 0.5. The same realizations of the Brownian motions W' and B was used for all
experiments.
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6.A Proof of Proposition 6.3.2

Our proof extends [Ale+71, Theorem 5] to the case where the volatility is controlled. It
consists in slicing the domain D in slices of size d and proceeding by a backward recursion.
More precisely, we show existence, uniqueness, and positiveness of the first coordinates,
over a sequence of slices ([T — (n+ 1)d, T — nd] x [—d, 0]2)n. We then concatenate the
sequence of absolutely continuous solutions obtained, which yields a piece-wise absolutely
continuous solution. In each slice, the proof consists of the following steps

1. Show that there exists a unique solution on a small interval;
2. Prove that the local solution is Lipshitz;
3. As a result extend the solution to the whole slice.

We finally concatenate the sequence of solutions obtained above.

6.A.1 Slice t € [T'—d,T], initialization

On Dy U D, the constraints (6.2.9)-(6.2.10)-(6.2.11) on Py, Py, and Psy reduce to lin-
ear homogeneous transport equations admitting closed form solutions given, for every
(t,s,7) € Dy UD,, by

Pio(t,s) =bPi1(t + s+ d) 1 sya<r, Py (t,s) = 0*Piy(t + s+ d) 1y sra<r,
ng(t, S, 7’) = bzpll(t +sVr+ d)1t+sVr+d§T~

Or, as Pi1(t) =1 for any t > T — d, we then have for every (¢, s,7) € D, U D,

Pii(t) =1, Piy(t,s) = blyysqa<r,

Py (t,s) = 0% Ly sta<r, Poo(t,5,7) = b* 1y i syria<r-
The existence and uniqueness in the sense of Definition 6.2.1 are thus trivially proved
on [T —d,T].
6.A.2 Slice [T'—2d,T —d]

On [T —2d,T — d] x [—d,0]?, we have Py, (t,s) = 02Py1(t + s + d) so that Py (t,0) =
02Py1(t + d) = 0. Consequently, the system (6.2.9)-(6.2.10)-(6.2.11) reduces to

_ Piy(t,0)?

Pii(t) = — (6.A.1)
(90— 0,)(Pua) 1 5) = D20 020,
(00— 0 — ) (P (t,,7) = L2262 0l6.07)
with terminal conditions
Py (T —d) =1, Po(T —d,s) = b, Py (T —d,s,r) = b, (6.A.2)
and boundary constraints
Py5(t,—d) = bPy1(t), Pyy(t, s,—d) = bPya(t, s). (6.A.3)
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Thus, for every (t,s,r) € [T — 2d,T — d] x [—d,0]?, the set of equations (6.A.1) and
constraints (6.A.2)-(6.A.3) can be rewritten in the following integral form

T—d
Pll(t) :1—0'_2/ P12($,0)2d1',
t

Plg(t, S) = bPll((T - d) A (t + s+ d))
/(T—d)/\(t+s+d)

— 0

Plg(.’l,', O)PQQ(LL', t+s—ux, O)dCL', (6A4)
t

Pyo(t,s,7) =bPio((T —d)AN(t+sAr+d),(s—r)V(r—s)—d)
/(T—d)/\(t+s/\r+d)

-0 Pyy(z,t+ s —2,0)Pas(x,0,t + r — x)dx.

t

We then make use of the following lemma to prove local existence of a solution.

Lemma 6.A.1. There exists T € (0,d] such that system (6.A.4) has a unique absolutely
continuous solution on [T — 7 —d, T — d] x [—d,0]%.

Proof. Let 7 € (0,d] and S, denote the Banach space of absolutely continuous functions

§=(&0(),&(--),&(,-,-)) defined on
DT = {(t7s7r)‘ T_d_TStST_d7_dSS,TSO}7
endowed with the sup-norm

1€l = [1€1]loo + lI€2lloc + [I€3]loc

where [|€1 |00, [|€2]]co and [|€3]|co denote, with a slight abuse of notation, the respective
sup-norm on [T —d—7,T —d), [T —d—7,T —d] x [-d,0] and [T —d—7,T —d] x [—d, 0]*.
Let B, denote the ball in S,

Br ={(61,62.6) €St |lea—11<1/2, & —bll < [bl/2, & — 07|l < b?/2},

On B,, we denote by ¢ = (¢1, ¢2, ¢3) the operator defined as follows

T—d
(0 (t)=1- 0_2/t & (z,0)%dx

(928) (t,8) = b1 ()(T'—d) A (t+ s+ d))
/(T—d)/\(t+s+d)

— 0

&(r,0)&(r,t + s — x,0)dz
t

(938) (t,5,7) = b2 (&) (T =d)A(t+s AT +d), (s —7)V(r—s)—d)
/(T—d)/\(t—&-s/\r-ﬂ—d)

-0 &z, t+s—x,0)83(x,0,t +r — z)da.

t

Clearly, there exists 7 > 0 such that for any 7 < 7, ¢(B;) — B,. We show a contraction
property on ¢. For any &, £ € B, we have the following inequalities

[91(€) = ¢1(E)lloe < 470 72[bl[[€2 — &blloo

162(8) = d2(&)lloo <4702 (Ib]l1€2 — Ehllo + [ [1€5 — &blloc)
+[blll¢1(8) = ¢1(& ) lloo

193(8) = d3(E)lloe <Ibllld2(€) — 2(€) oo + 4T (b [|€5 — &3loc-
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Consequently, the operator ¢ satisfies

16(8) = (E)loe < Tmll€ = €' lloc

where m > 0 depends on b and o. Therefore, for 7 < # A m™!, the operator ¢ is
a contraction of B, into itself. Thus, ¢ admits a unique fixed point in B,, which is
solution to (6.A.4) on D;.

O

Lemma 6.A.2. Let £ = (£1,£2,€3) denote the absolutely continuous solution of (6.A.4)
on D, from Lemma 6.A.1. Then & is Lipschitz in each variable on D..

Proof. As &1, & and &3 are continuous on D, there exists a constant m > 0 such that
|€1] A €] A €3] < moon D,. Thus, & is Lipschitz with constant kK = m?0~2. Let us now
show that & and &5 are Lipschitz in the s-variable. Fix ¢t € [T —d—7,T —d] and n > 0.
Then, for any s € [—d, 0] such that s + n € [—d, 0], we have

Ea(z,0)83(2,t + s+ 1 — 2,0)dx

(T—d)A(t+s+n+d)
mxa@—@@@+n»9m+o*l/

t

(T—d)A(t+s+d)
_/ &(x,0)63(x,t + 5 — 2,0)dx

¢
< kn+1I(t,s) + I1(¢, s),
Since &3] < m, it yields

(T —d)A(t+s+d)
I(t,s) < /
t

(T—d)A(t+5+d)
gm/ e(x)dz,
¢

’fQ(Z‘,O)H&;(.T,t—l— s+n—x,0)—&(x,t+s— x,0)|da:

where € is defined as

e(x) = sup |&(z,s,7) — &2, s +n,7) + sup ]Iiz(azS) —&(x,s+1)|.
s,T se[—d,0
€[—d,0)?

Futhermore, as || A [€5] < m on D, we have

(T—d)A(t+s+n+d)
1) < [ 6o, 0)Es (et + 5+ 1 — 2, 0)|da
(T—d)A(t+s+d)
<m?n.

Consequently, for any ¢t € [T — d — 7,7 — dJ, we obtain
T—d
sup a(t,5) — altos ) <mPntm [ ) (6.0
s t
Looking at the equation of &3 in system (6.A.4), we obtain in a similar manner
|&3(t, 8,7) — E3(t, s +n,7)| <|D|L(t, 8,7) + o 2TI(t, s,7). (6.A.6)
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An application to the triangle inequality combined with (6.A.5) and the lipshitzianity
of & leads to

It s,7) <|&((T—=d)A({t+ (s+n)Ar+d),(s+n—7)V(r—(s+mn)) —d)
—&S(T-d)ANt+sAr+d),(s—r)V(r—s)—d)]
T—d

<(k+mP(1+02)n+m e(z)dz (6.A.7)
(T—d)A(t+sAr+d)

T—d
<(1+2r)n+ m/ e(x)dx.
t
Furthermore

I1(¢, s,

(T—d)A(t+(s+n)Ar+d)
)S‘/ &lx,t+s+n—x,0)&(x,0,t +r — x)de
t

(T—d)A(t+sAr+d)
/ &z, t+s—x,0)83(x,0,t +u— z)dx

t
(T—d)A(t+sAr+d)
< 0t 47— t+s—z,0

< 62,0, -+ 7~ Dlles(a,t + 5~ 2,0 oA
—&(x,t+ (s+n) —x,0)|dx

(T—d)A(t+(s+n)Ar+d)
—|—/ |&s(z,t + (s + 1) —2,0)&3(r,0,t + r — z)|dx
(T —d)A(t+sAr+d)

T-d
<m?n +/ e(r)dr
¢

Thus, inequality (6.A.7) together with (6.A.8) and (6.A.6) yield the existence of a posi-
tive constant ¢ > 0, independent of 7, such that

T—d
sup |€5(t, s,7) — &3(t, s +m,7)| <c <77 +/ e(r)dr) ,

e[_d70]2

which, combined with (6.A.5) leads, for any t € [T —d — 7,T — d], to

T-d
e(t) <c (7} +/t e(r)dr) .

Consequently, an application to Gronwall’s lemma yields e(t) < m'non [T —d—7,T —d],
with m’ > 0. Thus, & and &3 are Lipschitz in the s-variable. The arguments for showing
that & and &3 are Lipschitz in the ¢-variable and &3 Lipschitz in the r-variable follow
the same line. O

Lemma 6.A.3. There exists a unique absolutely continuous solution £ = (£1,&2,£&3) of
(6.A.4) on [T —2d,T — d] x [~d,0]? such that & >1—d (2)* > 0.

Proof. Let 6 € [T —2d,T — d) denote the lower limit of all 7’s such that there exists an
absolutely continuous solution (£1,£2,&3) to (6.A.4) on [0,T — d]. Assume 6 > T — 2d.
From Lemma 6.A.2, &, & and &3 are Lipschitz in each variable and thus admit a limit,
when ¢t — 6, which is Lipschitz. Therefore, the argument of Lemma (6.A.1) can be
repeated to extend the existence and uniqueness of the solution of system (6.A.4) on
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[, T —d] for T —2d < £ < 0. As a result, we necessarily have § = T — 2d. It remains to
prove that 0 < &;. For this, note that since &; is solution to (6.A.4), we have

d 2
_ < — 3 .
J6r =1l < 5 sup [€a(t,0)] (6.A.9)
[T—2d,T—d)

By injecting the boundary condition (6.A.2) into the system (6.A.4), one notes that
te [T —2d,T —d] — &(t,0) is solution to

T—-d
52(t,0):b—o——2/ &(x,0)83(x,t —,0)de, T —2d<t<T—d.
t

Or, for every t € [T — 2d,T —d], fy : x € [t,T — d] — fi(z) := &(x,t — x,0) takes only
positive values as f; is solution to the system

T-d
fe(z) = b* — 072/ fr(uw)és(u, 0,z — u)du, x € [t,T —d],
ft(T - d) = b27

which can be proven to admit, through a contraction proof in the Banach space C([t,T —
d],R), a unique positive solution since £ and its derivatives are bounded. Similarly, we
also have &2(t,0) > 0 for any ¢ € [T'—2d,T — d]. As a result, we have sign(§2) = sign(b)
and

sup |€2(,0)] < [b].

€ (6.A.10)
[T—2d,T—d]

Consequently, (6.A.9) and (6.A.10) yield that for any T'— 2d < t < T — d, we have
& >21—-d (9)2 =ag > 0 as N(d,b, o) is assumed to be greater than 2. O

o

Finally, by setting Pi1(t) = &1(t), Pia(t,s) = &(t, s), Paa(t,s,r) = &s(t, s,r) and
Py (t,s) = &(t+ s+ d) for any (t,s,r) € [T —2d,T — d] x [—d,0]?, Lemma 6.A.3
yields the existence and uniqueness of a solution P to (6.2.9)-(6.2.10)-(6.2.11) in the
sense of definition 6.2.1 on [T — 2d, T — d]. The concatenation of the unique solution of
(6.2.9)-(6.2.10)-(6.2.11) on [T — d,T] and [T — 2d,T — d] leads to a unique solution on
[T - 2d, 7).

6.A.3 From slice [T —nd,T] to [T — (n+ 1)d, T

Let n be an integer such that 2 < n < N(d,b,o). Assume that there exists a solution
P to (6.2.9)-(6.2.10)-(6.2.11) in the sense of Definition 6.2.1 on [T — nd,T] such that
0 < ap, < Pi1(t) <1, for any t > T — nd. Recall the Definition (6.3.7) of (an)n>0-
Consider the following system on [T — (n + 1)d, T — nd] x [—d, 0]?

P 2
: 12(,0) de,
o2 Pyy(x +d)
(T—nd)A(t+s+d) P, (I‘ O)P (I t+s—=x 0)
Pis(t, s) =bP T—d/\t++d—/ AR AE AN ’
12( S) 11(( n ) ( s )) ; U2P11(13+d)
Py (t,s,7) =bPo(T —nd) ANt +sAr+d),(s—1)V(r—s)—d)
— /(T_nd)/\(t—‘rS/\r—‘rd) P22(x7t+5 —.%',O)PQQ(.’L',O,t+T —$)
t 02P11(£E+d)

Pll(t) :Pll(T — ?’Ld) — /Tnd

dx,

dr.

(6.A.11)
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Note that this system is the same as (6.A.4), the only difference being the term = €
[T—(n+1)d, T —nd] — Pi1(z+d) which comes from the previous slice [T —nd, T — (n—
1)d]. Therefore, it can be considered as a positive continuous coefficient by induction
hypothesis. As result, existence and uniqueness on [T'— (n+1)d, T —nd] can be proven in
the same fashion as in Lemmas 6.A.1-6.A.2-6.A.3. It remains to prove that Pi1(¢t) > ap11
for any t € [T — (n+ 1)d, T — nd]. As in Lemma 6.A.3, and by using the induction
hypothesis, we have

|Pia(t, —d)| < |bP11 (T — nd)| < |b], te[T—(n+1)d,T—nd. (6.A.12)
Furthermore, Pj; satisfies (6.A.11) on [T — (n + 1)d, T — nd], which, combined with
Py > an on [T —nd, T — (n—1)d] and (6.A.12) yields

Pu(t) > Pu(T — nd) — L (b)2

an \ O

101
Zap—— | — :an+1>0a

anp \ o

for any t € [T — (n+ 1)d, T — nd], which ends the proof.
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CONTRIBUTIONS TO NON MARKOVIAN STOCHASTIC LINEAR-QUADRATIC CONTROL

The present thesis deals with non Markovian linear-quadratic stochastic control problems. It is
divided into three parts.

In the first part, we tackle stochastic Volterra control problems whose kernel can be expressed as
Laplace transform. Such assumptions is inspired from the rewriting of fractional Brownian motion as
infinite sum of Markovian processes. The optimal control and value functions are expressed in terms
of Banach valued Riccati equation whose existence and uniqueness are proved.

In the second part, we revisit the celebrated multivariate Markowitz portfolio selection problem
combined with rough volatility. The optimal control and efficient frontier are derived in terms of
explicit Hilbert valued Riccati operator. The completely explicit feature of our analysis enables us
to implement an easy numerical scheme that we illustrate in the the case of portfolio allocation with
2 assets, one rough H ~ 0.1 and one smooth H = 0.45. Surprisingly our simulations were able to
reproduce the buy rough sell smooth strategy exhibited in [GH20a], thus providing an endogenous
explanation over this allocation.

Finally, the last part deals with the delayed control of stochastic differential equations. We solve
a simplified version by means of Riccati PDEs whose existence and uniqueness are derived, provided
a condition combining the horizon, the delay, the drift and the volatility is satisfied. A deep learning
method is used to solve the Riccati PDEs in the context of Markovitz portfolio selection with execution
delay.

Keywords: Linear-quadratic stochastic control, stochastic Volterra equations, Riccati equations in
Banach space, Infinite dimensional Lyapunov equation, integral operator Riccati equation, stochastic
Volterra equations, mean-variance portfolio theory, rough volatility, correlation matrices, multidimen-
sional Volterra process, non-Markovian Heston, Stein—Stein and Wishart models, , delayed equation,
Riccati PDEs, Markowitz portfolio allocation.
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