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Abstract

The increasing demand of energy-autonomous small electronic sensors and devices
has propelled the emergence of energy harvesting technologies as a prominent area of
interest for research both in academia and industry. One of the key features of this
new generation of sensors is their low-power electricity demand. This characteristic
has promoted the development of small scale integrated solutions as alternatives to
the periodic replacement or recharging of commonly used batteries, eliminating, or at
least reducing, the costs associated to these procedures (both in terms of economical
resources and environmental waste).

In this framework, one of the most effective methods for the energy harvesting
is to use ambient vibrations, due to the ease of finding this source of mechanical
energy. Nevertheless, ambient vibrations are generally largely distributed in space and
characterized by a low energy content. Therefore, for an efficient harvesting of energy,
it is required to develop systems that are able to convey and trap the vibrations (and
the energy they carry with them) in a small region, where they can then be collected
and converted into electrical energy by means of, for instance, piezoelectric devices.

Among the possible solutions, the artificial materials that go under the name of
“metamaterials”, if properly designed, have proved to possess excellent properties in
terms of waves control and can be used to develop vibration-based energy harvesting
systems. Here, we will concentrate on a specific attribute that characterizes the dynamic
behavior of a class of these composite materials, namely the presence of band gaps in
the spectrum, i.e. intervals of frequencies corresponding to attenuated waves. Phononic
crystals and locally resonant materials with a periodic structure belong to this class and
are the main subjects of this work. Using a mass-in-mass crystal, we first individuate
the roles of the main parameters of the problem of wave propagation in these two
typologies of metamaterials. Then, we employ a two-scale homogenization technique to
derive their effective behavior at a sub-wavelength scale. In particular, locally resonant
materials are analyzed, being characterized by the presence of band gaps already at a
sub-wavelength regime.

With the idea of focusing the mechanical energy in a confined area, we analyze
the effect of a defect of periodicity. We show that this can result in the formation of
localized modes at frequencies inside a band gap. By using locally resonant materials,
we then develop a system (based on the resonant tunneling phenomenon in physics) that
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allows us to trap mechanical waves in a cavity, i.e. in the region of the metamaterial
with a defect of periodicity, where the energy will pile up and thus focus. We make
here use of the derived effective material properties.

In the final part of the manuscript, we study and experimentally validate the
attenuation and localization phenomena on a one dimensional metastructure. For this,
we employ a taut cable with a family of hanging masses periodically repeated along its
length. First, we theoretically study its dynamic behavior and then we compare the
results with an experimental test, validating the attenuation and localization effects.

The objective of this thesis is twofold: on one hand we aim to treat the elasto-
dynamic problem associated to defective periodic media presenting band gaps (i.e.
metamaterials), and on the other hand we also want to give some proofs of efficiency of
these systems for the localization of mechanical energy. Our results provide new insights
on the dynamic behavior of defective periodic media to be used in energy harvesting
systems, which makes this work relevant to both theoretical and practical fields.

iv



Résumé

La demande croissante de petits capteurs et dispositifs électroniques autonomes en
énergie a propulsé l’émergence des technologies de récupération d’énergie en tant que
domaine d’intérêt de premier plan pour la recherche, tant dans l’academique que
dans l’industrie. L’une des principales caractéristiques de cette nouvelle génération
de capteurs est leur faible demande en électricité. Cette caractéristique a favorisé le
développement de solutions intégrées à petite échelle comme alternatives au remplace-
ment périodique ou à la recharge des batteries couramment utilisées, éliminant, ou du
moins réduisant, les coûts associés à ces procédures (à la fois en termes de ressources
économiques et de déchets environnementaux).

Dans ce cadre, l’une des méthodes les plus efficaces pour la récupération d’énergie est
d’utiliser les vibrations ambiantes, en raison de la facilité à trouver cette source d’énergie
mécanique. Néanmoins, les vibrations ambiantes sont généralement largement réparties
dans l’espace et caractérisées par un faible contenu énergétique. Par conséquent, pour
une récupération efficace de l’énergie, il est nécessaire de développer des systèmes
capables de transmettre et de piéger les vibrations (et l’énergie qu’elles transportent
avec elles) dans une petite région, où elles peuvent ensuite être collectées et converties
en énergie électrique. l’énergie au moyen, par exemple, de dispositifs piézoélectriques.

Parmi les solutions possibles, les matériaux artificiels qui portent le nom de “méta-
matériaux”, s’ils sont bien conçus, se sont avérés posséder d’excellentes propriétés en
termes de contrôle des vagues et peuvent être utilisés pour développer des systèmes de
récupération d’énergie basés sur les vibrations. Ici, on se concentrera sur un attribut
spécifique qui caractérise le comportement dynamique d’une classe de ces matériaux
composites, à savoir la présence de bandes interdites dans le spectre, i.e. des intervalles
de fréquences correspondant à des ondes atténuées. Les cristaux phononiques et les
matériaux localement résonnants à structure périodique appartiennent à cette classe
et sont les principaux sujets de ce travail. A l’aide d’un cristal masse dans masse, on
précise d’abord les rôles des principaux paramètres du problème de la propagation des
ondes dans ces deux typologies de métamatériaux. Ensuite, on utilise une technique
d’homogénéisation à deux échelles pour dériver leur comportement effectif à une échelle
inférieure à la longueur d’onde. En particulier, les matériaux localement résonnants
sont analysés, étant caractérisés par la présence de bandes interdites déjà à un régime
inférieur à la longueur d’onde.
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Avec l’idée de focaliser l’énergie mécanique dans une zone confinée, nous analysons
l’effet d’un défaut de périodicité. on montre que cela peut entraîner la formation de
modes localisés à des fréquences à l’intérieur d’une bande interdite. En utilisant des
matériaux localement résonnants, on développe alors un système (basé sur le phénomène
de tunneling résonant en physique) qui permet de piéger des ondes mécaniques dans
une cavité, c’est à dire dans la région du métamatériau avec un défaut de périodicité,
où l’énergie va s’empiler vers le haut et ainsi se concentrer. On utilise ici les propriétés
matérielles effectives dérivées.

Dans la dernière partie du manuscrit, nous étudions et validons expérimentalement
les phénomènes d’atténuation et de localisation sur une métastructure unidimensionnelle.
Pour cela, on utilise un câble tendu avec une famille de masses suspendues périodique-
ment répétées sur sa longueur. Dans un premier temps, nous étudions théoriquement
son comportement dynamique puis on compare les résultats avec un test expérimental,
validant les effets d’atténuation et de localisation.

L’objectif de cette thèse est double: d’une part nous visons à traiter le problème
élasto-dynamique associé aux milieux périodiques défectueux présentant des bandes
interdites (i.e. métamatériaux), et d’autre part on veut également donner des preuves
d’efficacité de ces systèmes de localisation de l’énergie mécanique. Nos résultats
fournissent de nouvelles informations sur le comportement dynamique des milieux
périodiques défectueux à utiliser dans les systèmes de récupération d’énergie, ce qui
rend ce travail pertinent à la fois pour les domaines théoriques et pratiques.
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1
C h a p t e r

Introduction

1.1 General context: the world of metamaterials

During the last decades, the field of metamaterials has experienced an evolution that
has lead them from being confined merely as academic curiosity, to become an active
field with several possible applications. The term “metamaterials”, with the Greek
prefix meta- meaning beyond, is normally used for denoting artificial (i.e. man-made)
composite materials that are constructed by repeating a unit cell, most often periodically.
The particular arrangement and the peculiar design of their micro-structure confer
them some unusual properties, which is unlikely to find in more common materials.
In contrast, taken individually, each constituent has a standard behavior. It is in this
sense that the composite material becomes a metamaterial.

Often in the literature, the above definition is completed by the statement that the
unusual behavior is expected to modify the macroscopic response of the composite; in
that case, the term metamaterial would be used only for denoting a sub-wavelength
regime. It is recognized in the literature that a commonly established definition of this
typology of materials does not exist yet (see e.g. the review by Lu et al. (2009)) and in
this work, when referring to a metamaterial, we decided to avoid the latter restriction,
if not explicitly specified.

1.1.1 Classification based on the problem of waves propagation

When dealing with the propagation of waves, a widely studied feature of metamaterials
is their dispersive behavior that enables for the control and manipulation of propagating
waves.

The most exploited property is the presence of band gaps affecting their dynamic
response, i.e. gaps of frequencies at which waves cannot propagate without attenuation.
Inspired from the behavior of crystals in solid state physics, this feature was first studied
in the field of electromagnetism, leading to the development of the so-called “Photonic
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Chapter 1. Introduction

Crystals” (PtCs) (Sakoda, 2005; Joannopoulos et al., 2008). Very soon, the exact same
concept was extended to the fields of elasticity and acoustics, with the emergence of
the so-called “Phononic Crystals” (PnCs) (Sigalas et al., 1992; Kushwaha et al., 1993;
Sigalas et al., 1995). From a mathematical point of view, these frequency gaps come
from the banded structure of the spectrum of the differential operator that is involved
in the problem (Kuchment, 1993; Figotin et al., 1996a,b). These two subclasses of
metamaterials are composed of structures with a spatial periodic modulation of their
material properties. Band gaps can appear when subjected to waves with a wavelength
comparable to the period.

(a) (b)

(c)

Figure 1.1: (a) A LRM whose basic unit structure is composed of a lead sphere coated
with silicone rubber and inserted in an epoxy matrix (source: Sheng et al. (2003)). (b)
An acoustic cloak whose unit cell is made up of an air-filled cube that has in the middle
an acrylic perforated plate (source: Zigoneanu et al. (2014)). (c) Eusebio Sempere’s
sculpture in Madrid (Spain) represents a famous example of a 2D phononic crystal for
acoustic waves (source: Martínez-Sala et al. (1995)).

In problems characterized by large wavelengths ranging from centimeters to meters,
PtCs and PnCs are hardly employed because low frequencies band gaps would require
rather large samples. It is at this stage that the so-called “Locally Resonant Materials”
(LRMs) broken through: they not only resolved the sample size problem, but also
introduced new functionalities, as e.g. superlensing (Pendry, 2000; Fang et al., 2006)
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Chapter 1. Introduction

and cloaking (Milton et al., 2006a; Milton et al., 2006b).
The present work contributes towards the objective of designing materials with

unusual response to elastic (and acoustic) waves. PnCs and LRMs for applications
in elastodynamic problems will thus be our field of interest and we will refer to them
whenever the term “metamaterials” will be encountered in the following of this work.

In the literature, PnCs and LRMs come in several possible configurations (cf. figure
1.1 for some examples), nevertheless, in the most general case, they are composed of a
matrix with periodically distributed inclusions that constitute their micro-structure.
The interested reader is referred to (Deymier, 2013; Laude, 2015; Romero-García et al.,
2019), where a detailed review and numerous applications of these two subclasses of
metamaterials are given.

The distinction between PnCs and LRMs is related to the different nature of the
mechanism responsible for the attenuation of propagating waves. The dynamic problem
is characterized by the presence of two length scales: the size ℓ of a unit cell (i.e. the
period) and the wavelength λ of the propagating wave. As stated before, in PnCs the
two scales are comparable (ℓ/λ = O(1)). The inclusions contained in each unit cell
behave exactly as the rectangular potential wells in a Kronig-Penney model, commonly
employed for studying the motion of electrons in solids (Kronig et al., 1931). Band
gaps are induced by a mechanism that resembles Bragg scattering and, therefore, the
basic physical reason for the existence of gaps lies in the coherent interference of waves.
PtCs have exactly the same functioning, but interact with electromagnetic waves. In
LRMs, ℓ ≪ λ and wave cancellation is due to Fano-like interactions (Goffaux et al.,
2002; Limonov et al., 2017) between the long-wavelength waves propagating in the
matrix and the local eigenvibrations of the micro-structural elements (Auriault et al.,
1985; Auriault, 1994; Milton et al., 2007).

1.1.2 Energy harvesting through defective metamaterials

Energy harvesting (EH) is the technology that pursues to scavenge electrical energy
from ambient sources. Over the past few years, this field has received a great deal
of attention due to the increasing desire to produce portable and wireless electronics
with extended lifespans, getting rid of chemical batteries that need to be replaced or
recharged constantly, decreasing the costs and the environmental impact (Elvin et al.,
2013). Potential applications of energy harvesting technologies include: wireless sensor
networks employed to survey civil infrastructure systems, sensors for monitoring tire
pressure in automobiles, powering unmanned aerial vehicles, medical sensors implanted
in the human body (such as pacemakers), and remote location sensors (Priya et al.,
2009). Numerous sources can be harvested, such as heat, wind, flowing water, and solar
energy. Nevertheless, one of the most effective ways of implementing a compact energy
harvesting system is to use ambient vibrations, being one of the most accessible energy
sources.

Among different methods that can be used for converting vibrations energy into
electric energy, piezoelectric transduction (Erturk et al., 2011) is the most popular one
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Chapter 1. Introduction

due to the easy application, the high power density, and the relative maturity of the
manufacturing methods of piezoelectric materials at different scales (Anton et al., 2007;
Priya, 2007; Tol et al., 2016b). More specifically, piezoelectric energy harvesting is
most often based on the so-called “direct piezoelectric effect”: the deformation of these
materials due to external vibrations produces electric polarization.

Ambient vibration sources are always distributed on a broad surface. It is thus
difficult for the generators to collect and convert such vibration energy. To obtain an
efficient energy harvester, one has to trap and focus the energy produced by external
vibrations in a given compact region, where it can be then converted in electricity
exploiting the piezoelectric effect.

(a) (b)

Figure 1.2: (a) Array of acoustic scatterers arranged to form an acoustic funnel to chan-
nel and focus the propagating waves (source: Carrara et al. (2013)). (b) Experimental
setup showing the PC Luneburg lens, with points A and B indicating the positions of
two piezoelectric harvester (source: Tol et al. (2017a)).

To this purpose metamaterials are very attractive, thanks to their abilities to modify
the behavior of propagating waves. Several approaches can be found in the literature,
relying on different mechanisms and geometries. With the awareness of not being
exhaustive, we list some examples herein. The reader is referred to the work of Hu et al.
(2021) for a detailed review. Focusing can be attained by using elliptic and parabolic
acoustic mirrors or by guiding and channeling propagating waves using acoustic funnels
(Carrara et al., 2013). With the same objective, gradient-index lenses have also been
employed in different configurations (Tol et al., 2016a, 2017a; Tol et al., 2017b), in
analogy to optical lenses. Aiming to increase the interaction time between waves and
the harvesting system to amplify the power output, graded arrays of resonators relying
on the so-called “rainbow effect” have been developed (De Ponti et al., 2020; De Ponti
et al., 2021). We report in figure 1.2 two of the listed examples.

All the harvesting systems listed above deals with waves that are not propagating
in the bulk (i.e. surface and plate waves). Another approach that in principle enables
for the focusing of all kinds of waves is based on the excitement of so-called defect
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modes, that can appear due to a perturbation of the periodicity of the domain under
consideration, by means of point or line defects.

As stated earlier, metamaterials are generally characterized by a periodic domain
and can possess band gaps in their continuous spectra due to the sequential scattering
initiated in each unit cell that composes them. A defect of this periodicity can result
in the appearance of eigenmodes at frequencies that belong to a band gap. The
corresponding field will then be localized around the defect and will decay exponentially
outside it (i.e. in the unperturbed part of the domain). The defect will thus behave as
a resonant cavity.

(a)

(b)

Figure 1.3: (a) A phononic crystal for mechanical with a central defect generated
by the removal of the central scatter element from the period array (source: Lv et al.
(2013)). (b) A metamaterial plate mounts an array of resonating stubs, with a Helmholtz
resonator placed in a central defect; acoustic waves directed as the vector k0 hit the
metamaterial and the generated oscillations are localized in the defect (source: Ma et al.
(2021)).

The central idea is that of creating a match between the defect resonance frequency
and the excitation frequency, inserting a device for harvesting the energy that is focused
in the defect as a result of the localization process. We will call this methodology
“Defective Energy Harvesting” (DEH).

The first attempts towards the development of DEH devices were conducted in
acoustics. In the work of Wu et al. (2009a,b), the authors considered a point defect
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obtained by removing the central rod in a sonic crystal1, placing a piezoelectric element
inside. In order to enhance the harvesting capabilities of their system, they later added
an Helmholtz resonator in the defect obtaining a stronger focusing of the external
vibrations (Wu et al., 2010). Placing the piezoelectric element inside the Helmholtz
resonator, a DEH device was later tested confirming the increasing of the scavenged
energy (Yang et al., 2013).

Concerning applications for mechanical waves, the harvesting capabilities of the
defective phononic crystal reported in figure 1.3a have been experimentally validated in
the work of Lv et al. (2013).

In all the DEH devices mentioned until now, the metamaterials considered base
their attenuating capabilities on a Bragg’s scattering phenomenon. Their dimensions
are thus intrinsically connected with the frequencies of interest. This aspect is a possible
issue when dealing with low frequency ambient vibrations2. There is thus a need of
sub-wavelength DEH systems. To this regard, preliminary results exist and cope with
the conversion of acoustic sources first into mechanical motion and then into electrical
energy, by considering defective LRMs composed of plates with a periodic distribution
of softer pillars that can resonate (Qi et al., 2016; Oudich et al., 2017; Ma et al., 2020).
An example of such systems is reported in figure 1.3b.The present work is intended to
contribute in this direction.

1.2 Scope of the present work

Keeping in mind the variety of possible applications previously described, the main
objective of this work is to provide a detailed study on the localization phenomenon that
can occur in metamaterials, when their periodic structure is altered by the introduction
of a compact defect or cavity. Specifically, this thesis addresses the propagation
of mechanical waves in discrete and continuous metamaterials.The focus is that of
exploiting the aforementioned phenomenon to develop systems behaving as defective
energy harvesting devices, both using PnCs and LRMs.

We mainly analyze the harmonic regime: if the source of the time dependent problem
under consideration is harmonically varying in time, then the solution is expected to
become itself harmonic after a sufficiently long time. Accordingly, we always look for
solutions that periodically vary in time.

We propose two lines of research, that are nevertheless strongly related. The first
one consists in treating the problem of wave propagation in microstructured media,
with the scope of shedding light on how the parameters involved affect the dynamic
behavior of this type of systems. In particular, for LRMs, we can use the two-scale
homogenization technique (Bensoussan et al., 1978). This method bears on the idea
of replacing the periodic (and usually heterogeneous) domain of the problem with an

1In acoustics, PnCs are also called sonic crystals.
2The dimensions of a unit cell is indeed inversely proportional to the frequencies composing the

band gap of interest.
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effective homogeneous medium, that is easier to deal with. When applied to LRMs,
one finds that the effective mass density can become negative for some intervals of
frequencies, corresponding to band gaps (Auriault et al., 1985). General results valid
for LRMs with a resonating element composed of an inner inclusion embedded inside a
coating layer (such as the one depicted in figure 1.1a) have already been considered in
the literature (Auriault et al., 2012). Nevertheless, we have not found a comprehensive
description of the resonating behavior of the two inclusions. We thus here revisit the
problem from a different point of view, that enables us to give more insights on the
dispersive behavior of these type of LRMs.

Following these results, we study the dynamic response of defective systems, by
introducing a cavity in a periodic LRM. To the best of our knowledge, although
the localization phenomenon has been already theoretically demonstrated to occur
(Ammari et al., 2017), applications of this particular behavior to DEH apparatus for
bulk mechanical waves in LRMs are still missing in the literature. This being interesting
for the design of sub-wavelength devices.

Concerning our second line of research, we explore the dynamics of suspended cables,
such as the ones used in suspension bridges or overhead lines. Quite often in engineering
applications these systems present a family of hanging elements, periodically distributed
along their length. Their linearized dynamics could be in principle characterized by many
similarities with the typical behavior of the metamaterials described in this thesis. We
here aim to give a demonstration of this latter assertion, by considering the problem of a
cable in tension between two supports, presenting equally distant attached masses along
its length. Our purpose is also that of comparing these theoretical results with those
coming from an experimental test. Finally we intend to give an experimental validation
of the localization phenomenon previously described by employing the aforementioned
cable systems: the periodic set of masses can indeed be altered for instance by removing
one mass from the array and a defect is thus formed.

1.3 Organization of the thesis

Following this introduction, we divide the thesis in five chapters (plus a final chapter of
conclusions), whose content is here briefly described.
Chapter 2. The problem of wave propagation in periodic domains is introduced and
the Bloch-Floquet approach is presented. A mass-in-mass 1D lattice is used to show and
explain the mechanisms of Bragg scattering and local resonance, that are responsible
for the formation of band gaps.
Chapter 3. The effective behavior of LRMs is derived exploiting the two-scale
homogenization technique. Some new results concerning the resonating behavior of
three-phase systems are proposed. The effective mass density of two example cases is
analytically obtained.
Chapter 4. The problem of wave (and energy) localization in defective metamaterials
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is established. A new method for trapping mechanical waves is presented by using the
aforementioned mass-in-mass chain in a 1D discrete system. The functioning is based
on the resonant tunneling phenomenon known from quantum mechanics,
Chapter 5. A continuous DEH device based on the same mechanism described in
chapter 4 is developed by introducing a cavity in LRMs of the type outlined in chapter
3. The efficiency of this system in localizing and enhancing the mechanical energy
carried by propagating waves is also studied.
Chapter 6. The dynamic problem associated with the motion of cables hanging
between two supports is presented both for the case with and without periodically
attached masses. Several approximations concerning the static behavior of these systems
are shown and used as a starting point for the problem of small oscillations around
the equilibrium configuration of the cable. Theoretical and experimental results are
compared and the localization phenomenon obtained by the removal of one mass from
the periodic array is experimentally demonstrated.

1.4 Notation

Throughout this work, normal-face letters (a) stand for scalars; Latin boldface letters
(a) denote vectors; Greek boldface letters (α) designate second-order tensors, while
boldface upper-case sans-serif Latin letters (A) designate fourth-order tensors. Vectors
and tensors components are indicated normal-face (being scalars), followed by subscripts
defining the indexes within squared brackets (a[i], α[ij], A[ijkh]). It will be clear from
the number of indexes if either a vector (one index), or a second order tensor (two
indexes), or a fourth order tensor (four indexes) will be under investigation. Operators
are specified with upper-case normal-face script Latin letters (A ). Calligraphic letters
(A) are reserved for sets.

The following specific notations do not respect the general rules indicated here-above:
the letter V, in absence of any further specifications, will always denote a regular open
region in Rn of class C1, with n ∈ {1, 2, 3}, whose boundary will be designated by
∂V; each time it will be clear from the context if the domain is bounded, unbounded,
periodic and so on; the letter Y is used to denote a unit cell of a periodic domain V and
its volume (or area) is indicated as |Y|; the boldface letter I denotes the second-order
unit tensor, whereas the non-italic I stands for the tensor of inertia; the symbol δij ,
with i, j ∈ {1, 2, 3}, is reserved for the ij-component of the Kronecker delta.

The spatial and time averages of a field (•) are given as:

⟨(•)⟩ = 1
|V|

∫
V

(•) dV, ⟨(•)⟩p = 1
|V|

∫
Vp

(•) dVp, ⟨(•)⟩t = 1
T

∫ T

0
(•) dt,

where Vp and T denote respectively a bounded region of V and a period of time.
Subscripts p and t might be skipped when no confusion between spatial and time
averages can arise.
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When a function (•)(x, t) of a generic space variable x and time t is under consider-
ation, we often use (•)′(x, t) := ∂(•)/∂x and ˙(•)(x, t) := ∂(•)/∂t for the differentiations
of (•) with respect to its variables.

The conjugate of a complex number u is denoted u, its modulus |u|, its real part
Re(u) and its imaginary part Im(u).

The outward normal to a boundary ∂V is the unit vector n, that is normal to any
of the points composing the plane tangent to ∂V.

the Greek letter σ, alone or with a subscript not contained in squared brackets, is
reserved for the spectrum of a linear operator.

We denote by L2(V,Cn), with n ∈ {1, 2, 3}, the Hilbert space of square-integrable
functions from V into Cn, with the usual norm

||(•)||L2 =
[∫

V
|(•)|2 dµ

]1/2
,

where µ is the Lebesgue’s measure in V. We often use [L2(V)]n or [L2]n, in place of
L2(V,Rn), for real-valued functions. The space ℓ2 is the Lebesgue space of square-
summable sequences. The same considerations are valid for the Sobolev space H1(V,Cn),
endowed with the usual norm

||(•)||H1 =
[
||(•)||2L2 + ||∇(•)||2L2

]1/2
,

with ∇(•) being the gradient of the function (•), where the derivatives have to be
understood in the weak sense. We use H1

0 to denote the closure in H1 of the space
of infinitely differentiable functions with compact support in V. When not specified,
functions will be either in [L2(V)]n or [H1(V)]n and the norm ||(•)|| is used, in general,
to denote their usual norms. We denote as W 1,∞(V) the Sobolev space of functions
(•) ∈ L∞ such that ∇(•) ∈ L∞, with the derivatives to be understood in the weak sense.
In one-dimension W 1,∞(V) corresponds to the space of Lipschitz continuous functions.
We finally use [L2

#(Y)]n and [H1
#(Y)]n for the following Lebesgue and Sobolev spaces:

[L2
#(Y)]n := {(•) ∈ [L2

loc(Rn)]n such that (•)(x + p) = (•)(x)
for almost everywhere x ∈ Rn,∀p ∈ Zn}

[H1
#(Y)]n := {(•) ∈ [L2

#(Y)]n such that ∇(•) ∈ [L2
#(Y)]n}

with Y here standing for the unit cell (0, 1)n and [L2
loc]n being the space of [L2]n

functions locally. A function belonging to these spaces is said to be Y-periodic.
Einstein’s summation rule will be used throughout the manuscript for vectors and

tensors components, with repeated indexes implicitly denoting a sum.
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C h a p t e r

Preliminaries

Chapter summary: This chapter aims to give an introductory description of the problem
of waves propagation in homogeneous and periodically heterogeneous media. The Bloch-
Floquet method is presented and general features characterizing the behavior of periodic
bodies are derived. Band gaps are then defined and their physical origins are studied by
means of a mass-in-mass one-dimensional lattice.
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Metamaterials are most often constructed from a periodic repetition of a single unit
cell. Their dynamic behavior can be strongly simplified by considering the propagation
of waves in infinite periodically heterogeneous media and, consequently, by exploiting
the “Bloch-Floquet (BF) method”. We thus initially give a short introduction on this
subject, that is based on the existing literature (Conca et al., 1995, 1997; Comi et al.,
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2020). The study of wave propagation in metamaterials generally aims to determine
the dispersive properties and the presence of band gaps. The BF approach is then
particularly useful since it reduces the effort for the determination of the spectrum of
the problem.

The objective of this chapter is to show and describe which are the main ingredients
that govern the peculiar elastodynamic behavior of metamaterials. In particular, we
are interested in determining under what conditions frequency band gaps can appear.
We consider as starting point a one-dimensional periodic structure constituted by the
repetition of masses connected by springs in series, each one containing an internal
mass-spring resonator. This enables us to analytically fully determine its dynamic
response by characterizing the formation of band gaps and by introducing the concept
of “effective mass” for a discrete system. This notion turns out to be another useful
tool for the characterization of the dynamic behavior of periodic structures. Moreover,
the concept of effective mass will also be central in chapter 3, where its definition will
be extended to continuous bodies.

As stated in the introduction, we recall that in our work we use the term “meta-
materials” to indicate both Phononic Crystals (PnCs) and Locally Resonant Materials
(LRMs). This further subdivision comes from the two very different physical mecha-
nisms responsible for the formation of band gaps in their spectrum: respectively Bragg
scattering and local resonance. We thereafter justify our choice to group them in one
class of materials by showing that both mechanisms can (and in general they do) take
place in the same structure.

Part of this chapter was the subject of the following publication: Moscatelli et al.,
2021.

2.1 Propagation of waves in infinite periodic media

The propagation of waves in a periodic structure is a generalization of what happens in
homogeneous media. Starting from the characterization of the elastodynamic problem
in unbounded domains, we then analyze the problem of free waves1 when the medium
is homogeneous. The spatial periodicity is subsequently established, the Bloch-Floquet
approach presented and the behavior of free waves in unbounded periodic domains
characterized.

2.1.1 The infinite medium

Let us consider an elastic body V occupying the n-dimensional Euclidean space Rn

with n ∈ {1, 2, 3} and whose points are denoted as x. By fixing an arbitrary origin x0,
the points space V can be identified as a subset of the (normed) linear space Rn. The
coordinates {x[n]}n∈{1,2,3} of a point x can thus be defined as the projections of the

1We use the term “free” to mark the fact that waves of this type are not generated by an external
source.
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corresponding vector x onto a Cartesian frame with origin in x0. We will call en, with
n ∈ {1, 2, 3}, the unit vectors directed as the axes of the Cartesian frame and we will
refer to a specific direction of that reference system as either xn or en. In what follows,
we will generally consider V = Rn.

We assume that the motion of V is completely described by a displacement vector
field u(x, t) function of position x and time t, defined on V ×R+. The solid is supposed
to behave as a linearly elastic material.

Under the hypothesis of small perturbations, the (symmetric) infinitesimal strain
tensor ε is given by the following compatibility condition:

ε(x, t) = ∇ ⊙ u(x, t). (2.1)

In the framework of linear elasticity, the (symmetric) stress tensor σ is given by the
constitutive law

σ(x, t) = E(x) : ε(x, t), (2.2)

where the fourth order stiffness tensor E defines the elastic properties of the material
under consideration. Its components E[ijkh] ∈ R are at least piecewise smooth functions
of x, verifying symmetry and (strong) ellipticity conditions:{

E[ijkh] = E[ijkh] = E[ijkh] (symmetry),
∃α > 0 | E[ijkh](x)ξ[kh]ξ[ij] ≥ αξ[ij]ξ[ij], ∀ξ | ξ[ij] = ξ[ji], ∀x (ellipticity).

(2.3)

The elastodynamic problem is governed by the following motion equation

∇ · σ(x, t) + f(x, t) = ρ(x)ü(x, t), (2.4)

where the source term f denotes the body forces density and ρ designates the scalar
mass density.

To complete the problem statement, initial conditions on the displacement u and
on the velocity u̇ must be defined as follows{

u(x, 0) = u0(x),
u̇(x, 0) = u̇0(x).

(2.5)

In many physical problems f may be considered harmonic in time with angular
frequency ω > 0. The excitation is thus monochromatic and may be represented as

f(x, t) = F (x) exp {iωt}. (2.6)

The solution can then be expressed as

u(x, t) = ũ(x, t) + U(x) exp {iωt}, (2.7)

where the first term on the right-hand side is the transient solution and the second
one is the steady-state solution. It is expected that, after a sufficiently long period, the
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transient part of equation (2.7) satisfying the initial conditions (2.5) decays to zero and
that only the steady-state solution survives.

As stated in the introduction, we are here mainly interested in the steady-state
regime, consequently we can neglect ũ in relation (2.7) and consider a wave function
harmonically dependent on time. Correspondingly, the motion equation in terms of U
becomes the inhomogeneous Helmholtz equation1

∇ · (E(x) : (∇ ⊙ U(x))) + F (x) = −ω2ρ(x)U(x). (2.8)

2.1.2 Free waves in homogeneous unbounded domains

So far we have assumed the body to be heterogeneous. In this subsection we consider a
homogeneous medium, with E and ρ to be x-independent functions. We are interested
to study the problem when no source terms are present.

We seek for solutions of equation (2.8) under the form of propagating plane waves
of wavevector k ∈ Rn:

U(x) = Uk exp {ik · x}, (2.9)

where k = kp, with k being the wave number and p the unit vector defining the
direction of propagation of the wave. The motion equation (2.8) then becomes[

p · E · p − c2 ρ I
]

· Uk = 0 (2.10)

with c = ω/k being the phase velocity (also denoted wave speed) and I the identity
second order tensor.

Defining the tensor
Γ := p · E · p (2.11)

with the indexes contraction Γ[jk] = E[ijkh] p[i] p[h], solutions exist only if

det [Γ − c ρ I] = 0. (2.12)

Condition (2.12) corresponds to the map k → ω(k) and represents the so-called
dispersion relation, defining the (continuous) spectrum of the operator associated to
the problem of free waves propagating in unbounded homogeneous domains.

For a given direction, in an n-dimensional medium there can be n phase velocities
ci, each one corresponding to a specific eigenvector Uk,i defining the direction of the
motion, i.e. the wave polarization, with i here spanning from 1 to n. Propagation is
thus anisotropic in general, but since the phase velocities are constant along a specific
direction p (i.e. they do not depend on the frequency ω), then the medium is defined
to be non-dispersive.

Due to assumptions (2.3), ci are real and positive, and Uk,i are orthogonal in the
Rn sense (i.e. in the Euclidean norm).

1For unbounded domains, the uniqueness of the solution is guaranteed by requiring that the wave
function satisfies the Sommerfeld radiation condition at infinity, as indicated in Eringen et al. (1974).
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For isotropic solids, the constitutive relation (2.2) can be rewritten as

σ(x) = λ(x) tr(ε(x))I + 2µ(x)ε(x), (2.13)

where λ and µ are the Lamé’s constants. Considering the homogeneous domain here
studied, equation (2.8) takes the form:

µ∆U(x) + (λ+ µ) ∇∇ · U(x) + F (x) = −ω2ρ(x)U(x), (2.14)

Plane waves solutions of the form (2.9), can be readily derived. Typically, one finds one
longitudinal (or pressure) wave and two transversal (or shear) waves whose polarizations
are respectively aligned and perpendicular to the direction of propagation of the plane
wave and whose phase velocities are

cℓ =
√
λ+ 2µ
ρ

, cs =
√
µ

ρ
, (2.15)

independently from the direction p.

2.1.3 Spatial periodicity

We now consider V to be a periodic domain. With this, we intend to describe a body
whose elastic stiffness E and scalar mass density ρ are both invariant with respect to a
set {ai}i∈{1,...,n} ⊂ Rn of rigid translation vectors that compose the so-called primitive
basis. This means that, defining A ⊂ Rn as the vector space of all the translation
vectors a satisfying

a =
n∑

i=1
piai, ∀pi ∈ Z, (2.16)

the body will look the same when viewed from the point x as when viewed from every
point x′ such that

x′ = x + a, ∀a ∈ A. (2.17)

The set of points x′ calculated from relation (2.17) defines the so-called Bravais lattice
associated to V (Kittel, 2004).

The periodicity is thus obtained from an infinite repetition of an identical unit cell
Y, defined as

Y = {x ∈ V : x = x0 +
n∑

i=1
αiai, −1/2 ≤ αi < 1/2 ∀i ∈ {1, . . . , n}, x0 ∈ V} (2.18)

and a function f : Rn → Rm with n,m ∈ {1, 2, 3} is said Y-periodic, any time

f(x′) = f(x), ∀x,x′ ∈ V fulfilling relation (2.17), (2.19)

i.e. any time it is invariant under a.
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Following this definition, both E and ρ are Y-periodic functions. Such periodicity
creates an ideal situation for Fourier analysis. Considering wavevectors b ∈ Rn of the
plane waves that compose the Fourier expansions of such periodic functions, they all
respect the following condition

a · b = 2πp, p ∈ Z, ∀a ∈ A, (2.20)

that ensures the fulfillment of the periodicity requirements1. The set B of all the
vectors b defined in the Fourier space associated to the periodic domain V and satisfying
condition (2.20) is called reciprocal lattice. Its primitive basis is composed of the set of
vectors {bj}j∈{1,...,n} such that

ai · bj = 2πδij , ∀i, j ∈ {1, . . . , n}, (2.21)

with δij being the Kronecker’s delta.
We are now in position to determine what is known in the literature as First

Brillouin Zone (FBZ), defined as the unit cell Y∗ dual to Y whose points are closer to
the point 0 than to any other element of B, such that:

Y∗ = {k ∈ Rn : k =
n∑

i=1
α∗

i bi, −1/2 ≤ α∗
i < 1/2 ∀i ∈ {1, . . . , n}}. (2.22)

We report in figure 2.1 a sketch representing a generic Bravais lattice, together with its
reciprocal lattice, and their associated bases.

a1

a2
b1

b2

Bravais lattice Reciprocal lattice

Figure 2.1: Sketch of a generic 2D Bravais lattice and its reciprocal lattice, with their
corresponding primitive bases.

1Before we used the letter k for denoting a wavevector of a generic plane wave. Here, instead, we
use the letter b to stress out its function as wave number of plane waves that build up the Fourier
expansion of a Y-periodic function and to cope with the existing literature. Note that, as stated in the
text, b ∈ Rn since E and ρ are both real functions.
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2.1.4 Bloch-Floquet approach

When dealing with a domain V composed of a repetition of unit cells Y, the equation
(2.8) governing the motion of the body in the harmonic regime is characterized by
periodic coefficients. We again look for free waves and, thus, we consider no source
terms. Contrary to the homogeneous case analyzed in subsection 2.1.2, considering
“simple” plane waves (i.e. applying a Fourier transform with respect to the spatial
variable) does not result to be an effective tool for transforming the motion differential
equation into a set of algebraic equations. Nevertheless, this problem can be tackled by
exploiting the periodicity of V, resulting in what is known as Bloch-Floquet method1.

The core of this approach is the use of the so-called Bloch waves and Bloch transform,
that play the same role respectively of plane waves and Fourier transform in homogeneous
media.

Specifically, the objective is that of defining the spectrum of an operator L on
[L2(V)]n invariant with respect to the translation vectors a ∈ A, such that

L (•) := − 1
ρ(x)∇ · (E(x) : (∇ ⊙ (•))) . (2.23)

In order to take into account the translation invariance on its spectrum, the method
consists of introducing a family of spectral problems parameterized by a wavevector
k ∈ Rn, such that

L (u(x,k)) = λu(x,k) in V, λ ∈ C (2.24a)
u(x + a,k) = u(x) exp {ik · a} ∀x ∈ V, ∀a ∈ A. (2.24b)

A function u respecting condition (2.24b) is called (Y,k)-periodic.
Note that problem (2.24) is invariant when k is replaced by k + b and thus the

eigenvectors k can be confined in Y∗. While equation (2.24a) is a typical eigenvalue
problem, a justification of the form (2.24b) of the solution can be found in the work
of Conca et al. (1997) and comes from group theoretic arguments, by considering the
discrete translational symmetry of the solid. The eigenvalues and the eigenvectors
of problem (2.24) are respectively known as Bloch eigenvalues and Bloch waves. To
simplify the boundary conditions of the problem, Bloch waves are generally taken in
the following form: {

u(x,k) = ũ(x,k) exp {ik · x},
ũ(x,k) is Y-periodic.

(2.25)

Accordingly, given a function f(x) ∈ [L2(V)]n, Bloch waves allows for the definition of
1In the mathematical literature, for the case of ordinary differential equations, this problem was

treated by Floquet (1883). For partial differential equations, corresponding results were first established
by Bloch (1929), who presented what is known in physics as Bloch wave method. It is for this reason
that the latter approach generally goes under the name of Bloch-Floquet method.
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its (unique) Bloch transform f b(x,k) ∈ [L2(Y × Y∗)]n, such that:

f b(x,k) =
∞∑

i=1
f i

b(k)ũi(x,k), (2.26)

with f i
b being the projection of the function f b onto the i-th Bloch wave ũi(x,k). The

function f can then be retrieved through the inverse Bloch transform defined as:

f(x) =
∫

Y∗
f b(x,k) exp {ik · x} dk. (2.27)

2.1.5 Free waves in periodically heterogeneous unbounded domains

Following the discussion in the previous subsection, the problem of free waves propa-
gating in periodic media can be solved by employing the Bloch-Floquet method. The
transformation (2.25) is thus applied to the displacement field U(x). It maps the equa-
tion of motion (2.8) without the source term to the following problem with simplified
boundary conditions: find λ = ω2(k) and Ũ(x,k) not identically zero such that(∇ + ik) · E(x) :

[
(∇ + ik) ⊙ Ũ(x,k)

]
= −λρ(x)Ũ(x,k) ∀x ∈ Y, ∀k ∈ Y ∗,

Ũ(x,k) is Y-periodic.
(2.28)

The operator Lk on [L2(Y × Y∗)]n defined from the above problem as:

Lk(•) := −1
ρ

(∇ + ik) · E : [(∇ + ik) ⊙ (•)] (2.29)

is generally known as shifted (or translated) operator.
The advantage of the Bloch-Floquet method lives in the reduction of a spectral

problem in the unbounded domain V with oscillating coefficients, to a family of eigenvalue
problems in the unit cell Y.

At given k ∈ Y∗, problem (2.28) enjoys the following properties:

1. The eigenvalues λp(k) constitute a sequence of non-negative real numbers
{λp(k)}p∈N∗ , which tends to infinity without accumulation points;

2. The eigenvectors Ũp(x,k) associated to an eigenvalue λp(k) constitute a subspace
(eigenspace) of [L2

#(Y)]n of finite dimension;
3. The eigenspaces are orthogonal to each other in the sense of the scalar product

(u,v) = 1
2

∫
Y
ρ (u · v + v · u) dx ∀u,v ∈ [L2

#(Y)]n (2.30)

and constitute a countable basis of [L2(V)]n.
4. Changing the unit cell from Y∗ to αY∗ and the wave vector from k to k/α, simply

scale the spectrum of 1/α without affecting its structure.
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Note that point 3 justifies relation (2.26).
By varying k ∈ Y∗, one obtains the spectral resolution of the shifted operator in

[L2(V)]n, such that:

1. the spectrum σ of L coincides with the Bloch spectrum σb of Lk, the latter being
defined as

σb :=
∞⋃

p=1

[
inf

k∈Y∗
λp(k), sup

k∈Y∗
λp(k)

]
; (2.31)

2. ∀p ≥ 1, the map k → λp(k) is a Lipschitz function and defines the dispersion
relation of the medium;

3. λ = 0 is always a solution of problem (2.28);
4. when k ∈ Y∗ and k ̸= 0, then λ = 0 is not a solution of problem (2.28).

Following the above properties, the spectrum σ of a body V unbounded and periodic
is composed of an infinite and countable number of branches. The dispersion relation
is in general not linear, therefore the medium can become dispersive. In contrast to
the homogeneous case, σ does not need to fill up the entire space R+ and so-called
band gaps (BGs) might appear. Whenever ω ∈ BGs, then solutions can still be found
in the form of Bloch waves by allowing k to become complex valued. In that case,
the corresponding wave has an amplitude that decreases in space and is said to be
attenuated. A band gap is thus an interval of frequencies at which propagating waves
are attenuated.

2.2 The discrete mass-in-mass chain

The physical explanation for the formation of band gaps resides in two mechanism,
namely Bragg scattering and local resonances. A rather common and efficient way to
demonstrate the previous assertion consists in using discrete systems. Lattice systems
composed of lumped masses connected by springs, thoroughly studied by Brillouin
(1946), have been constructed for analyzing the behavior of crystals when subjected to
elastic waves. Their dynamic response is very similar to that of PnCs, being governed
by the superimposition of multiple reflected waves, that can behave in a coherent way
for either constructive or destructive interference. These systems are thus characterized
by a Bragg scattering phenomenon. LRMs are instead generally modeled with so-called
“mass-in-mass lattices” of the type shown in figure 2.2, where local resonances can be
activated due to the presence of the internal oscillator of mass m2 and stiffness k2.

Our objective in this section is twofold.

• Firstly, we intend to give a better explanation of what is meant by Bragg scattering
and local resonance. Most often in the literature mass-in-mass chains are used
only for describing their local resonant behavior. Nevertheless, we show here that
these systems are instead also influenced by Bragg reflections, that are normally
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Figure 2.2: Sketch of the mass-in-mass chain and zoom over its microstructure. Masses
m1 are connected to the nearest neighbors with springs k1 on both sides. Each mass m1
contains a resonator of mass m2 and stiffness k2. The chosen unit cell includes mass
m1 with the internal resonator and two springs of stiffness k1/2. We call ℓ the size of
the unit cell.

not taken into account. We thus employ the lattice shown in figure 2.2 to comment
on the two mechanisms responsible for the formation of band gaps.

• Then we show how the parameters involved in the motion problem of a mass-
in-mass lattice affect its dynamic behavior. The simplicity of the considered
structure allows for a closed form solution to be found, giving insights on the
behavior of more general periodic bodies that will be analyzed in the rest of this
work.

Our considerations are based both on the BF method and on the definition of an
“effective mass” for discrete lattices.

For the current section, the angular frequency ω will be called just “frequency”.

2.2.1 Formulation of the motion problem

Let us consider the mass-in-mass chain in figure 2.2. In this case, the domain V of
definition of the problem is discrete and embedded in the one dimensional space Z ⊂ R.
The primitive basis is thus here composed only by one vector a1.

The system is composed of a periodic repetition of external masses m1 which are
connected to the nearest neighboring masses with springs k1 and contain internal
resonating masses m2, attached with springs k2. With the aim of keeping the symmetry,
the chosen unit cell shown in figure 2.2 includes mass m1 with the internal resonator
(of mass m2 and stiffness k2) and two springs of stiffness k1/2. The size of the unit cell
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is ℓ. Each spring is considered as massless. The index j ∈ Z is used for referring to a
particular cell in the chosen numbering. The displacements of the external and internal
masses are denoted by uj and vj respectively.

The motion1 of the mass-in-mass chain is governed by the following differential
system of equations: {

m1üj = k1∆ju+ k2(vj − uj)
m2v̈j = k2(uj − vj)

(2.32)

where ∆j denotes the discrete differential operator

∆ju = uj+1 + uj−1 − 2uj (2.33)

and superposed dots mark time derivatives.
We are interested in the steady-state response, therefore we will only consider

motions at a given frequency ω, so that the variation in time t of the displacement can
be expressed as

uj(t) = Uj exp(iωt), vj(t) = Vj exp(iωt)

and hence the system (2.32) becomes:{
m1ω

2Uj + k1∆jU + k2(Vj − Uj) = 0
m2ω

2Vj + k2(Uj − Vj) = 0
(2.34)

Let us introduce the eigenfrequencies of each mass-spring part as

ω1 =
√
k1
m1

, ω2 =
√
k2
m2

and the following dimensionless (positive) quantities:

Ω = ω2

ω2
2
, ϵ =

√
k1
k2
, θ = m1

m2
, (2.35)

with Ω being the frequency of the wave under consideration normalized with respect to
the eigenfrequency of the internal resonators, ϵ is the square root of the stiffness ratio,
and θ is the mass ratio.
Inserting the above dimensionless quantities into equations (2.34) leads to:{

θΩUj + ϵ2∆jU + (Vj − Uj) = 0
ΩVj + (Uj − Vj) = 0

(2.36)

1We here formulate the problem in an elastodynamic framework, nonetheless, everything that follows
applies also to the problem of waves propagation in acoustics, with a suitable reinterpretation of the
quantities.
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The second of equations (2.36) gives Vj in terms of Uj (provided that Ω ̸= 1):

Vj = Uj

1 − Ω (2.37)

and inserting this relation into the first of equations (2.36) gives the discrete differential
equation governing the motion of U :

ϵ2∆jU + µθ(Ω)Uj = 0 with µθ(Ω) = θΩ + 1
1 − Ω − 1. (2.38)

The first of the relations (2.38) is the equation governing the motion of a one-dimensional
mass-spring chain composed of only one type of particles. Therefore, the function
Ω → µθ(Ω) can be interpreted as a (dimensionless) effective mass, multiplied by a
dimensionless (positive) frequency Ω. For clarity, we will simply call it effective mass.

At given Ω, the motion depends on the two parameters θ and ε. The arrangement
of a stiff inclusion embedded in a soft matrix (“stiff-in-soft”) is typically used for PnCs
and corresponds to small ϵ. The opposite case (“soft-in-stiff ”), commonly employed for
LRMs, is instead represented by a large ϵ. Consequently, this system can in principle
be used as a simplified model for analyzing the behavior of both cases.

2.2.2 General solutions

We are now interested in describing the spectrum of the problem and in finding its
solutions.

Let us start from the BF approach. Using this method, the motion is searched
under the form Uj+1 = Uj exp {iκ}, where κ is the given wave number normalized with
respect to the cell size. Inserting this form into equations (2.36) gives the dispersion
equation relating the frequency to the wave number:

4ϵ2 sin2 κ

2 = µθ(Ω). (2.39)

Therefore, at given κ, a solution exists for Ω only if

0 ≤ µθ(Ω) ≤ 4ϵ2. (2.40)

This condition determines the pass bands, i.e. the gaps of frequencies corresponding to
propagating waves. In particular, one obtains the dispersion plot shown in figure 2.3a

Thanks to BF method, this result is straightforward; however it is also unsatisfactory,
since we do not known the response of the system for waves with a frequency outside
the pass bands (i.e. inside a band gap). This information is fundamental in order to
give a physical interpretation of the mechanisms responsible for the formation of band
gaps and can be obtained by investigating the problem in terms of the effective mass
µθ

1. Let us first study the properties of this function at given mass ratio θ. From the
1Actually the motion of the chain for Ω ∈ band gap could be defined also by using the BF approach;

nevertheless, with the concept of effective mass we believe to gain in clarity and simplicity. Moreover,
this concept will be again used later on in other parts of this work.
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second of relations (2.38), one sees that µθ is monotonically increasing in its domain of
definition, as shown in figure 2.3b. Specifically, one obtains that µθ is always increasing
with Ω and is negative in the interval (1, 1 + 1/θ) of Ω.

π0

1

κ=

Ωm

ΩM

1+1/θ

(a)

Ωm ΩM

Ω

µ
θ

1 1 + 1/θ

4ε2

(b)

Figure 2.3: Dispersion plot (Ω vsκ) from BF approach (a) and variation of µθ(Ω) with
Ω (b). Intervals [Ωm, 1 + 1/θ] and [ΩM ,+∞) denote the two band gaps: ΩA = [Ωm, 1]
(darker blue) and ΩC = [ΩM ,+∞) (gray) are due to Bragg scattering; ΩB = [1, 1 + 1/θ]
(lighter blue) is due to local resonances. Ωm and ΩM are given by relations (2.49). By
varying ϵ, the vertical dashed lines move and the band gaps due to Bragg scattering get
either wider or narrower when ϵ becomes respectively smaller and larger. The part of
the first band gap generated by local resonances can be modified only by varying θ.

The general solution of equation (2.38) can be obtained in closed form. Let us
search the solution as Uj = rj with r to be determined. Inserting it into equation (2.38)
gives the following second degree equation for r:

r2 − 2br + 1 = 0 with b = 1 − µθ(Ω)
2ϵ2 . (2.41)

Therefore the roots will be real for |b| ≥ 1 and complex for |b| < 1. Let us consider each
case separately.

(i) 0 < µθ(Ω) < 4ϵ2. In that case, |b| < 1 and the two roots are complex conjugate.
Let us set

b = cos K∗ with K∗ ∈ (0, π). (2.42)

Then the two roots are r = cos K∗ ± i sin K∗ = exp {±iK∗} and the general solution
of equation (2.38) reads

Uj = a1 cos jK∗ + a2 sin jK∗, (2.43)

where a1 and a2 are two arbitrary constants fixed by boundary conditions.
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(ii) µθ(Ω) < 0. In that case, b > 1 and the two roots are real numbers. Let us set

b = cosh K∗ with K∗ > 0. (2.44)

Then the two roots are r = cosh K∗ ± sinh K∗ = exp {±K∗} and the general
solution of equation (2.38) reads

Uj = a1 cosh jK∗ + a2 sinh jK∗. (2.45)

(iii) µθ(Ω) > 4ϵ2. In that case, b < −1 and the two roots are real numbers again.
Setting

b = − cosh K∗ with K∗ > 0 (2.46)

the two roots are r = − cosh K∗± sinh K∗ = − exp {±K∗} and the general solution
of equation (2.38) reads

Uj = a1(−1)j cosh jK∗ + a2(−1)j sinh jK∗. (2.47)

Note that, when |b| = 1 (i.e. when µθ(Ω) = 0 or µθ(Ω) = 4ϵ2), the solutions of
equation (2.41) are double roots. For this particular case, one can check that the general
solution of equation (2.38) becomes:

Uj =
{
a1 + ja2 when µθ(Ω) = 0
(−1)j(a1 + ja2) when µθ(Ω) = 4ϵ2

This can be verified either by looking at the limiting behaviors of relations (2.43), (2.45)
and (2.47), or by directly looking for a second solution of equation (2.38) in the form
Uj = jrj .

In the above relations, K∗ represents a wave number and can be thought of as a
function of the frequency Ω by using the second of the relations (2.41) into relations
(2.42), (2.44) and (2.46).

2.2.3 Physical interpretation of the band gaps

Let us now describe more in details the three different behaviors (i), (ii) and (iii). The
solution corresponds to propagating waves only in case (i). The two other cases (ii) and
(iii) designate the band gaps. This result coincides with that of the BF approach (as
one can check from condition (2.40)). Accordingly, band gaps are given by the intervals
of Ω such that µθ(Ω) < 0 or µθ(Ω) > 4ϵ2.

The first condition is verified by the interval ΩB = (1,Ω0 = 1 + 1/θ) where the
effective mass is negative (lighter blue band in figure 2.3). In this case, by using relation
(2.37), one finds that masses m2 move in phase opposition with respect to the motion
of masses m1. As frequencies in this interval are close to Ω = 1, i.e. to the frequency of
resonance of the internal resonators, this spectrum gap is thus generated by the local
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resonances of the internal masses m2, that inhibit the global movement of the external
masses m1.

Concerning the second condition, there exist two values of Ω, say Ωm and ΩM , such
that µθ(Ω) = 4ϵ2. Specifically, Ωm and ΩM are the two roots of the second degree
equation

θΩ2 − (1 + θ + 4ϵ2)Ω + 4ϵ2 = 0 (2.48)

and read: 
Ωm = 1

2θ
(
1 + θ + 4ϵ2 −

√
(1 + θ − 4ϵ2)2 + 16ϵ2

)
,

ΩM = 1
2θ
(
1 + θ + 4ϵ2 +

√
(1 + θ − 4ϵ2)2 + 16ϵ2

)
.

(2.49)

The first root Ωm belongs to the interval (0, 1) and the second one ΩM is greater than
Ω0. When Ω = 1, one sees directly in system (2.36) that Uj = Vj = 0 and no motion
is possible. Hence, the band gaps correspond to the two intervals ΩA = [Ωm, 1] and
ΩC = [ΩM ,+∞), shown in figure 2.3 respectively by the darker blue and gray bands.
In this case, the external masses m1 do not move in-phase; in particular, the motion of
consecutive masses is in phase opposition. This means that for Ω ∈ ΩA and ΩC , the
solution has the form of an attenuated wave that is trying to propagate throughout
the system with a wave length two times the period of the chain. This coincides with
the Bragg scattering condition, as it will be shown in the next subsection. Accordingly,
band gaps from case (iii) above are to be interpreted as generated by Bragg reflections.

Let us note that, concerning the motion of masses m2, one has to distinguish
between ΩA and ΩC (relation (2.37) is again employed). When Ω ∈ ΩA, masses m2
move in-phase with masses m1 and no local resonances are present. When Ω ∈ ΩC ,
masses m2 move out-of-phase with respect to masses m1 (as for band gap ΩB) and it
would seem that local resonances were present; nonetheless their motion is not generated
by a resonant behavior, as frequencies Ω ∈ ΩC are far away from Ω = 1 (i.e. from the
frequency of resonance for the internal mass m2). In particular, masses m2 are kept in
motion by masses m1, but their movement do not cause the formation of the band gap,
that is instead generated by a Bragg scattering mechanism.

To sum up, we report in figure 2.4 the motion of the masses composing the mass-in-
mass chain at some significant frequencies.

2.2.4 On the Bragg scattering phenomenon

Let us give here a more detailed definition of what is meant by Bragg scattering. Bragg
reflection (or Bragg scattering) refers to the condition for which electromagnetic waves
can be selectively reflected from some atomic planes in crystal lattices. Specifically, let
us consider for simplicity a 2D crystal as the one represented in figure 2.5, where black
circles denote the atoms that compose the crystal and vertical dashed lines correspond
to a family of parallel atomic planes. A plane wave inclined of an angle Φ with respect
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Ω1

Ω2

Ω3

Ω4

Figure 2.4: Frames representing the motion of the masses m1 (empty circles) and m2
(black dots) at frequencies Ω1 ≈ 0, Ω2 ≈ Ωm, Ω3 ≈ Ω0 and Ω4 ≈ ΩM . Arrows denote
the variation of the amplitudes of the fields Uj and Vj in time, for j ∈ Z.

to the horizontal is traveling through the crystals and is reflected by each atom. We
identify a specific family of reflected waves with the angle Φ∗ with the horizontal.

Bragg reflection can occur when:
• the angles Φ and Φ∗ are equal;
• Waves reflected from two successive rows are in phase, such that:

d(A, 0) + d(0, B) = 2δ cos Φ = qλ q ∈ N∗ (2.50)

where d(P1, P2) denotes the distance between points P1 and P2, δ is the distance
between successive atomic planes and λ is the wave length of the incoming wave
(cf. figure 2.5).

A

B

δ

Φ

Φ* 0

Figure 2.5: Sketch of a crystal lattice. Black circles denote atoms. Dashed lines identify
specific atomic planes. Incoming waves inclined of angle Φ and a reflected waves inclined
of angle Φ∗ are considered.

Coming back to our problem, sufficiently far from the resonance condition of the inner
resonators, masses m1 can be seen as scatter elements in a background homogeneous
material. Accordingly, the behavior of the mass-in-mass lattice resembles very much
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that of a crystal under electromagnetic waves. In particular, for a 1D lattice of period
δ = ℓ, the angle Φ in relation (2.50) is always null and thus Bragg scattering condition
is verified whenever

2ℓ = qλ q ∈ N∗.

The smallest λ for which the above relation is verified is

λ = 2ℓ,

that in our problem corresponds to a wave whose wave length is twice the period of the
lattice.

In the work of Brillouin (1946), it is shown that a condition coinciding with Bragg’s
formula is indeed valid also for continuous materials with a periodic microstructure.
The locally resonant behavior and a phenomenon similar to the Bragg scattering for
elctromagnetic waves in crystals are thus the two mechanisms responsible for the
formation of band gaps in the dynamics of phononic crystals and locally resonant
materials.

2.2.5 Influence of the parameters of the problem

The dependence of Ωm, Ω0 and ΩM on the two parameters ϵ and θ is studied respectively
in figures 2.6 and 2.7. Each subfigure contains three curves representing the behavior
of the three frequencies under consideration, in particular: Ωm is indicated in red, Ω0
in blue and ΩM in black. The filled areas denote instead the two band gaps previously
defined. Two different colors have been used for the first band gap, in order to distinguish
between the part of the band gap where the effective mass is positive (darker region)
from that where it is negative (lighter region). In the following, we will refer to the
lower part ΩA and upper part ΩB of the first band gap as “band gap A” and “band
gap B”, respectively.

ΩM

Ω
Ω0

Ωm ε

(a) θ = 0.3.

ΩM

Ω

Ω0

Ωm ε

(b) θ = 1.

ΩM

Ω

Ω0

Ωm ε

(c) θ = 10.

Figure 2.6: Dependence of Ωm (in red), Ω0 (in blue) and ΩM (in black) on ϵ. The
parameter θ is fixed to 0.3 (a), 1 (b) and 10 (c). Filled areas correspond to band gaps.

As it is clear in both figures 2.6 and 2.7, the frequency Ω0 is independent from the
ratio ϵ between the stiffnesses of the springs and decreases as the mass ratio θ increases.
In particular, it is responsible for the width of band gap B. As stated before, this band
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gap is indeed caused by the presence of local resonances. It is thus reasonable that,
when θ is large, i.e. when the mass of the resonator m2 is small with respect to m1, the
effect of the resonance is reduced, resulting in a thinner band gap B.

Ω

θ

ΩM

Ω0

Ωm

(a) ϵ = 0.4.

ΩM

Ω

Ω0

Ωm
θ

(b) ϵ = 1.

ΩM

Ω

Ω0

Ωm
θ

(c) ϵ = 3.

Figure 2.7: dependence of Ωm (in red), Ω0 (in blue) and ΩM (in black) on θ. The
parameter ϵ is fixed to 0.4 (a), 1 (b) and 3 (c). Filled areas correspond to band gaps.
Ω0 is independent from ϵ, hence the same curve appears in the three plots.

Frequency Ωm governs the width of band gap A. As specified before, the presence of
this band gap is generated by a mechanism of Bragg scattering and it appears connected
with a band gap coming from local resonances1. From figure 2.6, one can note that
Ωm tends to 1 as ϵ grows, causing the reduction of the width of band gap A: in the
limit, band gap A vanishes. This can be explained as follows: increasing ϵ, the stiffness
k2 of the internal resonator becomes smaller than k1 and the system resembles very
much a discrete version of a locally resonant material (LRM), whose dynamic response
is well known to be governed by local resonances. The behavior of the frequency ΩM ,
responsible for the opening of the second band gap, confirms the last remark: its value
increases with ϵ, for a fixed θ; therefore, the second band gap opens at higher frequencies
and in the limit tends to disappear. If high values of the stiffness ratio ϵ were considered,
as often done in the literature (see e.g. the works of Yao et al. (2008), Huang et al.
(2009) and Kulkarni et al. (2016)), only this latter case is of interest.

The influence of the parameter θ on Ωm is limited (see figure 2.7), especially for
large values of ϵ. ΩM , similarly to Ω0, decreases with θ.

We have shown here that a mass-in-mass chain, whose usage is generally confined
to the modeling of LRMs, is actually a metamaterial where Bragg scattering and local
resonances can take place: if properly tuned, the lattice in figure 2.2 can thus be used
to study systems governed by either one of the two wave canceling mechanisms or both.
This justifies our choice of grouping PnCs and LRMs under the name of metamaterials.

1This feature is typical of the so-called “hybrid metamaterials” (HMs), where the phenomena of
Bragg scattering and local resonance are coupled to enlarge the band gap width Kaina et al., 2013.
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2.2.6 Asymptotic analysis

It is particularly interesting to discuss the structure of the stop and pass bands in the
limit cases of ϵ tending to ∞ or ϵ tending to zero. The asymptotic behavior of Ωm and
ΩM can be obtained directly from equation (2.48). When ϵ is large, the solution(s) of
equation (2.48), denoted by Ωϵ, can be expanded as follows:

Ωϵ = ϵ2Ω(2) + Ω(0) + ϵ−2Ω(−2) + · · ·

and inserting into equation (2.48) gives:
Ω(2)

(
θΩ(2) − 4

)
= 0 at the order of ϵ4

2θΩ(2)Ω(0) − (1 + θ)Ω(2) − 4Ω(0) + 4 = 0 at the order of ϵ2

θΩ(0)2 + 2θΩ(2)Ω(−2) − (1 + θ)Ω(0) − 4Ω(−2) = 0 at the order of ϵ0

The expansion of Ωm corresponds to Ω(2) = 0 and hence

Ωm = 1 − 1
4ϵ2 + · · ·

whereas the expansion of ΩM corresponds to Ω(2) = 4/θ and hence

ΩM = 4ϵ2
θ

+ 1
θ

+ 1
4ϵ2 · · ·

When ϵ goes to infinity, the first band gap tends to the interval [1,Ω0] which corresponds
to negative effective mass. One recovers the results obtained in the soft-in-stiff case,
with band gaps generated by local resonances. In terms of the physical quantities, this
(asymptotic) band gap is given by

band gap in the soft-in-stiff case: ω ∈
[
ω2, ω2

√
1 + m2

m1

]
.

When ϵ is small, Ωϵ can be expanded as Ωϵ = Ω(0) + ϵ2Ω(2) + · · · . Inserting it into
equation (2.48) gives:Ω(0)

(
θΩ(0) − 1 − θ

)
= 0 at the order of ϵ0,

2θΩ(0)Ω(2) − (1 + θ)Ω(2) − 4Ω(0) + 4 = 0 at the order of ϵ2.

The expansion of Ωm corresponds to Ω(0) = 0 and hence

Ωm = 4ϵ2
1 + θ

+ · · · ,

whereas the expansion of ΩM corresponds to Ω(0) = 1 + 1/θ = Ω0 and hence

ΩM = 1 + 1
θ

+ 4ϵ2
θ(1 + θ) + · · · .
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Therefore, almost all frequencies are forbidden except two small intervals of allowed
frequencies, the first close to 0 and the other to Ω0, see figure 2.6. In terms of the
physical quantities, the allowed intervals are (approximately) given by

first propagating band in the stiff-in-soft case: ω ∈

0, 2ω1√
1 + m2

m1

 ,

second propagating band: ω − ω2

√
1 + m2

m1
∈

0, 2ω1√
1 + m1

m2

 .
In this case, band gaps are generated not only by local resonances (for which the
effective mass is negative) but also by Bragg reflections of the propagating waves.

2.2.7 Comparison with the continuous model

Let us now consider the wave propagation in the one dimensional continuous counterpart
of the discrete mass-in-mass chain. The continuous model can be thought of as the
limit of the discrete one when the internal length is small with respect to the wave
length. The Helmholtz equation in this case can be obtained by replacing in equation
(2.36) the discrete differential operator ∆jU by the second derivative with respect to
the spatial variable x, obtaining

ϵ2ℓ2U ′′(x) + µθ(Ω)U(x) = 0 (2.51)

where ℓ is a characteristic length, which is introduced for dimensional reasons and
is related to the size of the microstructure. The general solution of equation (2.51)
depends on the sign of µθ(Ω): (i) if the effective mass is positive, then the general
solution is sinusoidal in space; (ii) if the effective mass is negative, then the general
solution is exponential in space. Therefore, the band gap is given by the interval [1,Ω0],
closure of the interval where the effective mass is negative, whatever the value of ϵ.
This result is completely different from that of the discrete model, especially for small
values of ϵ. The reason can be understood by considering the Bloch-Floquet approach.

Let us start from the discrete model. As previously stated, in the Bloch-Floquet
approach the motion is searched in the form Uj+1 = Uj exp {iκ}. Inserting this solution
into equations (2.36) gives the dispersion equation (2.39), relating the frequency to the
wave number. Therefore, at given κ, a solution exists for Ω only if 0 ≤ µθ(Ω) ≤ 4ϵ2.

If we consider now the continuous model (2.51) and motions of the form U(x+ ℓ) =
U(x) exp {iκ}, the dispersion relation becomes

ϵ2κ2 = µθ(Ω). (2.52)
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At given κ ̸= 0 there exist two solutions for Ω, one in the interval (0, 1), the other in
the interval (Ω0,+∞). When κ goes from 0 to infinity, the two solutions describe those
two intervals, therefore the (unique) band gap corresponds to the interval [1,Ω0].

If we compare equation (2.39) with equation (2.52), it appears that equation (2.52)
can be seen as an approximation of equation (2.39) for small values of κ. So the
continuous model is a good representation of the discrete model for small wave numbers
(large wave lengths) but not for small wave lengths. It should be used only when the
ratio κ/2π is small (with respect to 1). If it is used for any value of κ, there are some
differences with the discrete model, that depend on ϵ. Specifically, let us consider the
two cases according to ϵ is large or small.

• Large ϵ. In this case the whole interval (0,+∞) of the left hand side of equations
(2.39) and (2.52) can be spanned by small values of κ (for instance κ ∼ ϵ−1/2).
Hence, when ϵ goes to infinity both models give [1,Ω0] as the band gap.

• Small ϵ. For the discrete model, the left hand side of equation (2.39) remains
small for any value of κ and hence Ω must be close to the two roots of µθ. But for
the continuous model, if one considers any value of κ, then the left hand side of
equation (2.52) describes all the interval (0,+∞) even if ϵ is small and the band
gap is still [1,Ω0].
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3
C h a p t e r

Effective description of continuous
metamaterials

Chapter summary: The asymptotic homogenization technique is applied to LRMs and
relations enabling the calculation of the effective material properties are given. Cylin-
drical and spherical inclusions allow for the analytical derivation of the effective mass
density, that can become negative in certain intervals of frequencies corresponding to
band gaps. The results are then compared with numerical calculations carried out by
exploiting the BF method.
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We showed in chapter 2 how the concept of effective mass can be used for the
description of the elastodynamic behavior of a discrete periodic structure. The gen-
eralization of this notion to the study of periodic composite materials is well known
in the literature: when the size of the period is small compared to the characteristic
length of the ongoing phenomenon, then the problem can be treated asymptotically
to obtain a macroscopic description of the underlying microstructure. This procedure
goes under the name of homogenization theory, whose objective (in mechanics) is thus
that of deducing the effective material properties governing the macroscopic behavior
of the composite. The term homogenization typically comes from the fact that the
heterogeneous medium is replaced by a homogenized continuum.

Mathematically, defining an operator L ε with spatially varying coefficients of period
ε such that

L εuε = f in Vε,

with Vε being the periodic domain under consideration, the homogenization process
consists in searching for the homogenized solution u0 of the problem

L 0u0 = f in V,

in the limit case of ε → 0. The operator L 0 is what is called homogenized operator,
whose coefficients are the effective coefficients (Bensoussan et al., 1978). The strength
of this technique stands in the possibility to substitute a problem with microscopically
heterogeneous coefficients, with one whose coefficients are homogeneous. For this reason,
homogenization is an upscaling method.

There exist different methods to get the homogenized material properties. The
requirement common to all the approaches is the existence of (at least) two scales that
must be well separated, namely the slow scale of the physical mechanism under study
and the fast scale associated to the microstructure of the domain.

A metamaterial appears to be composed of a repetition of a unit cell. Consequently,
a sub-wavelength regime would fulfill the above requirement essential for the application
of an upscaling method. In particular, we presented in chapter 2 the two physical
mechanisms that generally take place in this class of materials and that are responsible
for their peculiar behavior: while with Bragg scattering no scale separation exists, local
resonances might be activated by a slowly varying propagating wave that sequentially
interacts with the microstructure inside each unit cell. As previously stated for the mass-
in-mass chain in figure 2.2, the first band gap is mainly generated by local resonances
when the contrast between the stiffnesses of the external spring k1 and the internal
spring k2 is high enough (large values of ϵ)1. This suggests that homogenization methods
could be effectively applied in continuous metamaterials composed of a matrix-inclusions

1In chapter 2, we used the letter ϵ to denote the ratio between the stiffnesses k1 and k2, whose value
could be large or small. We instead employ ε to indicate a small parameter of the problem.
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configuration, providing that high contrast between the rigidity of the matrix and the
inclusions is present. Specifically, the stiffer matrix has to be crossed by a propagating
wave at low frequency (long wavelength) that interacts with the softer inclusions,
initiating fast oscillations inside them and causing the formation of band gaps.

In this framework, the theory of two-scales asymptotic expansion is generally em-
ployed. This technique was first developed in the fundamental works of Bensoussan
et al. (1978), Sanchez-Palencia (1980), and Bakhvalov et al. (1989) and later on reestab-
lished for composite materials (and, in particular, for metamaterials) characterized by
the presence of soft inclusions embedded in a stiffer matrix, respecting the condition
previously specified (Auriault et al., 1985; Auriault et al., 2012). The method consists
in considering a multiple scale perturbation of the field of interest, by construction of
asymptotic expansions and by studying its limit behavior.

In this chapter, we aim to revisit the two-scale asymptotic expansion method for
general three-dimensional LRMs, following the work and notations of Comi et al. (2020)
and Comi et al. (2019). In particular, we consider LRMs that are composed of a
matrix containing a periodic array of unconnected inclusions (bi-phase LRMs), that
can themselves embed another inner inclusion unconnected with the outer matrix
(three-phase LRMs).

Initially, we derive the definitions of the two effective material properties governing
the elastodynamic behavior of the homogenized body, namely the effective mass density
and the effective stiffness tensor. Part of these results are known from the literature
(see e.g. Auriault et al. (2012)), especially concerning bi-phase LRMs. Nonetheless,
here we proceed with a different point of view that allows us to point out some general
properties of the dispersive behavior, such as the presence of flat bands, and of the
effective mass density tensor, such as its symmetry and monotony. This latter property
is important for the detection of band gaps in the spectrum of the propagation problem.
To the best of the authors knowledge, these results are relatively new for the three-phase
LRMs.

Eventually, we specialize the treatment for two-dimensional (2D) and three-dimensional
(3D)1 LRMs with respectively cylindrical and spherical inclusions, for which the effec-
tive mass density can be analytically derived and becomes negative at certain gaps of
frequencies corresponding to band gaps. Finally, we show some results and compare
them to numerical calculations.

Part of this chapter was the subject of the following publication: Comi et al., 2019.

1“2D” and “3D” are referred to the periodicity of the solid that is respectively in two and three
dimensions.
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3.1 Asymptotic homogenization of the elastodynamic prob-
lem for composite materials with inclusions

In this section we formally apply the two-scales asymptotic technique to derive the
effective properties of composite materials. Specific requirements on the material and
geometric properties of the composite must be fulfilled and are initially introduced. As
stated before, part of these results are already existing in the literature. The scope
here is to present our revisited treatment, particularized for the three-phase LRMs,
and to argue on some general properties that characterize the effective mass density
tensor, i.e. its symmetry and monotony. This latter feature being fundamental for the
identification of band gaps.

3.1.1 Problem formulation

Let us consider the Y-periodic domain V presented in subsection 2.1.3, for n = 2 or 3.
Its unit cell Y (shown in figure 3.1) is composed by a matrix Ym and by one inclusion
Yc that might contain also another embedded inclusion Yf , that is not connected
with the matrix. In this latter case, Yc represents the coating of the inner inclusion
(or fiber) Yf (see figure 3.1). At this point, no restriction is placed on the shape of

a a/ε

Y

λ

Ym
Yc

Yf ∂Yf

∂Yc

Figure 3.1: A 2D three-phase periodic domain with a zoom over its unit cell. The 2D
primitive basis {ai}i={1,2} is given. The characteristic length λ of the of the macroscopic
phenomenon under study is such that λ ≫ a.

the inclusions. The matrix is connected between adjacent cells, while part Yc is not
connected with the matrix. All the components are supposed to be made of isotropic
linearly elastic materials and perfectly bonded together. The interfaces matrix-inclusion
and inclusion-inclusion (if present) are respectively denoted as ∂Yc and ∂Yf . Here we
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introduce the fast variable y to denote the points that compose V1. The medium is
crossed by an incident elastic wave of wavelength λ ≫ a, with a = (a1 ∧ a2) · a3 being
the macroscopic size of the unit cell Y. The above notation is shown in figure 3.1.

We look at the propagation of free waves in V, with a large wave length. To
remain as much general as possible, the displacement field is supposed to have the same
dimension n of the domain V under consideration. The problem is thus characterized
by the presence of two scales: a slow scale represented by the macroscopically (and
periodically) varying phenomenon and a fast scale composed of the periodic repetition
of the unit cells. Consequently, we can define a small parameter ε = a/λ such that
ε ≪ 1.

We now consider the problem from a macroscopic point of view, therefore we scale
the domain with ε to obtain a εY-periodic body that we call Vε, with the superscript
here used to explicitly take into account of this fact. More specifically, the superscript
ε is used to remind the dependence on this (small) parameter. We employ the variable
x = εy to denote the points composing the domain Vε. We are interested in defining
the spectrum of the homogeneous (i.e. with F = 0) Helmholtz equation (2.8), that is
here rewritten as:

∇ · σε(x) + ω2ρε(x)U ε(x) = 0 in Vε. (3.1)
For isotropic linearly elastic components and in harmonic regime, the constitutive
relation (2.13) can be rewritten eliminating the time dependence as2:

σε(x) = Eε(x) : εε(x) = λε(x) tr(εε(x)) I + 2µε(x)εε(x), (3.2)

with
εε(x) = ∇ ⊙ U ε(x).

3.1.2 Scaling assumptions

The homogenization process through two-scales expansions is based on the decomposition
of the original problem into different scales. The scaling of the geometrical and physical
quantities is thus fundamental and can lead to different results depending on the
assumptions made. In the work of Auriault et al. (1985) the authors show that local
inertial phenomena can enormously affect the overall dynamic behavior of composites
of the type shown in figure 3.1, when the inclusions Yc are much softer than the matrix
Ym. Specifically, this is predicted by the homogenization technique when the material
properties respect the following relations:

λε(x) =
{
λm in Yε

m

ε2λc in Yε
c

, µε(x) =
{
µm in Yε

m

ε2µc in Yε
c

, ρε(x) =
{
ρm in Yε

m

ρc in Yε
c

, (3.3)

1This change of notation with respect to section 2.1 is necessary to cope with the existing and
consolidated literature: we are indeed here looking at the problem from a microscopic point of view.

2Note that letters σ and ε were used in subsection 2.1.1 for denoting stress and strain tensors varying
both in space and time. For simplicity, we keep here the same notation, although stresses and strains
are no more time dependent now.
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where λm, µm and ρm have the same order of magnitude of λc, µc and ρc, respectively.
Note that up to now we have made no hypotheses regarding the internal inclusion

Yf . Nevertheless, with the aim of modeling a LRM, it is clear that the configuration
with a resonant inclusion Yf stiffer than the surrounding medium Yc is the most suitable
one. Therefore, we will assume that the elastic coefficients are at most one order higher
than those of the inclusions Yc. Specifically, one has:

λε(x) = ε2−ℓλf , µε(x) = ε2−ℓµf , ρε(x) = ρf in Yε
f ,

with ℓ ≥ 1, where λf , µf and ρf have the same order of magnitude of λc, µc and ρc,
respectively.
The precise scaling of the material properties (i.e. the value of ℓ) will be specified later
on. Note however that the inner parts Yf of the inclusions Yc need not to be present
for the composite to behave like a LRM.

Concerning the geometric variables x and y, they are related by x = εy, as indicated
in the previous subsection.

Throughout the entire chapter, we consider that frequencies ω are fixed and inde-
pendent of ε.

3.1.3 Asymptotic expansions

Following the two-scales asymptotic method, the displacement and stress fields U ε and
σε in equation 3.1 are classically expanded in the following form:{

U ε(x) = U0(x,x/ε) + εU1(x,x/ε) + ε2U2(x,x/ε) + . . .

σε(x) = ε−1σ−1(x,x/ε) + σ0(x,x/ε) + εσ1(x,x/ε) + . . .
, (3.4)

where the fields U i(x,x/ε) and σi(x,x/ε) with i ∈ Z are obtained from the fields
U i(x,y) and σi(x,y), that are Y-periodic in the variable y, whose domain of definition
can be therefore restricted to the unit cell Y. This means that we are here postulating
the existence of smooth functions U i(x,y) and σi(x,y), defined in (V×Y), Y−periodic
in the variable y, such that for y = x/ε the right-hand sides of relations (3.4) are
asymptotic expansions of the corresponding left-hand sides. The upper-right indexes
of the right-hand side terms denote their ordering in the expansion. Note that the
expansion of the stress field starts from the order −1.

The whole idea of the two-scales expansion is to insert expressions (3.4) into equation
(3.1) and to identify powers of ε (Bensoussan et al., 1978). For simplifying the process,
the usual “trick” consists in considering the spatial variables x and y as independent.
In this way, the following derivation rule applies:

∂(•)
∂x

−→ ∂(•)
∂x

+ ε−1∂(•)
∂y

. (3.5)
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This is the reason why the expansion of the stress field starts a priori at order −11.
Accordingly, a generic function f(x,y) can be derived independently in the two variables.
In particular, we will denote as ∇xf and ∇x · f the gradient and divergence of f with
respect to x and as ∇yf and ∇y · f the gradient and divergence of f with respect to y.
Following this rule, we will call εx(f) and εy(f) the symmetric part of the gradients of
f respectively with respect to x and y.

3.1.4 Effective material description

Substituting the expansions (3.4) into the original Helmholtz equation (3.1) and ex-
panding it as well in different powers of ε, the coefficients of the various powers must
be zero, such that

∇x · σi(x,y) + ∇y · σi+1(x,y) + ρ(y)ω2U i(x,y) = 0 in Y, (3.6)

with 

σj+p(x,y) = Ej(y) : (εx(Up) + εy(Up+1)) in Y
[[Up(x,y)]] = 0 on ∂Yc, ∂Yf

[[σj+p(x,y) · n]] = 0 on ∂Yc, ∂Yf

Up(x,y) Y-periodic in y

σj+p(x,y) · n Y-antiperiodic in y

(3.7)

and (i, j, p) ∈ Z. More specifically, in equation (3.6), i ≥ −2 defines the power of ε
considered and terms that are not part of expansions (3.4) are assumed to be equal to
zero. In conditions (3.7), the following considerations apply:

• with the superscript j in Ej , we intend to denote the fixed scaling adopted for the
elastic coefficient E, as ε → 0;

• following the scaling of the stiffness parameters in subsection 3.1.2, j ≤ 2;
• from the expansion of the displacement field in 3.4, p ≥ −1;
• with n, unless specified differently, we intend to denote the unit normal vector

that points outward with respect to the part under consideration.
Therefore, the stress field σq at a generic order q ≥ −1 in equation (3.6) can be
computed from the first of relations (3.7) as σj+p, by using the corresponding index
p that is found as p = q − j, where j is the fixed order of magnitude of the elastic
constants.

In what follows, we derive the equation governing the motion of the homogenized
body by starting from the lowest power of ε, that might be different for the different
parts. For this reason, one should consider each domain separately, as we do in the
following.

1This is true only for the matrix Ym and, possibly, for part Yf ; for the inclusion Yc, due to the
scaling of its material coefficients, the expansion of the stresses starts from order 1.
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3.1.5 The matrix Ym

• i = −2. Problem (3.6) becomes

∇y ·
(
Em : εy(U0)

)
= 0 in Ym,

σ−1(x,y) · n = 0 on ∂Yc,

U0(x,y) Y-periodic in y,

σ−1(x,y) · n Y-antiperiodic in y,

(3.8)

that gives:
U0(x,y) = Û

0
m(x) in Ym. (3.9)

• i = −1. Problem (3.6) becomes

∇y ·
(
Em :

(
εx(Û0

m) + εy(U1)
))

= 0 in Ym,

σ0(x,y) · n = 0 on ∂Yc,

U1(x,y) Y-periodic in y,

σ0(x,y) · n Y-antiperiodic in y.

(3.10)

The variable x plays the role of a parameter in the above problem (3.10). Therefore,
by linearity, one can express U1 as:

U1(x,y) =
n∑

k,h=1
wkh(y) εx[kh](Û

0
m) + Û

1(x), (3.11)

where vectors wkh, with k, h ∈ {1, . . . , n}, are the solutions of the so-called cell
problem: 

∇y ·
(
Em : εy(wkh)

)
= 0 in Ym,[

Em :
(
ek ⊙ eh + εy(wkh)

)]
· n = 0 on ∂Yc,

wkh(y) Y-periodic in y,(
Em : εy(wkh)

)
· n Y-antiperiodic in y.

(3.12)

By applying the Fredholm’s alternative1, the above problem (3.12) admits a unique
solution in the space V(Y) defined as:

V(Y) :=
{

u ∈ [H1
#(Y)]n,

∫
Y

u dy = 0
}
.

Problem (3.12) needs to be solved numerically. Note that, up to this order, the
problem coincides with the case when the inclusions Yc and Yf (if present) are
substituted by a cavity: this comes from the fact that part Yc is assumed to be
much softer than part Ym.

1Its definition will be given later in the current section
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• i = 0. Problem (3.6) becomes

∇y ·
(
Em :

(
εx(U1) + εy(U2)

))
+

∇x ·
(
Em :

(
εx(Û0

m) + εy(U1)
))

+ ρm ω2Û
0
m(x) = 0

in Ym,

[[σ1(x,y) · n]] = 0 on ∂Yc,

U1(x,y) Y-periodic in y,

σ1(x,y) · n Y-antiperiodic in y.

(3.13)

Problem (3.13) can be averaged over Y to obtain:

− 1
|Y|

∫
∂Yc

(
Ec : εy(U0)

)
· n dΓ

1⃝

+

1
|Y|

∫
Ym

n∑
k,h=1

∇x ·
(
Em :

(
ek ⊙ eh + εy(wkh)

)
εx[kh](Û

0
m)
)
dy

2⃝

+

1
|Y|

∫
Ym

ρm ω2Û
0
m(x) dy

3⃝

= 0,

(3.14)

where the divergence theorem, the continuity of stresses over ∂Yc and relation
(3.11) for U1 have been used.
While terms 2⃝ and 3⃝ are “known” since they depend on Û

0
m, term 1⃝ depends on

the displacement field in the inclusion Yc and can be computed after considering
the motion of that part. This motion is strictly dependent on the presence of the
inner inclusion. Let us thus consider separately the case with part Yf (three-phase
LRM ) from the case without that part (bi-phase LRM ).

3.1.6 Three-phase LRM: the inclusion Yc
⋃Yf

It is convenient to determine first the behavior of the inner inclusion Yf and then
consider the motion of the outer inclusion Yc, that is influenced by the presence of the
inner part.

The inner inclusion Yf

At the leading order, in the inner inclusion problem (3.6) becomes∇y ·
(
Ef : εy(U0)

)
= 0 in Yf ,

σ1−ℓ(x,y) · n = 0 on ∂Yf ,
(3.15)
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with the order ℓ ≥ 1 depending on the scaling assumed in subsection 3.1.2. Let us
call yf the center of mass of part Yf . Solutions of the above problem (3.15) can be
searched under the form:

U0(x,y) = Û
0
f (x) + R̂0

f (x) ∧ (y − yf ) in Yf , (3.16)

where Û
0
f and R̂0

f are respectively the translation of the inner inclusion Yf and the
rotation of that same part with respect to its center of mass yf .

Note that, due to the scaling adopted, part Yf moves as a rigid body for any ℓ ≥ 1.
It is thus useful to express the global equilibrium equations for that part. According to
relation (3.16), the linear momentum balance for part Yf at the leading order reads

ρf ω
2 |Yf | Û

0
f (x) =

∫
∂Yf

σ1(x,y) · n dΓ, (3.17)

while the angular momentum balance reads

ρf ω
2 If · R̂0

f (x) =
∫

∂Yf

(y − yf ) ∧ σ1(x,y) · n dΓ, (3.18)

where n here denotes the inner unit normal to part Yf , If is the classical second-order
tensor of inertia of part Yf , and σ1 is the stress field in part Yc at order 1 that reads

σ1(x,y) = Ec : εy(U0).

In the above relations, we have used the continuity of the stresses on ∂Yf to express
the right-hand sides in terms of the stress field in part Yc.

The motion of the inner inclusion Yf is still unknown and can be found only
considering the behavior of the outer inclusion Yc.

The outer inclusion Yc

Due to the chosen scaling, part Yc enters in the problem only starting from order i = 0.
We can obtain a problem in part Yc by using the global equilibrium equations (3.17)

and (3.18) for part Yf . At the leading order, using equation (3.6), the motion problem
for the outer inclusion Yc becomes: find U0 in part Yc such that

∇y ·
(
Ec : εy(U0)

)
+ ρc ω

2U0(x,y) = 0 in Yc,

U0(x,y) = Û
0
m(x) on ∂Yc,

U0(x,y) = Û
0
f (x) + R̂0

f (x) ∧ (y − yf ) on ∂Yf ,

ρf ω
2 |Yf | Û

0
f (x) =

∫
∂Yf

(
Ec : εy(U0)

)
· n dΓ,

ρf ω
2 If · R̂0

f (x) =
∫

∂Yf

(y − yf ) ∧
[(

Ec : εy(U0)
)

· n
]
dΓ.

(3.19)
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In the above problem, Ûm is given and the boundary condition on ∂Yf must be
understood as follows: U0 is a rigid body displacement, but its translation and rotation
parts are not known a priori, they will be given by using the two global equilibrium
equations.

Solutions to problem (3.19), due to linearity, can be searched under the form:

U0(x,y) =
n∑

h=1
Û0

m[h](x)
(
eh + vh(y)

)
in ∂Yc. (3.20)

Using this transformation, problem (3.19) can be rewritten as: find vh, for h ∈ {1, . . . , n},
such that

∇y ·
(
Ec : εy(vh)

)
+ ρc ω

2
[
eh + vh(y)

]
= 0 in Yc,

vh(y) = 0 on ∂Yc,

ρf ω
2 |Yf | Û

0
f (x) = Û0

m[h](x)
∫

∂Yf

(
Ec : εy(vh)

)
· n dΓ,

ρf ω
2 If · R̂0

f (x) = Û0
m[h](x)

∫
∂Yf

(y − yf ) ∧
[(

Ec : εy(vh)
)

· n
]
dΓ,

Û
0
f (x) =

n∑
h=1

Û0
m[h](x)

(
eh + U(vh)

)
, R̂0

f (x) =
n∑

h=1
Û0

m[h](x)
(
R(vh)

)
.

(3.21)
where U(vh) and R(vh) denote the translation and rotation of the (rigid) inner inclusion
Yf with respect to part Ym, associated with vh and respecting the two global equilibrium
equations of part Yf .

Let us now study the eigenvalue problem related to problem (3.21), namely: find
v∗ and ω such that

∇y · (Ec : εy(v∗)) + ρcω
2v∗(y) = 0 in Yc,

v∗(y) = 0 on ∂Yc,

∃U(v∗), R(v∗) ∈ Rn such that:

v∗(y) = U(v∗) + R(v∗) ∧ (y − yf ) on ∂Yf ,

ρf ω
2 |Yf | U(v∗) =

∫
∂Yf

(Ec : εy(v∗)) · n dΓ,

ρf ω
2 If · R(v∗) =

∫
∂Yf

(y − yf ) ∧ [(Ec : εy(v∗)) · n] dΓ,

(3.22)

where the condition at the boundary ∂Yf states that the motion there must be that
of a rigid body, with U(v∗) and R(v∗) denoting its translational and rotational parts.
Accordingly, the solution v∗ of the above problem belongs to the set V of kinematically
admissible displacement fields v, such that:

V = {v(y) ∈[H1(Yc)]n : v(y) = 0 on ∂Yc,

∃U(v), R(v) ∈ Rn : v(y) = U(v) + R(v) ∧ (y − yf ) on ∂Yf }.
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So V is a linear space (close1 subspace of [H1(Yc)]n and, as such, Hilbert space with
respect to the H1 norm). At each element v of V is attached a translation U(v)
and a rotation R(v) of the (rigid) inclusion Yf . Consequently, the motion v at the
boundary ∂Yf is a rigid displacement. The dependence of U(v) and R(v) on v is
linear. Therefore, within the space V one looks for v∗ and ω respecting, at the same
time, the equation governing the eigenvalue problem and the two global equilibrium
equations of the inner inclusion.

Let us look for the solutions of the eigenvalue problem (3.22) by using the Rayleigh
quotient J defined on V as follows:

V\0 ∋ v 7→ J(v) =

∫
Yc

(Ec : εy(v)) : εy(v) dy∫
Yc

ρcv(y) · v(y) dy + ρf |Yf | U(v) · U(v) + ρf (If · R(v)) · R(v)
.

The following proposition holds true:

Proposition. The eigenmodes v∗ solutions of problem (3.22) are the stationary points
of the Rayleigh quotient J and the associated eigenfrequencies ω are given by the Rayleigh
quotient of v∗:

J ′(v∗)(v) = 0 ∀v ∈ V, ω2 = J(v∗),

where J ′(v∗)(v) stands for the directional derivative of J at v∗ in the direction v.

The prove is rather classical and is not given here (see e.g. Borthwick (2016)).
Exploiting the Rayleigh quotient, we can deduce that the spectral theorem applies,

such that (see e.g. Dautray et al. (1990)):
1. The eigenvalues λq = ω2

q are real and constitute an increasing sequence (ωq)q∈N∗

of positive eigenfrequencies that tends to infinity;
2. The eigenmodes v∗

q associated to an eigenfrequency ωq constitute a linear space
of finite dimension Eωq (called eigenspace);

3. The family of all the eigenmodes constitutes an orthogonal basis (in the sense of
the [L2(Yc)]n inner product pondered by the mass or the stiffness of part Yc) of
the space V.

3.1.7 Bi-phase LRM: the inclusion Yc

As for the three-phase LRM, due to the chosen scaling, part Yc enters in the problem
only starting from order i = 0. Problem (3.6) can be rewritten as:∇y ·

(
Ec : εy(U0)

)
+ ρc ω

2U0(x,y) = 0 in Yc,

U0(x,y) = Û
0
m(x) on ∂Yc.

(3.23)

1It is indeed the closure of the space of infinitely differentiable functions with compact support in
Yc (functions [C∞

0 (Yc)]n) and respecting the condition on the boundary ∂Yf given above.
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Solutions to the above problem, due to linearity, can be searched again under the form
(3.20), here rewritten for clarity:

U0(x,y) =
n∑

h=1
Û0

m[h](x)
(
eh + vh(y)

)
in ∂Yc, (3.24)

Following this transformation, problem (3.23) becomes: find vh, for h ∈ {1, . . . , n},
such that ∇y ·

(
Ec : εy(vh)

)
+ ρc ω

2
(
eh + vh(y)

)
= 0 in Yc,

vh(y) = 0 on ∂Yc.
(3.25)

The operator of problem (3.25) is compact and self-adjoint on [H1
0 (Yc)]n. It follows

that the so-called spectral theorem, whose results were listed in subsection 3.1.7 for the
three-phase LRM, applies also for the bi-phase LRM, such that:

1. The eigenvalues λq = ω2
q are real and constitute an increasing sequence (ωq)q∈N∗

of positive eigenfrequencies that tends to infinity;
2. The eigenmodes v∗

q associated to an eigenfrequency ωq constitute a linear space
of finite dimension Eωq (called eigenspace);

3. The family of all the eigenmodes constitutes an orthogonal basis (in the sense of
the [L2(Yc)]n inner product pondered by the mass or the stiffness of part Yc) of
the space [H1

0 (Yc)]n.

3.1.8 Solution of the problem in part Yc

We are now in position to discuss about the existence and uniqueness of the solutions
to problems (3.21) and (3.25). Specifically, one has the so-called Fredholm’s alternative:

1. If ω is not an eigenfrequency (ω ̸= ωq for any q), the solutions are unique;
2. If ω is an eigenfrequency whose eigenspace is orthogonal to the field eh in Yc,

with h ∈ {1, . . . , n}, a (non unique) solution defined up to an arbitrary eigenmode
is admitted, otherwise no solutions exist.

Let us consider the physical meaning of these results. Problems (3.19) and (3.23) can
be interpreted as follows: the motion of the inclusion relative to that of the matrix is
activated by slowly varying translations of part Ym, that can be understood as rigid at
the microscale (i.e. locally). Eigenmodes of part Yc alone for the bi-phase LRM and of
part Yc ∪Yf for the three-phase LRM, such that their corresponding displacement fields
are perpendicular to (slowly varying) translations of parts Ym cannot be “activated” by
these (locally rigid) translations. Therefore, the unit cell does not experience internal
resonances. These modes will correspond to so-called “flat bands” in the dispersion
plot, as will be later shown.

A proof of the validity of Fredholm’s alternative is here given for the three-phase
LRM (a similar derivation applies also to the bi-phase case). For this, let us decompose
the field vh in problem (3.21) on the countable orthogonal basis given by the eigenmodes
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v∗
q solutions of problem (3.22):

vh(y) =
∞∑

q=1
Aqv∗

q(y),

where Aq denotes the q-th component in the mentioned basis.
Multiplying by v∗

q the equation in (3.21) that governs the motion in part Yc,
integrating over Yc and integrating by parts gives:∫

Yc

(Ec : εy(vh)) : εy(v∗
q) dy = ω2ρc

∫
Yc

vh(y) · v∗
q(y) dy + ω2ρf |Yf | (eh

+ U(vh)) · U(v∗
q) + ω2ρf (If · R(vh)) · R(v∗

q) + ω2ρceh ·
∫

Yc

v∗
q(y) dy.

From the orthogonality and the variational property of the eigenmodes, one has:

Aq

(
1 − ω2

ω2
q

)∫
Yc

(Ec : εy(v∗
q)) : εy(v∗

q) dy

= ω2eh ·
[
ρf |Yf | U(v∗

q) + ρc

∫
Yc

v∗
q(y) dy

]
.

(3.26)

Let us note that the term corresponding to an elastic energy in the above relation
is always greater than zero due to the coercivity of this quadratic functional (cf.
assumptions (2.3)). We are now in position to discuss existence and uniqueness of
problem (3.21):

1. ω is not an eigenfrequency: Aq can be found and the solution is unique;

2. ω is an eigenfrequnecy (say ω = ωq): the left-hand side of the above equation
vanishes and thus also the right-hand side must vanish. Two cases can arise:

A the right-hand side vanishes: both the eigenmode v∗
q of part Yc corresponding

to ωq and the rigid translation U(v∗
q) of part Yf due to this eigenmode are

orthogonal to the constants, Aq remains undetermined and the solution exists
but is not unique,

B the right-hand side does not vanish: both the eigenmode v∗
q of part Yc

corresponding to ωq and the rigid translation U(v∗
q) of part Yf due to this

eigenmode are not orthogonal to the constants and the solution does not
exist (besides the trivial solution Û

0
m = 0).

We found exactly the Fredholm’s alternative. Let us note that the condition on the
rigid translation U(v∗

q) of part Yf is absent when a bi-phase LRM is analyzed (indeed
part Yf is not present anymore). We thus found that it is “easier” for the three-phase
case to fulfill the condition of non-existence of a solution to the problem. We anticipate
here that this might correspond to an increase of the number of band gaps for a given
frequency range.
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A solution to problem (3.21), when it exists and is unique (point 1 above), can
finally be written as:

vh(y) =
∞∑

q=1

eh ·
[
ρf

|Yf |
|Y|

U(v∗
q) + ρc

〈
v∗

q(y)
〉

c

]
〈
(Ec : εy(v∗

q)) : εy(v∗
q)
〉

c

ω2

1 − ω2

ω2
q

v∗
q(y), (3.27)

where the series in the above relation converges in the L2 norm, to be understood in
the sense specified previously in the third point of the spectral theorem.

From relation (3.20), one obtains the displacement fields in part Yc as:

U0(x,y) = Û
0
m(x) · [I + Υ(y, ω)] in Yc, (3.28)

with:

Υ(y, ω) =
∞∑

q=1

v∗
q(y) ⊗

[
ρf

|Yf |
|Y|

U(v∗
q) + ρc

〈
v∗

q(y)
〉

c

]
〈
(Ec : εy(v∗

q)) : εy(v∗
q)
〉

c

ω2

1 − ω2

ω2
q

. (3.29)

Finally, when a solution to problem (3.21) exists and is unique, the global equilibrium
equations (3.17) and (3.18) allow us to determine the rigid motion of part Yf .

As we stated before, a similar derivation applies also for the bi-phase LRM. In
particular, one can find a solution U0 of problem (3.25), when it exists, from the
solution given by relations (3.28) and (3.29) by considering |Yf | = 0. Clearly, the
eigenvalues ωq and the eigenmodes v∗

q will differ, in general, from those obtained for
the three-phase LRM.

3.1.9 The effective material properties

Three-phase LRM

Let us go back to relation (3.14). Following the results from parts Yc and Yf , term 1⃝
is now known. In particular, one obtains:

• Term 1⃝.

1⃝ = −
〈
∇y ·

(
Ec : εy(U0)

)〉
c

+ 1
|Y|

∫
∂Yf

(
Ec : εy(U0)

)
· n dΓ

=
〈
ρc ω

2U0(x,y)
〉

c
−
〈
∇y · σ1(x,y)

〉
f

=
〈
ρc ω

2U0(x,y)
〉

c
+
〈
ρf ω

2U0(x,y)
〉

f

• Term 2⃝.
2⃝ = ∇x ·

(
Eeff : εx(Û0

m)
)
,
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with Eeff being the effective stiffness tensor of the homogenized body, whose
components Eeff

[khij] are given as

Eeff
[khij] =

〈[
Em :

(
ek ⊙ eh + εy(wkh)

)]
:
[
ei ⊙ ej + εy(wij)

]〉
m

(3.30)

In general, the homogenized material is not isotropic. Nevertheless, if some
invariance hypotheses are assumed at the microscopic level, the homogenized
material can present some symmetries, other than the triclinic symmetry inherited
from the elastic tensor Em (see e.g. Sanchez-Palencia et al. (1987) for more details).

• Term 3⃝.

3⃝ = ρm ω2 |Ym|
|Y|

I · Û
0
m(x).

The displacement field U0(x,y) in part Yc is not defined for a set of frequencies ω that
fulfills point 2B in the previous subsection. Accordingly, considering the two other cases
in Fredholm’s alternative, it is convenient here to rewrite the displacement field as

U0(x,y) =
n∑

h=1
Û0

m[h](x)ṽh(y), (3.31)

where ṽh(y) = eh + vh(y). Problem (3.19) thus becomes:

∇y ·
(
Ec : εy(ṽh)

)
+ ρc ω

2ṽh(y) = 0 in Yc,

ṽh(y) = eh on ∂Yc,

ṽh(x) = Uh(x) + Rh(x) ∧ (y − yf ) on ∂Yf ,

ρf ω
2 |Yf | Uh(x) =

∫
∂Yf

(
Ec : εy(ṽh)

)
· n dΓ,

ρfω
2 If · Rh(x) =

∫
∂Yf

(y − yf ) ∧
[(

Ec · εy(ṽh)
)

· n
]
dΓ,

(3.32)

where Uh(x) and Rh(x) are the rigid body translation and rotation of part Yf , such
that

Û
0
f (x) =

n∑
h=1

Û0
m[h](x)Uh(x), R̂

0
f (x) =

n∑
h=1

Û0
m[h](x)Rh(x). (3.33)

The problem above admits a unique solution when ω is not an eigenfrequency and a
solution up to an element of the eigenspace when ω is an eigenfrequency.

The equation governing the motion of the homogenized body can finally be derived.
Specifically, from problem (3.14) and considering the results above, one has:

∇x ·
(
Eeff (x) : εx(Û0

m)
)

= ω2ρeff (ω) · Û
0
m(x) in Y, (3.34)
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where ρeff is the effective mass density tensor, whose components are given by:

ρeff
[ij] (ω) = ρm

|Ym|
|Y|

δij + ρc

|Y|

∫
Yc

ṽi
[j](y) dy + ρf

|Yf |
|Y|

U i
[j](x). (3.35)

Let us note that the effective mass density is well defined even when ṽi is given up to
an eigenmode, due to the orthogonality of that eigenmode with respect to the constants
(point 2A in the previous subsection).

Bi-phase LRM

When the inner inclusion Yf is absent, only term 1⃝ of relation (3.14) is modified. In
particular this term, for a bi-phase LRM, reads

1⃝ =
〈
ρc ω

2U0(x,y)
〉

c

Relation (3.34) is then still valid for this case, with the only difference that the effective
mass density tensor is now given by

ρeff
[ij] (ω) = ρm

|Ym|
|Y|

δij + ρc

|Y|

∫
Yc

ṽi
[j](y) dy. (3.36)

3.1.10 Properties of the effective mass density

At this point, we make the choice to go on by studying the three-phase LRM. This
latter case is indeed more involved with respect to the bi-phase LRM, whose effective
material properties were still given in the previous subsection.

Symmetry

Let us prove that the second order tensor ρeff is symmetric. For this we consider the
equation in problem (3.32) governing the motion of part Yc. Multiplying by ṽj − ej

and integrating over Yc leads to:

ω2
∫

Yc

[
ρcṽi(y) · ṽj(y) − 1

ω2 (Ec : εy(ṽi)) : εy(ṽj)
]
dy

+ ρfω
2 |Yf | U i(x) · (U j(x) − ej) + ρfω

2(If · Ri(x)) · Rj(x) − ω2ρc

∫
Yc

ṽi
j(y) = 0,

from which we can re-express the following term in relation (3.35)

ρc

|Y|

∫
Yc

ṽi
[j](y) dy + ρf

|Yf |
|Y|

U i
[j](x).
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The effective mass tensor (3.35) can thus be rewritten as

ρeff
[ij] (ω) = ρm

|Ym|
|Y|

δij + ρf
|Yf |
|Y|

U i(x) · U j(x) + ρf

|Y|
(If · Ri(x)) · Rj(x)

+
〈[
ρcṽi(y) · ṽj(y) − 1

ω2 (Ec : ε(ṽi)) : ε(ṽj)
]〉

c
.

(3.37)

It follows that ρeff
[ij] = ρeff

[ji] . Let us note that the first four terms in the right-hand side
of relation (3.37) are positive, the unique negative term comes from the elastic energy
of part Yc.

Monotony

Let us consider the case when ω is not an eigenfrequency. Then problem (3.19) admits
a unique solution U0(x,y) given by relation (3.28). Let us define the following function
F of ω2, that will be useful later on for identifying band gaps:

ω2 7→ F(ω2) = ω2 |Y| (ρeff · Û
0
m) · Û

0
m. (3.38)

Using relations (3.31), (3.33), and (3.37), function F can be expressed as

F(ω2) =ω2ρm |Ym| Û
0
m(x) · Û

0
m(x)

+ ω2ρf |Yf | Û
0
f (x) · Û

0
f (x) + ω2ρf (If · R̂

0
f (x)) · R̂

0
f (x)

+
∫

Yc

[
ω2ρcU

0(x,y) · U0(x,y) − (Ec : ε(U0)) : ε(U0)
]
dy.

Let us study the monotony of this function.
For this, let us start by giving the variational problem associated to problem (3.19):

find U0 ∈ W such that∫
Yc

[
(Ec : εy(U0)) : εy(v) − ω2ρcU

0(x,y) · v(x,y)
]
dy

= ω2ρf |Yf | U(U0) · U(v) + ω2ρf (If · R(U0)) · R(v) ∀v(x,y) ∈ W0.

(3.39)

with

W = {v(x,y) ∈[H1(Yc)]n : v(x,y) = Û
0
m(x) on ∂Yc,

∃U(v), R(v) ∈ Rn : v(x,y) = U(v) + R(v) ∧ (y − yf ) on ∂Yf },
W0 = {v(x,y) ∈[H1(Yc)]n : v(x,y) = 0 on ∂Yc,

∃U(v), R(v) ∈ Rn : v(x,y) = U(v) + R(v) ∧ (y − yf ) on ∂Yf }.

The fields U(v) and R(v) denote the translation and rotation of the fiber, associated
to the admissible field v. Accordingly, U(U0) = Û

0
f and R(U0) = R̂0

f .
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When the displacement field Û
0
m is given, the quantities U0, Û

0
f , and R̂0

f are smooth
functions of ω2 (this can be directly checked for U0 by looking at relation (3.28): U0 is
smoothly dependent from ω2, when it exists and is unique). The derivative ∂U0/∂ω2

is thus the solution of the following variational problem, obtained by differentiating
problem (3.39): find ∂U0/∂ω2 ∈ W0 such that∫

Yc

[(
Ec : εy

(
dU0

dω2

))
: εy(v) − ω2ρc

dU0

dω2 (x,y) · v(x,y)
]
dy

=
∫

Yc

U0(x,y) · v(x,y) dy + ρf |Yf | U(U0) · U(v) + ρf (If · R(U0)) · R(v)

+ ω2ρf |Yf | U

(
dU0

dω2

)
· U(v) + ω2ρf

(
R
(
dU0

dω2

))
· R(v) ∀v(x,y) ∈ W0.

(3.40)
with

dÛ
0
f

dω2 = U

(
dU0

dω2

)
,

dR̂
0
f

dω2 = R
(
dU0

dω2

)
for linearity.

We are now in position to express the variation of the function F(ω2) as
dF
dω2 =ρm |Ym| Û

0
m(x) · Û

0
m(x) + ρf |Yf | Û

0
f (x) · Û

0
f (x)

+ ρf (If · R̂
0
f (x)) · R̂

0
f (x) + ρc

∫
Yc

U0(x,y) · U0(x,y) dy

+ 2ρfω
2 |Yf | Û

0
f (x) ·

dÛ
0
f

dω2 (x) + 2ρf (If · R̂
0
f (x)) ·

dR̂
0
f

dω2 (x)

+ 2
∫

Yc

[
ω2ρc

dU0

dω2 (x,y) · U0(x,y) −
(

Ec : εy

(
dU0

dω2

))
: εy(U0)

]
dy


(⋆)

where the term (⋆) vanishes as one can check by taking v = ∂U0/∂ω2 in equation
(3.39). Accordingly, one has:

dF
dω2 =ρm |Ym| Û

0
m(x) · Û

0
m(x) + ρf |Yf | Û

0
f (x) · Û

0
f (x)

+ ρf (If · R̂
0
f (x)) · R̂

0
f (x) + ρc

∫
Yc

U0(x,y) · U0(x,y) dy

 > 0

Summing up, we found that F is increasing at each ω that is not an eigenfrequency.
Moreover, F is continuous at the eigenfrequencies whose eigenspace is orthogonal to
rigid translations and F is not definite at the other eigenfrequencies. Let us now study
F(ω) in the neighborhood of one of these eigenfrequencies. For this, let v∗

m be an
eigenmode that is not orthogonal to the translations, such that[

ρf |Yf | U(v∗
m) + ρc

∫
Yc

v∗
m(y) dy

]
̸= 0. (3.41)

51



Chapter 3. Effective description of continuous metamaterials

Let ω be close, but not equal, to ωm. Then U0(x,y) in part Yc is uniquely defined and,
using the decomposition (3.20) reads:

U0(x,y) = Û
0
m(x) +

∞∑
q=1

Aq(x)v∗
q(y),

where Aq(x) can be found by employing relation (3.26) as:

Aq(x)
(

1 − ω2

ω2
q

)∫
Yc

(Ec : εy(v∗
q)) : εy(v∗

q) dy

= ω2Û
0
m(x) ·

[
ρf |Yf | U(v∗

q) + ρc

∫
Yc

v∗
q(y) dy

]
.

(3.42)

Note that the term eh in relation (3.26) is here substituted with Û
0
m(x). Inserting

relation (3.35) for the effective mass in relation (3.38) of the function F, one obtains:

F(ω) = ρm |Ym|ω2Û
0
m(x) · Û

0
m(x)+ρcω

2
∫

Yc

U0(x,y) · Û
0
m(x) dy

+ ρfω
2 |Yf | Û

0
f (x) · Û

0
m(x).

The term Û
0
f (x) can be expressed by taking the translation part of the motion U0(x,y)

at the boundary ∂Yf such that

Û
0
f (x) = Û

0
m(x) +

∞∑
q=1

Aq(x)U(v∗
q).

Inserting this in the above relation for F(ω2), one gets:

F(ω2) = ω2 (ρm |Ym| + ρc |Yc| + ρf |Yf |) Û
0
m(x) · Û

0
m(x)

+ ω2
∞∑

q=1
Aq(x)

[∫
Yc

ρcv∗
q dy + ρf |Yf | U(v∗

q)
]

· Û
0
m(x).

All the terms in the above relation have a finite limit when ω tends to the eigenfrequency
ωm under consideration, except those terms which involve the eigenmodes not orthogonal
to the translations, i.e. the m-th term in the sum. By using relation (3.42), this term
reads

ω2

1 − ω2

ω2
m

[∫
Yc

ρcv∗
m dy + ρf |Yf | U(v∗

m) · Û
0
m

]2 1∫
Yc

(Ec : ε(v∗
m)) : ε(v∗

m)
,

from which we can conclude that F(ω2) → +∞ when ω → ω−
m and F(ω2) → −∞ when

ω → ω+
m.
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Finally, when ω → 0, one has F(ω2) = 0 and F(ω2)/ω2 = |Y| ρstÛ
0
m(x) · Û

0
m(x),

with ρst being the equivalent static mass density of the material, given by

ρst = ρm
|Ym|
|Y|

+ ρc
|Yc|
|Y|

+ ρf
|Yf |
|Y|

.

The graph of F is given in figure 3.2, where the frequencies ωm denote the eigen-
frequencies whose corresponding eigenspace is not orthogonal to translations. The
function F will thus monotonically increase from 0 to +∞ between 0 and ω1; then it
will monotonically increase from −∞ to +∞ between two subsequent eigenfrequencies
ωm. The function will thus be negative in a family of intervals that we can call Im.

Figure 3.2: Behavior of the function F(ω2). The frequency range is subdivided in
intervals by the frequencies ωm (vertical dashed lines) whose eigenspace is not orthogonal
to translations. Inside each one of these intervals, F monotonically increases from −∞
to +∞.

Band gaps

Let us consider the effective equation of motion (3.34) for the homogenized material.
As this problem governs the propagation of waves in an infinite homogeneous medium,
the theory derived in section 2.1.1 can be applied and solutions are searched in the
form of harmonic plane waves, such that:

u0(x, t) = Û0
m exp {i (ωt+ kp · x)} in Y.

It follows that
Û

0
m = Û0

m exp {ikp · x}.

Inserting this in equation (3.34) gives

k2Eeff
c[ijkh] p[i] p[k] Û0

m[h] = ω2ρeff
[jh] Û0

m[h]
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that is the dispersion relation of the problem. Multiplying by Û0
m[j] leads to

k2Eeff
c[ijkh] p[i] p[k] Û0

m[h] Û0
m[j] = ω2ρeff

[jh] Û0
m[h] Û0

m[j].

The term p · Eeff
c · p can be identified with Γ given by relation (2.11), with Eeff

c instead
of Ec. moreover, the right-hand side of the above relation corresponds to F(ω2) with
Û0

m instead of Û
0
m(x). Since the quadratic form Û0

m · Γ · Û0
m in the left-hand side is

positive definite, choosing a frequency ω at which the effective mass density tensor is
defined, the above relation can be satisfied by a real wavenumber k only if F(ω2) > 0.
This means that harmonic waves can only propagate for frequencies ω where F(ω2)
is non-negative, i.e. not belonging to intervals Im, with m ∈ N∗. Consequently, these
intervals correspond to pass bands.

It is fundamental here to remark that, by virtue of the basic symmetry properties
of the elastic and mass density effective tensors, for a fixed frequency and a given
direction p the corresponding eigenvectors Û0

m, defining the polarization of a wave,
are orthogonal with each other. Nevertheless, they are generally neither parallel nor
perpendicular to the direction p of propagation.

Note that, when F(ω2) tends to +∞ (i.e. when it becomes very large), the homoge-
nization is no more valid, as was shown in chapter 2 for the discrete mass-in-mass chain:
the wavelengths at these frequencies become too short and the separation of scales is
lost.

3.2 Analytic solutions for two cases with simple geometries
We now particularize the general results found in the previous section for a 2D and a 3D
LRM, respectively presenting cylindrical and spherical inclusions. The shapes chosen
for the inclusions enable for a closed form solution of problem (3.21). The frequency
dependent effective mass density (3.35) can thus be analytically obtained. Some of
these results will be used in chapter 4.

3.2.1 Out-of-plane waves in LRMs with cylindrical inclusions (2D
LRMs)

Let us initially consider the LRM characterized by a 2D periodicity in the x1 − x2
plane (see figure 3.3). The cross-section of the three dimensional domain is denoted by
S. We study the propagation of waves whose polarization is out-of-plane (i.e. along
x3) with respect to the plane of the periodicity. The displacement field has only one
component in the third direction1, that depends on coordinates (x1, x2) (anti-plane
strain condition), such that

U ε(x) = U ε(x1, x2)e3.

1With respect to the more general framework of subsection 3.1.1, we here consider a dimension for
the space of the displacement field that is lower than that of the domain under consideration.
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The non vanishing stress components are σε
13 = σε

31 and σε
23 = σε

32. Hence we will

Figure 3.3: Sketch of a three-phase LRM with cylindrical inclusions, together with its
unit cell. The LRM has to be thought of as infinitely extended along direction e3.

consider that the stress field is the vector field σε(x1, x2) = (σε
31(x1, x2), σε

32(x1, x2)),
which is defined on S and related to U ε by

σε(x1, x2) = µε∇(U ε(x1, x2)).

We here fully derive the effective description for a three-phase LRM, whose unit
cells Y are composed of parts Ym, Yc and Yf . In particular, we consider parts Yc and
Yf to be cylinders whose shared central axis is disposed along direction x3. We call Rc

and Rf (Rc > Rf ) their radii (cf. figure 3.3).
In order to simplify the derivation (without loosing the attenuating capabilities of

the composite), we consider part Yf to be rigid. We also give the main results valid for
the bi-phase case (see the work of Comi et al. (2020) for a detailed treatment).

To lighten the notation, we will refer to parts {Ym × S, Yc × S, Yf × S} and to
boundaries {∂Yc × S, ∂Yf × S} respectively simply as {Ym, Yc, Yf } and {∂Yc, ∂Yf }.

Eigenvalues of the inclusion Yc

Let us consider the eigenvalue problem (3.22), here specialized for out-of-plane waves
in three-phase 2D LRMs, such that:

∇y · (µc : ∇y(v∗(y))) + ρcω
2v∗(y) = 0 in Yc,

v∗(y) = 0 on ∂Yc,

∃U(v∗) ∈ R such that:

v∗(y) = U(v∗) on ∂Yf ,

ρf ω
2 |Yf |U(v∗) =

∫
∂Yf

(µc∇y(v∗(y))) · n dΓ

(3.43)
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Note that the rotational degree of freedom of the inner inclusion Yf is no more considered
here since only out-of-plane displacements are allowed.

For the 2D cylindrical domain under study, a 2D cylindrical coordinate system is
employed, such that:

y = r cos θ e1 + r sin θ e2 r ∈ [Rf , Rc], θ ∈ [0, 2π].

Consequently, solutions to problem (3.43) are searched as

v∗
n(y) = (An Jn(kr) +Bn Yn(kr)) exp {i (nθ)}, n ∈ N (3.44)

where
k = ω

√
ρc/µc (3.45)

is the (rescaled) wave number of part Yc, and Jn, Yn are the n-th Bessel functions
respectively of the first and second kind.

The constants An and Bn have to be chosen in such a manner that the boundary
conditions on ∂Yc and ∂Yf be satisfied, and the global equilibrium equation of the
inner inclusion Yf be respected by the rigid translation U(v∗). Accordingly, we have:

(An Jn(kRc) +Bn Yn(kRc)) = 0 n ∈ N, ∀θ (3.46)

and

(An Jn(kRf ) +Bn Yn(kRf )) exp {i (nθ)} = U(v∗
n) n ∈ N, ∀θ

such that: ρf ω
2 |Yf |U(v∗

n) =
∫

∂Yf

(µc∇y(v∗
n(y))) · n dΓ︸ ︷︷ ︸

(⋆)

. (3.47)

Let us consider the integral (⋆). This term can be computed explicitly for the current
case, such that:

(⋆) =
{

0 when n ̸= 0 ⇒ U(v∗
n) = 0

−2πµcRfk [A0J1(kRf ) +B0Y1(kRf )] when n = 0
.

We are interested in studying the orthogonality to translations of the modes v∗
n and of

the associated translations U(v∗
n), i.e. condition (3.41). From the previous results, we

found that the orthogonality condition is fulfilled only for n ≠ 0. Specifically, for these
cases, from the term (⋆) above one has U(v∗

n) = 0. The corresponding eigenvalues can
be obtained by imposing the boundary conditions (3.46) and (3.47), such that:

Jn(kRc)Yn(kRf ) − Jn(kRf )Yn(kRc) = 0 ∀n ̸= 0. (3.48)

Let us now derive the family of eigenvalues and eigenmodes corresponding to n = 0.
Note that these eigenvalues correspond to the frequencies at which the effective mass
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density is not defined and, consequently, will identify the opening frequencies of the
band gaps. We will refer to this family of frequencies as {ωm}m∈N∗ .

Specifically, one finds that the two boundary conditions (3.46) and (3.46) are satisfied
for n = 0 only at those frequencies that verify

kRfρf (J0(kRc)Y0(kRf ) − Y0(kRc)J0(kRf ))
+ 2ρc (Y0(kRc)J1(kRf ) − J0(kRc)Y1(kRf )) = 0.

(3.49)

Motion problem of part Yc

Let us write the displacement field U0(x,y) of the inclusion Yc as in relation (3.31),
such that

U0(x,y) = Û0
m(x)ṽ(y)

Accordingly, the motion of the outer inclusion can be found by considering problem
(3.32), that for the current case reads as:

∇y · (µc : ∇y(ṽ)) + ρc ω
2ṽ(y) = 0 in Yc,

ṽ(y) = 1 on ∂Yc,

ṽ(y) = U(ṽ) on ∂Yf ,

ρf ω
2 |Yf |U(ṽ) =

∫
∂Yf

(µc : ∇y(ṽ)) · n dΓ.

(3.50)

The above problem admits a unique solution whenever ω is not an eigenfrequency of
problem (3.43). In particular, for these cases, one finds

ṽ(y) = ṽ(r) =

kRfρf (J0(kr)Y0(kRf ) − Y0(kr)J0(kRf ))
+ 2ρc (Y0(kr)J1(kRf ) − J0(kr)Y1(kRf ))

den . (3.51)

The denominator “den” is given by:

den = kRfρf (J0(kRc)Y0(kRf ) − Y0(kRc)J0(kRf ))
+ 2ρc (Y0(kRc)J1(kRf ) − J0(kRc)Y1(kRf )) .

(3.52)

Note that “den” is equal to the left-hand side of relation (3.49). This is not by
coincidence, indeed whenever den = 0, i.e. for frequencies ω ∈ {ωm}m∈N∗ whose
eigenspace is not orthogonal to rigid translations, problem (3.50) has no solutions and,
as we will later show, the effective mass density is not defined. This results being in
accordance with our findings from the general case (cf. subsection 3.1.10).

By using the global equilibrium of part Yf , one also finds the ratio between the
displacements of the inner inclusion and the matrix, that reads as

Û0
f (x)

Û0
m(x)

= ṽ(Rf ) = 2ρc (Y0(kRf )J1(kRf ) − J0(kRf )Y1(kRf ))
den . (3.53)

57



Chapter 3. Effective description of continuous metamaterials

Note that, when ω ∈ ωq(n), with n ̸= 0 and q ∈ N∗, then problem (3.50) admits
a solution that is defined up to an eigenmode belonging to the eigenspace defined
by the eigenfrequency under consideration. More specifically, for this case one has
to superimpose the solution (3.51) and any vector belonging to the eigenspace Eωq(n) ,
associated to ωq(n).

The effective elastic tensor

For the case under consideration, the in-plane behavior is decoupled from the anti-plane
behavior. Let us now consider the case of a square unit cell with a central circular
inclusion1 The homogenized material results to be orthotropic, the effective elastic
tensor given by relation (3.30) being that of a tetragonal system (see e.g. Royer et al.
(1996)). The anti-plane problem here considered is governed by a shear stiffness tensor
µeff give by

µeff
ij =

〈[
µm

(
ei + ∇ywi(y)

)]
·
(
ej + ∇ywj(y)

)〉
m

i, j ∈ {1, 2}, (3.54)

where wh, with h = {1, 2}, are the solutions of cell problems (3.12), that for the current
case become: find wh, with h = {1, 2}, such that

∆y · wh(y) = 0 in Ym,

µm

(
eh + ∇ywh(y))

)
· n = 0 on ∂Yc,

wh(y) Y-periodic in y,

µm

(
∇ywh(y))

)
· n Y-antiperiodic in y.

(3.55)

The two problems above can be solved numerically. Specifically, when the tensor (3.54)
is expressed with respect to a reference system whose axes are disposed along the two
perpendicular axes of symmetry of part Ym, the effective mass tensor becomes a scalar
tensor and the problem is governed by only one material coefficient µeff = µeff

[11] = µeff
[22] .

The effective mass density

From relation (3.35) the effective mass density for anti-plane waves is a scalar field ρeff ,
that can be written as:

ρeff (ω) = ρm
|Ym|
|Y|

+ ρf
|Yf |
|Y|

Û0
f (x)

Û0
m(x)

+ ⟨ρcv(r)⟩c , (3.56)

where the last term can be explicitly computed using relation (3.51) as:

⟨ρcv(r)⟩c = ρc

|Y|
(h(Rc) − h(Rf )),

1Inner and outer inclusions must be centered in the square cell.
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with

h(r) = r

k

kRfρf (J1(kr)Y0(kRf ) − Y1(kr)J0(kRf ))
+ 2ρc (Y1(kr)J1(kRf ) − J1(kr)Y1(kRf ))

den .

As we anticipated earlier, we found that the effective mass is thus not defined for
the frequencies ω which are roots of den = 0, i.e. corresponding to the family of
eigenfrequencies {ωm}m∈N∗ . It tends to −∞ and +∞ when ω tends to ωm from above
and from below, respectively. Therefore, ρeff is negative in a countable set of frequency
intervals {Im}m∈N∗ . The values of ωm, which fix the position of these intervals, depend
only on the geometry and material properties of part Yc through the non-dimensional
groups kRf and kRc defined for the rescaled problem in Y. The corresponding real
physical quantities in Yε are defined as

kε = ω

√
ρc

ε2µc
, Rε

f = εRf , Rε
c = εRc,

that give
kεRε

f = kRf , kεRε
c = kRc.

Therefore, the frequencies intervals determined with the above analysis remain valid for
the physical problem.

Bi-phase 2D LRMs

Let us now consider a bi-phase LRM with cylindrical inclusion Yc. Part Yf will thus
be absent for this case.

From problem (3.23), utilizing Fredholm’s alternative, unique solutions can be found
whenever the frequency ω is not an eigenfrequency ωq for the inclusion Yc with fixed
boundaries. More specifically, one has:

U0(x,y) = J0(kr)
J0(kRc)

Û0
m(x) in Yc. (3.57)

When ω = ωq, if the associated eigenmode v∗
q is orthogonal to translations, then solution

(3.57) is still valid up to a vector in the eigenspace Eωq associated to ωq. Otherwise,
problem (3.23) have no solutions different than the trivial one. More specifically, one
finds that ωq = {ωq(n)}q∈N∗, n∈N are obtained from condition

Jn(kRc) = 0 for n ∈ N (3.58)

and that solutions to problem (3.23) exist (although defined up to an eigenmode) for
n ̸= 0.

Considering again the case of a square unit cell with a central circular inclusion, the
effective shear modulus is still given by relation (3.54) and can be computed numerically.
The frequency dependent effective mass density can be explicitly found, such that:

ρeff (ω) = ρst + ρc
|Yc|
|Y|

J2(kRc)
J0(kRc)

, (3.59)
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where the equivalent static mass density ρst is defined as:

ρst = ρm
|Ym|
|Y|

+ ρc
|Yc|
|Y|

.

By studying the behavior of ρeff (ω), one finds that it is negative in a countable set of
intervals, whose opening frequencies coincide with the eigenfrequencies ωq(0), such that
problem (3.23) have no solutions.

3.2.2 Free plane waves in LRMs with spherical inclusions (3D LRMS)

Let us now consider a LRM characterized by a 3D periodicity (see figure 3.4). The
domain of the problem is thus V, with dimension n = 3, whose three-dimensional
unit cells are Y. We here limit ourselves to the study of a bi-phase composite with
parts Ym and Yc. In particular, the inclusion Yc is a sphere with radius Rc. We are
interested in the propagation of plane waves. As in the previous section, we proceed

Figure 3.4: Sketch of a bi-phase LRM with spherical inclusions, together with its unit
cell.

by first looking for the eigenvalues of part Yc with fixed boundaries, then we find the
solutions of problem (3.25) and finally we define the effective material coefficients of
the homogenized LRM.

Eigenvalues of the inclusion Yc

Let us study the eigenvalue problem associated to problem (3.25). For the geometry
here considered for part Yc, this corresponds to finding the eigenvibrations of a sphere
with fixed boundaries. The eigenproblem can be rewritten as{

µc∆v∗(y) + (λc + µc) ∇∇ · v∗(y) + ω2ρc(y)v∗(y) = 0 in Yc,

v∗ = 0 on ∂Yc

(3.60)
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and, for spherical inclusions, it can be solved explicitly by employing a spherical
coordinate system, such that:

y = r sin θ cosφ e1 + r sin θ sinφ e2 + r cos θ e3 r ∈ [0, Rc], θ ∈ [0, π], φ ∈ [0, 2π].

Solutions to problem (3.60) can thus be searched as

v∗
nm(y) = ur(nm)(r, θ, φ)er + uθ(nm)(r, θ, φ)eθ + uφ(nm)(r, θ, φ)eφ, (3.61)

where er, eθ and eφ are the unit vectors in the spherical coordinates system (see
figure 3.4), and ur(nm), uθ(nm) and uφ(nm), with n ∈ Z and m ∈ {− |n| , . . . , |n|}, are
given in Appendix A1. By substitution of relation (3.61) in problem (3.60), a family
of eigenvalues {ωq(nm)}q∈N∗ and corresponding eigenvectors v∗

q(nm) are then found by
imposing the boundary condition on ∂Yc.

Following the discussion given in subsection 3.1.8, we are interested in studying
the orthogonality of the eigenmodes v∗

q(nm) with respect to the constants. Due to the
spherical symmetry of part Yc, the behavior of the inclusion will be the same whatever
the direction of the locally rigid displacement imposed on the boundaries ∂Yc will be.
Therefore, we can reduce our study to the direction e3 (this choice slightly simplifies
the treatment). The orthogonality condition becomes:∫

Yc

v∗
q(nm)(y) · e3 = 0. (3.62)

In particular, we are interested in finding which are the eigenfrequencies ωq(nm) of
problem (3.60) whose corresponding eigenspace does not verify condition (3.62). One
finds that condition (3.62) is not satisfied when n = 1 and m = 0. Details of the
calculations are given in Appendix A1. Note that integration over r of the eigenmodes
such that n = 1 and m = 0 is missing and could make them orthogonal to the constants,
as was found for the in-plane problem of 2D LRMs by Comi et al. (2020).

We are now in position to express the relation that determines the eigenfrequencies
ωq(10). The components of the associated eigenmodes v∗

q(10) can be rewritten as
ur(10)(r, θ, φ) = 1

r

[
AU1(kℓr) + CU3(ksr)

]
cos θ,

uθ(10)(r, θ, φ) = 1
r

[
AV1(kℓr) + CV3(ksr)

]
(− sin θ)

uφ(10)(r, θ, φ) = BV2(ksr) sin θ,

where all the terms in the above relations are outlined in the Appendix A1 and we just
report here the relations defining the longitudinal wave number kℓ and the shear wave
number ks, such that

kℓ =
√
ω

cℓ
, ks =

√
ω

cs
,

with cℓ and cs, being the longitudinal and shear wave speeds, given by relations (2.15).
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By imposing the Dirichlet boundary condition of problem (3.60), one has to solve
the following system of equations:1/Rc U1(kℓRc) 0 1/Rc U3(ksRc)

1/Rc V1(kℓRc) 0 1/Rc V3(ksRc)
0 V3(ksRc) 0


A

B
C

 = 0

Two classes of solutions exist, namely:

• Class 1. Coefficients A and B are equal to zero and the displacement field remains
solenoidal (torsional eigenmodes). The eigenvalues can be found from:

V2(ksr) = 0. (3.63)

• Class 2. Coefficient B is equal to zero and the irrotational and solenoidal parts of
the displacement field are coupled (spheroidal eigenmodes). The eigenvalues can
be found from:

U1(kℓRc)V3(ksRc) − V1(kℓRc)U3(ksRc) = 0. (3.64)

When the properties of orthogonality of the eigenmodes with the translations is of
concern, the eigenmodes belonging to the first class are perpendicular to the constants,
as can be checked by applying relation (3.62). The eigenmodes v∗

q(10) that are not
orthogonal to the constants must belong to the second class above. The corresponding
eigenfrequencies ωq(10) are found from relation (3.64) and can be expressed as follows:

ωq(10) = ζq
cℓ

Rc
,

where ζq are dimensionless frequencies. Making this substitution in equation (3.64), one
finds that the eigenfrequencies ζq depend only on the ratio c between the longitudinal
and shear wave velocities of part Yc, i.e. on its Poisson’s coefficient νc, such that:

c = cℓ

cs
=
√

2 (1 − νc)
1 − 2νc

.

Motion problem of the inclusion Yc

Let us recall that the motion of the inclusion Yc, i.e. the solution of problem (3.23),
can be determined by using relation (3.24), obtaining problem (3.25), for h ∈ {1, 2, 3}.
Solutions to this problem, when they exist and are unique, can be expressed as in
relation (3.27), by posing |Yf | = 0, such that

vh(y) =
∞∑

q=1

〈
eh · v∗

q(y)
〉

c〈
||v∗

q ||2
〉

c

v∗
q(y)

ω2
q

ω2 − 1
, (3.65)

62



Chapter 3. Effective description of continuous metamaterials

where we have used the following relation∫
Yc

(
Ec : εy(v∗

q)
)

: εy(v∗
q) dy = ρcω

2
∫

Yc

v∗
q(y) · v∗

q(y) dy,

obtained by employing the divergence theorem and by imposing v∗
q = 0 on ∂Yc.

Exploiting the orthogonality to the constants of the eigenmodes previously studied,
solutions can be found from relation (3.65) as:

vh(y) =
∞∑

q=1

〈
eh · v∗

q(10)(y)
〉

c〈
||v∗10

q (y)||2
〉

c

v∗
q(10)(y)

ω2
q(10)
ω2 − 1

.

The tensor Υ in (3.29) thus becomes:

Υ(y, ω) =
∞∑

q=1

v∗
q(10)(y) ⊗

〈
v∗

q(10)(y)
〉

c〈
||v∗

q(10)(y)||2
〉

c

1
ω2

q(10)
ω2 − 1

(3.66)

and the displacement field of part Yc is known from relation (3.28).

The effective elastic tensor

Relation (3.30) can be directly used to compute the effective material coefficients. When
part Ym is characterized by a cubic symmetry (as will be later the case), there will be
only three independent components (Royer et al., 1996).

The effective mass density

The effective mass density tensor (3.36) is finally obtained as:

ρeff (ω) = ρstI + ⟨Υ(y, ω)⟩c , (3.67)

with
ρst = ρm

|Ym|
|Y|

+ ρc
|Yc|
|Y|

.

We state here that the effective mass is a scalar tensor. To prove this, one has to
consider the numerator of the term ⟨Υ(y, ω)⟩c in relation (3.67), that reads〈

v∗
q(10)(y)

〉
c

⊗
〈
v∗

q(10)(y)
〉

c
=
〈
v∗

q(10)(y) · ei

〉
c

〈
v∗

q(10)(y) · ej

〉
c
.

Therefore, for ρeff to be a scalar tensor, we must have that, if v∗
q(10)(y) is not orthogonal

to a rigid translation along direction ei, then it must be orthogonal to rigid translations
along directions ej , with j ̸= i. This can be readily proved for direction e3: when
v∗

q(10)(y) is not orthogonal to translations along this direction, then the integration over
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dφ in Appendix A1 is zero also for m = 0. This same consideration is valid for the
other two perpendicular directions ej , with j ̸= 3: we can indeed rotate the Cartesian
coordinates so that one between the directions previously along ej , with j ̸= 3, is now
coincident to e3.

The effective mass density tensor ρeff can thus be expressed as:

ρeff (ω) = ρeff (ω)I.

The scalar function ρeff is given by

ρeff (ω) = ρst + ρc
|Yc|
|Y|

∞∑
q=1

Υq(ω) 1
ω2

q(10)
ω2 − 1

, (3.68)

where

Υq(ω) =

(〈
v∗

q(10)(y)
〉

c
· ei

)2〈
||v∗

q(10)(y)||2
〉

c

(3.69)

can be computed in a closed form (see Appendix A1), with i that can take whatever
value in {1, 2, 3}.

As for the 2D LRM, the effective mass is not defined for a countable set {ωq(10)}q∈N∗

of eigenfrequencies of part Yc, which are found from relation (3.64). The effective mass
density ρeff (ω) again becomes negative in a set of frequency intervals {Im}m∈N∗ , whose
position is fixed by ωq(10). The width of these intervals depends only on the mass ratio
between parts Ym and Yc and on the Poisson’s coefficient νc of part Yc, as can be
checked by noting that the dimensionless eigenfrequencies ζq remain the same also when
the real physical quantities are used, since cℓ/Rc = cε

ℓ/R
ε
c.

3.3 Results from the homogenization technique
Following the results from the previous sections, we are now in position to study the
propagation of mechanical waves by using the concept of effective mass density tensor.
In particular, relations (3.56), (3.59) and (3.68) can be directly employed to study
the dispersion plot of the three cases considered: whenever ρeff (ω) becomes negative,
a band gap should appear. The prediction of band gaps can thus be compared to
the results obtained by exploiting the Bloch-Floquet theory, introduced in chapter 2.
Moreover, since a closed form expressions of ρeff are found, one can easily perform
parametric studies to evidence the influence of different geometries and/or materials on
the wave propagation properties.

3.3.1 Comparison with Bloch-Floquet theory

As shown in chapter 2, the propagation of waves in periodic materials is often studied
making use of the Bloch-Floquet theory solving the eigenvalues problem (2.28) for
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the elementary cell, parametrized by the wave vector k considered. The continuous
spectrum of the problem in the infinite periodic domain is thus obtained by “connecting”
the discrete spectrum of these eigenvalues problems, for varying k. The dispersion
surfaces ω = ω(k) can be numerically evaluated, e.g. by finite elements analyses (Åberg
et al., 1997; Comi et al., 2018; Moscatelli et al., 2019).

Due to the periodicity and to the symmetries of the unit cell (if any), the description
of the dynamic behavior of the metamaterial for all the possible wave vectors can
be obtained by considering only the first “Irreducible Brillouin Zone” (IBZ) of the
reciprocal lattice, that is a part of the FBZ (see subsection 2.1.3). Furthermore, often
only the wave vectors along the boundary of the IBZ are considered (see e.g. the works
of Kittel (2004) and Phani et al. (2006) for further details). We sketch in figure 3.5 the
FBZ for the square and cubic unit cells here treated, together with their corresponding
IFBZ path that will be followed to compute the dispersion relation using Bloch-Floquet
approach. Band gaps appear in the dispersion diagrams as intervals of frequencies with

X

M

Γ

(a)

X

M

R

Γ

(b)

Figure 3.5: First Brillouin Zones (FBZs) for a square (a) and a cubic (b) unit cell.
The corresponding paths followed along the IBZ are highlighted in red.

no real solutions, i.e. as gaps in the spectrum of the problem under study.
In the work of Comi et al. (2020), it is proved (for the bi-phase case) that the

asymptotic analysis of the Bloch-Floquet problem leads (at first order) to the same
effective equation of motion obtained through the two scale homogenization methods.
The two approaches therefore, in the low frequency range, give the same prediction
of the band structure. In the following we illustrate these results for the bi- and
three-phase LRM with two dimensional periodicity and for the bi-phase LRM with
three dimensional periodicity.

The material parameters chosen are listed in table 3.1. As stated at the very
beginning of the current chapter, the homogenization technique is based on the presence
of two well-separated length scales, such that the wave length λm of the wave propagating
in part Ym is larger than the characteristic size of the unit cell a. For this hypothesis
to be fulfilled, one must have:

a

λm
= a

ω

2π

√
ρm

µm
≪ 1.
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Therefore, with the chosen constituents, the homogenization technique is expected to
be applicable up to the (reduced) frequency ωmax a/2π =

√
µm/ρm = 1.055 [106 m/s].

Note, moreover, that the scaling assumptions of section 3.1.2 are here fulfilled (see table
3.1). Consequently, band gaps are expected.

Table 3.1: Material properties.

Constituents E [MPa] ν [-] ρ [kg/m3]
part Ym (epoxy) 3600 0.370 1180
part Yc (rubber) 0.118 0.469 1300
part Yf (lead) 14000 0.420 11340

While the results of the homogenization theory are general, in the sense that they
are independent from the actual shape of the unit cell, the numerical analyses of the
Bloch-Floquet approach require to fix the geometry of the unit cell.

For the sequel, we here define the Filling Fraction (FF) as the ratio between the
measure of the domain occupied by the inclusions with respect to that of the entire
unit cell, such that:

FF = |Yc| + |Yf |
|Ym|

.

Bi- and three-phase 2D LRMs

We consider that the inclusions are distributed on S following a square lattice, charac-
terized by orthogonal primitive base vectors a1 and a2 with the same modulus, so that
the unit cell is a square of side a.

In figures 3.6 and 3.7, we compare the numerical and the analytic results, for out-
of-plane waves respectively in bi- and three-phase 2D LRMs. Specifically, figures 3.6a
and 3.7a report the numerically computed dispersion plots, whereas figures 3.6b and
3.7b show the evolution of the normalized effective mass density (analytically derived
throughout homogenization) with frequency. The shaded regions correspond to band
gaps obtained from the asymptotic technique. In view of property 4 of subsection 2.1.5,
the dispersion plot in terms of reduced frequency ω a/2π, is independent from the cell
size a.

One can observe an extremely good agreement of the two approaches for the
determination of the first two band gaps. This is indeed expected since they appear at
frequencies ω ≪ ωmax. Note, however, that the second band gap for the three-phase
LRM (figures 3.7) is characterized by the presence of two so-called “flat bands”. These
modes correspond to eigenfrequencies ωq of problem (3.43) such that the corresponding
eigenspace and associated motion on the boundary ∂Yf are orthogonal to translations.
The effective mass density is still defined at these frequencies (although negative).
Modes belonging to this family can also appear outside band gaps, as it is the case for

66



Chapter 3. Effective description of continuous metamaterials

flat modes

(a) (b)

Figure 3.6: Propagation of out-of-plane waves in two-phase 2D LRMS, filling fraction
FF = 0.541: (a) dispersion plot computed numerically using the Bloch-Floquet approach
(normalized wave number ka vs reduced frequency ωa/2π), (b) effective mass density
ρeff vs reduced frequency. Shaded regions denote the band gaps. The path followed
along the IBZ are the ones highlighted in red in figure 3.5a.

flat modes

(a) (b)

Figure 3.7: Propagation of out-of-plane waves in three phase 2D LRMS, filling fraction
FF = 0.541 (R/a = 0.415), Rf/Rc = 0.67: (a) dispersion plot computed numerically
using the Bloch-Floquet approach (normalized wave number ka vs reduced frequency
ωa/2π), (b) effective mass density ρeff vs reduced frequency. Shaded regions denote
the band gaps. The path followed along the IBZ are the ones highlighted in red in figure
3.5a.

the bi- and three-phase LRMs here considered (see figures 3.6a and 3.7a). Due to the
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mentioned orthogonality, these eigenmodes will not be “activated” when dealing with
the problem of wave propagation in an infinite (periodic) domain at low frequencies1.
Nevertheless, they do appear in the dispersion plot: the latter is indeed obtained from
an eigenvalue problem in a finite domain (Bloch-Floquet approach) and the concept of
propagation is therefore absent.

Before analyzing the presence of these flat modes, let us initially report in figure 3.8
the contour plots of some eigenmodes from the dispersion analysis of the three-phase
case. The opening and the closing modes of the first band gap are shown in figures 3.8a

(a) Mode 1 - k point M .

(b) Mode 2 - k point Γ.

(c) Mode 4 - k point M .

(d) Mode 7 - k point Γ.

(e) Mode 5 - k point Γ.

(f) Mode 6 - k point M .

Figure 3.8: Three components metamaterial, filling fraction FF = 0.541, Rf/Rc = 0.67:
(a) and (b) opening and closing modes of first band gap, (c) and (d) opening and closing
modes of second band gap, (e) and (f) flat modes inside second band gap.

and 3.8b, they are axial symmetric and correspond to different symmetry points of the
IBZ (as common for band-gaps generated by a local resonant mechanism). The opening
and closing modes of this second band gap, shown in figures 3.8c and 3.8d, are again
axial-symmetric. The two flat modes within the second band gap in the dispersion
plot are shown in figures 3.8e and 3.8f. They correspond to local resonances inside
the coating characterized by a displacement field depending on both the radial and
the angular coordinates. From figure 3.8 one can also observe that the displacement is

1At low frequencies waves in part Ym are characterized by a long wave length. The corresponding
displacement field will thus be locally constant. We have found that these modes are perpendicular to
the constants and therefore their contribution to the motion must be null.
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uniform in the internal lead inclusion (part Yf ) and the simplifying hypothesis of rigid
inclusion is therefore justified.

(a) (b)

Figure 3.9: Left-hand side members of relations (3.48) (a) and (3.58) (b)) are represented
in black with respect to the reduced frequency ωa/2π, respectively for 0 < n < 4 and
0 < n < 5: their zeros correspond to flat modes in the dispersion plots (a) and (a).
Red curves correspond to n = 0. The blue curve in figure (b) represents the quantity
“den” defined by relation (3.52) (it is multiplied by 10−4 for a better visualization). The
orange shaded regions denote the band gaps obtained with the homogenization.

Let us now go back to the flat modes. Their prediction is verified in figure 3.9,
where the left-hand side members of relations (3.48) and (3.58), for n ̸= 0, are reported
with respect to the reduced frequency, respectively for the bi- and three- phase LRMs.
The zeros of these functions (represented as black curves), for n ̸= 0, indeed correspond
to the flat modes present in the dispersion plots of figures 3.6a and 3.7a, indicating a
displacement localized in parts Yc. Moreover, the red curves in the plots of figure 3.9
correspond to those same functions for n = 0. Their zeros thus coincide to the opening
of a band gap for the bi-phase LRM (figure 3.9a). This would have been also the case
for the three-phase LRM, if one had assumed the rigid translation U(v∗

0) of part Yf ,
associated to mode v∗

0, to be null. Nevertheless, this assumption would be unreasonable,
preventing the motion of the inner inclusion. By doing this, we would also not be able
to correctly predict the band gaps, as one can check by looking at the red curve in
figure 3.9b: its zeros do not intersect all the openings of the band gaps.

While the resonant behavior of the bi-phase case entirely depends on the dynamics
of part Yc, this is not the case for the three-phase material, where the presence of
part Yf can strongly influence the motion of the LRM. In particular, this behavior
characterizes the first band gap for the three-phase LRM here analyzed. By looking at
the modal shape in figure 3.8a, it is clear that the opening of this band gap is mainly
caused by the resonant motion of part Yf , that moves out-of-phase with respect to
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part Ym. Finally, the blue curve in figure 3.9b represents the function “den” defined by
relation (3.52) (it is multiplied by 10−4 for a better visualization) and becomes null each
time a band gap appears. This function indeed contains information on the combined
dynamic behavior of both parts Yc and Yf .

Bi-phase 3D LRMs

We consider that the inclusions are distributed in V following a cubic lattice, charac-
terized by orthogonal primitive base vectors a1, a2 and a3 with the same modulus, so
that the unit cell is a cube of side a.

In figure 3.10, we again compare the numerical results (figure 3.10a) with the analytic
ones (figure 3.10b). The agreement is excellent also in this case. Note that, for the
cubic unit cell here considered, the IBZ is characterized by a third dimension with
respect to the 2D cases previously considered and is represented in figure 3.5b.

flat modes

(a) (b)

Figure 3.10: Propagation of waves in bi-phase 3D LRMS, filling fraction FF = 0.299
(R/a = 0.415): (a) dispersion plot computed numerically using the Bloch-Floquet
approach (normalized wave number ka vs reduced frequency ωa/2π), (b) effective mass
density ρeff vs reduced frequency. Shaded regions denote the band gaps. The path
followed along the IBZ is highlighted in red in figure 3.5b.

Flat bands are present in the dispersion plot. Their analytic prediction is not
analyzed here as the same procedure valid for the 2D case applies for the 3D LRM.
In particular, one has to impose the boundary condition of problem (3.60) using
the general solution (3.61); the relations obtained for n ̸= 1, m ̸= 0, with n ∈ Z,
m ∈ {− |n| , . . . , |n|}, allow to find the eigenfrequencies ωq(nm) corresponding to flat
modes.
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3.3.2 Parametric studies

Since closed form solutions are obtained, one can easily perform parametric studies
to evidence the influence of different geometries and material coefficients on the wave
propagation properties.

Concerning the problem of out-of-plane waves in three-phase 2D LRMs with the
constituents given in table 3.1, the influence of the thickness of the coating is highlighted
in figure 3.11, where the regions of negative effective mass are shown at varying Rf/Rc.
The dashed line corresponds to the effective mass evolution shown in figure 3.7b. The
amplitude of the first band gap increases as the thickness of the coating decreases since,
at fixed filling ratio, this corresponds to an increase of the resonating fiber mass. Figure
3.12 displays the frequency intervals of negative effective mass at varying filling fractions
for the case of a thick coating (figure 3.12a) and that of a thin coating (figure 3.12b).

For out-of-plane waves in bi-phase 2D LRM, keeping again the same constituents as
before, the only parameters affecting the position and width of the band gaps is the
mass ratio between the parts composing each unit cell. Instead, in 3D bi-phase LRM,
band gaps depend not only on the mass ratio but also on the Poisson’s coefficient of part
Yc (as shown before). We report in figure 3.13 the variation of the first band gap due
to different Poisson’s ratios. The frequency is normalized with respect to ω1 = ω1(10),
being the first eigenfrequency of part Yc, found from relation (3.63) for n = 1 and
m = 0.

Figure 3.11: Three-phase 2D LRM with filling fraction FF = 0.54: intervals of negative
effective mass in the plane (reduced frequency ωa/2π - Rf/Rc) for out-of-plane waves,
the dashed line corresponds to the case considered in the previous calculations (Rf/Rc =
0.67).
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(a) (b)

Figure 3.12: Intervals of negative effective mass in terms of reduced frequency ωa/2π, for
varying filling fraction: (a) thick coating Rf/Rc = 0.67, (b) thin coating Rf/Rc = 0.87.
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Figure 3.13: Bi-phase 3D LRM with filling fraction FF = 0.299: effective mass density
for varying Poisson’s ratios of part Yc vs frequency normalized with respect to ω1 =
ω1(10).
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4
C h a p t e r

The localization phenomenon in de-
fective metamaterials

Chapter summary: The problem of the localization of classical waves is introduced herein.
The key point for the occurrence of the aforementioned phenomenon is the presence of
band gaps. Metamaterials of the type treated in this thesis have shown good abilities to
control the propagation of waves (see chapter 1). The insertion of so-called “defects”
(also known as “cavities”), i.e. perturbations of their periodicity, causes the formation
of eigenmodes localized in space around the defect. An exhaustive description of the
mechanisms governing the problem of wave localization in metamaterials and, more in
general, in systems with band gaps presenting defects is given, in parallel with a concise
review. A new method for the localization of classical waves, analogous to the resonant
tunneling effect in quantum mechanics, is discussed. Proof of its validity is shown by
means of a discrete system.
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Chapter 4. The localization phenomenon in defective metamaterials

As stated in the introduction of this thesis, our aim is to analyze and idealize
possible solutions to be applied in what we had defined as “Defective Energy Harvesting”
(DEH) devices, i.e. systems whose response to an external energy source is localized in a
defect of their structure. One of the goals of this chapter is to introduce the localization
phenomenon at the basis of the functioning of these systems. Structures presenting
band gaps in their spectra and point or line defects in their domains can sustain the
formation of local modes, characterized by oscillations that are localized in a compact
region. Consequently, the energy injected into the system from spread sources could in
principle be confined in the defect.

The focusing and trapping of “classical waves”1, in photonic and phononic crystals
by means of defects is well-known in the literature, where theoretical and experimental
validations can be found. Evidences of this phenomenon in locally resonant materials
also exists (although they have been much less studied). We here intend to present a
“new” way for the localization of classical waves, inspired to the quantum-mechanical
resonant tunneling effect2. Our aim in this chapter is that of proving its validity and
efficiency in relation to the trapping and focusing of mechanical energy, by employing
a simplified model able to work both as a locally resonant material and a phononic
crystal.

Part of this chapter was the subject of the following publication: Moscatelli et al.,
2021.

4.1 The problem of waves localization in defective media

The phenomenon of wave localization first appeared in solid state physics following the
seminal paper by Anderson (1958). Solids, at the microscopic scale, are composed of a
periodic repetition of elementary units. The wave nature of electrons in such crystalline
structures gives rise to allowed energy-bands. Outside these bands, destructive interfer-
ence of different scattering trajectories inhibits the electrons motion, forming forbidden
intervals that are nothing else than what we defined as band gaps for classical waves3.
By introducing small enough perturbations of periodicity (i.e. by considering a slightly
disordered crystal), the electronic wave functions are localized in space at some energies
in the vicinity of the edges of the gaps, decaying exponentially away from the center of
the localization (Figotin et al., 1994b). If the disorder is further increased, the energies
corresponding to localized waves can fill up the entire band gap (Figotin et al., 1996c).

The very same phenomenon appeared to be valid also at a macroscopic scale, when
classical waves are deemed. It has been demonstrated for lattice models (Figotin et al.,

1With “classical” we intend electromagnetic, acoustic and elastic waves, where quantum effects are
not of importance.

2This is the reason why the word “new” was quoted before in the text: the application is new but
the idea is not.

3Frequencies have to be interpreted as energy levels: electrons whose energy is inside a band gap
will experience “attenuation” in some form.
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1994a) and for continuous domains (Figotin et al., 1996c, 1997a).
If instead of distributing the imperfections all over the domain of the problem,

one considers a single (or a few) compact defect(s), localization can still be activated,
provided that the system sustains the formation of band gaps. Indeed, defects are
nothing else than compactly-supported imperfections of an otherwise homogeneous
or periodic domain. Note that a slightly disordered media can be thought of as a
superposition of local perturbations. The basic physical mechanism responsible for the
confined response in disordered media is exactly the same experienced by defective
systems. Namely, a compact defect can support a localized state that decays away from
it and that oscillates at a frequency inside a band gap for the unperturbed problem.
We will call this state “eigenmode” for the moment and we will later on give the reason
why we can call it like that. Consequently, we will refer to its corresponding frequency
of oscillation as “eigenvalue”.

We are interested precisely in analyzing this remarkable behavior, i.e. in studying
systems presenting band gaps and characterized by the presence of one (or a few) point
or line defect(s).

We underline again that the existence of localized eigenmodes is strictly related to
the presence of band gaps in the spectrum of the operator governing the problem under
consideration and this is valid both for electron and classical waves. Nonetheless, in
spite of all the similarities between the two problems, an important difference exists.
The reinterpretation of the results concerning the localization phenomenon in terms of
classical waves is made possible by the strong analogy between the Schrödinger operator

S (•) := (−∆ + V (x))(•) on L2(Rn;C)

and the operators for classical waves

A (•) := −∇ · 1
χ(x)∇(•) on L2(Rn;C),

E (•) := ∇ × 1
χ(x)∇ × (•) on L2(Rn;Cn),

with n denoting the dimension of the domain. Let us list here below some comments
on the above operators:

• The term V in the operator S is a position dependent potential.
• A is the operator for acoustic waves, obtained by considering a position dependent

mass density χ(x) and a unit compressibility.
• E is the operator for electromagnetic waves, obtained by considering a position

dependent dielectric constant χ(x) and a unit material permeability.
• The operator for elastic waves (2.23) has exactly the same form as the operator

A when a scalar field is under consideration, with χ(x) being the inverse of the
stiffness in that case. Studying higher dimensions for the elastic problem does not
bring anything more with respect to the considerations that apply to the scalar
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problem and that will later be made. Therefore, we consider here only the scalar
operator.

The difference mentioned above stems from the fact that for the electron case it
suffices to perturb locally a homogeneous medium, i.e. a constant potential V (x) = v,
in order to generate a localized response. Indeed, the spectrum σ for the operator S
is obtained as σ(S ) = [v,∞), with the interval (−∞, v) being a gap of the spectrum.
The closing edge of this gap depends on the potential of the homogeneous medium
and, hence, a compact perturbation of the homogeneous medium could move this edge
into the gap for positions x within the perturbed domain, causing the formation of
eigenmodes localized inside the defect.

For classical waves, a local perturbation of a homogeneous medium (i.e. of a constant
χ in the operators defined above) cannot generate a localized eigenmode. One always
have σ(A ) = σ(E ) = [0,∞) and thus the interval (−∞, 0) corresponds to a gap in the
spectrum of classical waves. Nonetheless, contrary to the previous case, the closing
edge of this gap is now independent from the material properties of the homogeneous
medium analyzed. Any compact perturbation cannot expand the spectrum into the
gap and no localized eigenmodes can appear (Figotin et al., 1997b).

Due to this fundamental difference between electron and classical waves, in order
to activate the phenomenon of localization in the latter case, it is necessary to design
heterogeneous domains for classical waves that enable for the formation of gaps in
the spectrum, whose edges depend on the medium under consideration. This can be
achieved in different ways.

The easiest approach to obtain a gap for classical waves is to consider waveguides.
Looking at the above operators A and E , they are both applied to functions defined
on Rn. For n ≥ 2, one can reduce the domain of the medium to form a waveguide.
Depending on the conditions imposed at the boundaries1, it is possible to obtain a
spectrum with cut-off frequencies dependent on the geometry of the domain (Nazarov,
2011a). Therefore, by introducing a local modification of the waveguide width, a defect
mode can appear in the spectrum of the problem.

The other natural way to generate band gaps is to consider periodic domains, as we
have shown in the previous chapters. Photonic crystals, phononic crystals, and locally
resonant materials are thus all candidates for the development of systems experiencing
the localization phenomenon described herein. A point (or line) defect can be created by
locally modifying the properties of one (or more) unit cell that composes the material.
Since the position of the edges of the band gaps that appear in their spectra depends
on the periodicity, an imperfection of such periodicity could lead to the formation of
localized eigenmodes.

Combining the two previous configurations, periodic waveguides can offer the very
same phenomenon of localization, when defects of periodicity are introduced (Nazarov,
2011b; Delourme et al., 2017, 2020).

1One can choose between Dirichlet and Neumann boundary conditions.
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4.1.1 Defects in metamaterials

In this thesis we are mainly interested in the behavior of metamaterials for mechanical
waves, i.e. waves that are not capable of transmitting their energy through vacuum.
Elastic and acoustic waves belong to this class, whereas electromagnetic waves does
not. We will thus focus on the problem of wave localization in this type of materials
with defects of periodicity.

We have previously called the localized wave field “eigenmode” and its corresponding
frequency of oscillation “eigenvalue”. From a mathematical point of view, when dealing
with self-adjoint operators (as it is the case here), the spectrum of the problem can be
subdivided in the so-called discrete and essential spectra, the former being composed
of all the eigenvalues of finite multiplicity and the latter being its complement1. When
dealing with periodic media, such spectrum would only be composed of its essential part.
By introducing a compact defect, the essential spectrum is stable2 and thus its band
gap structure remains unchanged (Reed et al., 1978; Figotin et al., 1997b). This means
also that, if a particular band gap is considered, the spectrum for the defective system
in that same band gap can consist at most of the discrete spectrum of the perturbed
problem, allowing us to refer to localized states as eigenmodes and to corresponding
frequencies as eigenvalues (of finite multiplicity).

It is clear that a defect in a periodic structure can be realized in different ways,
nevertheless important differences arise when comparing phononic crystals (PnCs) and
locally resonant materials (LRMs). Specifically, the mechanism responsible for the
formation of a defect mode, i.e. an eigenmode localized in the defect, is the same
in both cases, however the “working regime” is very different: considering the same
characteristic size for the unit cell, the order of magnitude of the frequencies involved
in the formation of band gaps are different. We indeed specified since the beginning
of this thesis that, while in PnCs band gaps open for wavelengths of the order of one
spatial period, LRMs are generally designed to work in a sub-wavelength regime.

Figure 4.1: Sketch of 3D periodic system (left) containing a compactly-supported defect,
represented by the darker region in its sectioned representation (right). Source: Klein
et al. (1998).

1Note that the residual spectrum for self-adjoint operators is always empty.
2This comes from a corollary of Weyl’s theorem.
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To list possible defective systems, let us consider the typical geometrical configuration
of a metamaterial, with a background medium (the matrix) presenting a periodic lattice
of non-connected scatterer elements (the inclusions). The easiest way to create a defect
in such periodic material is by removing the inclusion from one (or a few neighboring)
unit cell(s) (see figure 4.1). In doing so, the characteristic size of the imperfection is
that of one unit cell. Localized eigenmodes can thus appear only if the characteristic
wave length of the corresponding resonating motion of the defect is at maximum of
the same order of magnitude of the cell size. From what we just said, this perturbed
configuration can generate a defect mode only in a PnC. Numerical and experimental
proofs of the formation of defect states for elastic and acoustic waves were first given
by Sigalas (1997, 1998), Khelif et al. (2003), and Wu et al. (2009b). Similar results for
PnCs can be found by modifying the geometry of the inclusion, instead of completely
removing it (Sigalas, 1997, 1998; Wu et al., 2001, 2004).

In all the works just cited, the existence of a defect mode was not assured a priori,
but had to be verified by treating the problem first and by checking that the choice
made was good enough for an eigenvalue of finite multiplicity to be present in a band
gap. In Figotin et al. (1997b) and Klein et al. (1998), the authors come up with a
necessary and sufficient condition to ensure the rise of at least one eigenvalue in a gap
of a perturbed periodic medium obtained by the substitution of one or more unit cells
with a homogeneous material. Specifically, they provide a rigorously derived condition
for the acoustic and the electromagnetic operators previously defined. For completeness,
let us rewrite here this condition:

ℓ2χ̌ >
4(a+ b)
(b− a)2 inf

ξ∈C2
0 (D,R),||ξ||=1

κ̂∈Sn

||κ̂ · ∇ξ||2
1 +

(
1 + ||∇ξ||2

4||κ̂ · ∇ξ||4
(
b− a

a+ b

)2)1/2
 ,

where: ℓ is the characteristic length for the spatial size of the defect; χ̌ is the constant
coefficient for the material that composes the defect; a and b are respectively the opening
and closing frequencies of a band gap; D is a bounded subset of Rn; C2

0(D,R) is the
space C2

0(Rn,R) of functions ξ such that supp(ξ) is contained in the interior of D; Sn

is the unit sphere in Rn. In the above relation, the norms have to be understood in the
L2 space.

To give an example of application of the above condition, let us consider a 2D
metamaterial for out-of-plane elastic waves composed of an array of square unit cells
and characterized by a band gap in its spectrum between a and b. A defect is created
by removing an inclusion from one cell (this example is very similar to the one given by
Figotin et al. (1997b)). Let us take

ξ(x) =
∏2

i=1 υ(xi)
||
∏2

i=1 υ(xi)||
with

υ(t) =
{

(t− 1/2)2(t+ 1/2)2 for − 1/2 ≤ t ≤ 1/2
0 otherwise
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and κ̂ ≡ ei, with i ∈ {1, 2}, to be the unit vector along one of the directions given by
the coordinate axes. For this case, χ̌ denotes the inverse of the shear modulus of the
material composing the defect. The above condition for the existence of a defect mode
becomes:

ℓ2χ̌ >
48(a+ b)
(b− a)2

1 +
(

1 + 11
8

(
b− a

a+ b

)2)1/2
 ≈ 61(a+ b)

(b− a)2 ,

considering the fact that (b− a)/(a+ b) < 1 for the approximation.
Therefore, one has that the spatial size and the material coefficient of the defect

must be large enough to assure the creation of at least one defect mode inside the band
gap (a, b).

To the authors knowledge, no equivalent results exist for elastic waves in 3D
(operator (2.23)). Nevertheless, one expects to find similar conditions because of the
aforementioned similarities of the operators involved and of the mechanisms responsible
for the formation of band gaps and defect modes.

By using the above relation, one finds that the formation of localized eigenstates
is less obvious with continuous LRMs due to their sub-wavelength regime. Intuitively,
considering the same position in the spectrum1 and the same size for the defect (ℓ),
the condition above is satisfied depending on the coefficient χ̌, being the inverse of the
stiffness of the background material (matrix) of the metamaterial under consideration.
Accordingly, this coefficient is smaller in LRMs (soft-in-stiff configuration) with respect
to PnCs (stiff-in-soft configuration). Therefore, at fixed band gap position (i.e. fixing
the right-hand side in the above condition), one has either to consider a larger defect
(larger ℓ) or to tune its resonance such that a localized motion can appear in the
band gap. The latter solution has been exploited in the work of Ammari et al. (2018),
where the authors extensively and rigorously analyzed the localization problem for
acoustic waves in bubbly crystals. This same concept has also been used in PnCs for
the formation of a defect modes generated by a Helmholtz resonator inserted in the
defect (Wu et al., 2010).

Our contribution to the problem of wave localization in LRMs is in the other
direction, namely we try to control the formation of localized modes by varying the
dimensions of the defect, as will be shown in the next chapter 5. Our objective is
not only to generate defect modes, but also to trap propagating waves in the defect,
together with the energy they carry with them.

1Although, as we said before, the working frequencies in LRMs and PnCs are generally different,
the resonant scatterers in a LRM could be tuned to rise in frequency, positioning the band gaps close
to the one obtained from a PnCs with the same cell size.
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4.2 Exploitation of the resonant tunneling phenomenon
for the localization of mechanical waves

Let us describe the system we have conceived for the localization of mechanical waves
in defective metamaterials.

As we claimed in the previous section, we intend to obtain localized eigenmodes by
tuning the dimensions of the defect. The system we are willing to study is sketched in
figure 4.2 and is composed of a metamaterial that has been inserted in the unbounded

Figure 4.2: Sketch of the studied system. A defect (part V3) splits the metamaterial
in parts V2 and V4. A wave propagating from part V1 to part V2 travels through the
whole system.

domain V and split into two regions (parts V2 and V4) by the insertion of a defect (part
V3), whose role is that of a resonant cavity. The metamaterial used is classically made
up of a homogeneous matrix with a periodic array of scatter elements. Our objective
is that of trapping in the defect the wave that is traveling from part V1 to part V5.
Note that, in figure 4.2, the background material employed for the matrix is the same
of that considered for the defect (part V3) and for the medium surrounding the system
(parts V1 and V5); this is just a specific configuration, as different materials could be
envisaged as well.

As we anticipated earlier in this chapter, the functioning of the above system
resembles very much the resonant tunneling phenomenon for electron waves in quantum
physics (see e.g. Bohm (1989)). An electron wave ψ, function of position x and of
energy E > 0, is sent towards two barriers of potential P > E, that are disposed in
series and separated by a certain distance. The problem is 1D and outside the barriers
P = 0. By considering Schrödinger equation

ψ′′(x) + (E − P (x))ψ = 0,
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it is clear that, as in the barriers the term E − P (x) is smaller than zero, the electron
wave is attenuated. Conversely, outside the barriers the wave can propagate freely.
By adjusting the distance between the two barriers, it is found that the transmission
coefficient is unity for certain wave lengths, meaning that the two barriers become
completely transparent for the electron. This phenomenon is due to the multiple
reflections that take place in the resonant cavity within the two barriers, acting as
mirrors for the internal wave.

Our idea is that of using a metamaterial to behave as mirrors, exactly as the two
potential barriers, and to exploit the multiple reflections to trap and focus inside the
cavity the mechanical energy carried by the incoming wave.

We aim to solve the problem in closed form, in order to have a condition that enables
us not only to assure the presence of defect modes, but also to place and locate it in
the spectrum.

Before studying the behavior of the continuous system depicted in figure 4.2, we
first consider in the next section its 1D discrete version, by employing the mass-in-mass
chain widely described in chapter 2.

4.3 1D discrete metamaterials for energy localization

Let us analyze the system shown in figure 4.3, with five regions equivalent to those in
figure 4.2 and made of springs k1 and masses m1 either alone (spring-mass chain) or
connected to masses m2 by springs k2 (mass-in-mass chain analyzed in section 2.2). As
we did in section 2.2, we call ℓ the size of a unit cell, that is the same for the whole
system. The regions of the first type, corresponding to the matrix, are indicated as VI,

−n−1 −n −1 0 +1 +n +n+1

VI VII VIII VIV VV

m1

m2
k2

k1
2

k1
2

ℓ

m1

k1
2

k1
2

ℓ

Figure 4.3: Sketch of the studied system, with unit cells of the metamaterial and of
the matrix. In parts VI and VV, the chain of masses m1 and springs k1 is infinitely
extended for j → ±∞. Regions VII and VIV are composed of n cells each. We call ℓ the
size of a unit cell.

VIII and VV; those of the second type, corresponding to the metamaterial (matrix with
inclusions), are regions VII and VIV; region VIII represents the “cavity”, i.e. a defect of
periodicity for the metamaterial, inserted between regions VII and VIV which can be
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thought of as the previously defined “barriers”. Specifically, in this case we are creating
a defect by removing the inclusion from the central unit cell. We assume that each
metamaterial region contains n cells and the defect only one. The number above a cell
represents its index j ∈ Z in the chosen numbering. We consider an incoming wave in
the region VI which propagates at the angular frequency ω with an amplitude 1, and
we search the response in the five regions.

Before studying the behavior of the system described here-above, it is necessary to
analyze the problem of wave propagation in a spring-mass chain, as the one composing
parts VI, VIII, and VV.

4.3.1 The spring-mass chain

Let us consider a classical spring-mass chain. This model is usually exploited to represent
the discrete counterpart of a homogeneous material. It must be underlined though
that this is only partially true: the dynamic behavior of a sprig-mass chain is indeed
dispersive and therefore different from that of a homogeneous medium. Nonetheless, we
can say that spring-mass chains are for discrete media what homogeneous materials
are for continuous media, i.e. they are characterized by the most basic among all the
possible behaviors. We thus employ mass-spring chains to model the material outside
the two barriers for the discrete domain here analyzed1.

Keeping the notation used in section 2.2, the lattice is obtained by considering only
masses m1 connected by springs k1 (see figure 2.2). In this way, we are modeling the
discrete counterpart of a continuous system made up of the same material used for the
matrix of the metamaterial previously described. In a 1D chain of this type, the motion
problem is governed by the following equation:

m1üj = k1∆ju, (4.1)

with ∆ju = uj+1 + uj−1 − 2uj still defined as in relation (2.33). Considering waves
at given frequency ω and using again the same notation of chapter 2.2, in terms of
dimensionless quantities, equation (4.1) can be rewritten as

ϵ2∆jU + θΩUj = 0. (4.2)

This Helmholtz equation has the same form of equation (2.38), with µθ(Ω) replaced by
θΩ, with Ω being the frequency of the wave under consideration normalized with respect
to the eigenfrequency of the internal resonators, ϵ the square of the ratio between
stiffness k1 and k2, and θ the ratio between masses m1 and m2. The subscripts 1 and 2
as before refer respectively to the outer and the inner mass.

1We will see later on that this choice affects the design of the REH. We anticipate that, contrary to
what would happen for defective but continuous LRMs, defect modes can appear in the discrete REH
here analyzed just by removing the inclusion from one unit cell. This is not possible when continuous
LRMs are used, as we stated in the introduction of the chapter.
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Using the same procedure described in subsection 2.2.2, when considering the matrix
alone the motion corresponds to propagating waves only when

0 < Ω <
4ϵ2
θ
.

In such a case, setting
θΩ
2ϵ2 = 1 − cos K with K ∈ (0, π), (4.3)

the general solution of equation (4.2) is given by

Uj = a1 cos jK + a2 sin jK (4.4)

where a1 and a2 are arbitrary constants.

4.3.2 Necessary conditions for the activation of a localization effect

For localizing the energy carried by an incoming wave inside the defect, the propagation
must be inhibited outside it, hence we consider Ω inside a band gap of the metamaterial
and in the pass band of the matrix, i.e.

Ω <
4ϵ2
θ

and Ω ∈ (Ωm,Ω0) ∪ (ΩM ,+∞). (4.5)

Taking into account relation (2.49) of Ωm and ΩM , one has 4ϵ2/θ = ΩmΩM , and since
Ωm < 1 < ΩM , the following inequalities hold:

Ωm <
4ϵ2
θ

< ΩM . (4.6)

Therefore, to comply with conditions (4.5), Ω must be chosen such that

Ωm < Ω < min
{

1 + 1
θ
,
4ϵ2
θ

}
. (4.7)

Condition (4.7) depends on ϵ and θ: by fixing one of the two parameters, the
variation of the interval of frequencies respecting (4.7) can be studied with respect to
the other parameter. This is done in figure 4.4a and 4.4b, where we fixed θ = 1 and
ϵ = 1 respectively. These two figures are a zoom near the origin of figures 2.6b and
2.7b. The frequencies fulfilling condition (4.7) are those inside the darkest regions in
figure 4.4 and, hence, can belong to either part A or B, composing the first band gap.
This means that, by properly fixing the parameters ϵ and θ, one can choose whether
to exploit a Bragg mechanism (part A) or a locally resonant mechanism (part B) for
trying to activate a localization phenomenon.

In what follows, we consider both cases. Two situations can arise: when 4ϵ2 > θ, one
can work with frequencies belonging either to band gap A or B (although for ϵ >> 1,
band gap A disappears since Ωm → 1); when 4ϵ2 ≤ θ, one has that Ω ≤ 4ϵ2/θ ≤ 1 and
localization can only be generated by a Bragg mechanism (part A of the band gap).
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Figure 4.4: study of condition (4.7) with respect to ϵ (a) and θ (b), respectively for
θ = 1 and ϵ = 1. Band gaps are denoted by the filled areas. The darkest regions indicate
all the frequencies which fulfill condition (4.7). Letters A and B are used for denoting
frequencies respecting condition (4.7) and belonging to band gaps.

4.3.3 The motion of the system

All the following calculations are carried out in the plane of complex numbers. We
recall here that the conjugate of a complex number u is denoted u, its modulus |u|, its
real part Re(u) and its imaginary part Im(u).

1. In region VI, using equation (4.2) and the definition (4.3) of K, the displacement
U I

j can be written as

U I
j = AI exp {−iK(j + n+ 1)} + BI exp {iK(j + n+ 1)}, j < −n, (4.8)

the first term corresponding to the incoming wave with a known amplitude AI

(propagating from the left to the right, in the direction of the increasing j’s), the
second one to the reflected wave propagating in the opposite direction and whose
amplitude BI = R has to be determined. Without loss of generality, we here
consider AI = 1. Substituting relation (4.8) into equation (4.2) written for j =
−n−1 and accounting for relation (4.3), one obtains U I

−n = exp {−iK}+R exp {iK}.
Therefore, the expression (4.8) is also valid for j = −n and this can be thought of
as a continuity condition for the field U . Rewriting relation (4.8) for j = −n− 1
and for j = −n, one gets

U I
−n−1 = 1 + R, U I

−n = exp {−iK} + R exp {iK}. (4.9)

2. In region VII, the general solution of equation (2.38) is given by relations (2.45)
or (2.47) according to whether µθ(Ω) < 0 or µθ(Ω) > 4ϵ2.

A When Ω < 1, the general solution is given by relation (2.47). Accordingly, in
region VII the displacement can be written as

U II
j = AII (−1)j+n+1 cosh K∗(j + n+ 1) + BII (−1)j+n+1 sinh K∗(j + n+ 1),

(4.10)
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where AII and BII have to be determined and −n − 1 ≤ j ≤ 0. Note that
relation (4.10) can still be used for j = −n− 1 and j = 0, i.e. for the last
point in the region VI of the matrix and for the point of the defect. This
is a continuity condition for U and using it for j = −n − 1 and j = −n
gives U II

−n−1 = AII and U II
−n = −AII cosh K∗ − BII sinh K∗. Comparing with

relations (4.9) one has

AII = 1+R BII sinh K∗ = −(1+R) ( cosh K∗ + exp {iK})+2i sin K. (4.11)

B When Ω > 1, the general solution is given by relation (2.45). In region VII
the displacement reads

U II
j = AII cosh K∗(j + n+ 1) + BII sinh K∗(j + n+ 1). (4.12)

Using relation (4.12) for j = −n − 1 and j = −n gives U II
−n−1 = AII and

U II
−n = AII cosh K∗ + BII sinh K∗. Comparing with relation (4.9) one has

AII = 1+R BII sinh K∗ = −(1+R) ( cosh K∗ − exp {iK})−2i sin K. (4.13)

3. In region VV, assuming that no wave comes from the right, the displacement can
be written as

UV
j = AV exp {−iK(j − n− 1)}, j ≥ +n, (4.14)

AV = T denoting the amplitude of the transmitted signal. This expression is also
valid for j = +n, the last point in the region VIV of metamaterial. Therefore, one
gets

UV
+n+1 = T UV

+n = T exp {iK}. (4.15)

4. In region VIV, as in region VII, the general solution of equation (2.38) is given by
either relation (2.45) or (2.47).

A When Ω < 1, the general solution is given by relation (2.47):

U IV
j = AIV (−1)j−n−1 cosh K∗(j − n− 1) + BIV (−1)j−n−1 sinh K∗(j − n− 1)

(4.16)
where AIV and BIV have to be determined and 0 ≤ j ≤ +n+1. Using relation
(4.16) for j = +n+ 1 (which corresponds to the first point in the region VV)
and for j = +n, gives U IV

+n+1 = AIV and U IV
+n = −AIV cosh K∗ + BIV sinh K∗.

Comparing with relation (4.15) one has

AIV = T, BIV sinh K∗ = T (cosh K∗ + exp {iK}) . (4.17)

B When Ω > 1, the general solution is given by (2.45)

U IV
j = AIV cosh K∗(j − n− 1) + BIV sinh K∗(j − n− 1). (4.18)

Using relation (4.18) for j = +n+ 1 and for j = +n, gives U IV
+n+1 = AIV and

U IV
+n = AIV cosh K∗ − BIV sinh K∗. Comparing with relation (4.15) one has

AIV = T, BIV sinh K∗ = T (cosh K∗ − exp {iK}) . (4.19)
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5. In region VIII, the displacement can be written as

U III
j = AIII exp {−iKj} + BIII exp {iKj}, −1 ≤ j ≤ +1, (4.20)

where AIII and BIII have to be determined. Applying this expression for j = −1 and
j = +1, one obtains U III

−1 = AIII exp {iK}+BIII exp {−iK} and U III
+1 = AIII exp {−iK}+

BIII exp {iK}.

We are now able to calculate the displacement of the mass in the defect. In what
follows, we only show in detail the calculations for frequencies belonging to band gap A.
The same procedure can be also applied for frequencies inside band gap B, with small
differences that will result in a slightly changed expression for the displacement of the
mass inside the defect (see the final relations (4.27) and (4.28)).

The continuity of displacement and stress fields at the interface between parts II, III
and between parts III, IV entails:{

U II
−1 = U III

−1
U II

0 = U III
0

,

{
U IV

+1 = U III
+1

U IV
0 = U III

0
.

From relations (4.10), (4.16), and (4.20), by using relations (4.11) and (4.17), these two
systems of equations can be rewritten as[

exp {iK} exp {−iK}
1 1

] [
AIII

BIII

]
= (−1)n

sinh K∗

[
−(Rα+ α)

Rβ + β

]
(4.21)

[
exp {−iK} exp {iK}

1 1

] [
AIII

BIII

]
= T (−1)n

sinh K∗

[
−α
β

]
(4.22)

with α and β defined as

α = sinh K∗(n− 1) + exp {iK} sinh K∗n, β = sinh K∗n+ exp {iK} sinh K∗(n+ 1).

From systems (4.21) and (4.22) one finds:
AIII = (−1)n+1

2i sin K sinh K∗ {c+ R d}

BIII = (−1)n

2i sin K sinh K∗

{
d+ R c

} (4.23)


AIII = T (−1)n

2i sin K sinh K∗ {c}

BIII = T (−1)n+1

2i sin K sinh K∗ {d}

(4.24)
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with c and d given by:

c = α+ β exp {iK}, d = α+ β exp {−iK}.

By imposing the equality between the amplitudes AIII and BIII in (4.23) and the
corresponding ones in (4.24), R and T can be found from:[

d c
c d

] [
R
T

]
= −

[
c
d

]
.

Hence, the coefficient R of the reflected wave and T of the transmitted wave read

R = −cd+ cd

d2 − c2 , T = −dd+ cc

d2 − c2 . (4.25)

Finally, the displacement of the point inside the defect takes the form

U III
0 = AIII + BIII , (4.26)

that, with relations (4.24) and the second of relations (4.25), gives

U III
0 = (−1)ni sin K sinh K∗

sinh (n− 1)K∗ + (exp {iK} + cos K) sinhnK∗ + exp {iK} cos K sinh (n+ 1)K∗ .

(4.27)
Relation (4.27), as stated before, is valid for frequencies belonging to band gap A.

When band gap B is considered, U III
0 slightly changes and is given by

U III
0 = i sin K sinh K∗

sinh (n− 1)K∗ − (exp {iK} + cos K) sinhnK∗ + exp {iK} cos K sinh (n+ 1)K∗ .

(4.28)

4.4 The mechanical energy involved in the system
Let us now study the localization phenomenon in terms of the mechanical energy that
is traveling through the system. Specifically, our aim is that of comparing the case
where attenuation is predominantly due to a Bragg scattering phenomenon, with the
case mainly characterized by local resonances.

In the subsequent calculations, we will often use the average of quantities over a
period of time

⟨•⟩t := 1
T

∫ T

0
(•)dt

and we will generally omit the subscript since no confusion with the spatial average can
arise. We also make use of the following relation for the time average of a harmonically
varying quantity u = U exp iωt:

⟨(Re(u))2⟩ = 1
2 U U = 1

2 |U |2 . (4.29)
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4.4.1 Mechanical energy of the barriers

The mechanical energy density of the barriers ei
j , with i = II, IV and j denoting the j-th

mass m1, is the sum of the potential energy density pi
j and the kinetic energy density

ci
j , that are given by:


pi

j = 1
2ℓ

{
k1
2
[
Re(ui

j+1 − ui
j)
]2

+ k1
2
[
Re(ui

j − ui
j−1)

]2
+ k2

[
Re(vi

j − ui
j)
]2}

ci
j = 1

2ℓ

{
m1

[
Re(u̇i

j)
]2

+m2
[
Re(v̇i

j)
]2} . (4.30)

Normalizing relations (4.30) with k2ℓ, the dimensionless mechanical energy density
γi

j = ei
j/(k2ℓ) can be found. Using relation (4.29) for averaging with respect to time

relations (4.30) and then substituting equation (2.37), the dimensionless averaged
mechanical energy density ⟨γi

j⟩ can be written as

⟨γi
j⟩ = 1

4ℓ2

{
ϵ2

2

[∣∣∣U i
j+1 − U i

j

∣∣∣2 +
∣∣∣U i

j − U i
j−1

∣∣∣2]+
[
µθ + 2Ω2

(1 − Ω)2

] ∣∣∣U i
j

∣∣∣2} , (4.31)

with i = II, IV and j denoting the j-th mass m1. We recall that terms ϵ and µθ are
respectively the stiffness ratio and the effective mass for the mass-in-mass chain (cf.
relations (2.35) and (2.38)).

As shown previously, the motion U i
j of the j-th mass m1 belonging to the i-th part

depends on whether the frequency of the incoming wave belongs to band gap A or B.
Therefore, inserting either relations (4.10) and (4.16) or (4.12) and (4.18) in relation
(4.31), the averaged mechanical energy density in the two cases can be expressed as
follows:

• Band gap A.

⟨γi
j⟩ = 1

4ℓ2

{(
µθ + Ω2

(1 − Ω)2

)[∣∣∣Ai
∣∣∣2 −

∣∣∣Bi
∣∣∣2]

+
(

1 + cosh K∗

2 + Ω2

(1 − Ω)2

)[(∣∣∣Ai
∣∣∣2 +

∣∣∣Bi
∣∣∣2) cosh 2K∗s

+ 2
(
Re(Ai )Re(Bi ) + Im(Ai )Im(Bi )

)
sinh 2K∗s

]}
(4.32)
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• Band gap B.

⟨γi
j⟩ = 1

4ℓ2

{(
µθ + Ω2

(1 − Ω)2

)[∣∣∣Ai
∣∣∣2 −

∣∣∣Bi
∣∣∣2]

+
(

1 − cosh K∗

2 + Ω2

(1 − Ω)2

)[(∣∣∣Ai
∣∣∣2 +

∣∣∣Bi
∣∣∣2) cosh 2K∗s

+ 2
(
Re(Ai )Re(Bi ) + Im(Ai )Im(Bi )

)
sinh 2K∗s

]}
(4.33)

with {
i = II and s = j + n+ 1
i = IV and s = j − n− 1

.

4.4.2 Mechanical energy of the mass-spring chain

The dimensionless averaged mechanical energy density ⟨γj⟩ of the j-th unit cell for a
mass-spring chain (regions VI, VIII and VIV of the system) is given by:

⟨γi
j⟩ = 1

4ℓ2

{
ϵ2

2
∣∣∣U i

j+1 − U i
j

∣∣∣2 + ϵ2

2
∣∣∣U i

j − U i
j−1

∣∣∣2 + Ωθ
∣∣∣U i

j

∣∣∣2} , (4.34)

with i = I, III,V. The motion U i
j of the j-th mass m1 is obtained either from relation

(4.8), (4.14) or (4.20). Inserting these latter relations into (4.34), one obtains:

⟨γi
j⟩ =2ϵ2

ℓ2
sin2 K

2

{[ ∣∣∣Ai
∣∣∣2 +

∣∣∣Bi
∣∣∣2 ]

+ (1 − cos K)
[ (

Re(Ai)Re(Bi) + Im(Ai)Im(Bi)
)

cos 2Kj

+
(
Im(Ai)Re(Bi) − Re(Ai)Im(Bi)

)
sin 2Kj

]}
,

(4.35)

with Ai and Bi denoting the wave amplitudes for the i-th part, with i = I, III,V, and
where we have used relation (4.3). Note that the defect (region VIII) is composed by a
single cell, therefore only j = 0 is considered.

4.4.3 The localization phenomenon

Let us now consider the localization phenomenon. By tuning the parameters governing
the problem, it is possible to exploit either a Bragg or a locally resonant behavior for
focusing inside the defect the energy carried by an incoming wave. Specifically, as shown
in figures 2.6 and 2.7, the two attenuating mechanisms can be activated depending on
the values chosen for θ and ϵ. The number n of unit cells composing each barrier only
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modifies the efficacy of the attenuation generated by the barriers and, hence, it can be
fixed without varying the width of band gaps A and B.

In what follows, we fix n = 2 and discuss several systems characterized by different
θ and ϵ. Selecting e.g. θ = 1 and looking at figure 4.4a, depending on ϵ the system can
work either with Ω belonging only to band gap A, to band gap A and B, or only to
band gap B. Specifically, one has:

ϵ2 ≤ θ/4 only band gap A
θ/4 < ϵ2 < O(1) band gaps A and B
ϵ2 >> 1 only band gap B

Therefore, the following three cases are analyzed: ϵ = 0.4, ϵ = 1 and ϵ = 3 (this latter
value is high enough to consider the problem governed only by band gap B).

291.7
117.5

Figure 4.5: averaged mechanical energy density of the defect ⟨γIII
0 ⟩, normalized with

respect to ⟨γin⟩ (i.e. the energy carried by the incoming wave) versus frequency Ω for:
ϵ = 0.4 (light gray), ϵ = 1 (gray) and ϵ = 3 (black). A logarithmic scale is used for
the vertical axis. The vertical dashed-dotted lines delimit the intervals of frequencies Ω
respecting condition (4.7) for each of the three considered ϵ. The vertical line at Ω = 1
separates band gap A from band gap B. When ϵ = 3, the normalized energy density is
not experiencing any peak and is smaller than 1 ∀Ω respecting condition (4.7).

By employing relations (4.35) and (4.3), the averaged mechanical energy density of
the unit cell composing the defect ⟨γIII

0 ⟩, normalized with respect to the incoming energy
⟨γin⟩, can be plotted as a function of the frequency Ω, as shown in figure 4.5, where a
logarithmic scale is used for the vertical axis. More specifically, the energy has been
computed only for those frequencies respecting condition (4.7), which itself depends on
ϵ; for this reason, the intervals of frequencies between Ωm and Ωlim vary for the three
cases.
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From figure 4.5, for ϵ = 0.4 and ϵ = 1 a peak appears (“peak 1” and “peak 2”
respectively) that corresponds to a maximum localization of the incoming energy and,
more in general, to a defect mode in the spectrum of the problem. Normally, for Ω
belonging to a band gap, the presence of the first barrier generates a reflected wave
and, as a consequence, the energy transmitted to the defect should be less than the
incoming one (⟨γIII

0 ⟩/⟨γin⟩ ≤ 1). The presence of a peak greater than 1 confirms that
the introduction of a defect gives rise to a peculiar behavior, causing an accumulation
of the energy traveling along the system. Nevertheless, the localization doesn’t always
take place, as one can verify by looking at the behavior of ⟨γIII

0 ⟩/⟨γin⟩ for ϵ = 3 (see
figure 4.5): for this particular value, no peaks are present.

Note that, up to now, we are not modifying the cavity width. Our aim here is indeed
not that of designing and optimizing the REH (as we will do in the next chapter), but
it is simply that of checking that the system, as we have imagined it, is capable of
effectively localizing some mechanical energy. For this, we analyze the discrete REH
with a fixed width for the defect, corresponding to that of one unit cell for the chain,
without knowing a priori if a defect mode appears in the band gap of the mass-in-mass
chain. In general, as we stated in the introduction of the current chapter, a defect
generated by removing the inclusion from one cell (as it is the case here) is not enough
for continuous LRMs to assure the presence of defect modes. This is possible here
because of the dispersive behavior of the mass-spring chain that composes the defect
and that enables for the presence of waves in the cavity with wave lengths of the order
of one unit cell, already at frequencies that are sub-wavelengths for the two barriers.

“Peak 1” and “peak 2” appear respectively at Ω = 0.394 and Ω = 1.440. Considering
these two frequencies, the normalized energy ⟨γj⟩/⟨γin⟩ along the entire system is shown
in figure 4.6 (j ∈ Z indicates the j-th unit cell). The behavior of the system is very
similar for the two cases, although the level of concentration for ϵ = 0.4 (figure 4.6a) is
higher than that of ϵ = 1 (figure 4.6b). This aspect can also be quantified by introducing
what we have indicated as Index of Concentration (IC), defined as follows:

IC = ⟨EIII⟩
⟨EII⟩ + ⟨EIII⟩ + ⟨EIV⟩

, (4.36)

with Ei denoting the total mechanical energy of the i-th part, simply given by Ei =
ℓ
∑

j γj k2ℓ, for j ∈ part i-th (this means that the sum considers all the unit cells j
composing the i-th part). Using this index for peaks 1 and 2, one obtains respectively
IC1 = 0.57 and IC2 = 0.33, thus confirming a larger localization for ϵ = 0.4.

Since “peak 1” belongs to band gap A and “peak 2” to band gap B, the above
analysis shows that both Bragg scattering and local resonance can generate a localization
phenomenon.
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(a) (b)

Figure 4.6: mechanical energy density γj of each unit cell j composing the system,
averaged over a time period and normalized with respect to the incoming one, for Ω
corresponding to “peak 1” (figure 4.6a) and “peak 2” (figure 4.6b). The vertical dotted
lines are used to separate the different unit cells; moreover, the dashed-dotted vertical
lines delimit the two barriers in both figures.

4.5 Motion of the mass in the defect

Let us now go back to the study of the motion U III
0 of the mass inside the defect and

how its presence affects the transmission coefficient T. In particular, as we had stated
before, a maximum of energy coincides with a maximum localization of the motion
of the defective unit cell. By using the second of relations (4.25) and (4.26), both
quantities can be expressed for varying frequencies. This is shown in figures 4.7a and
4.7b, where we plot respectively

∣∣∣U III
0 (Ω)

∣∣∣ / |Uin| (Uin is the motion imposed in part VI by
the incoming wave) and |T(Ω)|, again only for those frequencies verifying condition (4.7),
for each ϵ. In figure 4.7a, a logarithmic scale is used for the vertical axis. When ϵ = 0.4
and ϵ = 1, both plots in figure 4.7 present one peak, exactly at the same frequency where
⟨γIII

0 (Ω)⟩/⟨γin⟩ is maximum. These frequencies also correspond to perfect transmission
(i.e. |T| = 1): this is another peculiar behavior activated by the presence of a defect.
Note also that this result coincides with the one coming from the resonant tunneling
phenomenon, that was described earlier on in this chapter.

4.5.1 Localization in the time domain

Up to now, we have only considered the behavior of the system at its steady state for a
given frequency. Here we also analyze numerically the problem in the time domain, by
means of a centered finite difference scheme and we check that, for ϵ = 0.4 and ϵ = 1
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13.119

(a) (b)

Figure 4.7: (a) Displacement magnitude
∣∣∣U III

0

∣∣∣ of the mass inside the defect normalized
with the amplitude |Uin| of the incoming wave, as a function of Ω. A logarithmic scale
is used for the vertical axis. (b) Modulus |T| of the transmission coefficient versus Ω.
The different colors refer to the three different ϵ (light gray: ϵ = 0.4, gray: ϵ = 1, black:
ϵ = 3).

and for a time t large enough,
∣∣∣U III

0 (t)
∣∣∣ / |Uin| tends to the peak values shown in figure

4.7a and |T(t)| ≈ 1 (|Uin| is not a function of t because it is imposed to be constant).

VI VII VIII VIV VV

ũ
Fixed0 +n+1

Figure 4.8: sketch of the system used for the time domain analysis. Parts VI and
VV are now of finite thickness. The first mass on the left is subjected to an imposed
displacement ũ = sinω t, with ω =

√
Ωω2 and Ω denoting the peak frequency under

consideration. The last mass on the right is fixed. Masses j = 0 (blue) and j = +n+ 1
(orange) are evidenced for later use.

Figure 4.8 schematically represents the system used for the time domain analysis. In
order to carry out a numerical solution of the problem, we considered finite dimensions
for parts VI and VV and we imposed boundary conditions on the first and final mass
respectively of parts VI and VV. In particular, the motion of the first mass on the left
is constrained to be ũ = sinω t (the amplitude of the generated incoming wave is hence
equal to 1, |Uin| = 1), with ω =

√
Ωω2, where Ω is the frequency of the peaks computed

in the previous section; the last mass on the right instead is fixed. By choosing the
properties of the resonator (mass m2 and spring k2), ω2 is defined and thus also ω. The
two quantities of interest, namely

∣∣∣U III
0 (t)

∣∣∣ and |T(t)|, are the amplitudes, for large t,
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of the displacements |u0(t)| and |u+n+1(t)| of the masses highlighted respectively in
orange and blue in figure 4.8. They can be derived by analyzing the motion of the
two masses with respect to time, as shown in figures 4.9a (ϵ = 0.4) and 4.10a (ϵ = 1).
In particular, the amplitude |u0(t)| at large t almost coincides with the corresponding

0 200 400 600 800 1000
-20

0

20

0 200 400 600 800 1000
-1

0

1

|T|≅1

|u0|≅19

Δt

(a)

0 200 400 600 800 1000
-1

0

1
|T|≅0

(b)

Figure 4.9: (a) Oscillations in time of displacements u0 and u+n+1 of the masses
evidenced respectively in blue and orange in figure 4.8. (b) Oscillation in time of the
displacement of the first cell after a barrier without defect (sketch above). Material
parameters: θ = 1, ϵ = 0.4, m2 = 0.01 kg, k2 = 1 N m-1.

value
∣∣∣U III

0 (Ω)
∣∣∣ shown in figure 4.7a, for both peaks; moreover, again for large t, the

amplitude |u+n+1(t)| of the transmitted wave tends to 1. This verifies the localization
phenomenon and quantifies the time frame ∆t, which is necessary for the system to
reach the maximum level of concentration. More in details, the transitory time ∆t
depends on the final level of energy concentration inside the cavity, when a stationary
condition is reached. The higher is the energy peak in figure 4.5, the larger will be
the time needed for reaching the final regime. This is shown in figures 4.9a and 4.10a:
the transitory time for “peak 1” is larger with respect to that related to “peak 2”. As
the level of concentration depends on the level of attenuation provided by the barriers
at the frequency corresponding to a peak of energy, the transitory time is indirectly
influenced by both the stiffness and mass ratios.

An important remark is here necessary: the presence of boundaries could affect the
result by generating reflected waves that, nevertheless, need some time to reach the two
masses of interest. Therefore, by tuning the total time of the analysis in relation to the
speed of the traveling waves and the number of unit cells used in parts VI and VV, it is
possible to neglect the presence of these reflected waves.

The influence of the defect can be finally evidenced by considering the system
schematically depicted in figures 4.9b, 4.10b (above) and analyzing the amplitude
|ublack(t)| of the transmitted wave, i.e. the amplitude of the motion of the mass
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Figure 4.10: (a) Oscillations in time of displacements u0 and u+n+1 of the masses
evidenced respectively in blue and orange in figure 4.8. (b) Oscillation in time of the
displacement of the first cell after a barrier without defect (sketch above). Material
parameters: θ = 1, ϵ = 1, m2 = 0.01 kg, k2 = 1 N m-1.

evidenced in black in the figures. The system is composed by a mass-spring chain with
a single barrier of 4 cells without defect. For both ϵ the transmitted wave amplitude is
almost zero, as shown in figures 4.9b and 4.10b (below). This final result confirms the
substantial change of behavior with respect to the case with the defect.
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5
C h a p t e r

Design of a 2D continuous resonant
energy harvester

Chapter summary: A defective continuous Locally Resonant Material (LRM) is analyzed.
The system is treated by applying the homogenization technique previously described (see
chapter 3). An analytic derivation of the problem is possible and the creation of defect
modes in a band gap can be governed by modifying the width of the cavity. We thus find
that the system can be designed to trap and to focus external energy that is traveling
through it, i.e. that can behave as a Resonant Energy Harvester.
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In the previous chapter we studied a discrete version of a defective metamaterial
based on the mechanical counterpart of the resonant tunneling phenomenon. Following
the results obtained for that case, we can argue that the same behavior could also
characterize a continuous defective Locally Resonant Material (LRM) of the type
analyzed in chapter 3.
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Our aim here is that of designing a defective mematamaterial for sub-wavelength
energy localization, with a structure that resembles very much that of the system
depicted in figure 4.2. In this chapter, we thus combine the results from the homoge-
nization technique treated in chapter 3 and the ideas presented in chapter 4 to conduct
an analytic derivation of the problem of energy localization in our Resonant Energy
Harvester (REH). More specifically, we will come up with a condition that enables to
place and locate one defect mode in a band gap of the LRM under consideration.

The fundamental difference with respect to the discrete problem tackled in chapter
4 is that the homogeneous materials employed for the defect and the domain external
to the LRM is characterized by a non-dispersive behavior. We have thus no such
limitations on the frequencies as those indicated in subsection 4.3.2. This enables us to
potentially dealing with any frequency from 0 to +∞, by correctly placing a band gap
at the frequencies of interest, i.e. by properly designing the LRM. Moreover, in general,
we expect that removing just one row of inclusions from the LRM will not be sufficient
for activating a localization phenomenon, unless one modifies the material used for the
defect.

This chapter was the subject of the following publications: Moscatelli et al., 2020a,b.

5.1 Problem formulation
Let us consider the system represented in figure 5.1. The domain V is composed of five
regions: parts V1, V3 and V5 are constituted by an isotropic homogeneous medium
(defined as Vh in the following), whereas parts V2 and V4, which will be denoted
as “barriers” (Vb), are made of the same LRM. This system coincides with the one
described in the previous chapter and represented in figure 4.2, with a defect splitting
the metamaterial in two regions. We will refer to the current system as Resonant Energy
Harvester (REH).

x1

x2

V3V1 V2 V4 V5

l l2d

Figure 5.1: Top-view of the studied system. The wave shown in the figure represents an
out-of-plane wave propagating across all the five domains. The dots denote the fact that
the system must be extended along the x2 direction towards ±∞.

The LRM employed is built from a 2D periodic repetition of a typical unit cell as
the one represented in figure 5.2, with a stiff matrix Ym containing a very compliant
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part denoted as Yc, that can possibly itself embed an almost rigid circular fiber Yf .
The LRMs considered are thus of the same type as those described in chapter 3, as can
be checked by looking at figure 3.1.

Rc

Ym

Yc

a

Yf

Rf

Figure 5.2: Periodic structure of the LRM and zoom over a unit cell composing it. Rf

and Rc are respectively the fiber and coating external radii.

The system analyzed herein is thought of to possess a thickness in the out-of-plane
direction and along the axis x2 which is much larger than the characteristic size a of
the unit cell; parts V1 and V5 are considered as infinitely extended towards −∞ and
+∞ along the axis x1.

We analyze the propagation of anti-plane elastic waves along the x1 direction,
allowing for the decoupling from the in-plane wave propagation problem. Let us
consider an harmonic regime (see section 2.1.1), such that

u(x, t) = U(x) exp {iωt},

resulting in the following problem:
∇ · σ(x) + ρ(x)ω2U(x) = 0 in V
σ(x) = µ(x) ∇(U(x)) in V
U(x) and σ(x) · n continuous at each interface,

(5.1)

where σ collects the non vanishing stress components σ[31] and σ[32]. The mass density
ρ and the shear elastic modulus µ are spatially varying parameters, depending on the
position x in the system, as specified in the following:

µ(x) =


µm in Ym

µf in Yf

µc in Yc

µh in Vh

, ρ(x) =


ρm in Ym

ρf in Yf

ρc in Yc

ρh in Vh

. (5.2)

Denoting by km = ω
√
ρm/µm the wavenumber in the matrix, we limit our study

by considering a low frequency regime such that the dimensionless parameter ε = kma,
defined in chapter 3, be very small (ε ≪ 1). This assumption can be equivalently
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set by requiring that the characteristic size a of the cell be much smaller than the
wave length, in the matrix, of the considered wave. As we showed in chapter 3, this
hypothesis enables the application of a two-scale asymptotic homogenization technique
for the description of the motion of the barriers. Specifically, since we are interested in
resonances happening inside the inclusions, the product between the wavenumber kc in
part Yc and the characteristic size of the cell a must be of order 1, namely kca = O(1).
By assuming ρm/ρc = O(1), the ratio µc/µm must be of order O(ε2): this means that
we shall consider a soft inclusion Yc with a high contrast in the shear modulus with
respect to part Yf .

5.1.1 Solution of the homogenized system

By virtue of the homogenization results, the barriers can be described by an equivalent
material characterized by an effective mass density ρeff and by an effective shear
modulus µeff . Consequently, for anti-plane waves, the REH is finally treated as an
equivalent system composed of five homogeneous and isotropic parts. Since we are
interested in the propagation of waves whose wave front is perpendicular to the x1
direction, there is no dependency on the x2 direction, σ[32] = 0 and the problem becomes
one-dimensional, obtaining the simplified system sketched in figure 5.3 (thick lines here
and in the following figures always represent a LRM).

x

l l2d

V3V1 V2 V4 V5

Figure 5.3: One-dimensional scheme for the two-dimensional homogenized problem.
The system is simplified by fixing a position along the x2 axis and by considering x1 = x.
The dashed ends are used to indicate that the domain is infinitely extended towards −∞
and +∞.

Let us report here below the homogenized problem for the motion inside each of
the five parts composing the system:

∂σ(x)/∂x+ ρhω
2U(x) = 0 in Vh

σ = µh ∂U(x)/∂x in Vh

∂σ(x)/∂x+ ρeff (ω)ω2 in Vb

U(x) = 0, σ = µeff ∂U(x)/∂x in Vb

U(x) and σ(x) continuous at each interface

(5.3)

where U in parts Vb stands for the leading order approximation U0 coming from the
homogenization technique and σ = σ[31] denotes the only non-zero stress component.
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As discussed in chapter 3, the sign of the effective mass density ρeff depends on
whether the frequency ω is inside or outside a band gap; this means that within the
barriers V2 and V4 problem (5.3) has a general solution whose form varies depending
on the frequency, as follows:{

Uj(x) = Aj exp {−isx} + Bj exp {isx} when ρeff ≥ 0
Uj(x) = Aj cosh sx + Bj sinh sx when ρeff < 0

(5.4)

where

s = ω

√√√√∣∣∣ρeff
∣∣∣

µeff

and Aj , Bj (with j = 2, 4) are complex integration constants.
The general solution of the motion problem inside regions Vh is instead always given

by:
Uj(x) = Aj exp {−ikx} + Bj exp {ikx}, (5.5)

with j = 1,3 or 5 and
k = kh = ω

√
ρh

µh
.

Considering a propagating incoming wave, the integration constants are obtained
imposing the continuity of the displacement and of the stresses between the various
regions and the conditions at ±∞. In particular, when considering a wave which travels
from the left towards the right (see figure 5.3) of amplitude 1, the displacement in the
different parts Vi reads:

U1(x) = exp {−ik(x+ d+ l)} + R exp {ik(x+ d+ l)}
U2(x) = (1 + R) cosh s(x+ d+ l) + i a (R − 1) sinh s(x+ d+ l)

U3(x) = T
2 β exp {−ik(x− d)} + T

2 α exp {ik(x− d)}

U3(x) = T cosh s(x− d− l) − i aT sinh s(x− d− l)
U5(x) = T exp {−ik(x− d− l)},

(5.6)

where R and T are respectively the amplitudes of the reflected and transmitted wave:

T = 4
α2 exp {2ikd} − β2 exp {−2ikd}

, (5.7)

R = αβ exp {2ikd} − ᾱβ̄ exp {−2ikd}
α2 exp {2ikd} − β2 exp {−2ikd}

. (5.8)

with

a = µmk

µeffs
, α = 2 cosh sl + i

(
a − 1

a

)
sinh sl, β = i

(
a + 1

a

)
sinh sl. (5.9)
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5.2 Transmission analyses: preliminary studies

Before dealing directly with the REH, let us first consider two cases: the transmission of
a wave approaching towards an half-plane constituted by the LRM previously described
(figure 5.4) and the transmission of a wave crossing a LRM of finite thickness (figure
5.5). In the figures, we have used the same conventions already described in figure 5.3.

5.2.1 Infinitely long barrier

Vle� Vright

x

Figure 5.4: Sketch of the system with an infinitely long barrier along direction x.

Let us consider the system reported in Figure 5.4, the two domains indicated as Vleft

and Vright are of the same type respectively as Vh and Vb, defined before. Consequently,
the motion of the system can be written as1

{
Ul(x) = exp {−ikx} + R exp {ikx} in Vleft

Ur(x) = A2 cosh sx + B2 sinh sx in Vright

(5.10)

By imposing the condition that the solution does not diverge for x → +∞, the following
relation must hold true A2 = −B2. Applying the continuity of displacements and
stresses at the interface, all the coefficients can be found. The complex amplitude of
the reflected wave is:

R = ia − 1
ia + 1 , (5.11)

where the parameter a was defined in (5.9).
Note that |R| = 1 as expected, since otherwise some energy would pile up somewhere

between x = 0 and x → +∞; as the metamaterial is not defective, this cannot happen.
In part Vright the displacement finally reads as

Ur(x) = 2ia
ia + 1 exp(−sx)

and hence is exponentially decreasing with x.

1Note that in relations (5.10) the constants are not sans serif, to distinguish them from those used
for the problem in the REH. The same comment is valid also for the next subsection.
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5.2.2 Penetration across a single finite barrier

Let us look at the system depicted in figure 5.5. Now the general solutions inside each
domain are given by

Ul(x) = exp {−ik(x+ l)} + R exp {ik(x+ l)} in Vleft

Uc(x) = A2 cosh sx + B2 sinh sx in Vcentral

Ur(x) = T exp {ik(x− l)} in Vright

(5.12)

Again the continuity of the displacement and stress fields allows to compute all the

Vle� Vcentral Vright

x

2l

Figure 5.5: Sketch of tunneling through a single barrier of finite thickness.

unknowns; the amplitude of the transmitted wave results:

T = 1

sinh 2sl + cosh 2sl + i
(

a − 1
a

)
cosh sl sinh sl

. (5.13)

Note that T is exponentially decreasing from 1 to 0 when the length l of the barrier
goes from 0 to infinity, which is in agreement with the results of the previous subsection.
Moreover, inserting d = 0 in relation (5.7), i.e. removing the defect from the REH, one
finds again the above relation (5.13).

5.3 Energy localization in the cavity

We now go back to the REH. Our aim is that of evaluating the energy in the whole
system and to obtain a relation in closed form that allows us to design the optimal
cavity, i.e. to find the solution that offers the highest concentration of energy inside the
defect.

In this chapter, as in the previous one, we will write ⟨(•)⟩ for the average over a
period of time of the quantity (•).

5.3.1 Energy in the homogeneous parts

Let us consider the homogeneous parts first. We are interested in finding the mechanical
energy density e(x, t) and the total energy E(t) in parts V2, V3 and V4, both averaged
over a time period.
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The mechanical energy in regions Vj with j = 1, 3 or 5 of homogeneous material,
given by the sum of the elastic potential energy p and the kinetic energy c, reads:

ej(x, t) = pj(x, t) + cj(x, t) = 1
2µhu

′2
j (x, t) + 1

2ρhu̇
2
j (x, t) (5.14)

where a superimposed dot is used to denote the time derivative and a prime for the
space derivative; the displacement field uj is given by:

uj(x, t) = Re(Uj(x) exp {iωt}).

Averaging relation (5.14) over time gives:

⟨ej⟩(x) = µh k
2

2
[
|Aj |2 + |Bj |2

]
. (5.15)

Let us note that ⟨ej⟩ is independent from the position x. Finally, the total mechanical
energy ⟨E(t)⟩ inside part V3 reads:

⟨E(t)⟩ = 2d ⟨e3⟩ (5.16)

5.3.2 Energy inside the LRM: homogenization approach

While the energy inside regions Vh can be easily obtained, a particular treatment must
be devoted to the calculation of the energy inside the two barriers Vj , with j = 2, 4.
Specifically, we will derive its expression for the bi- and three-phase 2D LRMs with
circular inclusions, that were treated in chapter 3. We proceed by considering the two
cases in parallel, indicating at each step the differences. Accordingly, quantities defined
on part Yf have to be retained only for the three-phase cell.

We specified before that each unit cell is composed of parts Ym, Yc, and, possibly,
part Yf . As such, the mechanical energy density of one cell reads:

ej(x, t) = pm
j (x, t) + cm

j (x, t) + pc
j(x, t) + cc

j(x, t) + cf
j (x, t), (5.17)

where p stands for an (elastic) potential energy, c for a kinetic energy, while the apex
m, c, and f denote the matrix, the coating, and the fiber, indicating respectively parts
Ym, Yc, and Yf . Note that, since part Yf is rigid, its elastic energy is null. Clearly, for
the bi-phase cell, cf

j = 0 as part Yf is absent.
The homogenization technique enables to find the displacement field and the stress

over a cell composing the metamaterial. It should be noted that, while at the macroscale
the problem is one-dimensional so that only the variable x[1] = x must be retained,
at the microscale, i.e. inside each cell, the problem remains 2D and the coordinates
y = {y[1], y[2]} or the polar coordinates {r, ϑ} must be preserved. Similarly, the stress
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σ[32] is non-zero and a stress vector should be considered at microscale. Following these
considerations, at the leading order one has:

u(x, t) ≈ u0(x, t) =


U(x) exp {iωt} in Ym

U(x)ṽ(r) exp {iωt} in Yc

U(x)ṽ(Rf ) exp {iωt} in Yf if present
, (5.18)

and

σ(x, t) ≈ σ0(x, t) =

µm
(
∇yw1(y) + e1

) ∂U(x)
∂x

exp {iωt} in Ym

0 in Yc

, (5.19)

where we have not written the stress field in part Yf because, being this part rigid,
we do not need it for deriving the mechanical energy of the cell. The term w1 is the
solution of the cell problem (3.55), written for h = 1. We recall that e1 is the unit
vector along direction x ≡ x1.

Relations (5.18) and (5.19) for parts Ym and Yc can be written in the same way
for the bi- and three-phase cell, nevertheless the term ṽ(r) ≡ ṽ(y(r)) is different
for the two cases. More specifically, for the three-phase unit cell ṽ(r) is given by
relation (3.51), while in a bi-phase unit cell ṽ(r) can be obtained from relation (3.57)
as ṽ(r) = J0(kr)/J0(kRc).

Let us denote the real part of the displacement u(x, t) in the matrix (defined in
relation (5.18)) by

uj(x, t) = Re(Uj(x) exp {iωt}).

From relations (5.4), the above expression gives:

uj(x, t) =


[a1 cosh sx+ b1 sinh sx] cosωt

+ [a1 cosh sx+ b1 sinh sx] sinωt
for ω ∈ band gap

[(a1+b1) cos sx+ (b2 − a2) sin sx] cosωt
+ [(a2 + b2) cos sx+ (a1 − b1) sin sx] sinωt

for ω /∈ band gap

(5.20)
where a1, b1 and a2, b2 denote respectively the real and imaginary parts of the constants
Aj and Bj , with j = 2, 4. Accordingly, both for frequencies inside and outside a band
gap, the displacement field uj(x, t) can be written as

uj(x, t) = V(x) cosωt+ W(x) sinωt, (5.21)

where V(x) and W(x) can be derived by comparing relations (5.20) and (5.21).
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The contributions to the energy density in (5.17) read

pm
j (x, t) = 1

2 µ
eff u′2

j (x, t), (5.22)

cm
j (x, t) = |Ym|

|Y|
ρm

2 u̇2
j (x, t), (5.23)

pc
j(x, t) = µc

2

∫
Yc

∇yṽ(y) · ∇yṽ(y) dy
u2

j (x, t)
|Y|

, (5.24)

cc
j(x, t) = ρc

2

∫
Yc

ṽ2(y) dy
u̇2

j (x, t)
|Y|

, (5.25)

cf
j (x, t) = |Yf |

|Y|
ρf

2 ṽ2(Rf ) u̇2
j (x, t), (5.26)

where the term ṽ must again be interpreted differently for the bi- and three-phase cases,
as specified above.

From relations (5.22) to (5.26) and (5.21), after some manipulations (see Appendix
A2), the energy ⟨ej⟩, with j = 2 or 4, can be written as:

⟨ej⟩(x) = 1
4
{
µeffs2(V′2(x) + W′2(x)) + ω2 γ(ω) (V2(x) + W2(x))

}
, (5.27)

where µeff is obtained from relation (3.54)1 and γ(ω) is given by:

γ(ω) =



ρeff (ω) + 2
|Y|

[
ρc

∫
Yc

(
ṽ2(y) − ṽ(y)

)
dy

+ ρf |Yf | ṽ(Rf ) (ṽ(Rf ) − 1)
] three phases,

ρeff (ω) + 2
|Y|

[
ρc

∫
Yc

(
ṽ2(y) − ṽ(y)

)
dy
]

two phases.

(5.28)

Note that γ for the two-phase LRM can be obtained from that of the three-phase
problem by considering |Yf | = 0, i.e. by assuming that part Yf has zero area, and by
considering the “correct” effective mass density ρeff , that is given by relation (3.56) for
three phases and by relation (3.59) for two phases.

From the expressions above, for frequencies inside a band gap, the average energy

1We recall that, for the square unit cell and the anti-plane shear problem here treated, the tensor of
effective shear becomes a scalar tensor with diagonal terms µeff .
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density (5.27) of the two barriers becomes:

⟨e2⟩(x) = 1
4
{
µeff s2 |(1 + R) sinh sl + a i (R − 1) cosh sl| +

ω2 γ(ω) |(1 + R) cosh sl + a i (R − 1) sinh sl|
}
,

(5.29)

⟨e4⟩(x) = 1
4
{
µeff s2 |T sinh sl − a iT cosh sl| +

ω2 γ(ω) |T cosh sl − a iT sinh sl|
}
,

(5.30)

and, upon integrating over their thickness l, one can derive the averaged total mechanical
energies ⟨E2⟩ and ⟨E4⟩ as:

⟨E2⟩ = 1
4

{[
l

2(a2 − 1)(µeffs2 − ω2γ(ω)) + sinh 2sl
4s (a2 + 1)(µeffs2 + ω2)

]
+

− 2 Re(R)
[
l

2(a2 + 1)(µeffs2 − ω2γ(ω)) + sinh 2sl
4s (a2 − 1)(µeffs2 + ω2γ(ω))

]
+

+ a Im(R)(1 − cosh 2sl)(µeffs2 + ω2γ(ω))
}

(5.31)

⟨E4⟩ = 1
4 |T|2

[
l

2(a2 − 1)(µeffs2 − ω2γ(ω)) + sinh 2sl
4s (a2 + 1)(µeffs2 + ω2γ(ω))

]
(5.32)

5.3.3 Optimal cavity width

The attenuation capabilities of the LRMs can be exploited for obtaining a concentration
of mechanical energy inside the defect. For this, let us consider frequencies inside a
band gap for the analyzed LRM.

From relation (5.15), the averaged energy in part V3 is obtained as follows:

⟨e3⟩(x) = µh k
2

8 |T|2
{

|α|2 + |β|2
}
. (5.33)

For given material properties of parts Vh and Vb, the geometry of the REH can be
optimized to increase the energy inside the cavity. Considering a fixed frequency ω
for the traveling wave and a given width l for the barriers, the only variable left is
the half-width d of the internal cavity that appears at the denominator denT of the
transmitted complex wave amplitude T (see relation (5.7)). Accordingly, denT must be
minimized with respect to the product kd:

min
kd

{
|denT|2

}
= |α|4 + |β|4 + |β|2 min

kd

{
ᾱ2 exp {−4ikd} + α2 exp {4ikd}

}
︸ ︷︷ ︸

⊛

. (5.34)
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Using the definition of α, the term indicated as ⊛ above can be rewritten as

⊛ = min
kd

{
2
(
p2 − q2

)
cos 4kd − 4pq sin 4kd

}
, (5.35)

where p and q are given by

p = 2 cosh sl q =
(

a − 1
a

)
sinh sl. (5.36)

The optimal solution of relation (5.35), and hence of (5.34), is obtained from

tan 4kd = 2pq
q2 − p2 . (5.37)

From relation (5.37), the following result is found:

Result. The average mechanical energy density in the defect is maximum for an
increasing sequence of optimal half-widths, depending on l and ω, that will be denoted
as d∗

i , with i ∈ N∗.

Moreover, from condition (5.37), one has

sin 4kd = 2pq
q2 + p2 , cos 4kd = q2 − p2

q2 + p2 . (5.38)

Substituting relation (5.38) into (5.34), one obtains

min
kd

|denT|2 =
[(
p2 + q2

)
− |β|2

]2
= 4. (5.39)

Considering relation (5.7), a second result is thus found:

Result. When the average mechanical energy density in the defect is maximum, the
modulus of the transmission wave amplitude T is maximum as well and equal to 1,
whereas the reflected wave amplitude vanishes, R = 0, meaning that the system is
“invisible” for the incoming wave.

Let us note that (5.35) gives also the set of d that minimizes T.
As stated in chapter 3, by decreasing the frequency ω from the closure of a band gap

towards the frequency of resonance ωm of the LRM internal inclusions corresponding to
the opening frequency of that same band gap, the effective mass density ρeff decreases
monotonically, approaching −∞. By considering this latter condition, i.e. ω → ω+

m,
then cosh sl ∼ sinh sl, but since a → 0, then p2 = o

(
q2) and

lim
ω→ω+

m

cos 4kd = 1 (5.40)

In this case the optimal half-widths read

d∗
i = iπ

2k ∀l, with i ∈ N∗. (5.41)

108



Chapter 5. Design of a 2D continuous resonant energy harvester

This means that, whenever ω → ω+
m, the condition of maximum average energy density

becomes independent from the width l of the barriers and thus, in principle, one unit
cell would be enough for obtaining the optimal energy localization. The above relation
(5.41) can be understood as the condition of resonance of a cavity inserted between two
“walls" characterized by perfect reflection.

Let us note that, when the bi-phase LRM is employed, the first frequency of
resonance ω∗

1 for part Yc is found from relation (3.58) that is here rewritten for clarity
as

J0(kcRc) = 0, (5.42)

with kc = ω
√
ρc/µc representing the wavenumber inside part Yc. From equation (5.42),

one finds kc = 2.4048
Rc

. Considering ω → ω+
1 , from relation (5.41) the wavenumber in the

cavity is k = 1.5708
d∗

1
. If the material in the defect coincided with the material of the soft

inclusion, one would have k ≡ kc. Therefore, we would obtain that d∗
1 is of the same

order of magnitude of Rc for this specific case.
Eventually, when d = d∗

i , the total energies in regions V2, V3 and V4 read:
⟨E2⟩ = ⟨E4⟩ = 1

4

[
l

2(a2 − 1)(µeffs2 − ω2γ) + sinh 2sl
4s (a2 + 1)(µeffs2 + ω2γ)

]

⟨E3⟩ = d
µm k2

2

[
2 cosh 2sl +

(
a2 + 1

a2

)
sinh 2sl

]
(5.43)

5.4 Example
Let us now validate our previous results by analyzing an example case and by comparing
them with numerical analyses. For these, we used the commercial software COMSOL
Multiphysics 5.4. For clarity, we summarize here below which are the initial assumptions
on the materials of the considered system:

• Parts V1, V3 and V5 are constituted by the same material employed for the matrix
composing the LRM1;

• Part Yc is very compliant with respect to part Ym;
• Part Yf (if present) is very stiff so that it can be treated as rigid in the homoge-

nization procedure.

We thus first fix the material properties by respecting the three conditions just
specified. We choose to use the same materials for parts Ym, Yc, and Yf as the ones
indicated in table 3.1. Following the first point of the list above, parts V1, V3, and V5
are fixed as well. Let us recall in table 5.1 the material properties.

1We make this assumption for practical purposes: it is indeed easier to think of a REH obtained by
deposing the inclusions in a background homogeneous material. The previous derivation remains valid
also when this assumption is not made.
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Table 5.1: Material properties.

Constituents E [MPa] ν [-] ρ [kg/m3]
part Ym (epoxy) 3600 0.370 1180
part Yc (rubber) 0.118 0.469 1300
part Yf (lead) 14000 0.420 11340

We show the results for both a bi- and three-phase LRM. We consider the same
square lattice as the one analyzed in the examples treated in chapter 3, with unit
cells of side a = 1 mm, parts Yc of radius Rc = 0.415a, and parts Yf (if present) of
radius Rf = 0.7Rc. We have already underlined in chapter 3 that a scaling of the
cell would simply scale the effective mass density when plotted with respect to the
frequency, without changing the band gap structure. Different filling fractions (πR2

c/a
2)

or thicknesses of the coating (Rc −Rf ) would instead modify it.

5.4.1 Analytic and numerical computation of the energy in the system

From the results of chapter 3, the LRM is characterized by the presence of band gaps, as
one can check by looking at figures 3.6 and 3.7 respectively for the bi- and three-phase
case. The first band gap occurs at frequencies between 5.1 and 6.5 KHz for the bi-phase
LRM, and between 2.4 and 5.7 KHz for the three-phase LRM.

We fix to 40 the number of cells employed across the thickness of parts V2 and V4
(hence we choose a value for l).

Our choice is to optimize the REH to work at a mid-band gap frequency ω̃. Accord-
ingly, we have ω̃ = 5.8 KHz for two phases and ω̃ = 4.05 KHz for three phases. From
relation (5.37), we thus obtain an ordered set {d∗

i }i∈N∗ of increasing optimal cavity
half-widths d∗

i , for which the energy ⟨e3⟩ in the defect is maximum.
Let us call ⟨ein⟩ the energy carried by the incoming wave in part V1, averaged in

time. By using relation (5.15) we can express the incoming energy as

⟨ein⟩ = µm k2

2 . (5.44)

Picking up the smallest optimal cavity d∗
1 := d for both LRMs, the plots in figures 5.6

show the behavior of the ratio ⟨ej⟩/⟨ein⟩ (with j from 1 to 5) along the whole system⋃5
j=1 Vj for d = 12.9 mm (two phases) and d = 19.9 mm (three phases). The orange

lines represent the energy density computed by the analytic formulas (5.15) and (5.29),
while the results of the numerical analysis are shown in blue. The oscillations of the
numerical response are due to the intrinsic heterogeneity of the LRM composing the
barriers; the analytic results, based on an homogenized material, give a behavior in
good agreement with the numerical curve.

By looking at both plots in figure 5.6, one can observe that not only the energy in
the cavity is larger than the incoming energy, but also that the energy exponentially
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Figure 5.6: Ratio of the averaged mechanical energy density along the whole system
with respect to the incoming one for (a) a bi-phase (d = 12.9 mm) and (b) a three-phase
LRM (d = 19.9 mm). Orange: analytic results, and blue: numerical results. Each part
composing the REH is separated by the vertical dashed lines.

decay outside the defect across the barriers. This feature is fundamental and proves
that the incoming wave is localized in the defect.

This allows us to finally compute the ratio ⟨e3⟩/⟨ein⟩ between the localized and the
incoming energy. In particular, we have that ⟨e3⟩/⟨ein⟩ = 81 for the bi-phase problem,
while ⟨e3⟩/⟨ein⟩ = 23 for the three-phase one. Therefore, we have that in both cases
the incoming energy is smaller than the energy inside the defect. This verifies the first
result in subsection 5.3.3.

5.4.2 Analytic and numerical computation of the transmission coeffi-
cient

Let us now verify our second result in subsection 5.3.3, namely the fact that transmission
is maximum and equal to 1 when an optimal cavity half-width is used.

For this, we report in figure 5.7a the transmission coefficient modulus |T| vs frequency,
from a transmission analysis of our REH (bi-phase above and three-phase below). First
of all, the results coming from the asymptotic technique agrees very well with those of
the real case study. The expected peak of transmission at the frequency ω̃ inside the
band gap is well captured both by the analytic and numerical results. It is thus clear
from the figure that also the second result in subsection 5.3.3 is verified.

To show how the presence of a cavity modifies the behavior of an unperturbed
LRM, we have plotted in figure 5.7b (bi-phase above and three-phase below) the results
coming from a transmission analysis in absence of the cavity, i.e. for a simple layer of
LRM with a thickness equal to 2l (obtained by getting rid of the cavity in the middle of
the two barriers and attaching them together): the peak inside the band gap disappears
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when no cavity is present.

|T|

Frequency [KHz]

|T|

(a)
Frequency [KHz]

|T|

|T|

(b)

Figure 5.7: Transmission coefficient modulus |T| as a function of the frequency ω (a) in
presence of the cavity and (b) without any cavity. Bi-phase above and three-phase below.
The shaded regions define the band gaps. Orange: analytic results and blue: numerical
results.

5.4.3 Towards the optimization of the harvester: parametric study

The results of the previous subsections refer to a particular case, with all the parameters
involved in the problem fixed. Let us now consider the effect of different possible
configurations of the system with a three-phase LRM. This becomes rather fast thanks
to our analytic treatment of the problem.

With the aim of comparing the different solutions, we introduce two indexes as
a “measure” of the harvesting capabilities of the REH. One of them is the “Index
of Concentration” (IC) that was already defined by relation (4.36) for the problem
analyzed in chapter 4. The second measure is the “Averaged Index of Concentration”
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(AIC). We report their expressions here:

IC = ⟨E3⟩
⟨E2⟩ + ⟨E3⟩ + ⟨E4⟩

,

AIC = ⟨E3⟩/(d∗
i )

(⟨E2⟩ + ⟨E3⟩ + ⟨E4⟩)/(d∗
i + l) .

(5.45)

From the above relations, IC represents a measure of the energy level of concentration
reached by the system (as before), whereas AIC gives a ratio between values of energy
averaged over the dimensions of the corresponding REH parts, i.e. between densities
of energy. This is important because a good energy harvester should not be too much
“spread” in space and should provide a high energy density around the defect.

By keeping the same geometric dimensions employed in the previous subsection
for the unit cell, there are three parameters which can be left free to vary, namely the
barrier width l, the optimal cavity width d∗

i and the frequency ω.
As stated previously, relation (5.37) gives a set {2d∗

i }i∈N∗ of optimal cavity widths,
that maximize the energy localized for a given frequency inside the band gap. In figure
5.8, we show the contour plots of the two smallest elements of this set, d∗

1 and d∗
2, in the

plane of the frequency ω inside the first band gap and the width l of the barriers. One
can observe that the optimal cavity widths are almost independent from the thickness
of the barriers l while are strongly conditioned by the frequency. This dependence is
slightly attenuated when considering thin barriers.
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Figure 5.8: First (a) and second (b) optimal cavity half-width plotted with respect to the
the frequency ω inside the first band gap and the width l of the barriers.

Keeping the frequency inside the band gap and the barrier width as variables, the
two indexes IC and AIC are plotted in figure 5.9 using the first two optimal cavity
widths 2d∗

1 and 2d∗
2. The index IC (panels 5.9a and 5.9c) is higher when considering

the largest cavity (2d∗
2). The dependence on the width of the barriers l is very limited

when considering a frequency close to the band gap opening, while IC decreases with l
when considering a higher frequency, close to the band gap closing. A different pattern
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is exhibited by the index AIC (figure 5.9b and 5.9d). Values of AIC greater than one
correspond to systems efficiently concentrating energy in the cavity. High levels of
energy density in the defect are obtained, for both cavity dimensions, considering higher
frequencies and larger barriers. This can be explained by the fact that, far from the
opening frequency of a band gap, the inclusions resonate less and less, meaning that
less and less energy is captured by the resonance; moreover, as the barriers are larger,
the energy is more spread and the density is smaller. The smaller cavity gives a better
solution in terms of AIC.
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Figure 5.9: Indexes IC (a) and AIC (b) for the first optimal cavity widths 2d∗
1; indexes

IC (c) and AIC (d) for the second optimal cavity widths 2d∗
2. The plots are obtained

using analytic expressions.

As shown in chapter 3, a change of the geometry of the unit cell, in terms of both
filling fraction and coating thickness, would change the expression of the effective mass
density (hence the frequencies of the band gap). Moreover, a change in the filling
fraction (or equivalently of the ratio between the radius Rc and the cell size a) would
also modify the value of the effective stiffness of the barriers. To explore the effect of
these variations on the energy localization of the system we study, in particular, the
four cases specified in table 5.2.

Figure 5.10 shows the effect of the geometric modifications of the cell on the indexes
IC and AIC; the cavity width is fixed to 2d∗

1 in all cases. As we stated before, the
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Table 5.2: Chosen geometry for the unit cell

case Rc/a Rf/Rc

a 0.475 0.9
b 0.475 0.4
c 0.355 0.9
d 0.355 0.4

change of the cell also affects the band gap frequencies. Specifically, the frequency
ranges represented in figure 5.10 always correspond to the first band gap of the different
LRMs. By comparing panels 5.10a and 5.10b with panels 5.10c and 5.10d, one can
observe that the concentration of energy is improved by increasing the filling fraction
of the LRM. At equal filling fraction, a smaller thickness of part Yc (panels 5.10a and
5.10c) leads to a higher concentration with respect to the case with a large thickness
(panels 5.10b and 5.10d, respectively).
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Figure 5.10: Each panel (a) - (d) shows the index IC on the first row and AIC on the
second row, for the first optimal cavity widths 2d∗

1. The following geometrical dimensions
are used: (a) Rc = 0.475a, Rf = 0.9Rc, (b) Rc = 0.475a, Rf = 0.4Rc, (c) Rc = 0.355a,
Rf = 0.9Rc and (d) Rc = 0.355a, Rf = 0.4Rc.
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6
C h a p t e r

Dynamic behavior of cables with scat-
ter elements

Chapter summary: The motion of cables with and without a family of attached scatter
elements periodically distributed along it is considered. A detailed description about the
validity of some approximations concerning the static behavior of the system is given.
We show that the dynamic behavior of a taut string with attached masses is characterized
by the presence of band gaps in the spectrum. By considering a bounded domain for
the system, the associated eigenfrequencies respect the banded structure of the spectrum
from the unbounded problem. By introducing a defect of periodicity, defect modes appear
inside some band gaps. The theoretical results are experimentally tested.
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6.4.2 Experimental results and discussion . . . . . . . . . . . . . . 153
6.4.3 Measurements with a defect . . . . . . . . . . . . . . . . . . . 162

The focus of the present chapter is on the problem of wave propagation in cables
presenting a periodic array of scatter elements, consisting in a discrete set of masses
that are hanging by means of elastic or rigid connections.

(a) (b)

(c) (d)

Figure 6.1: Some examples of engineering applications with cable systems: (a) mooring
of floating wind turbines, (b) suspension bridge (Golden Gate bridge, USA), (c) cable-
stayed bridge (Millau viaduct, France), (d) guy-wire for ship masts (Luna Rossa sailboat).

The dynamics of cables has attracted large attentions in the scientific community
due to the complexity of their behavior. Since engineering cables are usually lengthy
and flexible, their vibrations, in general, involve large displacements and are dominated
by geometric non-linearities. This can lead to the activation of different interesting
phenomena, such as hardening or softening at a primary resonance response, secondary
and internal resonances, parametrically excited responses, to name but a few. For an
exhaustive literature review of the problem, we refer to the works of Nayfeh et al. (1995a)
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and Nayfeh et al. (2008). Beyond the academic interest, cables are used as structural
solutions in many applications, such as for the mooring and towing of marine vehicles
or platforms, for overhead lines, for roofing systems, for cable-stayed or suspension
bridges, or again as guy-wires to add stability to a free-standing structure (see figure
6.1 for some of these examples).

Often an engineering cable presents a family of objects, such as weights, instruments
or buoyancy elements (all of them to be considered as punctual masses), attached along
it. Systems of this type can model for instance overhead lines presenting Stockbridge
dampers, hydrophones arrays, or cableways (figure 6.2). Likewise, the main cable in
suspension bridges supports the deck by means of a set of hangers distributed along it
(cf. figure 6.1b). The motivation for the present work emerged, partially, from the will
of studying the dynamics of these cable systems.

(a) (b)

Figure 6.2: Examples of engineering cables with a family of attached elements: (a)
Stockbridge damper for overhead power lines and (b) cableway (Aprica, Italy).

We begin this chapter by deriving the exact equations of motion governing the
dynamics of cables with and without a discrete arrangement of scatter elements. The
first step in the studying of these systems is the derivation of their static equilibrium
configurations. This is a well-understood problem. Analytic and numerical tools which
provide reliable estimates of the static behavior of the system are already available (see
for instance the work of Desai et al. (1988) and citations therein).

The analysis of the dynamic response of cables is much more complex than the static
analysis. Different numerical schemes have been proposed (see for instance Henohold et
al. (1976) and Gattulli et al. (2004)) and have been used to give important quantitative
solutions to the problem, especially in relation to non-linear phenomena. Nevertheless,
they provide relatively little information about the effect of the parameters which govern
the dynamics of the system. In this context, analytic approaches can be useful. Clearly,
in order to derive analytic results, some simplifications must be introduced. However,
several interesting phenomena can still be understood in a reliable way. This chapter
shall be read using this point of view. From the strongly non-linear equations that
govern the problem of cables dynamics, we make subsequent approximations that enable
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to treat a simplified version of the problem. This, in turn, allows us to present some
known peculiar results that concern the dynamics of bare cables and some new results
on the linearized dynamics of cables with scatter elements.

More specifically, we will show that the behavior of these latter systems resembles
very much that of the metamaterials described in the previous chapters, being character-
ized by gaps of frequencies at which propagating waves are attenuated. Their behavior
can be viewed halfway between that of a discrete lattice and a continuous metamaterial.
Moreover, they can be easily realized, offering the possibility of (inexpensive) experi-
mental validations: our objective, at this point, is that of obtaining some experimental
evidences of the phenomena treated before in this work. Accordingly, this chapter is
concluded by presenting some experimental results on the linearized dynamics of taut
cables with attached masses, that prove both the presence of band gaps in the spectrum
of the problem and the occurrence of defects-induced wave localization phenomena.

6.1 Exact equations of motion

In this section we aim to derive the equations that govern the motion problem associated
to the mechanical system depicted in figure 6.3, constituted of a cable whose natural
configuration is the curve S → xR(S), with xR ∈ R3, being parametrized by its
curvilinear abscissa S. More specifically, we have S ∈ CR, where CR can be finite

e3

ℓR

s(ℓR)

k

M

0

F̌

e1

e2 S
u[1]

u[2]

s(S)

g

CR

C

Figure 6.3: Sketch of the cable system.

CR = (0, ℓR) or infinite CR = (−∞,+∞), since we also envisage to study propagation
problems (i.e. problems where the propagating waves have not reached the boundaries
yet). We will often write ∀S for ∀S ∈ CR. The coordinate system used is represented
in the figure 6.3. Note that, in what follows, we use the subscript “R” to indicate a
quantity in the reference configuration, that is taken to be coincident with the natural
configuration. A hat ˆ(•) will be used for non-dimensional quantities.
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A cable is defined to be a set of elements called material points (or particles) with
the geometric property that they occupy a curve in R3 and with the mechanical property
that they are perfectly flexible, i.e. they do not support any flexural moment. An
elegant way of describing this pure cable behavior can be found in the work of Irvine
(1981), who himself attributed it to James Bernoulli: “The action of any part of the
line upon its neighbor is purely tangential”. Accordingly, we assume that couples are
not present; shear forces are thus necessarily null for the equilibrium to be satisfied, as
we will show later on by considering the balance of the angular momentum.

Let us make the following assumptions:

• In the literature, sometimes the words “string” and “cable” have not the same
meaning, with “string” denoting a cable with no static sag when fixed at the two
extremities. In this manuscript we will not make this differentiation and we will
use the two words indistinctly.

• The cable is of linear mass density ρR and area AR in the reference configuration.
In what follows we are going to neglect the Poisson’s effect, meaning that the
area A at any time t will remain equal to AR

1.
• The end at S = 0 (if exists) is fixed, whereas the boundary condition on the

opposite end is not defined at the moment.
• Possibly, all along the cable a family of punctual masses M is attached either

with the help of linear springs of stiffness k (the mass of the springs is neglected)
or without them, i.e. placing the masses directly on the cable. The set containing
the points where a punctual mass can be found is called P ⊂ CR, it can be either
empty (P = {0}), or it can possess a finite cardinality N (P = {s1, . . . , sN }).

• If P ≠ {0}, the masses are equally spaced, the distance between two masses being
d = ℓR/(N + 1) (accordingly the i-th mass is attached to the cable at the point
Si = id).

• The cable and the masses are placed in the gravity field ge2.
• We will call the movement that takes place in the plane x1 − x2 as “in-plane

motion”, whereas that along direction x3 as “out-of-plane”.

Let us denote xeq(S) the position of the material point S in the static equilibrium
configuration Ceq and x(S, t) that in the configuration C of the cable in motion at time
t ∈ [0,+∞). We consider x(S, t) and its derivative in time ẋ(S, t) to be continuous on
{CR × [0,+∞)}, with null values for (S, t) = {CR × 0}. We will use a subscript “eq” any
time we are referring to a quantity of the configuration Ceq. Note that we are here not
using the normal parametrization, i.e. the curves xeq and x are not parametrized with
their arclengths. If needed, we will use p to denote the arclength along Ceq (statically
deformed arclength) and s for the same quantity in C (dinamically deformed arclength).
If not specified, s will denote the arclength in any configuration different than CR.

1This corresponds to a Poisson’s coefficient ν = 0. In general this is not true, nevertheless the
material considered in this manuscript are stiff and thus small axial deformations are often present. For
this reason we can neglect the Poisson’s effect.
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For a string undergoing some motion, we define the displacement u(S, t) at time t
from the equilibrium such that:

x(S, t) = xeq(S) + u(S, t), (6.1)

with u(S, t) = u1(S, t)e1 + u2(S, t)e2 + u3(S, t)e3.
Accordingly, assuming that the function x(S, t) is differentiable in the spatial variable

at (S, t), the unit vector tangent to the curve at point S and at time t is

t(S, t) := x′(S, t)
||x′(S, t)|| , (6.2)

where we recall that (•)′(x) := ∂(•)/∂x, with x representing a generic spatial coordinate,
and with || • || being here the usual Euclidean norm. In writing the above relation, we
have assumed

||x′(S, t)|| > 0, ∀S, t (6.3)
that has to be understood as a condition of non-degeneracy. We will come back on this
point in a few moments.

Denoting as ϕ(S, t) the tangent angle at position S and time t between vector t and
the axis along e1, we are finally able to define the curvature as:

C(S, t) := ϕ′(S, t)
s′(S, t) . (6.4)

We make here an important statement:

Remark. Since the flexural moment is null, and thus already fixed, we cannot control
the orientation of the cable. As a consequence, its motion is not necessarily “regular”
and its space of definition must be enlarged1. In particular, the configuration S → x(S)
will always be continuous, but only piecewise differentiable. The vector tangent to the
cable can be discontinuous at the points where masses are attached.

The length of a material segment dS in a configuration different than CR can be
computed by integrating over space the following relation:

s′(S, t) = ||x′(S, t)||. (6.5)

It follows that we can use as measure of axial strain the quantity

ε(S, t) := ||x′(S, t)|| − 1. (6.6)

Relation (6.5) allows us to give the physical interpretation of condition (6.3): at any
time, any segment of the cable cannot degenerate into a point during motion (and its
orientation is note reversed).

We have to make here a fundamental assumption:
1They must belong to the space of Lipschitz continuous functions (Sobolev space W 1,∞(CR)).
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Assumption. Whenever P is not empty, the attached masses are assumed to transmit
only a vertical force to the cable.

In practice, we are stating that the masses do not behave like a pendulum when
they are hanging to the cable (so their motion is always parallel to direction x2) and
do not possess inertia in the plane x1 − x3 (so their masses do not contribute to the
linear momentum balance along directions x1 and x3). This assumption is based on the
following considerations (some of them will be clarified in the rest of the chapter):

• we will be interested to restrict the movement of the cable in the plane x1 − x2;
• at low enough frequencies, the behavior of a bare cable in the axial (longitudinal)

direction can be approximated as quasi-static;
• in a linearized framework with small oscillations around an almost flat equilibrium

configuration, the in-plane motion of a bare cable is decoupled from the out-of-
plane motion.

We can now study the equilibrium of the cable. Let us first define the contact forces
acting on any section S of a generic elongated medium (ℓR ≫

√
AR), avoiding for now

any assumption on the transverse stiffness of the body. In particular, we postulate the
existence of the internal force R(S, t) and of the couple M(S, t). Let us start with the
balance of the angular momentum that can be expressed as:

M ′(S, t) + ||x′(S, t)||t(S, t) ∧ R(S, t) + mR(S, t) = 0, ∀S ∈ CR, t (6.7)

where

• The equation is valid at any point S of CR because the attached masses (if present)
do not transmit any moment;

• The term t(S, t) ∧ R(S, t) represents the shear force exerted on the part (0, S) (or
(−∞, S)) of the cable by the part (S, ℓR) (or (S,+∞));

• The term mR(S, t) denotes distributed moments;
• We have assumed that the inertial term is small and can be neglected (small

cross-section AR).

Since, as we stated before, the cable cannot sustain bending moments, then
M(S, t) = mR(S, t) = 0 above. Therefore the angular momentum balance gives

t(S, t) ∧ R(S, t) = 0,

meaning that the shear force is null and thus that

R(S) = N(S, t)t(S, t), (6.8)

where N(S, t) is the amplitude of the axial force. Consequently, at a generic point S
where no punctual mass is attached, the balance of the linear momentum gives:

(Nt)′(S, t) + ρRge2 − ρRẍ(S, t) = 0, ∀S ∈ CR\P, ∀t, (6.9)
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where we recall that ¨(•) = ∂2(•)/∂t2.
The constitutive model can now be chosen1. In what follows we will consider two

types of cables: one inextensible and the other one extensible, with a linear-elastic
behavior. Let us give more details on the equations needed for the two models:

• Inextensibility: it can be imposed by requiring that the cable cannot stretch, such
that

||x′(S, t)|| = 1. (6.10)

It follows from (6.5) that the curvilinear abscissa s of the deformed configuration
coincides with the curvilinear abscissa S of the reference configuration. Note that
the strain measure (6.6) is thus well-suited for the characterization of deformations.
Indeed, when the cable is inextensible, then relation (6.10) is valid and thus ε = 0
∀S, t.

• Linear-elastic behavior : valid for the extensible cable, it is imposed by requiring
that:

N(S, t) = EARε(S, t), (6.11)

with E denoting the Young’s modulus of the material used for the cable.

If P is non-empty, at a point Si ∈ P with 1 ≤ i ≤ N , where a mass is attached, the
cable is submitted to a concentrated vertical force whose intensity Fi is given by

Fi(t) = k(vi(t) − x[2](Si, t)) (6.12)

corresponding to the tension in the spring, with vi(t) denoting the vertical displacement
of the end point of the spring where the i-th mass is attached (by hypothesis, since
the springs remain vertical, the displacement of the i-th mass is x[1](Si, t)e1 + vi(t)e2 +
x[3](Si, t)e3). When the masses are directly attached to the cable, one can consider the
stiffness k → +∞ and thus vi(t) = x[2](Si, t) for the force Fi to be bounded.

At a point Si the internal force defined by relation (6.8) must satisfy the following
jump condition:

[[Nt]](Si, t) + Fi(t)e2 = 0. (6.13)

Since the mass of the spring is neglected, the balance of linear momentum of the i-th
mass along the vertical direction e2 reads as

Mv̈i(t) = Mg − Fi(t). (6.14)

The system of equations (6.9), (6.12) to (6.14), together with relations (6.1), (6.2),
and either (6.10) or (6.11), governs the motion of the cable and of the masses. When
CR is a bounded set in R, the complete initial-boundary value problem can be attained

1Note that, with the assumption that the string cannot sustain any moment, we had already made
some hypotheses on the constitutive behavior of the cable.
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with the help of the missing boundary condition at point S = ℓR, that, in our case, can
be chosen as: specify

x(S, t) or (Nt)(S, t) at S = ℓR, ∀t.

In particular, we name the position of the right end point of the cable and the external
force applied there as:

x(ℓR, t) = x̌eq + ǔ(t) and (Nt)(ℓR, t) = F̌ eq + F̌ (t). (6.15)
In order to guarantee the uniqueness of the solution, it is necessary to add to the

equations governing the problem a so-called stability condition, such that
N(S, t) ≥ 0 ∀S, t, (6.16)

meaning that the string can never sustain compression forces.

6.2 Static equilibrium configuration
In this section we derive in closed form the equilibrium configuration for bounded cables
and we point out some limit behaviors that lead to important results concerning the
validity of our subsequent approximations in dynamics.

Let us write here-below the boundary value problem for the equilibrium configuration
of a cable with masses (non-empty P), derived from the initial-boundary value problem
described in the previous section:

teq(S) =
x′

eq(S)
||x′

eq(S)|| , ||x′
eq(S)|| = 1 + εeq(S) ∀S /∈ P

(Nt)′
eq(S) + ρRge2 = 0 ∀S /∈ P

[[(Nt)eq]](Si) + Fi(eq)e2 = 0, Fi(eq) = Mg ∀S ∈ P, 1 ≤ i ≤ N

xeq(0) = 0, x[3]eq(ℓR) = 0

(6.17)

where, εeq(S) is such that
εeq(S) = 0 ∀S if the material is inextensible

εeq(S) = Neq(S)
EAR

> −1 ∀S if the material is extensible
(6.18)

Note that, for now, we have only fixed the position of the extremity S = ℓR to be
on the x1 − x2 plane. Since also gravity acts on the x1 − x2 plane, the equilibrium
configuration xeq(S) will lie on the same plane1.

1Along direction x3, the linear momentum equation for the cable states that the component R[3]eq(S)
of the internal force must be constant. One has two options:

1. (Nt)[3]eq(S) = 0, then either Neq or t[3]eq must be zero, but Neq = 0 is not possible from the
problem in the other 2 directions, thus t[3]eq = 0;

2. (Nt)[3]eq(S) ̸= 0, then both Neq and t[3]eq are different from zero and constant, but t[3]eq cannot
be constant otherwise x[3]eq(0) and x[3]eq(ℓR) cannot lay on the x1 − x2 plane.

Therefore, the only possibility is t[3]eq = 0 ∀S, as we said in the text.
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One can retrieve the problem associated to a bare cable, i.e. with no masses, simply
by remembering that P is empty in that case and by using the following condition

[[(Nt)eq]](S) = 0 ∀S,

to be substituted to the jump conditions in problem (6.17). The relation here-above
states the continuity of the internal force R along the whole cable.

We can now proceed by integrating the equilibrium equation of the cable, written as
in (6.17). At this point, it is better to distinguish the case without the masses (P = {0})
from that with the masses (P ≠ {0}).

6.2.1 Equilibrium of a bare cable

The equilibrium equation of the cable in (6.17) can be expressed ∀S and, by integration,
one obtains

(Nt)eq(S) = F̌[1]eqe1 + (F̌[2]eq + ρRg(ℓR − S))e2,

where F̌[i]eq, with i = {1, 2}, are the components of the force F̌ eq acting at S = ℓR and
defined in (6.15). With the stability condition (6.16), one has

Neq(S) =
√
F̌ 2

[1]eq + (F̌[2]eq + ρRg(ℓR − S))2

x′
eq(S) = 1 + εeq(S)

Neq(S) (F̌[1]eqe1 + (F̌[2]eq + ρRg(ℓR − S))e2)
. (6.19)

Here, depending on the constitutive behavior envisaged, one can choose between the
two relations (6.18). Let us derive the solution for the extensible case first. Integrating
the second of relations (6.19), using the boundary conditions at S = 0, one finds the
equilibrium configuration for the cable with no masses, in terms of the force acting at
S = ℓR, such that

x[1]eq =
F̌[1]eq
ρRg

[
arsinh

(
F̌[2]eq + ρRgℓR

F̌[1]eq

)
− arsinh

(
F̌[2]eq + ρRg(ℓR − S)

F̌[1]eq

)]

+
F̌[1]eqS

EAR

x[2]eq =
F̌[1]eq
ρRg

√√√√1 +
(F̌[2]eq + ρRgℓR)2

F̌ 2
[1]eq

−

√√√√1 +
(F̌[2]eq + ρRg(ℓR − S))2

F̌ 2
[1]eq


+
F̌[2]eqS

EAR
+ ρRg

2EAR
S(2ℓR − S)

. (6.20)
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The solution for the inextensible cable is obtained from the above relations without the
boxed terms (EAR → +∞).

The configuration of equilibrium is finally determined by imposing the remaining
boundary conditions at S = ℓR. Let us note that, by taking F̌[1]eq > 0 and F̌[2]eq =
−ρRgℓR/2, one finds that the right end of the cable is at height x[2]eq(ℓR) = 0 and thus
at the same height of the left support.

The problem just solved is generally known as catenary problem, from the Latin
word “catena” meaning chain.

6.2.2 Equilibrium of a cable with discrete hanging masses

This time, the equilibrium equation of the cable in problem (6.17) is valid ∀S /∈ P and
P is non-empty. Its integration thus gives:

(Nt)eq(S) = F̌ eq + ρRg(ℓR − S)e2 −
∑

S∈Pi

[[(Nt)eq]](S),

∀S ∈ ((i− 1)d, id), 1 ≤ i ≤ N + 1,

where the sets Pi are defined as follows:

Pi :=
{

{0} for i = N + 1
{Sj}i≤j≤N for 1 ≤ j ≤ N

.

If [[(Nt)eq]](S) = 0 ∀S, one retrieves the solution valid for a bare cable.
Using the jump conditions of problem (6.17), we find

(Nt)eq(S) = F̌[1]eqe1 + (F̌[2]eq + ρRg(ℓR − S)−(N + 1 − i)Mg)e2,

∀S ∈ ((i− 1)d, id), 1 ≤ i ≤ N + 1.

With the stability condition (6.16), one has

Neq(S) =
√
F̌ 2

[1]eq + (F̌[2]eq + ρRg(ℓR − S) + (N + 1 − i)Mg)2, (6.21)

valid for S ∈ ((i− 1)d, id), 1 ≤ i ≤ N + 1. The components of the tangent vector teq
can be found from

x′
eq(S) = 1 + εeq(S)

Neq(S) (F̌[1]eqe1 + (F̌[2]eq+ρRg(ℓR − S) + (N + 1 − i)Mg)e2),

∀S ∈ ((i− 1)d, id), 1 ≤ i ≤ N + 1,
(6.22)

where again we can make use of the constitutive behavior (6.18), treating the inextensible
problem as a particular case of the extensible one.

From the above ordinary differential equation, completed with the continuity condi-
tion [[xeq]] = 0 and the boundary conditions at S = 0, the equilibrium configuration
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can be obtained in closed form and can be found in Appendix A3. The equilibrium
configuration corresponds to N + 1 arches of catenary connected with discontinuous
tangent.

With the aim of studying some asymptotic behaviors of the cable, it is interesting
here to rewrite the problem in dimensionless form. For this, let us take the length
ℓR of the cable as the reference length1 and the component F̌[1]eq of the applied force
F̌ eq as the reference force. Consequently, the equilibrium configuration depends on
the following parameters: the number N of attached masses, the ratio θ between the
total mass of the hanging masses and the mass of the cable, the ratio η between the
own weight of the cable and the intensity of the applied force, the ratio ζ between the
components of the applied force F̌ eq, and the ratio β between the applied horizontal
force and the axial stiffness of the cable

θ := NM

ρRℓR
, η := ρRℓRg

F̌[1]eq
, ζ = F̌[2]eq/F̌[1]eq, β :=

F̌[1]eq
EAR

. (6.23)

Let us note that the spring stiffness k does not play any role in statics as far as the
equilibrium configuration of the cable is concerned. It enters in the equilibrium position
of the hanging masses only, such that

vi(eq) = x[2]eq(Si) + Mg

k .

Let us further introduce the dimensionless coordinate Ŝ and the dimensionless fields
N̂eq, x̂eq as

Ŝ = S/ℓR, N̂eq = Neq/F̌[1]eq, x̂eq = xeq/ℓR. (6.24)

6.2.3 Some asymptotic behaviors of the stable equilibrium configura-
tion

By using the dimensionless quantities defined in (6.23) and (6.24), relations (6.21)
and (6.22) can be rewritten in dimensionless form as follows: for Ŝ ∈ ( i−1

N+1 ,
i

N+1) and
1 ≤ i ≤ N + 1,

N̂eq(Ŝ) =
√

1 +
[
ζ + η

(
1 − Ŝ +

(
1 − i− 1

N

)
θ

)]2
(6.25)

and

x̂′
eq(Ŝ) = 1 + εeq(Ŝ)

N̂eq(Ŝ)

{
e1 +

[
ζ + η

(
1 − Ŝ +

(
1 − i− 1

N

)
θ

)]
e2

}
, (6.26)

1If CR is unbounded, then a propagation problem is under investigation and one can take ℓR to be a
reference wave length.
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where the strain εeq(Ŝ) is given by{
εeq(Ŝ) = 0 ∀Ŝ\P̂ if the material is inextensible
εeq(Ŝ) = N̂eq(Ŝ)β > −1 ∀Ŝ\P̂ if the material is extensible

. (6.27)

The set P̂ can be obtained from P by multiplying its elements by 1/ℓR to obtain
dimensionless coordinates.

We can re-obtain the dimensionless relations valid for a bare cable by making
relations (6.25) to (6.27) valid ∀Ŝ and by considering θ = 0.

Small sag approximation

Let us start from the bare cable. Accordingly, θ = 0. When the component F̌[1]eq of the
force applied at Ŝ = 1 is much larger than the total weight of the cable and than the
other component F̌[2]eq, then η and ζ are small. From relation (6.25), one obtains

N̂eq(Ŝ) ≈ 1 ∀Ŝ.

Then, from relation (6.26) we have that x̂′
[1]eq ≫ x̂′

[2]eq. Therefore, for an extensible
cable, using relation (6.6) we find that

εeq(Ŝ) ≈ x̂′
[1]eq(Ŝ) − 1.

Since N̂eq(Ŝ) is a constant, inserting the second of relations (6.27) in the above relation,
we find that also x̂′

[1]eq(Ŝ) must be a constant, such that:

x̂′
[1]eq(Ŝ) = 1 + β. (6.28)

Consequently, using the cable equilibrium equation in problem (6.17) along the x2
direction, rewritten in dimensionless form, we find:

x̂′′
[2]eq(Ŝ) = −η(1 + β). (6.29)

If the right end of the cable is such that x̂[2]eq(1) = 0, then equation (6.29) gives:

x̂[2]eq(Ŝ) = η

2(1 + β)Ŝ(1 − Ŝ). (6.30)

Hence, the equilibrium configuration of a cable hanging between two supports at the
same heights is approximated by a parabola. Considering the mid-point of the cable
(Ŝ = 1/2), the dimensionless sag b̂ is given by

b̂ = η

8(1 + β). (6.31)
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The same derivation is also valid for an inextensible cable, by making β → 0. From
relation (6.28), by assuming x̂[1]eq(1) = ℓspan/ℓR, we also find:

x̂[1]eq(Ŝ) = ℓspan/ℓR + (1 + β)(Ŝ − 1),
where ℓspan is thus the position of the cable right end.

This approximation is commonly made especially in civil engineering applications
(see e.g. Gazzola (2015)). Note that the equations governing the problem of the static
equilibrium of a bare cable hanging between two supports at the same height could be
rewritten in terms of a spatial variable x̂ along direction x1, such thatN̂eq(x̂) cos(ϕ(x̂)) = 1

(N̂eq(x̂) sin(ϕ(x̂)))′ = −f(x̂)
√

1 + x̂′
[2]eq(x̂)

, (6.32)

where ϕ(x̂) is the curvature defined in relation (6.4), here given in terms of x̂, and
f(x̂)

√
1 + x̂′

[2]eq(x̂) is a generic source term acting along the cable (it can represent its
weight per unit of cable length for instance). Problem (6.32) can be rewritten as

x̂′′
[2]eq(x̂) = −f(x̂)

√
1 + x̂′

[2]eq(x̂), (6.33)

by using the fact that the tangent x̂′
[2]eq(x̂) to the cable is obtained as

x̂′
[2]eq(x̂) = tan(ϕ(x̂)).

Note that the constitutive behavior of the cable seems to play no role in these consider-
ations. Nevertheless, it is “hidden” in the term N̂eq(x̂).

The form of the solution to the equation (6.33) depends on f(x̂): it is in general a
catenary, but it becomes a parabola when x̂′

[2]eq(x̂) ≈ 0, i.e. when x̂′
[1]eq(Ŝ) ≫ x̂′

[2]eq(Ŝ)
that is exactly the condition valid for the small sag approximation. In this case, the
source term in equation (6.33) is a load per unit of horizontal length. This is indeed
the situation which occurs when a beam is suspended to a cable by means of a family
of hangers. If we assume that spacing between hangers is small relative to the span,
then the hangers can be considered as a continuous sheet or a membrane uniformly
connecting the cable and the beam (this case will be treated later on). By neglecting the
mass of the cable, then the load is distributed per horizontal unit. This is a simplified
sketch of what occurs in a suspension bridge.

When P is not empty (masses are present), similar results can be derived when η, ζ
and ηθ are small. Accordingly, we added to the assumptions made before for the bare
cable the additional request that the component F̌[1]eq of the force applied at Ŝ = 1
must be much larger than the total weight of the attached masses. In particular, for
a cable hanging between two supports at the same heights with a set of N masses
attached to it, one obtains that the equilibrium configuration corresponds to N + 1
arches of parabola with continuity of the graph but not of the tangent. Indeed, one
finds that the same considerations valid for the bare cable are applicable also here,
piecewise in each interval. The final configuration of the cable can then be obtained by
using the jump conditions from problem (6.17) at each one of the positions Ŝi ∈ P.
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Great intensity of the horizontal applied force

Let us now consider the asymptotic behavior of the equilibrium configuration when
the intensity F̌[1]eq of the external force applied in direction x1 tends to infinite, the
number N and the mass of the hanging masses being fixed, and the axial stiffness EAR
being O(F̌[1]eq). In other words, N , θ and β are fixed and finite, whereas η goes to 0.
Using (6.26), one immediately gets the following asymptotic behaviors for the tension
in the cable and its displacement:

N̂eq(Ŝ) = 1 + O(η2), x̂[1]eq(Ŝ) = 1 + O(η2), x̂[2]eq(Ŝ) = O(η). (6.34)

Hence, the tension in the cable tends to be uniform and equal to the applied force
whereas the equilibrium configuration of the cable tends to be horizontal, the weight of
the cable and of the hanging masses being too small to bend the cable.

One can check the validity of this asymptotic behavior, that is strongly dependent
on the material considered for the cable (Marigo, 2014). For this, let us give the total
cable weight per unit area w and the external force per unit area p, such that:

w = ρRgℓR/AR, p = F̌[1]eq/AR.

Let us consider the case of a cable hanging between two supports positioned at the
same heights. This implies a specific value for the component F̌[2]eq of the external
force, such that {

F̌[2]eq = −ρRgℓR/2 P = {0}
F̌[2]eq = −(ρRℓR +MN)g/2 P ≠ {0}

.

Let us look to the bare cable case. Accordingly, from relation (6.20), the positions of
the left end and of the central material point of the cable read respectively:

x[1]eq(ℓR)
ℓR

= 2p
w
ℓR arsinh

(
w

2p

)
+ p

E
,

x[2]eq(ℓR/2)
ℓR

=

√
p2

w2 + 1
4 − p

w
+ w

8E (6.35)

With a metallic cable, such as the one that we are going to use later on, the Young’s
modulus is of the order of O(1011) Pa. The ratio w/E is actually always small and can
be neglected. Since we are here considering an elastic regime, the deformation must
not overtake that at the yielding limit. Therefore, the ratio p/E is at maximum of the
order of O(10−3) and can be neglected in the above relations (6.35). This means that,
in statics, the increasing of axial deformation due to extensibility can be neglected.
Eventually, p can be as large as O(108) Pa and the cable is still in elastic regime.
Consequently, the ratio p/w ≡ η can be very small. This considerations justify the
assumptions (6.34).

For the metallic cable with attached masses, one has to consider an additional
parameter representing the weight of one mass per unit of cable area, namely Mg/AR.
If this term is of the same order of magnitude of w (i.e. if cable and masses have
comparable weights), then observations similar to those applicable to the bare cable are
also valid piecewise for the case with masses and the assumptions (6.34) can be used.
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Small self-weight of the cable

Let us assume that the own weight of the cable is small by comparison with the total
mass of the hanging masses and the intensity of the horizontal applied force, these two
quantities being of the same order. So, at fixed number of hanging masses, one assumes
that η is small and θ is of the order of 1/η, such that

ηθ = Mg

F̌[1]eq

remains finite. Neglecting the term 1 − Ŝ everywhere in (6.25) and (6.26), one gets
that N̂eq, x̂[1]eq and x̂[1]eq are constant in each interval (Ŝi−1, Ŝi) between two attached
masses. Accordingly, the equilibrium configuration of the cable is practically piecewise
linear, the tangent being discontinuous with a jump depending both on i and ηθ. Figure

Figure 6.4: Equilibrium configurations of the cable with 3 hanging masses: in plain line
when θ = 10 and η = 0.1 (so ηθ = 1), in dashed line when the own weight of the cable
is neglected and ηθ = 1. The left end is fixed while a force is applied on the right end.
Circles denote the presence of a mass.

6.4 compares the equilibrium configuration of the inextensible cable in the case of three
hanging masses when θ = 10, η = 0.1 (hence ηθ = 1) and ζ = 0 (F̌2(eq) = 0), with the
one when the own weight is neglected (but still with ηθ = 1). Let us remark that in the
approximate configuration the last segment line of the cable is necessarily horizontal
and the tension is equal to the applied force by virtue of the force applied at Ŝ = ℓ.
In the case where θ = 100 and η = 0.01, the exact equilibrium configuration and the
approximate one are practically identical.

Large number of attached masses

Let us consider the asymptotic behavior of the equilibrium configuration when the
number N of attached masses goes to infinity at fixed total mass Mtot (and fixed applied
horizontal force F̌[1]eq). As we anticipated in the case of small sag, the approximation
currently studied is very often used for modeling the cable system in suspension bridges.
For a given total mass Mtot (or equivalently a given ratio θ), we consider the case of N
attached masses whose individual mass is M = Mtot/N and whose spacing is d.

132



Chapter 6. Dynamic behavior of cables with scatter elements

Accordingly, one obtains again the solution (6.20), with ρR substituted by the in-
creased mass density ρR +Mtot/ℓR. Figure 6.5 shows the exact equilibrium configuration

Figure 6.5: In plain red equilibrium configuration of the cable with 5 hanging masses
and in dashed black its configuration in the limit case of an infinite number of hanging
masses, in the case where θ = 1 and η = 1/2. The left end is fixed while a force is
applied on the right end. Circles denote the presence of a mass.

of an inextensible cable when N = 5 and the limit configuration (when N goes to
infinity), for θ = 1 and η = 1/2. One sees that the two curves are already close although
N is not large.

If ρR ≪ Mtot/ℓR, then the effective mass density of the cable can be approximated
with Mtot/ℓR. This is generally the assumption used for suspension bridges. If, moreover,
the tension in the cable is high enough so that the sag is small, then the cable finds
its equilibrium in a parabolic configuration, as we showed before in the small sag
approximations.

One can verify that the distance1 between the exact solution x̂eq and the approx-
imated solution x̂∞(eq) is of the order of 1/N . Additionally, the jump discontinuity
of the tangent vector tends to 0 like 1/N . This asymptotic result remains true even
if a few hanging masses are missing all along the cable (in fact, the result still holds
provided that the number of missing masses is small with respect to the total number of
masses). So such defects have no influence on the equilibrium configuration of the cable,
at least at the first order (in fact, the defects induce boundary layer effects in their
neighborhood, but their amplitude is small and tends to 0 when N tends to infinity).

In other words, we have found the following result:

Result. When the number of hanging masses goes to infinity (at given total mass Mtot),
the cable behaves like a bare cable with linear mass density increased by Mtot/ℓR. There
is no more discontinuity of the tangent at the limit, the discrete points of attach are no
more visible.

This intuitive result has been established in a static context. We will later show
that the introduction of a defect has instead a significant effect in dynamics.

1in the sense of the W 1,∞ norm.
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6.3 Motion of the cable
We now go back to the time dependent motion of a bounded cable. Let us thus first
rewrite the initial-boundary value problem valid ∀t:

t(S, t) = x′(S, t)
||x′(S, t)|| , ||x′(S, t)|| = 1 + ε(S, t) ∀S /∈ P

(Nt)′(S, t) + ρRge2 − ρRẍ(S, t) = 0 ∀S /∈ P
[[(Nt)]](Si, t) + Fie2 = 0, Fi = M (g − v̈i(t)) ∀S ∈ P, 1 ≤ i ≤ N

x(0, t) = 0, x[3](ℓR, t) = 0

(6.36)

where, the vertical displacement vi(t) of the attached mass can be obtained using
relation (6.12) and ε(S, t) is such that

ε(S, t) = 0 ∀S if the material is inextensible

ε(S, t) = N(S, t)
EAR

> −1 ∀S if the material is extensible
. (6.37)

Note that the two boundary conditions at S = ℓR are not specified at the moment. As
for the static case, we will choose between an imposed position or an imposed force for
the right end of the cable, along directions x1 and x2.

The problem associated to a bare cable, i.e. with no masses, corresponds to the case
when P is empty and can be derived by using the following condition

[[(Nt)]](S, t) = 0 ∀S, t,

to be substituted to the jump conditions in problem (6.36). The above relation states
the continuity of the internal force R along the whole cable, for any time.

The position and force at the right end of the cable are given by relations (6.15)
and their time dependent parts can be rewritten by using

ǔ(t) = ℓRǔ(t), F̌ (t) = F̌[1]eqF̌(t), (6.38)

such that the moduli of ǔ(t) and F̌(t) remain always small and of the same order
of magnitude. Clearly, for any direction, one has to choose between an imposed
displacement and an imposed force. We thus seek formal solutions of the initial-
boundary value problem specified here-above by assuming that the motion of the cable
and the masses remains close to their stable equilibrium configurations, such that

N(S, t) = Neq(S) + F̌[1]eqN̂(Ŝ, t),
x(S, t) = xeq(S) + ℓRû(Ŝ, t),
vi(t) = vi(eq) + ℓRv̂i(Ŝ, t),

(6.39)

with N̂(Ŝ, t), û(Ŝ, t) and v̂i(Ŝ, t) being small and of the same order of magnitude of
the prescribed time dependent data.
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In this section we study the first order approximation of the motion of a cable,
assuming a harmonic time variation for the data (6.38). In particular, we initially study
the eigenvalue problem associated to problem (6.36) for bare cables. This allows us to
present a fundamental result, first derived by Irvine et al. (1976), concerning the validity
of inextensibility in the dynamics of “shallow” cables, i.e. in systems where the sag-to-
span ratio of the static equilibrium configuration is small (parabolic approximation).
This considerations will be useful for our subsequent derivation. Then we present the
results from the cable with attached masses, by showing how its behavior resembles
very much that of the metamaterials treated in this manuscript.

6.3.1 Linearized dynamics for a bare cable with fixed supports

Let us here consider the eigenvalue problem for a bare cable hanging between two
supports positioned at the same height. The vertical position of the cable left and right
ends is thus fixed. Concerning the boundary condition at S = ℓR along direction x1, we
envisage either an imposed fixed position or an applied horizontal force that can vary
with time.

The following considerations are necessary due to the failure of models that approxi-
mate the behavior of the cable as inextensible to reproduce, as a limit case, the classical
results valid for a taut cable (i.e. for cables with no initial sag) when the horizontal
position of the right support is imposed. More specifically, this theory applies to cables
subjected to a tension much larger than their total weight, still remaining in an elastic
regime. As we showed previously, metallic cables constitute a typical example. For
these cases, the static equilibrium configuration is very close to be aligned with the axis
x1 and can be approximated with a parabola. We thus have the following assumptions:

• Neq(S) ≈ F̌[1]eq and thus constant;

• F̌[1]eq/EAR ≪ 1;

• x′
[1]eq(S) ≈ 1 and thus dS ≈ dx[1]eq;

• b = x[1]eq(ℓR/2) ≈ ρRgℓ
2
R

8F[1]eq
,

where b is the cable sag (cf. relation (6.31)).
It is interesting to initially treat the strongest approximation previously defined as

“great intensity of the horizontal applied force”, such that the cable static equilibrium
configuration can be approximated to be straight and horizontal. At first order, this is
the classical problem of a vibrating string and is governed by the following relations:

¨̂u[1](Ŝ, t) − c2
l û

′′
[1](Ŝ, t) = 0

¨̂u[2](Ŝ, t) − c2
t û

′′
[2](Ŝ, t) = 0

¨̂u[3](Ŝ, t) − c2
t û

′′
[3](Ŝ, t) = 0

, (6.40)
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with

cl = EAR(1 + β)2

ρR
, ct =

F̌[1]eq(1 + β)
ρR

being the wave speeds respectively in the longitudinal and transverse directions, with
(1 + β) standing for the initial deformation due to the static loading phase. The
three equations are uncoupled. In particular, from the last two of them, it seems that
the role played by elasticity is null for the transverse motion. This is clearly wrong
because an inextensible taut cable between two fixed supports could not vibrate without
undergoing some deformations: its motion would be geometrically impossible. This is a
first evidence on why inextensibility must be considered with care when dealing with
the motion problem.

Problem (6.40), together with the boundary conditions that both ends are fixed,
represents an eigenvalue problem. One typically finds the following eigenfrequencies for
the three uncoupled directions1{

ωq = qπcl/ℓR q ∈ N∗ longitudinal problem
ωj = jπct/ℓR j ∈ N∗ transverse problems

. (6.41)

Looking at the ratio between the wave speeds, one has the following relation:

cl

ct
=
√

1 + β

β
.

For a metallic cable, the above ratio is very large. Consequently, for q = j, we have
ωq ≫ ωj . We have thus obtained that the longitudinal propagation is much faster than
the transverse one, in the sense that, if an external excitation is at the first frequencies
of primary resonance for the transverse direction (low index j), then such excitation is
too slow for the longitudinal modes to be activated and the longitudinal inertia can be
neglected (static condensation).

Let us now “relax” our assumptions by considering a parabolic cable equilibrium
configuration (small sag approximation), that can be written from relation (6.30) as:

x̂[2]eq(Ŝ) ≈ 4b̂Ŝ
(
1 − Ŝ

)
. (6.42)

After some manipulations of the equation governing the motion of the cable in problem
(6.36) (this part of the derivation is not given here and can be found in the Appendix
A4), one can again exploit a static condensation: at sufficiently low frequencies of
excitation, the longitudinal inertia of the cable can be neglected. With this additional
assumption (which is rather feasible for cables with high stiffness), the equation of
motion at the first order along the horizontal direction x1 in problem (6.36) can be
written as: [

û′
[1](Ŝ, t̂) + x̂′

[2]eq(Ŝ)û′
[2](Ŝ, t̂) + 1

2 û
′2
[2](Ŝ, t̂) + 1

2 û
′2
[3](Ŝ, t̂)

]′
= 0, (6.43)

1The trivial solution û[i] = 0 is discarded for all i = {1, 2, 3}.
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with
t̂ = ct

ℓR
t

being the non-dimensional time variable. Note that, according to equation (6.43), the
longitudinal component û[1] of the vibrations must be second order with respect to the
small transverse components (x̂[2]eq is indeed considered O(||û||)). Let us call f the
quantity within the squared brackets on the left-hand side of relation (6.43), such that:

f(t̂) = û′
[1](Ŝ, t̂) + x̂′

[2]eq(Ŝ)û′
[2](Ŝ, t̂) + 1

2 û
′2
[2](Ŝ, t̂) + 1

2 û
′2
[3](Ŝ, t̂). (6.44)

This function, if multiplied by the axial stiffness EAR, gives the horizontal component
of the axial force due to the motion of the cable and is constant in space, according to
relation (6.43). The resulting motion is strongly affected by the boundary condition at
S = ℓR, that has not been fixed yet, to be chosen from relations (6.38).

Let us start from the case when the horizontal position of the right end of the
cable is fixed to be x[1](ℓR, t) = ℓspan. Note that ℓspan is the cable span and must be
sufficiently large compared to the sag b, such that the parabolic approximation for
the static equilibrium configuration is respected (typically, ℓspan ≥ 8b is enough). By
integration over space of equation (6.43), using the boundary conditions, we have:∫ 1

0
x̂′

[2]eq(Ŝ)û′
[2](Ŝ, t̂) + 1

2 û
′2
[2](Ŝ, t̂) + 1

2 û
′2
[3](Ŝ, t̂) dŜ = f(t̂),

where x̂′
[2]eq is obtained by derivation with respect to Ŝ of relation (6.42). The function

f(t̂), defined by relation (6.44), can be substituted in the equations of motion written
for the other two direction and, upon linearization, one obtains the following problem1:

¨̂u[2](Ŝ, t̂) − û′′
[2](Ŝ, t̂) + 32ψ f(t̂) = 0

¨̂u[3](Ŝ, t̂) − û′′
[3](Ŝ, t̂) = 0

, (6.45)

with
ψ = 8bEAR

ρRgℓ2R

( b
ℓR

)2
. (6.46)

Solutions to problem (6.45) completed with the boundary conditions considered in this
subsection can be found in closed form. Let us specify here some properties of the
solutions:

• the in-plane and the out-of-plane problems are decoupled, as in the case of a taut
string;

• for the out-of-plane vibrations, one finds exactly the same results valid for the
taut string;

1Some steps are skipped here for brevity sake. They can be retrieved by looking in Appendix A4.
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• for the in-plane vibrations, one has to distinguish between anti-symmetric and
symmetric modes:

A for the anti-symmetric modes one finds the classical result valid for a taut
string, obtaining the eigenfrequencies ωj as in (6.41) for j even;

B the eigenfrequencies corresponding to symmetric modes are instead obtained
from

tan ω̂2 = ω̂

2 − ω̂3

128ψ , with ω̂ = ωℓR/ct (6.47)

and depend on the parameter ψ.

The above results can be visualized in figure 6.6, where equation (6.47) is graphically
resolved. In particular, the left- and the right-hand sides of that relation are plotted

Figure 6.6: Eigenfrequencies of a cable with a parabolic equilibrium configuration.

with continuous and dashed curves respectively. The vertical lines correspond instead
to all the eigenfrequencies ωj coming from the problem of the taut cable, normalized as
in (6.47). Accordingly, when j is an even number, ωj gives the eigenfrequency of an
anti-symmetric eigenmode also when the cable equilibrium configuration is not perfectly
straight but has an initial (small) sag. Instead, when j is odd, one has to consider
equation (6.47) to find the eigenfrequencies. In the limit of very small sag, one should
be able to retrieve the classical results valid for a taut string also for the symmetric
in-plane modes.

From figure 6.6, the eigenfrequencies are given as the intersections between the
dashed curves and the plain curve representing the plot of tan ω̂/2. Let us analyze the
two extreme cases, namely ψ → +∞ (blue line) and ψ → 0 (red line). From relation

138



Chapter 6. Dynamic behavior of cables with scatter elements

(6.46) one has: {
ψ → +∞ : EAR → +∞
ψ → 0 : b/ℓR → 0

The failure of inextensible models to predict the correct behavior of a cable hanging
between two fixed supports in the limit of small sag-to-span ratio (i.e. when the cable
initial configuration is almost horizontal) is thus explained: by stating that EAR → +∞,
the first eigenfrequency ω1 = πct/ℓR is lost, as one can see from figure 6.6, where the
first intersection of the blue curve (corresponding to ψ → +∞) with the plot of tan ω̂/2
takes place at ω̂3, i.e. at the eigenfrequency corresponding to the second symmetric
eigenmode of a taut string. The physical reason for this is that the first symmetric
eigenmode is geometrically impossible without undergoing some stretch. Consequently,
the classical results of a taut string cannot be obtained. To correctly recover the taut
string results, one has to consider EAR as large as it is, but finite. Taking b/ℓR → 0
will then give the correct result. These results suggest that one has to use with care
the inextensibility assumption.

Let us comment on the other two cases (green and violet lines) reported in figure
6.6. For these values of ψ, the two curves intersect the graph of tan ω̂/2 exactly at two
eigenfrequencies of the anti-symmetric modes (ω̂2 and ω̂6). These particular condition
is known as crossover and can generate internal resonances (Rega et al., 1999; Nayfeh
et al., 2002) when the non-linearities of the problem are taken into account (i.e. when
the vibrations of the cable are not sufficiently small).

Let us now consider the case when the horizontal position of the right end of the
cable is free, while an external horizontal force F̌[1](t) is imposed, with time variation
sufficiently slow to avoid the activation of longitudinal inertia. We recall that f(t),
given by relation (6.44) expressed in function of the time variable t, when multiplied by
the axial stiffness EAR gives the horizontal component of the axial force due to the
motion of the cable. Consequently, to fulfill the boundary condition at S = ℓR, one
must have:

f(t) =
F̌[1](t)
EAR

.

Substituting the function f(t) in the equations of motion written for the directions x2
and x3 (cf.Appendix A4) one obtains:ρRü[2](S, t) = (F̌[1]eq + F̌[1](t))u′′

[2](S, t) + F̌[1](t)x′′
[2]eq(S)

ρRü[3](S, t) = (F̌[1]eq + F̌[1](t))u′′
[3](S, t)

.

If the imposed external force is constant in time (F̌[1](t) = 0), then the problem of a
taut string is completely restored. The inextensibility assumption can be employed for
this case.

Note that, with the results in the present subsection, we have also finally justified
the assumption that the masses transmit only a vertical force to the cable (cf. section
6.1).
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6.3.2 Linearized dynamics for a cable with attached masses

Let us now analyze the problem of small harmonic oscillations of a cable with attached
masses. We consider a metallic cable that is hanging between two supports at the same

M

1+F(t)ˇ

Ŝ

Ŝ

u[1]

u[2]

ˆ

ˆ
equilibrium
configurationconfiguration

during motion

reference
configuration

Ŝi

viˆ
M

k̂
CR

Ceq
C

Figure 6.7: Sketch of the cable system in motion in its plane (left). The circles represent
a point mass that can be either directly attached on the cable or hanging to it through
an elastic spring (right).

height, with the left end fixed and the right end free to move horizontally and subjected
to an external horizontal force. Let us thus rewrite here relations (6.38) and (6.39), by
making explicit their harmonic time dependence:

ǔ[2](t) = 0, F̌[1](t) = F̌[1] exp {iωt}, (6.48)

and 
N(S, t) = Neq(S) + F̌[1]eqN̂(Ŝ) exp {iωt},
x(S, t) = xeq(S) + ℓRû(Ŝ) exp {iωt},
vi(t) = vi(eq) + ℓRv̂i(Ŝ) exp {iωt}.

(6.49)

From the results of the previous subsection concerning the influence of the inextensibility
assumption on the problem, we can now use this approximation to treat the present
case study. Moreover, as we showed before, for sufficiently high cable tension we can
decouple the in-plane problem from the out-of-plane one at first order. Here we study
the in-plane motion of the cable. Accordingly, all the vectorial quantities that appear
in this subsection are intended to possess components only along directions x1 and x2.
Substituting relations (6.49) in problem (6.36) for P ̸= {0}, keeping only first order
terms, leads to the following simplified equations of motions:

• Inextensibility at every point Ŝ
dx̂[1]

dŜ
(Ŝ)

dû[1]

dŜ
(Ŝ) +

dx̂[2]eq

dŜ
(Ŝ)

dû[2]

dŜ
(Ŝ) = 0; (6.50)

• Horizontal motion equation of the cable at a point Ŝ where no mass is attached
d

dŜ

(
N̂eq(Ŝ)

du[1]

dŜ
(Ŝ)

)
+ d

dŜ

(
N̂(Ŝ)

(
1 +

dx̂[1]eq

dŜ
(Ŝ)

))
+ (N + 1)2Ω2û[1](Ŝ) = 0;

(6.51)
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• Vertical motion equation of the cable at a point Ŝ where no mass is attached
d

dŜ

(
N̂eq(Ŝ)

du[2]

dŜ
(Ŝ)

)
+ d

dŜ

(
N̂(Ŝ, t)

dx̂[2]

dŜ
(Ŝ)

)
+ (N + 1)2Ω2û[2](Ŝ) = 0; (6.52)

• Horizontal jump condition at Ŝi = i/(N + 1), 1 ≤ i ≤ N, where a mass is attached[[
N̂eq

dû[1]

dŜ

]]
(Ŝi) +

[[
N̂(Ŝ)

(
1 +

dx̂[1]eq

dŜ

)]]
(Ŝi) = 0; (6.53)

• Vertical jump condition at Ŝi = i/(N + 1)), 1 ≤ i ≤ N, where a mass is attached[[
N̂eq

dû[2]

dŜ

]]
(Ŝi) +

[[
N̂(Ŝ)

dx̂[2]eq

dŜ

]]
(Ŝi) − F̂i(t) = 0, (6.54)

with

F̂i(t) =

−θ (N + 1)2

N
Ω2v̂i(Ŝi) masses directly on the cable

−k̂(N + 1)(v̂i − û[2](Ŝi)) masses hanging with springs
; (6.55)

• Vertical motion equation of the ith hanging mass (from relation (6.14))
v̂i = û[2](Ŝi) masses directly on the cable

k̂(v̂i − û[2](Ŝi)) = N + 1
N

θΩ2v̂i masses hanging with springs
. (6.56)

In the above relations, we have used Ω and k̂ as the dimensionless parameters associated
with the given frequency and the stiffness of the springs, such that:

Ω = ω

√√√√ ρRd
2

F̌[1]eq
, k̂ = kd

F̌[1]eq
. (6.57)

The system of equations (6.50) to (6.56) is then completed by the set of boundary
conditions 

û(0) = 0

û[2](1) = 0, N̂(1) 1
N̂eq(1)

+
√

1 + ζ2û[1](1) = F̌[1],
(6.58)

where, for the conditions at the right end of the cable, we have used relations (6.21)
and (6.22) written for an inextensible cable at Ŝ = 1. Therefore relations (6.50)
to (6.56) together with boundary conditions (6.58) constitute a linear differential system
for Ŝ 7→ (û(Ŝ), N̂(Ŝ)). It can be reduced to a discrete system of equations for the
displacements û(Ŝ) of the points where a mass is attached after one has solved the
differential equations in each interval between two hanging masses. However the solution
of the differential equations cannot be obtained in a closed form in the general case. So,
we will consider an additional approximation, by making the external static horizontal
force large.
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6.3.3 Dynamics of a cable with hanging masses subjected to a large
static horizontal force

We showed in subsection (6.2.3) that, by making the intensity of the horizontal force
F̌[1]eq much larger than the total weights of cable and attached masses, the cable
equilibrium configuration can be approximated to be horizontal. Let us make this
assumption here. Accordingly, relations (6.34) are valid and one has:

N̂eq(Ŝ) = 1, x̂[1]eq(Ŝ) = 1, x̂[2]eq(Ŝ) = 0, ∀Ŝ.

Inserting the above relations into equation (6.50) and using the boundary condition at
Ŝ = 0 from (6.58) gives

û[1](Ŝ) = 0, ∀Ŝ.

Then relations (6.51) with (6.53) and (6.58) at Ŝ = 1 give

N̂(Ŝ) = N̂eq(1)F̌[1],

and equation (6.52) becomes

û′′
[2](Ŝ) + (N + 1)2Ω2û[2](Ŝ) = 0, ∀Ŝ ∈

(
i− 1
N + 1 ,

i

N + 1

)
, 1 ≤ i ≤ N + 1. (6.59)

Integrating the equation (6.59) inside the i-th interval leads to:

û[2](Ŝ) =û[2](i−1) cos Ω((N + 1)Ŝ − i+ 1)

+
û[2]i − û[2](i−1) cos Ω

sin Ω sin Ω((N + 1)Ŝ − i+ 1)
, ∀Ŝ ∈

(
i− 1
N + 1 ,

i

N + 1

)
(6.60)

where
û[2]i = û[2](Ŝi), 1 ≤ i ≤ N.

Relation (6.56) gives v̂i in terms of û[2]i. When the masses are directly attached on the
cable, one has simply that the motion of the mass i-th is equal to the motion of the
cable point Ŝi, i.e.

v̂i = û[2](Ŝi). (6.61)

When the masses are hanging on the cable with springs, the motion of the i-th mass
reads

v̂i = k̂
k̂ − (1 + 1/N)θΩ2

û[2]i for 1 ≤ i ≤ N, (6.62)

provided that the following condition is fulfilled

θ(N + 1)Ω2 ̸= N k̂. (6.63)
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Condition (6.63) is not fulfilled at the frequency of resonance of the mass-spring system
attached to the cable.

Finally (6.54) gives the discrete linear system of equations governing the displace-
ments û[2]i. Specifically, inserting relations (6.60) and (6.61) or (6.62) into equation
(6.54) leads to

∆iû[2] + µ(Ω)û[2]i = 0 for 1 ≤ i ≤ N, (6.64)
where ∆i denotes the discrete differential operator

∆iû[2] = û[2](i+1) + û[2](i−1) − 2û[2]i for 1 ≤ i ≤ N, (6.65)

already used for the dynamics of discrete systems (cf. relation (2.33)). The frequency
dependent equivalent mass µ(Ω) is defined as

µ(Ω) :=


2(1 − cos Ω) + ΘΩ sin Ω masses directly on the cable

2(1 − cos Ω) + k̂ΘΩ sin Ω
k̂ − ΘΩ2

masses hanging with springs
, (6.66)

where the parameter Θ denotes the ratio between the mass of one hanging mass and
the mass of the part of cable between two successive hanging masses, i.e.

Θ = M

ρRd
= N + 1

N
θ.

Equation (6.64), governing the transverse motion of the cable, has the same form of
equation (2.38), that governs the dynamics of a mass-in-mass chain.

The other boundary conditions (6.58) at Ŝ = 0 and at Ŝ = 1 fix the value of the
vertical displacement at the two ends:

û[2]0 = 0, (6.67)
û[2](N+1) = 2û[2]N cos Ω. (6.68)

Let us remark that the gravity no longer plays a role after this approximation.
On the other hand, the stiffness of the springs (when present) becomes an important
parameter (through k̂) in dynamics, at difference to what we observed in statics where
it does not play any role.

6.3.4 Metamaterials-like behavior

From the results of the previous subsection, we thus have found that the current problem
of a cable with attached masses undergoing small oscillations around a flat equilibrium
configuration can be led back to the study of equation (2.38) governing the dynamic
behavior of a 1D mass-in-mass chain. The results valid for that case can be applied
in a similar way also to the current problem. Let us study equation (6.64), without
considering the boundary conditions for the moment. We can proceed as we did for
the mass-in-mass problem. Accordingly, the solutions to equation (6.64) depend on the
values assumed by the effective mass density µ(Ω), such that:
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• 0 ≤ µ(Ω) ≤ 4. The general solution reads:

û[2]i = a1 exp {−iK∗i} + a2 exp {iK∗i} with K∗ ∈ [0, π] (6.69)

and corresponds to a superposition of a right- and left-propagating waves;

• µ(Ω) < 0. The general solution reads:

û[2]i = a1 exp {−K∗i} + a2 exp {K∗i}. (6.70)

µ(Ω) > 4. The general solution reads:

û[2]i = a1(−1)i exp {−K∗i} + a2(−1)i exp {K∗i}. (6.71)

In both cases, the solutions correspond to a superposition of attenuated waves.

In the above relations, the term K∗ denotes a wave number normalized with respect to
the distance d between two neighboring masses (cf. section 2.2.2) and can be obtained
from

b =


cos K∗ for 0 ≤ µ(Ω) ≤ 4
cosh K∗ for µ(Ω) < 0
−cosh K∗ for µ(Ω) > 4

, (6.72)

where b is given as
b = 1 − µ(Ω)

2 . (6.73)

Thus, the dynamic behavior of the system under consideration is characterized by
intervals of frequencies where waves are attenuated in space, i.e. by band gaps. This
can be predicted by looking at the effective mass density µ(Ω): when this function is
either negative or larger than 4, a band gap is present. In particular, a phenomenon
similar to Bragg scattering takes place when masses are directly attached on the cable,
while the behavior of the cable with hanging masses is also characterized by local
resonances due to the relative motion of the masses with respect to the cable. The
physical phenomena originating band gaps are again very similar to those that we
encountered in the mass-in-mass chain.

Figure 6.8 represents the graph of µ as a function of the normalized frequency Ω
for the two cases, obtained using the following values for the parameters of the motion
problem1

k̂ = 4.74, Θ = 1.18. (6.74)

In the plot, the red bands denote regions where the effective mass density µ is larger
than 4, while blue bands indicate band gaps corresponding to a negative effective mass.

1We picked these specific values since they are those obtained from the physical quantities that we
will use for the experimental test.
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(a) (b)

Figure 6.8: Graph of the effective mass µ(Ω) defined by relation (6.66), for a cable with
(a) masses directly attached on it and (b) masses hanging on it.

6.3.5 On the continuous and discrete spectra of the discrete Laplacian
operator

In the previous subsection we found the continuous spectrum of the discrete Laplacian
operator defined on the (discrete) Lebesgue space ℓ2(Z). It is known from the literature
(see e.g. Borthwick (2020)) that this problem possess a real continuous spectrum
σc = [0, 4], that coincides with its essential spectrum σess. Therefore, from our results,
the effective mass density can be interpreted as the spectrum σess of the problem.
Indeed, we find that, when µ is such that 0 ≤ µ ≤ 4, then solutions belonging to the
space ℓ2(Z) exist and can be represented as superposition of propagating waves (cf.
solution (6.64)). Outside this range, solutions are no more in that space.

These considerations are only valid when we extend the domain CR of the curvilinear
abscissa S to be CR = (−∞,+∞), therefore when we consider a wave propagation
problem. As soon as the domain is made bounded and boundary conditions are taken
into account, the problem becomes an eigenvalue problem in the space ℓ2(I), with I ⊂ Z
being the index set of P, that for the current case is always non-empty and of finite
cardinality. Note that these considerations would also apply to the mass-in-mass chain,
if boundary conditions were present.

Let us show here how the eigenvalues of problem (6.64), with boundary conditions
(6.58) for û[2](0) and û[2](1), are distributed in the spectrum. For this, we use the
solution (6.69) that is valid when 0 ≤ µ ≤ 4. By imposing the boundary condition at
Ŝ = 0, we find

a1 = −a2. (6.75)

While the boundary condition at Ŝ = 1 gives

sin K∗(N + 1) = 0. (6.76)
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From this latter relation, we finally have

K∗ = qπ

N + 1 , q ∈ N, (6.77)

but since K∗ ∈ [0, π], then we find the preliminary result that, in each interval where
0 ≤ µ ≤ 4, a maximum number of N + 2 eigenvalues µ∗ can be found using relation
(6.73). This is an intermediate result.

To find the correct number, one must consider what happens in each interval when
K∗ = 0 (q = 0) and K∗ = π (q = N + 1), i.e. respectively at the eigenvalues µ∗ = 0
and µ∗ = 4. The dimensionless frequencies corresponding to these two cases can be
found combining relations (6.66), (6.72) and (6.73). We will refer to these frequencies
as Ω̂. Using condition (6.75) and relation (6.69), when either K∗ = 0 or K∗ = π all the
points Ŝi corresponding to the extremities of each interval ((i− 1)/d, i/d) do not move.
Accordingly, to be eigenfrequencies of the whole system, the frequencies Ω̂ must be
equal to the (dimensionless) eigenfrequencies of a taut string with a length equal to one
interval d, in tension between two fixed supports. Using the second of relations (6.41),
the frequencies Ω̂ corresponding to µ = 0 and to µ = 4 are eigenfrequencies only when
they are equal to jπ, with j ∈ N1. We find that, in each pass band, this can happen
only for one between µ∗ = 0 and µ∗ = 4 (this can be demonstrated by studying the
behavior of µ using its definition (6.66) for µ = 0 and µ = 4).

We have thus obtained the following result:

Result. In each interval where 0 ≤ µ ≤ 4, a maximum number of N + 1 eigenvalues
µ∗ can be found.

In figure 6.9 we verify the above result by comparing the continuous and discrete
spectra of a cable with attached masses. The continuous spectrum is given by the
y-coordinates between 0 and 4. The black curve represents the effective mass density µ,
for the two cases shown in figure 6.8. From the previous results, the x-coordinates of the
function µ, when it is between 0 and 4, give the values of (dimensionless) frequencies
corresponding to propagating waves. The continuous spectrum of the discrete Laplacian
operator is thus associated to a family of pass bands for the system. The discrete
spectrum is instead obtained by solving the eigenvalue problem in a bounded domain,
here composed of N = 5 masses. Using relation (6.77), N + 1 values of K∗ are found
and relation (6.73) with b = cos K∗ can be used to determine the corresponding values
of µ∗, represented in the figure with the horizontal red dotted lines. The allowed
eigenfrequencies, i.e. those corresponding to a solution of the problem, are identified
with asterisks as the x-coordinates of the points where the eigenvalues (red dotted lines)
intersect the function µ (black curve).

Note that all the eigenfrequencies are grouped within the pass bands of the problem
in the unbounded domain. This can also be explained by looking at the solutions (6.70)

1We here consider j = 0, although the corresponding eigenfrequency is not part of the spectrum.
Since we are looking for solutions to the problem, we also take into account this case corresponding to
û[2](Ŝ) = 0 everywhere.
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(a) (b)

Figure 6.9: The intersections of the eigenvalues µ∗ (red dotted lines) with the graph of
µ (black curve) give the eigenfrequencies of the problem (asterisks along the x-axis), for
N = 5 masses along a cable when (a) they are directly attached and when (b) they are
hanging.

and (6.71) valid for frequencies within a band gap: corresponding to superpositions of
exponentials, these solutions cannot fulfill the boundary conditions of the problem.

6.3.6 Wave and energy localization with a defect of periodicity

We can exploit again the similarity between the discrete equation governing the trans-
verse motion of the current system and that of the discrete system analyzed in section
2.2, to show the localization phenomenon due to an alteration of the periodic arrange-
ment of the masses. Contrary to what we did in previous chapters, here we consider a
bounded domain for the problem.

defectbarrier barrier
Figure 6.10: Taut string with a periodic arrangement of attached masses, represented as
black dots. The empty circle denotes a removed mass.

More specifically, we aim to analyze the system reported in figure 6.10, where the
cable is shown in its horizontal static equilibrium configuration with a family of masses
(directly attached on the cable or hanging on it) represented by filled black dots. An
empty circle indicates a mass that has been removed from the system. Accordingly,
we are dealing with a domain presenting a periodic array of scatter elements, where a
defect is generated by removing one of these scatterers from a unit cell.
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We are thus here considering again the case of a compact perturbation. The discrete
Laplacian operator on ℓ2(Z), being self-adjoint, conserves its essential spectrum when
locally perturbed (from a corollary of Weyl’s theorem). It follows that, if an eigevalue
exists in the spectrum of the perturbed operator, it will be of finite multiplicity and its
corresponding eigenmode will decay exponentially outside the defect, where it will be
localized (cf. section 4.1).

This localization phenomenon remains valid also when the domain is bounded. From
a physical point of view, the system can be decomposed in three regions as in figure
6.10, with two barriers composed of a periodic domain and one defective region where
a mass element is removed. We thus have two possible situations:

1. within the two barriers, solutions of the form (6.69) can still exist and can be
matched with a standing wave within the defect. From the results of the previous
subsection, eigenmodes of this form must belong to a pass band in the continuous
spectrum of the unperturbed operator;

2. within the two barriers, solutions of the form (6.70) and (6.71) can exist as well.
A standing wave in the defect could be generated at a frequency within a band
gap for the unperturbed operator and match the solutions in the barriers, that can
exponentially decay towards the two ends of the domain to fulfill the boundary
conditions.

These results are verified in figures 6.11 and 6.12. Specifically, as we described before,

(a) (b)

Figure 6.11: The spectrum of a cable with N = 5 masses is studied when (a) they are
directly attached and when (b) they are hanging. Black curves represent the effective
mass density µ. Red dashed vertical lines, in correspondence of the asterisk along the
x-axis, gives the (dimensionless) eigenfrequencies when the cable has a central defect
(central mass removed).

the essential spectrum of the discrete Laplacian operator here considered (0 ≤ µ ≤ 4)
corresponds to pass bands for the system, indicated as red and blue shaded regions in
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figure 6.11. These regions identify the essential spectrum in terms of frequencies and
they are thus conserved when dealing with the perturbed operator. The red dotted
vertical lines in the figure identify the eigenvalues of the bounded problem with a
defect (indicated with an asterisk). One can check from the figure that, although
the majority of the eigenvalues are still grouped inside pass bands for the unbounded
problem (situation 1 above), some of them are inside a band gap (situation 2 above).
This behavior is different with respect to the case studied in figure 6.9, where no defect
was present in the system. In particular, the eigenmodes inside a band gap correspond
to a motion of the cable that is localized within the defect, as can be checked in figure
6.12 where we plot the modal shapes of the first localized eigenmode for the two cases
analyzed. These results are even more marked when the number of masses is increased,

(a) (b)

Figure 6.12: Eigenmodes corresponding to the eigenvalues within the first band gaps of
a cable with N = 5 (−1) masses (from a system of 5 masses, one is removed), when (a)
they are directly attached and when (b) they are hanging. The black dots indicate the
position of the masses.

as can be checked in figure 6.13a, where the case of a cable with N = 11(−1) (from a
system with 11 masses, one is removed) directly attached masses is considered. The
eigenvalues fill more and more the pass bands (cf. figure 6.13a) and the eigenmode in
the first band gap is characterized by a stronger localization of the motion in the cavity
(cf. figure 6.13b).

For the harmonic regime, the spatial variation of the elastic energy density of the
cable is a non-negative quadratic form on the space of kinematically admissible solutions
here envisaged and is given by

∫ ℓR

0

1
2EAR(u′

[2](S) − 1)2 dS
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(a) (b)

Figure 6.13: (a) Spectrum of a cable with N = 11 (−1) masses directly attached and
(b) modal shape of the eigenvalue inside the first band gap. The black dots indicate the
position of the masses.

The spatial variation of the kinetic energy density of the cable is defined as∫ ℓR

0
ρRω

2u2
[2](S) dS ∀u[2] kinematically admissible

and is also non-negative. As the motion of the cable is localized within a defect and
decaying exponentially outside it, the corresponding mechanical energy density along
the system will be localized as well. Results similar to those obtained in previous
chapters concerning the concentration of energy can thus be found also for the current
problem.

6.4 Experimental validation

In this section we aim to verify the theoretical results previously described by means
of an experimental test. We consider here the case of a cable with a family of masses
that are directly attached on it. Quantitative measurements of the response of the
cable/mass suspensions are determined using modal techniques. After presenting the
experimental setup developed for the test, an analysis of the linear response of the
system is performed on the basis of amplitude-frequency measurements obtained for
the system without and with a defect, at different loading conditions.

6.4.1 Setup of the test

The experimental setup is shown in figure 6.14. The mechanical system is made up of
a taut steel string with an array of lead spheres of mass M , i.e. of scatter elements,
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(a)

(b)

Figure 6.14: The experimental setup. (a) the whole system composed of the cable with
attached masses, in tension between a load cell at the left boundary and a shaker at the
right boundary, that is adjusted to impose a vertical motion. Five optical sensors are
distributed below the cable. The cable points above these sensors are equipped with a
square white piece of tape to enable the measurement of the vertical displacement of the
cable with the optical sensors. (b) zoom over a part of the cable.

periodically inserted on the cable and glued to it by means of beeswax. The cable is
in tension between two supports. In particular, the left end is fixed to a load cell for
measuring the tension applied to the cable. The right boundary is instead fixed along
the horizontal direction and supported by the head of a K2007E01 shaker in the vertical
direction, to provide a vertical motion at the support. The shaker is carefully adjusted
so that the imposed motion has no horizontal components. This point is critical as the
imposition of a horizontal motion at one end could cause a parametric excitation that
would modify the motion of the cable (Nayfeh et al., 1995b). The voltage signal that is
then converted into motion of the shaker head at the support is given by an Agilent
33500 series 30 MHz function/arbitrary wave form generator.

We chose a one-strand metallic cable to reduce at the minimum the influence of the
viscous damping and, more importantly, the initial sag. As we showed in subsection
6.2.3, a metallic cable allows the equilibrium configuration to be approximated as
horizontal remaining in an elastic regime, thanks to its low weight and its high axial
stiffness. The flip-side is that, as we are confined to deal with small scale systems both
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for practical reasons and to comply with the theme of this thesis, we are obliged to use
very small sections for the cable to comply the need of no flexural stiffness. This results
in relatively high frequencies measurements that can be difficult to execute.

Due the lightness of the model, we envisaged to use a contact-less measurement
device to study the motion of the cable. To this end, we have employed a CNY70
reflective optical sensor with transistor output. This instrument includes an infrared
emitter and a photo-transistor in a leaded package which blocks visible light (cf. figure
6.15). The device, roughly speaking, continuously emits a light wave that is reflected

Top view

infrared emitter photo-transistor

Figure 6.15: The optical sensor employed for the measurement of the cable motion,
together with a sketch of its top view.

by a target object and comes back to the sensor, interacting with its encapsulated
transistor. When the target moves, the voltage output from the optical sensor can be
recorded and, after a calibration of the sensor, one can read a variation of the position
of the target object. Therefore, placing these optical devices below the cable, we are
able to read the vertical displacement of the cable points above these sensors and to
study the cable response to the imposed motion at the right support. Figure 6.14b
shows the central part of the system, with the sensors distributed below the cable. To
enhance the reflection, small pieces of white tape are glued at the cable points above
the sensors, constituting the target objects for the measures taken by each sensor (see
figure 6.16b).

A total of 5 sensors of this type are employed along the system. To measure the
actual imposed motion at the right support, we employ one more sensor above the head
of the shaker. Accordingly, we number them starting from the sensor 0 on top of the
shaker, in increasing order from the right to the left.

We point out that these optical devices allow for a low-budget test, that, considering
the smallness of the target (i.e. the cable section) and the frequencies under study,
makes this method a very attractive solution.

Let us finally show in figure 6.16 some detailed views of the system under study. In
particular, we report in figure 6.16a a zoom view of the right boundary of the system,
where the cable is supported by a shaker and the optical sensor 0 is placed over it to
read the motion of the support. Figure 6.16b shows an optical device with the target
applied to the system.
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(a) (b)

Figure 6.16: Zoom over (a) the right boundary and (b) the sensor number 4 used in the
system.

6.4.2 Experimental results and discussion

For the test we consider both the case when N masses are periodically arranged along
the cable and the case when a defect of periodicity is introduced by removing one mass
from the system. Our aim is to locate the natural frequencies, corresponding to a
primary resonance condition for the cable under study, and to compare them with those
obtained from the prior theoretical considerations. Note that we keep the amplitude
of the imposed displacement small enough, in order to avoid as much as possible the
(inevitable) activation of phenomena typically due to the intrinsic non-linearities of
the problem. We give in table 6.1 the material and geometrical characteristics of the
system studied1.

Table 6.1: Material and geometrical parameters used for the experimental test.

ρR [kg/m] E [Pa] AR [m2] ℓR [m] N F [N] M [kg]

1.53 × 10−3 2.3 × 1011 1.96 × 10−7 1.21 5 ≈ 10 3.6 × 10−4

Figures 6.17a and 6.17b represent the variation of the effective mass with the
frequency: they exactly correspond respectively to the plots reported in figure 6.9a
and 6.11a, this time displayed using physical quantities. The vertical lines in the plots
indicate the eigenfrequencies of the bounded system.

To identify the eigenvalues experimentally, we initially excite the cable with a white
Gaussian noise directly created using the wave form generator. Its time variation is
reported in figure 6.18 and measured by using the “sensor 0” positioned above the
shaker. The corresponding frequency content is computed by using the Matlab FFT

1One can check that these values correspond to the dimensionaless parameter Θ given in (6.74).
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(a) (b)

Figure 6.17: Effective mass density µ vs frequency. Shaded regions denote band gaps
for the unbounded problem. Vertical lines identify the eigenfrequencies of the bounded
system.

algorithm and given in figure 6.18 in terms of Power Spectral Density (PSD) normalized
with respect to its maximum, in a logarithmic scale. In the following, the results in
terms of frequency content will be always shown in this way: whenever the content at a
specific frequency is higher than 0, the signal measured has a content higher than the
maximum value of the PSD obtained from the input signal. Specifically, we will give
the results in terms of Trasmission (T), defined as

T := 10 Log
( |PSDj |

max |PSD0|

)2
,

where PSDj , with j from 0 to 5, denotes the PSD of the signal measured by the j-th
sensor.

Note that, when a random input signal is created with the wave form generator
and sent to the shaker, the actual imposed motion is characterized by a decreasing
frequency content. This is because, at equal displacement amplitude, the shaker needs
more voltage for a higher frequency than a lower one. Consequently, using a random
signal, we are not able to sufficiently activate the higher natural frequencies of the
system.

We thus excite the cable using a Gaussian-modulated sinusoidal wave, that we can
manipulate to vary both its central frequency (i.e. the one with the highest frequency
content) and its deviation (i.e. the width of the interval of frequencies around the
central one whose content is sufficiently relevant to be taken into account). Contrary to
the random noise, this type of excitation makes it easier to enhance the activation of
high-frequency modes, reducing the energy given to the lower modes.

Let us report in figure 6.19a the time variation of the Gaussian-modulated sinusoidal
signal created using the wave form generator and in figure 6.19b its corresponding
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(a) (b)

Figure 6.18: Time series (a) and corresponding frequency content (b) of the white
random noise input signal, created with the waveform generator. The time variation of
the signal is measured using the “sensor 0” above the shaker.

frequency content (blue curves), with the shaded regions representing band gaps for the
propagation problem. Note that the signal is given in Volts (V). In figure 6.19a, we
also report the actual displacement imposed to the cable (red curve). Note that there
is a difference between the signal and the generated displacement. This is mainly due
to the fact that the shaker is influenced by the response of the cable and is not able to
perfectly reproduce the generated signal.

(a) (b)

Figure 6.19: (a) Time series of the Gaussian-modulated sinusoidal signal used as input
for the waveform generator (in blue) and the corresponding imposed displacement (in
red). “V” stands for Volts. (b) Frequency content of the signal. Shaded regions denote
band gaps for the unbounded problem.
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To study the attenuation properties of the ideal unbounded periodic system, one
should input a wave and measure the spatial decay along the system, which is expected
for frequencies inside a band gap. However, as the experimental setup has boundaries,
we must use the results obtained for a finite system. In particular, we have shown in
section 6.3.5 that, although with boundaries the concept of continuous spectrum and
thus of band gaps is lost, its effect is still valid in the sense that the eigenfrequencies
of the problem are only grouped in the pass bands of the unbounded domain. This is
true when no defects are present. If this was not the case, then we expect to find some
eigenvalues inside a band gap, corresponding to localized eigenmodes.

With the input signal shown in figure 6.18, the response is entirely transitory. The
motion of the cable contains all the frequencies that compose the random signal. At
the natural frequencies of the system, the motion of the cable is enhanced due to a
resonance condition and peaks appear in the Fourier transform of the signals measured
by the sensors along the cable, as can be checked in figure 6.20. Specifically, only the
lower modes are activated (corresponding to peaks of PSD), since the frequency content
of the input signal gets lower and lower at increasing frequencies (cf. figure 6.18). A
good agreement between the PSD peaks and the theoretical eigenfrequencies indicated
by the vertical dashed red lines is obtained. Note that, for these input, we have varied
the axial force in the cable to be of ≈ 16 N. Band gaps and eigenfrequencies are thus
slightly different with respect to the other cases treated in this section. This was done
simply as a check of the validity of our test. Nevertheless, by comparing figure 6.20a
with the other, one can already note that the banded structure of the spectrum is
visible. To facilitate the comparison, we have indicated with a black line in figures 6.20
the linear interpolation of the input PSD in figure 6.20a. Within the first band gap (red
shaded region), the corresponding displacement measured along the cable is attenuated
in amplitude with respect to that imposed by the shaker.

Let us now consider the input signal shown in figure 6.19. The response is composed
of a short transitory phase needed for the activation of the eigenmodes of the bounded
problem, followed by a free motion phase during which the input pulse is already ended
and the excited eigenmodes decay, at different rates, due to damping. In particular, we
report in figure 6.21 the Fourier transforms of the signals measured by the 5 sensors
along the cable for the imposed motion given in figure 6.19a, when no masses are
removed (case without a defect).

This time, the banded structure of the spectrum is more clear. The normalized PSD
of the Gaussian-modulated imposed displacement is given in figure 6.21a. Its graph is
also reported in each one of the other figures in 6.21 (black curve), that show the PSD
from the signals measured by the sensors from 1 to 5. In particular, one can check from
the figures that the modes within the second pass band are now activated, together with
some low-frequency modes in the first pass band and some eigenfrequencies belonging
to the third pass band. This is mainly due to two reasons. On one hand, the imposed
motion at the boundary can be transformed into initial conditions to the problem1 and

1This is possible by a change of variables in the linearized problem.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.20: Results from a white random noise signal. From (a) to (f) PSD of the
signals from sensors 0 to 5, normalized with respect to the maximum value of the PSD
from sensor 0 in subfigure (a). Logarithmic scale is used. The axial force in the cable is
increased to F ≈ 16 N. Vertical lines denote theoretical eigenfrequencies.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.21: Results from a Gaussian-modulated sinusoidal wave. From (b) to (f) PSD
of the signals from sensors 1 to 5, normalized with respect to the maximum value of the
PSD from sensor 0 shown in subfigure (a) and reported with a black curve in each plot.
Logarithmic scale is used.
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the presence of eigenmodes not directly excited by the imposed motion is thus due to
the transient phase associated to the initial conditions, that does not have enough time
to be completely attenuated by damping. On the other hand, as we highlighted before,
the actual imposed displacement is not precisely equal to the voltage signal triggered
by the wave form generator (cf. figure 6.19a); in particular, its frequency content is
more spread than the one of the signal, that was depicted in figure 6.19b.

(a) (b)

(c) (d)

Figure 6.22: Comparison between modal shapes (a) and (c), and motion of the tested
system (b) and (d), for the third eigenmode at f ≈ 46 Hz (first row) and the eighth
eigenmode at f ≈ 205 Hz (second row). Black dots stand for masses, black circles and
vertical dashed lines for points above the optical sensors.

Contrary to what happens for the lower modes in the first pass band, the agreement
between the PSD peaks and the theoretical eigenfrequencies (indicated by the vertical
dashed red lines) is not perfect for higher modes. In particular the experimentally
obtained eigenfrequencies are slightly moved at higher frequencies with respect to the
theoretical ones. This is mainly due to the presence of the tape used as target object
for the measurements of the cable motion, that influences the dynamics of the cable.
We have checked this by removing all the tapes but one: repeating the analysis, all the
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peaks move closer to their theoretical positions. The system is indeed more affected by
experimental imperfections at higher frequencies.

Motion of the system

We can further check the validity of our results by reconstructing the motion of the
system from the cable points positioned above the 5 optical sensors. In particular, at
an eigenfrequency of the bounded problem, the system should move proportionally to
the corresponding modal shape.

We have verified this for the third and the eighth mode in figure 6.22, where the
analytically derived modal shapes (figures 6.22a and 6.22c) are compared with the
behavior of the tested system (figures 6.22b and 6.22d). Black dots stand for masses,
whereas black circles denote the material points above the sensors. The results are
in good agreement for the modes under consideration. It must be said that, due to
aliasing, we cannot reconstruct modes with a too fast variation in space. For this, more
optical sensors should be used along the cable.

Note that, when the frequency content experiences a peak (i.e. when a mode is
activated), the height of that peak measured by different sensors depends on their
positions and on the shape of the eigenmode: when a peak is lower, it means that
the corresponding sensor is near a node; viceversa, when is larger, it is closer to an
anti-node. For instance, all the sensors in figure 6.21 share a peak at the frequency
corresponding to the third eigenmode (≈ 46 Hz). Sensors 1, 2, 4 and 5 give the highest
peak being positioned far from the central node of the corresponding modal shape (cf.
figure 6.22a).

(a) (b)

Figure 6.23: Motion of the tested cable at (a) f = 165 Hz and (b) f = 185 Hz. Black
dots stand for masses, black circles and vertical dashed lines for points above the optical
sensors.

From the test, we can also check the behavior of the system for frequencies belonging
to a band gap. In figure 6.23, we report the motion of the tested cable at the frequencies
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(a)

localized 
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(b)
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(f)

Figure 6.24: Results from a Gaussian-modulated sinusoidal wave in a defective system.
From (b) to (f) PSD of the signals from sensors 1 to 5, normalized with respect to the
maximum value of the PSD from sensor 0 shown in subfigure (a) and reported with a
black curve in each plot. Logarithmic scale is used.
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f = 165 Hz (left) and f = 185 Hz (right). Specifically, we find that the wave in the
system is characterized by an amplitude that is attenuated from the moving support
(right end) to the fixed support (left end), verifying the presence of a band gap in the
spectrum. Moreover, at f = 165 Hz (figure 6.23a) the attenuation is stronger then at
f = 185 (figure 6.23b). This latter frequency is indeed positioned closer to the edge of
the first band gap and, accordingly, one expects less attenuation.

6.4.3 Measurements with a defect

Let us finally test the system by removing the central mass. For this, we use again
the Gaussian-modulated sinusoidal input signal depicted in figure 6.19, centered at a
frequency of 185 Hz. As it can be checked from the figure, the content in frequency
of this signal is sufficiently high both inside the first band gap and the second pass
band. Accordingly, from the theoretical results presented in subsection 6.4.2, we expect
to activate both the defect mode at the frequency f ≈ 127 Hz, corresponding to the
localized modal shape reported in figure 6.13a, and the eigenfrequencies belonging to
the second pass band.

(a) (b)

Figure 6.25: Comparison between modal shapes (a), and motion of the tested system (b),
for a theoretical defect mode at f ≈ 127 Hz, in the system with 5(−1) masses. Black
dots stand for masses, black circles and vertical dashed lines for points above the optical
sensors.

This is indeed verified in figure 6.24, where we report the Fourier transform of the
signals acquired by the optical sensors. Note also that from figure 6.24b to 6.24f, the
content at the frequencies belonging to the first band gap is decreasing, except at the
frequency where a localized mode is expected. This confirms the attenuating behavior
due to the presence of the scatter elements and the localization capabilities of the
system caused by the removal of one mass from the periodic arrangement.

The modal shape of the defect mode is compared in figure 6.25 with the behavior of
the tested cable at the corresponding frequency. A good agreement between the two
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results is obtained, with the motion being maximum within the defect.
Eventually, we report in figure 6.26 the response of the same cable when the number

of masses in the perfectly periodic system is increased to 11 and the central mass is
removed. Note that, for this case, the force imposed to the system was reduced to
F = 3.4 N to lower the frequencies of the second pass band. From the theoretical
results, a peak is expected inside the first band gap at a frequency fth ≈ 134 Hz. The
corresponding modal shape, reported in figure 6.13b, is represented again here in figure
6.26a. By looking at the results from the experimental test, from the Fourier transform
of the signal measured by sensor 3 (placed within the defect), we found a peak at a
frequency of fex ≈ 147 Hz. The corresponding motion is reported in figure 6.26b. At
the frequency fex, the response of the system resembles very much the modal shape
represented in figure 6.26a, meaning that we are indeed activating the defect mode.
The difference between fth and fex is mainly due to experimental imperfections. As we
specified before in subsection 6.3.5, since the number of masses is larger, the motion is
more concentrated in the defect.

(a) (b)

Figure 6.26: Comparison between modal shapes (a), and motion of the tested system
(b), for a theoretical defect mode at f ≈ 134 Hz, in the system with 11(−1) masses.
Black dots stand for masses, black circles and vertical dashed lines for points above the
optical sensors.
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C h a p t e r

Conclusions and perspectives

7.1 General conclusions

In this thesis, we have addressed the problem of wave propagation in periodic media
that can be classified as “metamaterials”, characterized by a non-conventional behavior.
The research has focused on the development of systems able to localize and trap
mechanical waves in a confined region, to be used for the harvesting of mechanical
energy. In particular, phononic crystals and locally resonant materials with a compact
defect of periodicity were the subject of this work.

In the initial part, we have studied the dynamics of a mass-in-mass 1D lattice and
shown that it can be tuned to behave as either a PnC, or a LRM, or in a hybrid way.
This has given us the possibility to introduce the concept of effective material properties,
that we have then further elaborated in the context of the two-scale homogenization
technique. In particular, we have exploited this method for deriving in a quite general
framework the effective behavior of continuous LRMs, whose unit cells were composed of
one or two non-connected resonating inclusions. We have proven that the effective mass
density is a symmetric tensor and that the spectrum of the problem is characterized by
the presence of band gaps and flat bands, corresponding to resonating modes for the
inclusions that are not activated by the macroscopic phenomenon. This has allowed
us to study the dispersive properties typical of LRMs of this type. The analysis of
the aforementioned discrete and continuous systems has proved to be relevant for our
subsequent results and, more in general, for the treatment of metamaterials with a
defect.

We have thus applied the outcomes from the initial part of this manuscript to study
the behavior of a system for the localization of mechanical energy, whose functioning is
based on the resonant tunneling phenomenon, well-known from quantum-mechanics.
The system has been obtained from the creation of a cavity inside the periodic structures
of the metamaterials under consideration. We have verified the occurrence of a localized
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behavior by using the previously characterized mass-in-mass 1D lattice and we have
then demonstrated its efficiency in terms of energy localization in the sub-wavelength
regime. For this second point, we have employed the LRMs of the type previously
described and derived a formula for the optimal design of the system. This was possible
thanks to the available effective description of the heterogeneous components forming
the domain of the problem.

In the last part, by looking at existing engineering solutions involving cable systems
with periodic arrangements of suspended objects (such as suspension bridges, overhead
lines, and cableways to cite but a few), we started with the conjecture that these
structures could possibly behave as metamaterials, offering a spectrum with a banded
structure. We have thus given a preliminary proof that this interpretation of the
problem can be applied for cable systems of that type. For this, we have considered the
small oscillations of a taut string with a family of masses periodically attached to it,
either directly or by means of elastic springs. We found that the problem is governed
by the same equation valid for a discrete 1D lattice. The spectrum of the unbounded
problem being thus characterized by the same observations that were valid for the
mass-in-mass chain.

When dealing with the bounded domain for the cable, the spectrum of the problem
becomes discrete. We have shown that the eigenfrequencies can only be positioned
inside a pass band of the continuous spectrum associated to the same problem expressed
for the unbounded domain. This is no more true when a defect is introduced, by
removing one mass from the periodic array. The localization phenomenon occurring
also for these systems.

All these theoretical results have been compared with those obtained from an
experimental test. A good agreement between the two has been observed.

7.2 Future perspectives

We conclude with an overview of some possible future developments of the research
presented in this theses.

7.2.1 Perspectives from the problem related to sub-wavelength waves
in defective metamaterials

Concerning the problem of sub-wavelength energy localization, we have proposed a
system obtained by creating a cavity inside a locally resonant metamaterial. The
problem has been formulated with respect to a scalar field (anti-plane waves in our
case) in a 2D domain. We have assumed that the metamaterial was characterized by a
2D periodicity and placed in a region confined in direction x1 and infinitely extended
in direction x2. We have then considered only waves with a wave vector aligned with
direction x1. This has allowed us to further reduce the dimensions of the problem.
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A natural extension of the work could thus be that of relaxing some of these
assumptions to consider a more general framework, with the aim of finding a relation
between geometrical parameters and material properties of the constituents, for an
optimal wave localization. Accordingly, we list here some possible future developments:

• we could consider in-plane waves directed as x1;

• the problem of inclined out-of-plane or in-plane waves in x1 −x2 could be analyzed.
The waves would thus experience both a localization in direction x1 and would be
instead guided along direction x2. A wave guide of the type shown in figure 7.1
could then be studied, to convey the waves traveling through the system towards
the region denoted as D in the figure;

• a more challenging problem would be that of extending these results in three-
dimensions.

V3V1 V2 V4 V5

x1

x2

D

Figure 7.1: Top-view of a system with a wave guide composed of a row of resonating
elements along direction x2 and placed between two barriers made up of a LRM. Region
D corresponds to a defect along this wave guide.

Clearly all these cases will be strongly dependent on the symmetries of the unit cells
envisaged for the LRM, which affect the reflection and refraction problem at each
interface.

7.2.2 Perspectives from the problem related to the dynamics of cables

In the last part of the manuscript, we have studied the dynamics of cables presenting
a periodic arrangement of suspended masses, hanging with elastic springs or directly
attached to it. In particular, we have verified that the system behaves as a metamaterial,
possessing band gaps in its harmonic response. A fundamental hypothesis in our
findings was that of considering the cable equilibrium configuration to be horizontal.
An interesting extension of our results would be that of understanding how the band
gaps change when the equilibrium configuration of the cable is no more horizontal. We
have shown that, in the case of a bare cable suspended between two fixed supports, the
eigenfrequencies of the associated problem are strongly affected by the actual static
equilibrium configuration (cf. figure 6.6). When dealing with the wave propagation
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problem associated to the cable with a family of scatter elements, we thus expect a
similar dependence for the band gaps that we found for a horizontal initial configuration.

main cable
hangers

beam

Figure 7.2: A sketch of a typical suspension bridge.

Finally, a more long-term extension would be that of considering a model closer to
the “true” structure of a suspension bridge (cf. figure 7.2), with a beam (representing
the deck) that is hanging on a cable, in tension between two fixed supports, by means of
a periodic array of elastic springs (representing the hangers). Very likely, the coupling
between the dynamics of the cable and that of the beam could result in interesting
dynamic phenomena.
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A1 Eigenmodes of a sphere with fixed boundaries

The components of relation (3.61) can be written as:

ur(nm)(r, θ, φ) = 1
r

[
AU1(kℓr) + CU3(ksr)

]
Pm

n (cos θ) exp {i(mφ)},

uθ(nm)(r, θ, φ) =1
r

{[
AV1(kℓr) + CV3(ksr)

] [
n cot θPm

n (cos θ) − n+m

sin θ Pm
n−1(cos θ)

]

+ BV2(ksr) im
sin θP

m
n (cos θ)

}
exp {i(mφ)},

uφ(nm)(r, θ, φ) =1
r

{[
AV1(kℓr) + CV3(ksr)

] im
sin θP

m
n (cos θ)

− rBV2(ksr)
[
n cot θPm

n (cos θ) − n+m

sin θ Pm
n−1(cos θ)

]}
exp {i(mφ)},

(A.1)
where A, B and C are arbitrary constants , Pm

n (x), with n ∈ Z and m ∈ {− |n| , . . . , |n|},
are associated Legendre functions and kℓ, ks are respectively the longitudinal and shear
wave numbers defined as

kℓ =
√
ω

cℓ
, ks =

√
ω

cs
,

with cℓ and cs given by relations (2.15).
In each one of the above components (A.1), the first, the second and the third terms
(subscript 1, 2 and 3 above) are respectively the contributions from the three Helmholtz
potentials (generally denoted as ϕ, ψ and χ in the literature) and can be expressed as:

U1(kℓr) = njn(kℓr) − kℓrjn+1(kℓr),
U3(ksr) = n(n+ 1)jn(ksr),
V1(kℓr) = jn(kℓr),
V2(ksr) = jn(ksr),
V3(ksr) = (n+ 1)jn(ksr) − ksrjn+1(ksr),

(A.2)
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where jn(x), with n ∈ Z, being spherical Bessel functions of the first kind.
We here do not give the expressions for the Helmholtz potentials. We limit ourselves

to say that ϕ, ψ and χ are solutions of three Helmholtz equations, obtained by breaking
down the displacement field in an irrotational and a solenoidal part. For a more
satisfactory explanation, the interested reader is referred to the works of Lamb (1881),
Eringen et al. (1974), and Dahlen et al. (1998).

Let us now study the orthogonality of the eigenmodes η∗
nm of problem (3.60). First

we rewrite in spherical coordinates the integral of condition (3.62), such that:∫
Yc

η∗
p(nm)(y) · e3 =

∫ Rc

0

∫ π

0

∫ 2π

0

(
ur(nm)∗ cos θ − u∗

θ(nm) sin θ
)
r2 sin θ dr dθ dφ.

We are interested in finding those eigenvalues ωq(nm) whose corresponding eigenmodes
η∗

q(nm) are not orthogonal to the constants, i.e. for which condition (3.62) is not fulfilled.
By substituting relations (A.1) in the above integral, one has:

• Integration over dφ.

∫ 2π

0
exp {imφ} dφ =

{
2π if m = 0
0 otherwise

.

Therefore, the integral is not zero only for m = 0 .

• Integration over dθ.
Considering m = 0, two integrations must be checked, namely:

∫ π

0
P 0

n(cos θ) cos θ sin θ dθ =
{

2/3 if n = 1
0 otherwise

,

∫ π

0

[
n cot θP 0

n(cos θ) − n

sin θP
0
n−1(cos θ)

]
sin2 θ dθ =

{
−4/3 if n = 1
0 otherwise

.

We have thus found that both the integrals above are different from zero only for
n = 1 .

Note that the integration over dr could still make the eigenmodes orthogonal to the
constants even when m = 0 and n = 1, as it happens for the in-plane problem of 2D
LRMs (see Comi et al. (2020)).

The function Υq(ω) defined by relation (3.69) can be computed explicitly as follows:

Υq(ω) = 2kskℓj2(kℓRc)j2(ksRc)k
skℓRc

(
ksj1(ksRc)j2(kℓRc) + kℓj1(kℓRc)j2(ksRc)

)
− j1(kℓRc)j1(ksRc)

(
2kℓ2 + ks2

)
.
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A2 The average mechanical energy density in homoge-
nized LRMs

Let us derive the expression (5.27) for the average mechanical energy density in a LRM,
by exploiting the results coming from the homogenization technique (chapter 3).

By summing all the terms (5.22) to (5.26) in (5.17), one obtains:

⟨e⟩ (x) = 1
4

{
µeffs2

[
V′2(x) + W′2(x)

]
+
[
ρm

|Ym|
|Y|

ω2 + ρcω
2

|Y|

∫
Yc

ṽ2(y)dy︸ ︷︷ ︸
⋆

+ µc

|Y|

∫
Yc

∇yṽ(y) · ∇yṽ(y) dy + ρf ṽ(Rf )2 |Yf |
|Y |

ω2

︸ ︷︷ ︸
Present if

∣∣Yf

∣∣ ̸= 0

]
(V2(x) + W2(x))

}
.

(A.3)
Let us consider the term ⋆. For this, we make use of the eigenvalue problem for part Yc,
that corresponds to problems (3.19) and (3.23), respectively for the bi- and three-phase
unit cell depicted in figure 3.3. Specifically, for the current case, these problems can be
rewritten by considering

Û0(x,y) = Û0
m(x)ṽ(y)

as 
µc∆yṽ(y) + ρcω

2ṽ(y) = 0 in Yc

ṽ(y) = 1 on ∂Yc

ṽ(y) =
Û0

f (x)
Û0

m(x)
on ∂Yf

(A.4)

where the condition on ∂Yf is there only when |Yf | ≠ 0. The two-phase case can be
understood as a particular case of the more general three-phase case. We will thus
consider this latter one, being aware that all the quantities and integrals applied to
part Yf vanish when a two-phase unit cell is analyzed.

Let us rewrite the above problem by using
ṽ(y) = v(y) + 1.

This gives 
µc∆yv(y) + ρcω

2(v(y) + 1) = 0 in Yc

v(y) = 0 on ∂Yc

v(y) =
Û0

f (x)
Û0

m(x)
− 1 on ∂Yf

. (A.5)

Integrating over Yc the governing equation of the original problem (A.4) and multiplying
each term by (ṽ − 1), one finds∫

Yc

µc∆yṽ(y)(ṽ(y) − 1) + ρcω
2ṽ(y)(ṽ(y) − 1)dy = 0.
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From the equation here-above, applying the divergence theorem and using the boundary
condition on ∂Yc of problem (A.5), one has

⋆ = ρcω
2

|Y|

∫
Yc

ṽ(y)2dy = ρcω
2

|Y|

∫
Yc

ṽ(y)dy

+ µc

|Y|

∫
Yc

∇yṽ(y) · ∇yṽ(y)dy − ρf
|Yf |
|Y|

ω2ṽ(Rf )(ṽ(Rf ) − 1),
(A.6)

where we made also use of the linear momentum balance for part Yf , given by equation
(3.17).

We can now rewrite expression (A.3) as follows:

⟨e⟩ (x) = 1
4

{
µeffs2

[
V′2(x) + W′2(x)

]
+
[
2 µc

|Y|

∫
Yc

∇yṽ(y) · ∇yṽ(y) dy

ρm
|Ym|
|Y|

ω2 + ρcω
2

|Y|

∫
Yc

ṽ(y)dy + ρf
|Yf |
|Y|

ω2ṽ(Rf )2

︸ ︷︷ ︸
ρeff ω2

]
(V2(x) + W2(x))

}
.

Denoting γ as
γ(ω) := ρeff + 2 µc

|Y|

∫
Yc

∇yṽ(y) · ∇yṽ(y) dy

and making use again of relation (A.6), one is left with expressions (5.28), from which
the mechanical energy density in a LRM as expressed in (5.27) is found.

A3 Static equilibrium configuration of a cable with a dis-
crete set of attached masses

The equilibrium configuration for a cable with N equally spaced masses attached is
given as follows:

x[1](eq)(S) =
F[1](eq)
ρRg

 i∑
j=1

(Aj +Bj) − arsinh
(
F̌[2](eq) + ρRg(ℓR − S) + (N + 1 − i)Mg

F̌[1](eq)

)
+
F[1](eq)S

EAR

x[2](eq)(S) = 1
ρRg

 i∑
j=1

(Cj +Dj) −
√
F̌ 2

[1](eq) + (F̌[2](eq) + ρRg(ℓR − S) + (N + 1 − i)Mg)2


1

EAR

[
(F̌[2](eq) + (N + 1 − i)Mg)S + ρRg

S(2ℓR − S)
2 +Mg

∑i
j=1 Sj−1

]
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valid ∀S ∈ ((i − 1)d, id) with 1 ≤ i ≤ N + 1, d being the distance between two
masses, and with Si = id. The boxed terms disappear when the cable is inextensible
(EAR → +∞). One can retrieve the relations (6.20) valid for a bare cable (no masses)
by assuming M = 0 in the above relations. The scalars Aj , Bj , Cj , Dj read

Aj = arsinh
(
F̌[2](eq) + ρRg(ℓR − Sj−1) + (N + 1 − j)Mg

F̌[1](eq)

)
,

Bj =


0 if j = 1

− arsinh
(
F̌[2](eq) + ρRg(ℓR − Sj−1) + (N + 1 − (j − 1))Mg

F̌[1](eq)

)
otherwise

,

Cj =
√
F̌ 2

[1](eq) + (F̌[2](eq) + ρRg(ℓR − Sj−1) + (N + 1 − j)Mg)2,

Dj =


0 if j = 1

−
√
F̌ 2

[1](eq) + (F̌[2](eq) + ρRg(ℓR − Sj−1) + (N + 1 − (j − 1))Mg)2 otherwise
.

Similarly to the bare cable, by taking F̌[1](eq) > 0 and F̌[2](eq) = −(ρRℓR + MN)g/2,
one finds that the right end of the cable is at height x[2](eq)(ℓR) = 0 and thus at the
same height of the left end.

A4 Linearization of the motion problem of a bare cable

Let us rewrite here from problem (6.36) the equation governing the motion of an elastic
bare cable

(Nt)′(S, t) + ρRge2 − ρRẍ(S, t) = 0 ∀S. (A.7)
The axial force (Nt) can be written as

(Nt)(S, t) = EAR
ε(S, t)

1 + ε(S, t)︸ ︷︷ ︸
⋆⋆

x′(S, t), (A.8)

with
ε(S, t) =

√
x[1]′2(S, t) + x[2]′2(S, t) + x[3]′2(S, t) − 1.

and x given as in relation (6.1):

x(S, t) = xeq(S) + u(S, t).

Considering as small the displacements u(S, t), the strain can be rewritten as

ε(S, t) =
√
ε0 + 2ε1 + ε2 − 1,
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where the subscripts denote the orders of the infinitesimals, such that:

ε0 = x′2
[1]eq(S) + x′2

[2]eq(S),
ε1 = x′

[1]eq(S)u′
[1](S, t) + x′

[2]eq(S)u′
[2](S, t),

ε2 = u′
[1]

2(S, t) + u′
[2]

2(S, t) + u′
[3]

2(S, t).

Accordingly, the term ⋆⋆ in relation (A.8) can be expanded up to the second order. If
the equilibrium configuration of the cable can be approximated with a parabola, then
x′

[1]eq ≫ x′
[2]eq (cf. section 6.2.3) and we can consider x′

[2]eq = O(||u||). Using this latter
assumption, equation (A.7) can be approximated in the three directions as

EAR

[
u′

[1] + 1
x′

[1]eq

(
x[2]equ

′
[2] + 1

2u
′2
[2] + 1

2u
′2
[3]eq

)]′

= ρRü[1], (A.9)

EAR

[
x′

[1]eq − 1
x′

[1]eq
u′

[2] +
x′

[2]eq + u′
[2]

x′
[1]eq

(
u′

[1] + x[2]equ
′
[2] + 1

2u
′2
[2] + 1

2u
′2
[3]eq

)]′

= ρRü[2],

(A.10)

EAR

[
x′

[1]eq − 1
x′

[1]eq
u′

[3] +
u′

[2]
x′

[1]eq

(
u′

[1] + x[2]equ
′
[2] + 1

2u
′2
[2] + 1

2u
′2
[3]eq

)]′

= ρRü[3], (A.11)

where we have not specified the variables for brevity sake.
The above system of equations can be simplified by applying the so-called static

condensation, i.e. by making the assumption that the frequencies of interest are close
to the first eigenfrequencies ωj of the transverse eigenvalue problem associated to taut
strings (cf. subsection (6.3.1)). With this hypothesis, for metallic cables, the variation
of the excitation in time is too slow to activate the longitudinal dynamics of the cable.
Accordingly, the inertial term in equation (A.9) can be neglected. Moreover, due to the
parabolic approximation, we can assume that

x[1]eq(S) ≈ 1 +
F̌[1]eq
EAR

and thus at first order:

x′
[1]eq(S) ≈ 1 and

x′
[1]eq(S) − 1
x′

[1]eq(S) ≈
F̌[1]eq
EAR

∀S. (A.12)

It follows that equation (A.9) becomes
[
u′

[1](S, t) +
(
x[2]eq(S)u′

[2](S, t) + 1
2u

′2
[2](S, t) + 1

2u
′2
[3]eq(S, t)

)]′
= [f(t)]′ = 0, (A.13)
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where f is a function independent from the spatial variable. Using relations (A.12) and
(A.13) in equations (A.10) and (A.11), one obtains:

F[1]equ
′′
[2](S, t) + EAR(x′′

[2]eq(S) + u′′
[2](S, t))f(t) = ρRü[2](S, t), (A.14)

F[1]equ
′′
[3](S, t) + EARu

′′
[3](S, t)f(t) = ρRü[3](S, t). (A.15)

The boxed term is due to the initial sag of the static equilibrium configuration.
From equation (A.14), considering only the linear terms and relation (6.42) for

x[2]eq(S), one obtains the first of equations (6.45).
For this section, we have followed the derivation from the work of Nayfeh et al.

(2008).
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Titre : Métamatériaux pour la récupération d’énergie à petite échelle
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Résumé : L’exigence croissante des petits capteurs
et dispositifs électroniques autonomes en énergie à
faible puissance a propulsé l’émergence de techno-
logies de récupération d’énergie basées sur les vibra-
tions ambiantes, en tant que domaine d’intérêt majeur
pour la recherche.
Pour une récupération efficace de l’énergie, il est né-
cessaire de développer des systèmes capables de
transmettre et de piéger les vibrations (et l’énergie
qu’elles entraînent) dans un domaine à support com-
pact.
Les cristaux phononiques et les matériaux pério-
diques localement résonnants, s’ils sont correctement
conçus, peuvent être utilisés pour développer des
systèmes de récupération d’énergie basés sur les vi-
brations, en exploitant la présence de bandes inter-
dites dans leur spectre, c’est-à-dire des intervalles de
fréquences correspondant à des ondes atténuées.
A l’aide d’un cristal de masse-en-masse, nous identi-
fions d’abord les rôles des principaux paramètres du
problème de la propagation des ondes dans ces deux
classes de métamatériaux. Ensuite, nous utilisons
une technique d’homogénéisation à deux échelles
pour dériver leur comportement effectif à une échelle

sous-longueur d’onde. En particulier, les matériaux lo-
calement résonnants sont analysés, étant caractéri-
sés par la présence de bandes interdites déjà à un
régime sous-longueur d’onde.
Visant à focaliser l’énergie mécanique dans une zone
confinée aux basses fréquences, nous introduisons
une cavité dans des matériaux localement réson-
nants, jouant le rôle d’un défaut de périodicité et abou-
tissant à la formation de modes localisés à des fré-
quences à l’intérieur d’une bande interdite. Nous mon-
trons que les ondes mécaniques traversant ces méta-
matériaux défectueux peuvent être piégées dans le
défaut, où l’énergie s’accumule et se concentre.
Dans la dernière partie du manuscrit, en utilisant un
câble avec des masses attachées périodiquement,
nous montrons comment ce système se comporte
comme un métamatériau et nous validons expérimen-
talement les effets d’atténuation et de localisation.
Nos résultats fournissent de nouvelles informations
sur le comportement dynamique des milieux pério-
diques défectueux à utiliser dans les systèmes de ré-
cupération d’énergie, ce qui rend ce travail pertinent à
la fois pour les domaines théoriques et pratiques.

Title : Metamaterials for energy harvesting at small scale

Keywords : metamaterials, wave propagation, periodic homogenization, energy harvesting

Abstract : The increasing demand of low-power
energy-autonomous small electronic sensors and de-
vices has propelled the emergence of energy harves-
ting technologies based on ambient vibrations, as a
prominent area of interest for research.
For an efficient harvesting of energy, it is required to
develop systems that are able to convey and trap the
vibrations (and the energy they carry with them) in a
compactly-supported domain.
Phononic crystals and periodic locally resonant ma-
terials, if properly designed, can be used to develop
vibration-based energy harvesting systems, by exploi-
ting the presence of band gaps in their spectrum, i.e.
intervals of frequencies corresponding to attenuated
waves.
Using a mass-in-mass crystal, we first individuate
the roles of the main parameters of the problem of
wave propagation in these two classes of metamate-
rials. Then, we employ a two-scale homogenization
technique to derive their effective behavior at a sub-

wavelength scale. In particular, locally resonant ma-
terials are analyzed, being characterized by the pre-
sence of band gaps at a sub-wavelength regime.
Aiming to focus the mechanical energy in a confined
area at low frequencies, we introduce a cavity in lo-
cally resonant materials, acting as a defect of periodi-
city and resulting in the formation of localized modes
at frequencies inside a band gap. We show that me-
chanical waves traveling through these defective me-
tamaterials can be trapped in the defect, where the
energy piles up and focus.
In the final part of the manuscript, by employing a
cable with periodically attached masses, we show
how this system behaves as a metamaterial and we
experimentally validate the attenuation and localiza-
tion effects.
Our results provide new insights on the dynamic
behavior of defective periodic media to be used in
energy harvesting systems, which makes this work re-
levant to both theoretical and practical fields.
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