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Abstract

This study is related to fatigue crack growth problems in aerospace structures. The present work
aims at simulating the high temperature fatigue crack propagation within a Nickel-based superal-
loy using a local approach to fracture. The proposed developments follow from three major axes.

First, on an experimental scope, a new Nickel-based superalloy, namely AD730™ is studied. To
this end, both cyclic characterization and crack propagation tests are performed at three target
temperatures of 20, 550 and 700◦C. Axisymmetric laboratory specimens are subjected to com-
plex loading schemes (monotonic, fatigue and dwell-fatigue) in order to emphasize the non-linear
response of the material. For the cyclic crack growth tests, SEN-T specimens are subjected to
fatigue and creep-fatigue conditions. The sensitivity of AD730™ to extrinsic parameters (tem-
perature, load ratio, dwell-periods, over-loads) is studied and creep-fatigue interaction effects are
evidenced. Mesoscopic observations on fracture surface allow to highlight crack growth peculiarities
(tunneling effect, flat-to-slant transition). Fractographic analyses also enable to evidence the main
crack growth mechanisms. As a complement, flat specimens are also subjected to very low-cycle
fatigue in order to study the ductile crack growth.

Then, in the modeling framework, cyclic constitutive equations related to the elastic-viscoplastic
behavior of AD730™ are proposed. Such a material model is implemented within the Z-set soft-
ware in a user-defined subroutine. The differential system associated with the evolution equations
is solved using a fully implicit backward-Euler scheme. A consistent calibration process is car-
ried out with respect to the physical mechanisms associated with both strain- and time-hardening
processes. The predictive capabilities of the constitutive model are finally demonstrated under
complex loading schemes. Considering the local approach to fracture, a strong coupling be-
tween damage and the elastic-viscoplastic constitutive equations at the material point level is
performed. Damaging mechanisms associated with fatigue, creep or ductile processes are in-
cluded in the model using distinct scalar damage variables. The adopted strong coupling formal-
ism leads to a stress-softening response when performing finite elements calculations, resulting
in the well-known mesh-dependency effect. To retrieve the well-posedness of the mechanical
problem, a regularization method consisting in a non-local implicit gradient enhancement is pro-
posed. The non-local damage model is re-implemented in Z-set and the multi-fields problem is
solved using a monolithic scheme. Structural calculations under both monotonic and cyclic load-
ing schemes demonstrate the ability of the non-local extension to achieve mesh-converged results.

Finally, on the numerical scope, an error-based mesh adaption strategy is considered in order
to refine the mesh in the fracture process zone. Once the mesh is optimal and the width of the
localization band is controlled, structural calculations can be performed up to crack onset. In order
to accurately define the position of the crack front and the geometry of the singularity, a crack path
tracking algorithm is used. The algorithm follows the ridge of the damage-related scalar field and,
by marching steps, finds the position of the next crack front. The whole numerical scheme – in-
cluding a damage-to-crack transition through mesh intersection and remeshing, field transfers and
equilibrium recovery – is finally benchmarked on fatigue crack propagation tests. The capabilities
of the method are assessed and the limitations of the modeling work are finally discussed.
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Résumé

Cette étude est en lien avec les problématiques de propagation de fissure en fatigue dans des
structures aéronautiques. Ce travail vise à simuler la propagation de fissure de fatigue à haute
température dans un superalliage base Nickel à l’aide d’une approche locale de la rupture. Les
développements proposés reposent sur trois axes principaux.

Sur le plan experimental d’abord, un nouveau superalliage base Nickel, l’AD730™ est étudié.
Pour ce faire, des essais de caractérisation et de propagation de fissure sont réalisés aux trois
températures cibles 20, 550 et 700◦C. Des éprouvettes de laboratoire sont soumises à des charge-
ments complexes (monotone, fatigue et fatigue avec temps de maintien) de sorte à mettre en
évidence la réponse non-linéaire du matériau. Pour les essais de fissuration, des éprouvettes SEN-
T sont soumises à des chargements de fatigue et fatigue-fluage. La sensibilité de l’AD730™ aux
paramètres extrinsèques (température, rapport de charge, temps de maintien, surcharges) est
étudiée et les intéractions fatigue-fluage mises en évidences. Des observations mésoscopiques
sur les surfaces de rupture mettent en évidence les anomalies de propagation (effet tunnel, dé-
versement). Des analyses fractographiques permettent également d’identifier les principaux mé-
canismes en lien avec la propagation de fissure. En complément, des éprouvettes plates sont
testées en fatigue à très faible nombre de cycles afin d’étudier la propagation ductile de la fissure.

Ensuite, sur le plan de la modélisation, des équations représentatives du comportement élasto-
viscoplastique de l’AD730™ sont proposées. Ce modèle matériau est implémenté dans la suite Z-set
à l’aide d’une loi utilisateur. Le système différentiel associé aux lois d’évolution est résolu à l’aide
d’un schéma de résolution implicite de type “Backward-Euler”. Puis, un processus de calibration
est effectué, conformément aux phénomènes physiques observés en lien avec les écrouissages et les
effets du temps. Les capacités prédictives du modèle de comportement sont finalement démon-
trées sous des chargement complexes. En lien avec l’approche locale de la rupture, un couplage
fort entre l’endommagement et le comportement à l’échelle du point matériel est effectué. Pour
cela, les endommagement associés aux mécanismes de fatigue, fluage et de ductilité sont intégrés
dans le modèle à l’aide de variables d’endommagement scalaires dédiées. Le couplage fort entre
l’endommagement et les propriétés mécaniques amène à une réponse adoucissante en contrainte
lors du calcul via les éléments finis, conduisant ainsi au problème de la dépendance des résultats
au maillage. Afin de retrouver le caractère bien posé du problème mécanique, une méthode de
régularisation associant une extension non-locale de type gradient implicite est proposée. Le mod-
èle non-local est réimplémenté dans Z-set et le problème multi-champs est résolu avec un schéma
monolithique. Des calculs structuraux sous chargements monotones et cycliques démontrent la ca-
pacité de l’approche non-locale à retrouver la non dépendance des résultats à la finesse du maillage.

Finalement, sur le plan numérique, une méthode d’adaptation de maillage basée sur un esti-
mateur d’erreur est considérée afin de raffiner le maillage au niveau de la process zone en front de
fissure. Lorsque le maillage est optimal et que la largeur de la bande de localisation est contrôlée,
des calculs sur structures peuvent être réalisés jusqu’à amorçage de la fissure. Afin de définir
précisémment la position du front de fissure et sa géométrie, un algorithme de suivi du trajet de
fissure est employé. Cet algorithme suit une ligne de crête associée à un champs scalaire relié à
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l’endommagement et, de manière incrémentale, estime la position du front de fissure au cours du
chargement. La chaîne de calcul globale – incluant une transition endommagement-rupture par
intersection de maillage et remaillage global, le transfert des champs, et le retour à l’équilibre de
la structure – est finalement mise en oeuvre et évaluée sur des cas de propagation de fissure en
fatigue. Les capacités de la méthode sont évaluées et ses limites en terme de modélisation sont
finalement discutées.
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Local integration process for material equations
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Introduction

Context

Turbojet engines include some critical parts such as turbine disks. These rotating components
can be exposed to temperatures up to about 600◦C and experience a continuous mechanical load
(mostly at the maximum level) during the cruising period. In addition, during engine ignition and
shutdown, there are mechanical load transients inducing a combination of cyclic and sustained
loads to the critical components. The failure of these parts in service is inadmissible because it
may result in a total inoperability of the engine, thus compromising the safety of the flight. The
propagation of a crack within the constitutive material is one of the mechanisms that can lead to
failure. Therefore, the design of critical components requires the determination of their fatigue
crack propagation life by approaches such as damage tolerance analysis (fail-safe design).
Due to both environmental and economic concerns, demand for more efficient gas turbines mate-
rials drastically tends to increase, in contrast to the obvious necessity to rethink our transportation
needs so as to limit the specific footprint of air traffic. For gas turbines applications (aircraft,
aerospace and power-plant), Nickel-based superalloys have emerged as materials of choice. Such
materials are necessary when significant resistance to loading under static, fatigue and creep con-
ditions is required [Reed, 2006].

Problematic

In previous studies, specimens made of Nickel-based superalloys (Inconel 718, N18, Udimet
720Li, N19, ...) and subjected to high temperature fatigue or dwell-fatigue (550-700◦C) have
exhibited very disturbed crack fronts. In particular, a pronounced curvature of the crack front
as well as shearing effects associated with flat-to-slant transition have been highlighted in DA
Inconel 718 [Fessler, 2017]. These crack growth anomalies cannot be modeled by global ener-
getic approaches associated with Linear Elastic Fracture Mechanics (LEFM), but only by taking
into account the presence of non-linear phenomena (viscoplasticity and damage) in the vicin-
ity of the crack-tip. The use of a local approach to fracture [Pineau, 2006] to simulate such
crack front anomalies seems the only modeling approach capable of relating these complex issues.

Most of the time, once a macro-crack has initiated inside a structure, the subsequent crack growth
is treated using the Fracture Mechanics concepts, disregarding the dissipative and non-linear mech-
anisms occurring close to the material discontinuity. The goal of the present study is to assess
the capability of Damage Mechanics together with Finite Element calculations to deal with crack
propagation situations, as opposed to classical approaches, see Fig. 1.
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Figure 1: Schematic representation of fatigue crack growth length scales and associated modeling theories
(adapted from [Chaboche, 1987]).

Purpose of the present Ph.D. project

The Ph.D. thesis has been carried out in the laboratory of the ONERA - The French Aerospace
Lab located in Châtillon, France. This Ph.D. project has also been conducted with the help and
financial support of the Computational Solid Mechanics team of Safran Tech, the research entity
affiliated with Safran Group.
The present study is part of the “MEANDRES” (Modélisation numErique des ANomalies de fissure
Dans les supeRalliagES base nickel) research project (2017-2020) conducted at the ONERA. This
project deals with experimental observations and numerical modeling of crack growth anomalies in
Nickel-based superalloys under complex loading conditions at elevated temperatures.
The framework of this Ph.D. thesis is focused on the use of a local approach to fracture in close
relationship with results obtained through experimental tests conducted on laboratory specimens.

The major goal of the present research project is to propose a damage model in the context of
a local approach to fracture that enables the simulation of crack propagation within a structure
subjected to cyclic loading. To this end, the material under concern will be AD730™, a new Nickel-
based superalloy. The strategy adopted to reach the target is to realize a strong coupling between
damage and constitutive equations of the material in order to simulate the evolution of a crack
during FE calculations. Since coupled damage models suffer from spurious mesh-dependency of
the numerical results, a non-local extension of the model will be considered.
Then, even if the crack evolution may be estimated with the help of a suitable damage model, the
numerical representation of the crack in the context of Finite Element (FE) simulations may be a
tricky task. A last important point is the analysis of the transition from damage (continuous state)
to finite crack (discontinuous state). This requires the insertion of a “discrete” crack in the region
where some variables related to the degradation processes within the material have reached their
critical value and where it is no longer possible to continue the calculation, as the elements are too
degenerated [Feld-Payet, 2010]. This critical step can be made with several numerical approaches.
In the present work, focus is made on mesh intersection and remeshing techniques associated with

https://www.onera.fr/fr
https://www.onera.fr/fr
https://www.safran-group.com/fr/groupe/innovation/safran-tech
https://www.safran-group.com/fr
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mechanical fields transfer, which is a procedure that has been considered in previous studies, see
e.g. [Feld-Payet, 2010], [El Khaoulani El Idrissi, 2010].

Outline of the dissertation

The organization of the present document and the main information addressed in the successive
chapters are outlined below:

• In an usual way, Chapter 1 is devoted to some fundamental aspects. First, general concerns
about fatigue and cracks are recalled. Specific time-incremental cyclic crack growth models
are also shortly introduced. Then, some basics on material modeling are given. In the
following, the fatigue and creep-fatigue crack growth behavior of AD730™ and related crack
growth anomalies are discussed. In a next section, the Continuum Damage Mechanics
framework for fracture analysis is introduced. Regularization techniques used to solve the
mesh-dependency effect are briefly introduced with a special focus on non-local approaches.
Volumetric-locking issues are also shortly discussed. Finally, numerical methods for crack
growth simulation in structural calculation are recalled;

• In the Chapter 2, the non-linear elastic-viscoplastic constitutive equations associated with
the cyclic behavior of AD730™ under several temperatures are detailed and calibrated. To
this end, the superalloy under concern is presented, both in terms of elaboration process and
microstructure. Then, the experimental set-up is introduced as a preliminary to a significant
part dedicated to the characterization of the cyclic behavior of the material under different
testing conditions in terms of temperature, loading rates and loading ratios. Experimental
results are then examined in a systematic approach in order to highlight the main non-linear
phenomena and governing mechanisms. The whole constitutive equations for AD730™ Ni-
based superalloy are finally established and consistently calibrated;

• The purpose of Chapter 3 is to present the experimental procedures associated with the
crack propagation analyses conducted on the studied material. Pure fatigue and dwell-
fatigue crack growth tests are performed on Single-Edged Notched specimens and analyzed
in a systematic manner. Three different length scales are considered: the macroscopic,
mesoscopic and microscopic scales in order to analyze the crack growth data as well as the
fracture surfaces and the microscopic features. Such a systematic examination process is
aimed at identifying the crack driving mechanisms as well as the fracture modes. Apart from
cyclic loading conditions, Very Low Cycle Fatigue tests are also considered on flat specimens
in order to analyze the ductile crack growth process;

• A local approach to fracture is then presented in the Chapter 4 in order to settle a strong
coupling between damage and constitutive equations in order to simulate material’s degrada-
tion preceding fatigue crack evolution. To that extent, the desired properties of the fatigue
crack growth model are discussed as well with the modeling assumptions. The fatigue dam-
age model is then derived using a consistent thermodynamics framework. An extension to
other damaging effects follows, so as more physical mechanisms can be embedded in the
model as well as complex loading conditions can be simulated. The numerical implemen-
tation of the proposed model into a Finite Element code is detailed, in particular at the
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integration point level. A sensitivity analysis of the model is performed on a RVE. Finally,
the mesh-dependency effect resulting from the strong coupling between damage and behavior
is evidenced in a structural calculation;

• Chapter 5 concentrates on the non-local extension of the proposed damage model thanks
to an implicit gradient formulation related to some specific state variables of the damage-
behavior problem. Firstly, a brief description of the localization phenomenon occurring in
numerical softening problems is given. The next part deals with the choice made for the
current local approach enhancement: choice for the regularization method, choice for the
underlying problem’s variable and choice for the characteristic length scale. Focus is made
on the modifications of the damage model induced by such a non-local extension from both
theoretical and numerical points of view. The implementation of a two-fields non-local
finite element follows. Finally, some structural calculations under both monotonic and cyclic
loading schemes are discussed so as to evidence the capabilities of the approach;

• Finally, in the Chapter 6, the numerical strategy suggested in the context of fatigue crack
growth during FE calculations is presented. The need for a continuous-discontinuous transi-
tion in continuum cracking problems is discussed and the numerical strategy adopted in this
research project is presented. An error-based mesh adaption procedure to refine the mesh in
the FPZ is achieved while use is made of a dedicated crack path tracking algorithm to track
the crack increments. Then, mesh intersection procedures with field transfer and equilibrium
recovery step are used to insert a crack within the mesh and resume the calculation. Some
numerical examples are given to illustrate the capabilities of the proposed damage model
under cyclic loading conditions. A sensitivity analysis of the approach is finally performed.

The overall approach of the Ph.D. project is finally summarized in the Fig. 2.
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1 Literature review

This first chapter is devoted to some general aspects related to the present Ph.D. project. It
starts with some concepts associated with fatigue crack propagation in metallic alloys, with the
definition of fatigue long cracks. Next, some time-incremental fatigue crack growth models are
briefly discussed. Then, fundamentals on material modeling are shortly introduced. The following
section is devoted to the high temperature crack growth analysis in Nickel-based superalloys under
complex loading schemes. A special focus is made on the crack growth anomalies observed for
these alloys under complex loading schemes. Concepts related to the local approach to fracture,
namely the coupled damage models and the theoretical concepts of the Continuum Damage Me-
chanics framework are introduced. Related numerical issues, namely the spurious mesh-dependency
effect and the volumetric-locking issue, are discussed next with associated overcoming solutions.
As a final step, the numerical methods associated with the crack growth modeling in finite element
calculations are introduced. All these concepts, although different in nature, will be considered in
the rest of this document as a support to the research activity.
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1.1 Fatigue crack growth in metallic alloys

1.1.1 Introduction

Fatigue damage accumulation process is a multi-scale phenomenon which involves different
spatial and temporal scales. For the spatial scale, fatigue involves small crack initiation at the
nano- and micrometer scales to the structural failure at the meter (or even larger scales). For the
temporal scale, fatigue accumulates from sub-second to tens of years.
Traditionally, fatigue analysis is performed in a reversal-based manner, in which the cyclic driving
forces are used to correlate with fatigue damage (e.g. stress range in the S - N curve approach
and the stress intensity factor (SIF) range in the da/dN - ∆K approach). This type of fatigue
analysis is generally referred to as the reversal-based approach (or cycle-based). Unlike the static
failure, fatigue failure is caused by cyclic stresses. As a consequence, it is natural considering cyclic
quantities to describe the fatigue damage. Thus, the number of cycles becomes the temporal
measure of fatigue. Earliest studies on reversal-based fatigue analysis can be traced back to
[Wöhler, 1860] and [Basquin, 1910]. In 1960’s, [Paris and Erdogan, 1963] proposed that fatigue
can be analyzed by crack growth which is driven by the SIF range ∆K . The crack growth rate
can then be expressed as:

da
dN = C∆K m (1.1)

where C and m are temperature-dependent material parameters.

The Paris’ law in eq. (1.1) has become the most popular Fracture Mechanics-based method for
fatigue lifetime estimation. However, Paris’ law does not incorporate the stress ratio effect and
is only applicable to growth rates in a certain range, e.g. 10−6 m/cycle to 10−8 m/cycle. Many
modifications of Paris’ law have been proposed in the literature, such as the modification for
the near threshold crack growth [Forman et al., 1967], small/short cracks growth [Kitagawa and
Takahashi, 1976], and crack closure [Elber, 1970].
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This short introduction has given a brief overview of the FCG considerations for which pioneer
studies traced back to the 1950’s. For further details, the reader is referred to [Suresh, 1998]
or [Bathias and Pineau, 2010]. No matter the considered crack growth model, different crack
propagation regimes can experimentally be distinguished, depending whether the propagation is
stable or unstable. Considering cracks, there are different length scales below which the growth
rate may depend on the size of the crack. Fatigue cracks may thus be classified according to their
size, i.e. short and long cracks. In the present work, the target application is the propagation of a
long crack in fatigue situations. Consequently, the propagation of short cracks won’t be addressed.
The clear distinction between short and long cracks is given hereafter.

1.1.2 Fatigue crack propagation

Before introducing short and long cracks, it seems reasonable to recall the main crack growth
stages upon cyclic loading. Since the present work is not intended to deal with the fatigue crack
initiation stage, this one is disregarded but details can be found in [Suresh, 1998], [Bathias and
Pineau, 2010]. The subsequent crack growth stage is finally analyzed.
When considering fatigue cracking, a crucial distinction is made between the microscopic initiation
mechanisms that lead to the creation of a microcrack, and the propagation mechanisms that occur
on a more macroscopic scale (the smallest detectable crack is generally of the order of the grain size,
i.e. about 100µm for a polycrystal). The fatigue cracking process can be decomposed into three
main stages including crack initiation (stage I) followed by the crack propagation regime (stage
II) and finally the sudden failure due to the presence of a macroscopic crack (stage III), Fig. 1.1a.

Discontinuous 
growth
(Stage I)

Continuous growth
(Stage II)

propagationinitiation fracture

(a) Schematic view of the fatigue cracking process. (b) Example of a gas turbine blade failed under fatigue.

Figure 1.1: The three main stages on fatigue failure.

The Fig. 1.1b is an example of a component that failed under fatigue loading with the evidence of
the three stages of the cracking process: crack started from a defect, probably close to the surface
and then some fatigue striations appear during the progressive crack growth stage and finally the
component failed in a sudden way due to increasing ductile mechanisms as long as the crack grew.
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1.1.3 Long fatigue cracks

The clear separation between long and short cracks (as well as between the different short
cracks) is sometimes an object of confusion. Although not detailed here, a common feature to
short cracks is their abnormal propagation behavior as compared with the “classical” Paris-type
behavior. This specific point constitutes a valuable distinction for the present work since we are
mainly interested in the growth of a long crack under cyclic loading.
Short cracks can be identified as having a size comparable to the size of the plastic zone. Such
an aspect induces that Linear Elastic Fracture Mechanics (LEFM) concepts are not applicable
and alternative approaches such as J-integral [Rice, 1968] or Continuum Damage Mechanics
(CDM) [Kachanov, 1986], [Lemaitre and Chaboche, 1990] are necessary to deal with such crack
growth in fatigue loading. In the present work, long fatigue cracks are preferentially considered,
as well as their propagation using LEFM or alternative approaches. In this sense, the novelty of
the present Ph.D. project relies on the assessment of CDM-based approaches to deal with fatigue
crack growth situations. The final prospect is to compare the lifetime predictive capabilities of a
CDM-based approach to that of standard LEFM models.

According to [Suresh and Ritchie, 1984], a crack is considered to be a long crack when, besides
the intrinsic crack-driving force at the crack-tip, the extrinsic influence factors are fully developed.
One major extrinsic factor is related to the crack-closure effects in the wake of the crack-tip, thus
altering the crack driving force. A long crack is hence related to the stage II of the (stable) crack
growth process, as depicted in Fig. 1.1a. Some general properties about long cracks (in opposition
to short cracks) must be given:

• long cracks are mainly tensile driven (fairly insensitive to the microstructure);
• they are mostly analyzed by Fracture Mechanics-based models since the plastic zone is

sufficiently small so as to use the SIF range to estimate the crack growth rates.

A convenient background to discussing Fatigue Crack Growth (FCG) law is the well-known double-
logarithmic FCG rate da/dN vs. ∆K curve, schematically shown in Fig. 1.2. Note that such a
diagram, defined at a prescribed condition (environmental and stress ratio), is only valid for so-
called long cracks, the plastic zone of which is embedded in a stress intensity factor dominated
stress field. The typical curve is of a sigmoidal shape and is bounded at the extremes by the range
of SIF at the threshold ∆Kth and the critical ∆Kc .

Such a curve shape is reasonably generic for long crack growth under constant amplitude loading
in a normal (air) environment. There are three main regions of crack growth, according to the
curve shape, the mechanisms of crack growth and various influences on the curve.

• Region I: Non-continuum crack growth mechanisms with large influences of microstructure,
mean stress and environment. In such a region, there are also high crack closure levels but
minor effects of the stress state. Cyclic plastic zone size is smaller or equal to the grain size;

• Region II: Crack-growth are commonly characterized by fatigue striations, and with small to
large influences of microstructure, depending on the material, also large effects of certain combi-
nations of environments, mean stress, cycle frequencies as well as the thickness of the considered
specimen, thus having an influence on the stress state. The cyclic plastic zone size in this region
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is greater or equal to the grain size;
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Figure 1.2: Schematic da/dN versus ∆K diagram for long crack growth under constant amplitude loading.

• Region III: large contributions of static mode mechanisms, generally microvoid coalescence and,
in some materials, cleavage or intergranular fracture, with great influence of the microstructure,
load ratio, thickness and finally a little influence of the environment (crack growth is too fast
for the environment to have an significant impact on the cracking process). In this last region,
the cyclic plastic zone size is far greater than the grain size.

In the following, since we are mainly interested in the growth of a crack in stable conditions,
both the near threshold and the unstable regimes will be disregarded. Interested reader is referred
to [Suresh, 1998], [Bathias and Pineau, 2010]. As a result, only the Region II (i.e. the Paris’s
regime) will be discussed in further details.

Paris’ regime

The second part of the da/dN curve given in Fig. 1.2 is commonly referred to as the Paris’
regime. Such a regime was studied by [Paris et al., 1961] and [Paris and Erdogan, 1963] in the early
1960’s, who have demonstrated that Fracture Mechanics is a useful tool for characterizing Fatigue
Crack Growth (FCG) and who suggested the well known Paris law for long fatigue crack growth.
Such a law, initially developed for small constant-amplitude cyclic load, is a power function of the
range of the SIF that applies almost generally to long fatigue cracks in metal and alloys:

da
dN = C (∆K )m = C

(
∆σ
√
π a Y

)m (1.2)

where C and m are material parameters and ∆K = Kmax − Kmin = (σmax − σmin)
√
π a Y , and

Y is a geometry function. Parameters C and m are determined in experiments and depend on
the material and various influencing factors such as temperature, environment and loading ratio.
Such a power law relationship in eq. (1.2) proposes a linear variation of log(da/dN) vs. log(∆K ),
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which pertains to a portion of the total fatigue crack growth curve, Fig. 1.2.
In that regime, crack propagates leaving behind some striations on the fracture surface. During
loading, the material ahead of the crack is stretched. When the crack grows, this stretched mate-
rial is left in the wake of the crack, leaving behind a striation on the fracture surface.

Although extensively considered for FCG problems, the Paris-type approach is limited to crack cases
where the size of the plastic zone is negligible as compared to the crack length, i.e. where small-
scale yielding conditions (SSY) apply (LEFM), or when the crack length is large as compared to the
characteristic microstructure length (e.g. grain size), i.e. when large-scale yielding (LSY) conditions
apply (hence requiring Non-Linear Fracture Mechanics - NLFM). This restriction to long cracks and
physically short cracks is fulfilled for most practical applications of Fracture Mechanics in fatigue-life
assessment, since existing cracks smaller than approximately 500µm cannot be detected by typi-
cal methods of non-destructive testing, e.g. ultrasonic, eddy current or dye-penetrant inspection.

It is worth mentioning that the Paris’ law has been studied for different materials and testing
conditions. Some researchers also developed other equations based on this law in order to take
into account the dependence on the loading ratio R = Kmin/Kmax as well as the stress history
H or crack closure effects that play an important role in the crack growth rate evaluation, see
references in sub-sect. 1.1.1.

da
dN = f (∆K , R ,H) (1.3)

where H indicates the history dependence, which results from prior plastic deformation.
All the equations of the type eq. (1.3) have been proved to be capable of correlating the fatigue
crack growth rate under SSY conditions. Indeed, let us recall that the SIF K being initially defined
for brittle materials and not applicable for plastic/ductile materials, the law proposed by [Erdogan
and Sih, 1963] remains applicable as long as the plasticity remains low [Bathias and Pineau, 2010].

In the present Ph.D. project, and as previously said, long cracks are under concern. The aim of
the research project relies on the assessment of a CDM-based model to predict the fatigue crack
advance in a Nickel-based superalloy. To this end, experimental fatigue crack growth tests will be
performed on laboratory specimens (see Chap. 3) and a damage model will be settled to simulate
the fatigue crack growth process (see Chap. 4). To do so, the stable Paris’ regime will be the
central aspect of the comparison process. As a final step, the results from the present study should
provide results validating (or not) the ability of Continuum Damage Mechanics to deal with fatigue
crack growth (as opposed to classical crack initiation analyses).

1.1.4 Time-incremental fatigue crack growth models

Fatigue lifetime estimation up to crack initiation is a common approach in design offices since
the major part of the service life of a component is related to the crack initiation phase. In the
present work, the propagation of an existing crack is under concern so far we are mainly interested
in fatigue crack growth models.

The brief introduction given in sub-sect. 1.1.1 has shown that there are various different modeling
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approaches to simulate the fatigue crack growth (FCG). However, most of existing FCG prediction
models perform the analysis in a cycle-based manner, in which the cyclic driving force quantities
are used to correlate with fatigue damage. This means that the smallest time scale is one loading
cycle. However, fatigue damage accumulation process is a multi-scale phenomenon, which involves
very different spatial and temporal scales [Lu and Liu, 2012]. As a consequence, the cycle-based
approach is not able to capture the detailed mechanism at the sub-cycle scale.
In addition, some inherent difficulties can be evidenced. First, reversal-based approach makes im-
possible to continue reducing the time scale for more fundamental investigation since the smallest
time scale is one reversal. Then, reversal-based fatigue analysis requires cycle-counting tech-
niques for realistic random loading [Downing and Socie, 1982], [Bathias and Pineau, 2010]. A
realistic loading history needs to be transformed to cycle history for fatigue analysis. In engineer-
ing practice, loading history is usually complex or even far from being cycle. Consequently, the
conversion from random load history to the cycle load sequence usually modifies the load history.

Small time scale or time-incremental models are based on the incremental crack evolution and
growth at any instant during the loading cycle. Such models, although quite more complex, enable
the possibility to consider complex (random) loading schemes different from standard constant
amplitude loading regimes. This type of model is discussed in this section.

da
dt = f (σ (t), a (t), E ,σy , ...) (1.4)

where f (σ(t), a(t), E ,σy , ...) is a general form of the crack growth kinetics function depending
on the stress level, the crack length, elastic modulus and yield strength of the material, etc.

A specific aspect of this Ph.D. comes from the use of a local approach to fracture as well with time-
incremental properties of the fatigue damage model developed for FCG prediction (see Chap. 4).
As a result, and for the sake of brevity, we will mainly discuss some existing FCG models, of
incremental-type and differing nature, and disregard the others. Extensive reviews on FCG models
relying on Fracture Mechanics concepts can be found in [Ellyin, 1997], [Bathias and Pineau, 2010].
Let us also note that the numerical simulation of FCG with the use of coupled approaches to frac-
ture has not been extensively studied, hence representing a challenge to this Ph.D. research project.

A literature survey conducted in this work has evidenced four main time-incremental models
dedicated to the prediction of fatigue crack growth. These models are briefly discussed hereafter
with their capabilities and limitations.

• A cohesive zone model (CZM) has been proposed by [Bouvard, 2006], [Bouvard et al.,
2009] to simulate both fatigue and dwell-fatigue crack growth. Relying on a local approach
to fracture, that is, a coupling between the material behavior and damage mechanisms, an
attempt has been proposed in this work to relate the fatigue crack growth to a traction-
separation model governing cohesive zone elements. The model predictions have been proved
to be in very good agreement with experimental data. Moreover, it is able to relate the
retardation effect due to crack-tip plasticity. A fairly good prediction of frequency and time
effects has also been observed in different crack growth regimes. A similar approach based on
cohesive elements for FCG can be found in [Nijin and Banerjee, 2021].
Unless interesting, the choice for CZM to simulate the fatigue crack growth has not been
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retained in the present work since it supposes that the fracture process is exclusively restricted
to surfacic features. Thus, the damage growth in the bulk material is not accounted for.
Moreover, the ability for cohesive elements to reproduce the crack growth peculiarities ob-
served in Ni-based superalloys (see sub-sect. 1.3.3 hereafter) seems limited.

• A physically-justified model, mainly known as the condensed plasticity model, has been
proposed by [Pommier and Risbet, 2005], [Pommier and Hamam, 2007]. Mainly based on the
physical mechanisms responsible for the crack advance, it is one of the most renown model
aiming at introducing a new small time formulation for fatigue analysis. The underlying con-
cept of the model comes from the fact that “pure” fatigue crack growth stems from crack-tip
plasticity, namely plastic blunting. Consequently, a plasticity model adapted to the crack-tip
region should be able to cope with the fatigue crack advance process.
The model possesses two governing laws: i) a plastic blunting law that defines the evolution
of the crack-tip blunting as a function of the applied external load (and internal history vari-
ables); and ii) a crack growth law that provides the instantaneous cracked area velocity per
unit length of the crack front as a function of the evolution of the plastic blunting at the
crack-tip. A comprehensive review on the model is given in [Pommier, 2015].
Thanks to numerous dedicated studies, the condensed plasticity model has been proved to
show a good agreement with experiments in both monotonic and variable amplitude crack
growth tests. It has been improved with successive studies, hence including crack propagation
in mode I under variable amplitude loading both at room and high temperatures as well as
mixed mode conditions. Extension to oxidation effects has also been studied. Finally, crack re-
tardation, load sequence and over-load effects are also in agreement with experimental results.
Such a thermodynamics-based model, relying on the principle of virtual power, the energy bal-
ance equation and the inequality of Clausius-Duhem, belongs to the Fracture Mechanics-based
models. Intensively studied during the last two decades, it offers promising features and re-
mains one the most advance time-incremental fatigue crack growth model. Nevertheless, as
mainly related to Fracture Mechanics concepts and only valid under small-scale yielding con-
ditions, this model cannot assess complex crack situations in three-dimensional calculations.

• A small-time scale model, has been proposed by [Lu and Liu, 2010]. Relying on both the
crack-tip opening displacement (CTOD) and angle (CTOA), the model predicts the instan-
taneous crack growth kinetics through geometric relationships and the temporal evolution of
the stress along the loading path.
Such a model can be used for fatigue analysis at various time and length scales. It has been
proved to be very convenient for the fatigue analysis under random variable amplitude loading
without cycle-counting with addressing the stress ratio effect. Moreover, predictions have been
reported to agree very well with the experimental data. The model has also been extended
to time-related effect [Lu et al., 2012], hence enabling for fatigue and creep-fatigue loading
conditions to be studied. However, such a model cannot cope with the three-dimensional
features associated with the crack growth peculiarities observed in Ni-based superalloys under
complex loading schemes. Moreover, few studies have used this approach, hence leading to
insufficient feedback.

• At last, a CDM-based model dedicated to fatigue crack propagation in aircraft alloys has
been proposed by [Hamon, 2010], [Hamon et al., 2012]. The model has been settled following
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a consistent thermodynamics framework. It consists in an extension of the Lemaitre damage
model including two damage variables: one for static damage mechanisms (ductile fracture
modes) at high ∆K values, and the other one for cyclic damaging processes (quasi-cleavage)
from low to high ∆K . Using this damage model, a fairly accurate estimation of the FCG
curves for two aircraft alloys has been reported.
In this approach, the numerical method to simulate the crack advance relies on an element-
deletion technique. In order to reduce the mesh-dependency associated with the erosion
process, an energy-based criterion has been considered [Mazars and Pijaudier-Cabot, 1996].
This way, the mesh size has been explicitly accounted for through the value of the critical
energy required for an element to be removed. As a result, no regularization of the stress-
softening model has been performed. Moreover, elastic-plastic conditions at low temperatures
have been only considered. The case where viscoplasticity and time-related effects (creep,
oxidation...) occur still have to be considered. Finally, a proper representation of the discon-
tinuity in the structure would be of great interest in order to study crack growth orientation
and possible bifurcations. Only 2D calculations have been performed. Hence, specific features
related to the crack front anomalies observed in Ni-based superalloys cannot be captured.
Nevertheless, the CDM-based damage model of [Hamon, 2010] has provided interesting results
while considering a local approach to fracture to simulate the propagation of a fatigue crack
in metallic alloys. As a consequence, such a modeling framework can be considered valid for
the target of this Ph.D. project.

Assessing the three-dimensional crack front peculiarities observed in Ni-based superalloys under
complex loading schemes requires the use of a specific and predictive model. On this purpose, a
local approach to fracture [Pineau, 2006] enabling to evaluate the crack-tip stress-strain fields and
to use specific fracture criteria seems to be required.
In view of the above-described models and their limitations, choice for a local approach to frac-
ture seems to be the best way when addressing crack growth problems involving complex material
behavior and three-dimensional aspects. Moreover, such a modeling approach has already been
considered for ductile tearing problems, hence providing some predictive fracture criteria based on
local mechanical fields [Besson et al., 2003], [Xue and Wierzbicki, 2009], [Algarni et al., 2017].

1.2 Modeling framework

When using a local approach to fracture, the accurate description of the material behavior,
particularly at the crack-tip, is of primary importance. To this end, constitutive equations must be
derived before any coupling with damage mechanisms accordingly to a specific modeling framework.
High temperature component failures are primarily induced by out-of-phase thermomechanical,
creep-fatigue damage accumulation among many other factors [Ahmed, 2013]. Due to start-up
and shut-down cycles, repeated thermomechanical stresses are induced that gradually degrade the
life of the components. These material complexities in high temperature components are related
to time-dependent processes such as creep, oxidation, dynamic strain aging (DSA), creep-fatigue,
thermo-mechanical fatigue (TMF) and cyclic creep (or ratcheting). As a result, cyclic viscoplastic
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advanced constitutive models for inelastic design-by-analysis are essential for the design of com-
ponents experiencing thermally induced stresses as well as reverse loading conditions.

1.2.1 Different length-scales for the material modeling process

Dislocation
Dynamics

Macroscopic model
(F.E.A.)

Molecular
Dynamics

Mesoscopic model for
single or polycrystals

10-9 m 10-6 m 10-3 m 10-0 m

Figure 1.3: The different length scales for the modeling
of a material behavior.

In order to describe the behav-
ior of a material subjected to cyclic
loading, several approaches may be
considered, depending on the con-
sidered length scale, see Fig. 1.3.
Their complexity strongly depends on
the nature and number of phenom-
ena that one seeks to describe si-
multaneously. The consideration of
these phenomena is necessarily in-
duced by the thermo-mechanical loads
to which the structures are subjected.

For a material modeling process, several approaches may be considered:

• molecular dynamics: which represents the behavior through the physical movements of its
atoms and molecules (10−10 - 10−8 m). This type of modeling is limited to small time scales;

• dislocations dynamics: which relates the strain-hardening properties of the material to
both the movements and pinning/annihilating processes of discrete dislocations (10−8 m) or
dislocation patterns (10−7 m). Discrete dislocation models and/or phase-field type modeling
can be considered. These approaches mainly concentrate on the effect of grain/precipitates
size or their mutual interaction on the behavior. They require the knowledge of various
energies (i.e. stacking fault energies) and dominant deformation mechanisms which can be
accessed through numerous experiments;

• crystallographic models: for single or polycrystalline materials, which consider a high
number of internal variables related to physical mechanisms such as crystal slip. Crystal
plasticity models use the crystal orientation and active slip systems (10−6 - 10−3 m). At a
fine scale, dislocation density based models are used, while at a coarse scale, the dislocation
related effects are smeared into general flow and hardening formulations. Unlike phase-field
models, the deformation mode is not characterized in crystal plasticity models. Note that
microstructure features (grain/precipitate size, volume fraction) can be incorporated in the
formulation. The calibration of these models requires LCF experiments under a series of
“usual” loading conditions (monotonic, various loading rates, stress relaxation, ...);

• and the macroscopic level: in which the deformation behavior of the specimen (or struc-
ture) is described by an internal state variable type model (10−3 - 10−2 m). Such a model
relies on classical plasticity theory and does not consider the grain orientation or active slip
systems as the crystal plasticity does. The knowledge of the active deformation mode is not
a necessity and this scale requires fewer material parameters compared to finer scale models.
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Since the target application aims at simulating the crack advance under cyclic loading conditions in
laboratory specimens, the first two length scales are not able to cope neither with long calculations
nor large scale problems. The crystal plasticity approach could be considered for LCF calculations.
However, a higher degree of complexity concerning the introduction of damage mechanisms would
arise. Should the damage be incorporated at the scale of the grain, or at the boundaries between
grains? In order to ease the numerical task, at least in this preliminary study considering a local
approach to fracture for fatigue crack growth prediction, a macroscopic model, of phenomenolog-
ical nature has been favored. This modeling approach has already proven to effectively cope with
damage coupling [Lemaitre and Chaboche, 1990]. Moreover, computational costs are intended to
be lower using a macroscopic model.

Macroscopic models are mostly based on the classical scheme of an elastic domain described by
a Von Mises plasticity criterion (isotropic materials), a set of kinematic strain-hardening vari-
ables defining the rapid evolutions during each inelastic transient and additional isotropic variables
representing the slower evolutions taking into account the phenomena of cyclic hardening or soften-
ing [Nouailhas, 1988], [Chaboche, 2008]. This approach relies on thermodynamic arguments used
as a foundation on which phenomenological constitutive laws can be formulated. This theoretical
framework is expressed by the existence of thermodynamic potentials as shown by [Halphen and
Nguyen, 1974]. Based on this formalism, the complexity of the models depends on the studied
phenomena. Therefore, the macroscopic approach is part of the Continuum Mechanics (CM)
framework allowing the quantitative determination of the constitutive laws in a given area of va-
lidity using appropriate isothermal mechanical tests [Nouailhas et al., 1983].

In the present study, the macroscopic mechanical response of the material will be studied, see
Chap. 2 later on. The considered Ni-based superalloy, namely AD730™ being subjected to cyclic
and monotonic loading over a wide range of strain and temperature values will thus be described
with the aid of a phenomenological material model associated with the so-called unified viscoplas-
ticity theory [Chaboche, 1986].

According to [Lemaitre, 2001], the viscoplasticity model refers to the mechanical response
of materials in plastic condition which exhibit time-dependent effect represented by a viscosity
function. One of the most well-known model is the unified viscoplasticity model proposed by
[Chaboche, 1977b]. Such a model is referred to as unified for two reasons [Chaboche, 1989]:

1. the plastic and creep strains are represented simultaneously by only one parameter (contrarily
to non-unified theories, see e.g. [Cailletaud and Saï, 1995]) and these strains are referred to
as viscoplastic strain. It is thus a coupled approach between plasticity and creep (as opposed
to uncoupled approaches, see e.g. [Deshpande et al., 2010]);

2. the same hardening rules, as the time-independent plasticity rules, are employed.

Such unified models have been designed to model the multiple deformation mechanisms occurring
during various loading cases such as monotonic tension, creep, fatigue and stress relaxation. In
general, such phenomenologically-based models are capable of predicting the behavior of undam-
aged material for which the stress-strain prediction of the model is true up to a certain number of
cycles (or the stabilized conditions) and normally covers the vast majority of the fatigue lifetime. In
order to simulate the behavior of the material for the whole fatigue process, constitutive equations
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can be combined to Continuum Damage Mechanics theory [Chaboche, 1988a], [Lemaitre et al.,
2009]. Such an approach enables the modeling of the degradation of the strength of the material
up to failure. This point will be discussed later on (see sect. 1.4 & Chap. 4).

1.2.2 A stress partition related to macroscopic strain-hardenings

In the material modeling process, attempts to relate the nature of stress to the material mi-
crostructure have been proposed in the last decades. In order to improve the understanding of
cyclic hardening/softening mechanisms, the separation of the microstructure into soft and hard
zones can be considered [Mughrabi, 1985], [Suresh, 1998]. As a result, the flow stress can also be
partitioned into two components: the effective (σeff ) and the internal stress (X ). This partition is
used to investigate the mechanisms responsible for the mechanical behavior of crystalline materials
under cyclic loading. In the forthcoming sub-sect. 2.2.1, the Cottrell’s partition method [Cottrell,
1953] will be considered for the analysis of hysteresis loops. This method enables the distinction
between two components within the macroscopic stress: the effective and internal stresses.

From a modeling viewpoint (cf. Chap. 2), the effective and internal stresses are related respec-
tively to the two strain-hardening variables, R and X . These are used to describe the evolution
of the loading surface of a material during its deformation. The effective stress is associated
with isotropic hardening R and results in an (isotropic) increase of the radius of the yield sur-
face, while the internal stress is related to kinematic hardening X resulting in a displacement
of the center of this surface. Due to the fact that kinematic internal stress can be influenced by
the direction of flow stress, a tensorial variable X∼ will be used to account for the directional aspect.

Up to now, the context of this study (propagation of a long crack under fatigue and dwell-
fatigue loading) and the modeling framework (phenomenological macroscopic model considering
the unified viscoplasticity theory associated with a time-incremental formulation for complex load-
ing simulation) have been discussed. The motivations for considering a local approach to fracture
for the prediction of the FCG also come from experimental evidences obtained during FCG tests.

1.3 High temperature fatigue and dwell-fatigue crack growth
in Nickel-based superalloys

1.3.1 General facts

The fatigue crack growth (FCG) resistance of the studied material needs to be addressed in
order to highlight the governing mechanisms leading to failure. To do so, loading conditions close
to those experienced in real applications must be examined in laboratory tests. Then, useful data
gained from experimental results can be extrapolated to real application situations.
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In the present study, the experimental work is focused on the fatigue and dwell-fatigue propagation
of long cracks. The growth behavior of a long crack is the synergistic result of microstructure,
temperature and environment, in combination with loading modes, although the influence of mi-
crostructure becomes less significant compared with short cracks [Bathias and Pineau, 2010]. The
resulting fracture mode can be either transgranular or intergranular, even a mixture of both of
them, depending on the specific in-service (or testing) conditions. Correspondingly, the fatigue
behavior can be termed as cycle- or time-dependent on the basis of the degree of crack growth
associated with time-related effects. Generally, low temperature, high frequency in combination
with vacuum (or inert) environment tend to promote pure fatigue crack growth, whereas a high
temperature, low frequency as well as aggressive environments tend to produce time-dependent
crack growth patterns [Gabb et al., 2013]. It can be noted that crack growth may also be mixed
with both time- and cycle-dependent contributions, as frequently reported in the literature [Pineau,
1981], [Branco and Byrne, 1995].

The scope of this section is to discuss the FCG behavior of the polycrystalline Nickel-based super-
alloy AD730™ at high temperatures (400-900◦C). The main conclusions are deduced from da/dN
- ∆K curves with the influence of both so-called extrinsic (temperature, load ratio, loading fre-
quency, over-loads, ...) and intrinsic (microstructure, mechanical state at the crack-tip, ...) effects.

1.3.2 Fatigue, creep and creep-fatigue crack growth in AD730™

1.3.2.1 Fatigue and creep-fatigue crack growth in AD730™

Figure 1.4: Fatigue crack growth resistance of vari-
ous C&W Nickel-based superalloys at 650◦C - Rσ =
0.1 - 10-300-10 s (after [Aubert&Duval, 2017]).

The fatigue crack growth resistance of
AD730™ has been reported to be better
compared to similar class Ni-based super-
alloys [Aubert&Duval, 2017]. Compared to
standard Inconel 718 or Udimet 720 alloys,
AD730™ exhibits lower crack growth rates.
This effect is to be attributed to the high me-
chanical properties of this alloy with increas-
ing the temperature. At 700◦C, mechanical
properties of AD730™ have been proved to
be maintained (while a drop in yield strength
and Young modulus are observed for the two
others), hence resulting in a better crack
growth resistance.

The fatigue and dwell-fatigue crack growth analysis of AD730™ at 750◦C under Rσ = 0.05 has re-
cently been achieved by [Mrozowski, 2020] on both coarse- (CG) and fine-grained (FG) microstruc-
tures. In his work, several loading conditions have been assessed, namely 10-0-10 s triangular and
10-300-10 s trapezoidal waveforms, see Fig. 1.5. Comparison of tests conducted under air and
vacuum are also depicted in this figure. The effect of the initial pre-cracking conditions from low
to high ∆Ki on the FCG resistance is also investigated.
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Figure 1.5: Comparison of the fatigue crack growth behavior of AD730™ at 750◦C for coarse- and fine-
grained microstructures (adapted from [Mrozowski, 2020]).

From this Fig. 1.5, some general conclusions can be drawn:

• a coarse-grained microstructure favors the fatigue crack growth resistance;
• air testing conditions lead to faster crack growth rates;
• the introduction of a dwell time results in an increase in fatigue and dwell-fatigue crack

growth rates, particularly for the FG microstructure. For the CG microstructure, a crack
deceleration is observed. In both cases, intergranular fracture patterns are observed;

• the deceleration effect evidenced for the FG microstructure in case low ∆Ki have been
applied at the beginning of the test results in a decrease in FCGR for the 10-300-10 s signal
compared to the 10-0-10 s one.

As for the balance from both cycle- and time-dependent contributions to the overall FCG
rates, [Mrozowski, 2020] also conducted some investigations in order to estimate the crack growth
driving mechanisms under dwell-fatigue regimes on the two microstructures. In the case of the
coarse-grained (CG) AD730™ at 750◦C, a larger contribution of the time-dependent (creep) part
compared to that of the cycle-dependent (fatigue) part was reported, when subjecting CT spec-
imens to 10-300-10 s with R = 0.05 under air. The trend was reported to be inverted when
performing the tests under vacuum. For the fine-grained (FG) microstructure under the same
testing conditions, Fig. 1.6, the tendency was reported to be the same, with an even greater con-
tribution of the creep part over the global DFCG rate. Such a result can probably be related to
the higher proportion of grain boundaries compared to the CG microstructure, favoring a greater
extent of GB sliding and cavity growth and finally resulting in higher crack growth rates.
From the Fig. 1.6, it is confirmed that for elevated temperatures, the creep contribution may be-
come predominant over the fatigue one. When compared to a pure fatigue loading scheme (zero
dwell-time cycle), one can also notice in Fig. 1.6 the significant change in slope of the da/dN−∆K
curve, hence evidencing far greater growth rates when including a dwell-time of 300 s at 750◦C. It
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Figure 1.6: Cycle- and time-dependent contributions to DFCG rates in FG AD730™ at 750◦C under a
10-300-10 s waveform with ∆Ki = 400 MPa√m and R = 0.05 (adapted from [Mrozowski, 2020]).

can be noted that such a result has already been reported by [Carbou, 2000] for Astroloy and N18
Ni-based superalloys at 750◦C under 10-300-10 s loading scheme.

1.3.2.2 Creep crack growth in AD730™

The creep properties of AD730™ with both coarse- and fine-grained microstructures have been
investigated by [Thébaud, 2017] and [Vultos, 2019]. The complex interaction between creep and
fatigue damages during dwell-fatigue loading conditions renders the grain-size influence even more
tricky. It his study conducted on N18, [Flageolet, 2005] has shown that fatigue lives for dwell-
fatigue loading are one order of magnitude lower than those for pure creep or pure fatigue loading.
Such a strong coupling is directly related to the dwell-period duration at maximum force, as vis-
coplastic mechanisms such as creep or stress relaxation may intervene during this loading scheme.

Studies conducted on different Ni-based superalloys at a given temperature evidenced a proper
holding duration ∆t (for each material) during which a transition between creep- to fatigue-
dominated behavior appears. This is the case for N18 in [Flageolet, 2005], Udimet 720Li in [Billot,
2010] and AD730™ in [Thébaud et al., 2016]. For AD730™ at 700◦C, the dwell-fatigue curves
associated with short hold times (∆t = 10 s) are close to the case of pure fatigue loading with
very limited cyclic ratcheting [Thébaud et al., 2016], see Fig. 1.7a. For greater holding periods
(∆t = 300 s), the apparent mechanical behavior is closer to that of pure creep with typical 3-stages
process (primary, secondary and tertiary creep), see Fig. 1.7b. Moreover, a change in deformation
mechanisms was reported to occur depending on the applied stress between 750 and 850 MPa.
Such a result of dual deformation mechanisms at high temperature in AD730™ has also been re-
cently observed by [Durand et al., 2020] in FG conditions at 760◦C.

Up to now, few experimental results have been published on AD730™ due to its recent devel-
opment. In the experimental work of the Chap. 3, pure fatigue and dwell-fatigue crack growth
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(a) Dwell periods of ∆t = 10 s. (b) Dwell periods of ∆t = 300 s.

Figure 1.7: Pure creep tests and dwell-fatigue counterparts in both FG and CG AD730™ in air at 700◦C
under 750 & 850 MPa and varying dwell periods from 10 to 300 s (from [Thébaud et al., 2016]).

tests will be conducted in order to evidence the main governing mechanisms. This will provide
further insights concerning the FCG resistance in AD730™ under complex loading conditions. In
addition, the possible occurrence of crack propagation anomalies will also be investigated. The
latter, generally observed in Nickel-based superalloys, are discussed in the next sub-sect. 1.3.3.

1.3.3 Crack growth anomalies

When subjected to complex loading conditions during laboratory tests (fatigue and creep-
fatigue), Nickel-based superalloys have been proved to be prone to disturbed crack propagation
stage. Indeed, some of these superalloys, namely Inconel718, N18, René65, Udimet 720Li and
AD730™, have exhibited complex fracture topologies, not conform with the standard modeling
hypotheses relying on Fracture Mechanics considerations. Such peculiarities include:

• a crack front tunneling effect associated with a more or less significant curvature of the crack
front along the specimen thickness once a dwell period is superimposed to a standard cyclic
scheme;

• and the development of shear lips along the crack propagation plane as long as the crack
is subjected to pure mode I cracking in the stable crack growth regime. The crack propa-
gation problem is no more characterized by two-dimensional features but requires a three-
dimensional modeling since the flat-to-slant transition occurs.

The occurrence of unstable shear fracture raises a major question regarding the applicability of
fatigue data to construct databases of crack propagation life for materials used in fatigue limited
applications such as gas turbines [Brooks and Rainforth, 2000]. These crack growth anomalies
hence should be studied in more details so as to get a better understanding. In the following, each
crack front anomaly will be discussed in more details and illustrated.
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1.3.3.1 Flat-to-slant transition

Figure 1.8: Schematic representation of
the flat-to-slant transition (from [Chowd-
hury and Sehitoglu, 2016]).

Flat (mode I) crack propagation in fatigue
is generally stress-dominated, that is, associated
with low stresses in the vicinity of the crack-tip,
while the slant (mode I I and I I I) crack prop-
agation is shear-dominated and corresponds to
high stress levels at the tip [Chowdhury and Se-
hitoglu, 2016]. A schematic representation of
the flat-to-slant transition is given in Fig. 1.8.
On the one hand, the change from flat to slant
crack propagation is a phenomenon generally ob-
served in ductile tearing problems in thin speci-
mens made of steel [Esnault, 2014] or aluminum
alloy [Schijve, 1981], [Zuidema and Blaauw, 1988].

On the other hand, studies dedicated to Ni-based
superalloys are less numerous. One can still mention the work from [Brooks and Rainforth,
1999], [Loo-Morrey and Reed, 2000], [Schoettle et al., 2012], [Schoettle, 2013] conducted on
Udimet 720Li. In these latter studies, fractographic observations evidenced a competition between
opening (mode I) and shear (mode I I + I I I) modes of crack growth. Besides, mixed cracking
modes (i.e. inter- and transgranular) have been evidenced in the deflected area with no particular
explanation from the microstructure (grain orientation or texture) for the deflected crack growth.
Local and evolving crack-tip stress state is assumed to play a role in this process.

Recent tests conducted at ONERA have evidenced the flat-to-slant transition in N18 when sub-
jected to pure fatigue loading conditions [Tourjansky, 2013]. This process is illustrated in Fig. 1.9.

(a) Fracture surface with corresponding crack front and slanted area. (b) Topography of the fracture surface.

Figure 1.9: Fractography of a 6mm-thick SEN-T specimen made of N18 subjected to pure fatigue loading
at 550◦C.

The deflection of the crack growth in Ni-based superalloys under pure fatigue regime has been
evidenced at low (20◦C) to moderate temperatures (550◦C) but is less pronounced at high tem-
peratures (T > 550◦C). Such a tendency for a suppression of the deflection at high temperature
has also been confirmed in the work of [Schoettle et al., 2012]. For dwell-fatigue loading, the
deflection seems to be even less pronounced, as can be seen in Fig. 1.10 in which the topology of
the fracture surface is less pronounced compared to the pure fatigue case at 550◦C, Fig. 1.9b.
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Figure 1.10: Fractography of a 6mm-thick SEN-T specimen made of N18 subjected to dwell-fatigue
loading at 550◦C.

The flat-to-slant transition has been reported to preferentially occur in fine-grained (high-strength)
microstructures of C&W Ni-based alloys compared to their coarse-grained (low-strength) counter-
parts [Brooks and Rainforth, 1999]. Moreover, this crack deflection has been related to the slip
character within the material by [Loo-Morrey and Reed, 2000]. Slip processes are expected to be
more heterogeneous at low temperatures, hence resulting in a planar slip. On the contrary, in-
creasing the temperature seems to result in a more homogeneous slip with different characteristics.
According to [Schoettle et al., 2012] who studied the tilt angles from slanted zones, if the deflection
exceeds the crack-tip plastic zone, the crack is expected to become a mixed macroscopic mode
(opening and shear mode) crack that can be described by conventional LEFM (with a local kI and
kI I controlling the crack growth). In addition, plastic instabilities at the crack-tip such as Dynamic
Strain Aging (DSA) effects may offer a partial explanation for the onset of crack deflection [Brooks
and Rainforth, 1999], [Schoettle, 2013]. It also seems accepted that a strong microstructural com-
ponent is driving the shear fracture process and therefore determining the macroscopic crack shape.
Stable flat fracture is also ensured as long as damage accumulation ahead of the crack-tip in the
plastic zone is stable. In opposition, shear instability leading to crack deflection may result from
situations where dislocation glide is severely impeded [Brooks and Rainforth, 2000].
In all cases, it seems that the mechanistic origins of the anomalous crack growth behavior are still
to be fully determined.

On the numerical prospect, the simulation of the flat-to-slant transition under quasi-static mono-
tonic conditions have been addressed in numerous papers [Lan et al., 2006], [Xue and Wierzbicki,
2008], [Huang and Xue, 2009], [Morgeneyer et al., 2010], [Besson et al., 2013], [Ohata et al.,
2014], [Ren et al., 2016]. Nonetheless, for pure fatigue or creep-fatigue loading conditions, the
simulation seems not to have been addressed yet. Such a point is intended to be a mid-term
outlook to the present Ph.D. work. For the considered material, the basic idea is to assess in a
following chapter (cf. Chap. 3) the propensity of AD730™ to crack deflection upon testing. To this
end, fractographic observations and tilt angles will serve as a comprehensive understanding of the
underlying mechanisms, at least in a qualitative way.

1.3.3.2 Tunneling effect

The crack tunneling effect, also referred to crack front curvature, often occurs in plane strain
conditions (i.e. triaxial stress state) for high temperature testing [Antunes et al., 2001]. The ex-
tent of tunneling, that is the degree of retardation at the surface compared to the core material,
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is strongly influenced by time-dependent crack propagation, that is, when high temperatures are
reached or for long dwell cycles [Tong et al., 1997], [Branco et al., 1999].

Figure 1.11: Fractography of a 6mm-thick
SEN-T specimen made of N18 subjected to
dwell-fatigue loading at 550◦C.

Experimentally, this effect can be observed
while analyzing the fractographic surfaces of the
specimens. To this end, the crack front can be
evidenced thanks to dedicated heat or mechanical
marking procedures, hence leaving beachmarks
or zones with a change in roughness, respec-
tively. The N18 superalloy studied by [Tourjansky,
2013] has evidenced a slight tunneling effect at
550◦C under pure fatigue loading conditions, see
Fig. 1.11. One can notice on this figure a slight
apparition of shear lips from the free edges and a
well-defined “thumbnail-shaped” crack front.

For Direct Aged (DA) Inconel718, the study of [Fessler, 2017] also revealed the occurrence of
tunneling effect. Under pure fatigue conditions, this effect is not so pronounced, see Fig. 1.12,
for which the crack front on a 4mm-thick SEN-T specimen can be seen to be slightly non-linear,
Fig. 1.12a, while that of a 3.5mm-thick reduced KB specimen is almost of ellipsoidal-shape starting
from the notch, Fig. 1.12b.

(a) SEN-T specimen - 0.05Hz. (b) KBr specimen - 20Hz.

Figure 1.12: Fractography of specimens made of Inconel718 subjected to pure fatigue loading - triangular
signal at 550◦C (after [Fessler, 2017]).

Switching to creep-fatigue loading conditions results in a more significant tunneling effect, see
Fig. 1.13. Still at 550◦C under a trapezoidal scheme (10-1200-10 s), the crack front from a SEN-T
specimen is no longer straight but exhibits a significant curvature. The crack front seems to have
a higher velocity in the core material compared to the free edges, Fig. 1.13a. It seems there is a
differential in the crack growth rate along the front. As for the KBr specimen, the front is no more
of ellipsoidal-shape but almost circular. The crack advance seems to be faster in the mid-thickness
of the specimen, Fig. 1.13b.

Tunneling effect has been reported to preferentially occur in the fine-grained microstructure of
AD730™ compared to its coarse-grained counterpart [Mrozowski, 2020]. Nowadays, there is no
consensus on the physical or mechanical explanations of this tunneling effect. It is probably
the contribution of several phenomena that may explain such a trend. The convexity of the
crack front can be explained by the non-uniform processes occurring at the crack-tip (plastic-
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(a) SEN-T specimen - 10-1200-10 s. (b) KBr specimen - 10-1200-10 s.

Figure 1.13: Fractography of specimens made of Inconel718 subjected to creep-fatigue loading - trape-
zoidal signal at 550◦C (after [Fessler, 2017]).

ity induced crack closure [Antunes et al., 2001], [Branco et al., 2008], [de Matos and Nowell,
2008], plastic instabilities, stress relaxation, DSA [Brooks and Rainforth, 1999], change in stress
triaxiality ratio [Branco et al., 2012], Lode parameter [Xue and Wierzbicki, 2008], [Danas and
Ponte Castañeda, 2012], oxidation, ...). This in turn results in a differential in crack growth rates.

Let us note that attempts to simulate the tunneling effect under cyclic loading conditions have
been proposed by [González-Herrera and Zapatero, 2008], [Vor, 2009], [Fiordalisi, 2014], [Gardin
et al., 2016a]. However, in these studies, the curvature of the crack front was assimilated and
driven by plasticity-induced crack closure mechanisms.
However, creep-fatigue conditions have been little addressed. One can mention the work of [Jing
et al., 2017] and [Tang et al., 2020], using a cycle-based multi-mechanism damage model. Such an
approach has proved to yield promising results with a correct reproduction of the tunneling effect,
see Fig. 1.14.

(a) Specimen with and without side groove un-
der 180 s hold time.

(b) Total, fatigue and creep damage contours under pure fatigue
conditions.

Figure 1.14: Crack growth profiles with simulated damage contours vs. experimental fracture surfaces for
creep-fatigue (left) and pure fatigue (right) loading conditions (from [Tang et al., 2020]).

As a way of summary, for the observed flat-to-slant transition as well as crack front tunneling,
local mechanical phenomena seem to play a role in the deflected crack growth and differential
crack growth rates. Even if no clear explanations can be formulated, some key points have been
understood and encourage considering the local stress state at the crack-tip as driving mechanisms.
In turn, all these aspects promote the intention to consider a local approach to fracture to address
these crack growth anomalies in numerical structural simulations.
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1.4 Fracture modeling in Finite Element Analysis

When dealing with fracture problems, several methods exist to calculate the response of a
structure (cracked or not) whose material has a more or less ductile behavior. Two major approaches
can be classified according to the literature, depending on the scale of the analysis:

• the global approaches to fracture, which consider a macroscopic crack. Such methods aim
at relating some energetic parameters to the failure process of a structure without considering
the non-linear phenomena occurring within the material and close to the crack-tip.
As said before, the global approach to fracture is not able to reproduce the disturbed crack
front shape and topologies associated with the fracture process of Ni-based superalloys under
complex loading conditions. As a result, a second option should be favored;

• the local approaches to fracture, which are located at the scale of material points (or
RVE). These methods focus on the physical mechanisms associated with fracture such as
both plastic work and subsequent degradation processes through cavities nucleation, growth
and coalescence [Pineau, 2006].

When dealing with difficult situations involving complex loading conditions, which is the case here
with fatigue and dwell-fatigue schemes, choice for a local approach needs to be favored in order to
accurately assess the non-linear phenomena and the stress redistribution occurring in the fracture
process zone (FPZ).

1.4.1 The local approach to fracture: an overview

plasticity + damage
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True strain
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Figure 1.15: Difference between coupled and
uncoupled models on the mechanical behav-
ior of a ductile material.

Physical mechanisms governing the dam-
age process strongly interact with the mate-
rial behavior. For metallic alloys, as long as
the material plastically deforms, its mechani-
cal properties first increase thanks to strain-
hardening effect, and then decrease due to the
detrimental effect of damage, see Fig. 1.15.
Hence, a coupling between damage and ma-
terial behavior should be taken into account
to model the stress-softening effect associ-
ated with damage increase [Saanouni, 2012].

In the absence of coupling effect between dam-
age and plasticity, the schematic response of the
Fig. 1.15 becomes unrealistic, evidencing the major
role damage process plays on the overall material response. Apart from the standard monotonic
loading as the one depicted in Fig. 1.15, the problematic is the same for cyclic loading conditions
where the hysteresis viscoplastic loops should evolve as long as damage increases.
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Nowadays, macroscopic fracture models relying on Finite Element Analyses (FEA) remain the most
successful approach to apprehend the fracture problems at the scale of the structure. However,
the local approach has been less developed in the area of fatigue crack propagation for several
reasons. First of all, Fracture Mechanics offers, in many practical cases, a correct response to the
needs of industrial applications (∆K or cyclic J approaches) [Anderson, 2017]. In addition, some
phenomena render the use of the local approach more delicate compared to the case of monotonous
stresses [Qian et al., 1996]. Thus, the constitutive equations are often of higher complexity since
they have to translate some particular phenomena related to, e.g. the reversed flow (introduction
of kinematic strain-hardening). Similarly, the possibility of crack closure must also be taken into
account in fatigue situations. Finally, the precise mechanisms of crack propagation are often less
well understood in fatigue than in the monotonic case. Nevertheless, the optimization in the design
of structures now requires the ability to predict crack propagation in complex cases such as gen-
eralized plasticity [Maurel et al., 2017], anisothermal stresses [Otin et al., 2007], time-dependent
plasticity [Marchal, 2006], [Aslan, 2010], and complex geometries, etc. The developments from
the last 30 years in material modeling and FEA allow researchers to benefit from a relevant use
of local approaches to fracture in order to address such complex cases of fatigue crack propagation.

For the local approach, contrary to the global one, the crack is not the main object of the study,
it is damage, i.e. the progressive degradation of the integrity of the material, potentially leading
to failure. The main advantage of local approaches relies on the fact that their parameters only
depend on the material and not on the geometry. Thus the transferability of results obtained on
laboratory specimens to the calculation on real structures is easier [Besson et al., 2004]. Moreover,
the tests do not require the respect of strict conditions on the state of stress or deformation.

1.4.1.1 General framework

When considering fracture problems through crack propagation at the material point level, two
distinct approaches can be found in the literature:

1. The fracture criteria which are associated with a volumetric damage process. They rely on a
critical state of plastic strain or stress and consider the Representative Volume Element (RVE)
as broken once such a state is reached [Berdin, 2004], [Wierzbicki et al., 2005], [Besson,
2010], [Bai and Wierzbicki, 2015], [Seidenfuss and Linse, 2016]. Owing to the fact that
damage is considered as an external parameter which does not alter the material behavior,
such models belong to the class of uncoupled models.
A general form for uncoupled fracture criteria is given by the damage indicator D in eq. (1.5):

D =
∫

dD =
∫ εp(t)

0
F
(
σ∼, ε∼
)
dεp ≥ 1 (1.5)

where the kernel function F
(
σ∼, ε∼
)
is a scalar function of both the stress and strain tensors,

generally influenced by stress triaxiality, and dεp is the incremental equivalent plastic strain
in the current configuration. It is worth mentioning that fracture criteria act as damage
indicator but have no direct effect on the element mechanical resistance. Hence, the strain
softening effect is not represented, which may lead to a poor description of the strain lo-
calization process and the subsequent crack path associated with the loss of load-bearing
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capability of the structure due to damage.

2. The damage models which also consider some degradation mechanisms within the bulk
material. These models rely on the evolution of one (or several) damage variable(s) whose
effects result in the stress softening of the mechanical behavior [Desmorat, 2004], [Pardoen
and Besson, 2004] [Besson, 2010]. The coupling between damage and material response
makes these models to belong to the class of coupled models.

No matter the chosen approach for the in-volume coupled damage models, the general scope
is based on the modeling of cavities growth through micromechanical modeling (e.g. for ductile or
creep fracture problems), or on the use of proper mathematical functions representing the macro-
scopic effects of damage through phenomenological or macroscopic modeling, thanks to the Con-
tinuum Damage Mechanics (CDM) framework [Besson, 2010]. In such a case, the damage variable
is defined based on the influence of an internal degradation observed on the macroscopic proper-
ties such as stiffness modulus, yield stress and density of materials [de Souza Neto et al., 2011].
Advantages and drawbacks of these approaches can be found in, e.g. [Bonora et al., 2005].

1.4.1.2 Damage models (coupled approaches)

Conversely to the fracture criteria, coupled damage models consider the use of an internal
variable whose evolution during loading has a direct impact on the material properties, Fig. 1.15.

The mostly used models are either the Gurson model [Gurson, 1975], [Gurson, 1977] or Gurson-
Tvergaard-Needleman (GTN) [Chu and Needleman, 1980], [Tvergaard and Needleman, 1984] and
the Rousselier model [Rousselier, 1986], [Rousselier, 1987], [Rousselier, 2001] which belong to
the porous solid plasticity models. They are originally based on micro-cracks analyses (former) or
on thermodynamics considerations (latter). Micro-mechanics based damage models have proven
their potential in the ductile fracture prediction over the five past decades. To the best of the
author’s knowledge, there have been few attempts using the GTN model for fatigue crack growth
predictions. Indeed, the mechanisms leading to fatigue damage generally differ from that of ductile
failure. The former mainly comes from micro-crack initiation at the surface of the specimen due
to dislocations accumulation in persistent slip bands while the latter is mainly governed by cavity
nucleation, growth and coalescence in the bulk material at the boundaries of inclusions [Lemaitre,
1985b]. Consequently, for micro-based models, the reduction in the yield surface is to be related
to void concentration within the bulk material resulting in a plastic-damage coupling.
Despite significant improvements for the GTN model over the last years, one aspect can be men-
tioned: there is no coupling between damage and elastic behavior. For ductile damage prediction or
metal forming process, the large plastic strain undergone by the material makes such a restriction
not dominant. However, for fatigue problems where plastic strain levels are lower and successive
load reversals may alter the elastic properties, such a point may be detrimental.

Apart from micro-based models, another class of meso-based models has been introduced in the late
1970’s and still remains of practical utilization in the industrial and research fields: the Continuum
Damage Mechanics (CDM) models. This framework has been proved to deal with fatigue problems
which seems in better adequacy with our problematic [Lemaitre and Desmorat, 2005].
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1.4.2 Continuum Damage Mechanics framework

This category of damage models belongs to the class of the so-called phenomenological con-
stitutive damage models, which do not rely on micro-mechanics, contrarily to the previously de-
scribed models, but mostly on meso-mechanics considerations. Such models mainly rely on the
Continuum Damage Mechanics (CDM) framework [Lemaitre and Chaboche, 1990], [Desmorat,
2004], [Besson, 2010]. They are considered as “phenomenological” because their developments
are essentially based on macroscopic considerations and because the internal damage variable di-
rectly affects the macroscopic material properties such as the elastic stiffnesses.

1.4.2.1 A short historical review

CDM has emerged in the last four decades as a viable framework capable of describing micro-
cracks initiation, growth and coalescence in metals. Initially introduced for creep failure problems
[Kachanov, 1958], [Rabotnov, 1969], [Leckie and Hayhurst, 1974], [Lemaitre and Chaboche, 1974],
the concepts have since been extended to other damaging processes [Skrzypek and Ganczarski,
1999] as well as other materials, e.g. [Arnold and Kruch, 1994], [Chaboche et al., 1998] (compos-
ites) and [Mazars, 1986], [Desmorat et al., 2007] (concretes). CDM concepts have been applied
to model creep damage, ductile plastic damage, brittle damage and fatigue damage [Lemaitre and
Desmorat, 2005]. More particularly, the fatigue damage has been investigated in the pioneer studies
of [Lemaitre, 1971], [Lemaitre, 1974], [Chaboche, 1974], [Plumtree and Lemaitre, 1984], [Dufailly
and Lemaitre, 1995]. Creep-fatigue interaction models also emerged from these studies, hence
resulting in predictions closer to real loading cases [Lemaitre et al., 1974], [Lemaitre and Plumtree,
1979]. Since the development of “standard” fatigue damage models [Chaboche, 1978], several
CDM-based HCF damage models have been proposed in the literature such as, e.g. the two-scale
damage model of [Lemaitre et al., 1999] or that of [Brighenti and Carpinteri, 2013] based on
endurance surface.

1.4.2.2 General concepts

The CDM theory represents an extension to Continuum Mechanics with the objective of de-
scribing the evolution of defects within a material from a macroscopic point of view. An homoge-
nization process allows these material defects to be considered as sufficiently numerous and evenly
distributed within a given Representative Volume Element (RVE). At a macroscopic scale, the
damaged volume can hence be assimilated to a continuous medium.
When a component is subjected to external forces, internal degradation, described as the density
of micro-cavities and micro-voids, is accumulated. The resistance of the component to the applied
load decreases, which may be quantified by a damage variable D in CDM. Generally, the evolution
of such a damage variable D is defined as a function of stress or strain components:

Ḋ = F (σ∼, ε∼) (1.6)

The evolution of this damage variable primarily depends on the external conditions, depending on
the loading modes (temperature, stress amplitude, mean stress, loading frequency...).
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In order for the damage to be introduced in a material model, some modeling assumptions have
to be specified.

Effective stress concept

Let us consider a RVE loaded by a force F = F n with n its normal. The usual uniaxial stress
is given by: σ = F/S. If all the defects are open in such a way that no micro-forces can act on
the surfaces of micro-cavities represented by SD, it is hence convenient to introduce the effective
stress σ̃ related to the net surface that effectively bears the load, namely S − SD:

σ̃ = F
S − SD

= F
Snet

(1.7)

If only the undamaged surface (the net surface) is able to carry the load, the stress must increase.
The introduction of the damage variable D yields the effective stress:

σ̃ = Stotal
Snet

σ = σ

1− D with D = SD
S ∈ [ 0., 1 ] (1.8)

Consequently, the effective stress describes the impact of damage on the macro-behavior of the ma-
terial through a supposedly homogeneous micro-cracks density within the material. The effective
stress concept is hence particularly convenient in a computational viewpoint [Simo and Ju, 1987].

Equivalence principles

A way to avoid any micromechanical analysis for each type of damage mechanism is to postulate
a principle at the mesoscale. Thus, one should consider an equivalence principle between a virgin
material and a damaged material [Lemaitre, 1996]. The effective stress concept has been extended
by [Lemaitre, 1971], [Chaboche, 1977a] who proposed the principle of strain equivalence, Fig. 1.16.

Virgin 
material

Damaged 
material

Equivalent 
virgin material

same functional

Figure 1.16: Principle of strain equivalence in CDM
(adapted from [Haddag, 2007]).

This principle assumes that the defor-
mation behavior of the material is only
affected by damage through the effec-
tive stress. As a consequence, the strain
ε of the undamaged material due to the
effective stress σ̃ equals the strain ε

of the damaged material due to macro-
scopic stress σ, see Fig. 1.16.
According to this statement, the ef-
fective stress is necessarily greater (or
equal) to the stress. Moreover, only the
stresses are affected by damage while
the strains remains unaffected, eq. (1.9).

ε̃∼ (σ̃∼, 0) = ε∼ (σ∼, D) (1.9)
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For elasticity: σ̃∼ = Λ
≈

: ε̃∼e ↔ σ∼ = Λ̃
≈

: ε∼e (1.10)

with Λ
≈

the 4th-order tensor for the elastic moduli and Λ̃
≈

= Λ
≈

(1− D) its damaged counterpart.

Conversely to the micro-based models detailed above in sub-sect. 1.4.1.2, the phenomenologi-
cal damage models initially focus on the progressive loss of stiffness, see eq. (1.9), hence consisting
in an elastic-damage coupling, although the plasticity criterion may also been related to damage
growth thanks to the effective stress concept [Lemaitre, 1985a], [Lemaitre and Marquis, 1988].
Although numerous studies rely on the principle of strain equivalence, such an assumption is not
entirely rigorous, as pointed out by [Lemaitre and Chaboche, 1990]. Indeed, this principle assumes
that the different behaviors (elasticity & viscoplasticity) are affected by the surface density of de-
fects, all corrected in the same way, which does not seem to be verified. Nevertheless, its simplicity
allows for a coherent and efficient formalism to be established [Haddag, 2007].

Let us note that other equivalence principles exist in the literature, in particular: the principle of
stress equivalence [Simo and Ju, 1987], the principle of elastic energy equivalence [Cordebois and
Sidoroff, 1979]; the principle of strain energy or complementary energy equivalence [Sidoroff, 1981]
and the principle of total energy equivalence [Chow and Lu, 1992], [Saanouni et al., 1994]. For
the sake of concision, they are not described in this document.
Since the growth of micro-cracking of a material usually influences both the stress and the strain
distributions, the energy-based equivalence hypothesis [Saanouni, 2012] is more realistic than the
principle of strain equivalence for which the local stiffness drop results in a local stress decrease ex-
clusively. The principle of total energy equivalence hence allows for a fully symmetrical formulation
of the problem with respect to both the strain- and stress-like variables [Paris, 2008]. Nevertheless,
the strain equivalence principle works reasonably well for isotropic damaged materials. It will be
considered in the forthcoming Chap. 4.

For the sake of brevity, all the underlying concepts are not recalled here. Interested reader may
find additional information about CDM concepts and relative applications in the following refer-
ences: [Lemaitre and Desmorat, 2005], [Lemaitre et al., 2009], [Saanouni, 2012].

Choice for the present work

Phenomenological damage models have benefited from numerous improvements in last decades.
Thanks to the coupling assumptions between damage and material behavior, a stress redistribu-
tion directly follows the change in damage state, the latter being a state variable of the problem.
The main benefits of such a coupled model rely on the direct assessment of the stress and strain
fields in the surrounding of the fracture process zone (FPZ), hence allowing the crack initiation
and subsequent crack growth to be modeled, the latter aspect being the topic of this Ph.D. project.

The literature review on the topic of fatigue crack initiation and propagation reveals a higher propor-
tion of studies taking into account a phenomenological damage model rather than micromechanics-
based ones. This comes from the greater ability such macroscopic models possess to represent
cyclic loading related aspects such as the Bauschinger effect due to the change in plastic flow
during reverse loading conditions as compared to the Gurson or Rousselier model [Besson, 2010].
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Indeed, [Skallerud and Zhang, 1997] & [Besson and Guillemer-Neel, 2003] have shown in their
studies the limits of the GTN model when dealing with cyclic loading schemes. Owing to the load-
ing schemes to be simulated (i.e. cyclic), this fact represents a key element for the damage model
to be suggested for FCG analysis. In addition, the well-known Lemaitre damage model has already
been considered in fatigue damage problems [Chaboche, 1981], [Lemaitre, 1985a], especially for
superalloys [Kaminski, 2007], [Otin, 2007], [Barbier, 2009], hence making it a supporting point for
developments to come.

Once the modeling framework has been adopted thanks to practical considerations and a litera-
ture survey, one major aspect has to be discussed. It has been proved that coupled damage models
suffer from spurious mesh-dependency associated with the loss of unicity of the solution in case
of stress-softening material response [Forest and Lorentz, 2004]. This issue, highly detrimental for
the predictive capabilities of the damage model, should be corrected in order to retrieve realistic
physical predictions. To this end, regularization techniques can be considered.

1.5 Regularization strategies in Finite Element Analysis

1.5.1 General overview

In order to overcome the difficulties associated with the mesh-dependent nature of the local
approach in strain-softening conditions, several regularization methods have been proposed in the
last decades, particularly for monotonic ductile fracture problems.
However, the scope of the present study focuses on the cyclic crack growth under LCF condi-
tions, which intrinsically means to perform several loading cycles, contrarily to single monotonic
loading schemes encountered during ductile cracking problems. Moreover, crack growth prediction
in time-dependent loading conditions (creep) is also a much less developed research axis due to
complex material models embedded as well with damage localization at the stress singularity close
to the crack-tip [Murakami, 2012]. To the author’s knowledge, few applications of regularization
strategies in the context of cyclic/creep cracking problems can be found in the literature. As a
consequence, although major references will be related to ductile fracture problems, applications of
regularization methods to creep and fatigue crack growth will be preferentially focused in this work.

Regularization methods can rely on different approaches:

• the control of the dissipated energy: which ensures that the energy necessary for a crack
to grow is controlled by the model and that the process remains equivalent regardless the mesh
size. The most common approaches are:

– the Crack Band method (see [Hillerborg et al., 1976], [Bažant and Oh, 1983] for theoretical
developments, and [Hamon et al., 2012] for an application to fatigue crack growth);

– the Phase-Field approach (see [Francfort and Marigo, 1998], [Bourdin et al., 2000] for theo-
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retical developments, and [Alessi et al., 2018a], [Azinpour, 2020], [Eldahshan et al., 2021] for
applications to ductile fracture, or [Alessi et al., 2018b], [Schreiber et al., 2020], [Hasan and
Baxevanis, 2021], [Seleš et al., 2021], [Ulloa et al., 2021] for cyclic crack growth in brittle
and ductile materials, and [De Lorenzis and Gerasimov, 2020] for an up-to-date review);

– and the Gradient Enhanced Energy approach (see [Lorentz and Cano, 2005], [Lorentz and
Godard, 2011] for theoretical developments, and [Zhang, 2016], [Chen, 2019] for applications);

• the control of the spread of the strain-softening variables (referred to as spatial local-
ization limiters): which ensures that the strain-softening variables (damage/plasticity) do not
localize within a given band of FE. Thus, an internal length controls the non-local interaction
of the IP with each others so that to “spread” these strain-softening variables. This can be
achieved thanks to a spatial regularization operator or the introduction of gradient terms within
the constitutive relations, hence overcoming the limitations of the local state method. Among
them, one can cite:

– the Non-local approaches (integral as well with both explicit and implicit gradient-type),
described hereafter in sub-sect. 1.5.2;

– the Second-gradients methods (see [Truesdell and Toupin, 1960], [Aero and Kuvshinskii,
1961], [Mindlin, 1965]);

– the Thick Level Set approach (see [Moës et al., 2011], [Moës et al., 2014]);
– the Eikonal method (see [Rastiello et al., 2018], [Thierry et al., 2019]);
– and the peridynamics approach, which has recently emerged as an interesting approach as

mathematically unifying the mechanics of continuous media and cracks through a spatial
operation (see [Silling, 2000], [Littlewood, 2011] for theoretical developments, and [Silling
and Askari, 2014], [Zhang et al., 2016], [Liu et al., 2021] for applications to fatigue);

• the control of the rate of change of the strain-softening variables: which ensures that
the behavior depends on the loading rate, hence allowing for the damage to be delayed and
localization to be prevented. This approach is mainly dedicated to dynamic fracture problems.
The bounded rate or the delayed damage models belong to this class of regularization tools
(see [Ladevèze, 1992], [Allix and Deü, 1997], [Allix et al., 2019]);

• the enhancement of the kinematic relations: which are mainly referred to as micropolar
(Cosserat) or micromorphic continuum models. Although different from the modeling aspects
and the theoretical developments, such non-local models are particular cases of the straightfor-
ward Generalized Continuum Theories (see [Cosserat and Cosserat, 1909], [Eringen and Suhubi,
1964], [Forest, 2009] for theoretical aspects, and [Diamantopoulou et al., 2017], [Aldakheel,
2017], [Davaze, 2019] for ductile fracture, or [Aslan et al., 2011], [Langenfeld et al., 2021] for
fatigue loading conditions).

All these techniques will not be detailed as they are not considered in the present work due to
the lack of preliminary work. Moreover, their applicability in design offices is not straightforward
and further work needs to be achieved so as to ensure their potentialities in solving with robust-
ness the mesh-dependency effect in FE calculations. Nevertheless, interested readers may find a
current state of the art on regularization methods in, e.g. [Bažant and Jirásek, 2002], [Jirásek
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and Rolshoven, 2003b], [Forest and Lorentz, 2004], [Besson, 2010], [César de Sá et al., 2015].
As a consequence, in the forthcoming sections, focus will only be made on spatial localization
limiters which are the most generally applicable techniques. Such a choice comes from the ac-
knowledged robustness of these methods to cope with mesh-dependency, together with the relative
ease in the numerical implementation prospect [Jirásek and Bažant, 2001]. Moreover, this choice
is to be related to the quasi-static loading cases encountered in the present study, together with
tools integrated in the Z-set FE solver for which feedback was available.

1.5.2 Spatial localization limiters

Two types of models are usually distinguished: (i) integral-type models and (ii) gradient-type
models. These two approaches are described in the following paragraphs.

1.5.2.1 Convolution / integral-type method

The non-local theory, as opposed to point wise approach, introduces short-range microstructural
interaction by assuming that the variable response at a material point is dependent on the state
of its neighborhood, in addition to the state point itself. In order to operate a spatial averaging
procedure around a material point, a non-local integral equation, eq. (1.11), was first proposed
by [Kröner, 1967] and [Eringen and Edelen, 1972] for elastic material models. Later on, [Pijaudier-
Cabot and Bažant, 1987] extended this concept into CDM-based models. The regularization
operator is hence defined as the convolution product between a weighting function ψ and the local
quantity V in a material point x :

V(x) =
∫

Ω
ψ (x , ξ, `c)V(ξ) dξ with ψ(x , ξ, `c) = ψ0 (x , ξ, `c)∫

Ω ψ0 (x , ξ, `c) dξ (1.11)

where Ω is the spatial domain, ξ the position vector of the infinitesimally small volume dΩ,
ψ (x , ξ, `c) a characteristic length related averaging function for the non-local treatment (e.g. of
Gaussian-type). Note that the homogeneous weighting function must generally satisfy a normal-
izing condition, see the right-hand side of eq. (1.11), so as to ensure that the non-local operator
does not alter uniform fields after averaging [Xenos, 2015]. Several weighting functions ψ can be
found in the literature, see e.g. [Pijaudier-Cabot et al., 2004], [Jirásek, 2007]. Strictly speaking,
the integral-type formulation given in eq. (1.11) truly abandons the principle of local action. For
a discussion about strong or weak non-locality, the reader is referred to [Bažant and Jirásek, 2002].

The non-local approach is often used due to both its strong theoretical background and numer-
ical robustness, and it can, in principle, be applied to every type of constitutive models. Some
questions about the proper formulation of BC (e.g. free edges, notches, preexisting flaws) remain
however still open [Peerlings et al., 2001], [Rastiello et al., 2018]. Moreover, the complex numerical
implementation associated with the time-consuming process related to the averaging procedures
in complex geometries make this method difficult to use in an industrial context [Peerlings et al.,
1996a]. Further details on the method are given in [Bažant and Jirásek, 2002].

http://www.zset-software.com/
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Focusing on creep crack growth analyses using an integral-type modeling approach, the lit-
erature review, although not so exhaustive, has revealed some interesting papers.
The pioneer applications of non-local analysis of creep fracture hence traced back to the end of the
1980’s. One can cite the starting impulsion given by [Saanouni et al., 1989], [Kruch et al., 1991]
for creep crack growth (CCG) prediction in superalloys. They showed that the use of a non-local
law could greatly decrease the mesh-size effects. These studies were followed by that of [Hall and
Hayhurst, 1991] for the analysis of the size effect between small and large CT specimens. Later
on, [Murakami and Liu, 1995] put an effort on understanding the mesh-dependency effect in creep
problems, with significant insights using of integral non-local averaging. Other researchers used a
similar approach, e.g. [Duddu and Waisman, 2013] and [Mobasher, 2017] for the creep cracking
of ice sheets. Still for engineering materials, the few studies of [Pandey et al., 2019a] for the
mesh-dependency to be removed in creep cracking problems are, to the author’s knowledge, the
most recent ones. All of them rely on an integral-type formulation for the non-local interaction of
neighboring points. Although [Sabnis et al., 2016] tried to use a micromorphic approach for the
regularization of CCG problems, very little studies considering other non-local treatments can be
found in the literature on the topic.

In the context of fatigue, a preliminary work was conducted by [Xia et al., 1993] using an
integral-type non-local formulation for the analysis of damage distribution in the fracture process
zone of an elastic material. Later on, [Qian et al., 1996] studied the fatigue crack growth (FCG)
in an elastic-viscoplastic material using a non-local damage variable. Their results showed good
agreements with experimental results as well with a good improvement gained from the non-local
averaging. In the same way, but out of the scope of CDM-based models, [Fish and Oskay, 2005]
proposed a modified non-local GTN model for fatigue and multiscale analysis based on a local
model derived earlier in [Oskay and Fish, 2004]. Their model has also proven to be insensitive to
the mesh size, both for VLCF & LCF conditions. Recently, [Pandey et al., 2019b], [Pandey et al.,
2021] applied several methods to solve for the mesh-dependency effect, among which use was
made of the integral-type formulation. They succeeded in modeling FCG under LCF conditions.
Moreover, they were able to capture the so-called constraint effect associated with differing load-
ing specimens/conditions. In the context of cyclic elastic-viscoplasticity, an attempt was recently
made to extend the Chaboche model to non-local interactions by [Maniar et al., 2017], [Kuczynska
et al., 2021]. Authors succeeded in obtaining quasi mesh-independent results using an integral-type
non-local approach applied to the damage rate together under LCF conditions.

1.5.2.2 Gradient-type models

Using a certain averaging function and expanding eq. (1.11) into a truncated Taylor series, the
non-local integral equation can be converted to a gradient-type model equation. Such a result was
first derived by [Peerlings et al., 1996b]. Gradient-type models do not modify the kinematic nor the
equilibrium equations, but only the constitutive relations. Depending on the specific formulation
for the Taylor’s expansion, explicit and implicit models are distinguished [Peerlings et al., 2001].
In the present work, since explicit gradient formulations are known to require higher implementation
cost (occurrence of 2nd-order partial derivatives and the dialogue between Gauss points which is
required to evaluate the gradients), they have not been considered. Moreover, this regularization
technique may suffer from a lack of vanishing stress level at failure, which may be an obstacle
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in the context of the local approach to fracture [Comi and Perego, 1996], [Engelen et al., 2003].
Compared with non-local integral-type approaches, explicit gradient formulations also possess sig-
nificant numerical disadvantages [Peerlings et al., 2001], [Jirásek and Rolshoven, 2009]. That is
the reason why implicit formulations are often preferred. Moreover, difficulties associated with the
non-local integral form, see sub-sect. 1.5.2.1, seem apparently to have been overcame using the
implicit gradient approach.

Implicit gradient models

In implicit formulations, the non-local quantity V is implicitly defined by a PDE which is solved
in addition to the standard equilibrium PDE at the global level. Thus, the following diffusion
equation of Helmholtz-type is considered:

V(x) − c∇2 V(x) = V(x) in Ω (1.12)

In eq. (1.12), the incorporation of the characteristic length of the material (through the term c)
into the continuum framework of damage mechanics models allows for the microstructural influence
on the macroscopic level to be modeled. Indeed, the Laplacian term in eq. (1.12) acts as a diffusion
term responsible for a larger or lesser spreading of the localization zone regardless of the mesh size.
Hence, the difference between the two fields acts as a source term making it possible to regard V
as a material average of V though the zone whose size depends on the length scale parameter c .
It is to be noticed that such a relationship eq. (1.12) was postulated and does not result from ther-
modynamic considerations [Sornin, 2007]. Moreover, it is worth noting that if c = 0 the non-local
model recovers its local form and there is no effect of the non-local extension on the damage model.

The form in eq. (1.12) can be shown to be equivalent to the integral-type formulation with special
weight functions used for the averaging [Peerlings, 1999], [Engelen et al., 2003], hence ensuring a
strong non-locality. In opposition to the explicit formulation [Peerlings et al., 2001], the implicit
form in eq. (1.12) is truly non-local in the sense that variations of the local variable V in the neigh-
boring of x always affect the non-local variable V (x) due to the definition of the Green functions
and thanks to the fact that eq. (1.12) is satisfied exactly during the computation [Wu et al., 2012].

For the averaging PDE given in eq. (1.12) to be solved and in order to uniquely define the non-
local quantity, an additional BC of Neumann- or Dirichlet-type must be added to the eq. (1.12).
Providing the fact that V is generally unknown on the entire body, a Neumann-type BC is preferred.
This aspect is not fully clarified and deserves much further investigations.

∂V
∂n = ∇V .n = 0 on ∂Ω (1.13)

with n the external normal vector at every point in the edge ∂Ω and ∇ the gradient operator.
The physical interpretation of the additional BC is still unresolved. The simple natural form given
in eq. (1.13), although rather mathematically motivated, was suggested by [Lasry and Belytschko,
1988], [Peerlings, 1999] so as to ensure that the overall considered local quantity within the
continuum is preserved in the non-local averaging [Peerlings et al., 1996b], [Peerlings et al., 1998]:
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∫
Ω
V dΩ =

∫
Ω
V dΩ (1.14)

where V = V holds for homogeneous deformations and for the limiting case of a vanishing
length scale. Moreover, the Neumann BC defined in eq. (1.13) prohibits a damage flux through
the boundary of the domain, resulting in an increased contribution of points to the non-local field
when approaching the external boundary, which can be explained, in case of damage, by the in-
creased sensitivity of the material towards formation of surface defects [Samal, 2007].
A critical discussion of possible BC can be found in [Peerlings et al., 2001].

Since the pioneer publication of [Peerlings et al., 1996b] on the implicit gradient-enhanced damage
formulation for monotonic loading fracture, the concept has been applied in many other works.
Restricting ourselves to the Lemaitre-type damage model, one can mention the studies from [Peer-
lings et al., 2001], [César de Sá et al., 2006], [Enakoutsa et al., 2007], [Khoei et al., 2013a], [Seupel
et al., 2018].

As for applications dedicated to fatigue applications, the literature review can be seen to be
more tenuous. A first attempt is the study of [Kowalsky et al., 2012] & [Heinrich et al., 2013]
who studied the damage evolution within a structural steel subjected to a seismic excitation. In
their work, only few loading cycles were considered during structural applications due to the fact
that seismic stresses are infrequent and concern damped structures. However, the non-local for-
mulation of implicit gradient-type seemed to yield satisfactory results [Velde, 2010]. In the same
way, [Khoei et al., 2013a] studied the ductile crack growth within metallic alloys under cyclic loading
conditions. In this work, only VLCF conditions were met with promising results for structural calcu-
lations. The implicit gradient-enhanced formulation incorporated so that for the mesh-dependency
to be removed also seemed to be accurate enough. For thermomechanical fatigue applications,
the recent work from [Yin et al., 2022] also provides an interesting achievement considering a
time-dependent non-linear material model. Authors evidence the fact that the damage-softening-
induced ill-posed equation has been overcome in fatigue situations. Moreover, issues of numerical
instability and mesh sensitivity have been shown to be improved to a large extent, hence providing
a significant outcome and enforcing the relevance of the choices associated with the work at hand
(see the remainder of the chapter).

Finally, to the best of the author’s knowledge, no papers have yet been published for creep
problems using gradient-enhancement for damage modeling.

The literature review provided some interesting and up-to-date uses of non-local models, par-
ticular for cyclic loading situations (with and without sustained loads), thus helping for a choice
in the present Ph.D. work (cf. Chap. 5 later on). Once the use of a regularization strategy has
been considered as a complement to the local approach to fracture, another numerical problem
may arise, namely the volumetric locking effect, briefly introduced in the next sect. 1.6.
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1.6 Volumetric locking issues in numerical simulations

Apart from the solutions to the spurious mesh-dependency effect described in sect. 1.5, another
numerical issue may arise during FE calculations. When considering fracture problems in isochoric
conditions, due to the quasi-incompressibility constraint imposed at each integration points of the
FE, the effective dimension of the displacement space is reduced [Chen, 2019]. Such a reduction
may be too restrictive, hence leading to the lack of spatial convergence.

1.6.1 Context and solutions

It is now well-known that standard displacement-based FE formulations may lead to numer-
ical issues associated with locking phenomena when dealing with isochoric transformations. For
example, volumetric locking occurs when the inelastic flow is only governed by the deviatoric
stress. This locking phenomenon may lead to over-estimated solutions (too stiff), under-estimated
displacements, and numerical results exhibiting oscillations, particularly noticeable for the stress
fields [Javani, 2011]. The mathematical explanations on the topic have been given in [Babuška,
1971], [Brezzi, 1974], [Bellet, 1999].

According to [Bargellini et al., 2009], [Feld-Payet et al., 2011] and [Michel-Ponnelle, 2011], there
exist several possibilities to get rid of the volumetric locking effect, to name a few:

• the Reduced-order Integration (RI) in the FE (all the terms of the formulation are under-
integrated) [Zienkiewicz et al., 1971], [Doll et al., 2000], and the Selective Reduced Integration
(SRI) technique (some of the terms of the formulation are under-integrated) [Doherty et al.,
1969], [Hughes, 1980], [Ramesh and Maniatty, 2005];

• and the mixed formulations (additional DoF are embedded in the formulation) [Washizu,
1955], [Boussetta, 2005], [Lorentz et al., 2008], [El Khaoulani and Bouchard, 2013], among
which there is the well known B-Bar approach [Hughes, 1980], [Seabra, 2012], [Wolf, 2016].

Discussions on other (new) methods can be found in, e.g. [Feld-Payet, 2010] and [Chen, 2019].

Nowadays, there are plenty formulations of enriched FE suitable for a small strain framework
which are available in the literature [Zienkiewicz et al., 2013]. According to the comparative
review conducted by [Besson and Lorentz, 2006], triangular elements with a 3-fields formulation
(displacement, pressure and dilatation) have proved to provide accurate results. Let us note that
mixed formulations can easily be used in combination with non-local formulations when necessary
[Lorentz et al., 2008], [Bargellini et al., 2009], [Javani et al., 2009], [Feld-Payet, 2010]. In this
work, a 4-fields mixed non-local element developed in the Ph.D. project of [Feld-Payet, 2010] will
be used to alleviate volumetric locking when simulations of ductile failure are provided to validate
some specific points (see Chap. 5 and Chap. 6). This formulation involves 4 DoF: the standard
displacement fields u, the assumed volume change θ, the assumed pressure fields P (i.e. the
volumetric part of the assumed strain/stress fields, respectively) and the non-local variable V ,
with a linear interpolation (p12) for θ, P and V , and a quadratic interpolation (p2 1) for the
displacements u, see Fig. 1.17a.
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Let us note that, when simulating crack advance upon fatigue cycling, see Chap. 6, provided that
no large deformation might be reached in fatigue loading situations, volumetric locking issues will
not necessarily occur and a standard FE formulation should be sufficient. In such a case, a 2-fields
enhanced non-local element developed in the Ph.D. project of [Germain, 2006] will be used. 2 DoF
are included: the standard displacement fields u and the additional DoF, the non-local variable V .
The FE discretization is done using quadratic interpolation functions for u (p2) and linear ones
for V (p1) [Peerlings et al., 1996b], [Simone et al., 2004], see Fig. 1.17b.
One can still mention that considering the 4-fields mixed formulation represents a balance between
increased numerical cost (more DoF in each FE) and a better convergence of the solver (better
regularity of the fields).

(a) 4-fields finite element (p2-p1-p1-p1). (b) 2-fields finite element (p2-p1).

Figure 1.17: Enhanced c2d6r triangular Finite Elements with reduced integration used for structural
calculations in Z-set.

In future structural FE calculations, the use of either the 2-fields non-local or the 4-fields mixed
non-local FE will be expressively indicated (cf. Chap. 5 & Chap. 6).

1.6.2 Illustration

Considering a specimen subjected to a shear loading with a damage model resulting in an ap-
parent stress-softening response, one can analyze the pressure fields in order to assess the extent of
volumetric locking. In Fig. 1.18, the hydrostatic pressure is reported for both the standard (p2p1)
and the mixed (p2p1p1p1) non-local FE formulations. One can notice on Fig. 1.18a some oscilla-
tions of the pressure field close to the upper notch where damage initiates. The lack of regularity
of the solution has been proved to slow down the resolution process as well as to decrease the
accuracy of the solution. The use of a mixed 4-fields formulation, Fig. 1.18b, enables removing
the spurious oscillations with a better continuity of the hydrostatic stress field.

At last, once numerical issues (mesh-dependency and volumetric locking) have been solved,
the simulation of the crack growth process remains to be considered in FE numerical calculations.
This topic is discussed in the next sect. 1.7.

1 “p2” stands for a standard quadratic interpolation.
2 “p1” stands for a linear interpolation using only the vertex nodes.



1.6 Numerical fracture modeling 41

16.0

12.3

8.6

4.9

1.2

1e+2

(a) σi i/3 - standard non-local formulation. (b) σi i/3 - mixed non-local formulation.

Figure 1.18: Comparison of the pressure field using both standard (p2p1) and mixed (p2p1p1p1) FE
formulations on the double-notched specimen at u = 0.1688 mm with he = 0.2 mm.

1.7 Numerical fracture modeling

1.7.1 On the requirement for a damage-to-fracture transition

Figure 1.19: Continuous (diffusive) vs. discontinuous (discrete)
crack modeling (after [Seleš et al., 2021]).

The Lemaitre model has been
proved to be adequate to simu-
late the fracture process in metal-
lic alloys through simulating elas-
ticity, strain-hardening and stress-
softening stages. Areas where
crack onset is likely to occur can
also be evaluated. Nevertheless,
the final stage of macro-crack
propagation cannot be captured
by this model and a discontinuous representation of the crack is required [Feld-Payet, 2022].
A crack within a structure can be seen as a strong discontinuity of the continuum. The represen-
tation of such a discontinuity in the FE mesh requires a special numerical treatment which has
given birth to different methods. Some of them rely on the standard FE-framework while others
require the introduction of improved FE formulations. In a non-exhaustive manner, a brief review
is given in what follows with the most popular methods.

The possibilities for the modeling of failure (in the context of the FEM) can roughly be catego-
rized in three groups: discontinuous (discrete), continuous (diffuse) and combined approaches.
Classically, discrete approaches are used in the field of Fracture Mechanics (FM), while continuous
approaches are commonly associated with Continuum Damage Mechanics (CDM), Fig. 1.19.
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• continuous (diffuse) approaches: they use a continuous displacement field when dealing
with both the softening and fracture process, i.e. u+ = u−. In such a case, the failure
process is modeled using damage mechanics / porous plasticity. Failure is hence introduced
in the problem formulation thanks to a softening material behavior. The localization of
deformation essentially models the fracture process. As discussed in the sect. 1.5, suitably
regularized damage models are currently available in the literature so as to effectively rely on
a continuous approach within FE calculations. A continuous approach is known to possess
the distinct advantage (over a discrete one) to account for the effects of void phenomena
and stress redistribution/triaxiality on the material behavior. However, the actual material
separation associated with the extension of the crack must ultimately still be modeled by
accomplishing geometrical separation between the two crack faces.

• discontinuous (discrete) approaches: they allow to incorporate displacement discontinu-
ities as the crack is explicitly modeled, with a discontinuous jump of the displacement field
across crack faces [Shakoor et al., 2019], i.e. u+ 6= u−. Such approaches idealize the material
degradation by the propagation of a sharp discrete crack. The failure process is incorporated
by embedding cracks in the geometrical contour discretized by the FE model. As a conse-
quence, the mesh needs to be adapted so as to trace the progressing crack. One significant
advantage (over continuous methods) is that crack kinetics can be assessed.

In fact, according to the critical discussion above, it appears that the combination of contin-
uous and discrete approaches seems to be a promising way for crack growth modeling. For these
reasons, new combined approaches have been suggested in recent years. In what follows, and for
the sake of briefness, only some numerical methods relying on a FE-framework for the crack propa-
gation to be modeled will be discussed 1. Since continuous methods have already been introduced
in sub-sect. 1.4.1 with possible non-local extension in sect. 1.5, they won’t be discussed in further
details. Focus is made in the following on the discontinuous methods.

1.7.2 Discontinuous (discrete) crack modeling in FEA

In the discontinuous approach to fracture, the crack is modeled in a discrete way, which is con-
sistent with the displacement discontinuities observed across the crack faces. In a FE framework,
the proper modeling of discrete cracks of any arbitrary geometry requires either the use of cohesive
elements, element-deletion techniques, enhanced FE formulations or mesh adaption procedures.

1 For the sake of completeness, one can mention the other approaches that exist in the literature, enabling
the crack evolution without remeshing, namely: the meshless methods of element-free Galerkin (EFG) [Belytschko
et al., 1994], [Belytschko et al., 1995], [Simkins and Li, 2006], [Li et al., 2011], [Wu et al., 2016], [Leclerc, 2020]; the
reproducing kernel method [Liu et al., 1995], [Simonsen and Li, 2004] and the cracking smooth particle approach
of [Gingold and Monaghan, 1977], [Rabczuk and Belytschko, 2007]. Note that the boundary elements method
(BEM) [Aliabadi, 1997], [Yan and Nguyen-Dang, 1995], [Tuhkuri, 1997], [Aliabadi, 2002], [Sládek et al., 2003] or
the well-known Phase-Field approach [Miehe et al., 2010b], [Miehe et al., 2010a] (for which the crack is supposed
to propagate along the minimum energy path) can also be considered for fracture modeling. An exhaustive review
on all these alternative methods can be found in [Rabczuk, 2013].
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Cohesive Zone Model

In the present work, choice has been made to disregard Cohesive Zone Model (CZM) for several
reasons. First, since the fracture process up to crack initiation is described in a continuous manner
with the damage model (coupled approach), the material response is assumed to be altered with the
increase of damage, hence resulting in an almost zero effort transmission along the crack lips. Con-
sequently, the use of a CZM to dissipate the remaining energy is not required. Then, since cohesive
elements are generally inserted at interfaces between bulk elements, the resulting crack path is gen-
erally mesh dependent. Moreover, CZM suffers from some limitations concerning the initial guess
of the crack path which has to be known, a priori, unless adaptive remeshing techniques are used
to dynamically insert cohesive elements all along the crack advance process [Shakoor et al., 2019].
According to [Hosseini et al., 2018], the fatigue crack growth process in ductile materials is in
essence plasticity-driven and so decohesion-based models are known to be inconsistent with the
fundamental mechanisms responsible for cyclic crack advance. Moreover, cohesive elements re-
quire their behavior to be related to the mechanical state of the surrounding volume so as to
provide good results [Simatos, 2010]. In light of this, [Hosseini et al., 2018] argued that any
physical justification for the use of CZM for FCG in ductile materials seems deficient. Neverthe-
less, applications can be found in, e.g. [Bouvard et al., 2009], [Sun et al., 2013], [Zhao et al., 2021].

Let us recall that the target of this work is to simulate the crack growth peculiarities observed in
Ni-based alloys (see sub-sect. 1.3.3). These issues can only be assessed in 3D computations since
the flat-to-slant transition is an out-of-plane problem (while cohesive elements are mainly related
to interfacial fracture). As a reminder, this aspect has motivated considering a local approach to
fracture rather than a global one (based on LEFM). Finally, even if adaptive insertion of cohesive
elements could have been considered [Chiaruttini et al., 2012], an intrinsic choice related to this
Ph.D. was to compare CDM-based approaches and LEFM ones.

Node-release / element-deletion

Apart from CZM and mesh adaption techniques, let us note that other (simpler) solutions for the
modeling of FCG also exist and are recalled hereafter.

• Node-release technique: this is the simple method for the modeling of crack advance.
The crack growth is modeled by releasing the crack-tip node constraints such that the crack
advances by the crack-tip element size each time the node is released. A criterion based
on a critical damage parameter (or a stress level) is used to evaluate the best instant for
node release. However, as the crack growth increment per cycle is dictated by the FE size,
this technique leads to mesh-dependent results. Consequently, proper FCG rates cannot be
predicted in an accurate manner [Hosseini et al., 2018]. Moreover, this requires that the
crack path is known in advance. Applications in fatigue can be found in, e.g. [Pommier
and Bompard, 2000], [Solanki et al., 2004], [Hosseini et al., 2018], while those in creep or
creep-fatigue crack growth prediction in [Zhao et al., 2012], [Xu et al., 2017].

• Element-deletion method: also known as erosion, can be considered once a continuous
damage formulation is used so as to explicitly model the crack. It consists in eliminating the
broken FE from the mesh according to some predefined criteria. Such a method, not requiring
any representation of the crack’s topology, may be used either with a local (see e.g. [Lian
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et al., 2013], [Davaze et al., 2020]) or a regularized damage model (see e.g. [Seupel et al.,
2018]). Although the erosion process is capable of modeling crack separation without requiring
any specific type of element, the method possesses several limitations:

– the method is inherently mesh-dependent [Song et al., 2008]. The deletion of one element
may create uncontrolled stress concentration zones;

– the geometric crack path cannot be properly captured since the crack is represented as a
sequence of elements;

– mass loss is also incriminated to occur when using erosion techniques;
– with non-local damage models, the treatment of the non-local variable upon erosion can

lead to numerical issues in relation with the newly defined BC [Hütter et al., 2013].

Applications in ductile fracture are numerous [Bouchard et al., 2011], [El Khaoulani and
Bouchard, 2012], [Davaze, 2019], while there are few in fatigue [Peerlings et al., 2000].

Enriched FE formulations

Contrarily to the case with a mesh conforming to the crack as described above, one can
mention the Enriched Finite Element Methods that can also be considered. This way, it may
seem advantageous to allow for discontinuities in the FE model to be non conforming with the
mesh. Based on the partition of the unity concept [Babuška and Melenk, 1997], the standard
displacement-based formulation of the FEM can be enhanced with additional degrees of freedom:

• eXtended-Finite Element Method (X-FEM): the displacement-based approximation is
enriched near the crack by incorporating both discontinuities fields and the near tip asymp-
totic fields, as first proposed by [Belytschko and Black, 1999], [Moës et al., 1999]. The
(global) enrichment is made at the nodal level. Using X-FEM, the crack is not restricted
to the FE boundaries, instead, it can freely run through the whole FE mesh, hence enabling
for coarser mesh to be used in case of large scale computations. A review can be found
in [Belytschko et al., 2009];

• Embedded-Finite Element Method (E-FEM): was initially proposed by [Simo et al.,
1993], [Oliver, 1996]. Its formulation is based on elemental (local) enrichment accounting
for a (potential) displacement jump (through element-wise constant functions). One major
advantage of the E-FEM over the X-FEM is that the additional unknowns could be condensed
on the element level so that discontinuities could be captured with very small changes in the
existing FE code [Rabczuk, 2013]. Standard Newton algorithms are able to solve the global
problem. However, as evidenced by [Wolf, 2016], the E-FEM, as opposed to the X-FEM, is
not capable of reproducing a conforming displacement field.

In their works, [Jirásek and Belytschko, 2002] & [Oliver et al., 2006] have made the comparison
between E-FEM and X-FEM which demonstrates that they are equivalent from a qualitative and
quantitative point of view [Javani, 2011]. There is no superior method, but both have advantages
and drawbacks compared to the other method.
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Mesh adaption techniques

Finally, the more accurate way of modeling the crack-induced discontinuity in a FE mesh is
probably to modify the part topology (due to crack growth) and to perform an automatic remesh-
ing [Bouchard et al., 2000], [Vaz and Owen, 2001], [Bouchard et al., 2003], [Mediavilla et al.,
2006c], [Saanouni, 2008], [Feld-Payet, 2010]. As pointed out by [Mediavilla Varas, 2005], remesh-
ing techniques hence adapt the mesh topology to the geometry of the crack. Such a procedure,
although requiring a significant numerical implementation effort, has been proven to be particularly
suitable when highly distorted FE need to be removed from the computation.

Once the new mesh containing the extended crack has been generated, additional steps need to
be performed so as for the calculation to be resumed. Namely, the transfer of history data from
one mesh to another is to be performed and remains a tricky task due to the fact that the energy
of the system must be conserved all along the successive crack insertions. In case of significant
change in the energy of the system, the restoration of equilibrium also needs to be considered,
but its success is not always ensured when highly non-linear phenomena occur in the FPZ [Feld-
Payet, 2010]. In addition, the successive remeshing steps together with the need for a transport
of mechanical variables may lead to the so-called numerical diffusion process [Andrade Pires et al.,
2004], [Réthoré et al., 2004]. Nevertheless, let us note that the finer the mesh size in the FPZ,
the lower the numerical diffusion upon data transfer.
In any case, remeshing procedures embed some interesting features:

• remeshing allows for a classical contact process between lips upon closure phenomena (fatigue);
• element quality during the crack growth process is also preserved [Bouchard, 2000], hence

limiting highly distorted elements close to the crack-tip and favoring the numerical accuracy;
• remeshing procedures reduce the artificial mass loss due to element-deletion since the elements

within the damage localization regions are automatically refined prior to deletion [El Khaoulani
and Bouchard, 2012];

• mesh generation algorithms are currently mature enough to be coupled with FE solvers so that
for complex industrial cases to be studied [Bouchard, 2005], [Chiaruttini et al., 2010] [Khoei
et al., 2013b], [Feld-Payet et al., 2015], [Yang et al., 2018], [Eldahshan et al., 2021].

While some limitations can also be mentioned:

• accessing the output of time history variables at selected points is a more difficult task since
the mesh is evolving upon simulating;

• the entire data management is computationally expensive since the problem is associated with
many meshes. This is particularly true for highly non-linear material models as well with
complex (cyclic) loading schemes.

Applications of remeshing techniques for crack growth modeling can be found in, e.g. [Saouma and
Zatz, 1984], [Chiaruttini et al., 2013] for FCG using LEFM, and in [Mediavilla et al., 2006b], [Peer-
lings et al., 2008], [Feld-Payet, 2010], [El Khaoulani and Bouchard, 2012], [Javani et al., 2016] for
cracking in ductile materials. Despite its computationally demanding cost and not easy implemen-
tation, such a method has nevertheless provided very promising results.
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Résumé du chapitre en français

Ce chapitre a permis d’introduire les principaux concepts associés aux développements de cette
thèse. Un état de l’art relatif à chaque thématique abordée, qu’elle soit sur le plan expérimental,
sur le plan de la modélisation ou même numérique, a ainsi été dressé:

• la propagation de fissure dans les matériaux métalliques: cette section a donné
quelques principes fondamentaux en matière de propagation de fissure en fatigue dans les
alliages métalliques. L’intérêt a majoritairement été porté sur les fissures longues. Pour
finir quelques modèles de propagation de fissure, basés sur une formulation incrémentale
en temps, ont été décrits;

• la propagation de fissure en fatigue et fatigue-fluage dans les superalliages base
Nickel: les principaux modes de rupture ont été rappelés, en relation étroite avec les
effets exrinsèques et intrinsèques au processus de croissance de fissure. En complément, le
comportement en fissuration de l’AD730™ étudié dans cette thèse a été brièvement décrit
à l’aide de travaux récents. Enfin, les anomalies de fissure observées dans les superalliages
base Nickel, portant notamment sur le déversement du plan de propagation et la courbure
du front, ont été introduites et discutées;

• formalisme des lois de comportement: quelques principes fondamentaux sont rappelés,
avec un accent spécial sur l’échelle macroscopique considérée pour la modélisation, la
méthode de partition de la contrainte en lien avec la plasticité cyclique des matériaux
écrouissables, et la théorie de la viscoplasticité unifée, telles que considérées dans ce travail;

• les modèles d’endommagement couplés: l’approche locale de la rupture dédiée à la
prévision de la rupture des structures a été introduite, ainsi que son champs d’application.
Un intérêt a été porté sur les modèles d’endommagement couplés, en lien notamment avec
la mécanique de l’endommagement;

• les stratégies de régularisation: celles-ci sont introduites de sorte à donner quelques
éléments de base et un état de l’art relatif aux méthodes aujourd’hui disponibles pour
résoudre le problème associé à la dépendance en maillage lors de l’usage de modèles
d’endommagement couplés conduisant à une réponse adoucissante. Les méthodes non-
locales, notamment les limiteurs spatiaux de localisation (de type intégral et à gradient)
sont décrits. Un accent est porté sur l’application de ces méthodes dans des contextes
de fissuration sous chargement de fatigue ou fatigue-flage, réputés moins nombreux en
comparaison aux problèmes de rupture ductile;

• le problème de verrouillage volumique dans les matériaux quasi-incompressibles:
cet aspect est brièvement décrit et les solutions apportées sont écrites de sorte à présenter
les éléments finis multi-champs considérés dans la suite de ce travail;

• les méthodes de gestion de la rupture dans les calculs EF: elles permettent l’insertion
d’une discontinuité dans un maillage éléments finis pour simuler l’avancée d’une fissure.
Les méthodes discontinues applicables dans un contexte EF sont détaillées, avec pour
cuacune leurs avantages et leurs limites.

Ces apects, bien que différents par nature, vont servir de support aux développements à venir.



Part II - Research activity





2 Elastic-viscoplastic material model for
AD730TM under cyclic and monotonic

loading conditions

The accurate description of the behavior of a material is a preliminary step when studying the
damaging and subsequent cracking processes (no matter the considered theory between global or
local approaches). Thus, the first step of the present study is to establish an accurate material
model at moderate to high temperatures for the specific Nickel-based superalloy AD730™.
In this chapter, the experimental set-up and material characterization process are described in a
first section. The chemical composition of the studied material together with its heat treatments
are discussed. The testing procedures are motivated and justified according to the need of the
present study. In a second part, some general experimental evidences, prior to any data treatment,
are discussed before introducing the main examination procedures associated with a comprehensive
study of the governing mechanisms. Then, the third section is dedicated to the phenomenological
formulation of the material model which is justified with experimental observations. The last sec-
tion is devoted to the calibration process of such a phenomenological macroscopic material model
with corresponding prediction capabilities.
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Life prediction of critical components at elevated temperatures requires plasticity and viscoplas-
ticity analyses. In order to achieve a high level of accuracy in the computing methods, it is necessary
to develop fundamental constitutive equations to describe the macroscopic behavior of the material.
Continuum Mechanics represents the foundation for a phenomenological description of the macro-
scopic behavior of a given material submitted to a mechanical load and subsequently undergoing
deformation. For the last past decades, several advanced material models have been developed to
allow more and more accurate modeling of materials behavior under cyclic loading conditions at high
temperatures. For a comprehensive review, some are given in the following references [Lemaitre
et al., 2009], [Besson et al., 2010], [Cailletaud et al., 2018]. One of these material models initiated
numerous further works in both the research and industrial communities and dates back to the
1970’s with the work of [Chaboche, 1977b]. In this paper, the author proposed some constitutive
equations for nonlinear plasticity and viscoplasticity dedicated to the description of the mechani-
cal behavior under cyclic repetitive loads of steel alloys at different temperatures. Later on, the
equations were extended to the modeling of other metallic alloys, leading to the so-called unified
viscoplasticity theory [Benaarbia et al., 2018].

Since the purpose of this Chap. 2 is to establish a unified material model for creep-fatigue load-
ing conditions for AD730™, a relatively new Ni-based superalloy for HP turbine disks applications,
a preliminary step is to detail the whole characterization process in the following sub-sect. 2.1.2
& sub-sect. 2.1.3, and then to justify the material model, according to experimental evidences, in
the sect. 2.2. The formulation of the material model will then be given in sect. 2.3 whereas its
proper calibration will be discussed in sect. 2.4.

2.1 Material characterization and experimental procedures

2.1.1 Motivations for the material modeling

The accurate knowledge of the material behavior related to engineering components allows for
an increase in the operational temperature and subsequent better system efficiency. In addition,
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less conservative designs can be achieved which in turn reduces the cost of components, since the
material is used in an optimal way [Staroselsky et al., 2014].

The description of fatigue crack growth is, still to present days, a research field of great interest.
Cyclic plastic zone (also referred to as reverse plastic zone) acts as a primary mechanical driving
force for the fatigue crack propagation process under cyclic loading [Park et al., 1996]. The
Fig. 2.1 gives a schematic illustration of the different zones ahead of a crack-tip. Both reverse and
monotonic plastic zones are demonstrated in this figure, as well as the elastic zone.
In the cyclic plastic zone, measurable amount of plastic strain takes place in every loading cycle
(i.e. a clear hysteresis loop can be formed). This may occur in the really vicinity of the crack-tip.
Apart from this cyclic zone, there exists a monotonic plastic zone, located next to the cyclic plastic
zone ahead of the crack-tip, where only measurable plastic strain during the initial monotonic
loading takes place and where thereafter cyclic elastic strain is observed in the remaining cycles
(elastic loading/unloading). A purely elastic response is obtained far ahead from the crack-tip, and
this, from the very beginning of the loading cycles.

Cyclic
plastic zone

Monotonic
plastic zone

Elastic
zone

Figure 2.1: Schematic diagram illustrating the different zones at the fatigue crack-tip and corresponding
stress-strain responses in those zones (adapted from [Paul, 2016]).

For the present study, it is of first importance to rely on a material model capable of an accurate
description of the cyclic non-linear behavior of the material. The three zones detailed above have
to be described by the model so as to ensure a reliable description of damaging effects responsi-
ble for fatigue crack growth in the context of a local approach to fracture (cf. Chap. 4 later on).

Realistic analyses of cracks under cyclic loading have been performed numerically thanks to a
variety of elastic-plastic constitutive models [Mishra and Parida, 1985], [Rahman and Bahrami,
2010]. They have used an isotropic hardening rule, which represents a limit for such analysis
due to the fact that some mechanisms associated with cyclic schemes such as Bauschinger effect,
plastic shakedown, ratcheting and mean stress relaxation cannot be addressed by isotropic harden-
ing rules [Jiang and Zhang, 2008], [Chaboche, 2008]. Therefore, the cyclic stress-strain response
at the crack-tip during cyclic loading conditions must be addressed considering advanced cyclic
material models including both isotropic and kinematic hardening rules, no matter the material
(single- or polycrystal) or the constitutive model (macroscopic or crystallographic) [Marchal et al.,
2006], [Bouvard et al., 2009], [Hamon et al., 2010]. As a result, a mixed isotropic-kinematic strain-
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hardening formulation will be considered in this work to suitably model cyclic loading conditions.

2.1.2 Material, testing samples and experimental setup

In order to increase the aircraft engine’s efficiency, the turbine inlet temperature needs to
be constantly increased. As a result, manufacturers have turned to the so-called family of new-
generation polycrystalline γ − γ′ Ni-based superalloys which are capable of withstanding such
mechanical requirements associated with severe operating loading cases and environment.

2.1.2.1 AD730 Nickel-based superalloy

The Nickel-based superalloy AD730™ has been recently developed by Aubert & Duval and in-
troduced especially for the first stages of the turbine disks with high properties up to 700◦C [Devaux
et al., 2011], [Aubert&Duval, 2017]. The main reason leading to the development of AD730™ was
to provide a better combination between mechanical properties and cost compared to René88,
N18, and so on. This alloy has mechanical properties close to those of Udimet 720Li and sig-
nificantly higher than those of 718 Plus™, Waspaloy and “standard” Inconel 718. Moreover, its
good workability enables it to be manufactured through the cast & wrought (C&W) route [Devaux
et al., 2012]. However, due to its recent development, some of its fundamental properties are still
unknown and need to be studied.

AD730™ owns its properties, like most of the γ−γ′ alloys, from the solid solution hardening and
precipitation hardening of the γ′-phase, almost coherent with the γ-matrix (small misfit parame-
ter). Contrarily to other Ni-based superalloys with a high content of Nb [Donachie and Donachie,
2002], AD730™ does not possess any precipitated γ′′-phase. Other precipitated phases such as δ,
η or TCP, are far from being preponderant in AD730™ and thus won’t be further discussed in the
following [Devaux et al., 2011].

Up to date, the mechanical properties of AD730™ are known for the most standard testing pro-
cedures (tensile and creep loading conditions for both fine- and coarse-grained microstructures,
see [Thébaud, 2017], [Vultos, 2019], and more recently for fatigue and dwell-fatigue cracking
regimes [Mrozowski, 2020]). These studies have provided significant insights into this material,
unless some aspects still remain to be well understood prior to any usage of the alloy in real service
conditions. Indeed, to the best of the author’s knowledge, no constitutive equations for cyclic
elastic-viscoplastic (EVP) loading conditions have been yet established and calibrated.

2.1.2.2 As-received material

Melting and forging processes

Like alloy Inconel 718, the new generation of polycrystalline Ni-based superalloys are produced
and shaped by the conventional C&W method. Such a process starts with the casting of an ingot
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under vacuum, according to the Vacuum Induction Melting (VIM) process. However, after this
first casting, many defects such as porosities, macro-segregations and inclusions are present in
the ingot. The latter therefore needs to be refined using remelting processes such as Electro-Slag
Remelting (ESR) and Vacuum Arc Remelting (VAR) [Pollock and Tin, 2006].
Once all the melting and remelting processes are completed, the ingot undergoes a first series of
forging, also known as conversion [Forbes Jones and Jackman, 1999]. The objective of the conver-
sion is to break the solidification microstructure in order to obtain a much finer and homogeneous
microstructure. At the end, the semi-finished product, namely the billet, is formed.

Chemical composition

The bulk material used during this study was supplied by Aubert & Duval in the form of
2160mm-high pieces with a diameter of 204mm coming from a billet. The material has been
supplied in a rough metallurgical state (see Fig. A.1 page 267 in the appendix Chap. A). Its exact
chemical composition is given in Tab. 2.1. Such a composition has been finely controlled to ensure
a consequent precipitation of γ′ phase in order to meet required mechanical properties, but also
to maintain the shaping capability of the alloy.

C Ni Cr Mo W Al Co Ti Nb Fe B Zr
0.01 Bal. 15.46 2.82 2.59 2.22 8.27 3.48 1.11 4.16 0.0094 0.034

Table 2.1: Chemical composition in wt% of as-received AD730™.
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Figure 2.2: Metallurgical state of as-received AD730™ material (from [Bonnand et al., 2019]).

The microstructural state of the as-received material is given in Fig. 2.2. We can mention the
obvious disparity in the initial state between the core material of the bar and its periphery. At the
latter, only small grains are present, as opposed to the core where long grains elongated in the
direction of the bar are easily observable. We can already point out that the heat treatments that
will then be applied will not completely erase these initial differences.
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2.1.2.3 Heat treatments and microstructural aspects

The present study focuses on the fine-grained (FG) microstructure of AD730™. Such a mi-
crostructure was designed in the R&D offices of Aubert & Duval [Devaux et al., 2014] and at
P’ Institute [Thébaud, 2017] in order to provide the best compromise between static and cyclic
properties [Devaux et al., 2011]. The series of heat treatments is described in what follows.

Time

Temperature

Aging
Solution

treatment

8h

4h

760°C

1 080°C

Solvus (~ 1 105°C)γ '

(a) Sequence of heat treatments. (b) Typical microstructure of FG aged AD730™.

Figure 2.3: Successive heat treatments for AD730™ with corresponding fine-grained microstructure.

The material has been subjected to a series of heat treatments starting from subsolvus solution
heat treatment under vacuum at 1080◦C for 4h, see Fig. 2.3a. A similar heat treatment was applied
by [Thébaud, 2017], [Durand et al., 2020] and resulted in a fine-grained microstructure with aver-
age grain size of ∼ 8 - 10µm (ASTM 10), Fig. 2.3b. Then, a cooling under argon (112◦C.min−1)
up to room temperature (RT) has been achieved. The cooling rate after solutioning is known to
control the size and distribution of secondary and tertiary γ′ precipitates: the faster the cool-
ing process, the finer the final microstructure [Devaux et al., 2012]. As a final step, aging heat
treatment was conducted under vacuum at 760◦C for 8h followed by a cooling under argon up to RT.

2.1.3 Material testing procedures

Testing samples

Cyclic and monotonic characterization samples consist of a batch of 16 cylindrical speci-
mens with a diameter of 6mm, with a length of the useful zone in the middle area equal to
12.328mm. A representation of the axisymmetric testing specimens is given in Fig. 2.4 whereas
the sampling plans from the bulk material are given in the appendices, see Fig. A.1a page
267. A detailed sketch of this specimen is given in the appendices, see Fig. B.1 page 269.
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Material testing equipment

Figure 2.4: Axisymmetric testing specimen.

Experimental tests were conducted
within the ONERA facilities. These tests
were conducted on a uniaxial servo-hydraulic
MTS 810 testing machine. Its load cell ca-
pacity for static testing ranges from 25 to
± 100 kN and is particularly suited for fa-
tigue and monotonic testing. Axial mea-
surements were taken using a longitudinal
0.5-class MTS extensometer (632.51C.04)
with a gauge length of 12 mm for relative
displacement measurement. Its measuring
range for strains is in [+20%, -10%]. This
extensometer was thus used for direct strain
monitoring with the help of a controlling software. The latter allows for the control of the test in
displacement, deformation or force depending on the need for testing.

Clamshell furnace
Upper grip insert

Lower grip insert

Elevated temperature
extensometer

Control
thermocouple

Data
thermocouple

Control
thermocouple

(a) Schematic view of the testing apparatus. (b) Overall set-up with specimen, heating clamshell
furnace, threaded grips and hydraulic wedge grips.

Figure 2.5: Experimental set-up for cyclic testing on a MTS 810 testing machine at the ONERA facilities.

For high temperature (HT) testing, a MTS 653 clamshell resistive furnace was used to control the
temperature of the tested material. Three independent controlled temperature zones are used so
that to ensure an homogeneous heating of the specimen. K-type thermocouples (chromel/alumel)
were placed on the back face of the specimen. All the experimental tests were conducted on air,
both for those at ambient (RT) and elevated temperatures. Before HT testing, the specimen was
heated up to the target temperature (550, 650 or 700◦C).

A schematic view of the testing apparatus is given in Fig. 2.5a and a real view of the experimental
set-up Fig. 2.6. Highlight is given on the thermocouple as well as the extensometer in Fig. 2.6.
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(a) Close-up view on data thermocouple (probe). (b) Close-up view on axial extensometer.

Figure 2.6: Thermocouple and axial extensometer for high temperature cyclic test monitoring on a MTS
810 testing machine at the ONERA facilities.

2.1.3.1 Monotonic and cyclic characterization tests

The sub-sect. 2.1.1 has shown that crack-tip stress fields analysis must rely on an advanced
cyclic unified material model. Material modeling requires the proper definition of characterization
tests. To this end, a precise testing matrix including 16 cylindrical specimens machined and heat
treated has been dedicated to this task (see Fig. A.1 in the appendices).

Characterization tests are aimed to calibrate a proper constitutive model. For the studied material,
two specific features should be included in the material model:

• the elastic-plastic behavior which only depends on the mechanical loading;
• and the viscous behavior, which depends on the rate at which the material is loaded as well

as the operating temperature [Chaboche, 2008].

In the present study, thermal effects are disregarded.

As previously said, the macroscopic mechanical response of AD730™ under cyclic loading con-
ditions has not been yet studied in details. The isothermal non-linear behavior of Inconel 718,
known to have almost similar properties compared to AD730™, has been extensively studied in the
past decades [Chaboche et al., 1991], [Gustafsson et al., 2011c], [Goulmy, 2017], [Prisacari, 2018].
This constitutes some guidelines for the definition of the testing process.

Nickel-based superalloys, including Inconel 718, are known to exhibit the following main deformation
mechanisms under LCF loading conditions:

• cyclic softening: this aspect is mainly associated with the shearing process of hardening γ′
and γ′′ precipitates [Xiao et al., 2005]. The smaller the precipitates, the greater the shearing
process by generated dislocations;
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• temperature effect: classically, temperature increase will make the mechanical properties of
the alloy to decrease. The latter are known to be stable up to ∼ 600◦C, and then decrease.
The extent of cyclic softening is greater with temperature rise [Warren and Wei, 2006].
Plastic instabilities and inverse strain rate sensitivity have also been reported at specific
temperature around 550◦C;

• partial mean stress relaxation or ratcheting. the first aspect corresponds to a partial
decrease of the mean stress for non-symmetric hysteresis loops under strain-controlled loading
conditions. The second relates to the same effect under stress-controlled conditions, with
successive accumulation of strain for increasing loading cycles. Such effects have been proved
to have an effect on fatigue lifetime [Lukáš and Kunz, 1989], [Chaboche and Jung, 1997];

• strain range memory effect: for which there exists a relationship between cyclic hard-
ening/softening and applied strain range. Such an aspect relates the material behavior to
its prior loading history with a possible evanescent effect depending on the loading condi-
tions [Nouailhas et al., 1985].

Most of the listed aspects were studied on a similar class material, that is Inconel 718, by [Gustafs-
son et al., 2011c], [Chaboche et al., 2012] (standard 718 alloy), [Goulmy, 2017] and [Prisacari,
2018] (Direct-Aged state). Their modeling approach through unified theories of viscoplasticity
thus seems to be adapted for a similar Ni-based alloy as the one considered here, AD730™.

Finally, in connection with the literature review as well as the knowledge of typical response of the
material (what remains an a priori), some relevant questions can thus be formulated so that to
give an orientation to the characterization tests to be carried out:

• what are the main strain-hardening mechanisms within the material? (i.e. cyclic hardening/-
softening, plastic strain range memory effect, Masing-type behavior [Masing, 1926], ...)

• is the material sensitive to strain rate and are there any time-activated effects?

To this end, monotonic, cyclic and dwell characterization tests have been designed and are de-
scribed in what follows.

Uniaxial monotonic testing

In the present study, 16 specimens made of fine-grained AD730™ were available for material
behavior characterization purpose. Choice has thus been made to use “only” 3 specimens for
monotonic loading scenarios. Two types of tests were designed for high temperature analysis in
isothermal conditions:

• Type-1 monotonic test: this single test is performed at 550◦C under strain control in order
to study both strain- and time-hardening effects. Strain rate is thus varying from one strain
level to another in an alternating way between (high) strain rate of ε̇ = 10−3 s−1 to (low)
strain rate of 10−5 s−1, Fig. 2.7a. For this reason, this test is referred to as Multiple Speed
(MS) test. At the end of the loading ramp, if failure does not occur, stress relaxation at
constant strain level (the last) is performed during 24h;
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(a) Load signal of type-1 monotonic test.
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(b) Load signal of type-2 monotonic test.

Figure 2.7: Load signals for type-1 & 2 monotonic tests for material behavior characterization.

• Type-2 monotonic test: it is performed to study strain-hardening and time-variant effects
(viscosity, static recovery...) at 550 and 700◦C. Consequently, this test is referred to as Mul-
tiple Hardening-Relaxation (MHR) test. It is conducted under strain control for increasing
tensile loading at constant strain rate of ε̇ = 10−3 s−1. An holding period of 2h is performed
at specific strain levels, followed by a partial unloading of the sample. This unloading is
performed up to a predefined strain level in order to guarantee that the material remains in
an elastic domain without modifying the strain-hardening state, Fig. 2.7b.

Uniaxial cyclic testing

Such tests consist in subjecting a specimen to a periodic load (stress or strain depending on
the test-control) so that the evolution of the cyclic response can be studied. One can hence study
the stress-strain relation as well as the evolution of hardening characteristics from one cycle to
another. Theoretically, these tests are conducted up to the so-called stabilized state (if existing) of
the mechanical response under cyclic loading. Indeed, structural calculations dedicated to fatigue
lifetime estimation mainly rely on the stabilized state of the mechanical behavior so as to apply
fatigue criteria [Chaboche et al., 2012], [Kruch et al., 2015].

To this end, 4 types of characteristic tests have been designed following the guidelines from
[Chaboche et al., 2013], [Goulmy, 2017], [Prisacari, 2018], [Benaarbia et al., 2018]. Due to
the few number of specimens (16) and the necessity to investigate 3 target temperatures (20,
550, 700◦C) as well as several loading schemes (negative and positive loading ratios), tests were
performed in a multi-steps manner, thus using one specimen for several loading levels. Such a
testing method is referred to as incremental, in opposition to the use of one specimen per load
level (single-step) [Lemaitre and Chaboche, 1990].

• Type-1 cyclic test: this test is performed under strain control. The loading ratio is
Rε = −1 to get a symmetric loading between tensile and compressive phases. A sinu-
soidal wave is used with a constant strain rate of ε̇ = 10−3 s−1. Considering incremental
tests, we have an incremental increase of the load (∆εi/2, with i = 1, 2, ...), see Fig. 2.8a.
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The test is performed at 20, 550, 650 and 700◦C. At the end of the test, depending if spec-
imen failure occurs or not, a stress relaxation at constant strain level (the last investigated)
is conducted so that for the viscous part of the stress to be observed.
Such a loading scheme is used to study the evolution of stress amplitude with increasing
cycles and strain levels as well as the evolution of hysteresis loop shape.
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]

Type-1 cyclic test            R = 1              =  10 3  s 1

(a) Load signal of type-1 cyclic test.
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]

Type-2 cyclic test        R = 1          =  [10 3,  10 4,  10 5]  s 1

(b) Load signal of type-2 cyclic test.

Figure 2.8: Load signals for type-1 & 2 cyclic tests for material behavior characterization.

• Type-2 cyclic test: this test is also performed under strain control. The loading ratio is
Rε = −1. A sinusoidal wave is used with variable strain rates ranging in ε̇j = [10−3, 10−4,
10−5] s−1. For the first (highest) loading rate at ε̇1 = 10−3 s−1, 64 cycles are performed,
for the lower speed rate of ε̇2 = 10−4 s−1, 32 cycles are performed and finally for the last
(lowest) strain rate of ε̇3 = 10−4 s−1 only 8 cycles are realized. Considering incremental
testing, several strain levels (∆εi/2, with i = 1, 2, ...) are considered, see Fig. 2.8b. The
test is performed at 20, 550 and 700◦C. Here again, at the end of the test, depending if
specimen failure occurs or not, a stress relaxation at constant strain level is conducted.
Such a loading scheme is used to study the strain-rate sensitivity of the material highlighted
by viscosity effects. Moreover, the evolution of stress amplitude and the change in shape of
hysteresis loops with increasing cycles and strain levels is also analyzed. This test is close
to type-1 test, with the slight difference that the number of investigated cycles for a given
strain amplitude is not the same, thus allowing for a comprehensive analysis of cumulative
plastic effect in opposition to that of plastic strain amplitude.

• Type-3 cyclic test: this test is very similar to type-1 cyclic test, with the major difference
coming from the loading ratio that is fixed to Rε = 0 so that to get a non-symmetric loading
between tensile and compressive phases, see Fig. 2.9a. As the test is strain-controlled under
dissymmetric loading, it is used to study the partial/total relaxation of the mean stress as
well as the evolution of stress amplitude with increasing cycles and strain levels.

• Type-4 cyclic test: this last test is much more complicated than the three previous ones and
is associated with cyclic relaxation process. This test is performed under strain control. The
loading ratio is again Rε = −1. This test assumes evolving holding periods and decreasing
strain rates. For this reason, both triangular and trapezoidal waves are used with alternating
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(b) Load signal of type-4 cyclic test (+ close-up view on phase 1).

Figure 2.9: Load signals for type-3 & 4 cyclic tests for material behavior characterization.

signals. The Holding Times (HT) are performed at the peak tensile stress and range in
HTk = [60, 300, 720] s. The two considered strain rates are ε̇j = [10−2, 2.5 10−3] s−1, see
Fig. 2.9b, and the test is performed at 550 and 700◦C.
Such a test can be decomposed into several blocks (corresponding to a strain level ∆εi/2,
with i = 1, 2, ...) in which there are 5 successive steps (corresponding to evolving speeds or
signal forms):

∆εi
2

Step 1: 1 cycle with triangular signal at ε̇1 = 10−2 s−1

Step 2: 6 cycles with trapezoidal signal at ε̇1 = 10−2 s−1

2 cycles with HT1, 2 cycles with HT2 and 2 cycles with HT3

Step 3: 2 cycles with triangular signal (null HT) at ε̇2 = 2.5 10−3 s−1

Step 4: 6 cycles with trapezoidal signal at ε̇2 = 2.5 10−3 s−1

2 cycles with HT1, 2 cycles with HT2 and 2 cycles with HT3

Step 5: 25 cycles with triangular signal (null HT) at ε̇2 = 2.5 10−3 s−1

∆εi+1
2

Step 1: 1 cycle with triangular signal at ε̇1 = 10−2 s−1

Step 2: ...

Such a loading scheme is used to study the evolution of stress amplitude with increasing cy-
cles and strain levels. Last but not least, viscosity effects in combination with accumulated
plasticity and strain-rate decrease (from ε̇ = 10−2 s−1 to ε̇ = 2.5 10−3 s−1) can also be
analyzed thanks to such a testing scheme.

Synthesis of the characterization tests

As a matter of generic overview of the mechanical tests dedicated to the material’s non-linear
behavior estimation, the following Tab. 2.2 gathers the different testing conditions for the 16 spec-
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imens. It is to be noted that the occurrence of an holding period at constant load, i.e. strain level
in the present case, thus results in a stress relaxation analysis.

Test type Specifications Hold. period Temp. Spec. ID

Monotonic
Type-1 test: tensile loading under

3 550◦C CAR8
variable strain rate

Monotonic
Type-2 test: tensile loading under constant strain 3 550◦C CAR2

rate with holding times and unloadings 3 700◦C CAR10

Cyclic

7 20◦C CAR1
Type-1 test: symmetric loading under constant 7 550◦C CAR3 & 4

strain rate and increasing strain level 3 650◦C CAR6
7 700◦C CAR5

Cyclic
Type-2 test: symmetric loading under variable 3 20◦C CAR7

strain rate and increasing strain level 7 550◦C CAR9
3 700◦C CAR11

Cyclic
Type-3 test: non-symmetric loading under constant 7 20◦C CAR13

strain rate and increasing strain level 7 550◦C CAR15
7 700◦C CAR16

Cyclic
Type-4 test: symmetric loading under variable strain 3 550◦C CAR12

rate and increasing strain levels / holding times 3 700◦C CAR14

Table 2.2: Characterization tests performed during the present study on 16 cylindrical specimens made
of fine-grained AD730™.

2.2 Systematic examination procedures for experimental data

There exists several formulations for material modeling. As a result, one restrictive aspect
comes from the analyses conducted on the experimental data. Due to the expected dissipative
and non-linear mechanisms occurring at the crack-tip, hysteresis stress-strain loops will serve as
support for the analyses. Following the work of [Cottrell, 1953], [Feaugas, 1999], recently applied
to similar materials [Goulmy, 2017], [Prisacari, 2018], a procedure dedicated to the study of the
hysteresis loops has been considered. This allows for a guideline for the formalism establishment
as well as material model calibration processes.

In the present study, two levels of analysis of the experimental results will then be conducted. The
first one relies on a global analysis of the mechanical response according to the raw data of the
tests, while the second relies on a stress partition scheme defined hereafter in sub-sect. 2.2.1. The
purpose of this section is to expose some general macroscopic results together with specific features
associated with the accurate analysis of hysteresis loops. The macroscopic elastic-plastic behavior
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of the material for the considered loading schemes is first analyzed in sub-sect. 2.2.2. Strain-rate
related effects are then discussed in sub-sect. 2.2.3 according to the tests conducted with variable
loading rates (type-1 monotonic test, type-2 & 4 cyclic tests) as well with stress relaxation profiles.
Finally, particular effects related to cyclic loading schemes are discussed in sub-sect. 2.2.4.

For most of the uniaxial tests whose results are discussed below, it seems justified to make the as-
sumption of small perturbations. The longitudinal strain and stress in the specimen are respectively
defined by the relations:

εn = ∆L
L0

σn = F
S0

(2.1)

where L0 is the gauge length, ∆L its change in length measured by the testing extensometer,
F is the uniaxial applied force measured by the load cell of the testing machine, and S0 the
initial cross-section in the useful zone. Such strain/stress are known to be nominal (or engineer-
ing stress/strain) and used to evaluate tensile properties of the material (yield limit, ultimate
strength...). If no particular mention is made, the nominal (engineering) measures are used (as
opposed to true measures), where cross-sectional variation is hence neglected.

2.2.1 Cottrell’s partition method

One way to get information about the hardening mechanisms under cyclic loading is the fine
analysis of the hysteresis loops, as suggested by [Cottrell, 1953]. For uniaxial fatigue loading, such
a method is quite easy to represent [Feaugas, 1999]. In Fig. 2.10, a typical stress-strain hysteresis
loop is plotted and relevant cyclic parameters are emphasized.
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Figure 2.10: Cottrell’s partition method for cyclic elastic-plastic material behavior (after [Feaugas, 1999]).
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During the present work, a Python program has been implemented to extract the relevant data
from each hysteresis loop of the whole loading scheme. Then, one gets:

• the elastic moduli in tensile – E t – and compressive – E c – going phases, thanks to a linear
regression on the linear segment of the curve;

• both yield limits in tension – σt
y – and compression – σc

y . The yield limits correspond to the
point situated at the end of the linearity of the hysteresis loop. For elastic-plastic materials
at low or moderate temperature, in the absence of visco-elasticity, the elastic domain is
well defined. However, such a statement is no longer guaranteed in the presence of viscous
effects. Consequently, the value of the yield points highly depends on a given plastic strain
offset δpl . Such an offset conditions the other quantities which depend on it;

• the size of the elastic domain during forward – σt
eff – and backward σc

eff – flows (for which
a partition between thermal (over-stress) and athermal (isotropic hard.) parts may apply);

• the position of the center of the elastic domain during each single half-cycle – X t and X c .

The plastic strain offset δpl , as stated, has proven to have a relative importance on the extracted
results. The smaller the offset, the better the yield definition. Subsequently, the lower the effective
stress and thus the higher the internal back-stress. According to [Gaudin et al., 2001], this offset
highly depends on the sensitivity of the extensometer, the sampling and data acquisition frequen-
cies. A critical discussion about the choice of this plastic offset is given in [Wu and Yeh, 1991].
A wide range of values can be found in the literature, namely 5.10−6 ≤ δpl ≤ 1.10−3 [Guillemer-
Neel et al., 2000], [Risbet et al., 2001], even if no clear consensus exists about any best value.
Generally, for metallic materials, a plastic strain offset of δpl = 2.5 10−5 (2.5 10−3 %) is assumed
so as to get rid of possible measurement noises (signal analysis, sampling frequency) and the un-
certainty of the extensometer [Belattar et al., 2016], [Marnier et al., 2016], [Zhou et al., 2018].
Unless intentionally specified, such a value has been considered in the present work.

2.2.2 Elastic-plastic behavior

2.2.2.1 Elasticity

The elastic (reversible) behavior can easily be studied using the material response in a stress-
strain diagram and evidencing a linear trend up to (visco)plastic yielding where the stress tends to
deviate from the linear part of the curve. Thus, elastic properties of the material are summarized
in Tab. 2.3 for different temperatures.

2.2.2.2 Plasticity / Strain-hardening

Under uniaxial monotonic loading, the strain-hardening of the material is clearly visible once
the stress level is located above the yield limit of the material. From both the Fig. 2.11 and the
Tab. 2.3, two aspects are noticeable. The lower the temperature, the higher the elastic modulus
and the yield strength. Moreover, it seems that the yield stress at 700◦C is close to that at 550◦C.
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Figure 2.11: Monotonic tensile curves at 550 and
700◦C.

However, at high temperatures (HT), some
viscous effects should be present. No
conclusion can be drawn up to now
about the yield limit for each tempera-
ture. One can notice from Tab. 2.3
that there seems to be a slight sen-
sitivity of the elastic properties to the
loading rate (known as visco-elasticity ef-
fect) at HT. Indeed, the Young mod-
ulus seems to increase with increasing
strain rate, especially at high temperatures.

At 550 and 700◦C, this strain-hardening seems
to be approximately the same, the curves hav-
ing a very close plastic modulus, Fig. 2.11.
The stability of the mechanical properties up
to 700◦C for AD730™ seems to be visible on such a plot owing to the fact that a strain-hardening
of the material still exists even at 700◦C.

Temp. Load. type Spec. Strain rate Young modulus 0.02% yield limit 0.2% yield limit
◦C - - s−1 MPa MPa MPa
20 cyclic CAR13 10−3 212 495. 1095. -

550

monotonic CAR2 10−3 188 671. 930. 1031.
monotonic CAR8 10−3 186 890. 964. 1046.

cyclic CAR12 10−2 190 769. 907. -
cyclic CAR15 10−3 185 474. 953. -

700
monotonic CAR10 10−3 172 641. 921. 1012.

cyclic CAR14 10−2 181 726. 860. -
cyclic CAR16 10−3 177 970. 911. -

Table 2.3: Elastic properties from monotonic and cyclic (1st 1/4 loop) tensile curves on FG AD730™.

In order to study the whole cyclic strain-hardening capabilities of the material over a wide range of
strain amplitudes and temperatures, the last hysteresis loops for each representative type-1 cyclic
test are given in Fig. 2.12, where the monotonic tensile curve is also reported.

On Fig. 2.12a, the material exhibits at 550◦C a slight cyclic hardening (the monotonic curve is
located on or below the peak stress level of each hysteresis loop). On the contrary, at 700◦C,
cyclic softening predominates, see Fig. 2.12b. Additional results for the testing temperatures of
20◦C and 650◦C are given in the appendices, see Fig. C.2a & Fig. C.2b.
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Figure 2.12: Last hysteresis loops for each strain amplitude at 550 and 700◦C at ε̇ = 10−3 s−1.

2.2.2.3 Bauschinger effect

As cyclic loading conditions are under concern for the present study, reverse flow may induce
a Bauschinger effect, which can be significant for some metallic alloys. Bauschinger effect reflects
the fact that the compressive yield strength of a specimen pre-stressed in tension is – in absolute
value – lower than the initial one in tension (and vice versa) [Bauschinger, 1881].
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Figure 2.13: 1st hysteresis loop at 700◦C at 10−2 s−1

(spec. CAR14).

From a macroscopic point of view, the
Bauschinger effect is generally assimi-
lated to the translation of the yield
surface as a rigid body in the stress
space. However, most of the time
this effect has been proved to re-
sult from both the change in size
of the initial elastic domain, due to
isotropic hardening/softening, and from
the movement of the elastic surface
within the stress space, which is a di-
rect manifestation of kinematic harden-
ing. For metallic alloys, these phenom-
ena are often coupled. As result, com-
bined hardenings should be considered to
precisely define the Bauschinger effect.

The analysis of the Fig. 2.13 allows for evidencing the Bauschinger effect in AD730™ at 700◦C
(the same trend has also been reported at 20 and 550◦C, see e.g. Fig. C.4a). Indeed, a lower
compressive yield stress (in absolute value) is observed compared to that measured in tension (see
the red points in Fig. 2.13 delimiting the linear elastic segments). Nonetheless, such an aspect is
normally dependent on the strain amplitude. This will be investigated in a further sub-sect. 2.2.2.5.
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2.2.2.4 Apparent cyclic hardening/softening

In order to evidence the cyclic hardening/softening properties of the material, a common ap-
proach consists in comparing both monotonic and cyclic stress-strain hardening curves [Lemaitre
and Chaboche, 1990]. The cyclic stress-strain curves (CSSC), corresponding to the plot ∆σ/2 =
f (∆εp/2) at stabilized state, as compared to the monotonic curve at 550 and 700◦C are reported
in Fig. 2.14 (those at 20◦C are given in the appendices, see Fig. C.4b). From these plots, one can
notice some differences between each temperature:

• at 550◦C, the cyclic hardening curves are located above the monotonic ones thus empha-
sizing an hardening process of the material under cyclic loading conditions, Fig. 2.14a. As
the temperature is sufficiently high (T/Tm ' 0.38), viscosity effects may also interact. The
difference between the monotonic and cyclic curves is not that pronounced, the order of
magnitude being around 50-80MPa for large plastic strain amplitudes, see Fig. 2.14a;
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Figure 2.14: Cyclic hardening curves of AD730™ at 550 and 700◦C, ε̇ = 10−3 s−1.

• at 700◦C where time-related effects may be more pronounced (T/Tm ' 0.48), strain-rate
effects need to be carefully uncounted for. Only the tests conducted at the same strain rate
of ε̇ = 10−3 s−1 are plotted in order to compare curves obtained with approximately the
same time-hardening (viscous) contribution. In the case of the cyclic curve obtained from
the spec. CAR5, an alternate loading (Rε = −1) seems to lead to a softening response of
the material, Fig. 2.14b. On the contrary, the curves obtained thanks to the spec. CAR16
loaded under a repeated loading (Rε = 0) and the one under alternate loading scheme
(Rε = −1), spec. CAR11, seem to emphasize a cyclic hardening of the material as compared
to the monotonic curve. No clear conclusion can be drawn on the cyclic softening/hardening
process of the material at this temperature owing to the fact that time-hardening effects
interact with strain-hardening mechanisms.

Thus, one should keep in mind that for such high temperatures, thermal activity may interact with
plasticity, hence involving viscosity effects. Once the yield stress is reached, viscoplasticity may
appear with more or less viscous stress, also referred to as the over-stress. This aspect will be
discussed in a forthcoming sub-sect. 2.2.3.
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In order to study the overall cyclic response of the material along the whole tests, the stress
envelopes, namely the stress amplitude ∆σ/2 can be analyzed with increasing loading cycles N .
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(a) Cyclic softening at 550◦C at 10−3 s−1 (CAR4).
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(b) Cyclic softening at 700◦C at 10−3 s−1 (CAR5).

Figure 2.15: Evolution of the stress amplitude at 550 and 700◦C, ε̇ = 10−3 s−1, Rε = −1 (CAR 4 & 5).

The plots of the ∆σ/2 = f (N) at 550 and 700◦C are given in Fig. 2.15a and Fig. 2.15b,
respectively (additional results at 20 and 650◦C are reported in the appendices, see Fig. C.3).
Because of the incremental testing procedure, a reset on N has been carried out at each starting
cycle for every investigated strain level. Some points can be discussed:

• at 550 and 700◦C, there is a systematic decrease of the stress amplitude for the highest strain
levels. For the initial strain level of 0.5% (resp. 0.4%), the material does not seem to exhibit
macro-plasticity since no hardening/softening mechanisms are noticeable. Moreover, the
trend does not stabilize for the investigated strain levels even if a large number of cycles have
been performed. The material does not have reached a stabilized state of macroplasticity.
Finally, the stress drops for each strain level range within [-10 ; -40] MPa at 550◦C and [-10
; -80] MPa at 700◦C, which represent a small part of the overall stress;

• for both testing temperatures of 550 and 700◦C, one can observe a slight increase of the
stress level at each change of imposed strain level, hence corresponding to a fast hardening
phase. This one seems to occur during the first 5 to 10 loading cycles.

From the Fig. 2.15, one can conclude that the material exhibits a slight cyclic softening owing to
the observation of the decrease of the stress amplitude with both increasing loading cycles and
strain amplitudes. Even if a slight initial hardening is noticeable for the highest plastic strain am-
plitudes, the general trend is related to a softening response of the material under cyclic loading
conditions, no matter the temperature ranging in [20, 550, 650, 700]◦C.

While the cyclic hardening/softening response of AD730™ is not that clear and does not seem
to be so pronounced (regarding both the cyclic stress-strain curves in Fig. 2.14 and the apparent
response in Fig. 2.15), the previous Fig. 2.13 finally enables to rule on this point. After a first load-
ing up to plastic deformation, upon unloading, the size of the elastic domain evolves. The latter,
during the first 1/4 loop, is equal to the yield limit, that is 832MPa at 550◦C (resp. 753MPa at
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700◦C). This yield limit was estimated assuming a plastic strain offset δpl = 5. 10−5. Then, once
the specimen is unloaded, the radius of the yield surface corresponding to the elastic region is equal
to 569MPa (resp. 630MPa). The material thus exhibits a cyclic softening since the elastic domain
decreases. As a result, both the decrease of the elastic domain (through isotropic hardening) and
the overall (slight) macroscopic hardening of the material indicate the presence of an additional
hardening mechanism, that is the kinematic hardening related to the Bauschinger effect, as ex-
plained above in sub-sect. 2.2.2.3. The individual contribution of each of these strain-hardening
mechanisms still remains to be estimated.

2.2.2.5 Effective and internal stresses evolution

The stress partition method (see sub-sect. 2.2.1) as applied to the experimental results allows
for the accurate split between effective and internal stresses contributions to the strain-hardening
mechanisms. As depicted in Fig. 2.10, the first contribution is related to the isotropic hardening
of the material, while the second to the kinematic hardening. The results associated with this
partition scheme at 550 and 700◦C are reported in Fig. 2.16 (complementary results at 20 and
650◦C are given in the appendices, see Fig. C.5a & Fig. C.5b). In these representations, red dots
indicate the exit of the elastic domain whereas black crosses represent the 1-D position of the
center of the yield surface in the stress space.

At 550◦C, the plastic strain offset of δpl = 2.5 10−5 has been proved accurate enough to detect
the exit of elastic domain at 20 and 550◦C, Fig. 2.16a. At 700◦C, this criterion has been “loosen”
to δpl = 5.10−5 so as to avoid any excessive penalization of the method, hence leading to a better
partition of the stress, as can be seen in Fig. 2.16b.
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Figure 2.16: Stabilized hysteresis loops for type-1 cyclic tests at 550 & 700◦C, Rε = -1 with ε̇ = 10−3

s−1 (spec. CAR 4 & 5). l : yield limits; 6 : yield surface’s center.

• in both Fig. 2.16a and Fig. 2.16b, one can notice a significant change in size of the elastic
domain, as indicated by the decrease of the elastic segment delimited by both red dots and
peak stresses of each plastic loop. The global trend throughout the whole strain amplitudes
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evidences a cyclic softening behavior with increasing strain level at 550 and 700◦C. Moreover,
the center of the yield surface, as indicated thanks to the black crosses, moves to a large
extent in the stress space. The Bauschinger effect seems to be significant as the yield limits
evolve with increasing strain amplitude;

• at 550◦C, one can notice that once a sufficiently large plastic strain amplitude has been
reached during the incremental test, namely ∼ ∆εp/2 = 0.3%, a slight stabilization of the
hardening mechanisms is apparent, see Fig. 2.16a. On the contrary, at 700◦C, there is no
clear stabilization of the hardening mechanisms, see Fig. 2.16b;

• one can notice a change in shape of the hysteresis loops (rounded tips) from Fig. 2.16a to
Fig. 2.16b owing to the significant presence of viscosity effects at high temperature (the
closed loops are not as well-defined as for lower temperatures). Consequently, the detection
method relying on plastic strain offset and linear regression over the elastic segment is less
accurate (hence suggesting the change for the plastic strain offset δpl). Finally, the small
mismatch of the black cross and corresponding plastic strain evidences the occurrence of
latent viscoplasticity upon the unloading/reloading phase at peak stresses.

In order to assess the extent of the cyclic softening and the evolution of the center of the yield
surface, their evolution are reported in the following plots with respect to both accumulated plas-
ticity p and plastic strain amplitudes ∆εp/2. The effective stress will be reported with solid
circles (primary y -axis), whereas the internal stress will be with blank squares (secondary y -axis).
Both forward and backward flows are studied in order to analyze each component of the stress (in
absolute value) as well as the presence of any tension/compression (T/C) asymmetry effect.

0 2 4 6 8
p    [-]

0

200

400

600

800

1000

ef
f  

  [
M

Pa
]

0

200

400

600

800

1000

X 
   

[M
Pa

]

t
eff

c
eff | Xt | Xc

(a) Effect. and int. stresses evolution w.r.t. p.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
p/2    [%]

0

200

400

600

800

1000

ef
f  

  [
M

Pa
]

0

200

400

600

800

1000

X 
   

[M
Pa

]

t
eff

c
eff | Xt | Xc

(b) Effect. and int. stresses evolution w.r.t. ∆εp/2.

Figure 2.17: Effective and internal stresses evolution with respect to plastic strain amplitude and accu-
mulated plasticity for type-1 cyclic tests at 550◦C, Rε = -1, ε̇ = 10−3 s−1 (spec. CAR4). l : effective
stress = radius of yield surface; � : internal stress = yield surface’s center.

In Fig. 2.17, the results at 550◦C clearly evidence a significant reduction of the elastic domain as
long as the load is increased, as already reported through the analysis of Fig. 2.16a. The global
cyclic softening process is non-linear with respect to plastic strain amplitudes, Fig. 2.17b. More-
over, for each strain level, there is no significant evolution of the effective stress with cumulative
plasticity, Fig. 2.17a. For the sake of brevity, similar analyses for results at 20 and 700◦C are
depicted in the appendices, see Fig. C.6 & Fig. C.7.
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The Fig. 2.17b reports a highly non-linear evolution of the internal stress with plastic strain am-
plitude. The internal stress is almost constant for a given strain level, which makes possible to
conclude on the absence of cumulative plasticity coupling effect for large plastic levels.
At 700◦C (depicted in Fig. C.7 in the appendices page 275), the cyclic softening process is less
pronounced. This can possibly be associated with the presence of viscosity effects. The clear par-
tition between (athermal) effective stress and (thermal) over-stress is not that easy if only relying
on this partition method. However, type-4 cyclic dwell tests with tensile holding periods may allow
for the partition between strain- and time-hardening (over-stress) contributions to be performed
(see sub-sect. 2.2.3 later on). Despite the noisy data and poorer partition capability of the ap-
proach, the global trends are similar to those at lower temperatures: both non-linear reduction and
translation of the yield surface, no evolution with cumulative plasticity.

2.2.3 Time-related effects

In the present work, time-variant effects have been highlighted with both testing procedures
including evolving loading rates and stress relaxation at constant load. Each test allows for a
specific range of loading rates to be analyzed. As a result, relaxation tests during dwell peri-
ods (low viscoplastic strain rates) together with tests including a change in the loading rate (high
viscoplastic strain rates) allow for a wide range of loading rates to be encompassed in the modeling.

2.2.3.1 Strain-rate effect

Multiple speeds monotonic tensile test

In the present study, monotonic tensile test with varying strain rate was only conducted at
550◦C. The applied strain rates were ε̇ = 10−3 and 10−5 s−1.
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(a) Global tensile curve of the MS test.
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(b) Close-up view on stress jumps for varying loading
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Figure 2.18: Strain-rate sensitivity analysis under monotonic tensile test at 550◦C (spec. CAR8).
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From the macroscopic results reported in Fig. 2.18, one can notice a negative (inverse) strain-rate
sensitivity (SRS) of the stress with decreasing the loading strain rate. Indeed, positive (standard)
SRS corresponds to an increase of the stress level for a faster loading strain rate, whereas negative
(inverse) SRS results in a decrease of the stress for a higher strain rate [Chaboche et al., 2013].
For the present test, when the strain rate changes from 10−3 to 10−5 s−1, in the strain range of
[0 - 8]%, negative SRS is observed as the stress level is higher for the lower strain rate. However,
the tendency is not the same for a greater strain level (above 8%). Moreover, some small striations
are visible on the stress response, see Fig. 2.18b, which may be attributed to plastic instabilities
within the material.

Up to now, no clear explanation can be formulated about such effects (stress serrations and inverse
SRS) in AD730™ due to the lack of repeatability of the testing procedure. Nevertheless, nega-
tive SRS is known to be one of the manifestations of Dynamic Strain Aging (DSA) [Nouailhas,
1989], [Mannan, 1993] being often observed in several Ni-based superalloys [Venables and King,
1984]. Let us note that the SRS of a Ni-based superalloy is known to be highly dependent on the
loading temperature [Fournier et al., 2001]. Results observed at 550◦C do not necessarily apply at
700◦C (not tested here). In the present work, for simplicity reasons and due to the minimal effects
observed on experimental curves, only the positive SRS of the material to the loading rate and/or
temperature will be considered during the modeling task.

Cyclic tests

From the analysis of the macroscopic results of the type-2 cyclic tests (cyclic tests with varying
strain rates) at the two highest temperatures, some differences may be discussed:
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(a) Stress jumps for varying strain rates.
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(b) Close-up view on stress jumps for varying strain rates.

Figure 2.19: Strain-rate sensitivity analysis under cyclic loading at 550◦C, Rε = −1, strain levels 1-3
(spec. CAR9).

• There is no significant strain-rate sensitivity of the mechanical state at 20◦C. In Fig. C.10
(in the appendices page 276), one can observe that decreasing the strain rate from 10−3 to
10−4 s−1, the stress level is slightly lower. For the next speed variation, one can observe a
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slight negative SRS, but with a so small stress jump so that to be disregarded;
• At 550◦C, the SRS is more pronounced, as seen in Fig. 2.19. Moreover, a negative SRS of

the mechanical response is also noticeable. One can observe that with decreasing the strain
rate from 10−3 to 10−4 s−1, the stress level is slightly higher. For the next speed variation,
from 10−4 to 10−5 s−1, the stress jump is more pronounced. Moreover, the higher the strain
amplitude, the more pronounced the inverse SRS;

• Finally, the highest temperature of 700◦C shows a different trend. A positive (standard)
SRS of the material is observed, that is to say: the lower the strain rate, the lower the
stress level. For this temperature, the jump in stresses starts to become non-negligible as
the stress drop is close to 100MPa in some cases. Moreover, the stress jump gets higher
as the strain amplitudes increases, Fig. 2.20. It can be noticed that a similar positive SRS
of the material at 700◦C, though not studied in the present study under monotonic control,
was also reported by [Thébaud et al., 2016] for monotonic tensile tests with variable strain
rates ranging from 5. 10−3 to 10−3 s−1.
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(a) Stress jumps for varying strain rates.
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(b) Close-up view on stress jumps for varying strain rates.

Figure 2.20: Strain-rate sensitivity analysis under cyclic loading at 700◦C, Rε = −1, strain levels 1-3
(spec. CAR11).

2.2.3.2 Stress relaxation

Relaxation after monotonic tests

Stress relaxation tests were performed during multiple hardening-relaxation (MHR) tensile tests
at 550 and 700◦C. Performed at constant strain level, the stress evolution with respect to time
was acquired. The synthesis of the relaxation tests is given in Tab. 2.2. It is commonly admitted
that the stress relaxation behavior can be affected by a number of factors, such as temperature,
initial stress, initial strain and so on. In the present study, the effect of initial strain as well as
temperature can be studied thanks to the MHR tests.

In the figure Fig. 2.21b, the first relaxation profiles for the first strain level of the MHR test at
both 550 and 700◦C are reported. One can see that the stress relaxation profiles obtained are
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typical of Ni-based superalloy behavior at moderate to high temperatures [Rahimi et al., 2017].
Indeed, one can notice a quick drop of the stress level right from the beginning of the holding
period (∼ 20 min), corresponding to the first stage of relaxation, and then the stress decreases
slowly during the second stage up to a (quasi-)stable value (∼ 2 h), assumed to be equal to the
asymptotic value for long times. A similar trend was also recently observed by [Durand et al.,
2020] on FG AD730™ at 760◦C for stress relaxation at ε = 0.28 and 0.58%.
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(b) Stress relaxation curves w.r.t. time.

Figure 2.21: Stress relaxation analysis during the 1st holding period of the MHR tests at T = 550◦C
(resp. 700◦C), ε̇ = 10−3 s−1, ε = 2.5% (resp. 1.5%) (spec. CAR 2 & 10).

At 550◦C, the over-stress (or viscous stress) represents ∼ 150MPa of the total stress level if the
strain level kept constant equals 2.5%. In addition, one can also notice in Fig. 2.21b the presence
of stress serrations in the stress response w.r.t. time that can be attributed to data noise of the
sampling system. At 700◦C, the extent of over-stress represents approximately 500MPa, so by far
a larger contribution of viscous effects as compared to that at 550◦C.

Relaxation during cyclic tests

Some relaxation tests have also been conducted after type-2 cyclic tests, or during type-4 cyclic
tests, see Tab. 2.2 (the description of each monotonic/cyclic test is given in sub-sect. 2.1.3.1).
As expected, at 20◦C, AD730™ does not exhibit significant time-variant effects (see Fig. C.10 and
Fig. C.11 in the appendices page 276). This is in accordance with the lack of strain rate sensitivity
(SRS) of the material at RT.

In Fig. 2.22, the hysteresis loops and stress relaxation profiles for the 1st dwell period of 720 s (HT3)
of type-4 cyclic test at 700◦C are plotted. The 4 strain amplitudes are represented for ε̇ = 1. 10−2

s−1 (the same results for the second loading rate of ε̇ = 2.5 10−3 s−1 are given in the appendices,
see Fig. C.15 page 277, while results at 550◦C are also given in that appendices, see Fig. C.13 &
Fig. C.14). For the sake of readability, the stress relaxation curves are all shifted to the same stress
level at the beginning of the holding period (say, the larger one). Such a representation allows for
the quantitative assessment of over-stress relaxation with respect to strain level.
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The stress relaxation profiles at 700◦C for cyclic-dwell loading conditions are comparable to that
of MHR test (see Fig. 2.21) . Indeed, one can observe two distinct phases of the stress relaxation
process: a fast drop in stress for the first 100 s, followed by a slower, almost linear, decrease up
to a quasi-stabilized state. The vast majority of the over-stress is here again relaxed during the
first period of the holding time. For increasing strain amplitudes (0.7 → 0.9 → 1.1%), no clear
stabilization of the stress after 720 s is noticeable, Fig. 2.22b.
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Figure 2.22: Hysteresis loops and corresponding stress relaxation profiles during the 1st holding period of
the type-4 cyclic test at T = 700◦C, ε̇ = 1. 10−2 s−1, HT3 = 720 s (spec. CAR14).

The lack of stabilization of the relaxed over-stress effect suggests the presence of two different
deformation mechanisms. According to [Thébaud, 2017] & [Durand et al., 2020], when the stress
level is close to the yield stress, the fast stress relaxation in FG AD730™ seems to be driven by dis-
location mechanisms, whereas for lower stress levels, diffusion mechanisms seem to be predominant.

The comparison of the 2 hysteresis loops at ∆ε/2 = 0.7% from the 1st and 4th levels can also be
discussed (see Fig. 2.22a). The difference in peak stresses is approximately equal to 50-60MPa.
Between these strain levels 1 & 4, loading cycles with increasing strain amplitudes were performed,
thus causing the accumulation of plasticity. Two observations can then be made:

• the peak stress for the level 4 is lower than that of the level 1 (for the same strain amplitude
∆ε/2 = 0.7%), confirming the cyclic softening of the material already stated;

• the stress drops during the relaxation phase being approximately the same for the 2 levels (1
& 4) suggest that there is no particular (or little) influence of the accumulated plasticity on
the (relaxed) over-stress.

Let us note that similar results have been reported at 550◦C, see Fig. C.13 in the appendices.
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Evolution of the over-stress contribution

Since the fine-grained AD730™ reveals an elastic-viscoplastic behavior once the temperature
exceeds 550◦C, a split between time-dependent and time-independent parts of the stress needs to
be performed. The cyclic strain-hardening mechanisms (isotropic and kinematic hardening) can be
estimated thanks to the use of the Cottrell’s partition method, as already studied in the previous
sub-sect. 2.2.2.5. However, the over-stress contribution (i.e. the thermal- and time-dependent part
of the effective stress) still needs to be quantified.
Isothermal relaxation test represents a simple and relatively accurate method to evaluate the extent
of over-stress within the material, especially at high temperatures (T/T m ≥ 0.5) along a wide
range of strain rates. Some assumptions still need to be done:

• one considers the stress partition between the time-hardening and the strain-hardening con-
tributions of the stress, that is:

σ = σov + σint (2.2)

where σov is the over-stress (time-dependent part) and σint the internal stress (time-
independent part), the latter including the initial yield stress and the strain-hardenings;

• one considers a very slight evolution of the internal stress σint during the relaxation phase
(i.e. no static-recovery effect for the strain-hardenings).

0

slope = 

Figure 2.23: Schematic representation of the determination
method of the over-stress related to viscoplastic strain rate.

The acquisition of the stress
evolution with respect to time
during the test allows for the
determination of the viscoplas-
tic strain rate. The slope
in each point of the σ(t)
curve finally gives the instan-
taneous value of the viscoplas-
tic strain rate, see Fig. 2.23.

Since sufficient plastic strain is
expected to develop at the tip of
a growing crack, choice has been made to focus on relaxation data of the first strain level of MHR
tests, that is: ε = 2.5% at 550◦C and 1.5% at 700◦C, Fig. 2.24a. In addition, data for the high-
est strain level of type-4 cyclic-dwell tests (∆ε/2 = 1.2 and 1.1%) will also be discussed, Fig. 2.24b.

Even if no clear asymptotic line (steady-state stress) is noticeable, the over-stress that is relaxed
has then be estimated for sufficiently long holding durations. Looking at Fig. 2.24, the extent of
over-stress that is relaxed for the same hold duration is significantly higher at 700◦C, compared
to that at 550◦C. In case of Fig. 2.24a, the contribution of the over-stress has been estimated to
144MPa (resp. 491MPa) for a strain rate of ε̇ in = 10−3 s−1.
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(a) 2h relaxation tests (MHR tests).
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(b) 720s relaxation tests (cyclic-dwell tests).

Figure 2.24: Stress relaxation curves for the 1st holding period of the MHR and cyclic-dwell tests at 550
and 700◦C (spec. CAR 2 & 10).

Estimated viscoplastic strain rates from experimental data were extremely noisy. To overcome this
aspect, a power-law fit of the viscoplastic strain of the form y = Ax B + C was considered to get
smoother evolutions [Rouse et al., 2020]. Overall data were also re-sampled in order to get legible
results. Using a backwards difference method, the evolution of the over-stress as a function of the
viscoplastic strain rate can be plotted, see Fig. 2.25.
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(a) Stress relax. after monotonic tensile tests.
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(b) Stress relax. during cyclic-dwell tests.

Figure 2.25: Over-stress evolution with decreasing viscoplastic strain rate during dwell-sequences of MHR
and cyclic-dwell tests at 550 and 700◦C (with (a) ε̇ = 10−3 s−1 and (b) ε̇ = 10−2 s−1).

According to the Fig. 2.25, some aspects should be discussed:

• the stress relaxation curves exhibit a change in shape for plastic strain rates below ε̇vp ∼ 10−6

(550◦C) and ∼ 10−5 s−1 (700◦C). The curves admit a knee which evidences a change in
viscosity regime (i.e. the occurrence of dual deformation mechanisms), as also confirmed
by [Durand et al., 2020] for FG AD730™ at 760◦C;
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• the over-stress admits a quasi-saturated state as soon as the viscoplastic strain rate is greater
than 10−4 s−1 at 550◦C. This finding is in agreement with the absence of significant strain
rate sensitivity of the material at 550◦C for strain rates ranging in [10−3 - 10−5] s−1;

• the over-stress decreases in a quasi-linear way (in a log-log scale) for strain rates in [10−2

- 10−5] s−1, Fig. 2.25. Below ε̇ vp = 10−6 s−1, the over-stress significantly decreases for
viscoplastic strain rate ranging from 10−8 to 10−6 s−1. Such viscoplastic strain rates are
close to that of classical creep/time-recovery domain [Nouailhas, 1989], [Chaboche, 2008].
The (assumed) change in viscosity process might thus be attributed to time-recovery effect
of the strain-hardening mechanisms.

Finally, the main point to be kept in mind refers to the fact that the relation σov = f (ε̇vp) is
highly non-linear in a log-log scale, which will require a specific modeling feature. In addition, the
absence of stabilization of the over-stress after long relaxation durations together with the two-
periods relaxation process (see Fig. 2.25) might be representative of some time-recovery effects,
especially at 700◦C [Pétry, 2006]. The first period corresponds to a pure relaxation of the over-
stress while during the second period, a recovery phenomenon seems to be superimposed, [Bucher,
2004]. Although discussed, static recovery effects won’t be modeled in the remaining of this work.

2.2.4 Particular effects associated with cyclic loading conditions

It is somehow well admitted that metallic materials may be prone to plasticity-induced particular
effects under cyclic loading conditions [Lemaitre and Chaboche, 1990]. The brief literature review
concerning such effects discussed in sub-sect. 2.1.3.1 gives a starting point when studying cyclic
plasticity mechanisms in Ni-based superalloys [Chaboche et al., 2012], [Goulmy, 2017], [Prisacari,
2018]. In the case of FG AD730™, strain range memory effects as well as other cyclic transient
effects (isotropic-kinematic hardening coupling, mean stress relaxation...) need to be investigated
to guide the further modeling process.

2.2.4.1 Masing-type behavior and strain range memory effect

Figure 2.26: Masing-type elastic-plastic ma-
terial response.

The stabilized state of the mechanical response
in terms of stress-strain amplitudes can be depicted
by the cyclic stress-strain curve (CSSC), although
this curve is unable to explain the shape of the hys-
teresis loops [Ellyin, 1997]. For this latter aspect,
the Masing’s hypothesis should be studied [Masing,
1923], [Masing, 1926]. When shifting the minima
of stable cyclic loops for increasing strain ampli-
tudes to a common origin, the Masing model allows
for the loading branches to overlap each others [El-
lyin and Kujawski, 1984]. Such a plot can be stud-
ied in the frame coordinates (εp−εp

min , σ−σmin),
see Fig. 2.26. Moreover, a material following the
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Masing model would have identical loading/unloading branches for the hysteresis loops and their
elastic region remain unaltered with a change in strain amplitude [Paul et al., 2011].

The examination procedures conducted until now did not allow to check the Masing-behavior ability
of AD730™ at investigated temperatures. Further analyses of the hysteresis loops are conducted in
this subsection in order to address this point. The Fig. 2.27a shows the shifted saturated uniaxial
stress-plastic strain loops for increasing strain amplitudes at 550◦C. Relevant information can be
obtained thanks to this representation:

• with progressive cycling and increasing strain range, the size of the elastic segment tends to
reduce, hence confirming the cyclic softening effect;

• for the stable hysteresis loops, the shape of the loops is fairly the same, given an overall
homothetic change of the loop for increasing loading levels. As it can be seen, the loading
arms of all the loops fairly overlap each others and the global trend is close to the schematical
representation of the Masing model, Fig. 2.26. For the 3 first strain levels, one can notice
that the loading arms of the loops do not coincide, Fig. 2.27a. Thus, a quasi Masing-behavior
can be reported in FG AD730™ at 550◦C.
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(b) Shifted hysteresis loops with master curve.

Figure 2.27: Shifted hysteresis loops for Masing-type behavior analysis at 550◦C, Rε = −1, ε̇ = 10−3 s−1

(spec. CAR4).

In order to investigate the deviation from the Masing-rule of the material, a common approach con-
sists in shifting the saturated hysteresis loops along the elastic segment until the loading arms well
overlap [Chaboche, 1986], [Arora et al., 2021]. Such a construction is shown in Fig. 2.27b at 550◦C
with corresponding master curve representing twice the cyclic stress-strain curve (CSSC) [Lemaitre
and Chaboche, 1990]. The extension of linear segment δσ∗i for each strain amplitude i (taking
the origin as reference) is therefore referred to as the magnitude of non-Masing stress. It represents
the additional quantity required for the elastic domain of the material to reach the origin and hence
perfectly validate the Masing-rule. In the present case, considering the compressive tip of the loop
of the highest strain level (cycle 520) at the origin (0., 0.), a negative deviation along the elastic
line confirms the softening response of the material.

The Masing model applies for the stabilized state. However, the lack of stabilization for the first
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strain levels is in agreement with the stress deviation from the perfect Masing-rule. A greater
number of cycles should have been conducted for the few first strain levels so as to reach a stabi-
lized state and lead to a Masing-type response, Fig. 2.27b. The observed quasi-Masing behavior
of AD730™ is finally assumed to be related to the non-stabilization of the cyclic response due to
an insufficient number of loading cycles. Similar results have been reported at 20 and 700◦C. For
the sake of brevity, corresponding plots are given in the appendices, see Fig. C.8 & Fig. C.9. The
forthcoming paragraph will allow to check for the adequacy of AD730™ with Masing model.

Bauschinger strain

Figure 2.28: Bauschinger strain in cyclic hystere-
sis loop (adapted from [Li et al., 2019]).

The adequacy of the response of the ma-
terial with Masing-rule can also be checked
considering the so-called Bauschinger strain,
β [Plumtree and Abdel-Raouf, 2001], [Li
et al., 2019]. The latter corresponds
to the plastic strain on stress reversal at
75% of the peak stress, see Fig. 2.28.
Bauschinger strain β has been measured
on all the quasi-saturated hysteresis loops
for every testing temperature. Example
at 550◦C is reported in Fig. 2.29a while
the evolution of β with respect to plastic
strain range ∆εp is reported in Fig. 2.29b.
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(a) Bauschinger strain on stable hysteresis loops at
550◦C (spec. CAR4).
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Figure 2.29: Bauschinger strain evolution with increasing plastic strain range in FG AD730™.

The linear evolution of β = f (∆εp) evidenced for the target temperatures of 20, 550 and 700◦C,
Fig. 2.29b, confirms the Masing behavior of AD730™ at considered temperatures [Plumtree and
Abdel-Raouf, 2001], [Goyal et al., 2017]. In addition, the adequacy of the cyclic response with
Masing model, for investigated strain amplitudes and temperatures, allows not to consider any
plastic strain range memory effect [Lemaitre and Chaboche, 1990] in the modeling.
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2.2.4.2 Isotropic-kinematic hardening coupling

The saturated state on hysteresis loops is not sufficient when considering cyclic loading schemes
as transient effects may also be present. Despite the lack of stabilization of the mechanical state
for some investigated strain levels (see sub-sect. 2.2.4.1), paying attention to the cyclic loops’
evolution for a given strain amplitude may also be relevant.
In Fig. 2.30, the internal (back) stress evolution for the first and last cycles of each strain level of
the type-1 cyclic incremental tests at 550 & 700◦C are reported to analyze the change in shape.
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(a) Back-stress evolution at 550◦C (spec. CAR4).
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(b) Back-stress evolution at 700◦C (spec. CAR5).

Figure 2.30: Back-stress evolution between first and last cycles for incremental type-1 cyclic tests at 550
and 700◦C, Rε = −1, ε̇ = 10−3 s−1.

The Fig. 2.30a (resp. Fig. 2.30b) shows, for each strain amplitude, the internal back-stress evolu-
tion at 550◦C (resp. 700◦C), during the transient phase from the first cycle up to stabilization. One
can notice an evolution of the plastic (or tangent) modulus of the internal back-stress, especially
for the first strain levels (i.e. a change in the shape of the hysteresis loops). Such an effect of
back-stress evolution at low strain levels evidences a coupling between the kinematic hardening
and the cyclic hardening of the material through accumulated plasticity. This aspect should hence
be included in the modeling, as suggested by [Marquis, 1979] for cyclic loading conditions.

2.3 Phenomenological formulation of the unified constitutive
material model

2.3.1 On the choice of a material modeling framework

The experimental results obtained from previous sect. 2.2 have evidenced the presence of time-
and strain-hardening mechanisms within the studied material under monotonic and cyclic loading
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conditions. Furthermore, the strain-hardening mechanisms have been proved to be of dual-form
with both isotropic and kinematic mechanisms, each of them exhibiting various kinetics. In view
of the scope of the present Ph.D. project which aims at the modeling of the fatigue crack growth
in structural calculations, the choice for a robust material modeling is of primary importance. For
these reasons, the choice for a unified viscoplasticity modeling framework can be qualitatively
justified [Chaboche, 1989].

The unified viscoplastic material model of [Chaboche, 1978], [Chaboche and Nouailhas, 1989]
has proven to be efficient for the modeling of Ni-based superalloys [Maciejewski, 2013], [Barrett
et al., 2014], [Goulmy, 2017], [Prisacari, 2018]. Moreover, it is designed so as to reproduce all
the above-mentioned phenomena discussed in sect. 2.2. Such a material model represents a ro-
bust framework for the material modeling of AD730™ from moderate to high temperatures. In
the following, the constitutive equations are established within the framework of the so-called
Generalized Standard Materials (GSM) [Halphen and Nguyen, 1975] associated with the Ther-
modynamics of Irreversible Processes (TIP) [Germain, 1973], [Nguyen, 2000]. In this sect. 2.3,
the main equations enabling the modeling of the mechanical behavior of the material are detailed.

2.3.2 Elasticity

For unified elastic-viscoplasticity, the linear rule, the so-called Hooke’s law is considered for
metallic materials in elastic domain. This reads, in the 1-dimensional form (uniaxial characterization
tests):

σ = E
(
εtot − εin) = E εel with εtot = εel + εin (2.3)

in which thermal effects have been disregarded due to isothermal conditions. With this linear
equation, the stress σ and elastic strain εel are proportional to each others thanks to Young
modulus E (in 1D).

2.3.3 Time-related effects

For most of the metallic materials under viscoplastic loading, the elastic domain is defined
thanks to a loading surface defined by:

F vp
y = Fy − σov = |σ − X | − R − R0 − σov ≤ 0 (2.4)

where σ and X are the uniaxial stress and back-stress, respectively, R the isotropic stress, R0
the initial yield stress and σov the over-stress (related to viscosity).

As presented before for the studied material, see Fig. 2.25, the evolution of the over-stress is highly
non-linear. Two major regimes can be distinguished, mainly depending on the testing conditions:

(i) a first one mainly focuses on high stress levels with significant viscoplastic strain rates: in
such a case, the viscoplastic strain rate is an exponential or hyperbolic function of the stress;
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(ii) a second regime tends to describe the creep properties at low stress levels: the viscoplastic
strain rate is generally a power-law relation of the stress.
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Figure 2.31: Sensitivity of the over-stress to the vis-
coplastic strain rate.

According to the Fig. 2.31 (together with
the results given in Fig. 2.25 page 76),
the over-stress evolution with decreasing
viscoplastic strain rate is highly non-linear
in a log-log diagram. Thus, a simple
Norton-Perzyna power-law relation [Nor-
ton, 1929] is not sufficient to cover the
large range of viscoplastic strain rates.
Moreover, a quasi-saturation of rate ef-
fect ensues for high viscoplastic strain rates
and should be embedded in the modeling.

One variation of the Norton-Perzyna’s
power-law relationship is the hyperbolic sine
function first proposed mathematically by
[Sellars and McTegart, 1966]. The advan-
tage of this flow rule over the classical Norton power-law has already been demonstrated in the
literature. It was also successfully applied, e.g. by [Pétry, 2006], [Paris, 2008], [Szmytka et al.,
2010] or [Bartošák et al., 2020].

ε̇ in = ε̇0

[
sinh

〈 σov
K

〉 n
]m

sgn (σ− X ) (2.5)

where ε̇0, K , m and n introduced in the hyperbolic sine law eq. (2.5) are the initial viscoplastic
strain rate, the viscoplastic resistance coefficient (also referred to as the drag stress) and the vis-
coplastic exponents, respectively. In eq. (2.5), material constant ε̇0 plays the role of a saturation
parameter and is then intended to saturate the viscous stress at high strain rate regime.

Plasticity
(infinite rate)

Plasticity
(zero rate)

Viscoplasticity

Figure 2.32: Equipotential visco-surfaces
in principal stress space (adapted from
[Lemaitre and Chaboche, 1990]).

The 1-D over-stress defined in the previous discus-
sion should be generalized in 3-D thanks to a vis-
coplastic potential leading to equipotential visco-
surfaces in the stress space, see Fig. 2.32. The
viscoplastic part of the total strain rate is directly
dependent on the chosen dissipation potential:

ε̇∼
in = ∂Ω∗(ε∼,σ∼, X∼ , R , T )

∂σ∼
(2.6)

with Ω∗ the viscoplastic potential defining the
equipotential visco-surfaces. Compared to the time-
independent (plasticity) case, the stress may lay out
of the yield surface.



2.3 Phenomenological formulation of the unified constitutive material model 83

Remark: Since low temperatures are also under concern in the present Ph.D. project, the eq. (2.5)
is also appropriate for time-independent situations (K → 0 or m → ∞) [Chaboche, 2008].

2.3.4 Strain-hardening effects

Modeling aspects of isotropic hardening

In material modeling, isotropic hardening is related to the change in size of the elastic domain.
It is therefore associated with the effective stress defined in sect. 2.2 (see Fig. 2.10 page 62) which is
related to the short-range interaction between dislocations, i.e. the friction stress [Feaugas, 1999].
Moreover, the athermal part of the effective stress corresponds to the yield surface radius. The
following relations finally read, see Fig. 2.10 page 62:

σc
eff =

σmax − σc
y

2 = R0 + Rc

σt
eff =

σt
y − σmin

2 = R0 + R t
(2.7)

where R0 is the initial size of the elastic region and R0 + R is the instantaneous radius of the
yield surface in the reverse direction, see Fig. 2.33. The relation eq. (2.7) evidences the change in
size of the elastic domain with progressive cycles. For alternate loading conditions, in the absence
of tension/compression asymmetry, Rc and R t are assumed to be equal.

Yield surface at time t

Yield surface at time t = 0

Kinematic

Isotropic

Isotropic + kinematic

A

B

C

D

Bauschinger effect

Figure 2.33: Schematic representation of the isotropic and kinematic strain-hardening mechanisms in
principal stress space.

Along a material modeling process, the expansion/contraction of the radius of the yield surface is
often related to accumulated plasticity, R(p) , as in eq. (2.4). Owing to the observations conducted
in sub-sect. 2.2.2.5, the isotropic hardening R (through the effective stress σeff ) may admit several
regimes, e.g. a fast decrease for the first strain level, followed by a slower decrease of the elastic
domain with increasing accumulated plasticity, see e.g. Fig. 2.17 page 69. Hence, the total isotropic
hardening can be decomposed in a series of additive terms, each of them adapted for a dedicated
regime depending on the linear or non-linear (and/or fast or slow) evolutions. The most commonly



84 Chap. 2 – Elastic-viscoplastic material model for AD730 TM

used formalism is probably the exponential form proposed by [Voce, 1955]:

Ṙ =
∑

i
Ṙ i with Ṙ i = bi (R i

∞ − R i) ṗ (2.8)

where R i
∞ = Q i and bi control the saturation value and the pace toward saturation of the

isotropic hardening, respectively, and ṗ is the accumulated (visco-)plastic strain rate.
The integrated form of eq. (2.8) results in the following rule:

R i = Q i
[
1− exp(−bi p)

]
(2.9)

With such a formulation, eq. (2.9), the change in size of the elastic region only depends on the
accumulated plastic strain in a non-linear way, as reported in sub-sect. 2.2.2.5. Moreover, such
hardening is isotropic in nature (scalar term), as the expansion/contraction of the yield surface is
supposed to be isotropic. Note that any strain range dependency of Q i as well as time-recovery
effects have been considered in conformity to experimental evidences reported in sub-sect. 2.2.4.1.

Modeling aspects of kinematic hardening

The internal stress estimated with the help of the Cottrell’s partition method (see Fig. 2.10
page 62) hence helps for the estimation of the kinematic hardening, the latter representing the
Bauschinger effect through the translation of the yield surface in stress space, see Fig. 2.33. From
a microscopic point of view, the back-stress is associated with long-range interactions with mobile
dislocations [Guillemer et al., 2011]. According to eq. (2.7) and Fig. 2.10, one has [Feaugas, 1999]: X c = σmax − σc

eff

X t = σmin + σt
eff

(2.10)

One can notice that for cyclic loading conditions with Rε = −1, in case there is no particular
tension/compression asymmetry, X c and |X t | can be assumed to be equal.

As observed in sub-sect. 2.2.2.5, the kinematic hardening X (through the internal stress X ) can
admit several regimes, e.g. a fast increase for the first strain level, followed by a slower increase
with increasing plastic strain amplitude, see e.g. Fig. 2.17 page 69. Thus, in an analogous way
to isotropic hardening, the kinematic one can be decomposed in a series of additive terms, each
of them suited for a defined plastic strain range [Frederick and Armstrong, 1966], [Chaboche and
Rousselier, 1983]:

Ẋ =
∑

k
Ẋ k with Ẋ k = C k ε̇ in − γkX k ∣∣ε̇ in∣∣ (2.11)

where C k is the tangent modulus of the back-stress and γk controls the speed of saturation of
the hardening. Here again, as for the isotropic hardening, eq. (2.8), time-recovery effects have
been omitted for simplicity reasons. The integrated form of eq. (2.11) results in the following
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exponential rule under tension/compression loading:

X k = ± C k

γk

[
1− exp(±γkp)

]
(2.12)

Generally, in order to get an accurate description of (i) the initial elastic-plastic transition, (ii)
the transient region and (iii) the long range plasticity, 3 variables are considered to describe the
kinematic hardening (i.e. k = 1, 2, 3), [Chaboche and Rousselier, 1983]. In particular cases, more
variables are sometimes employed, e.g. for the study of ratcheting effects [Bari and Hassan, 2000].

2.3.5 Transient effects in cyclic viscoplasticity

It has been reported in sub-sect. 2.2.4.2 a change in plastic modulus with increasing loading
cycles (through accumulated plasticity), particularly at low strain levels. The introduction of a cyclic
hardening coupling effect within the kinematic hardening rule was first proposed by [Chaboche,
1977b] and successful applications were done later on by [Marquis, 1979], [Benallal and Marquis,
1987]. In the present study, such a modification is required for the modeling of the transient
hardening, especially for the first few cycles, as evidenced in Fig. 2.30.
The concept relies on the introduction of an evolutionary function associated with the rate of
convergence γk of the back-stress. This allows for the eq. (2.11) to be re-written:

Ẋ k = C k ε̇ in − γk ϕk(p) X k ∣∣ε̇ in∣∣ (2.13)

with ϕk(p) = ϕk
∞ +

(
1−ϕk

∞
)

e−ωk p (2.14)

The function ϕk(p) allows for the description of the changes in the plastic tangent modulus of
the kinematic hardening as a function of cyclic hardening/softening [Marquis, 1979]. It enables a
progressive value of the back-stress lower than the saturated one (i.e. C k/γk). It can be noted
that when ϕk

∞ = 1 in eq. (2.14), X k reduces to the classical Armstrong-Frederick formulation
eq. (2.11). Such a modeling procedure has proven to be efficient for the cyclic behavior modeling
of various Ni-based superalloys [Maciejewski, 2013], [Goulmy, 2017].

2.3.6 Summary of the overall material model

The previous sub-sect. 2.3.2 to sub-sect. 2.3.5 have enabled a consistent formulation of the
material model suited for the experimental evidences reported in sect. 2.2. The main constitutive
equations of the present material model are finally summarized in Tab. 2.4 with corresponding mate-
rial parameters. Then, in order to perform the calibration, the simulation of the database is achieved
using the “gen-evp” routine, see [Armines et al., 2020a], from the Z-set implicit code [Foerch et al.,
1997], [Besson and Foerch, 1997]. Let us note that the Z-set Finite Element software, co-developed
by École des Mines de Paris and the ONERA, has been used throughout this Ph.D. project.

http://www.zset-software.com/
http://www.zset-software.com/
https://www.minesparis.psl.eu/
https://www.onera.fr
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Mechanism Constitutive equation Parameters Units

Elasticity ε̇ e = σ̇

E E , ν MPa, -

Viscoplasticity ε̇ in = ε̇0

[
sinh

〈 σov
K
〉n
]m

sgn (σ− X ) ε̇0, K , m, n s−1, MPa, -, -

Accumulated plasticity ṗ =
∣∣ε̇ in∣∣ - -

Yield (visco-)surface σov = |σ− X | − R − R0 R0 MPa

Isotropic hardening

Ṙ =
∑

i
Ṙ i i = 1, 2 - -

Ṙ i = bi (Qi − R i) ṗ Qi , bi MPa, -

Kinematic hardening

Ẋ =
∑

k
Ẋ k k = 1, 2, 3 - -

Ẋ k = C k ε̇ in − γk ϕk(p) X k ∣∣ε̇ in∣∣ C k , γk MPa, -

Marquis’ effect ϕk(p) = ϕk
∞ +

(
1−ϕk

∞

)
e−ωk p ϕk

∞, ωk -, -

Table 2.4: One-dimensional form of the constitutive equations of the cyclic non-linear material model for
FG AD730™ from low to high temperatures.

The whole model includes a set of 23 independent material constants which need to be calibrated
consistently so as to match experimental results. Such a calibration process is made possible
through a systematic and methodological approach aimed at exploiting the whole capabilities of
the model [Chaboche and Nouailhas, 1989]. Such a task is described in the next sect. 2.4.

2.4 Calibration of the unified material model

The previously governing mechanisms described in sect. 2.3 separate the necessary parame-
ters into several class: (i) elastic, (ii) cyclic softening, (iii) non-linear back-stress and (iv) time-
dependent material parameters. Despite the existence of complex multi-objective functions (i.e. genetic
algorithms [Kuna and Wippler, 2010], [Mahmoudi et al., 2011]; stochastic methods [Harth and
Lehn, 2007]; neural network approaches [Huber and Tsakmakis, 2001] or Bayesian methods [Adeli,
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2019]), such approaches are susceptible to a lack of physical correspondence of the identified set
of parameters, as the solution is far from being unique. Consequently, the approach adopted in
the present work aimed at using an accurate examination of experimental data associated with a
step-by-step methodology, in order to identify material parameters relying on mechanistic (physi-
cal) correspondence and representation of experimentally-observed phenomena.

2.4.1 General approach

Unified viscoplastic material models allows for the strict split between time-independent and
time-dependent mechanisms [Chaboche and Nouailhas, 1989], [Nouailhas, 1989]. Such a property
hence enables the possibility to first estimate the elastic-plastic material model parameters prior
to the introduction of time-variant effects. As reported in Tab. 2.4, up to 23 material parameters
have to be calibrated at each target temperature of the isothermal tests:

• E , ν, R0 which are related to the material elastic properties at null or very small strains;
• ε̇0, K , n, m which are related to the time-variant mechanisms within the material at low

and high strain rates under viscoplastic deformation;
• Q i , bi (i = 1,2), C k , γk , ϕk

∞, ωk (k = 1,2,3) which allow for the description of the cyclic
evolution of the material as a combination of cyclic hardening/softening during transient
cycles up to stabilization.

The large number of material parameters renders the calibration process a difficult task. Although
each parameter describes a specific property, the combination of all (or some) of them remains
interdependent and possible redundancy may exist between specific material constants. The pa-
rameters are hence successively calibrated step-by-step using the experimental tests so as to avoid
such redundancies.

Elasticity Viscoplasticity

(a) 1-D rheological scheme of the consti-
tutive EVP material model.

Stress relaxation 
Cyclic-dwell tests

Cyclic tests
(transients)

Monotonic &
cyclic tests

Literature
Cyclic tests

(stabilized state)

Cyclic & monotonic 
tests (initial)

(b) Flowchart for the identification stages of the material model
parameters.

Figure 2.34: Overview of the whole calibration process for the unified material model at low to high
temperatures using monotonic and cyclic characterization tests.
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A general rheological representation of the whole model together with a representation of the main
steps associated with the calibration process are given in Fig. 2.34. In order to perform the calibra-
tion, assuming an ideal uniaxial stress state over a RVE, the model simulation tool implemented
within the Z-set suite was used [Armines et al., 2020a]. Simulations were then run so that to
compare numerical and experimental results. Numerical integration of the differential system was
performed using an explicit 2nd-order Runge-Kutta resolution scheme with automatic time stepping.

2.4.2 Elastic properties

Material parameters related to elastic properties of the material, E , ν and R0 are first cal-
ibrated. These are estimated with the help of monotonic tensile tests (up to plastic onset) as
well as cyclic tension-compression tests, see Fig. 2.34b. Poisson ratio ν of the material is not
documented due to the few studies conducted up to now on AD730™. A value close to that related
to Ni-based superalloys is hence taken, i.e. ν = 0.3.

2.4.3 Strain-hardening properties

The calibration procedure is performed using data tests at constant strain rate in order to
consider viscous effects almost constant [Chaboche, 2008]. The calibration of strain-hardening
mechanisms is carried out on monotonic tensile and stabilized cyclic data. The limiting case of
time-independent plasticity is considered. Consequently, time-related parameters are assumed null
or assigned to a value enabling their contribution to vanish (K ∼ 1MPa, n = m = 1, ε̇0 = 10−3

s−1 for the viscoplastic potential). Such a procedure remains valid for low temperatures for which
viscosity effects can be neglected.

The absence of any strain range memory effect enables the isotropic and kinematic hardening
rules to be identified separately [Chaboche, 1986]. Hence, isotropic softening parameters (Q i , bi)
with i = 1, 2 are calibrated thanks to the effective stress evolution with increasing cumulative
plasticity p, according to the stress partition method presented in sub-sect. 2.2.1. Material con-
stants (Q1, b1) are associated with the fast softening for the few first cycles whereas (Q2, b2) are
associated with the transient and slower decrease of the elastic domain with accumulated plasticity.

Once both transient and stabilized data for isotropic softening are obtained using the results from
the Cottrell’s partition method, pure kinematic effects may be estimated, Fig. 2.34b. The use of
3 kinematic variables has been chosen so as for the shape of the hysteresis loops in LCF tests as
well as monotonic tensile tests to be well caught. To this end:

• a large value of γ1 with a small value of X 1
∞ gives the initial non-linearity at plastic onset,

thus resulting in a large plastic tangent modulus C 1;
• then, parameters C 2 and γ2 are dedicated to the description of the transient part of the

curve (medium to large strains);
• the last back-stress is used for the behavior at greater inelastic deformations once X 1 and X 2

http://www.zset-software.com/
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have reached their saturated state. To do so, a low value of γ3 is assigned and the parameter
C 3 is determined thanks to the plastic modulus for large strains levels. If necessary, the last
back-stress X 3 may also have a pure linear evolution, setting γ3 = 0;

• finally, it should be noted that the choice for material constants should ensure some guide-
lines, namely: C 1 > C 2 > C 3 and γ1 > γ2 > γ3.

For the calibration of the transient effects, the initial plastic loading (from monotonic tensile test or
first 1/4 cycle, see Fig. 2.34b) is first used to estimate the initial back-stress components. Tangent
modulus of the plastic curve is thus related to the initial state and corresponds to the parameters
(C i , γi

0) with:
γk

0 = γk ϕ(0) = γk (2.15)

Since the transient effect has been proved to be only noticeable at low strain levels, cf. sub-
sect. 2.2.4.2, choice has been made here to apply the transient effect function eq. (2.14) only to the
first two back-stress terms. This assumption allows for setting ϕ3

∞ = 1 and ω3 = 0. Moreover,
to ease the calibration process, the same evolution eq. (2.16) is applied to both X 1 and X 2.
The steady-state is then calibrated using the cyclic stress-strain curve, Fig. 2.34b. For large values
of accumulated plasticity p , the Marquis’ function eq. (2.14) reduces to:

ϕk(p) −→
p→+∞

ϕk
∞ k = 1, 2 (2.16)

so that we have:
Ẋ k = C k ε̇ in − γk ϕk

∞ X k ∣∣ε̇ in∣∣ k = 1, 2 (2.17)

Up to this point, the material constants related to the elastic-plastic behavior have been calibrated
in close relationship with experimental observations as well as results obtained from the stress parti-
tion method. Both initial and steady-state behaviors have been accounted for in such a strain-rate
independent formulation. Time-variant effects still need to be included so that to cover the whole
viscoplastic capabilities of the unified formulation.

2.4.4 Time-related effects

As evidenced in sub-sect. 2.2.3, FG AD730™ exhibits a complex time hardening behavior which
depends on the strain rate regime. Moreover, looking at the plot of σov − ε̇ vp in a log-log dia-
gram (Fig. 2.25), observation of an highly non-linear trend has been reported. The hyperbolic sine
function detailed in eq. (2.5) was preferred covering a wider range of viscoplastic strain rates. Its
calibration was carried out using the stress relaxation profiles, see Fig. 2.34b and following some
guidelines from [Rouse et al., 2020]. Corresponding plots for the first holding period of the MHR
tests are given in Fig. 2.35. One can observe the ability of the hyperbolic sine viscosity function
to accurately predict the over-stress evolution over a large range of quasi-static strain rates while
keeping a quasi-saturation at high strain rates, see Fig. 2.35.
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(a) Relax. after MHR tests at ε̇ = 1. 10−3 s−1.
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(b) Relax. during cyclic-dwell tests at ε̇ = 1. 10−2 s−1.

Figure 2.35: Over-stress evolution with decreasing viscoplastic strain rate during dwell-sequences of MHR
and cyclic-dwell tests at 550 and 700◦C.

2.4.5 Overall model calibration

Once the material constants have been calibrated, some comparison between experimental data
and model predictions can be drawn. To this end, 4 typical loading schemes are studied, that are:
the monotonic tensile loading, the stress relaxation tests as well as cyclic loading schemes under
symmetric and non-symmetric load ratio, with and without tensile holding periods. These tests
are representative of the vast majority of the present testing conditions.

2.4.5.1 Monotonic tensile behavior

First, the initial tensile loading is studied for the two temperatures of 550 and 700◦C.
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(a) Monotonic tensile loading at 550◦C.
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(b) Monotonic tensile loading at 700◦C.

Figure 2.36: Comparison of model prediction on monotonic tensile loading at 550 & 700◦C.
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It can be noticed that experimental responses are well reproduced by the model thanks to the
introduction of transient evolution rules within the back-stress terms (see eq. (2.13)), see Fig. 2.36.

2.4.5.2 Stress relaxation behavior

The stress relaxation profiles are quite well estimated, see Fig. 2.37. Hyperbolic sine model has
hence proven to be adapted and suits the curve for short to long durations. Such a modeling made
it possible to neglect the time-recovery terms in order to retranscribe the entire relaxation phase.

0 1000 2000 3000 4000 5000 6000 7000
Time    [s]

850

900

950

1000

1050

1100

1150

1200

   
 [M

Pa
]

experiment
model sinh

(a) Stress relaxation profile at 550◦C.
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(b) Stress relaxation profile at 700◦C.

Figure 2.37: Comparison of model prediction on stress relaxation profile at 550 & 700◦C.

2.4.5.3 Cyclic behavior
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Figure 2.38: Stabilized cycles at 20◦C.

The cyclic predictive capabilities of
the present material model are ana-
lyzed. Stable hysteresis loops for the
whole strain ranges and the three tar-
get temperatures are well simulated, see
Fig. 2.38, Fig. 2.39a & Fig. 2.39b.
The slight tension/compression asymme-
try can be seen when comparing both ex-
perimental and simulated peak stresses.
The low-to-high plastic strain levels are
well accounted for with the present
calibration of the model’s parameters.

For the cyclic-dwell tests, the overall strain
levels and relaxation phases are also quite well reproduced, Fig. 2.40 & Fig. 2.41. A slight dif-
ference may be revealed for the peak stresses. Such a result seems to be attributed to some
(slight) differences in the transient mechanisms between pure cyclic and cyclic-dwell tests. Indeed,
it can be noted that material parameters for the simulated loops in Fig. 2.40 & Fig. 2.41 are those
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(a) Stabilized cycles at 550◦C.
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(b) Stabilized cycles at 700◦C.

Figure 2.39: Comparison of model prediction on cyclic stabilized cycles - ε̇ = 1.10−3 s−1 - 550 & 700◦C.

estimated from the stable and symmetric loops of the type-1 cyclic tests. Hence, accumulated
plasticity has not reached the same level and cyclic softening is not saturated at the same time.
Moreover, less cycles have been performed in type-4 cyclic-dwell tests for each investigated strain
level, hence delaying the cyclic softening process.
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(a) 550◦C - ε̇ = 1.10−2 s−1 - HT = 300 s.
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(b) 550◦C - ε̇ = 1.10−2 s−1 - HT = 720 s.
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(c) 550◦C - ε̇ = 2.5 10−3 s−1 - HT = 300 s.
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(d) 550◦C - ε̇ = 2.5 10−3 s−1 - HT = 720 s.

Figure 2.40: Comparison of model prediction on cyclic-dwell tests - R = −1 - 550◦C.
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However, global trends and stress-strain levels are well captured and give satisfactory predictions.
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(a) 700◦C - ε̇ = 1.10−2 s−1 - HT = 300 s.
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(b) 700◦C - ε̇ = 1.10−2 s−1 - HT = 720 s.
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(c) 700◦C - ε̇ = 2.5 10−3 s−1 - HT = 300 s.
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(d) 700◦C - ε̇ = 2.5 10−3 s−1 - HT = 720 s.

Figure 2.41: Comparison of model prediction on cyclic-dwell tests - R = −1 - 700◦C.

Finally, for non-symmetric loading conditions with Rε = 0 at stabilized state, the hysteresis loops
are also well captured by the model, see Fig. 2.42.
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(a) Stabilized cycles at 20◦C.
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(b) Stabilized cycles at 550◦C.

Figure 2.42: Comparison of model prediction on stabilized cycles - ε̇ = 1.10−3 s−1 - R = 0 - 20 & 550◦C.
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2.5 Conclusion of the chapter

In the present chapter, the elastic-viscoplastic non-linear behavior of FG AD730™ has been
studied. A proper material modeling with associated parameter calibration procedure have been
discussed. The proposed material model seems to be adapted for several temperatures ranging
from low to high temperatures up to 700◦C, both for monotonic and cyclic loading conditions.
Up to date, and to the best of the author’s knowledge, no macroscopic material model for cyclic
loading conditions was established for AD730™, hence making this point a significant contribution.

Thanks to the sect. 2.2 to sect. 2.4, the main conclusions concerning the cyclic behavior of
AD730™ are summarized below. AD730™ has proven to exhibit cyclic softening together with
strong kinematic hardening. The material is sensitive to the strain rate for the highest temper-
ature of 700◦C, while a slight negative SRS has been observed at 550◦C. Over-stress relaxation
has been evidenced for the two high temperatures. Static-recovery effects have been discussed
but not modeled. No strain range dependence has been observed and the material behaves as a
Masing material. No specific tension/compression asymmetry has been revealed. Finally, transient
effects at low strain levels have been observed for the back-stress evolution with increasing plasticity.

Due to a restrictive number of testing specimens, the whole spectrum of loading schemes has not
been covered. This is particularly true for stress-controlled tests highlighting ratcheting effect.
Such aspect has not been studied and still needs to be for an accurate modeling of both strain-
and stress-controlled loading conditions. Moreover, the introduction of thresholds in back-stress
dynamic recovery term for mean stress relaxation control (or any modification of the kinematic
hardening rule for that purpose) should also be considered, as discussed in [Chaboche et al., 2012].
Up to now, for the sake of simplicity and robustness of the current material model, no thresholds
have been taken into account in back-stress evolution so as to limit the number of material model
parameters. In addition, time-recovery effects should be studied in further details so that to well
understand the contribution from static-recovery in the effective stress (R) as opposed to that of
the back-stress (X ).

For FE analyses, one rule prevails: the more complex the material model, the greater the CPU time
consumption. Thus, limiting the number of embedded mechanisms (and consequently the number
of material constants) is of primary importance. A “sufficiently adapted” material model capable
of accurately transcribing the material response in FE calculations is therefore necessary. In the
present Ph.D. project which aims to model the fatigue crack growth through a strong coupling
between material behavior and damage mechanisms (through the so-called local approach to frac-
ture), the proposed material model seems to be accurate enough. Moreover, numerical techniques
associated with crack growth will increase the level of complexity, hence justifying the necessity to
keep such a “standard” material model, at least for this preliminary study.
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Résumé du chapitre en français

Dans ce chapitre, une brève étude bibliographique sur la modélisation du comportement
cyclique et monotone des alliages métalliques a été introduite. Le lien entre les mécanismes de
plasticité, la microstructure et la nature des contraintes au sein de la matière ont également été
rappelés en vue d’un processus d’analyse de la réponse matériau.
S’en est suivie une étude détaillée du comportement du superalliage base Nickel AD730™, support
de la présente étude. Le procédé d’élaboration du matériau ainsi que les traitements thermiques
appliqués ont été décrits. Ensuite, la procédure de caractérisation du comportement cyclique
et monotone à basse et hautes températures a été décrite. Les éprouvettes de caractérisation
ainsi que les moyens d’essais ont été présentés, de même que les différents essais réalisés. Ces
essais, de nature incrémentale, ont permis de mettre en évidence les phénomènes prédominants
dans la réponse cyclique et monotone du matériau lorsqu’il est sollicité. Ainsi, les mécanismes
d’écrouissages, de viscosité et les possibles effets particuliers liés aux trajets de chargement cy-
cliques dans la réponse du matériau ont été mis en exergue grâce à des schémas de chargement
bien définis.
Il a ensuite été montré que l’AD730™ présente un durcissement associé à des écrouissages mixtes,
et ce à 20, 550, 650 et 700◦C. Un fort adoucissement cyclique a été mis en évidence, par la
méthode de partition de la contrainte énoncée par Cottrell, via la diminution significative de la
taille du domaine d’élasticité. Il a ensuite été montré que cet adoucissement est largement com-
pensé par un fort effet Bauschinger (évolution de la limite élastique du matériau entre les charges
et décharges successives et déplacement du centre du domaine de réversibilité mécanique). Le
matériau a ensuite été testé à plusieurs vitesses de chargement et lors d’essais de relaxation
de contrainte à basse et hautes températures de sorte à étudier les effets liés au temps dans
la réponse du matériau. A température ambiante (i.e. 20◦C), le matériau présente un com-
portement globalelement élasto-plastique, tandis qu’à 550, 650 et 700◦C, celui-ci tend à devenir
élasto-viscoplastique en raison d’effets de viscosité plus ou moins prononcés à mesure que la
température augmente. La contrainte visqueuse présente une évolution fortement non-linéaire
à mesure que la vitesse de déformation viscoplastique évolue. De plus, le matériau présente
une sensibilité inverse à la vitesse de sollicitation à 550◦C, tandis qu’à 700◦C, la viscosité suit
une évolution standard. Le matériau présente un comportement de type Masing, assurant alors
l’absence d’effet mémoire de la déformation plastique sur le niveau d’adoucissement cyclique du
matériau. De plus, un effet transitoire est apparu pour les premiers niveaux de chargement,
établissant alors un couplage entre la forme des boucles d’hystérésis et le niveau de plasticité
cumulée.
Une étape de modélisation du comportement a ensuite été effectuée suivant les principes de
la viscoplasticité unifiée (une seule variable pour les déformations plastiques et celles liées au
fluage). Ainsi, un formalisme comportant un double écrouissage isotrope non-linéaire, couplé à
un écrouissage cinématique non-linéaire à 3 composantes permet de représenter fidèlement la
mixité des écrouissages présents dans le matériau et la forme des boucles d’hystérésis. Un po-
tentiel viscoplastique de type sinus hyperbolique permet de traduire les effets du temps à hautes
températures, de sorte à inclure une contribution visqueuse dans la contrainte totale. Le modèle
a été calibré suivant les résultats d’essais à l’aide d’une méthodologie spécifique. La réponse
du modèle vis-à-vis des résultats expérimentaux a ensuite été validée sur des cas de chargement
représentatifs.



96 Chap. 2 – Elastic-viscoplastic material model for AD730 TM



3 Experimental study of the cyclic and
monotonic cracking behavior of

AD730™ at elevated temperatures

In the present chapter, the crack growth process in AD730™ is studied under various loading
conditions. The chapter first starts with details associated with fatigue and dwell-fatigue crack
propagation tests at low to elevated temperatures performed on SEN-T specimens. Dedicated
specimen geometries as well with testing benches and crack growth monitoring techniques are
discussed. Further VLCF tests are also conducted on flat specimens and analyzed in the second
section. For each loading mode (pure fatigue, dwell-fatigue and VLCF), macroscopic data are
first compared. Additional observations at both mesoscopic and microscopic scales allow the main
crack growth driving mechanisms to be evidenced. Crack propagation peculiarities and underlying
mechanisms are finally discussed.

Contents
3.1 Crack growth analysis in AD730™ under cyclic loading conditions . . . . . . . . 98

3.1.1 Experimental samples and procedures . . . . . . . . . . . . . . . . . . 99
3.1.2 Fatigue and dwell-fatigue crack growth tests . . . . . . . . . . . . . . . 106
3.1.3 Conclusions on the fatigue and dwell-fatigue crack growth tests . . . . 127

3.2 Cracking behavior of flat specimens of AD730™ under VLCF loading conditions 129
3.2.1 Experimental sample and set-up . . . . . . . . . . . . . . . . . . . . . 130
3.2.2 VLCF fracture tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

3.3 Conclusion of the chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

The non-linear cyclic elastic-viscoplastic behavior of AD730™ at target temperatures of 20, 550
and 700◦C has been studied in the last Chap. 2. Then, associated constitutive equations have been
proposed and calibrated consistently with experimental data.
Fatigue crack growth (FCG) as well as dwell-fatigue crack growth (DFCG) behavior of this Ni-
superalloy still remains to be studied. To this end, the present chapter is devoted to some ex-
perimental work dedicated to the analysis of fatigue crack propagation under complex loading
conditions from low to high temperatures, under fatigue and creep-fatigue conditions.
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The literature review given in sect. 1.3 has reported that the FCG behavior of Ni-based superalloys
is sensitive to both extrinsic, e.g. loading frequency, dwell-times, stress ratio, temperature and
operating environment; and intrinsic factors, e.g. grain/precipitates size or aging [Chang and Liu,
2001]. The present chapter hence focuses on the extrinsic effects of temperature, stress ratio and
holding periods on the FCG behavior of AD730™. As a complement, quasi-static VLCF tensile tests
will also be studied with dedicated specimen geometries so that for the main failure mechanisms
as well as the crack propagation regimes to be exhibited.

The first sect. 3.1 is devoted to the cyclic crack growth tests performed during the present
Ph.D. project for the three target temperatures already considered in the Chap. 2, namely 20,
550 and 700◦C. Several loading conditions are studied to emphasize the effect of both loading
ratio and signal on the Crack Growth Rates (CGR). Moreover, for creep-fatigue problems, different
dwell periods are studied to quantify the effect of the holding period on the global FCG rates.
Macroscopic results will be supplemented with mesoscopic considerations as well with microstruc-
tural observations on fracture surfaces in order to suggest scenarios explaining the cracking process.
Once LCF loading conditions are detailed, Very Low-Cycle Fatigue (VLCF) tests are also studied
in sect. 3.2. These fatigue, dwell-fatigue and VLCF crack growth tests consist in a preliminary
work for the understanding of driving-mechanisms responsible for crack propagation as well as
flat-to-slant transition due to the mixity of the cracking modes. Hence, throughout the sect. 3.1
& sect. 3.2 dedicated to crack propagation, the damage mechanisms will be identified prior to
the modeling process consisting in a coupling between damage and behavior in the context of the
local approach to fracture (see Chap. 4 later on).

3.1 Crack growth analysis in AD730™ under cyclic loading
conditions

Isothermal cyclic crack propagation tests have been carried out during the Ph.D. project in order
to highlight the main cracking mechanisms in the fine-grained (FG) microstructure of AD730™ at
several temperatures. The global cyclic crack growth curves da/dN vs. ∆K for the FG AD730™ are
analyzed and discussed. When possible qualitative and quantitative comparisons with the coarse-
grained (CG) counterpart will be discussed. Fractographic analyses will also be detailed so as to
emphasize on the main crack growth mechanisms and the progressive changes in fracture modes.
This way, the so-called flat-to-slant transition, described in sub-sect. 1.3.3, will thus be discussed.
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3.1.1 Experimental samples and procedures

3.1.1.1 Testing material and selected geometries

As a reminder, the chemical composition of the as-received material prior to any heat treatments
is given in Tab. 2.1 from sub-sect. 2.1.2.2, together with applied heat treatments detailed in sub-
sect. 2.1.2.3. Single Edge Notched Tension (SEN-T) fatigue crack growth testing specimens have
been considered in the present work, see Fig. 3.1. Two different geometries have been used:

• 4mm-thick short specimens for high temperature testing under furnace, see Fig. 3.1a;
• 4mm-thick long specimens for high temperature testing with inducting coils, see Fig. 3.1b.

The detailed sketches of these specimens are given in the appendices, see Chap. B page 270-271,
together with the sampling plans, Fig. A.1, see Chap. A page 267.

(a) Short SEN-T. (b) Long SEN-T.

t = 4 mm

a

w = 16 mm

(c) Cross-sectional view.

0.3

0.1

(d) Notch details.

Figure 3.1: SEN-T specimens for fatigue and dwell-fatigue crack growth testing.

Chosen SEN-T specimens have a rectangular cross-section of 16mm width (w) and 4mm thickness
(t), see Fig. 3.1c. The useful length is of 15mm. The SEN-T geometry is suited for both pos-
itive/negative load ratio R as well as the positioning of an extensometer close to the notch for
crack opening displacement analysis. It also ensures a preferential crack initiation and subsequent
propagation from the notch as long as this one ranges from 0.15 to 0.5mm [Bouvard, 2006]. Thus,
a 0.3mm notch was machined in one edge of the specimens, at mid-height and along the whole
thickness, hence allowing for a through-thickness propagation of the crack in a supposed straight
manner, see Fig. 3.1d. Moreover, this geometry is particularly suitable for long crack propagation
analysis (up to a few millimeters), hence covering a wide range of Stress Intensity Factors (SIF)
∆K . The post-mortem observations and the numerical reconstruction of the fracture surface are
also facilitated thanks to this simple geometry.

3.1.1.2 Experimental facilities

Cyclic crack growth tests were performed within the ONERA facilities. To this end, two specific
testing benches have been used, according to the considered loading scheme and corresponding
heating device. In addition, the necessity to settle specific instrumentation such as cameras or
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long-range microscope for Digital Image Correlation (DIC) allowing for the track of the crack
growth is also considered.

• Tests carried out with an induction-heating system were performed on a uniaxial servo-
hydraulic Schenck fatigue testing machine. Its load cell has a static capacity of 40 kN and
the machine is equipped with force and displacement sensors. The use of an inductor was mo-
tivated by the need to have a visual accessibility to the surface of the specimen in order to use
optical methods. This experimental set-up was dedicated to pure fatigue testing, Fig. 3.2.

(a) Overall view of the 40 kN Schenck testing ma-
chine with dedicated tracking equipment.

(b) Close-up view on the experimental set-up with
the testing specimen, the induction coils and green
light projectors.

Figure 3.2: View of the pure fatigue testing bench with a Schenck uniaxial testing machine and additional
instrumentation.

• Those carried out under a MTS 653 clamshell resistive furnace (whose specimen ID involves
an “F”) were hence deprived of optical tools due to enclosed testing conditions. Tests were
performed on a multiaxial servo-hydraulic Schenck fatigue testing machine with a load cell
capacity of ± 63 kN. In the present case, only uniaxial tensile/compression tests were con-
sidered. Force and displacement sensors ensure the monitoring of the test driving parameter.
Such an experimental set-up was developed for creep-fatigue testing, Fig. 3.3.

For the two considered testing machines and all the tests, the cylinder stroke was force-controlled.
For each control mode, a Proportional Integral Derivative (PID) controller was associated with
force sensor (no strain gauges were used during the experiments).
All along the crack growth procedure, data acquisition was ensured by a continuous or a cycle-
dependent (at every peaks) recording. Finally, a security system, based on a setting relative to a
threshold in force or displacement, was used to stop the machine operation at specimen failure.

Tests were conducted either at room temperature (RT) or at elevated temperatures of 550 and
700◦C. For the two high temperatures, the regulation of the testing temperature was ensured
by a specific control procedure, depending whether the heat source was provided by furnace or
induction-heating system. Note that such testing benches were almost similar to those used in the
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(a) Overall view of the 63 kN Schenck testing
machine (from [Kaminski, 2007]).

Water-cooled 
hydraulic 

wedge grips

Eurotherm
temperature 

regulating 
system

3-zones 
resistive 
furnace

Load-cell

(b) Close-up view on the 63 kN Schenck testing machine
equipped with a 3-zones resistive furnace.

Figure 3.3: View of the dwell-fatigue testing bench with a Schenck tension/torsion testing machine and
additional instrumentation.

preliminary work of [Fessler, 2017] dedicated to fatigue and creep-fatigue crack growth analysis in
DA Inconel 718. Due to confidentiality aspects of the latter study, choice has been made to only
recall in the present work the main key points of the testing procedures.

3.1.1.3 Overall sequences of a fatigue crack growth test

Fatigue crack growth tests were not designed to evaluate the lifetime up to crack initiation.
Thus, in order to avoid the “initiation period” of the material up to the onset of a short crack,
the SEN-T test-pieces were all pre-cracked prior to conducting crack propagation tests. Such tests
and associated procedures are described in Fig. 3.4 following the guidelines given in [ASTM, 2015],
while details for the crack growth step are given below.

  

Crack initiation Pre-cracking Crack growthEDM U-notch

Figure 3.4: Overall sequences of a fatigue crack growth test on laboratory SEN-T specimen.

The 0.6mm-long pre-crack has been estimated so as to ensure a crack propagation process out
of the generated plastic zone (during crack initiation and pre-cracking), and far from the zone
affected by the machined U-notch. This way, the effects of pre-crack load history or change in
crack front shape on the subsequent crack growth rate data are normally eliminated [ASTM, 2015].
The crack is also expected to be sharp with an intrinsic front as straight as possible.
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After these preliminary steps, the crack propagation test itself can be conducted. Choice has been
made in this study to focus on constant-∆F test control. Consequently, the increase in ∆K
results from the crack growth and causes the progressive acceleration of the crack.
In the following, different loading wave-forms will be considered under isothermal conditions:

• pure fatigue crack growth tests under sinusoidal signal with a 1Hz frequency, Fig. 3.5a;
• dwell-fatigue crack growth tests for creep-fatigue interaction studying under trapezoidal

waveform with holding-times of 300 or 3 000 s, Fig. 3.5b.
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(a) Sinusoidal loading for fatigue testing.
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(b) Trapezoidal loading for dwell-fatigue testing.

Figure 3.5: Schematic view of the loading signals for fatigue and dwell-fatigue crack growth testing.

In all the cases, the nominal applied stress is of 400MPa during the peak tensile phase, with a load
ratio of R = 0.05, R = 0.5 or R = −1. These loading parameters may evolve depending on each
single test, see Tab. 3.1.

N◦ Test type Waveform Rσ σmax ∆t Dwell T Spec. ID

1 Fatigue Sinus 1Hz 0.05 400 MPa 0 s 550◦C S4-2
2 Creep-fatigue 10-300-10 s 0.05 440 MPa 300 s + 550◦C S4-F1
3 Fatigue Sinus 1Hz 0.05 400 MPa 0 s 700◦C S4-F2
4 Creep-fatigue 10-300-10 s 0.05 400 MPa 300 s + 700◦C S4-F3
5 Fatigue Sinus 1Hz 0.05 400 MPa 0 s 20◦C S4-7
6 Creep-fatigue 10-3000-10 s 0.05 400 MPa 3000 s + 700◦C S4-F4
7 Creep-fatigue 10-300-10 s -1 400 MPa 300 s − 700◦C S4-F6

8 Creep-fatigue 10-300-10 s -1 400 MPa 300 s +/− 700◦C S4-F7

9 Creep-fatigue 10-300-10 s -1 400 MPa 300 s + 700◦C S4-F8
10 Fatigue Sinus 1Hz 0.5 400 MPa 0 s 20◦C S4-9

Table 3.1: Testing conditions for cyclic crack growth tests performed on 10 specimens made of fine-
grained AD730™ for the present study. A “+” (respectively a “−”) in the dwell type means a hold-time
in tensile (respectively compressive) loading.
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A synthesis of the considered loading schemes for fatigue and dwell-fatigue crack growth analysis
for the present Ph.D. project is given in Tab. 3.1. Note that test numbering corresponds to the
chronological sequence of tests.

According to the initial crack length of 0.6mm (0.3mm-notch obtained via EDM + 0.3mm pre-
crack) and owing to the fact that the stress amplitude is assumed to be equal to 190MPa with
R = 0.05 (σmax = 400 MPa), then the initial ∆K equals 18.6MPa.m1/2. Such a value is close
to stage I fatigue crack propagation. It is to be noticed that those points at low ∆K should be
carefully handled due to the fact that they are obtained after the pre-cracking phase for which
high plasticity is assumed to have developed at the crack-tip. Although the pre-cracking phase
was carried out according to some guidelines given in [ASTM, 2015], a residual cyclic plastic zone
resulting from previous higher-level steps may persist and disrupt the subsequent crack propagation
process. The macroscopic results should help the understanding on this point.
Finally, the crack propagation phase has been carried out until the crack reaches a 8mm-length.
Such a choice allows, for the considered loading stress levels, the material to remain in an overall
elastic state, thus ensuring small scale yielding (SSY) conditions.

3.1.1.4 Crack growth monitoring

Direct Current Potential Drop technique:

w = 16 mm

h

t = 4 mm

2y

a

Figure 3.6: Schematic view of the DCPD crack
growth monitoring technique on a SEN-T specimen.

There are several Non-Destructive Test-
ing (NDT) methods to evaluate crack
length. An overall review of most of them
can be found in [Si et al., 2020]. The Direct
Current Potential Drop (DCPD) method
is one of the most reliable and conve-
nient techniques employed for measuring
the crack extension during laboratory test-
ing [Tarnowski et al., 2018a]. The DCPD
technique has been widely used for the FCG
analysis in several Ni-based superalloys due
to the good conductivity of such materi-
als, see e.g. [Lee et al., 2008] for Haynes
230 and Hastelloy X, [Doremus, 2014] and
[Fessler, 2017] for DA Inconel 718, or [Gour-
din, 2015] for René 65, hence supporting its
usage in the present study. The general concept of the method is depicted in Fig. 3.6. Besides,
the crack length for the considered SEN-T specimen has been estimated according to the eq. (3.1)
first suggested by [Johnson, 1965]:

a = 2w
π

cos−1

 cosh (πy/2w)

cosh
{

V
V0

cosh−1
(

cosh(πy/2w)
cos(πa0/2w)

)}
 (3.1)
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where a and a0 are the instantaneous and initial crack lengths, respectively, and V and V0 the
corresponding actual and initial values of the PD voltage. Here, y is one half of the gauge span
for V and w is the specimen width. One of the main advantages of the eq. (3.1) is its general
form which means that it can be directly applied to any initial crack length [Tarnowski et al., 2018a].

It should be noted that prior to the use of the DCPD method, it is necessary to establish the relation
between the potential drop ∆V and the crack length a by means of a calibration curve [ASTM,
2015], [Fessler, 2017]. Obviously, the relation should take into account the specimen geometry
and the potential probes position, Fig. 3.7a.

EDM notch

weld

crack path

4000 µmObjectif Z20:x50

(a) Estimation of the distance between the
two DCPD wire probes (spec. S4-F6).

Inductor

Thermocouples

Potential wires

Resistive furnace

(b) Overall view of both DCPD and temperature moni-
toring probes (adapted from [Fessler, 2017]).

Figure 3.7: Direct Current Potential Drop setup with corresponding wires for crack growth monitoring.

Heat tints on fracture surface:
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Figure 3.8: Temperature & load signals for
heat tinting process upon testing.

In addition to DCPD crack growth estimation,
some heat tinting steps were applied so as to get
another crack length estimation. The basic prin-
ciple of such a marking technique relies on the
periodical interruption of the mechanical test at
a sufficiently high stress level (but not too high)
to ensure the crack to be opened (say ∼ 5% of
the yield strength Rp0.2) and to keep the load con-
stant during a dwell of 1 h, see Fig. 3.8. Due to
the high temperature conditions, an oxide scale is
formed, thus evidencing the crack front. Gener-
ally for Ni-based superalloys, optical microscope
analyses are sufficient to distinguish the heat tints
thanks to a significant change in colors from one
tint to another [Doremus, 2014], [Fessler, 2017].
This point is particularly useful: apart from the a posteriori crack length estimation, it also en-
ables the possibility to evaluate the crack front morphology during post-mortem fracture surface
analyses. This aspect will be discussed in the forthcoming sub-sect. 3.1.2.3.
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Nominal Stress Intensity Factors evaluation:

The knowledge of the instantaneous crack length a thanks to the calibrated DCPD technique
allows for the estimation of the Stress Intensity Factors (SIF) which are necessary to study the FCG
capability of the material. For the SEN-T specimen and corresponding dimensions, see Fig. 3.1,
the SIF range, denoted as ∆K , can be deduced from analytical solutions derived in previous
works by [Gross et al., 1964] (thanks to a least square fitting), also referred to as the Murakami’s
formula [Murakami and Aoki, 1987]:

∆K = Fmax − Fmin
t.w

√
π a f (α) = (1− R)σ∞

√
π a f (α) with α = a/w (3.2)

where a is the actual crack length, σ∞ is the far-field applied stress, R the load ratio and w
the width of the specimen. In eq. (3.2), f (α) is a geometrical function (or compliance function)
which accounts for differing component geometries and shapes through the ratio between the crack
length and the width. It should be noted that for SEN-T specimens, such a formula, eq. (3.2),
remains valid as long as the crack is rectilinear and the material is under plane strain conditions.
Hence, the applied force (or stress) should be uniform without any bending moment.

The geometrical function f (α) of empirical-type is given in the following relation:

f (α) = 1.122− 0.231α+ 10.550α2 − 21.710α3 + 30.382α4 (3.3)

which is the one used in AFNOR A03-404 [AFNOR, 1991]. It remains valid as long as α = a/w <
0.6 , that is a crack length of ∼ 9 - 10mm. The accuracy of the geometrical function eq. (3.3) is
close to 0.5 - 1% which is considered satisfactory.

Some Finite Element (FE) calculations were performed in previous studies using the Z-cracks tools
from the FE analysis suite Z-set [Chiaruttini et al., 2011], [Fessler et al., 2017]. It was proven that
for pure mode I fatigue crack growth in 4mm-width SEN-T specimens, corresponding SIF were
estimated with a good accuracy by the Murakami’s formula eq. (3.3) together with the Johnson
equation eq. (3.1).

Crack growth rates estimation:

The evaluation of crack growth rate may be performed according to the secant method or the
increment polynomial method [ASTM, 2015]. In the present study, we used the secant method
which simply evolves calculating the slope of the straight line connecting two adjacent data points
on the a = f (N) curve. This finally yields:(

da
dN

)
i

=
(

∆a
∆N

)
i

= ai+1 − ai
Ni+1 − Ni

(3.4)

where Ni is the number of cycles associated with the identical crack length ai .
Due to the fact that the computed CGR da/dN is an average rate over the (ai+1−ai) increment,
the average crack length eq. (3.5) is normally used to calculate ∆K :

http://www.zset-software.com/
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amean = ai+1 + ai
2 (3.5)

To ensure accurate values, estimated crack lengths were checked and re-calibrated, post-test, using
beachmarks (when available) formed on the fracture surface.

3.1.2 Fatigue and dwell-fatigue crack growth tests

Once the whole testing procedures have been detailed, this section aims at exposing the main
results of the fatigue crack growth (FCG) and dwell-fatigue crack growth (DFCG) tests carried
out during the Ph.D. project. We first discuss the macroscopic results in terms of crack lengths
and cyclic crack growth rates for the 3 target temperatures of 20, 550 and 700◦C. Some possible
loading mode effects are also discussed. Then, a mesoscopic scale is introduced in order to discuss
the fracture surface analysis obtained from optical microscopy prior to the microscopic observations
of the fracture surfaces. This last point should enable evidencing the main crack driving forces and
fracture mechanisms in the material under fatigue and dwell-fatigue conditions.

It is important to recall that all the tests have been performed in laboratory air conditions. Spec-
imen surfaces as well as crack lips were hence exposed to high-temperature oxidation processes.
For fatigue loading conditions, the load ratio is of R = 0.05 except for one test at 20◦C also
carried out with R = 0.5 , see Tab. 3.1. Load ratios are in this case positive, hence limiting the
crack closure effect. However, for the lowest load ratio, the fracture surface roughness may induce
a slight crack closure effect. Due to this aspect, an electric contact may be created between the
cracked surfaces, thus disturbing the potential acquisition upon testing.

Finally, due to the absence of experimental measurements of the crack opening and closure
(e.g. through the CTOD and via a dedicated extensometer), only the change in the range of
SIF ∆K = Kmax − Kmin will be considered, not the effective one ∆Keff = Kmax − Kop . When
necessary, a comparison with Kmax may also be discussed.

3.1.2.1 Macroscopic results

Fatigue crack growth tests

In Fig. 3.9, the whole FCG results are reported. In this plot, only the propagation phase is
reported. Corresponding cycles until crack initiation and for the pre-cracking step are reported in
Tab. 3.2, together with the corresponding crack lengths.

In Fig. 3.9, the temperature effect is clearly visible. Indeed, the lower the temperature, the longer
the fatigue lifetime (see Tab. 3.2). One can also notice higher FCG rates at 700◦C for a given SIF
range ∆K (compared to 20 and 550◦C) but a slower slope to this curve, hence evidencing a slight
decrease in fatigue crack growth rate (FCGR) with increasing ∆K .
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Spec. T Rσ Nini aini Npre apre Ncra atot Ntot

[◦C] [-] [cycles] [mm] [cycles] [mm] [cycles] [mm] [cycles]

S4-7 20 0.05 5 267 0.449 5 045 0.599 39 818 12.675 50 130
S4-9 20 0.5 14 782 0.449 4 410 0.599 163 795 9.830 182 987
S4-2 550 0.05 x 0.45 2 939 0.6 10 494 7.852 13 433
S4-F2 700 0.05 x 0.45 2 632 0.6 3 299 9.683 5 931

Table 3.2: Synthesis of the fatigue crack growth tests performed on 4 specimens made of fine-grained
AD730™ for the present study. Cycle sinus 1Hz with σ = 400 MPa.
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Figure 3.9: Fatigue crack growth results on SEN-T
specimens at 20, 550 and 700◦C under σ = 400 MPa,
f = 1 Hz and varying load ratio R.

The difference between FCGR at
550◦C and those at 700◦C mainly
comes from a decrease in material me-
chanical properties with increasing tem-
perature, especially around 700◦C for
AD730™ (cf. Chap. 2). Moreover, since
the tests were performed in a laboratory
environment, oxidation can occur around
the crack-tip with an effect as pronounced
as the temperature is high. Microscopic
observations of the fracture surfaces pre-
sented in sub-sect. 3.1.2.4 will try to em-
phasize on this point. In Fig. 3.9, one
can also notice the occurrence of a near-
threshold regime at 20 and 550◦C as a
small deviation from the linear trend is
visible for low ∆K values. Moreover, the
slope of each crack growth curve seems
to be close, especially at 20 and 550◦C.

As a preliminary work, only few pure fatigue tests have been performed during this project. Some
additional tests conducted with varying loading frequency should be of great interest so as to ob-
serve any frequency effect on the FCG rates within FG AD730™ under pure fatigue cycling. Such
an aspect remains an outlook for incoming studies.

Dwell-fatigue crack growth tests

In this section, dwell-fatigue crack growth tests at elevated temperatures (550 & 700◦C) are
exposed. These tests have also been conducted under air, hence favoring the high-temperature
oxidation process. The load ratio is variable, changing from positive R = 0.05 to pure symmet-
rical R = −1 conditions, depending on the considered test, see Tab. 3.1. Cyclic-dwell tests are
characterized by a trapezoidal waveform, see Fig. 3.5b, with loading/unloading ramps of 10 s and
an hold-time HT generally of 300 second except for one test for which it is amplified by a factor 10
(see spec. S4-F4 detailed in Tab. 3.1). The nominal loading cycle is then identified as 10-HT-10 s.
All tests are conducted under force control with a maximum stress level of σ = 400 MPa.
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Fig. 3.10 shows the results of all the dwell-fatigue crack growth tests conducted during the present
study on 4mm-width SEN-T specimens. To help the comparisons, similar tests conducted under
pure fatigue loading conditions (sinus 1Hz) are also reported. They correspond to the limiting
case of null hold-time cycles and reflect the cycle-dependent aspect of the crack propagation phase.
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Figure 3.10: Overall view of the dwell-fatigue crack propagation tests on FG AD730™ under laboratory
environmental conditions.

As it can be seen in Fig. 3.10, there is no great influence of the holding period on the FCG rates at
550◦C. Moreover, the slope of the two corresponding curves in the Paris’ regime is approximately
identical. The slight increase in FCG rate is hence related to time-related mechanisms occurring
during the dwell periods. When comparing the same FCG curves at 700◦C, one can see that the
introduction of a dwell period within the loading cycle has a great influence on the FCG rates. An
increase, greater than one order of magnitude, is estimated between pure fatigue and dwell-fatigue
loading conditions at 700◦C. Here again, the slopes of the Paris’ equation fits for both curves
are assumed to be close to each others. The acceleration of the crack propagation may thus be
attributed to time-assisted effects such as creep and oxidation.
It should be noted that such statements are made for the same load ratio of R = 0.05. Further
experiments would be needed to confirm such tendencies with a reasonable repeatability.

When only looking at the dwell-fatigue crack growth tests, one can see the highly detrimental effect
of temperature on FCG, Fig. 3.11. The dwell-fatigue lifetime of two specimens subjected to similar
loading conditions, excepted the temperature change, are compared in Fig. 3.11a, whereas the
effect of dwell-time duration at 700◦C is reported in Fig. 3.11b. As expected, higher temperatures
and/or longer dwell-times in tensile loading induce reduced fatigue lifetimes, see Tab. 3.3.

Moreover, one can notice in Fig. 3.11b a noticeable change in slope for the two da/dN curves in
the Paris’ regime. The greater the ∆K , the higher the difference in terms of crack growth rates.
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(a) Temperature effect on fatigue crack growth.
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(b) Dwell-time effect on fatigue crack growth.

Figure 3.11: Temperature and dwell-time effects on DFCG in SEN-T specimens at 550 & 700◦C under
σ = 400 MPa, R = 0.05, trapezoidal waveforms with 10-HT-10 s (spec. S4-F1, S4-F3 & S4-F4).

According to the literature review detailed in sect. 1.3, time-related effects such as creep and oxi-
dation are favored during longer dwell periods, which result in a decrease in fracture toughness of
the material due to, e.g. cavity growth and grain boundary embrittlement. On the contrary, the
slope of the curve between 550 and 700◦C is almost similar, see Fig. 3.11a.
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Figure 3.12: Load ratio effect on DFCG at 700◦C
under σ = 400 MPa, trapezoidal waveforms with 10-
300-10 s (spec. S4-F3 & S4-F6).

At last, the load ratio effect can
be studied. In Fig. 3.12, the load
ratio effect on the dwell-fatigue life-
time is studied. The curves plotted
in Fig. 3.12 exhibit the decrease in
DFCG rates with the change in load
ratio from R = 0.05 to R =
−1. A lower load ratio results in
slower crack growth rates and subse-
quently in a greater lifetime. This
may be attributed to more pronounced
crack closure effects. The load ratio
of R = −1 being negative, the mate-
rial is subjected to compressive stresses
which in turn make the crack to close.

At elevated temperatures with loading cy-
cles including dwell-periods, time-related effects have been proven to play a significant role in the
increase in FCG rates in Ni-based superalloys [Fessler, 2017], [Mrozowski, 2020]. In the present
case, time-assisted effects including grain boundaries oxidation along crack lips and around the
crack-tip, together with creep processes through cavity growth, may be the major causes for the
decrease in fracture toughness with the increase in load ratio. Consequently, the higher the loading
ratio, the more open the crack during the dwell period and finally the greater the oxidation-assisted
embrittlement of the grain boundary (GB) and the easier the creep processes. On the contrary,
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a lower load ratio eases the closure of creep-induced cavities, hence lowering the FCG rates.
In addition to these points, one can also note in Fig. 3.12 the increase in the crack growth thresh-
old ∆Kth with the decrease of the load ratio from R = 0.05 to R = −1, everything else being
equal. Such a result is consistent with the observations already reported in Ni-based superal-
loys [Soniak and Rémy, 1987], [Reed et al., 1993].
Finally, a synthesis of the quantitative results related to final crack lengths, corresponding number
of cycles for crack initiation, pre-cracking as well as crack growth steps for dwell-fatigue crack
growth tests are summarized in Tab. 3.3.

Spec. T Rσ HT Nini aini Npre apre Ncra atot Ntot

[◦C] [-] [s] [cycles] [mm] [cycles] [mm] [cycles] [mm] [cycles]

S4-F1 550 0.05 300 ... 0.45 6 480 0.6 6 423 9.281 12 903
S4-F3 700 0.05 300 1 871 0.45 546 0.57 99 9.690 2 516
S4-F4 700 0.05 3 000 1 903 0.45 571 0.57 15 7.953 2 489
S4-F6 700 -1 300 1 330 0.45 348 0.57 429 6.619 2 107
S4-F7 700 -1 300 1 778 0.45 685 0.57 48 10.019 2 511
S4-F8 700 -1 300 1 732 0.45 462 0.57 82 9.690 2 276

Table 3.3: Synthesis of the dwell-fatigue crack growth tests performed on 6 specimens made of fine-
grained AD730™ for the present study. Trapezoidal waveform with 10-HT-10 s under σ = 400 MPa.

3.1.2.2 On the partition between fatigue and creep contributions to DFCG

For dwell-fatigue loading conditions, a common approach consists in partitioning the fatigue
and creep contributions of the crack extension. Indeed, as a first approximation, it is possible to
assume that simultaneous action of cycle- and time-dependent effects can be represented by a
direct summation [Leo Prakash et al., 2009]. Hence, the global crack propagation stage is split so
that both the fatigue and creep contributions to be evidenced [Nikbin and Webster, 1984], [Carbou,
2000], [Fessler, 2017]. Generally, the fatigue contribution relates the crack extension during the
loading/unloading phases (transients) of the representative cycle while the creep contribution is
associated with the crack growth during dwell-periods. The sum of these two contributions gives
the total FCG rate, see eq. (3.6):

da
dN = da

dN

∣∣∣∣
f atigue

+ da
dN

∣∣∣∣
creep

= da
dN

∣∣∣∣
f atigue

+
∫ t+HT

t

da
dt dt (3.6)

As a prospective issue, further detailed experimental investigations are required in order to explore
the exact interaction between both cycle- and time-dependent mechanisms and hence identify suit-
able mathematical descriptions of the FCGR dependence on the relevant parameters [Lundström,
2014], [Storgärds, 2015]. Indeed, the partition given in eq. (3.6) enables the possibility to empha-
size the possible interaction mechanisms (cross-effects) between both fatigue and creep processes.
This latter point represents a major aspect to be included in a proper creep-fatigue crack growth
modeling.
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Such a method has already been used at the ONERA during the work of [Fessler, 2017]. More re-
cently, [Mrozowski, 2020] applied a similar decomposition method when studying the dwell-fatigue
crack growth in both coarse- and fine-grained AD730™ at 750◦C. To be applied, the creep process
first needs to be active during the dwell-period. Then, during the dwell-periods, since there might
be only a slight potential drop (PD) which might induce a poor quality of the measurements, it is
thus of primary importance to ensure the good insulation of the electrical set-up in order to rely
on this decomposition scheme.
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(b) Partition between creep and fatigue contribution to
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Figure 3.13: Partition between cycle- and time-dependent contributions to crack growth during dwell-
fatigue crack propagation testing.

As a matter of example, the creep-fatigue crack growth partition during a 10-300-10 s loading cycle
at 550◦C is given in Fig. 3.13. The contribution to crack advance are reported in Fig. 3.13a. In
Fig. 3.13b, one can remark a slight decrease of the crack length upon unloading/reloading. Such
a decrease is directly associated with the unloading phase for which the PD is varying due to the
contact of the crack lips. Moreover, it has been specified in sub-sect. 3.1.1.4 that the DCPD highly
depends on the inter-probes distance. Choice has been made to acquire the PD only at the peaks
of the loading signal to account for the elongation of the specimen upon loading and avoid any
bias in the measurements (V0 being also evaluated at a peak of the loading signal).

In Fig. 3.14a, the cycle- and time-dependent contributions of the crack growth are extracted and
plotted at 550◦C, with a loading signal of 10-300-10 s under σ = 400 MPa and R = 0.05. From
the Fig. 3.14a, one can notice that the fatigue contribution is limited for low ∆K values, hence
suggesting a far larger contribution from the time-dependent part of the loading cycle. As long
as ∆K increases, the time-dependent contribution decreases and is counterbalanced by the cycle-
dependent contribution. Such a trend of larger fatigue contribution on 10-300-10 s loading cycles
at 550◦C has already been observed in other studies conducted on DA Inconel 718 [Gustafsson
et al., 2011b], [Fessler, 2017], but generally for the whole range of ∆K .

Similar plot at 700◦C is reported in Fig. 3.14b. The trend is not the same and seems to be depen-
dent on the dwell-time. For a dwell-period of HT = 300 s and from low to large values of ∆K ,
the fatigue contribution is greater than that of the dwell period. For high values of ∆K , the time-
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(b) Creep-fatigue partitioning at 700◦C (10-HT-10 s).

Figure 3.14: Cycle- and time-dependent contributions to DFCG rates in FG AD730™ at 550 and 700◦C
under a 10-HT-10 s waveform with σ = 400 MPa and R = 0.05 (spec. S4-F1, S4-F3 & S4-F4).

dependent contribution starts becoming predominant over the cycle-dependent one, Fig. 3.14b.
This might be explained by a greater extent of oxidation over the crack-lips, since the crack is
even more opened as it grows. A similar results has been reported by [Carbou, 2000] in N18 at
750◦C for high values of ∆K . Nevertheless, for the vast majority of the test, a larger increment
of the crack extension occurs upon unloading/reloading. Such a result is also clearly noticeable in
Fig. 3.13b. On the contrary, for a longer dwell-time of HT = 3000 s, the time-dependent creep
contribution is predominant, see Fig. 3.14b. Still for HT = 3000 s, as long as ∆K increases, the
fatigue contribution decreases while the creep one grows, Fig. 3.14b.
For the FG microstructure of AD730™, it seems that there is a dwell duration threshold below
which cycle-dependent contribution prevails, whereas for a sufficiently long duration (HT > 300 s)
and high ∆K values, the time-dependent contribution becomes predominant, Fig. 3.14b. Com-
plementary results on both coarse- and fine-grained AD730™ can be found in [Mrozowski, 2020].

It is finally interesting to compare the cycle-dependent (fatigue) contribution of the FCG rate dur-
ing dwell-fatigue testing with that of the pure fatigue tests. This way, the (possible) creep-fatigue
interaction can be highlighted. At 550◦C, such a comparison is reported in Fig. 3.15a. At a given
∆K value in the linear Paris regime (since FCG is expected to be modeled in this Ph.D. project),
say 80MPa.√m, one can notice only a slight difference between each of the fatigue crack growth
rates (∼ 1.2e-6 vs 1.5e-6 m/cycle). Time-dependent effects (creep and oxidation processes) are
hence not so pronounced and have only a slight impact on the FCG rate. Such a result is in
agreement with the fact that the material behavior is not so affected by the temperature rise up
to 550◦C, as compared with its behavior at 20◦C (cf. Chap. 2 on this point).
Moreover, for the modeling prospect, such an aspect allows for creep-fatigue interaction effects
to be neglected at 550◦C. In other words, the creep mechanisms are not supposed to have a sig-
nificant effect on the fatigue ones, so any coupling terms can be neglected.

Increasing the temperature to 700◦C has evidenced an increase in FCG rates, Fig. 3.10, probably in
close relation with a change in the crack growth governing mechanisms. The comparison between
pure fatigue contributions from dwell-fatigue loading schemes with that of a pure fatigue test is
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given in Fig. 3.15b. Such a plot reveals a larger contribution of the cycle-dependent contribution
to FCG rate if an hold period is applied. Indeed, at a given ∆K value (say 80MPa.√m), the fa-
tigue contribution changes from ∼ 3.7e-6 m/cycle in pure fatigue to 1.1e-4 m/cycle in dwell-fatigue
loading. Thus, successive holding periods have had a significant effect on the loading/unloading
contribution to crack advance. Moreover, temperature- and time-related effects were reported to
be more noticeable on the material behavior at 700◦C (cf. Chap. 2). It seems hence reasonable to
argue that introducing holding-times over a sinusoidal loading scheme results in an increase in the
cycle-dependent contribution to crack growth rate.
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(b) Fatigue contributions to DFCG at 700◦C.

Figure 3.15: Comparison of the cycle-dependent contributions to DFCG rates in FG AD730™ at 550 &
700◦C under a 10-HT-10 s waveform with σ = 400 MPa and R = 0.05.

For tests performed at 700◦C, it seems reasonable to consider the probable presence of a damaged
zone ahead of the crack-tip associated with both creep and oxidation damaging mechanisms, as
already reported in the work of [Gustafsson et al., 2011a], [Storgärds, 2015], [Fessler, 2017], [Mro-
zowski, 2020] on Ni-based superalloys. Such a damaged zone created upon dwell-holding results in
the embrittlement of the grain boundary (GB) in the vicinity of the crack-tip, hence lowering the
fracture toughness. Thus, there is a unilateral interaction process due to creep mechanisms over
the fatigue contribution upon dwell-fatigue testing. As evidenced earlier in Fig. 3.14b, the higher
the temperature and the longer the holding period, the larger the time-dependent contribution.
In addition, the comparison between the 300 & 3000 s holding periods in Fig. 3.15b reveals an
increase of the fatigue contribution from ∼ 1.1e-4 to 4.4e-4 m/cycle (for a given SIF value, say
80MPa.√m). The damaged zone is more prone to develop for longer dwell-periods, resulting in a
greater lowering of the fracture toughness during the transients of the trapezoidal loading spectrum.
All these aspect argue for the introduction of coupling terms in the modeling work. Indeed,
creep-fatigue interaction has been evidenced to be significant at 700◦C. As a result, creep and
fatigue damage mechanisms are expected to interact each others.

Now, considering the split of the global crack growth rate given in eq. (3.6), the time-dependent
(creep) contribution during HT can be estimated with the following relation based on the work
from [Gayda et al., 1988]:

da
dt = 1

HT . da
dN

∣∣∣∣
HT

(3.7)
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Using the eq. (3.7), the contribution related to time-assisted processes for DFCG tests with differing
dwell-times can be compared each others. To this end, the Fig. 3.16 depicts the time-dependent
parts of the DFCG tests in terms of da/dt = f (Kmax) with HT = 300 and 3000 s, respectively.
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Figure 3.16: Time-dependent contribution to DFCG
rate in FG AD730™ at 700◦C under a 10-HT-
10 s waveform with σ = 400 MPa and R = 0.05
(spec. S4-F3 & S4-F4).

In Fig. 3.16, one can see that the time-
dependent contributions to global DFCG
rates are nearly identical, no matter the
dwell-time. An almost stable creep-
dominated crack growth process seems to
be evidenced thanks to this plot, which is
characterized by a close slope between the
two curves. Further tests with longer dwell-
periods must be performed in order to con-
clude about any steady-state creep process
with increasing the dwell-time [Dahal et al.,
2012], [Fessler et al., 2017].
In addition, pure creep tests should be
of great interest in order to study possi-
ble differences between both dwell-fatigue
and pure creep tests, as done by [Gustafs-
son, 2012] & [Fessler, 2017] for Inconel
718 and by [Thébaud, 2017] for AD730™.

Finally, this last sub-sect. 3.1.2.2 has served for modeling purposes since creep-fatigue interac-
tion effects have been emphasized and discussed. Almost inactive at 550◦C, this interaction has
been seen to be more pronounced at 700◦C for which standard modeling assumption will probably
fail. Additional features will have to be included in the model to well account for this cross-effects.

3.1.2.3 Mesoscopic analysis

In the previous sub-sect. 3.1.2.1, the macroscopic data have been studied in order to evidence
the crack growth behavior of the FG AD730™ under pure fatigue and dwell-fatigue loading con-
ditions. However, owing to the fact that the Johnson formula, see eq. (3.1) in sub-sect. 3.1.1.4,
remains valid as long as the crack front is straight along the through-thickness of the specimen,
the macroscopic data studied in sub-sect. 3.1.2.1 may be slightly distorted due to such underlying
hypotheses used for crack growth monitoring.
For high temperature testing, it has been proven in previous studies conducted on several Ni-
based superalloys that a change in crack front shape may occur, see e.g. [Gourdin, 2015] in René
65, [Antunes et al., 2001], [Gustafsson, 2012], [Lundström, 2014] in Inconel 718, [Doremus, 2014]
and [Fessler, 2017] in DA Inconel 718, as well as by [Mrozowski, 2020] in AD730™. In this latter
work, the author reported a greater propensity of the fine-grained microstructure of AD730™ to
tunneling effect compared to its coarse-grained counterpart. [Fessler, 2017] also evidenced a close
relationship between the crack front morphology and corresponding crack growth rates. It thus
seems interesting to analyze the crack front geometry as well with the fracture surface topography
so as to emphasize on these points. To this end, fatigued specimens were then monotonically
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loaded up to quasi-static failure at room temperature, so as to have a look at the fractured sur-
faces through a so-called mesoscopic scale.

Fractography and morphology of sectioned fracture surfaces

Fracture surfaces of one half of the FCG SEN-T testing specimens have been observed using a
Keyence VHX 2000 numerical optical microscope (see Keyence website for details), Fig. 3.17a. Spe-
cific studied features, namely the crack front and crack propagation plane are schematically demon-
strated in Fig. 3.17b, where the monotonic fractured zone will not be studied in further details.

fractured 
specimen

(a) Fracture surface observation
using an optical microscope.

Crack front

Crack propagation plane

Monotonic fractured zone

(b) Distinction between crack front and crack propagation plane on
a SEN-T fracture surface.

Figure 3.17: Fracture surface observation using a Keyence numerical optical microscope.

In Fig. 3.18a, the fracture surface of the S4-7 specimen fractured under pure fatigue condi-
tions at 20◦C is reported. The plot gives the FCG rate as a function of the crack length.
The fracture surface of the sample is also plotted on the graph in order to establish a par-
allel between the crack growth rates and the morphology of both the crack front and plane.

(a) Crack growth test data and corresponding fracture sur-
face of the spec. S4-7 at 20◦C - R = 0.05.

Stage II crack
growth

Flat-to-slant
transitions

Final crack front

(b) 3D reconstruction of the fracture surface of the
spec. S4-7 at 20◦C - R = 0.05.

Figure 3.18: Crack growth rate under pure fatigue loading at 20◦C - R = 0.05 with corresponding
overview of the fracture surface and topological reconstruction (spec. S4-7).

https://www.keyence.fr/
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The accuracy of the DCPD technique has been said to be ensured as long as the crack front is
nearly straight in the through-thickness of the specimen. One can see, thanks to the accuracy of
the estimated crack length through the DCPD method, Fig. 3.18a and optical observations (as well
with heat tints at high temperature) that the crack front is nearly straight along the propagation
process. Paying attention to the crack plane morphology in Fig. 3.18b, one can notice that the
crack propagation plane admits symmetrical shear lips apart from the flat center zone. Such a
process initiates from a ' 3 mm up to final crack length. The central flat zone is mainly related
to the Paris regime of stable crack propagation.

Increasing the temperature to 550◦C for self-similar testing conditions results in higher crack growth
rates and shorter lifetime. At elevated temperatures, both desired beachmarks (heat tints) as well
as colored oxide scale formation ease the visibility of the crack front, see Fig. 3.19. The crack front
can be seen nearly straight (see heat tints) hence indicating a through-thickness quasi-homogeneous
crack growth. The colored zones on the crack plane correspond to the fatigue crack growth re-
gion, whereas the brightest one is associated with the final quasi-static failure of the specimen upon
monotonic tensile loading at room temperature, Fig. 3.19a. In this case, symmetrical shear lips ap-
pear once reaching a length of a ∼ 3mm. As long as the crack plane remains almost flat, the propa-
gation follows the stable Paris regime, Fig. 3.19a. Once the center flat zone vanishes, giving way to
shear lips through a flat-to-slant transition, Fig. 3.19b, the crack propagation becomes unstable and
FCG rates approach the unstable fracture regime evidenced by the knee in the da/dN−∆K curve.

(a) Test data as opposed to fracture surface.

fl

Stage II
crack growth

Final crack front

Flat-to-slant
transition

(b) 3D reconstruction of the fracture surface.

Figure 3.19: Crack growth rate under pure fatigue loading at 550◦C - R = 0.05 with corresponding
overview of the fracture surface and topological reconstruction (spec. S4-2).

Almost similar results have been reported for the pure fatigue case at 700◦C. For brevity reasons,
corresponding plots are reported in the appendices, see Fig. E.2b page 281.

Dwell-fatigue:

Fracture surfaces have also been observed for dwell-fatigue crack growth tests using the Keyence
VHX digital optical microscope. Here again, for the sake of brevity, all the results are not discussed
but only the main tendencies. Additional results are reported in the appendices, see sect. E.2.
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At 700◦C with the application of a dwell-period, both the crack front and crack plane morpholo-
gies evolve. The crack front is hence no longer quasi-straight but exhibits a much pronounced
curvature, Fig. 3.20. Such a result is in opposition to the case at 550◦C (see Fig. E.8a in the
appendices). The ellipsoidal shape of the crack front in Fig. 3.20 and Fig. E.8b is referred to as
crack tunneling effect. It corresponds to a faster crack propagation in the bulk (mid-thickness) of
the specimen compared to that at both free edges, hence leading to the formation of a “thumb-
nail shaped” crack front profile. Such a crack growth feature is often seen in stable tearing crack
growth tests on specimens made of ductile materials and containing through-thickness cracks with
initially straight crack front [Zuo et al., 2004]. The origin of such phenomenon is not yet fully
understood, and possible explanations will be given in the sub-sect. 3.1.3 later on.
Paying attention to the Fig. 3.20 and Fig. E.8b for the same testing conditions but with an increas-
ing dwell-time from 300 to 3000 s, a more pronounced curvature of the crack front for the longest
holding period is revealed. As a consequence, the tunneling effect seems to be mainly related to
thermal- and time-assisted effects.

Nevertheless, such a curvature of the crack front makes the Johnson assumption no longer valid. As
a consequence, the final crack length seems to be misestimated, see the blind items in Fig. 3.20a.
It has already been reported that final crack sizes estimated from the DCPD method during DFCG
tests often do not agree with optical measurements from the post-test fracture surface [Fessler
et al., 2017], [Tarnowski et al., 2018b]. In such cases, guidance in [ASTM, 2019] suggests a
correction factor to be applied taking into account a linear interpolation, which results in better
final crack length estimation [Tarnowski et al., 2018b]:

a =
[

(af − a0)
(apf − a0)

× (ap − a0)
]

+ a0 (3.8)

where a, a0 and af are the instantaneous, initial and final crack lengths, respectively, the latter
being estimated thanks to optical measurements, and ap and apf the actual and final crack length
estimated using the DCPD method.

(a) Test data as opposed to fracture surface.

Flat-to-slant
transition

Final crack front

Stage II crack growth

Unstable
failure

(b) 3D reconstruction of the fracture surface.

Figure 3.20: Crack growth rate under dwell-fatigue loading at 700◦C - R = 0.05 - HT = 300 s with
corresponding overview of the fracture surface and topological reconstruction (spec. S4-F3).
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Applying such a corrective factor results in a better agreement between estimated and real crack
lengths, see Fig. 3.20 (as well with Fig. E.8b in the appendices). Nevertheless, a slight difference
still subsists in terms of final crack length. Indeed, it is specified in [ASTM, 2019] that such a
correcting method remains valid as long as the difference between the crack extension estimated
by the PD technique and that gained through optical measurements on fracture surface does not
exceed 15%. In the case of the spec. S4-F3 (HT = 300 s), the difference was reported to be
of 22.5%. Such a discrepancy hence results in poor corrective effect of the linear interpolation
method suggested by eq. (3.8). However, final crack length is closer to real value, thus confirming
the ability of this method to refine the raw results.

Crack front
tortuosity

Figure 3.21: Details of the
crack front tortuosity on the
spec. S4-F4 at 700◦C.

In parallel, another aspect is noticeable on the frac-
ture surfaces. Apart from the whole crack front
curvature, one can also notice its so-called tortuos-
ity. Such a tortuosity is clearly visible when look-
ing at a detailed view of the crack front, especially
at mid-thickness, see e.g. Fig. 3.21. This aspect seems
to be present at elevated temperatures as long as a
dwell-time is imposed during the loading cycle. It
should be noted that the fracture surfaces under pure
fatigue loading, such as those shown in Fig. 3.19a &
Fig. E.2b, do not reveal any tortuosity of the crack
front, the latter being relatively uniform across the width
of the sample. The occurrence of tortuous crack front
seems to be associated with time-dependent mechanisms.

The introduction of a dwell-period under compression should be of great interest so as to better
understand the driving mechanisms responsible for both tunneling and tortuosity effects. To this
end, the Fig. 3.22 gives the FCG rates, the fracture surface as well as the topographic recon-
struction of a specimen subjected to dwell-fatigue testing, but with a compressive dwell period
at minimum stress level, the load ratio being equal to R = −1. In Fig. 3.22a, it is interesting
to notice that the crack front is almost straight, with no significant tunneling effect. Moreover,
the crack front seems to be relatively even with no evidence of tortuosity effects. Such facts
hence suggest the inhibition of oxidation processes at the crack-tip due to crack closure during the
compressive holding periods. Moreover, the dwell-period being in a compressive stress state, the
crack should be closed throughout the sample thickness, thus limiting access to the crack-tip to
aggressive elements causing oxidation. Finally, creep-induced cavity growth should also be limited
in case of compressive holding period.

One can also notice in Fig. 3.22 the flat zone where stable (stage II) crack propagation occurs.
This zone seems to have a less pronounced roughness compared to that of Fig. 3.20 under tensile
dwell-times for the same holding period of 300 s. The negative load ratio in the case of spec.
S4-F6, Fig. 3.22, may result in a greater surface matting for the crack lips, hence limiting their
roughness. Finally, as the crack front is fairly straight, the crack length estimation through the
DCPD method remains valid, according to the matching between macroscopic data and fracto-
graphic observations, Fig. 3.22a.
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(a) Test data as opposed to fracture surface.

Final crack front

Unstable
fracture

Stage II
crack growth

(b) 3D reconstruction of the fracture surface.

Figure 3.22: Crack growth rate under dwell-fatigue loading at 700◦C - R = −1 - HT = 300 s with
corresponding overview of the fracture surface and topological reconstruction (spec. S4-F6).

Topographic analysis of the crack path

The Keyence VHX numerical microscope is particularly useful because it enables for 3-dimensional
(3D) reconstructions of fracture surface topographies, see e.g. Fig. 3.19b. Once the surface to-
pography is built, both crack path and trajectories can be analyzed [Esnault, 2014], [Abecassis,
2017], [Trabelsi, 2019].

In Fig. 3.18b, the flat-to-slant transition has been observed at 20◦C, thanks to the 3D-topographical
reconstruction of the fractured surface. The value of the twist angle of the slant zone with respect
to the load direction was estimated to 49◦. One can also notice that shear lips are symmetrical
with respect to the mid-plane of the crack front.
Increasing the testing temperature results in an asymmetrical flat-to-slant transition at 550◦C,
Fig. 3.19b (as well as 700◦C, see Fig. E.3b in the appendices). For high temperature fatigue crack
growth testing, similar crack profiles were revealed. Twist angles for the flat-to-slant transition
were reported to equal 56◦ at 550◦C (resp. 48◦ at 700◦C).

(a) Transverse cross-section.

notch
y

xz

(b) Through-thickness topographical profiles.

Figure 3.23: Transverse cross-sections and topological profiles of a SEN-T specimen using the Keyence
numerical microscope (spec. S4-F1).

Once the 3D-surface reconstruction is performed, one gets a cloud of points associated with the
topographic data of one side of the fracture surface, consisting in (x , y , z) triplets where x de-
notes the distance from the notch root along the specimen width, y the position in depth and
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z the height from the notch plane, Fig. 3.23b. Such data can be extracted to be used during
a post-treatment. This way, longitudinal and transverse cross-sections have been extracted at
different times of the propagation process in order to analyze in a more accurate way the crack
growth direction, see Fig. 3.23.

With the help of the three-dimensional reconstruction of the topography obtained through digital
optical microscopy, it becomes possible to evaluate as accurately as possible the so-called twist
angle of the fracture surfaces [Esnault, 2014], [Abecassis, 2017], [Trabelsi, 2019]. The knowledge
of this angle enables the possibility to quantify the so-called flat-to-slant transition during the
fatigue crack growth process (see sub-sect. 1.3.3 for more details).

4 mm
z

y x

Figure 3.24: Twist angle θ.

The twist angle θ corresponds to the angle between each side
of the specimen with respect to the thickness at a given ab-
scissa in the case of single (or double) shear lip(s), see Fig. 3.24.
Such an angle characterizes the flat-to-slant transition. For each
position of the crack-tip, the flat-to-slant transition can be es-
timated at a given abscissa plotting the twist angle θ along
the specimen width [Esnault, 2014], [Abecassis et al., 2019].
The computation of the twist angle can be determined using the
derivative of the transverse z(y) height profile:

Twist angle: θ(y) = arctan
(

dz
dy

)
(3.9)

From the Fig. 3.25a, one can easily see that the longitudinal crack profile along the crack growth
direction x exhibits a flat-to-slant transition. The mid-thickness of the sample remains flat, at least
up to a crack length of a ≤ 4 mm, see Fig. 3.25a, and the profile then starts becoming disturbed.
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Figure 3.25: Transverse crack profiles z(y) and corresponding twist angles θ(y) at given through-thickness
positions for SEN-T specimens under pure fatigue conditions at 550◦C (spec. S4-2).
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The transverse profiles in Fig. 3.25a along the specimen thickness allow for the estimation of the
local twist angles, Fig. 3.25b. Note that these transverse profiles have been approximated thanks to
a 4th degree polynomial fit (once plotted, if no particular mention is made, the raw data are used).
One can see in Fig. 3.25a that the longer the crack length, the more disturbed the crack front
profile. The asymmetrical flat-to-slant transition is clearly noticeable on these transverse profiles,
the latter showing some “ridges” and “valleys” for the longest crack lengths. The change from
double (4mm) to single (6 → 8mm) transverse profiles evidences the change from twin to single
shear lips, Fig. 3.25a (which can be confirmed using the Fig. 3.19b). Then, local twist angles follow
the crack front morphology with greater values along the slanted zones, Fig. 3.25b. The value of
45◦ is reached once the crack length equals 4mm in the case of the S4-2 specimen. Such a result
may also be retrieved in Fig. 3.19b. The peak value for the twist angle θ is not reached at the free
surfaces but somewhat inside the specimen. It seems to be around 60◦ for the longest crack lengths.

For the sake of clearness, other temperatures are not detailed here. Associated results have been
reported in the appendices, see Fig. E.4 (fatigue 20◦C) page 282, and Fig. E.5 page 282 (fatigue
700◦C). However, one can simply notice that increasing the testing temperature from 550 to 700◦C
in the case of pure fatigue loading leads approximately the same results. On the contrary, decreas-
ing the temperature to 20◦C leads to symmetrical flat-to-slant transition.

Dwell-fatigue:

For dwell-fatigue cracking, as evidenced in Fig. 3.20a (and Fig. E.8b in the appendices), in-
creasing the holding period from 300 to 3000 s (spec. S4-F3 vs S4-F4) results in the same fractured
surfaces with asymmetrical flat-to-slant transition at the very late phase of the cracking process.
In opposition, the 3D topography of the test including a compressive holding period of 300 s (spec.
S4-F6) at −400 MPa clearly confirms the flat crack growth for the whole cracking process. Tun-
neling effect as well as flat-to-slant deviation(s) are not observed in such a 3D view, Fig. 3.22b.
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Figure 3.26: Transverse crack profiles z(y) and corresponding twist angles θ(y) at given through-thickness
positions for SEN-T specimens under dwell-fatigue conditions at 550◦C (spec. S4-F1).
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In Fig. 3.26a (resp. Fig. E.10a), the transverse height profiles z(y) of the crack front for the
550◦C (resp. 700◦C) dwell-fatigue cases are reported. In both cases, the crack bifurcation results
in symmetrical slanted areas. Indeed, the height profiles for each longitudinal position x evidence
symmetric properties with respect to the mid-thickness of the specimen, that is y = 0.2 mm. The
flat zone (x ∈ [0.3 − 4.0] mm) is hence followed by symmetrical shear lips apart from the mid-
thickness plane (x > 4.0 mm), that is, from each free side of the sample, with the normal flat area
getting smaller as long as the crack grows, Fig. 3.26a.

Finally, similarly to the pure fatigue cases, the local twist angles can be deduced from the poly-
nomial fits of the transverse profiles of the crack, see Fig. 3.26b (and Fig. E.10b page 285 in the
appendices). At 550◦C under dwell-fatigue conditions, due to symmetry properties of the shear lips,
opposite twist angles in the slanted areas are reported, see Fig. 3.26b. Similarly to the pure fatigue
cases, the peak values of ∼ 50◦ for the twist angles are found somewhat within the specimen.
Contrarily to the pure fatigue case, see Fig. 3.25b, symmetric flat-to-slant transition is observed
in creep-fatigue loading conditions.

As done for the pure fatigue loading cases, additional plots are given in the appendices, see Fig. E.10
and Fig. E.11 (dwell-fatigue 700◦C) page 285, so as for a comprehensive review on each specific
specimen to be carried on.

Overall review:

From these mesoscopic analyses, one can finally conclude about the occurrence of flat-to-slant
transition process under both pure fatigue and dwell-fatigue loading conditions at low to elevated
temperatures in FG AD730™. Such results clearly evidence the presence of mixed loading modes,
despite the pure mode I loading scheme. The crack first propagates following the opening mode
(mode I). Then, a progressive contribution from out-of-plane shear (mode III) is finally noticeable
once the crack path admits some roughness, hence suggesting a close interaction between the crack
and the microstructure. Such a mode III-induced flat-to-slant transition is assumed to be correlated
with high plastic strain levels together with damage mechanisms [Trabelsi, 2019]. Such observa-
tions are fairly well known for ductile tearing problems [Zuidema and Blaauw, 1988], [Besson,
2010], [Besson et al., 2013], [Maurel et al., 2020]. The close interaction between crack path and
material microstructure is about to be discussed in the next sub-sect. 3.1.2.4 using micro-graphic
observations of the fractured surfaces.

3.1.2.4 Microscopic observations

The purpose of this section is to identify the main cracking mechanisms expected to be observed
in Ni-based superalloys subjected to high temperature cracking under cyclic loading schemes. To
this end, Scanning-Electron Microscope (SEM) views of the fracture surfaces have been exploited.

Post-failure SEM observations (using the secondary electrons for topographical viewing) were car-
ried out in order to determine the main failure modes governing the crack growth process as well
as the temperature effect. To this end, some specific Regions of Interest (ROI) have been selected
in order to put a focus on particular zones of the crack path, Fig. 3.27. Secondary electron images
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were produced using an acceleration voltage of 5 kV at magnifications of 500, 1 000 and 2 000.
The typical working distance was revealed to be of ∼ 15-20mm.

Figure 3.27: Schematic view of the SEM observations zones on fractured SEN-T specimens after fatigue
crack growth testing. E and M is for Edge and Middle, respectively.

In order to compare analyses from one specimen to another, observations have been carried out at
approximately identical ∆K values. This was done as much as possible, depending on the final
crack length and visible ROI.

20◦C:

ΔK ≈ 50 MPa√m

striations

Figure 3.28: a ' 3.0mm / ∆K ' 50 MPa√m.

In Fig. 3.29, the SEM micrographs of the S4-
7 specimen tested at 20◦C are reported. One
can see two zones along the crack path for
which fracture modes can be analyzed, namely
at ∆K ' 50 and 132MPa√m. In Fig. 3.28 and
Fig. 3.29b, secondary micro-cracking can be no-
ticed as indicated with red arrows. Moreover, in
Fig. 3.29a, some typical stage II fatigue stria-
tions associated with Paris crack growth regime
are noticeable at a scale lower than average grain
size, hence evidencing a transgranular mode of
failure. A crude evaluation of the inter-striations
spacing and resulting FCG rate has been con-
ducted following the guidelines from [Pelloux,
1970]. To this end, 13 fatigue striations were
estimated within a 5µm width, see Fig. 3.29a,
hence yielding in a FCG rate of about 3.85e-7 m/cycle. This is in relatively good agreement with
the estimation provided by the DCPD technique associated with data extraction processes detailed
in sub-sect. 3.1.1.4 which gives a FCG rate of about ∼ 3.e-7 m/cycle.
In Fig. 3.29b, the fracture surface is different from that of the Fig. 3.28 for lower SIF values. The
topography of the Fig. 3.28 evidences a predominantly transgranular mode of propagation whereas
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a greater extent of intergranular fracture is noticeable in Fig. 3.29b. The apparition of a slight grain
boundary decohesion may be the manifest of the transition from transgranular to mixed-mode of
crack propagation. Finally, observations carried out in the last crack front have revealed a more
faceted-like fracture surface with the apparition of dimples. The fracture mode is hence mainly
ductile with mixed intergranular and transgranular features.

ΔK ≈ 50 MPa√m

              5 µm

~ 13 striations

(a) Close-up view on Fig. 3.28.

ΔK ≈ 132 MPa√m

(b) a ' 7.0mm / ∆K ' 132 MPa√m.

Figure 3.29: SEM fracture surface analyses for the S4-7 specimen subjected to pure fatigue at 20◦C
(1Hz, 400MPa, R = 0.05). Identification of the main cracking mechanisms.

550◦C:

ΔK ≈ 50 MPa√m
borides

Figure 3.30: a ' 3.0mm / ∆K ' 50 MPa√m.

The FCG curve as well as some SEM obser-
vations for the specimen fatigued at 550◦C are
given in Fig. 3.31. In Fig. 3.30 to Fig. 3.31b,
predominant transgranular fracture mode is no-
ticeable. The apparition of a thin oxide scale due
to high temperature testing makes the fatigue
striations less visible. One can also notice the
initiation of multiple secondary cracks, almost
perpendicular to the crack growth direction as in-
dicated with red arrows. Such secondary cracks
may be representative to some degree of GB de-
cohesion, hence suggesting the competing effect
of intergranular fracture mode. In Fig. 3.31a, al-
most similar fractographical conclusions can be
drawn that are, the occurrence of mixed fracture
modes with both intergranular and transgranular
features. Some fatigue striations are also visible, though a bit masked by the oxide scale.
As long as the SIF range increases, the topography of the fracture surface tends to admit more
intergranular features with the apparition of locally gathered small dimples typical of ductile-like
mode of failure, see Fig. 3.31b. The slanted zone (not depicted here), ahead of the crack front,
has evidenced some faceted-like fracture surface with secondary cracks.
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ΔK ≈ 115 MPa√m

striations

(a) a ' 6.5mm / ∆K ' 115 MPa√m.

ΔK ≈ 132 MPa√m

dimples

striations

striations

(b) a ' 7.0mm / ∆K ' 132 MPa√m.

Figure 3.31: SEM fracture surface analyses for the S4-2 specimen subjected to pure fatigue at 550◦C
(1Hz, 400MPa, R = 0.05). Identification of the main cracking mechanisms.

700◦C:

EDM notch

Crack-initiation

Pre-cracking

Figure 3.32: SEM fracture facies for the
spec. S4-F2 under pure fatigue conditions
at 700◦C evidencing a characteristic stage II
crack propagation regime.

Increasing the temperature up to 700◦C results in a
higher extent of oxidation, hence making the obser-
vation of fatigue striations a difficult task. Look-
ing at SEM micrographs with a lower magnitude,
Fig. 3.32, one can distinguish the three main ini-
tial stages of the crack growth process starting
with the crack initiation from the EDM U-notch
and followed by the pre-cracking phase prior to the
crack growth step. One can notice the change in
crack propagation mode from transgranular crack-
initiation at high stress level to progressively mixed
inter- and trans-granular crack propagation mode
upon pre-cracking and subsequent crack propaga-
tion. At 700◦C, the main results are: the presence
of a vast majority of intergranular features, espe-
cially at the mid-thickness of the specimen, with
dispersed transgranular zones. Ductile-like features
such as small dimples are also noticeable at a finer
scale, hence suggesting a more ductile-like fracture mode close to the edges. The occurrence of
mixed crack modes is hence validated. Supporting results are given in the appendices, see Fig. E.6.

In his work on FG AD730™, [Mrozowski, 2020] reported a dominating intergranular crack propaga-
tion mode at 750◦C under both fatigue and dwell-fatigue conditions. For a lower temperature, [Go-
vaere, 2020] also confirmed the occurrence of intergranular cracking mode at 700◦C on the same
microstructure. The large occurrence of secondary cracking under air confirms this trend.
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Dwell-fatigue:

The same observations have been conducted for the creep-fatigue conditions. To this end,
specific regions at given ∆K values have still been considered in order to ease the comparison
between the two target temperatures of 550 and 700◦C under the same loading conditions (10-300-
10 s, R = 0.05, σ = 400MPa) or for differing dwell-periods and/or load ratio (see the synthesis
of the tests in Tab. 3.3). Note that for the S4-F1 specimen at 550◦C, stress level was increased
up to 440MPa due to crack arrest after pre-cracking.

At 550◦C, the fracture mode is of intergranular-type both in the mid-thickness of the specimen,
as well as at the free surface, Fig. 3.33a. For low ∆K values, the fracture surface at the edge is
brighter than that at the middle, hence suggesting a thicker oxide scale close to the free surfaces of
the sample where oxidizing elements have an easier access to the microstructure. The SEM views
given in Fig. 3.33 evidence the presence of secondary micro-cracks (indicated by red arrows) caused
by grain boundary decohesion. Fatigue striations are less visible compared to the pure fatigue case,
probably because of the deposited oxide layer on both crack surfaces upon dwell-holding. Fracto-
graphic observations at 550◦C in the mid-thickness of the specimen evidence faceted-like surfaces
for the larger ∆K values, see Fig. 3.33b. Such aspects may be associated with twin boundary
decohesion and pseudo-cleavage fracture mode. At the edge of the sample and close to the final
crack front, the presence of some matted surfaces has been reported, probably due to crack closure
mechanisms leading to the contact of the crack lips or shearing mechanisms.

ΔK ≈ 37 MPa√m

striations

(a) a ' 2.0mm / ∆K ' 37 MPa√m - egde.

ΔK ≈ 149 MPa√m

facets

(b) a ' 7.5mm / ∆K ' 149 MPa√m - middle.

Figure 3.33: SEM fracture surface analyses for the S4-F1 specimen subjected to dwell-fatigue at 550◦C
(10-300-10 s, 440MPa, R = 0.05). Identification of the main cracking mechanisms during the stage II
crack propagation regime.

Increasing the testing temperature from 550 to 700◦C results in brighter images (see Fig. E.12
in the appendices, page 286), hence suggesting the preponderance of the oxide layer. Secondary
cracking is also visible in both middle and edge zones, as indicated by red arrows. Grain boundary
decohesion seems to occur, hence leading to intergranular cracking. For the highest ∆K values,
Fig. E.12c & Fig. E.12d, intergranular fracture mode is clearly visible with a more disturbed topog-
raphy (more ridges and valleys). The macroscopic crack growth data evidence an almost stable
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stage II crack propagation regime, which in turn suggests the mode of rupture to be quasi-constant
during the overall crack growth stage. Thus, intergranular fracture mode seems to be predominant
throughout the crack growth process at 700◦C under dwell-fatigue loading. For the sake of brevity,
all the plots have not been detailed in the present chapter but are gathered in the appendices, see
Fig. E.12 page 286.

3.1.3 Conclusions on the fatigue and dwell-fatigue crack growth tests

From the last sub-sect. 3.1.2.1 to sub-sect. 3.1.2.4, both the fatigue and dwell-fatigue crack
growth tests have been analyzed using different length scales. Several aspects have been evidenced
with the help of precise and targeted observations following a three-scales scheme. The macro-
scopic data have been compared to the morphology of both crack front and fracture surfaces at a
mesoscopic scale, prior to final microscopic observations on dedicated zones. This way, the main
failure modes within the FG AD730™ have been emphasized.
The main tendencies to be noticed for these two crack growth testing conditions are as follows:

• pure fatigue tests at 20, 550 or 700◦C result in a nearly straight crack front, hence validating
the use of the Johnson formula for crack length estimation. No crack front tortuosity has
been observed for cycle-dependent crack growth, the latter resulting in even crack fronts;

• tunneling effect associated with a differential in terms of crack propagation rates between
the bulk and the free surfaces of the specimen has been seen noticeable when introducing a
dwell-period over pure fatigue loading conditions at the maximum load level. The resulting
crack front exhibits a curved-shaped morphology as well with tortuosity;

• the longer the dwell-period, the more pronounced the crack front curvature and tortuosity.
The latter is assumed to depend on local interactions between environmental effects, local
stress state and microstructure;

• the introduction of a compressive dwell time over a pure fatigue loading signal disables the
crack front tunneling effect as well as crack front tortuosity. Creep and oxidation processes
hence seem to have been alleviated during the compressive dwell period;

• flat-to-slant transition arises from closure-induced shear lips development at the free edges
of the specimen. The crack growth process hence evidences mixed mode loading associated
with both normal opening and out-of-plane shear loadings;

• the three-dimensional topographical reconstruction of the fracture surfaces allows for the
analysis of transverse crack front profiles and enables the computation of local twist angles,
hence emphasizing on the flat-to-slant transition;

• from a microscopic point of view, pure fatigue loading conditions yield mixed mode crack
propagation with both transgranular and intergranular features. Secondary cracking can be
related to grain boundaries decohesion. At RT, fatigue striations typically representative of
transgranular cracking can be observed. For the highest temperature of 700◦C, intergranular
fracture mode rules the crack propagation with faceted fracture surfaces, representative of
pseudo-cleavage fracture for the highest ∆K values;

• dwell-fatigue loading schemes result in intergranular crack mode with secondary micro-
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cracking related to grain boundary decohesion. Faceted-like surfaces reflect the pseudo-
cleavage aspects of the fracture process.

Finally, one can notice that for a better visibility of both crack initiation and crack growth pro-
cesses associated with grain boundary or primary precipitates decohesion, SEM observations using
Back-Scattered Electron (BSE) should have been performed. Such a task remains left to do for
further understanding of the underlying mechanisms leading to intergranular cracking.

Discussions on the occurrence of tunneling effect and crack front tortuosity

Even though the tunneling effect has been observed in numerous Ni-based crack growth prob-
lems at elevated temperatures, no clear explanation has yet been found to validate or invalidate
the numerous hypotheses. This is probably due to the fact that such a phenomenon depends on
several intrinsic and extrinsic parameters with possible interactions, making the problem even more
complex.

In the present work, the database is not sufficiently exhaustive for clear conclusions to be drawn.
However, possible explanations can be given. For dwell-fatigue loading conditions, the tunneling
effect might be related to differing viscoplastic activity from the free edges of the specimen to its
mid-thickness, hence suggesting varying crack driving forces. Indeed, tunneling effect has been
shown to occur for the highest temperature of 700◦C, which is also the temperature at which
viscous properties of the material are predominant. Consequently, a larger plastic zone is assumed
to occur at the free surfaces since plane stress conditions are met, as opposed to the mid-thickness
of the sample (plane strain conditions). As a result, retardation effects may be the consequence of
a higher plastic wake in the near surfaces, hence lowering the FCG rates. Moreover, the dwell-time
causes the stress to relax due to the viscous properties of the material. It has been shown in
Chap. 2 that the viscous properties of FG AD730™ seem to be dependent on the viscoplastic strain
level, see sub-sect. 2.2.3.2. A possible scenario would be then to relate the viscoplastic behav-
ior of the material with possible recovery of its hardening properties with increasing strain levels.
The viscoplastic strain levels at the crack front extremities being high, this may lead to greater
viscous-stress relaxation and recovery mechanisms (which could be significant above 550◦C), and
as a result favoring the crack driving forces in the vicinity of the crack-tip compared to the crack
front extremities.

Nevertheless, oxidation effects also seem to play a role in tunneling process since a compressive
dwell-period results in a vanishing tunneling effect. Once the crack is opened, the strong plasticity
in the near surfaces may inhibit the environmental effects, lowering the crack growth rates in these
zones and leading to a “pinned” crack front in the mid-thickness of the sample. On the contrary,
once the crack is closed, there is no detrimental effects associated with the environment, leading
to an almost similar crack front from the edges to the middle of the specimen.

As for the slight tortuosity effect observed at 700◦C, the local mechanical state in close relation
with the microstructure (C&W textured material) might be a probable explanation to the local
differential in FCG rates leading to a tortuous crack front. However, further investigations on this
point are required for a more comprehensive understanding to be accessed.
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Contribution of the micrographic observations to the modeling work

The previously discussed points are mainly related to micro-mechanisms governing the fracture
process. Even though such observations cannot be included in a phenomenological fatigue damage
model dedicated to crack propagation, as intended in the present Ph.D. project, some information
can nevertheless guide the modeling task. The prevalent transgranular crack mode at low tem-
perature under pure fatigue loading conditions allows for the fatigue damage mechanism to be
dominant. In such a case, creep mechanisms can be deactivated. There is no significant creep-
fatigue interaction up to 550◦C, as reported in sub-sect. 3.1.2.2. As long as temperature increases,
creep mechanisms may start to play a role in the crack growth process since intergranular features
have been revealed in sub-sect. 3.1.2.4. This trend has been observed under pure fatigue and is
even more significant under dwell-fatigue. Thus, creep damage must start to be active and acts in
close interaction with fatigue damage. Finally, for dwell-fatigue loading conditions, creep damage
mechanisms of intergranular-type have been noticed to be prevalent and consequently must play
a major role on the crack growth process. In addition, fatigue damage must remains active since
a strong creep-fatigue interaction has been reported in sub-sect. 3.1.2.2. This way, a parallel can
be made from a phenomenological point of view, between microscopic evidences and modeling
features. This parallel is also to be considered in the calibration process for the damage model.
At last, ductile-like features (dimples, cavities) have been observed close to the final crack front.
Since the crack length is sufficiently long at the end of the test, significant plasticity is expected
to occur at the crack-tip, hence leading to ductile damage mechanisms. This latter mechanism,
strongly influenced by the stress state, may also play a role on the fracture process, particularly for
flat-to-slant transition. It is discussed in more details in the next sect. 3.2.

3.2 Cracking behavior of flat specimens of AD730™ under
VLCF loading conditions

During fatigue crack growth, even if small scale yielding conditions are ensured, large plastic
strains are assumed to occur at the crack-tip where the stress fields are (theoretically) singular.
The stress state parameters, which are namely, the stress triaxiality ratio and the Lode param-
eter [Besson, 2010], [Danas and Ponte Castañeda, 2012], are assumed to play a role on both
deformation and fracture modes. Owing to these aspects, mechanisms associated with ductile
fracture are assumed to occur, in combination with both fatigue and creep processes. To get
closer from the target of the present study focusing on cyclic crack propagation, and as a com-
plementary result, it seems interesting to look at the ductile fracture behavior of AD730™ through
Very Low Cycle Fatigue (VLCF) conditions. Such a loading scheme is assumed to be associated
with large plastic strains occurring in the vicinity of the crack-tip during a very limited number of
loading cycles [Dufailly and Lemaitre, 1995], [Voyiadjis et al., 2012].

In the current section, the quasi-static VLCF failure process in FG AD730™ is investigated. First,
the selection of the specimens geometries is discussed in sub-sect. 3.2.1 with corresponding testing
conditions and experimental set-up. Next, in the same manner as for the cyclic tests, macro-
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scopic results are detailed in sub-sect. 3.2.2.1 prior to post-mortem fractographic observations,
sub-sect. 3.2.2.2. In this way, the main crack driving mechanisms as well as fracture modes will
be highlighted and discussed.

3.2.1 Experimental sample and set-up

Even though both monotonic and VLCF fracture tests have been performed on three distinct
specimen geometries in this Ph.D. project, choice has been made here, for brevity reasons, to only
focus on one flat specimen under VLCF conditions. Monotonic results might be given and dis-
cussed for comparison purposes only.

3.2.1.1 Selected geometry

190

21

2.5

R2

(a) FN2 spec. (b) As-machined specimens.

Figure 3.34: Flat FN2 specimens for monotonic
cracking tests on FG AD730™.

In order to reach several levels of het-
erogeneity of the kinematic fields as well
as differing stress states, the specimens
geometries for crack initiation and prop-
agation analysis should be carefully cho-
sen. To this end, some guidelines pro-
vided by previous studies of [Karolak, 2016],
[Bettonte, 2017], [Defaisse, 2018], [Davaze,
2019] dedicated to ductile fracture anal-
ysis helped on the choice of the ded-
icated specimens geometries. For me-
chanical testing, three flats specimens were
designed in order to use a tensile ma-
chine with DIC for test monitoring. As
said, and for the sake of brevity, only
one specimen geometry will be discussed.

Notched specimens, referred to as FN2, see
Fig. 3.34, are relevant for stress triaxiality ra-
tios analysis. It is assumed that the smaller
the notch, the higher the stress triaxiality ra-
tio [Davaze, 2019]. Such a specimen geometry has been considered in this work, with a 2.5mm-
thickness. No negative stress triaxiality ratios were investigated in order to avoid any buckling
situations.

Some specific dimensions and relevant information about such a flat FN2 testing sample are given
in Fig. 3.34. Notches and specific features were obtained through EDM process. The detailed
sketch of this specimen is given in the appendices, see sect. B.3 page 272. Specimens were ex-
tracted from slices of the parallelepipeds through wire EDM, see the cutting plans in Fig. A.2.
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3.2.1.2 Experimental facilities & procedures

Very Low Cycle Fatigue (VLCF) crack growth tests were performed within the ONERA facil-
ities. To this end, a specific testing bench has been used. It consists in a Losenhausen (LOS)
retrofitted servo-hydraulic testing machine with a load-cell capacity of 100 kN. During the testing
process, sample was held via upper and lower MTS 647 hydraulic wedge grips, see Fig. 3.35. For
elevated temperature testing conditions, an induction-heating system was used. For this reason,
the specimen was not in an enclosed environment, resulting in a greater variability of the speci-
men temperature along the useful zone (but homogeneous in the thickness). The inductor was
made of two coils which were located on both sides of the useful zone of the specimen, allow-
ing the Region of Interest (ROI) of the test-piece to be visible in order to perform DIC, see Fig. 3.35.

Upper wedge grip 

AV Manta camera

Induction coils

Green light projector

Pyrometer

(a) Overall set-up for monotonic crack growth test-
ing with associated monitoring equipment.

(b) Close-up view on the specimen upon high temper-
ature testing using induction-heating system and DIC.

Figure 3.35: Testing bench for monotonic and VLCF crack growth testing in FG AD730™ flat specimens
using a 100 kN LOS servo-hydraulic testing machine.

VLCF testing process:

For the loading conditions, a specific testing procedure has been designed for this study. Tests
were performed under displacement control with a prescribed displacement rate of dU/dt =
0.01 mm.s−1, which induced a local strain rate within the range 10−3 − 10−4 s−1. The loading
waveform for displacement U vs. time t was thus triangular. However, in order to prevent any
buckling problem upon cycling, the specimen should be unloaded up to the zero force level. Due to
the fact that the tests were displacement-controlled, the minimum Umin was given by the zero force
level acquired by the load cell. Moreover, in order to settle incremental increasing loading cycles,
the maximum prescribed displacement needed to be estimated from one cycle to the other. This
was done using a dedicated procedure schematically represented in Fig. 3.36. Such a procedure
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aimed at re-evaluating the maximum displacement Umax for each loading cycle from a deviation
δU to the linear portion of the curve F (U), see Fig. 3.36a & Fig. 3.36b. That way, several loading
cycles can be performed with a displacement control to match with the corresponding monotonic
loading curve.
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Figure 3.36: VLCF testing procedure on flat specimens based on monotonic response.

Such VLCF tests were only performed at 700◦C, up to sample failure. The sampling frequency
of the testing machine for data acquisition was set to 10Hz. A synthesis of all the VLCF tests
performed during this research work with corresponding loading conditions is given in Tab. 3.4.

Loading conditions Images Test data

Specimen Loading type T dU/dt Sampling Integration Cycles Failure
[◦C] [mm.s-1] [Hz] [ms] [-] [-]

FN2-1 Monotonic 20 0.025 0.25 50 - 60 - 3

FN2-6 Monotonic 700 0.01 1. 50 - 60 - 3

FN2-5 VLCF 700 0.01 1. 50 - 60 7 3

FN2-2 VLCF 700 0.01 1. 50 - 60 19 3

Table 3.4: Synthesis of the monotonic and VLCF crack propagation tests performed on FN2 specimens
made of fine-grained AD730™ for the present study.
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3.2.2 VLCF fracture tests

The purpose of this sub-section is to discuss the tests on FN2 flat specimens conducted under
(quasi-static) VLCF loading conditions. The global material response is studied for one specific
specimen geometry and the highest testing temperatures of 700◦C. Fractographic observations
using SEM images are then analyzed in order to highlight the main fracture modes.

3.2.2.1 Analysis of the macroscopic responses

In the present work, each test was performed only once, limiting the repeatability of the tests
and the representativeness of the macroscopic response. The plots depicted in the following are
given in terms of force vs. displacement, or if no particular mention is made, in stress vs. strain
(associated with a nominal measure), see eq. (2.1).

The macroscopic stress-strain curves related to the VLCF tests on FN2 specimens at 700◦C are
plotted in Fig. 3.37. Note that the corresponding monotonic curve is also reported for comparison
purposes. For the first test, the deviation from the linear slope was set to δU = 0.1 mm, hence
resulting in a macroscopic response involving 7 loading cycles, see Fig. 3.37a. It can be noticed
that the monotonic curve represents a fairly accurate envelope curve of the VLCF test. The proce-
dure allows to contain the crack propagation phase within a given number of loading cycles. The
ductility of the material can be seen to be limited, with an insignificant strain-hardening phase.
A plateau is evidenced in the curve prior to the softening process up to failure. This softening
phase can be seen to be not so pronounced. Then, the crack propagation stage is very fast, even
unstable, which does not allow for a progressive decrease of the curve to be seen, Fig. 3.37a.
The strain at failure for the VLCF test can be seen to be lower than that of the monotonic test.
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Figure 3.37: Test responses for the FN2 specimen under VLCF tensile loading conditions at 700◦C (spec.
FN2-5 & 2).
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Figure 3.38: Elastic modulus evolution in FN2 sub-
jected to VLCF loading conditions at 700◦C.

Decreasing the deviation from the linear
slope up to δU = 0.02 mm resulted in
an increased number of loading cycles up
to 19, see Fig. 3.37b. The macroscopic
response is still fairly well contained be-
low the stress-strain monotonic envelope,
but with a lower extent of work-hardening.
Comparing Fig. 3.37a & Fig. 3.37b, the
strain at failure can be seen to be close,
no matter the chosen linear deviation δU .

An important point needs to be recalled: the
slope of the linear curve is not updated upon
testing. This means that the slope is always
the same, which does not account for possible
decrease with damage and/or specimen elon-
gation. Such a point may lead to inaccurate estimates of the Umax value. However, as reported
in Fig. 3.38, no clear evolution of the true stiffness is noticeable, hence suggesting the absence
of damage on the elastic response of the material bur rather a damaging process associated with
plasticity. Moreover, since the response is not so ductile, there is no significant difference between
true and nominal measures associated with the reduction of cross-section.
A possible improvement of the testing procedure, although tricky, might rely on a continuous up-
dating of the elastic slope, hence resulting in better estimates for the Umax value and consequently
to an improved predictive capability of the method. A repeatability of the tests would be necessary
to improve the testing procedure and thus draw more accurate conclusions. Nevertheless, it is to
be recalled that the purpose of the present work was not to assess the scattering of the material
behavior but to evidence the main failure (or damage) mechanisms related to crack propagation
under various loading conditions.

3.2.2.2 Micro-graphic observations of the fracture surfaces

Fractographic observations of the VLCF testing specimens have been carried out at ONERA
using a Mira3 Tescan scanning electron microscope. Such observations provide data about the
rupture mechanisms within the material at the microstructural scale. On the considered FN2 spec-
imen, the stress state at failure is supposed to be non-homogeneous on the whole fracture surface.
Thus, by looking at the shape and size of the fracture features (rivers, cavities, dimples...), one
can check which mechanism is dominant between shear and tension.

In Fig. 3.39, a typical reconstruction of the whole fracture surface of the FN2-2 specimen subjected
to VLCF loading is given. Some observation zones with various magnitude are evidenced on it.
Shear lips associated with slant zones are noticeable, particularly in zones 2-4. A chevron-shaped
fracture surface is evidenced, as already demonstrated for the monotonic case, see Fig. E.13. In
Fig. 3.40a, in the slant area of the zone 5, some porosities (indicated by red arrows) are visible
in a transgranular-like pattern. In opposition, the Fig. 3.40b evidences two zones: the lower part
consisting in some voids and transgranular features while the upper one reflects more intergranular

https://www.tescan.com/
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features. The close-up view on the zone 3 given in Fig. 3.40c evidences a similar topographic
aspect. Some secondary cracks are apparent but no distinct cavities.

zone 4 zone 5zone 3zone 2zone 1

FN2-2          VLCF          700°C          mag. x40

Figure 3.39: Assembly of successive SEM views of the fracture surface for the spec. FN2-2 subjected to
VLCF loading conditions at 700◦C with U̇ = 0.01 mm.s−1.

(a) FN2-2 - zone 5-1 - mag. ×150. (b) FN2-2 - zone 5-2 - mag. ×150. (c) FN2-2 - zone 3-1 - mag. ×250.

Figure 3.40: SEM fracture surface analyses for the FN2-2 specimen subjected to VLCF loading at 700◦C
(U̇ = 0.01mm.s−1). Identification of the main cracking mechanisms.

dimples

matted surfaces

(a) FN2-2 - zone 4 - mag. ×300.

cavity necking

(b) FN2-2 - zone 5-3 - mag. ×400.

broken particle

dimples

(c) FN2-2 - zone 3-2 - mag. ×2000.

Figure 3.41: SEM fracture surface analyses for the FN2-2 specimen subjected to VLCF loading at 700◦C
(U̇ = 0.01mm.s−1). Identification of the main cracking mechanisms.
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The analysis in Fig. 3.41a of the zone 4 reveals some thin dimples as well with some matted
surfaces probably due to halves specimen friction. The close-up view given in Fig. 3.41b evidences
some secondary cracking, typical of intergranular mode, as well with some cavity necking. In
Fig. 3.41c some small dimples are noticeable, in a really fine length scale while a broken particle is
clearly noticeable. The fracture surface exhibits mixed fracture modes with both inter- and trans-
granular attributes, hence differing from the monotonic case (see Fig. E.15 in the appendices).
The occurrence of broken particles and small cavities & dimples also evidences the presence of
plasticity-related ductile mechanisms.

3.3 Conclusion of the chapter

In the present chapter, low-cycle fatigue and dwell-fatigue crack growth processes in fine-grained
AD730™ at 20, 550 and 700◦C have been investigated. Using SEN-T specimens subjected to sinu-
soidal and trapezoidal waveforms with varying loading conditions (in terms of extrinsic parameters:
temperature, load ratio, dwell times, tensile/compressive hold...), fracture crack propagation tests
have been performed. Macroscopic data completed with both mesoscopic and microscopic ob-
servations highlighted the main governing mechanisms and evidenced some crack propagation
peculiarities. The smaller scale has enabled to identify the main fracture modes.
The same work has been further performed on flat notched specimens in order to assess the ductile
capabilities of the material under very low-cycle fatigue (VLCF) conditions. Macroscopic data and
fractographic observations have been considered in order to assess the crack growth behavior of
AD730™ at 700◦C under VLCF loading scheme.
To perform all these tests, dedicated testing benches and specific testing procedures have been
developed. In addition, specific instrumentation such as a DCPD technique for crack growth mon-
itoring or a camera for DIC purposes has been used.

Ni-based superalloys are known to be prone to crack front peculiarities including flat-to-slant tran-
sition and crack front tunneling effect. Up to now and thanks to the experimental work, these two
aspects, including crack front tortuosities, have been evidenced in AD730™ under various loading
conditions. Some differences seem to have arisen from the loading mode. However, the underly-
ing mechanisms responsible for such effects are still not clear at the moment and deserve further
investigation. Based on the literature review and the overall observations, closure-induced crack
tunneling effect is assumed to trigger shear lips development along the crack path and favoring
crack twisting. This aspect results in greater crack growth rates at the core of the material com-
pared to its free surfaces.

Fracture modes for the fatigued and dwell-fatigued specimens have been studied thanks to SEM
observations. Mixed cracking modes have been evidenced with both transgranular and intergranular
features, the latter being related to grain boundary and precipitates interface decohesion. Spec-
imens subjected to pure fatigue loading have exhibited a great extent of transgranular cracking
mode whereas dwell-fatigued specimens were more susceptible to develop intergranular patterns.
Temperature effect on time-related processes seem to have been triggered for a temperature above
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550◦C. This aspect was reported to be in accordance with the material mechanical response which
has been proven to significantly change between 550 and 700◦C.
Under VLCF loading conditions, the fracture process generally involves a mixed mode of crack
growth with both tensile and shear stresses. The occurrence of shear lip(s) has been attributed
to plane stress conditions at the free surfaces of the samples. Moreover, shear-dominated failure
mode at 45◦ prevailed for the considered FN2 specimen.

The fracture process, not so ductile for the studied specimen geometry, needs to be related to
some plastic instabilities associated with the localization of the plastic deformation within specific
bands. Such a localization process, well known for thin sheets ductile tearing problems, is generally
assumed to be responsible for the premature failure of the specimens [Besson, 2010], [Chen et al.,
2022]. Due to high temperature testing (hence leading to the lack of adherence of the speckle to
the specimen surface), the supposedly localization of the deformations as well with the brutality
of the crack propagation, DIC process was not able to neither assess crack initiation locus in an
accurate manner, nor to monitor the crack propagation stage through the whole specimen. How-
ever, due to the specimen geometry, crack initiation was assumed to occur at the notch roots.

Micro-graphic observations on flat specimens have evidenced the presence of dimples, cavities and
quasi-cleavage facets. This suggests the occurrence of some ductile damaging mechanisms includ-
ing matrix-particle and inclusion decohesion processes. Monotonic loading scheme has been proved
to favor a ductile-like fracture pattern with voids and dimples whereas the VLCF signal seems to
lead to mixed fracture modes with a mixture of intergranular and transgranular characteristics
including secondary micro-cracking and dimples, respectively.

As a matter of fact, in order to assess as accurately as possible the fracture mechanisms, further
SEM observations need to be considered. Such a task remains an outlook of the present study.
Moreover, repeatability of each test still needs to be considered for the previous statements to be
confirmed. The main conclusions related to the ductile fracture process can, to some extent, be
considered valid.

In the context of the local approach to fracture which aims at relating the material behavior to
some damage mechanisms, it can be concluded that material failure under complex loading schemes
rely on several governing mechanisms. These mechanisms may intervene alone or simultaneously,
depending on the loading schemes. In particular, one can mention the occurrence of i) transgranular
cracking associated with LCF loading with moderate plastic yielding, ii) intergranular cracking
generally occurring at elevated temperatures under holding-times, iii) ductile cracking under quasi-
static monotonic tensile and VLCF loading conditions under higher plastic strain levels.
These mechanisms, though microstructurally and mechanically different, can be embedded in a
phenomenological material model thanks to appropriate coupling, in order to make the material
mechanical response dependent on the damaging effects. That is the purpose of the next chapter.
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Résumé du chapitre en français

Dans ce chapitre, la réponse en fissuration de l’AD730™ à grains fins a été étudiée à plusieurs
températures (20, 550 et 700◦C). D’une part, des éprouvettes type SEN-T ont été utilisées pour
étudier la propagation de fissure en fatigue et fatigue-fluage. Les paramètres extrinsèques des
essais ont été modifiés afin d’étudier la ténacité du matériau pour des rapports de charge ou
temps de maintien variables. D’autre part, des essais monotones et de fatigue à très faible
nombre de cycles ont également été réalisés sur des éprouvettes plates à géométries variables.
Pour tous ces tests, des bancs d’essais spécifiques ont été utilisés, alliant ainsi la méthode de la
chute du potentiel électrique pour suivre l’avancée de fissure sous chargements cycliques, et une
caméra pour réaliser de la corrélation d’images numériques sur mouchetis peints.
Pour l’analyse des essais, trois échelles ont été considérées. Les résultats macroscopiques ont
d’abord été analysés, puis mis au regard des analyses à une échelle plus mésoscopique. A celle-ci,
les faciès de rupture et l’analyse topographique du plan de fissuration ont été extraits et étudiés.
Enfin, des observations au Microscope Electronique à Balayage (MEB) ont été réalisées afin de
visualiser la topologie de la surface de rupture et identifier les mécanismes pilotant la propagation.
Pour les essais en fatigue pure, les faciès de rupture des éprouvettes révèlent un front de fissure
relativement droit avec l’apparition de lèvres de cisaillement à mesure que la fissure croît. Le
déversement se fait de manière systématique et de façon anti-symétrique par rapport au plan
moyen de l’éprouvette. Un mode de propagation principalement transgranulaire a été mis en
évidence à 20 et 550◦C. Des mécanismes intergranulaires apparaissent néanmoins à 700◦C via
l’apparition d’effets thermiquement activés. Des stries de fatigue sont visibles à une échelle
sub-granulaire, ce qui confirme le caractère transgranulaire en fatigue. En fatigue-fluage, le
front de fissure apparaît courbé, traduisant alors la présence d’effet tunnel avec un différentiel
de croissance de fissure le long du front de propagation. La propagation est majoritairement
intergranulaire, et ce, en raison des temps de maintien en traction qui favorisent les processus
d’oxydation et de fluage. Ce dernier, généralement associé à la décohésion au niveau des joints de
grains ou à l’interface avec des précipités, semble opérer de par la présence de fissures secondaires.
En monotone, les essais sur éprouvette plate manifestent une rupture brutale de l’échantillon.
Les essais, pilotés en effort, témoignent d’une absence de ductilité macroscopique du matériau, la
rupture étant relativement rapide une fois le régime non-linéaire atteint. Les surfaces de rupture
témoignent d’une mixité dans les modes de rupture avec l’apparition de lèvres de cisaillement
en mode I . En fatigue à très faible nombre de cycles, les constats sont globalement identiques.
La rupture brutale semble être associée à la présence d’instabilités plastiques dans le matériau,
comme par exemple l’apparition de bandes de localisation de la déformation. La présence de
cupules sur les faciès de rupture témoignent néanmoins d’un mécanisme de rupture ductile associé
à une plasticité importante.
Dans le cadre de cette étude associée à l’utilisation de l’approche locale de la rupture pour simuler
la propagation d’une fissure en fatigue, la présence de mécanismes d’endommagement de natures
différentes semble être confirmée par cette analyse, certes partielle, mais qualitative. La rupture
mixte trans- et intergranulaire en régime cyclique associée à des mécanismes de rupture ductile en
fatigue à très faible nombre de cycles (pour la pointe de fissure très sollicitée) semblent tous deux
définir les mécanismes d’endommagement pilotant la fissuration sous chargements complexes.



4 A local approach to fracture for
fatigue crack propagation

This chapter is devoted to the development of a time-incremental damage model dedicated to
fatigue crack propagation modeling. Such a model relies on the strong coupling between the dam-
aging mechanisms and the mechanical behavior of the constitutive material. A multi-mechanism
damage model is established considering the damage effects evidenced thanks to the experimental
work carried on cyclic and monotonic crack growth specimens. To this end, the Continuum Dam-
age Mechanics framework is used in association with the material model derived in the Chap. 2.
Such a method is related to the so-called “local approach to fracture”, allowing the assessment
of structural failure in numerical simulations. Once derived, the fully coupled constitutive equa-
tions relating the elastic-viscoplastic material behavior of the material to its damage mechanisms
is implemented within a FE subroutine. The implicit integration procedure at the integration point
level is detailed prior to the assessment of the capabilities of the damage model .
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In the last Chap. 3, fatigue, dwell-fatigue, monotonic and very low-cycle fatigue (VLCF) crack
propagation analyses have been conducted. Such a work has highlighted the main crack growth
mechanisms through multi-scale observations. As a consequence, the phenomenological introduc-
tion of damage mechanisms within the constitutive model derived in the Chap. 2 allows to model
the crack growth process.

4.1 A time-incremental fatigue damage model for AD730™

As seen in the literature review, sect. 1.4, the local approach to fracture has known a great
success in predicting brittle and ductile fracture over the last three decades. Nonetheless, such a
method has been less investigated in the context of fatigue crack growth. Nowadays, computational
performances together with the maturity of the FE method allow considering such an approach for
fatigue crack advance analysis within non-linear media. In this section, a fatigue damage model of
phenomenological- and incremental-type is proposed to cope with the fatigue crack growth concern
in structural calculations. The properties of the model, in accordance with the target application
for the research project, as well as the main assumptions leading to the constitutive equations are
described.

4.1.1 Expected properties of the damage model

In this part, it seems important to present the main assumptions that made the skeleton of
the model developed along the Ph.D. project. In order to clearly define the scope of the proposed
fatigue damage model, its main properties are described.

Local approach to fracture

Fatigue crack growth in engineering fracture problems is generally split into i) micro-crack
initiation and ii) macro-crack propagation. In the present Ph.D. project, we focus our analysis
in the modeling of the crack growth stage. Thus, the proposed fatigue damage model is not
intended to simulate the crack initiation process but only the subsequent propagation of a long
crack, starting from a sufficiently long pre-crack.
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Figure 4.1: Cyclic process zone.

As indicated in sub-sect. 1.1.3, a long fatigue
crack is considered to be insensitive to the ma-
terial microstructure and to have a greater length
compared to the size of the plastic zone. A length
greater than 500µm can hence be assimilated to
such long crack [Suresh, 1998].
In this study, the fatigue crack growth will be
computed thanks to a damaged-based modeling
(through a local approach) rather than a Fracture
Mechanics model (global approach). The dam-
age accumulation in the so-called fracture process
zone (FPZ) at the crack-tip will be responsible for the stress-softening, and then, the material
degradation will, in turn, enable the crack propagation, see Fig. 4.1. In the present formulation,
it is assumed that damage is fully coupled to the behavior of the material, allowing the crack
to propagate by itself taking into account the redistribution of the mechanical fields along the
crack path. Such a calculation scheme needs some computational effort due to the step-by-step
calculation of the stresses, strains and damage along the whole lifetime of the structure.
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Figure 4.2: Complex loading cycles (adapted from
[Rodriguez and Bhanu Sankara Rao, 1993]).

Loading sequences experienced by gas tur-
bine components are complex, multiaxial and
generally anisothermal, see Fig. 4.2. They
are usually difficult to model and the resulting
damage is generally misestimated since the use
of cycle-counting methods, such as the well-
known Rainflow algorithm, is required [Down-
ing and Socie, 1982], [Bathias and Pineau,
2010] and leads to some approximations.
An overcoming method relies on the use of
time incremental formulations which allow to
follow the loading spectrum along its whole
path without pre-defining a given loading cycle.
In the present work, the choice has been made
to consider a kinetic law in order to relate the
fatigue damage rate Ḋf to current values of
the stress tensor and accumulated plastic strain
rate ṗ. The local approach proposed here is the most convenient framework to develop a time
incremental model. Inelastic constitutive equations and damage evolution rule are hence fully cou-
pled and both written in a time-dependent formalism in order to solve the whole problem at each
time step in a unified manner. The time incremental formalism has already been considered for the
modeling of LCF in metallic alloys [Lemaitre and Chaboche, 1990], specifically for fatigue crack
initiation [Otin, 2007], [Barbier, 2009], [Kaminski, 2007], but fewer works have been dedicated to
the modeling of fatigue crack propagation [Hamon, 2010].
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A phenomenological-type fatigue damage model

The material model derived in sect. 2.3 has been written in the framework of the unified vis-
coplasticity theory [Chaboche, 1986]. Such a cyclic material model was written according to a sin-
gle potential describing both plastic and viscoplastic strains, hence allowing both time-independent
(plastic) and time-dependent (e.g. creep) processes to be accounted for in a unified manner (see
sub-sect. 1.2.1 on this point). The proposed material damage model belongs to the class of
phenomenological models (as opposed to the micromechanical or crystallographic models). Estab-
lished through a thermodynamically consistent approach using the local state method [Germain,
1973], such a model enables the possibility to take into account the stress triaxiality effects into
the damage evolution [Lemaitre, 1985a], [Pandey et al., 2021].

The richness of the phenomenological models lies in the choice of the formulation of different
state and dissipative potentials. Such a choice is somewhat heuristic and based on the knowledge
one may have on the various phenomena, their evolution, their mutual interactions and possible
couplings. This leads to predictive models valid on a specified domain defined by experimental
data bases used for the proper identification. The derivation of the thermodynamics potentials will
be discussed in the forthcoming sub-sect. 4.1.2.

Isotropic properties of both behavior and damage

The nature of the damage(s) variable(s) (scalar, vector, tensor...) still remains an open question
since it directly depends on the underlying mechanisms governing the damage growth and its effect
on material properties. For materials subjected to complex loading conditions (as in the present
study), the direct measurement of damage is, if possible, a difficult task.
In the present work, for the sake of simplicity, isotropic properties are considered. Indeed, the
purpose of the Ph.D. project consists in a first attempt to the crack growth modeling using such
a local approach to fracture. Owing to the other underlying aspects to be faced for both the
modeling and numerical tasks (discussed later on), I have chosen in the modeling to consider only
isotropic variables. Indeed, the fatigue damage model has to be relevant without unnecessary
complexities, at least in this primary study. Thus, in the following, the damage variable(s) will be
of scalar-type in order to ease the material model numerical implementation.

A modular damage model

Apart from fatigue damage, material may be subjected to other degradation mechanisms.
Such a point has been discussed in sect. 3.3. The present material model is hence expected to
account for additional damage variables in order to encompass other plasticity- and time-dependent
degradation processes. Such a point will be discussed later on in the sect. 4.2.
In addition, stress triaxiality levels has been proved to play a significant role in determining the
fatigue life of a component [Pandey et al., 2021]. The stress triaxiality TX = σh

σeq
(where σh =

σi i/3 is the hydrostatic stress and σeq =
√

3
2 σ

D
ij σ

D
ij the equivalent Von Mises stress) should

thus be incorporated in the damage law, as suggested in some strain-based fatigue damage models
[Lemaitre and Plumtree, 1979], [Dufailly and Lemaitre, 1995], [Wang and Zhang, 2015].
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4.1.2 State laws and effective variables

Considering crack propagation under LCF conditions, i.e. with sufficiently high plastic dissipa-
tion, the CDM framework is well adapted for fatigue damage evaluation [Lemaitre et al., 1999]. This
is particularly true in the vicinity of the crack-tip where the material behavior is non-linear. As a re-
sult, (visco)plasticity and fatigue damage mechanisms involve large volumes at the mesoscale (RVE)
and CDM can be used to model the local loss of stiffness [Lemaitre, 1985b], [Benallal et al., 1991].

State variables and effective variables

Since the constitutive equations of the Chap. 2 have been written using a consistent thermo-
dynamics framework, the same applies for the fatigue damage model [Lemaitre et al., 2009].
The choice for the external variables is generally trivial because they are the ones from which
the laws of conservation are derived. The choice for the internal variables is more tricky and
is highly dependent on the physical phenomena to be accounted in the modeling process. The
defined processes will be thermodynamically admissible, if, at each moment of the evolution, the
Clausius-Duhem Inequality (CDI) is satisfied. More details about thermodynamics can be found
in [Lemaitre and Desmorat, 2005].

For dissipative phenomena, the internal state variables are representative of the history of the sys-
tem. The developed damage model dedicated to fatigue crack growth analysis hence encompass
the following state variables, Tab. 4.1, in accordance with the material model calibrated in Chap. 2.
Hence, each physical phenomenon is described by a set of: one state variable aj in the strain space
with its dual variable Aj in the stress space (seen as a conjugated force).

Mechanism Internal variables Conjugated variables

Elasticity ε∼
e σ∼

(Visco)Plasticity ε∼
in −σ∼

Kinematic hardening α∼
k X∼

k

Isotropic hardening r i R i

Isotropic fatigue damage Df −Yf

Table 4.1: State variables and associated mechanisms for elastic-viscoplasticity and damage.

Accordingly to the calibration process performed in sect. 2.4, k refers to the k-th component of
the total back stress tensor X∼ (k ∈ [1 − 3]) while i refers to the i-th component of the drag
stress R (i ∈ [1, 2]). Each component is associated with one internal variable.
It can also be precised that the “−” sign for the stress tensor σ∼ for plasticity modeling comes
from the dissipative properties associated with plastic work. This is also the case for damage which
is undoubtedly a dissipative process (Yf being the energy release rate related to fatigue damage).
On the contrary, work-hardening is considered as stored energy.
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In the present study, choice has been made to rely on the principle of strain equivalence for the
mapping between the virgin and damaged RVE [Lemaitre and Chaboche, 1978]. Such a choice
mainly comes from simplicity and ease in numerical implementation [Egner et al., 2020]. Moreover,
when isotropic damage is considered, which is the case here, the strain equivalence has been proved
to be very efficient for behavior-damage coupling [Reckwerth and Tsakmakis, 2003]. Details on
equivalence principles can be found in sub-sect. 1.4.2.

According to the strain equivalence hypothesis, all the stress-like variables should be written in the
effective configuration, leading to the following effective stresses:

σ̃∼ = σ∼
f e (Df ) ; X̃∼

k = X∼
k

f k (Df ) ; R̃ i = R i

f i (Df ) (4.1)

where each stress-like variable possesses its own softening function defined hereafter.
In eq. (4.1), choice has been made to set a full coupling between the stress-like variables and
damage. Following the effective stress concept and considering that damage growth should make
the stress tend to zero, it seems physically acceptable to make the strain-hardening altered by
damage [Saanouni et al., 1994], [Besson et al., 2010].

Softening functions

The chosen softening functions f ∗ (Df ) (where “*” stands for “e”, “k” or “i”) must fulfill the
following conditions [Dimitrijević and Hackl, 2008], [Brepols, 2018]:

• f ∗ (Df ) should be continuous, at least twice-differentiable, positive and scalar-valued on
[0, D cr it ];

• f ∗ (0) = 1 (virgin state) and lim
Df→∞

f ∗ (Df ) ' 0 (broken state);

• f ∗ should be strictly decreasing on [0, D cr it ] (softening effect), i.e. : f ∗ ′ < 0 ∀Df ∈ [0, D cr it ].

where D cr it represents a critical damage state for which the RVE is considered broken.
In the present case, the following exponential decaying damage effect function has been included
in the model:

f ∗ (Df ) = exp (−β∗ ηD Df ) (4.2)

where “*” in β∗ of eq. (4.2) still stands for “e”, “k” or “i” and enables coupling/decoupling prop-
erties between damage and stress variables. In case β∗ = 1 there is a coupling between damage
and stress component, while if β∗ = 0, there is no coupling.
The choice of the exponential damage effect function in eq. (4.2) has already been made in the work
of [Kaminski, 2007], [Yin et al., 2022] for fatigue crack initiation prediction, or in [Murakami and
Liu, 1995], [Dimitrijević and Hackl, 2008] for general applications. It comes from this formulation
the (theoretical) absence of critical value for Df which may lead to numerical issues once getting
closer to 1 (compared to the standard “(1 − Df )” Lemaitre formulation). Indeed, the form given
in eq. (4.2) approaches the state of complete damage in an asymptotic manner. This represents
the advantage that the actual damage variable can take any value in R+

0 and therefore it is not
necessary to algorithmically restrict this variable to the interval [0, 1[ as for the linear case.
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Another interesting feature of the exponential form comes from the introduction of the expo-
nential rate parameter ηD which allows for a weighting influence of damage on various physical
mechanisms, e.g. the deviatoric and volumetric contributions of the strains, or the various strain-
hardening as opposed to elasticity. A greater flexibility can also be gained thanks to the addition
of a damage threshold parameter that may trigger the damage accumulation (not implemented in
the present work), for details, see [Ostwald et al., 2019].

Remark: As a last point to be noticed, the exponential softening function, already used for creep
crack growth prediction, is known to ease the mesh-independence of the numerical results thanks
to the work of [Murakami and Liu, 1995]. This point will be discussed later on in Chap. 5.

State potentials and state relations

The Generalized Standard Materials (GSM) cover a number of inelastic material behaviors and
hence constitute a robust modeling framework for the present study [Halphen and Nguyen, 1975].
The evolution of internal variables is governed by two potentials: the free energy and the dissi-
pation potential [Hackl and Fischer, 2008]. The state variables given in Tab. 4.1 are sufficient to
define the equilibrium state of the system (material) through the knowledge of a thermodynamic
state potential (or free energy functional): the Helmholtz free energy. Such a potential is a con-
vex function of the state variables and allows the thermodynamic forces associated with the state
variables to be fully defined, thanks to the Coleman-Noll relations [Coleman and Noll, 1963].

Following the work of [Lemaitre et al., 2009] and [Bonora, 1997], the free energy is split into both
elastic and inelastic contributions, thus implying that the elastic properties are not influenced by
the plastic flow but only by damage:

ρψ (ε∼e,α∼k , r i , Df ) = ρψe (ε∼e, Df ) +
∑

k
ρψk

in (α∼k , Df ) +
∑

i
ρψi

in (r i , Df ) (4.3)

and where a state decoupling exists between the two hardening mechanisms.
In eq. (4.3), each contribution is given by:

ρψe (ε∼e, Df ) = 1
2 ε∼

e : f e(Df ) Λ
≈

: ε∼e = 1
2 ε∼

e : Λ̃
≈

: ε∼e (4.4)

ρψk
in (α∼k , Df ) =

3∑
k=1

1
2 α∼

k : f k(Df ) C
≈

k : α∼k =
3∑

k=1

1
2 α∼

k : C̃
≈

k : α∼k (4.5)

ρψi
in (r i , Df ) =

2∑
i=1

1
2 f i(Df ) bi Q i r i 2 =

2∑
i=1

1
2 bi Q̃ i r i 2 (4.6)

where Λ
≈
, C
≈

k and Q i correspond to the moduli associated with elastic behavior, the k th kinematic
hardening and the i th isotropic hardening, respectively. The tensor Λ

≈
is given by:

Λ
≈

= λe 1∼⊗ 1∼ + 2µe I
≈

s = νE
(1 + ν)(1− 2ν) 1∼⊗ 1∼ + E

2(1 + ν) I
≈

s (4.7)
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with λe & µe the Lame’s coefficients for elasticity.
The second, assuming a pure deviatoric kinematic strain-hardening, is given by:

C
≈

k = 2
3 C k P

≈
D (4.8)

with C k the modulus for the k-component of the back-stress and P
≈

D the 4th-order deviatoric
projector defined thanks to the 4th-order hydrostatic projector:

P
≈

S = 1
3
(
1∼⊗ 1∼

)
↔ P

≈
D = I

≈
− P
≈

S (4.9)

One can remark in eq. (4.3) - eq. (4.6) the presence of the softening functions f ∗ (Df ) which define
the coupling between the behavior of the material and damage. Effective moduli are given by:

Λ̃
≈

= f e(Df ) Λ
≈

C̃
≈

k = f k(Df ) C
≈

k Q̃ i = f i(Df ) Q i (4.10)

In eq. (4.5) & eq. (4.6) choice has been made to relate the fatigue damage and the plastic hard-
ening of the material, as done in e.g. [Billardon and Moret-Bailly, 1987], [Saanouni et al., 1994].

Thanks to the effective moduli defined in eq. (4.10), the effective variables can be redefined:

σ̃∼ = Λ
≈

: Λ̃∼
−1 : σ∼ X̃∼

k = C
≈

k : C̃∼
k−1 : X∼

k R̃ i = Q i Q̃ i−1 R i (4.11)

According to the Clausius-Duhem inequality and the Coleman postulate [Coleman and Noll, 1963],
[Truesdell, 1969], the associated thermodynamic forces related with the internal variables can be
derived from the state potential eq. (4.3) as:

σ∼ = ρ
∂ψ

∂ε∼
e = ρ

∂ψe
∂ε∼

e = f e (Df ) Λ
≈

: ε∼e = Λ̃
≈

: ε∼e (4.12)

X∼
k = ρ

∂ψ

∂α∼
k = ρ

∂ψk
in

∂α∼
k = f k (Df ) C

≈
k : α∼k = C̃

≈

k : α∼k (4.13)

R i = ρ
∂ψ

∂r i = ρ
∂ψi

in
∂r i = f i (Df ) bi Q i r i = bi Q̃ i r i (4.14)

The energy release rate associated with fatigue damage is given by:

Yf = −ρ ∂ψ

∂Df
= −ρ

∂
(
ψe +

∑
k ψ

k
in +

∑
i ψ

i
in
)

∂Df
= Y e

f + κX
∑

k
Y k

f + κR
∑

i
Y i

f (4.15)

with:
Y e

f = −ρ ∂ψe
∂Df

= −1
2 ε∼

e : ∂f e(Df )
∂Df

Λ
≈

: ε∼e = −1
2 ε∼

e : f e ′(Df ) Λ
≈

: ε∼e (4.16)

Y k
f = −ρ ∂ψk

in
∂Df

= −1
2 α∼

k : ∂f k(Df )
∂Df

C
≈

k : α∼k = −1
2 α∼

k : f k ′(Df ) C
≈

k : α∼k (4.17)
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Y i
f = −ρ ∂ψi

in
∂Df

= −1
2

∂f i(Df )
∂Df

bi Q i r i 2 = −1
2 f i ′(Df ) bi Q i r i 2 (4.18)

where κX and κR in eq. (4.15) are introduced to account or not for the inelastic contributions
to the energy release rate in case of state decoupling between damage and work-hardening variables.

One can notice in eq. (4.15) the presence of two distinctive fatigue mechanisms:

• an elastic free energy contribution given in eq. (4.16) which, in the absence of plastic strains,
drives the fatigue crack growth in the HCF regime;

• and inelastic terms given by eq. (4.17) & eq. (4.18) which corresponds to plastic energy (free
and dissipated) associated with kinematic and isotropic hardening processes, respectively.
Such contributions drive the FCG in the LCF regime by additively increasing the damage
driving force Yf through Y k

f and Y i
f .

It is also important to note that the elastic part of the fatigue damage driving force Y e
f intrinsically

contains the stress triaxiality effect, as eq. (4.16) can be re-written [Chaboche, 1977b], [Lemaitre
and Desmorat, 2005]:

Y e
f = −1

2 ε∼
e : f e ′(Df ) Λ

≈
: ε∼e = −1

2 f e ′(Df ) σ̃∼ : ε∼e = −f e ′(Df )
σ̃2

eq Rν
2E (4.19)

where E the elastic (Young) modulus, σ̃eq is the effective equivalent stress based on the effective
stress given by eq. (4.1) and Rν is a triaxiality factor derived from eq. (4.19) using the Von Mises
equivalent stress:

Rν = 2
3 (1 + ν) + 3 (1− 2ν)

(
σh
σeq

)2

= 2
3 (1 + ν) + 3 (1− 2ν) T 2

X (4.20)

where ν is the Poisson’s ratio.
As stated in the sub-sect. 4.1.1, the incorporation of the stress triaxiality effect in the fatigue
damage law is of the first importance when dealing with lifetime evaluation of components using
CDM-based models [Pandey et al., 2021].

4.1.3 Viscoplasticity criterion

The change in material behavior due to increasing damage has to be considered in the yield
function. Up to now, it is assumed that irreversible deformations are connected with volume con-
stancy which leads to the only dependence of the yield function on the second invariant of the
stress tensor (the first invariant, pressure-dependent, is first neglected). Indeed, for ductile mate-
rials, the inelastic strains are generally known to result from irreversible slip along crystallographic
planes, hence leading to the absence of volume variation.
In the present work dealing with Ni-based superalloys which can be assimilated to ductile mate-
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rials, a Von Mises-type (visco)plastic yield function of the thermodynamic conjugated forces is
first introduced. In order to account for damage in the inelastic regime, the effective stresses are
introduced in this criterion thanks to the strain equivalence principle:

F vp
y = Fy − σov = σ̃eq −

∑
i

R̃ i − R0 − σov ≤ 0 (4.21)

where R0 is the initial yield limit, σov defines an over-stress which exceeds the elastic limit and
that is defined by a given flow rule [Benallal, 1989], [Lemaitre and Desmorat, 2005], and σ̃eq is the
effective equivalent stress which is influenced by damage through the introduction of the effective
stresses:

σ̃eq =
√

3
2

(
σ̃∼

D −
∑

k
X̃∼

k
)

:
(
σ̃∼

D −
∑

k
X̃∼

k
)

=
√

3
2 Z̃∼ : Z̃∼ =

√
3
2
∣∣∣∣ Z̃∼
∣∣∣∣ (4.22)

and where Z̃∼ =
(
σ̃∼

D − X̃∼
)
is the apparent stress tensor, X̃∼ =

∑
k X̃∼

k the total back-stress tensor,
σ̃∼

D the deviatoric part of the effective stress tensor (σ̃∼ D = P
≈

D : σ̃∼) and
∣∣∣∣ Z̃∼
∣∣∣∣ represents the

norm of the apparent stress tensor Z̃∼ . Note that in eq. (4.22), the back-stress components X̃∼
k

are already deviatoric thanks to their moduli, see eq. (4.8) & eq. (4.13).

The yield criterion hence defines the limit of the elastic domain in the stress space. The consistency
condition is given by:

• Fy < 0 for elasticity (the stress state lies inside the yield surface);
• Fy = 0, Ḟy = 0 for plasticity (the stress state lies on the limit of the yield surface);
• Fy = σov > 0 for viscoplasticity (the stress state lies outside of the yield surface).

The loading/unloading conditions on the yield criterion Fy associated with the inelastic multiplier
λ̇ fulfill the so-called Karush-Kuhn-Tucker (KKT) conditions:

λ̇ ≥ 0, Fy ≤ 0, λ̇Fy = 0 (4.23)

4.1.4 Dissipation potentials

The intrinsic dissipation (i.e. the power dissipated by the production of heat during the irre-
versible processes) is directly gained from the Clausius-Duhem inequality (CDI), the latter needing
to be unconditionally satisfied:

Dint = σ∼ : ε̇∼ − ρψ̇ ≥ 0

= σ∼ : ε̇∼ − ρ
(
∂ψ

∂ε∼
e : ε̇∼e +

∑
k

∂ψ

∂α∼
k : α̇∼k +

∑
i

∂ψ

∂r i ṙ i + ∂ψ

∂Df
Ḋf

)
≥ 0

= σ∼ : ε̇∼in −
∑

k
X∼

k : α̇∼k −
∑

i
R i ṙ i + Yf Ḋf ≥ 0

(4.24)
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In the Chap. 2, it has been demonstrated that AD730™ , when loaded at elevated tempera-
tures, exhibits an elastic-viscoplastic behavior. Hence, for the present approach, choice has been
made to mainly focus on the time-dependent modeling. Let us recall that time-independent case
(i.e. plasticity) can be seen as a limiting situation of the time-dependent case, providing the exis-
tence of a yield domain [Chaboche, 2008]. A general form for the viscosity function is given by:

φv (Fy ) = 0 if Fy < 0 and φv (Fy ) = λ̇ if Fy ≥ 0 (4.25)

The fulfillment of the 2nd Principle of Thermodynamics through the CDI, eq. (4.24), can be au-
tomatically achieved if the evolution laws for the internal variables ȧj derive from a dissipative
pseudo-potential with adequate mathematical properties [Germain et al., 1983], [Chaboche, 1999].
The pseudo-dissipation (or dual) potential, composed of contributions from strain-hardenings, re-
covery and damage, is given by:

Ω∗ = Ω∗vp (σ̃∼, X̃∼
k , R̃ i , Yf ; α∼k , r i , Df ) + Ω∗Df (σ̃∼, Yf ; Df ) (4.26)

where internal variables α∼k , r i and Df are used as parameters [Lemaitre and Chaboche, 1990].

Viscoplastic contribution:

The viscoplastic contribution Ω∗vp of Ω∗ can be deduced from the chosen flow rule:

Ω∗vp =
∫

K φv (Fy ) dFy (4.27)

where φv (Fy ) is the chosen viscosity function (or flow rule).
By adding and subtracting equal terms in the viscosity function, one can express the non-linear
evolution for both strain-hardenings thanks to the following pseudo-potential:

Ω∗vp =
∫

K φv

[
1
K

(
Fy + 1

2
∑

k
γk ϕk(p) X̃∼

k : C
≈

k−1 : X̃∼
k − 1

2
∑

k
γk ϕk(p)α∼k : C

≈
k : α∼k

+ 1
2
∑

i

R̃ i 2

Q i −
1
2
∑

i
Q i(bi r i)2

)]
dFy (4.28)

with K the drag stress for viscoplastic behavior and ϕk(p) a softening/hardening function of p
used to define the transients upon cyclic loading, according to [Marquis, 1979]. Such a point has
already been discussed in the sub-sect. 2.3.5. In eq. (4.28), the last 4 terms in the parentheses
represents the dynamic recovery terms for the kinematic and isotropic hardening variables, respec-
tively. They vanish when the constitutive equations eq. (4.13) & eq. (4.14) are satisfied.

Such a formulation is said to be normal and associated in the stress space. Indeed, the more or
less “artificial” introduction of terms whose sum is zero in equation eq. (4.28) allows to describe
a non-linear evolution of the strain-hardening without imposing Fy 6= Fp (see eq. (4.29)) as it
would have been the case for non-associated time-independent plasticity [Saanouni et al., 1994]:
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Fp = Fy + 1
2
∑

k
γk ϕk(p) X̃∼

k : C
≈

k−1 : X̃∼
k − 1

2
∑

k
γkϕk(p)α∼k : C

≈
k : α∼k

+ 1
2
∑

i

R̃ i 2

Q i −
1
2
∑

i
Q i(bi r i)2 (4.29)

so that the viscoplastic part yields:

Ω∗vp

(
σ̃∼, X̃∼

k , R̃ i ; α∼k , r i
)

= K ε̇0

2 β

(
1 + N

2 ; −N
2 ;
[

tanh
〈

Fp
K

〉
+

]2
)

(4.30)

where the viscosity function defined in eq. (4.30) is the hyperbolic sine flow rule, first introduced
in the work of [Sellars and McTegart, 1966], [Pétry, 2006]. In eq. (4.30), the parameter β (a, b, x)
is the so-called incomplete beta function [Spanier and Oldham, 1987]. Such a function admits
real values, defined on the interval ] −∞; 1 [ provided that a is positive. Its convexity in the
case of N ≥ 0 is automatically verified on the positive real domain as a primitive of an increasing
function [Pétry, 2006]. The hyperbolic sine form in eq. (4.30) is particularly suited for applications
with high thermomechanical loadings and for cases where the over-stress is highly non-linear at low
strain rates [Pétry, 2006], [Vincent, 2010], [Bartošák et al., 2020]. As detailed in sub-sect. 2.2.3.2,
AD730™ exhibits a highly non-linear evolution of its over-stress with respect to the viscoplastic
strain rate over loading rates ranging in

[
10−5 − 10−3] s−1 down to 10−7 s−1 for stress relaxation

(and possible recovery effects). The choice for an hyperbolic sine function, enabling to cover a
wide range of strain rates, hence constitutes a good candidate.

Fatigue damage contribution:

The damage contribution Ω∗Df
to the pseudo-potential of dissipation Ω∗ depends on the nature

of the degradation process. It is constructed thanks to the pioneer work of [Lemaitre, 1985a]:

Ω∗Df = ṗ Sf
mf + 1

〈
Yf − Yf 0

Sf

〉mf +1

+
exp(βf ηD Df ) f e (Df ) (4.31)

with 〈 . 〉+ the Macauley brackets (returning the positive part of its argument, as defined in the
notations page xxvii), Sf & mf the resistance parameters associated with fatigue damage, Yf 0 a
threshold value for the energy release rate Yf (so that to delay fatigue damage growth, as done in,
e.g. [Boudifa, 2006]) and βf is a parameter controlling the non-linearity of the damage evolution.
Note that all these material parameters could depend on temperature.

It can be noticed that the use of the effective variables in both the state and dissipation potentials,
eq. (4.3) & eq. (4.26), leads to fully coupled constitutive equations which is known to improve and
complete the coupled theory introduced by [Chaboche, 1978].
Indeed, according to [Saanouni et al., 1994] such a formalism leads to the three following properties:

• the use of the same pseudo-potential to characterize the dissipation of both viscoplasticity
and damage eq. (4.28) & eq. (4.31) implicitly supposes that damage cannot initiate at any
material point without plastic deformation [Lemaitre, 1985a]. Such an assumption seems
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reasonable for crack propagation where plasticity in ductile materials (like the present Ni-
based superalloy) is always present at the crack-tip;

• due to the strong coupling between damage and hardening mechanisms, the fully damaged
RVE should be free from any remaining stress;

• the stored energy (through plastic work) is released by the initiation and growth of damage.

Finally, in order to satisfy the principle of irreversibility, the rate of dissipative energy has to be
non-negative. Physically, it means preventing damage healing after the load is removed. The gen-
eralized normality rule associated with the dissipation pseudo-potential Ω∗ allows for the intrinsic
dissipation to be written:

Dint =
[
σ∼ : ∂Ω∗

∂σ∼
+
∑

k
X∼

k : ∂Ω∗

∂X∼
k +

∑
i

R i ∂Ω∗
∂R i + Yf

∂Ω∗
∂Df

]
≥ 0 (4.32)

The consistent validation of the positivity of the intrinsic dissipation related to both plastic power,
work-hardening and damage is given in the appendices, see Chap. F page 289.

4.1.5 Evolution laws

According to the generalized normality rule associated with instantaneous dissipative phenom-
ena [Chaboche, 2008], [Lemaitre and Chaboche, 1990], the following rate equation for the inelastic
strain tensor is obtained through the derivative of the dissipative pseudo-potential:

ε̇∼
in =

∂Ω∗vp
∂σ∼

=
∂Ω∗vp
∂Fp

∂Fp
∂σ∼

= φv (Fy ) ∂Fy
∂σ∼

= 3
2
φv (Fy )
f e (Df )

(
σ̃∼

D − X̃∼
)√

3
2 (σ̃∼ D − X̃∼ ) : (σ̃∼ D − X̃∼ )

(4.33)

where φv (Fy ) is a viscoplastic (Lagrange) multiplier given either by the consistency condition
eq. (4.23) for plasticity or by a viscosity potential for viscoplasticity [Benallal, 1989]:

λ̇ =
∂Ω∗vp
∂Fp

= φv (Fy ) = ε̇0

[
sinh

〈
Fy
K

〉n

+

]m

(4.34)

and where the normal to the yield surface n∼ is given by:

n∼ = ∂Fy
∂σ∼

= 1
f e (Df )

√
3
2

(
σ̃∼

D − X̃∼
)√(

σ̃∼
D − X̃∼

)
:
(
σ̃∼

D − X̃∼
) (4.35)

Using the apparent stress Z̃∼ =
(
σ̃∼

D − X̃∼
)
and the viscoplastic multiplier eq. (4.34) together with

the equivalent effective stress eq. (4.22), the inelastic strain rate tensor eq. (4.33) can be re-written:

ε̇∼
in = 3

2
λ̇

f e (Df )

(
σ̃∼

D − X̃∼
)√

3
2 (σ̃∼ D − X̃∼ ) : (σ̃∼ D − X̃∼ )

= 3
2

λ̇

f e (Df )
Z̃∼
σ̃eq

(4.36)
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The framework of the GSM [Halphen and Nguyen, 1975], [Germain et al., 1983] hence introduces
the inelastic multiplier λ̇ which turns out to be the accumulated plastic strain rate ṗ. This one is
equal to the norm of the inelastic strain rate tensor, which from eq. (4.36) yields:

ṗ =
√

2
3 ε̇∼

in : ε̇∼in =
√

2
3
∣∣∣∣ ε̇∼in ∣∣∣∣ = λ̇

f e (Df ) ↔ p =
∫ t

0
ṗ dτ (4.37)

Using the plastic work through the energetic equivalence also directly yields:

ṗ σ̃eq =
(
Z̃∼ : ε̇∼in) ↔ ṗ =

(
Z̃∼ : ε̇∼in)
σ̃eq

(4.38)

In order to lighten the notations as well as to facilitate the future implementation process, choice
is made to introduce additional effective variables, namely the effective inelastic strain rate tensor:

˙̃ε∼
in =

∂Ω∗vp
∂σ̃∼

= φv (Fy ) ∂Fy
∂σ̃∼

= φv (Fy )
√

3
2

Z̃∼∣∣∣∣ Z̃∼
∣∣∣∣ = φv (Fy )

√
3
2 ñ∼ (4.39)

with the unit effective normal to the inelastic limit surface ñ∼ (so that ñ∼ : ñ∼ = 1) defined by:

ñ∼ =
√

2
3
∂Fp
∂σ̃∼

=
√

2
3
∂Fy
∂σ̃∼

=
√

2
3

∂

∂σ̃∼

[√
3
2
∣∣∣∣ Z̃∼
∣∣∣∣−∑

i
R̃ i − R0

]
= Z̃∼∣∣∣∣ Z̃∼

∣∣∣∣ (4.40)

and the effective accumulated plastic strain rate:

˙̃p σ̃eq =
(
Z̃∼ : ˙̃ε∼

in) ↔ ˙̃p =
(
Z̃∼ : ˙̃ε∼ in)
σ̃eq

=
√

2
3
∣∣∣∣ ˙̃ε∼

in ∣∣∣∣ (4.41)

In the case of viscoplasticity-damage coupling, the effective accumulated plastic strain rate eq. (4.41)
equals the visco-plastic multiplier eq. (4.34):

˙̃p = φv (Fy ) =
√

2
3
∣∣∣∣ ˙̃ε∼

in ∣∣∣∣ = λ̇ (4.42)

From eq. (4.42), it is evidenced the fact that the viscous stress is a function of the effective
accumulated plastic strain rate ˙̃p rather than the accumulated viscoplastic strain rate. Thus,
damage also affects the viscous properties of the material [Saanouni et al., 1994], [Pétry, 2006],
[Kaminski, 2007], [Vincent, 2010], [Cailletaud et al., 2018]:

F vp
y = σ̃eq −

∑
i

R̃ i − R0 − σov ( ˙̃p) ≤ 0 (4.43)

According to eq. (4.40), the inelastic strain rate eq. (4.36) can be re-written:

ε̇∼
in = 3

2
λ̇

f e (Df )
Z̃∼
σ̃eq

↔ ε̇∼
in = λ̇

f e (Df )

√
3
2 ñ∼ = ṗ

√
3
2 ñ∼ (4.44)

where the scalar term in eq. (4.44) gives the intensity of the inelastic flow, while the tensor term
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defines its direction in the (effective) stress space.

Similarly to the eq. (4.33), the rates for the hardening variables are given by:

α̇∼
k = −

∂Ω∗vp

∂X∼
k = −

∂Ω∗vp
∂Fp

∂Fp

∂X∼
k = λ̇

f k (Df )

(√
3
2 ñ∼ − γ

kϕk(p) P
≈

D : α∼k

)
(4.45)

ṙ i = −
∂Ω∗vp
∂R i = −

∂Ω∗vp
∂Fp

∂Fp
∂R i = −λ̇ ∂Fp

∂R i = λ̇

f i (Df )
(
1 − bi r i) (4.46)

The idea of a unified damage model for metallic alloys is to relate the damage rate to the
main dissipative mechanism. For LCF conditions, cumulative plasticity can be considered as the
fatigue damage driving force [Desmorat, 2006]. Such a choice is relatively common, especially
for fatigue crack initiation prediction [Lemaitre, 1985b], [Besson and Desmorat, 2009], [Vincent,
2010]. Let us note that other mechanisms could have been considered to govern the fatigue
damage process. This point is addressed is a dedicated discussion hereafter. The derivative of the
dissipation potential yields:

Ḋf =
∂Ω∗Df

∂Yf
= λ̇

〈
Yf − Yf0

Sf

〉mf

+
e (βf ηD Df ) H (p − pD) (4.47)

The kinetic law of fatigue damage evolution, eq. (4.47), derives from the dissipation potential
eq. (4.31) which is taken as a power function of the associated thermodynamic variable Yf to the
fatigue damage Df . Such an evolution rule eq. (4.47) remains valid as long as Df ≤ D cr it .

→ Discussion on the fatigue damage driving force:

Apart from the cumulative plasticity ṗ to govern the fatigue damage, other choices are possible:

i) The plastic work can be taken as the fatigue damage driving force, as suggested by [Jiang,
2000], [Banvillet et al., 2003] & [Yu et al., 2011] and exploited by [Ma and Yuan, 2017] for fa-
tigue in sintered metals. This choice embeds a greater physical meaning but needs more material
constants to be calibrated. Moreover, such a critical plane criterion seems to be more suited for
fatigue crack initiation prediction rather than crack propagation analysis.

ii) Another approach for fatigue damage evolution is based on the phenomenological model
of [Landgraf et al., 1969] dedicated to fatigue failure. Such a model assumes that large strain
ranges are performed upon loading and that the total strain range ∆ε is related to the number
of cycles at failure Nr . This approach was adopted by [Schwarz et al., 2011] who succeeded in
transforming the Landgraf & Morrow’s model to a continuous time-incremental damage evolution
law, hence leading to a fewer number of damage-related material constants.

iii) Lastly, contrarily to the empirical CDM-based models, some recent studies have tried to re-
late the damage evolution to the dissipation associated with damage development through entropy
creation [Egner et al., 2020]. Relying on the so-called Unified Mechanics Theory (UMT) [Lee
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and Basaran, 2021], the approach consists in modifying the universal laws of motion of Newton by
incorporating the 2nd Law of Thermodynamics directly into Newton’s laws at the ab initio level. As
a consequence, such an entropy-based formulation allows the fatigue damage to develop from the
very beginning of the loading scheme compared to the classical approach of [Lemaitre, 1996] for
which damage starts to accumulate once a specific threshold value is reached [Egner et al., 2020].

4.1.6 On micro-cracks closure effect for fatigue damage

Physical facts have shown that the damage evolution is amplified in tensile conditions whereas
under compressive loads the rate of deterioration reduces. Such a phenomenon is due to partial
micro-crack closure, also referred to as quasi-Unilateral Conditions (UC) [Lemaitre and Desmorat,
2005]. The stiffness of the material under compression is supposed to lie between the undamaged
and the damaged stiffness. Taking into account this effect is important, especially for high mean
stress loadings [Barbier, 2009]. In order to define the compressive stiffness of the damaged material,
a crack closure parameter h was introduced [Lemaitre, 1996]. Thus, effective stresses are defined
differently for tension and compression:

σ̃tension = σ

f e (Df ) σ̃compression = σ

f e
h (h, Df ) (4.48)

For h = 0 the initial stiffness of the material is recovered whereas a value of h = 1 assumes that
the stiffness under compression equals that under tension. For metallic alloys, in the absence of
experimental evidences, a value of h = 0.2 is often assumed [Lemaitre, 1996].

For the 3-dimensional stress state it is difficult to determine the loading direction by means of
a scalar quantity. To remedy this problem, several decomposition have been proposed in the lit-
erature, such as the elastic energy decomposition [Ladevèze, 1983], the Kelvin decomposition of
the compliance tensor [Desmorat, 2000], the damage tensor decomposition [Halm and Dragon,
1996], or more classically the stress tensor decomposition [Lemaitre, 1996], [Zhang et al., 2021].
Following this last approach, the effective stress tensor σ̃∼ can be transformed into the principal
values σ̃∼ diag and then decomposed into its positive σ̃∼ + and negative σ̃∼ + parts. This can be
done using the spectral decomposition technique which allows for the Cauchy stress tensor (nomi-
nal and effective) to be decomposed into two distinct parts, as first proposed by [Ladevèze, 1983]
and applied in other studies, e.g. [Lemaitre, 1996], [Cicekli et al., 2007].

Hereafter, “+” and “-” stem for the tensile and compressive parts, respectively. Therefore, the
decomposed nominal stress tensor can be written according to its principal unit vectors e i :

σ∼
diag =

3∑
i=1

σi e i ⊗ e i = σ∼ + + σ∼ − (4.49)

σ∼ + =
3∑

i=1
〈σi 〉+ e i ⊗ e i σ∼ − =

3∑
i=1
−〈−σi 〉+ e i ⊗ e i (4.50)

where 〈 . 〉+ is a weighted step function defined in the notations, page xxvii, σ∼ + and σ∼ − are the
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positive and negative parts of the nominal stress tensor in the principal coordinate axes, respectively.

It results from this spectral decomposition the following nominal stress tensor of the damaged
material written in terms of effective stress tensor and softening functions including closure effect:

σ∼
diag = σ̃∼ + f e (Df ) + σ̃∼ − f e

h (h, Df ) (4.51)

where the softening functions in eq. (4.51) are re-defined as:

f e (Df ) = exp (−βe ηD Df ) and f e
h (h, Df ) = exp (−βe ηD h Df ) (4.52)

Elasticity-damage coupling: In order to select stress as an independent variable and to operate
the partition of the stress tensor between its tensile and compressive parts, it is required to work
on the space of the stress-like variables rather than that of the strain-like forces. Such a change is
more convenient while dealing with the state law of elasticity [Lemaitre and Desmorat, 2005].
Hence, a partial Legendre transform of the Helmholtz specific free energy ψ given in eq. (4.3)
should be performed to get the Gibbs specific enthalpy ψ∗:

ψ∗ = ψ∗e + ψ∗in = ψ∗e + 1
ρ
σ∼ : ε∼in − ψin (4.53)

where ψ∗e is the elastic part of the Gibbs specific enthalpy and ψin is the inelastic contribution to
the Helmholtz specific free energy given by eq. (4.5).

The elastic part of the Gibbs potential is given by:

ψ∗e = sup εe

[
1
ρ
σ∼ : ε∼e −ψe

]
= 1

2ρ σ∼ : Λ̃
≈

−1 : σ∼ (4.54)

in which the spectral decomposition of σ∼ can be performed so that to get unilateral conditions
within the specific Gibbs enthalpy, see [Lemaitre and Desmorat, 2005] for more details.
The elastic part of the Gibbs potential finally reads:

ρψ∗e = = 1 + ν
2E

[
σ∼ + : σ∼ +
f e (Df ) +

σ∼ − : σ∼ −
f e
h (h, Df )

]
− ν

2E

[
〈 trσ∼ 〉2
f e (Df ) + 〈−trσ∼ 〉2

f e
h (h, Df )

]
(4.55)

The introduction of the partial closure effects has been integrated in the modeling following two
complementary ways:

• in the elasticity relations: ε∼e = Λ̃
≈

−1 : σ∼ which may evidence a partial stiffness recovery once
compressive stress state is reached, depending on the closure parameter h:

ε∼
e = ρ

∂ψ∗e
∂σ∼

= 1 + ν
E

[
σ∼ +

f e (Df ) +
σ∼ −

f e
h (h, Df )

]
− ν

E

[
〈 trσ∼ 〉
f e (Df ) −

〈−trσ∼ 〉
f e
h (h, Df )

]
1∼ (4.56)
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thus defining the effective stress tensor with unilateral conditions σ̃∼uc :

σ̃∼uc =
σ∼ +

f e (Df ) +
σ∼ −

f e
h (h, Df ) + ν

1− 2ν

[ 1∼ : σ∼ + − 〈 trσ∼ 〉
f e (Df ) +

1∼ : σ∼ − + 〈−trσ∼ 〉
f e
h (h, Df )

]
1∼ (4.57)

• in the elastic part of the fatigue damage driving force Y e
f , eq. (4.58): although the involve-

ment of the energy release rate due to tensile principal stresses is complete, for compressive
principal stresses it is only partial, where the extent of its contribution is scaled by the closure
parameter h and which in turn yields a lower damage rate.

Y e
f = ρ

∂ψ∗e
∂Df

= − 1 + ν
2E

[
σ∼ + : σ∼ +

f e2 (Df )
∂f e (Df )
∂Df

+
σ∼ − : σ∼ −

f e
h

2 (h, Df )
∂f e

h (h, Df )
∂Df

]
+ ν

2E

[
〈 trσ∼ 〉2
f e2 (Df )

∂f e (Df )
∂Df

+ 〈−trσ∼ 〉2
f e
h

2 (h, Df )
∂f e

h (h, Df )
∂Df

] (4.58)

Such a second option is often chosen alone in order to avoid the problem of convexity loss due
to the discontinuity of the potential depending on positive and negative parts [Ganczarski and
Cegielski, 2010], [Lemaitre and Desmorat, 2005], [Saanouni, 2012]. Thus, only the decomposition
into positive and negative parts can be accounted for the damage energy density rate Yf so as
to get higher values in tension than in compression. This modeling approach has been adopted,
e.g. by [Diamantopoulou et al., 2017] in the context of ductile fracture modeling.

Viscoplasticity-damage coupling: The yield surface depends on the amount of strain-hardening
and damage. However, it does not account for the influence of damage regarding the loading direc-
tion (as opposed to elasticity). Thus, in case of compression, hardening develops for stress states
exceeding the yield surface, while the evolution of damage remains active but may be reduced (or
even disabled) thanks to the introduction of micro-cracks closure effect within Y e

f , see eq. (4.58).
It is assumed that differences between the influence of damage on the description of the yield surface
under tensile and compressive stress states are assumed to be negligible [Otin, 2007], [Desmorat
and Cantournet, 2008]. Such an aspect relies on the nature of the mechanisms of plasticity it-
self controlled by slips and produced by shear stresses in the same manner regardless of their
signs [Lemaitre and Desmorat, 2005]. For these reasons, in the following, the (standard) effective
stress tensor σ̃∼ given in eq. (4.1) will be introduced within the yield criterion disregarding the tensile
and compressive contributions.

→ Remark about the mean stress effect: It has been proved that a damage law ensuring
a damage rate smaller in compression than in tension (at a given stress level) will naturally model
the mean stress effect [Desmorat, 2006]. The introduction of the micro-defects closure effect into
the energy release rate Yf associated with damage represents one possibility for the modeling
of the mean stress effect in metals plasticity [Lemaitre et al., 1999], [Barbier, 2009], [Desmorat
et al., 2015a]. As can be seen in Fig. 4.3, the mean stress effect is noticeable when varying the
micro-defects closure parameter h. Particularly, a value of h = 1 results in the absence of mean
stress effect, while h = 0.2 leads to greater stress amplitude to reach the failure for negative mean
stresses, see Fig. 4.3a.
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(a) 304L steel at 105 cycles (from [Barbier, 2009]). (b) Case for h = 0.2 (from [Chaboche, 2011]).

Figure 4.3: Influence of the micro-defects closure parameter h on Haigh diagrams for fatigue loadings.

The introduction of the micro-defects closure effect within the present fatigue damage model will
enable the possibility to account for a slight mean stress effect thanks to a load ratio-dependent
fatigue damage evolution. Such a point will be discussed in the sub-sect. 4.4.1.2 later on.

4.2 On a unified multi-mechanism damage model

In this Ph.D. project, the comprehensive material model for FG AD730™ has been derived and
calibrated in the Chap. 2 while the coupling with damage has been formulated in the sect. 4.1
assuming a local approach to fracture associated with consistent thermodynamics- and CDM-
based frameworks. Some particular aspects associated with complex loading schemes have already
been included in the modeling, such as the micro-defects closure effect for fatigue damage, see
sub-sect. 4.1.6. In order to take into account the whole failure modes, the present fatigue dam-
age model needs to be improved for complex loading conditions and needs to account for various
degradation processes. This point is the topic of the present section.

4.2.1 Ductile damage associated with porosity change

Experimental observations carried on FG AD730™ revealed some ductile dimples as well as
micro-pores (cf. sect. 3.2). Such defects result in high stress concentrations and lead to final
fracture.
In the present case, choice has been made to introduce a new damage variable Dv for volumetric
change. This volumetric damage is associated with the growth of porosity and subsequent damage-
induced plastic volume variation, also referred to as plastic compressibility [Chaboche et al., 2006],
[Saanouni, 2012]. The introduction of this additional damage variable Dv comes from the change
from initial to current material density. The volumetric damage is used to quantify the effects of
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void growth and increase in crack density per unit volume in the material:

Dv = 1− ρt
ρ0

↔ ρt = 1− Dv
1− Dv0

(4.59)

where ρ0 is the initial density associated with the bulk material. In eq. (4.59), Dv0 is a small valued
phenomenological coefficient that triggers the plasticity-induced compressibility effects, even for
initial conditions (prior to volumetric damage development) where Dv = 0, and which makes the
criterion pressure-dependent, see eq. (4.61) hereafter [Chaboche et al., 2006].
Neglecting the elastic strain-induced volume variation, the mass conservation principle yields:

ρ̇t = −ρt tr ε̇∼in ↔ Ḋv = − ρ̇t
ρ0

= − ρ̇t
ρt

(1− Dv ) = (1− Dv ) tr ε̇∼in (4.60)

which yields to the exact counterpart of the cavity growth equation in Gurson [Gurson, 1977] or
Rousselier [Rousselier, 1987] models. The eq. (4.60) indicates that the inelastic strain rate tensor
is no more purely deviatoric but also contains hydrostatic terms as long as plastic strain develops.
Moreover, Dv is not considered as an (independent) internal state variable as it is the case for
the fatigue damage Df introduced in sub-sect. 4.1.2. The former is directly governed by inelastic
strains which in turn makes Dv a non-dissipative variable as its evolution is already accounted for
in the inelastic power. The theoretical derivation of the evolution of the model, not given here,
follows the guidelines given in [Chaboche et al., 2006].

It is somewhat important to notice the change in the yield function Fy from the one given in
eq. (4.21) to that of eq. (4.61) which, due to this additional damage variable Dv , combines the first
and the second stress invariants. An elliptic form is chosen here, as suggested by [Green, 1972] for
porous materials and as previously studied by [Besson and Guillemer-Neel, 2003], [Kaminski, 2007].

F vp
y = Fy − σov =

√
3
2
∣∣∣∣ Z̃∼
∣∣∣∣

H
−
∑

i
R̃ i − R0 − σov ≤ 0 (4.61)

with the norm of the apparent stress tensor
∣∣∣∣ Z̃∼
∣∣∣∣

H
defined by:

∣∣∣∣ Z̃∼
∣∣∣∣

H
=
√

Z̃∼ : H
≈

: Z̃∼ =
√

Z̃∼ :
[

P
≈

D + 2ϕc gD (Dv ) P
≈

S
]

: Z̃∼ (4.62)

in which ϕc is a material parameter allowing for the pressure sensitivity to be scaled, gD is a
function of the volumetric damage Dv , and P

≈
D & P

≈
S are the 4th-order deviatoric and hydrostatic

projection tensors, respectively, defined in eq. (4.9). Note that if we set ϕc = 0 in eq. (4.62), the
elliptic yield criterion eq. (4.61) reduces to the standard pressure-independent Von Mises criterion
given in eq. (4.21). In eq. (4.62), the function gD, modular in nature, is simply chosen as the sum
of the volumetric damage variables:

gD (Dv ) = Dv + Dv0 (4.63)

Finally, the total damage rate Ḋtot can up to now be divided into a fatigue contribution due to
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fluctuating loading and a volumetric contribution driven by the inelastic deformation:

dDtot = Ff (σ̃∼, X̃∼ , R̃ , Df , ṗ) dt + Fv (ε̇∼in, Dv ) dt (4.64)

A specific feature associated with the summation in eq. (4.64) is the direct coupling between dam-
age and both elasticity and (visco)plasticity. Indeed, in the effective variables, eq. (4.1), as well as
in the softening function given in eq. (4.2), introducing the total damage Dtot results in a strong
coupling between the overall damage mechanisms and material behavior.

4.2.2 Extension to time-activated effects

Once subjected to long time exposure at elevated temperatures, most of the metallic materials
lose their mechanical properties. This decrease in resistance is to be related (among others) to the
creep process which is a thermally-activated phenomenon.
For polycrystalline alloys, like the present Ni-based superalloy AD730™, the creep degradation
process occurs at the GB (i.e. at the intergranular level) through cavity initiation and expansion
(typically by a diffusion process) [Thébaud, 2017], [Vultos, 2019]. The results obtained from the
experimental work as detailed in Chap. 3 have evidenced the occurrence of mixed cracking modes
under dwell-fatigue loading conditions in AD730™. As stated, dwell-fatigue loading schemes re-
sulted in creep processes associated with holding periods and elevated temperatures. This led to
creep pores nucleation at GB with intergranular cracking features.

In the present study, the aim is not to accurately model the creep process (since no proper creep
tests have been performed in the experimental campaign), but to account for creep damage mech-
anisms to enable the simulation of complex loading conditions (see sub-sect. 4.1.1).
Since the pioneer works from [Kachanov, 1958] & [Rabotnov, 1969], a general CDM-based creep
model has been suggested by [Leckie and Hayhurst, 1974] in order to generalize the classical uni-
axial creep damage equation proposed by [Rabotnov, 1969] to multiaxial stress states. This was
made possible thanks to the use of adequate stress invariants.

In order to introduce an additional creep damage variable Dc into the proposed fatigue damage
model, one should postulate the existence of an additional pseudo-potential Ω∗Dc to the dissi-
pative pseudo-potential given in eq. (4.26). This is rather straightforward due to the obvious
time-dependence of creep damage accumulation:

Ω∗Dc = Yc

〈
χc (σ∼)

Sc

〉mc

e (βc ηD Dc ) ↔ Ḋc =
∂Ω∗Dc

∂Yc
=
〈
χc (σ∼)

Sc

〉mc

e (βc ηD Dc ) (4.65)

where Yc is the energy release rate related to creep damage, Sc & mc are the creep damage
resistance and exponent, respectively, and βc controls the non-linearity of the creep damage
evolution. Note that all these material constants may depend on temperature. In eq. (4.65), the
χc (σ∼) is a multiaxiality function of the stress invariants as suggested by [Martin and Leckie, 1972]:

χc (σ∼) = αc I0 (σ∼) + δc I1(σ∼) + (1− αc − δc)
√

3J2 (σ∼) (4.66)
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with:

I0 (σ∼) = max
i

(σi) ; I1 (σ∼) = trσ∼ ;
√

3J2 (σ∼) =
√

3
2 σ∼

D : σ∼ D (4.67)

where αc and δc are temperature-dependent coefficients controlling the damage growth.
In eq. (4.66), the introduction of I0 (σ∼) accounts for the maximum principal stress which opens
the micro-cracks and makes them to grow (mode I crack opening). The invariant I1 (σ∼) relates
the hydrostatic stress which is known to greatly affect the cavities growth (through dilatation
process) and

√
3J2 (σ∼) , known as the octahedral shear stress allows for the shear mechanisms to

be accounted for [Arnold and Kruch, 1991].

Remark 1: It can be mentioned that the introduction of the effective stress σ̃∼ defined in eq. (4.1)
into the creep damage evolution equation eq. (4.65) yields:

Ḋc =
〈
χc (σ̃∼)

Sc

〉mc

f e
D

mc e(βc ηD Dc ) (4.68)

Owing to the introduction of an additional creep damage variable, the total damage rate Ḋtot
defined in eq. (4.64) can be supplemented with a creep contribution due to dwell periods:

dDtot = Ff (σ̃∼, X̃∼ , R̃ , Df , Dc , ṗ) dt + Fc (σ∼, Df , Dc , t) dt + Fv (ε̇∼in, Dv ) dt (4.69)

where all the evolution equations are written in a time-incremental formalism, hence easing the
numerical integration process. Moreover, one can remark through the eq. (4.69) that an increase
in fatigue damage accelerates the creep one, and conversely. This corresponds to a simple damage
interaction effect as suggested by [Blackmon et al., 1983] & [Chaboche, 1988b] and which is to be
related to the introduction of the total damage Dtot in each single damage evolution equation. In
the present work, for the sake of simplicity, choice has been made to consider an equally weighted
linear combination of all the damage variables:

Dtot = Df + Dc + Dv (4.70)

Remark 2: Let us note that it is possible, in the modeling, to exacerbate the interaction effects
between damage mechanisms through specific formulations. Details can be found in, e.g. [Dunne
and Hayhurst, 1992], [Skelton and Gandy, 2008], [Jing et al., 2017] or [Tang et al., 2020].

Once the total damage has reached a critical value D cr it
tot , the material point is assumed to be

broken. The evolution equations eq. (4.47), eq. (4.60) and eq. (4.65) remain valid as long as
Dtot ≤ D cr it

tot . Finally, other interaction effects of the damage mechanisms are neglected here for
simplicity reasons.

Remark 3: Due to the summation of the damage variables as in eq. (4.70), the creep damage
driving force Yc admits the same form as the one from fatigue damage Yf given in eq. (4.15) -
eq. (4.18). As a consequence, the free energy functional (Helmholtz, eq. (4.3), or Gibbs, eq. (4.53))
is thus supplemented by an additional internal state variable Dc . In the same time, the effective
variables eq. (4.1) and the softening function eq. (4.2) both include the total damage Dtot as
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parameter, which in turn results in a strong coupling between total damage and the mechanical re-
sponse (whereas damage interaction effects are first disregarded). Owing to the CDM framework,
the condition Dtot = 0 still corresponds to the virgin (undamaged) state while Dtot = D cr it

tot
corresponds to the fully damaged state (i.e. crack initiation).

4.2.3 Overall equations of the multi-mechanism damage model

Mechanism Constitutive equation

Strain partition ε̇∼ = ε̇∼
e + ε̇∼

in

Elasticity ε∼
e = Λ̃

≈

−1 : σ∼ or ε∼
e = Λ

≈
−1 : σ̃∼uc if U.C.

(Visco)Plasticity ε̇∼
in = λ̇

f e (D)

√
3
2 ñ∼

Unit effective normal ñ∼ =
√

2
3

∂Fy
∂σ̃∼

=
H
≈

: Z̃∼∣∣∣∣ Z̃∼
∣∣∣∣

H

Apparent stress Z̃∼ = σ̃∼
D −

∑
k

X̃∼
k

Cumulated plasticity ṗ =
√

2
3
∣∣∣∣ ε̇∼in ∣∣∣∣

H
= λ̇

f e (D) =
(
Z̃∼ : ε̇∼in)
σ̃eq

Viscoplastic multiplier λ̇ = φv (Fy ) = ε̇0

[
sinh

〈
Fy
K

〉n

+

]m

Yield (visco-)surface F vp
y = Fy − σov =

√
3
2
∣∣∣∣ Z̃∼
∣∣∣∣

H
−
∑

i
R̃ i − R0 − σov

Isotropic hard. Ṙ =
2∑
i

Ṙ i = bi Q̃i ṙ i with ṙ i = λ̇

f i (D)
(
1− bi r i)

Kinematic hard. Ẋ∼ =
3∑
k

Ẋ∼
k = C̃

≈

k : α̇∼
k with α̇∼

k = λ̇

f k (D)

(√
3
2 ñ∼− γ

k ϕk(p) P
≈

D :α∼
k
)

Fatigue damage Ḋf = λ̇

〈
Yf − Yf0

Sf

〉mf

+
e (βf ηD Dtot) H(p − pD)

Creep damage Ḋc =
〈
χc (σ∼)

Sc

〉mc

+
e (βc ηD Dtot)

Volumetric damage Ḋv = (1− Dtot) tr ε̇∼
in

Total damage Ḋtot = Ḋ = Ḋf + Ḋc + Ḋv

Table 4.2: Three-dimensional form of the overall constitutive equations fully coupled to damage.



162 Chap. 4 – A local approach to fracture for fatigue crack growth

4.3 Numerical implementation into a Finite Element code

This section is dedicated to the numerical implementation and solving routines associated with
the time-incremental fatigue damage model proposed in the last sect. 4.1 & sect. 4.2. Interested
reader may have a look on this section, while the one who is more interested in the applications
can directly refer to the sect. 4.4.

To perform FE calculations, the multi-mechanism damage model derived in the last sect. 4.2
needs to be implemented within a FE code. In the present study, as already stated in Chap. 2,
this task is achieved in the multi-purposes Z-set static implicit FE solver through the Z-front util-
ity which allows to write user-defined sub-routines [Foerch et al., 1997], [Besson and Foerch, 1997].

In order to solve the first order initial value problem (IVP) defined by the whole constitutive evo-
lution equations, see Tab. 4.2, a relevant numerical integration algorithm should be considered.
Indeed, thanks to the time-incremental formalism, the entire set of evolution equations governing
the non-linear and damageable behavior of the material needs to be integrated with respect to
time during the whole loading scheme. To achieve this task, both explicit and implicit resolution
procedures can be considered. In the present work, for stability reasons, I have chosen an im-
plicit scheme, despite its high-demanding implementation cost. As a consequence, the numerical
integration of the above constitutive equations may be expressed via a fully-implicit stress update
routine. Such a task was carried out following some guidelines given in, e.g. [Besson et al., 2010].
By performing the temporal discretization of the problem, the algorithm starts with an elastic trial
step, and by reaching the prescribed yield limit, a solution strategy is applied to update the internal
state variables. This section gives some details about such numerical procedures.

4.3.1 Local integration of the constitutive equations

Assuming the use of the standard FE method, the purpose of the numerical constitutive model
is to compute the stress tensor σ∼ (as well with other internal variables) at the end of the load
increment accordingly to the strain tensor increment ∆ε∼ associated with the prescribed displace-
ment of the structure ∆u, during a time step ∆t. Such an integration scheme is applied locally
at every integration (Gauss) point during each global iteration step.

For the present viscoplastic-damage model, the sets of degrees of freedom DOF , input variables
VIN , output variables VOUT , integrated variables Vint and auxiliary variables Vaux for a standard
(displacement-based) FE are given by:

DOF :
{

u
}

; VIN :
{
ε∼

}
; VOUT :

{
σ∼

}
; (4.71a)

Vint :
{
ε∼

e, α∼k , r i , λ, Df , Dc , Dv

}
; Vaux :

{
ε∼

in, X∼
k , Z∼ , R i , p, Yf , Yc

}
(4.71b)

As stated in sub-sect. 4.1.3 for an elastic-viscoplastic behavior, two cases may be encountered:

http://www.zset-software.com/
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• if Fy ≤ 0 then the material behaves elastically with a linear stress-strain response;
• while if Fy = σov > 0 the material behavior is non-linear with viscoplastic & damage

properties.

The numerical procedure is hence split into two steps: i) an elastic prediction is realized so that
to evaluate the yield criterion eq. (4.21), see sub-sect. 4.3.1.1; ii) in case of an inelastic response
of the material, a local update of the internal variables is achieved, see sub-sect. 4.3.1.2.

4.3.1.1 Elastic trial

Assuming that the input strain increment ∆ε∼ is purely elastic at the time step n + 1, the trial
stress tensor is given by:

σ∼
tr
n+1 = σ∼n + ∆σ∼ = σ∼n + f e (Dtot n) Λ

≈
: ∆ε∼ (4.72)

Then a trial of the yield function F tr
y is performed using the new trial stress σ∼ tr as follows:

F tr
y =

√
3
2

∣∣∣∣∣∣∣∣ (σ̃∼ D tr
n+1 −

∑
k

X̃∼
k
n

) ∣∣∣∣∣∣∣∣
H

−
∑

i
R̃ i

n − R0 ≤ 0 (4.73)

The two cases defined above can be distinguished:

• if F tr
y ≤ 0 the material response is effectively linear elastic, only ∆σ is different from zero

and the trial stress eq. (4.72) is kept as final stress tensor at tn+1:

σ∼n+1 = σ∼
tr
n+1 (4.74)

and then both the int. and aux. variables are kept unchanged from their previous value at tn:

Vint :
{
ε∼

e, α∼k , r i , λ, Df , Dc , Dv

}
n+1

=
{
ε∼

e, α∼k , r i , λ, Df , Dc , Dv

}
n

(4.75)

Vaux :
{
ε∼

in, X∼
k , Z∼ , R i , p, Yf , Yc

}
n+1

=
{
ε∼

in, X∼
k , Z∼ , R i , p, Yf , Yc

}
n

(4.76)

• if F tr
y > 0 then the material behavior is non-linear with inelastic & damage properties,

hence requiring a inelastic correction to be performed to ensure the consistency condition
eq. (4.23) as well with the proper update of the int. and aux. variables. Such an update
procedure aims at evaluating the stress tensor as well as the integrated variables in order to
ensure the condition Fy ' 0. In such a case, one gets:

σ∼n+1 = σ∼
tr
n+1 − Λ̃

≈
: ∆ε∼

in (4.77)

The internal and auxiliary variables also need to be updated consistently following the resolution
procedure discussed in the following sub-sect. 4.3.2:{

Vint/aux

}
n+1

=
{
Vint/aux

}
n

+
{

∆Vint/aux

}
(4.78)
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4.3.1.2 Correction for the internal variables

In order to update the integrated variables Vint as well with the stress tensor VOUT = σ∼ accord-
ingly to the imposed total strain increment ∆VIN = ∆ε∼ , an iterative numerical procedure aiming
at solving the non-linear governing equations given in Tab. 4.2 is required. To do so, two numerical
procedures can be considered: implicit & explicit schemes. In the present study, implicit numerical
scheme has been chosen for particular reasons discussed below. Thus, for the sake of brevity,
explicit schemes will not be discussed. Some information can be found in [Besson et al., 2010].

In this Ph.D. project, choice for an implicit numerical scheme mainly relies on the need to perform
relatively large time steps. Indeed, owing to the loading schemes assessed in the present work deal-
ing with LCF conditions, a large number of loading cycles needs to be simulated, hence requiring
a huge number of time increments. In addition, stability properties were also required.
On the one hand, implicit methods are known to be unconditionally stable while preserving a good
accuracy, providing that a convergence criterion is respected [Ortiz and Popov, 1985], [Besson
et al., 2010], [de Souza Neto et al., 2011]. On the other hand, the convergence of the well-known
gradient-based iterative scheme referred to as the Newton-Raphson (N-R) algorithm requires the
estimation of the so-called Jacobian matrix (see sub-sect. 4.3.3) which size depends on the number
of integrated variables.

In the following, the constitutive equations associated with the viscoplastic and damageable be-
havior of AD730™ are implemented using the N-R iterative scheme to solve the implicitly defined
equations thanks to a backward-Euler numerical scheme.

4.3.2 Incremental formulation of the problem

As it can be observed from the constitutive equations of the model, summarized in Tab. 4.2,
the strong coupling between damage and elastic-viscoplasticity, as well with the presence of a back-
stress tensor, induce a highly non linear problem to be solved. Therefore, an iterative numerical
scheme is required to update the state variables incrementally.

4.3.2.1 Time discretization

The material equations given in Tab. 4.2 are time-dependent ordinary differential equations of
first order which are discretized in time thanks to a standard θ-method [Chaboche and Cailletaud,
1996]. We have the following initial value problem (IVP):

ẋ = f (t, x), x(t0) = x0 ↔ xn+θ = xn + θ∆t f (tn+θ, xn+θ) (4.79)

where the eq. (4.79) represents an implicit equation for any arbitrary unknown value xn+θ (tn+θ).
Defining a family of generalized mid-point integration rules parameterized in θ, as:

xn+1 = xn + ∆t ẋn+θ with ẋn+θ = (1− θ) ẋn + θ ẋn+1 (4.80)
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Such a method is second order accurate for θ = 1/2 [Mathews and Fink, 2002], whereas θ = 1
gives account for the first order accurate and unconditionally stable backward-Euler method which
is known to be highly efficient in the integration of α∼ [Jirásek and Bažant, 2001].

When the implicit backward-Euler method is applied to plastic or viscoplastic equations, the method
is recognized as the radial return method [Wilkins, 1964], [Besson et al., 2010]. Using the Z-set
code allows for the fast and exact determination of the consistent tangent operator required for the
evaluation of the elementary stiffness matrix (see later in sub-sect. 4.3.5) [Armines et al., 2020b].
To that extent, a strain-based formulation should be used in order to consistently derive the
material tangents [Cai et al., 2019]. Thus, considering a strain-driven problem, that is, controlled
by the total strain tensor ε∼ , the time interval is given by [tn, tn+1] whereas the time increment is
∆t = tn+1 − tn. For the strain-driven problem, the set of internal variables is chosen as:

Vint =
{
σ∼, ε∼e, α∼k , r i , λ, Df , Dc , Dv

}
(4.81)

which corresponds to a number of equations to be solved of:

N =
{

6 + 6 + (k × 6) + (i × 1) + 1 + 1 + 1 + 1
}

= 36 with k = 3; i = 2 (4.82)

On the one hand, the values of the state variables at tn are known
{
Vint/aux

}
n
.

On the other hand, the prescribed variable is given at current time tn+1 = tn + ∆t by
{
ε∼n+1

}
.

The updating procedure for the internal variables (see sub-sect. 4.3.1.2) restores the consistency
condition eq. (4.21) by returning the trial stress eq. (4.72) to the yield surface through a radial
return. Thus, such a method of corrector step is usually performed using an incremental formulation
(implicit function). Thus, in case of a (visco)plastic yielding, the 11 independent internal state
variables (i.e. 5 second order tensors and 6 scalars) given in eq. (4.81) need to be updated at the
end of the time step, that is at tn + ∆t. The discretization in time transforms the differential
equations into incremental (i.e. difference) formulation. In the following, any quantity evaluated
at tn will be denoted with a subscript n while, for the sake of clearness, those at tn+1 will have
their subscript n + 1 omitted:

ε∼
e = ε∼

e
n + θ∆t

∂ε∼
e

∂t = ε∼
e
n + θ∆t ε̇∼

e (4.83a)

α∼
k = α∼

k
n + θ∆t

∂α∼
k

∂t = α∼
k
n + θ∆t α̇∼

k (4.83b)

r i = r i
n + θ∆t ∂r i

∂t = r i
n + θ∆t ṙ i (4.83c)

λ = λn + ∆t ∂λ

∂t = λn + θ∆t λ̇ (4.83d)

Df = Df n + θ∆t ∂Df
∂t = Df n + θ∆t Ḋf (4.83e)

http://www.zset-software.com/
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Dc = Dc n + θ∆t ∂Dc
∂t = Dc n + θ∆t Ḋc (4.83f)

Dv = Dv n + θ∆t ∂Dv
∂t = Dv n + θ∆t Ḋv (4.83g)

It is worth noting that the implicit formulation of the constitutive equations implies that derivatives
in eq. (4.83) are evaluated at the current time step n + 1. Considering the rate form of the
constitutive equations given in Tab. 4.2, the system eq. (4.83) can be re-written, using θ = 1:

ε∼
e = ε∼

e
n + ∆ε∼

e = ε∼
e
n + ∆ε∼ − ∆ε∼

in = ε∼
e
n + ∆ε∼ −

∆λ
f e (D)

√
3
2 ñ∼ (4.84a)

α∼
k = α∼

k
n + ∆α∼

k = α∼
k
n + ∆λ

f k (D)

(√
3
2 ñ∼− γ

k ϕk(p) P
≈

D : α∼k

)
(4.84b)

r i = r i
n + ∆r i = r i

n + ∆λ
f i (D)

(
1− bi r i) (4.84c)

λ = λn + ∆λ = λn + ∆t φv (Fy ) (4.84d)

Df = Df n + ∆Df = Df n + ∆λ
〈

Yf − Yf0
Sf

〉mf

+
e (βf ηD Dtot) (4.84e)

Dc = Dc n + ∆Dc = Dc n + ∆t
〈
χc (σ∼)

Sc

〉mc

+
e (βc ηD Dtot) (4.84f)

Dv = Dv n + ∆Dv = Dv n + (1− Dv ) ∆λ
f e (D)

√
3
2 ñ∼ : 1∼ (4.84g)

4.3.2.2 Residual expressions

Once the time discretization of the evolution equations is achieved, the expression of the residual
equations to be solved is required. Using the θ-method, one gets at time t + θ∆t:

R = ∆Vint −∆V̂int = ∆Vint −∆t V̇int (t + θ∆t) = 0 (4.85)

with V̇int (t + θ∆t) = Vint (t + ∆t)− Vint (t)
∆t = ∆Vint

∆t (4.86)

where ∆V̂int denotes the function resulting from the evolution rule for the integrated variable.
Through time discretization of the evolution equations with θ = 1, eq. (4.84), we obtain the
corresponding residual equation system to be solved at tn+1:
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R =
{
Rσ∼ , Rε∼e , Rα∼k , Rr i , Rλ, RDf , RDc , RDv

}T
= 0 (4.87)

where, for the sake of clearness, index for quantities at time tn+1 = tn + ∆t is omitted and use is
made of the increments of the internal variables, as defined in eq. (4.84):

Rσ∼ = ε∼
e − Λ

≈
−1 : σ̃∼uc = 0∼ (4.88a)

Rε∼e = ∆ε∼
e −∆ε∼+ ∆λ

f e (D)

√
3
2 ñ∼ = 0∼ (4.88b)

Rα∼k = ∆α∼
k − ∆λ

f k (D)

(√
3
2 ñ∼− γ

k ϕk(p) P
≈

D : α∼k

)
= 0∼ (4.88c)

Rr i = ∆r i − ∆λ
f i (D)

(
1− bi r i) = 0 (4.88d)

Rλ = ∆λ−∆t φv (Fy ) = 0 (4.88e)

RDf = ∆Df −∆λ
〈

Yf − Yf0
Sf

〉mf

+
eβf ηD Dtot H (p − pD) = 0 (4.88f)

RDc = ∆Dc −∆t
〈
χc(σ∼)

Sc

〉mc

+
eβc ηD Dtot = 0 (4.88g)

RDv = ∆Dv − (1− Dv ) ∆λ
f e (D)

√
3
2 ñ∼ : 1∼ = 0 (4.88h)

where the eq. (5.54a) is not the incremental form of a differential equation. Such a supplementary
equation is added in the Newton-Raphson iterative loop so as to solve for the implicitly defined
stress-strain relationship strongly coupled with damage in case of micro-defects closure effect
(i.e. UC) in the elasticity law, as in eq. (4.56). Such a point, already discussed in [Lemaitre and
Desmorat, 2005], is also detailed in the appendices, see Chap. I. Of course, for the case without
any UC, the eq. (5.54a) is omitted.

4.3.3 Linearization and iterative solving algorithm

In order to solve the system of non-linear equations eq. (4.88) through the N-R scheme, these
equations first need to be linearized. Therein, a consistent linearization with respect to all basic
unknowns describing the problem is essential [Simo and Taylor, 1985], [Simo and Hughes, 1998].
The general root finding problem from eq. (4.85) can be written:

R (Vint , t) = 0 ∈ Rn (4.89)

Thus, the consistent linearization of eq. (4.89) (or eq. (4.87)) with respect to Vint leads to the
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local resolution procedure realized at each Gauss point in order to update the internal state vari-
ables. This can be carried out with the following iterative scheme, considering a first order Taylor
expansion:

R
∣∣
Vint 0

+ J
∣∣
Vint 0

δ∆Vint = 0 ↔ ∆V (k+1)
int = ∆V (k)

int −
[
J (k) ]−1 R (k) (4.90)

where Vint 0 is the initial value of the variables at each iteration step, J is the algorithmic tangent
operator, also known as material Jacobian matrix and δ∆V (k+1)

int = ∆V (k+1)
int − ∆V (k)

int denotes
the corrections for the increments of unknowns. The Jacobian matrix 1 is therefore given by:

J = ∂R
∂∆Vint

= 1−∆t ∂V̇int
∂∆Vint

∣∣∣∣
t+θ∆t

=


∂Rσ∼
∂∆σ∼

...
∂Rσ∼
∂∆Dv

... ... ...
∂RDv

∂∆σ∼
... ∂RDv

∂∆Dv

 (4.91)

Finally, the consistent linearization reads:
∂Rσ∼
∂∆σ∼

...
∂Rσ∼
∂∆Dv

... ... ...
∂RDv

∂∆σ∼
... ∂RDv

∂∆Dv


(k)

.

 ∆σ∼ (k+1) −∆σ∼ (k)

...
∆D (k+1)

v −∆D (k)
v

 = −


Rσ∼
...
RDv


(k)

(4.92)

In eq. (4.90) & eq. (4.92), the superscripts (k) & (k + 1) refer to the previous and current itera-
tion number, respectively, owing to the fact that the approximation of the zero residual equation
eq. (4.87) is realized in several iterations of the N-R scheme. The convergence of the algorithm
is reached once a specific criterion is fulfilled, that is generally ‖R‖2 < εloc

tol where εloc
tol is a

tolerance to be defined, e.g. 10−8. Note also that during the iterations, the total strain increment
∆ε∼ remains constant. The matrix J in eq. (4.91), although cumbersome to calculate is highly
necessary. Even if the accurate derivation of its terms is required, a good approximation can be
sufficient. Such a matrix needs to be computed and inverted at each iteration so that the internal
variables to be updated. Such a process demands a high computational effort during the local
update procedure (the more the Vint , the larger the required CPU-time).

Remark: For the sake of brevity, only the general procedure has been detailed. Since the model
will be extended to non-local interactions in the next Chap. 5, a similar procedure will have to
be performed. The values of each term of the Jacobian matrix are given in the appendix, see
Chap. I page 301. When a distinction between both local and non-local models exists, it will be
expressively indicated.

1 The symbolic matrix representation is used for the Jacobian matrix, even though each element of this symbolic
matrix can be either a scalar or a tensor of appropriate order.
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4.3.4 Update algorithm

Once the residual equation system eq. (4.88) is solved (i.e. the N-R loop has reached the
convergence criterion), the independent internal variables Vint =

{
σ∼, ε∼e, α∼k , r i , λ, Df , Dc , Dv

}
at time tn+1 can be determined.

At convergence: ∆Vint = − [J ]−1 R (4.93)

Vint ⇐ Vint + ∆Vint and Vaux ⇐ Vaux + ∆Vaux (4.94)

Finally, thermodynamics associated variables (mostly defined by auxiliary variables) can be updated
at the end of the time step following state relations eq. (4.12), eq. (4.13), eq. (4.14), eq. (4.15),
eq. (4.16) (or eq. (4.58) in case of UC), eq. (4.17), eq. (4.18), eq. (4.37).

As a matter of synthesis, the numerical integration algorithm for the strain-driven problem is sum-
marized in Tab. 4.3 page 170.

4.3.5 Consistent material tangent matrix

For the complete implementation of the fully coupled multi-mechanism damage model into
the implicit FE code Z-set, the consistent tangent operator (CTO) which is consistent with the
integration algorithm developed above in sub-sect. 4.3.3 should be implemented at the FE level
to evaluate the elementary stiffness. According to [Simo and Taylor, 1985], the CTO is required
in order to guarantee the convergence properties of the iterative N-R method. Hence, use of the
CTO guarantees a quadratic convergence of the global Newton equilibrium iteration.

As said previously, the main advantage of the fully implicit integration scheme is the direct eval-
uation of the consistent tangent operator [Simo and Taylor, 1985], [Besson et al., 2010]. In the
present work, the CTO is estimated from the incremental form of the constitutive equations, as
suggested by [Besson et al., 2010] and applied in, e.g. [Besson et al., 2001], [Feld-Payet, 2010]
and [Ling, 2017]. The residual equations eq. (4.88) are expressed in terms of increments of the
integrated variables ∆Vint and increments of the input variables VIN . The calculation of the
consistent tangent matrix is hence performed after the integration of the constitutive equations
which normally yields vanish residual equations:{

R (∆VIN , ∆Vint)
}

=
{

0
}

(4.95)

with imposed ∆VIN and calculated Vint .
A perturbation analysis can then be achieved: by applying an infinitesimal variation to the incre-
ments VIN , one obtains a new ∆Vint according to the requirement of null residual system. The
variation of ∆Vint resulting from the variation of ∆VIN should make the variation of

{
R
}

to
vanish, which is expressed as:

http://www.zset-software.com/
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Inputs: Number of iteration steps k, time step tn+1 = t + ∆t , and prescribed strain ε∼n+1

Outputs: Updated stress σ∼n+1 and int. variables Vint n+1 at current time step tn+1

1. given
{
ε∼n, σ∼n, ε∼e

n, ε∼in
n , α∼k

n, r i
n, λn, Df n, Dc n, Dv n

}
at tn and

{
ε∼
}
at tn+1

2. evaluate the trial stress σ∼ tr
n+1 = σ∼n + Λ̃

≈
: ∆ε∼

3. check for the yield condition Fpred
y

(
σ̃∼

tr
n+1,Vint n

)
≤ 0 ?

yes → update variables σ∼n+1 = σ∼
tr
n+1, Vint n+1 = Vint n and go to 7.

no → continue to 4.

4. initialize Z̃∼n+1 =
(
σ̃∼

tr
n+1 − X̃∼n+1

)
and ∆Vint = 0

5. update stress σ∼n+1 and internal variables Vint n+1 using the procedure in sub-sect. 4.3.3

update of internal variables

a) set the initial guess of the variables V (k)
int =

{
σ∼n, ε∼e

n, α∼k
n, r i

n, λn, Df n, Dc n, Dv n
}

b) iterate over k ∈ { 0, ..., kmax }

• compute the residual equation system R (k)

• calculate the Jacobian matrix J (k) and its inverse
[
J (k) ]−1

• solve the linear system δ∆V (k+1)
int = −

[
J (k) ]−1 R (k)

• update all variables:

∆V (k+1)
int = ∆V (k)

int + δ∆V (k+1)
int ∀Vint ∈

{
σ∼, ε∼e , α∼k , r i , λ, Df , Dc , Dv

}
• check for convergence

∣∣∣∣R (k) ∣∣∣∣
2 < εloc

tol ?

yes ⇒ exit loop

no ⇒ k → k + 1 and go to step b)

no and k = kmax → exit algorithm with error → divergence

c) extract variables’ increment ∆Vint

6. update variables Vint n+1 ← Vint n + ∆Vint & σ∼n+1 = σ∼n + Λ̃
≈

:
(
∆ε∼−∆ε∼in)

7. calculate the consistent tangent operator L = ∂∆σ∼/∂∆ε∼
8. return updated stress σ∼n+1 and CTO L to check for global equilibrium

exit

Table 4.3: Numerical integration procedure associated with the strain-driven problem applied to the local
cyclic elastic-viscoplastic-damage model (local level).

{
δR
}

= {∂R}
{∂∆VIN}

δ∆VIN + {∂R}
{∂∆Vint}

δ∆Vint =
{

0
}

(4.96)



4.3 Numerical implementation into a Finite Element code 171

which leads to:

{
δ∆Vint

}
=

−( {
∂R

}{
∂∆Vint

})−1 {
∂R

}{
∂∆VIN

}
 { δ∆VIN

}
(4.97)

where the term within the bracket in eq. (4.97) gives an evaluation of
{
δ∆Vint

}{
δ∆VIN

} , i.e.
∂
{

∆Vint
}

∂
{

∆VIN
} .

Moreover, by looking at the constitutive equations in Tab. 4.2, it can be noticed that VOUT depends
not only on Vint but also on VIN , which yields:

∆VOUT = VOUT (∆Vint , ∆VIN) (4.98)

Consequently, the variation of ∆VOUT should follow:

δ∆VOUT = ∂∆VOUT
∂∆Vint

δ∆Vint + ∂∆VOUT
∂∆VIN

δ∆VIN (4.99)

Substituting eq. (4.97) into eq. (4.99) reads:

δ∆VOUT =

 ∂∆VOUT
∂∆Vint

−( {
∂R

}{
∂∆Vint

})−1 {
∂R

}{
∂∆VIN

}
 + ∂∆VOUT

∂∆VIN

 δ∆VIN (4.100)

which finally leads to:

δ∆VOUT =
{
L
}
δ∆VIN ↔

{
L
}

= δ∆σ∼
δ∆ε∼

(4.101)

with
{
L
}

the consistent tangent matrix 1, which is calculated from four matrices: ∂∆VOUT
∂∆Vint

,{
∂R

}{
∂∆Vint

} ,
{
∂R

}{
∂∆VIN

} and ∂∆VOUT
∂∆VIN

.

Due to the strong coupling between damage and behavior as well with non-associated viscoplastic-
ity, it can be noticed that the CTO of the constitutive model is generally non-symmetric. Moreover,
as already noticed, the inverse of the Jacobian matrix J = ∂R

∂∆Vint
is gained thanks to the nu-

merical inversion of the residual system upon iterating, see eq. (4.90). For the sake of brevity,
details for the derivation of each terms of the previous matrices are given in the appendices, see
Chap. J page 309.

1 Similarly to the Jacobian matrix, a symbolic matrix representation is considered for the consistent tangent
matrix, even though each element of this symbolic matrix can be either a scalar or a tensor of appropriate order.
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4.4 Validation of the implementation

In the present section, some numerical simulations are performed on the general FE solver
Zébulon from the Z-set suite, using the classical Newton-Raphson fully implicit procedure both at
the global (equilibrium equation) and local (constitutive damage model) levels. A short benchmark
seems mandatory in order to validate the user-defined implementation.

4.4.1 Simulations on a single element

Figure 4.4: Uniaxial tension-compression
test on an under-integrated c3d20r FE.

In order to assess the validity of the user-
defined numerical damage model as implemented
within the Z-set solver (see sect. 4.3), it seems
first reasonable to validate the numerical time-
integration procedure at the integration point
level. To do so, a generic comparison be-
tween the present cyclic damage model and a
standard cyclic model already implemented within
the FE code (process “gen-evp”, see [Armines
et al., 2020a]) is performed. In order to
check the material response, simulations are
run on a single element, i.e. at the scale of
the Representative Volume Element (RVE), see
Fig. 4.4.

4.4.1.1 Convergence study

First of all, the damaging processes are disabled in our model to only check the cyclic elastic-
viscoplastic behavior. A strain-controlled cyclic loading scheme with increasing strain levels is
performed. The loading rate is fixed to ε̇ = 10−3 s−1. The material model is the one derived in
Chap. 2 at 550◦C with corresponding material constants given in Tab. H.1.

In Fig. 4.5, both the stress-strain hysteresis loops and the accumulated plasticity evolution are com-
pared for each model: the “gen-evp” model integrated along time thanks to an explicit 2nd order
Runge-Kutta procedure (the hyperbolic sine function not being implemented with the θ-method
and the “gen-evp” model) while the present material model is integrated using the standard fully
implicit θ-method. The choice for θ = 1 has been made to enforce the stability of the solving
algorithm when the problem involves a back-stress tensor [Jirásek and Bažant, 2001].
One can easily see in Fig. 4.5a that the hysteresis loops match well, hence suggesting the accuracy
of the numerical integration procedure. The cumulative plasticity p along the loading time is also
well estimated, see Fig. 4.5b. As a matter of comparison, it can be noted that the local conver-
gence of the numerical scheme, thanks to the criterion ‖R‖2 < εloc

tol and for the same loading
scheme, is reached in 4253 iterations for the explicit integration, while it requires 2786 iterations

http://www.zset-software.com/
http://www.zset-software.com/
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for the implicit integration process. Thus, the present user-defined material model seems to be
accurate enough to perform large time steps compared with a standard explicit resolution process.
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Figure 4.5: Validation of the FE implementation over RVE simulations: comparison between implicit (user-
defined model) and explicit (integrated) time-integration schemes within the Z-set solver (Dtot = 0).

4.4.1.2 Parametric study of the multi-mechanism damage model

The goal of this sub-section is tho assess the implemented model performing some FE sim-
ulations in order to analyze the capabilities of the proposed elastic-viscoplastic multi-mechanism
damage material model. For the sake of briefness and simplicity, damage-related material constants
were deliberately chosen to be severe in order to emphasize on the properties of the model. Their
values are not intended to characterize the real response of the material.

4.4.1.2.a Damage-induced stress-softening response

At first, a simple loading signal is simulated with fatigue damage activated in order to assess
the capability of the model to relate the loss of bearing capability of the material through the
damage-induced drop in stiffness.

From the Fig. 4.6, one can check the damage-induced softening response of the material point. As
long as the damage increases, the stress drop is evidenced, Fig. 4.6a. The resulting stress-strain
loops are depicted in Fig. 4.6b. In the latter plot, the decrease in elastic stiffness of the material
with increasing damage is clearly evidenced.

4.4.1.2.b Strain-hardenings and damage coupling

As discussed earlier, the present material model is intended to be as general as possible, with a
great extent of flexibility regarding both the mechanisms and the couplings to be considered. One
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(a) Stress and fatigue damage along time.
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(b) Corresponding stress-strain loops.

Figure 4.6: Damage-induced stress-softening material response under cyclic loading conditions.

flexibility gained from the previous implementation comes from the possible decoupling between
damage and kinematic hardening. Such a feature is illustrated in Fig. 4.7.
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(b) Back-stress and fatigue damage along time.

Figure 4.7: Effect of kinematic hardening-damage coupling on the material response under cyclic loading
conditions.

The Fig. 4.7a shows that the Cauchy stress decreases as long as the damage increases. On the
contrary, a possible state decoupling (as opposed to the coupled case) between damaging effects
and back stresses can be obtained, see Fig. 4.7b.
Using a local approach to fracture, the crack advance is governed by the complete deterioration
of the material points at the crack-tip. The coupling between damage and elastic properties of
the material is generally assumed since it relies on the initial formalism of the CDM framework.
However, one question is still open to present days on the coupling assumptions for viscoplasticity
(i.e. strain-hardening mechanisms). In the yield criterion, eq. (4.21), I have chosen a strong cou-
pling assumption between total damage and each of the strain-hardening mechanisms (X∼ and R).
This choice ensures that the stress drops to zero with increasing damage [Besson et al., 2010].
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4.4.1.2.c Damage mechanisms

Pure fatigue

Let us analyze two pure fatigue loading spectra under strain control with differing loading ratios
from alternate (Rε = −1), see Fig. 4.8, to non-symmetric case (Rε = 0.1), Fig. 4.9.
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Figure 4.8: Effect of fatigue damage parameter on the material response - cyclic conditions with Rε = −1.

In Fig. 4.8, the fact that the greater fatigue damage resistance Sf leads to the higher fatigue
lifetime is clearly evidenced. Once a material point has reached its broken state, the damage
variable is assumed to be constant with the critical value D cr it . The maximum value is chosen to
be close to unity (D = 1) so as to conform with standard formulation associated with CDM (note
that for the exponential softening function defined in eq. (4.2), the trend can be adjusted using
the ηD parameter). Once a material point is broken, stiffnesses (elasticity and strain-hardenings)
are drastically reduced inducing nearly vanishing stresses.
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Figure 4.9: Effect of fatigue damage parameter on the material response - cyclic conditions with Rε = 0.1.
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For the case with non-symmetric loading, Fig. 4.9, the drop in stresses is also noticeable. The
higher the fatigue damage resistance Sf , the lower the damage and the higher the corresponding
actual stress. Moreover, the mean stress relaxation is also evidenced. Such a result is expected
for asymmetric loading waveforms and is mainly related to the non-linearity of the back stress
evolution rule. Details on this point can be found in, e.g. [Chaboche, 1991].

Analysis of frequency effect on fatigue damage

In this short paragraph, the idea is to assess the occurrence of loading rate effect on the pure
fatigue response of the damage model. In Fig. 4.10, four loading rates are compared, ranging in
ε̇ ∈ [1. 10−5 – 1. 10−2] s−1. The material point is subjected to pure fatigue loading conditions at
∆ε/2 = 0.9% under symmetric loading.
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Figure 4.10: Influence of the loading rate on the fatigue damage evolution under pure fatigue conditions.

In Fig. 4.10a, for the sake of clarity, only a few cycles at both extreme loading rates are plotted.
One can notice a difference between the highest loading rate ε̇ = 1. 10−2 s−1 and the lowest one at
ε̇ = 1. 10−5 s−1. The shape of the hysteresis loops remains almost the same despite a slight differ-
ence in the size of the elastic domain. In Fig. 4.10b, a close-up view on the fatigue damage evolution
during 5 loading cycles is reported. One can easily notice the slight difference in the fatigue damage
evolution respective to the loading rate. As a result, the slower the loading rate, the faster the
fatigue damage growth. The cyclic damage model hence includes a slight and intrinsic sensitivity
to the loading frequency even if pure fatigue loading conditions are considered. This latter effect
is to be related to the viscosity effects included in the constitutive equations (see sub-sect. 2.3.3).

Microcracks closure effect in fatigue

The unilateral conditions (UC) for elastic stiffnesses associated with the partial microcracks
closure effect introduced in sub-sect. 4.1.6 can be evidenced from a pure fatigue loading with
varying micro-defects closure parameter h, Fig. 4.11.
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Figure 4.11: Influence of the micro-defects closure parameter h on the fatigue damage evolution.

On the Fig. 4.11a, some characteristic hysteresis loops at given strain levels are plotted. One can
see that as long as damage increases, the elastic stiffness tends to decrease. In the case there is
no partial closure of the microcracks (h = 1.0), the elastic stiffness in compressive stress state is
not recovered. It results in symmetric hysteresis loops with respect to both stress and strain axes.
On the contrary, once micro-defects are supposed to partially close once compressed, elastic stiff-
ness recovery is observed. Such a property yields in a greater compressive stress level for a given
strain level, Fig. 4.11a.
On the Fig. 4.11b, a close-up view on the time evolution of stress σ and fatigue damage Df is
given. It can be noticed in the case of UC that the damage growth is lower for the compression lev-
els than for the tension ones. This feature tends to delay the fatigue damage for low loading ratios.

Pure fatigue with plastic compressibility

In this part, the damage-induced plastic compressibility effect is evidenced as an additional
damage mechanism. Hence, a volumetric damage variable Dv is added apart from fatigue damage
Df . Both the effect of the initial porosity Dv0 and that of the plastic compressibility coefficient ϕc
on the overall damage evolution can be analyzed.

On the Fig. 4.12a, it can be noticed that the total damage Dtot exhibits different initial values at
the beginning of the loading scheme. This is attributed to the differing value of the initial porosity
Dv0 . This variable is assumed to trigger the volumetric damage growth which in turn influences
the plastic compressibility effect of the material through the equivalent stress given by eq. (4.62) &
eq. (4.63). As long as the loading cycles increase, the total damage (Dtot = Df + Dv + Dv0) tends
to the same value, no matter the initial porosity Dv0 , see Fig. 4.12a. This can be explained by
the fact that the initial porosity Dv0 only enforces the compressibility effect in the (elliptic) yield
criterion. However, since the fatigue damage is predominant, Fig. 4.12b, the plastic compressibility
effect and its resulting cavity growth process are in the minority compared to the fatigue damage
increase. The global trend is hence almost unchanged.
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Figure 4.12: Numerical response of a RVE subjected to fatigue loading conditions with plastic compress-
ibility - effect of the initial porosity Dv0 .

In Fig. 4.12b, it can be observed that fatigue damage Df is lower for the highest value of
Dv0 = 1.10−1 while the volumetric damage Dv is greater. However, the growth kinetic shows
a similar trend regarding the three values of Dv0 . The volumetric damage growth also admits
the same kinetics. One can explain the slight effect of the initial porosity Dv0 on the fatigue
damage Df from plastic compressibility effect which is directly related to volumetric damage Dv
and acts on the equivalent stress of the viscoplastic yield surface, see eq. (4.61) & eq. (4.62). As
a consequence, the plastic activity governing the fatigue damage through ṗ is influenced by the
deviatoric part of the viscoplastic strain rate tensor, itself influenced by compressibility effects (once
plastic compressibility effects are active, the viscoplastic strain tensor is no more purely deviatoric).
Finally, the higher the initial porosity, the higher the volumetric part of the strain tensor and the
lower the fatigue damage driving force. In addition, the higher the initial porosity, the greater the
volumetric damage development, Fig. 4.12b.
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Figure 4.13: Numerical response of a RVE subjected to fatigue loading conditions with plastic compress-
ibility - effect of the compressibility coefficient ϕc .
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On the Fig. 4.13a, the effect of the compressibility coefficient ϕc on the total damage growth
is plotted. This parameter is assumed to control the pressure-dependence of the yield criterion,
see eq. (4.61) & eq. (4.62). Obviously, the higher the value of ϕc , the greater the viscoplastic
compressibility effect. A closer look at the partition between fatigue and volumetric damages is
given in Fig. 4.13b. It is clearly evidenced the fact that a higher compressibility effect in the
yield criterion results in a higher extent of volumetric damage, Fig. 4.13b. Such a result is nearly
independent of the initial porosity Dv0 (taken as Dv0 = 1.10−2 in Fig. 4.13).

Dwell-fatigue

In this paragraph, the effect of the loading signal on both the creep and fatigue damage evolu-
tion is studied. A trapezoidal waveform with some 360 and 240 s holding-periods is simulated upon
pure fatigue cycling. The loading spectra and the resulting stress evolution are given in Fig. 4.14
while the creep-fatigue damage evolution and corresponding stress-strain loops are reported in
Fig. 4.15.
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(a) Dwell-fatigue cyclic loading.
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(b) Stress evolution along time.

Figure 4.14: Numerical response of a RVE subjected to dwell-fatigue loading conditions (1/2).

During the holding periods, the over-stress that relaxes can be observed, Fig. 4.14b. Moreover,
the stress-softening is greater for positive holding-times compared to negative ones.

From the Fig. 4.15a it can be noticed, on the one hand, a significant change in the growth of creep
damage depending whether the dwell-periods are performed upon tension (+) or compression (-).
This is mainly related to the modeling aspects which assume a vanishing creep cavity growth under
compression, hence resulting in the absence of damage rise. On the contrary, positive dwell-time
favors the opening of cavities and thus yields in an increase of the creep damage.
On the other hand, the fatigue loading being subjected to the same stress amplitude at a given
loading ratio, the fatigue damage increases approximately with the same trend no matter the sign
of the dwell-periods. Owing to the fact that positive holding-periods yield in a greater extent of
creep damage, the resulting hysteresis loops exhibit a greater stress-softening effect, Fig. 4.15b.
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Figure 4.15: Numerical response of a RVE subjected to dwell-fatigue loading conditions (2/2).

4.4.1.2.d Mean stress effect

As already reported in [Lemaitre and Desmorat, 2005] and discussed in sub-sect. 4.1.6, the
micro-cracks closure effect induces a mean stress effect in fatigue. By looking at a given stress-
controlled cyclic loading scheme with constant stress amplitude and varying loading ratios, one
can study the influence of the micro-defects closure effect on the fatigue lifetime, see Fig. 4.16:
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Figure 4.16: Influence of the loading ratio and the micro-defects closure parameter h on the fatigue
damage evolution under cyclic loading.

From the Fig. 4.16a, it is obvious that the higher the loading ratio (with h = 1.0), the more
detrimental it is for the lifetime of the material point. Then, the proposed fatigue damage model
includes an intrinsic sensitivity to the mean stress. Looking at the Fig. 4.16b, the effect of the
micro-defects closure parameter on the positive load ratios can be analyzed. Specifically for this
sub-section, the plain line corresponds to the case without micro-cracks closure (h = 1.0), whereas
the dotted line referred to the case with closure effect (h = 0.2). One can see from Fig. 4.16 that:
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• without any closure effect (h = 1), the lower the loading ratio, the smaller the fatigue
damage, Fig. 4.16a;

• for the lowest load ratio, the micro-defects closure parameter h has a greater influence on
the fatigue damage evolution compared to the case with the highest load ratio, Fig. 4.16b;

• the fatigue damage drop ∆Df with/without taking into account micro-cracks closure is
greater as long as the load ratio is decreasing. This can be attributed to the higher proportion
of compressive stresses for the lower load ratio, Fig. 4.16b.

Finally, one can conclude from a qualitative analysis that the lower the load ratio, the smaller the
elastic energy release rate associated with fatigue damage growth, and subsequently, the lower
the resulting damage. In turn, the lower the fatigue damage, the greater the fatigue lifetime,
hence suggesting an additional mean-stress sensitivity effect obtained through such a partial clo-
sure mechanism [Desmorat, 2006], [Otin, 2007], [Barbier, 2009].

4.4.2 Structural analysis: a shear-dominated loading case

In this paragraph, a simple 2D structural tensile example is considered in order to assess the
computational capability of the previously implemented damage model. A double-notched speci-
men is analyzed following the work of [Mediavilla Varas, 2005], [Feld-Payet, 2010] or [Khoei et al.,
2013a]. To this end, a specimen with two asymmetrically circular notches in the upper right and
lower left parts of the square specimen is considered, as shown in Fig. 4.17. This figure also
presents the boundary conditions of the problem. The specimen is considered in plane strain con-
ditions and the loading rate is assumed to be equal to u̇ = 10−2 mm.s−1 . A benchmark simulation
has been performed in order to assess the capability of the computations for different mesh sizes
and on the overall load-displacement responses. The material parameters are reported in sect. H.2.
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Figure 4.17: Geometry of the double-notched specimen subjected to tensile loading with corresponding
dimensions and associated boundary conditions (after [Mediavilla Varas, 2005]).
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In Fig. 4.18, two over the three considered spatial discretizations of the structure are given, namely
the extrema, with an average element size of 0.3mm for the first one (Fig. 4.18a) and 0.1mm for
the second one (Fig. 4.18b). The structure is meshed with 6-nodes quadratic triangular elements
with reduced integration points (c2d6r FE in the Z-set suite). The properties of the three dis-
cretizations are reported in Tab. 4.4.

Meshes 0.3mm 0.2mm 0.1mm

Elements 4 650 10 890 23 867
Nodes 9 459 22 023 48 134

Table 4.4: Properties of the FE meshes for the double-notched specimen.
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Figure 4.18: Accumulated plasticity field obtained in the double-notched specimen subjected to tensile
loading with the local damage model.

Looking at the accumulated plasticity in Fig. 4.18 and the total damage fields in Fig. 4.19, allows
to evidence both the strain and damage localization process. It can be seen that plasticity and
damage tend to localize in a narrow band, called the localization band. As long as the load in-
creases and once the damage-induced stress-softening effect is triggered, the localization process
is amplified while the rest of the structure undergoes elastic unload.
The comparison of the two mesh sizes evidence the fact that the damaged zone tends to decrease
as long as the mesh size is refined. Such a phenomenon, well-known for stress-softening damage
models based on the local state principle, is referred to as the mesh-dependency effect [Besson
et al., 2003], [Feld-Payet, 2010]. The strain and damage localize within the smallest band that
can be represented by the spatial discretization, which in turn may be a single row of elements or
integration points.

As previously seen, the localization process is fairly rapid, just after the peak, Fig. 4.20, and then
the calculation diverges. One can notice that the three load-displacement curves show different
results at crack initiation. The finest mesh (0.1mm) evidences an earlier crack initiation when
compared to the two other mesh sizes (0.2 & 0.3mm). The displacement at crack initiation (and

http://www.zset-software.com/
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Figure 4.19: Total damage field obtained in the double-notched specimen subjected to tensile loading
with the local damage model.
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Figure 4.20: Force-displacement curves for the double-notched specimen with three mesh sizes illustrating
the mesh dependency of the mechanical response.

consequently the associated dissipated energy) tends to increase with increasing the mesh size.
Such a result seems to make sense: the larger the finite elements, the greater the energy they
need to reach the failure. However, this is not in agreement with the physical fracture process
which needs to be treated in an objective manner, no matter the choice of the spatial discretization
(mesh size) of the considered structure for FE analyses. Thus, to overcome such a spurious effect,
a regularization technique should be considered to induce mesh-independent results upon mesh
refinement during FE analyses. Such a point is discussed in the following Chap. 5.
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4.5 Conclusion of the chapter

In this chapter, a time-incremental fatigue damage model has been derived. Such a model
belongs to the class of the phenomenological damage models owing to its consistent formulation
using the Thermodynamics of Irreversible Processes (TIP) and the local state method. Some
internal variables describing the degradation processes within the material under complex loading
schemes have been chosen to be fully coupled to the mechanical response of the material. In
this study, the small strain framework has been adopted as a starting point for an easier modeling
process (extension to finite strains remains an outlook for further investigations). Then, the cyclic
constitutive equations derived and calibrated in Chap. 2 have been adapted in order to alter the
stiffnesses of the material in the CDM framework.

The consistent development of such a damage model has been detailed as well with its numerical
implementation into a FE code thanks to a in-house subroutine. A parametric study has been
performed in order to assess the capabilities of this cyclic damage model.
A two-dimensional structural calculation under plane strain conditions has been simulated in order
to highlight the mesh-dependence effects.

Damage models relying on the local state principle allow getting rid of the transferability issues
from one geometry to another and to calculate in a fine and accurate manner the mechanical fields
at the tip of a crack. Such points hence represent the main improvements gained from the local
approach to fracture compared to energetic analyses offered by the global one.
Also, fully coupled CDM-based damage formalisms lead to the non-convergence of the FE calcula-
tions due to both the damage-induced stress-softening effect and the presence of broken elements
in the mesh. Some remeshing or node elimination techniques have been proposed in recent years
to remove such elements, but these methods lead to energy losses that distort the final solution.
Another weakness of this approach is related to the mesh-dependency. For this reason, regulariza-
tion techniques have been developed to overcome an important part of such a mesh-dependency.
This point constitutes the main topic of the next Chap. 5 devoted to the non-local extension of
the proposed local damage model.
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Résumé du chapitre en français

Dans ce chapitre, l’approche locale de la rupture a été mise en place pour prédire la croissance
de fissure en fatigue. Pour ce faire, un couplage comportement-endommagement a été formulé,
reliant les équations constitutives décrites au Chap. 2 avec les mécanismes d’endommagement
présents sous chargements complexes et identifiés au Chap. 3. Un modèle d’endommagement
par fatigue, phénoménologique et macroscopique, écrit sous une forme incrémentale en temps a
été développé à l’aide des concepts de la Mécanique de l’Endommagement Continu et la Ther-
modynamique des Processus Irréversibles. Les potentiels d’état et de dissipation associés aux
variables internes et à leur évolution temporelle ont été décrits. Le couplage fort entre la réponse
matériau et l’endommagement est réalisé à l’aide du concept de contrainte effective associé
à l’hypothèse d’équivalence en déformation. Le critère de (visco)plasticité fortement couplé à
l’endommagement tenant compte des variables d’écrouissages isotropes et cinématiques effec-
tives a été détaillé. Les effets de refermeture partielle des micro-défauts pour des chargements en
compression ont ensuite été intégrés au modèle. Ainsi, la loi d’évolution du dommage de fatigue
a été améliorée pour tenir compte des effets de refermeture et conduire à une croissance moindre
de l’endommagement sous chargement de compression. En complément, une restauration par-
tielle des propriétés élastiques du matériau a également été prise en compte dans la modélisation.
Ces deux effets contribuent à l’introduction dans le modèle d’un effet de contrainte moyenne sur
la croissance de l’endommagement de fatigue.
Le modèle de fatigue a ensuite été étendu à des mécanismes d’endommagement additionnels.
Ainsi, la compressibilité plastique du critère d’écoulement a été ajoutée via la croissance d’une
variable d’endommagement liée à la conservation de la masse et à la croissance de cavité. En
complément, comme attendu pour les chargements à hautes tempréatures avec temps de main-
tien, une variable d’endommagement de fluage associée à la croissance de cavités aux joints de
grains a été ajoutée. Toutes ces variables, phénoménologiques par nature, viennent s’additionner
pour former une variable d’endommagement total venant dégrader les propriétés matériau et
ainsi piloter la croissance de fissure.
L’implémentation numérique du modèle complet dans le code Element Finis Z-set a ensuite été
réalisée. Pour ce faire, un effort particulier a été mis sur l’intégration temporelle du système
différentiel couplé. La résolution de ce problème est effectuée à l’aide d’un schéma itératif de
type Euler implicite (θ-méthode). Bien que fastidieux dans sa partie imlémentation, ce type de
résolution pour des cas de chargement cycliques permet la résolution du système sur de larges pas
de temps. L’écriture incrémentale du problème différentiel est ensuite discuté, avant l’écriture des
résidus à minimiser pour résoudre le système d’équations non-linéaires couplées. Enfin, le calcul
de la matrice tangente, consistante avec le schéma de résolution, est détaillé. Cette dernière est
nécessaire pour garantir la bonne convergence de la boucle de résolution de l’équilibre global via
la construction des matrices de rigidité élémentaires. Le processus de résolution d’un point de
vue algorithmique est finalement rappelé.
En fin de chapitre, l’implémentation du modèle est validée sur des cas tests simples à l’échelle de
l’élément de volume. Les propriétés du modèle sont testées et la sensibilité à certains paramètres
est éprouvée. Pour finir, un cas structurel en 2D est donné. Il s’agit d’une plaque à double en-
coches, sollicitée en cisaillement, et soumise à un chargement monotone. Ce problème met alors
en évidence le problème de dépendance au maillage associé à la perte d’unicité de la solution.
La dissipation mécanique du problème n’est plus unique et le problème doit être régularisé.

http://www.zset-software.com/




5 Towards a non-local cyclic
elastic-viscoplastic multi-mechanism

damage model for fatigue crack growth

In the present chapter, a non-local formulation of the cyclic elastic-viscoplastic multi-mechanism
damage model is proposed. Such an extension of the local damage model proposed in the Chap. 4
aims, from a numerical point of view, at obtaining mesh-objective numerical results during FE
calculations. First, the strain localization process is briefly described and numerical methods
allowing the regularization of the mesh-size dependence are detailed with both their potentialities
and limitations in the scope of FCG applications. Then, a non-local formulation of the damage
model is suggested with a discussion on the choice of the variable endorsing the non-locality.
The extension to locking-free elements regarding the volumetric properties of the model is also
discussed. Once the non-local extension is settled, the numerical implementation of the whole
model is discussed prior to the numerical validation through benchmark tests.
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Although the FEM is known to be relevant for the prediction of strain-hardening in continuous
media within the small strain framework, some numerical problems have been reported for the
fracture prediction using the local state method:

• finite elements (FE) can undergo possible locking issues associated with some deformation
modes;

• some FE of the structure could reach a null stiffness due to the strong coupling with damage;
• the mechanical response of the problem is highly dependent on the spatial discretization,

i.e. the mesh size, as evidenced in the previous structural example, see sub-sect. 4.4.2.

In the following, aspects related to numerical issues in stress-softening problems are briefly discussed
and overcoming methods are presented prior to the proper enhancement of the cyclic damage model
to counteract such drawbacks.

5.1 Strain localization phenomenon in quasi-static problems

When subjected to severe loadings, most of the engineering metals exhibit a progressive dam-
age failure due to distributed micro-cracking and thus result in a loss of apparent stiffness after
reaching the peak stress. In structural analyses, such a typical behavior is generally termed as
strain-softening. The implementation in FEM codes of local CDM-based damage models, as the
one suggested in Chap. 4, causes numerical difficulties such as ill-posedness of the boundary value
problem. Indeed, the differential equations controlling the material response may lose their el-
lipticity for quasi-static problems ([Bigoni and Zaccaria, 1992], [Ottosen and Ristinmaa, 2005]).
This leads to damage localization to an evanescent volume upon mesh refinement, and conse-
quently to vanishing dissipation of energy and mesh-dependency. This issue has been addressed
in numerous studies, see e.g. [Billardon and Moret-Bailly, 1987], [Besson et al., 2003], [Feld-
Payet, 2010], [Davaze, 2019] for monotonic crack growth, [Saanouni et al., 1989], [Kruch et al.,
1991] for creep crack growth and [Marchal, 2006], [Aslan, 2010] for fatigue crack growth problems.

The loss of ellipticity is attributed to the violation of the stability criterion. The condition for local
stability based on Drucker’s principle on the positiveness of the second order work [Drucker, 1950]
was postulated by [Hill, 1958] and mathematically formulated for FE applications by [de Borst
et al., 1993]:

ε̇∼ : σ̇∼ = ε̇∼ : ∂σ∼
∂ε∼

: ε̇∼ > 0 ∀ ε̇∼ adm. (5.1)

Mathematically, the condition for the onset of material instability for a material having a tangent
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stiffness tensor H
≈

(D) , which in general could be non-symmetric, and an isotropic damage D, can
be written as:

ε̇∼ : H
≈

(D) : ε̇∼ = 0 (5.2)

Uniqueness of the solution is therefore guaranteed as long as the material tangent modulus remains
positive-definite [de Borst et al., 1993]. In the case of a localization band with a jump of the
deformation gradient, an acoustic tensor can be defined in terms of the vector n, normal to the
localization surface as follows:

A
≈

= n . H
≈

(D) . n > 0 ∀ n (5.3)

Loss of ellipticity of the governing equations occurs when the acoustic tensor A
≈

becomes singular.

The incorporation of a characteristic internal length in the classical (local) continuum damage
models is known to allow the strain/damage localization process to occur without losing the well-
posedness of the rate boundary value problem. Such a process is mainly associated with the
non-local extension of the classical local models, using a so-called regularization treatment [Forest
and Lorentz, 2004], [Zhu, 2017]. With a non-local model, the material state is no longer char-
acterized by point-wise state variables and an interaction distance appears through the so-called
internal length.

5.2 Choice of a regularization method and related aspects

5.2.1 Choice of a non-local approach

The past decades provided some understanding on the mathematical implications of non-local
integral and gradient models, particularly in avoiding pathological localization, see sect. 1.5, but
fundamental questions still remain. For instance, the role of the enhancement in crack growth mod-
eling and the associated treatment of boundaries have not yet been fully clarified [Samal, 2007].

Besides, all the studies listed in the literature review, see sub-sect. 1.5.2, have highlighted the fact
that fatigue (as well as creep) crack growth analysis using non-local models still remains a narrow
area of research. To the best of the author’s knowledge, there have been little attempts (if any)
in assessing the performance of non-local models under LCF loading conditions for the growth of
long cracks in structural calculations.

Implicit-gradient approaches are nowadays generally favored. This is notably due to their strong
analogy with the integral-type formulations [Askes and Sluys, 2002], which are both truly non-local,
and to their easiest numerical implementation in standard multi-purpose FE codes. The critical
comparison conducted by [César de Sá et al., 2006] also tends to confirm the superiority of implicit
gradient-enhanced formulations over integral ones for solving the mesh-dependency effect while
preserving a reasonable CPU-time demand. Besides, they allow the simultaneous resolution of
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both the global and the non-local problems (see sect. 5.4 later on). The only requirement comes
from the introduction of an additional nodal DoF.

The work from [Peerlings et al., 2000] has reported, in a study where inelastic strains are prevented,
that a gradient-type non-local regularization is effective as localization limiter for HCF conditions.
Moreover, CDM-based non-local cyclic damage models assuming a strong coupling between dam-
age and behavior, together with a non-linear constitutive model in fatigue situations, have been
very little discussed, except in [Maniar et al., 2017] (integral formulation) or [Yin et al., 2022]
(implicit gradient formulation). The present non-local extension of the cyclic elastic-viscoplastic
multi-mechanism damage model for fatigue crack growth prediction hence represents a key point
for this Ph.D. project.

All these aspects at hand, I have chosen to use in the present Ph.D. project an implicit gradient-
enhancement of the local damage model dedicated to cyclic crack growth [Peerlings et al., 2001],
[Engelen et al., 2003]. The implicit gradient regularization technique has already been used at the
ONERA in the context of damage evolution in composites structures [Germain, 2006], [Médeau,
2019] as well as for ductile fracture in various metallic alloys [Feld-Payet, 2010], [Davaze, 2019].
Obviously, the choice of the nature of the non-local variable is of primary importance and will be
discussed in the following.

5.2.2 Choice of the non-local variable

The choice of the non-local variable constitutes a delicate decision process since the non-local
effect is related to both the regularization technique and the considered material model. A non-
exhaustive review is given in the Tab. 5.1 so as to support the choice.

Non-local variable Framework References

Displacement field
CDM [Jirásek and Marfia, 2005], [Rodríguez-Ferran et al., 2005], [Tamayo-

Mas and Rodríguez-Ferran, 2014]

GTN [Huespe et al., 2012]

Total strain CDM [Belytschko and Lasry, 1989], [Simo and Ju, 1989]

Cauchy stress CDM [Bažant, 1994], [Giry et al., 2011]

Equivalent plastic
strain

CDM

[Pijaudier-Cabot and Bažant, 1987], [Peerlings, 1999], [Liebe and Stein-
mann, 2001], [Peerlings et al., 2002], [Geers et al., 2003], [Engelen et al.,
2003], [Boers et al., 2005], [Mediavilla et al., 2006a], [Belnoue et al.,
2010], [Feld-Payet et al., 2011], [Khoei et al., 2013a], [Seupel and Kuna,
2019]

GTN
[Gologanu et al., 1997], [Linse et al., 2012], [Hütter et al., 2013],
[Linse et al., 2014], [Zhang, 2016], [Zhang et al., 2018], [Davaze, 2019],
[El Ouazani Tuhami et al., 2021]

Energy release rate CDM [Pijaudier-Cabot and Bažant, 1987], [Bažant and Pijaudier-Cabot,
1988], [Liebe et al., 2001], [Germain, 2006], [Sornin, 2007]
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Damage CDM

[Pijaudier-Cabot and Bažant, 1987], [Lorentz and Andrieux, 1999],
[Areias et al., 2003], [Simone et al., 2003], [César de Sá et al., 2006],
[Sornin, 2007], [Fayolle, 2008], [El Khaoulani El Idrissi, 2010], [Velde,
2010], [Kowalsky et al., 2012], [Almansba et al., 2012], [Alessi et al.,
2015], [Brepols et al., 2015]

Porosity
GTN

[Leblond et al., 1994], [Tvergaard and Needleman, 1995], [Reusch et al.,
2003], [Jackiewicz and Kuna, 2003], [Brunet et al., 2005], [Enakoutsa
et al., 2007], [Samal et al., 2009b]

Rousselier [Samal et al., 2009a], [Seidenfuss et al., 2011]

Damage rate CDM [Saanouni et al., 1989], [Andrade et al., 2011], [Seabra et al., 2013],
[Maniar et al., 2017]

Porosity rate GTN [Enakoutsa et al., 2007]

Volume change
GTN [El Ouazani Tuhami et al., 2021]

Rousselier [Lorentz and Cano, 2005], [Lorentz et al., 2008], [Bargellini et al., 2009]

Table 5.1: Global review on the non-local variables and related publications (CDM: Continuum Damage
Mechanics, GTN: Gurson-Tvergaard-Needleman).

Non-locality can in practice be applied indifferently to a dissipation or state variable [Sornin, 2007].
This is the reason why the energy release rate Y can, for instance, be used as the non-local
variable. Most of the time, the regularization of the variable responsible for the stress-softening
process remains sufficient [Bažant and Pijaudier-Cabot, 1988]. However, some works investigated
the regularization of the whole set of internal state variables [Voyiadjis and Al-Rub, 2005], [Dorgan,
2006], [Diamantopoulou et al., 2017]. Such a choice still remains highly dependent on the consti-
tutive equations and the nature of the state couplings between the non-local variable(s) and the
others problem variables. In the work at hand, choice has been made to first assess the capabilities
of a non-local model with a single non-local quantity.

No matter the chosen underlying variable, authors agree to either interpret the delocalization of
the source of damage by choosing ε∼, εp

eq or Y , or to delocalize the effects of damage by choosing
D. Although there exists some flexibility in the choice of the non-local variable V , as no consensus
seems valid at this time, some restrictions still need to be ensured [Bažant and Jirásek, 2002]:

• the candidate variable must not be bounded (e.g. a damage variable ranging from 0 to 1
should be avoided);

• it should be related to the dissipative mechanism.

However, [Jirásek, 1998] in his work, reported that different types of non-local averaging lead to
different computational costs and material responses. Besides, some non-local formulations give
rise to unreasonable behavior as they are inherently flawed. Moreover, vanishing stress is not always
ensured, even for total damage which may be problematic [Jirásek, 1998]. Some other studies,
thanks to a comparative analysis on the regularized variable, also pointed out unsatisfying results
when the choice of the non-local variable is not suitable [Jirásek and Rolshoven, 2003a], [Andrade
et al., 2014]. Most of the time, the variable which is responsible for the stress-softening process
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(damage D ) is used as the support for the non-local interaction with neighboring points [Pijaudier-
Cabot and Bažant, 1987], [Sornin, 2007], [Fayolle, 2008]. Such an approach seems to yield the
best results, according to [Andrade et al., 2014]. It has also been noticed that the delocalization
of damage, rather than that of strain, stress or accumulated plasticity, results in improved conver-
gence and consistency of FE solutions [Maniar et al., 2017].

In the present study, the choice for the non-local total damage variable Dtot (simply referred
to as D) to regularize the mathematical problem under strain-softening conditions is, in this case,
also supported by the following arguments:

• as seen in Chap. 4, and more particularly in the sect. 4.2, the local cyclic damage model has
been designed so as to embed several damage mechanisms, namely the fatigue, creep and
volumetric damages. Since a simple summation has been considered, see eq. (4.70), using
one single non-local damage variable D is more efficient than computing non-local variables
for all the different damage mechanisms. In particular, this choice is more practical than the
choice of a non-local accumulated plasticity, since time-dependent creep processes have been
integrated in the cyclic damage model through a dedicated damage variable not depending
on viscoplasticity (ṗ for Df & Dv , and t for Dc);

• thanks to the exponential softening functions given in eq. (4.2), the total damage does not
need to be bounded.

Consequently, I have favored the total damage D as non-local variable in this Ph.D. project.

Remark: As a preliminary work, a first non-local model considering the accumulated plasticity
p as the non-local variable has been derived. Such a formulation, though finally not suitable for
cyclic loading conditions, has still been implemented within the Z-set code and assessed in struc-
tural calculations. For the sake of brevity, the corresponding results, though mainly associated with
the validation of the non-local strategy, are not given in the present chapter but are reported in
the appendices, see sect. G.1 and sect. G.2 in Chap. G page 293.

5.2.3 Choice of the characteristic length

Nowadays, the choice of the characteristic length-scale `c governing the non-local interaction
with neighboring points still remains a tricky point. The physical interpretation of the length-scale
parameter in metallic materials can be related to microstructural features such as the void spac-
ing, distance between distributed cracks and the density of Geometrically Necessary Dislocations
(GND). Such a parameter can be estimated using a combination of experiments and FE inverse
analyses [Bažant and Jirásek, 2002], [Andrade, 2011].
In ductile fracture problems, the inter-voids distance or the voids radius is usually taken as the in-
ternal length [Tvergaard and Needleman, 1997], [Bargellini et al., 2009] [Hütter et al., 2014]. The
maximum aggregate size can also be considered [Bažant and Pijaudier-Cabot, 1989] as well as, in
a smaller length-scale, the mean free-path for dislocation motion or the order of grain and particle
size [Abu Al-Rub and Voyiadjis, 2004]. The internal length is known to be close to 10µm for
steels [Pommier et al., 2011]. For creep crack growth problems, the volume (or surface) in which

http://www.zset-software.com/
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takes place the process of nucleation, growth and coalescence of defects can also be experimentally
determined and related to the characteristic length [Kruch et al., 1991].

Standard non-local integral / gradient-enhanced damage models with constant internal length
(i.e. `c) may suffer from the problem that the damaged zone artificially widens after complete
failure of the structure [Geers et al., 1998], [Simone et al., 2004], [Feld-Payet, 2010]. To solve this
problem, it has been proposed to consider an evolving internal length instead of a constant one [Poh
and Sun, 2017], [Nguyen et al., 2018]. For instance, in the case of gradient plasticity, it can be ex-
pressed as a variable dependent on the accumulated plastic strain, dislocation spacing or grain size,
etc. [Abu Al-Rub and Voyiadjis, 2004], [Voyiadjis and Al-Rub, 2005], [Dorgan, 2006]. Motivated by
micromechanical analyses and experimental facts indicating that interactions between cracks and
voids change in the course of failure, [Pijaudier-Cabot et al., 2004] suggested to make the internal
length-scale to depend on the equivalent strain or damage. In the same context, [Desmorat et al.,
2015b], [Rastiello et al., 2018] suggested the use of an internal length evolving with the damage
field. Many authors examined such a feature in non-local models, e.g. [Geers et al., 1998], [Simone
et al., 2003], [Nguyen, 2011], [Giry et al., 2011]. This allows to model a progressive transition
from diffuse damage to strain localization, hence making a bridge between Damage Mechanics and
Fracture Mechanics as the non-local interactions vanish [Rastiello et al., 2018]. Particularly, [Geers
et al., 1998] and [Pijaudier-Cabot et al., 2004] studied the effect of a vanishing length scale as a
function of the strain level in order to alleviate the widening of the damage zone normal to the
crack growth direction. Despite some experimental evidences indicating the need for an evolving
internal length, use is generally made of a constant one, at least for simplicity reasons.

As stated by [Besson, 2010], two populations of cavities could be involved in the so-called flat-
to-slant fracture process. In such a case, at least two characteristic length scales should then be
embedded in the modeling. However, the precise identification of the characteristic length scale
in the context of cyclic crack growth problems still remains little studied to date, due to both the
absence of further understanding on the fracture process under complex loading conditions (fatigue
and creep-fatigue) and the inherent complexity of multiple non-local variables numerical modeling.
In the present work, choice has been made to use a single constant non-local parameter `c
to validate the considered regularization method. Its order of magnitude is chosen based on prac-
tical considerations: from a practical and FE numerical point of view, the characteristic length
`c needs to be greater than the maximum FE size, i.e. `c ≥ he according to the recommenda-
tions from, e.g. [Feld-Payet, 2010], [Linse et al., 2012], [Seupel et al., 2020], [Davaze et al., 2021].

5.3 On the adaption of the viscoplastic-damage formulation

5.3.1 A gradient-enhancement based on the total damage

Spatial localization limiters are known to be mathematically robust and to provide excellent
results regarding the mesh-objectivity of the FE simulation results [Hamon, 2010]. That is why the
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implicit gradient formulation has been chosen for the present damage model, see sub-sect. 5.2.1.
The total damage variable has been chosen as the support for the non-local interaction:

Dtot = Df + Dc + Dv (5.4)

Ḋtot = λ̇

〈
Yf − Yf0

Sf

〉mf

+
e (βf ηD Dtot) +

〈
χc (σ∼)

Sc

〉mc

+
e (βc ηD Dtot) + (1− Dtot) tr ε̇∼in (5.5)

A total non-local damage variable Dtot is introduced, in which, for the sake of clarity, the subscript
“tot” is deliberately omitted. The diffusion equation (related to a non-constitutive variable Dtot)
to be solved is given by:

Dtot − c∇2 Dtot = Dtot in Ω and ∇Dtot . n = 0 on ∂Ω (5.6)

while the non-local constitutive model B reads:(
σ∼, Dtot

)
= B

(
∆ε∼, ∆Dtot , Vint

)
(5.7)

Still assuming a strong coupling between damage and elastic-viscoplastic behavior, the local effec-
tive variables eq. (4.1) are re-written in a non-local format:

σ̃∼ = σ∼
f e (D)

X̃∼
k = X∼

k

f k (D)
R̃ i = R i

f i (D)
(5.8)

The viscoplastic yield criterion eq. (4.61), strongly coupled to non-local damage, is defined by:

F vp
y =

√
3
2

∣∣∣∣∣
∣∣∣∣∣
(

σ∼
D

f e (D)
−
∑

k

X∼
k

f k (D)

) ∣∣∣∣∣
∣∣∣∣∣

H

−
∑

i

R i

f i (D)
− R0 − σov (λ̇) ≤ 0 (5.9)

while the loading/unloading conditions (KKT) eq. (4.23) remain valid. In addition, both the state
and the evolution equations eq. (4.12), eq. (4.13), eq. (4.14), eq. (4.44), eq. (4.45), eq. (4.46),
eq. (4.47), eq. (4.60), eq. (4.65), eq. (4.37) are reformulated:

σ∼ = f e (D) Λ
≈

: ε∼e X∼
k = f k (D) C

≈
k : α∼k R i = bi f i (D) Q i r i (5.10)

ε̇∼
in = λ̇

f e (D)

√
3
2 ñ∼ (5.11)

α̇∼
k = λ̇

f k (D)

(√
3
2 ñ∼− γ

kϕk(p) P
≈

D :α∼k

)
(5.12)

ṙ i = λ̇

f i (D)
(
1− bi r i) (5.13)

Ḋ = λ̇

〈
Yf − Yf0

Sf

〉mf

+
e (βf ηD D) +

〈
χc (σ∼)

Sc

〉mc

+
e (βc ηD D) + (1− D) tr ε̇∼in (5.14)
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ṗ = φv (Fy )
f e (D)

(5.15)

From eq. (5.9) to eq. (5.15), one can observe that the whole constitutive equations are fully cou-
pled to the non-local damage thanks to the effective variables. A similar approach was adopted
by [Sornin, 2007] and [Velde, 2010]. Such a modeling framework assumes that D may evolve
independently of the local plasticity. The non-local variable coming from the resolution of the
diffusion equation, see eq. (5.6), is estimated at each node of the non-local FE. This extra nodal
information is then interpolated to the IP thanks to dedicated (linear) shape functions in order to
be introduced in the constitutive relations. In order to ensure a positive dissipation along the whole
loading path, a decreasing evolution for D must be precluded. To this end, healing effects should
be excluded, which can be, in an analytical and incremental manner, be achieved by setting:

dD ≥ 0 ↔ D (t) = max
[

D (τ)
]

, 0 ≤ τ ≤ t (5.16)

The performance of this non-local extension will be discussed later on, in sect. 5.4. Prior to the
assessment, some numerical aspects related to the FE implementation of this gradient-enhanced
damage model should be discussed.

5.3.2 Thermodynamic consistency

During the material modeling process, it is of primary importance to ensure the positivity of the
intrinsic dissipation. As a result of the introduction of the non-local variable D in the constitutive
relations, the rate of change of the free energy expressed in eq. (4.24) here becomes:

Dint = σ∼ : ε̇∼ − ρψ̇ ≥ 0
= σ∼ : ε̇∼in −

∑
k

X∼
k : α̇∼k −

∑
i

R i ṙ i + Y Ḋ ≥ 0 (5.17)

The thermodynamic state potential ψ from eq. (4.3) needs to be adapted according to the coupling
with the non-local damage, which yields:

ρψ (ε∼e,α∼k , r i , D) = ρψe (ε∼e, D) +
∑

k
ρψk

in (α∼k , D) +
∑

i
ρψi

in (r i , D) (5.18)

Consequently, the definition of the energy release rate:

Y = −ρ ∂ψ

∂D
= −ρ

∂
(
ψe +

∑
k ψ

k
in +

∑
i ψ

i
in
)

∂D
(5.19)

along with the need for a strictly increasing dD ≥ 0 (see eq. (5.16)) allow for the damage-related
intrinsic dissipation to be positive Y Ḋ ≥ 0. The consistent validation of the positivity of the
intrinsic dissipation related to both plastic power, work-hardening and damage has already been
discussed in sub-sect. 4.1.4 and is detailed in the appendices, see Chap. F page 289.
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5.4 Finite Element formulation of the enriched non-local
cyclic damage model

The following sections address the main necessary steps for building an enhanced FE model
including both linearization and solving procedures. Details on the whole modeling process can
be found in, e.g. [Simo and Hughes, 1998], [de Souza Neto et al., 2011]. Let us note that this
non-linear problem will be solved using the static implicit Z-set solver.

5.4.1 Governing equations

The classical mechanical problem to solve reads:

∇.σ∼ (u) + f b = 0 in Ω (5.20)

σ∼ = σ∼
T in Ω (5.21)

Jσ∼ . n K = 0 on Γint (5.22)

u = u p on ∂Ωu and σ∼ . nt = t p on ∂Ωt (5.23)

In eq. (5.20), σ∼ is the Cauchy stress tensor, f b is the body force per unit volume, whereas inertia
is neglected. The eq. (5.22) is referred to as the interior continuity condition, which ensures the
continuity on all the interfaces Γint between subdomains of Ω. In eq. (5.23), u is the displace-
ment vector, up and tp are the prescribed boundary values on ∂Ω for the displacement and
traction fields, respectively (with ∂Ωu ∪ ∂Ωt = ∂Ω and ∂Ωu ∩ ∂Ωt = ∅ ) and nt the outward
unit normal to ∂Ωt .

With the implicit gradient enhancement, an additional diffusion equation of Helmholtz-type also
needs to be solved along with the single-field equilibrium problem described by eq. (5.20) - eq. (5.23):(

V − V
)
− c∇2 V = 0 ↔ V − c∇2 V = V in Ω (5.24)

where V and V are the non-local and local quantities, respectively, ∇2 =
∑

i ∂
2/∂x 2

i the
Laplacian operator with respect to the current configuration and c = 1

2 `
2
c is related to the

characteristic internal length [Peerlings et al., 2000].
Following the standard process of adopting homogeneous BC for ∇V in the boundary normal
direction, in agreements with [Peerlings et al., 1996b], one gets:

∇V . n V = 0 on ∂Ω (5.25)

where n V denotes the outward unit normal to the boundary ∂Ω of the problem domain.

The whole set of eq. (5.20) - eq. (5.23) & eq. (5.24) - eq. (5.25) is known as the strong form of

http://www.zset-software.com/
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the equilibrium and non-local equations.

5.4.2 Weak formulations of the 2-fields non-local finite element

5.4.2.1 Variational formulation of the equilibrium equation

The governing equations given in sub-sect. 5.4.1 have to be satisfied in every material point at
each (discrete) moment of the loading process. In order to be implemented within a FE code, such
a mechanical problem has to be reformulated in weak form so as to use a variational formulation.
This can be done using the principle of virtual work, multiplying eq. (5.20) & eq. (5.24) with the
test functions δu∗ and integrating the product over the domain Ω. This way, the eq. (5.20) can
be written: ∫

Ω
δu∗

(
∇.σ∼ + f b

)
dΩ = 0 ∀ δu∗ ∈ U0 (5.26)

where U0 is the vector space of kinematically admissible fields at zero. Using ε∼
∗ = ∇s u∗ ,

including the BC given by eq. (5.23), and applying partial integration together with the Green-
Gauss divergence theorem, eq. (5.26) can be written [Zienkiewicz and Taylor, 2000]:∫

Ω
σ∼ : δε∼ ∗(u∗) dΩ =

∫
Ω

f b . δu∗ dΩ +
∫
∂Ω

tp . δu∗ d∂Ω ∀ δu∗ ∈ U0 (5.27)

In eq. (5.27), the integral on the left-hand side of eq. (5.27) represents the work of the internal
forces associated with the virtual displacement, while the integrals on the right-hand side describe
the work of the external loading associated with the virtual displacement.

5.4.2.2 Variational formulation of the gradient equation

As for the non-local enhancement, in a similar fashion, the weak form of eq. (5.24) reads:∫
Ω
δV∗

(
V − c∇2 V − V

)
dΩ = 0 (5.28)

which is obtained using the virtual quantity δV∗. Including the boundary condition eq. (5.25) and
employing the partial integration together with the Green-Gauss divergence theorem into eq. (5.28),
the resulting weak form becomes:∫

Ω

(
V − V

)
δV ∗ dΩ + c

∫
Ω
∇V .∇

(
δV ∗

)
dΩ = 0 (5.29)

The equation eq. (5.29) exhibits the balance between internal and (vanishing) external non-local
forces. The difference between the local variable V and its non-local counterpart V in eq. (5.29)
serves as source term for the non-local interaction (diffusion) process.
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5.4.3 Spatial discretization using Finite Element method

5.4.3.1 Shape functions for the interpolations

The problem at hand involves two unknowns at the nodal level, that are the displacement fields
and the non-local variable, gathered within the vector q =

{
u, V

}
. In the standard FE framework,

the strain field ε∼ follows from the gradient of displacement field which is given by:

ε∼ (x) =
na∑

a = 1
∇sN a

u (x) u a =
na∑

a = 1
B a

u (x) u a (5.30)

δε∼
∗ (x) =

na∑
a = 1
∇sN a

u (x) δu a,∗ =
na∑

a = 1
B a

u (x) δu a,∗ (5.31)

where na is the number of nodes in the FE, u a are the unknown nodal values for the displace-
ment, N a

u (resp. B a
u) are the elementary matrices containing interpolation functions for the DoF

associated with the displacements (resp. their derivatives).
Note that eq. (5.30) & eq. (5.31) are also true for virtual quantities δu ∗ and δV ∗ .
In a similar fashion, the gradient of the non-local field is given by the product of the nodal values
and the shape functions, so that:

∇V (x) =
na∑

a = 1
∇N a

V (x) V a =
na∑

a = 1
B a
V (x) V a (5.32)

∇δV ∗ (x) =
na∑

a = 1
∇N a

V (x) δV a,∗ =
na∑

a = 1
B a
V (x) δV a,∗ (5.33)

where V a are the unknown nodal values for the non-local variable, N a
V (resp. B a

V) are the el-
ementary matrices containing interpolation functions for the DoF associated with the non-local
variable (resp. their derivatives).

5.4.3.2 Elementary reactions

The substitution of the FE approximations from the sub-sect. 5.4.3.1 into the weak forms of
the sub-sect. 5.4.2 yields the respective virtual works over the element as follows:

δA e
u = δd∗u

[ ∫
Ωe

BT
u σ∼ dΩe −

∫
Ωe

NT
u f b dΩe −

∫
∂Ωe

NT
u tp d∂Ωe

]
(5.34)

δA e
V = δd∗V

[ ∫
Ωe

(
NT
V N V V − NT

V V + c BT
V B V V

)
dΩe − c

∫
∂Ωe

NT
V t V d∂Ωe

]
(5.35)

where the superscript e refers to a quantity belonging to element e.
Due to the fact that the virtual work of the element vanishes for the arbitrary values of the
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virtual quantities δd∗u and δd∗V , the residuals of equilibrium and gradient equations follows from
eq. (5.34) & eq. (5.35), respectively:

r e
u =

∫
Ωe

BT
u σ∼ dΩe −

∫
Ωe

NT
u f b dΩe −

∫
∂Ωe

NT
u tp d∂Ωe = 0 (5.36)

r e
V =

∫
Ωe

(
NT
V N V V − NT

V V + c BT
V B V V

)
dΩe − c

∫
∂Ωe

NT
V t V d∂Ωe = 0 (5.37)

And thus, the element vectors of internal and external nodal forces can be devised as follows:

f e
u, int =

∫
Ωe

BT
u σ∼ dΩe (5.38)

f e
u, ext =

∫
Ωe

NT
u f b dΩe +

∫
∂Ωe

NT
u tp d∂Ωe (5.39)

f e
V, int =

∫
Ωe

(
NT
V N V V − NT

V V + c BT
V B V V

)
dΩe (5.40)

f e
V, ext = c

∫
∂Ωe

NT
V t V d∂Ωe = 0 (5.41)

For the sake of clarity, the elementary residuals forms eq. (5.36) and eq. (5.37) are expressed by
the following compact form:

r e =

 r e
u

r e
V

 =

 f e
u, int − f e

u, ext

f e
V, int − f e

V, ext

 =

 0
0

 (5.42)

5.4.3.3 Assembly

The last step to define the whole system is to achieve the assembly of all the elementary
reactions so that to get the global system. To this end, the virtual works of all the elements
resulting from eq. (5.34) and eq. (5.35) are thereafter assembled:

δA u =
ne∑

e = 1
δA e

u and δAV =
ne∑

e = 1
δA e
V (5.43)

In an analogous way, the residuals of equilibrium and gradient equations of the global system are
gained through:

R u =
ne⋃

e = 1
r e

u and R V =
ne⋃

e = 1
r e
V (5.44)

As a result, after assembling all the element residual vectors r e from eq. (5.42), the global residual
vector R of the system is gained:
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R =

 R u

R V

 =
ne⋃

e = 1

 f e
u, int − f e

u, ext

f e
V, int − f e

V, ext

 =

 F u, int − F u, ext

F V, int − F V, ext

 =

 0
0

 (5.45)

The reader is referred to [Besson et al., 2010] for the description of the assembly procedure.
It can also be noticed that the residual equation eq. (5.45) results from the weak forms of the
equations of the problem and are, in the present case, owing to the non-linear behavior of the
material as well with the coupling with damage, highly non-linear.

5.4.4 Global implicit resolution scheme

This paragraph details the numerical implementation of the non-local model. Some aspects,
particularly at the integration point (or local) level follow the developments detailed in sect. 4.3.
Again, the reader more interested in the application of this numerical part can directly go to para-
graph sect. 5.5 which presents the validation of the proposed improvements.

5.4.4.1 Consistent linearization

We seek for the solution for which R = 0. In order to be numerically solved thanks to
incremental-iterative techniques (e.g. the Newton-Raphson algorithm), the non-linear system of
equations eq. (5.45) needs to be consistently linearized [Zienkiewicz and Taylor, 2000]. To this end,
the residual equations have to be differentiated w.r.t. the unknown nodal DoF q =

{
q u, q V

}T .
This can be achieved by the Taylor expansion of the residual vector function eq. (5.45) in the
neighborhood of a better approximated solution of unknown DoF q at the (r +1)th iteration step
within the time step tn+1:

R
(

q (r+1)
n+1

)
= R

(
q (r)

n+1

)
+

∂R
(
qn+1

)
∂q

∣∣∣∣∣
q (r)

δ∆q (r+1)
n+1 = 0 (5.46)

in which ∆q (r+1)
n+1 = ∆q (r)

n+1 + δ∆q (r+1)
n+1 is the approximated solution obtained at the (r + 1)th

iteration step after convergence. Then, rearranging and simplifying eq. (5.46) leads to a linearized
system of equations within the time step tn+1:

K (r) δ∆q (r+1)
n+1 = −R (r) (5.47)

where K (r) is the tangential stiffness matrix of the structural system, ∆q (r+1)
n+1 is the iterative

solution of the system of non-linear equations upon convergence, and R (r) refers to the vector of
residuals. In addition, the inner terms in the linearized equation eq. (5.47) are given by:

K (r) =
ne⋃

e = 1

k e, (r)
uu k e, (r)

uV

k e, (r)
Vu k e, (r)

VV

 ∆q (r+1) =
ne⋃

e = 1

∆q e, (r+1)
u

∆q e, (r+1)
V

 R (r) =
ne⋃

e = 1

r e, (r)
u

r e, (r)
V

 (5.48)
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where the sub-matrices of eq. (5.48)-a are given by:

k e, (r)
uu = ∂r e

u
∂q e

u

∣∣∣∣
q (r)

=
∫

Ωe

BT
u C
≈ uu B u dΩe (5.49a)

k e, (r)
uV = ∂r e

u
∂q e
V

∣∣∣∣
q (r)

=
∫

Ωe

BT
u C∼ uV N V dΩe (5.49b)

k e, (r)
Vu =

∂r e
V

∂q e
u

∣∣∣∣
q (r)

= −
∫

Ωe

NT
V C∼ Vu B u dΩe (5.49c)

k e, (r)
VV =

∂r e
V

∂q e
V

∣∣∣∣
q (r)

=
∫

Ωe

(
NT
V ( 1− CVV ) N V + c BT

V B V
)
dΩe (5.49d)

in which one can notice the appearance in eq. (5.49a) - eq. (5.49d) of the material tangents,
consistent with the incremental discretization of the problem so that to ensure a good convergence.
They need to be evaluated at each Gauss points of the elements. They are given by:

C
≈ uu = ∂∆σ∼

∂∆ε∼
C∼ uV = ∂∆σ∼

∂∆V
C∼ Vu = ∂∆V

∂∆ε∼
C VV = ∂∆V

∂∆V
(5.50)

One should keep in mind that C
≈ uu (4th-order tensor) is non-symmetric due to the fact that the

coupled damage model employs the non-associative flow rule. Indeed, the coupled cyclic damage
model presented in Chap. 4 is said to be associative w.r.t σ∼ as long as ∂Fp/∂σ∼ = ∂Fy/∂σ∼
but is non-associative w.r.t. X∼

k owing to the fact that ∂Fp/∂X∼
k 6= ∂Fy/∂X∼

k . Moreover,
the strong coupling between damage (local or non-local) and behavior, together with the use of
a non-associated viscoplasticity framework generally lead to a non-symmetric tangent operator.
Moreover, the (possible) coupling between the non-local variable with the equilibrium equation
eventually results in non-symmetric element matrices, that is k e,r

uV 6= k e,r
Vu , which in turn re-

sults, after assembly, in a non-symmetric global stiffness matrix K . In such a case, specific solvers
able to cope with non-symmetric tangential stiffness matrices should be employed [Gosselet, 2003].

Finally, one can write in a matrix form the local consistent tangent matrix which is evaluated at
the Gauss point level L

≈
:

L
≈

=

 C
≈ uu C∼ uV

C∼ Vu C VV

 =


∂∆σ∼
∂∆ε∼

∂∆σ∼
∂∆V

∂∆V
∂∆ε∼

∂∆V
∂∆V

 (5.51)

For the sake of brevity, details for the derivation of each terms of the previous local consistent
tangent matrix are given in the appendix, see Chap. J page 309.
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5.4.4.2 Solving procedure

The problem in eq. (5.47) is solved thanks to the global Newton-Raphson algorithm. At in-
crement n + 1 , the change in DoF δ∆q (r+1)

n+1 = ∆q (r+1)
n+1 −∆q (r)

n at iteration (r + 1) is given
thanks to the resolution of the matrix system:

K
(

q (r)
n+1

) [
∆q (r+1)

n+1 − ∆q (r)
n+1

]
= −R

(
q (r)

n+1

)
(5.52)

Once the residuals associated with each unknown variable have been minimized, the following
convergence criteria are checked:∣∣∣∣Ru

∣∣∣∣∣∣∣∣F u, ext
∣∣∣∣ =

∣∣∣∣F u, int − F u, ext
∣∣∣∣∣∣∣∣F u, ext

∣∣∣∣ < εu and
∣∣∣∣R V

∣∣∣∣ =
∣∣∣∣F V

∣∣∣∣ < εV (5.53)

where the L2 -norm has been used for the residual of u and the L∞ -norm for that of V . Due
to the absence of external forces for the non-local variable, see eq. (5.41), the criterion for V has
been chosen to rely on an absolute value for the residual, see the right-hand side of eq. (5.53).

increment     

iteration      

Figure 5.1: Monolithic solving algorithm for the coupled equilibrium / non-local problem.

In the present case, a monolithic solving procedure is adopted so all the unknown residuals in
eq. (5.45) are solved simultaneously with a strong coupling. Thus, all the terms of K (global
level) and L

≈
(local level) are required to ensure the good convergence of the solving algorithm,

see Fig. 5.1. Such a solving process is inherent to the multi-purposes Z-set implicit solver used in
this work, which is known to be unconditionally stable.

5.4.5 Numerical algorithm at the Gauss point level

Once the evolution equations related to the internal state variables have been modified, see
sub-sect. 5.3.1, the gradient enhanced cyclic damage mode needs to be implemented within the

http://www.zset-software.com/
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Z-set suite thanks to a user-defined routine.

5.4.5.1 Time discretization of the evolution equations

At the integration point level, the constitutive equations need to be integrated with respect to
time. In a similar fashion as for the local model, the material residual equations coming from the
incremental form of the evolution equations are given by:

Rσ∼ = ε∼
e − Λ

≈
−1 : σ̃∼uc (D) = 0∼ (5.54a)

Rε∼e = ∆ε∼
e −∆ε∼+ ∆λ

f e (D)

√
3
2 ñ∼ = 0∼ (5.54b)

Rα∼k = ∆α∼
k − ∆λ

f k (D)

(√
3
2 ñ∼− γ

k(p) P
≈

D : α∼k

)
= 0∼ (5.54c)

Rr i = ∆r i − ∆λ
f i (D)

(
1− bi r i) = 0 (5.54d)

Rλ = ∆λ−∆t φv (Fy ) = 0 (5.54e)

RD = ∆D − ∆λ
〈

Yf − Yf0
Sf

〉mf

+
eβf ηD D − ∆t

〈
χc(σ∼)

Sc

〉mc

+
eβc ηD D

− (1− D) ∆λ
f e (D)

√
3
2 ñ∼ : 1∼ = 0

(5.54f)

where the system eq. (5.54) needs to be linearized and solved by an iterative N-R process.

5.4.5.2 Local update of internal state variables

Not willing, for the sake of brevity, to describe the whole solving procedure at the (local) GP
level in case of viscoplastic loading (i.e. when a correction for the internal variables is required),
which is close to that for the local model, see sub-sect. 4.3.3, we restrict ourselves to the main
algorithm given in Tab. 5.2.

5.4.5.3 Material sensitivities for the monolithic resolution scheme

In order to compute the global tangential stiffness matrix K given by eq. (5.48), in the case
of the present gradient-enhanced damage model, the consistent tangent matrix (composed of the
material tangents, see eq. (5.51)) is required to be evaluated at each Gauss point. On the one

http://www.zset-software.com/
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Inputs: Increment of gradient variables ∆ε∼ and ∆D at current time step tn+1

Outputs: Updated flux variables σ∼n+1 , Vn+1 and Vint n+1 at current time step tn+1

1) elastic predictor with σ∼
tr
n+1 (∆ε∼, ∆D, Vint n) and Dn+1 = Dn + ∆D

2) check yield criterion F tr
y

(
σ∼

tr
n+1, ∆D, Vint n

)
> 0 ?

no

update stress σ∼n+1 = σ∼
tr
n+1

compute the updated variables Vint n+1 ← Vint n and go to step 4)
yes

a) set initial values at k = 0 : V (0)
int n+1

= Vint n

b) iterate over k ∈ [ 0, ..., kmax ]
compute the residual equations R (k), the Jacobian matrix J (k)

solve the linearized residual system δ∆V (k+1)
int = −

[
J (k)]−1 R (k)

compute the updated variables ∆V (k+1)
int = ∆V (k)

int + δ∆V (k+1)
int

check for convergence
∣∣∣∣R (k) ∣∣∣∣

2 < εloc
tol ?

yes ⇒ exit loop
no ⇒ k ← k + 1 and go to step b)

c) extract variables’ increment ∆Vint

3) update variables Vint n+1 ← Vint n + ∆Vint & σ∼n+1 (σ∼ tr
n+1, ∆ε∼, ∆V, ∆Vint)

4) compute the material tangents C
≈ uu, C∼ uD, C∼ Du, C DD

exit

Table 5.2: Numerical integration procedure associated with the strain-driven problem applied to the
non-local cyclic elastic-viscoplastic-damage model (local level).

hand, in case of gradient-enhanced elastic-damage model, these material tangents can be explicitly
computed from the algorithmic update functions of σ∼n+1 and ε∼n+1.
On the other hand, for the gradient-enhanced elastic-viscoplastic-damage model, it is necessary
to find out the total derivation of material residual equations. Practically, the material tangent
operators can be obtained by linearizing the output of the material law (σ∼, V) with respect to the
input (ε∼, V) .

Similarly to the case with the local material model, sub-sect. 4.3.5, the consistent tangent oper-
ators can be found in an “easy” way thanks to the implicit backward-Euler scheme used for the
incremental resolution at the GP level. For the present non-local viscoplastic-damage model, the
sets of degrees of freedom DOF , input variables VIN , output variables VOUT , integrated variables
Vint and auxiliary variables Vaux for an enhanced FE (displacement-based + non-local variable) are
given by:

DOF :
{

u, V
}

; VIN :
{
ε∼, V

}
; VOUT :

{
σ∼, V

}
; (5.55a)
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Vint :
{
ε∼

e,α∼k , r i , λ, Dtot

}
; Vaux :

{
ε∼

in, X∼
k , Z∼ , R i , p, Y

}
(5.55b)

where the residual system eq. (5.54) reads:{
R (∆VIN , ∆Vint)

}
=
{

0
}

(5.56)

Using the chain rule and tensorial calculus, the problem can be expressed in terms of the derivatives
of the internal variables Vint :{

δR
}

= {∂R}
{∂∆VIN}

δ∆VIN + {∂R}
{∂∆Vint}

δ∆Vint =
{

0
}

(5.57)

As previously described, the material residuals R are obtained by time integration with the implicit
backward-Euler approach, see eq. (5.54). After transformation, the unknown material tangents can
be calculated from the linear equation system:

{∂R}
{∂∆Vint}

{∂∆Vint}
{∂∆VIN}

= − {∂R}
{∂∆VIN}

(5.58)

As already done in the case of the local model, and for the sake of brevity, details for the derivation
of each term of the previous matrices are given in the appendices, see Chap. I page 301.

5.4.6 Overall scheme of solving algorithm

By way of summary, the whole numerical procedure of solving the non-linear system of equa-
tions eq. (5.20) - eq. (5.25) is given in the present section. The global solution of the problem is
the unknown field variables (DoF) qn+1 satisfying both the equilibrium problem and BC. Within
one time step, the entire computational process consists in two levels of numerical computations,
the global and the local levels. The global computation implies the solution of both the equi-
librium and gradient equations which are obtained by spatial discretization with the FEM, see
sub-sect. 5.4.3, and which is discretized in time thanks to an implicit Euler-backward scheme. The
unknown increments of the field variables u and V can be obtained from a linearized system of
equations using the Newton-Raphson approach. The linearized system of equations consists of
the consistent stiffness matrix K and the residuals R . The consistent tangential stiffness matrix,
as indicated in sub-sect. 5.4.4 includes the material tangents. With the current solutions of the
field variables, the associated internal state variables of the material Vint can be computed within
a local iteration loop. The evolution equations related to material behavior are solved using an
implicit backward-Euler scheme and the Newton-Raphson method in order to consider material
non-linearities. The consistent stiffness matrix for the subsequent global iterations includes the
updated material variables. The iterations within a time-step end as soon as the norms of both
local and global residuals R and R fall below the stop criteria εloc

tol and εglob
tol , respectively.

The general scheme of solving algorithm is summarized in Tab. 5.3:
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Inputs: number of global iteration steps r ∈ [ 0, ..., rmax ] and time steps tn+1 = tn + ∆t
and material tangents C

≈ uu, C∼ uV , C∼ Vu, C VV
Outputs: nodal values qn+1 at current time step tn+1

Loop over time increments
A) tn+1 = tn + ∆t
B) compute f b and tp from the input data and BC at tn+1 = tn + ∆t

Global level computations
initialize global iteration step r = 0
Loop over elements

1. compute ∆ε∼ = B u ∆u and ∇V = B V V from the approx. of ∆u and V

Local level computations
Loop over Gauss points

a) call for the constitutive law
b) update of internal variables with N-R iterative process, see Tab. 5.2
c) check for convergence criterion

∣∣∣∣R ∣∣∣∣2 ≤ εloc
tol

yes → continue to d)
no → go to b)

d) update stress σ∼n+1 , local variable Vn+1 and internal variables Vint n+1

e) compute material tangents C
≈ uu, C∼ uV , C∼ Vu, C VV

exit

2. compute reactions F (r) =
[

F u, int − F u, ext , F V, int − F V, ext
]T

3. compute residuals R (r) =
[

R u, R V
]T

4. check for convergence criterion
∣∣∣∣R (r) ∣∣∣∣

2 ≤ ε
glob
tol

yes
q n+1 = q (r)

n+1, K n+1 = K (r), R n+1 = R (r)

σ∼n ← σ∼n+1 Vint n ← Vint n+1 Vn ← Vn+1 u (r) ← u (r) + ∆u (r)

tn ← tn + ∆t and go to B)
no

compute consistent stiffness matrix K (r) at the rth iteration step
solve the system of equations K (r) δ∆q (r+1) = −R (r)

update nodal values ∆q (r+1)
n+1 = ∆q (r)

n+1 + δ∆q (r+1)
n+1

update global iteration r = r + 1 and go to 1.
exit

exit

Table 5.3: General flowchart of the solving algorithm for the non-linear coupled problem using the FEM.
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5.5 Validation of the non-local model implementation

5.5.1 On a single element

Figure 5.2: Uniaxial tension-compression
test on an under-integrated non-local
c3d20r FE.

In order to valide the numerical implementation
of the non-local model, a simple tension-compression
test on a single element has been simulated, see
Fig. 5.2. The resulting stress-strain curves are given
in Fig. 5.3a while the local damage growth is reported
in Fig. 5.3b.
One can see in Fig. 5.3 that the numerical imple-
mentation of the gradient-enhanced damage model
ensures a good convergence towards the limit case
of vanishing length-scale `c → 0 mm (i.e. when the
non-local model degenerates into a local one). More-
over, due to the strong coupling between damage and
elastic-viscoplastic constitutive equations, as long as
damage increases, the stiffnesses decrease hence lead-
ing to a stress-softening cyclic response, see Fig. 5.3a.

2 1 0 1 2
Total strain    [%]

1000

500

0

500

1000

St
re

ss
   

 [M
Pa

]

local model
non-local model

(a) Stress-strain loops.

0 200 400 600 800 1000 1200
Time    [s]

0.0

0.1

0.2

0.3

0.4

0.5

Fa
tig

ue
 d

am
ag

e 
   

[-
]

local model
non-local model

(b) Time - fatigue damage.

Figure 5.3: Validation of the FE implementation over RVE simulations: comparison between local and
non-local damage model (`c = 0 mm) using an implicit time-integration scheme within the Z-set solver.

5.5.2 2D structural cases under monotonic loading

In this sub-section, the purpose is to assess the capability of the non-local enhancement of
the damage model to cope with mesh-dependency and volumetric locking issues in 2D structural
calculations. To this end, two examples will be considered using the 4-fields mixed non-local
FE, see Fig. 1.17a, which is described in the sect. 1.6. In the present work, since an implicit
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gradient formulation has been considered for the non-local extension, use is made of quadratic
elements [Peerlings et al., 1996b], [Simone et al., 2004].
As only monotonic tests will be considered, the fatigue damage parameters will be adjusted in order
to evidence a quasi-ductile behavior in structural calculations. Related parameters are reported in
Chap. H.

5.5.2.1 Shear-dominated loading case 1: double-notched specimen

The double-notched specimen studied in the previous chapter considering the local damage
model, see sub-sect. 4.4.2, is again investigated. The prescribed loading rate of u̇y = 10−2 mm.s−1

is imposed at the top and left edges of the specimen in the y -direction, see Fig. 4.17. The lower
and right edges are fixed. Three different mesh sizes are considered in the following calculations:
he i ∈ [ 0.3, 0.2, 0.1 ] mm. The internal length is taken as `c = 0.4 mm while material parameters
are reported in the appendices, see Tab. H.2 page 299.

(a) D - he 1 (b) D - he 2 (c) D - he 3

0.                           0.25                           0.5                           0.75                           1.

Figure 5.4: Non-local damage field for the double-notched specimen (4-fields FE, deformed state, mag.
factor × 1.) at u = 0.1689 mm for the three mesh sizes: he = 0.3, 0.2, 0.1 mm.

In Fig. 5.4a to Fig. 5.4c, the non-local damage is plotted. One can see that the regularization
process ensures a control of the width of the localization band thanks to the internal length `c .
The results are given at the same simulation time, but some small variations can be noticed in
the upper notch where damage process is predominant. Since shortly before the crack initiation
process the local damage increases significantly, the finer the spatial discretization, the greater the
non-local damage field, see Fig. 5.4c.

Looking at the macroscopic curves, Fig. 5.5, one can notice that results are nearly similar. More-
over, mesh convergence seems verified since the progressive mesh refinement results in closer
curves, see Fig. 5.5b. The slight differences observed in Fig. 5.5b are induced by the classical
influence of the mesh discretization on the FE results. Globally, the non-local formulation seems
to be able to solve for the mesh-dependence in FE calculations.



5.5 Validation of the non-local model implementation 209

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18
Displacement [mm]

0

2

4

6

8

10

12

Fo
rc

e
[k

N
]

he = 0.3 mm

he = 0.2 mm

he = 0.1 mm

(a) Effect of the mesh size on the mechanical response.

0.140 0.145 0.150 0.155 0.160 0.165 0.170 0.175
Displacement [mm]

9.50

9.75

10.00

10.25

10.50

10.75

11.00

11.25

11.50

Fo
rc

e
[k

N
]

he = 0.3 mm

he = 0.2 mm

he = 0.1 mm

(b) Close-up view on the stress-softening phase.

Figure 5.5: Comparison of the force-displacement curves for the double-notched specimen. Effect of the
mesh size on the overall mechanical response.

5.5.2.2 Shear-dominated loading case 2: 2-holes specimen

Lastly, a rectangular specimen with two holes inspired by the work of [Broumand and Khoei,
2015] is studied. It is fixed at the bottom edge and subjected to a prescribed displacement at the
top edge. The geometry and associated BC are given in Fig. 5.6. The calculation is performed
under the plane strain assumption. The considered material is AD730™ with the parameters given
in Tab. H.2. The characteristic length `c is equal to 0.9 mm.

20 mm

10
 m

m

2

3

uy

3

Figure 5.6: Geometry of the rectangular specimen with two holes specimen subjected to tensile loading
with corresponding dimensions and associated BC (after [Broumand and Khoei, 2015]).

In Fig. 5.7, the non-local damage distribution is reported. Considering three different mesh sizes,
namely he = 0.45, 0.36 and 0.18 mm, one can observe the nearly-similar non-local damage field
distributions. The width of the localization band is almost the same in each case, demonstrating
the ability of the non-local regularization procedure to solve the mesh-dependency problem.

One can notice in Fig. 5.8a the mesh-convergence of the numerical results. Indeed, for different
spatial discretizations, the resulting mechanical response is nearly the same.
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(a) D - he 1 (b) D - he 2

(c) D - he 3

0.                           0.25                           0.5                           0.75                           1.

Figure 5.7: Non-local damage field for the plane-strain rectangular specimen with two holes (4-fields FE,
deformed state, mag. factor × 0.5) at u = 0.3455 mm for the three mesh sizes: he = 0.45, 0.36, 0.18 mm.

According to the Fig. 5.8b, one can see that the regularization parameter `c has a great influence
on the overall mechanical responses. Moreover, the higher the regularization parameter, the higher
the macroscopic ductility of the material. Indeed, as long as `c increases, the non-local interaction
is extended, hence resulting in a larger localization band-width and a slower damaging process. In
this case, the material response is more ductile with a delayed crack initiation step.
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Figure 5.8: Comparison of the force-displacement curves for the rectangular plate with two holes. Effect
of both the mesh size and the characteristic length on the overall mechanical response.
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5.5.3 2D Single Edge Notched specimen under cyclic loading conditions

The aim of this sub-section is to validate the non-local model under cyclic loading conditions.
This can be done while analyzing the evolution of some mechanical fields close to the crack-tip
and along the crack path upon cycling. Thus, focus is put here on pure fatigue conditions. A
sinusoidal stress-controlled loading scheme has been applied to a SEN-T specimen with a current
crack length of ∼ 2mm (which corresponds to ∆K = 36.8 MPa√m). The specimen dimensions
and associated boundary conditions are depicted in Fig. 5.9a, while the prescribed loading signal
is given in Fig. 5.9b. The specimen is modeled with plane strain conditions. The simulations are
run with material parameters calibrated for AD730™ at 550◦C, see Tab. D.1, with 4-fields FE.
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Figure 5.9: Schematic representation of the SEN-T specimen and corresponding periodic loading signal.

5.5.3.1 Analysis of the mechanical fields at the crack-tip

10.4

7.8

5.2

2.6

0.01

1e+2

(a) σMises at max. load. (b) σMises at max. load (close-up view).

Figure 5.10: Distribution of the Von Mises stress at maximum load (c2d6r 4-fields FE - view at contours).

In Fig. 5.10a, the Von Mises stress field is plotted at the maximum load, with a close-up view
on the crack-tip stress zone in Fig. 5.10b. As we get closer to the crack-tip, the effect of damage
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on the stress fields leads to a vanishing Von Mises stress. This means that ahead of the crack-tip
there is no more material resistance and a crack can be inserted since there is no more energy to
dissipate (the methodology will be explained in the next Chap. 6).
In the same manner as for the Cauchy stress, the back-stress, which is also fully coupled to damage,
vanishes in the fully damaged elements, see Fig. 5.11a and Fig. 5.11b.
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(b) D at max. load (close-up view).

Figure 5.11: Distribution of the total back-stress Xtot22 and the non-local damage D at maximum load
(c2d6r 4-fields FE - view at contours).

One can observe that the localization band is spread over several elements, which indicates an
effective regularization. Let us note that the elements at the crack-tip are excessively distorted
due to their degraded stiffnesses, see Fig. 5.11b, in close relation with the strong coupling between
damage and both elasticity and strain-hardenings. It can be noted that distorted elements may
prevent to achieve the local convergence and consequently may lead to numerical issues. Dealing
with these highly distorted elements will be achieved thanks to remeshing procedures introduced
in Chap. 6.

Figure 5.12: Viscoplastic activity at max. load.

Elements exhibiting a non-linear viscoplastic response upon loading are reported in Fig. 5.12 with
a dark blue color, while those with a linear elastic behavior remain uncolored. One can observe a
typical “butterfly shape” for the viscoplastic zone, as expected to occur for plane strain conditions
[Zhao et al., 2020].
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5.5.3.2 Local evolution at integration points

An advantage of this local approach to fracture is the possibility to analyze local fields at the
scale of the integration points. The evolution of certain mechanical fields at some specific inte-
gration points (IP) will be analyzed as a function of time. Along the crack ligament (where the
crack is assumed to propagate), 5 integration points have been considered in elements located at
various distances from the crack-tip, see Fig. 5.13, namely IP1 at 0.01mm, IP2 at 0.12mm, IP3
at 0.25mm, IP4 at 0.62mm and IP5 at 1.32mm. In Fig. 5.13b, the selected elements from which
one single Gauss point is studied are highlighted in blue.

(a) 2 mm pre-cracked SEN-T specimen.

IPIP55IPIP44IPIP33IPIP11

IPIP22

(b) Close-up view on the selected FE for GP analyzes.

Figure 5.13: Mesh of the 2 mm pre-cracked SEN-T specimen and corresponding selection of integration
points on the crack path ligament.
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(b) Non-local damage at IP 4 & 5.

Figure 5.14: Stress-strain curves and evolution of the non-local damage far from the crack-tip for IP4
(0.62mm) & IP5 (1.32mm) (c2d6r 4-fields FE).

Paying attention to IP4 & IP5, far from the crack-tip (see Fig. 5.13b), the material behavior
is assumed to be linear elastic with no clear cyclic hysteresis: see Fig. 5.14a. The corresponding



214 Chap. 5 – A non-local cyclic elastic-viscoplastic multi-mechanism damage model for FCG

non-local damage at these IP is null or extremely low, see Fig. 5.14b, since there is no source term
(i.e. no local damage) for the non-local damage to be calculated.

Crack-tip close-fields:

IP1, IP2 & IP3 are located close to the crack-tip, in the FPZ, Fig. 5.13b. Consequently, me-
chanical fields in these zones are expected to be non-linear with both viscoplasticity and damage.
For each IP, the mechanical response exhibits more or less open hysteresis viscoplastic loops, see
Fig. 5.15. The high stress level obtained at IP1 is induced by an important over-stress. Indeed,
since the viscoplastic strain rate at the very close vicinity of the crack-tip is extremely high, the
resulting estimated over-stress is high. A saturation effect of the viscosity function could be a pre-
condition for the over-stress to be well limited for high strain rates. Nevertheless, the fast increase
in damage at crack-tip easily counterbalances such an effect by making the stress to drop due to
the damage effect on the stiffness.

One can also remark that the stress-plastic strain curves are non-symmetric w.r.t. strain, hence
exhibiting cyclic ratcheting effects, that is the accumulation of strain with increasing loading cycles.
Another point to be noticed is the progressive decrease of the stress level induced by the damage
evolution with increasing loading cycles. For IP1 and IP2, the stress drop is almost complete while
for IP3 the damage is not high enough to cause a vanishing stress state yet (blue curve in Fig. 5.15b).
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Figure 5.15: Stress-plastic strain curves close to the crack-tip for IP1 (0.01mm), IP2 (0.12mm) & IP3
(0.25mm) (c2d6r 4-fields FE).

The evolution of the accumulated viscoplastic strain is reported in Fig. 5.16a. As expected, vis-
coplasticity is more pronounced as the IP is located close to the crack-tip. Moreover, once the
broken state is reached in the IP, the variable is forced to remain constant (so as for the viscoplas-
tic multiplier) in order to avoid any excessive accumulation of strain in elements that no longer
contribute to the rigidity of the structure.
The evolution of the non-local damage is reported in Fig. 5.16b. A fast increase is noticeable in IP1
with a steady-state value once the broken state is reached. As evidenced, the non-local damage
evolution is, in the present case, unbounded.
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Figure 5.16: Evolution of the accumulated viscoplastic strain and non-local damage close to the crack-tip
for IP1 (0.01mm), IP2 (0.12mm) & IP3 (0.25mm) (c2d6r 4-fields FE).

The temporal evolution of both the Cauchy stress and the kinematic hardening are given in
Fig. 5.17a and Fig. 5.17b, respectively. One can notice the progressive decrease of these com-
ponents as time (or non-local damage) increases. The strong coupling between the constitutive
equations and damage induces a progressive decrease until a complete cancellation of mechanical
fields when (non-local) damage has reached a sufficiently high value, D cr it .
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4-fields FE).
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5.6 Conclusion of the chapter

Since the local cyclic multi-mechanism damage model developed in the Chap. 4 suffers from
spurious mesh-dependency (see sub-sect. 4.4.2), a non-local extension of the model with an im-
plicit gradient formulation has been proposed. Such a regularization technique has proven to be
efficient since the resolution of a diffusion equation is relatively fast and the value of the introduced
characteristic length does not influence the resolution time. As far as the constitutive equations
are concerned, the non-locality has been achieved by exchanging in every equation of the model
the local total damage variable D by its non-local counterpart D. All the other equations of the
non-local gradient-enhanced damage model remain unchanged compared to the local one.

The non-local model has been implemented within the general purposes Z-set FE solver, Both
the global and local solving schemes have been detailed. Implicit resolution procedure has been
considered for the global equilibrium problem. Meanwhile, the local resolution of the constitutive
relations at the Gauss point level has been achieved thanks to a fully implicit backward-Euler al-
gorithm associated with an elastic trial / local update procedure for the internal state variables.
Several numerical tests of increasing complexity have illustrated the ability of this non-local for-
mulation to efficiently control damage localization and subsequently to ensure convergence of the
numerical results upon mesh refinement. In particular, local mechanical fields have been analyzed
in a SEN-T specimen subjected to pure fatigue loading. The damage-induced stress softening
response has been exhibited, as well with the spatial averaging of the damage field through the
implicit gradient formulation.

As a conclusion, the proposed damage model is able to efficiently predict damage growth and re-
sulting stress-softening response due to micro-cracking up to the onset of fracture in 2D structural
calculations, both under monotonic and cyclic loading conditions.
But, even if the fully damaged elements in the FPZ allow to roughly estimate the crack path, they
do not enable to properly represent the kinetics of the crack advance. Besides, the presence of
distorted elements can deteriorate the accuracy of the computation. The continuous description
of the fracture process has thus reached its limitations and a discrete representation of the crack
is required in order to describe entirely the whole fracture process.
The insertion of a real discontinuity in the spatial discretization of the structure to represent the
crack advance is finally another option that is discussed in the following Chap. 6.

Let us note that the proper calibration with experimental results for the considered material would
be necessary in order to be able to draw accurate comparisons between numerical simulations
and experimental results. In particular, a microstructure-related internal length scale would be
necessary in order to give a better physical meaning to this non-local modeling approach. Both
the proper calibration of the damage model and the experimental estimation of the characteristic
length represent major outlooks for the present work.

http://www.zset-software.com/
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Résumé du chapitre en français

Le modèle d’endommagement cyclique local développé au Chap. 4 a montré une sensibilité
à la dépendance en maillage, entraînant la non-convergence des résultats numériques. Afin
de résoudre ce problème, une approche non-locale a été proposée qui introduit une longueur
interne dans les équations du problème. Après un tour d’horizon des méthodes employées
pour régulariser les problèmes d’endommagement couplé en fatigue et fluage, il est apparu
que la technique la plus appropriée dans le cas présent est la méthode à gradient implicite.
Il s’agit alors de résoudre de manière simultanée l’équilibre de la structure et une équation
de diffusion reliant la variables non-locale à son pendant non-local. Dans ce contexte, le
choix d’une seule variable régularisée a été fait de sorte à limiter les temps de calculs et les
couplages associés dans le modèle d’endommagement cyclique. Une seule longueur interne
a donc été considérée, utilisée ici comme paramètre numérique pour contrôler la largeur de
la bande de localisation. Ainsi, la régularisation de la variable d’endommagement total a été
favorisée (par rapport à la plasticité cumulée), offrant alors la possibilité de rendre non-locaux
tous les mécanismes d’endommagement (fatigue, fluage, volumique) de manière unifiée. De
plus, ce choix a permis de ne pas impacter le comportement cyclique du matériau déjà calibré
et ainsi laisser indépendants les mécanismes d’adoucissement régis par la plasticité cyclique
(écrouissages isotropes négatifs) et ceux en lien avec l’endommagement. Le couplage fort
comportement-endommagement nécessite l’introduction de l’endommagement non-local dans
les lois d’évolution de chaque variable interne du problème.

Le modèle non-local proposé dans ce chapitre a été intégré dans la suite Z-set à l’aide
d’une loi utilisateur dédiée. L’utilisation d’un élément fini multi-champs (déplacement et variable
non-locale) permet la résolution monolithique du problème couplé. Un schéma de résolution
implicite a été utilisé pour résoudre l’équilibre global et l’équation non-locale. Au niveau des
points d’intégration, la loi de comportement est intégrée en temps suivant un schéma d’Euler
implicite (θ-méthode), ce qui permet de réaliser des pas de temps relativement grands tout
en conservant une bonne stabilité du solveur. Le calcul des termes des matrices tangentes
consistantes avec le schéma de résolution temporel a été détaillé.

Enfin, des calculs sur un élément fini et sur structures 2D ont été réalisés de sorte à
vérifier l’implémentation du modèle et sa capacité à régler la dépendance au maillage. Les
courbes macroscopiques et les iso-valeurs des champs montrent la capacité de l’approche à
permettre la convergence en maillage.
Les calculs structuraux en fatigue ont finalement montré les limites de l’approche continue qui
doit alors être complétée d’une représentation discrète de la fissure afin de bien représenter la
cinétique de croissance de fissure et éviter la distorsion des éléments endommagés.

http://www.zset-software.com/




6 A damage to fracture transition for
fatigue crack growth prediction

Using the proposed cyclic non-local damage model, the width of the localization band, where
non-linear phenomena occur, can be controlled thanks to the internal length scale parameter. Such
a localization band is of primary importance and a sufficiently fine discretization is required. This
implies either meshing finely the area covered by the crack (the fracture process zone and its wake)
all along its growth (but it supposes that the crack path is a priori known). In this work, we
favored using adaptive remeshing techniques based on error indication. Then, the calculation can
be conducted up to the onset of failure. This step is performed in a continuous manner thanks
to the gradient extended damage model. Once crack initiation is achieved at the crack-tip, crack
could grow. Thus, a continuous-to-discontinuous transition must be performed to model the real
crack and to capture the kinetics of the crack advance. In the present work, such a damage-to-
fracture transition is achieved using successive remeshing steps to allow the crack to propagate
thanks to discrete crack increments insertion within a damage-induced softening material. In order
to predict the crack increment orientation from damage distribution, a dedicated crack path track-
ing algorithm is used, namely the Marching Ridges algorithm. Besides, at each remeshing step,
the mesh size in the fracture process zone close to the crack-tip is refined using an error-based
mesh adaption strategy in order to achieve accurate numerical simulations. Once the new mesh is
created, fields are transferred from the old mesh to the new one and a re-equilibrium procedure is
performed before the next load increment.
The aim of this chapter is to detail the different elements required for the continuous-discontinuous
approach (see sect. 6.1 to sect. 6.3) and to evaluate the ability of this approach, when combined
with the non-local damage model, to capture crack propagation under cyclic fatigue loading con-
ditions (see sect. 6.3). The sensitivity of the model to both the prescribed loading conditions and
material parameters are assessed. Finally, the overall capabilities of the present cyclic damage
model will be discussed as well with suggestions for further works.

Contents
6.1 Mesh adaption strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

6.1.1 Interest of h-remeshing . . . . . . . . . . . . . . . . . . . . . . . . . . 220
6.1.2 Error-estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
6.1.3 Generation of a new mesh . . . . . . . . . . . . . . . . . . . . . . . . 223
6.1.4 Fields transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
6.1.5 Equilibrium recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

219



220 Chap. 6 – A damage to fracture transition for fatigue crack growth prediction

6.1.6 Overview of the error-based mesh adaption strategy . . . . . . . . . . . 227
6.1.7 Illustration on an example . . . . . . . . . . . . . . . . . . . . . . . . . 228

6.2 Continuous-discontinuous transition . . . . . . . . . . . . . . . . . . . . . . . 232
6.2.1 Motivation and elements of a continuous-discontinuous transition . . . 232
6.2.2 Where to locate the discrete crack? . . . . . . . . . . . . . . . . . . . 233
6.2.3 When to insert a crack? . . . . . . . . . . . . . . . . . . . . . . . . . . 235
6.2.4 How to insert the crack increment? . . . . . . . . . . . . . . . . . . . . 236
6.2.5 Overview of the remeshing-based crack growth modeling . . . . . . . . 236

6.3 Application of the continuous-discontinuous strategy for fatigue crack growth . 238
6.3.1 Description of the test case . . . . . . . . . . . . . . . . . . . . . . . . 238
6.3.2 Strategy evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

6.4 Sensitivity analysis for the fatigue model . . . . . . . . . . . . . . . . . . . . . 246
6.4.1 Preliminary remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
6.4.2 Fatigue damage parameters sensitivity analysis . . . . . . . . . . . . . . 247
6.4.3 Sensitivity of the model to extrinsic parameters . . . . . . . . . . . . . 248

6.5 Creep-fatigue loading case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
6.6 Conclusion of the chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

6.1 Mesh adaption strategy

6.1.1 Interest of h-remeshing

Keeping in mind that the present work relies on the previous developments from [Feld-Payet,
2010] and [Chiaruttini et al., 2010], choice is made to consider a global h-remeshing procedure
for the optimization of the mesh topology (see [Ladevèze and Pelle, 2005] for details). Such a
method has been proved to be the most efficient one (compared to p- or r-adaptivity strategies),
particularly when a singularity exists within the mesh and when the total number of elements in
the mesh must be decreased [Babuška et al., 1983], [Díez and Huerta, 1999]. Moreover, global
h-remeshing can be easily used thanks to the recent development of numerous robust 2D automatic
mesh generators [George, 1991].

Mesh refinement around the crack-tip enables the possibility to keep a good precision in the vicinity
of the crack [Bouchard et al., 2003]. While it is fairly easy to model the fracture process whose
final pattern is a priori known by using an appropriately pre-refined mesh, using fixed uniform mesh
would generally lead to too high computational cost. In the present work, since the crack path
is unknown, it is beneficial to rely on mesh adaption methods so that to get a refined mesh in
the region of interest (ROI), i.e. the FPZ, and a coarse one in the zones where non-linearities are
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non-existent (i.e. elastic or fully damaged zones). As the crack-tip moves along during the loading
process, the areas which need to be refined will change. Thus, a new mesh is created and refined
only in the areas where it is needed in order to save calculation time [Bouchard et al., 2000]. In
fracture modeling problems, more particularly, due to the localized material deterioration in the
damaged zones, many elements will be severely distorted producing unacceptably inaccurate solu-
tions, hence making a mesh optimization strategy necessary.

Applications of mesh adaption methods to ductile fracture prediction can be found in, e.g. [Me-
diavilla et al., 2006b], [Feld-Payet, 2010], [El Khaoulani and Bouchard, 2012]. However, to the
author’s knowledge, applications to cyclic loading conditions – with a non-linear material behavior
fully coupled to damage – have not been published. This represents a challenging point for the
present Ph.D. project.

The mesh adaption process can be either driven by a criterion based on physical phenomena (see
e.g. [Andrade Pires et al., 2004], [El Khaoulani and Bouchard, 2012]), or by the reduction of an
error (see [Ladevèze and Pelle, 2005]). In this last case, an error indicator estimates the error
between the (unknown) exact solution and the solution provided by the solver. A new mesh is then
generated in order to reduce the error to an acceptable level. Error-based mesh adaption methods
are quite popular as they allow to perform calculations with a predefined numerical accuracy at
optimized computational cost [Boussetta et al., 2006], [Zhang et al., 2012].

In the present study, for mesh adaption purposes, I have retained an error-based approach.
Such an a posteriori error estimator relies on the lack of regularity of the FE solution. It assumes
that a smoother estimation of the FE solution should be a better approximation of the exact solu-
tion and uses it to provide an error estimation. Different fields can be considered to evaluate the
error [Zienkiewicz et al., 1999], [Boroomand and Zienkiewicz, 1999].

6.1.2 Error-estimation

6.1.2.1 ZZ2 error indicator

The recovery-based error indicators have proven to be widely used, especially for linear [Zienkiewicz
and Zhu, 1987] and non-linear [Boroomand and Zienkiewicz, 1999] 2D problems, as well as for 3D
elastic [Boussetta and Fourment, 2003] and viscoplastic [Boussetta and Fourment, 2004] problems.
The comparative study of [Ladevèze and Rougeot, 1997] evidences the fact the recovery-based er-
ror estimator is a good compromise between efficiency and computational cost. The ZZ2 error
estimator [Zienkiewicz and Zhu, 1992] is said to be robust as admitting an asymptotically ac-
curacy [Babuška et al., 1994], but it may suffer from lack of accuracy close to the boundaries.
Although recovery-based estimates only give a magnitude of the error, the latter is preferable in
this context as an exact error estimation would be too costly for a mesh adaption strategy [Feld-
Payet, 2010]. This a posteriori error estimator relies on the lack of regularity of the FE solution.
It assumes that a smoother estimation of the FE solution should be a better approximation of the
exact one and uses it to provide an error estimation. Different fields can be considered for error
evaluation [Zienkiewicz et al., 1999], [Boroomand and Zienkiewicz, 1999].
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6.1.2.2 Choice of the underlying variable(s)

In order to save computational time, it is interesting to consider a scalar variable as the support
for the error estimation. The choice for the underlying variable 1 must endorse a particular relevance
associated with the studied mechanisms. As the damage variable governs the crack initiation and
crack growth processes, in my analysis, the error estimation will be based on this variable [Moslemi
and Khoei, 2010].

6.1.2.3 Error definition

Since all the damage mechanisms are embedded in the same scalar variable, choice for the
non-local total damage D as support for the error estimation is relevant. A smoother field D ?

must then be computed in order to provide an estimation for the error θD:

θD = D ? − Dh (6.1)

which represents a point-wise error.
Following the extension of the ZZ2 estimator initiated by [Perić et al., 1994], [Feld-Payet, 2010]
to non-linear problems, an incremental form for the L2 norm of the global error can be defined:
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(6.2)

which is the sum of the elementary contributions to the error:
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(6.3)

Global and local relative errors are given respectively by:

ηD =
∥∥ θD

∥∥
Ω

E × 100 and η e
D =

∥∥ θe
D

∥∥
Ωe

E × 100 (6.4)

where E is given by:

E =
∣∣∣∣ ∫

Ω
D ? ×∆D ? dΩ

∣∣∣∣ 1/2

(6.5)

6.1.2.4 Superconvergent Patch Recovery (SPR) procedure

Using the SPR technique, a continuous field (defined at the nodes of the mesh) is reconstructed
from the discontinuous state variable field (defined at the integration points). The nodal value

1 Let us note that the degree for the interpolation of the chosen variable must be lower than that of the
displacement field so as to get a better approximation through the smoothing process.
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of the field can be approximated thanks to a polynomial function on patches of elements. This
polynomial function is close (in the least-squares’ sense) to the gradient evaluated in some sampling
points which are chosen to be superconvergent points whenever possible (i.e. points where the FE
solution is more accurate). The polynomial function can be evaluated at each node:

D̂
k

(xk , yk , zk) = P (xk , yk , zk) . a k (6.6)

where D̂
k

denotes the continuous recovered value of the non-local damage at node k and a k

denotes a vector of unknowns in the patch assumed as:

a k =
{

ak
0 , ak

1 , ak
2 , ak

3 , ak
4 , ak

5
}T (6.7)

and P (M) is the basis of the polynomial expansion given in point M (xk , yk , zk) for 6-node
triangles by:

P (M) =
{

1, x , y , x 2, xy , y 2 } (6.8)

From the evaluation of this polynomial functions at the nodes, the FE shape functions of degree
p are used in order to get an approximation of the local fields (at GP) with a superior degree to
that at the integration points (p − 1):

D ? (M) = N (M) . D̂
?

(6.9)

where N is a vector containing the shape functions and D̂
?

another one containing the nodal
contributions of the recovered non-local damage. Let us note that the contributions of non-vertex
nodes are averaged between the patches sharing these nodes.
A complete presentation of the method can be found in [Feld-Payet, 2010] and [Zeramdini, 2018].

6.1.3 Generation of a new mesh

6.1.3.1 When to remesh?

After each load (time) increment, using the resulting FE solutions, the errors are estimated.
The global relative error ηD defined in eq. (6.4) serves as an indicator to trigger the mesh adap-
tion process. When a prescribed global tolerance εh

D is exceeded, i.e. ηD ≤ εh
D, the remeshing

process is performed.

6.1.3.2 How to remesh?

For optimizing the mesh refinement, several local mesh adaption criteria have been proposed in
the literature, namely: the uniform distribution of the error [Oñate and Castro, 1991], [Ladevèze
and Pelle, 2005], the uniform distribution of the specific error [Oñate and Castro, 1991] and the
limitation of the number of elements in the mesh [Li and Bettes, 1995], [Ladevèze and Pelle, 2005]
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to name a few. Let us note that these methods have been proposed initially for linear problems
with a sufficiently regular solution [Feld-Payet, 2010]. A critical review of these criteria has been
published by [Díez and Huerta, 1999].

In the present work, it is chosen to impose that the error contributions of the elements are equally
distributed over the mesh [Ladevèze and Pelle, 2005]. For this criterion to be met, the ratio
between the new element size and the old one must be:

re = h ′e
he

=
εh

D
1/q

ηe
D

2/(2q+d)
[∑

Ωe ηe
D

2d/(2q+d)
]1/2q (6.10)

with d the problem’s dimension and q the convergence rate depending on the element size and
the regularity of the exact solution. According to [Ciarlet, 1978], a value of q = 2 can be assumed
for 6-nodes triangles. Note that for sufficiently smoothed solutions, such a criterion is equivalent
to the minimization of the number of FE [Li and Bettes, 1995].

6.1.3.3 Final map size for the mesh generator

In this work, to generate the new (optimized) mesh, a fully automatic mesh generator, namely
MeshGems has been used [Frey and George, 2008]. This tool has been developed at the INRIA by
the Distene work-team for mesh generation purposes. The MeshGems mesh generator requires a
map size to generate the optimized mesh.

Nodal sizes determination:

As recommended by [Feld-Payet, 2010] and [Zeramdini, 2018], a map of new mesh sizes defined
at each node is computed:

h ′i = 1
ne

∑
e ⊂ Ωi

h ′e (6.11)

where Ωi is the union of the ne elements of e connected to node i and h′e is the element size
obtained from eq. (6.10).
More details on mesh generation can be found in [Frey and George, 2008] and [Feld-Payet, 2010].

Mesh size limitation:

In order to prevent the creation of too large or too small elements, upper and lower limits for
the element size in the new mesh can be specified at nodes [Moslemi and Khoei, 2009]:

hmin ≤ h ′i ≤ hmax (6.12)

Choice for an element size in fatigue situations:

The choice of a minimum element size hmin in cyclic situations is not trivial. It is some-

http://www.meshgems.com/
https://www.inria.fr/fr
http://www.distene.com/
http://www.meshgems.com/
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how admitted that the size of the finite elements needs to be small enough to well discretize
the monotonic (MPZ) and cyclic plastic zones (CPZ) [McClung and Sehitoglu, 1989], [Pommier,
2003], [González-Herrera and Zapatero, 2005], [Gardin et al., 2016b]. The plastic zone size seems
to represent the scale reference to relate to the minimum element size in FEA (in terms of number
of divisions of the size of rmpz) [McClung et al., 1991], [González-Herrera and Zapatero, 2005].
It is clear that the size of the monotonic plastic zone rmpz is influenced by the maximum load level.

In order to estimate the appropriate element size in the vicinity of the crack-tip, [McClung and
Sehitoglu, 1989] & [Dougherty et al., 1997] proposed the following criterion:

hmin = 1
10 rmpz = 1

10

[
α

π

(
Kmax
σy

)2
]

(6.13)

where rmpz defines the radius of the monotonic plastic zone (in Irwin’s sense [Irwin, 1960]), α a
constraint factor (α = 1 for plane stress and α = (1− 2ν)2 for plane strain conditions) and Kmax
is the maximum applied level reached upon FCG testing.

Based on the literature survey and on our own experience, the criterion defined in eq. (6.13) is
considered in my study. This criterion is also the most restrictive with respect to the existing ones.
For the material under concern and the SEN-T specimen subjected to fatigue loading as described
in sub-sect. 5.5.3 and corresponding to the experimental tests in sect. 3.1, the estimated mini-
mum element size derives from the two limiting situations: a = 1.0 mm (Kmax = 25.6 MPa√m)
and a = 8.0 mm (Kmax = 179.4 MPa√m) which induce respectively hmin ' 4.0µm and
hmin ' 186.0µm at 550◦C. In order to ensure reliability of numerical results, an intermediate
refinement from hmin = 10.0 up to 20.0µm has been considered in most of the simulations of
sect. 6.3 & sect. 6.4.

6.1.4 Fields transfer

When changing the mesh topology, history-dependent variables for non-linear and dissipative
processes as well as nodal variables (DoF) must be transferred from the old to the new mesh. Such
a projection is not an easy task since a transfer operator should preserve the consistency of the
constitutive relations, the compatibility conditions, the boundary conditions and the equilibrium of
the structure [Perić et al., 1996]. Meanwhile, the so-called numerical diffusion should be avoided
or minimized. It goes without saying that the mapping procedure must also represent a minimal
computational cost. Most of the time, all these constraints cannot be ensured simultaneously.

In the present work, the most important requirement is to limit the numerical diffusion which may
induce numerical errors and non-convergence of the next balancing step [Chen, 2019]: more par-
ticularly, the damage localization band should not change. In case of elastic-viscoplastic behavior,
all the mechanical fields, which are generally history-dependent, need to be known at each load
increment and consequently are to be transferred.
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Nodal variables:

In the literature, there are only a few methods dedicated to the transfer of nodal variables.
We can cite the direct transfer using nodal interpolation functions, the transfer using a L2
norm [Bernardi et al., 1989], [Combescure et al., 2003] and the use of an auxiliary mesh [Espinosa
et al., 1998]. “Standard” nodal interpolation is the most commonly used transfer operator [Perić
et al., 1996], [Feld-Payet et al., 2015]. It is assumed to yield satisfactory results [Ladevèze and
Pelle, 2005], [Kumar et al., 2015] and has been already implemented in the Z-set code. This is
why this transfer operator has been selected for this work.

Internal variables:

Several methods can be considered for the transfer of internal variables. Description and critical
discussions of these methods can be found in [Perić et al., 1996], [Feld-Payet, 2010], [Zeramdini,
2018]. In the present work, a direct transfer of the smoothed fields evaluated at the old IP to the
new ones using a moving (weighted) least-squares (MLS) method is considered. Such a procedure
has already been implemented within the Z-set code [Feld-Payet, 2010]. Such a direct transfer
method has proven to limit numerical diffusion [Andrade Pires et al., 2004]. Moreover, with a
MLS-based method, the transferred results are not influenced by the quality of the elements in the
old mesh and any type of elements can be used [Yang, 2017].

The idea is to built locally a polynomial approximation s ′ of the field to transfer s. Considering
the coordinates x of a given IP of the old mesh M, and those of an IP x ′ in the new mesh M ′,
the goal is to find the vector of coefficients a which minimize the following quantity:

Jx ′ (a) = 1
2

∑
i ⊂V (x ′)

W (x i , x ′)
[

PT (x i − x ′) . a − s (x i)
]2

(6.14)

in which:
PT (x i − x ′) . a = s ′ (6.15)

In eq. (6.14) the term V (x ′) corresponds to the region around x ′ in which the approximation is
performed, W (x i , x ′) is a weight function defined below in eq. (6.16), x i the coordinates of the
i th IP from the old mesh where the field s is known and that is used to build the approximation.
By minimizing the quantity Jx ′ (a) in eq. (6.14), one can solve for the unknown vector a which
in turn allows (using the eq. (6.15)) for the value of the field at x ′ to be estimated.

W (m) =

 2
3 − 4m2 + 4m3 if m ≤ 0.5
4
3 − 4m + 4m2 − 4

3m3 else
with m = ‖ x i − x ′ ‖

max i (‖ x i − x ′ ‖) (6.16)

Once the local approximation s ′ is known, it is directly projected to the new IP of M ′. The
number of sampling points i from the old mesh is user-defined and should be limited in order to
avoid numerical diffusion. Moreover, it should be compatible with the rank of the polynomial basis
P [Labergere et al., 2014]. In the present work, 13 integration points belonging to the old mesh
M are chosen in case of 6-node triangular elements, as suggested in [Feld-Payet, 2010].

http://www.zset-software.com/
http://www.zset-software.com/
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6.1.5 Equilibrium recovery

After transfer, the different fields are out of equilibrium and special measures can be taken in
order to ease the re-equilibrium. The simplest one consists in dividing the next loading step, as sug-
gested by [Boroomand and Zienkiewicz, 1999], [Yang et al., 2018] in order to ease the convergence
(reloading is then more gradual and the loading conditions are nearly the same). However, when
introducing a discontinuity, additional equilibrium recovery procedures prior to the next loading
increment can be very helpful to prevent convergence issues.
Several methods are proposed in the literature: those transferring only a reduced number of
variables to then compute the remaining ones [Javani, 2011], those performing a stabilization
treatment of the transferred fields [Mediavilla et al., 2006d], and those introducing extra residual
forces [Broumand and Khoei, 2013].

To restore the equilibrium once a crack increment has been inserted, a specific procedure is added to
the calculation chain. To this end, I have chosen to use developments from the recent Ph.D. work
of [El Ouazani Tuhami, 2022]: an additional re-equilibrium step is performed with fixed BC, Fig. 6.1.
Contrarily to the division of the time step method, the BC correspond here to the instant tn (and
not tn+1). Besides, contrarily to the elastic step of [Mediavilla et al., 2006d], [El Ouazani Tuhami,
2022] proposes to consider the full non-linear (and time-dependent) behavior during a prescribed
(user-defined) small time increment (e.g. ∆t req = 10−5 s). Using such a small time increment
enables the viscoplasticity and damage variables to evolve, but in a negligible manner since BC
are kept constant. The process starts with a very small time increment of 10−12 s. If convergence
is reached, the time increment is increased by a ratio 0.01 (i.e. multiplied by a factor 100) until
∆t req has elapsed. A succession of ∼ 5-6 converged small increments suffices to restore the equi-
librium. After this re-equilibrium step, the frozen BC are relaxed and the calculation can resume
with a good convergence rate.

  

reequilibrium loop
with fixed BC

(Newton iterations)

global 
solving loop

Figure 6.1: Schematic representation of the balancing step.

6.1.6 Overview of the error-based mesh adaption strategy

Finally, the overall ZZ2 error estimation method and mesh adaption process can be resumed
to the flowchart given in Fig. 6.2:
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Cyclic constitutive model
+

non-local damage

Error estimator
(ZZ2 incremental)

Optimized
sizes map

Adaptive remeshing
+

Fields transfer

No

Yes

to next load
increment

Restoring
equilibrium

Figure 6.2: Overall flowchart for the error estimation and mesh adaption strategy during FE calculations
using a mixed gradient-enhanced regularized cyclic elastic-viscoplastic damage model.

6.1.7 Illustration on an example

The strategy for the mesh adaption relying on an a posteriori ZZ2 error estimator is illustrated
in this section on a quasi-static loading. The specimen studied in the sub-sect. 5.5.2.1 is considered.

6.1.7.1 Error-based mesh adaption

In the present example the prescribed relative accuracy for the error on D was fixed to
ηD = 0.5%. The ZZ2 incremental error estimation only starts when a significant non-local
damage level has been reached, i.e. D ZZ2

th = 0.001. Then, remeshing is triggered if the sum of the
elementary contributions to the global error ηD exceeds the global tolerance εh

D. In practice, it
is useful to trigger remeshing for a global relative error that is slightly greater than the prescribed
tolerance on the new mesh in order to limit the number of successive remeshing steps. Indeed, the
map sizes were estimated based on the hypothesis of a linear and sufficiently regular solution. The
considered problem being non-linear, the resulting global error on the new mesh might by slightly
greater than expected. Finally, in order to save computational time by avoiding the generation
of very small elements, a minimum element size of hmin = 0.05 mm has been provided to the
automatic mesher, as discussed above in sub-sect. 6.1.3.2.

In the Fig. 6.3a, the non-local damage field is reported at the beginning of the loading process,
when uy = 0.024 mm. Next, in Fig. 6.3b, the corresponding non-local damage-based ZZ2 error is
also depicted. As expected, the non-local damage (and the corresponding error) first initiates at
the notches of the specimen. This enables to detect the elements that are potentially too large to
capture large gradients of damage.
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1.

0.75

0.5

0.25

0.

1e-3

(a) Non-local damage distribution.

7.

5.25

3.5

1.75

0.

1e-3

(b) ZZ2 error distribution.

Figure 6.3: Error-estimation on a the double-notched specimen meshed with 0.3mm FE and subjected to
prescribed tensile loading at uy = 0.024 mm (V = D, c2d6r 4-fields FE).

0.22

1.55

0.11

0.05

0.

(a) Non-local damage distribution.

5.6

4.2

2.8

1.4

0.

1e-4

(b) ZZ2 error distribution.

Figure 6.4: Error-estimation on double-notched specimen subjected to prescribed tensile loading at uy =
0.078 mm (V = D, c2d6r 4-fields FE).

By comparing the meshes before and after the remeshing step, Fig. 6.3a and Fig. 6.4a, it can
be clearly seen that the mesh is refined in the zones where the non-local damage field exhibits
significant gradients. Since the chosen local criterion requires the uniform distribution of the error
over the whole domain, the zones where the error is significant are refined, while those where it is
non-significant are coarsened, see Fig. 6.3b to Fig. 6.4b.

The resulting adapted meshes are depicted in Fig. 6.5. The properties for each FE mesh are reported
in Tab. 6.1. The numerical solving procedure has enabled a reduction of ∼ 47% of the number
of nodes during the first remeshing step, and of ∼ 36% for the second remeshing step (compared
to the regular 0.3mm mesh) while allowing the use of smaller elements (0.05 vs. 0.3mm for more
accuracy) in the localization band.
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x

y

z

(a) Mesh 1 (initial 0.3mm).
x

y

z

(b) Mesh 2.
x

y

z

(c) Mesh 3.

Figure 6.5: Successive error-based adapted meshes.

Meshes 0.3mm Adapted 1 Adapted 2

Elements 4 650 2 459 2 981
Nodes 9 459 5 046 6 080

Table 6.1: Properties of the FE meshes for the monotonic loading case.

6.1.7.2 Fields transfer

Once the mesh has been adapted, the fields are transferred from the old to the new mesh.

2.4

1.8

1.2

0.6

0.

1e-2

(a) uy - M1 (before). (b) uy - M2 (after).

Figure 6.6: First transfer of nodal variables uy from mesh 1 to 2 at uy = 0.024 mm.

Fig. 6.6 & Fig. 6.7 exhibit the displacement field uy before and after two remeshing steps with
significant topology changes. In both cases, one can notice an excellent correlation between the
former and the new continuous (nodal) field distribution.
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7.7

5.78

3.85

1.93

0.

1e-2

(a) uy - M2 (before). (b) uy - M3 (after).

Figure 6.7: Second transfer of nodal variables uy from mesh 2 to 3 at uy = 0.077 mm .

The non-local damage during the first and second transfers are depicted in Fig. 6.8 & Fig. 6.9,
respectively. Due to the significant refinement during the first remeshing step, the transfer of the
local data is much more affected than for the second transfer. However, the very low damage
values (i.e. about 10−3) make the discrepancy insignificant. For the second transfer, the 3rd mesh
is close to the 2nd one and the transfer does not significantly change the data distribution, Fig. 6.9.

1.

0.75

0.5

0.25

0.

1e-3

(a) D - M1 (before). (b) D - M2 (after).

Figure 6.8: First transfer of local (internal) variables D from mesh 1 to 2 at uy = 0.024 mm.

This quasi-static example has enabled to evidence the capabilities of the ZZ2 incremental error
estimator to effectively control the mesh refinement process. The choice of the non-local damage
variable as the underlying variable for mesh refinement has been confirmed. Besides, it has also
been shown that the selected transfer operators enable to avoid numerical diffusion. Finally, up
to this point, the proposed strategy gives the possibility to perform structural calculations up to
the onset of fracture (i.e. some IP have reached their critical damaged state) with a controlled
accuracy.
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0.2

1.50

0.1

0.05

0.

(a) D - M2 (before). (b) D - M3 (after).

Figure 6.9: Second transfer of local (internal) variables D from mesh 2 to 3 at uy = 0.077 mm.

6.2 Continuous-discontinuous transition

6.2.1 Motivation and elements of a continuous-discontinuous transition

One of the most significant limitations of the continuous approaches relies on their inability
to represent surface decohesion associated with crack propagation in structures. Indeed, when
considering pure non-local damage models without introducing an explicit fracture surface in the
numerical model:

• the real crack lips cannot be visualized as lines (2D computations) or surfaces (3D);
• the effect of crack opening/closure, crack-lips contact and friction cannot be assessed;
• the proper definition of the crack-tip, i.e. a point (2D) or a line (3D) is not trivial, which in

turn leads to the absence of a precise crack growth rate estimation;
• excessive straining arises since the material across the damaged zone remains kinematically

connected to almost null stress levels [Geers et al., 1998], [Simone et al., 2004], [Feld-Payet,
2010], [Rastiello et al., 2018].

In order to overcome such drawbacks, some numerical methods, mainly referred to as continuous-
discontinuous transition (CDT) techniques (or sometimes denoted as hybrid crack approaches [Sa-
loustros et al., 2019]) have been proposed lately, Fig. 6.10.

While such CDT methods have been initially suggested for fracture prediction in quasi-static con-
ditions, one of the goals of the present Ph.D. project is to assess their ability to deal with fatigue
(cyclic) conditions.
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Discontinuous Continuous Combined

Figure 6.10: Different approaches to fracture
(adapted from [Mediavilla Varas, 2005]).

When using a continuous-to-discontinuous
transition technique for the modeling of frac-
ture process, some questions always need to
be considered [Feld-Payet, 2022]:

1. where to locate the discrete crack?
2. when to insert the crack, i.e. when to

switch from a diffuse damage to a sharp
crack?

3. how to model a discrete crack?

These three questions are answered in the fol-
lowing sub-sections.

6.2.2 Where to locate the discrete crack?

6.2.2.1 Crack orientation criteria

For non-linear material behaviors, orientation criteria have been suggested over the past two
decades. The loss of material stability (i.e. bifurcation analysis), as used by [Besson et al.,
2003], [Huespe et al., 2009], [Wolf et al., 2018], [Nikolakopoulos et al., 2021], can only be con-
sidered for local (i.e. non regularized) stress-softening material behaviors. For non-linear material
models (plastic or viscoplastic), [Jirásek and Zimmermann, 2001] have proposed to propagate the
crack in the direction normal to the maximum principal non-local strain. Similarly, [Simone et al.,
2003] suggested to consider for the crack growth direction the one where the non-local equivalent
strain accumulation is the greatest.
Finally, in a natural way, the direction in which the degradation process is maximum (i.e. the
direction corresponding to maximum damage or porosity) can obviously be considered [Könke,
1995], [Brokken, 1999]. This has the advantage that both crack initiation and propagation can
be dealt with using the same (continuum) equations and no separate fracture criterion is neces-
sary [Javani, 2011]. This concept has been successfully applied to 2D crack growth problems in
metal forming processes for both uncoupled [Brokken et al., 2000] or coupled damage models [Me-
diavilla et al., 2006c], [Feld-Payet, 2010], [Broumand and Khoei, 2013].
Taking into account this literature survey, I made the choice to model the crack growth in the
direction where the smoothed non-local damage field D ? is maximum.

6.2.2.2 Crack path tracking algorithms

To determine where the next crack increment should be, according to the chosen orientation
criterion, it is then necessary to resort to a practical method. These methods are referred to as
crack path tracking algorithms [Saloustros et al., 2019], [Feld-Payet, 2022]. Their original goal was
to ensure continuity of the crack path but they have evolved to also ensure a sufficient regularity.
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Among the algorithms relying solely on a degradation-related field, there are notably:

• the maximum projected ridge approach of [Bottoni et al., 2015], which searches for the
maximum of the projected value of a damage-related field on a segment perpendicular to
the previous crack increment. Let us note that this method has only been applied to 2D
problems;

• the medial axis method suggested by [Tamayo-Mas, 2013], [Tamayo-Mas and Rodríguez-
Ferran, 2015]. This algorithm is a geometrical one defining the crack-tip positions along
the successive centers of bi-tangent interior spheres to a regularized damage field level set.
This algorithm was applied for both 2D and 3D problems. However, it allows cracks only to
initiate on a boundary of the structure;

• the marching ridges technique proposed by [Feld-Payet, 2010], [Feld-Payet et al., 2015] for
ductile fracture prediction. This tracking algorithm is based on the local approximation of
the ridge by a segment. The direction of the segment is determined thanks to the evalua-
tion of a scalar product involving the gradient of a regularized degradation-related field and
the orthoradial vector defined in a polar grid centered on the crack-tip or crack initiation
spot. This algorithm was applied for both 2D and 3D problems and allows crack initiation
anywhere in the structure. Besides, this algorithm is already implemented within the Z-set
suite. For all these reasons, this crack path tracking algorithm has been selected for this work.

6.2.2.3 Theoretical aspects of the Marching Ridges algorithm

This algorithm is termed as “marching” since the search for the crack-tip position is a local
gradual process. Starting from a point x 0 on the ridge, and assuming that the ridge line can be
locally approximated by a linear segment, the eq. (6.17) can be used to find the next point(s) on
the ridge at a given distance R (and so on in an incremental manner) [Feld-Payet et al., 2015]:

e θ
(
θ−∆θ/2

)
.∇f

(
x 0 + Re r

(
θ−∆θ/2

))
> 0

e θ
(
θ+ ∆θ/2

)
.∇f

(
x 0 + Re r

(
θ+ ∆θ/2

))
< 0

(6.17)

In this eq. (6.17), R defines an evaluation radius, ∆θ is an angular step (or precision) enabling
to test a finite number of directions e θ (tangential to the radius), x 0 the starting point (i.e. the
last position of the crack front), and f a sufficiently smoothed degradation-related scalar field
(estimated thanks to the SPR procedure, see sub-sect. 6.1.2.4), see Fig. 6.11.

For each tested direction θ, the scalar product e θ .∇f is evaluated. If this scalar product changes
its sign from positive to negative for a given direction θ, then a ridge is identified. The angle θ
hence defines the ridge orientation, with an angular precision of ∆θ.

http://www.zset-software.com/
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(a) Polar grid (blue) located on the
crack (bold black line) with contour
plots of the f function and correspond-
ing gradient vectors ∇f (red arrows).

(b) Evolution of the f function along the angular abscissa θ and
corresponding scalar product g . The angular discretization along θ
yields a piece-wise constant scalar (dot) product g whose sign change
allows for the crack path to be identified.

Figure 6.11: Schematic view of the underlying concepts of the Marching Ridges crack path tracking
algorithm (after [Feld-Payet, 2022]).

It should be mentioned that in the present study, the smoothed non-local damage field D ? will
be used by the Marching Ridges algorithm as the support for the ridge search process.

6.2.3 When to insert a crack?

6.2.3.1 Magnitude of the crack increment

The length of the discontinuity increment remains to be defined. This length `inc can be a
constant length prescribed by the user or it can depend on the damage evolution in the considered
direction as in [Seabra et al., 2013]. Besides, one has the choice to only insert one crack increment
or to resume the procedure until the insertion criterion is no longer verified. This last strategy is
known as the exhaustion method and it has been used by [Mediavilla Varas, 2005], [Wolf et al.,
2018], [Javanmardi and Maheri, 2019]. The choice is made in this work to only insert one increment
of fixed length at a time in order to restore the equilibrium of the system before any further crack
propagation. Such a procedure aims at obtaining a better robustness by avoiding divergence issues.

6.2.3.2 When to insert a crack?

A crack increment is inserted in the mesh when a critical damaged state is reached in the fracture
process zone. This ensures that the material has nearly lost its whole load-bearing capacity and
that no residual energy remains to be dissipated. To be more specific, a crack can only be inserted
if D ≥ D cr it along the considered crack increment. Let us note that to ensure a good estimation
of the crack insertion criterion given above, the non-local damage D is considered rather than
its smoothed value D ?. Indeed, the latter, although more regular in the bulk, may exhibit a
poor quality close to the edges. Moreover, such a smoothed field is not physically-based and the
positivity of its evolution is not necessarily ensured [Feld-Payet, 2010].
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6.2.4 How to insert the crack increment?

Since mesh adaption is already used to locally refine the mesh up to the onset of fracture, and
since the present work follows the developments from [Feld-Payet, 2010], it is natural to also use
mesh adaption to represent the discrete crack too. This choice also represents the advantage of
providing a very accurate description of the crack (see the review on discontinuous crack mod-
eling in sub-sect. 1.7.2). It is obviously more complex than a simple element deletion technique
(also considered in the appendices, see Chap. K). However, with element deletion, in order to get
relatively “smooth” crack lips and avoid too large mass loss, a very fine mesh should be considered.

Once the geometry of the crack increment has been evaluated by the MR algorithm and the insertion
criterion is verified, mesh intersection techniques developed by [Chiaruttini et al., 2013] are used
to represent the discontinuity. The auxiliary surfacic mesh of the crack increment (see Fig. 6.12)
is used to intersect the structural mesh. Then, a mesh is generated from the contour of the
structure with new boundaries associated with the updated crack thanks to the MeshGems tools.

Figure 6.12: General cutting surface process for mesh intersection (from [Chiaruttini et al., 2013]).

Let us remark that the insertion of the new crack is done by splitting the nodes generated on the
new crack lips by the surfacic mesher. This implies that for each node, a corresponding node with
the same coordinates is generated.

6.2.5 Overview of the remeshing-based crack growth modeling

Once the non-local damage field has been smoothed using the ZZ2 error estimator, see sub-
sect. 6.1.2, this latter field and its spatial gradient are provided in a post-processing step to the
MR algorithm which conducts the search for possible ridges in order to locate the position of the
crack increment, see sub-sect. 6.2.2.3. Then, an auxiliary mesh is built to define the discontinuity
surface. This one is provided to the Z-cracks tool which performs the mesh intersection process,
see sub-sect. 6.2.4. A new meh is hence generated and properly refined using the fully automatic
mesh generator MeshGems. Then, both nodal and local fields are transferred from the old to the
new mesh, see sub-sect. 6.1.4. Finally, the equilibrium is retrieved according to a specific procedure
described in sub-sect. 6.1.5 and the next load increment can be solved.
As a matter of synthesis, the whole numerical procedure for the crack growth modeling can be
summarized in the flowchart given in Fig. 6.13:

http://www.meshgems.com/
http://www.zset-software.com/products/z-cracks/
http://www.meshgems.com/
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6.3 Application of the continuous-discontinuous strategy for
fatigue crack growth

In the remaining of this Chap. 6, various numerical calculations will be discussed. All of them
derive from a standard cyclic test case on a SEN-T specimen as the one introduced in sub-sect. 5.5.3
which corresponds to the experimental test described in the sect. 3.1.
In this section, only pure fatigue crack growth testing conditions will be discussed. The crack
insertion strategy needs to be validated on cyclic cases. The aim of this section is to evaluate
the performance of the continuous-discontinuous strategy for LCF propagation by confronting the
numerical results with the experimental observations.

6.3.1 Description of the test case

6.3.1.1 Specimen geometry and boundary conditions

Only the central zone of the SEN-T specimen is studied, see Fig. 6.14. An initial pre-crack of
0.6mm has been introduced in the initial mesh to approximate the experimental conditions for the
propagation stage with a sufficiently long crack. The edges of the considered zone are assumed to
be far enough from the notch to assume locally homogeneous boundary conditions. For the same
reason, the zone is meshed with a coarse spatial discretization away from the notch root, while in
the vicinity of the notch root, the mean element size is decreased. Both the geometry and the
prescribed boundary conditions of the considered problem are depicted in Fig. 6.15a. The displace-
ment on the lower boundary of the specimen along the y -direction is fixed. The displacements
along the x -direction on both upper and lower edges are free. A node is fixed to prevent the rigid
body motion (a similar procedure was conducted by [Lu et al., 2019], [Kirkesaether Brun et al.,
2020]). A uniform stress (or displacement) load is applied continuously on the upper boundary
in a cyclic manner. A sinusoidal stress-controlled cyclic loading waveform is considered with a
1Hz frequency, an applied stress level of 400 MPa and a load ratio of Rσ = 0.05, see Fig. 6.15b.
A displacement-controlled signal will also be considered.

6.3.1.2 Numerical aspects related to the FE calculations

Two-dimensional structural calculations have been performed assuming plane strain loading
conditions (the specimen thickness being 4.0mm). Quadratic triangular elements are used to ob-
tain satisfactory mesh quality after automatic 2D mesh adaption [Bouchard et al., 2000], [Bouchard
et al., 2003], [Besson and Desmorat, 2004]. Consequently, similarly to Chap. 4 and Chap. 5, c2d6r
(quadratic triangular) elements have been considered using either the mixed gradient-enhanced
formulation (p2-p1-p1-p1), see Fig. 1.17a, or solely the gradient-enhanced formulation (p2-p1),
see Fig. 1.17b. During the FE calculations, in order to reduce the solving time, especially at the
local level where the non-linear regularized cyclic damage model needs to be integrated (see sub-
sect. 5.4.5), a sequential multi-threaded procedure has been considered using 4 to 6 threads. The
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(a) SEN-T spec. (b) FE mesh of the useful zone. (c) Close-up view around the crack-tip.

Figure 6.14: Mesh of the useful zone of a SEN-T specimen subjected to cyclic loading in the 2D case.
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(a) Prescribed boundary conditions.
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(b) Test loading signal (stress- or displacement-controlled).

Figure 6.15: Schematic representation of the useful zone of the SEN-T specimen under cyclic loading
and corresponding loading signal.

so-called MUltifrontal Massively Parallel sparse direct Solver (MUMPS) was used for sequential
computations. This solver, already implemented within the Z-set suite, is known to be particularly
suitable in case of non-symmetric problems like the one considered here.

6.3.1.3 Numerical parameters

Before running the FE calculation, the basic ingredients to be provided to the ZZ2 incremental
error-estimator are as follows:

• the supporting scalar field: the non-local damage field D
• the threshold value triggering the ZZ2 error estimation: D ZZ2

th
• the global error on the mesh triggering the remeshing process: ηD
• the (global) target error (accuracy): εh

D

http://www.zset-software.com/
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• the min. and max. element sizes: hmin/max

while those controlling the MR crack path tracking algorithm are:

• the supporting scalar degradation-related field: the smoothed non-local damage field D ?

• the threshold value triggering the ridge search and validating the direction: D MR
th

• the threshold value for the gradient estimation: ∇D ?

th
• the angular precision for the discretization of the evaluation space: ∆θ = 360◦

m where m ∈ N

• the critical value triggering the crack insertion through remeshing: D cr it

• the length of the crack increment: `inc = λinc × hmin where λinc ∈ R

Thus, parameters considered for the simulation are reported in Tab. 6.2 together with the material
parameters for AD730™ calibrated at 550 and 700◦C, see Tab. D.1.

Parameters `c D ZZ2
th ηD εh

D hmin hmax D MR
th ∇D ?

th ∆θ D cr it
`inc

[mm] [-] [-] [-] [mm] [mm] [-] [-] [◦] [mm] [mm]
Value 0.03 0.001 0.02 0.01 0.015 10. 0.9 0.001 10. 0.95 0.06

Table 6.2: Parameters for the simulations of a standard crack insertion strategy.

6.3.2 Strategy evaluation

6.3.2.1 Global results analysis

The fatigue crack growth simulation for the SEN-T specimen resulted in 86 crack increment
insertions to obtain a final crack length of ≈ 2.01 mm. The corresponding contour plots for the
non-local damage and the Von Mises stress field are depicted in Fig. 6.16 at two distinct crack
lengths of a = 0.71 mm and a = 2.01 mm.

The contour plots of the Von Mises equivalent stress field, Fig. 6.16c & Fig. 6.16d, can be seen
to be conform to the theoretical repartition starting from the crack-tip. As expected, as long as
the crack grows, the gradients are more pronounced and the stress level is increased. Let us also
note that at the end of the simulation, the assumption of homogeneous BC at the edges may
be no longer verified, Fig. 6.16d. Indeed, with increasing crack length, the Von Mises equivalent
stress field is larger and the meshed area of the SEN-T specimen might be too narrow compared
to the resulting stress fields (Fig. 6.16c vs. Fig. 6.16d). A larger structural mesh might have been
necessary to ensure homogeneous far-field stress levels. This point has been first disregarded in
order to save computational cost for this methodology validation phase.
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(a) Non-local damage field for a = 0.71 mm. (b) Non-local damage field for a = 2.01 mm.

0.                           0.25                           0.5                           0.75                           0.99

(c) Von Mises stress field for a = 0.71 mm. (d) Von Mises stress field for a = 2.01 mm.

0.00                          2.35                          4.70                          7.05                          9.40
1e+2

Figure 6.16: Overall fatigue crack growth curve for the FE calculation with some mechanical fields during
a standard fatigue loading at 700◦C (sinus 1Hz, σ = 400 MPa, Rσ = 0.05, c2d6r 2-fields FE).
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In close relation with the stress field, the fact that a plastic zone exists at the level of the singularity,
i.e. at the crack-tip in an elastic-plastic (work-hardening) material, has been extensively studied
in the past decades [Irwin, 1960], [Rice, 1967]. Such a plastic zone is known to be responsible
(among other mechanisms) for crack closure effects as well as for the modification of both the
kinetics and the crack’s orientation [Pommier, 2007]. Moreover, it is well established that crack
growth is largely influenced by the effect of this plastic zone at the front of the crack. The latter,
upon growing, leaves a wake of yielded material, also referred to as the plastic wake.

(a) a = 0.49 mm (b) a = 1.03 mm (c) a = 1.99 mm (d) a = 2.99 mm (e) a = 4.14 mm

Figure 6.17: Evolution of the size of the plastic zone at the tip of an advancing fatigue crack at maximum
load (550◦C, sinus 1Hz, uy = 0.05mm, Ruy = 0.05, plane strain conditions, c2d6r 2-fields FE).

In Fig. 6.17, the (visco)plastic zone at the tip of the growing crack is reported for the present
fatigue damage model. One can easily observe from Fig. 6.17a to Fig. 6.17e the increase in size
of the (visco)plastic zone with the increase in crack length. As the crack advances, the range of
stress intensity factors ∆K also increases from 16.9 to 66.2MPa.m1/2. Moreover, the “butter-
fly” shape of the plastic zone is also noticeable, as expected in pure fatigue loading under plane
strain conditions [Zhao et al., 2020]. According to [McClung, 1991], the cyclic plastic zone size is
assumed to be equal to the radius of the zone starting from the crack-tip to the boundary of the
plastic zone along the crack direction, see Fig. 6.17e. Such a plastic zone is finally expected to
leave behind a plastic wake of increasing size as long as the crack grows.

In order to track the crack length and evaluate the corresponding crack growth rate, the position
of the crack-tip after each remeshing step is recorded (based on its coordinates w.r.t. to the initial
configuration). In parallel, the displacements and resulting efforts at the upper boundary of the
specimen with corresponding time are also recorded at each time increment in order to plot the
FCG curve in Fig. 6.16.

A noticeable result is the quasi-linear trend of the FCG curve with increasing ∆K . This evidences a
stable propagation regime that can be assimilated to a Paris regime. This assimilation is supported
by the fact that the crack is sufficiently long (a ≥ 500µm). The process hence belongs to the
fatigue crack propagation of long cracks, as discussed in sub-sect. 1.1.3.

Finally, one can notice that the use of this continuous-discontinuous transition (CDT) method for
crack growth modeling through remeshing needs to be well controlled before any conclusion to be
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drawn. Apart from the proper calibration of the parameters for the damage model, the specific
choice for the parameters associated with the MR algorithm, see sub-sect. 6.3.1.3 (`inc , DMR

th ,
∇D ?

th, D cr it , ∆θ) also needs to be carefully handled. The use of such a complex modeling ap-
proach hence requires sufficient confidence in the parameters to ensure robustness and consistency
of the numerical results, since several sources of error can affect the overall result. However, the
proposed CDT strategy seems appropriate to model FCG. The inclusion of discontinuities into a
regularized strain-softening continuum model allows the entire failure process, from the onset of
inelastic strain to complete failure, to be modeled effectively.

6.3.2.2 Mesh-convergence analysis for long fatigue crack growth

In the present sub-section, a mesh convergence analysis is first performed. The same FCG prob-
lem has been simulated for three minimum element sizes, namely hmin = 0.015, 0.01 and 0.005mm.

(a) hmin = 0.015 mm.

(b) hmin = 0.010 mm.

(c) hmin = 0.005 mm.

0.0                                   2.8                                   5.6                                   8.4                                   11.2 1e+2

0.                                  0.25                                  0.5                                  0.75                                  0.99

Figure 6.18: Distribution of the non-local damage for the three different mesh sizes at maximum load of
the 700th cycle (c2d6r 4-fields FE - view at contours).

In Fig. 6.18 & Fig. 6.19, the contours of the non-local damage and Von Mises stress fields for the
three discretizations are reported (on the left and on the right images, respectively) at cycle 700
and 850. One can see that the non-local damage admits comparable iso-contours at the 700th

cycle. The coarser mesh exhibits a slight delay, Fig. 6.18a, compared to the two finest discretiza-
tions, Fig. 6.18b & Fig. 6.18c. The equivalent stress profiles are nearly the same, with a vanishing
level in the wake of the crack. Let us also note the change in mesh size has a slight effect of the
predicted gradients at the crack-tip, Fig. 6.18a - Fig. 6.18c (right hand-side images).
For the cycle 850, since the crack is longer, the Von Mises stress levels are correspondingly higher,
Fig. 6.19a - Fig. 6.19c (right hand-side images). The difference in terms of crack length is a little
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bit more noticeable, see Fig. 6.19. The two finest mesh size (10 & 5µm) exhibit almost the same
crack length while the delay of the coarser mesh is more pronounced.

(a) hmin = 0.015 mm.

(b) hmin = 0.010 mm.

(c) hmin = 0.005 mm.

0.0                                   2.8                                   5.6                                   8.4                                   11.2 1e+2

0.                                  0.25                                  0.5                                  0.75                                  0.99

Figure 6.19: Distribution of the non-local damage for the three different mesh sizes at maximum load of
the 850th cycle (c2d6r 4-fields FE - view at contours).

These last observations are consistent with the evolution of the crack length for the three simula-
tions given in Fig. 6.20. Let us note that each point of the plots Fig. 6.20a & Fig. 6.20b corresponds
to a single remeshing procedure associated with a crack increment, since the crack length remains
constant between two remeshing steps. In Fig. 6.20a, one can observe that the crack lengths are
very close for the different minimal sizes and seem to converge upon mesh refinement, Fig. 6.20b.
The difference in the number of loading cycles to reach the same crack length (between the two
smallest element sizes) is approximately of ∼ 10 cycles, which is reasonable compared to the large
number of loading cycles that are considered in LCF conditions. Moreover, one can notice in
Fig. 6.20c that the smaller the imposed mesh size in the FPZ, the shorter the fatigue life, which
seems physically acceptable since the energy required to break large elements is necessarily higher
than that required to break small ones.
In Fig. 6.20c, the FCG curves are reported in a da/dN vs. ∆K diagram. One can easily see in
this plot a quasi-linear evolution of the FCG rates, which seems to indicate a stable crack growth
regime. The Paris lines are also reported. The fact that they exhibit almost the same slope
confirms that similar crack growth rates are obtained for the three mesh sizes.
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Figure 6.20: Mesh convergence analysis on a SEN-T specimen under fatigue loading conditions at 700◦C
(sinus 1Hz, 400MPa, Rσ = 0.05, plane strain conditions, p2-p1 FE).

6.3.2.3 Mesh coarsening process

In Fig. 6.21, the distribution of accumulated plasticity in the wake of the crack at several
instants is reported. One can notice the accumulation of plasticity along the lips of the crack.
As long as crack advances, the mesh is refined ahead of its tip, while the wake is progressively
coarsened thanks to the error-based mesh adaption strategy. This coarsening is due to the absence
of damage evolution: the error is thus not significant in these areas. One can notice that the
successive coarsening procedures together with field transfer steps have made the distribution less
regular in the wake of the crack. However, since there is no more evolution of the mechanical
fields in these areas and the material has lost almost all its carrying capacity, the incidence on the
overall energy of the structure is minimal.
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(a) a = 1.05 mm. (b) a = 1.35 mm.

(c) a = 2.99 mm. (d) a = 3.55 mm.
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(e) a = 4.07 mm.

Figure 6.21: Accumulated plasticity in the wake of a growing crack at several instants of a pure fatigue
loading scheme (c2d6r 2-fields FE).

6.4 Sensitivity analysis for the fatigue model

The aim of this section is to assess the predictive capabilities of the fatigue damage model
and its sensitivity to extrinsic parameters, that are: the temperature, the load ratio, the loading
frequency and the over-load effect. Such a sensitivity analysis is performed on a structural calcu-
lation similar to that described in sub-sect. 6.3.1 which served for the validation of the approach
in sub-sect. 6.3.2.

The damage model has been seen in sub-sect. 4.2.3 to be governed by some material parameters
(e.g. Sf , mf and βf for fatigue damage, eq. (4.47)). A change in one of these parameters should
result in a change in the FCG process. Such a point will be assessed in sub-sect. 6.4.2.
Moreover, the fatigue crack growth response of the material upon testing revealed a sensitivity to
the loading conditions, also referred to as the extrinsic parameters (see also the sub-sect. 1.3.1 in the
literature review). Thus, in the following, the change of temperature, load ratio, loading frequency,
or prescribed boundary conditions are assessed in a qualitative manner. Moreover, a testing loading
scheme including some overloads is also discussed. To this end, either material parameters (in sub-
sect. 6.4.2) or loading modes will be varying in the calculations (in sub-sect. 6.4.3).
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At last, let us note that some parameters related to either the mesh-adaptivity procedure or to
the Marching Ridges algorithm may change in the following sub-sections. This point, independent
from any physical aspect, comes from the numerical assessment of the method and possible en-
countered convergence issues. Since the model has been proved to provide mesh-converged results,
sub-sect. 6.3.2.2, a change in these numerical parameters (e.g. `c , hmin or `inc) should not result
in a significant change in the overall response of the model.

6.4.1 Preliminary remarks

Before discussing numerical calculation results, it is important to point out the fact that the
simulations exposed in what follows have been run with arbitrary parameters for the damage model.
Indeed, the consistent calibration of the damage model parameters associated with each damage
mechanism (fatigue, creep and ductile) have not been yet calibrated.
There are two reasons for this lack of calibration: the first comes from the necessity to cope with
long calculations to simulate 104 to 105 cycles, which is out of the present capabilities of the
numerical work. For this purpose, some specific numerical tools need to be addressed in order to
accelerate the analysis, like cycle-jump techniques. This could be done in further developments.
Moreover, the robustness of the present FCG modeling had to be first evaluated and improved prior
to the “automatic” use of the whole strategy. The error-based mesh-adaption strategy together
with the crack insertion strategy through mesh intersection also rely on user-defined parameters
which additionally had to be assessed through benchmark tests. This took a significant time,
explaining the absence of a proper calibration for constants of the damage model. Nevertheless,
the proposed modeling approach can still be assessed in FE calculations to evaluate the predictive
capabilities of the non-local model together with the CDT method under cyclic loading cases, at
least in a qualitative manner.
A critical discussion and suggestions for the calibration strategy of the non-local damage model
will be given in sect. 6.6.

6.4.2 Fatigue damage parameters sensitivity analysis

When considering pure fatigue loading conditions, the variable which is responsible for the FCG
process is the fatigue damage, through its non-local form D. As indicated in eq. (4.47), the fatigue
damage evolution is closely related to the resistance parameter Sf and the viscoplastic activity
through ṗ. In this paragraph, the effect of the fatigue damage resistance parameter Sf on the
overall FCG rate is quantitatively assessed.

In Fig. 6.22a, the evolution of the crack length w.r.t. the loading cycles is reported for two values
of Sf . As expected, the lower the fatigue damage resistance Sf , the faster the crack advance and
consequently the lower the fatigue lifetime. Paying attention to the FCG curves in Fig. 6.22b, one
can see that a linear regime is evidenced for both cases (Sf = 0.3 or 0.5 MPa). Looking at the
Paris lines, a higher slope is noticeable for Sf = 0.3 MPa which results in a faster crack growth
at a given ∆K .
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Figure 6.22: Effect of the fatigue damage resistance Sf on the FCG on a SEN-T specimen under pure
fatigue loading conditions at 550◦C (sinus 1Hz, uy = 0.05mm, Ruy = 0.05, plane strain conditions,
p2-p1 FE).

Once this feature of the model has been assessed, let us note that in the remaining of this work, a
sufficiently low value of Sf has been intentionally chosen. Such a choice comes from the require-
ment to perform FCG numerical simulations over a limited number of loading cycles (N < 2000)
in order to limit computational demand.

6.4.3 Sensitivity of the model to extrinsic parameters

In this sub-section, the influence of temperature, load ratios, loading frequencies, prescribed
boundary conditions and over-loads are discussed in accordance with the model capabilities.

6.4.3.1 Temperature effect on FCG

As detailed in sect. 2.4, the cyclic material model has been calibrated for three target temper-
atures, namely 20, 550 and 700◦C. Consequently, in the following, a cyclic FCG simulation has
been run for each testing temperature with the same numerical parameters, see Tab. L.1 in the
appendix. In order to study the effect of temperature on the FCG, only the material behavior
parameters are changed (while the material damage parameters are kept constant). The smallest
FE size has been set to hmin = 0.05 mm and the internal length to `c = 0.15 mm.

In the Fig. 6.23a, the crack lengths are reported. One can notice a significant distinction between
each loading temperature. As expected, lower temperatures induce longer crack fatigue lives. This
result was expected. Indeed, as discussed in Chap. 2, the material’s stiffnesses (elastic modulus and
kinematic hardening moduli) tend to decrease as the temperature increases. As a consequence,
the mechanical resistance of the material decreases. Moreover, strain-hardening mechanisms are
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Figure 6.23: Temperature effect on the FCG on a SEN-T specimen under pure fatigue loading conditions
(sinus 1Hz, 400MPa, Rσ = 0.05, plane strain conditions, p2-p1 FE).

also less important with temperature increase.
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Figure 6.24: Effect of temperature on the pure
fatigue crack growth behavior of FG AD730™.

In Fig. 6.24, experimental results on the
FCG behavior of FG AD730™ are depicted.
The temperature effect in pure fatigue con-
ditions is clearly evidenced. The dif-
ference in terms of FCG rates is even
more pronounced, since in real condi-
tions, time-related effects are (obviously) ac-
counted for, while they are not in the
simulation. However, the slope of the
Paris line in each case can be seen to
be almost identical, as also evidenced in
Fig. 6.23b.

Remark: The present study is meant to be
only qualitative. Indeed, in the present case,
only the fatigue damage effect has been ac-
counted for in the calculation. At high temperatures, especially 700◦C, time-driven processes
(creep, oxidation...) should enforce damage growth, consequently yielding to higher crack growth
rates and lower fatigue lives. Damage parameters are also not supposed to be the same for each
temperature.
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6.4.3.2 Effect of applied boundary conditions on FCG

In the present sub-section, the effect of the different load control (either in stress or displace-
ment control) is assessed. Corresponding parameters are reported in Tab. L.2. The min. element
size was set to hmin = 0.01 mm and the internal length scale to `c = 0.03 mm.
In Fig. 6.25a, the evolution of the crack length as a function of the loading cycles is reported.
One can see that the displacement-controlled test yields a longer fatigue life. In the Fig. 6.25b,
the FCG curves are reported in a da/dN vs. ∆K frame. One can see that the stress-controlled
exhibits a higher slope in the Paris regime, which is consistent with the previously observed faster
crack growth rate.
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Figure 6.25: Effect of the prescribed boundary conditions on the FCG on a SEN-T specimen under pure
fatigue loading conditions at 550◦C (sinus 1Hz, Rσ/uy = 0.05, plane strain conditions, p2-p1 FE).

A possible explanation for the difference in FCG rates can be that when loading is stress-controlled
(i.e. force-controlled), the SIF is always increasing, hence leading to a faster crack growth with
increasing ∆K . This is not the case with displacement-controlled loading which may allow a de-
celeration of the crack advance.

Finally, as a prospective point, it should be interesting in forthcoming works to use the real kinemat-
ics fields obtained, e.g. through Digital Image Correlation (DIC), as prescribed boundary conditions
to the structural case. This way, the simulation should reach a higher degree of fidelity with re-
spect to the real applied BC and the crack advance should be predicted with an improved accuracy.

Remark: one can remark for the highest ∆K an asymptotic tendency of the curve (which is gen-
erally known to be related to the fracture toughness ∆Kc). In the present case, the real fracture
toughness of the material that represents a threshold before unstable crack propagation has not
been reached. The instability of the calculation comes from a too significant damage rate in the
FPZ (coming from a too low fatigue damage resistance parameter Sf ). The damage parameters
have been lowered so as to enforce a faster crack propagation and to limit the CPU time. However,
the global trends before unstable crack growth are well transcribed.



6.4 Sensitivity analysis for the fatigue model 251

6.4.3.3 Effect of load ratio on FCG

In this sub-section, the load ratio effect is studied. The same loading case has been simulated
with three different positive loading ratios, namely Rσ = 0.05, 0.07 and 0.12. These load ratios
can be seen to be close each others. Such a choice comes from the necessity to perform FCG
calculation over a reasonable number of loading cycles. To do so, fatigue damage parameters have
been intentionally set low, as previously said in sub-sect. 6.4.3.2. This low values for the damage
parameters have resulted in convergence issues since damage increases fast. This explains why
almost similar load ratios have been considered in this preliminary step.
Let us note that negative load ratios have not been considered in this work since crack-lips closure
mechanisms could intervene (not considered in the present study). The stress amplitude is kept
unchanged and corresponds to ∆σ/2 = 190 MPa. Consequently, the minimum and maximum
stress levels evolve (σmax = 400, 410 and 430MPa, respectively), and since the load ratio is in-
creased, the mean stress follows the same trend. Simulations are run with material parameters
of AD730™ at 550◦C, hmin = 0.01 mm and `c = 0.03 mm. The others material parameters are
reported in Tab. L.3.
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Figure 6.26: Load ratio effect on the FCG on a SEN-T specimen under pure fatigue loading conditions
at 550◦C (sinus 1Hz, ∆σ/2 = 190 MPa, plane strain conditions, p2-p1 FE).

As expected, a higher load ratio yields a lower fatigue lifetime, Fig. 6.26a. Indeed, the mean stress
being higher in case of high load ratio, material is more prone to develop plastic strains and then
to degrade. Let us also note that since there is only a slight difference between the case with
Rσ = 0.05 and that of 0.07, there is no significant difference in the FCG curves, see Fig. 6.26b.
The slope for each Paris regime is almost similar.

6.4.3.4 Effect of the loading frequency on FCG

In this sub-section, the effect of the loading frequency on the FCG is investigated. Simulations
are run with material parameters of AD730™ at 550◦C, with hmin = 0.05 mm and `c = 0.15 mm.
The loading is stress-controlled with an applied stress of 400MPa at the upper boundary (see
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Fig. 6.15). Three loading frequencies are prescribed, that are 0.1, 1 and 5Hz. The others material
parameters are reported in Tab. L.4.
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Figure 6.27: Effect of loading frequency on the FCG on a SEN-T specimen under pure fatigue loading
conditions at 550◦C (sinus 0.1, 1 & 5Hz, σ = 400 MPa, Rσ = 0.05, plane strain conditions, p2-p1 FE).

One can remark in Fig. 6.27a that the lower the loading frequency, the shorter the fatigue lifetime.
However, looking at the FCG curves in Fig. 6.27b, one can notice that there is no significant
difference in the slopes of the da/dN −∆K curves in the Paris regime. The crack growth rates
seem to be almost equivalent. Thus, it seems there is no clear difference in FCG rates with evolving
loading frequency.

Normally, under pure fatigue loading conditions, the frequency effect is not that pronounced as
long as the frequency is sufficiently high (so as for time-dependent processes not to occur) [Fessler,
2017]. In the present study, only the fatigue damage Df is active and contributes to the total
non-local damage D. It has been reported page 176 during the parametric study related to the
cyclic damage model, more particularly in Fig. 4.10, that a slight frequency effect is intrinsically
included in the model since the unified viscoplasticity theory enables the introduction of an over-
stress which is responsible for a time-dependency of the mechanical response. In addition, since
the inelastic flow is responsible for the fatigue damage evolution, the change in loading rate results
in a change in the viscoplasticity activity and a change in the fatigue damage evolution.

In order to evidence the difference in material response with the change in loading frequency, the
Von Mises stress fields for the three loading frequencies are depicted in Fig. 6.28. One can remark
a higher stress level for the lowest loading frequency, which induces a longer crack length.

This effect could be also illustrated by the evolution of the viscoplastic multiplier λ̇ (and conse-
quently the viscoplastic zone at the crack-tip) as reported in Fig. 6.29. One can notice a larger
viscoplastic zone for the lowest loading frequency of 0.1Hz. As a result, the increment of non-local
damage Ḋ is larger in this case, Fig. 6.30, hence leading to a higher FCG rate and a lower fatigue
lifetime.
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Figure 6.28: Von Mises stress level at peak level of the 600th cycle for the three different loading
frequencies (c2d6r 2-fields FE).
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Figure 6.29: Increment of the viscoplastic multiplier at peak level of the 600th cycle for the three different
loading frequencies (c2d6r 2-fields FE).
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Figure 6.30: Increment of non-local damage at peak level of the 600th cycle for the three different loading
frequencies (c2d6r 2-fields FE).

6.4.3.5 Overload effect on FCG

In this sub-section, an attempt to simulate the effect of several over-loads (OL) on the FCG in
pure fatigue loading conditions is investigated. Simulations have been run with material parameters
of AD730™ at 550◦C, with hmin = 0.01 mm and `c = 0.03 mm. The loading is stress-controlled
with an applied stress of 400MPa and two successive 20% over-loads every 20 loading cycles. A
schematic view of the loading scheme is reported in Fig. 6.31. The others material parameters are
reported in Tab. L.5.
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Figure 6.31: Loading signal with successive over-loads.

Generally, it is commonly observed in
metallic materials that application of a
(moderate) over-load gives rise to a so-
called long range effect, that is, a re-
tardation of the crack advance. Such
a mechanism has been extensively stud-
ied in the literature [Willenborg et al.,
1971], [Wheeler, 1972]. This effect
is generally attributed to crack-closure
mechanisms associated with compres-
sive stresses in the plastic zone that
has been generated during the over-
load and left in the wake of a grow-
ing crack [Bathias and Pineau, 2010].
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Figure 6.32: Effect of several overloads on a nominal FCG test on a SEN-T specimen under pure fatigue
loading conditions at 550◦C (sinus 1Hz, σ = 400 MPa, OL 20%, Rσ = 0.05, plane strain conditions,
p2-p1 FE).

In the present case, an unexpected effect is observed, since as one can notice in Fig. 6.32, a shorter
fatigue lifetime is obtained if material has experienced some OL. In my model, this can be explained
by the fact that the fatigue damage is governed by the accumulated plasticity. The occurrence of
over-loads automatically results in much more yielded (plastic) material points in the FPZ. Even if
strain-hardening mechanisms are favored in these zones, fatigue damage is more prone to increase,
hence resulting in more degraded elements and faster crack growth. The Fig. 6.33 - Fig. 6.35
illustrate the increase in damage induced by the over-loads. In Fig. 6.33, the iso-contours for the
Von Mises equivalent stress are depicted. A higher stress level is reached once an OL is applied,
Fig. 6.33b. As a consequence, the viscoplastic activity at the crack-tip is slightly higher in this
case, Fig. 6.34b, and the resulting non-local damage increment follows the same trend, Fig. 6.35b.



6.4 Creep-fatigue loading case 255

13.0

9.62

6.24

2.86

-0.50

1e+2

(a) nominal loading - cycle 775. (b) 20% over-load - cycle 776.

Figure 6.33: Distribution of the stress σyy during the nominal loading (cycle 775) and a 20% over-load
(cycle 776) of a pure fatigue loading scheme (c2d6r 2-fields FE).
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(a) nominal loading - cycle 775. (b) 20% over-load - cycle 776.

Figure 6.34: Increment of the viscoplastic multiplier λ̇ during the nominal loading (cycle 775) and a 20%
over-load (cycle 776) of a pure fatigue loading scheme (c2d6r 2-fields FE).
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Figure 6.35: Increment of the non-local damage Ḋ during the nominal loading (cycle 775) and a 20%
over-load (cycle 776) of a pure fatigue loading scheme (c2d6r 2-fields FE).

This deficiency of the model to reproduce the over-loads effect on the crack propagation must be
corrected in order to be able to simulate complex loads, but this will require a reassessment of
some choices that have been made on the variables that drive the fatigue damage.
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6.5 Creep-fatigue loading case
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Figure 6.36: Creep-fatigue test loading signal

In the present sub-section, the SEN-
T specimen is now subjected to tension
at the upper edge, fixed at the bottom
and assumed under plane strain conditions,
as depicted in Fig. 6.15a. The loading
scheme consists in a trapezoidal waveform
at Rσ = 0.05 with σmax = 400 MPa,
loading ramps of 10 s and dwell-periods of
∆t = 300 s, see Fig. 6.36. The purpose
of this final calculation is the assessment
of the predictive response of the model to
the introduction of dwell-times. Here, both
fatigue and creep damage mechanisms are
activated (still with arbitrary values for the
evolution laws). Few loading cycles have
been simulated, but general trends can nev-
ertheless be analyzed. In addition, because of convergence issues when starting from a pre-crack
(due to excessive distortion of elements at crack-tip during crack onset), calculation has been
performed starting from the notch of the SEN-T specimen (i.e. not from a pre-crack as in the
previous examples). Numerical parameters have been set to hmin = 0.05 mm and `c = 0.15 mm.
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(a) Transient phase (loading). (b) Dwell-period.

Figure 6.37: Increment of the viscoplastic multiplier during the transient and dwell periods of a creep-
fatigue loading scheme (cycle 56) at 550◦C (c2d6r 2-fields FE).

In Fig. 6.37 increments of the viscoplastic multiplier during both the loading ramp (transient)
and the dwell-period are presented. The crack length is of about a ≈ 1.43 mm. One can notice
higher plasticity levels during the transient, Fig. 6.37a, compared to that during the dwell-period,
Fig. 6.37b. In addition, for the loading ramp, the viscoplasticity is more localized close to the
crack-tip while it is diffuse during the holding period. This is consistent with experimental ob-
servations evidencing a larger contribution to fatigue mechanisms during the transients and creep
ones during the dwell periods [Fessler, 2017].
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Figure 6.38: Increment of local total damage during the transient and dwell periods of a creep-fatigue
loading scheme (cycle 56) at 550◦C (c2d6r 2-fields FE).

In Fig. 6.38, the increments of local total damage (fatigue + creep) are depicted, for the transient
and the dwell-period. Consistently with the increment of viscoplasticity, the local damage increases
significantly in the vicinity of the crack-tip, Fig. 6.38a. On the contrary, during the holding-time,
damage is predominant in a larger zone, along the crack growth direction, Fig. 6.38b.
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Figure 6.39: Increment of non-local damage during the transient and dwell periods of a creep-fatigue
loading scheme (cycle 56) at 550◦C (c2d6r 2-fields FE).

Contour plots of the increment of the non-local damage are reported in Fig. 6.39. One point
should be mentioned: owing to the unified formalism for the non-local extension, i.e. the use of a
single internal length scale, the rate of change of the non-local damage follows the same trend as
the source term (i.e. the local damage), no matter the governing mechanism. As a consequence,
it is difficult to distinguish the fatigue contribution to the total damage and that of creep. The
use of distinct auxiliary (output) variables associated with each damage increment would provide
insight on this point.

Nevertheless, one can notice a significant increase of D during the dwell period, Fig. 6.39b, com-
pared to that during the transient, Fig. 6.39a. Moreover, there is a slight difference between the
increment of local and non-local damage during the hold-time, Fig. 6.38b & Fig. 6.39b respec-
tively. This comes from two aspects: i) the absence of mesh refinement in the bulk which prevents
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the non-local interaction from being well accounted for, and ii) the more diffuse aspect of creep
processes relying on the stress field rather than plasticity.
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Figure 6.40: Non-local damage field and viscoplastic zone during the dwell-period of a creep-fatigue
loading scheme (cycle 56) at 550◦C (c2d6r 2-fields FE).

The resulting non-local total damage field is plotted in Fig. 6.40a. It can be observed that the
structure is largely affected by the damage field and mechanical properties start to degrade in a
much larger zone than the crack-tip. The FPZ is no more localized in front of the crack-tip. In
Fig. 6.40b, the viscoplastic zone size is reported. One can notice a larger zone size, also offset
from the crack-tip, compared to the pure fatigue case (see e.g. Fig. 6.17), loosing the characteristic
“butterfly” shape.

One comment can be given on the remeshing procedure. One can notice in Fig. 6.39 the absence
of mesh-refinement ahead of the crack-tip. Even if damage increases in the bulk material, mainly
due to creep damaging processes, the rate of change, and consequently the non-local damage level,
are not sufficiently high to trigger a remeshing step. This may be a limit to the method which
relies on a single non-local total damage threshold triggering mesh-adaption: depending on the
main governing mechanism (creep or fatigue), the spatial distribution won’t be the same (fatigue
is more localized at the tip while creep is more diffuse). An extension of the error-based remeshing
procedure could be to use a dual criterion to trigger remeshing: one relying on the non-local total
damage, and the other one relying on the creep (local) damage contribution. This way, the mesh
adaptivity could be more robust. Let us note that such a multi-criteria for the ZZ2 error estimation
has already been implemented in Z-set [Feld-Payet, 2010] and can be assessed in short term works.

This last calculation evidences that the use of a single internal length is not as appropriate as
expected since damage mechanisms are of differing nature and do not evolve in the same manner.
Creep damage already being of diffusive-type as opposed to localized plasticity-induced fatigue
(or ductile) damage seems to require the introduction of a dedicated characteristic length. The
localizing aspect of creep damage mechanism in structural calculation still remains unstudied and
represents a prospective issue to the present study.

http://www.zset-software.com/
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6.6 Conclusion of the chapter

In this chapter, a continuous-discontinuous approach for fracture modeling in FE calculations
in the context of fatigue loading has been proposed.
A FE strategy involving error-controlled adaptive mesh refinement has been considered. More
specifically, h-adaptive remeshing steps aimed at producing smaller elements in areas where non-
linearities (plasticity, damage...) evolve significantly and larger elements in linear regions or those
where the damage does not evolve (notably in the wake of the crack). A better refinement of
the FPZ throughout its evolution has provided a better description of the non-local damage field.
Meanwhile, the coarsening of areas of vanishing stresses has allowed for CPU time to be saved.

In order for the crack advance to be suitably captured, a local crack path tracking algorithm has
been used. It enabled to define a discrete and continuous crack path from the distribution of the
non-local damage. Crack characteristics have hence been directly determined from the continuous
model and therefore there was no need of identifying additional material parameters for fracture
apart from those associated with the cyclic damage model.

Once the crack increment geometry has been estimated, a continuous-to-discontinuous transition
is performed thanks to remeshing operations. A discrete crack is introduced once the damage has
reached a critical value in some points of the structure. Thus, crack advance is a natural result
of the material gradual degradation. In opposition to some existing exhaustion methods, crack
increments of fixed length are introduced one at a time with intermediate equilibrium recovery
steps so as to promote numerical robustness.

It has been shown that using this strategy in combination with the proposed non-local cyclic dam-
age model enables to qualitatively capture some features associated with fatigue loading. This
Ph.D. project has thus offered the possibility to make a bridge between the Fracture Mechanics
and the Continuum Damage Mechanics frameworks. Global fatigue crack growth curves have been
obtained thanks to long fatigue crack growth calculations using the FEM. Such results are worth
highlighting since the use of continuous-to-discontinuous approaches in the context of fatigue still
remains a tenuous field of research.

Besides, it has been shown that the global strategy for fatigue crack growth leads to mesh conver-
gence upon mesh refinement. Then, consistent evolution of the cyclic plastic zone size has been
evidenced. In addition, the sensitivity of the model to the extrinsic parameters (temperature, load
ratio, loading frequency, over-load) has been assessed in sect. 6.4 and globally validates the strat-
egy, although some points require further investigations. The model has been tested on a more
complex loading scheme of dwell-fatigue type, hence including both fatigue and creep damages.
Calculations have evidenced some limitations of the modeling approach, particularly in relation
with the non-local interactions.

Finally, the proper calibration still remains to be achieved but this Ph.D. work has already provided
some very encouraging results.
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Résumé du chapitre en français

Dans ce dernier chapitre, une méthode de transition endommagement-rupture a été proposée
pour simuler la propagation d’une fissure longue en fatigue. La loi d’endommagement non-locale
développée au chapitre précédent a en effet permis de simuler la croissance de l’endommagement
jusqu’à amorçage d’une macro-fissure, et ce, de manière continue. Néanmoins, afin de rendre
compte du caractère discret du processus de fissuration, une fissure réelle doit être insérée dans
le maillage de la structure de sorte à reproduire fidèlement la cinétique d’avancée de fissure.
Dans cette optique, un processus de raffinement de maillage a été mis en oeuvre afin d’optimiser
les coûts de calcul associés à la simulation de spectres de chargements cycliques complexes. Basé
sur le contrôle de l’erreur de discrétisation élément finis, ce processus de raffinement du maillage
se veut adaptatif et agit en post-traitement du calcul. Il permet alors de raffiner le maillage dans
les zones présentant de fortes non-linéarités matérielles (viscoplasticité, endommagement...), à
savoir la zone d’élaboration en point de fissure, tandis que les zones élastiques sont discrétisées
de façon plus grossière. Une fois le maillage optimisé et l’erreur de discrétisation contrôlée, la
géométrie de l’incrément de fissure doit être estimée. Pour ce faire, un algorithme de suivi du
chemin de fissure, le Marching Ridges déjà implémenté dans la suite Z-set, a été utilisé. Cet
algorithme permet de suivre l’avancée de la pointe de fissure à l’aide de la recherche du front
sur une ligne de crête. Une crête est composée des lieux successifs des maximums globaux
d’un champ scalaire lissé associé à l’endommagement non-local. Ce dernier étant localisé dans
la bande de localisation, dont la largeur est elle-même contrôlée par la longueur interne non-
locale, l’algorithme de suivi de crête, utilisé en post-traitement du calcul, permet alors, d’une
part, d’estimer la position du front de fissure suivant. D’autre part, un critère d’insertion basé
sur un endommagement non-local critique permet, lui, de valider l’insertion de l’incrément de
fissure. Lorsque ces conditions sont assurées, des outils d’intersection de maillage, développés à
l’ONERA et disponibles dans Z-set via les outils Z-cracks, sont utilisés pour insérer l’incrément
de fissure dans le maillage de la structure fissurée. Ensuite, une opération de transfert de champs
est opérée. Le transfert des variables nodales s’effectue par interpolation standard, tandis que
les variables internes, en lien avec l’histoire du chargement, sont transférées de manière directe à
l’aide d’une approximation diffuse (sur un patch d’éléments) associée à une méthode des moindres
carrés mobiles. Ces deux méthodes de transfert ont été choisies de sorte à minimiser la diffusion
numérique. Suite à cette étape, la structure, alors hors-équilibre de par le transfert des champs
de l’ancien vers le nouveau maillage, doit retrouver une solution à l’équilibre afin de garantir la
convergence du solveur. Pour cela, une étape de rééqulibrage de la structure est réalisée avant
la poursuite du calcul au pas de temps suivant.
La boucle de simulation complète est alors éprouvée sur des cas de chargements variés. Ainsi,
des calculs cycliques 2D sont réalisés sur éprouvette SEN-T en état de déformation plane. Ces
simulations sont réalisées en faisant varier les paramètres extrinsèques (température, fréquence,
rapport de charge, conditions limites, surcharges, ...). Les résultats démontrent les possibilités
offertes par l’approche proposée, ainsi que ses limites, inhérentes à la formulation du modèle, ou
en lien avec des artefacts numériques. L’approche proposée démontre notamment sa capacité
à relier les outils de la Mécanique de la Rupture à ceux de la Mécanique de l’Endommagement
Continu. Des courbes de fissuration globales da/dN vs. ∆K et les tendances associées sont
finalement extraites de ces calculs et discutées.



General conclusion, discussions
and outlooks

This Ph.D. project intended to assess the capabilities of the so-called local approach to fracture
to simulate the fatigue propagation of an existing crack in structural problems using the Finite
Element method. To address such a problem, the present work – detailed in the previous six
chapters – has been articulated around three major axes:

• an experimental work dedicated to both the characterization of the cyclic behavior of the
material and its cracking resistance under complex loading conditions at several temperatures;

• a modeling task including the derivation of the (local) constitutive equations for the cyclic
behavior and the strong coupling with damage mechanisms. A non-local enhancement of
the model has also been proposed to solve the mesh-dependency of the FE results;

• a numerical work intending at the simulation of fatigue crack growth in 2D structural
calculations using both the FEM and a damage-to-fracture transition method.

First, an experimental campaign has been conducted on the Nickel-based superalloy AD730™.
Due to its recent development, the modeling of the cyclic non-linear response of this material
had not been yet investigated. Consequently, I proposed to build an experimental campaign to
characterize the cyclic elastic-viscoplastic behavior of the material. In order to ease the examination
of these experimental data, an existing tool, initiated at the ONERA and based on multiple Python
programs, has been improved. Relying on the Cottrell’s partition method of the stress, I modified
this numerical tool in order to extract the main information from the raw data and to obtain relevant
plots (in view of a calibration process). In addition, corrective procedures for the detection of the
onset of plasticity have been integrated in order to render the estimation more accurate. This
Python tool has proven to be valuable in extracting the strain-hardening mechanisms as well as
analyzing the shape of hysteresis loops, particularly in the way to exhibit particular effects associated
with cyclic plasticity. It has then been possible to perform the calibration of a unified viscoplasticity
model to reproduce the cyclic non-linear behavior of AD730™ from low to high temperatures. A
fairly good match between both the simulated and the experimental behavior has been observed.
An improvement of this analysis can be mentioned. In case of high temperature testing (550 &
700◦C), hysteresis loops exhibit a change in shape due to the influence of viscosity effects. As a
result, since the elastic domain is less well-defined when viscosity effects are present, the program,
which relies on the choice of a plastic strain offset δpl , has been shown to yield poor quality
estimation of the work-hardenings. Possible overcoming methods to this point could be:

• to consider an extension of the Python program to automatically detect and account for the
over-stress [Feaugas, 1999], [Ahmed, 2013]. This would be of great benefit, especially for Ni-
based superalloys which are mainly exposed to high temperatures where thermally-activated
viscous effects are significant;
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• to base the analysis either on Statistical Process Control [Fournier et al., 2006] or on Polak’s
method [Polák et al., 2001].

This way, a better estimation of linear parts of hysteresis loops could be achieved, obtaining con-
sequently better estimates of the viscous, effective and internal stresses.

Still in the experimental work, complex fatigue crack growth (FCG) tests have been performed
during the Ph.D. work. Macroscopic fatigue and dwell-fatigue crack growth results have enabled
to evidence the loading mode effects. Specific extrinsic effects have been discussed and the strong
creep-fatigue interaction on the FCG regime has been evidenced. The mesoscopic scale analysis,
mainly relying on the observation of the crack front and the crack surface topology, has enabled
to discuss the crack growth anomalies observed in AD730™ under complex loading cases. At high
temperature with dwell-periods, the crack front loses its linearity, causing a differential in propa-
gation rates along the crack front. The Direct Potential Drop Technique (DCPD) used to monitor
the crack advance relies on the assumption of a straight crack front in the through-thickness of
the specimen. As a result, I suggested a corrective procedure to the evaluation of the crack length.
This method provided a better agreement between real and estimated crack lengths in case of
tunneling effect. Finally, for the first time in the lab, Very Low-Cycle Fatigue (VLCF) crack growth
tests have been performed to investigate the ductile fracture modes in AD730™. To this purpose,
specific flat specimens have been designed. In close relation, a specific force-controlled VLCF
testing procedure has been proposed and assessed at high temperatures in order to design the
test accordingly to the crack growth process obtained under monotonic loading conditions. The
method proved to control the fatigue crack growth process in a limited number of loading cycles.
However, the assumption of a constant elastic slope might have been too severe in some cases
and yielded to crack arrest. This point deserves further developments, for instance, through the
recursive updating of the elastic slope.

Regarding the modeling aspects, several tasks have been achieved in this Ph.D. research
project. In a first step, the knowledge of the cyclic non-linear behavior of AD730™ gained from
the experimental campaign has enabled to propose and calibrate a set of constitutive equations. In
the context of the local approach to fracture, a strong coupling between the damage mechanisms
and the constitutive equations has been proposed. The formalism being by itself very complex,
isotropic damage properties have been favored, but an extension to anisotropic damage could also
be beneficial since the damage process at the crack-tip is clearly of anisotropic nature.
It is also worth noting that I made the choice to rely on a strong coupling between damage and
elasticity (classical) as well with all the strain-hardening mechanisms (less classical). This approach
enables a complete stress drop in the damaged points, favoring the consistent energy-free transition
between damage and crack insertion.
In order to ensure stability and robustness of the numerical solving process at the integration point
level, a fully implicit resolution procedure relying on the backward-Euler scheme has been favored.
Despite a burdensome implementation (full coupling assumptions, high number of internal state
variables, mainly of tensorial-type) and a high numerical demand (large matrix inversion, iterative
procedure), the implicit resolution of the local damage model has offered a good accuracy. It can
be mentioned that a condensation of the equations of the non-linear model could provide a smaller
problem to be solved (in the numerical sense). However, such a task is not trivial since strong
coupling assumptions prevails and since the model relies on a non-associated theory [Malcher and
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Mamiya, 2014]. Furthermore, such a reduction may not lead to the direct estimation of the consis-
tent tangent operator, as considered in the present work and required for the element formulation.
This may penalize the global implicit resolution procedure, which is not reasonable owing to the
considered cyclic loading schemes.
The unified viscoplasticity formalism has proven to be responsible for the slight strain rate effect
in the fatigue damage evolution under pure cyclic conditions. In addition, even if creep-fatigue in-
teraction effects have been reported in AD730™ under dwell-fatigue loading at high temperatures,
these effects have not been completely accounted for and analyzed, since a simple linear summation
of the damage mechanisms has been considered in a first attempt. Nonetheless, there is no doubt
that damages interact each others in a greater extent, which would require further investigations,
both on the experimental and numerical prospects. For instance, this could be done in conducting
specific tests to complete the database, notably for pure creep loading conditions. Suggestions
for improvements of the damage evolution rules and integration of creep-fatigue interaction in the
modeling can be found, as a starting point, in the work of [Cai et al., 2019] and [Tang et al., 2020].

In a second step, a non-local extension of the local damage model has been proposed in order to
solve the spurious mesh-dependency effect associated with strain-softening mechanical response.
To do this, an internal length scale has been introduced within the local model through a gradient-
enhanced formulation. In order to regularize the whole set of damage variables (fatigue, creep and
volumetric damages), choice for the regularization of the total damage has then been favored. A
consistent modification of the local model has been achieved. All the non local theoretical formal-
ism has been implemented in the Z-set FE solver. Again, I chose an implicit resolution scheme in
order to perform relatively large time steps and, as a result, improve the convergence of the local
step (integration) and accelerate the global one (equilibrium). The dual problem involving the
equilibrium and the (implicit) gradient equations have been solved using a monolithic resolution
scheme. As a consequence, the derivation of the consistent tangent operators has been achieved
in order to determine the elementary stiffness matrices.
The proposed non-local damage model has proven to provide converged results upon mesh refine-
ment under both monotonic and cyclic conditions. In any case, the internal length scale has been
chosen as a numerical parameter related to the width of the localization band. Still today, there
is no clear consensus on the calibration of the non-local length scale which is, in the vast majority,
used as a numerical parameter. Attaching a physical meaning to one (or several) length scale(s)
remains an interesting and open question. In case of dwell-fatigue crack growth problems, such an
approach is, to the best of the author’s knowledge, still not yet investigated by researchers due to
the complexity of the problem relying on a non-linear material behavior fully coupled to damage.
Finally, it can be mentioned that for both the local and non-local models, small strain assump-
tions have been considered. An extension of the problem to the finite strain framework could be
beneficial since finite deformations could evolve in the fracture process zone close to the crack-tip.
However, since the present modeling work relies on a gradient-enhanced formulation, the change
for a finite strain framework is not that trivial since the gradient term may depend on the initial
or current configuration. In addition, to the author’s knowledge, fatigue crack growth modeling
using a finite strain framework is not that common and thus requires further investigations.

Finally, in the numerical scope, this Ph.D. work has succeeded in bringing together a whole
range of pre-existing numerical tools. The complete chain from the proposal of an error-based
mesh adaption strategy (in order to properly describe the localization bands), the definition of the

http://www.zset-software.com


264 General conclusion, discussions and outlooks

crack increment (thanks to the Marching Ridges crack path tracking algorithm), to the physical
insertion of a crack (with the mesh adaption, fields transfer and equilibrium recovery steps) has
been made operative on complex fatigue and dwell-fatigue loading conditions.
Regarding the numerical developments, even though the computational tools used in this work
were already implemented into the Z-set suite, this Ph.D. project has assessed the capabilities and
robustness of these tools in the above-mentioned complex calculation chain. Specific adjustments
to cyclic loading cases have been proposed, e.g. the addition of the re-equilibrium procedure, in
order to ease the convergence after crack advance through mesh intersection.
The proposed numerical chain has been assessed in structural calculations and yielded encouraging
results. The main tendencies of the Fracture Mechanics framework have been evidenced, namely
the presence of a quasi-stable Paris’ regime and an asymptotic trend. However, due to long com-
putations, the fatigue crack growth process has only be achieved over moderate crack lengths in
2D cases. The qualitative analysis of the proposed model highlighted the capability of the local
approach to fracture to analyze the local fields and their evolution with time. The knowledge of
these fields as well with the stress redistribution throughout the cyclic cracking process are already
of great interest since more accurate fracture or crack growth bifurcation criteria could be defined
in future works. Crack propagation anomalies under cyclic conditions associated with Nickel-based
superalloys still have to be modeled. An interesting prospect of the proposed approach would be
to switch to 3D computations and to benefit from local mechanical fields close to the crack-tip
to use specific local criteria, particularly for flat-to-slant modeling [Besson et al., 2003], [Xue and
Wierzbicki, 2009] or tunneling effect [Antunes et al., 2001].
In order to limit computational cost in LCF conditions, use could be made of cycle jump tech-
niques enabling to skip some cycles, provided the evolution of the internal variables is sufficiently
low [Nesnas and Saanouni, 2000], [Foerch et al., 2000].
In any case, the proposed approach has been proved to qualitatively relate some loading modes
effects during FCG computations. Namely, the temperature, load ratio and frequency effects
have been reported. Effect of applied boundary conditions has also been addressed. The non-
conventional trend observed in cases of over-loads requires further analysis and possible changes in
the model. Additionally, the proper calibration of the damage model, e.g. through a point-by-point
method [Hamon, 2010] should provide better insights on the FCG modeling.
Finally, the acquisition of the real boundary conditions of the problem as well with local stress-strain
fields at the crack-tip, e.g. through Digital Image Correlation, would also be beneficial in order to
improve both the understanding and calculations.

At last, this Ph.D. project constitutes a first contribution to the overall complex problem of
simulating the propagation of a crack in structural problems under cyclic loading conditions with
a local approach to fracture. This study has evidenced the possibility to consider a continuous-to-
discontinuous description of the fatigue and dwell-fatigue crack growth process and, consequently,
pushes back the boundaries associated with CDM, mainly restricted either to ductile/brittle fracture
problems under quasi-static loading conditions or fatigue crack initiation cases.
The proposed modeling approach can hence be seen as a bridge between Damage and Fracture
Mechanics frameworks, with promising results.

http://www.zset-software.com


Part III - Supplements





A Extraction of the specimens from the raw
material of AD730™

(a) As-received raw material of AD730™ in the form of two Ø204mm cylinders.

Bulk material

1
6

0
 m

m

204 mm

2x8 cylindrical bars

18 cylindrical bars

12 cylindrical bars

1 parallelepiped

2 parallelepipeds

(b) Specimens sampling plans from the bulk material of AD730™.

Cyclic behavior
characterization testing

Long & short SEN-T for 
cyclic crack growth testing

Flat specimens for monotonic 
and VLCF crack growth testing

(c) Correspondence between samples and specimens.

Figure A.1: Sampling plans for the specimens made of AD730™ dedicated to cyclic behavior characteri-
zation testing and both cyclic and monotonic crack growth testing.
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268 App. – Extraction of the specimens from the raw material

21

32

32

21

FN2
V45
M-Shape

Figure A.2: Parallelepipeds sampling plans for monotonic & VLCF testing flat specimens.

Extraction of the cyclic behavior characterization specimens:

Cyclic and monotonic characterization samples consist of a batch of 16 cylindrical specimens,
see Fig. A.1b, with a diameter of 6mm (for a corresponding section of 28.27 mm2), with a length
of the useful zone in the middle area equal to 12.328mm. Once dedicated heat-treatments have
been carried out, see sub-sect. 2.1.2.3, the final specimen geometry was finally obtained from the
extracted cylindrical bars through Electrical Discharge Machining (EDM). A final surface grounding
with a specification of Ra = 0.2 was achieved.

Extraction of the fatigue crack growth specimens:

Starting from the bulk material, 12 Ø20× 94mm3 and 18 Ø20× 137mm3 cylinders have
been extracted, see Fig. A.1b. Once the raw cylinders were machined from the material log,
heat-treatments were applied, see sub-sect. 2.1.2.3, prior to the final machining of the speci-
mens (through turning-milling processes) with corresponding specific items (e.g. U-notch) added
through EDM. After machining, the surface of the specimens was ground to a specification of
average roughness Ra = 0.8.



B Geometries for the testing specimens

B.1 Cyclic behavior characterization specimen

Ce plan, propriété de l'Onera ne peut être détenu, reproduit ou communiqué 
sans son autorisation.
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Figure B.1: Cylindrical specimen for cyclic behavior characterization process.
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270 App. – Specimens geometries

B.2 Cyclic crack propagation specimens

B.2.1 SEN for clamshell furnace
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Figure B.2: Single-Edge Notched (SEN) specimen for crack propagation analysis under clamshell furnace
(thickness 4mm).
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B.2.2 SEN for induction-heating - 4 mm
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Figure B.3: Single-Edge Notched (SEN) specimen for crack propagation analysis with inductor (thickness
4mm).



272 App. – Specimens geometries

B.3 Flat specimen for VLCF ductile fracture testing
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Figure B.4: “FN2” flat specimen (thickness 2.5mm).



C Supplementary results for Chap. 2

C.1 Plasticity / Strain-hardening
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(a) Monotonic tensile curves at 550 and 700◦C.
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Figure C.1: Tensile curves for both monotonic and cyclic (1st 1/4 loop) loadings.
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(a) 20◦C / ε̇ = 10−3 s−1 (spec. CAR1).
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Figure C.2: Last hysteresis loops for each strain amplitude at 20 and 650◦C with ε̇ = 10−3 s−1 and
Rε = −1 (spec. CAR1 & 6).
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(a) Cyclic softening at 20◦C at 10−3 s−1 (CAR1).
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(b) Cyclic softening at 650◦C at 10−3 s−1 (CAR6).

Figure C.3: Evolution of the stress amplitude at 20 and 650◦C at ε̇ = 10−3 s−1, Rε = −1 (spec. CAR 1
& 6).

273



274 App. – Supplementary results for Chap. 2

0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8
    [%]

1000

750

500

250

0

250

500

750

1000

   
 [M

Pa
]

CAR12    550°C
elastic slopes
yield limits

(a) Bauschinger effect: 1st hysteresis loop at 550◦C
at 10−2 s−1 (CAR12).

0.0 0.2 0.4 0.6 0.8 1.0
p / 2    [%]

850

900

950

1000

1050

1100

1150

1200

1250

/2
   

 [M
Pa

]

Monotonic    CAR13
Cyclic    CAR1    R  = -1

CSSC
Cyclic    CAR7    R  = -1

CSSC
Cyclic    CAR13    R  = 0

CSSC

(b) Cyclic hardening curves of AD730™ at 20◦C for
ε̇ = 10−3 s−1, Rε = −1.

Figure C.4: Bauschinger effect at 550◦C and cyclic hardening curve at 20◦C of AD730™.
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(a) Stabilized hysteresis loops at 20◦C.
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(b) Stabilized hysteresis loops at 650◦C.

Figure C.5: Stabilized hysteresis loops for type-1 cyclic tests at 20 & 650◦C, Rε = -1 with ε̇ = 10−3 s−1

(spec. CAR 1 & 6). l : yield limits; 6 : yield surface’s center.
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(a) Effective and internal stresses evolution w.r.t. p.
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(b) Effective and internal stresses evol. w.r.t. ∆εp/2.

Figure C.6: Effective and internal stresses evolution with respect to plastic strain amplitude and accumu-
lated plasticity for type-1 cyclic tests at 20◦C, Rε = -1, ε̇ = 10−3 s−1 (spec. CAR1). l : effective stress
= radius of yield surface; � : internal stress = yield surface’s center.
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(a) Effective and internal stresses evolution w.r.t. p.
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(b) Effective and internal stresses evol. w.r.t. ∆εp/2.

Figure C.7: Effective and internal stresses evolution with respect to plastic strain amplitude and accumu-
lated plasticity for type-1 cyclic tests at 700◦C, Rε = -1, ε̇ = 10−3 s−1 (spec. CAR5). l : effective stress
= radius of yield surface; � : internal stress = yield surface’s center.
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(a) Shifted quasi-saturated hysteresis loops.
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(b) Shifted hysteresis loops with master curve.

Figure C.8: Shifted hysteresis loops for Masing-type behavior analysis at 20◦C, Rε = −1, ε̇ = 10−3 s−1

(spec. CAR1).
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(a) Shifted quasi-saturated hysteresis loops.
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(b) Shifted hysteresis loops with master curve.

Figure C.9: Shifted hysteresis loops for Masing-type behavior analysis at 700◦C, Rε = −1, ε̇ = 10−3 s−1

(spec. CAR5).
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C.2 Time-related effects
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(a) Stress jumps for varying strain rates.
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(b) Close-up view.

Figure C.10: Strain-rate sensitivity analysis under cyclic loading at 20◦C, Rε = −1, strain levels 4-6 (spec.
CAR7).
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(a) 24h stress relaxation test after cyclic loading.
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(b) Close-up view on the stress drop.

Figure C.11: Stress relaxation test after cyclic loading conditions at 20◦C, with ∆ε/2 = 1.5% (spec.
CAR7).
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(a) Stress-strain curve of the MS test at 550◦C.
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(b) Stress-time curve of the relaxation at 550◦C.

Figure C.12: Tensile stress-strain and stress-time curves for the MS tests at 550◦C at ε̇ = 10−3 s−1 with
2.8h relaxation phase at the end at ε = 16.0% (spec. CAR8). Vertical dotted lines correspond to the
change in loading strain rates.
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(a) Hysteresis loop with a 720 s holding time.
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(b) Stress relax. during HT3 = 720 s.

Figure C.13: Hysteresis loops and corresponding stress relaxation profiles during the 1st holding period
of the type-4 cyclic test at T = 550◦C, ε̇ = 1. 10−2 s−1, HT3 = 720 s (spec. CAR12).

1.0 0.5 0.0 0.5 1.0
Total strain    [%]

1000

500

0

500

1000

St
re

ss
   

 [M
Pa

]

0.75%
cycle 14

1.0%
cycle 54

1.2%
cycle 94

0.75%
cycle 134

(a) Hysteresis loop with a 720 s holding time.
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(b) Stress relax. during HT3 = 720 s.

Figure C.14: Hysteresis loops and corresponding stress relaxation profiles during the 1st holding period
of the type-4 cyclic test at T = 550◦C, ε̇ = 2.5 10−3 s−1, HT3 = 720 s (spec. CAR12).
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(a) Hysteresis loop with a 720 s holding time.
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(b) Stress relax. during HT3 = 720 s.

Figure C.15: Hysteresis loops and corresponding stress relaxation profiles during the 1st holding period
of the type-4 cyclic test at T = 700◦C, ε̇ = 2.5 10−3 s−1, HT3 = 720 s (spec. CAR14).
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(a) Hysteresis loop with a 720 s holding time.

0 100 200 300 400 500 600 700
Relaxation time    [s]

500

400

300

200

100

0

Re
la

xe
d 

st
re

ss
   

 [M
Pa

]

0.7%
cycle 15

0.9%
cycle 55

1.1%
cycle 95

0.7%
cycle 135

(b) Stress relax. during HT3 = 720 s.

Figure C.16: Hysteresis loops and corresponding stress relaxation profiles during the 2nd holding period
of the type-4 cyclic test at T = 700◦C, ε̇ = 2.5 10−3 s−1, HT3 = 720 s (spec. CAR14).
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(a) Stress-strain hysteresis loops at 550◦C.
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(b) Tensile holding periods at 550◦C.

Figure C.17: Stress evolution with strain and viscoplastic strain rate during the 2nd tensile holding period
of each strain range of the type-4 cyclic-dwell tests at 550◦C with ε̇ = 2.5 10−3 s−1 (spec. CAR 12).
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(a) Stress evolution during MHR test at 550◦C.
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(b) Stress evolution during MHR test at 700◦C.

Figure C.18: Stress evolution with viscoplastic strain rate during dwell-sequences of MHR tests at 550
and 700◦C at ε̇ = 10−3 s−1 (spec. CAR 2 & 10).
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D Material constants for the unified
elastic-viscoplastic model of FG AD730™

Mechanism Material
constants

Units 20◦C 550◦C 700◦C

Elasticity E MPa
ν -

Viscoplasticity

ε̇0 s-1

Kvp MPa
nvp -
mvp -

Initial yield limit R0 MPa

Isotropic hardening

Q1 MPa
Q2 MPa
b1 -
b2 -

Kinematic hardening

C 1 MPa
C 2 MPa
C 3 MPa
γ1

0 -
γ2

0 -
γ3

0 -

Marquis’ effect

ϕ1
∞ -

ϕ2
∞ -

ϕ3
∞ -
ω1 -
ω2 -
ω3 -

Table D.1: Calibrated parameters for the unified viscoplastic material model for FG AD730™.
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E Supplementary results for Chap. 3

E.1 Fatigue crack growth analysis
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(a) Crack length evolution with increasing temperature.
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(b) FCG rates with respect to ∆K at 20◦C.

Figure E.1: Temperature and load ratio effects in pure fatigue loading.

(a) Crack growth test data and corresponding fracture
surface (spec. S4-9).

(b) Crack growth test data and corresponding fracture
surface (spec. S4-F2).

Figure E.2: Macroscopic data as opposed to the mesoscopic analysis of the fracture surface in pure fatigue
loading (spec. S4-9 & S4-F2).
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(a) 3D reconstruction of the fracture surface
of the spec. S4-9 at 20◦C.

Flat-to-slant
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Stage II
crack growth

Final crack front

(b) 3D reconstruction of the fracture surface
of the spec. S4-F2 at 700◦C.

Figure E.3: Topographic analysis of the fractured surfaces of the spec. S4-9 (resp. S4-F2) under pure
fatigue loading conditions at 20◦C (resp. 700◦C) with R = 0.5 (resp. R = 0.05) - f = 1 Hz.
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Figure E.4: Transverse crack profiles z(y) and corresponding twist angles θ(y) at given through-thickness
positions for SEN-T specimens under pure fatigue conditions at 20◦C (spec. S4-9).
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Figure E.5: Transverse crack profiles z(y) and corresponding twist angles θ(y) at given through-thickness
positions for SEN-T specimens under pure fatigue conditions at 700◦C (spec. S4-F2).
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ΔK ≈ 37 MPa√m

(a) a ' 2.0mm / ∆K ' 37 MPa√m - middle.

ΔK ≈ 37 MPa√m

transgranular

(b) a ' 2.0mm / ∆K ' 37 MPa√m - egde.

ΔK ≈ 132 MPa√m
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(c) a ' 7.0mm / ∆K ' 132 MPa√m - middle.

ΔK ≈ 132 MPa√m

(d) a ' 7.0mm / ∆K ' 132 MPa√m - edge.

Figure E.6: SEM fracture surface analyses for the S4-F2 specimen subjected to pure fatigue at 700◦C
(1Hz, 400MPa, R = 0.05). Identification of the main cracking mechanisms during the stage II crack
propagation regime.
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E.2 Dwell-fatigue crack growth analysis
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(a) Crack length evolution with increasing temperature.
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(b) Crack length evolution with decreasing holding-time.

Figure E.7: Temperature and dwell-time effects in creep-fatigue loading.

(a) Crack growth test data and corresponding fracture
surface (spec. S4-F1).

(b) Crack growth test data and corresponding fracture
surface (spec. S4-F4).

Figure E.8: Macroscopic data as opposed to the mesoscopic analysis of the fracture surface in pure fatigue
loading (spec. S4-F1 & S4-F4).
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(a) 3D reconstruction of the fracture
surface of the spec. S4-F1 at 550◦C.
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(b) 3D reconstruction of the fracture surface of the spec. S4-
F4 at 700◦C.

Figure E.9: Topographic analysis of the fractured surfaces of the spec. S4-F1 (resp. S4-F4) under
dwell-fatigue loading conditions at 550◦C (resp. 700◦C) with R = 0.05 and HT = 300 s (resp. 3000 s).
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Figure E.10: Transverse crack profiles z(y) and corresponding twist angles θ(y) at given through-thickness
positions for SEN-T specimens under dwell-fatigue conditions at 700◦C (spec. S4-F3).
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Figure E.11: Transverse crack profiles z(y) and corresponding twist angles θ(y) at given through-thickness
positions for SEN-T specimens under dwell-fatigue conditions at 700◦C (spec. S4-F4).
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ΔK ≈ 37 MPa√m
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Figure E.12: SEM fracture surface analyses for the S4-F3 specimen subjected to dwell-fatigue at 700◦C
(10-300-10 s, 400MPa, R = 0.05). Identification of the main cracking mechanisms during the stage II
crack propagation regime.
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E.3 Monotonic and VLCF crack growth analysis

zone 4 zone 5zone 3zone 2zone 1

FN2-6          monotonic          700°C          mag. x40

Figure E.13: Assembly of successive SEM views of the fracture surface for the spec. FN2-6 subjected to
monotonic loading conditions at 700◦C with U̇ = 0.01 mm.s−1.

(a) FN2-6 - zone 1 - mag. ×60. (b) FN2-6 - zone 1-1 - mag. ×300. (c) FN2-6 - zone 1-2 - mag. ×300.

Figure E.14: SEM fracture surface analyses for the FN2-6 specimen subjected to monotonic loading at
700◦C (U̇ = 0.01mm.s−1). Identification of the main cracking mechanisms.

(a) FN2-6 - zone 1-3 - mag. ×600.

broken particles

(b) FN2-6 - mag. ×1000.

broken particles

(c) FN2-6 - zone 1-4 - mag. ×1500.

Figure E.15: SEM fracture surface analyses for the FN2-6 specimen subjected to monotonic loading at
700◦C (U̇ = 0.01mm.s−1). Identification of the main cracking mechanisms.





F Thermodynamical consistency of the cyclic
elastic-viscoplastic-damage model

In order to satisfy the 2nd Law of Thermodynamics (Clausius-Duhem inequality - CDI), it
must be shown that the energy dissipated due to damage and work-hardening (i.e. the intrinsic
dissipation) is positive or zero. The CDI is given by eq. (4.24) and corresponds to:

Dint = σ∼ : ε̇∼in︸ ︷︷ ︸
inelastic power

−
∑

k
X∼

k : α̇∼k −
∑

i
R i ṙ i

︸ ︷︷ ︸
stored energy

+ Yf Ḋf︸ ︷︷ ︸
damage dissipation

≥ 0 (F.1)

Dint = λ̇

[
σ∼ : ∂Fp

∂σ∼
−
∑

k
X∼

k : ∂Fp

∂X∼
k −

∑
i

R i ∂Fp
∂R i

]
+ Yf

∂Ω∗Df

∂Yf
≥ 0 (F.2)

where Fp (σ∼, X∼
k , R i , Df ) is a non negative convex (real-valued) function of its arguments σ∼, X∼

k ,
R i with Fp (0∼, 0∼, 0; Df ) = 0 and where the fatigue damage Df acts as a parameter. Similarly, the
pseudo-potential Ω∗Df

(Yf ; Df ) is a non negative function of its argument Yf with Ω∗Df
(0; Df ) = 0

and Df also acts as parameter.

Such a condition requires the damage rate to be positive or zero (Ḋf ≥ 0) and the stored en-
ergy rate (

∑
k X∼

k : α̇∼k +
∑

i R i ṙ i) to remain smaller or equal to the inelastic strain power (σ∼ : ε̇∼in).

Inelastic power:

Using the evolution law eq. (4.44), the inelastic power can hence be rewritten:

σ∼ : ε̇∼in =
(
σ∼ : Z̃∼

)
||Z̃∼ ||

√
3
2

λ̇

f e (Df ) (F.3)

Stored energy:

Evolution laws for the back strain variables eq. (4.45) & eq. (4.46) allow the stored energy related
to kinematic hardening to be written:

∑
k

X∼
k : α̇∼k =

∑
k

X∼
k :
[

λ̇

f k (Df )

(√
3
2 ñ∼ − γ

k ϕk(p) P
≈

D : α∼k

)]

=
∑

k

 (X∼ k : Z̃∼
)

||Z̃∼ ||

√
3
2 − X∼

k : X∼
k γ

k ϕk(p)
C̃
≈

k

 λ̇

f k (Df ) (F.4)

Evolution laws for the drag strain variables eq. (4.46)allows the stored energy related to isotropic
hardening to be written:
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∑
i

R i ṙ i =
∑

i
R i
[

λ̇

f i (Df )
(
1 − bi r i) ] =

∑
i

[
R i − R i 2

Q̃ i

]
λ̇

f i (Df ) (F.5)

Global inelastic dissipation:

Combining the eq. (F.3) to eq. (F.5) and assuming for the sake of clearness equal damage-induced
softening functions f e (Df ) = f k (Df ) = f i (Df ) = f (Df ) enable the writing of the global inelastic
contribution to the intrinsic dissipation as:

Din
int = σ∼ : ε̇∼in −

∑
k

X∼
k : α̇∼k −

∑
i

R i ṙ i =
(
σ∼ : Z̃∼

)
||Z̃∼ ||

√
3
2

λ̇

f (Df )

−
∑

k

 (X∼ k : Z̃∼
)

||Z̃∼ ||

√
3
2 − X∼

k : X∼
k γ

k ϕk(p)
C̃
≈

k

 λ̇

f (Df ) −
∑

i

[
R i − R i 2

Q̃ i

]
λ̇

f (Df ) (F.6)

Din
int =

√3
2

(
σ̃∼ −

∑
k X̃∼

k) : Z̃∼
||Z̃∼ ||

+
∑

k
X̃∼

k : X̃∼
k γk ϕk(p)

C
≈

k −
∑

i
R̃ i +

∑
i

R̃ i 2

Q i

 λ̇
=

√3
2

(
σ̃∼ −

∑
k X̃∼

k) : Z̃∼
||Z̃∼ ||

−
∑

i
R̃ i

 λ̇ +
[∑

k
X̃∼

k : X̃∼
k γk ϕk(p)

C
≈

k +
∑

i

R̃ i 2

Q i

]
λ̇ (F.7)

Which, considering the yield function eq. (4.21), finally leads to:

Din
int =

[
σov + R0

]
λ̇ +

[∑
k

X̃∼
k : X̃∼

k γk ϕk(p)
C
≈

k +
∑

i

R̃ i 2

Q i

]
λ̇ (F.8)

The viscoplastic multiplier λ̇ in eq. (F.8) is always positive or zero. The first term on the right
hand-side of the eq. (F.8) is always positive. As usually observed for macroscopic material models,
it corresponds to the sum of the over-stress σov and the initial yield limit R0 whose corresponding
energies are dissipated as heat, while the hardening-related energies are stored. The second term
in the right hand-side of eq. (F.8) corresponds to the recovery terms in the nonlinear hardening
equations. They are always positive and dissipated as heat [Chaboche, 1999].

Damage dissipation:

Finally, the fatigue damage dissipation is given thanks to eq. (4.47) as:

Yf Ḋf =
(

Y e
f +

∑
k

Y k
f +

∑
i

Y i
f

)[
λ̇

〈
Yf − Yf0

Sf

〉mf

+
e(βf ηD Df ) H (p − pD)

]
(F.9)
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where eq. (4.16) - eq. (4.18) allow to write:

Y e
f = −1

2
∂f e (Df )
∂Df

ε∼
e : Λ
≈

: ε∼e ≥ 0 (F.10)

Y k
f = −1

2
∂f k (Df )
∂Df

α∼
k : C

≈
k : α∼k ≥ 0 (F.11)

Y i
f = −1

2
∂f i (Df )
∂Df

bi Q i r i 2 ≥ 0 (F.12)

The damage rate Ḋf is always positive or zero due to the form of the evolution equation (see
eq. (4.47)) and due to the fact that damage is an irreversible process. The damage-related energy
Yf is always positive as composed of elastic and inelastic contributions which are both quadratic
forms of their arguments with positive coefficients.
Finally, the damage dissipation is always positive or zero:

Yf Ḋf ≥ 0 (F.13)

Remark: it seems important to notice that in the case of cyclic softening behavior, the coefficients
Q i in the isotropic hardening evolution rule eq. (4.46) might be negative, hence leading to a non-
positive dissipation associated to Df through the fatigue damage driving force Yf , itself containing
an inelastic contribution from both isotropic (Y i

f ) and kinematic (Y k
f ) hardenings.

This is the reason why the coefficients κX and κR have been introduced in the eq. (4.15) so as
to enable/disable the inelastic contribution to Yf when necessary.





G Supplementary results for Chap. 5

G.1 A gradient-enhancement based on the accumulated plastic strain

As a complementary analysis to the case with the non-local damage D (see sub-sect. 5.3.1),
choice has been made to solve for a non-local accumulated plasticity, that is p. The additional
gradient equation to be solved along with the IBPV yields:

p − c∇2 p = p in Ω and ∇p . n = 0 on ∂Ω (G.1)

while the non-local constitutive model, denoted B, reads:(
σ∼, p

)
= B

(
∆ε∼, ∆p, Vint

)
(G.2)

Then, the constitutive equations given in Tab. 4.2 must be adapted so that to account for the
non-local variable in the softening-related variables: Df and Dv . Let’s recall that along this task,
creep damage mechanisms are deactivated from the material model so that Dc can be disregarded
(as it does not explicitly depends on the accumulated plasticity). Hence, Dtot = Df + Dv .
Following the technique suggested by [Geers et al., 1998] to develop non-local damage models,
also used by [Engelen et al., 2003], [Feld-Payet et al., 2011], [Davaze et al., 2021], the non-local
accumulated plastic strain p is used in the rate equations of the softening variables. The local
forms of the damage evolution equations eq. (4.47) & eq. (4.60) are recalled:

Ḋf = λ̇

〈
Yf − Yf0

Sf

〉mf

+
e (βf ηD Dtot) H (p − pD) (G.3)

Ḋv = (1− Dtot) tr ε̇∼in = (1− Dtot)
λ̇

f e (Dtot)

√
3
2 ñ∼

S : 1∼ (G.4)

along with the accumulated plastic strain rate eq. (4.37):

ṗ =
√

2
3
∣∣∣∣ ε̇∼in ∣∣∣∣

H
= λ̇

f e (Dtot)
=
(
H
≈
−1 : Z̃∼

)
: ε̇∼in

σ̃eq
(G.5)

Then, the damage rate equations eq. (G.3) & eq. (G.4) can be rewritten in an incremental form
according to the increment of non-local plasticity ∆p = pn+1 − pn , which reads:

∆Df = ∆p f e (Dtot)
〈

Yf − Yf0
Sf

〉mf

+
e (βf ηD Dtot) H (p − pD) (G.6)

∆Dv = (1− Dtot) ∆p
√

3
2 ñ∼

S : 1∼ (G.7)
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where eq. (G.6) & eq. (G.7) can now be referred to as non-local damage increments. It is to
be noticed that, similarly to [Engelen et al., 2003], [Davaze et al., 2021], the strain-hardening
and the rate-dependency (i.e. the over-stress) in the yield criterion still remain controlled by the
local plasticity (through r or λ̇) while only the damage variables evolve according to its non-local
counterpart:

F vp
y =

√
3
2
∣∣∣∣ Z̃∼
∣∣∣∣

H
−
∑

i
bi Q i r i − R0 − σov (λ̇) ≤ 0 (G.8)

The performance of this approach and the main conclusions to be drawn are illustrated in the
following section, in sect. G.2.

G.2 Validation of the model with non-local plasticity

As previously said, the non-local accumulated plasticity has been considered in a first attempt
as the non-local variable to regularize the stress-softening problem (see sect. G.1). Use is made of
the 4-fields c2d6r mixed non-local elements (see Fig. 1.17a).

(a) p - he 1 (b) p - he 2 (c) p - he 3

0.                      0.047                       0.094                       0.141                      0.188

Figure G.1: Non-local accumulated plasticity field for the double-notched specimen (4-fields FEs, deformed
state, mag. factor × 1.) at u = 0.1823 mm for the three mesh sizes: he = 0.3, 0.2, 0.1 mm.

In Fig. G.1 the non-local accumulated plastic strain for the three spatial discretizations is reported.
Plots are given at the same displacement, that is for u = 0.1823 mm. One can notice in Fig. G.1a
to Fig. G.1c that the non-local accumulated plastic strain field is equivalent regardless the mesh-
size.

In Fig. G.2a to Fig. G.2c, the non-local damage is plotted for the same displacement as in Fig. G.2
and it appears to follow the same trend. Thus, such a non-local method allows for the strain and
damage localization process to be accounted for while preserving the well-posedness of the IBVP.
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(a) D - he 1 (b) D - he 2 (c) D - he 3

0.                           0.25                           0.5                           0.75                           1.

Figure G.2: Non-local damage field for the double-notched specimen (4-fields FEs, deformed state, mag.
factor × 1.) at u = 0.1823 mm for the three mesh sizes: he = 0.3, 0.2, 0.1 mm.
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(a) Effect of the mesh size on the mechanical response.
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(b) Zoom on the stress-softening phase.

Figure G.3: Comparison of the force-displacement curves for the double-notched specimen. Effect of the
mesh size on the overall mechanical response. Regularization of the accumulated plasticity.

Paying attention to the macroscopic resulting load-displacement curves enables the possibility to
check that the mesh-dependency has been significantly reduced thanks to the non-local approach.
Indeed, for tensile loading, the dissipated energy can be estimated using the integral of the prod-
uct between the effort and the imposed displacement. The macroscopic load-displacement curve
is hence a good indicator for the dissipated energy upon loading. Each curve hence exhibits a
strain-hardening phase which is not influenced by damage, Fig. G.3a, up to the peak stress, and
then the damage-induced softening phase is clearly noticeable.
One can see in Fig. G.3a that when decreasing the mesh-size, the numerical results tend toward
mesh-convergence. Thus, the spatial discretization does not influence the numerical approximation
of the mechanical problem. A closer look to the stress-softening phase, Fig. G.3b, evidences small
differences in the macroscopic dissipation from one mesh to another. These slight differences may
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come from the numerical accuracy of the solving procedure which depends on convergence criteria
for both the local and global resolution loops (see Tab. 5.3). Moreover, it is well acknowledged
that decreasing the mesh size generally leads to fewer discretization errors and consequently to a
better numerical approximation. Hence, such a rule remains valid for the present non-local damage
model: the finer the mesh size, the better the non-local interaction and subsequently the better
the numerical approximation.

Comparison of the two regularized variables:

In the last paragraph, as well with the sub-sect. 5.5.2.1, results obtained with a regularization
on p and D have been discussed. Looking at Fig. G.3 & Fig. 5.5, one can notice slightly different
results in the macroscopic force-displacement curves. Both regularized variables give well converged
results since the smaller the mesh size, the closer the macroscopic results. Nonetheless, solving
the mechanical problem for D represents a larger number of coupling cases in the equations, as
well as a larger number of cross-derivative terms in the non-local cyclic elastic-viscoplastic dam-
age model. The consistent material tangents matrices hence exhibit slightly more complex forms.
Consequently, the resolution process is a bit more slower since more complex matrix inversions
operations are required. Moreover, the extent of non-linearity to the problem is generally increased
since D is fully coupled to all the elastic and viscoplastic properties. Despite these aspects, and
as said in sub-sect. 5.2.2 page 190, the regularization through D has been favored in this work
due to the cyclic properties of the considered loading schemes.

G.3 Validation of the model with non-local total damage

G.3.1 Linear bar with imperfection

In order to simply assess the regularization capability of the proposed damage model, a strip
test is simulated. It consists in a 2D bar in tension where there exists a zone of fixed width where
material properties are artificially weakened so that to prompt strain localization, see red elements
in Fig. G.4b. The mesh density along the length of the strip is assumed to change from one
simulation to another. The characteristic length was set to `c = 0.55 mm while the other material
parameters are kept unchanged for all the tests.

10 mm

1 
m

m

ux

1 
m

m

(a) Geometry and BC. (b) One FE discretization with weakened zone.

Figure G.4: Geometry of the strip model subjected to tensile loading with corresponding dimensions and
associated BC (after [Sabnis, 2012]).

It can be seen in Fig. G.5 that, as expected, the damage tends to develop in the weakened zone.
Moreover, the size of the regularization zone remains almost unchanged, irrespective of the spatial
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(a) he = 0.33 mm. (b) he = 0.17 mm.

(c) he = 0.11 mm. (d) he = 0.07 mm.

0.                           0.25                           0.5                           0.75                           1.

Figure G.5: Non-local damage in the strip bar subjected to monotonic tensile loading (c2d6r FE).

discretization, see Fig. G.5a to Fig. G.5d. Finally, regardless the mesh fineness, the regularization
process seems to operate so that to get a spatial distribution of the non-local damage field. In the
following, more complex cases are discussed so that to validate the regularization procedure.

G.3.2 Tensile test (rectangular plate)

This geometry is inspired by the work of [Saanouni and Chaboche, 2003] and [El Khaoulani
and Bouchard, 2012]. The material is assumed to be under plane strain conditions. This example
aims at illustrating the capability of the modeling approach to exhibit the well-known plastic flow
localization mode (shear bands). The specimen is given in Fig. G.6a as well with corresponding BC.
The considered non-local variable is D while material parameters are reported in the appendices,
see Tab. H.3 page 300.

1 mm

3 
m

m

uy

(a) Geometry and BC. (b) he = 0.1mm. (c) he = 0.05mm. (d) he = 0.025mm.

Figure G.6: Geometry of the rectangular tensile plate specimen subjected to tensile loading with corre-
sponding dimensions, associated BC and mesh discretizations (after [Saanouni and Chaboche, 2003]).

In Fig. G.7, the results for the plane-strain tensile plate are reported. The corresponding displace-
ment is u = 0.323 mm. One can easily see that the non-local damage field is similar for each
mesh size. Moreover, the strong coupling between damage and behavior allows for the realistic
localization mode, i.e. the double shear bands, to be exhibited.
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1.
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(a) D - he 1 (b) D - he 2 (c) D - he 3

Figure G.7: Non-local damage field for the plane-strain rectangular tensile specimen (4-fields FEs, de-
formed state, mag. factor × 0.25) at t = 32.3 s for the three mesh sizes: he = 0.1, 0.05, 0.025 mm.

Moreover, one can notice in Fig. G.8a that the Von Mises stress tends to zero as long as damage
increases, hence causing the stress-softening response of the material. In the nearly fully damaged
zone, in the center of the specimen, the stresses vanish. The use of 4-fields mixed and non-local
FEs in the calculation allows for the volumetric locking and the mesh-dependence to be alleviated.
Indeed, the stress fields in Fig. G.8a and Fig. G.8b seem to be well defined without locking-related
spurious oscillations. It can also be noticed in Fig. G.8c that the accumulated plastic strain re-
mains localized in a thin band of FEs which consequently results in a local damage field, Fig. G.8d.
Nonetheless, the strong coupling between non-local damage and material behavior enables to solve
for the ill-posedness of the IBVP so that to get mesh-objective results, see Fig. G.7. The non-local
enhancement hence allows for the dissipation process to be controlled.
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Figure G.8: Stress, plasticity and local damage fields for the plane-strain rectangular tensile specimen
(4-fields FEs, deformed state, mag. factor × 0.25) at u = 0.323 mm for the mesh size he3 = 0.025 mm.
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H Material model parameters for structural
calculations

H.1 Material constants for the RVE simulations

For the simulations on a Representative Volume Element (c3d20r FE in Z-set), sub-sect. 4.4.1
page 172, material constants have been chosen to values defined in Tab. H.1. Saturated state for
the hardening mechanisms is also assumed.

E MPa mf - Sf MPa
ν - βf - Yf 0 MPa

R0 MPa pD - h -

Q i i ∈ [1− 2] MPa mc - Sc MPa

bi i ∈ [1− 2] - βc - Dcr it -

C k k ∈ [1− 3] MPa αc - δc -

γk k ∈ [1− 3] - ϕc - Dv 0 -

ϕk
∞ k ∈ [1− 3] - ε̇0 s−1 K MPa

ωk k ∈ [1− 3] - n - m -

Exponential damage function ηD 0.22 -

Table H.1: Material parameters for the RVE simulations.

H.2 Material constants for the double-notched square and the 2-holes
rectangular specimens

In the calculations of the double-notched square specimen, sub-sect. 5.5.2.1 page 208, as well
as for those for the rectangular plate with 2 holes, sub-sect. 5.5.2.2 page 209, the creep and volu-
metric damage are not accounted for. Hence parameters related to these damaging processes are
set to null values. Saturated state for the hardening mechanisms is also assumed.
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E MPa mf - Sf MPa
ν - βf - Yf 0 MPa

R0 MPa pD - h -

Q i i ∈ [1− 2] MPa mc - Sc MPa

bi i ∈ [1− 2] - βc - Dcr it -

C k k ∈ [1− 3] MPa αc - δc -

γk k ∈ [1− 3] - ϕc - Dv 0 -

ϕk
∞ k ∈ [1− 3] - ε̇0 s−1 K MPa

ωk k ∈ [1− 3] - n - m -

Exponential damage function ηD 0.22 -

Table H.2: Material parameters for the double-notched square and the 2-holes rectangular specimens.

H.3 Material constants for the tensile rectangular specimen

In the calculation of the tensile plate specimen, sub-sect. G.3.2 page 297, the creep and vol-
umetric damage are not accounted for. Hence parameters related to these damaging processes
are set to null values. The other material parameters come from the example of [Saanouni and
Chaboche, 2003]. Saturated state for the hardening mechanisms is also assumed, while a simple
Norton-Perzyna flow rule is considered.

E 2.00e+05 MPa mf 1.0 - Sf 0.8 MPa
ν 0.3 - βf 1.0 - Yf 0 0. MPa

R0 400.0 MPa pD 0. - h 1.0 -

Q i i ∈ [1− 2] 20.0; 0.0 MPa ϕc 0. - Dv 0 1.0e-5 -

bi i ∈ [1− 2] 50.; 0.0 - KN 10.0 MPa nN 50. -

C k k ∈ [1− 3] 1.00e+04; 0.0; 0.0 MPa Dcr it 0.99 -

γk k ∈ [1− 3] 1.00e+02; 1.00e+01; 1.00e+01 -

ϕk
∞ k ∈ [1− 3] 1.0; 1.0; 1.0 -

ωk k ∈ [1− 3] 1.00e+3; 1.00e+3; 1.00e+3 -

Lemaitre damage function

Table H.3: Material parameters for the tensile plate specimen.



I Material Jacobian matrix (non-local model)

In the implicit implementation of the multi-mechanism cyclic constitutive model presented in
Chap. 5, a system of residual equations has been defined, see eq. (5.54). All these equations should
vanish in case of inelastic load increment. Hence, in this appendix, the material Jacobian matrix
associated with the local cyclic viscoplastic-damage model is detailed. Such a matrix is composed
of the derivatives of each residual equation with respect to each internal variable of the system.
Let’s first recall the problem’s variables:

DoF :
{

u , D
}

; VIN :
{
ε∼ , D

}
; VOUT :

{
σ∼ , D

}
; Vint :

{
σ∼ , ε∼e ,α∼k , r i , λ , D

}
Let us note that the presence of the stress tensor σ∼ in the internal state variables directly follows
from the introduction of the micro-cracks closure effect within the model, see sub-sect. 4.3.2.2.
In case this effect is not included in the model, this variable is disabled, hence leaving the elastic
strain tensor ε∼e to rule the additive strain decomposition.

I.1 Differential equations to be integrated

ε∼
e = Λ

≈
−1 : σ̃∼uc (D) = 0∼ (if quasi-unilateral conditions) (I.1a)

ε̇∼
e = ε̇∼ − ε̇∼

in = ε̇∼ −
λ̇

f e (D)

√
3
2 ñ∼ = 0∼ (I.1b)

α̇∼
k = λ̇

f k (D)

(√
3
2 ñ∼ − γ

kϕk(p) P
≈

D : α∼k

)
= 0∼ (I.1c)

ṙ i = λ̇

f i (D)
(
1− bi r i) = 0 (I.1d)

˙̃p = λ̇ = φv (Fy ) = 0 (I.1e)

Ḋ = λ̇

〈
Yf − Yf 0

Sf

〉mf

+

eβf ηD D H(p − pD) −
〈
χc(σ∼)

Sc

〉mc

+

eβc ηD D

− (1− D) λ̇

f e (D)

√
3
2 〈 ñ∼

S : 1∼ 〉+ = 0

(I.1f)

301



302 App. – Material Jacobian matrix (non-local model)

with:

F vp
y = Fy − σov =

√
3
2
∣∣∣∣Z̃∼ ∣∣∣∣H −∑

i
R̃ i − R0 − σov ≤ 0 (I.2a)

ñ∼ =
H
≈

: Z̃∼∣∣∣∣Z̃∼ ∣∣∣∣H ; ñ∼
S =

H
≈

S : Z̃∼∣∣∣∣Z̃∼ ∣∣∣∣H (I.2b)

H
≈

= P
≈

D + 2ϕc gD(D) P
≈

S ; H
≈

S = 2ϕc gD(D) P
≈

S (I.2c)

H
≈
−1 = P

≈
D + 1

2ϕc gD(D)
P
≈

S (I.2d)

Z̃∼ = σ̃∼
D −

∑
k

X̃∼
k (I.2e)

∣∣∣∣Z̃∼ ∣∣∣∣H =
√

Z̃∼ : H
≈

: Z̃∼ (I.2f)

φv (Fy ) = ε̇0

[
sinh

〈
Fy
K

〉n

+

]m

or σov = K

 arcsinh
(
λ̇

ε̇0

) 1
m

 1
n

(I.2g)

χc (σ∼) = αc I0 (σ∼) + δc I1 (σ∼) + (1− αc − δc)
√

3J2 (σ∼) (I.2h)

I.2 Residual equations for local update of the internal variables

Rσ∼ = ε∼
e − Λ

≈
−1 : σ̃∼uc (D) = 0∼ (if quasi-unilateral conditions) (I.3a)

Rε∼e = ∆ε∼
e − ∆ε∼ + ∆λ

f e (D)

√
3
2 ñ∼ = 0∼ (I.3b)

Rα∼k = ∆α∼
k − ∆λ

f k (D)

(√
3
2 ñ∼ − γ

kϕk(p) P
≈

D : α∼k

)
= 0∼ (I.3c)

Rr i = ∆r i − ∆λ
f i (D)

(
1 − bi r i) = 0 (I.3d)

Rλ = ∆λ − ∆t φv (Fy ) = 0 (I.3e)

RD = ∆D − ∆λ
〈

Yf − Yf 0

Sf

〉mf

+

eβf ηD D H(p − pD) − ∆t
〈
χc(σ∼)

Sc

〉mc

+

eβc ηD D

− (1− D) ∆λ
f e (D)

√
3
2 〈 ñ∼ : 1∼ 〉 = 0

(I.3f)
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where the eq. (I.3a) is not the incremental form of a differential equation. Such an equation is
added in order to solve the elastic law in an implicit manner in the case where micro-defects closure
effect on the elasticity law is activated [Lemaitre and Desmorat, 2005], [Otin, 2007].
Indeed, the effective stress defined in eq. (4.57) appearing in the elasticity law eq. (I.3a) is not
used for the viscoplastic-damage coupling but only for that of elastic-damage. The relationship
σ∼ (ε∼e, D) is now implicit and given by the numerical inverting of the elasticity law upon iterating at
the local (integration point) level. The stress tensor in eq. (4.56) cannot be written explicitly as a
function of the strain tensor. Thus, given the input ε∼, the corresponding stress tensor σ∼ required
as an output in the local integration loop can be obtained as the solution of the non-linear ten-
sorial equation for σ∼, eq. (I.3a). This solution can be obtained by means of the Newton-Raphson
algorithm [de Souza Neto et al., 2011].

Material Jacobian matrix

The Jacobian matrix relating the derivatives of the material residual equations with respect to the
integrated variables is organized as follows:

J = ∂R
∂∆Vint

=



∂Rσ∼
∂∆σ∼

∂Rσ∼
∂∆ε∼e

∂Rσ∼
∂∆α∼k

∂Rσ∼
∂∆r i

∂Rσ∼
∂∆λ

∂Rσ∼
∂∆D

∂Rε∼e

∂∆σ∼

∂Rε∼e

∂∆ε∼e

∂Rε∼e

∂∆α∼k

∂Rε∼e

∂∆r i

∂Rε∼e

∂∆λ
∂Rε∼e

∂∆D
∂Rα∼k

∂∆σ∼

∂Rα∼k

∂∆ε∼e

∂Rα∼k

∂∆α∼k

∂Rα∼k

∂∆r i

∂Rα∼k

∂∆λ
∂Rα∼k

∂∆D

∂Rr i

∂∆σ∼
∂Rr i

∂∆ε∼e
∂Rr i

∂∆α∼k
∂Rr i

∂∆r i
∂Rr i

∂∆λ
∂Rr i

∂∆D

∂Rλ
∂∆σ∼

∂Rλ
∂∆ε∼e

∂Rλ
∂∆α∼k

∂Rλ
∂∆r i

∂Rλ
∂∆λ

∂Rλ
∂∆D

∂RD
∂∆σ∼

∂RD
∂∆ε∼e

∂RD
∂∆α∼k

∂RD
∂∆r i

∂RD
∂∆λ

∂RD
∂∆D



(I.4)

In the following, each term of the Jacobian matrix is derived consistently with the implicit relations
between internal state variables.
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Derivatives of Rσ∼ (in case of quasi-unilateral conditions)

Rσ∼ = ε∼
e − Λ

≈
−1 : σ̃∼uc = ε∼

e − 1 + ν
E

[
σ∼ +

f e (D)
+

σ∼ −

f e
h (h, D)

]
+ ν

E

[
〈 trσ∼ 〉
f e (D)

−
〈−trσ∼ 〉
f e
h (h, D)

]
1∼ = 0∼

•
∂Rσ∼
∂∆σ∼

= θ I
≈

•
∂Rσ∼
∂∆ε∼e = − θ

[
1 + ν

E

(
P
≈

+
σ

1
f e (D)

+ P
≈
−
σ

1
f e
h (h, D)

)
− ν

E

(
H(σ∼ : 1∼)

f e (D)
+ H(−σ∼ : 1∼)

f e
h (h, D)

)
1∼⊗ 1∼

]

•
∂Rσ∼
∂∆α∼k = 0

≈

•
∂Rσ∼
∂∆r i = 0∼

•
∂Rσ∼
∂∆λ = 0∼

•
∂Rσ∼
∂∆D = 0∼

Derivatives of Rε∼e

Rε∼e = ∆ε∼
e − ∆ε∼ + ∆λ

f e (D)

√
3
2 ñ∼ = 0∼

•
∂Rε∼e

∂∆σ∼
= θ

∆λ
f e2 (D)

√
3
2
∂ñ∼
∂σ̃∼

: I
≈

•
∂Rε∼e

∂∆ε∼e = I
≈

+ θ
∆λ

f e (D)

√
3
2
∂ñ∼
∂σ̃∼

: Λ
≈

•
∂Rε∼e

∂∆α∼k = θ
∆λ

f e (D)

√
3
2

[
2
3 C k ∂ñ∼

∂X̃∼
k : P

≈
D

]

•
∂Rε∼e

∂∆r i = 0∼

•
∂Rε∼e

∂∆λ =
√

3
2

1
f e (D)

ñ∼

•
∂Rε∼e

∂∆D = 0∼

Derivatives of Rα∼ k

Rα∼k = ∆α∼
k − ∆λ

f k (D)

(√
3
2 ñ∼ − γ

k ϕk(p) P
≈

D : α∼k

)
= 0∼
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•
∂Rα∼k

∂∆σ∼
= −θ ∆λ

f k (D) f e (D)

√
3
2
∂ñ∼
∂σ̃∼

: I
≈

•
∂Rα∼k

∂∆ε∼e = −θ ∆λ
f k (D)

√
3
2
∂ñ∼
∂σ̃∼

: Λ
≈

•
∂Rα∼k

∂∆α∼k = I
≈

[
1 + θ

∆λ
f k (D)

γk ϕk(p)
]
− θ ∆λ

f k (D)

√
3
2

[
2
3 C k ∂ñ∼

∂X̃∼
k : P

≈
D

]

•
∂Rα∼k

∂∆λ = 1
f k (D)

[
γk ϕk(p) P

≈
D : α∼k −

√
3
2 ñ∼

]

•
∂Rα∼k

∂∆r i = 0∼

•
∂Rα∼k

∂∆D = 0∼

Derivatives of Rr i

Rr i = ∆r i − ∆λ
f i (D)

(
1 − bi r i) = 0

• ∂Rr i

∂∆σ∼
= 0∼ • ∂Rr i

∂∆r i = 1 + θ
∆λ

f i (D)
bi

• ∂Rr i

∂∆ε∼e = 0∼

• ∂Rr i

∂∆α∼k = 0∼

• ∂Rr i

∂∆λ = 1
f i (D)

[
bi r i − 1

]
• ∂Rr i

∂∆D = 0

Derivatives of Rλ

Rλ = ∆λ − ∆t φv (Fy ) = 0

• ∂Rλ
∂∆σ∼

= − θ∆t ∂φv (Fy )
∂Fy

∂Fy
∂σ∼

• ∂Rλ
∂∆ε∼e = − θ∆t ∂φv (Fy )

∂Fy

∂Fy
∂ε∼

e

• ∂Rλ
∂∆α∼k = − θ∆t ∂φv (Fy )

∂Fy

∂Fy
∂α∼

k

• ∂Rλ
∂∆r i = − θ∆t ∂φv (Fy )

∂Fy

∂Fy
∂r i

• ∂Rλ
∂∆λ = 1 − θ∆t ∂φv (Fy )

∂Fy

∂Fy
∂λ

• ∂Rλ
∂∆D = 0
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Derivatives of RD

RD = ∆D − ∆Df − ∆Dc − ∆Dv = 0

with:

∆Df = ∆λ
〈

Yf − Yf 0

Sf

〉mf

+

eβf ηD D H (p − pD)

∆Dc = ∆t
〈
χc(σ∼)

Sc

〉mc

+

eβc ηD D ; ∆Dv = (1− D) ∆λ
f e (D)

√
3
2 〈 ñ∼

S : 1∼ 〉+

• ∂RD
∂∆σ∼

= − θ∆λ mf
Yf

〈
Yf − Yf 0

Sf

〉mf

+

eβf ηD D ∂Y e
f

∂σ∼
H (p − pD)

− θ∆t mc
χc (σ∼)

〈
χc (σ∼)

Sc

〉mc

+

eβc ηD D ∂χc (σ∼)
∂σ∼

− θ∆λ
f e2 (D)

(
1− D

) √3
2

〈
∂ñ∼

S

∂σ̃∼
: 1∼
〉

+

• ∂RD
∂∆ε∼e = − θ∆λ mf

Yf

〈
Yf − Yf 0

Sf

〉mf

+

eβf ηD D ∂Y e
f

∂ε∼
e H (p − pD)

− θ∆t mc
χc (σ∼)

〈
χc (σ∼)

Sc

〉mc

+

eβc ηD D ∂χc (σ∼)
∂σ∼

: Λ
≈

f e (D)

− θ∆λ
f e (D)

(
1− D

) √3
2

〈(
∂ñ∼

S

∂σ̃∼
: Λ
≈

)
: 1∼
〉

+

• ∂RD
∂∆α∼k = − κX θ∆λ mf

Yf

〈
Yf − Yf 0

Sf

〉mf

+

eβf ηD D ∂Y k
f

∂α∼
k H (p − pD)

− θ ∆λ
f e (D)

(
1− D

) √3
2

〈(
2
3 C k ∂ñ∼

S

∂X̃∼
k : P

≈
D

)
: 1∼

〉
+

• ∂RD
∂∆r i = −1 κR θ∆λ mf

Yf

〈
Yf − Yf 0

Sf

〉mf

+

eβf ηD D ∂Y i
f

∂r i H (p − pD)

• ∂RD
∂∆λ = −1

[〈
Yf − Yf 0

Sf

〉mf

+

eβf ηD D +
(
1− D

) √3
2

1
f e (D)

〈 ñ∼
S : 1∼ 〉+

]

• ∂RD
∂∆D = 1
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Auxiliary derivatives

with:

• ∂f ∗ (D)
∂D

= −β∗ ηD exp(−β∗ ηD D) where “*” stands for “e”, “k” or “i”

• ∂2f ∗ (D)
∂D2 = (β∗ ηD)2 exp(−β∗ ηD D) where “*” stands for “e”, “k” or “i”

• ∂f e
h (h, D)
∂D

= −hβe ηD exp(−hβe ηD D) for elasticity with micro-cracks closure effect

• ∂2f e
h (h, D)
∂D2 = (hβe ηD)2 exp(−hβe ηD D) for elasticity with micro-cracks closure effect

• ∂Y e
f

∂σ∼
= − 1 + ν

E

[
σ∼ +

f e2 (D)
∂f e (D)
∂D

+
σ∼ −

f e
h

2 (h, D)
∂f e

h (h, D)
∂D

]

+ ν

E

[
〈σ∼ : 1∼ 〉
f e2 (D)

∂f e (D)
∂D

−
〈−σ∼ : 1∼ 〉
f e
h

2 (h, D)
∂f e

h (h, D)
∂D

]
1∼

• ∂Y e
f

∂ε∼
e = − ∂f e (D)

∂D
σ̃∼ • ∂Fy

∂α∼
k = −

√
2
3 C k ñ∼ : P

≈
D

• ∂Y k
f

∂α∼
k = − ∂f k (D)

∂D
X̃∼

k

• ∂Y i
f

∂r i = − ∂f i (D)
∂D

R̃ i

• ∂Fy
∂ε∼

e =
√

3
2 ñ∼ : Λ

≈

• ∂Fy
∂r i = −bi Q i

• ∂Fy
∂λ

= 0

• ∂Fy
∂D = 0

• ∂Fy
∂σ∼

= 1
f e (D)

√
3
2 ñ∼

• ∂φv (Fy )
∂Fy

= ε̇0 m
[

sinh
(〈
Fy
K

〉n

+

) ]m−1
n
Fy

cosh
(〈
Fy
K

〉n

+

) 〈
Fy
K

〉n

+

• ∂χc (σ∼)
∂σ∼

= αc
∂I0 (σ∼)
∂σ∼

+ δc
∂I1 (σ∼)
∂σ∼

+ (1− αc − δc) ∂
√

3J2 (σ∼)
∂σ∼

• ∂I0 (σ∼)
∂σ∼

→ solved by perturbation analysis over the principal values of σ∼
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• ∂I1 (σ∼)
∂σ∼

= 1∼

• ∂ñ∼
∂σ̃∼

= 1∣∣∣∣Z̃∼ ∣∣∣∣H
[

H
≈
− ñ∼⊗ ñ∼

]

• ∂ñ∼
∂X̃∼

k = −1∣∣∣∣Z̃∼ ∣∣∣∣H
[

H
≈
− ñ∼⊗ ñ∼

]

• ∂
√

3J2 (σ∼)
∂σ∼

= 3
2

σ∼
D√

3J2 (σ∼)

• ∂ñ∼
S

∂σ̃∼
= 1∣∣∣∣Z̃∼ ∣∣∣∣H

[
H
≈

S − ñ∼
S ⊗ ñ∼

S
]

• ∂ñ∼
S

∂X̃∼
k = −1∣∣∣∣Z̃∼ ∣∣∣∣H

[
H
≈

S − ñ∼
S ⊗ ñ∼

S
]



J Details on the consistent tangent operator
(non-local model)

In this appendix, the matrices related to the derivation of the consistent tangent operator
(CTO) associated with the non-local cyclic viscoplastic-damage model are detailed.
In the sub-sect. 4.3.5, and particularly in eq. (4.101), it has been shown that the CTO can be
derived by:

{
L
}

= δ∆VOUT
δ∆VIN

=

 ∂∆VOUT
∂∆Vint

−( {
∂R

}{
∂∆Vint

})−1 {
∂R

}{
∂∆VIN

}
 + ∂∆VOUT

∂∆VIN

 (J.1)

which involves several matrices that need to be defined.
As a recall, the DoF, input and output, as well as the internal and auxiliary variables are:

DoF :
{

u , D
}

; VIN :
{
ε∼ , D

}
; VOUT :

{
σ∼ , D

}
; Vint :

{
σ∼ , ε∼e ,α∼k , r i , λ , D

}
while the local residuals associated with the internal state variables are given in eq. (I.3).

� The matrix ∂∆VOUT
∂∆Vint

is given by:

∂∆VOUT
∂∆Vint

= ∂VOUT
∂Vint

=


∂σ∼
∂σ∼

∂σ∼
∂ε∼

e
∂σ∼
∂α∼

k
∂σ∼
∂r i

∂σ∼
∂λ

∂σ∼
∂D

∂D
∂σ∼

∂D
∂ε∼

e
∂D
∂α∼

k
∂D
∂r i

∂D
∂λ

∂D
∂D



=

 I
≈

Λ
≈

f e (D) 0
≈

0∼ 0∼ 0∼

0∼ 0∼ 0∼ 0 0 1


(J.2)

� The matrix
{
∂R

}{
∂∆VIN

} is given by:

{
∂R

}{
∂∆VIN

} =


∂Rσ∼
∂∆ε∼

∂Rε∼e

∂∆ε∼

∂Rα∼k

∂∆ε∼
∂Rr i

∂∆ε∼
∂Rλ
∂∆ε∼

∂RD
∂∆ε∼

∂Rσ∼
∂∆D

∂Rε∼e

∂∆D

∂Rα∼k

∂∆D
∂Rr i

∂∆D
∂Rλ
∂∆D

∂RD

∂∆D



=

 0
≈

−I
≈

0
≈

0∼ 0∼ 0∼
∂Rσ∼
∂∆D

∂Rε∼e

∂∆D

∂Rα∼k

∂∆D
∂Rr i

∂∆D
∂Rλ
∂∆D

∂RD

∂∆D


(J.3)
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with:

•
∂Rσ∼
∂∆D

= − 1 + ν
E

[
−

σ∼ +

f e2 (D)
∂f e (D)
∂D

−
σ∼ −

f e
h

2 (h, D)
∂f e

h (h, D)
∂D

]

+ ν

E

[
−
〈σ∼ : 1∼ 〉
f e2 (D)

∂f e (D)
∂D

+ 〈−σ∼ : 1∼ 〉
f e
h

2 (h, D)
∂f e

h (h, D)
∂D

]
1∼

•
∂Rε∼e

∂∆D
= ∆λ

f e (D)

√
3
2

(
∂ñ∼
∂D
− ñ∼

1
f e (D)

∂f e (D)
∂D

)

•
∂Rα∼k

∂∆D
= ∆λ

f k (D)

√
3
2

(
ñ∼

1
f k (D)

∂f k (D)
∂D

−
∂ñ∼
∂D

)

• ∂Rr i

∂∆D
= ∆λ

f i 2 (D)
(
1 − bi r i) ∂f i (D)

∂D

• ∂Rλ
∂∆D

= −∆t ∂φv (Fy )
∂Fy

∂Fy

∂D

• ∂RD

∂∆D
= −∆λ

(
∂Ŷf

∂D
+ ∂Ŷv

∂D

)
− ∆t ∂Ŷc

∂D

� The matrix
{
∂R

}{
∂∆Vint

} = J is given by the material Jacobian matrix, already defined in

Chap. I.

� The matrices ∂∆VOUT
∂∆VIN

are given by:

∂∆VOUT
∂∆VIN

=


∂∆σ∼
∂∆ε∼

∂∆σ∼
∂∆D

∂∆D
∂∆ε∼

∂∆D
∂∆D

 (J.4)

• ∂∆σ∼
∂∆ε∼

= ∂σ∼
∂ε∼

= Λ
≈

f e (D)

• ∂∆σ∼
∂∆D

= ∂σ∼
∂D

= Λ
≈

: ε∼e ∂f e (D)
∂D

= σ̃∼
∂f e (D)
∂D

• ∂∆D
∂∆ε∼

= 0∼

• ∂∆D
∂∆D

= 0
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Auxiliary derivatives

with auxiliary derivatives given in Chap. I page 307 and:

• ∂Y e
f

∂D
= − 1 + ν

2E

(
σ∼ + : σ∼ +

f e2 (D)
βe ηD

∂f e (D)
∂D

+
σ∼ − : σ∼ −

f e
h

2 (h, D)
hβe ηD

∂f e
h (h, D)
∂D

)

+ ν

2E

(
〈σ∼ : 1∼ 〉2

f e2 (D)
βe ηD

∂f e (D)
∂D

+ 〈−σ∼ : 1∼ 〉2

f e
h

2 (h, D)
hβe ηD

∂f e
h (h, D)
∂D

)
(UC)

• ∂Y e
f

∂D
= −1

2
∂2f e (D)
∂D2 ε∼

e : σ̃∼ (no UC)

• ∂Y i
f

∂D
= −1

2
∂2f i (D)
∂D2 r i R̃ i

• ∂X̃∼
k

∂D
= − 1

f k 2 (D)
∂f k (D)
∂D

X∼
k

• ∂R̃ i

∂D
= − 1

f i 2 (D)
∂f i (D)
∂D

R i

• ∂Fy
∂σ∼

=
√

3
2

1
f e (D)

ñ∼

• ∂Y k
f

∂D
= −1

2
∂2f k (D)
∂D2 α∼

k : X̃∼
k

• ∂σ̃∼
∂D

= − 1
f e2 (D)

∂f e (D)
∂D

σ∼

• ∂Z̃∼
∂D

= ∂σ̃∼
∂D
−
∑

k

∂X̃∼
k

∂D

•
∂H
≈

∂D
= 2ϕc

∂gD (D)
∂D

P
≈

S = 2ϕc P
≈

S

•
∂H
≈
−1

∂D
= −2ϕc(

2ϕc gD (D)
)2

∂gD (D)
∂D

P
≈

S

• ∂Fy

∂D
=
√

3
2
∂
∣∣∣∣Z̃∼ ∣∣∣∣H
∂D

+
∑

i

R i

f i 2 (D)
∂f i (D)
∂D

•
∂
∣∣∣∣Z̃∼ ∣∣∣∣H
∂D

=
[
∂Z̃∼
∂D

: ñ∼

]
+
[

1
2

1∣∣∣∣Z̃∼ ∣∣∣∣H
(

Z̃∼ :
∂H
≈

∂D
: Z̃∼
)]

• ∂ñ∼
∂D

= 1∣∣∣∣Z̃∼ ∣∣∣∣H
[
∂H
≈

∂D : Z̃∼ + H
≈

: ∂Z̃∼
∂D
− ñ∼

∂
∣∣∣∣Z̃∼ ∣∣∣∣H
∂D

]

• ∂ñ∼
S

∂D
= 1∣∣∣∣Z̃∼ ∣∣∣∣H

[
∂H
≈

∂D : Z̃∼ + H
≈

S : ∂Z̃∼
∂D
− ñ∼

S ∂
∣∣∣∣Z̃∼ ∣∣∣∣H
∂D

]

• ∂Ŷf

∂D
= ∂

∂D

[ 〈
Yf − Yf0

Sf

〉mf

+

eβf ηD D

]
= Ŷf

[
mf
Yf

(
∂Y e

f
∂D

+ κX
∂Y k

f
∂D

+ κR
∂Y i

f
∂D

)
+ βf ηD

]



312 App. – Details for the consistent tangent operator (non-local model)

• ∂Ŷv

∂D
= ∂

∂D

[ (
1− D

) √ 3
2

1
f e (D)

〈
ñ∼

S : 1∼
〉

+

]

= (1− D)
√

3
2

1
f e (D)

[ 〈
∂ñ∼

S

∂D
: 1∼
〉

+

− 1
f e (D)

∂f e (D)
∂D

〈
ñ∼

S : 1∼
〉
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K On the use of a controlled element-deletion
method for FCG prediction

In this additional section, we briefly discuss the use of an enhanced element-deletion method
for the crack growth modeling. Such an approach can be seen as an alternative to the remeshing
procedure considered before in sect. 6.3 & sect. 6.4. The main idea consists in using both a
crack insertion criterion and a crack path tracking algorithm, altogether ensuring the removal of
FEs which necessarily lie on the crack path. That is the reason why such a method is referred
to as controlled element-deletion method, contrarily to the element removal technique that only
removes elements in which a critical damage state has been reached in a finite number of IP
(see [Besson and Desmorat, 2004]). Using this method hence enables the possibility to control the
removal of adjacent elements whose membership to the crack path has been validated thanks to
the MR algorithm dedicated to crack path tracking (see sub-sect. 6.2.2.3). As a consequence, the
crack path is guaranteed to be continuous. A related method can also be found in [Yun et al., 2019].

A similar pure fatigue loading case is applied to a SEN-T specimen, as done for the mesh inter-
section procedure in sect. 6.3, following the standard test case described in sub-sect. 6.3.1. In
the Fig. K.1, the non-local damage field is plotted for a crack length of a = 1.49 mm. One
can notice the removal of elements following a continuous path defined thanks to the MR al-
gorithm. The crack-path is well constrained in the localization band, since the MR follows the
ridge defined by the successive points of maximum damage. Compared to the case with mesh
intersection process (see sect. 6.3), one can notice that the crack-path is dependent of the mesh
fineness, that is, the finer the mesh in the FPZ, the more accurate the crack path and the less
the volume removal. One aspect to be noted is the fact that mesh-adaption procedure described
in sect. 6.1 reduces the artificial mass loss due to element-deletion, since the elements within the
damage localization regions are automatically refined prior to deletion, hence minimizing the lost
volume. Such a point has also be noticed by [El Khaoulani and Bouchard, 2012], [Feld-Payet, 2022]
where authors have used a so-called adaptive element erosion method through the coupling be-
tween element erosion and mesh adaption. This dual approach is assessed in the present appendix.

0.99

0.75

0.5

0.25

0.

(a) Non-local damage for a = 1.49 mm.

Figure K.1: Distribution of the non-local damage in the wake and FPZ of a fatigue crack in a SEN-T
specimen (plane strain assumptions, c2d6r 4-fields FE).

In the Fig. K.2, the real and effective stress fields are depicted. One can notice in Fig. K.2a
an almost vanishing stress level along the crack path and in the FPZ where damage evolution is
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maximum. Similarly to the case with mesh intersection procedure, the crack insertion is performed
in a consistent manner regarding energetic aspects since there is no rigidity where crack increment
is inserted. Moreover, in Fig. K.2b, the effective stress (used for the strain equivalence principle)
can be seen to be maximum ahead of the crack-tip in the FPZ. Obviously, since damage growth
is mainly localized in the FPZ, the effective stress level is intended to be the largest in this zone.
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15.2
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(a) Cauchy stress field in y -direction.
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0.0

-1.0

-2.0
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(b) Effective Cauchy stress field in y -direction.

Figure K.2: Distribution of the real and effective stress fields in the wake and FPZ of a fatigue crack in
a SEN-T specimen for a = 1.49 mm (plane strain assumptions, c2d6r 4-fields FE).

In Fig. K.3, the controlled element-removal technique is illustrated. The zone of influence where
damage has reached (at least) the threshold value D MR

th is shown in darker FE in the FPZ, see
Fig. K.3a. The crack growth direction (CGD) estimated by the MR algorithm is also depicted. In
Fig. K.3b, the crack insertion criterion has been validated along a prescribed crack increment of
length `c = 5.× hmin so as for the crack to extend in the estimated CGD.

EstimatedEstimated
crack growthcrack growth

directiondirection

(a) Estimated crack growth direction in the old mesh prior to crack insertion through element-removal.

(b) Crack increment inserted through controlled erosion technique upon cycling.

Figure K.3: Controlled element-removal technique in a SEN-T specimen subjected to pure fatigue loading
conditions (plane strain assumptions, c2d6r FE).

Remark: The previously described CDT method through controlled-erosion has not been exten-
sively used. Indeed, such a technique consists in an alternative method to the mesh intersection
procedure which was favored in this Ph.D. project. It was assessed to highlight the versatility of
the MR algorithm to deal with crack path tracking, no matter the desired CDT method.



L Numerical parameters for FCG simulations

Temperature effect on FCG

Parameters `c D ZZ2
th ηD εh

D hmin hmax D MR
th ∇D ?

th ∆θ D cr it
`inc

Value 0.15 0.001 0.02 0.01 0.05 10. 0.75 0.001 10. 0.8 0.1

Table L.1: Parameters for the simulations of the temperature effect on FCG.

Effect of prescribed boundary conditions on FCG

Parameters `c D ZZ2
th ηD εh

D hmin hmax D MR
th ∇D ?

th ∆θ D cr it
`inc

Value 0.03 0.001 0.02 0.01 0.01 10. 0.9 0.001 10. 0.95 0.025

Table L.2: Parameters for the simulations of the effect of prescribed BC on FCG.

Effect of load ratio on FCG

Parameters `c D ZZ2
th ηD εh

D hmin hmax D MR
th ∇D ?

th ∆θ D cr it
`inc

Value 0.03 0.001 0.02 0.01 0.01 10. 0.9 0.001 10. 0.95 0.02

Table L.3: Parameters for the simulations of the effect of load ratio on FCG.

Effect of loading frequency on FCG

Parameters `c D ZZ2
th ηD εh

D hmin hmax D MR
th ∇D ?

th ∆θ D cr it
`inc

Value 0.15 0.05 0.02 0.01 0.05 10. 0.75 0.001 10. 0.8 0.1

Table L.4: Parameters for the simulations of the effect of loading frequency on FCG.

Overload effect on FCG

Parameters `c D ZZ2
th ηD εh

D hmin hmax D MR
th ∇D ?

th ∆θ D cr it
`inc

Value 0.03 0.001 0.02 0.01 0.01 10. 0.9 0.001 10. 0.95 0.025

Table L.5: Parameters for the simulations of the overload effect on FCG.
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Titre: Modélisation de la propagation de fissure en fatigue à haute température dans les superalliages
base Nickel par une approche locale de la rupture

Mots clés: Fatigue, Modèle incrémental en temps, Comportement, Endommagement, Modèle non-
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Résumé: Cette thèse vise à évaluer les capac-
ités d’une approche locale de la rupture à simuler
la propagation d’une fissure longue de fatigue dans
des composants structurels. Une démarche en trois
étapes est envisagée. Tout d’abord, le comporte-
ment cyclique non linéaire du superalliage base Nickel
AD730™ est étudié à l’aide d’essais de caractérisa-
tion cyclique à trois températures cibles (20, 550 et
700◦C). Des essais de propagation de fissures sur
éprouvettes sont ensuite réalisés afin de mettre en év-
idence les principaux mécanismes pilotant la fissura-
tion. Un modèle décrivant le comportement cyclique
non-linéaire de l’AD730™ est proposé. Un couplage
fort comportement-endommagement est ensuite établi
conduisant à un modèle d’endommagement incrémen-
tal pour la fatigue. Ce modèle est implémenté dans
un code éléments finis à l’aide d’un schéma de ré-
solution purement implicite. Pour résoudre le prob-

lème de dépendance au maillage, une extension non-
locale du modèle d’endommagement est proposée en
utilisant une formulation à gradient implicite. Puis,
une étape d’adaptation de maillage basée sur un esti-
mateur d’erreurs est utilisée pour raffiner la discrétisa-
tion dans la zone d’élaboration de la fissure. Une fois
l’amorçage atteint, un algorithme de suivi du chemin
de fissure est utilisé pour définir la géométrie et la di-
rection de l’incrément de fissure. Enfin, une transi-
tion endommagement-rupture incluant des étapes de
remaillage, de transfert de champs et de rééquilibrage
de la structure est effectuée. La cinétique associée à
l’avancée de la fissure est alors retranscrite. La boucle
numérique est évaluée lors de calculs sur une éprou-
vette SEN-T soumise à des chargements complexes de
fatigue et fatigue-fluage. Les capacités de l’approche
proposée et ses limites sont finalement discutées.

Title: High temperature fatigue crack growth modeling in Nickel-based superalloys using a local ap-
proach to fracture

Keywords: Fatigue, Time-incremental model, Constitutive equations, Damage, Non-local model,
Damage-to-fracture transition, Nickel-based superalloy

Abstract: This PhD project aims at assessing the ca-
pabilities associated with the local approach to fracture
to simulate the propagation of a long fatigue crack in
structural components. To this end, a three-step ap-
proach is considered. First, the cyclic non-linear behav-
ior of the Nickel-based superalloy AD730™ is studied
using dedicated cyclic characterization tests at three
target temperatures (20, 550 and 700◦C). Crack prop-
agation tests on laboratory specimens are then per-
formed in order to evidence the main crack driving
mechanisms. Next, a set of constitutive equations for
the cyclic non-linear behavior of AD730™ is proposed
and calibrated. A strong behavior-damage coupling is
settled leading to a time-incremental damage model for
fatigue. The model is implemented in a finite element
code using a fully implicit resolution scheme. In order
to solve for the mesh-dependency issue, a non-local

extension of the damage model is proposed using an
implicit gradient formulation. Finally, an error-based
mesh adaption procedure is considered in order to re-
fine the mesh in the fracture process zone, close to
the crack-tip where the non-linear phenomena occur.
Once crack onset is achieved, a crack path tracking al-
gorithm is used to evaluate the geometry and the direc-
tion of the crack increment. Then, a damage-to-crack
transition consisting in remeshing steps, fields trans-
fer and equilibrium recovery is performed. This way,
crack growth kinetics can be captured. The whole nu-
merical loop is assessed on calculations conducted on
a SEN-T specimen subjected to complex fatigue and
creep-fatigue loading conditions. The capabilities of
the proposed approach and its limitations are finally
discussed.
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