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1
French Summary

Le paradigme classique pour concevoir un émetteur (codeur) et un récepteur
(décodeur) est de concevoir ces éléments en assurant que l’information reconstruite par le
récepteur soit suffisamment proche de l’information que l’émetteur a mis en forme pour
l’envoyer sur le médium de communication ; on parle de critère de fidélité ou de qualité
de reconstruction (mesurée par exemple en termes de distorsion, de taux d’erreur binaire,
de taux d’erreur paquet ou de probabilité de coupure de la communication). Le problème
du paradigme classique est qu’il peut conduire à un investissement injustifié en termes de
ressources de communication (surdimensionnement de l’espace de stockage de données,
médium de communication à très haut débit et onéreux, composants très rapides, etc.)
et même à rendre les échanges plus vulnérables aux attaques. La raison à cela est que
l’exploitation de l’approche classique (fondée sur le critère de fidélité de l’information)
dans les réseaux sans fil conduira typiquement à des échanges excessivement riches en
information, trop riches au regard de la décision que devra prendre le destinataire de l’in-
formation ; dans le cas plus simple, cette décision peut même être binaire, indiquant qu’en
théorie un seul bit d’information pourrait suffire. Il s’avère qu’actuellement, l’ingénieur
n’a pas à sa disposition une méthodologie lui permettant de concevoir une telle paire
émetteur-récepteur qui serait adaptée à l’utilisation (ou les utilisations) du destinataire.

Une première étape consistera à obtenir la structure optimale de l’étage de conver-
sion analogique-numérique (incluant typiquement la quantification et l’échantillonnage),
optimale au sens d’un critère de performance propre à l’organe de prise de décision ciblé.
Dans un deuxième temps, nous étudierons le scénario où plusieurs objectifs sont visés par
le récepteur, soit simultanément (par exemple avoir une estimation suffisamment bonne
de la grandeur mesurée par l’émetteur tout en garantissant un niveau de confidentia-
lité), soit séquentiellement (garantir une confidentialité forte en mode de marche normale
puis garantir une réactivité maximale du récepteur en mode défaut). Une troisième étape
consiste en l’étude du cas distribué, c’est-à-dire lorsqu’il y a plusieurs émetteurs qui me-
surent chacun une partie de l’information dont a besoin le récepteur. L’étude de ce cas
permettra par exemple de savoir dans quelle mesure des erreurs de synchronisation entre
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CHAPITRE 1. FRENCH SUMMARY

les capteurs de mesures affecte la décision du récepteur. Une dernière étape clairement
identifiée à ce jour sera d’étudier le cas où les fonctions qui représentent les critères de
performances du récepteur ne sont pas connus. Seules les réalisations de ces fonctions
seront supposées connues.

Par conséquent, un nouveau paradigme de communication appelé la communication
orientée objectif est proposé pour résoudre le problème des communications classiques.
Le but ultime des communications orientées objectifs est d’accomplir certaines tâches
ou certains objectifs au lieu de viser un critère de reconstruction du signal source. Les
tâches sont généralement caractérisées par des fonctions d’utilité ou des fonctions de coût
à optimiser.

Dans le chapitre 3, le problème de quantification orientée objectif est formellement
formulé et comparé à la quantification conventionnelle. Tout d’abord, l’algorithme basique
de quantification orientée objectif imitant le célèbre algorithme Lloyd-Max est proposé et
divise le puzzle original en deux sous-problèmes étant relativement plus faciles à résoudre
pour le scénario où l’on dispose d’une parfaite connaissance de la fonction d’utilité : trouver
un ensemble de décision optimal pour des régions de quantification données ; trouver des
régions de quantification pour un ensemble de décision donné.

Ensuite, le problème de quantification orientée objectif est abordé pour le cas particu-
lier où l’espace de décision de la fonction de coût est polyédrique et convexe. Supposant
que la fonction d’utilité est concave par rapport à la variable de décision, on peut ob-
tenir une borne supérieure de la perte d’optimalité empirique en appliquant l’inégalité
de Jensen. De plus, pour un ensemble d’échantillons de paramètres donné, les ensembles
de décisions sont divisés en classes équivalentes en fonction de l’étiquette de décision
optimale. Un algorithme qui améliore itérativement l’ensemble de décisions de manière
avide au sein d’une classe équivalente est proposé pour trouver le meilleur ensemble de
décisions qui minimise la borne supérieure de la perte d’optimalité. Ci-après, nous in-
troduisons l’inégalité de Jensen généralisée pour les fonctions d’utilité dites faiblement
concaves. En remplaçant l’inégalité de Jensen par la généralisée, une méthode analogue
pourrait également être appliquée aux fonctions d’utilité faiblement concaves. Une ver-
sion améliorée de cet algorithme est proposée en étendant l’ensemble de décision de la
manière que nous avons décrite avant. L’avantage de l’algorithme proposé est double :
la connaissance complète de la fonction de décision optimale n’est pas nécessaire pour la
mise en œuvre de l’algorithme ; au lieu de résoudre le problème d’optimisation compliqué
d’origine pour le quantificateur orienté objectif, seul des basique computations matri-
cielles et la comparaison répétée de la fonction de l’utilité sont nécessaires pour trouver
l’ensemble de décision souhaité. Nous appliquons l’algorithme proposé à la fonction de
capacité somme-taux qui est bien connue pour être convexe par rapport à la puissance.
Les résultats numériques montrent que l’algorithme proposé surpasse l’approche conven-
tionnelle. En attendant, il est important pour souligner que la méthode proposée pourrait
être redondante si l’ensemble de décision optimal se situe sur les sommets du polyèdre de
décision, par exemple, le contrôle de puissance binaire.

Enfin, nous essayons de résoudre le problème de quantification orientée objectif lorsque
seules les réalisations des fonctions d’utilité sont supposées connues. Le problème est
divisé en deux étapes. Pour trouver les régions de quantification fixant l’ensemble de
décision, un réseau de neurones à propagation avant est appliquée au problème de l’al-
location de puissance, la quantification très grossière des gains du canal n’induit qu’une
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très faible perte d’optimalité par rapport au cas où les gains sont parfaitement connus de
l’émetteur lorsque l’utilité est le débit de transmission. Cependant, pour la fonction d’effi-
cacité énergétique, les gains de canal doivent être quantifiés plus précisément. L’utilisation
d’un schéma de quantification classique basé sur la distorsion (quantification k-moyennes)
conduit à une perte de performance assez importante (environ 30%), montrant le potentiel
de notre approche. En outre, cela permet de reconsidérer l’hypothèse globale faite dans les
problèmes d’allocation des ressources, à savoir que la politique d’allocation des ressources
est conçue en supposant une connaissance parfaite. Mathématiquement, des recherches
supplémentaires devraient être développées pour identifier les propriétés de la fonction
d’utilité qui représente sa sensibilité à être maximisée sous une connaissance imparfaite
de ses paramètres. Pour trouver un ensemble de décision optimal, un algorithme évolutif
appelé Invasive Weeds Optimization - Differential Evolution (IWO-DE) qui combine deux
algorithmes évolutionnaires classiques est proposé. Un problème de recherche conjointe
d’un ensemble de vecteurs de niveau de puissance et de formation de faisceaux pour des
communications efficaces en énergie est pris comme exemple de notre méthode proposée.
Alors que la version continue du problème pourrait être résolue facilement, le problème
doit être formulé correctement lorsque l’ensemble de décision est imposé pour être fini.
Notre approche est montrée pour surpasser les techniques de pointe telles que l’algorithme
Lloyd-Max et la quantification vectorielle aléatoire. Lorsque les dimensions du système
augmentent, des problèmes de complexité doivent être pris en compte. Lorsqu’il y a in-
terférence, le cadre proposé doit être étendu. D’autres problèmes tels que le paradoxe de
Braess peuvent survenir et rendre le problème encore plus difficile. Enfin, le codage de
source orienté objectif et le codage de canal orienté objectif restent l’extension difficile du
codage actuel scénario.

Dans le chapitre 4, nous analysons le problème de quantification orientée objectif en
régime haute résolution. Le cas scalaire et le cas vectoriel sont traités séparément. Pour le
cas scalaire, la nouvelle formule approximative proposée de la perte d’optimalité conduit
à une nouvelle qualité définie comme la densité de valeurs représentant l’importance du
paramètre. Nous introduisons une nouvelle qualité appelée perte d’optimalité normalisée
lors de la comparaison de la dureté de la quantification pour différentes fonctions de
coût. En rapprochant simplement cette qualité en régime haute résolution, nous sommes
capables de déterminer la dureté de la quantification pour différentes fonctions de coût
sans effectuer de véritables simulations. Pour le cas vectoriel, une formule approximative
indépendante de la cellule n’est plus disponible pour la perte d’optimalité puisque la forme
optimale des cellules de pavage est inconnue. Néanmoins, en admettant la conjecture de
Gersho, une borne supérieure et une borne inférieure sont dérivées pour la perte d’opti-
malité lorsque la dimension du paramètre est plus petite que la dimension de la variable
de décision. De plus, nous proposons un nouvel algorithme qui met à jour itérativement
les représentants en utilisant l’approximation des valeurs propres sur la perte d’opti-
malié. A chaque itération, on essaie de trouver le pire échantillon de paramètres dans le
sens d’introduire la plus grande perte d’optimalité individuelle. Ensuite, son représentant
correspondant est révisé de sorte que la perte d’optimalité moyenne pourrait probable-
ment être diminuée. L’algorithme proposé pourrait également être étendu à la fonction
de coût avec des contraintes. Les résultats de la simulation montrent que le quantificateur
orienté objectif proposé surpasse largement le quantificateur Lloyd-Max pour un nombre
quelconque de bits de quantification. L’algorithme avec mise à jour gourmande domine
légèrement celui avec mise à jour satisfaisante tandis que le dernier prend beaucoup moins
de temps à fonctionner. Cependant, étendre notre méthode proposée au cas vectoriel reste
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fastidieux pour des scénarios de grande dimension, par exemple des images ou des vidéos.
En outre, la sélection de l’ensemble d’échantillons de paramètres pourrait également être
essentielle en raison à la fois des échantillons eux-mêmes et du nombre d’échantillons de
paramètres qui ont un impact sur la complexité de l’algorithme proposé.

Dans le chapitre 5, au lieu de se concentrer sur la structure optimale de la communica-
tion orientée objectif, nous commençons à aborder le problème de quantification orientée
objectif lorsque plusieurs fonctions d’utilité corrélatives sont ciblées par différents utilisa-
teurs du système. En d’autres termes, le problème de quantification orientée objectif est
développé dans le cadre des jeux. Plus précisément, nous nous limitons à l’étude des jeux
potentiels avec l’ensemble des actions identique. En prenant le bien-être social comme
critère de performance, nous avons prouvé que le bien-être social optimal est une fonction
sous-modulaire de l’ensemble d’action avec l’équilibre de Nash raffiné dans l’ensemble arg-
max du potentiel. De plus, le fameux paradoxe de Braess est lié à la monotonie de cette
fonction. Sur la base de ces propriétés, nous concevons un algorithme pour trouver un en-
semble d’actions fini visant à maximiser le bien-être social moyen sous l’équilibre de Nash
du système. Nous prenons le jeu de canaux d’accès multiples MIMO multi-utilisateurs
avec efficacité spectrale comme l’utilité individuelle dans laquelle l’existence du paradoxe
de Braess est déjà confirmée comme l’application de notre théorie. Pour le scénario à 2
utilisateurs et 2 bandes, nous avons prouvé que l’ensemble de sélection de canaux est
l’ensemble d’actions optimal pour maximiser le bien-être social. L’ensemble de type Te-
latar est supposé être l’ensemble d’action optimal pour maximiser le bien-être social sous
l’équilibre de Nash dans les cas généraux. L’existence du paradoxe de Braess n’est pas
garantie pour la fonction d’utilité générale du jeu arbitraire. La faisabilité des méthodes
proposées doit être vérifiée pour d’autres applications.

Dans le chapitre 6, un jeu où la fonction d’utilité individuelle est l’efficacité énergétique
dans un système à canaux d’accès multiples MIMO est considéré. L’existence et l’unicité
de l’équilibre de Nash est prouvée, et un algorithme exact et un algorithme sous-optimal
sont proposés pour approcher le NE de ce jeu. Les résultats de simulation montrent que
si le nombre d’antennes d’émission et le nombre d’antennes de réception sont les mêmes,
les performances sous NE trouvées par les algorithmes proposés sont toujours meilleures
qu’une politique d’allocation de puissance uniforme à la fois à l’intérieur et à l’extérieur
de la plage couverte par la proposition principale du chapitre. Lorsque la condition pour
les antennes n’est pas remplie, notre algorithme proposé déploie une meilleure réponse
approximative ε qui ne conduira pas à un pur équilibre de Nash. Etonnamment, la solution
trouvée par notre algorithme sous-optimal domine légèrement le NE exact du jeu. Cette
observation montre que les performances de l’algorithme proposé sont acceptables alors
qu’il est relativement facile à mettre en œuvre. La situation où chaque utilisateur est
autorisé à choisir librement sa matrice de covariance simplement contrainte à la puissance
maximale est le prolongement naturel de ce chapitre. Les résultats de ce chapitre doivent
être considérés comme l’exploitation de base pour la quantification orientée but dans un
jeu général ou un système décentralisé. La discrétisation de l’espace d’action va fortement
influencer la détermination de NE puisqu’elle transforme la nature du jeu. Cela pourrait
être le principal défi des futurs travaux.
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2
Introduction

In this thesis, the main problem is to investigate the so-called goal-oriented quanti-
zation (GOQ) problem which is how to design an efficient quantizer when a specific goal
is given. The goal could be minimizing some cost functions (or maximizing some utility
functions).

2.1 Context of The Thesis

Since the groundbreaking seminal work [3] of Shannon on information theory and
communication system, the fundamental problem of communication is defined as “that of
reproducing at one point either exactly or approximately a message selected at another
point”. Shannon further argued that the semantic aspects of communication should be
considered as irrelevant to the engineering problem. Researchers are working diligently
on improving the accuracy of decoded (reconstructed) signal, i.e., to minimize the the
distortion introduced during coding, compression or quantization. Meanwhile, most exis-
ting communication technologies are developed to maximize data-oriented performance
metrics such as communication data rate, while ignoring the service/content/semantic-
related information and the ultimate goal of the entire communication system.

However, if the communication system is assumed to be goal-oriented, i.e., achieve a
specific goal, e.g., help users to make critical decisions, optimize some critical performance
under limited resources, intuitive idea of naively increasing the accuracy of reconstruc-
ted signal could be wasteful or useless. Thus we refer this conventional methodology of
designing communication as as goal-ignorant. Before our framework of the goal-oriented
communication, there exist already several works on the goal-oriented communication in
the sense of information and message, or in recent semantic communications : [5, 7, 8]. In
those works, the authors addressed the problem of potential “misunderstanding” among
parties involved in a communication, where the misunderstanding arises from lack of
initial agreement on what protocol and/or language is being used in communication. No-
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wadays, semantic aspect of communication foreseen by Shannon and Weaver in [4] is
attracting more and more attentions for its potential applications in future 6G networks
[6, 9, 10, 11, 12, 13]. Semantic communication goes beyond the common Shannon para-
digm of guaranteeing the correct reception of each single transmitted bit, irrespective of
the meaning conveyed by the transmitted bits. The idea is that, whenever communication
occurs to convey meaning or to accomplish a goal, what really matters is the impact that
the received bits have on the interpretation of the meaning intended by the transmit-
ter or on the accomplishment of a common goal. Some recent research works are briefly
introduced in a non-exhaustive way. In [12], it is shown semantics-empowered policies
could reduce real-time construction and the cost of actuation errors in an autonomous
system tasked with real-time source reconstruction for remote actuation. A novel sto-
chastic model of semantics-native communication (SNC) for generic tasks is proposed in
[10]. Simulation results reveal significant reduction of the semantic representation length
without compromising communication reliability is possible. A deep learning-enabled se-
mantic communication system for speech recognition by designing the transceiver as an
end-to-end (E2E) system is studied in [6]. The simulation results demonstrate that our
proposed system outperforms the traditional communication systems for character-error-
rate and word-error-rate while and is robust to channel variations.

In contrast with this line of research works, we introduce a general framework for
GOQ. The task or goal of the receiver is chosen to be modeled by a generic optimization
problem (OP) which contains both decision variables and parameters. The goal function of
the OP is generic function f(x; g) : X×G→ R with x being the decision (action) variable
and g being the parameter variable, referred as the utility function (cost function).
Proposed paradigm of GOQ is illustrated in Fig. The ultimate goal is to minimize the
optimality loss (OL) introduced by our communication paradigm optimizing the utility
function. To the best knowledge of authors, the goal-oriented conception is rarely consi-
dered in following highly connected domains : quantization, classification or compression.
Here we list some of them in related works. Goal-oriented communication in our definition
is first formulated and studied in [15]. To effectively determine a good goal-oriented quan-
tizer in the vector case, some sufficient but reasonable sufficient conditions on the utility
function are assumed (such as the decomposability assumption) and a suboptimal itera-
tive algorithm is proposed to solve the problem of energy-efficient and spectral efficient
power control problem. Significant gains can be obtained in terms of payoff especially
when the number of quantization bits decreases. A data-driven goal-oriented quantization
systems with scalar analog-to-digital converters (ADCs), which determine how to map an
analog signal into its digital representation using deep learning tools in [34]. The perfor-
mance of large scale inputs of goal-oriented quantizer is studied in [35]. It is demonstrated
that the minimal achievable average mean squared error (MSE) in massive multiple-input
multiple-out (MIMO) channel estimation can be approached by properly designed quan-
tization systems utilizing scalar low-resolution ADCs, and that the proposed approach
outperforms previous channel estimators operating only in the digital domain. In [36],
the problem of compressing band-limited graph signals into a finite-length sequence of
bits by joint sampling and quantization is considered. The graph signal compression is
shown to be similar with task-based quantization. Other applications using the concep-
tions but not the goal-oriented quantizer directly. In [37], a collaborative task is assigned
to a multi-agent system in which agents are allowed to communicate however under limi-
ted communication rate. this problem is equivalent to a form of rate-distortion problem
called the task-based information compression.
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Contributions

Figure 2.1 – Proposed definition for the goal-oriented quantization paradigm

2.2 Contributions

The contribution of this manuscript can be summarized based on four main aspects :
1) formulate the one-shot single-objective goal-oriented quantization problem ; provide
a method to find the goal-oriented quantizer for (weakly) concave utility functions with
convex polyhedral decision space ; propose an approach to find the goal-oriented quantizer
when only the realizations of utility function are allowed to use. 2) extend the high-
resolution quantization theory to goal-oriented quantization. 3) goal-oriented quantization
problem is developed to the scenario where multiple correlated utility functions exist, i.e.,
in games ; 4) Nash equilibrium of a multi-user MIMO multiple access channel game with
spectral efficiency as the individual utility function is studied and achieved in different
proposed algorithms.

In Chapter 3, the one-shot quantization problem for goal-oriented quantization for a
single utillity function is formulated. A basic algorithm to deal with goal-oriented quanti-
zation problem under perfect knowledge of the utility functions is proposed by mimicking
the Lloyd-Max algorithm. Then we study the special case where utility function is concave
and the decision space is a convex polyhedron. An algorithm based on minimizing the up-
per bound obtained by Jensen’s inequality is proposed to find the goal-oriented quantizer.
Finally we propose an learning based approach to solve the goal-oriented quantization
problem when only the realizations of utility function are available. The main contribu-
tions of Chapter 3 are :
I For concave utility functions with convex polyhedral decision space, we use Jensen’s
inequality to upper bound the empirical optimality loss introduced by a goal-oriented
quantizer. Then we introduce an equivalent class based on the decision label vector for a
given parameter sample set. By iteratively optimizing the optimality loss within an equi-
valent class, we propose an algorithm called improve and branch algorithm which aims at
finding a decision set so that the upper bound of optimality loss is minimized.
I Then we extend improve and branch algorithm designed for concave utility functions
to weakly concave utility functions. By using generalized Jensen’s equality for weakly
concave utility functions, a modified version of improve and branch algorithm is thus ap-
plicable to weakly concave utility functions.
I An enhanced version of improve and branch algorithm is proposed by extending the
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decision set according to improve and branch algorithm is proposed. Numeric results en-
tails promising gain could be obtained compared to conventional quantizer
I We adapt the basic goal-oriented quantization algorithm to the scenario where only
realizations of utility function is allowed to use.
I To find the quantization regions for fixed decision set, we use a feed-forward network
to do so. A feed-forward neural network is proposed to find the quantization regions by
learning from a training set. By comparing the sum-rate capacity function and an energy
efficiency function, it is observed that the hardness of quantizing utility function could be
largely different. Sum-rate capacity function could be a representative of nontrivial utility
functions which requires almost no quantization bits to achieve tiny optimality loss.
I To find optimal decision set, IWO-DE algorithm combining the Invasive Weeds Oc-
cupation (IWO) and Differential Evolution (DE) is proposed. This approach is hereafter
applied to a joint power and beamforming quantization problem. A reduction of a half
quantization bits could be achieved by our proposed algorithm compared to conventional
approaches.

We apply high resolution quantization theory to our goal-oriented quantization in
Chapter 4. Different from existing research, we find a systematic way of finding good
goal-oriented quantizer for general utility functions provided with some easily satisfied
assumptions. Our analysis on cost function are divided into scalar case and vector case
separately. The main contributions of Chapter are as follows :

I For scalar case, we have found a new high-resolution approximation for optimality
loss and the corresponding optimal density of quantization interval. This new approxima-
tion formula entails that we could introduce a so-called value density (VD) p (g) which
could represent the contribution to the optimality loss for a given parameter. Replacing
the conventional probability distribution by VD, one could easily find a well-performed
goal-oriented quantizer by applying merely Lloy-Max Algorithm. Moreover, this approxi-
mation formula allows us to find the cost function which could introduce most (least)
optimality loss while maintaining the optimal representative density. Finally, a new quan-
tity called normalized optimality loss (NOL) is introduced to characterize the hardness
of quantization comparing different cost functions.
I For vector case, we have extended the results in scalar case. Different from scalar case,
The existence of value density is impossible due to a lack of universal (cell-independent)
approximation formula for optimility loss. Therefore, we have found an upper-bound and
lower bound for opitimality loss by admitting the correctness of Gersho’s conjecture.
I Two algorithms are proposed based on eigenvalue approximation and iterative update
of representatives to find a better good goal-oriented quantizer than the original one.
Simulation results entail that proposed algorithm could reduce the optimality loss by re-
placing the current goal-ignorant quantizer.

For chapter 5, the goal-oriented quantization is extended to the scenario where mul-
tiple utility functions exist in a communication system and these utility functions are
correlated through resources competition. The goal-oriented quantization is thus deve-
loped to the framework of games. Potential game with identical action set for different
players is studied. Our main contributions are :
I First of all, we confirm that the use of goal-oriented quantization could be beneficial
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for improving the social welfare of the system due to the existence of Braess’s Paradox in
a potential game.
I Secondly, viewing the maximum social welfare as a function of action set, we have
shown that the existence of Braess’s Paradox is connected to the monotonicity of this
function. Besides, we have proven that the social welfare function is submodular with
respect to the action set with a refinement of Nash equilibrium on the argmax set of the
potential function of a potential game. Based on this property, an algorithm is proposed
to find the optimal finite action set maximizing the social welfare of the game.
I Finally, we have proven that channel selection set is the optimal action set for 2-user
2-band multiple access channel (MAC) if spectral efficiency is taken as the individual
utility function of each user. We also conjecture that the optimal action set for general
scenario should be a Telatar-type set.

For chapter 6, we focus on a game where user’s utility function is the energy efficiency
(EE) in a MIMO multiple access channel system. Our main contributions are :
I The existence of Nash equilibrium is proven. The uniqueness of Nash equilibrium is
confirmed by showing the standard property of MIMO-EE game.
I An algorithm by applying the approximate best response is proposed to approach the
unique Nash equilibrium of the game. For 2-user 2-band scenario, our proposed algorithm
Pareto-dominates the pure Nash equilibrium of the game.
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• C. Zhang, H. Zou, S. Lasaulce, Vineeth S. Varma, L. Saludjian and P. Panciatici,
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Fez, Morocco.
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3
Goal-Oriented Quantization for Single Utility

Function

In this chapter, we first formulate the goal-oriented quantization problem tasked with
a single utility for single-realization of parameter, i.e., one-shot quantization in Sec. 3.1.
This problem is the basis of goal-oriented communication and could be extended to more
complicated situations treated later in this manuscript. Secondly, in Sec. 3.2, we move
to the ideal scenario where full information of utility function and p.d.f. of parameter
are known. We propose a standard methodology to solve the goal-oriented quantization
problem by splitting the goal-oriented quantization problem into two sub-problems : fin-
ding optimal quantization region for fixed decision set and finding optimal decision set
for fixed quantization regions. Then in Sec. 3.3, we focus on the situation where utility
functions involve specific structure or possess appropriate regularity properties. Finally
the goal-oriented quantization is tackled under the assumption that only realizations of
utility function is known. A feed-forward neural network is proposed to find the quanti-
zation region and an evolutionary algorithm is used to find the optimal decision set for
the goal-orieted quantizer. Compared to conventional quantization which is goal-ignorant,
the peformance of the communication system could be largely improved by implementing
our proposed methods for respective scenarios.

3.1 Problem Formulation

To formulate the problem properly, we first briefly introduce some underlying notations
of quantization and quantizer.

Definition 3.1.1. A quantizer with R = log2M bits, input space G, output alphabet G̃,
consists of : 1) An encoding function fe : G → M = {1, 2, . . . ,M} that maps the input

into a positive integer representing its index ; 2) A decoding function fd : M → G̃ which

maps the index m ∈M into a codeword zm ∈ G̃.

13



CHAPITRE 3. GOAL-ORIENTED QUANTIZATION FOR SINGLE UTILITY
FUNCTION

The objective of the quantization is to use a quantized version of the signal (referred to
as representative) to represent the original signal, which could convey the information as
much as possible. Therefore, the design of a quantizer consists in exploring the relationship
between the representative and the original signal. For notational convenience, we could
combine the encoding and decoding function of the standard quantization as a joint
mapping :

Q :G→ G̃

g 7→ zm, (3.1)

i.e., zm = fd(fe(g)) = Q(g). In this manuscript, it is always assumed that G̃ ⊆ G

and G will be referred as the parameter space which can be Rd2 or Cd2 depending on
the situation with d2 the dimension of parameter variable g. For a quantizer with M
representatives R = {z1, . . . ,zM} ⊂ G̃, the quantization regions can be denoted as

Cm = {g ∈ G : Q (g) = zm} , m ∈ {1, . . . ,M} (3.2)

Quantization regions C = {Cm}Mm=1 are disjoint and exhaustive, i.e.,

M⋃
m=1

Cm = G, Ci
⋂

Cj = ∅, ∀i 6= j. (3.3)

Therefore, a quantizer Q can be fully characterized by its quantization regions C and
corresponding representatives R. For distortion-oriented quantizer, the m-th quantization
region is defined as :

Cm = {g ∈ G : ‖g − zm‖ ≤ ‖g − zn‖, ∀n 6= m} (3.4)

The most conventional approach is to find Q that minimizes the mean square error (MSE)
between the original signal and its quantized version :

Qconv ∈ arg min
Q

Eg
[
‖Q(g)− g‖2

]
(3.5)

A well-known method of solving the above minimization problem is to use alternating
optimization algorithms to sequentially update the quantization regions {Cm}Mm=1 and
the representative set {zm}Mm=1, such as Lloyd-Max algorithm [31]. Due to its simplicity
of implementation and fast convergence time, this approach has been widely applied in
quantization and clustering problems. However, using predefined distance metric (e.g.,
Euclidean distance) to obtain the partitions and representatives is sub-optimal since the
final use of the quantized signal are not taken into account. For instance, concerning a
communication system consists of transmitters and receivers, receivers aim to send the
quantized channel state information (CSI) to the transmitters such that the transmit
power (or beamforming vector) can be better chosen at the transmitter side or vice versa.
Obviously, the objective of the quantization here is not to reconstruct the CSI, but to
convey the informative messages of CSI related to the subsequent decision-making process
as much as possible. When the final use of the quantized parameter is known, the way to
partition the parameter space can be made according to relevant features of the parameter
and thus improved. This is precisely the quantization approach studied in this manuscript.

More precisely, the goal-oriented quantization consists in assuming that the task to
be performed by the decision-making entity (e.g., the transmitter) can be represented
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(a) Illustration of the conventional quantizer
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(b) Illustration of the goal-oriented quantizer

Figure 3.1 – Comparison between conventional quantizer and goal-oriented quantizer.

by a standard optimization problem (OP), that is, a given function has to be minimized
under some constraints. Therefore, the objective is to maximize a certain function or
performance metric f(x; g) (e.g., some cost or expense function) with respect to the
decision variable x ∈ X ⊂ Rd1 with X being the decision space which is generally Rd1

with d1 the dimension of decision space. This mathematically writes as the following
standard form OP :

maximize
x∈X

f (x; g) (3.6)

Denote ψ(g) an optimal solution of the above OP, i.e.,

ψ(g) ∈ arg max
x∈X

f(x; g), (3.7)

and the optimal value of utility function (optimal value function) :

f ?(g) = max
x∈X

f (x; g) (3.8)

It is worth mentioning that ψ(g) is generally not unique for utility functions, especially
for vector case (d2 ≥ 2). Function ψ(g) will be referred as the optimal decision function
(ODF) in this manuscript. For example, if the utility function is symmetric w.r.t. the
decision variable x, one can has multiple optimal decision functions. For the sake of sim-
plicity, we assume that the optimal decision function is unique or choose the one satisfying
some assumptions later imposed in this manuscript. This assumption is reasonable since
the the performance of the designed quantizer is the central interest of our goal-oriented
quantization problem. Therefore two optimal decision functions could be treated equiva-
lently for corresponding to an unique optimal value function. The problem of finding a
goal-oriented quantization scheme therefore amounts to solving the following problem

Qtask ∈ arg max
Q

Eg[f(ψ(Q(g)); g)]. (3.9)

For a fixed probability density function (p.d.f.) φ(g) of the parameter g, to evaluate
the performance of the goal-oriented quantization, we can assess the absolute optimality
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loss induced by quantization error of quantizer Q with R = log2M bits for utility function
f as follows :

L (Qtask; f,R, φ)

= Eg [f (ψ (g) ; g)− f (ψ (Qtask (g)) ; g)]

=

∫
g∈G

[f (ψ (g) ; g)− f (ψ (Qtask (g)) ; g)]φ (g) dg (3.10)

Note that Eg [f (ψ (g) ; g)] is independent of the quantizer, thus the problem defined by
(3.9) can be equivalently treated as minimizing the OL L (Q; f,R, φ). The OP to be solved
can be equivalently written as :

min
{zm},{Cm}

M∑
m=1

∫
g∈Cm

[f (ψ (g) ; g)− f (ψ (zm) ; g)]φ(g)dg, (3.11)

where the m-th quantization region is defined as :

Cm =
{
g ∈ Rd2 : f (ψ (zm) ; g) ≥ f (ψ (zn) ; g) , ∀n 6= m

}
(3.12)

Interestingly, it can be checked that the conventional quantization approach can be
treated as a special case of the OP defined by (3.11) by choosing the function as f(x; g) =
(x− g)2.

For each representative zm ∈ RM , the ODF actually fix a so-called decision dm =
ψ (zm) and all these decisions form a decision set D , {d1, . . . ,dM} . Then OP in
(3.11) can be rewritten as

min
{dm},{Cm}

M∑
m=1

∫
g∈Cm

[f (ψ (g) ; g)− f (dm; g)]φ(g)dg (3.13)

OP in (3.13) is more general since it is normal and frequent that the knowledge of
ODF is limited or missing. We denote the solution of OP (3.11) as (D?,C?).

For a given quantizer Q and utility function f , we define the relative optimality loss
(ROL) as :

σ(%) =
L (Q; f,R, φ)

Ef ? (g)
× 100% (3.14)

Then it is naturally reasonable to ask following questions : i) for a given ROL ratio (σ),
could we determine the minimum number of cells (Mσ) to achieve a certain ROL ? ii)
how could we find such a quantizer Q if perfect knowledge of the utility function lacks ?
iii) for different utility functions, could Mσ be tremendously distinct ? To answer these
questions, we will start with GOQ with perfect knowledge of utility function.

3.2 Goal-Oriented Quantization with Perfect Knowledge
of Utility Function

We first tackle the GOQ problem in the following scenario : perfect knowledge of utility
function is available. One can split the GOQ problem into 2 sub-problems like classical
approach such as Lloyd-Max algorithm :
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1. The representative-to-cell step which is essentially finding the quantization region
(cells) given the concrete decision set D (or set of representatives) :

C?m =
{
g ∈ G

∣∣∣f (dm; g) = max
l
f (dl; g)

}
(3.15)

2. The cell-to-representative step which is essentially finding the optimal decision (re-
presentatives) given the concrete quantization regions (cells) C :

d?m ∈ arg max
x∈X

∫
g∈Cm

f (x; g)φ (g) dg, 1 ≤ m ≤M (3.16)

If we run step 1) and 2) iteratively, we obtain the basic GOQ algorithm which is
actually an alternating descent algorithm summarized in alg.

Inputs : error tolerance ε and max iteration T

Inputs : initial decision set D(0) =
{
d

(0)
1 , . . . ,d

(0)
M

}
;

Inputs : initial quantization region C(0) =
{
C

(0)
1 , . . . ,C

(0)
M

}
;

for i = 1 to T do
for m = 1 to M do

Update C
(i)
m by C?m = {g ∈ G |f (dm; g) = maxl f (dl; g)} ;

Update d(i)
m by d?m ∈ arg maxx∈X

∫
g∈Cm

f (x; g)φ (g) dg ;

end

if
∑M

m=1

∥∥∥d(i)
m − d(i−1)

m

∥∥∥2

< ε then

Break ;
end

end

Outputs : D? = D(i) and C? = C(i).

Algorithm 1: Basic goal-oriented quantization algorithm

There are two major difficulties in applying the basic GOQ algorithm. The first one is
that, in many practical applications, only the realizations of utility function instead of its
explicit expression is known. Thus the opitimization problem in Eq. 3.16 is cumbersome
to be solve directly. The second one is that finding decision region is equivalent to solve
an infinite dimensional problem even it is trivial for a given parameter. Therefore the
integral in Eq. 3.16 is generally difficult to evaluate which make alg. 1 a highly abstract
algorithm to be implemented. To begin with, we will first consider a special case where
extra regularity properties are assumed for utility functions.

3.3 Goal-Oriented Quantization for Utility Function with
Convex Polyhedral Decision Space

In this section, we will see the how the regularity properties of the utility function will
help us in finding the goal-oriented quantizer. Precisely, we will consider a simple case
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of our general goal-oriented quantization problem where the decision space is a convex
polyhedron and the utility function is concave w.r.t. decision variable. Moreover, as we
will see, the proposed methods in this section could be considered as an example of solving
the goal-oriented quantization problem when the knowledge of optimal decision function
is missing.

3.3.1 Problem formulation

We assume that the decision space X is a convex polyhedron represented by
a graph (V,E). V = {v1, . . . ,vP} with vi is called a vertex of the polyhedron. We
say that (vi,vj) is an edge (face of dimension one) of X if and only (vi,vj) ∈ E.
The scenario where the the decision space of the system is a polyhedral is frequently met
in many different domains, e.g., the power allocation problem. Consider a goal-oriented
quantizer Q characterized by its quantization regions C = {Cm}Mm=1 and decision set
D = {d1, . . . ,dM}. To emphasize the dependence of decision set, we define the sub-
optimal solution maximizing the utility function restricted on the decision set D of Q

instead of X as
ψ̂ (g|D) ∈ arg max

x∈D
f (x; g) (3.17)

The optimality loss introduced by quantizer Q is thus :

L (Q; f,R, φ)

= Eg
[
f (ψ (g) ; g)− f

(
ψ̂ (g|D) ; g

)]
=

M∑
M=1

∫
g∈Ci

[f (ψ (g) ; g)− f (dm; g)]φ (g) dg

=

∫
g∈G

M∑
m=1

[f (ψ (g) ; g)− f (dm; g)]φ (g)1 {g ∈ Cm} dg, (3.18)

where 1 (·) is a indicator function. Consider a sufficiently large parameter sample set

T =
{
g(t)
}T
t=1

, then optimality loss can be approximated by a empirical optimality loss :

L (Q; f,R,T) =
1

T

T∑
t=1

M∑
m=1

[
f
(
ψ
(
g(t)
)

; g(t)
)
− f

(
dm; g(t)

)]
1
{
g(t) ∈ Cm

}
. (3.19)

Eq. 3.19 actually avoids solving the problem of finding quantization regions in Sec.
3.2. Then it remains how to find the optimal decision set D. To simplify the notation, it is
reasonable to take the following abuse of notation L (D; f,R,T) = L (Q; f,R,T). However
Eq. 3.19 is difficult to optimize directly under general settings due to the existence of
an indicator function. Therefore We assign some extra regularity properties for utility
functions.

3.3.2 Analysis of concave utility functions

In this section, we begin with the simplest case where the utility function is a
concave function w.r.t. decision variable x. Since the decision space is a convex
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polyhedron, each decision can be expressed as the convex combination of vertices : dm =∑P
i=1 Aimvi with

∑P
i=1 Aim = 1,∀1 ≤ m ≤ M . Obviously matrix A contains all the

information as decision set D. Define vector u? =
(
f
(
ψ
(
g(t)
)

; g(t)
))T
t=1
∈ RT×1 to store

the optimal value of each sample. Introduce a matrix function B (A) = (Btm (A))t,m ∈
RT×N with Btm (A) = 1

{
g(t) ∈ Cm

}
for ∀1 ≤ m ≤ M . Introduce a constant matrix

U =
(
f
(
vi; g

(t)
))
i,t
∈ RP×T and a matrix function Y (A) = UB (A) ∈ RP×M . Furthermore

we write A = (A1, . . . ,AM), B = (B1, . . . ,BM) and Y = (Y1, . . . ,YM), then the empirical
optimality loss can be expressed as :

L (D; f,R,T)

=
1

T

T∑
t=1

M∑
m=1

[
f
(
ψ
(
g(t)
)

; g(t)
)
− f

(
dm; g(t)

)]
1
{
g(t) ∈ Cm

}
=

1

T

T∑
t=1

M∑
m=1

[
f
(
ψ
(
g(t)
)

; g(t)
)
− f

(
P∑
i=1

Aimvi; g
(t)

)]
1
{
g(t) ∈ Cm

}
≤ 1

T

T∑
t=1

M∑
m=1

[
f
(
ψ
(
g(t)
)

; g(t)
)
−

P∑
i=1

Aimf
(
vi; g

(t)
)]

1
{
g(t) ∈ Cm

}
=

1

T

T∑
t=1

M∑
m=1

f
(
ψ
(
g(t)
)

; g(t)
)
1
{
g(t) ∈ Cm

}
− 1

T

T∑
t=1

M∑
m=1

P∑
i=1

Aimf
(
vi; g

(t)
)
1
{
g(t) ∈ Cm

}
=

1

T

M∑
m=1

BT
m (A)u? − 1

T

M∑
m=1

AT
mUBm (A)︸ ︷︷ ︸

Lub(D;f,R,T)

, (3.20)

where the inequality comes from Jensen’ inequality. One thus obtain an upper bound
Lub (D; f,R,T) for the empirical optimality loss L (D; f,R,T). If the upper bound could
be minimized somehow, then we can ensure that the empirical loss will not exceed this
upper bound. Before reveal the details of our method, we need to introduce some extra
conceptions. Obviously there is a one-to-one mapping between the decision set D with
cardinality M and the set of N -fold unit simplex 4N

P of dimension P containing all
possible setting of matrix A. Therfore we can define the following equivalent relation for
matrix A :

Definition 3.3.1. (Equivalent Relation) For a given sample set T and A,A′ ∈ 4N
P ,

A′ ∼T A if and only if B (A) = B (A′). The equivalent class for A is denoted as [A]T.

Definition 3.3.2. (Optimal Improvement) For a given sample set T and a matrix A ∈
4N
P , A+ is said to be an optimal improvement for A if it holds that

A+ ∈ arg max
C∈[A]T

∑
m

CT
mUBm (C) (3.21)

One can easily prove the defined operation ∼T is an equivalent relation for any sample
set T. Two decision sets (represented by matrix A) are equivalent for a given sample set
T means that their images under matrix-valued mapping B are exactly the same. If the
sample set is fixed, we will omit it for both equivalent operator and equivalent class to
simplify the notation. The meaning for optimal improvement should be further explained :
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an optimal improvement A+ for a decision set A is the equivalent element of matrix A
which minimizes the upper bound obtained in Eq. 3.20. This fact is clearly shown in
following equations :

A+ ∈ arg min
C∈[A]

∑
m

BT
m (C)u? −

∑
m

CT
mUBn (C)

∈ arg max
C∼A

∑
m

CT
mUBm (C) (3.22)

In other words, if one goes further away from A+, one is not sure whether the empirical
optimality loss will increase or decrease. However, it is generally difficult to find A+ for
a given matrix A directly. The reason is that the boundary of each equivalent class is
implicitly given and finding A+ for each [A] ∈ A could be costly. Therefore, we will
introduce one operator which is more reasonable and easy to operate within an equivalent
class.

Definition 3.3.3. (Greedy Improvement) Define A† for A with Y = UB (A) s.t.

A† − A = νE (A) , (3.23)

with ν = sup {y ≥ 0 |A ∼ A + yE (A)} and an auxiliary matrix E (A) = (Eij (A))i,j ∈
RP×T with

Eij (A) =


−1, i = `?, j = m?

1, i = k?, j = m?

0, otherwise.

(3.24)

where

m? ∈ arg max
m

[
max
i

Yim −min
i

Yim

]
, (3.25)

`? ∈ arg min
1≤t≤P

Ytm? , (3.26)

k? ∈ arg max
1≤t≤P

Ytm? , (3.27)

The meaning of greedy improvement is that this matrix minimizes the upper bound of
optimality loss along the deepest-gradient-descent direction within one particular equiva-
lent class. Still, it is cumbersome to find the precise value of ν. Fortunately, this fact never
stops us to construct an algorithm to find a decision set . The basic idea is that if there

∃ν ′ > ν so that matrix A′ = A + νE (A) satisfying Lub

(
A
′
; f,R, φ

)
< Lub (A; f,R, φ) and

A′ � A, then we do find a decision set represented by A′ strictly better than the decision
set A outside of the equivalent class of A which means that one can further improve A′

by continuing increase ν ′ ; Otherwise, the meaning of obtained matrix is not clear, then
a new search direction should be created for A′. Based on this idea an algorithm called
improvement and branch algorithm is proposed summarized in alg. 2 :
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Initialization : choose A(0) and step size ε > 0, generate sample set T ;

K(0) ← A(0) ;

L(0) ← L
(

A(0); f,R,T
)

;

for i = 0 to ITER do

Y(i) ← UB
(

A(i)
)

;

n? ∈ arg maxm

[
maxt Y

(i)
tm −mint Y

(i)
tm

]
;

`? ∈ arg min1≤t≤P Y
(i)
tm? ;

k? ∈ arg min1≤t≤P Y
(i)
tm? ;

C(0) ← A(i) ;
for j = 1 to J do

C(j) ← C(j−1) + εE (A) ;

if C(j) � C(j−1) then

A(i+1) ← C(j) ;

if L
(

C(j−1); f,R,T
)
< L

(
C(j); f,R,T

)
then

L(i+1) ← L
(

C(j−1); f,R,T
)

;

K(i+1) ← C(j−1) ;

else

L(i+1) ← L
(

C(j); f,R,T
)

;

K(i+1) ← C(j) ;

end

end

end

end

i? ∈ arg min
0≤i≤ITER

L(i) ;

Output: Required decision set is represented by K(i?) ;

Algorithm 2: Improve and Branch Algorithm

Remark 3.3.4. It ts obvious that the number of equivalent class matrix vector A depends
on the number of parameter samples T . In worst case, we could have |[A]| = 2T which
entails that the direct exhaustive search for matrix B leads to an exponential complexity of
O
(
2T
)
. In the other hands, the accuracy of Monte Carlo approximation depends on the

number of samples. There is obviously a trade-off between the accuracy of Monte-Carlo
approximation and the complexity of the algorithm. Alg. 2 provides a better way than the
direct search.

3.3.3 Analysis of weakly concave utility functions

The basic idea of alg. 2 depends on the concavity of the utility function w.r.t. decision
variable . With the help of Jensen’s inequality, the original optimization problem is reduced
to a family of linear OP labeled by the value of matrix B. However, this method fails
for non-concave utility function which is more frequently met in practical applications.
In this section, we will show that alg. 2 could be generalized to what we called weakly
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concave utility functions. To achieve that, we first introduce the general version of Jensen’s
inequality. Without loss of generality, we assume that the utility function f (x; g) is twice-
differentiable w.r.t. to decision variable x, i.e., f ∈ C2

x [R]. We denote the Hessian matrix
H (x0; g) of f w.r.t. x at point (x0, g) and its largest eigen-value given parameter g for
all possible x ∈ X as λmax (g). To generalize Jensen’s inequality to non-concave function,
we introduce some important conceptions :

Definition 3.3.5. (r-weakly concave function) Given a continuous function u : RP → R
defined on a convex set S, consider the function h : RP+1 → R with r ∈ R defined by :
h (x, r) = u (x) + 1

2
rxTx. If function h (x, r) is a concave function on S for some r ∈ R,

then h (x, r) is called a concavification of u. Function u is said to be r-weakly concave if
it has a concavification of weakly concave constant r.

Proposition 3.3.6. (Generalized Jensen’s Inequality for weakly concave functions) For

any r-weakly concave function u : RP → R, for ∀a ∈ 4P and a series of points (xi)
P
i=1

with xi ∈ RP it holds that

u

(
P∑
i=1

aix
i

)
≥

P∑
i=1

aiu
(
xi
)

+
r

2

[
P∑

i,j=1

aiaj
(
xi − xj

)T
xi

]
(3.28)

Equipped with generalized Jensen’s inequality, method in above subsection is pos-
sible to be applied to weakly concave utility functions. Similar to analysis in previous
subsection, empirical loss can be upper bounded as :

L (Q; f,R,T) ≤ 1

T

∑
m

BT
mu

? − 1

T

∑
m

AT
mUBm −

1

2T

∑
t,m,i,j

AimAjmv
T
i (vi − vj) Btmρt,

(3.29)
where ρt is a weakly concave constant of function f given g(t) w.r.t. x. Further define
matrix V = (Vij)i,j with Vij = vT

i (vi − vj), Eq. 3.29 can be rewritten as :

L (Q; f,R,T) ≤ 1

T

∑
m

BT
mu

? − 1

T

∑
m

AT
mUBm −

∑
m

AT
mVAm

2T
ρTBm (3.30)

Obviously one would like to minimize the optimality loss introduced by Q, then the
optimal choice for vector ρ should be ρt = −λmax

(
g(t)
)

since only for r ≤ −λmax

(
g(t)
)

for ∀t, the utility function will have a concavification. Similarly, the concepts of optimal
improvement and greedy improvement could be defined for weakly concave utility function
to have a similar method to alg. 2. The details are omitted here to avoid duplicated
materials.

3.3.4 Enhanced improve and branch algorithm

In this subsection, we will consider the following problem which is the general version
of problem in Sec. 3.3.2 : how to extend a decision set DN with cardinality N to a new
decision set DN+M with N ∈ N efficiently. This problem will finally help us to design an
enhanced version of alg. 2. For notation convention, we denote the new extended decision
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set as :

DM+N = {d1, . . . ,dN , ζ1, . . . , ζM}

= DN

⋃
XM , (3.31)

where XM = {ζ1, . . . , ζM} is obviously the set of extended decisions. If one set DN = ∅,
then one obtains the original problem immediately.

We further define the following partition of the parameter space G =
⋃
n,m Gmn with

Gnm defined as

Gmn ,
{
g
∣∣∣ψ̂ (g|DM) = dn, ψ̂ (g|DM+N) = ζm

}
, (3.32)

for 1 ≤ n ≤ N and 1 ≤ m ≤ M . The meaning of Gmn is set of all parameter so that
the sub-optimal decision switchs from dn to ζm once the decision set DN (corresponding
quantizer denoted as QN) is replaced by new decision set DN+M (corresponding quantizer
denoted as QN+M). For DN+M , one can easily have :

L (DN ; f, φ)− L (DN+M ; f, φ)

=
1

T

T∑
t=1

M∑
m=1

N∑
n=1

[
f
(
dn; g(t)

)
− f

(
ζm; g(t)

)]
1
{
g(t) ∈ Gmn

}
(3.33)

Again one has ζm =
∑P

i=1 Aimvi for convex polyhedral decision space. The decay of
empirical optimality loss by extending DN to DN+M could be expressed as :

L (QN ; f, φ)− L (QN+M ; f, φ)

=
1

T

T∑
t=1

M∑
m=1

N∑
n=1

[
f
(
ζm; g(t)

)
− f

(
dn; g(t)

)]
φ
(
g(t)
)
1
{
g(t) ∈ Gmn

}
=

1

T

T∑
t=1

M∑
m=1

N∑
n=1

[
f

(
P∑
i=1

Aimvi; g
(t)

)
− f

(
dn; g(t)

)]
1
{
g(t) ∈ Gmn

}
≥ 1

T

T∑
t=1

M∑
m=1

N∑
n=1

[
P∑
`=1

Aimf
(
vi; g

(t)
)
− f

(
dn; g(t)

)]
1
{
g(t) ∈ Gmn

}
=

1

T

T∑
t=1

M∑
m=1

N∑
n=1

P∑
i=1

Aimf
(
vi; g

(t)
)
1
{
g(t) ∈ Gmn

}
− 1

T

T∑
t=1

M∑
m=1

N∑
n=1

f
(
dn; g(t)

)
1
{
g(t) ∈ Gmn

}
(3.34)

By introduce matrix W ∈ RN×T with Wnt = f
(
dn; g(t)

)
and a tensor B ∈ RT×M×N

with Btmn = 1 {gt ∈ Gmn}, one finally has

L (QN ; f, φ)− L (QN+M ; f, φ)

≥
∑
n,m

WT
nBmn −

∑
i,m

Aim

∑
n

UT
i Bmn (3.35)

Without loss of generality, we choose N = 1, i.e., DN will be extended to DN+1, then
one has

L (QN ; f, φ)− L (QN+1; f, φ)

≥
∑
n

WT
nBn −

∑
i

Ai

∑
n

UT
i Bn (3.36)
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3.3.5 - Numerical results

One can introduce the equivalent relation and two improvement operators as before. To
this end, we are able to propose an algorithm summarized in alg. 3 which could help to
find decision set with a fixed number of decisions efficiently.

Initialization : Number of decisions M ; set D
(0)
M randomly ; choose the tolerance

factor ε
for t = 1 to Tex do

for m = M + 1 to K do

Find D
(t)
m by applying alg. 2 for D

(t)
m−1 for Eq. 3.36 ;

end

D
(t+1)
M ∈ arg min

D′⊂D(t)
K ,|D′|=M

L (D′; f, φ)

if L
(
D

(t)
M ; f,R, φ

)
− L

(
D

(t+1)
M ; f,R, φ

)
< ε then

Break ;
end

end

Output: Required decision set is D
(t)
M ;

Algorithm 3: Enhanced Improve and Branch Algorithm

The basic idea of Alg. 3 is that from a decision set DM obtained from alg. 2, we
first extend it to a decision set DK with sufficient large cardinality. Then we select the
optimal subset D

′
M of DK which introduces the minimum optimality loss. It is obvious

that we always have L
(
D
′
M ; f,R, φ

)
≤ L

(
D

(t)
M ; f,R, φ

)
. Therefore the convergence of this

algorithm is guaranteed which is different from the weaker version.

3.3.5 Numerical results

In this section, we aims at showing the benefits of our proposed methods, We consider
again the sum-rate capacity function fSL (x; g) = −

∑S
i=1 log (σ2 + xigi) under maxi-

mum power constraint
∑S

i=1 xi ≤ Pmax. One can easily verify that its Hessian matrix is

HfSL (x; g) = −diag
{

g2i
(σ2+xigi)

2

}
i
. Therefore the utility function is concave function w.r.t.

decision variable. Meanwhile the decision space is a convex polyhedron. For parameter
setting, we choose number of bands S = 6, power budget Pmax = 4mW, variance of noise
σ2 = 1mW, number of parameter samples Nsample = 1000, iteration number of improve
and branch algorithm ITER = 1000 ; iteration number for decision set extension Tex = 10
and largest cardinality of decision set is chosen as K = 2M .

In Fig. 3.2 , the average utility v.s. number of decisions is illustrated for optimal
decision set found by fmincon by MATLAB, alg. 3 and Lloyd-Max algorithm. One can
observe that the performance of the proposed algorithm always dominates the Lloyd-Max
algorithm. Moreover, compared to the optimal discrete action set, the proposed method
provides acceptable performance while it requires merely simple linear computation of bet-
ween matrix. Besides the enhanced improve and branch algorithm requires no knowledge
of the optimal decision function.
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Figure 3.2 – Average utility (sum-rate capacity) v.s. number of decisions for Lloyd-Max
Algorithm, enhanced improve and branch algorithm and optimal discrete set with given
number of decisions. There are 6 bands, maximum power is Pmax = 4mW and variance

of noise σ2 = 1mW. Without Knowledge about optimal decision function, proposed
approach still yields acceptable performance compared to Lloyd-Max quantizer which

entails the knowledge of regularity property assists the design of goal-oriented quantizer.

3.3.6 Conclusions

In this section, the goal-oriented quantization problem for the special case where the
the decision space of the utility function is polyhedral and convex. Assuming that the
utility function is concave with respect to the decision variable, one can obtain a upper
bound of the empirical optimality loss by applying Jensen’s inequality. Moreover, for a
given parameter sample set, decision sets are divided into equivalent classes based on the
optimal decision label. An algorithm which iteratively improves the decision set greedily
within a equivalent class is proposed to find the best decision set which minimizes the
upper bound of the optimality loss. Hereafter, we introduce generalized Jensen’s inequality
for so-called weakly concave utility function. By replacing the Jensen’s inequality by the
generalized one, analogous method could be applied to weakly concave utility function.

The advantage of the proposed algorithm is two-folds : the full knowledge of optimal
decision function is unnecessary for the implementation of the algorithm ; instead of sol-
ving the original complicated optimization problem for goal-oriented quantizer, merely
basic matrix calculation and repeated comparison of utility values are required to find
the desired decision set. We apply the proposed algorithm to sum-rate capacity function
which is well-known to be concave function w.r.t to power. Numerical results show that
proposed algorithm outperforms conventional approach. Finally it is important to point
out that proposed method could be redundant if the optimal decision set lies on the
vertices of the decision polyhedron, e.g. binary power control in [44].
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3.4.2 - Finding quantization regions

3.4 Model-Free Goal-Oriented Quantization for Unknown
Utility Function

3.4.1 Motivation

In this chapter, we would like to tackle the GOQ problem under the following as-
sumptions : only realizations of utility function are allowed to be known. Except that,
one is not allowed to gain any extra information about the utility function. This scenario
is frequently met in the practical applications for the two following reasons : i) the en-
tire communication system is too complicated so that it is impossible to have an explicit
expression of utility function ; ii) The expression of the utility function is unknown since
the communication system is a black box, e.g. for security reasons. Therefore, we would
like to design a model-free approach for this scenario so that our goal-oriented quantizer
could be implemented to improve the performance of the system. Similar to the basic
GOQ algorithm, the we design two approaches to solve two steps separately. To find
the quantization regions for fixed decision set, we use a feed-forward network to do so.
To find optimal decision set, we implement an algorithm adapted to our GOQ problem
which combines two evolutionary algorithms, namely, Invasive Weeds Occupation (IWO)
and Differential Evolution (DE) .

3.4.2 Finding quantization regions

The objective of this section is that, for a given decision set D = {d1, . . . ,dM}, one
need to find the quantization region defined as

Cm =
{
g ∈ G

∣∣∣f (dm; g) = max
l
f (dl; g)

}
, 1 ≤ m ≤M. (3.37)

The quantization region could be regarded as the set of all parameters correspon-
ding to the same optimal decision. For conventional quantization problem, the boundary
between two adjacent quantization regions is the hyperplane which is equidistant to two
corresponding centroids. For goal-oriented quantization problem, the shape of quantiza-
tion region could be arbitrary (even disconnected) even if the expression of utility function
is known. The only rigorous way of verifying if a parameter g belongs to the a quantization
region or not is to determine its optimal decision. However to repeat this check test is not
possible in practical applications since parameter space is generally infinite. Therefore,
a reasonable approach is to gather some realizations of parameter and its corresponding
optimal decision label to form a training set first. Based on this training set, we try to
find a predictor or estimator which yields an acceptable estimation of the decision label.
One possible way of doing so is to use a simple feed-forward neural network. The prin-
ciple of neural network for classification is briefly explained here. The basic structure of
a feed-forward network is illustrated in Fig. 3.3. W

(l)
i,j is the weight between the neuron i

in the l-th layer and the the neuron j in (l + 1)-th layer and b
(l)
j the bias term for neuron

j, the relation between them is given by :

o
(l+1)
j = fact

(
b

(l)
j +

Nd∑
i=1

W
(l)
i,j o

(l)
i

)
, (3.38)
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where o
(l+1)
j is the output of the neuron j and o

(l)
i is the output of the neuron i and the

input signal from neuron i to neuron j as well. Without loss of generality, we assume
that number of neurons in each hidden layer is the same and denoted as Nd. fact (·) is the
activation function.

Figure 3.3 – Basic structure of an FNN.

We define the training set as TFNN ,
{
g(t), θ?t

}Ntrain

t=1
, where θ?t is the optimal deci-

sion label corresponding to parameter realization g(t) obtained by exhaustive comparison
between all possibles decisions :

θ?t ∈ arg max
θ∈{1,...,M}

f
(
dθ; g

(t)
)

(3.39)

If the error estimation error (test error) is less than some threshold, the FNN trained
by this training set can give us a reasonable approximation of the real partition of quan-
tization regions for a goal-oriented quantizer. We will illustrate this procedure to some
important utility functions in communication system.

Applications in energy efficient MIMO system

We consider the following single user multiple- input and multiple Output (MIMO)
communication system. The receiving signal is modeled by :

y = HxSIG + z (3.40)

where H is the Nr × Nt channel transfer matrix with Nt transmit antennas and Nr

receive antennas. We assume the entries of H are i.i.d. zero-mean circularly symmetric
complex Gaussian distributed according to CN (0, 1). A vector x is the transmitting sym-
bols vector with dimension Nt and z is the receiving white Gaussian noise vector distri-
buted as CN (0, σ2INr). Moreover Q = E

[
xSIGx

H
SIG

]
denote the covariance matrix of xSIG
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which determines the power allocation policy. And we have the common maximum total
power constraint :

Tr (Q) ≤ Pmax (3.41)

Given this matrix-form of the system, the energy efficiency (EE) can be defined as :

fMIMO (Q; H) =
R0 log2

∣∣σ2INr + HQHH
∣∣

Tr (Q) + P0

(3.42)

where R0 is the raw data rate (in bits/s) and P0 represents the power consumed by the
transmitter when the radiated power is zero. For instance, in [19] it may represent the
computation power or the circuit power.

The existence of P0 is not only reasonable but also avoids the following fact that the
most efficient transmission occurs when p = Tr (Q) = 0. The decision set is chosen the
Equal Gain Transmission (EGT) with antenna selections. Without loss of generality, we
only consider diagonal covariance matrix of the transmission signal, i.e., Q = Diag (p)
with p =

(
p1, . . . ,pNt

)
. Where Diag (v) generates the diagonal matrix whose diagonal is

exactly the vector v. The decision set is chosen as following form :

D =

{
Q =

Pmax

l
Diag (e) |e ∈ Sl, ∀l ≤ Nt

}
(3.43)

where Sl =
{
e ∈ {0, 1}Nt

∣∣∣∑Nt
i=1 ei = l

}
which is the set of Nt -dimensional binary

vector summing to l. The decision set Dk associated to a decisional quantizer with k ≤
2Nt − 1 decisions can be constructed as follows iteratively :

Dk =

{
{Q1} Q1 ∈ D, k = 1

Dk−1 ∪ {Qk} Qk ∈ D\Dk

(3.44)

The singleton set is chosen among all possible sets randomly. Consider the optimality
of the decision set, we choose the maximum total power Pmax = P ∗ s.t.

P ∗ ∈ arg max
P ,Q∈D

EH

[
fMIMO (Q; H)

]
(3.45)

P ∗ can be found by comparison through Monte-Carlo simulation. One can imagine that
finding the analytical decisional quantizer for EGT will be very difficult if the dimension of
the system is huge. Thus we propose to use a FNN to mimic the real decisional quantizer.

The simulation results of the MIMO system considered are presented in Fig. 3.5 (Nt =
4 and Nr = 1 (MISO), R0 = 106 bits/s, σ2 = 5mW, P0 = 10mW and Pmax = 12mW.)
and in Fig. 3.6, (Nt = 3 and Nr = 2 (MIMO), R0 = 106 bits/s, σ2 = 5mW, P0 = 10mW
and Pmax = 10mW), respectively. Here, we choose the 3-hidden-layer FNN with fully
connected layers comprising 20 neurons each and using the logistic activation function
defined as sig(x) = 1

1+exp(−x)
. The number of neurons in input layer for Eq. 3.42 is given
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by 2NtNr because the input vector contains the real part and the imaginary part of
each entry of the transfer channel matrix. We use the Levenberg Marquardt Algorithm in
[17] to update the weight matrix. In this FNN model, 100000 Monte-Carlo realizations
will be divided into three phases : 70000 realizations for the training phase, 15000 for
the validation phase and 15000 realizations for the test phase. The structure of FNN is
illustrated in Fig. 3.4.

Figure 3.4 – Feed-forward neural network model for MIMO system (Nt = 3 and
Nr = 2). Number of neurons in input layer is 2NtNr.

Given the same parameter samples, a k-means quantizer which aims at minimizing
the mean square error between the original signal and the quantized signal, is taken as
the reference. All the realizations are divided into k regions and each region is assigned
with the optimal decision in Dk found through exhaustive research. It is worth noting
that this k-means approach can be seen as a special case implementing the basic GOQ
algorithm by taking f (x; g) = −‖x− g‖2.

In both two cases, the goal-oriented quantizer outperforms than the k-means quantizer.
In MISO scenario, NN can achieve very close performance to the optimal average utility
in several decision set (Dk, k = 2, 5, 6, 7 and k ≥ 9) while the average utility found
through k-means quantizer is trite. In MIMO scenario, the performance of NN is still
better than k-means quantizer. The utility loss introduced by the FNN is perhaps owing
to the scarcity of training.
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Figure 3.5 – Average utility v.s. number of decisions for Nt = 4 and Nr = 1 (MISO).
Here σ2 = 5mW, P0 = 10mW and Pmax = 12mW. FNN is better than k-means quantizer

and close to theoretical optimum.
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Figure 3.6 – Average utility vs. number of decisions for Nt = 3 and Nr = 2 (MIMO) ,
σ2 = 5mW, P0 = 10mW and Pmax = 10mW. FNN is better than k-means quantizer and

close to theoretical optimal utility.

Comparison between energy efficiency and sum-rate capacity

We consider the following EE function :

fMB (p; g) =

∑N
i=1 exp

(
− cσ2

pigi

)
∑N

i=1 pi
(3.46)

where i ∈ {1, 2, . . . , N} is an index which might represent the band, channel, or
user index ; gi > 0 is the channel gain of i-th channel, p = (p1, . . . ,pN) is the power
allocation vector ; g = (g1, . . . , gN) is the vector channels used by transmitter i ; there is
no interference appears between bands, where σ2 is the received noise variance and c ≥ 0
is a parameter related to spectral efficiency (see[71]). Apart from the EE function, we
consider the sum-rate capacity as follows :

fSR(p; g) =
N∑
i=1

log(1 +
pigi
σ2

) (3.47)

For EE defined in Eq. 3.46, the number of input neurons for Eq. 3.46 is obviously the
number of bands N . Fig. 3.7 illustrates the decision (quanization) regions for the following
simulation configuration : there are two bands in the system (N = 2), every band has
only two choices to choose : Pmin = 2mW, Pmax = 3mW. The noisy level is set to be
σ2 = 10mW and the constant is assumed to be c = 1. The channel gain gi in band i is
assumed to be exponentially distributed, i.e., its p.d.f. is φ (gi) = exp (−gi). There follows
our intuitive explanation. Let us take the orange region (Pmin, Pmax) as an example. In
this region, channel gain g1 is smaller than g2 which means transmission in band 1 is
less efficient than band 2, therefore the transmitter chooses the policy (Pmin, Pmax). Same
principle can be applied to the 3 remaining regions.

30



Model-Free Goal-Oriented Quantization for Unknown Utility Function

Figure 3.7 – Quantization regions of goal-oriented quantizer for 2-band energy
efficiency problem. When one channel is dominant, it is better to transmit with higher
power levels in that dominant channel. Otherwise, both transmitters choose the same

transmit power.

To compare the performance of goal-oriented quantizer by fuond by FNN, we define
the relative optimality loss introduced by quantization as following :

σ (%) = Eg

[∣∣∣∣f ? (g)− fNN (g)

f ? (g)

∣∣∣∣]× 100 (3.48)

where fNN (g) is the performance achieved by our learning approach. Besides, to com-
pare the influence of the compression between the system with different objectives, Define
the compression rate γ (σ) of a given relative optimality loss σ as γ (σ) := M(1%)

M(σ)
, where

M (σ) is the required number of decisions such that the relative optimality loss σ can be
satisfied.

Fig. 3.8 illustrates the compression rate γ in function of optimality loss for two bands
in two cases. With the two different utilities, it can be seen that the compression rate
increases as the optimality loss grows. For the energy efficiency problem, the compression
rate decreases slowly while the optimality loss decreases and the loss is always greater
than 1%. As for the sum-rate capacity, the compression rate declines rapidly while the
optimality loss reduces and the optimality loss is always less than 1%. It can be observed
that it is easier to compress the parameter g for the sum-rate problem than the energy
efficiency in two-band scenario, i.e., the energy efficient function is more sensitive to the
variable g. This can be explained by the fact that the explicit optimal decision function
of sum-rate, well known as the water-filling solution, is more concise than the solution of
the energy efficiency problem, which is inversely proportional to parameter g. The diffe-
rence in compression difficulty between sum-rate capacity function and energy efficiency
confirms that fine quantization could be extravagant for some scenario to achieve a certain
optimality loss.
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Figure 3.8 – The compression rate as a function of the relative optimality loss (%)for
single user 2-band scenario for energy efficiency and sum-rate capacity. Compressing the
channel gain for sum-rate capacity function is easier than compressing the channel gain

for energy-efficiency function.

3.4.3 Finding optimal decision set

The objective of this subsection is to find the optimal decision set D? = {d?1, . . . ,d?M}
for a goal-oriented quantizer. The basic GOQ algorithm suggests that we should solve M
Equations separately :

d?m ∈ arg max
x∈X

∫
g∈Cm

f (x; g)φ (g) dg, for ∀1 ≤ m ≤M. (3.49)

As we have explained before, the boundary of quantization regions {C}Mm=1 of a goal-
oriented is hard to determine precisely. In other words, to solve eq. 3.49 would be extremely
difficult separately. Therefore, it would be reasonable to find the optimal decision set
jointly since the average optimality loss of a goal-oriented quantizer is connected to the
decision set directly.

To make the computation tasks more convenient to express, we introduce the matrix
notation D = [d1, . . . ,dM ] constructed from the decision set D = {d1, . . . ,dM}. We will
use an evolutionary algorithm called IWO-DE to tackle the puzzle by using merely the
realizations of utility function. IWO-DE algorithm is firstly proposed in [67] by combining
Invasive Weeds Occupation (IWO) in [65] and Differential Evolution (DE) in [66] which
are essentially two evolutionary algorithms. IWO algorithm are known to be very efficient
when the search space is relatively large. Evolutionary algorithms have been widely used
in many areas with its benefits such as simple computation, robustness and etc (see [61]).
This algorithm comprises the following steps :

• Initialization : randomly choose W decision sets in the search space : D
(0)
1 , . . . ,D

(0)
W

as the primitive population. W is called the population size. D
(t)
k denotes the k-th

individual of the t-th generation.

• Reproduction : the k-th individual reproduces its offspring according to its em-
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pirical optimality loss at t-th generation L
(

D
(t)
k

)
by Monte-Carlo simulation. The

number of offspring for k-th individual at (t+ 1)-th generation S
(t+1)
k is given by :

S
(t+1)
k = υ

(
D

(t)
k

)
[SM − Sm] + Sm (3.50)

where

υ
(

D
(t)
k

)
=

L
(

D
(t)
k

)
−maxi L

(
D

(t)
i

)
mini L

(
D

(t)
i

)
−maxi L

(
D

(t)
i

) , (3.51)

SM and Sm are respectively the maximum and minimum numbers of offspring that
an individual is allowed to reproduce. Eq. 3.50 and Eq. 3.51 assure that solution
candidates with smaller OL are encouraging to produce more offspring than others.

• Spatial Dispersion : for k-th individual, its offspring obey a Gaussian distribution

O
(t)
k ∼ N

(
D

(t)
k , [µ

(t)]2
)

. Every individual reproduces its offspring in the feasible set

till it achieves the number given by Eq. 3.50. µ(t) is the standard deviation for
every entry of D

(t)
k controlling the divergence of the dispersion. The evolution of µ(t)

through the generations is given by :

µ(t) =

(
T − t
T

)ρ [
µini − µend

]
+ µend (3.52)

where ρ is called the nonlinear index and µini and µend stands for the initial and final
standard derivation, respectively. In general, we should have µini � µend in order to
avoid dropping into a local maximum and µend → 0 to increase the accuracy near
the potential global optimum.

• Competitive Exclusion : sort all the offspring together with their parental in-
dividuals in ascending order according to their empirical loss. Then select the
W first offspring as the original material for next generation : Φ

(t)
1 , . . . ,Φ

(t)
W s.t.

L
(

Φ
(t)
1

)
≤ · · · ≤ L

(
Φ

(t)
W

)
.

• Mutation : there are many different differential evolutionary strategies for creating
mutations. For example, for the k-th potential individual, we create its possible

mutant by : Ψ
(t)
k = Φ

(t)
idx1

+ F0

(
Φ

(t)
idx2
− Φ

(t)
idx3

)
, where F0 is called the scaling factor.

And we further choose idx1 = 1 (the best one), idx2 = rand (2,W ) and idx3 =
rand (2,W ) with idx2 6= idx3 and idx2, idx3 6= k.

• Crossover : for the l-th decision of the k-th individual at next generation d
(t+1)
k,l ,

we let

d
(t+1)
k,l =

{
ψ

(t)
k,l , yl ≤ Cr or l = Ir

φ
(t)
k,l, otherwise

where d
(t+1)
k,l , ψ

(t)
k,l and φ

(t)
k,l is the l-th decision of D

(t+1)
k ,Ψ

(t)
k and Φ

(t)
k respectively,

yl is a random variable uniformly distributed over [0, 1], Cr is called the crossover
probability and Ir is a randomly chosen index so that the mutant decision set can’t
be identical to the original one.

Selection Operation : only mutant which reduces empirical loss, i.e., L
(

D
(t+1)
k

)
<

L
(

Φ
(t)
k

)
will be conserved. Otherwise, D

(t+1)
k = Φ

(t)
k . If the initial population is well

selected, the population of decision sets will converge to the optimal direction set
D? for a sufficiently large number of generations.
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Applications in an energy-efficient MIMO systems

The considered communication scenario comprises a multi-antenna transmitter which
has to adapt the transmit power p ∈ [0, Pmax] and its unit beamforming vector ω ∈ CNt×1

(‖ω‖ = 1) to the realization of the Nr ×Nt channel transfer matrix H, Nt and Nr being
respectively the number of transmit antennas and receive antennas. The action or decision
of the transmitter is thus given by the pair x , (p,ω). The objective of the transmitter is
to maximize its energy-efficiency by adapting its decision to the channel. A very common
measure of energy-efficiency is given by the ratio of a benefit function (e.g., the packet
success rate or a measure of the transmission rate) to a cost power (e.g., an increasing
function of the radiated power). The assumed utility function has the following form :

f i (x; H) :=
V i (x; H)

C (x)
(3.53)

where V i(x; H) is the transmission benefit obtained from choosing decision x over
a channel matrix H and C (x) the transmission cost of using decision x ; i stands for
the considered case index, the two cases being defined just next. Indeed, for the benefit
function, we will use one of the following functions :

• Case I benefit function (channel capacity ) : V I (p,ω; H) = log
(

1 + p‖Hω‖2
σ2

)
(see

e.g., [30][58]).

• Case II benefit function (packet success transmission rate) : V II (p,ω; H) =

R0 exp
(
− cσ2

p‖Hω‖2
)

introduced in [30], where c > 0 is a constant related to the

spectral efficiency of the system and R0 the raw transmission rate.

A well-admitted transmission cost function is as follows [63] :

C (x) = C(p,ω) = p+ P0 (3.54)

where P0 represents a static cost such as the circuit power or the computation power.

Let respectively denote by M1 and M2 the cardinalities of the power level set and
the beamforming vector set. These sets are denoted by : P = {p1, . . . , pM1} and Ω =
{ω1, . . . ,ωM2}. We define the required amount of feedback information to take a decision
by Bi = log2Mi, which expresses in bit per decision.

In 5G networks, one desirable scenario will be to be able to maximize energy-efficiency
under some QoS constraints e.g., for URLLC [55, 56]. Obviously, the choice of the trans-
mission decision set can have an impact on the QoS. This is the reason why we should
introduce a transmission reliability constraint for the forward communication link (trans-
mitter → receiver) and a delay constraint for the reverse of feedback communication link
(receiver→ transmitter). If the data rate from the transmitter to the receiver has to exceed
the minimum rate r0, this induces a constraint on the benefit function V i. Equally, if the
maximum delay to transfer the channel state information from the receiver to the trans-
mitter is t0, the sum information-rate therefore has to meet the constraint B1 +B2 ≤ Rt0,
R being the available feedback channel rate. Having introduced these notations and made
these observations, the decision set OP writes in the case of energy-efficient power control
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and beamforming as :

max
B1,B2,P,Ω

EH

[
V i (p̂?P (H) , ω̂?Ω (H) ; H)

p̂?P (H) + P0

]
s.t. − EH

[
V II (p̂?P (H) , ω̂?Ω (H) ; H)

]
+ r0 ≤ 0

B1 +B2 −Rt0 ≤ 0 (3.55)

where
ω̂?Ω (H) ∈ arg max

ω∈Ω
‖Hω‖2 (3.56)

and

p̂?P (H) ∈ arg max
p∈P

V i (p, ω̂?Ω (H) ; H)

p+ P0

. (3.57)

The conventional approach consists in quantizing the channel state and reporting the
corresponding information to the transmitter. In most real systems and existing standards,
uniform quantization is implemented. Here, we consider a more advanced quantizer na-
mely, the Lloyd-Max (LM) quantizer in [68]. Essentially, the LM quantizer consists in
determining the quantization cells and representatives in an iterative manner to minimize
the distortion E [‖g − ĝ‖2], ĝ being the quantized channel. This quantized information
is then used by the transmitter to maximize its utility function f i(x; g). We will refer
to this algorithm as the “best conventional approach in SOTA”. Moreover, the random
vector quantization (RVQ) scheme should be taken as reference as well which is proved
to be near-optimal for moderate information feedback of capacity maximization problem
in [48]. For the simulation setting, we will consider a typical scenario defined by : Nt = 4 ;
Nr = 1 ; r0 = 3×105bps, t0 = 0.01s ; R0 = 106bps ; c = 0.1 ; P0 = 0.5mW ; Pmax = 1mW ;
σ2 = 1mW. Similarly, for the the IWO-DE algorithm, a typical setting (in coherence with
related evolutionary algorithms) will be assumed as in Table 3.1.

Parameters Value

Population size W 10
number of generations T 400

max number of offspring SM 20
min number of offspring Sm 10

Non-linear index γ 2.5
Initial standard derivation µini 1

Nt

Final standard derivation µend 1
200Nt

Scaling factor F0 0.9
Crossover probability Cr 0.9

Table 3.1 – Parameter setting for IWO-DE algorithm

In order to clarify the impact of the power and beamforming separately, we consider
two following different situations :

1. When the influence of Bi is assessed, Bj (j 6= i) is fixed.

2. We fix the total number of quantization bits B = B1 +B2.

First of all, we fix B1 = 4 bits and analyze the influence of B2 to the relative optimality
loss. To compare our approach with the conventional approach, Fig. 3.9 illustrates the
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3.4.3 - Finding optimal decision set

required amount of information for beamforming quantization to achieve a given relative
optimality loss of case I utility function. For a given same optimality loss, remarkably,
one can observe that with our approach one can reduce by a factor 2 the amount of
beamforming bits with respect to the LM quantizer and random vector quantization. In
addition, if the number of bits allocated to beamforming quantization is quite small, the
relative optimality loss remains acceptable for the proposed approach while it is large for
other existing solutions. Moreover, to explore the impact of utility function on beamfor-
ming quantization. Fig. 3.10 compares the required B2 to achieve a given optimality loss
between the EE for channel capacity and the EE for packet success transmission rate
(PSTR). By implementing the proposed quantization scheme, the minimum number of
bits for EE of PSTR is larger than the EE for channel capacity for achieving the same
performance which may suggests that the EE for PSTR is slightly sensitive to the quality
of quantization than EE of channel capacity and thus worth more feedback bits and better
beamforming code book design techniques.
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Figure 3.9 – Required bits of quantization v.s. relative optimality loss for Case II
(packet success transmission rate as benefit of energy efficiency) with B1 = 4

bits/decision. The benefits from using our algorithm is very apparent on this figure. For
example, for an optimality loss of 5% between the perfect CSI case and the finite-rate

feedback case, the amount of information needed to perform beamforming can be
reduced by around 2 by moving from the best state-of-the-art approach to the proposed

approach.

To see the influence of the power level quantization, we fix the bits of beamforming
quantization as B2 = 6 and vary the bits for power level feedback from 1 to 8. Fig.
3.11 shows the evolution of required amount of information for power quantization as
function of relative optimality loss. For EE of channel capacity , different from EE of case
II, increasing the number of bits for power quantization have less important impact on
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performance of the system. This improvement is always modest while the improvement is
firstly sharp when few bits are available but then becomes modest with enough number of
bits provided for EE of PSTR. Thus if the bits for beamforming quantization are sufficient
even one bit feedback information about power provides acceptable performance for EE
of case I. Up to now, We can conclude that EE of PSTR is sensitive to both the quality
of beamforming quantization and power quantization combing the observation in Fig. 3.9
and Fig. 3.10. We need to further find the optimal bits allocation policy for EE of PSTR.

0 5 10 15 20 25 30 35

Relative Optimality Loss (%)

1

2

3

4

5

6

7

8

R
eq

u
ir

ed
 a

m
o

u
n

t 
o

f 
in

fo
 (

b
it

s/
d

ec
is

io
n

)

 PSTR-EE

Capacity-EE

Figure 3.10 – Required bits of quantization v.s. relative optimality loss for utility
function of case I (capacity as benefit function of EE) and case II (packet success

transmission rate as benefit function of EE) with B1 = 4 bits/decision. Here, it is seen
that considering the packet success rate as benefit function of EE requires more

feedback resources than using the capacity function. Remarkably, it is possible to
quantify this extra amount of resources..

According to the precedent observations, finding a proper allocation policy between B1

and B2 is necessary. In order to determine the optimal allocation of bits for EE with PSTR
as the benefit function, we assume that the total quantization bits are fixed so that the
transmitter merely seeds the essential information back to the receiver. We fix the total
number of bits for quantization as B = 8 (exactly one byte). Fig. 3.12 shows the evolution
of energy efficiency of case II as function of quantization bits used for beamforming. To
achieve the best performance, among 8 total quantization bits, we should allocate 3 bits for
beamforming quantization and 5 bits for power quantization. Moreover, for all methods,
sufficient number of bits should be conserved to beamforming quantization by observing
the sharp decay of average utility for 1 ≤ B2 ≤ 3. Finally, even no information provided
for power level (B2 = 8), the energy efficiency achieved by our proposed approach and
RVQ is acceptable which shows the importance of quantizing directly on the decision itself
instead of quantizing the CSI in the conventional approach.
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Figure 3.11 – Required bits of quantization v.s. relative optimality loss for utility
function of case I (capacity as benefit function of EE) and case II (packet success

transmission rate as benefit function of EE). Here, with B2 = 6 bits/decision, the curves
are much steeper, indicating that the choice of the number of feedback rate is more

critical in this regime as soon as small optimality losses are desired.

3.4.4 Conclusions

In this section, we try to solve the goal-oriented quantization problem when only the
realizations of cost (utility) functions are allowed to use. The problem is divided into two
steps. To find optimal quantization region fixing the decision set, a feed-forward neural
network is proposed to do so. When applied to the problem of power allocation, it is seen
that quantizing the channel gains very roughly only induces a very small optimality loss
w.r.t. the case where the gains are perfectly known to the transmitter when the utility is
the transmission rate. However, for energy-efficiency, channel gains need to quantized more
accurately. Using a classical distortion-based quantization scheme (k-means quantization)
for this is shown to lead to a quite significant performance loss (about 30%), showing
the potential of our approach. To better assess the potential of the proposed approach,
it should be generalized to goal-oriented source coding and goal-oriented channel coding.
Also, it allows one to reconsider the overarching assumption made in resource allocation
problem, that is the resource allocation policy is designed by assuming perfect knowledge
of the parameters. Mathematically, a deep study should be developed to identifying the
properties of the utility function which represents its sensitivity to being maximized under
imperfect knowledge of its parameters.

To find optimal decision set, an evolutionary algorithm called IWO-DE algorithm
which combines two classic evolutionary algorithms is used. A problem of finding jointly
the optiaml decision set of power level and beamforming vectors for energy-efficient com-
munications is taken as an example of our proposed method. While the problem is rela-
tively easy to solve when decisions can be continuous, the problem needs to be formu-
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Figure 3.12 – Energy efficiency v.s. bits of quantization for beamforming (B2) for case
II (packet success transmission rate as benefit function of EE). The conventional

approach is sensitive to the available amount of feedback information for beamforming
when power level quantization is rough while the proposed approach offers good

performance for a large range of feedback rates.
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lated properly when the decision set is imposed to be finite. Our approach is shown to
outperform the best state-of-the-art techniques such as Lloyd-Max algorithm and RVQ.
Obviously, our approach needs to be explored and developed further. In particular, when
the system dimensions increase, complexity issues need to be considered. When there is
interference, the proposed framework needs to be extended. In the presence of interactions
between the decision-makers, other issues such as Braess’s paradox may arise and make
the problem even more challenging.

40



4
High Resolution Analysis of Goal-Oriented

Quantization

In this chapter, the goal-oriented qunatization is studied under high-resolution regime.
Our approach is to use high-resolution quantization theory in a large rate case, assuming
that the probability density of the input is approximately constant across any particular
input bin. This approximation provides tractable equations for the performance, and
could facilitate the characterization of the relationship between the performance and the
quantization. The scalar case and the vector case are treated separately. For scalar case,
the proposed new approximate formula of optimality loss leads to a new quality defined as
value density representing the importance of parameter. We introduce a new quality called
normalized optimality loss when comparing the hardness of quantization for different
cost functions. By merely approximating this quality in high resolution regime, we are
capable to determine the hardness of quantization for different utility functions without
performing real simulations. For vector case, a cell-independent approximated formula for
optimality loss is no longer possible since the optimal tessellating cell shape is unknown.
Nevertheless, by admitting the Gersho’s conjecture, an upper bound and lower bound are
derived for optimality loss when the dimension of parameter is smaller than the dimension
of decision variable. Moreover, we propose a new algorithm which iteratively updates the
representatives based on the eigenvalue approximation of the optimality loss. Proposed
algorithms could be extended to cost function with constraints as well.

4.1 Motivation and Related Works

In previous chapter, we have provided a model-free approach for goal-oriented quanti-
zation where only the value of utility function is known while other information is missing.
The advantage of this approach is its independence of choice of utility function and its
ability of gradual learning on the utility function. However, this advantage leads to a
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serious drawback as well. The learning essence of this approach prevents us from deeply
understanding the difference between utility function since no explanation is given for
energy efficiency being much harder to be quantized than sum-rate capacity. Moreover,
this example shows that the regularity properties of utility function have at least huge
impact on the compressibility of cost function even if not decisive. Therefore, it is rea-
sonable to take the regularity property into account to design the optimal goal-oriented
quantizer. Fortunately as we will show in this chapter the impact of regularity proper-
ties of utility function can be easily characterized in high resolution regime. Another
fact motivating us to start our theoretical analysis in high-resolution regime is inspired
from conventional quantization minimizing the squared-error measure. Before going into
details, we briefly recall some basic discovery for high-resolution quantization theory. In
[20], Bennett first applied this approximation in developing a system performance formula
for scalar quantizers, referred to as Bennett’s integral. Specially for vector quantization,
Gersho’s paper [22] extended Bennett’s work to the vector quantization and introduced
lattice vector quantization to achieve the asymptotically optimal quantizer point density
for entropy-constrained vector quantization for a random vector with bounded support. In
that paper, Gersho also made the famous conjecture on tessellation, which we presume its
correctness in this manuscript. Recently, this approximation is also used in several signal
processing applications. [38] considers the development of a general framework for the
analysis of transmit beamforming methods in multiple-antenna systems with finite-rate
feedback. Tight lower and upper bounds of the average asymptotic distortion are derived
by extending the vector version of the Bennett’s integral. A characterization of the op-
timal quantizer through its interval density and an analytical expression for the Fisher
information are obtained in [39]. Inspired by the achievement in these works, we resort to
high-resolution quantization theory to characterize the optimality loss induced by GOQ,
and exploit these results obtained in the high resolution regime to understand the re-
lationship between the goal and the goal-oriented quantizer in general cases. Through
out this chapter, cost functions are assumed as the objective of the GOQ for notation
conventions.

4.2 Scalar High-Resolution Quantization

To start with, we consider the scalar case where d1 = d2 = 1. We denote µ {·} the
Lebesgue measure. The interior and the boundary of a set is denoted as int (·) and bd (·)
respectively. To make our problem traceable, the following assumptions are made :

1. Cost function f(x; g) has partially derivative w.r.t. x for order K ≥ 2.

2. ψ (g) is differentiable and µ
{
g : dψ(g)

dg
= 0
}

= 0.

3. ∀g ∈ G, ψ (g) ∈ int (X).

4. For ∀i ≤ K ,

∫
g∈G

(
dψ(g)

dg

)i
∂if(ψ (g) ; g)

∂xi
φ(g)dg < +∞.

Assumption (2) actually excludes all cost functions with independent decision of parame-
ter or finite optimal decision space. Assumption (3) is to limit our discussion in uncons-
trained case in the first time. The extension to constrained case will be discussed in the
end of this section. For any point g, define its distance to the closest quantization point
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by ∆(g) :

∆(g) = min
1≤m≤M

‖g − zm‖ (4.1)

At the high resolution regime, i.e., the number of representatives, M , tends to infinity
(M →∞) we are able to introduce a density function ρ(g), which represents the density
of the representatives :

ρ(g) = lim
M→+∞

1

M∆(g)
(4.2)

As a consequence, the number of representatives in any interval [a, b] can be approximated

by M

∫ b

a

ρ(g)dg. We further define C (k) = 1
k!(k+1)2k

, optimality loss in high-resolution

regime can be thus approximated by

L (Q; f,R, φ)

=
M∑
m=1

∫
g∈Gm

[f (ψ (zm) ; g)− f (ψ (g) ; g)]φ (g) dg

(a)
=

M∑
m=1

∫
g∈Gm

(ψ (zm)− ψ (g))k
1

k!

∂kf(x; g)

∂xk
|x=ψ(g)φ(g)dg + o

(
M−k)

(b)
=

M∑
m=1

∫
g∈Gm

(zm − g)k
(

dψ(g)

dg

)k
1

k!

∂kf(ψ(g); g)

∂xk
φ(g)dg + o

(
M−k)

(c)
=

∫
g∈G

∆
k
(g)

(k + 1)2k

(
dψ(g)

dg

)k
1

k!

∂kf(ψ(g); g)

∂xk
φ(g)dg + o

(
M−k)

(d)
=
C (k)

Mk

∫
g∈G

ρ
−k

(g)

(
dψ(g)

dg

)k
∂kf(ψ(g); g)

∂xk
φ(g)dg + o

(
M−k)

(4.3)

where k is defined as

k , min

{
i ∈ N

∣∣∣∣∀g, ∂if(x; g)

∂xi
|x=ψ(g) 6= 0 a.s.

}
(4.4)

(a) follows from the fact that the higher order terms in the Taylor expansion of
(f(ψ(zm); g) − f(ψ(g); g)) are negligible to the k-th order term with o (·) representing
the infinitesimal ; (b) follows from the fact that the higher order terms in the Taylor
expansion of (ψ (zm)− ψ(g)) are negligible to first-order term. (c) follows from the fact

E[(g− zm)k|g ∈ Gm] can be approximated by ∆
k

(k+1)2k
(see [20][21]) and the sum is approxi-

mately equal to the integral when M tends to infinite due to the definition of a Riemann
integral ; (d) follows results of high resolution quantization.

Remark 4.2.1. It is generally assumed that integer k be even. In fact, the first reason
is that most cost functions have even k since we are solving a minimization optimization
problem. The second reason is that odd k has a very smaller influence to L (Q; f,R, φ)
compared to even k.
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4.2.1 Minimal optimality loss in high resolution regime

To find the optimal density ρ? minimizing the optimality loss for given φ(g) and cost
function f(x; g), we introduce a new function called value density (VD) :

pf (g) ,

(
dψ(g)

dg

)k
∂kf(x; g)

∂xk
|x=ψ(g)φ(g) ≥ 0, (4.5)

and normalized value density (NVD) due to assumption 4) :

pf (g) ,
pf (g)∫

g∈G
pf (g) dg

(4.6)

Then we resort to the Hölder’s inequality :∫
p

1
k+1

f ≤
(∫

pfρ
−k
) 1

k+1
(∫

ρ

) k
k+1

(4.7)

knowing

(∫
ρ

) k
k+1

= 1, it can be inferred that

∫
pfρ

−k ≥
(∫

p
1
k+1

)k+1

, with the

equality if and only if pfρ
−k = C1ρ with C1 > 0. Hence the optimal density function of

representatives can be written as :

ρ?(g) =

[(
dψ(g)

dg

)k
∂kf(ψ(g);g)

∂xk
φ(g)

] 1
k+1

∫
g∈G

[(
dψ(g)

dg

)k
∂kf(ψ (g) ; g)

∂xk
φ(g)

] 1
k+1

dg

(4.8)

Therefore, supposeM = 2R, when R is large, the approximate optimality loss L (Q; f,R, φ)
can be written as :

L̂ (Q; f,R, φ)

=
C (k)

2kR

∫
g∈G

[(
dψ(g)

dg

)k
∂kf(ψ (g) ; g)

∂xk
φ(g)

] 1
k+1

dg

k+1

(4.9)

Note that ∂f(x;g)
∂x
|x=ψ(g) = 0 (without considering the constraints on decision variable x),

so we should always have k ≥ 2. For the sake of clarity, it is assumed that k = 2 in
the rest of section except otherwise stated. The form of Eq. 4.8 is similar to the high-
resolution approximation of MSE distortion whose optimal density is proportional to
φ

1
3 (g) while the regularity of cost function also impacts the optimal density of represen-

tatives. For example, if there exist two parameters g1, g2 s.t. pf (g1) ≥ pf (g2) for cost
function f , then more quantization bits should be allocated to the neighbourhood of g1

than g2. This is the reason for which the function pf (g) is called value density. Define

qf (g) =
(

dψ(g)
dg

)k
∂kf(ψ(g);g)

∂xk
, then one has pf (g) = qf (g)φ (g). Obviously if qf (g) > 1,

then density of representatives should be denser compared to the case of distortion-like
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cost functions. Moreover, the function qf (g) could represent the intensity of fluctuation of
cost function f (x; g) at point g. And the optimal density of representatives found in Eq.
4.8 could be seen as the twisted version of usual density of representatives for distortion-
oriented quantization. We take the following family of cost functions as an example to

help understand some conceptions above : h (x; g) = − exp(− c
xg )

xη
with c > 0 and η ≥ 2.

Assume that g is exponential distributed with p.d.f., i.e., φ (g) = 1
v

exp
(
− g
v

)
with v > 0,

one can easily verify that ψ (g) = c
ηg

, h? (g) = −
(
ηg
ce

)η
and k = 2 as expected, then one

has

ph (g) =

(
dψ(g)

dg

)2
∂2f(x; g)

∂x2
|x=ψ(g)φ(g)

= −
(

dψ(g)

dg

)2
η

ψ2 (g)
h? (g)

=
ηη+1

cηeη
gη−2φ (g) (4.10)

Notice that if η = 2, the obtained NVD is exactly the p.d.f., i.e., ph (g) = φ (g). This
coincidence entails that even MSE quantizer could be optimal in high-regime for non-
trivial cost function. If one take η = 3 for example, then one has g? = ν maximizing
ph (g). And p (g) is increasing for 0 ≤ g ≤ g? then decreasing for g ≥ g?. Therefore
the density of representatives will be completely different from the situation where larger
parameter g leads to fewer representatives for distortion-like cost functions. For η ≥ 2
approximated optimality loss for this family of cost functions can be expressed as :

L̂ (Q;h,R, φ) =
(3v)η−2

24

ηη+1

eηcη
Γ3

(
η + 1

3

)
2−2R (4.11)

where Γ (·) is the famous Gamma function. Back to the approximated optimality loss
in Eq. 4.9, one can observe that, in high-resolution regime, the scale of approximated
optimality loss L̂ (Q;h,R, φ) is 2−kR independent of probability distribution. Therefore if
one wishes to compare the hardness of quantization for different cost functions, functions
with larger exponent k should be harder to quantizer than the one with smaller exponent.
Moreover, if two different cost functions have the same exponent k, their behaviors in
high-resolution regime are basically the same.

4.2.2 Extreme cost function for fixed optimal density

We have considered the case with a given distribution φ(g) and find the the optimal
density ρ? (g) for a given cost function and the approximate optimality loss. Then a
problem arises naturally, that is, what will be the best (one minimizes the OL) and the
worst (one maximizes the OL) cost function if one always maintains the optimal density
ρ? (g). Before properly define what is the extreme cost function, we first interpret the value
density function pf (g). To have a fair comparison of cost function, we define the following
set of cost FC which contains all cost function with C > 0 as the average fluctuation :

FC =

{
f :

∫
g∈G

pf (g) dg = C

}
(4.12)
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Therefore the best cost function and the worst function are defined as :

fworst ∈ arg max
f∈FC

L̂ (Q; f,R, φ) (4.13)

and

fbest ∈ arg min
f∈FC

L̂ (Q; f,R, φ) (4.14)

According to these notations, the following propositions can be made.

Proposition 4.2.2. The worst function satisfies qf (g) = Cwφ
1
k (g) ; the best functions

satisfies qf (g) = Cbφ
−1 (g) with Cw = 1∫

g∈G
φ
k+1
k dg

and Cb = C
|G| .

Proof : See Appendix A. �

Prop. 4.2.2 actually tell us the following fact. If the average fluctuation of cost functions
are fixed in the sense of 4.12, then the value density of worst cost function should be
proportional to φ

1
k (g) while the one of best cost function should be inversely proportional

to φ (g).

It is worth mentioning that all discussion about the existence of worst (best) cost
function is given in a constructed way, i.e., if there exists a cost function f with its
corresponding optimal decision function ψ(g) satisfying those condition, then one does
find the desired cost function. In other words, above conclusions are made on the ODF
instead on cost function itself. Generally, it is hard to find all functions satisfying those
conditions while the existence of such function is easy to prove. For example, we define
the following polynomial function of x :

f(x; g) =
k∑
i=1

ai (x−Ψ (g))i , (4.15)

where a1 = k! and ai ∈ R, for 2 ≤ i ≤ k. Function Ψ (g) is defined as :

Ψ (g) =

(∫
G

φ
k+1
k dg

)− 1
k

Φ (g) (4.16)

with Φ (g) the primitive function of φ
1
k2 (g). Obviously function in Eq. 4.15 belongs to

the category of the worst cost function. For the best cost function, similar analysis can
be done as well.

4.2.3 A simple classification of cost functions

In Sec. 4.2.1, we have roughly compared the hardness of quantization with same ave-
rage fluctuation for different cost functions by their behaviors in high-resolution regime.
However it could be not rigorous enough since an universal metric for comparing different
cost functions is missing. Our claim is based on the defect of two widely-used quantity
of optimality loss : absolute OL and relative OL defined as the ratio of absolute OL
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over the optimum. 1 Therefore, to investigate which kind of cost functions are easily to
be compressed, we first introduce an universal metric named normalized optimality loss
(NOL) for different cost functions 2. The proposed metric can be seen as the ratio between
the optimality loss induced by R quantization bits and the optimality loss without using
quantization resource (0 bit), and can be expressed as follows :

S (Q; f,R, φ) =
L (Q; f,R, φ))

Eg [f (x; g)− f (ψ (g) ; g)]
(4.17)

where x is the optimal decision minimizing the absolute optimality loss without additional
instantaneous information of g, i.e.,

x ∈ arg min
x∈X

Eg [f (x; g)− f ? (g)] (4.18)

A higher value of NOL S (Q; f,R, φ) indicates that the function f needs more quantization
bits to achieve the same optimality loss, and thus harder to be quantized. For two cost
functions f and h and fixed rate R, if S (Q; f,R, φ) < S (Q;h,R, φ), then we say f is easier
to compress than h for rate R and p.d.f. φ (g) ; If that holds for any rate R, then we
say f is easier to compress than h for p.d.f. φ (g) . Equipped with NOL, one is able to
fairly compare two cost functions. One could easily verify that NOL is invariant for linear
transformation of cost function, i.e., for ∀a, b ∈ R with a 6= 0, one has

S (Q; af + b, R, φ) = S (Q; f,R, φ) (4.19)

Moreover, assume two functions f, h and a constant a s.t. Xf = Xh− a and h(x+ a; g) =
f(x; g) then we have S (Q; f,R, φ) = S (Q;h,R, φ). In scalar high resolution case (R large),
NOL can be approximated by :

Ŝ (Q; f,R, φ)

=
C (k)

2kR

∫
g∈G

((
dψ(g)

dg

)k
∂kf(ψ (g) ; g)

∂xk
φ(g)

) 1
k+1

dg

k+1

∫
g∈G

[f (x; g)− f (ψ (g) ; g)]φ (g) dg
(4.20)

Using Eq. 4.20, we can compare the hardness of compression for different cost functions
without performing simulations for them.

Example 1. Consider three energy efficiency cost function fPSTR(x; g) =
exp (− c

gx)
x

,

fBER (x; g) = (1−exp(−gx))N

x
and fSUB (x; g) = log(1 + gx

σ2 ) − bx, where PSTR means pa-
cket success transmission rate ; BER stands for bit error rate and SUB means that the
energy efficiency is defined as the form of subtraction. Constant c,N, σ2, b represents the
spectre efficiency, number of packets, variance of channel noise and a factor showing the
importance of energy consumption.

1. The first issue of these two metrics is that they are not invariant for linear transformation of the
cost function. Second reason for abandoning relative optimality loss is that it can not be applied to
distortion-like cost function, e.g., f (x; g) = (x− g)

2
with f? (g) ≡ 0 which leads to a infinity.

2. Obviously NOL can not be applied to cost functions with independent decision of parameter. We
treat their NOL as zero to show that quantization for those functions are useless.
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4.2.3 - A simple classification of cost functions

Assuming the power budget is sufficiently large and the distribution φ follows a
uniform distribution over [ε, 1] with ε→ 0, the comparison can be shown in the following
table : According our approximation, NOL in high resolution scalar case could be ranked

Cost function ODF ψ (g) NVD p(g) NOL

log (1 + 10gx)− x [1− 1
10g

]+ 1
333g4

0.44C(2)
22R

(x− g)2 g 2g
1−ε2 24C(2)

22R

exp(− 1
gx

)

x
1
g

1
g ln(1/ε)

68.22C(2)
22R

exp(− 5
gx

)

x
5
g

1
g ln(1/ε)

68.22C(2)
22R

exp(− 10
gx

)

x
10
g

1
g ln(1/ε)

68.22C(2)
22R

(1−exp(−gx))10

x
3.6150
g

1
g ln(1/ε)

101.54C(2)
22R

(1−exp(−gx))50

x
5.6466
g

1
g ln(1/ε)

125.63C(2)
22R

(1−exp(−gx))100

x
6.6746
g

1
g ln(1/ε)

136.08C(2)
22R

Table 4.1 – Comparison of different cost functions

as EE-BER (large number of packets) > EE-BER (small number of packets) > EE-
PSTR > MSE > EE-SUB. Specifically, EE in form of subtraction is much easier to be
quantized than other cost functions. It is worth mentioning that above conclusion only
holds for uniform distribution. For other probability distribution φ (g), one could even have
contrary conclusion. Before ending this section, we discuss a bit about how to extend our
current framework to compact constrained decision space.

Remark 4.2.3. We assume Xc =
[
X,X

]
, then define GM−1 = {g ∈ G s.t. ψ (g) = X}

and GM =
{
g ∈ G s.t. ψ (g) = X

}
. Since ∂kf(ψ(g);g)

∂xk
6= 0 on the boundary, there is another

second-order term if one approximate the OL :

L̂ (Q; f,R, φ)

=
M−2∑
m=1

C (k)

Mk

∫
g∈Gm

ρ
−k

(g)

[(
dψ(g)

dg

)k
∂kf(ψ(g); g)

∂xk

]
φ(g)dg

+
M∑

m=M−1

C (2)

M2

∫
g∈Gm

ρ
−2

(g)
dψ(g)

dg

∂2f(ψ(g); g)

∂x2
φ(g)dg (4.21)

However for g ∈ GM−1

⋃
GM , the optimal decision is always unique, then one always has

dψ
dg

= 0. Therefore, all previous results remain true except one only needs (M − 2) cells
instead of M cells.

4.3 Vector High-Resolution Quantization

In this section, we consider a more general case, both the parameter g to be quan-
tized and the decision x are vectors. We first introduce some notation to facilitate
the expression. The optimal decision function should be also in vector form : κ (g) =
(κ1 (g) , . . . ,κd1 (g)) as previous section. Moreover, we introduce the notation of multi
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Vector High-Resolution Quantization

index in order to represent partial derivative of cost functions easier : n = (n1, . . . ,nd1)
with nt ∈ {1, . . . , d1} for ∀t. We further define |n| ,

∑d1
t=1nt and n! ,

∏d1
t=1 nt!. With

the multi-index notation, one associate a particular partial derivative to n w.r.t. decision

variable x : Dn
xf = ∂|n|f

∂x
n1
1 ...∂x

nd1
d1

. Similar definition can be done for parameter variable g as

well. For a vector x = (x1, . . . ,xd1), we introduce multi-index power of n for a vector x :

xn =
d1∏
i=1

xnii . Matrix Hf (x; g) represents the Hessian matrix of f(x; g) w.r.t. x for given

g ; Jκ(g) is the Jacobian matrix of f(x; g) for optimal decision function κ(g). Similar to
scalar case, we make the following assumptions :

1. Cost function f (x; g) has all K-th order partial derivative w.r.t. x with K ≥ 2, i.e.,
∀n s.t. |n| ≤ K, Dn

x f exists.

2. Define K , {i ∈ N|Dn
xf (x; g) 6= 0 a.s., ∀n s.t. |n| = i}, we assume K is nonempty

and define k , minK.

3. Jacobian satisfies µ {g : Jκ(g) = 0d1×d2} = 0 with 0d1×d2 is the d1×d2 matrix contai-
ning only 0.

4. For ∀g ∈ G, κ (g) ∈ int (X).

Similarly, assumption (2) and (3) exclude all cost functions whose decision is inde-
pendent of parameter. Assumption (4) still limits our discussion in unconstrained case.
By using the Taylor expansion for multivariate functions, the optimality loss can be re-
written as :

L (Q; f,R, φ)

=
M∑
m=1

∫
g∈Gm

[f(κ(zm); g)− f(κ (g) ; g)]φ(g)dg

=
M∑
m=1

 ∑
n:|n|≤k

∫
g∈Gm

Dn
xf (ψ (g) ; g)

n!
(ψ (zm)−ψ (g))n φ(g)dg

+
∑

n̂:|n̂|=k+1

∫
g∈Gm

O
(

(ψ (zm)−ψ (g))n̂
)
φ(g)dg


(4.22)

For k > 2, it is difficult to obtain further information from Eq. 4.22. For the sake of
simplicity, we assume k = 2 as before, the optimality loss in high resolution case can be
approximated alternatively by Hessian matrix and Jacobian matrix instead of using Eq.
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4.2.3 - A simple classification of cost functions

4.22 :

L (Q; f,R, φ)

=
M∑
m=1

∫
g∈Gm

[f(κ(zm); g)− f(κ (g) ; g)]φ(g)dg

(a)
≈

M∑
m=1

∫
g∈Gm

1

2
(κ (zm)− κ (g))THf (κ (g) ; g)(κ (zm)− κ (g))φ(g)dg

(b)
≈

M∑
m=1

∫
g∈Gm

1

2
(Jκ (g) (zm − g))THf (κ (g) ; g)(Jκ (g) (zm − g))φ(g)dg

(c)
=

M∑
m=1

∫
g∈Gm

1

2
‖g − zm‖2

2e
T
mJT

κ(g)Hf (κ (g) ; g)Jκ (g) emφ(g)dg︸ ︷︷ ︸
L̂(Q;f,R,φ)

(4.23)

where and em is defined as the normalized vector of the difference, i.e., em = g−zm
‖g−zm‖2 .

(a) follows from the fact that the higher order term in the Taylor expansion of
(f(κ(zm; g)− f(κ(g); g)) are negligible to the second order term ; (b) follows from the
fact that the higher order term in the Taylor expansion of (κ(g)− κ(gm)) are negligible
to the first order term ; (c) can be verified by defining em . It is worth noting that this
expression is similar to the classical vector quantization while the p.d.f. of g is weighted by
a new coefficient related to the Hessian and Jacobian of the cost function and the norma-
lized vector em. To simplify the formula, we denote Af,κ (g) = JT

κ(g)Hf (κ (g) ; g)Jκ (g),
then one has :

L̂ (Q; f,R, φ) =
M∑
m=1

∫
g∈Cm

1

2
‖g − zm‖2

2e
T
mAf,κ (g) emφ(g)dg (4.24)

One can immediately notice that the function q (g) is the degeneration of matrix Af,κ (g)
in scalar case. However, different from scalar case, we are not able to define VD adapted to
specific cost function due to the missing of an cell-invariant integral formula which entails
the fundamental difference between scalar case and vector case. Before explain how to use
Eq. 4.23 to construct a goal-oriented quantizer, we point out another issue in vector case
of GOQ.

For scalar case, we have concentrated on finding extreme cost function for given dis-
tribution. For scalar function, even the best cost function could only leads to minimal
optimality loss being strict positive. This is not always in vector case as we will show.
Obviously if Af,κ (g) = 0d2×d2 almost surely, then the optimality loss could be considered
as approximately null. However, as we will show in the following, This condition is not
sufficient for having a real loss-less goal-oriented quantizer.

Consider the following cost function f (x; g) = x2
1x

2
2 [x2

1 + 4x2
2 − 3F 2 (g1, g2)] with

d1 = d2 = 2 and F being any scalar function s.t. |F | ≤ 1
3
. Then κ (g) =

[
F (g) ,−F (g)

2

]T

is one of ODF satisfying all assumptions. One can verify that

Hf (κ(g); g) = 2F 4

[
1 2
2 4

]
, (4.25)
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and

Af,κ (g) =

[
0 0
0 0

]
, (4.26)

finally one should have L̂ (Q; f,R, φ) = 0 for ∀g ∈ G. However if one chose ξ(g) =[
F (g) , F (g)

2

]T

as the ODF, then Af,κ (g) is no longer all null. Besides, by the symmetry

of the cost function, optimality loss introduced by κ(g) and ξ(g) should be the same, so
Af,κ (g) = 0d2×d2 is only a necessary condition. The choice for ODF should be careful to
avoid having a fake lossless cost function like the given example. The existence of real
lossless cost functions is out of the scope of this manuscript and we omit it here.

We turn back to the problem of approximating optimality loss. The main difficulty is
that the normalized vector em depends both on g and the representative zm. Therefore
the vector case can not be tackled as the scalar case where one is able to define the va-
lue density. Nevertheless, we will show similar properties could be found in vector case.
To directly approximate optimality loss defined in (4.23) is complicated, we thus resort
to some matrix properties to bound it. The accuracy of our approximation depends on
how we approximate the the term eT

mAf,κ (g) em. For a given parameter g, eigenvalues
of matrix Af,κ (g) are denoted by 0 ≤ λ1(g; f) ≤ · · · ≤ λd2(g; f) and its normalized
eigenvectors are defined as ν1(g; f), . . . ,νd2(g; f). Since the Hessian matrix Hf (κ (g) ; g)
is non negative definite due to optimum. Therefore, the term eT

mAf,κ (g) em can be up-
per bounded by maximum eigenvalue as λd2(g; f) of Af,κ (g) and lower bounded by its
minimum eigenvalue λ1(g; f), which yields the following proposition.

Proposition 4.3.1. When M = 2R is very large and d1 ≥ d2, assuming that Gersho’s
conjecture is correct, the approximate optimality loss L̂ (Q; f,R, φ) in (4.24) can be upper
bounded by

L̂sup (Q; f,R, φ) =
d2Md2

2
2
−2R
d2

(∫
g∈G

(λd2(g; f)φ(g))
d2
d2+2 dg

) d2+2
d2

(4.27)

and lower bounded by

L̂inf (Q; f,R, φ) =
d2Md2

2
2
−2R
d2

(∫
g∈G

(λ1(g; f)φ(g))
d2
d2+2 dg

) d2+2
d2

(4.28)

where Md2 is the least normalized moment of inertia of d2-dimensional tessellating poly-
topes.

Proof : See Appendix B. �

Here, we briefly recall Gersho’s conjecture [22] on the optimal block quantization
problem or optimal centroidal Voronoi tessellations (CVT). For a collection of points
zm ∈ Z = {z1, . . . ,zM} ⊂ G, we define the associated the Voronoi cell (comprosing a
Voronoi tessellation of G) of point zm as :

Cm = {g ∈ G : ‖g − zm‖ ≤ ‖g − zn‖, ∀n 6= m} (4.29)

A centroidal Voronoi tessellation means all points yk are exactly centroids of their ass-
cociated Voronoi cell. Here all parameters are set to be uniformly distributed in parameter
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4.2.3 - A simple classification of cost functions

space G. Then quantization loss can be expressed as

L (Z) =
M∑
m=1

∫
g∈Cm

‖g − zm‖2dg (4.30)

The Gersho’s famous conjecture is about the shape of optimal polytope which mini-
mizes the quantization loss. The conjecture could be formally stated as :

Conjecture 4.3.2. [Gersho,1979] There exists a polytope C with unit volume which tiles
the space with congruent copies such that the following holds : let (Zn)n be a sequence of
minimizers, with Zn ∈ arg min

|Z|=n
L (Z), then the Voronoi cells of (Zn) are asymptotically

congruent to n−
1
nC as n→ +∞.

Back to our discussion on Prop. 4.3.1, we can check that the two bounds coincide
when the cost function degenerates to the MSE, namely, fdis(x; g) = ‖x − g‖ (λ1 = 1
with this special cost function). Moreover, if the influence of each component of g is more
comparable or the dimension d2 is smaller, the difference between λ1(g; f) and λd2(g; f)
can be predicted to be smaller, resulting in a smaller gap between the proposed upper
bound and the lower bound.

As for the inertial profile, when d2 = 1, the optimum inertial profile is m(g) = 1
12

and
both the upper bound and the lower bound reduces to what we found in the scalar case.
When d2 ≥ 2, as shown in [22], Md2 can be bounded as

d2

d2 + 2
V
−2/d2
d2

≤ Md2 ≤
d2

12
(4.31)

where Vd2 is the volume of the unit radius sphere with dimension d2. Moreover, high
resolution theory need not to count solely on Gersho’s conjecture, since it has been shown
in [24][25] that the distortion can be written in the form∑

m

∫
g∈Cm

1

2
‖g − zm‖2

2φ(g)dg

= bd2

(∫
g∈G

(φ(g))d2/(d2+2) dg

)(d2+2)/d2

2
−2R
d2 (4.32)

where bd2 > 0 is independent of φ(g). Therefore, the Gersho’s conjecture can be seen a
special conjecture about bd2 . Actually, in realistic applications, above discussion could be
unsuitable due to the fact that the dimension of decision d1 is smaller than the dimension
of parameter d2 in clustering and classification problems. For example, if one wish to
cluster some graphs into different classes, then one should generally have d2 much larger
than d1 = 1. Therefore, to extend the conclusions in Prop. 4.3.1, we have the following
remark.

Remark 4.3.3. (d2 ≥ d1 scenario) The proposed bounds suit well when d2 ≤ d1. Howe-
ver, if d2 ≥ d1, it can be seen that λ1(g; f) ≡ 0 since the matrix Af,κ (g) can be proved
to be not full ranked. As a consequence, the lower bound derived in (4.28) is not tight
anymore. Hence, it is necessary to find a new tight lower bound in this scenario. To this
end, we can treat Jκ(g)em as a vector and thus

(
eT
mAf,κ (g) em

)
can be minimized if

52



Implementable Quantization Schemes

and only if Jκ(g)em aligns with the eigenvector corresponding to the smallest eigenvalue
of Hf (κ (g) ; g). Define the smallest eigenvalue of Hf (κ (g) ; g) as Λmin(g; f), the term(
eT
mAf,κ (g) em

)
can be lower bounded by Λmin(g; f)a(Jκ(g)), where a(Jκ(g)) is the ampli-

fying factor between Jκ(g)em and the least eigenvector of Hf (κ (g) ; g). Replace λ1(g, f)
by Λmin(g; f)a(Jκ(g)), the new lower bound can be derived in a similar way when d2 ≥ d1.
They upper bound is not largely affected by the dimension and the proposed approach to
derive L̂sup can be implemented either d2 ≥ d1 or d2 ≤ d1.

Before going to next section about how to use approximate optimality loss in Eq.
4.24 to find a goal-oriented quantizer. We end this section by explain how our framework
can be extended to compact constrained decision space. Consider the following family of
optimization problem parameterized by g :

min
x∈X

f (x; g)

s.t. hi (x) ≤ 0, ∀1 ≤ i ≤ N1

tj (x) = 0, ∀1 ≤ j ≤ N2 (4.33)

The feasible decision space Xc = {x ∈ X s.t. hi (x) ≤ 0, tj (x) = 0,∀i, j} is formed by
constraint functions. Without loss of generality, we assume that Xc is compact.

Remark 4.3.4. For the sake of simplicity, we still assume the existence of a smooth
optimal decision function κ (g) :

κ (g) ∈ arg min
x∈Xc

f (x; g) (4.34)

In this situation, all representatives can be classified to two sorts {zi}Mi=1 =
{z1, . . . ,zN , . . . ,zN+1, . . . ,zM} with κ (zi) = κ (zi) for 1 ≤ i ≤ N and κ (zi) ∈ bd (Xc)
for N + 1 ≤ i ≤ M . Then the optimality loss can be expressed as L = Lint + Lbd. Our
approximation remains valid for Lint, while for Lbd is a bit different, both gradient and
Hessian terms count :

L̂bd (Q; f,R, φ)

=

M∑
i=N+1

∫
Ci

‖g − zm‖2∇f(κc (g) ; g)TJκ (g) emφ(g)dg

+
M∑

i=N+1

∫
Ci

1

2
‖g − zm‖22eTm

d1∑
j=1

∂f(κ (g) ; g)

∂xj
Hκj (g) emφ(g)dg,

(4.35)

where
(
Hκj (g)

)
`,k

=
∂2κj(g)

∂g`∂gk
for 1 ≤ `, k ≤ d2 and 1 ≤ j ≤ d1. Except from the freedom of

choosing representatives, for compact constrained decision space, we have another freedom
according to Eq. 4.35 : allocation of number of representatives to the boundary and the
interior of constraint space.

4.4 Implementable Quantization Schemes

The knowledge of high-resolution optimality loss is very useful since it allows to quan-
tify the hardness of quantization different cost functions. But the problem of designing
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efficient object-based quantization scheme remains open : there is no general recipe to find
the optimal quantization scheme to minimize the optimality loss. Recently, one efficient
method is introduced in [28][29][1] where the optimality loss of the objective function can
be minimized by implementing an iterative algorithm. However, that algorithm is kind
of complicated, and might be prohibitive with a large size of data. Therefore, take the
complexity into account, a novel and simpler algorithm can be proposed here. Therefore,
to minimize the optimality loss, a Lloyd-Max-like algorithm can be implemented by solely
adapting their distribution based on what we derived in Prop. 4.3.1 .

However this way of applying results does not take full advantage of information
provided in Eq. 4.24. Without loss of generality, throughout this section, we assume that
d1 ≤ d2. This approach actually corresponds to the simplest situation where |λ1 (g; f) −
λd2 (g; f) | → 0, ∀g. To find the optimal quantizer in the sense of Eq. 4.23, it is sufficient
to use Lloyd-Max algorithm and take λ1 (g; f)φ(g) as value density. However, if the
difference between λ1(g; f) and λd2(g; f) is consistently large for some parameters g,
both upper bound and lower-bound could be inaccurate. Nevertheless, one can design an
algorithm by making full knowledge of information of cost function provided by Eq. 4.24.
The idea comes from the fact that eigenvalues and eigenvectors of Af,κ (g) could provide a
relatively accurate approximation of the term eTmAf,κ (g) em and thus simplify the formula
a lot. We introduce the approximated individual optimality loss for a parameter g with a
representative z :

df (g, z) =
1

2
(g − z)T Af,κ (g) (g − z)

=
1

2
‖g − z‖2eTAf,κ (g) e, (4.36)

where e = g−z
‖g−z‖ . Therefore, for a given parameter sample set T =

{
g(t)
}T
t=1

, a quantizer

Q characterized by its representatives {zm}Mm=1 and quantization regions {Cm}Mm=1, the

approximate optimality loss L̂ (Q; f,R, φ) =
M∑
m=1

∫
g∈Cm

df (g, zm)φ(g)dg can be Monte-

Carlo simulated by a empirical optimality loss :

L (Q; f,R,T) =
1

T

T∑
t=1

M∑
m=1

df
(
g(t), zm

)
1
{
g(t) ∈ Cm

}
(4.37)

It is crucial to point out that the quantization region Cm is defined in goal-oriented way
for function df :

Cm , {g ∈ G s.t. df (zm; g) ≤ df (zn; g), ∀n 6= m} (4.38)

For a multi-index α = (α1, . . . ,αT ) with αt ∈ {1, . . . , d2}, we introduce the following
function :

L̃ (Q,α; f,R,T) =
1

T

∑
t,m

λαt
(
g(t); f

)
‖g(t) − zm‖2

1
{
g(t) ∈ Cm

}
(4.39)

To this end, we are able to explain the basic idea of our approach. First of all, we would
like use Eq. 4.39 to approximate Eq. 4.37, if the number of representatives is sufficiently
large, intuitively the norm ‖gt − zm‖ being relatively small, the dominant difference of
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df should depends on λαt
(
g(t); f

)
especially when the matrix Af,κ (g) is ill-conditioned.

Therefore αt could somehow represent the contribution of gt to empirical loss. Obviously
the “best” quantizer Q? in this sense corresponds to the setting where all sample achieve
their minimal index jointly. It is also the “best” approximation that one can achieve by

using Eq. 4.39. For n-th iteration with α(n) and
{
z

(n)
m

}M
m=1

, one wishes to update current

quantizer to find a new one which could probably introduce less optimality loss. Each
iteration contains two steps which are not strictly independent one from each other :

1. Update multi-index α (n+ 1) from representatives
{
z

(n)
m

}M
m=1

.

2. Update representatives
{
z

(n)
m

}M
m=1

from multi-index α (n).

To make our approach easier to be understand, when we discuss about how to update
multi-index, we assume the approach for updating representatives is known and vice versa.

4.4.1 Multi-index update

Here the multi-index α(n) characterizes the optimality loss that we expect to achieve
by quantizer Q(n). In the same time, one could find another multi-index β (n) which

introduces the minimal loss when replacing L by L̃ :

β (n) ∈ arg min
γ
‖L̃
(
Q(n),γ; f,R,T

)
− L

(
Q(n); f,R,T

)
‖ (4.40)

Therefore, there is a deviation between what we expected and the actual situation :

L̃
(
Q(n),α (n) ; f,R,T

)
− L̃

(
Q(n),β (n) ; f,R,T

)
=

1

T

T∑
t=1

M∑
m=1

(
λαt(n)

(
g(t); f

)
− λβt(n)

(
g(t); f

))
‖g(t) − z(n)

m ‖2
1

{
g(t) ∈ C

(n)

m

}
We further introduce the individual deviation function µt(α(n), β(n),Q(n); f,R,T) :

µt(α(n),β(n),Q(n); f,R,T)

=
(
λαt(n)

(
g(t); f

)
− λβt(n)

(
g(t); f

))
‖g(t) − z(n)

mt ‖
2, (4.41)

where mt is the label of corresponding representative of sample g(t). Obviously, deviation
in Eq. 4.41 is average of all individual deviation :

L̃
(
Q(n),α (n) ; f,R,T

)
− L̃

(
Q(n),β (n) ; f,R,T

)
=

1

T

T∑
t=1

µt(α(n),β(n),Q(n); f,R,T) (4.42)

For the sake of simple implementation and the accuracy of approximation, we only allow
one-shot update, i.e., single replacement for a particular index w.r.t. β(n) is allowed :

αt(n+ 1) =

{
s, if t = τ

βt(n), if t 6= τ
(4.43)
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where s is the index of eigenvalue that we wish to achieve for next iteration for τ -th
sample. Naturally one should have s < βτ (n) since one wishes to have small eigenvalue
for gτ . And we choose α (0) = (d2, . . . , d2) as the initial point which corresponds to
the all maximum eigenvalue configuration. The procedure for finding τ is explained as
follows. We sort all samples {θi}Ti=1 based on the its individual deviation µt in descending
order. Starting from τ = θ1, Eq. 4.41 and Eq. 4.43 mean that we try to update the
multi-index only based on the local information provided by the parameter sample g(θ1)

whose deviation is the worst from our expectation. Therefore, if one could amend this
deviation, one should obtain a better quantizer intuitively. That is, if there exists s s.t.
L
(
Q(n+1); f,R,T

)
≤ L

(
Q(n); f,R,T

)
, then we do find a better quantizer. Otherwise one

set τ = θ2 and so on until one find a such pair (τ, s). Then as iteration goes, one could
obtain a decreasing sequence of L

(
Q(n); f,R,T

)
providing such (τ, s) always exists. Our

algorithm halts if no such pair exists. In other words, Our algorithm converges to a
solution where our expectation coincides with the real approximation using eigen values,
i.e., α(n) = β(n) or we could no longer find such improvement. This method of updating
multi-index will be referred as satisfactory goal-oriented quantization algorithm (SGOQ)
summarized in alg. 4. Another way of updating representatives is the greedy method.
Inspecting all the possibility combination of pair (τ, s) directly, we choose the one which
minimize the empirical loss. Greedy version of the algorithm is resumed in alg. 5. This
algorithm will be referred as greedy goal-oriented quantization algorithm (GGOQ).

4.4.2 Representatives update

Without loss of generality, we assume that τ -th sample is what we choose in multi-index

update step and g(τ) ∈ C
(n)

m with m being the label of its corresponding representative.
To find a better quantizer, one wish to decrease βτ (n) to s if such operation is possible
(s < βτ (n)). If g(τ) satisfies :

g(τ) − z(n+1)
m

‖g(τ) − z(n+1)
m ‖2

= em = νs(g
(τ); f), (4.44)

then one has
df (g

(τ), z(n+1)
m ) = λs(g

(τ); f)‖g(τ) − z(n+1)
m ‖2 (4.45)

which corresponds perfectly one term of the sum in Eq. 4.39. This operation allows us to
find a new representative z

(n+1)
m based on the local information of g(τ). Moreover, for any

r(n) = ‖g(τ) − z(n+1)
m ‖ > 0, we could always find such z

(n+1)
m . In other words, Eq. 4.44 is

equivalent to the following rule :

g(τ) − z(n+1)
m = r(n)νs(g

(τ); f) (4.46)

where r(n) is a coefficient for (n+1)-th iteration . For example, this coefficient r(n) could

be chosen so that ‖z(n+1)
m − z(n)

m ‖ is minimized. Of course, one should always guarantee

that z
(n+1)
m ∈ G ,i.e., the new representative is still in the parameter space.

In the view of GGOQ, each improvement in SGOQ is satisfied with existence of im-
provement merely. For both two algorithms, the final performance criterion is chosen
as the empirical optimality loss L (Q; f,R,T) . Therefore it is natural for both SGOQ
and GGOQ converge to a sub-optimum in the sense of empirical optimality loss. If the
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Numerical Results

number of samples is sufficiently large, two proposed algorithms should both achieve the
sub-optimality of the approximate optimality loss.

Inputs : Parameter distribution φ(g), number of samples T , number of regions M
and maximum number of iterations Nmax

Outputs : QOPT = {zOPT
1 , ...,zOPT

M }
Initialization : Generate a parameter sample set T =

{
g(t)
}T
t=1

according to φ(g) ;

Generate Q(0) =
{
z

(0)
m

}M
m=1

by using LM algorithm with λd2(g; f)φ(g) as p.d.f.

αt(0)← d2, ∀t = 1 to T .
for n = 1 to Nmax do

Let β(n) ∈ arg minγ ‖L̃
(
Q(n−1),γ; f,R,T

)
− L

(
Q(n−1); f,R,T

)
‖ ;

if β (n) = α (n− 1) then
Return QOPT ← Q(n−1) ;

end

sort
{
g(t)
}T
t=1

by µt(α(n− 1),β(n),T,Q(n−1)) in descending order : {θi}Ti=1 ;
α(n)← β(n) ;
for i = 1 to T do

τ ← θi ;

mτ ← arg min
1≤m≤d2

df

(
g(τ), z

(n)
m

)
;

for s = 1 to βi(n) do

rτ,s ∈ arg min
y>0: g(τ)−yνs(g(τ);f)∈G

‖g(τ) − yνs(g(τ); f)− z(n)
mτ‖ ;

ξ ← g(τ) − rτ,sνs(g(τ); f) ;

Q̃τ,s is obtained by only exchanging ξ and z
(n)
mτ in Q(n−1) ;

Update quantization regions according to Q̃τ,s ;

if L
(
Q̃τ,s; f,R,T

)
< L

(
Q(n−1); f,R,T

)
then

ατ (n)← s ;

Q(n) ← Q̃τ,s ;
Goto Step 7 ;

end

end

end

Return QOPT ← Q(n−1) ;
end

QOPT ← Q(Nmax) ;

Algorithm 4: Satisfactory Goal-Oriented Quantization Algorithm

4.5 Numerical Results

4.5.1 Scalar case

We first verify the conclusion concerning the NOL estimation in scalar case. The NOL
of EE-BER with N = 10, its approximate NOL, EE-PSTR with c = 1 and its approximate
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4.5.1 - Scalar case

Inputs : Parameter distribution φ(g), number of samples T , number of regions M
and maximum number of iterations Nmax

Outputs : QOPT = {zOPT
1 , ...,zOPT

M }
Initialization : Generate a sample T =

{
g(t)
}T
t=1

according to φ(g) ; Initialize

Q(0) =
{
z

(0)
m

}M
m=1

;

for n = 0 to Nmax do

Let β(n) ∈ arg minγ ‖L̃
(
Q(n),γ; f,R,T

)
− L

(
Q(n); f,R,T

)
‖ ;

for i = 1 to T do
for s = 1 to βi(n) do

ri,s ∈ arg min
y>0: g(τ)−yνs(g(τ);f)∈G

‖g(τ) − yνs(g(τ); f)− z(n)
mτ‖ ;

ξ ← gi − ri,sνs(g(i); f) ;

Q̃i,s is obtained by exchanging ξ and z
(n)
mi in Q(n) ;

Update the region according to Q̃i,s ;
end

end

(i?, s?) ∈ arg min
i,s

L
(
Q̃i,s; f,R,T

)
;

if L
(
Q̃i?,s? ; f,R,T

)
< L

(
Q(n); f,R,T

)
then

Q(n+1) ← Q̃i?,s? ;
else

Return QOPT ← Q(n) ;
end

end

QOPT ← Q(Nmax) ;

Algorithm 5: Greedy Goal-Oriented Quantization Algorithm
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Numerical Results

NOL as a function of number of cells are illustrated in Fig. 4.1. The approximate NOL
is relatively accurate in high-resolution regime for both EE-PSTR and EE-BER while
the approximate NOL for EE-PSTR slightly diverge from the real NOL in low-resolution
regime for EE-PSTR. Interestingly, the conclusion that EE-BER is hard to compress than
EE-PSTR still holds even for non high-resolution regime. It shows our approximation on
NOL could effectively represent the hardness of compression without performing simula-
tions. Nevertheless, this results could merely remains valid for probability density being
uniform on [0, 1]. It is highly possible that one obtains the contrary result if the probability
density is different.
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Figure 4.1 – Number of bits as a function of the normalized optimality loss (NOL) of
EE (bit error rate) with N = 10 provided by enhanced LM algorithm (probability

distribution is replaced by normalized value density), its approximate NOL , EE (packet
success transmission rate) with c = 1 and its approximate NOL and MSE and its
approximate NOL in dB. This figure reveals the accuracy of our high-resolution

approximation. Our approximation in high-resolution regime could explain easily the
hardness of quantization for different cost functions in scalar case.

Fig. 4.2 illustrates the relative optimality loss as a function of quantization bits for
Lloyd-Max algorithm, enhanced Llyod-Max algorithm (taking normalized value density
as the p.d.f. of parameter), IWO-DE algorithm for EE-BER cost function f (x; g) =

− (1−exp(−gx))N

x
with N = 10 used in [2]. In low-resolution regime, IWO-DE algorithm has

better performance than Lloyd-Max algorithm which dominates slightly the enhanced
Lloyd-Max algorithm. However, starting from the moderate regime, the enhanced Lloyd-
Max algorithm obviously outperforms than other two approaches and this dominance is
even larger in high resolution regime. Take M = 25 as an example, our proposed approach
could provide a reduction of half optimality loss. This results entails our analysis on high
resolution regime is useful. Besides, the running time for IWO-DE algorithm and enhanced
Lloyd-Max algorithm as a function of number of bits are listed in Tab II. One can easily
observe that the running time for enhanced Lloyd-Max algorithm is almost a constant
while the the running time grows tremendously as the number of bits increases for IWO-
DE algorithm. This comparison entails enhanced Llyod-Max algorithm is more efficient
than IWO-DE algorithm.
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4.5.1 - Scalar case
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Figure 4.2 – Relative optimality loss as a function of number of bits of quantization for
LM algorithm, IWO-DE algorithm, enhanced Lloyd-Max algorithm( using value density

instead of the original p.d.f.) for EE (bit error rate) cost function

f (x; g) = − (1−exp(−gx))N

x
with N = 10. the optimality loss reduction brought by

enhanced Lloyd-Max algorithm demonstrates the usefulness of value density which
characterizes the contribution of a parameter for the optimality loss much better than

the p.d.f. of parameter.
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Numerical Results

Quantization Bits 3bits 4bits 5bits 6bits
Enhanced LM Algo 1.084s 1.132s 1.085s 1.120s
IWO-DE Algo 3.671s 4.282s 6.541s 10.530s

Table 4.2 – Table of running time v.s. quantization bits for enhanced Lloyd-Max
algorithm and IWO-DE algorithm

4.5.2 Vector case

We start with a quadratic cost function d1 = d2 = 2. Consider the following type of
function :

fQUA(x; g) = (x1 − h1(g))2 + (x2 − h2(g))2 + (x1 − x2)2 (4.47)

with h1(g) = 2g1g2 − 1
2
g2

1g
2
2 and h2(g) = g2

1g
2
2 − g1g2. One has κ(g) = [g1g2,

1
2
g2

1g
2
2]

HfQUA (κ(g); g) =

[
4 −2
−2 4

]
, (4.48)

and we denote

Jκ (g) =

[
∂κ1

∂g1

∂κ1

∂g2
∂κ2

∂g1

∂κ2

∂g2

]
=

[
a b
c d

]
, (4.49)

then one has

Aκ,fQUA (g)

=

[
4a2 − 4ac+ 4c2 4ab+ 4cd− 2bc− 2ad

4ab+ 4cd− 2bc− 2ad 4b2 − 4bd+ 4d2

]
(4.50)

.

By introducing A = 4a2−4ac+4c2, B = 4b2−4bd+4d2 and C = 4ab+4cd−2bc−2ad,
one finally has λ2(g; fQUA) = 1

2
(A+B+

√
(A−B)2 + 4C2) and λ1(g; fQUA) = 1

2
(A+B−√

(A−B)2 + 4C2). Fig. 4.3 illustrates the optimality loss as a function of number of cells
for Lloyd-Max algorithm, approximate upper bound in Eq. 4.27, enhanced Lloyd-Max
algorithm (using λd2

(
g; fQUA

)
φ
(
g; fQUA

)
instead of φ (g) as parameter p.d.f.), SGOQ

and GGOQ . One could observe that approximate upper bound is always below the
Lloyd-Max algorithm. GGOQ always dominates SGOQ while both of them could reduce
the optimality loss up to 12 dB than Lloyd-Max algorithm for moderate regime. Mo-
reover, we notice that enhanced Lloyd-Max algorithm and SGOQ are quite closed to
approximate upper bound (Eq. 4.27) which entails λd2(g; fQUA)φ(g) could represent the
contribution of paramter to optimality loss roughly. Therefore, in Fig. 4.4, the original
p.d.f. of parameter and the new ”density” weighted by the maximum eigenvalue function
λ2(g; fQUA)φ (g) is illustrated . One could observe that, different from probability distri-
bution φ(g), λ2(g; fQUA)φ(g) assigns almost inverse weight to parameter (g1, g2) which
entails the impact of cost function on parameter space in goal-oriented quantization.

We then verify the result of our constrained extension. We consider another widely-
known cost function fSL (x; g) = −

∑S
i=1 log (1 + xigi) under maximum power constraint∑S

i=1 xi ≤ Pmax. The optimal decision function for this function is the famous water
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4.5.2 - Vector case
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Figure 4.3 – Optimality loss (dB) as a function of number of cells for Lloyd-Max
algorithm, approximate upper bound in Eq. 4.27, enhanced Lloyd-Max algorithm,

SGOQ and GGOQ.

filling solution : κi (g) =
(
χg − 1

gi

)
+

with χg s.t.
∑

i

(
χg − 1

gi

)
+

= Pmax. One could

verify that Jκ (g) = diag
{
1{giχg−1>0}

g2i

}
i
, HfSL (κ (g) ; g) = diag

{
g2i

(1+(giχg−1)+)
2

}
i

and

Af,κ (g) = diag

{
1{giχg−1>0}

g2i (1+(giχg−1)+)
2

}
i

. Notice that for water filling solution, the maximum

power constraint is always activated, here we lost the freedom of choosing the number of
representatives in boundary.

Fig. 4.5 illustrates the relative optimality loss as a function of number of cells for our
proposed SGOQ and GGOQ algorithm, Llyod-Max algorithm and enhanced Lloyd-Max
algorithm ( using λ1

(
g; fSL

)
φ (g) instead of φ (g)) for d1 = d2 = 4 and Pmax = 20mW.

Both upper-bound (Eq. 4.27) and lower bound (Eq. 4.28) are not illustrated in Fig. 4.5 for
the following reasoning. One could easily find that λ1(g; fSL) ∝ 1

mini g4i
and λd2(g; fSL) ∝

1
maxi g4i

. Therefore the matrix Aκ,fSL (g) is stronly ill-conditioned which means these two

bounds are useless in this scenario. One could observe that both two proposed algorithm
and enhanced Lloyd-Max algorithm outperform Lloyd-Max algorithm algorithm in whole
range. Besides GGOQ and SGOQ behave better than Enhanced Lloyd-Max algorithm
while GGOQ always outperforms SGOQ for around 4 dB. If one takes the complexity into
account, SGOQ could be better since it does not require a full check of Td2 combinations.

Finally, we would like study the relative optimality loss as a function of the dimension
of the problem. We still choose the sum-rate capacity function as our utility fuctnion. Fig.
4.6 illustrates relative optimality as a function of the dimension of problem d1 = d2 for
SGOQ and GGOQ. We choose the following setting : number of cells M = 32, maximum
power Pmax = 20mW. For both two algorithms, the relative optimality loss grows as the
dimension increases. This could be due to the curse of dimension. The generated samples
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Numerical Results

(a) Original probability distribution φ (g)

(b) New density weighted by maximum
eigenvalue function λ2(g; fQUA)

Figure 4.4 – Comparison between a two-dimensional exponential distribution φ (g)
and its new density weighted by maximum eigenvalue function λ2(g; fQUA) of cost
function fQUA. This figure shows that the contribution of parameter point to the
optimality loss could be completely contrary for goal-oriented quantization and

conventional distortion-oriented quantization.
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4.5.2 - Vector case
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Figure 4.5 – Relative optimality loss v.s. number of cells for Lloyd-Max algorithm,
enhanced Lloyd-Max algorithm (using weighted parameter distribution λ1

(
g; fSL

)
φ (g)

instead of φ (g) ), SGOQ and GGOQ. Here d2 = d1 = 4 and Pmax = 20mW. Proposed
two algorithms could largely reduce the relative optimality loss compared to Lloyd-Max

algorithms (enhanced version includes).

set is hard to cover the entire parameter space. In small-scale system, GGOQ slightly
dominates SGOQ. However, the performance of two version of algorithm are really close
in large dimension regime. Taking the complexity into account. Thus SGOQ is encouraging
to use in practice than GGOQ in such regime.

4.6 Conclusions

In this chapter, we analyzes the goal-oriented quantization problem in high-resolution
regime and discuss how to solve the problem for scalar case and vector case separately. For
scalar case, the proposed new approximate formula of optimality loss leads to a new qua-
lity defined as value density representing the importance of parameter. We introduce a new
quality called normalized optimality loss when comparing the hardness of quantization
for different cost functions. By merely approximating this quality in high resolution re-
gime, we are capable to determine the hardness of quantization for different cost functions
without performing real simulations. For vector case, an cell-independent approximated
formula for optimality loss is no longer possible for optimality loss due to the unknown
of tessellating cell shape. Nevertheless, by admitting the Gersho’s conjecture, an upper
bound and lower bound are derived for optimality loss. Moreover, we propose a new al-
gorithm by iteratively update the representatives based on the eigenvalue approximation
to design a goal-oriented quantizer. In each iteration, one tries to find the worst para-
meter sample in the sense of introducing the largest individual optimality loss. Then its
corresponding representative is revised so that the average optimality loss could be de-
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Figure 4.6 – Relative optimality loss v.s. dimension of the problem d1 = d2 for
Lloyd-Max algorithm, SGOQ and GGOQ. Number of cells are M = 32 and maximum

power is Pmax = 20mW. The performance of GGOQ and SGOQ are close to each other.
The performance of both algorithms worsen if the dimeson of parameter increases.

creased probably. Proposed algorithm could be extended to cost function with constraints
as well. Simulation results show that proposed goal-oriented quantizer outperforms the
Lloyd-Max quantizer for any number of quantization bits largely. Algorithm with greedy
update slightly dominates the one with satisfying update while the later takes much less
time to operate. However, extending our proposed method in vector case remains cum-
bersome for high-dimensional scenario of the problem. Besides, the selection of parameter
sample set could also be essential owing to both the samples themselves and the number
of parameter sample which impacts the complexity of the proposed algorithm.
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5
Goal-Oriented Quantization in Potential

Games

In this chapter, we start to tackle goal-oriented quantization with multiple correlative
utility functions targeted by different users of the system modeled as a game in stragetic
form. More specifically, we restrict ourselves in the study of potential games with identical
action space. Taking the social welfare as our performance criterion, we have proven
that the maximum social welfare under refined Nash equilibrium could be a submodular
function of the action set for some conditions. Based on this property, we design an
algorithm to find an action set aiming at maximizing the social welfare. We apply our
framework to a multiple access channel game where the spectral efficiency taken as the
individual utility of user. Tremendous optimality loss reduction is confirmed compared to
the conventional quantization paradigm.

5.1 Motivation

In previous chapters, we always focus on how to find a goal-oriented quantizer for a
single utility (cost) function. This setting actually corresponds to the scenario where a
transmitter-receiver pair in a communication system aims at maximizing its proper utility
function serving its corresponding user. However, it is more reasonable to assume that
users in a system have different objective, i.e., different utility functions. Moreover, these
different utility function could be correlated, for example, through the interference bet-
ween channels. This thus motivates us to explore the goal-oriented quantization problem
for multiple utility functions, for example, to develop it in a framework of strategic game.
Moving from single-objective optimization problem to a game, of course, introduces other
difficulties, e.g., existence of solution concept such as Nash equilibrium (NE), correlated
equilibrium and achievability of solution concepts as well. Meanwhile the famous Braess’s
Paradox (BP) [99, 100] could be extremely beneficial for the goal-oriented quantization
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problem with multiple objectives. BP could be interpreted as adding one or more roads
to a road network can slow down overall traffic flow through it in. This paradox which
is widely observed and proved in many domains, e.g., wireless communication and traffic
network [90, 103] could be the essential difference between optimization problems and
games. For our goal-oriented quantization, BP entails the possibility that the restriction
on the action set of player due to quantization in a game could improve the overall per-
formance of the communication system, for example, the social welfare. This result is
fundamentally different from single-objective goal-oriented quantization problem where
loss always exists after quantization.

5.2 Game Theory Basics and Problem Formulation

In this section, we will firstly give some basic concepts of any game-theoretic analysis
before formulate the goal-oriented quantization problem. First of all, we introduce the
strategic form of a game :

Definition 5.2.1. (Strategic Game) A game is a triplet G =
(
K, (Ak)k∈K , (fk)k∈K

)
, where

K = {1, . . . , K} is the set of players, Ak is the action space of k-th player and fk is the
utility function 1 of k-th player .

The central concept of game-theoretic analysis is Nash Equilibrium (NE) defined as :

Definition 5.2.2. (Nash Equilibrium) For game G =
(
K, (Ak)k∈K , (fk)k∈K

)
, an action

profile a = (ak,a−k) is called a Nash equilibrium if for ∀k ∈ K and ∀a′ = (a′k,a−k) :

fk (ak,a−k; g) ≥ fk (a′k,a−k; g) (5.1)

where a = (ak,a−k) with a−k , (a1, . . . ,ak−1,ak+1 . . . ,aK) ∈ A−k and A−k ,
A1 × · · · ×Ak−1 ×Ak+1 × · · · ×AK are standard notations of game theory. Similarly the
vector g = (g1, . . . , gK) contains the parameter information of each player. The meaning
of NE is that any unilateral change of action at this point won’t lead to an increase of
individual benefit. Furthermore, we introduce an important conception in game-theoretic
analysis known as best response (BR).

Definition 5.2.3. (Best Response) : In a non-cooperative game G, the correspondence
BRk (a−k; ; g) : A−k → Ak s.t.

BRk (a−k; g) , arg max
ak∈Ak

fk (ak,a−k; g) (5.2)

is called the best response (BR) of player k ∈ K given the action profile of other players
a−k. From the definition of best response, one has immediately the following characteri-
zation for NE :

Proposition 5.2.4. [Nash,1950] An action profile a? is an NE if and only if : ∀k ∈ K,
a?k ∈ BRk

(
a?−k

)
.

1. More generally, one can use preference order to replace utility function since the existence of uti-
lity function is not guaranteed for free. However, for goal-oriented quantization, the existence of utility
function is for sure or predetermined.
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We try to tackle the goal-oriented quantization problem in the following scenario. In a
communication system with K transmitter-receiver pairs. Each Tx-Rx pair serves a user
labeled k (player) and aims at maximizing this user’s utility function fk (ak,a−k; g) by
choosing its action ak amongst its action space Ak depending on a−k for parameter g. Uti-
lity functions are correlated through the interference of channel between users. Moreover,
we assume the decision (action) of each users is made simultaneously. Obviously this scena-
rio could be regarded as the generalization of the single-goal goal-oriented communication
system. There the instantaneous objective of the communication system (with parameter
g) in this scenario could be formulated as a couple of optimization problem whose solution
is exactly the Nash equilibrium of the game defined as G =

(
K, (Ak)k∈K , (fk)k∈K

)
.

To start with, we assume that all user has identical action space : Ak = X, ∀k ∈ K.
The situation where players’ action sets are different will be the extension of current fra-
mework. This scenario could be applied to domains such as Internet of things (IoT) where
tremendous devices, e.g., sensors and actuators are deployed in the networks [85, 86]. Each
device could react differently according to its surroundings while the underlying action
space is the same. This assumption is useful since we only need to find a single goal-
oriented quantizer for the entire system. A goal-oriented quantizer Q with M quantization
regions (cardinality of decision set as well) could be fully characterized by quantization re-
gions {Cm}Mm=1 and the corresponding decision set D , {d1, . . . ,dM}. Again, details about
finding quantization regions are omitted here. We denote the new game where the action
set for each user is always D by GFA ,

(
K, (D)k∈K , (fk)k∈K

)
where FA means user has me-

rely finite actions to choose. The original game is denoted as G =
(
K, (X)k∈K , (fk)k∈K

)
.

The set of all possible NE of the game G ,
(
K, (D)k∈K , (fk)k∈K

)
for a given parameter g

is denoted as N [D; g]. As the designer of the communication system, it would be reaso-
nable for us to consider the overall performance. One important quality characterizes the
overall performance of the system is the social welfare defined as :

w (a; g) ,
∑
k∈K

fk (a; g) (5.3)

and we define the maximum social welfare under NE for a given action set D :

ω (D; g) , max
a∈N[D;g]

w (a; g) (5.4)

Furthermore, we define the average maximum optimal social welfare Ω(D) under NE for
a given action set D as :

Ω(D) = Eg [ω (D; g)] (5.5)

To this end, the problem of finding a goal-oriented quantizer (withM quantization regions)
with multiple utility functions (fk)

K
k=1 could be formulated as :

max
D⊆X

Ω(D)

s.t. |D| = M. (5.6)

Before ending this section, we will show the connection between the famous Braess’s
Paradox and our goal-oriented quantization problem with multiple objectives. In our
settings, we say there exists a Braess’s Paradox for game G =

(
K, (X)k∈K , (fk)k∈K

)
,

if there exists an action set D ⊆ X s.t. ω (D; g) > ω (X; g). The interest of BP for a
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game is that when players are restricted on a subset of the original action space, the
overall performance of the system is surprisingly improved. Considering our goal-oriented
quantization problem, there are two problems could be of great importance for us : i) for a
game G =

(
K, (X)k∈K , (fk)k∈K

)
, what is condition for the existence of Braess paradox ? ii)

if Braess’s Paradox does exist, how to find the optimal action set maximizing the function
ω :

DOPT (g) ∈ arg max
D⊆X

ω (D; g) (5.7)

Consider firstly the trivial case of the problem. Define A? (g) the set of centralized
solution for a given parameter g :

A? (g) , arg max
a∈XK

w (a; g) , (5.8)

and the corresponding maximum of social welfare

w? (g) = max
a∈XK

w (a; g) (5.9)

If there exists D0 s.t. N [D0; g]
⋂

A? (g) 6= ∅, then it is obvious that ω (D0; g) =
w? (g) > ω (X; g). In this trivial case g ∈ G1 , {g : ∃D ⊆ X s.t. N [D; g]

⋂
A? (g) 6= ∅},

the existence of BP is always guaranteed and the optimal action set D? (g) an be easily
constructed. Therefore the difficulty of verifying the existence of BP lies in the non-trivial
case : g ∈ G2 , {g : ∀D ⊆ X, N [D; g]

⋂
A? (g) = ∅}. To study the existence of BP in

non-trivial case G2, we need to examine the basic properties of function ω (D; g). For
general games, it is hard to give further comments on that. However, as we will show in
next section, for a special category of game, namely, deeper analysis is possible.

5.3 Analysis of Potential Games

OP in Eq. 5.6 is generally difficult to tackle since two functions ω (D; g) and Ω(D)
require a full knowledge of information about NE of the game GFA. Instead of focusing
on general game, we will show that our goal-oriented quantization problem is at least
solvable for the potential games.

5.3.1 Introduction to potential games

Potential games have been first introduced and studied by Monderer and Shapley in
[105]. In wireless communications, various different problems are formulated as potential
games for e.g., see [90, 91, 103]. In this section, we limit ourselves in exact potential game
defined as :

Definition 5.3.1. (Exact Potential Game) : Game G =
(
K, (Ak)k∈K , (fk)k∈K

)
is a po-

tential game if there exist a potential function ϕ s.t. for all player k ∈ K and two action
ak and a′k, it holds that

fk (ak,a−k; g)− fk (a′k,a−k; g) = ϕ (ak,a−k; g)− ϕ (a′k,a−k; g) (5.10)
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Existence and convergence of Nash equilibrium do not always apply to arbitrary utility
functions and strategy sets. However, we have the following proposition assuring the
existence of Nash equilibrium under certain mild conditions for potential games :

Proposition 5.3.2. [Monderer-Shapley,1996] For a potential game G with finite number
of players and either non-empty compact strategy sets and continuous utilities or finite
non-empty strategy sets, then it has at least one Nash Equilibrium.

For exact potential game GFA =
(
K, (D)k∈K , (fk)k∈K

)
with potential function ϕ, we

define the set of all possible NE maximizing the potential function given parameter g :

N [D; g] , arg max
a∈DK

ϕ (a; g) . (5.11)

Above definition is reasonable since the argmax set of potential function is a subset
of the set containing all NE of the potential game, i.e., N [D; g] ⊂ N [D; g]. Similarly to
functions ω (D; g) and ω (D), we introduce

ω (D; g) , max
a∈N[D;g]

w (a; g) (5.12)

and
Ω(D) = Eg [ω (D; g)] (5.13)

The concept of Nash equilibrium refined in the argmax set of potential could be useful
for our goal-oriented quantization problem formulated in Eq. 5.6 since it actually simplifies
the problem of searching NE of a game a to a simple optimization problem of the potential
function, since in many games, it could be hard to determine and achieve all NEs. However
this refinement does not conserve the optimality anymore, i.e., ω (D; g) ≤ ω (D; g) and
Ω(D) ≤ Ω(D). In next subsection, we will study the basic property for these functions to
help us understand our problem better.

5.3.2 Basic property of function ω and ω

We first give a necessary condition for the existence of Braess’s paradox. To do so, we
define the monotonicity for set function, i.e., function u : 2V → R that assign each subset
B ⊂ V a real value u (B). 2V representing the set of all subsets of ground set V. Usually,
we assume u (Ø) = 0.

Definition 5.3.3. (Monotonicity) set function u : 2V → R is said to be monotone if for
any B1 ⊆ B2 ⊆ V, u (B1) ≤ u (B2).

Obviously, we have the following necessary condition for the existence of BP :

Proposition 5.3.4. (BP implies non-monotonicity of ω) For given parameter g, if
Braess’s paradox exists for potential game G =

(
K, (X)k∈K , (fk)k∈K

)
, then the set function

ω (D; g) is non-monotone.

Proof : The existence of Braess’s Paradox means that there exists a subset D0 of X
s.t. ω (D0; g) > ω (X; g). �
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5.3.3 - Algorithm for finding optimal action set

We prove then an important property satisfied by function ω : submodularity. Submo-
dularity [108, 109, 117] is a functional property with great importance. The submodularity
property enables striking algorithm-friendly features and is observed in a good number
of application scenarios. These benefits have drawn attention in many different scenarios.
For example, sensor selection in [110], detection in [111], resource allocations in [112] and
adversarial attacks in [115].

Proposition 5.3.5. (Submodularity of ω) function ω is submodular, i.e., for any B1,B2 ⊆
X, it holds that :

ω (B1 ∪B2; g) + ω (B1 ∩B2; g) ≤ ω (B1; g) + ω (B2; g) . (5.14)

Proof : See Appendix C. �

Remark 5.3.6. The submodularity of function ω (D; g) actually holds for any action set
D regardless D being finite or not. This conclusion entails the submodularity of function
ω comes directly from the property of potential game.

An intuitive explanation for submodularity is that “diminishing returns”, i.e., “smal-
ler” action set tends to have higher revenue. To see this, we need to define the following
discrete derivative :

Definition 5.3.7. (Discrete derivative) For a set function u : 2V → R, B ⊂ V and e ∈ V,
let ∆u (e |B) , u (B ∪ {e})− u (B).

One has immediately ∆ω (q |D1; g ) ≥ ∆ω (q |D2; g ) for every D1 ⊂ D2 ⊂ X for
∀q ∈ X \D2 which clearly shows the meaning of “diminishing returns”. The immediate
corollary of Prop. 5.3.5 for the goal-oriented quantization problem is that the maximum
average social welfare function Ω(D) is also submodular ( NEs are refined in argmax set
of potential function) since Prop. 5.3.5 holds for all possible parameter g and Ω(D) is the
expectation of function ω for parameter g. However, even we have proven that function
Ω (D) is submodular, it is still cumbersome and impracticable to find optimal action set
with given cardinality since that requires the examination over all finite subsets with
same cardinality of the action space X. Optimizing monotone submodular set function be
NP-hard in the worst case [117]. If the BP does exist for some parameters g, it could be
possible for us to deal with a non-monotone submodular optimization problem for Ω (D).

5.3.3 Algorithm for finding optimal action set

Knowing that function ω (D; g) and Ω (D) are both submodular (could be non-
monotone if BP exists as expected), one still needs to find efficient method to find such
action set. The discrete derivative for function Ω (D) is

∆Ω (q |D) , Ω (D ∪ {q})− Ω (D) (5.15)

If discrete derivative ∆Ω (q |D) is non-negative for any D ⊂ X and q ∈ X, then
function Ω (D) is a monotone set function. In this trivial scenario, replacing the action
space X by any finite action set will reduce the overall performance surely. Therefore it
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Analysis of Potential Games

is reasonable for us to consider only the non-monotone case. Based on this property, we
have proposed an algorithm summarized in alg. 6. The first part of algorithm is actually
a greedy algorithm to get a initial action set of cardinality M . Then we continue this
greedy update until we get an action set D

′
such that D ⊆ D

′
. Finally one choose the

optimal subset of DN as the final state of current iteration. The second step are executed
repeatedly until convergence or the discrete derivative is always negative for current action

set. Notice that one could use ∆Ω

(
q
∣∣∣D(0)

m−1

)
instead of ∆Ω

(
q
∣∣∣D(0)

m−1

)
. The replacement

of discrete derivative could lead to a better solution while the complexity of finding all
NEs for a game could be higher.

Initialization : Choose largest cardinality of action set N ; set D
(0)
0 = ∅ ; choose

the tolerance error ε
for m = 1 to M do

Let qm ∈ argmax
q∈X\D(0)

m−1

∆Ω

(
q
∣∣∣D(0)

m−1

)
;

Let D
(0)
m → D

(0)
m−1

⋃
{qm} ;

end
for t = 1 to T do

for m = M + 1 to N do

Let qm ∈ argmax
q∈X\D(t)

m−1

∆Ω

(
q
∣∣∣D(t)

m−1

)
;

if ∆Ω

(
q
∣∣∣D(t)

m−1

)
≥ 0 then

Let D
(t)
m ← D

(t)
m−1

⋃
{qm} ;

else

Let D
(t)
m ← D

(t)
m−1 ;

Break ;

end

end

Let D
(t+1)
M ∈ argmax

D⊆D(t)
m ,|D|=M

Ω (D) ;

if Ω
(
D

(t+1)
M

)
− Ω

(
D

(t)
M

)
< ε then

Break ;
end

end

Output: Required action set is D
(t+1)
M ;

Algorithm 6: Algorithm for finding optimal action set maximizing average social wel-
fare (with NE refinement)
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5.4 Applications in Multiple Access Channel

5.4.1 System model and known results

Consider a parallel multiple access channel (MAC) with K users and S bands where
the received signal vector y = (y1, . . . ,yS) being written as :

y =
K∑
k=1

Hkxk + n (5.16)

Here, ∀k ∈ K, Hk is the channel transfer matrix from k-th transmitter to the receiver,
xk is the vector of symbols transmitted by k-th transmitter, and vector n represents the
noise observed at the receiver. In this scenario, we assume that Pk is a diagonal matrix
with Hk = diag (hk,1, . . . , hk,S) and blockin fading channel. Therefore, each entry hk,s for
∀ (k, s) ∈ K×S are time-invariant realizations of a complex circularly symmetric Gaussian
random variable with zero mean and unit variance. We denote the covariance matrix of
transmitted symbol xk as Pk = diag (pk,1, . . . , pk,S). For notation convention we use the
vector pk = (pk,1, . . . , pk,S) to represent the action set of k-th user. The action set of k-th
user is

X = Pk =

{
pk

∣∣∣∣∣
S∑
s=1

pk,s ≤ Pmax, pk,s ≥ 0

}
(5.17)

Finally, n is the observed noise at receiver side which is circularly symmetric Gaussian
distributed according to CN (0, σ2IS). The utility function of k-th user is the spectral
efficiency :

fSE
k

(
pk,p−k; G

)
=

S∑
s=1

log

(
σ2 +

∑K
k=1 pk,sgk,s

σ2 +
∑K

j 6=k pj,sgj,s

)
, (5.18)

where gk,s , |hk,s|2. Parameters are jointly denoted by matrix G = (gk,s)k,s. To this

end, this game could be formulated as GMAC =
(
K, (X)k∈K ,

(
fSE
k

)
k∈K

)
. We first show

that GMAC is really a potential game. One can easily find that utility function can be
decomposed into :

fSE
k

(
pk,p−k; G

)
= ϕ (p; G)− νk

(
p−k; G

)
(5.19)

where

ϕ (p; G) =
S∑
s=1

log

(
σ2 +

K∑
k=1

pk,sgk,s

)
(5.20)

and

νk
(
p−k; G

)
=

S∑
s=1

log

(
σ2 +

K∑
j 6=k

pj,sgj,s

)
(5.21)

Obviously function ϕ is the potential function of game GMAC. In [104], it is proven
that GMAC has an unique NE with probability one. Moreover, this NE is given by the
famous water-filling solution p† :

p†k,s =

[
1

λk
−
σ2 +

∑K
j 6=k pj,sgj,s

gk,s

]
+

(5.22)
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with λk the Lagrange multiplier s.t.

S∑
s=1

p†k,s − Pmax = 0, ∀k ∈ K. (5.23)

If we restrict the action space of users to a finite action set D with |D| <∞ , we obtain

the game GFA =
(
K, (D)k∈K ,

(
fSE
k

)
k∈K

)
. Obviously this game GFA is still a potential

game. Besides, we present some results about a special case of this game : channel selection
game. Define the channel selection set DCS = {Pmaxes : ∀1 ≤ s ≤ S}. Vector es is defined
as es = (es,1, . . . , es,S) with er,s = 0 for r 6= s and es,s = 1. In [90], this channel selection

game GCS =
(
K, (DCS)k∈K ,

(
fSE
k

)
k∈K

)
studied and it is proven that GCS could have

multiple NEs :

Proposition 5.4.1. [Perlaza, 2013] Let K̂ ∈ N be the highest even number which is less
or equal to K. Then GCS has L Nash equilibria :

1 ≤ L ≤ 1 + (S − 1)
∑

i∈2,4,...,K̂

(
K
i

)
(5.24)

Prop 5.4.1 indicates that there could be multiple NEs for the game GFA as well. The
existence of multiple NEs will not introduce extra difficulty for our problem since the
main concern of the goal-oriented quantizer is the action set. To start with, we consider
the simplest case of GFA.

5.4.2 Case study for 2-user 2-band scenarios

We start our study on game GFA by the simplest case where there are only two bands
and two users in the system. Since there are only S = 2 bands, each action dm ∈ D can
be written as

dm = αm [Pmax, 0]T + (1− αm) [Pmax, 0]T

= [αmPmax, (1− αm)Pmax]T (5.25)

where αm ∈ [0, 1] can represent action dm. Therefore, the action set D can be represented
by a sequence {αm}Mm=1. Without loss of generality, we can assume that 0 ≤ α1 < · · · <
αm < · · · < αM ≤ 1. To find the optimal finite action set with cardinality M , the first step
is to find the equivalent condition under which an action profile is NE. Without loss of
generality, assume that one NE of game is denoted as p? = (di,dj) or equivalently (αi, αj).
For the simplicity of notation, we introduce for a multi-index i , (i1, . . . , ik, . . . , iK) with
ik ∈ {1, . . . ,M} and define the the potential function evaluated at the action profile
(di1 , . . . ,dik , . . . ,diK ) as :

ϕi , ϕ (di1 , . . . ,dik , . . . ,diK ) (5.26)

In 2-user 2-band setting, we have that ϕi,j = ψ (xi,xj) is an NE if and only if :

ϕi,j ≥ ϕt,j for ∀t ∈ {1, . . . ,M}
ϕi,j ≥ ϕi,t for ∀t ∈ {1, . . . ,M} (5.27)
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And we have

ϕi,j = ϕ (di,dj)

= log
(
σ2 + g1,1αiPmax + g2,1αjPmax

)
+ log

(
σ2 + g1,2 (1− αi)Pmax + g2,2 (1− αj)Pmax

)
= log

[(
σ2 + g1,1αiPmax + g2,1αjPmax

) (
σ2 + g1,2 (1− αi)Pmax + g2,2 (1− αj)Pmax

)]
(5.28)

Obviously, the potential function is the composition of the logarithmic function and a
quadratic function of action profile. Consequently, conditions in (5.27) are equivalent to
following conditions :

ϕi,j ≥ ϕi−1,j, ϕi,j ≥ ϕi+1,j

ϕi,j ≥ ψi,j−1, ϕi,j ≥ ϕi,j+1 (5.29)

To this end, to find the optimal action set maximizing the social welfare, it is sufficient
to solve the following OP :

max
{αm}Mm=1

(
1
γ

+ g1,1αi + g2,1αj

)2 (
1
γ

+ g1,2 (1− αi) + g2,2 (1− αj)
)2(

1
γ

+ g1,1αi

)(
1
γ

+ g2,1αj

)(
1
γ

+ g1,2 (1− αi)
)(

1
γ

+ g2,2 (1− αj)
)

s.t.
g1,2 − g1,1

γ
− g1,1g1,2 − g1,1g2,2 + g1,1g1,2 (αi + αi+1) + (g2,1g1,2 + g1,1g1,2)αj ≤ 0

(5.30)

g1,2 − g1,1

γ
− g1,1g1,2 − g1,1g2,2 + g1,1g1,2 (αi + αi−1) + (g2,1g1,2 + g1,1g1,2)αj ≥ 0

(5.31)

g2,2 − g2,1

γ
− g2,1g1,2 − g2,1g2,2 + (g1,1g2,2 + g2,1g1,2)αi + g2,1g2,2 (αj + αj+1) ≤ 0

(5.32)

g2,2 − g2,1

γ
− g2,1g1,2 − g2,1g2,2 + (g1,1g2,2 + g2,1g1,2)αi + g2,1g2,2 (αj + αj−1) ≥ 0

(5.33)

where γ = Pmax

σ2 is signal-noise ratio (SNR). Notice that if M = 2 and D =
{(Pmax, 0) , (0, Pmax)} then one obtains the channel selection set. Surprisingly, we have
the following proposition :

Proposition 5.4.2. For 2-user 2-band game GFA, optimal finite action set for maximizing
the social welfare for any static channel is the channel selection set.

Proof : See Appendix D . �

For 2-user 2-band scenario, we have proven that the channel selection set is the optimal
finite action set. If the number of decision M is less or equal to the number of bands S, one
can easily find a subset of channel selection set. Nevertheless, if the actual cardinality of
optimal action is greater than S, the complexity of finding an acceptable action set could
be huge, at least, each evaluation of average social welfare will be cumbersome. Therefore,
we would like to find a sequence of finite action set under acceptable complexity. Define
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Sl =
{
ê ∈

{
0, Pmax

l

}S ∣∣∣∑S
i=1 êi = Pmax

}
which is the set of S-dimensional vector summing

to Pmax and S =
⋃S
l=1 Sl. The set S is usually referred as Telatar set which is conjectured

to optimal power allocation policy in [93]. The subset of Telatar set is referred as Telatar-
type set in the following of this chapter. Denote the optimal solution of OP in 5.6 for

game GFA =
(
K, (D)k∈K ,

(
fSE
k

)
k∈K

)
as DSE

M ∈ arg max
D:|D|=M

Ω (D), we have the following

conjecture :

Conjecture 5.4.3. For ∀ 1 ≤M ≤ 2S − 1, the optimal finite action set DSE
M maximizing

the average social welfare with cardinality M is a Telatar-type set, i.e., DSE
M ⊂ S.

Conjecture 5.4.3 is extremely useful if it is true. It basically says that the Telatar-
type set could maximize the average social welfare for spectral efficiency of MAC if the
cardinality of desired finite action set is less than 2S − 1. This condition is generally true
if number of bands is legitimately large. However, it seems directly find such Telatar-type

set is still costly of complexity O
(
CM
|S|

)
. Generally, we should have |S| = 2S − 1 � M .

Therefore, the determination of optimal Telater-type set is of exponential complexity by

Stirling’s approximation O
(
CM
|S|

)
= O

(
|S|M

)
when the number of bands is relatively

large. However, if one apply alg. 6 and choose the Talatar Set S as underlying action
space. For instance, set N = M + 1 and choose maximum iteration of alg. 6 as Te, the
complexity of alg. 6 could be reduced to polynomial time O (Te |S|) if the conjecture 5.4.3
is correct.

5.4.3 Numerical results

For MAC, we will first show that the optimal action set is non-trivial for static channel.
In Fig. 5.1, the average social welfare of iterative water-filling algorithm (IWTA), alg. 6
with Telatar set as the underlying action space, and alg. 6 v.s. the number of actions
are depicted for 2-user and 3-user scenarios. We assume that there are S = 4 bands and
the power budget for user is Pmax = 1mW with noise level σ2 = 1mW. All results are
averaged over 1000 randomly generated channel matrix. The reference of optimality loss
is the centralized policy which maximizes the scocial welfare. In the rest of section, the
relative optimality loss will be calculated in the same way. For 2-user scenario, optimality
loss introduced by alg. 6 and alg. 6 with Telatar set as the underlying action space is nearly
none and almost independent of the number of decisions. Relative optimality introduced
by alg. 6 outperforms IWFA for almost all possible configurations of the system which
strongly confirms the existence of Braess paradox. For 3-user scenario, when M ≤ S = 4,
OL introduced by two proposed methods decrease rapidly as the number of decisions
grows ; when M > S = 4, the decay is not obvious. However, the BP persists for M ≥ K =
3. These results of could be regarded as the single-sample case of our general conjecture
5.4.3.

Fig. 5.2 shows the relative optimality loss (%) v.s. number of actions for IWFA, alg.
6 with Telatar set and alg. 6 with general action space for 2-user and 3-user scenarios.
Number of bands is chosen as S = 3. In fig. 5.2, apparently, simulation results confirm
our conjecture 5.4.3 again. When the number of actions is less or equal to the number of
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Figure 5.1 – Relative optimality loss (%) of social welfare function as a function of
number of actions for iterative water-filling algorithm(IWFA), alg. 6 with Telatar set as
the underlying action space, and alg. 6for 2-user and 3-user scenarios with Pmax = 1mW

and σ2 = 1mW and number of bands S = 4. Braess’s Paradox exists in almost all
configurations. Optimal action set with given cardinality is always the Telatar-type set.

This result verifies the single-sample case of our conjecture.
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users (K), there is a clear decay of OL as number of actions M grows. However, if M > S,
the decay of OL is slow. Compared to the conventional approach, proposed algorithms
largely reduce the optimality loss tremendously showing the potential of the goal-oriented
quantization.
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Figure 5.2 – Relative optimality loss (%) of average social welfare as a function of
number of actions for iterative water-filling algorithm(IWFA), alg. 6 with Telatar set as
the underlying action space, and alg. 6 for 2-user and 3-user scenarios with Pmax = 1mW

and σ2 = 1mW and number of bands S = 3. Braess’s Paradox exists in almost all
configurations except for M = 2 decisions. Optimal action set maximizing the average
social welfare with given cardinality is always the Telatar-type set. Our conjecture is

verified for number of actions in 2 ≤M ≤ 6.

In Fig. 5.3, the relative optimality loss v.s. number of bands for fixed M = 4 actions
are illustrated. relative optimality loss increases as the number of bands grows in tendency.
This observation shows that finite action set with more actions should be extended when
the dimension of the sytsem grows. Meanwhile, for all methods, the performance of the
system worsens if more users enter into the MAC system.

Then, we would like to study the influence of power budget for MAC. The relative
optimality loss v.s. the power budget for different methods for 2-user 4-band with 4 actions
are illustrated in Fig. 5.4 respectively. The impact of power budget is not obvious for our
proposed alg. 6 while the decay of optimality loss introduced by IWFA is obvious when the
power budget is relatively small (Pmax ≤ 5mW). This observation entails that proposed
algorithm is still efficient compared to IWFA when the power budget of the device is small
which could be useful for scenario such as IoT where energy efficiency of the system is of
great importance.

Finally, Fig. 5.5 shows the performance of different approaches as function of number of
users in the system. For IWFA, the performance worsen as the number of users increases.
For 5-users 3-decisions scenario alg. 6 provides a reduction of relative optimality loss
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Figure 5.3 – Relative optimality loss (%) of average social welfare as a function of
number of bands for iterative water-filling algorithm(IWFA), alg. 6 with Telatar set as

the underlying action space, and alg. 6 for 2-user and 3-user scenarios with Pmax = 1mW
and σ2 = 1mW and number of actions is fixed as M = 4. Braess’s Paradox always exists

and optimality loss grows for all approaches as the number of bands increases.
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Figure 5.5 – Relative optimality loss as a function of number of users for iterative
water-filling algorithm(IWFA), alg. 6 with Telatar set as the underlying action space,

and alg. 6 for 4-band case with M = 4 actions. Optimality loss introduced by proposed
algorithm is always largely smaller than IWFA. Increasing power budget has slight

impact on the reduction of optimality loss for our methods.

around 30% compared to IWFA revealing the advantage of our framework for potential
game.

5.5 Conclusions

In this chapter, instead of focusing on the optimal structure of the goal-oriented com-
munication for single transmitter-receiver pair, we restrict ourselves in the study of po-
tential games with identical action set where the utility function of players could be com-
pletely different. The existence of the famous Braess’s Paradox makes the goal-oriented
quantization problem extremely interesting in this scenario. Taking the social welfare as
our performance criterion, we have proven that the maximum average social welfare is a
submodular function of the action set if the Nash equilibrium is refined as the maximum
of potential function of the game. Based on this property, we design an algorithm to
find a goal-oriented quanizer aiming at maximizing average social welfare of the system.
Our analysis is applied to a multiple access channel game game with spectral efficiency
being the individual utility. Our alysis is applied to a multi-user MAC game with spectral
efficiency as the individual utility. For 2-user 2-band scenario, we have proven that the
channel selection set is the optimal action set. More generally, Telatar-type set is conjec-
tured to be the optimal action set for maximizing the average social welfare. Besides, the
existence of Braess’s Paradox is not guaranteed for general utility function of arbitrary
game. The feasibility of proposed method should be verified for other applications in the
wireless communication system and smart grids as well.
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6
Nash Equilibrium Analysis in Multi-User

MIMO Energy Efficiency Game

In this chapter, we focus on a game where user’s utility function is the energy efficiency
in a MIMO multiple access channel system. The existence of Nash equilibrium is proven.
The uniqueness of Nash equilibrium is confirmed by showing the standard property of
MIMO-EE game. An algorithm by applying the approximate best response is proposed
to approach the unique Nash equilibrium of the game. For 2-user 2-band scenario, our
proposed algorithm surprisingly Pareto-dominates the pure Nash equilibrium of the game.
Nash equilibrium analysis for this type of game could be served as basic results for our
goal-oriented quantization framework involving in performance under equilibrium regime
in the future.

6.1 Motivation

With the release of first 5G package, it turns out that the number of devices in the up-
coming wireless network will increase tremendously, e.g., Internet of Things (IoT). Conse-
quently, classical paradigm which merely aims at optimizing the quantitative performance,
e.g., data-rate, bit-error-rate and latency faces extreme difficulty in many domains in both
academic research and industrial application. Thus the issue of energy-efficient design of
the wireless system tends to be crucial. Different definition of energy efficiency has been
proposed in recent years in [78, 79, 80, 81]. Amongst which the most popular one is defi-
ned as the total benefit obtained under the unit consumption of energy or power known
as global energy efficency (GEE) e.g., in [69, 70, 71, 77]. Taken the bits-per-second type
rate function as benefit function, one will obtain the well-known bits-per-joule energy
efficiency.

One of the pioneer works of studying the maximization of EE in Multiple-Input
Multiple-Output (MIMO) system is [71]. In [71], the optimal precoding scheme is stu-
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died and divided into different cases with different assumptions on the systems. Till now
the optimal precoding matrix for general condition is merely conjectured and unproved.
Hereafter, optimal precoding matrix design for single user MIMO system is performed for
imperfect channel state information (CSI) scenario in [75]. Then it is later widely reali-
zed that the problem of EE maximization actually belongs to the category of fractional
programming. Techniques such as Dinkelbach’s algorithm (see [74]) is used to solve EE
maximization in [75, 76]. These algorithms are generally based on the idea that the opti-
mal solution can be found by solving a sequence of convex optimization problems related
to the original one. The main difficulty of EE maximization OP is usually due to the non-
convexity of energy efficiency function. Under some assumption on the benefit function,
the EE function is well-known as being quasi-concave or even pseudo-concave. However, it
is generally difficult to trace the Nash equilibrium of a game where the individual utility
function of player is of EE type. In [69], it is shown that there always exists an unique NE
for scalar power allocation game in a relay-assisted MIMO systems due to the standard
property of the best response dynamics. Similar results in MIMO-MAC system will be
given latter in this chapter.

6.2 System Model

Consider a multiple access channel (MAC) with one base station (BS) and K users
(players) to be served. BS is equipped with Nr receive antennas and each user terminal
is equipped with Nt transmit antennas. We assume a block fading channel where the
realization of channel remains a constant during the coherence time of transmission and
randomly generated according to some statistical distributions from period to period. The
received signal at BS is given by :

y =
K∑
k=1

Hkx
SIG
k + z, (6.1)

where Hk , [Hk,i,j]
Nr,Nt
i,j=1 ∈ CNr×Nt is the channel transmit matrix of k-th user and

Hk,i,j is the channel from i-th transmit antenna of k-th user to j-th receive antenna
at BS which is assumed to be i.i.d. complex Gaussian distributed according to CN (0, 1).

xSIG
k =

(
xSIG
k,1 , . . . , xk,Nt

)T
is the transmit symbol of k-th user and z is the noise observed by

the receiver with complex Gaussian distribution CN (0, σ2INr). For the sake of simplicity,
we assume that single user decoding is implemented for each user. Then the capacity the
k-user can be achieved is

Rk = log
det
(
σ2INr +

∑K
j=1 HjQjH

H
j

)
det
(
σ2INr +

∑K
j 6=k HjQjHH

j

) , (6.2)

where Qk = E
[
xSIG
k

(
xSIG
k

)H
]
∈ CNt×Nt is the covariance matrix of symbol xSIG

k which

determines how power should be allocated for each antenna and Pc > 0 is the power
dissipated in transmitter circuit to operate the devices. It is reasonable to assume that each
user has perfect knowledge about its own channel, e.g., through downlink pilot training.
Therefore user k is able to perform the singular value decomposition (SVD) of its own
channel Hk and its covariance matrix Qk as well. The SVD of Hk and Qk is given by

84



Game-Theoretic Analysis

Hk = UkΛkV
H
k and Qk = WkPkW

H
k respectively. To simplify the problem, we assume

that user k always adapts its covariance matrix to Hk, i.e., choosing Wk = Vk. Pk is
a diagonal matrix with Pk = diag (pk) = diag (pk1, . . . , pkNt) where we use diag (·) to
generate a diagonal matrix from a vector or vice versa. Thus user k’s only legal action is
represented by pk or Pk and the action set of k-th user is

Pk =

{
pk

∣∣∣∣∣
Nt∑
i=1

pki ≤ P k, pki ≥ 0

}
(6.3)

where P k is power budget of k-th user. Through out the chapter, we will use the matrix Pk

or its diagonal pk interchangeably to represent user k’s action depending on the context.
Further more, we denote p =

(
pk,p−k

)
with p−k ,

(
p1, . . . ,pk−1,pk+1 . . . ,pK

)
∈ P−k

and P−k , P1× · · · ×Pk−1×Pk+1× · · · ×PK . In this chapter, energy efficiency is defined
as the ratio of a benefit function over the power consumed by producing it can be proven
to has the following expression for user k after some simplifications :

fEE
k (Pk,P−k) =

log
det(σ2INr+

∑K
j=1 UjΛjPjΛ

H
j UH

j )
det(σ2INr+

∑K
j 6=k UjΛjPjΛH

j UH
j )

Tr (Pk) + Pc
(6.4)

To this end, the MIMO MAC EE game is thus given by the following strategic form in
triplet :

GEE =
(
K, (Pk)k∈K ,

(
fEE
k

)
k∈K

)
(6.5)

6.3 Game-Theoretic Analysis

To identify the NE of game in (6.5), the properties of individual utility function should
be identified as first step. We define two critical properties satisfied by the individual utility
function.

Definition 6.3.1. (Quasi-concavity) Let X ∈ Rn be a convex set, a function f : X → R
is said to be quasi-concave if

u (λx+ (1− λ)y) ≥ min {u (x) , u (y)} (6.6)

for any x,y ∈ X with x 6= y and 0 < λ < 1.

Definition 6.3.2. (Pseudo-concavity) Let X ∈ Rn be a convex set, a function f : X→ R
is said to be quasi-concave if it is differentiable and for any x,y ∈ X, it holds :

u (y) < u (x) =⇒ ∇u (y)T (x− y) > 0 (6.7)

With the definition of quasi-concavity and the pseudo-concavity, Prop. 6.3.3 shows
that the individual utility function does possess these important properties :

Proposition 6.3.3. Rk is a concave functions w.r.t. pk and uk is a pseudo-concave (quasi-
concave) function w.r.t. pk for ∀k ∈ K ; For any fixed p−k ∈ P−k and pkj with j 6= i, only
one of following statements is true for all i ∈ [Nt] :

i) ∃ p?ki > 0 s.t. fEE
k is an increasing function in (0, p?ki) and a decreasing function in

(p?ki,+∞) w.r.t. pki.

ii) fEE
k is a decreasing function in (0,+∞) w.r.t. pki.
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Proof : It is well-known that Rk is a concave function for pk. Then the pseudo-
concavity (quasi-concavity) of fEE

k comes from the fact that it is a ratio of a concave func-
tion and an affine function of pk. For more details of the proof, see [59]. Now we prove the

second part of this proposition. Rewrite the individual utility function as fEE
k = Rk(γk)∑Nt

i=1 pki+Pc

with Rk (γk) = log (1 + γk). Then we can prove that
∂2fEE

k

∂p2ki
≤ 0 due to the fact that Rk is

an increasing concave function w.r.t. γk and γk is a also increasing concave function w.r.t.
pki. However we can’t conclude directly of the sign of limpki→+∞

∂EE

∂pki
. It can be positive or

negative depending on the value of pkj with j 6= i. Therefore, if limpki→+∞
∂fEE
k

∂pki
≥ 0 then

we are in case ii), otherwise we are in case i). �

Definition 6.3.4. (Standard Games) A game G =
(
K, (Pk)k∈K , (fk)k∈K

)
is said to be

standard if its best response is always standard, i.e.,

1) Positivity : ∀ P−k < 0, BRk (P−k) < 0 ;

2) Monotonicity : if P
′
−k < P−k, then BRk

(
P
′
−k
)
< BRk (P−k) ;

3) Scalability : BRk (αP−k) ≺ αBRk (P−k) for any α > 1.

Before stating the best response dynamics of the game, we define the following boun-
dary of set Pk indicated by an index subset E ⊂ [Nt] :

Pk [E] , {pk ∈ Pk, pki = 0 for i ∈ E} (6.8)

and the non-negative index set for a given action Pk :

I (Pk) , {i ∈ [Nt] s.t. pki ≥ 0} (6.9)

Proposition 6.3.5. For any given P−k and provided that the power budget P k is suffi-
ciently large, denote the unique solution of the following equation as P∗k :

diag
(
ΛH
k

(
ΛkPkΛ

H
k + Fk + σ2Ir

)−1
Λk

)
= fEE

k (Pk,P−k) INt (6.10)

with Fk =
∑

j 6=k SjPjS
H
j is the interference matrix of k-th user with Sj = UH

k UjΛj.
Then the BR of Pk w.r.t. P−k is standard and converges to the unique NE admitted by
game GEE ; The BR is the unique solution of (6.10) restricted to the boundary of Pk
indicated by I (P∗k) with I (P∗k) 6= ∅.

Proof : our proof consists of two parts : i) existence of NE ; ii) uniqueness of NE. For
more details of the proof. More details could be found in Appendix E. �

6.4 Algorithms for Finding NE

Prop. 6.3.5 actually provides an approach for us to find the NE of the game GEE. One
can easily deduce an iterative equation according to (6.10) :

diag

(
ΛH
k

(
ΛkP

(t)
k ΛH

k + F
(t−1)
k + σ2Ir

)−1

Λk

)
= fEE

k

(
P

(t−1)
k ,P

(t−1)
−k

)
INt (6.11)
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However, due to Prop. 6.3.5, this stationary point might not be in the feasible action set.
One can design the following basic algorithm to find NE of the game based on Prop. 6.3.5

Initialization : Number of decisions M ; set P
(0)
k = 1

Nt
INt ,∀k Choose T and ε ;

for t = 1 to T do
for k = 1 to K do

Compute P
(t)
k using (6.11) ;

if I
(
P

(t)
k

)
6= [Nt] then

Compute P
(t)
k using Eq. 6.11 restricted to I

(
P

(t)
k

)
;

end

end

if
∑

k

∥∥∥P(t)
k −P

(t−1)
k

∥∥∥ < ε then

Break ;
end

end

Output: PNE
k = P

(t)
k for ∀k ;

Algorithm 7: Basic algorithm for finding NE of MIMO-MAC EE game GEE

Nevertheless, alg. 7 is not satisfatory way to find the NE of the game. More precisely, to
find the BR for given P−k, one actually need to solve an optimization problem. However,
if h = U? (P−k) = maxPk∈Pk f

EE
k (Pk,P−k) is known as a priori information, (6.11) can

be transformed into following equation which is relatively easy to be solved compared to
(6.11) :

diag

(
ΛH
k

(
ΛkP

(t)
k ΛH

k + F
(t−1)
k + σ2Ir

)−1

Λk

)
= hINt (6.12)

Introducing an auxiliary parameter h, one obtains an iterative equation of Pk. Without
loss of generality, we assume that the solution of (6.11) belongs to the feasible action set
for given P−k. Otherwise, similar analysis can applied for Pk but restricted on a boundary
given by Prop. 6.3.5. For the sake of simplicity, we omit the discussion here and restrict
ourselves to the situation where the BR is strictly included in the interior of the feasible
action set. Therefore for all i ∈ [Nt], there exists p?ki such that individual utility function
fEE
k (Pk,P−k) is an increasing function in (0, p?ki) and a decreasing function in (p?ki,+∞)

with respect to pki, where p?ki is the i-th component of user k’s BR for given P−k. Then fEE
k

is also an increasing function in (0, U? (P−k)) and a decreasing function in (U? (P−k) ,+∞)
w.r.t. parameter h. In other words, to find Pk = BR (P−k), it is sufficient to find U (P−k)
by a bisection search due to the special monotonicity of the utility function.

However, it is worth mentioning that it is still difficult to directly find the solution
of iterative equation (6.12). because this solution is actually implicitly given. We would
like to further simplify (6.12) to facilitate the calculation of BR or NE. To start with,
we assume that Nt = Nr. Firstly, we remove the diagonal operator of LHS of (6.12).
Therefore we have :

P
(t)
k =

1

h
INt −Λ−1

k

(
F

(t−1)
k + σ2INr

)
Λ−1
k (6.13)

If Nt > Nr or Nt < Nr then Λk is not directly invertible, then we should consider the
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pseudo-inverse matrix of Λk. Without loss of generality, we assume that Nt > Nr, denoting

the right pseudo-inverse of Λk as Λ†k then one has ΛkΛ
†
k = INr and

(
Λ†k

)H
ΛH
k = INr .

Similarly, one has :

ΛH
k

(
ΛkP

(t)
k ΛH

k + F
(t−1)
k + σ2Ir

)−1

Λk = hINt(
ΛkP

(t)
k ΛH

k + F
(t−1)
k + σ2Ir

)−1

= h
(
Λ†k

)H
Λ†k (6.14)

However, it is generally impossible to have Λ†kΛk = INt . Thus the equality does not always

holds when we multiply Λ†k on left and
(
Λ†k

)H
on the right on both sides of the equation.

Nevertheless, this operation will yield a linear approximation of the BR dynamics :

P̂
(t)
k =

Λ†k

[(
Λ†k

)H
Λ†k

]−1 (
Λ†k

)H
h

−Λ†k

(
F

(t−1)
k + σ2INr

)(
Λ†k

)H
(6.15)

Similarly, if Nt < Nr we can obtain exactly the same iterative equation as (6.15). This
type of dynamics belongs to the so-called ε-approximate best response. If one deploys
(6.15) as the BR dynamics to compute NE according to alg. 8, one may not achieve the
NE of the game. However, simulation results will show that the deviation is small. To
this end, we obtain a sub-optimal algorithm summarized in alg. 8 by using the iterative
equation deduced in (6.15) instead of using (6.11).

6.5 Numeric Results

The goal of this part is to show the performance of the proposed algorithms. Notice if
Nt = Nr, (6.15) degenerates to (6.13) which conserves the optimality of best response. For
this situation, we choose Nt = Nr = 2 with K = 2 users. A sufficient large power budget
is chosen so that the BR is included in the feasible action set P k = 10mW for ∀k ∈ {1, 2}
and the circuit power is Pc = 1mW. The error tolerance for alg. 8 is ε1 = ε2 = 0.001.

In Fig. 6.1, the achievable utility region, the average performance under NE found
by alg. 8 and the averaged performance achieved by uniform power allocation (UPA) are
depicted. All results are averaged over 1000 randomly generated channel samples. It is
observed that the performance achieved by deploying UPA is Pareto-dominated by NE
which can be found by alg. 8. Furthermore, the NE found by alg. 8 is closed to the Pareto
frontier achieved by some centralized algorithms which suggest the efficiency using alg. 8
is higher than UPA.

Moreover, define the social welfare for a given action profile as w (p) =∑
k∈K f

EE
k

(
pk,p−k

)
. Then the average social welfare as function of number of number

of antennas (still we keep Nt = Nr) and the power budget in Fig. 6.2 and Fig. 6.3 res-
pectively. For Fig. 6.2, the averaged social welfare of both UPA policy and our proposed
algorithm is increased quasi-linearly as the number of antennas grows. However our pro-
posed algorithm always outperforms the optimal UPA policy which is allowed to tune the
power but always equally shared among each transmit antenna. In Fig. 6.3, we would like
to show the influence of user’s power budget. There are two different regions for social
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Initialization : Number of decisions M ; set P
(0)
k = 1

Nt
INt ,∀k. Choose T , ε1 and ε2 ;

for t = 1 to T do
for k = 1 to K do

Initialization : h = 0 and h = hmax ;

while h− h ≥ ε1 do

hM = h+h
2

, hL = max
(
0, hM − ε1

2

)
and hR = min

(
hmax, hM + ε1

2

)
;

Compute Pk (hi) using (6.15), i ∈ {L,M,R} ;

Ui = uk

(
Pk(hi),P

(t−1)
−k

)
, i ∈ {L,M,R} ;

if UL < UM < UR then
h = hL ;
else if UL > UM > UR then

h = hR ;
end

else

h = hL and h = hR ;
end

end

P
(t)
k =

Λ†k

[
(Λ†k)

H
Λ†k

]−1

(Λ†k)
H

hM
−Λ†k

(
F

(t−1)
k + σ2INr

)(
Λ†k

)H
;

end

if
∑

k

∥∥∥P(t)
k −P

(t−1)
k

∥∥∥ < ε2 then

Break ;
end

end

Output: PNE
k = P

(t)
k for ∀k ;

Algorithm 8: Bisection Search Algorithm to approach the NE of the EE game

welfare. In the first region where the power budget is sufficiently large, the NE found
by our proposed algorithm is independent of the power budget while the performance of
UPA is decreasing with respect to the increase of the power budget. In the second region
where the power budget is relatively small, Using proposed algorithm, it is not sure to
converge to the NE of the game because Prop. 6.3.5 is no more valid in this region. Never-
theless, the performance achieved by our algorithm is still better than UPA which prove
the superiority of our algorithm.

Then a more probable situation is considered where Nt < Nr meaning that the number
of antennas in user terminal is less than the one in base station. The discussion in Sec. 6.4
shows that the proposed suboptimal algorithm is actually suboptimal due to the usage of ε-
approximate best response. For numeric demonstration, we choose Nt = 2 < Nr = 4. The
performance of alg. 8 is illustrated in Fig. 6.4. The sub-optimality is clearly demonstrated
in this figure. However, the resulted policy actually Pareto-dominates the exact NE found
by alg. 7 and the dispersion is relatively small in terms of average performance. This
remark entails that even the policy found by alg. 8 is not the NE of the game in its sub-
optimal region however its performance does slightly outperforms the exact NE. Moreover
the proposed algorithm is easy to implement for using explicit iterative equation even if
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Figure 6.1 – Energy Efficiencoes under NE and uniform power allocation (UPA) with
Nt = Nr = 2 for 2-user situation. NE found by our exact algorithm outperforms Uniform

power allocation (UPA) policy.

it is approximated.

6.6 Conclusions

In this chapter, a game where the individual utility function is the energy efficiency
in a MIMO multiple access channel system is considered. The existence and the unique-
ness of Nash Equilibrium is proved and an exact algorithm and a suboptimal algorithm
is proposed to find the NE of this game. Simulation results show that if the the num-
ber of transmit antennas and the number of receiving antennas is the same, performance
under NE found by proposed algorithms is always better than uniform power alloca-
tion policy for both inside or outside the range covered by the main proposition of the
chapter. When the condition for antennas is not met, our proposed algorithm actually
deploys an ε-approximate best response which will not lead to a pure Nash Equilibrium.
Quiet surprisingly the approximate solution found by our sub-optimal algorithm slightly
Pareto-dominates the exact NE of the game. This observation shows that the performance
of proposed algorithm is acceptable while it is relatively easy to implement. Other tech-
niques such as pricing might be useful to improve the efficiency of the overall system.
The situation where each user is allowed to freely choose its covariance matrix merely
constrained to the maximum power is the natural extension of this chapter. Moreover,
the discussion over the effect of successive interference cancellation and multiple carrier
seems to be complicated and serve as the challenge of the future works. Nash Equilibrium
analysis fo this game could be served as basic results for our goal-oriented quantization
framework involving in performance under equilibrium regime.
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Figure 6.2 – Average social welfare under NE and uniform power allocation as function
of number of antennas (Nt = Nr) with P k = 10mW for 2-user situation. NE found by

our alg. 7 outperforms UPA
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Figure 6.3 – Performance under NE and UPA as function of the power budget of user
with Nt = Nr = 2 for 2-user situation. There are two different regions : one corresponds

to Prop. 6.3.5. In the region uncovered by Prop. 6.3.5, alg. 8 still dominates UPA.
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Figure 6.4 – Performance achieved by alg. 7 (NE) and alg. 8 and UPA with Nt = 2 and
Nr = 4 for 2-user situation. Policy found by alg. 8 is very near to the exact NE and

Pareto-dominates it. Moreover, two policies found by proposed algorithms both
outperform UPA.
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7
Conclusions and Perspectives

7.1 Conclusions

In this manuscript, the goal-oriented quantization problem is formulated and solved
in different scenarios. Conventional quantization scheme is typically designed to minimize
some distortion measure between the original signal and its representation, regardless
of the system task. However, in many signal processing applications, the goal is not to
recover the transmitted signal, but to extract essential information from the quantized
signal to help the accomplishment of a goal.

In chapter 3, the goal-oriented quantization problem is first formulated for one-shot
quantization scenario for single utility function. The basic goal-oriented quantization al-
gorithm is proposed by mimicking the Lloyd-Max algorithm. The original problem is split
into two sub-problems : i) finding optimal decision set for given quantization region ; fin-
ding quantization regions for given decision set. Then we consider a special case of the
goal-oriented quantization problem for the the decision space of the cost function being
polyhedral and convex and concave utility functions. With the help of (generalized) Jen-
sen’s inequality, the optimality loss is upper bounded by a linear approximation which
is easy to be minimized. Moreover, for a given parameter sample set, decision sets are
divided into equivalent classes based on the optimal decision label. We propose an ap-
proach named improve and branch algorithm which iteratively improves the decision set
in a greedy way within a equivalent class to find the best decision set which minimizes
the upper bound of the optimality loss. The proposed method requires no knowledge on
the optimal decision function of the utility function and could be extended to the weakly
concave utility functions with a little modification. Numerical results show that proposed
algorithm outperforms conventional approach. Finally it is important to point out that
proposed method could be redundant if the optimal decision set lies on the vertices of the
decision polyhedron, e.g. binary power control.

The final part of chapter 3 is dedicated to the goal-oriented quantization problem
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when only the realizations of utility functions are known. The problem is divided into two
steps. A feed-forward neural network is proposed to learn the quantization regions fixing
the decision set based on a trainining set. Numerical results shows that sum-rate capacity
requires few quantization bits to achieve a small optimality loss. However, for energy-
efficiency, channel gains need to quantized more accurately entails the necessity of further
research on how to design a goal-oriented quantizer . To find optimal decision set, an
evolutionary algorithm called IWO-DE algorithm which combines two classic evolutionary
algorithm is used. IWO-DE mimics the processing of weed occupying the fields within
certain generations of breeding. We take the problem of finding jointly set of power level
and beamforming vectors to maximize the energy efficiency of the system as our numerical
application to show the potential benefits of our approach. Our approach is shown to
outperform the best state-of-the-art techniques such as Lloyd-Max algorithm and RVQ. A
reduction of 50% quantization bits is observed in this comparison. However the drawback
of our proposed method is the rapid increase of computation time as the dimension of
problem grows.

In chapter 4, inspired by the high resolution quantization theory for distortion-like
quantization, we try to apply this theory to scalar case and vector case of goal-oriented
quantization problem separately. For scalar case, the proposed new approximate formula
of optimality loss leads to a new quality defined as value density representing the im-
portance of parameter for its contribution to the average optimality loss. We introduce a
new quality normalized optimality loss when comparing the hardness of quantization for
different cost functions. By merely approximating this quality in high resolution regime,
we are capable to determine the hardness of quantization without performing real simu-
lations. For vector case, the similar approximate formula of the opitmality loss is hard to
obtain since the characterization matrix is cell-depending. Nevertheless, by admitting the
correctness of Gersho’s conjecture, Upper bound and lower bound are derived for opti-
mality loss introduced by goal-oriented quantizer. Moreover, we propose a new algorithm
by iteratively updating a single representatives in each iteration based on the eigenvalue
approximation of the average optimality loss to design a goal-oriented quantizer. In each
iteration, one tries to find the worst parameter sample in the sense of introducing the
largest individual optimality loss. Then its corresponding representative is improved so
that the average optimality loss is reduced. The algorithm stops if such operation is no
longer possible. Numerical results shows that the satisfying update is slightly domina-
ted by greedy update which aims at minimizing the average optimality loss in current
iterations.

In chapter 5, instead of focusing on the optimal structure of the goal-oriented commu-
nication, we start to tackle the goal-oriented quantization problem when several correlative
utility functions targeted by different users of the system. In other words, the goal-oriented
quantization problem is developed in the framework of games. More specifically, we res-
trict ourselves in the study of potential games with identical action set. Taking the social
welfare as our performance criterion, we have proven that the maximum social welfare is
a submodular function of the action set with Nash equilibrium refined in argmax set of
potential function. Moreover, the famous Braess’s paradox is related to the monotonicity
of this function. Based on these properties, we design an algorithm to find a finite action
set aiming at maximizing the average social welfare under Nash equilibrium of the system.
We take the multi-user MIMO multiple access channel game with spectral efficiency as
the individual utility in which the existence of Braess’s paradox is already confirmed as
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the application of our theory. For 2-user 2-band scenario, we have proven that the chan-
nel selection set is the optimal action set for maximizing the social welfare. Telatar-type
set is conjectured to be the optimal action set for maximizing the social welfare under
Nash equilibrium in general cases. The existence of Braess’s paradox is not guaranteed
for general utility function of arbitrary game. The feasibility of proposed methods should
be verified for other applications.

In chapter 6, a game where the individual utility function is the energy efficiency in
a MIMO multiple access channel system is considered. The existence and the uniqueness
of Nash Equilibrium is proved by showing the underlying game is a standard game if the
total power of the system is less than a threshold. An algorithm is proposed to find the
NE of this game by replacing the exact best response dynamics by an approximate one .
Simulation results show that if the the number of transmit antennas and the number of
receiving antennas is the same, performance of solution found by proposed algorithms is
exactly the Nash equilibrium of the game. When the condition for antennas is not met, our
proposed algorithm actually deploys an ε-approximate best response which will not lead
to a pure Nash Equilibrium surely. Quiet surprisingly the approximate NE found slightly
Pareto-dominates the exact NE of the game. The discretization of the action space will
severely influence the determination of NE since it transforms the nature of the game.
This could be the main challenge of the future works.

7.2 Perspectives

• This manuscript is dedicated to the goal-oriented quantiation problem in on one-
shot quantization scenario. It could be more reasonable to quantize a sequence of
parameters, i.e., goal-oriented coding. The delay between decision-making and para-
meter observation could always be troublesome for our goal-oriented communication
problem which is ignored in this manuscript.

• In chapter 3, to find the quantization region of a goal-orientd quantizer, a simple
feed-forward neural network is proposed to do so. However if the underlying optimi-
zation problem is complicated to solved, it is reasonable to apply advanced neural
network to find the quantization regions.

• In chapter 3, we consider the speical case where the polyhedral decision space of
the goal-oriented quantization problem is convex and the utility function is at least
weakly concave. For a given parameter sample set, the sequence of optimal decision
label introduces an equivalent relation. Our methods takes good advantage of the
convexity of the utility function within an equivalent class. One of future works of
this part is the extension to more general utility function with arbitrary decision
space. Moreover, when the number of samples tends to large, the complexity of
current method could be unacceptable for practical applications.

• For chapter 4, the goal-oriented quantization problem is considered in high-
resolution regime. Using Taylor expansion, an approximate formula of the optimality
loss is obtained. Higher order term of Taylor expasion will improve the accuracy of
the approximate formula but reduce the simplicity of the formula. For vector case,
our approximate formula stops for a universal term is missing characterizing the
hardness of compression at a particular parameter point. How to find a quantity
similar to value density as the scalar case should be further explored in the future.
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Finally the proposed algorithm for vector case behaves not as good as expected.
This observation will obstacle the possible applications of our approach into high-
dimensional scenarios such as images and videos.

• For chapter 5, instead of considering single utility function as the objective of the
entire system, utility function of users in the system could be completely different.
The action set optimization problem is deeply correlated with the existence of the
famous Braess’s Paradox in game theory. Our analysis is merely limited in potential
games which are a rather easy to solve compared to other types of game. In this
chapter, the quantization of user’s information are assumed to be simultaneously
performed. However if the quantization could be performed sequentially (guaran-
teeing a high confidentiality in normal operating mode then guarantee maximum
receiver reactivity in fault mode), how to design a goal-oriented quantizer could also
be challenging in this scenario. Finally, if the accuracy requirement of quantization
for each user is different due to the the hardness of quantization for utility func-
tion itself or the security reasons, the goal-oriented quantization problem should be
re-formulated and revisited.

• In chapter 6, we confirm that the study of goal-oriented communication should not
be restricted in quantization problem merely. When user apply approximate best
response instead of best response which means user does not insist in optimizing in-
dividual interest, the overall performance of the system could be improved compared
to the selfish case (Nash Equilibirum). However the university of this phenomenon
remains to be examined for general case of other game or decentralized systems.
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A
Proof of Proposition 4.2.2

We start by studying fworst. One has :

L̂ (Q; f,R, φ) =
C (k)

2Rk

(∫
G

(qφ)
1
k+1 dg

)k+1

=
C (k)

2Rk
‖qφ‖ 1

k+1

(a)

≤ C (k)

2Rk
‖q‖ 1

k
‖φ‖ 1

1

(b)
= Af

C (k)

2Rk

∥∥∥φ 1
k

∥∥∥
1
k

(A.1)

(a) is again by Hölder inequality. (b) is for the equality condition for Hölder inequality :

qk ∝ φ. Then the worst cost function must satisfy q (g) ∝ φ
1
k . (c) Af is a constant

depending on the cost function.

For best cost function, we resort to variational principle. To minimize the optimality

loss L̂ (Q; f,R, φ) with

∫
g∈G

q (g)φ (g) dg = C , it is equivalent to the following functional

optimization problem :

minimize H (φ, q) =

∫
G

H (φ (g) , q (g)) dg

s.t. E (φ, q) =

∫
G

E (φ (g) , q (g)) dg = C (A.2)

with H (φ (g) , q (g)) = (qφ)
1
k+1 and H (φ (g) , q (g)) = qφ. We introduce the Lagrangian
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for OP in (A.2) :

L (φ, q; γ)

=H (φ, q) + γ (E (φ, q)− C)

=

∫
G

H (φ (g) , q (g)) + γ

(
E (φ (g) , q (g))− C

|G|

)
dg (A.3)

We Denote W = T + γ
(
E − C

|G|

)
, the necessary condition of optimality for OP in

(A.2) is : there exists γ ∈ R s.t. the well known Euler-Lagrange Equation has solution,
i.e.,

∂W

∂q
− d

dq

[
∂W

∂q̇

]
= 0 (A.4)

which implies that

∂W

∂q
=
(

(qφ)−
k
k+1 + γ

)(
φ+ q

dφ

dq

)
= 0. (A.5)

The solution is easily obtained : q (g) = Cb
φ(g)

with Cb = C
|G| .
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B
Proof of Proposition 4.3.1

We first study the lower bound of L̂ (Q; f,R, φ), i.e., L̂inf (Q; f,R, φ). Similarly, we
extend the notation of the point density ρ(g) to a vector case which determines the
approximate fraction of representatives contained in that region. Define the normalized
moment of inertia of the cell Cm with representative zm by

M (Cm, zm) =
1

d2

1

vol(Cm)1+2/d2

∫
Gm

‖g − zm‖2
2dg, (B.1)

and the inertial profile m(g) = M (Gm, zm) when g ∈ Gm, the OL can be further approxi-
mated as [22][23] :

L (Q; f,R, φ)

=
M∑
m=1

∫
Gm

(f(κ(zm); g)− f(κ (g) ; g))φ(g)dg

(a)

≥
M∑
m=1

∫
g∈Gm

1

2
‖g − zm‖2

2λ1(g; f)φ(g)dg

(b)
=

M∑
m=1

d2

2M2/d2

M (Cm, zm)

ρ2/d2(zm)
λ1(zm; f)φ(zm)vol(Cm) + o (M)

(c)
=

d2

2M2/d2

∫
m(g)

ρ2/d2(g)
λ1(g; f)φ(g)dg + o (M) (B.2)

(a) comes from the fact that em is a normalized vector ; (b) uses the definition of
M (Cm, zm) and the relation lim

M→∞

∑M
m=1 vol(Cm)ρ(zm) = M ; (c) is still the definition

of Riemman integral. This result can be seen as a special case of Bennett’s integral (see
[20][23]) by replacing φ (g) by the product λ1(g; f)φ(g). However, it is unknown how to
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find the optimal inertial profile m(g) and it is not even known what functions are allowable
as inertial profiles. To this end, Gersho [22] made the widely accepted conjecture that
when R is large, most regions of a d2-dimensional quantizer aims at minimizing or nearly
minimizing the mean square error are approximately congruent to some basic tessellating
d2-dimensional cell shape Td2 . With this conjecture, the optimal inertial profile m(g) can
be seen as a constant Md2 in high resolution case. By using the Hölder’s inequality, the
optimum density ρ(g) to minimize the distortion can be written as

ρ∗(g) =
(λ1(g; f)φ(g))d2/(d2+2)∫

t∈G
(λ1(t; f)φ(t))d2/(d2+2) dt

(B.3)

resulting in the low bound of distortion in (4.28). Similar analysis applies to upper bound.
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C
Proof of Proposition 5.3.5

The proof is trivial when one has the following relations : For any B1,B2 ⊆ X, it holds
that :

ω (B1 ∪B2; g) = max {ω (B1; g) , ω (B2; g)} , (C.1)

ω (B1 ∩B2; g) ≤ min {ω (B1; g) , ω (B2; g)} . (C.2)

We begin by proving the first equality. Take a selection a ∈ N [B1 ∪B2; g], one has :

ω (B1 ∪B2; g)

= max
a∈N[B1∪B2;g]

w (a; g)

= max
a∈N[B1;g]∪N[B2;g]

w (a; g)

= max

{
max

a∈N[B1;g]
w (a; g) , max

a∈N[B2;g]
w (a; g)

}
= max {ω (B1; g) , ω (B2; g)} . (C.3)

For the second inequality, one has :

ω (B1 ∩B2; g)

= max
a∈N[B1∩B2;g]

w (a; g)

≤ max
a∈N[B1;g]

w (a; g)

= ω (B1; g) . (C.4)

Similarly, one has
ω (B1 ∩B2; g) ≤ ω (B2; g) , (C.5)

which results in
ω (B1 ∩B2; g) ≤ min {ω (B1; g) , ω (B2; g)} (C.6)
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D
Proof of Proposition 5.4.2

We define two functions for αi, αj ∈ [0, 1] :

u1 (αi, αj; G) =

(
1
γ

+ g1,1αi + g2,1αj

)2(
1
γ

+ g1,1αi

)(
1
γ

+ g2,1αj

) (D.1)

u2 (αi, αj; G) =

(
1
γ

+ g1,2 (1− αi) + g2,2 (1− αj)
)2(

1
γ

+ g1,2 (1− αi)
)(

1
γ

+ g2,2 (1− αj)
) (D.2)

One can find that ω (αi, αj; G) = log u1 (αi, αj; G)+log u2 (αi, αj; G) and we will prove
only (0, 1) and (1, 0) could be the global optimal solution for function u1, u2. Without loss
of generality, let us take f1 as an example. set ∂f1

∂αi
≥ 0, one has

g1,1αi − g2,1αj +
1

γ
≥ 0 (D.3)

By symmetry, one has :

g1,1αi − g2,1αj −
1

γ
≤ 0 (D.4)

Obviously, if γ < min
{

1
g1,1

, 1
g2,1

}
, (D.3) and (D.4) are both true for ∀αi, αj ∈ [0, 1].

Then the global optimal solution could only be (0, 1) or (1, 0). Otherwise, ∃ αi, αj so that
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one of (D.3) and (D.4) is true, one thus obtain

u1 (αi, αj; G) =

(
1
γ

+ g1,1αi + g2,1αj

)2(
1
γ

+ g1,1αi

)(
1
γ

+ g2,1αj

)
=

4g2
2,1α

2
j

g2,1αj

(
1
γ

+ g2,1αj

)
=

4g2,1αj
1
γ

+ g2,1αj
(D.5)

Obviously α?j = 1. Similarly analysis can be apply to u2 (αi, αj) which will result in(
α?i , α

?
j

)
= (0, 1) or (1, 0). Then the optimal action set is obviously the channel selection

set.
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E
Proof of Proposition 6.3.5

Our proof consists of two parts : i) existence of NE ; ii) uniqueness of NE by proving
that this game is a standard game. i) Existence of NE : it is easy to prove that the action
set Pk for each player is compact (closed and bounded), combining the quasi-concavity
of fEE

k claimed in Prop. 6.3.3, the existence is due to Debreu-Fan-Glicksberg theorem in
[73]. Moreover, Prop. 6.3.3 claims that fEE

k is a pseudo-concave function w.r.t. Pk. Due
to the property of pseudo-concave function, the unique stationary point (points where
derivative vanishes) is the global optimizer of the utility function if the stationary point is
in the feasible action set. We first calculate the stationary point of fEE

k for ∀k ∈ K using
matrix calculus :

∂fEE
k

∂Pk

= 0Nt×Nt , (E.1)

Meanwhile, one has :

∂fEE
k

∂Pk

=

∂Rk
∂Qk

(Tr (Pk) + Pc)−RkINt

(Tr (Pk) + Pc)
2 , (E.2)

which is equivalent to

∂Rk

∂Pk

=
RkINt

Tr (Pk) + Pc
= fEE

k INt . (E.3)

Further more, we have
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∂Rk

∂Pk

= diag

∂ log det
(
σ2INr +

∑K
j=1 UjΛjPjΛ

H
j UH

j

)
∂Pk


= diag

(
∂ log det

(
ΛkPkΛ

H
k + Fk + σ2Ir

)
∂Pk

)

= diag

(
ΛH
k

∂
[
log det

(
ΛkPkΛ

H
k + Fk + σ2Ir

)]
∂ [ΛkPkΛH

k + Fk]
Λk

)
= diag

(
ΛH
k

(
ΛkPkΛ

H
k + Fk + σ2Ir

)−1
Λk

)
(E.4)

The reason for which a diagonalized operator is taken is that only the variables lying
in the diagonal of Pk is valid, combining (E.3) and (E.4) yields :

diag
(
ΛH
k

(
ΛkPkΛ

H
k + Fk + σ2Ir

)−1
Λk

)
= fEE

k INt (E.5)

However, the stationary point might not belong to the feasible action set Pk. Denote
P∗k = diag (p∗k) the unique solution of (6.10) in RNt . Before stating BR of the game, we
need prove some auxiliary results. We first prove that for given P−k and pkj with j 6= i,
p∗ki is a decreasing function for ∀pkj. If p

′

kj ≥ pkj and suppose p
′

ki = BRki

(
p
′

kj,P−k
)
≥

BRki (pkj,P−k) = p∗ki then by monotonicity, one has v
(
p
′

ki,P
′
−k
)
≥ v (p∗ki,P−k) which

is contradictory to the fact that v
(
p
′

ki,P
′
−k
)

= v (p∗ki,P−k) = 0. Then we can prove
I (p∗k) 6= ∅ by contradiction as well. We suppose that I (p∗k) = ∅, i.e., p∗ki < 0 for ∀k. Then
the BR is obviously BRk (P−k) = 0Nt×Nt with fEE

k (BRk (P−k) ,P−k) = 0. However, we
have fEE

k (Pk,P−k) > 0 for Pk ∈ Pk and Pk 6= 0Nt×Nt which leads to a contradiction.
Finally due to this monotonicity of the BR and knowing that the feasible action set Pk is
a polyhedron, then BR must be on the boundary of Pk except 0Nt×Nt . Since Pk = 0Nt×Nt
is the only point intersected by all faces of the feasible action polyhedron, so BR can only
be on the boundary defined as (6.8) corresponding to I (p∗k) 6= ∅. This completes the proof
for existence.

ii) Now we would like to prove that the BR converges to a point which is the unique
NE of the game. We will achieve that by showing that the best response is a standard
function.

Positivity is obviously observed in its form given by Prop. 6.3.5. To prove the mo-
notonicity, We firstly prove that v (pki,P−k) is a decreasing function of plj for ∀j and
l 6= k :

∂v

∂plj
=
[
R
′

k (γk)
]2 ∂γk
∂plj

∂γk
∂pki

−R′′k (γk)
∂γk
∂plj

∂γk
∂pki

Rk

− ∂2γk
∂plj∂pki

R
′

k (γk)Rk (E.6)
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One can easily verify that ∂2γk
∂plj∂pki

= (1 + γk)
∂γk
∂plj

∂γk
∂pki
≥ ∂γk

∂plj

∂γk
∂pki

, then one can obtain

∂v

∂plj
≤
[
R
′

k (γk)
]2 ∂γk
∂plj

∂γk
∂pki

−R′′k (γk)
∂γk
∂plj

∂γk
∂pki

Rk

− ∂γk
∂plj

∂γk
∂pki

R
′

k (γk)Rk

=
∂γk
∂plj

∂γk
∂pki

[(
R
′

k (γk)
)2

−R′′k (γk)Rk −R
′

k (γk)Rk

]
(E.7)

One can easily prove that ∂γk
∂plj
≤ 0 and

(
R
′

k (γk)
)2 − R

′′

k (γk)Rk − R
′

k (γk)Rk ≥ 0

resulting ∂v
∂plj
≤ 0. Then using the same argument in the proof of BR, the monotonicity is

immediate. Finally, we only need to prove the scalability of BR. Denote the BR for P−k
(which might be different from P∗k) and αP−k as P?

k and P?
k,α respectively, one has :

1

α
P?
k,α

=
1

α
arg max

Pk
fEE
k (Pk,P−k)

=
1

α
arg max

Pk

log |Pk + αFk + σ2Ir| − log |αFk + σ2Ir|
Tr (Pk) + Pc

= arg max
Pk

log |αPk + αFk + σ2Ir| − log |αFk + σ2Ir|
Tr (αPk) + Pc

= arg max
Pk

log
∣∣∣Pk + Fk + σ2

α
Ir

∣∣∣− log
∣∣∣Fk + σ2

α
Ir

∣∣∣
Tr (αPk) + Pc

< arg max
Pk

log |Pk + Fk + σ2Ir| − log |Fk + σ2Ir|
Tr (αPk) + Pc

= arg max
Pk

log |Pk + Fk + σ2Ir| − log |Fk + σ2Ir|
Tr (Pk) + Pc

α

< arg max
Pk

log |Pk + Fk + σ2Ir| − log |Fk + σ2Ir|
Tr (Pk) + Pc

=P?
k (E.8)

which completes the proof for scalability.
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Titre : Communications Orientées Objectifs : Le Problème de Quantification
Mots clés : Quantification, réseaux de neurones artificiels, algorithmes évolutionnaires, optimisation
convexe, quantification à haute résolution , théorie des jeux, équilibre de Nash, jeu de potentiel, efficacité
énergétique.

Résumé : Le paradigme classique pour concevoir
un émetteur (codeur) et un récepteur (décodeur)
est de concevoir ces éléments en assurant que l’in-
formation reconstruite par le récepteur soit suffi-
samment proche de l’information que l’émetteur
a mis en forme pour l’envoyer sur le médium de
communication. On parle de critère de fidélité ou
de qualité de reconstruction (mesurée par exemple
en termes de distorsion, de taux d’erreur binaire, de
taux d’erreur paquet ou de probabilité de coupure
de la communication).

Le problème du paradigme classique est qu’il
peut conduire à un investissement injustifié en
termes de ressources de communication (surdimen-
sionnement de l’espace de stockage de données,
médium de communication à très haut débit et
onéreux, composants très rapides, etc.) et même à
rendre les échanges plus vulnérables aux attaques.
La raison à cela est que l’exploitation de l’approche
classique (fondée sur le critère de fidélité de l’in-
formation) dans les réseaux sans fil conduira typi-
quement à des échanges excessivement riches en
information, trop riches au regard de la décision
que devra prendre le destinataire de l’information.
Il s’avère qu’actuellement, l’ingénieur n’a pas à
sa disposition une méthodologie lui permettant de
concevoir une telle paire émetteur-récepteur qui se-
rait adaptée à l’utilisation (ou les utilisations) du
destinataire.

Par conséquent, un nouveau paradigme de
communication appelé la communication orientée
objectif est proposé pour résoudre le problème des

communications classiques. Le but ultime des com-
munications orientées objectifs est d’accomplir cer-
taines tâches ou certains objectifs au lieu de vi-
ser un critère de reconstruction du signal source.
Les tâches sont généralement caractérisées par des
fonctions d’utilité ou des fonctions de coût à opti-
miser.

Dans la présente thèse, nous nous concentrons
sur le problème de quantification des communica-
tion orientées objectifs, c’est-à-dire la quantifica-
tion orientée objectif. Nous formulons d’abord for-
mellement le problème de quantification orientée
objectif. Deuxièmement, nous proposons une ap-
proche pour résoudre le problème lorsque seules
des réalisations de fonction d’utilité sont dispo-
nibles. Un scénario spécial avec quelques connais-
sances supplémentaires sur les propriétés de régu-
larité des fonctions d’utilité est également traité.
Troisièmement, nous étendons la théorie de la
quantification à haute résolution à notre problème
de quantification orientée objectif et proposons des
schémas implémentables pour concevoir un quan-
tificateur orienté objectif. Quatrièmement, le pro-
blème de quantification orientée but est développé
dans un cadre de jeux sous forme stratégique. Il est
montré que la quantification orientée objectif pour-
rait améliorer les performances globales du sys-
tème si le fameux paradoxe de Braess existe. Enfin,
l’équilibre de Nash d’un jeu de canaux d’accès mul-
tiples à entrées multiples et sorties multiples multi-
utilisateurs avec l’efficacité énergétique étant l’uti-
lité est étudié et réalisé selon différentes méthodes.



Title : Goal Oriented Communications : The Quantization Problem
Keywords : Quantization, artificial neural networks, evolutionary algorithm, convex optimization, high-
resolution quantization, game theory, Nash equilibrium, potential games, energy efficiency.

Abstract : The classic paradigm for designing a
transmitter (encoder) and a receiver (decoder) is
to design these elements by ensuring that the infor-
mation reconstructed by the receiver is sufficiently
close to the information that the transmitter has
formatted to send it on the communication me-
dium. This is referred to as a criterion of fidelity or
of reconstruction quality (measured for example in
terms of distortion, binary error rate, packet error
rate or communication cut-off probability).

The problem with the classic paradigm is that
it can lead to an unjustified investment in terms of
communication resources (oversizing of the data
storage space, very high speed and expensive com-
munication medium, very fast components, etc.)
and even to make exchanges more vulnerable to
attacks. The reason for this is that the use of the
classic approach (based on the criterion of fide-
lity of information) in the wireless networks will
typically lead to exchanges excessively rich in in-
formation, too rich regarding the decision which
will have to be taken. the recipient of the informa-
tion ; in the simpler case, this decision may even
be binary, indicating that in theory a single bit of
information could be sufficient. As it turns out, the
engineer does not currently have at his disposal a
methodology to design such a transceiver pair that
would be suitable for the intended use (or uses) of
the recipient.

Therefore, a new communication paradigm na-

med the goal-oriented communication is proposed
to solve the problem of classic communications.
The ultimate objective of goal-oriented communi-
cations is to achieve some tasks or goals instead
of improving the accuracy of reconstructed signal
merely. Tasks are generally characterized by some
utility functions or cost functions to be optimized.

In the present thesis, we focus on the quan-
tization problem of the goal-oriented communi-
cation, i.e., the goal-oriented quantization. We
first formulate the goal-oriented quantization pro-
blem formally. Secondly, we propose an approach
to solve the problem when only realizations of
utility function are available. A special scenario
with some extra knowledge about regularity pro-
perties of the utility functions is treated as well.
Thirdly, we extend the high-resolution quantiza-
tion theory to our goal-oriented quantization pro-
blem and propose implementable schemes to de-
sign a goal-oriented quantizer. Fourthly, the goal-
oriented quantification problem is developed in a
framework of games in strategic form. It is shown
that goal-oriented quantization could improve the
overall performance of the system if the famous
Braess paradox exists. Finally, Nash equilibrium
of a multi-user multiple-input and multiple out-
put multiple access channel game with energy ef-
ficiency being the utility is studied and achieved in
different methods.
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