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Résumé en Français  

Au cours des 30 dernières années, nous avons observé des déclins dramatiques de la santé mentale 

et du bien-être dans le monde, avec près de 450 millions de personnes souffrant actuellement de 

troubles mentaux, tandis que les disparités d’accès aux soins mentaux continuent d’augmenter. 

L'objectif principal de cette thèse est l'identification de méthodes nouvelles et rentables pour 

mesurer le bien-être et son évolution au cours du temps. Combiner mesures subjectives et 

objectives (physiologiques) est crucial pour atteindre cet objectif. Le bien-être module la structure 

et la fonction du cerveau tout au long de la vie, qui, à son tour, module les niveaux de bien-être. 

Cependant, notre compréhension de cette relation bidirectionnelle est incomplète. Les progrès 

technologiques récents ont conduit au développement de systèmes électroencéphalographiques 

(EEG) portables économiques qui offrent un temps de préparation rapide et qui facilitent 

l’acquisition de données EEG sur des échantillons larges et diversifiés. Ces derniers permettent 

l’utilisation de méthodes statistiques robustes qui facilitent la prédiction de variables 

indépendantes (e.g., bien-être), l'identification de tendances et de médiateurs, et augmentent la 

puissance statistique. Dans la première étude de ce projet, nous avons validé la capacité d’une 

échelle subjective rapide à mesurer les dimensions principales du bien-être (hédonique, 

eudaimonique, physique) sur 1615 sujets qui ont participé à un sondage en ligne. Tandis que les 

systèmes EEG à bas coût et à basse densité présentent des défis techniques importants (e.g., 

baisse de la qualité du signal, résolution spatiale basse, limitation du nombre d’algorithmes de 

traitement de données qui peuvent être utilisés), nous avons montré qu’un tel système pouvait 

être utilisé pour acquérir des mesures EEG spectrales (domaine fréquenciel) pertinentes pour 

l'étude du bien-être (étude 2). Dans une 3ème étude, nous avons utilisé les outils validés dans les 

études 1 et 2 et validé une méthode de prétraitement du signal automatique (rejet d’artéfacts) afin 

d’examiner les corrélats EEG du bien-être sur un grand échantillon (N = 353). Un marqueur 

EEG potentiel du bien-être (associé à l’âge) est présenté, une asymétrie interhémisphérique de 

puissance spectrale alpha (8-13 Hz) dans les régions temporopariétales. Nous présentons nos 

interprétations de ces résultats et discutons les limites liées à ces études, les directions futures, et 

les implications éthiques pour ce domaine de recherche de manière plus large. Les applications 

cliniques et expérimentales à long terme contribueront, espérons-le, à une amélioration du bien-

être et de la prévention des troubles mentaux dans la population générale, et à une réduction des 

disparités d’accès aux soins mentaux dans le monde.  

  



 
 

  



 
 

Abstract  

Over the past 30 years, we have seen dramatic declines in mental health and wellbeing around 

the world, with almost 450 million people currently suffering from mental disorders, while 

disparities in access to mental care continue to increase. This thesis’ main objective is the 

identification of novel and affordable methods to measure well-being and its evolution over time. 

Combining subjective and objective (physiological) measures is crucial to achieving this goal. 

Well-being modulates brain structure and function throughout life, which, in turn, modulates 

levels of well-being. However, our understanding of this bidirectional relationship is incomplete. 

In the first study of this project, we validated the ability of a quick subjective scale to measure 

the main dimensions of well-being (hedonic, eudaimonic, physical) on 1,615 subjects who 

participated in an online survey. Recent advances in technology have led to the development of 

low-cost, portable, and wireless electroencephalographic (EEG) systems that offer fast set-up 

time and facilitate the acquisition of EEG data on large and diverse samples. In turn, these large 

datasets allow the use of robust statistical methods (e.g., linear models) that facilitate the 

identification of trends, mediators (e.g., co-variables), and the prediction of independent variables 

(e.g., well-being). While low-cost, low-density EEG systems present significant technical 

challenges (e.g., lower signal quality, lower spatial resolution, limitation of the number of data 

processing algorithms that can be used), we have shown that such a system could be used to 

acquire spectral (frequency domain) EEG measurements relevant to the study of well-being 

(Study 2). In Study 3, we used the tools validated in Studies 1 and 2 and validated an automatic 

signal preprocessing method (artifact rejection) to examine the EEG correlates of well-being in 

a large sample (N = 353). A potential EEG marker of well-being (associated with age) is 

presented, an interhemispheric asymmetry of alpha spectral power (8-13 Hz) in the 

temporoparietal regions. We present our interpretations of these results and discuss the 

limitations of these studies, future directions, and ethical implications for this area of research 

more broadly. Long-term clinical and experimental applications will hopefully contribute to 

improved well-being and the prevention of mental disorders in the general population and reduce 

disparities in access to mental care around the world. 



 
 

  



 
 

Résumé substantiel en Français 

Au cours des 30 dernières années, nous avons observé des déclins dramatiques de la santé mentale 

et du bien-être dans le monde, avec près de 450 millions de personnes souffrant actuellement de 

troubles mentaux (Patel et al., 2018; Global Health Data Exchange, 2019), tandis que les 

inégalités d’accès aux soins mentaux continuent d’augmenter (Saxena et al., 2007; World Health 

Organization, 2021). Les dégradations de la santé mentale commencent très tôt (14 ans, pouvant 

conduire au suicide) et sont liées à des réductions d’environ 10-20 ans d’espérance de vie (United 

Nation, 2020). L'objectif principal de cette thèse est l'identification de méthodes nouvelles, 

mobiles, et économiques pour évaluer, prédire, et améliorer le bien-être dans la société. Les 

applications de cet axe de recherche contribueront, espérons-le, à réduire la prévalence des 

troubles mentaux (e.g., le stress chronique, les troubles anxieux, la dépression, les troubles 

psychiatriques) et les disparités d’accès aux soins mentaux dans le monde. 

Le concept de « bien-être » est un concept évolutif et multidimensionnel qui englobe les 

dimensions hédonique (i.e., affect positif et négatif), eudaimonique (i.e., avoir un objectif de vie, 

épanouissement, autonomie), physique (e.g., santé, qualité de sommeil, comorbidités), et sociale 

(e.g., sentiment de connexion avec autrui, relations positives; Ryff, 1989; Ryan and Deci, 2001; 

Maslow, 2013). Le bien-être détermine comment nous nous sentons, pensons et agissons dans le 

monde et dans notre vie quotidienne. Par exemple, des études suggèrent que les personnes qui 

déclarent elles-mêmes des niveaux de bien-être faible sont à risque d'épisodes dépressifs 

ultérieurs (e.g., Keyes, Dhingra and Simoes, 2010). Les échelles rapides subjectives sont de plus 

en plus utilisées pour capturer rapidement les éléments clés relatifs au bien-être mental et 

physique (Derogatis and Melisaratos, 1983; Faustman and Overall, 1999; Østergaard et al., 2014). 

Elles peuvent en effet recueillir avec précision des caractéristiques psychologiques qui 

nécessitaient auparavant de longs questionnaires et des techniques d'évaluation psychométrique 

plus avancées (Idler and Kasl, 1991; Idler and Benyamini, 1997; Bath, 1999; Menec, Chipperfield 

and Perry, 1999). Les échelles rapides subjectives reposent sur les capacités métacognitives de 

l’individu. Malgré les limites que cela peut impliquer (e.g., réponses de complaisance), cela 

représente des caractéristiques psychologiques importantes que l’on peut manquer avec des 

questionnaires qui ont des critères prédéfinis (Nartova-Bochaver, Donat and Rüprich, 2019). Par 

exemple, cela permet à chaque individu de peser l’importance de chaque élément pour eux-mêmes. 

Ces échelles sont rapides à administrer à la fois chez les populations cliniques et non cliniques, et 



 
 

peuvent être facilement mises en œuvre en ligne ou en conjonction avec des mesures 

physiologiques telles que l'électroencéphalographie (EEG). 

La première étude de ce projet visait à valider une échelle rapide de bien-être, the Arizona 

Integrative Outcome Scale (AIOS ; Bell et al., 2004), sur un échantillon large et diversifié. Nous 

avons collecté l’AIOS (versions 24h et 1 mois) et d’autres valeurs de bien-être à l'aide d’échelles 

et questionnaires validés sur 1 615 personnes. Ces personnes ont participé à un sondage en ligne 

sur une période d'un an. Dans une première analyse transversale, nous avons observé une validité 

convergente élevée entre les deux formes d’AIOS (r(1463) = .71, CI [0.59, 0.67], p < 0.01) et que 

les scores d’AIOS étaient significativement associés aux dimensions hédonique, eudaimonique et 

physique du bien-être (F(1442) = 292, R2 ajusté = 0.446, p < 0.0001). Le modèle linéaire multiple 

a indiqué que ces trois dimensions expliquaient 44.6% de la variance des scores AIOS, une valeur 

élevée en psychologie pour un concept complexe et abstrait comme le bien-être. La dimension 

sociale, l’ âge, le sexe, l’origine ethnique et le niveau d’éducation n’étaient pas prédicteurs des 

scores d’AIOS dans ce groupe. Un second modèle linéaire multiple a montré que les scores 

d’AIOS étaient positivement corrélés aux traits de personnalité (t = 8.8, p-corrigée < 0.001), au 

sentiment de connexion avec la nature (t = 3.5, p-corrigée < 0.001), au niveau d'activité physique 

(pendant les loisirs, mais pas au travail ; t = 3, p-corrigée < 0.05) et au sentiment d'importance de 

la religion/spiritualité (t = 2.9, p-corrigée < 0.05).  

Une analyse longitudinale sur les individus qui avaient complété l’enquête avant et après une 

intervention en ligne visant à améliorer le bien-être et le développement personnel a indiqué une 

fiabilité test-retest moyenne (r(398) = .36, CI [0.21, 0.44], p < 0.01) et une amélioration du bien-

être suite à l’intervention (Wilcoxon signed-rank z = 3.8, p<0.0001). Ceci était le cas en présence 

et en absence de trouble mental actuel ou passé (e.g., dépression, anxiété, dépendance). 

La santé mentale et le bien-être individuel influencent la structure et la fonction du cerveau tout 

au long de la vie, ce qui à son tour affecte les niveaux de bien-être. Cependant, notre 

compréhension des dynamiques entre le bien-être et la fonction cérébrale est encore incomplète 

à ce jour (e.g., Dolcos, Moore and Katsumi, 2018). Le cerveau humain est un système complexe. 

Malgré l'apparence de stabilité sur de longues périodes, le cerveau est dans un état de changement 

perpétuel (i.e., plasticité cérébrale) et présente à la fois une activité spontanée (i.e., il génère sa 

propre activité interne) et ouverte (i.e., il échange de l’information avec le monde extérieur et se 



 
 

calibre sur le contexte spatio-temporel; Buzsaki, 2006). Une difficulté dans l'étude de la fonction 

cérébrale est qu'elle est organisée à plusieurs échelles spatiales et temporelles et qu’elle présente 

des dynamiques à la fois linéaires (e.g., processus bottom-up et top-down) et non-linéaires (e.g., 

boucles inhibitrices/excitatrices feedback/feedforward ; Buzsaki, 2006; Nunez and Srinivasan, 

2006). L'observation isolée d'un seul neurone, d’un circuit local ou d’une région corticale ignore 

le fait que chaque niveau est un système complexe local intégré d’un système complexe 

global (Buzsaki, 2006). 

Les méthodes telles que l'EEG intracrânien sont nécessaires pour mieux comprendre les 

mécanismes électrophysiologiques complexes se produisant au niveau du neurone ou du circuit 

local. Les technologies de neuroimagerie non-invasives telles que l'imagerie par résonance 

magnétique fonctionnelle (IRMf), la magnétoencéphalographie (MEG), ou la tomographie par 

émission de positrons (TEP) offrent chacune des avantages et différents types d'informations sur 

l'activité et les fonctions cérébrales. Cependant, ces technologies sont extrêmement coûteuses et 

nécessitent du personnel et de la maintenance ainsi que l'immobilisation des participants, facteurs 

qui limitent fortement leurs applications. L'électroencéphalographie (EEG) mesure les champs 

électriques moyens à la surface du scalp - générés par des courants postsynaptiques de 

populations synchrones de neurones - qui contiennent des informations multidimensionnelles 

utiles (i.e., espace, temps, fréquence, temps-fréquence). L'EEG est plus abordable financièrement, 

requiert très peu de maintenance, moins d’expertise pour l’acquisition des données en milieu 

clinique, et offre plus de mobilité aux participants. Bien que la résolution spatiale de l’EEG soit 

faible (surtout pour les sources profondes), la résolution temporelle est très élevée, procurant de 

l’information temporelle cruciale à l’étude des étapes de traitement rapide et l’activité oscillatoire 

du cerveau (Luck, 2014). Le signal EEG est utile pour comprendre les processus cérébraux locaux 

et globaux associés à des états neuropsychologiques complexes tels que la cognition, l'émotion et 

le bien-être. 

L'équipement EEG scientifique de haute qualité reste coûteux (généralement entre 20 000 et 100 

000 €), le temps de préparation et d’acquisition des données est relativement long (plusieurs 

heures pour la plupart des expériences), et la mobilité des participants est limitée par les câbles 

des électrodes. Ces contraintes impactent les populations qui peuvent être étudiées, la conception 

du paradigme expérimental, et les applications à long terme visant à étudier le cerveau en milieu 

plus écologique. En conséquence, la plupart des études EEG sont menées sur de petits 



 
 

échantillons peu représentatifs de la population générale et inadéquats pour évaluer les 

différences interindividuelles ou examiner les interactions entre plusieurs variables (e.g., les 

changements EEG associés à l'âge ou au genre). En conséquence, une grande partie des études 

en neuroscience a une puissance statistique faible (~8-31%), menant à la surestimation de la taille 

de l’effet (avec peu de chance qu’un résultat significatif reflète un effet réel), et une faible 

reproductibilité des résultats (Button, 2013).  

Le progrès technologique des dernières décennies a conduit au développement de technologies 

EEG portables légères et économiques qui adressent ces problèmes en offrant des temps de 

préparation réduits et une mobilité augmentée pour les participants (e.g., Badcock et al., 2015; 

Krigolson et al., 2017). Ces systèmes portables facilitent donc la collecte de données EEG sur des 

populations nombreuses et diversifiées en augmentant l'accès à des populations difficiles à étudier 

avec les systèmes conventionnels comme les enfants, les personnes âgées et les patients (e.g., 

Hashemi et al., 2016). Ces grandes bases de données peuvent être analysées à l'aide de méthodes 

statistiques robustes (e.g., Pernet et al., 2011; Pernet, Wilcox and Rousselet, 2013) ou 

d'algorithmes de machine learning (e.g., Marcus et al., 2011; Golmohammadi et al., 2019) facilitant 

l'identification de médiateurs susceptibles d'aider chaque individu à améliorer son bien-être ou la 

détection d’un trouble mental avant que les symptômes ne deviennent graves et difficiles à traiter 

(e.g., Dea et al., 2019; Gemein et al., 2020).  

De plus, avec leur mobilité accrue et les innovations récentes du traitement du signal (i.e., 

extraction des artefacts tels que les mouvements des yeux ou de la tête, des tensions musculaires 

du visage et du cou, des pertes de contact des électrodes, etc.), ces technologies permettent l'étude 

du cerveau et du comportement dans des contextes plus écologiques (e.g., Bjork et al., 2004; 

Debener et al., 2012; Bozkurt and Coskun, 2014; Hu et al., 2015; Jebelli, Hwang and Lee, 2017; 

Neale et al., 2017). A long terme, ces systèmes portables permettront l’étude du cerveau en monde 

réel (e.g., détection de somnolence au volant avant l’occurrence d’un accident), l’utilisation 

d'interfaces cerveau-machine non-invasives (e.g., contrôle de bras robotiques ou systèmes de 

communications/transportation pour patients paralysés ou handicapés qui fonctionnent 

seulement avec électrodes intracérébrales actuellement), ou de thérapies cognitives et 

comportementales de type neurofeedback (e.g., Askamp and van Putten, 2014; Miralles et al., 2015; 

Wolpaw et al., 2018).  



 
 

Cependant, malgré tous ces points positifs, ces applications présentent des limites significatives 

incluant la méthode de référencement, une résolution spatiale faible (peu d’électrodes), les 

positions des électrodes sur la tête, la résolution du signal, et l’augmentation des artefacts 

contaminant le signal suite à la plus grande mobilité des participants. Ainsi, le deuxième objectif 

de ce projet était de tester si un système EEG portable à bas coût et de faible densité (4 électrodes) 

pouvait mesurer des caractéristiques neuronales pertinentes et fiables pour l’étude du bien-être.  

Les potentiels évoqués (event-related potentials ; ERP ; i.e., domaine temporel) sont surtout utiles 

pour répondre aux questions sur les processus neuronaux de traitement d’un stimulus artificiel 

et se concentrent sur des signaux spécifiques qui doivent être faciles à isoler (e.g., P300 ; Luck, 

2014). Les bandes de fréquences et les oscillations cérébrales (i.e., domaine fréquentiel ou spectre 

de puissance) mesurées au « repos » ou durant des tâches sont fonctionnellement associées aux 

processus cognitifs (activité spontanée). Les oscillations alpha (8-13 Hz) présentent des 

propriétés fonctionnelles clés nécessaires aux processus cognitifs et attentionnels de base tels que 

l’inhibition, la synchronisation neuronale, ou l’allocation de ressources corticales vers les régions 

impliquées dans la tâche (Laufs et al., 2003, 2006; Oakes, 2004; Klimesch, Sauseng and Hanslmayr, 

2007; Mathewson et al., 2011; Scheeringa et al., 2012). De plus, elles présentent des propriétés de 

cohérence globales (i.e., synchronisation de phase) et peuvent être mesurées sur tous les sites 

d’enregistrement (Nunez, Wingeier and Silberstein, 2001; Nunez and Srinivasan, 2006). Les 

oscillations alpha (et leurs caractéristiques) sont donc particulièrement intéressantes pour cette 

ligne de recherche.  

L'asymétrie alpha frontale (AAF ; aussi appelée l’asymétrie EEG) fait référence à la différence 

interhémisphérique relative en puissance spectrale alpha entre les régions frontales droite et 

gauche. L’AAF a été historiquement utilisée comme index neurophysiologique pour étudier les 

processus cognitifs, émotionnels et attentionnels des participants, ainsi que la neuropathologie et 

la santé mentale (Davidson, 1998, 1998; Coan and Allen, 2003, 2004; Harmon-Jones, Gable and 

Peterson, 2010; Allen and Reznik, 2015). Parce que les oscillations alpha sont connues pour 

inhiber fonctionnellement l'activité corticale régionale (Laufs et al., 2003, 2006; Mathewson et 

al., 2011; Oakes, 2004; Scheeringa et al., 2012), une augmentation en puissance alpha dans une 

région est généralement associée à une réduction de l’activité corticale dans la même région (ou 

une diminution de l'allocation des ressources pour cette région). Ainsi, une puissance alpha 

relativement plus grande dans la région frontale droite que dans la région frontale gauche est 



 
 

associée à une activité corticale relativement supérieure à gauche qu’à droite (corrélation inverse). 

Une plus grande activation frontale gauche par rapport à celle de droite est liée aux processus de 

motivation d’approche et des émotions à valence positive (comportements d’addiction ou risques 

extrêmes), et vice-versa pour l’asymétrie inverse (i.e., dépression, anxiété, apathie, isolation). 

L’AAF peut être examinée à la fois en réponse à un stimulus (i.e., ERP) ou en tant que trait au 

repos (i.e., EEG continu, spontané). Le trait AAF est mieux adapté pour évaluer l'état de santé 

mentale général et prédire la santé mentale future (Allen, Coan and Nazarian, 2004; Hagemann 

et al., 2005; Allen and Reznik, 2015). 

L’AAF est soupçonnée de refléter les processus neuronaux des systèmes de contrôle exécutif du 

réseau frontopariétal (Grimshaw and Carmel, 2014), qui comprend des zones temporopariétales 

(TP; Vossel, Geng and Fink, 2013). De plus, différents types d'anxiété sont associés à une 

asymétrie alpha dans les régions frontales et TP (Heller et al., 1997; Engels et al., 2007; Mathersul 

et al., 2008; Müller et al., 2015). D'autres publications suggèrent que l'asymétrie frontale reflète 

le traitement affectif tandis que l'asymétrie postérieure reflète les exigences cognitives d'une 

tâche et que l'asymétrie peut aller dans des directions opposées entre ces deux régions (Davidson, 

1998). Nous faisons donc l’hypothèse que l'asymétrie alpha dans les régions frontales et TP 

représente un marqueur potentiel du bien-être, en capturant les processus neuronaux de réponse 

et de régulation émotionnelle participant au bien-être (motivation d’approche et d’évitement et 

les processus cognitifs sous-jacents). Cette mesure est particulièrement prometteuse puisque les 

oscillations alpha peuvent être mesurées sur tous les sites du scalp (pratique pour les systèmes 

EEG à faible densité) et impliquent des traitements du signal très simples et rapides (i.e., spectre 

de puissance), et serait donc facilement utilisable en milieu clinique.  

Bien que l'ensemble de la littérature sur l'asymétrie EEG soit robuste, des non-réplications et des 

résultats contradictoires dûs à des raisons méthodologiques ont été souligné (méthode de 

référence, sélection des électrodes d’intérêt, techniques de traitement du signal, méthodes 

statistiques, petits échantillons, etc.). L’impact des différences interindividuelles en activité alpha 

a été particulièrement mis en évidence. Une grande partie de la population présente des 

oscillations alpha en dehors de la bande de fréquence traditionnelle (e.g., 7 ou 14 Hz). En outre, 

différentes associations ont été observées entre les fréquences inférieures (8-10.5 Hz) et 

supérieures (11-13 Hz) de la bande alpha, suggérant différentes sources ou processus sous-jacents 

contenus dans la même bande de fréquence (Nunez and Srinivasan, 2006). 



 
 

La fréquence alpha individuelle (FAI) fait référence à la fréquence alpha dominante au sein de la 

bande alpha. La FAI peut être estimée pour chaque individu en utilisant la fréquence alpha de pic 

(FAP ; fréquence dans la bande alpha avec la puissance maximale) ou le centre de gravité alpha 

(CGA ; l'ensemble de la distribution spectrale est prise en compte et les limites inférieure et 

supérieure de la bande sont estimées individuellement pour chaque individu). Le CGA traite 

mieux les distributions spectrales alpha ambiguës qui apparaissent naturellement chez certains 

individus et protège donc mieux contre des différences interindividuelles (Corcoran et al., 2017). 

Chez l'adulte, une FAI inférieure à 8 Hz est considérée comme anormale (sauf chez le sujet âgé), 

parfois même associée à une diminution de l'excitation corticale (Portnova et al., 2020) ou à une 

lésion cérébrale traumatique (Angelakis et al., 2004; Angelakis, Lubar and Stathopoulou, 2004). 

Une FAI élevée (plus proche de 13 Hz) est associée à des performances cognitives plus élevées 

(Rathee et al., 2020).  

Nous présentons donc ici l'hypothèse que la FAI pourrait représenter un marqueur robuste de 

bien-être, en reflétant des processus cognitifs impliqués dans le bien-être (e.g., prise de décision, 

sélection d’un but, inhibition des distractions lors de l’exécution d’une tâche, régulation des 

émotions). Nous faisons également l’hypothèse que le calcul de l'asymétrie alpha sur la FAI serait 

robuste aux différences interindividuelles et représenterait donc une estimation plus fiable que 

l’asymétrie traditionnelle (i.e., bande alpha moyenne).  

L’asymétrie alpha et la FAI pourraient donc être bien adaptées pour mesurer et prédire le bien-

être en milieu clinique (e.g., mesure de patients à distance ou dans le confort de leur maison, 

prédiction de réponse aux antidépresseurs, etc.). De plus, ces deux mesures sont relativement 

simples à interpréter pour un clinicien sans connaissance EEG approfondie.  

Ainsi, la deuxième étude de ce projet de thèse a testé la faisabilité de la collecte de données EEG 

(en moins de 5 minutes) à l'aide d'un appareil EEG portable à bas coût, dans le but d'estimer des 

mesures spectrales pertinentes pour l'étude du bien-être (asymétrie alpha et FAI). Le MUSE 

(InterAxon Inc., au prix de ~177 €) possède deux canaux EEG actifs secs frontaux et deux pour 

la région temporopariétale (TP). Il a été validé pour le domaine temporel (i.e., ERP ; Krigolson 

et al., 2017) et utilisé dans de nombreuses études récentes (Hashemi et al., 2016; Krigolson, 

Williams and Colino, 2017; Papakostas et al., 2017; Amores et al., 2018; Cochrane et al., 2018; 

Arsalan et al., 2019; Asif, Majid and Anwar, 2019; Qu et al., 2020; Herman, Ciechanowski and 



 
 

Przegalińska, 2021; Hunkin, King and Zajac, 2021; Krigolson et al., 2021). Cependant, à notre 

connaissance, il n'a pas été validé pour l'analyse EEG dans le domaine fréquentiel.  

Bien que plusieurs publications récentes ont utilisé des systèmes portables à faible coût pour 

l’étude de l'asymétrie EEG, elles n'ont pas évalué la validité du signal (Peng, Majoe and Kaegi-

Trachsel, 2011; Hu et al., 2015; Hashemi et al., 2016; Jebelli, Hwang and Lee, 2017; Wu et al., 

2017; Zhao et al., 2017; Hwang et al., 2018; Jebelli et al., 2018; Umar Saeed et al., 2018; Cao et al., 

2019; Arpaia et al., 2020; Park, Han and Im, 2020; Saeed et al., 2020; Apicella et al., 2021). Or, il 

s'agit d'un élément essentiel car une mauvaise estimation du spectre de puissance peut se produire 

en raison du montage ou de la méthode de référencement utilisés (Allen, Coan and Nazarian, 

2004; Smith et al., 2017). Le MUSE semble bien adapté à ces mesures car elles sont généralement 

mesurées sur les régions frontales et postérieures (bilatéralement). La référence par défaut de 

MUSE est l’électrode Fpz, située entre les deux électrodes frontales, ce qui est robuste pour 

enregistrer le signal et réduire le bruit, mais potentiellement problématique pour les mesures 

d’asymétrie frontale.  

Ainsi, nous avons comparé les données spectrales du MUSE à celles obtenues avec un système 

BIOSEMI Active Two à 64 canaux (pointe de la technologie utilisant du gel électroconducteur 

pour améliorer l'impédance du signal entre la peau et les électrodes). Les résultats ont montré 

que les canaux frontaux du MUSE devaient être re-référencés aux canaux temporo-pariétaux 

(TP) pour discriminer la puissance alpha entre les conditions yeux fermés/ouverts (Yuen t-test et 

95% high-density intervals; N = 37). Les canaux TP n'ont pas nécessité de re-référencement. En 

utilisant la condition yeux fermés uniquement pour les analyses ultérieures, nous avons constaté 

que la densité spectrale de puissance était fortement corrélée (corrélations robustes de Spearman) 

entre les deux systèmes dans les bandes de fréquences delta (1-3 Hz), thêta (3-7 Hz), alpha (8-13 

Hz), et bêta (14-30 hz), et plus faiblement dans la fréquence gamma (31-100 Hz). L'asymétrie 

alpha et la FAI étaient significativement corrélées (sauf lorsque l'asymétrie était calculée sur la 

FAI au lieu de la bande alpha moyenne). Cette étude (Cannard et al., 2021) a montré que le MUSE 

pourrait être utilisé pour enregistrer facilement, rapidement, et de manière fiable ces mesures 

spectrales. 

Dans la troisième étude, nous avons utilisé le MUSE et l’échelle AIOS pour évaluer si le bien-

être multidimensionnel était associé à l'asymétrie alpha ou à la FAI sur 353 individus pendant 



 
 

qu'ils comptaient leurs cycles respiratoires (les yeux fermés pendant 2 minutes). Nous avons 

validé une méthode automatique de prétraitement des données disponible dans le logiciel 

EEGLAB (i.e., artifact subspace reconstruction) sur 150 fichiers EEG sélectionnés aléatoirement, 

afin de traiter le reste des données automatiquement. La performance obtenue avec les meilleurs 

paramètres testés correspondait à 84% de sensibilité (i.e., taux de vrais positifs) and 89% de 

spécificité (i.e., taux de faux négatifs).  

Contrairement aux attentes, le bien-être était associé à une asymétrie alpha dans les zones 

temporopariétales (F(228) = 8.5 ; R2 = 0.036 ; p < 0.05) mais pas frontales (p>0.05). Un bien-être 

élevé était lié à une augmentation relative de puissance alpha dans la zone TP gauche par rapport 

à la droite. De plus, cette asymétrie alpha TP semble modulée par les fréquences plus basses de 

la bande alpha (8-10.5 Hz) et était associée à l'âge (F(216) = 30 ; R2 = 0.188 ; p < 0.05). L’âge était 

linéairement et positivement associé aux niveaux de bien-être et à une puissance alpha 

temporopariétale relativement plus élevée à gauche qu’à droite. Aucune association n'a été 

observée entre le bien-être et la FAI, ou le genre.  

Dans le contexte de la dépression, l’asymétrie frontale pourrait être associée à un risque de 

dépression associé à la réponse physiologique émotionnelle (même après rémission ; Davidson, 

1998; Stewart et al., 2010), tandis que l'asymétrie TP refléterait les fonctions exécutives 

impliquées dans la régulation émotionnelle et l’inhibition de ruminations mentales à valence 

émotionnelle (Stewart et al., 2010). Étant donné que l'asymétrie TP peut être prédictive de la 

réponse aux antidépresseurs (Bruder et al., 2001, 2008), les antidépresseurs pourraient affecter 

ces processus cognitifs plus que les processus affectifs. Les processus TP pourraient refléter des 

changements plus plastiques des processus cognitifs associés à la parole intérieure, aux 

ruminations et à l'attention (trait à plus court terme). Par conséquent, l'asymétrie alpha frontale 

pourrait être un meilleur marqueur EEG pour prédire le risque de dépression à long terme, tandis 

que l'asymétrie alpha temporopariétale (postérieure) pourrait être mieux adaptée aux applications 

thérapeutiques (e.g., neurofeedback ou neuromodulation en accompagnement au traitement). 

Des études de localisation de source et EEG-fMRI simultané ont montré que l’asymétrie alpha 

frontale reflétait les processus de contrôle exécutif du système dorsal du réseau frontopariétal 

(Grimshaw and Carmel, 2014). Ce système, comprenant le sulcus intrapariétal et les champs 

visuels frontaux, module l’allocation top-down de ressources attentionnelles pour la planification 



 
 

des saccades, l’orientation spatiale et la mémoire de travail visuelle (Vossel et al., 2013). 

Cependant, le système ventral, comprenant la jonction temporopariétale et le cortex frontal 

ventral, est impliqué dans la détection de stimuli non-attendus (non-prédits) et entraîne le 

transfert d’atttention nécessaire à leur traitement (Vossel et al., 2013). Ce système, latéralisé à 

l’hémisphère droit, montre une activité asymétrique durant la réorientation attentionnelle, le 

traitement de stimuli déviant rare, et la réponse à des cibles valides vs. invalides (Corbetta and 

Shulman, 2002; Corbetta, Patel and Shulman, 2008; Doricchi et al., 2010). La jonction 

temporopariétale a également une fonction de filtrage de distracteurs non-importants durant des 

états d’attention soutenue, et de modulation d’activité neurale entre différents réseaux. Cette 

structure est également impliquée dans les processus de cognition sociale et de théorie de l’esprit 

(Vossel et al., 2013). 

Bien que ces interprétations soient conformes à la littérature, elles sont basées sur l'hypothèse 

que l'EEG de repos reflète la variable de trait (c'est-à-dire les processus et l'activité cérébrale à 

long terme associés à des traits tels que l'anatomie du cerveau, la connectivité, l'âge, le genre, les 

traits de personnalité, etc.). Il a été suggéré que, pendant le repos, 60% de l’activité mesurée est 

influencée par la variable trait et 40% est influencée par la variable d'état (Hagemann et al., 2002). 

Les segments EEG de cette étude étant très courts, nos résultats reflètent potentiellement la 

variable d’état de manière dominante (i.e., tache expérimentale). Cependant, ceci n’expliquerait 

pas la corrélation avec les niveaux de bien-être et d’âge.  

Notre tâche expérimentale consistait à focaliser l'attention sur la respiration, détecter le 

vagabondage de l’esprit (i.e., distractions mentales) et à rediriger l'attention sur la respiration. 

L'asymétrie alpha temporopariétale pourrait refléter les processus attentionnels associés à cette 

tâche et au système ventral du réseau frontopariétal, tandis que la FAA pourrait mieux refléter 

l'activité du système dorsal (en particulier dans les études utilisant des stimuli visuels ou une 

croix de fixation visuelle engageant les systèmes spatiaux et visuomoteurs, et les saccades 

visuelles). Dans le contexte de l'anxiété, cette hypothèse serait en accord avec les résultats 

suggérant que l’AAF est associée à l’activation physiologique anxieuse (recrutement des 

systèmes impliqués dans une forte réponse émotionnelle en cas de stress ou de panique), et 

l'asymétrie TP est associée à une appréhension anxieuse (inquiétude, ruminations mentales 

négatives ; Heller et al., 1997; Mathersul et al., 2008). Cette dernière étant corrélée à une 

augmentation sélective de l'activité pariétale droite chez les participants anxieux uniquement lors 



 
 

d'une tâche narrative émotionnelle (impliquant la parole intérieure), mais pas au repos (Mathersul 

et al., 2008). 

Ainsi, dans cette étude, nous avons peut-être plus capturé les processus cognitifs qu’émotionels 

associés au bien-être, i.e. allocation de l’attention sur la tâche, détection de distractions 

(ruminations mentales, discours intérieur, vagabondage de l'esprit), régulation de l’émotion, et 

réallocation de l’attention sur la tâche. Par conséquent, une puissance alpha plus importante dans 

la zone TP gauche pourrait refléter une plus grande capacité à inhiber ces distractions mentales 

chez les individus rapportant un bien-être plus élevé, tandis que les individus rapportant un bien-

être plus bas seraient plus distraits par leurs pensées négatives et leurs ruminations (anxiété, 

inquiétude). 

La dynamique asymétrique entre ces systèmes frontaux et TP semble aller dans des directions 

différentes, un phénomène décrit précédemment (e.g., Davidson et al., 1988) et pourrait refléter 

des processus dynamiques d’inhibition intercorticale distants (entre hémisphères et entre régions 

frontales et postérieures) qui devraient être étudiés plus en détail à l'aide de systèmes à haute 

densité. Bien que le bien-être n’était pas associé à des asymétries spectrales dans d'autres bandes 

de fréquences (delta, thêta, bêta), une analyse exploratoire (voir Annexe 2) suggère qu’il existe 

des interactions asymétriques entre différentes bandes de fréquences au niveau local (pour delta, 

thêta, alpha et bêta), et que seulement l’asymétrie alpha semble interagir au niveau global 

(correlation négative entre les régions frontales et temporopariétales). Ce résultat pourrait 

refléter les propriétés de cohérence locale et globale des oscillations alpha soulignées par Nunez 

et al. (2001), suspectées de refléter la connectivité fonctionnelle ou l’inhibition inter-

hémisphérique.  

Des études futures sont nécessaires pour éclaircir ces points. Par exemple, si la cross-corrélation 

de la phase des oscillations est inverse entre ces deux régions, ces mécanismes pourraient refléter 

les retards de conduction des potentiels d'action dus à la distance entre ces deux régions (Nunez, 

Wingeier and Silberstein, 2001). Ensuite, il pourrait être possible de déterminer quelle région 

module ou inhibe l’autre en premier. Une activité asymétrique aberrante pourrait correspondre a 

une réaction inhibitrice en chaîne qui compromettrait l’equilibre necessaire a la régulation des 

émotions et des ruminations mentales. Par exemple, l’inhibition de la région A (e.g., région TP 

droite) sur la région B (e.g., région frontale gauche) augmente, entrainant une réduction de 



 
 

l’inhibition de la région B sur la région A, augmentant l’inhibition de la région B de manière 

extrême. Ce type d'analyse nécessiterait des données EEG à haute densité et des méthodes à 

haute résolution spatiale pour comprendre avec précision ces dynamiques spatio-temporelles, 

locales-globales (e.g., spline Laplacien, individual component analysis, ou eLORETA; Makeig et al., 

1996; Pascual-Marqui et al., 1999; Nunez, Wingeier and Silberstein, 2001; Delorme and Makeig, 

2004). 

Parallèlement, nous avons construit des électrodes électrocardiographiques (ECG) qui se 

connectent au port auxiliaire du MUSE et s’attachent au poignet des participants (électrodes 

jetables contenant du gel électroconductif). Les signaux EEG et ECG sont ensuite synchronisés 

temporellement, et les interactions entre l'EEG et l'ECG peuvent être facilement importés dans 

EEGLAB pour analyse à l'aide du plugin développé pour cette étude (voir Annexe 1). Nous avons 

enregistré EEG et ECG simultanément sur 60 participants au cours de ce projet. Bien que ces 

données n'aient pas encore été analysées, les interactions entre les signaux simultanés EEG et 

ECG pourraient être une mesure prometteuse du bien-être, ou augmenter la précision de la 

détection de bien-être en combinant ces deux mesures physiologiques. La variabilité de la 

fréquence cardiaque (VFC, i.e. la variation des intervalles de temps entre les battements 

cardiaques) est déjà utilisée pour prédire les résultats futurs pour la santé (Tsuji et al., 1994; 

Dekker et al., 1997; Shaffer, McCraty and Zerr, 2014). Une VFC réduite reflète une capacité de 

régulation réduite du corps à s'adapter et à répondre à des stresseurs, et est en corrélation avec 

l'apparition de la maladie et la mortalité (Dekker et al., 1997; Beauchaine, 2001). La VFC peut 

être utilisée pour étudier le bien-être (Geisler 2010), pour supprimer les artefacts ECG des 

données EEG (Nakamura and Shibasaki, 1987), pour améliorer les performances de détection de 

pathologies en combinant les informations de l'EEG et de l'ECG (Valderrama et al., 2012), ou 

pour évaluer les interactions entre le cœur et l'activité cérébrale et la dynamique de ces deux 

systèmes complexes (e.g., Jurysta et al., 2003; McCraty and Zayas, 2014). 

Pour que les applications en milieu naturel soient possibles, des points techniques doivent être 

résolus, tels que le traitement des artefacts EEG en temps réel et de manière robuste (en 

particulier les artefacts associés à une mobilité importante de l'utilisateur), l'identification et la 

prise en compte des différences interindividuelles, et la prise en compte des stimuli 

environnementaux non-contrôlés. De plus, le confort et l’esthétique de ces technologies doivent 

encore progresser pour qu’elles soient, un jour, intégrées dans des environnements naturels. Pour 



 
 

finir, le développement d’une réglementation éthique et protectrice de ces neurotechnologies et 

de leurs applications à long-terme sont de haute importance. 

En résumé, ce projet de thèse a démontré la faisabilité de l'utilisation de mesures rapides et 

économiques pour étudier les corrélats cérébraux du bien-être dans des échantillons larges et 

diversifiés. Nos résultats reflètent potentiellement un marqueur quantitatif de processus 

attentionnels important pour le bien-être et la santé mentale. Bien que des limites subsistent, 

nous présentons ici des méthodes et des solutions potentielles pour la prévention et le traitement 

de troubles mentaux à bas coûts et à l’échelle mondiale. Les progrès dans ce domaine aideront à 

mieux comprendre les mécanismes neuronaux sous-jacents de la cognition et de la régulation des 

émotions en lien avec le bien-être, et à trouver des marqueurs EEG pertinents.  

A long terme, ces avancées faciliteront l'étude EEG dans des environnements de plus en plus 

écologiques et abordable financièrement (e.g., milieu clinique, maison du patient, etc.). Par 

conséquent, les applications incluent : 1) le suivi de la santé mentale des patients à distance et en 

continu (Biondi et al., 2021); 2) le développement d'interfaces cerveau-machines qui permettent 

aux individus de restaurer ou de récupérer des capacités de mouvement ou de communication 

(Aflalo et al., 2015; Makin, Moses and Chang, 2020; Willett et al., 2021) ; 3) des protocoles de 

neurofeedback pouvant aider les individus à entraîner leurs états mentaux et processus cérébraux 

(Angelakis et al., 2007; Quaedflieg et al., 2016; Brandmeyer & Delorme, 2020a); 4) des études 

dyadiques (Lachat et al., 2012; Liao et al., 2015; Verdière, Dehais & Roy, 2019; Anaya, Vallorani 

& Pérez-Edgar, 2021); 5) ou la mise en œuvre de thérapies de neuromodulation (e.g., stimulation 

transcrânienne électrique à courant continu, stimulation magnétique transcrânienne, stimulation 

ultrasonore focalisée) pouvant être supervisées à distance tandis que les patients restent dans le 

confort de leur domicile (Kalu et al., 2012; Sanguinetti et al., 2020; Biondi et al., 2021). 
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Chapter 1. Brain organization, dynamics, and mode of 

operation 

This chapter introduces how the brain is organized, structured, and its general mode of operation. 

This chapter provides general context before introducing what electroencephalography (EEG) 

measures (next chapter).  

______________________________________________________________________________ 

 

“Simple” systems are in balance and hard to perturb. The human brain is a “complex” system, in 

the sense that the whole (the brain) and its components (e.g., neurons) are both adaptive systems 

that form hierarchies and interact via non-linear dynamics by amplifying/damping 

feedback/feedforward loops. Despite the appearance of stability over long periods, the brain is in 

a state of perpetual change (i.e., entropy and evolution). It is both spontaneous (i.e., it generates 

its internal activity) and open (i.e, it can exchange information with the external world and 

calibrate itself to the spatiotemporal context). A fundamental problem in studying the brain 

derives from the fact that it is organized at multiple spatial and temporal scales. Examining a 

single neuron, small circuit, or region in isolation ignores the fact that each of these levels is a 

complex function of its lower-level components and, at the same time, is embedded in a large-

scale organization (Buzsaki, 2006).  

 

1.1. Dynamic structures and connectivity of the brain 

The brain’s structure, function, and connectivity have been studied by generations of brilliant 

minds (Cajal, 1959; Szentágothai, 1978; Nauta and Feirtag, 1979; Allman, 1999; Llinás, 2003). 

The human brain is estimated to have between 10 billion and 1 trillion neurons, and to have 

roughly 200 trillion connections between them in an average skull volume of 1.5 Litre (Williams 

and Herrup, 1988). It is divided into three primary structures: the brainstem, the cerebellum, and 

the cerebrum.  
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The brainstem is made of several substructures directly above the spinal cord that includes the 

medulla, the pons, and the midbrain, which relay signals between the spinal cord and higher brain 

centers. The cerebellum, which sits on top and to the back of the brainstem, has long been 

associated with the fine control of muscle movements (although also plays other roles in 

cognition).  

The cerebrum is the largest part of the brain and is divided into two symmetrical hemispheres. 

Inner portions are referred to as the subcortical structures and include the thalamus, 

hypothalamus, hippocampal region, the basal ganglia, the olfactory bulb, and the limbic 

structures (Shariff, 1953; Lange, 1975; Pakkenberg and Gundersen, 1997). The thalamus, 

composed of two egg-shaped structures at the top and to the sides of the brainstem, integrates 

and relays all sensory inputs to the cortex (except for olfactory information). The outer portion 

is referred to as the cerebral cortex (also called the neocortex in mammals). It is a 2-5 mm thick, 

folded (gyri) spherical structure containing 15-31 billion neurons (gray matter), composed of five 

vertical layers of principal cells (e..g, pyramidal neurons; i.e., excitatory) and interneurons (i.e., 

inhibitory) called the cortical mini- and macro- columns (Rockel, Hiorns and Powell, 1980).  

Neurons are “perhaps the most complicated cell type nature has created” (Buzsaki, 2006). The 

uniqueness of neurons is their ability to pass information to each other over long distances. They 

are treelike structures with various branching patterns (dendrites) that maximize the receptive 

surface area for connections from axons (nerve fibers) of other neurons (Figure 1, left).  

 

Figure 1. Left: Dendritic arborization of a neuron imaged with confocal and two-photon microscopy. Source: 
Bruno and Gastard (2010). Right: Cryopreserved slice of mouse cortex containing ≥4 million cells, illustrating the 
highly interconnected neurons (red) and astrocytes (green). Source: Lonza (2021).  
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Each dendrite is covered by numerous spines allowing them to create thousands of receptor sites 

called postsynaptic receptors. Axons emerge from the cell body (soma) and can reach tens of 

thousands of nearby and distant neurons, constituting the white matter (see Figure 2; Kalisman, 

Silberberg and Markram, 2005). The synapse is a thin gap between the membrane of each axon 

terminal (i.e., “bouton”) and the membrane of the dendrite of the target neuron serves as a 

chemical link enabling neuronal communication via neurotransmitters (Peters and Palay, 1996). 

90% of connections are established between cortical pyramidal neurons which have 5,000-50,000 

postsynaptic receiving sites.  

While neurons vary in size, the number of connections and density, the general organization of 

the human cortex is remarkably homogeneous. Circuits and neuronal types that support the same 

functions and process similar information are strongly interconnected into local cortical modules 

(also termed clusters, assemblies, or systems) that form together the primary dynamical systems 

of the brain (e.g., motor, visual, auditory, somatosensory, olfactory). This is because the brain 

maps out adjacent relations of the environment most efficiently by minimizing the distance that 

axons must travel to connect the neurons that process the information from adjacent parts of the 

environment or body (e.g., retinotopic map or the somatosensory “homunculus”; Cherniak, 1995; 

Nakamura et al., 1998; Weliky et al., 2003; Fiser, Chiu and Weliky, 2004). Cortical modules, 

therefore, constitute local communication of a population of neurons capable of acting briefly as 

a single, cooperative structure, and constitute the most robust program in the cortex (Buzsaki, 

2006).  

However, no brain function could emerge from only local connectivity because communication 

between two distant modules (e.g., startle reflex requiring the quick synchrony of distant systems 

to adapt to a danger) would take too much time (a long “synaptic path length”; i.e., many synaptic 

contacts and interruptions). It is estimated that any neuron that can communicate with any other 

distant neuron within a second has as few as 6 synaptic contacts  (even at the opposite side of the 

brain; Buzsaki, 2006). This maximal synaptic path length has been kept constant across animal 

species, despite the differences in brain sizes. It is suspected that this is the consequence of the 

spatiotemporal constraints of our environment that require the brain to integrate information 

from different systems and react in a finite time window despite the size of the brain, to survive 

(Buzsáki, 2006). The human brain has maintained a constant synaptic path despite the size 

increase during evolution by folding of the cortical surface (i.e., gyri and sulci, facilitating 
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communication between interconnected modules; see Figure 2, left; Kennedy et al., 1998), by 

increasing dendritic density (Swadlow, 2000), and by increasing the number of intermediate- and 

long- range connections (Figure 2, left and right). The traveling velocity and pulse frequency of 

action potentials are accelerated by the myelination (up to 50 m/s compared to 0.3 m/s for 

thinner unmyelinated fibers). Furthermore, myelin also protects axons from conduction failure 

and reduces the cross-talk from neighboring axons. White matter occupies only 6% of cortical 

volume in small insectivores and ~40% in humans (Tomasch, 1954; Swadlow, 2000).  

 

Figure 2. Artistic representations of diffusion tensor imaging (DTI; Alexander et al., 2007) of cortical folding (i.e., 

gyri, left, external layers) and local-global connections (left and right). Source: Adunn (2021).  

However, transporting electrical pulses over long distances is metabolically expensive and prone 

to conduction delays: local synaptic delays (due to capacitive-resistive properties of single 

neurons) are typically in the 1-10 ms range, and global delays (due to action potential 

propagation along axons, even with myelin) range from ~10-30 ms between the most remote 

cortical regions. Furthermore, long-distance connections require more metabolic demand, glial 

maintenance, and larger vascular structures.  

Hence, long-range connections represent a small fraction of neuronal connectivity that are 

limited to connecting primary sensory and action areas that require short time-scale synchrony. 

Most of the brain is organized in a hierarchy of multiple parallel circuits with overlapping short, 

intermediate, and long chains of neurons, with the oldest circuits (in evolution terms) at the 

bottom, and the most recent ones on top. These parallel layers are organized into highly 

interconnected scale-free networks (the neighbors of any given node are likely to be neighbors 

of each other) that display fractal patterns (a structure that looks the same at different scales; 
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Buzsáki, 2006). Thus, most nodes can be reached from every other node by short synaptic path 

lengths (i.e., a few synaptic contacts and limiting the number of long-range connections), 

reducing the local synaptic and global axonal conduction delays (Van Essen and Maunsell, 1983; 

Van Essen, Anderson and Felleman, 1992). The brain’s arrangement therefore minimizes the 

volume of the axons required for interconnecting different areas (Stevens and Zador, 1998). 

Hence, despite the specialization of cortical systems, no precise physical boundaries exist to 

delineate them, and brain function results from the interaction of individual neurons at the local 

level and neuronal assemblies at the global level (Harth, 1993; Freeman, 2000; Nunez and 

Srinivasan, 2006).  

According to the “neural Darwinism” view (Edelman, 1993; Ringo et al., 1994; Sporns, 2013), this 

axon conduction delay limitation is what lead to the functional specialization or segregation of 

the brain into cortical systems within and between hemispheres (e.g., language is specialized to 

the left hemisphere; Perrone-Bertolotti et al., 2014; Loevenbruck et al., 2018). 

Some interactions are more important than others, and the specific and unique patterns of 

input/output connectivity are the key to this functional segregation. While the precise 

connectivity patterns are still unknown, it is generally believed that environmental inputs ascend 

(feedforward) to higher areas (determined by layer 4), and connections that end in cortical layers 

other than layer 4 are considered to be descending (feedback).  

Like other cells, neurons at rest need to maintain a voltage difference of between -55  and -80 

millivolts (mV; with an average around -70 mV) by keeping a high concentration of potassium 

(K+) and chloride (Cl-) ions inside the cell, and sodium (Na+) and calcium (Ca2+) ions outside. 

However, neurons do not have reserves of nutrients. The brain is supplied by the highest density 

of blood vessels in the body and uses 20% of the body’s blood-supplied oxygen and energy 

nutrients at every instant, even during sleep (Jessen and Mirsky, 1980; Chandra et al., 2017). 

Because the brain quickly suffers damage from any disruption in blood supply (e.g., stroke), the 

cerebral circulatory system is autoregulated by the endothelial cells that constitute the blood-

brain barrier. The blood-brain barrier also maintains the ion balance in the extracellular space 

required to keep neuronal membrane potentials in balance at rest, while restricting the passage 

of pathogens (Daneman and Prat, 2015).  
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Glial cells are also crucial for brain function and survival (Bartheld, Bahney and Herculano-

Houzel, 2016; von Bartheld, 2018). Astrocytes (Figure 1, right) support the blood-brain barrier 

and the scarring (gliosis) of the brain during infections or injury (Freeman and Rowitch, 2013). 

Oligodendrocytes insulate the neurons’ axons with myelination, which increases the conduction 

speed of action potentials (see section 1.3.; Baumann and Pham-Dinh, 2001; Bean, 2007). 

Damaged myelin results in degenerative disorders with serious disabilities (e.g., multiple 

sclerosis; Keegan et al., 2002). Ependymal cells line the ventricular system to support the 

production of cerebrospinal fluid (CSF) and potentially neuroregeneration (Carlén et al., 2009). 

Finally, the microglia maintains homeostasis and constitutes the main form of active immune 

defense of the central nervous system (Ginhoux et al., 2013). Glial cells do not produce electrical 

potentials like neurons but they can propagate calcium (Ca2+) over long distances and release 

transmitters (called gliotransmitters) to modulate important brain functions (Fiacco, Agulhon 

and McCarthy, 2009). They also modulate synaptic transmission and couple multiple neurons 

and synapses into functional assemblies (Fields et al., 2014). The glia supports the glymphatic 

system during sleep which eliminates neurotoxic waste that accumulates in the extracellular 

space (waste clearance), and might be responsible for major brain disorders when dysfunctional 

(e.g., Alzheimer's disease; Tsai et al., 2021). 

 

1.2. Local field potentials (LFP) 

Most principal cells of the cortex (neurons) release excitatory neurotransmitters (i.e., glutamate). 

When glutamate released by the presynaptic neuron fixates on the postsynaptic receptors of the 

targeted neuron, it triggers a linear flow of Na+ ions entering through the postsynaptic 

membrane, which progressively decreases the voltage difference between the inside and outside 

of the postsynaptic membrane. When the neuron reaches a critical voltage difference, an 

avalanche of additional Na+ enters the membrane, leading to a sudden positive charge of 20 mV. 

This fast depolarization corresponds to the rising phase of the action potential (also called “spike”; 

Figure 3, left; Johnston and Wu, 1994). Because neurons can fire off hundreds of spikes per 

second, they need to relax and reset to avoid severe epileptic seizures if overstimulated. Once this 

peak voltage is reached, the voltage-dependent Na+ channels are inactivated, and the voltage-

dependant K+ ion-channels are activated to quickly repolarize the cell by rapidly pumping K+ 
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ions from the intracellular space and releasing it in the extracellular space (Johansson et al., 2019). 

The falling phase of the action potential (Figure 3, left) corresponds to this fast repolarization. 

The whole process (depolarization-repolarization) takes about 1 ms and is the maximum firing 

rate limit of the neuron. Thus, neurons can transmit several hundred spikes per second at a 

maximum. The transfer of neuronal information via traveling action potentials is therefore an 

important limiting factor in the speed performance of neuronal networks.  

The transfer of ions through the membrane channels generates electric potentials: excitatory 

postsynaptic potentials (EPSP, facilitating depolarization) or inhibitory postsynaptic potentials 

(IPSPs, from interneurons releasing GABA neurotransmitters that hyperpolarize the 

postsynaptic neuron). When the postsynaptic currents traverse the membrane from the 

extracellular space into the neuron, they are called “current sinks”, whereas when they go from 

the cell into the extracellular space, they are called “current sources” (Nunez and Srinivasan, 

2006).  

 

Figure 3. The action potential (or “spike”, left), triggered by ion exchanges across the neuron membrane (Na+ 

increase and K+ decrease), propagating from the dendrite to the axon (right). Recorded from the axon, soma, and 

dendrite in a layer 5 pyramidal neuron by patch pipettes. Source: Hausse (2000). 

 

Excitatory currents (involving Na+ or Ca2+ ions) flow inwardly during depolarisation (from the 

activated excitatory postsynaptic site to the soma and axon of the neuron), and outwardly during 
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repolarization (away from the cell as ions return to the extracellular space). EPSPs, therefore, 

generate a negative voltage at the active sinks of the synapse due to the influx of Na+ or Ca2+ 

ions and positive current in the extracellular space at the passive source. Inhibitory loop currents 

(involving Cl- or K+ ions) flow in the opposite direction. On the other hand, IPSPs generate 

positive current at the extracellular active source due to influx of Cl- or efflux of K+ ions, and 

negative extracellular current at the passive sink (Nunez, Wingeier and Silberstein, 2001).  

The extracellular space has a low resistance which acts as a passive low-pass filter (i.e., “shunting 

effect”) by attenuating more high-frequency events (action potentials) than slowly oscillating 

voltages (postsynaptic potentials). Thus, postsynaptic potentials have a smaller amplitude than 

action potentials but they propagate much farther in the extracellular space. Furthermore, they 

last longer (tens of ms) and have therefore a higher chance to overlap in time and synchronize 

compared to brief spikes. Finally, they occur much more than spikes because only a minority of 

neurons reach the depolarization threshold at any instant in time. As a consequence, action 

potentials barely contribute to the local field potential (LFP). Source currents from slow EPSPs 

and IPSPs of neighboring synchronized neurons flow through the extracellular space and sum 

to constitute the LFP (i.e., extracellular potentials; Buzsáki, 2006). It is important to note, 

however, that some active nonsynaptic properties of the neurons (e.g., subthreshold oscillations, 

afterpotentials, Ca2+ spikes, and other intrinsic events) can also produce relatively long-lasting 

transmembrane events that can contribute to the LFP (Llinás, 1988).  

In sum, LFPs (measured by intracranial macroelectrodes;) are the summed activity of 

neighboring neurons, propagating in the extracellular space (reflecting mostly the EPSPs and 

IPSPs). LFPs measured in this manner reflect the synaptic activity of tens to thousands of nearby 

neurons. Thus, LFPs reflect a weighted average of input signals emanating from the neurons in 

the area of the microelectrode. Note that this is only true for macroelectrodes (e.g., clinical SEEG 

electrodes) but not when they are combined with microwires that can record action potentials 

(i.e., spike-sorting studies; e,g,. Elahian et al., 2018).  

When the electrode size increases, more and more neurons contribute to the measured electric 

fields, leading to a decrease in this LFP-spikes relationship (because of the larger number of 

neurons and combination of different electric fields; Buzsáki, 2006).  
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1.3. Cells, circuits, inhibition, and gating underlying brain oscillations 

No brain function would be possible with only excitatory connections as any input would trigger 

a chain reaction that would recruit all the other neurons and lead to population bursts and 

epileptic seizures. Brain circuits are characterized by phase-synchronized activity (i.e., coherence) 

and functional connectivity of populations of neurons that engage in common processes to select 

local inputs while integrating diverse external information streams (Siegel, Donner and Engel, 

2012; Womelsdorf et al., 2014). This rhythmic, resonant activity (i.e., oscillations) is based on 

precise neuronal structures (cellular, synaptic, local connectivity) and computational functions 

that give rise to specific activation signatures of operation (modulation of neuronal firing, spike 

output synchronization). The frequency of these signatures is therefore defined by the timescales 

and dynamics of cell-intrinsic conductances or synaptic mechanisms. At the core of these circuit 

dynamics are feedforward and feedback inhibition structures that operate (non-randomly) at 

specific time scales, leading to rhythmic activation patterns (Wang, 2010).  

Feedforward inhibition (FFI) corresponds to the inhibition of the upstream postsynaptic neuron 

(Buzsaki and Eidelberg, 1981, 1982). Their activity strongly depends on the exact details of the 

connections, making the firing patterns of chains of inhibitory neurons hard to predict. For 

example, if an inhibitory neuron at the beginning of the chain is activated, it will prevent the 

target neuron from being active. If that neuron normally excites another inhibitory neuron, that 

inhibitory neuron will not inhibit the next interneuron, which will further inhibit the next neuron 

and so on. A small change in FFI may result in large repercussions for the network (i.e., 

nonlinearity). FFI provides a temporal filter of the circuits’ input (Kepecs and Fishell, 2014) and 

is one of the most fundamental elements for information transfer in the brain. FFI allows the 

extraction of population-coded information while filtering out asynchronous inputs. The FFI 

system implements 3 main systems:  

1) Frequency-specific filtering and modulation of postsynaptic sensitivity (gain control) 

through gamma frequencies, implemented by parvalbumin-positive (PV+) interneurons 

(fast-spiking GABAergic inhibitory cells), providing a fundamental regulation of the 

balance between excitation/inhibition of pyramidal neuron activity (Ferguson and Gao, 
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2018). This filtering property is tuned by the intrinsic properties (passive and active 

membrane) of the constituent cells that rhythmically pace the spike outputs (Womelsdorf 

et al., 2014). Even when PV+ interneurons receive asynchronous inputs, they provide a 

rhythmic, resonant gamma input (30-80 Hz) to pyramidal neurons in superficial cortical 

layers (Sohal et al., 2009; Patel and Joshi, 2013). The consequence is a layer-specific 

synchronized, rhythmic, resonant gamma input that switches pyramidal cells from a 

linear to multiplicative gain control, which is more robust against variations in input 

strength than a spike-threshold mechanism. 

2) A thalamic, cell-specific (intrinsic) alpha (8-13 Hz) system that amplifies the transmission 

of attended sensory information. Thalamo-cortical projections are thought to originate 

from “relay-mode” cells that are inhibited by an intrinsic rhythmic system involving 

thalamic gap junction-coupled high-threshold (HT) bursting neurons (Lő rincz et al., 

2009). These thalamic HT cells can elicit excitatory spikes in interneurons in deep cortical 

layers (L4-6) to cause alpha rhythmic inhibition (Womelsdorf et al., 2014). This thalamic 

alpha-generating system has been causally linked to electroencephalography (EEG) alpha 

oscillations measured on the scalp (Hughes et al., 2011). However, this appears 

contradictory to empirical findings showing reduced local alpha activity when processing 

attended information (attention) and enhanced local cortical activity when these regions 

are idling or processing unattended information (see Section 4.4.2.). Furthermore, PV+ 

(thalamic) cells generate a gamma phase coherence between the thalamus and L4, which 

is thought to mediate long-range cortico-cortical interactions when processing attended 

stimuli (Womelsdorf et al., 2014). This cross -layer and -frequency coupling might 

underly perceptual and working memory performance modulated by alpha-phase 

(Womelsdorf et al., 2014). 

3) In the absence of attention, a lack of this excitatory thalamic input causes a release of this 

inhibitory system (and gamma synchrony) in deep cortical layers (L4-6), generating local 

alpha-pulsing bursts that then cause a widespread inhibition of the vertical column 

(through postsynaptic potentials inhibition) to superficial cortical layers (Womelsdorf et 

al., 2014). This supports why cortical alpha oscillations can easily be entrained by brain 

stimulation, unlike the thalamically-driven alpha rhythm (Helfrich et al., 2014).  
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This FFI system, therefore, favors oscillatory inputs to principal cells by imposing a time 

constant (temporal structure) while excluding distracting asynchronous ones. This system could 

support “diverse biological functions that require the tuning of distant network modules to a 

common temporal processing mode” (Womelsdorf et al., 2014).  

Feedback inhibition (FBI) occurs when an interneuron’s firing rate increases in response to an 

increased firing rate from a principal neuron to reduce its output (Buzsáki and Chrobak, 1995). 

FBI is oscillatory and increases the temporal precision of spike-timing (sub-millisecond 

precision) by rapidly repolarizing the excitatory neuron, reducing its discharge probability 

(Pouille and Scanziani, 2001). 

According to the dynamic pyramidal-interneuron gamma (PING) system, depolarization of 

pyramidal cells in superficial layers excite PV+ interneurons which then produce a GABAergic 

FBI of these pyramidal cells in the gamma frequencies (> 40 Hz; Womelsdorf et al., 2014).  The 

exact frequency depends on the overall level of excitation that determines when and how fast 

pyramidal cells recover from inhibition to reactivate the interneurons. This inhibition provides 

reduced temporal variability, leading to an enhanced spike output in the presence of gamma 

rhythmic modulation even when the input is the same (Womelsdorf et al., 2014). This system, 

therefore, provides higher probability for a spike and a more precise spike output, and selective 

routing of information (at the cortical column scale) by predicting which inputs are selected and 

which local groups of neurons communicate (gating). For example in V4 (visual cortex), the 

interneurons that are excited by principal cells phase-lock at later phases than them to produce 

FBI onto them (Vinck et al., 2013). This led to stronger gamma-locking and higher firing rates 

for cells processing attended information than for cells processing irrelevant stimuli (or not 

processing the relevant stimulus).  

Additionally, a computational function operating in the beta frequency band (15-30 Hz) combines 

the superficial PING FBI system with an intrinsic bursting-cell circuit in deep layers (cross-layer 

interaction; Kopell, Whittington and Kramer, 2011). The low-threshold spiking (LTS) cells (a 

subclass of Martinotti cells) typically implement dendritic inhibition of deep-layer burst neurons. 

When the superficial excitatory cells recover from the strong excitation associated with this 

PING FBI system, they excite these LTS cells, which then slows (“reset”) the deep-layer burst 

frequency (Womelsdorf et al., 2014). The coupling of these two systems (PING + LTS) results 
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in a ~15-Hz oscillation (i.e., low-beta) that allows different inputs to remain segregated by 

different populations of pyramidal cells firing at different phases of low-beta oscillations 

(Womelsdorf et al., 2014). Because the strong superficial-layer excitation from the PING FBI 

system would impose a selection of inputs, these cells firing at different phases in low-beta convey 

information from different parallel input streams. It is unclear whether this low-beta system 

underlies the 15-Hz oscillation measured at the scalp thought to index working memory 

maintenance, choice behavior, or long-range sensorimotor integration before decision making 

(Siegel, Donner and Engel, 2012). While PING alone provides selective and competitive gating, 

this beta system integrates diverse inputs and maintains them in a short-term memory buffer in 

the spiking activity of principal cells (Womelsdorf et al., 2014).  

These dynamic, context-dependent systems amplify or suppress inputs, and gate one specific 

input over many distinct ones while still integrating them through rhythmic activation. This 

context-specific gating of information seems to be mainly achieved by dendritic 

inhibition/disinhibition of pyramidal cells (“dendritic switches”; Lovett-Barron et al., 2012; 

Palmer, Murayama and Larkum, 2012). For instance, in the hippocampal CA1 field, oriens 

lacunosum-moleculare (OLM) interneurons directly inhibit distal dendrites from the entorhinal 

cortex (i.e., sensory inputs) while indirectly disinhibiting proximal pyramidal cells that receive 

memory-related information from Schaffer collaterals CA3 (Womelsdorf et al., 2014). This 

system favors the decoding of proximal memory-related inputs over distal sensory ones. OLM 

interneurons are activated by cholinergic inputs from the fimbria fornix and medial septum, 

modulate their firing in theta frequencies (3-7 Hz) and may support theta-gamma coupling in the 

hippocampus (Womelsdorf et al., 2014). In brief, this OLM-cell-dependent and theta-rhythmic 

gate in the CA1 subfield could provide a dynamic system that parses information from different 

sources into distinct phases of the theta cycle (Womelsdorf et al., 2014). Thus, this 

parsing/switching would functionally segregate sensory encoding (via entorhinal cortex) from 

memory retrieval (via CA3). 

Lateral inhibition corresponds to the activation of a principal cell that in turn, excites an 

interneuron, which then inhibits surrounding excitatory neurons. If, for example, two principal 

cells sharing a common interneuron are excited by the same input, but the input to principal cell 

A is slightly stronger (or arrives faster) than the input to principal cell B, neuron A will indirectly 

inhibit neuron B. The initial difference in the inputs results in a large difference in the output. 
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This competitive asymmetric phenomenon increases the autonomy of neurons and is responsible 

for the necessary segregation of cortical systems, and is termed the “winner-take-all” mechanism.   

In summary, the inhibitory interneuron system maintains the functional segregation of 

neighboring principal neurons and their temporal coordination by selectively hyperpolarizing 

(inhibiting) specific principal excitatory neurons. Hence, these oscillatory inhibitory interneuron 

systems are thought to be responsible for the balance necessary for cortical modules to function, 

for their temporal accuracy (Freund, 2003), and are critical for understanding how the EEG 

signal and oscillations are generated.  
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Chapter 2. Electroencephalography (EEG) 

In this chapter, we describe what EEG is, why it is a relevant scientific tool to study cognition 

or neuropsychology, and the main approaches to analyze EEG data, with an emphasis on alpha 

oscillations, the signal of interest for this project. 

______________________________________________________________________________ 

 

2.1. What is EEG? 

Local field potentials (LFP) and electroencephalography (EEG) are synonymous terms and are 

usually recorded by small-sized electrodes. However, for historic reasons, EEG typically refers 

to the “mean-field potentials” recorded at the surface of the scalp that reflect the summation of 

extracellular postsynaptic neuron potentials within large cortical areas that can propagate 

through the extracellular space, tissues, and skull (Figure 4). EEG, measuring the fields at the 

surface of the scalp, is, therefore, a spatially smoother version of the LFP (described in the 

previous section) resulting from large-scale synchrony of populations of neurons at different 

sites, and does not capture individual neuronal spiking activity. The measured “mean fields” 

mainly reflect the average, cooperative actions of interacting cortical neurons (Jirsa and Haken, 

1997). Different current sources can produce identical electromagnetic fields on the scalp, and 

EPSPs and IPSPs can contribute to the scalp EEG with opposite polarity (see Figure 4). But 

broadly speaking, mean fields reflect the summation of extracellular postsynaptic neuron 

potentials within large cortical areas (1-6 cm2), against their “background” levels (Nunez and 

Srinivasan, 2006).  
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Figure 4. EEG measures “mean fields” reflecting the summed extracellular postsynaptic potentials generated by 

transmembrane ion current in pyramidal neurons (cortical layers IV-V). The black ellipsoids represent the volume 

conduction of the currents between the source (red arrow) and the recording electrode at the surface of the scalp. 

Source: Beniczky and Schomer (2020). 

The “background synaptic action” refers to the synaptic current sources at the surface of cortical 

neurons at the millisecond scale, and is more of interest for intracranial EEG aiming to determine 

the local dynamics within cortical modules, and does not guarantee the observation of scalp 

surface potentials (Ombao et al., 2016). Large potential differences occurring between deep and 

superficial layers of the cortex require a certain depth of synaptic action and enough source 

activity at low spatial frequencies for the sources to be active and synchronized in the centimeter 

scales (Petsche, Pockberger and Rappelsberger, 1984).  

This “volume conduction effect” is the low-pass temporal filtering caused by the low resistivity 

of neuronal tissues to electrical current flow, the capacitive currents produced by the lipid cell 

membranes, and the distorting effects of glia, blood vessels, dura, skull, scalp muscles, and skin  

(see section 1.3.). As a consequence, action potential activity from single neurons (1 ms scale) is 

mainly absent in scalp activity. The resulting low spatial resolution of scalp EEG is what is 

referred to as the “inverse problem”, i.e., the difficulty in recovering locations and features of the 

mean-field sources based on the spatially averaged (and thus spatially distorted) activity that is 

recorded at the scalp.  

The dura imaging method (or surface-Laplacian) is a useful approach that minimizes the volume 

conduction effects, by spatially filtering field potentials to focus on activity from sources within 

a few centimeters of the electrodes (see Figure 5; Nunez, Wingeier and Silberstein, 2001). This 
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spatial filter reduces global contributions relative to local contributions and provides a more 

accurate estimate of spatial sources of EEG scalp activity by eliminating most of the conduction 

effects.  

  

Figure 5. Scalp EEG reflects global distributions of activity (left column), compared to dura-imaging EEG that 

better captures local activity by filtering out the very low spatial frequencies associated with volume conduction (right 

column). The upper row corresponds to amplitude signal and the lower row to phase signal, at 10 Hz. Source: 

Nunez, Wingeier and Silberstein (2001). 

EEG recorded from the scalp measures therefore mostly the synaptic activity that occurs in the 

superficial layers of the cortex, and the contribution of deeper cortical layers is scaled down 

substantially (the contribution of neuronal activity from below the cortex is, in most cases, almost 

negligible). The amplitude of scalp EEG can largely vary because of variations in large-scale 

(centimeters) synchronization changes (with tangential direction). As a consequence, EEG 

researchers have termed large-amplitude increases and decreases 

“synchronization/desynchronization, respectively (Pfurtscheller and Lopes da Silva, 1999). 

EEG synchrony refers to sources oscillating in phase and reflect the superposition of individual 

contributions to EEG, and desynchronization is associated with amplitude reduction of scalp 

EEG power (Pfurtscheller and Lopes da Silva, 1999; Nunez, 2000). However, synchronous 

activity can remain 180 degrees out of phase, leading to the cancelation of their contributions to 

EEG, and are therefore not measured by scalp EEG (Nunez, 2000).  

EEG coherence is a measure of the phase consistency across epochs and frequencies (or at a 

specific frequency), between two electrodes, providing clues about local versus global dynamic 

behavior (Nunez and Srinivasan, 2006). It constitutes an important measure of functional 

connectivity (i.e., interactions between oscillating systems) and brain “binding” (how information 
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encoded by distinct brain circuits can be combined for perception, decision, and action to occur; 

Feldman, 2013). If the phase difference between two channels is constant across all the epochs, 

coherence is maximal (coefficient equals 1) and indicates a linear relationship between the two 

regions. Conversely, if the phase difference is random across epochs, the coherence will be 

minimal (coefficient equals 0), indicating no relationship between the two regions (Ombao et al., 

2016).  

Volume conduction is associated with current spreading through the head, mixing and 

correlating the EEG signals at all frequencies, especially at short distances. Hence, coherence is 

generally independent of temporal frequency at short distances (Figure 6, right plots). Thus, a 

separation distance of ~10 cm is recommended to measure coherence to minimize the volume 

conduction bias (Figure 6, middle).  

 

Figure 6. High scalp coherence at all frequencies between pairs of electrodes with short separation due to volume 

conduction effect that mixes activity at different frequencies (right plots). Coherence with electrodes over the temporal 

lobe (middle plot) shows moderate coherence, with coherence flooring close to zero for all frequencies except alpha 

power, indicating a very low volume conduction effect at this distance (~10 cm). At large separation (left plots), the 

volume conduction effect increases again slightly at long distances. Source: Nunez, Nunez and Srinivasan (2016).  

Thus, current sources generated at different times and places will have a much lower weight on 

scalp EEG, compared to synchronized signals over the cortical surface (Nunez and Srinivasan, 

2006). “The magnitude of any scalp EEG signal is determined not only by the source strength 

but also by spatial properties of the source such as its size and synchrony.” (Nunez, Wingeier and 

Silberstein, 2001). As a result, the EEG recorded by a single electrode is a spatially smoothed 

version of the LFPs under a scalp surface on the order of 10 cm2 and, which has (under most 
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conditions) little relationship with the specific spiking patterns of activity of the neurons that 

generate it (Nunez, 2000).  

Other source-localization methods have also made significant advancements in addressing the 

low spatial resolution of EEG (Pascual-Marqui et al., 1999; Zhukov, Weinstein and Johnson, 

2000; Travis et al., 2010; M. A. Jatoi et al., 2014; Munsif Ali Jatoi et al., 2014; Aoki et al., 2015). 

Despite these advancements, the inverse problem remains difficult to resolve completely, which 

is why most EEG studies emphasize the significance of its temporal accuracy and focus on the 

time or frequency domains (see section 2.3.).  

Hence, the superficial layers of the cortex are responsible for most of the electric fields measured 

on the scalp. Longer time-scale synaptic modulations (> 10 ms scale) are associated with 

neuromodulators (neurotransmitters) and contribute to the mean-field potentials measured by 

scalp EEG. These global field modulations are thought to be the functional consequence of the 

brain's spatiotemporal constraints, requiring signals to propagate at a finite speed (Buzsaki, 2006; 

Nunez and Srinivasan, 2006). Thus, much of our conscious experience must involve, in some still 

unknown mechanism, the interaction of highly interconnected cortical neurons that 

communicate synchronously at a several-milliseconds scale. EEG has served as a key 

neuroimaging tool for the scientific study of human cognition, sleep, neurodegenerative disease, 

and brain disorders (Regan, 1989; Luck and Kappenman, 2011).  

2.2. Why EEG?  

2.2.1. A brief comparison with other non-invasive neuroimaging methods 

Magnetoencephalography (MEG) measures the magnetic fields of the brain (Cohen, 1968). While 

electric currents (EEG) cannot propagate beyond the scalp, magnetic fields associated with each 

voltage change can and are less distorted by the skull (less volume conduction effects). Thus, 

MEG sensors do not need to be attached to the head, and the corresponding spatial resolution is 

slightly superior to that of EEG as the signal is not distorted by the skull and the scalp 

(Hämäläinen et al., 1993). However, spatial resolution is not high enough to solve the inverse 

problem as in EEG. MEG signals predominantly reflect the intracellular currents (action 

potentials) and tangential dipoles generated in cortical fissures (versus extracellular currents 

with radial sources for EEG). MEG, therefore, provides different information on brain activity. 
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Magnetic fields generated by the brain have a very small magnitude (one hundred millionths to 

one billionth of the strength of Earth’s magnetic field), so they can only be recorded using 

superconducting quantum interference devices (SQUID) that require the coils to be cooled down 

with liquid helium at -270°C to operate (Hari and Salmelin, 2012). Thus, MEG is very bulky and 

expensive.  

Since neurons require energy (oxygen and glucose) to discharge, when a large population of 

neurons are active at the same time, a large difference between oxygenated hemoglobin in the 

arterial blood (bringing nutrients to the neurons) and deoxygenated hemoglobin in the venous 

flow (evacuating used nutrients outside of the brain) is observed in the surrounding area. The 

resulting magnetic inhomogeneities are measured by the hydrogen atoms (representing tiny 

dipoles), termed the blood oxygenation level-dependent (BOLD) response, which is the basis of 

functional magnetic resonance imaging (fMRI; Ogawa et al., 1990; Logothetis, 2003). This non-

invasive method has been the leading tool in cognitive science research because of the detailed 

changes in brain response to perturbations it can detect. However, this method measures 

neuronal activity indirectly and misses many important components from both principal cells 

and inhibitory interneurons (e.g., EPSPs, IPSPs, action potentials and their propagation along 

the axons, release, binding, reuptake of neurotransmitters, etc.). Furthermore, how these 

processes relate to the BOLD signal has yet to be determined (e.g., excitation, inhibition, 

neurotransmitter release, etc.). Cognitive operations that are fundamentally different in the same 

structures can be generated with the same amount of energy, with no expected change in BOLD. 

Thus, while spatial resolution is highly increased, fMRI does not provide more information than 

EEG and MEG regarding the neuronal mechanisms. Finally, fMRI has not only a poor temporal 

resolution (dependent on the speed of blood flow) but is delayed ~0.5 s after neuronal activation. 

This presents an important problem for evaluating the fast spatiotemporal nature of the cortical 

activity. Hence, fMRI cannot be used to understand the temporal sequence of neuronal activation, 

which is required to understand how information is processed.  

Positron emission tomography (PET) provides useful information about the binding of specific 

chemicals and neurotransmitters in the brain (Maisey, 2005). Subjects are required to receive an 

injection of a very small amount of radioactive compound that accumulates in the brain and 

releases positrons (antimatter counterpart of the electron) as they decay. When they collide with 

electrons, they are both annihilated, and two photons are emitted in opposite directions and 
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detected by the sensors of the PET scanner. Their path is then reconstructed, indicating where 

it accumulated in the brain. Both the spatial and temporal resolutions of PET are inferior to 

fMRI.  

A single MEG, PET, or fMRI device weighs several tons, has tremendous costs, and requires 

the subject’s head to be immobilized for brain scanning as well as personnel and maintenance, 

making these methods not practical for the examination of behavior-generated brain changes in 

most laboratories, universities, or clinics. EEG is a more affordable and mobile technology, and 

its high temporal precision provides accurate temporal information that is useful for both 

clinicians and researchers (e.g., understanding processing steps of neural pathways contributing 

to perception to detect when and why they are dysfunctional). While the poor spatial resolution 

remains the more significant limitation of EEG for source localization purposes, it is possible to 

construct a smoothed map of the brain's electrical changes and obtain valuable spatiotemporal 

information on the states of the brain. Hemodynamic measures are limited to a resolution of 

several seconds because they rely on the BOLD response whereas EEG has a temporal resolution 

of less than 1 ms. This 1000-fold difference particularly highlights how valuable EEG can be for 

addressing many of the scientific questions that PET or fMRI cannot. It is important to note, 

howover, that EEG does not directly measure activity from deep subcortical structures  

2.2.2. The spatiotemporal context, calibration, and spontaneous activity of the brain 

A dynamical system cannot generate useful functions without adjusting its internal connectivity 

and activity to the external world, a process called “calibration”. The brain uses absolute time 

(e.g., date) and passage of time (i.e., duration) to calibrate our subjective experience and 

coordinate thoughts and activities. The experience of time is a linear (forward order of succession 

from past to future) and periodic (e.g., seasons, circadian rhythm), and is intricately tied to 

perception, causality, and prediction. Space has a similar distinction with position and distance, 

except that distance can have many directions in space (vector), whereas time only has one 

direction (scalar). By separating events in space and time (the spatiotemporal context), the brain 

can assess the consequences of past events and predict the most probable events to come and 

prepare for their occurrence. This ability significantly increases the chances of survival.  

Our temporal perception is confined to a relatively short span from hundreds of milliseconds to 

tens of minutes and is best in the second range (corresponding to the duration of our basic 
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functions such as movement or speech). While events that are faster than the second range (e.g., 

100 ms) may be used to update motor programs, they cannot be consciously perceived (Goodale 

et al., 1986). And periods longer than the hour range require body or environmental references 

such as hunger or sunlight changes (or time tracking from technology in modern times). Brain 

oscillations are thought to serve as a crucial internal metric for the calibration of neural systems. 

Systems that can be perturbed from outside and incorporate external influences in their future 

behavior possess a remarkable capacity for learning and growth. Adaptation is the ability of the 

system to become optimized for a particular task as a result of external perturbation. If the 

statistical features of the environment reflect one particular pattern, the evolving brain should 

be able to adapt its internal structure (i.e., neuroplasticity, neurogenesis, synaptogenesis) so that 

its dynamics can predict most effectively the consequences of these external perturbations. In 

other words, the functional connectivity of the brain and the algorithms generated by such 

continuous modifications are derived from interactions with the body, the physical environment, 

and to a great extent, other beings. The outcome of this calibration/learning process is that, from 

experience, the brain can calculate the potential outcomes and convey this prediction to the 

effectors (e.g., the skeletal muscles). As a result, the effectors and perceptual sensors can be 

directed meaningfully and effectively.  

The brain does not simply process incoming information from the environment, but also 

generates activity from within, independently of outside influences or perturbations (Llinás and 

Paré, 1991). This robust “spontaneous” activity is especially important in higher levels of the 

brain circuits that have less and less contact with sensory inputs. Interestingly, these 

spontaneous oscillations are present in all brains (not only in humans) and show the highest 

amplitude and regularity in the cerebral cortex when the brain is disengaged from the 

environment and body (e.g., during sleep; Buzsaki, 2006). In contrast, brain activity generally 

shows lower-amplitude rhythms and appears “desynchronized” during high activity (e.g., 

movement, decision making). As a result of these considerations, neurophysiologists have 

historically referred to spontaneous brain activity as the “resting state”.  

Neuronal signals, therefore, have two fundamental appearances that involve different analysis 

methods: spontaneous oscillations (i.e., frequency domain or continuous EEG) and event-related 

potentials (ERP, i.e., time domain, also called “evoked response potential”). Both have varying 
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frequencies and evolve, but frequency and time cannot be mixed mathematically, leading to no 

concept of time in the frequency domain and vice versa. This phenomenon led to two main 

categories of analysis: the time (ERP) and the frequency (continuous) domains.  

2.3. EEG signals and main types of analyses 

2.3.1. Time-domain analyses 

Analyses in the time domain generally consist of temporal correlations. A stationary time series 

refers to a “random process whose statistical distribution is invariant over time”, and is 

considered weak when the mean and variance of the random process (e.g., EEG signal) are 

invariant to shifts in the time at which the sample was recorded (Ombao et al., 2016). Low 

stationarity is assumed most of the time in resting-state EEG analysis (e.g., eyes closed, mental 

calculation, sleep), contrary to experiments using elicitation of cognitive and motor functions 

with the use of stimuli, which focus on nonstationarity (i.e., the statistics of the signal are directly 

associated with a specific event and the high stationarity of the pre-stimulus baseline).  

ERP research is ubiquitous in the cognitive neuroscience literature (S. J. Luck, 2014). The ERP 

corresponds to the average over many trials (or “epochs”) of EEG response to several categories 

of stimulus, on the justification that only the signals relevant to the stimulus remain (the 

fluctuating noise-canceling itself out). ERPs typically consists of a waveform containing a series 

of characteristic peaks (positive or negative), typically occurring less than 1 second after the 

presentation of each stimulus (see Figure 7).  



 

26 
 

 

Figure 7. Example of a positive event-related potential (ERP) occurring 150-200 ms after presentation of the 

stimulus at time 0 (i.e.., fitting in the ERP category “P300/P3”), on 8 EEG channels. Source: Ramele, Villar 

and Santos (2018). 

Event-related potentials (ERPs; see Figure 7) “provide a continuous measure of processing 

between a stimulus and a response, making it possible to determine which stage or stages of 

processing are affected by a specific experimental manipulation.” (Luck, Woodman and Vogel, 

2000; S. J. Luck, 2014). They have played a pivotal role in our understanding of the relationships 

between physical stimuli and brain activity (Luck and Kappenman, 2011), and have advanced our 

understanding of some mechanisms of cognition by isolating brain operations in subsystems such 

as attention, perception, working memory, or response selection (Luck, Woodman and Vogel, 

2000). A strong advantage of ERPs is their ability to provide a real-time measure of the 

processing of a stimulus even in the absence of behavioral response (e.g., attended vs. ignored 

stimuli, or subliminal priming). ERPs have also been widely used in the study of cognitive 

disorders such as developmental dyslexia (Hämäläinen, Salminen and Leppänen, 2013), specific 

language impairment (McArthur and Bishop, 2004), psychiatric disorders (Park et al., 2010), and 

autism (Č eponienė  et al., 2003), among others.  

The main disadvantage of the ERP approach is the functional significance of the findings. The 

biophysical mechanisms underlying the ERP component or their consequence for neuronal 

processing cannot be drawn, without relying on a long chain of assumptions and inferences (S. J. 

Luck, 2014). Furthermore, the amplitude of ERPs is so small that many trials are typically 
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required to accurately measure them (50 to 100 trials per subject per condition). This implies 

finding participants open to volunteering hours of their time, which is hard and can be costly if 

studying large groups of participants. This is a significant limitation to the types of questions 

that can be approached with ERP experiments. Additionally, the spatial resolution of ERPs is 

undefined. “The voltage recorded at any given moment from a single electrode reflects the 

summed contributions from many different ERP generator sources, each of which reflects a 

different neurocognitive process. This makes it extremely difficult to isolate a single ERP 

component from the overall ERP waveform (S. J. Luck, 2014). Hence, ERP is only well-suited 

for addressing questions about which neurocognitive process is influenced by a given 

manipulation, and focusing either on specific components easy to isolate (e.g., the “lateralized 

readiness potential” in preparation of motor activity). 

Autocorrelations used for ERP analysis (correlating the signal with itself) can also reveal 

repetitive components in the signal such as periodicity and resonance (VanRullen and 

Macdonald, 2012). Oscillations go in and out of phase when shifted in time. Thus, the 

autocorrelation function results in a periodic signal with a period identical to the original signal, 

which can reveal periodic components of that signal (e.g., a reverberation at 10 Hz in response 

to visual processing of luminance; Figure 8, A). Random noise, for example, does not 

autocorrelate and therefore does not result in a periodic signal. Correlations between two signals 

(cross-correlation) can also discriminate signals apart or assess their similarity. The correlation 

reaches a maximum when two signals have a similar shape and phase, and a minimum when they 

are out of phase. This method is very useful to detect a known reference signal within noise or 

the connectedness between neurons and its direction (with intracranial recordings). 

2.3.2. Frequency domain 

EEG and MEG signals are complex waveforms that contain multiple simultaneous frequency 

components. The Fourier transform (Bracewell, 1989) allows the decomposition and separation 

of the waveforms into sinusoids of different frequencies, to distinguish the different frequencies 

and their respective amplitudes. The resulting Discrete Fourier Transform (DFT) is therefore a 

frequency domain conversion of the original input sequence, which represents the relative 

dominance of the various frequencies, called the power spectrum (spectra for plural). The signal 

is converted from the time domain into the frequency domain (Figure 8, B and C).  
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Figure 8. Resonant alpha oscillations in response to luminant visual stimuli. A: time-domain (i.e., cross-correlation 

of the signal). B and C: frequency domain (i.e., power spectra). D: Time-frequency representation of A over the group. 

E: Scalp topography representation of the effect showing the electrode sites where the effect was measured. Source: 

VanRullen and Macdonald (2012). 

EEG systems and researchers use different spectral parameters that lead to different power 

amplitudes, making it harder to compare results across findings.  The spectral analysis evaluates 

the statistical properties of the amplitude of multiple frequency bands. It can be a direct measure 

of interest or a step to assess the quality of the data in pre-processing steps (some frequencies are 

known to be associated with artifacts).  

The Fourier transform is generally too slow to be practical for EEG analysis purposes (since 

EEG data have many channels and time points). The Fast Fourier Transform (FFT) solves this 

issue by factorizing the DFT matrix into a product of sparse factors, reducing the complexity of 

the calculation (Bendat and Piersol, 2011). While FFT provides a quick and easy assessment of 

the spectrum, it can be sensitive to noise and to nonstationarities that are very common in EEG 

signals (especially with wearable systems with electrodes disconnecting more frequently).  

Power spectral density (PSD), calculated with the pwelch method (Stoica and Moses, 2005; Hayes, 

2009), addresses these issues by smoothing the signal over non-systematic noise and normalizes 

the amplitude by the frequency resolution (homogenizing spectra amplitude across different 

spectral resolution used; Bendat and Piersol, 2011; Cohen, 2014). Finally, converting the power 

spectra to deciBels (dB; i.e., 10*log10(power)) allows for comparison of effect sizes across 
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publications, relevant for interpretation and replication of findings, and can normalize the signal 

across electrodes and subjects (reducing large amplitude differences due to volume conduction 

effects for example; Smith et al., 2017).  

The power distribution of EEG signals typically follows an inverse power law relationship, or 

“1/f distribution” (i.e., an inverse relationship between amplitude and frequency; Barlow, 1993). 

While this might be the consequence of the scale-free organization of the brain organization (the 

long distribution tail might be the consequence of the dominant presence of modules; Albert and 

Barabási, 2002; see Chapter 1), the physiological bases for this inverse relationship between 

amplitude and frequency and most other salient characteristics of EEG are still unknown (Nunez, 

Wingeier and Silberstein, 2001), to our knowledge. 

Frequency measures of the EEG signal are typically denoted in Hz (i.e., cycles/sec). The main 

frequency bands, defined based on their power spectra are termed: delta (<3 Hz), theta (3-7 Hz), 

alpha (8-13 Hz), beta (14-30 Hz), and gamma (>30 Hz). Some researchers have also identified the 

mu rhythm, corresponding to an “M” shape in the power spectrum distribution occurring in the 

alpha or beta frequencies, and is associated with motor-related activity (Pfurtscheller et al., 2006).  

Frequency bands have remained relatively constant throughout mammalian evolution even as 

the numbers of neurons and their connections have increased enormously (see section 1.1.), 

indicating that they represent crucial processes underlying important functions for adaptation 

and behavior (Buzsaki, 2006). While it is well established that EEG oscillations represent 

postsynaptic potentials of groups of cortical neurons, the physiological bases for oscillatory EEG 

behavior and the delineation of the main frequency bands remain poorly understood (Nunez, 

Wingeier and Silberstein, 2001).  

 

2.3.3. Time-frequency domain 

While the frequency domain associated with spontaneous EEG activity is the focus of this thesis, 

it is important to briefly mention the time-frequency domain (e.g., “event-related spectral 

perturbation”, i.e., ERSP). Modern methods have been developed to examine how spectral and 

coherence information varies over short periods in response to a stimulus (combining the 

advantages of both time and frequency domains).  
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One approach uses short sliding time windows (e.g., 200 ms) and assumes stationarity over each 

window to calculate the spectra. Another approach, termed the Morlet Wavelet transform, 

estimates time-varying Fourier coefficients (Lachaux et al., 2002). Phase-locked power in 

response to a stimulus can be calculated using the time average of the epochs and removing 

signals that are not phase-locked (corresponding to desynchronization and decrease in power).  

These methods allow evaluating both the short-time activity from the time domain (ten-to-

hundred ms range) and the slightly longer timescale of the frequency domain reflecting the 

oscillatory component of the signal (subsecond range; Bruns, 2004). An example of time-

frequency analysis is the “steady-state evoked potentials” (SSEPs; Deng and Srinivasan, 2010), 

which can be evoked by flickering visual stimuli (steady-state visual evoked potentials; SSVEPs), 

auditory stimuli (steady-state auditory evoked potentials; SSAEPs), or somatosensory stimuli 

(steady-state somatosensory evoked potentials, SSSEPs). These methods provide high signal-to-

noise (SNR) ratio by amplifying the brain signal of interest while reducing the weight of the 

background noise, and by minimizing broadband artifacts by focusing only on specific, narrow, 

frequency ranges (wavelet approach). They have therefore been used widely to study attention 

(e.g.,  Giabbiconi et al., 2004) or to develop brain-computer interfaces (BCI; see section 9.2.). 

The study of continuous (spontaneous) signals in the frequency domain corresponds to much 

longer time frames (seconds to minutes) and reflect oscillatory modulations of brain chemistry 

controlled by neuromodulators (Buzsaki, 2006).  
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Chapter 3. Wearable EEG 

In this chapter, we discuss the EEG technologies, the minimum hardware requirements, the innovations 

that have led to the emergence of wearable EEG systems, list several examples of such systems, and discuss 

their advantages and disadvantages compared to traditional systems.  

______________________________________________________________________________ 

 

3.1. EEG technology 

“The discovery of electroencephalography (EEG) in 1929 by the German psychiatrist Hans 

Berger was a historical breakthrough providing a new neurologic and psychiatric diagnostic tool 

at the time.” (Tudor, Tudor and Tudor, 2005). Figure 9  illustrates some of the first EEG systems 

developed. Over the past 50 years, major technological advancements have drastically changed 

EEG technology.  

 

Figure 9. Left: Two pioneer neuroscientists working with an early EEG system at Harvard Medical School (1934). 

Source: Bernard Becker Medical Library, Washington University in St. Louis. Right: EEG recording of a 

participant in the 1950s while he is stimulated by a flashing light, taken at the Burden Neurological Institute at 

Bristol University. The EEG signal was traced by 2 thin pens on tape-recorded paper, and time-tracking was traced 

by a third pen at the top. Frequency analysis was done by hand using a caliper. Source: Hulton-Deutsch 

Collection/CORBIS. 
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3.1.1. EEG amplifier 

While EEG is an analog signal (continuous in time), it is necessary to convert this analog signal 

into a digital signal (discrete in time) to be processed by the computer, a process called an analog-

to-digital converter (ADC). In this process, the analog signal from each channel is assigned a 

digitized value that is proportional to the instantaneous amplitude. It is then converted from 

ADC to volts by the amplifier (Ombao et al., 2016). The number of bits available to do this 

conversion corresponds to the signal resolution. Digitization must use a minimum resolution 

of 12 bits and be able to resolve the EEG down to 0.5 mV (Nuwer et al., 1998). 

Advancements in ADC technology have played an important role in wearable EEG technology 

because the signal sampling rate and the Nyquist limit are determined by the sampling rate of 

the ADC (Landau, 1967). The Nyquist limit refers to the minimum sampling rate required to be 

twice the value of the highest frequency of interest to avoid signal aliasing (i.e., under-sampled 

misrepresentation of high-frequencies). For example, a 100 Hz ADC sample rate is required to 

analyze EEG frequencies up to 50 Hz. While downsampling the signal is possible later in the 

preprocessing steps, aliasing cannot be undone because the necessary information for this 

procedure has been lost. Aliasing is generally avoided by integrating internal lowpass filters that 

eliminate the power at frequencies above the Nyquist limit (Landau, 1967). Internal highpass 

filters are also used to eliminate the EEG offsets and DC components to avoid saturation from 

internal electronic components of the system. Amplifiers without internal highpass are termed 

“DC-coupled” and are only preferred when very slow oscillations are of interest (e.g., slow 

cortical potentials in the study of movement preparation; Schmidt et al., 2016). The signal 

bandwidth is the resulting frequency band with an amplitude attenuated by less than 3 deciBels 

(dB) by the internal filters. ADC capacities have greatly increased with technological innovations 

over the years (e.g., 2000 samples per second), allowing scientists to study higher frequencies of 

EEG signals that were not accessible previously. A sampling rate of 200 Hz is generally required 

(although above 500 Hz is preferred; Nuwer et al., 1998). 

The amplifier input range (i.e., a maximum amplitude that can be recorded before saturation) 

depends on the output range (which relies on the power supply) and on the amplifier’s internal 

gain (i.e., the number of times the input signal is amplified). For EEG amplifiers, the input range 

must include not only the minimum and maximum values of brain electric field (tens of V range), 

but also those from other non-brain signals such as electromyography (EMG; i.e., from muscle 
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activity; tens of mV range), electrode offsets (tens of mV), and electroencephalography (EOG; 

i.e., ocular activity; hundreds of Volts; Harrison, 2007). If the input range is smaller than these 

signals, they will be clipped. This must be avoided for both brain and non-brain signals as the 

true signals may go undetected and can be consequently removed from the signal in the later 

preprocessing steps (if their signal features are altered). Typically, the minimum input range is 

50 mV to avoid this issue.  

Additionally, the input-referred noise (i.e., noise current produced by the amplifier's internal 

circuits) must remain below 1 microVolt (μ V), as to not affect the EEG signal that can have 

amplitudes as small as a few μ V (Nuwer et al., 1998).  

The common-mode rejection ratio (CMRR) of the amplifier refers to the attenuation of common-

mode voltage (i.e., the constant voltage for both positive and negative inputs) while amplifying 

the differential mode voltage (i.e., the voltage difference between positive and negative inputs). 

Thus, the CMRR amplifies the voltage difference between an electrode and the reference 

electrode, while attenuating artifacts like the power line noise that is recorded by both electrodes. 

The higher the CMRR, the better the amplifier can attenuate the common-mode signals. The 

minimum amplifier CMRR is considered to be 80dB attenuation of line noise (MettingVanRijn, 

Peper and Grimbergen, 1994).  

The amplifier receives signals from electrodes with high impedance (especially from dry 

electrodes) and must not further attenuate the already weak signal amplitude (a few μ V) to avoid 

losing resolution. The amplitude can drop differently between electrodes depending on their 

impedance, decrease the CMRR and increase the noise (Kappenman and Luck, 2010). The 

amplifier must have a high “input impedance” (refers to the impedance of the input, whereas the 

electrode impedance is between the skin and the electrode) while maintaining the electrode 

impedance. The higher the input impedance of the amplifier, the better the signal in situations 

with high electrode impedance. Minimum input impedance generally corresponds to 100MΩ (i.e., 

a hundred times the electrode impedance), to keep the signal attenuation below 1% 

(MettingVanRijn, Peper and Grimbergen, 1994). 
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3.1.2. EEG electrodes 

The electrode impedance (a measure of the opposition to the electric current due to resistance 

and reactance effects) present between the electrode and the skin is directly related to the 

performance of the electrode, and significantly affects EEG signal quality. Electrodes that are 

properly positioned with firm contact between the skin and the electrode can provide reliable 

levels of signal quality. Passive electrodes simply extend the connection from the conductive 

material to the equipment that captures, converts, and amplifies the signal. They are generally 

made of Ag/AgCl (silver/silver chloride) and require electroconductive (electrolytic) gel as a 

conductor between the scalp and the electrode. The biggest disadvantage of wet EEG systems is 

that they present long preparation times, requiring preparation of the skin, injection of the gel in 

each electrode site with a syringe, and cleaning of the electrodes at the end of each recording 

without damaging the sensitive materials (~30/45 minutes for a 64-channel system). 

Furthermore, participants need to wash their hair after the experiment, which can reduce 

motivation to participate in some individuals.  

While great improvements have been made with the development of saline-soaked sponge 

electrodes held in place with flexible nets, they still require long preparation times and the speed 

of voltage change can still influence the amount of noise introduced into the signal (Laszlo et al., 

2014). Active electrodes have a pre-amplification module immediately after the conductive 

material (between the skin and the electrode) that amplifies the signal before additional noise is 

added. Active sensors generally consist of high-quality sintered stainless steel or Ag/AgCl and 

are perfectly suited for DC acquisition. Built-in active shielding allows recordings at high 

transition resistances (up to 500 kOhm) and allows the use of “dry” electrodes (no conductive gel 

required; Taheri, Knight and Smith, 1994).  

While dry active electrodes have higher noise levels compared to wet active electrodes 

(Mathewson, Harrison and Kizuk, 2017), they can minimize ambient power-line interference as 

well as artifacts from cable movements, and have shown comparable performance (Nishimura, 

Tomita and Horiuchi, 1992; Alizadeh-Taheri, Smith and Knight, 1996; Fernandez and Pallas-

Areny, 1996; Fonseca et al., 2007). Their greatest advantage is that they significantly reduce 

preparation/cleaning time for experimenters, by removing the dependence on the conductive gel. 

More recently, solid-gel (silicon) electrodes have been developed and might offer a promising 

https://en.wikipedia.org/wiki/Electrical_reactance
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middle ground by combining the advantages of both solid and wet electrode technology 

(Neuroelectrics, 2021b).  

 

3.2. Low-cost wearable EEG systems 

Low-cost wearable technologies may offer several critical solutions for addressing health 

disparities (i.e., rising numbers of poor mental health, limited access to healthcare,  rising 

healthcare costs) by providing cost-effective, scalable, real-time, and longitudinal monitoring of 

physiological data (Ghose et al., 2012). With an increased capacity to acquire, share, process, 

store, retrieve, and apply machine-learning methods, wearable technologies may significantly 

improve our ability to tackle some of the major challenges of today’s society (Zheng et al., 2014). 

Consumers can now access a wide array of wearable technologies that measure, monitor, and 

receive feedback from ongoing physiological activity. While the application of wearable 

technologies was previously limited to physiological measurements (e.g. heart rate, step-

counter), recent advancements in EEG technology (see section 3.1.) have led to the development 

of low-cost wearable EEG systems. EEG data were traditionally transported to the computer’s 

hard drive using costly and fragile optic fibers, they can now be streamed wirelessly with WIFI 

or Bluetooth technology, and the data can be stored directly onto a cloud and accessed by anyone, 

anywhere (with collaborative access).  

While research-grade wearable EEG systems can compete with research-grade stationary EEG 

systems (they often offer both wet or dry electrodes and similar hardware specifications), they 

are still very costly (>$20,000), which greatly limits their access and use for clinicians, 

researchers, and other users. Here, “low-cost” wearable EEG systems refer to systems that cost 

less than $2,000, and research-grade wearable systems above that value. Typically, low-cost 

systems have a significantly lower density (i.e., a few channels) compared to research-grade 

systems (>30 channels). Figure 10 illustrates a research-grade stationary system (left) and a 

research-grade wearable system (right). Some examples of low-cost wearable systems can be 

found in Figure 11 (upper row, left).  
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Figure 10. Illustration of the technological innovations in EEG technology. Left: High-density, research-grade, 

stationary 128-channel EEG system. Source: National Geographic (2009). Right: Wearable, wireless, 32-channel 

EEG system Source: Cognionics (2021). 

 

 

 
Figure 11. Top row (from left to right): Muse (interaxon), Epoc (Emotiv), Dreem (Rhythm), Sleep headband 

(Cognionics), Quick 30 (Cognionics), Ultracortex Mark IV (Open BCI),B-alert X10 (ABM). Bottom row (from left 

to right): DSI 1020 (Quasar), Enobio (Neuroelectrics), Octamon (Artini), g.Nautilus (g.tec), g.Nautilus EEG-

fNIRS (g.tec), Starstim 8 and 32 (Neuroelectrics). Source: Cannard et al., (2020).  
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Table 1. This table lists a small selection of modern wearable EEG systems, both low-cost (< $2,000) and research-

grade (> $2,000), their main hardware specifications, the provided features, and their intended applications and 

users. Source: Cannard et al., (2020). 
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An increasing number of research studies have now used low-cost wearable EEG headsets to 

study a wide array of fundamental research topics, including visual perception and auditory 

attention  (Poythress et al., 2008; Debener et al., 2012; Wascher, Heppner and Hoffmann, 2014; 

Badcock et al., 2015; Abujelala et al., 2016; Maskeliunas et al., 2016; Barham et al., 2017; Krigolson 

et al., 2017, 2021; Krigolson, Williams and Colino, 2017; Kuziek, Shienh and Mathewson, 2017; 

Williams et al., 2020), emotions (Brouwer et al., 2011; Brown, Grundlehner and Penders, 2011; 

Bashivan, Rish and Heisig, 2016; Jiang et al., 2016, 2017; Zhao et al., 2017), learning and memory 

(Berka, Daniel J. Levendowski, et al., 2005; Berka et al., 2007), and stress (Hu et al., 2015; Ahn, 

Ku and Kim, 2019; Arpaia et al., 2020).  

 

3.2.1. Limitations of low-cost wearable systems 

An obvious concern with low-cost EEG systems is whether the hardware meets the minimum 

requirements (described in the previous section) necessary to achieve sufficient EEG signal 

quality (Picton et al., 2000; Duvinage et al., 2013). Increasingly more low-cost systems meet these 

hardware standards. Table 1 reviews some research-grade and low-cost wearable EEG systems 

that meet minimum hardware requirements and the features and applications provided by the 

manufacturers.  

One common limitation of low-cost wearable EEG systems is the absence of software features to 

monitor the input impedance of the signal. This is important during the setup of the electrodes 

(and during the recording) to make adjustments to electrode contact before the recording to 

obtain as high quality as possible (since the input impedance is most affected by electrode 

impedance). Adjustments to improve electrode impedance include typically cleaning the skin with 

alcohol, applying the electroconductive gel, moving hair out of the contact area as much as 

possible. This is also important during the session to detect variations in impedance and make 

adjustments.  

Impedance monitoring is generally provided by the research-grade systems by injecting a very 

faint artificial signal that is measured by each electrode. The common-mode sense (CMS) active 

electrode and the driven right leg (DRL) passive electrode form a feedback loop (both ideally 

placed in the center of the measuring electrodes) that drives the average potential of the common-

mode voltage as close as possible to the ADC reference voltage. The CMS/DRL loop can provide 
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a 40 dB attenuation of power line signal, with the same impedance with a standard single ground 

electrode, and be used to cue the experimenter on the impedance quality of the signal. 

Furthermore, the return current passing through the DRL can be electronically limited to a 

certain threshold to protect the participant against the excessive flow of current due to amplifier 

or electrode defect. Hence, impedance monitoring is highly desirable, but often not provided by 

low-cost wearable systems. 

The optimal number of recording channels generally depends on the objectives of the 

measurements. For example, ERPs or basic frequency components can be detected with only a 

few recording locations, whereas advanced source localization techniques require higher-density 

montages. This can be a significant limitation for ERP research since some ERP components are 

maximal or only detectable at specific scalp locations (S. J. Luck, 2014). While most low-cost 

wearable systems have only a few channels, these montages generally aim to follow the standard 

10-20, 10-10, 10-5 electrode placement system (Oostenveld and Praamstra, 2001). Electrode and 

reference montages can be custom-made or modified to better address specific research questions 

(e.g., increased electrode density in the occipital region to study visual perception). Thus, the 

specific montage configuration must align with the targeted application and research question. 

Event markers are crucial to ERP research to precisely extract epochs of data centered on the 

onset of events of interest. This allows the researcher to create event-related average waveforms 

for subsequent analysis (Luck and Kappenman, 2011). However, many low-cost manufacturers 

do not provide software development kits for the users (SDK; a set of program tools and code 

provided by hardware and software vendors to allow developers to build custom applications 

from them).  

Hence, at least 3 electrodes are required to record EEG. “The amplifier ground (or DRL/CMS 

when available) electrode placed on the scalp (or sometimes on the neck) provides a reference 

voltage to the amplifier to prevent drift and facilitate better CMRR by serving as a reference for 

the differential amplifier (Nunez and Srinivasan, 2006). Other pairs of electrodes record the mean-

field potentials by relying on the current passing through the circuit (bipolar recording) and are 

all recorded relative to the reference electrode. Thus, the choice of reference and electrode 

location greatly impacts what EEG signal is recorded and what sources are favored. However, 

while the location of the source is generally unknown before recording, the reference can be 
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changed offline after the data is recorded. The “average reference” method (or “common average 

reference”) is widely used in EEG research, has a good theoretical justification (Bertrand, Perrin 

and Pernier, 1985), and performs best with a large number of spherically distributed electrodes 

(e.g., 64, 128; Srinivasan, Nunez and Silberstein, 1998). However, the average reference method 

has a poor approximation of reference-independent potentials when working with a limited 

number of electrodes (Smith et al., 2017).  

The issue of the electrode reference and its impact on measures of frequency has been detailed 

(Davidson, Jackson and Larson, 2000; Allen, Coan and Nazarian, 2004; Smith et al., 2017; Yao et 

al., 2019), and is of particular importance when considering low-density EEG montages. 

Referencing methods for EEG research include the infinity-reference (Yao, 2001), the current 

source density (CSD; or surface Laplacian) transformation (Smith et al., 2017), in addition to the 

aforementioned average-reference (Allen, Coan and Nazarian, 2004). These methods, however,  

require a greater number of EEG channels than most lost-cost systems provide (a minimum of 

32 channels for the infinity reference and 64 for average reference). The average-reference 

requires equally spherical coverage over the whole head to be considered valid, and the CSD 

transformation might filter out patches of scalp activity between sensors where the scalp is 

under-sampled (Smith et al., 2017). Thus, they cannot be used with the majority of low-cost 

wearable EEG systems. Another alternative method, referred to as the “residualization” 

procedure (Davidson, Jackson and Larson, 2000), is also not feasible with low-density montages 

as it requires a higher number of electrodes to properly correct for overall power. Cz-reference, 

although popular, greatly misestimates activity at the recording sites (Allen, Coan and Nazarian, 

2004). While high-density systems are better suited for addressing specific research questions, 

investigators interested in conducting research using wearable systems can now find a diversity 

of high-end systems available today.  

EEG signals from wearable systems streamed wirelessly via Bluetooth (and often lower quality 

Bluetooth) can lead to significant time lag artifacts as the result of brief disconnectivity during 

the online transfer of data (Krigolson et al., 2017; Kotowski et al., 2018). However, data is not 

lost, only delayed in time, and can therefore be reconstructed in the later preprocessing phase of 

analysis (e.g., Kotowski et al., 2018). Some systems offer micro SD cards that store the data locally 

without requiring cables to maintain mobility but can only lead to offline analyses. Research-

grade wearable systems use WIFI technology to stream the data more reliably. Bluetooth lag 
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artifacts are only a problem for analyses requiring time-locking of EEG data to markers with 

high temporal resolution as in ERP research, but not for continuous EEG focusing on the 

frequency domain.  

Another significant potential limitation to most wearable systems (both low-cost and research-

grade) is their increased vulnerability to EEG artifacts, by offering more movements to 

participants, and dry electrodes disconnecting more easily. The majority of scalp EEG is 

generated by biological artifacts (e.g., ocular artifacts, muscle artifacts, etc.). Environmental 

power line noise also contaminates the EEG signal (by capacitive coupling of body and electrode 

leads) and generally more so in low-cost wearable systems due to the lower performance of the 

amplifiers. However, line noise is localized to a specific frequency (e.g., 50 H for Europe and 60 

Hz for the USA), and can therefore be relatively easily extracted from the signal using notch or 

lowpass filters (e.g., Cleanline, 2021).  

3.2.2. Dealing with EEG artifacts 

Artifacts were traditionally removed by hand from the signal by researchers, which is time-

consuming (which is not feasible when collecting large datasets as when using wearable EEG 

systems), and prone to subjective judgment errors when facing subtle artifacts that require a lot 

of expertise and knowledge. Subtle artifacts can be identified using raw waveforms, power 

spectra, and scalp topographies (e.g., muscle artifacts can be identified when the power spectrum 

does not follow the power-law distribution in higher frequencies and is located in the temporal 

areas, reflective of neck muscle activity).  

Automated methods have been developed over the past couple of decades to remove non-brain 

artifacts from multichannel EEG data. The main initial approach was to use regression methods 

in the time or frequency domain on parallel EEG and EOG data. The spread of EOG artifacts in 

the EEG signal could be estimated. But these methods are problematic because regressing out 

eye artifacts requires subtracting relevant EEG signals or when a good regressing channel is not 

available for each artifact source, as in the case of muscle artifacts.” (Jung, Makeig, Westerfield, 

et al., 2000; Schlögl et al., 2007). Furthermore, regression methods cannot reconstruct the signal. 

This is possible with statistical thresholding methods (e.g., “Autoreject”, Jas et al., 2017), but they 

require additional auxiliary channels, which is not convenient for wearable EEG applications that 

aim to quickly and easily record EEG data.  
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A popular approach to remove eye artifacts from multichannel EEG data is the principal 

component analysis (PCA), a  mathematical algorithm that reduces the dimensionality of the data 

while retaining most of the variation in the dataset, by identifying directions (called principal 

components), along which the variation in the data is maximal. Each sample can be represented 

by relatively few principal components instead of thousands of variables, facilitating the detection 

of similarities and differences across samples, and which samples can be grouped or excluded 

(Ringnér, 2008). However, PCA does not completely separate eye artifacts from brain signals, 

especially when they have comparable amplitudes because it assumes that the components are 

uncorrelated in both spatial and temporal domains (Jung, Makeig, Humphries, et al., 2000).  

Independent component analysis (ICA), a widely used method, addresses these issues because the 

components are maximally statistically independent in one domain but not necessarily 

uncorrelated (Makeig et al., 1996, 1997; Delorme and Makeig, 2004; Delorme, Sejnowski and 

Makeig, 2007). The rationale for ICA is that brain signal (both for EEG and fMRI) can be 

regarded as a linear combination of a smaller number of independent component sources 

(Beharelle and Small, 2016). Furthermore, classifier algorithms have now been implemented to 

automatically identify and reject the artifactual components without requiring the expertise and 

time to do it manually (Zou, Nathan and Jafari, 2016). The recent ICLabel EEGLAB plugin 

provides this feature using a large database of individual components (over 200,000 ICs from 

over 6000 EEG files) that were manually classified by EEG experts into 7 categories (“brain”, 

“muscle”, “eye”, “heart”, “line-noise”, “channel noise”, and “other”; Pion-Tonachini, Kreutz-

Delgado and Makeig, 2019b, 2019a). The experimenters can select the confidence threshold used 

to reject artifactual components from the signal, for each category.  

However, while ICA is very sensitive and reliably reconstructs the signal after removing non-

brain artifactual components on high-density data and relatively long data files (i.e., several 

minutes), it does not perform as well on low-density montages and small data segments, and 

cannot be used in real-time because of the necessary computation. This is because it combines 

information from different channels and needs a certain amount of data to “learn” the patterns of 

the signal. Furthermore, it was suggested that ICA-based methods were “less effective in 

removing transient, non-biological artifacts such as abrupt impedance changes due to headset 

motions and were computationally expensive and generally for offline analyses” (Chang et al., 

2018). This limitation is especially important for real-time EEG monitoring applications that 
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require fast processing and protection against these types of artifacts that occur more frequently 

with wearable systems compared to traditional stationary ones.   

The artifact subspace reconstruction (ASR) method is an automatic, online-capable, artifact 

removal method that can address these issues (Kothe and Jung 2016). The main difference with 

ICA is that it identifies and utilizes clean portions of data to determine thresholds for rejecting 

components. ASR detects what is considered an artifact-free “reference” (or baseline) within the 

data using PCA, computes statistics on it, and then detects artifactual sections that lie a few 

standard deviations away from this reference EEG using a sliding window. The segments 

containing artifacts can then be rejected (Euclidian method) or reconstructed (i.e., Riemannian 

method; Blum et al., 2019) to keep the relevant part of the signal (i.e., brain signal), reducing data 

loss. ASR was compared to ICA performance and found to be a powerful approach for both offline 

data analysis and online real-time EEG applications such as clinical monitoring and brain-

computer interfaces (BCI; Chang et al., 2018). This method has been validated and used in many 

studies (e.g., (Mullen et al., 2015; Artoni et al., 2017; Chang et al., 2018, 2019; Blum et al., 2019; 

Blum, Mirkovic and Debener, 2019). Thus this method seems promising for EEG studies using 

low-cost, low-density, wearable EEG headsets, as in this thesis project, and for future use in real-

world or -time situations (e.g., BCI).  

3.2.3. Advantages of low-cost wearable EEG systems  

While research-grade stationary systems offer the best signal quality, they are very expensive, 

time-consuming to set up, do not provide mobility to participants, and can reduce the subjects’ 

motivation to participate in a study. Consequently, most EEG studies are conducted on very 

small samples (e.g., < 20 participants), leading to poor statistical power and misrepresentation of 

interindividual differences and of the general population (graduate students from the laboratory 

constitute sometimes the majority of the sample since they are easier to recruit).  

Low-cost wearable EEG systems address these issues and offer promising ground-breaking 

applications for both fundamental and clinical research (see Chapter 9, and Cannard et al., 2020). 

While these systems offer lower signal quality from the inferior hardware capacities compared 

to research-grade ones, they allow scientists to collect large amounts of data in a shorter time. 

By easing the comfort, simplicity, and time of recording sessions, wearable systems allow 

researchers and clinicians to gain better access to populations that were previously harder to 
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include in studies due to lengthy uncomfortable experimental conditions such as children 

(Badcock et al., 2015) or elderly populations (Abbate, Avvenuti and Light, 2014; Dimitriadis et 

al., 2016; Neale et al., 2017, 2017; Tilley et al., 2017).  

Most EEG research studies do not reflect the overall population, which is the basis of statistical 

inference. Large samples better capture the overall human population and can identify trends 

within these populations that are not visible in small samples. For instance, they can highlight 

more accurately the mediator role of covariables (e.g., age, gender, personality trait, education, 

etc.) on spectral EEG (e.g., Hashemi et al., 2016). Better access to all populations is crucial for the 

future of neuroscience to better understand how demographic differences affect EEG activity and 

to develop therapies that are more specific and better suited to each individual accordingly. Both 

structural (i.e. anatomical) and functional (i.e. brain activity) differences in brain activity have 

been observed across different categories of the population (e.g. children, elderly, mental 

disorders, etc.; Reiss et al., 1996; Schlaggar et al., 2002; Bjork et al., 2004; Paus, 2005).  

Note that there is a large remaining gap, between identifying interactions between EEG and 

individual characteristics at the group level, and at the subject level (the group level finding tends 

to smooth interindividual differences or to filter it out). But the remaining trends are still very 

informative on important questions such as “how does spectral power change with age in the 

different frequency bands?” (e.g., Davidson, 1988; Carrier et al., 2001; Morgan et al., 2005; Vysata 

et al., 2014). Furthermore, novel findings indicated that individuals could be differentiated from 

simple measures of spectral power, with as short as 30 seconds of resting-state data, and that this 

was robust over time (i.e., weeks; da Silva Castanheira et al., 2021).  

Large datasets, along with advancements in data storage and computing capacity can, in turn, be 

used to develop sophisticated machine learning or deep learning methods that render the 

detection and classification of mental states increasingly reliable and accurate (Wu et al., 2017; 

Dea et al., 2019; Golmohammadi et al., 2019; Pedroni, Bahreini and Langer, 2019; Gurve et al., 

2020). See section 9.1. for more detail on Big-data and machine learning (ML). Recent findings 

suggest that mental states detection and classification can even be reliably performed with a 

single-EEG channel (Umar Saeed et al., 2018; Arpaia et al., 2020; Mahmoodi et al., 2021).  

These systems are also very valuable for longitudinal applications by allowing to measure the 

same participants several times more easily. Such studies are useful to assess EEG changes over 
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time. Furthermore, these systems can be more easily combined with additional physiological 

measures such as electrocardiography (ECG) and galvanic skin response (GSR) to improve the 

efficacy of identifying unique mental states (see section 8.4.6.; Ahn, Ku and Kim, 2019).  

Another strength is the potential to conduct research in more ecological environments and 

during mobility. Conventional studies in psychology and cognition systematically use highly 

controlled sterile environments, artificial stimuli, and fixed response options, to remove unknown 

biases and isolate as much as possible the brain processes of interest. However, these unnatural 

settings may inevitably lead to findings that are less ecologically valid in relation to real-world 

behavior and therefore our understanding of the brain and its complex mechanisms in its natural 

state. New technologies may provide solutions to this conundrum by offering more mobility to 

participants, wireless streaming of data, and online artifact correction. Furthermore, most of 

these systems include motion sensors that can help reject EEG artifacts or study EEG activity 

related to movements. The gyroscope indicates the orientation of an object in space (along the 

x-y-x axes) and the accelerometer measures the acceleration in space (along the same 3 axes). 

Their sampling rates are similar to those of EEG (see our plugin that synchronizes EEG and 

auxiliary signal data in Annexe 1).  

While dealing with artifacts during movements still presents challenges today (see section 8.4.2.),  

data from wearable EEGs have now been collected on participants walking outdoors on the 

university campus (Debener et al., 2012), in classrooms (Stevens, Galloway and Berka, 2007; 

Bozkurt and Coskun, 2014), in urban and green space environments (Aspinall et al., 2015; Jebelli, 

Hwang and Lee, 2017; Neale et al., 2017; Tilley et al., 2017; Hwang et al., 2018; Jebelli et al., 2018), 

or in domestic and office settings (Hu et al., 2015). Additionally, the capacity to easily share EEG 

data on clouds can significantly increase sample size, data sharing, and real-time EEG 

monitoring, opening a diversity of new groundbreaking applications (see Chapter 9).  

This may significantly improve our ability to tackle some of the major challenges of today’s 

society (Zheng et al., 2014) such as improving health care access and monitoring (Ghose et al., 

2012). For example, an electrocardiograph (ECG) is the most widely adopted clinical tool to 

diagnose and assess the risk of arrhythmia (i.e. a very common type of cardiovascular disease that 

may indicate an increased risk of stroke or sudden cardiac death). During patients' hospital visits, 

however, arrhythmias may not be detected on standard resting ECG machines since the 
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condition may not be present at that moment in time. And while Holter-based (hospital) portable 

monitoring solutions offer 24-48 h ECG recording, they lack the capability of providing any real-

time feedback for the thousands of heart beats they record, which must be tediously analyzed 

offline. ECG acquisition, display, feature extraction, and beat classification can be done by 

wearable and modern innovations (Oresko et al., 2010). An alert can even be set to contact a 

medical center/care provider in the event of a potentially threatening or imminent health 

emergency (Kumar, Aggrawal and Gupta, 2012).  

Furthermore, measuring patients’ vital signs at-home may result in individualized treatment 

protocols that incorporate continuous, detailed information about the patients’ ongoing 

physiological status without having to transport a patient, which can be detrimental and costly 

(Muse et al., 2017). While the application of wearable technologies was previously focused on 

physiological measurements (e.g. heart rate, step-counter), equivalent applications are now 

possible with EEG (see Chapter 9 for more discussion on real-world applications of wearable 

EEG technologies). Furthermore, many modern wearable EEG headsets are now comfortable to 

wear and incorporate elegant designs and are becoming increasingly attractive for the general 

public, making these applications more and more realistic (Nijboer et al., 2015). These topics are 

discussed in more detail in Chapter 9.  

While low-cost wearable EEG systems face several challenges to match state-of-the-art 

research-grade stationary systems, some of them meet the minimum hardware requirements (see 

section 3.1.), and hold immense potential.  
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Chapter 4. Well-being 

This chapter defines well-being, its main dimensions, the relation between chronic stress and well-being, 

some important predictors and mediators of well-being, and some brain correlates of well-being.  

______________________________________________________________________________ 

 

4.1. The main dimensions of well-being 

Well-being has been an important target of empirical, developmental, clinical, and humanistic 

psychology and attempts to elevate human functioning (Jahoda, 1958; Maslow, 1968; Bradburn, 

1969; Diener, 1984; Jung, 1985; Deci and Ryan, 2008). The philosophical roots of what 

constitutes happiness and well-being date back to the first human civilizations (Adams, Lamberg-

Karlovsky and Moran, 1974; Aristotle, Irwin and Fine, 1995; Aristotle, 2000). Two fundamental 

dimensions have long been highlighted: the hedonic approach, which focuses on happiness and 

positive affect, defining well-being in terms of pleasure attainment and pain avoidance 

(Kahneman, Diener and Schwarz, 1999); and the eudaimonic approach, which focuses on self-

realization or actualizing one’s human potential, defining well-being in terms of the degree to 

which a person is fully functioning (Ryff, 1989; Waterman, 1993). In ancient views, the hedonic 

dimension considered humans starting as an empty organism that gains its meaning according 

to social and cultural experiences that have a positive or negative valence, whereas the 

eudaimonic dimension viewed humans starting with a predefined nature and their goal is to 

identify it to fulfill their potential (Deci and Ryan, 2008). These two views have given rise to 

large research bodies that are in some areas divergent and others complementary (Ryan and Deci, 

2001).  

Assessment tools such as questionnaires and rating scales turn theoretical and philosophical 

constructs into psychometric properties (i.e, measures allowing statistical descriptions and 

inferences). Measurement instruments play an important role in research, clinical practice and 

health assessment, by quantifying bodily or psychological characteristics of the individuals 

(Portney and Watkins, 2009; Souza, Alexandre and Guirardello, 2017). The usefulness of 

measurement in clinical research or practice helps with decision-making and measuring progress 
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during rehabilitation. Clinicians and researchers use multi-items questionnaires and scales to 

measure well-being, mental health, diagnose disease, or measure change over time in any of these 

measures. Since well-being is highly subjective, psychologists have traditionally used self-report 

questionnaires and scales (Wiggins, 1973) to assess subjective happiness, life satisfaction, and 

positive affect (i.e., the hedonic dimension). Hence, subjective well-being refers to the 

psychologist's perspective of hedonic WB. This approach values metacognition by taking into 

account the individuals’ capacity to evaluate for themselves the degree to which they experience 

a sense of wellness and life satisfaction (Diener et al., 1999; Livingston, 2003; Dunlosky and 

Metcalfe, 2008). Thus, subjective WB includes the individuals' cognitive evaluation of their 

conditions (metacognition).  

Most of the existing knowledge up until the ’90s focused almost solely on the hedonic dimension 

of WB. To address this issue, the Ryff model of psychological well-being (Ryff, 1989) was 

developed and identified six overlappings, key eudaimonic components of well-being (Figure 12). 

Following a subjective self-report approach, the new measures probed: 1) purpose in life (the 

extent to which respondents felt their lives had meaning, purpose, and direction); 2) autonomy 

(whether they viewed themselves to be living in accord with their convictions); 3) personal 

growth (the extent to which they were making use of their talents and potential); 4) 

environmental mastery (how well they were managing their life situations); 5) positive 

relationships (the depth of connection they had in ties with significant others); 6) self-acceptance 

(the knowledge and acceptance they had of themselves, including awareness of personal 

limitations). The Ryff model was validated and used in many different sociocultural contexts 

(Clarke et al., 2001; Kafka and Kozma, 2002; Cheng and Chan, 2005; Lindfors, Berntsson and 

Lundberg, 2006; van Dierendonck et al., 2007; Abbott et al., 2010), and led to numerous studies 

and interventions aiming at better understanding psychological well-being and improving the 

human condition (Ryff, 2014). This novel perspective even had larger implications by expanding 

the definition of health from an absence of illness to also the presence of “something positive” 

(Ryff and Singer, 1998). Most measures were focusing their evaluations on static local outcomes 

for improvements in negatively-valenced symptoms and signs (Otto et al., 2010). 
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Figure 12. The 6-factor model of psychological well-being. Source: Ryff and Singer (2013). 

 

4.2. Stress and well-being 

In absence of stress, there is a balance between the sympathetic and parasympathetic systems of 

the sympathetic nervous system (SNS), termed homeostasis (Cannon, 1929). However, stressful 

experiences are common throughout a human’s life. Stress can be defined as a “state of threatened 

homeostasis or disharmony that must then be counteracted by an adaptive stress response, a 

complex array of physiologic and behavioral responses intended to re-establish homeostasis. The 

interacting hypothalamic-pituitary-adrenal (HPA) axis and the (SNS) are key regulatory centers 

with respective hormones that are influenced by a myriad of genetic, environmental, and 

developmental factors.  

When a stressor occurs, the hypothalamus releases hormones that elicit the production of 

adrenocorticotropic hormone (ACTH) from the posterior pituitary and the activation of the 

noradrenergic neurons of the locus coeruleus/norepinephrine (LC/NE) system in the brain 

(Tsigos and Chrousos, 2002). The ACTH then drives the production of cortisol from the adrenal 

cortex, whereas the LC/NE system is primarily responsible for the immediate “fight or flight”. 

Under normal conditions, the production of CRH and ACTH fluctuate in a predictable circadian 
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cycle and are inhibited by high levels of blood cortisol via a negative feedback loop (Tsigos and 

Chrousos, 2002). Cortisol (and the general stress response) redirects cellular processes away from 

long-term metabolic processes and toward the immediate survival ones. The negative feedback 

loop is therefore designed to limit long-term exposure of tissues to these short-term catabolic 

and immunosuppressive actions (Tsigos and Chrousos, 2002). Excessive (trauma), prolonged 

(chronic stress), or inadequate activity of these systems leads to adverse health consequences 

(Wheaton, 1997; Tsigos and Chrousos, 2002).  

Sources of acute stress are usually fairly obvious, but it is harder to identify the sources of chronic 

stress. There are four general categories of chronic stress: mental/emotional stress, sleep 

disorders, metabolic/glycemic dysregulation, and chronic inflammation (Wheaton, 1997). Grief, 

excitement, fear, anxiety, guilt, embarrassment all can trigger a robust HPA axis response. Also, 

events such as public speaking, performance evaluations, skydiving, or clinical appointments will 

drive up ACTH and cortisol in most individuals (Wheaton, 1997). Research has shown that the 

magnitude of the response and recovery to these stressors is based on the individual’s perception 

rather than the stressors themselves (Bollini et al., 2004). The four key factors that determine the 

magnitude of the HPA axis response to a mental/emotional stressor are its 1) novelty to the 

individual, 2) unpredictable nature, 3) threat to their person or ego, 4) sense of loss of control 

(Wheaton, 1997). Individual characteristics such as age, gender, hereditary predisposition, 

personality traits, and prenatal or early childhood experiences are also profoundly influential 

(Felitti et al., 1998; Dong et al., 2004).  

“An implicit assumption of a high global well-being is that the individual can not only overcome 

stressors and negative affect but also flourish in his or her life course” (Fredrickson et al., 2003). 

Resilience is the ability to bounce back or recover from stress and to show flexibility and 

adaptability to adverse life experiences (Tugade and Fredrickson, 2004; Smith et al., 2008; Feder, 

Nestler and Charney, 2009), a key ability for long-term multidimensional well-being 

(Fredrickson et al., 2003). Resilient individuals have been found to “use positive emotions to 

alleviate stress effects and show physiological differences in their ability to adapt to stress” 

(Tugade and Fredrickson, 2004; Otto et al., 2010). Differences in adaptation to stress are 

associated with neural circuitry changes that, in turn, improve or reduce this adaptation capacity. 

The “broaden-and-build” model posits that positive emotions promote discovery of novel and 

creative actions, ideas, and social bonds, which in turn builds their physical, cognitive, social, and 
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psychological resources, “broadening their momentary thought-action repertoires”  

(Fredrickson, 1998, 2001). These resources serve as reserves that can be drawn on later to 

improve the odds of successful coping and survival. (Fredrickson, 2004). This model, influenced 

by positive psychology (Fredrickson, 2001), might explain the high covariance between the 

eudaimonic and hedonic dimensions (Waterman, Schwartz and Conti, 2008) despite the previous 

efforts to consider them as different dimensions of well-being with different psychometric 

properties.  

 

4.3. Predictors and mediators of well-being 

A vast literature has evaluated how a variety of factors may mediate or modulate well-being over 

the past few decades.  

Aging has been negatively associated with well-being in the later part of life through the decline 

in the sense of life purpose, autonomy, and personal growth (Ryff, 1989; Ryff and Keyes, 1995; 

Clarke et al., 2000; Springer, Pudrovska and Hauser, 2011), whereas it is positively associated 

with progressing through the developmental tasks of adult life (Riediger and Freund, 2004; 

Ebner, Freund and Baltes, 2006). Realistic self-evaluation of aging predicts well-being, with 

individuals who feel younger than they are reporting higher well-being contrary to those who 

wish to be younger (Lachman et al., 2008; Ward, 2010; Keyes and Westerhof, 2012).  

Numerous individual trait differences have been investigated cross-sectional and longitudinal 

designs as mediators of well-being, including personality traits (often considered as heritable; 

Schmutte and Ryff, 1997; Staudinger, Fleeson and Baltes, 1999; Lucas and Diener, 2008), genetic 

predisposition (Keyes, Myers and Kendler, 2010), optimism (Ferguson and Goodwin, 2010), life 

management strategies (Freund, 2003), intentional activities (Sheldon and Lyubomirsky, 2006), 

empathy (Grühn et al., 2008), emotional intelligence (Lopes, Salovey and Straus, 2003), and 

perceived independence (Abbott et al., 2008).  

Family role involvement promotes well-being (Ahrens and Ryff, 2006), whereas helping others 

seems to enhance purpose and self-acceptance more specifically (Greenfield, 2009; Schwartz et 

al., 2009). Those who are consistently married have a well-being advantage compared to the 
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divorced, widowed, or never married, although single women score higher on autonomy and 

personal growth compared to married women (Bierman, Fazio and Milkie, 2006; Shapiro and 

Keyes, 2008). Parenting seems to enhance adult well-being, particularly if one’s children are 

doing well (An and Cooney, 2006; Rothrauff and Cooney, 2008). Loss of a child in adulthood 

predicts impaired well-being decades later (Rogers et al., 2008; Pudrovska, 2009), while loss of a 

parent in childhood predicts lower levels of multiple dimensions of adult well-being (Hailey 

Maier and Lachman, 2000). Adverse and stressful experiences in childhood compromise well-

being through life (Shaw et al., 2004; Greenfield and Marks, 2010), and parental warmth promotes 

well-being and a wide range of health and well-being outcomes (Pyatak et al., 2014). Caring for 

an aging parent also reduces well-being, although less in women with high environmental 

mastery (Li, Seltzer and Greenberg, 1999).  

Socioeconomic dimensions of WB have been extensively studied (Jurado and Perez-Mayo, 2012; 

Haq and Zia, 2013; Prilleltensky et al., 2015). Education and employment are reliably associated 

with a lower likelihood of mental health problems and a higher likelihood of better physical 

health. Well-being is influenced by (and contributes to) career pursuit, income (Luhmann, 

Schimmack and Eid, 2011), and how work and family life interact (conflict between the two 

diminishes it, whereas positive overlaps support it). This component is affected by social roles 

and cultural differences (Keyes and Waterman, 2003; Carstensen et al., 2011).  

Well-being is significantly reduced by physical illnesses and disabilities (Schleicher et al., 2005; 

Hickson et al., 2008; Kashubeck-West and Meyer, 2008; Pusswald et al., 2012), but having a life 

purpose can be protective against cognitive impairment, neuropathology, the risk for stroke, and 

myocardial infarction (Rafanelli et al., 2012; Guidi et al., 2013). Well-being is also strongly 

associated with physical health and health behaviors such as weight and the associated perceived 

discrimination (Carr and Friedman, 2005), physical activity (Hassmén, Koivula and Uutela, 2000; 

Edwards, Edwards and Basson, 2004; Svensson et al., 2021), and sleep (Pilcher, Ginter and 

Sadowsky, 1997; Hamilton et al., 2007). Higher well-being predicts better biological regulation 

as measured by the stress hormone, cortisol, and inflammation levels, or cardiovascular risk 

(Lindfors and Lundberg, 2002; Hayney et al., 2003; Ryff, Singer and Dienberg Love, 2004). These 

relations were especially important when facing socioeconomic disadvantage or chronic 

conditions (Tsenkova et al., 2007; Morozink et al., 2010).  
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Meditation practice and training have been shown to improve well-being, response inhibition 

and self-regulation strategies, and to reduce stress and medical symptoms, as well as 

improvements in executive functions and emotion regulation (Carmody and Baer, 2008; Sahdra 

et al., 2011; Brandmeyer and Delorme, 2016, 2020b). Additionally, intensive meditation training 

showed significantly greater telomerase activity and increased purpose in life outcomes (Jacobs 

et al., 2011).  

Well-being is also positively associated with connection with nature (Howell et al., 2011; Russell 

et al., 2013) and religious participation (related to higher levels of purpose and growth but lower 

levels of autonomy; Day, 2010). 

Mental disorders are likely the strongest predictor, mediator, or outcome of low 

multidimensional well-being, including anxiety disorder, schizophrenia, major depression 

disorder (MDD), panic disorder, cyclothymia, agoraphobia, post-traumatic stress disorder 

(PTSD), or obsessive-compulsive disorder (Rafanelli et al., 2000; Fava et al., 2001; Keyes, 2002, 

2005; Valiente, Cantero, et al., 2011; Valiente, Provencio, et al., 2011; Feder et al., 2013). Before 

the COVID-19 pandemic, poor mental health was already a large and growing global problem, 

with 310 million (4.2%) suffering from depressive disorders, ~210 million (2.8%) people from 

major depressive disorders, and ~356 million (4.8%) from anxiety disorders in 2019 (Global 

Health Data Exchange, 2019). It is estimated that the global economy loses more than US$ 1 

trillion per year due to depression and anxiety (United Nation, 2020). Approximately 50% of all 

mental health conditions start by age 14 and can lead to suicide, the second leading cause of death 

in young people aged 15-29 (United Nation, 2020). People with severe mental conditions die 10-

20 years earlier than the general population (United Nation, 2020). 76-85% of people with mental 

health conditions received no treatment in low- and middle-income countries (World Health 

Organization, 2021). Globally there is less than 1 mental health professional for every 10,000 

people (United Nation, 2020).  

During the COVID-19 pandemic, stress, social isolation, and violence in the family affect brain 

health and development in young children and adolescents (United Nation, 2020). Social isolation 

reduced physical activity and reduced intellectual stimulation increase the risk of cognitive 

decline and dementia in older adults (United Nation, 2020). Furthermore, mental health services 

had to reconvert their utilities to care for people with COVID-19, reducing the number of people 
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attending emergency mental health services (e.g., by 75% in Madrid). Mental health services had 

to adapt quickly to ensure the continuity of patients with severe conditions (e.g., transport to 

private clinics). Mental healthcare workers continued to work over the phone and home visits 

were organized for serious cases (United Nation, 2020). 

A large study found that individuals who had low scores in multiple dimensions of well-being are 

at higher risk for a major depressive episode (Keyes, 2002). Only 16.6% of the population is 

thought to have perfect mental health, which corresponds to the presence of the positive and 

absence of the negative affect in all dimensions (Keyes, 2005). Psychiatric paradigms often define 

recovery as a reduction in symptoms or the absence of psychological distress. The presence of 

well-being is sometimes accompanied by reduced symptoms of these disorders. Moving beyond 

this formulation, studies in remitted patients with mood, anxiety, and panic disorders revealed 

significantly lower levels on multiple aspects of psychological well-being (Rafanelli et al., 2000; 

Fava et al., 2001).  

Such findings clarify that complete recovery involves more than the reduction of distress; it must 

also include improvements in well-being, which in turn, highlights the need for therapeutic 

strategies focusing on positive outcomes (Fredrickson, 2004; Keyes, Dhingra and Simoes, 2010; 

Hou, Ng and Wan, 2014). The greatest advances have occurred in clinical intervention studies 

where improvements in well-being now constitute innovative new treatment targets needed to 

prevent relapse (Fava, Ruini and Belaise, 2007).  

Multiple studies document long-term treatment benefits associated with well-being therapy 

(Fava et al., 2004, 2005; Ruini and Fava, 2009). Other psychiatric interventions have employed 

measures of well-being to validate the effectiveness of diverse treatment programs (Hoen, 

Thelander and Worsley, 1997; Bell et al., 2004; Hart et al., 2005; Penn et al., 2011). Studying well-

being on non-clinical populations can be useful to provide estimates of optimal well-being to 

which clinical populations might aspire, and what factors might help each individual reach these 

targets (Millear et al., 2008; Ruini et al., 2009). Interventions have been extrapolated beyond the 

clinic to school and workplace settings to enhance well-being to prevent mental illness and 

promote resilience (Ruini et al., 2006; Millear et al., 2008).  
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Furthermore, changes in mental health can predict future mental illness, making it a useful tool 

to prevent and protect individuals from developing mental illness before the symptoms are 

serious (Keyes, Dhingra and Simoes, 2010).  

4.4. Well-being and the brain 

All these factors mediate not only well-being but also shape the structure and function of our 

brains throughout the lifespan, which in turn, can mediate well-being levels. While progress has 

been made recently regarding our understanding of the direct relationships between well-being 

and the brain, much is still unknown (Dolcos, Moore and Katsumi, 2018). By identifying brain 

correlates of well-being, wearable neurotechnologies will improve the detection, prediction, and 

treatment of poor mental health and low well-being, in an affordable manner.  

4.4.1. Functional Magnetic Resonance Imaging (fMRI) and well-being 

Structural MRI results indicated that psychological (eudaimonic) well-being is positively 

correlated with insular cortex volume (bilaterally), which is involved in many high-order 

functions (Lewis et al., 2014). fMRI findings showed differences in amygdala activation in 

response to negative relative to neutral stimuli, corresponding to increased activation in people 

that were faster to evaluate negative information (van Reekum et al., 2007). Interestingly, 

individuals with high well-being were slower to do this task and showed reduced activation, and 

increased ventral anterior cingulate cortex (vACC) activation. Another study showed that people 

with higher well-being and lower cortisol levels had sustained activity in the striatum and 

dorsolateral prefrontal cortex (dLPFC) while viewing positive stimuli (Heller et al., 2013).  

Together, these findings suggest that sustained engagement of reward circuitry during a positive 

event may underlie the phenomenology of well-being, and the regulation of the hypothalamo-

pituitary-adrenal (HPA) axis (see section 4.2.; Smith and Vale, 2006). This goes along with a 

large body of literature on adaptation to stress and associated neural circuitry changes (Charney, 

2004; Feder, Nestler and Charney, 2009; Stein, 2009).  

While the gap remains in the neural mechanisms of well-being, there is a clear link between 

anxiety, depression, and low well-being, and the mechanisms of these mental disorders are much 

more understood thanks to animal studies implementing advanced invasive cellular, deep 

recording, optogenetics, pharmacological techniques.  
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For example, recent discoveries have highlighted the critical role of the lateral habenula (LHb) 

in regulating negatively motivated behavior in the context of depression and anxiety (e.g., Hu et 

al., 2020). The LHb (“the brain's antireward centre”) receives information from the deep limbic 

and basal ganglia structures, and targets all midbrain neuromodulatory systems (i.e., 

noradrenergic, serotoninergic, and dopaminergic) that then modulate both cortical and 

autonomous nervous systems (sympathetic and parasympathetic). Thus, the LHb is considered a 

“hub that integrates value-based, sensory and experience-dependent information to regulate 

various motivational, cognitive and motor processes” (Hu et al., 2020). It sdysfunction is 

associated with psychiatric disorders and major depression.  

Neural mechanisms underlying internal defensives states (i.e., fear activation or extinction) also 

seem crucial to understand anxiety. Fear and anxiety seem to be mediated by local microcircuits 

in the deep limbic regions (e.g., stria terminalis, lateral septum, ventral tegmental area, 

basolateral amygdala) and the prefrontal cortex, and brain-wide distributed network involving 

long-range projections (Tovote et al., 2015). Inhibition of these circuits (that are known to also 

mediate positive and negative valence) dampens the fear and anxious response (Tovote et al., 

2015).  

Importantly, these deep subcortical structures (limbic system, habenula complex) modulate the 

cortical areas involved in well-being (i.e., ACC, PCC, dLPFC) and inhibit the circuits underlying 

anxiety, both through dopaminergic modulation. This is confirmed by animal studies showing 

that DA inhibition increases anxiety, loss of motivation, anhedonia, helplessness, and other 

depressive-like behaviors. Similarly in Parkinson’s disease, DA agonists increase the quality of 

life and reduces anhedonia (e.g., Thobois et al., 2013; Scheffer et al., 2021). 

 

4.4.2. EEG: Alpha oscillations (context) 

Alpha oscillations are the dominant oscillatory feature of the EEG measured in a human brain, 

contained within the 8-13 Hz range for most individuals, and were the first EEG oscillations 

ever recorded in 1929 (Berger 1929). Their large amplitude is typically observed over posterior 

regions when the eyes are closed, but it can also be recorded across widespread scalp regions 

(Kellaway, 1979). Alpha rhythms are blocked (i.e., large reduction in amplitude) by eye-opening, 

drowsiness, and moderate-to-difficult mental tasks (Nunez, Wingeier and Silberstein, 2001). 
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Alpha oscillations were therefore initially considered by first researchers as an occipitoparietal 

rhythm due to the eyes closed/open phenomenon and considered it as a single phenomenon. 

However, alpha oscillations present both local and global dynamics, different activity between 

lower and upper alpha frequencies (Nunez, Wingeier and Silberstein, 2001), and large differences 

across individuals (Klimesch et al., 1990; Klimesch, 1997, 1999).  

Via its functional properties of inhibition and timing, alpha oscillations are thought to reflect the 

most basic cognitive and attentional processes (suppression and selection) that enable the ability 

to be consciously oriented in the spatiotemporal context. The rhythmic changes of alpha 

oscillations reflect the rhythmic changes in the synchronous activity of populations of neurons 

(Klimesch, 2012). “Phase-reset” (synchronous change in time and direction of phase) is a powerful 

mechanism for the timing of cortical processes (Klimesch, Sauseng and Hanslmayr, 2007).  

Some sub-rhythms of the alpha range are widely distributed while others are more localized, with 

interactions with activity in other frequencies (Nunez, Wingeier and Silberstein, 2001). For 

example, spatially coherent global alpha dynamics increase during cognitive tasks for both upper 

theta (6.5 Hz;  Figure 13, upper row) and upper alpha (10 Hz; Figure 13, lower row), whereas it 

decreases for lower-alpha. A decrease in upper alpha coherence (10-12 Hz) is also associated with 

decreased gamma coherence (38-40 Hz) in sensorimotor regions during movement preparation 

(Andrew and Pfurtscheller, 1996).  

 

Figure 13. Dura image interelectrode coherence during relaxation (left) and a cognitive task (right) over 5 min (one 

subject). Lines show genuine interelectrode coherence at the 95% confidence interval (not affected by volume 

conduction) between electrode pairs excluding nearest neighbor electrodes. Coherence increased during the cognitive 

task for both upper theta (6.5 Hz;  upper row) and upper alpha (10 Hz; lower row), whereas lower-alpha coherence 

decreased (not shown). Source: Nunez, Wingeier and Silberstein (2001).  
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The individual alpha frequency (IAF) 

The individual alpha frequency (IAF) refers to the dominant frequency within the alpha power 

distribution and is suspected (by some researchers) to reflect the dominant neural circuits that 

generate alpha oscillations (Klimesch, 1999; Corcoran et al., 2017). Using the IAF to examine 

alpha activity is thought to better account for interindividual differences compared to the 

traditional, predefined, 8-13 Hz band because a large portion of individuals has alpha oscillations 

out of these bounds (W. Klimesch et al., 1990; Klimesch, 1997, 1999; Haegens et al., 2014; Mierau, 

Klimesch and Lefebvre, 2017). IAF estimates are considered a trait-like characteristic of the 

human EEG (Grandy et al., 2013), have high heritability (Smit et al., 2006), and have good test-

retest reliability (Näpflin, Wildi and Sarnthein, 2007).  

The IAF increases between 3 and 10 years old, while delta activity decreases up until 25-30 years 

of age (Niedermeyer, 1999), a time when myelination of cortico‐ cortical fibers is nearly complete 

(Courchesne, 1990). The IAF decreases with age (Klimesch, 1997; Hashemi et al., 2016; Corcoran 

et al., 2017; Finley et al., 2020), or with hyperventilation and some drugs and alcohol (Kiloh, 

McComas and Osselton, 2013). In adults, a resting IAF lower than 8 Hz is considered abnormal 

(except for very old individuals; Nunez, Wingeier and Silberstein, 2001). Lower IAF values are 

associated with decreased cortical arousal (Portnova et al., 2020) and traumatic brain injury 

(Angelakis, Lubar and Stathopoulou, 2004), whereas higher IAF is associated with cognitive 

performance (Rathee et al., 2020). IAF can detect trait and state differences in cognitive 

preparedness and is affected by cognitive tasks (Angelakis et al., 2004; Angelakis, Lubar and 

Stathopoulou, 2004).  

The traditional approach to estimate IAF is to use the peak alpha frequency (PAF; frequency 

within the alpha band with the highest power). While this technique has been extensively used 

for the study of cognition (Klimesch, 1999; Angelakis et al., 2004; Rathee et al., 2020), it does not 

perform well with a portion of the population that have ambiguous alpha peaks, “split alpha 

peaks” (i.e., several peaks within the alpha band), or no alpha peak (see Figure 14; Anokhin and 

Vogel, 1996; Chiang et al., 2008, 2011).  
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Figure 14. Illustration of ambiguous alpha peaks (left), “split” peaks (middle), and absent peaks (right). These 

problematic cases occur naturally in a large proportion of the population and lead to poor estimation of peak alpha 

frequency (PAF) for these individuals. Source: Corcoran et al. (2017). 

Initial techniques to estimate the PAF relied on visual and manual inspection (Klimesch et al., 

1990) or cross-frequency assumptions (Klimesch et al., 1998; Klimesch, 1999; Posthuma et al., 

2001). These methods were very time-consuming and prone to subjective judgment error. Novel 

automated methods have now been developed to avoid these limitations and implement a novel 

approach called the alpha center of gravity (CoG), which considers the shape of the whole alpha 

power distribution and is thought to provide a more accurate summary of the underlying alpha 

activity. The “channel-based method” (CRB; Goljahani et al., 2012; Goljahani, Bisiacchi and 

Sparacino, 2014) is well suited for event-related EEG, whereas other statistical curve-fitting and 

clustering techniques are particularly adapted to IAF-estimation of continuous EEG data 

(Chiang et al., 2008, 2011; Lodder and van Putten, 2011, 2013; Van Albada and Robinson, 2013; 

Corcoran et al., 2017). These algorithms have been implemented in a fast, reliable, open-source 

toolbox operating in MATLAB and Python (Corcoran et al., 2017), easing the fast estimation of 

this spectral measure on large datasets while reducing subjective judgment error of the 

experimenter.  

 

Local-global alpha dynamics 

Local alpha may be partly but not fully isolated, with fractal dynamics at smaller spatial scales 

(e.g., down to the minicolumn scale; Nunez, Wingeier and Silberstein, 2001). While different 

modules do different things, they also interact to give rise to a “unified conscious scene and to 
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unify behaviors (they are integrated)”  (Nunez, Wingeier and Silberstein, 2001).  “Global alpha” 

refers to the widespread distribution of alpha power measured at all electrode sites over the scalp 

(see Figure 15; Florian, Andrew and Pfurtscheller, 1998; Nunez, Wingeier and Silberstein, 2001). 

The global alpha activity reflects high alpha coherence over large interelectrode distances (e.g., 

10-25 cm) independent of volume conduction effects, in both resting state or cognitive tasks (see 

Figure 6 and Figure 13; Nunez, 2000).  

Global alpha reduces in older individuals as well as in patients with neurological disorders 

(dominantly recorded in clinical settings) compared to healthy young people (Nunez, Wingeier 

and Silberstein, 2001). Global coherence increases with brain maturation in children and young 

adults (Srinivasan, 1999; Niedermeyer and Silva, 2020). Larger coherence amplitude was 

observed in the posterior area in children compared to young adults, whereas coherence in young 

adults shows lower amplitude and longer ranges between anterior and posterior areas (10-25 cm 

distances). “Raw” spectral amplitude alpha, therefore, better captures the global alpha dynamics 

that can be recorded at nearly all electrode sites, whereas higher-spatial resolution methods (e.g., 

dura image) better capture the local dynamics and processes (see Figure 5 and Figure 15).  

 

Figure 15. Illustration of global (widespread) alpha power recorded over all electrodes during rest (typical subject) 

with both scalp power (left) and dura image power (right). Source: Nunez, Wingeier and Silberstein (2001). 

 

In sum, scalp alpha oscillations reflect the most basic cognitive and attentional processes, and to 

rely on large-scale processes (Hindriks, van Putten and Deco, 2014) supported by delayed 

network interactions (Cabral et al., 2014), and to build on slower and more global inhibitory 

processes (Klimesch, Sauseng and Hanslmayr, 2007; Womelsdorf et al., 2014), that may rely on 



 

61 
 

long-range cortico-cortical myelinated fibers (Nunez, Wingeier and Silberstein, 2001). These key 

functional properties are thought to reflect top-down, inhibitory processes that are necessary for 

cortical synchronization and timing of cortical processings required for any brain function (Laufs 

et al., 2003; Oakes, 2004; Klimesch, Sauseng and Hanslmayr, 2007; Mathewson et al., 2011; 

Klimesch, 2012; Scheeringa et al., 2012). Global alpha may facilitate the synchronization of local 

rhythms across regions (Nunez, Wingeier and Silberstein, 2001). These global effects are 

suspected to influence local dynamics with top-down mechanisms (Nunez and Srinivasan, 1993), 

and are thought to involve intermediate- and long-range cortico-cortical interactions (Nunez, 

Wingeier and Silberstein, 2001).  

Thus, different estimates of alpha activity can be obtained depending on the method used to 

measure it. Spatial filtering methods like the dura image will better reflect the combination of 

local dynamics contributing to the global dynamics, whereas traditional scalp amplitude 

measures will better capture the global coherent dynamics (see Figure 5 and Figure 15). 

Measuring alpha oscillations with scalp EEG amplitude signal focuses on the widespread alpha 

activity reflective mostly of global, coherent, synchronous activity measured at all electrode sites, 

that influences top-down local dynamics. Note also that longer epochs provide more stable 

estimates of global (widespread) alpha activity by masking short time fluctuations, and should be 

favored for scalp EEG analysis targeting these widespread alpha dynamics.  

Scalp alpha EEG constitutes therefore a promising candidate for frequency analyses using low- 

and sparse-density EEG systems that cover only a few areas of the scalp (as long as local 

processes and spatial sources are not the purposes of the study).  

4.4.3. Alpha asymmetry 

A spectral measure that has been widely used to evaluate participants’ attentional, motivational, 

and emotional processes is frontal alpha asymmetry (FAA, also called EEG asymmetry; 

(Davidson, 1988; Coan and Allen, 2003, 2004; Allen and Kline, 2004; Harmon-Jones, Gable and 

Peterson, 2010; Scherer and Ekman, 2014; Allen and Reznik, 2015; Smith et al., 2017). FAA refers 

to the relative difference in alpha power (8-13 Hz) between the right and the left frontal regions.  

Because alpha oscillations are known to functionally inhibit regional cortical activity (see the 

previous section; Oakes, 2004; Laufs et al., 2006; Mathewson et al., 2011; Scheeringa et al., 2012), 

and asymmetries in alpha power have been observed between the two hemispheres, authors have 
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associated an increased alpha activity in one hemisphere with a decrease in brain activity or 

allocation of cortical resources in the same hemisphere (Davidson et al., 1990; Cook et al., 1998; 

Davidson, 1998; Allen and Kline, 2004). These observations have led to the emotional valence 

and motivational models of alpha asymmetry (Wheeler, Davidson and Tomarken, 1993; 

Tomarken and Davidson, 1994; Thibodeau, Jorgensen and Kim, 2006), where relatively greater 

left than right alpha power is associated with the relatively greater right than left cortical 

activity. In turn, greater activation of the left-frontal cortex relative to the right is related to 

approach motivation and emotions with positive valence (e.g., happiness, positive urgency), 

whereas greater activation of the right-frontal cortex relative to the left is associated with the 

brain processes related to avoidance motivation and negative emotional valence (e.g., depression, 

anxiety). These observations led to a large body of literature on the valence and motivational 

models of FAA (e.g., Coan and Allen, 2003, 2004; Allen and Kline, 2004; Thibodeau, Jorgensen 

and Kim, 2006; Harmon-Jones, Gable and Peterson, 2010; Allen and Reznik, 2015).  

These models highlight that processes underlying approach motivation and positive affect are 

associated with relatively greater cortical activity in the left frontal area compared to the right, 

which in turn, is inversely correlated with alpha power (i.e., greater right than left alpha power 

in these areas). Inversely, emotional processes related to avoidance motivation and negative affect 

are associated with the relatively greater right than left frontal cortical activity (corresponding 

to the greater left than right frontal alpha power). Extreme approach-oriented traits and 

behaviors include for example positive urgency (i.e., the tendency towards rash action in response 

to extreme positive emotional states (Tomarken and Davidson, 1994), sensation-seeking 

(Santesso et al., 2008), and high reward sensitivity (Pizzagalli et al., 2005), whereas avoidance-

related traits and behaviors include depression and anxiety (Thibodeau, Jorgensen and Kim, 

2006; Allen and Reznik, 2015), shy temperament (Fox et al., 1995), negative dispositional affect 

(Tomarken and Davidson, 1994), and poor regulation of negative emotions (Jackson et al., 2003). 

These models align with the clinical literature showing that lesions in the left frontal area are 

associated with depression symptoms (Robinson and Price, 1982; Harmon-Jones, Gable and 

Peterson, 2010).  

EEG asymmetry is considered to reflect the trait variable related to various psychological 

constructs and predictive of future emotional behavior or psychopathology when measured 

during rest (e.g., Wheeler, Davidson and Tomarken, 1993; Davidson, 1994; Sutton and Davidson, 
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1997; Hagemann et al., 1999; Stewart et al., 2010; Nusslock et al., 2011; Papousek et al., 2012), 

whereas it reflects the state variable when measured as an event-related response (e.g., Coan, 

Allen and Harmon-Jones, 2001; Harmon-Jones and Sigelman, 2001; Harmon-Jones, 2004). Some 

authors estimated that 60% of the variance in asymmetry measure within a resting session is due 

to traits influence, and the 40%  to state influences (Hagemann et al., 2002). The first approach 

aims to reduce state-related influences by reducing the situational variable (i.e., environmental 

factors that can unintentionally affect the results of a study; Coan, Allen and McKnight, 2006), 

whereas the second approach aims to increase them by eliciting emotions or states through the 

presentation of stimuli. In this study, we focus on the first approach, that is, the trait asymmetry 

related to subjective well-being levels.  

Going one step further, investigators using EEG source-localization techniques (Laufs et al., 

2003; Pizzagalli et al., 2005; Mantini et al., 2007; Koslov et al., 2011; Gable et al., 2015; Smith, 

Cavanagh and Allen, 2018) found that frontal asymmetries originate from the dorsal 

frontoparietal network (dFPN), the inferior frontal gyrus, and the right dorsolateral prefrontal 

cortex (dlPFC; which is part of the dFPN). These results led them to suspect that frontal 

asymmetries reflect the integrity of the supervisory system, which is theorized to generate 

effortful constraint and self-control (Sutton and Davidson, 1997; Cacioppo, Tassinary and 

Berntson, 2007; Gable et al., 2015). Gable and colleagues (2015) suspected that the alpha 

asymmetry is driven by the activity of this supervisory control system, supposedly located in the 

right frontal area (Gable et al., 2015).  

Frontal asymmetries may also reflect other associated executive control mechanisms, which play 

an essential role in allocating attention towards a goal and inhibiting interference from 

distractors (Corbetta, Patel and Shulman, 2008; Grimshaw and Carmel, 2014; Gable et al., 2015). 

In this view, termed the asymmetric inhibition model, mechanisms in the left frontal cortex 

would inhibit negative distractors, whereas mechanisms in the right frontal cortex would inhibit 

positive distractors. Consequently, asymmetric aberrations in these systems result in bottom-up 

and top-down dysfunction, such as difficulty in disengaging attention from negative/avoidance-

motivation information result in depression and anxiety (Eysenck et al., 2007; Shackman et al., 

2009; Cisler and Koster, 2010; De Raedt and Koster, 2010; Engels et al., 2010; Gotlib and 

Joormann, 2010; Kim et al., 2012; Gable et al., 2015), whereas difficulty in inhibiting 
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positive/approach-motivation distractors results in addiction and positive urgency behaviors 

(Bechara, 2005; Garavan and Hester, 2007; Goldstein and Volkow, 2011).  

It is important to note the clear link between these processes and structures underlying alpha 

asymmetry and those highlighted in invasive studies examining the brain mechanisms of mental 

disorders (see beginning of this section 4.4.). Interestingly, these structures and networks (limbic 

system, prefrontal cortex, habenula complex) that lead to mental disorders when dysfunctioning 

show interhemispheric asymmetries (e.g., Ahumada-Galleguillos et al., 2017; Gutiérrez-Ibáñez et 

al., 2011; Bianco and Wilson, 2008), suggesting they are likely to be involved in generating EEG 

asymmetries.  

Thus, multiple lines of research demonstrate that the mechanisms underlying alpha asymmetry 

measurements are highly implicated in processes that contribute to well-being (positive/negative 

affect, self-control, focused attention for conduction of daily tasks, capacity to fulfill one’s 

potential and life goals, etc.). Only one study to our knowledge assessed the direct relationship 

between alpha asymmetry and well-being and found that participants reporting higher levels of 

both eudaimonic and hedonic well-being showed greater left than right frontal activation in 

response to emotional stimuli (Urry et al., 2004). The authors suggested that the effect was driven 

by the eudaimonic dimension of well-being specifically.  

EEG asymmetry seems like a good candidate measure for wearable EEG systems, as it involves 

very simple calculations (alpha power of the left channel subtracted from the right one) and just 

a few channels covering frontal regions of each hemisphere. Wearable EEG systems have been 

used extensively over the past few years to measure frontal asymmetry, suggesting this measure 

is well-suited for these technologies (Peng et al., 2011; Hu et al., 2015; Hashemi et al., 2016; Jebelli, 

Hwang and Lee, 2017; Wu et al., 2017; Zhao et al., 2017; Hwang et al., 2018; Umar Saeed et al., 

2018; Cao et al., 2019; Arpaia et al., 2020; Park, Han and Im, 2020; Saeed et al., 2020; Apicella et 

al., 2021). 

To conclude this section on well-being and the brain, by identifying the neural correlates and 

predictors of well-being, as well as finding measures to capture changes in well-being, we will 

better understand the mechanisms that underlie higher levels of well-being, and in turn, develop 

promising interventions aiming at helping people live happier and more fulfilling lives (Dolcos, 

Moore and Katsumi, 2018). Attentional and inhibitory impairments are thought to be crucially 
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associated with an increased vulnerability to depressive episodes and cognitive vulnerability (De 

Raedt and Koster, 2010). Alpha asymmetry seems to play an essential role in understanding the 

neural networks underlying global top-down mechanisms involved in well-being, such as 

executive functions, attention, perception, and emotion regulation.  

  



 

66 
 

 

  



 

67 
 

 

 

 

 

 

 

 

 

Part II 

 

  



 

68 
 

Research goals of the thesis project: three studies 

 

●  Validate a scale to rapidly measure multidimensional well-being, and use it to capture the 

main dimensions of well-being and associated predictor variables in a large sample (study 

1: Chapter 5).  

●  Validate a low-cost wearable EEG system for collecting spectral signals relevant to the 

study of well-being, i.e., the individual alpha frequency and alpha asymmetry (study 2: 

Chapter 6).  

●  Validate an existing, open-source, automatic artifact rejection method to preprocess large 

EEG datasets collected with this wearable system (study 3: Chapter 7).  

●  Use all these methods to examine the EEG correlates of well-being in a large sample 

(study 3: Chapter 7).  
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Chapter 5. Validating a quick scale to measure 

multidimensional well-being 

In this chapter, we test the feasibility of using a short visual scale to reliably capture multi-dimensional 

well-being in a large sample, and identify some predictors of well-being, in a large sample. 

______________________________________________________________________________ 

 

5.1. Introduction 

5.1.1. Objective vs. subjective measures 

Scientific reasoning can only be as strong as the measures. Essential components of psychometric 

properties include validity (the degree to which an instrument measures the construct it purports 

to measure), reliability (the degree to which the measurement is free from measurement error), 

responsiveness (the ability of an instrument to detect change over time in the construct to be 

measured), and interpretability (the degree to which one can assign qualitative meaning to an 

instrument’s quantitative score). 

The routine use of self-reported subjective measures and the quest for homogeneity across the 

well-being items have been suggested to lead to a lack of sensitivity on clinical outcomes, 

contrary to the clinimetric criteria used in conventional clinical measures (Ryff and Singer, 2013). 

Following these criticisms, efforts were made to make well-being scales more robust (Fava et al., 

1998; Tomba et al., 2010; Tomba and Bech, 2012). For example, Fava and Colleagues developed 

a clinimetric, psychotherapeutic, interview version of the Ryff model (Fava and Tomba, 2009).  

However, many authors highlighted that some psychometric self-rated scales often display 

relevant clinimetric properties and that clinimetrics measures do not always reflect the perceived 

well-being of the individual by using pre-selected items of physical and emotional health (e.g., 

the SF-36; Ware and Sherbourne, 1992). A variable can negatively affect one individuals’ well-

being, but not another (e.g., someone might experience chronic pain but still be happy because 

they are coping well with the pain). While clinimetrics are useful to differentiate sick from healthy 
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individuals, they do not take into account degrees of well-being by focusing on a diagnostic 

approach, that is the presence or absence of disease.  

Thus, some authors suggested that they might be less efficient at assessing benefit/risk ratio 

compared to measures capturing the full scope of an individual’s quality of life, which are also 

better suited for applications aiming at optimizing well-being in all individuals (Paterson, 1996; 

Paterson and Britten, 2000; Bell et al., 2002). Furthermore, understanding well-being and its 

factors concern not only patients (reducing symptoms) but also non-patients (elevating or 

optimizing well-being).  

5.1.2. Multi-items vs. single-item global scales/questionnaires 

Whole systems practices (e.g., traditional Chinese medicine, Ayurveda, naturopathy) focus on the 

whole person indicators of health, including the experienced global well-being (Bell et al., 2003; 

Ritenbaugh et al., 2003; Verhoef et al., 2004, 2005; Otto et al., 2010). In this approach, the roles of 

multiple subsystems are assessed concurrently and in relation to each other (symptom patterns, 

dynamics of symptom and illness change) providing an individualized, global measure, such as a 

change in global health or well-being status (Jonas and Chez, 2004; Koithan et al., 2007; Otto et 

al., 2010). Patients commonly report “non-specific” effects of treatment that are distinct from the 

targeted ones (e.g., pain relief), such as an increase in self-reported positive affect and global well-

being (Bell et al., 2002, 2003; Verhoef, Casebeer and Hilsden, 2002; Paterson and Britten, 2003; 

Verhoef et al., 2004, 2006; Paterson, 2006; Paterson et al., 2009). Well-being is now generally 

considered as a complex multidimensional construct that encompasses multiple dimensions and 

is defined as the experience (hedonic dimension) and function (eudaimonic dimension) of life (Bell 

et al., 2004; Fredrickson and Losada, 2005; Waterman, Schwartz and Conti, 2008; Tuason, Güss 

and Boyd, 2021).  

Long questionnaires can have negative effects on both response rates and the quality of those 

responses, especially towards the later parts of the surveys where participants seem to give very 

similar responses compared to the rest of the questionnaire (Herzog and Bachman, 1981; Eisele 

et al., 2020). Similarly, designing questionnaires that are respondent-friendly (i.e., avoiding 

difficult questions) significantly improves response rates and quality (Dillman, Sinclair and Clark, 

1993). Furthermore, multi-item questionnaires are considered by some researchers to limit the 
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individual’s capacity to provide an accurate subjective response by providing only a few 

predefined response options to the participants.  

Brief global rating scales are shorter versions of long questionnaires that summarize many items 

into fewer scales to provide a rapid assessment of the different dimensions. Brief rating scales 

address these issues and have been used for a long time in clinical research (Overall and Gorham, 

1962; Marks and Mathews, 1979; Derogatis and Melisaratos, 1983; Morlan and Tan, 1998; 

Faustman and Overall, 1999; Østergaard et al., 2014). Interestingly, many studies suggest that 

self-rated global health status is an even better predictor of mortality and health care needs, 

compared to traditional objective measures (e.g., physician examinations and assessments; Idler 

and Kasl, 1991; Idler and Benyamini, 1997; Bath, 1999; Menec, Chipperfield and Perry, 1999). 

Self-rated reports might reflect mediator variables that can be missed by multi-items scales (if 

not present in the response options), but not by the individual self-report. A global subjective 

self-report allows each individual to weigh the importance of each specific item or function for 

him/herself on quality of life scale. Subjective self-report might capture complex and unknown 

components of health relying on participants’ metacognition (the ability to self-reflect and think 

about our thoughts; Flavell, 1979), which are not captured by questionnaires. 

Furthermore, they are quick to administer in both clinically ill and non-clinical healthy 

populations. Reducing the participants’ burden is especially relevant for populations that are 

harder to study like children, the elderly, and patients (Volpe and Dupaul, 2001; Briesch et al., 

2021). They also ease the tracking of overall well-being changes or intervention progress over 

time (longitudinal studies).  

Disagreement still exists regarding whether multiple items should be monitored and assessed 

separately or jointly (e.g., composite indices). Keeping track of trends in many separate sub-

components can be challenging for experimenters when there are too many indicators (Maasoumi 

and Yalonetzky, 2013). Furthermore, even when just a few dimensions are involved, one may be 

interested in computing measures of multidimensional WB that take into account the joint 

distribution of indicators in the population (Maasoumi and Yalonetzky, 2013).  

Hence, brief global rating scales are well-suited for studying EEG correlates of well-being on 

large datasets when combined with wearable EEG systems, as well as for real-world applications 

(e.g., individuals can easily self-report from home in a few minutes compared to using a long 
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survey). Thus, they are of particular interest for interventions aiming at optimizing well-being 

or preventing negative outcomes using EEG tools (Baldwin et al., 2002). 

5.1.3. The Arizona integrative outcomes scale (AIOS) 

Bell et al. (2004) developed the AIOS, a global rating scale designed to rapidly capture the full 

picture of an individual’s self-reported multidimensional well-being (Bell et al., 2004), including 

the global sense of physical, social, psychological, affective, and spiritual well-being. It measures 

these dimensions jointly into a one-item visual, horizontally-displayed scale, over the past 24 

hours (AIOS-24h) and the past month (AIOS-1m).  

The AIOS was able to discriminate unhealthy individuals from healthy individuals in a 

rehabilitation outpatient clinic sample (N = 100; Bell et al., 2004, substudy 1). The AIOS 

correlated moderately and significantly with global health (and this association was stronger for 

the non-patients). The AIOS was inversely related to psychological distress measured by the 

Brief Symptom Inventory (BSI; Derogatis and Melisaratos, 1983) in undergraduate college 

students (N = 458; Bell et al., 2004, substudy 2). In another sample of undergraduate students (N 

= 62; Bell et al., 2004, substudy 3). The AIOS was positively associated with positive affect (20-

item PANAS; Watson, Clark and Tellegen, 1988) and positive states of mind (PSOMS) and 

negatively associated with negative affect. The PSOMS measures “the individual’s ability to 

achieve and appreciate positive experiences over the past 7 days, as a summation measuring 

focused attention, productivity, sharing, responsible caretaking, restful repose, sensuous 

nonsexual and sexual pleasure” (Bell et al., 2004). Positive and negative affect and psychological 

distress explained 37% of the variance in AIOS-24h, and 57% of AIOS-1m, with PANAS as a 

stronger predictor. Additionally, Otto and colleagues (2010) found that positive and negative 

affect and physical health were correlated with the AIOS (Otto et al., 2010).  

Controls (Pearson correlation r = 0.64) had a higher correlation between the AIOS 24-hour and 1-

month forms than did the patients (r = 0.33), indicating convergent validity for controls (stability 

of well-being over time), and capacity to measure improvement in the patients' condition over 

the previous 30 days in rehabilitation (i.e., large changes in well-being). Convergent validity was 

also indicated by a more recent study (Tuason, Güss and Boyd, 2021)  that found a significant 

correlation (N = 1240; r = .58) between AIOS and another popular 8-item scale of 
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multidimensional well-being based on the biopsychosocial model of health (Engel, 1981; Diener 

et al., 2010).  

Another study (Paterson, 2006) showed the validity of the AIOS to measure self-concept (an 

important outcome for many interventions targeting people with long-term conditions) and that 

it was sensitive to changes in self-concept over time (sensitivity refers to the capacity to identify 

true positives, e.g., sick people correctly identified as sick). However, it lacked specificity (i.e., 

capacity to identify true negatives, e.g., healthy people correctly identified as healthy). 

Furthermore, an absence of ceiling effects was observed (Bell et al., 2004), meaning the scale 

allows the potential for large degrees of improvement in self-rated well-being above and beyond 

the relative lack of diagnosed health problems (i.e., optimizing well-being in non-patient 

populations). Studies with larger and more diverse populations (especially with different age 

categories) would be instructive. 

In summary, these cross-sectional studies showed that AIOS ratings were associated with several 

factors of well-being including psychological distress, overall health, positive and negative affect, 

positive states of the mind, and self-concept. Convergent and discriminant validity of the AIOS 

were indicated for health and emotional variables, suggesting that the AIOS is a reliable and 

rapid measure of global multidimensional well-being. However, these studies did not provide a 

detailed comprehensive evaluation of the different predictors of multidimensional well-being, and 

the capacity of AIOS to capture them (i.e., socioeconomic, psychological, physical, social, spiritual, 

etc.). While the capacity of the AIOS to capture the eudaimonic components of WB (e.g., life 

purpose and fulfillment) is implied by the psychological flourishing model (through the positive-

to-negative affect ratio approach), it was not tested directly. Furthermore, all these studies are 

cross-sectional and did not include several time points necessary for test-retest reliability (except 

in Paterson, 2006, but in a small sample). This is necessary to determine if 1) the AIOS is reliable 

over time (i.e., test-retest reliability) and 2) the AIOS can detect improvements in well-being 

following intervention aiming at elevating well-being.  
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5.1.4. Study goals and hypotheses 

In this study, we aimed to: 

●  Validate the convergent and discriminant validity as well as test-retest reliability of the 

AIOS. 

●  Investigate whether the AIOS captures the main dimensions of well-being (hedonic, 

eudaimonic, physical, and social dimensions).    

●  Identify predictor variables of multidimensional well-being. 

Based on the previous discussion, we hypothesize that: 

●  AIOS-24h and AIOS-1m will be significantly correlated, with a higher coefficient for 

healthy individuals relative to unhealthy ones, confirming convergent and discriminant 

validity of the scale underscored by Bell et al. (2004).  

●  AIOS-24h measured before and after the subjects participating in well-being 

interventions will be significantly correlated (indicating test-retest reliability) and 

measure improvements in well-being levels (measuring the efficacy of the intervention). 

We expect stronger improvements for unhealthy individuals compared to healthy ones 

(since well-being is more stable over time in healthy individuals).  

●  AIOS-24h will be associated with individual characteristics (i.e., age, gender, education, 

and ethnic origins), negatively with age, and positively with education (based on the 

literature).  

●  AIOS-24h captures the main dimensions of well-being (namely hedonic, eudaimonic, 

physical, and social dimensions), with hedonic and eudaimonic as the strongest predictors 

of self-reported multidimensional well-being.  

●  Multidimensional well-being will be associated with several predictor variables selected 

from the literature (i.e., connection with nature, meditation practice, religion/spirituality 

importance, physical activity, relationship status, personality, and creativity). These 

analyses are exploratory and aim to advance knowledge as to how multidimensional well-

being can be elevated in future interventions. 
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5.2. Methods 

5.2.1. Participants 

The inclusion criteria were as follow: participants aged 18 years or older who could read and 

understand the consent form and complete the survey and tasks, and who had access to the survey 

online (during the COVID-19 pandemic). The exclusion criteria were as follows: people younger 

than 18 years of age, inability to understand the consent form or acute or chronic illness that 

precluded completion of measurements. Participants were recruited through the IONS webpage 

dedicated to the IONS Discovery Laboratory (IDL) research program, where potential workshop 

leaders learned about the opportunity. The IONS blog and newsletters were also distributed to 

community networks, previous workshop leaders, and conferences and meetings. All study 

activities were approved by the IONS Institutional Review Board (approval designation 

WAHH_2018_01). 

5.2.2. Study Procedures 

Volunteers received a survey link to complete before their workshop or course. The survey could 

be completed on any computer with access to the internet. They entered their first name and date 

of birth to generate a random ID (and their information was not saved) to preserve participants’ 

anonymity. Volunteers acknowledged that they read and understood the consent form and 

agreed to participate before continuing with the survey. They then completed a series of online 

self-report questionnaires (see below) in SurveyMonkey (SurveyMonkey, 2021).  

After completing the pre-survey, participants engaged in their workshop or course. These events 

varied in duration (several days or weeks) and content (e.g., elevating well-being, meditation 

retreats, team cohesion training, personal development, and transformation). The post-survey 

was slightly shorter as it did not include individual characteristics questionnaires (e.g., 

demographical questions). Participants were advised to complete the survey as close as possible 

to the workshop's beginning and ending. Additionally, not all participants were invited to 

complete a post-survey for various reasons (e.g., part of an intervention not related to elevating 

well-being, being evaluated at our laboratory for physiology, or part of an intervention that was 

too short). Data from these participants before intervention were still used in cross-sectional 

analyses.  
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5.2.3. Measures 

Multidimensional well-being 

Multidimensional well-being was measured with the Arizona Integrative Outcomes Scale (AIOS; 

Bell et al., 2004). Both time-frame forms (AIOS-24h and AIOS-1m) were used in this study. This  

single-item, horizontally-displayed, visual-analog self-rating scale. Participants are asked “Please 

reflect on your sense of well-being, taking into account your physical, mental, emotional, social, 

and spiritual condition over the past 24 hours. Please move the slider below to a point that 

summarizes your overall sense of well-being for the past 24 hours.” For the AIOS-1m version, 

“past 24 hours” was replaced with “past month”. The slider goes from 0-100 with 0 being 

corresponding to “Worst you have ever been” and 100 to “Best you’ve ever been.”  

The hedonic dimension of well-being 

The hedonic dimension of well-being was assessed using the positive and negative affect schedule 

short form (I-PANAS-SF; Thompson, 2007) which included 5 positive items (alert, inspired, 

determined, attentive, active) and 5 negative items (upset, hostile, ashamed, nervous, afraid). 

Participants were asked “This scale consists of several words that describe different feelings and 

emotions. Read each item and then select the appropriate answer next to that word. Indicate to 

what extent you have felt this way during the past few days.” Answers included “Very slightly 

or not at all” (score = 1), “A little” (score = 2), “Moderately” (score = 3), “Quite a bit” (score = 4), 

and “Extremely” (score = 5). The summed negative items were subtracted from the summed 

positive ones. Positive values, therefore, represent more positive affect over the past few days and 

negative values represent more negative affect over the past few days. These 10 items were 

selected from the original 20-item PANAS (Watson, Clark and Tellegen, 1988) and found to be 

psychometrically acceptable after being tested for cross-sample stability, internal reliability, 

temporal stability, cross-cultural factorial invariance, and convergent and criterion-related 

validities (Thompson, 2007).  

The physical dimension of well-being 

The physical dimension of well-being was assessed by a composite score calculated with: Overall 

health - sleep disturbance - pain intensity. Hence, negative scores reflect low physical WB and 

positive scores reflect high physical WB.  
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Sleep disturbance was measured by the sleep quality scale (SQS; Cappelleri et al., 2009), a single-

item visual rating scale measuring acute sleep or sleep quality during the past night before 

participation. Participants were asked, “How would you rate the quality of your sleep LAST 

NIGHT?” moving the slider for their response. The slider is anchored by “Best possible sleep” 

(0) and “Worst possible sleep” (10).  

Pain intensity was measured using the numeric pain rating scale (NPRS; Farrar et al., 2001), a 

similar horizontal visual rating scale. Participants are asked to report pain intensity in the past 

24 hours on a slider from position 0 being “No pain” to position 10 being “Worst possible pain.” 

The NPRS is a reliable scale in terms of inter- or intra- rater repeatability and its ability to detect 

change (Bijur, Silver and Gallagher, 2001; Boonstra et al., 2008; Hawker et al., 2011).  

Overall health was measured using the “single general self-rated health” question (sGSRH; 

DeSalvo et al., 2006), a single-item visual rating scale. Participants were asked, “In general, how 

would you rate your overall health?” which they rate as Poor (score = -3), Fair (score = -1), Good 

(score = 2), Very good (score = 3), or Excellent (score = 4). Individuals with “poor” self-rated 

health were previously found to have a 2-fold higher mortality risk than those reporting having 

an “excellent” overall health (DeSalvo et al., 2006). Furthermore, participants’ responses were 

previously found to maintain a strong association with mortality even after adjustment for key 

covariates such as functional status, depression, and comorbidity (DeSalvo et al., 2006).  

Weight and height were collected (optional) to calculate the body mass index (BMI) to assess the 

reliability of the self-reported overall health measure. BMI is moderately correlated with more 

direct measures of body fat (Garrow and Webster, 1985; Freedman, Horlick and Berenson, 2013) 

and strongly correlated with various metabolic and disease outcomes (Flegal and Graubard, 

2009; Freedman et al., 2009; Sun et al., 2010), and therefore reflects a robust index of overall 

health. It was calculated following standard procedure: BMI = (weight (lb) / height (in)2) x 703. A 

score of BMI < 18.5 is considered “Underweight” (score = -1), BMI between 18.5 and 24.9 is 

considered “Healthy weight” (score = 3), BMI between 25 and 29.9 is considered “Overweight” 

(score = -1), and BMI > 30 is considered “Obesity” (score = -3).  
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Eudaimonic dimension of well-being 

The eudaimonic dimension of well-being was measured by a composite score joining several 

eudaimonic components:  

 Autonomy (referring to whether the individuals viewed themselves to be living in accord 

with their convictions) and purpose in life (the extent to which respondents felt their lives 

had meaning, purpose, and direction) were measured by one item of the 15-item Cloninger 

self-transcendence subscale (Cloninger, 1987). Participants were asked: “I think my natural 

responses now are usually consistent with my principles and long-term goals.” 

Participants answered with a 10-grades slider, anchored with “Definitely False” (score = 

0) and “Definitely True” (score = 10).  

 Environmental mastery (referring to how well they were managing their life situations) 

was assessed using a single-item visual analog scale that encompasses a comprehensive 

definition of socioeconomic status that is easily translatable across cultures (Adler and 

Ostrove, 1999). Participants were asked, “Please rate your access to material goods, 

money, friendship networks, healthcare, leisure time, or educational opportunities and 

your capacity or ability to direct or influence the behavior of others or the course of events 

below.” The slider goes from 0-100 with 0 being anchored by “I have no access” and 100 

anchored by “I have unlimited”. This item does not include specific income values but 

rather is a subjective measure of a person’s access to resources. The question is based on 

the definition and recommendations of the Office of Behavioral and Social Sciences 

Research and National Institutes of Health.  

“Environmental mastery” scores were divided by 10 to better fit the range and weight of the 

“autonomy/life purpose” ones. Eudaimonic well-being was then obtained by summing both 

measures. 

The social dimension of well-being 

The social dimension of well-being was measured using the 1-item “Inclusion of the other in the 

self” (IOS; Aron, Aron and Smollan, 1992). This scale was developed to measure how close the 

respondent feels to another person or group. We used an adapted form with three graphical 

representations representing the Self and Other completely separated, partially, and completely 
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overlapped. The scale asks the participant: “Please move the slider below to the picture that best 

describes your relationship with other people. How interconnected are you with others? (Self = 

you; Others = other people)?” Participants move a slider to represent their answer on a sliding 

bar anchored by “Not at all” (score = 0) and “Completely” (score = 100). Higher scores represent 

greater subjective social well-being. 

Individual characteristics 

Demographic characteristics including age, gender, education level (12 years  = high school 

diploma), ethnic origins (categories included Native American, European, Native Pacific Islander, 

Asian, African, Middle-eastern, and Latinx or Hispanic), and relationship status were collected. 

The latter corresponds to “In a relationship” (Married, Domestic Partnership, Living with 

significant other, long-term significant other, etc.) or “Not in a relationship”  (Single, Widowed, 

Divorced, Separated). 

Personality traits (Eysenck, 1990; Rothbart, 2011; Segal, 2013) were evaluated using the 10-item 

“Brief five inventory” (BFI-10; Rammstedt, 2007) rating scale of personality traits. The BFI-10 

scale was found to retain significant reliability and validity levels compared to the longer scales. 

Participants were asked “How well do the following statements describe your personality? I see 

myself as someone who…” and could respond: “Disagree strongly” (score = -2), “Disagree a little” 

(score = -1), “Neither agree nor disagree” (score = 0), “Agree a little” (score = 1), “Agree strongly” 

(Score = 2). The personality statements included: “Is reserved”, “Is generally trusting”, “Tends 

to be lazy”, “Is relaxed, handles stress well”, “Has few artistic interests”, “Is outgoing, sociable”, 

“Tends to find fault with others”, “Does a thorough job”, “Gets nervous easily”, “Has an active 

imagination”. These 10 statements correspond to the big five personality characteristics of 

extraversion, agreeableness, conscientiousness, neuroticism, and openness with two items per 

subscale. The summed negative traits were subtracted from the summed positive ones, meaning 

lower values represent dominantly negative traits, whereas higher values reflect dominantly 

positive traits.  

Medical history was assessed by asking participants: “Have you ever been diagnosed with any of 

the following? [Please check all that apply]”. Responses included: “Major Depression”, “Anxiety 

Disorder (including phobia, panic, or OCD)”, “Bipolar Disorder”, “Mania”, “Psychosis or 

Schizophrenia”, “Addiction requiring treatment”, “Post-Traumatic Stress Disorder”, “Does not 
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apply”. Participants that responded “Does not apply” were categorized as “Not diagnosed”, and 

those that responded with any of the conditions (or several) were categorized as “Diagnosed”. 

Then participants were “Are you currently being treated for a psychiatric condition?” to assess 

psychiatric status, with “Yes” or “No” as responses options. Finally, they were asked “Are you 

currently being followed by a health care provider for any health condition?” to assess their 

current health status. The aim was to determine whether the AIOS could discriminate between 

the categories of healthy/unhealthy individuals (as measured by these self-report questions). 

Predictor variables 

Connection with nature was evaluated using a 1-item inclusion of nature in self scale (INS; 

Schultz, 2002). The INS test-retest correlations are very high after four weeks. Additionally, 

compared to other multiple-item scales, the INS scale is very accurate for measuring individual 

differences in connectedness with nature. We used an adapted form with three graphical 

representations representing the “self” and “nature” completely separated (score = 0, “not at all”), 

partially (score = 50), and completely overlapped (score = 100, “completely”). The instructions 

are: “Please move the slider below to the picture that best describes your relationship with the 

natural environment. How interconnected are you with nature? ("Self" = you; "Nature" = the 

environment)?” The item results with one score between 0 and 100, with 100 representing the 

highest connection with nature.  

Meditation practice - Participants were asked, “Do you meditate?” Answer choices were “Yes” or 

“No”. If yes, participants were asked “How often?” and could choose between: “4-11 times per 

year” (score = 1), “2-3 times per month” (score = 2), “Once a month” (score = 3), “1-2 times per 

week” (score = 4), “2-3 times per week” (score = 5), “3-4 times per week” (score = 6), “5-6 times 

per week” (score - 7), “Daily” (score = 8). Then they were asked “For how many years have you 

meditated?” and could enter a whole number. Meditation scores were then calculated by 

summing the two. If they did not respond or responded “No”, they were given a score of 0. 

Physical activity - was assessed using two short questionnaires (Gutiérrez-Fisac et al., 2002; He 

and Baker, 2005). The first one concerned physical activity during leisure time. Participants were 

asked: “Describe your physical activity at leisure time. If the activities vary between summer and 

winter, try to give a mean estimate.”. Participants could respond “Very light: almost no activity 

at all” (score = 1), “Light, e.g., walking, non-strenuous cycling or gardening approximately once 
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a week” (score = 2), “Moderate: regular activity at least once a week, (e.g., walking, bicycling, or 

gardening or walking to work) 10–30 min per day” (score = 3), “Active: regular activities more 

than once a week, e.g., intense walking or bicycling or sports” (score = 4), “Very active: strenuous 

activities several times a week” (score = 5). The second one concerned physical activity at work 

and the instructions were: “Describe your physical activity at work (even work at home, sick 

leave at home and studying, for instance in a university)”. Responses included “Very light, e.g., 

sitting at the computer most of the day or sitting at a desk” (score = 1), “Light, e.g., light 

industrial work, sales or office work that comprises light activities” (score = 2), “Moderate, e.g., 

cleaning, staffing at a kitchen or delivering mail on foot or by bicycle” (Score = 3), “Heavy, e.g., 

heavy industrial work, construction work or farming” (score = 4). Both scores were summed to 

obtain the physical activity variable. We chose not to include physical activity in the calculation 

of physical WB as physical activity during leisure and workplace can have opposite associations 

(e.g., Gutiérrez-Fisac et al., 2002; He and Baker, 2005). Thus, it was examined as its own predictor 

variable.  

Creativity was measured using a 1-item visual analog scale (custom made) asking participants 

“How creative do you consider yourself?”. Responses ranged from “Not at all creative” (score = 

0) to “Very creative” (score = 100).  

The importance of religion/spirituality was measured by asking participants “How important is 

your religious or spiritual involvement CURRENTLY?”. Responses ranged from “Not 

important” (score = 0) to “Very important” (score = 100).  

5.2.4. Statistical analyses 

No power analyses were done for this study, considering the large sample size. Cross-sectional 

analyses examined relationships between measures using unique survey records completed 

before the intervention only. These analyses included the test for convergent validity, as well as 

two linear regression models assessing relationships between multidimensional well-being and 

1) different dimensions of well-being, and 2) different predictor variables. Pre-post intervention 

analyses examined test-retest reliability, and changes in well-being levels using records where 

surveys were completed before and after a workshop. These statistical analyses are described in 

more detail below.  
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Convergent validity and test-retest reliability: Robust skipped correlations 

This analysis was done using the Robust Correlation toolbox (Pernet, Wilcox and Rousselet, 

2013) in MATLAB 2021a. The toolbox first tests for bivariate normality (i.e., tests the 

relationship between the two variables shows a normal distribution) using the Henze-Zirkler's 

Multivariate Normality Test (Henze and Zirkler, 1990) and then for variance homogeneity (to 

assess if the two variables tested have similar variance) using a 95% bootstrap confidence interval 

(CI). Different variance across variables indicate that significant correlations can be observed 

because of the heteroscedasticity rather than a true association (Wilcox, 1991; Wilcox and 

Muska, 2001). As is commonly observed in research (Micceri, 1989; Kupek, 2002; Schmidt, 

Germano and Milani, 2019), heteroscedasticity was found on most pairs of variables (i.e., data do 

not conform to normality). “Skipped” correlations present solutions to this issue, while accounting 

for bivariate outliers (Pernet, Wilcox and Rousselet, 2013; Wilcox, Rousselet and Pernet, 2018). 

Not addressing this issue can lead to poor control over the type I error rate (i.e., false-positive; 

Wilcox, 2012). Furthermore, skipped Spearman correlations are more conservative against false 

positives with large samples, even with normally distributed data (Pernet, Wilcox and Rousselet, 

2013). 

Skipped correlations were computed with the toolbox using the following steps: 1) identification of 

outliers with the minimum covariance determinant (MCD) estimator (i.e., a robust estimator of 

multivariate location and scatter; Rousseeuw, 1984; Hubert, Rousseeuw and Aelst, 2008), a 

projection technique (each data point is orthogonally projected onto lines joining them to the 

robust estimate of location), and the “box-plot rule” (relying on the interquartile range; Frigge, 

Hoaglin and Iglewicz, 1989; Carling, 2000); 2) skipped Spearman’s correlations and associated t-

values are computed, taking into account the bivariate outliers; 3) to control for the type I error 

rate especially important in presence of heteroscedasticity that can lead to an incorrect estimate 

of the standard error), the data are then resampled and sorted, and the 2.5 and 97.5 percentiles 

are used to obtain the 95% confidence interval (CI). If the CI encompasses 0, then the null 

hypothesis of independence cannot be rejected. This method provides an alternative and more 

robust way to test the null hypothesis in presence of heteroscedasticity. (Wilcox, 2012; Pernet, 

Wilcox and Rousselet, 2013; Wilcox, Rousselet and Pernet, 2018).  
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Degrees of freedom are reported in parentheses after the r correlation coefficients. Rejections of H0 

at the 95% confidence level (i.e., significant correlations) are reported with p-values after the r 

coefficients and 95% CI. Bivariate outliers correspond to the red observations in the plots. The red 

line corresponds to the least square fit line, and the red shaded areas correspond to the 95% CI.  

Skipped Spearman correlations were used to test convergent validity (between AIOS-24h and 

AIOS-1m on the pre-intervention sample), and test-retest reliability (between pre/post-AIOS-

24 h on participants that completed both pre- and post- surveys). 

Pre/post changes in well-being levels: Wilcoxon signed-rank test 

For each variable, univariate normality was tested using the Lilliefors test (Lilliefors, 1967) with 

the lillietest MATLAB function. This test is based on the non-parametric Kolmogorov-Smirnov test 

that quantifies a distance between the variable sample distribution and the cumulative 

distribution function of a reference distribution, under the null hypothesis (H0) that the sample is 

drawn from the reference distribution (i.e. absence of difference with the normal distribution). 

With the Lilliefors test, the H0 does not specify which normal distribution (i.e., expected value 

and variance of the distribution). Since the variables were paired and did not display normal 

distributions, pre/post changes were examined using the Wilcoxon signed-rank test (signrank 

function in MATLAB). 

Pre/post changes in well-being levels were examined for three “healthy/unhealthy” groups 

discriminated by past: 1) diagnosis for a medical condition (absence/presence, respectively), 2) 

current treatment for a medical condition (absence, presence, respectively), and 3) current 

treatment for a psychiatric condition (absence, presence, respectively).  

Since we do not have a control group in this study (i.e., a group of individuals doing the pre- and 

post- survey without intervention in between), we assessed (non-statistically) discriminant 

validity by comparing the pre/post changes between healthy and unhealthy individuals in each 

group, expecting unhealthy individuals to show larger changes between before and after the 

intervention (similar approach to Bell et al., 2004).  
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Robust linear regression models 

Standard linear regressions use the ordinary least-squares (OLS) fitting method to compute the 

model parameters that relate the response data (also called dependent or outcome variable) to 

the predictor data (also called independent variables) with one or more coefficients. As a result, 

outliers have a large influence on the fit, because squaring the residuals magnifies the effects of 

these extreme data points. Similar to standard Pearson and Spearman correlations, models using 

standard OLS are based on the assumption that the observed responses come from a normal 

distribution of errors. If the distribution of errors is asymmetric or prone to outliers, model 

assumptions are invalid, and beta (β) parameter estimates, CIs, and other computed statistics 

become unreliable.  

“Robust” linear regressions use the iteratively reweighted least-squares (IRLS) method to 

automatically and iteratively calculate weights for each data point (Huber and Ronchetti, 2009). 

First, the algorithm assigns equal weight to each data point and estimates the β coefficients using 

the standard OLS method. Then, at each iteration, the algorithm computes the weights and gives 

lower weight to the points that are farther from the model predictions in the previous iteration. 

A low-quality data point (e.g., an outlier) is attributed less influence on the fit. Then, the β 

coefficients are computed using the weighted least squares (WLS) optimization (using these weights). 

The iterations stop when the values of the coefficient estimates converge within a specified 

tolerance. Thus, robust linear regressions are less sensitive to outliers (which are very common 

with self-report data) by down-weighting their impact on the fit of the model, therefore 

improving the fit (Huber and Ronchetti, 2009).  

Each variable was tested for normality using lillietests (see above). Since data were not normally 

distributed and outliers were present in the data, robust linear regression models were generated 

in MATLAB 2021a using the fitlm package (Tukey's bisquare reweighting function; default tuning 

constant = 4.685). All models were tested for “lack-of-fit” first, using a degenerate model 

consisting of only a constant term. The F-statistic corresponds to an analysis of variance to test 

the significance of the model or the components in the model. The p-value for the F-test indicates 

whether the model is valid at the 95% confidence level (i.e., p<0.05). A model can exhibit lack-of-

fit when it fails to adequately describe the functional relationship between the predictor variables 

and the response variable. This can occur if large residuals result from fitting the model, or when 
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the data contain replicates (multiple observations with identical values). Replicates represent 

"pure error" because only random variation can cause differences between the observed response 

values. If the p-value for the lack-of-fit test is below the 5% confidence level, one can conclude that 

the model does not accurately fit the data (more terms or transformations may be needed).  F-

statistics and the associated p-value indicate a valid fit for the model and were reported in the far-

right column of the tables. However, they do not inform on the relationship between the predictor 

and response variables. When the model is valid, the β coefficients and the associated p-value 

indicate for each variable whether they are significantly associated with the response variable. 

The standard error (SE) of the β coefficients’ distributions are reported in parentheses next to the 

β coefficients. Each model regression equation follows the format: Outcome ~ 1 + predictor1 + 

predictor2 + predictorX. Additional summary statistics of the models include the number of 

observations (N), the degrees of freedom (DF), the root mean squared error (RMSE), the F-statistic 

and its associated p-value, R2 (for models with one predictor), adjusted R2 (for multiple regression 

models).  

Multidimensional well-being and individual characteristics 

Since a multiple regression model assessing the relationship between multidimensional well-

being (AIOS-24h) and individual characteristics showed a significant lack of fit (F-test for lack of 

fit p < 0.05) indicating that the model could not accurately fit the data, they were assessed 

individually in four separate linear models (i.e., age, gender, education, ethnic origin).  

Multidimensional well-being and the main well-being dimensions 

One multiple regression model was computed to evaluate the associations between 

multidimensional well-being and the following dimensions of well-being: hedonic (i.e., positive 

and negative affect), eudaimonic (a composite measure of autonomy and environmental mastery), 

physical (overall health, sleep disturbance, and pain intensity), and social (sense of connection 

with other people) dimensions.  

A skipped Spearman correlation was conducted to determine whether self-reported overall health 

was correlated with BMI values in individuals that reported height and weight, to test its 

reliability.  
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Multidimensional well-being and predictor variables 

One multiple regression model examined associations between multidimensional well-being and 

8 predictor variables. 

p-values and corrections for multiple comparisons 

Since we perform multiple tests on variables that are related to each other (same subjects or 

variables that may share similar information) in both skipped correlation and linear models, the 

risk of false positives increases with the number of tests (i.e., type I error). Thus, Bonferroni 

correction for multiple comparisons was used to assess significance. For instance, for 3 tests at the 

95% confidence level, only p-values below 0.0167 are considered significant (5% / 3 = 1.67%). For 

all statistical analyses, p < 0.05 indicates significance at the 95% confidence level (corrected), p < 

0.01 indicates significance at the 99% confidence level (corrected), and p < 0.001 indicates 

significance at the 99.9% confidence level (corrected).  

5.3. Results 

5.3.1. Individual characteristics 

2647 individuals participated remotely in the online survey between November 19, 2020, and 

September 26, 2021, during the COVID-19 pandemic, reflecting a unique context. Of those 

entries, 1615 were unique pre-intervention records and 429 were unique post-intervention. Age 

ranged from 19 to 87 years old (Mean = 51.9; SD = 13.2), and education levels ranged from 9 to 

30 years (12 years corresponding to high school diploma; Mean = 17; SD = 3.2). 83.9% were 

females, 15% males (1.1% missing). 73% reported living in the USA, 8% from Canada, 4.2% in 

the UK, 2.5% in Italy, 1.3% from Australia, and less than 1% from other countries. Ethnic origins 

were 76.2% European, 8.3% Mixed, 2.7% Asian, 1.5% African, 4.9% Hispanic/Latinx, 1.7% Native 

American, and 0.4% Pacific Islander.  

34.4% had been previously diagnosed with either major depression, anxiety disorder, bipolar 

disorder, mania, psychosis or schizophrenia, addiction requiring treatment, post-traumatic stress 

disorder (PTSD), or several of these conditions. 35% were currently followed by a healthcare 

provider for a health condition, and 13.7% were currently being treated for a psychiatric 

condition.  
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The linear models examining the relationship between multidimensional well-being and age and 

education did not accurately fit the data (lack of fit p < 0.005). While the fit was valid for the 

gender and ethnic origins, no associations were found between these variables and 

multidimensional well-being (see Figure 16).  

 
Figure 16. Robust linear regression models assessing the relationships between multidimensional well-being and 

individual characteristics. A lack-of-fit was found for the models with age and education (p < 0.0001), indicating 

that these models did not accurately fit the data. The fit was valid for the models with gender and ethnicity but they 

did not show significant relationships with well-being (p = 0.29 and p = 0.18, respectively).  

 

5.3.2. Convergent validity 

1512 participants completed both AIOS-24h and AIOS-1m. AIOS-24h was significantly 

correlated with AIOS-1m (r(1463) = .71, CI [0.59, 0.67], p < 0.01), indicating convergent validity 

of the AIOS scale (stronger convergence than the r=.64 in Bell et al., 2004). Mean AIOS-24h was 

62.4 (SD = 19.1) and mean AIOS-1m was 60.7 (SD = 21.3). 

5.3.3. Test-retest validity 

401 participants completed both pre- and post- AIOS-24h. Pre-AIOS-24h was moderately and 

significantly correlated with post-AIOS-24h (r(398) = .36, CI [0.21, 0.44], p < 0.01), indicating 

moderate test-retest reliability.  
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5.3.4. Pre/post changes in multidimensional well-being  

Well-being levels improved following intervention for all individuals except those who were 

currently taking treatment for a psychiatric condition (N = 65, z = 1.5, p>0.05). Individuals that 

experienced the strongest improvement in well-being were people not currently following a 

treatment for a psychiatric condition (N = 336, z = 3.8, p<0.0001) and with no past medical 

condition (N = 166, z = 3.2, p<0.01). These results are reported in Table 2.      

Table 2. Paired pre-post intervention changes in multidimensional well-being (AIOS-24h). 

Health group (N) 

Pre  
Mean (SD) 

Post 
Mean (SD) 

Wilcoxon Signed-Rank 
Test 

z, p-value 

No past medical diagnosis (235) 62.8 (20.3) 66.7 (20) 2.6, <0.05 

With past medical diagnosis (166) 57 (21.5) 63.2 (21.1) 3.2, <0.01 

No current medical treatment (236) 60.9 (20.5) 65 (20.2) 2.9, <0.01 

With current medical treatment 
(165) 

59.7 (21.6) 65.6 (21) 2.9, <0.01 

No current treatment for a 
psychiatric condition (336) 

61.3 (20.7) 66.2 (20) 3.8, <0.0001 

With current treatment for 
psychiatric condition (65) 

55.6 (21.9) 60.4 (22.5) 1.5, >0.05 

The number of observations per health group (N) is reported in the 1st column. Mean pre- and post- AIOS-24h and standard 

deviation (SD) are reported in columns 2 and 3. Significant differences in pre/post changes assessed by the  Wilcoxon signed-

rank test are reported in bold in column 4. 

5.3.5. Well-being dimensions 

Multidimensional well-being was significantly associated with all the dimensions except for the 

social one (p = 0.119). In order of strength of association, it was significantly associated with the 

hedonic (t = 19.8), the physical (t = 15), and then with the eudaimonic (t = 3.4) dimensions. As 

indicated by the β coefficients in Table 3, multidimensional well-being increases by 1.6 (SD = 0.08) 

for every 1-unit increase in the hedonic dimension, by 1.5  (SD = 0.1) for every 1-unit increase in 

the physical dimension, and 0.5 (0.15) for every 1-unit increase in the eudaimonic dimension. 

Together, these dimensions of well-being explained 44.6% of the variance in multidimensional 
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well-being (F(1442) = 292, adjusted R2 = 0.446, p < 0.0001). The whole multiple regression model is 

reported in Figure 17.  

The self-reported overall health measure was significantly and moderately associated with BMI 

in participants that reported their height and weight (r(1006) = .29, CI [0.19, 0.3], p< 0.01), 

reinforcing the validity of this subjective measure of overall health.  

Table 3. Multidimensional well-being and the main dimensions of well-being 

Well-being dimensions β (SE) t-statistic, p-value 

(Intercept) 57.4 (2.26) 25.3*** 

Physical WB 1.5 (0.1) 15*** 

Hedonic WB 1.6 (0.08) 19.8*** 

Eudaimonic WB 0.5 (0.15) 3.4** 

Social WB 0.3 (0.18) 1.6, 0.119 

Column 1: Name of the predictor variables. Column 2: Unstandardized β coefficients for each variable and their distribution 

standard error (SE) in parentheses. Column 3: t-statistic and p-value for each variable (corrected for multiple comparisons with 

the Bonferroni method). Corrected p-values corresponded to 0.0125 at the 95% confidence level (reported with *), 0.0025 at the 

99% confidence level (reported with **), and 0.00025 at the 99.9% confidence level (reported with ***).  

 
Figure 17. Multiple regression model examining associations between multidimensional well-being (i.e., AIOS-

24h) and the main dimensions of well-being (i.e., hedonic, eudaimonic, physical, and social dimensions). The whole 

model explained 44.6% of the variance in multidimensional well-being (F(1442) = 292, adjusted R2 = 0.446, p < 

0.0001).  
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5.3.6. Predictors/mediators of multidimensional well-being 

Multidimensional well-being was significantly associated with connection with nature (t = 3.5 , 

corrected p < 0.001), religion/spirituality (t = 2.9, corrected p < 0.05), physical activity during 

leisure (t = 3, corrected p < 0.05), and personality trait (t = 8.8, corrected p < 0.001). b coefficients 

indicated that multidimensional well-being increased by by 1.8 (SD = 0.6) for every 1-unit 

increase in physical activity during leisure, by 1 (SD = 0.1) for every 1-unit increase in personality 

trait, by 1 (SD = 0.3) for every 1-unit increase in connection with nature, and by 0.1 (SD = 0.03) 

for every increase in religion/spirituality Physical activity at work, meditation practice, 

relationship status, and reported creativity were not associated with multidimensional well-being 

in this sample. These results are reported in Table 4. 

Table 4. Multidimensional well-being and predictors of well-being 

Predictor variables β (SE) t-statistic, p-value 

(Intercept) 34.5 (3.7) 9.2*** 

Connection with nature 1.01 (0.3) 3.5*** 

Religion / Spirituality 0.1 (0.03) 2.9* 

Physical activity (during leisure) 1.8 (0.6) 3* 

Physical activity (at work) 0.2 (0.6) 0.3, p = 0.722 

Meditation practice 0.06 (0.05) 1.4, p = 0.168 

Relationship status (“not in a 

relationship” category) 

-1.4 (1.2) -1.2, p = 0.227 

Personality trait 1.02 (0.1) 8.8*** 

Creativity -0.001 (0.03) -0.001, p = 0.995 

F(1100) = 20.8, RMSE = 18.7, adjusted R2 = 0.125, p<0.0001 

Column 1: Name of the predictor variables. Column 2: Unstandardized b coefficients for each variable and their distribution 

standard error in parentheses. Column 3: t-statistic and corrected p-value for each variable (Bonferroni correction for multiple 

comparisons). Corrected p-values equal 0.00625 at the 95% confidence level (reported with *), 0.00125 at the 99% confidence 

level (reported with **), and 0.000125 at the 99.9% confidence level (reported with ***). Exact p-values are reported when 

non-significant. Whole model statistics are reported in the bottom row and include: F-statistic with the error degree of freedom 

in parentheses, root mean squared error (RMSE), adjusted R2, and the p-value for the model. 
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5.4. Discussion 

This study aimed to evaluate whether multidimensional well-being could be assessed quickly and 

reliably on large samples along with EEG data collected with wearable systems.  

5.4.1. Individual characteristics 

We did not find associations between well-being levels and individual demographics. The 

absence of association with age is contrary to some previous research indicating that well-being 

decreases in later life with a reduction in life purpose and autonomy. This might be explained by 

the fact that the population studied here was intentionally seeking interventions aiming to 

elevate well-being and personal transformation, despite their age, suggesting that these older 

individuals do not correspond to the ones in the literature with loss of autonomy and purpose.  

Future research should determine which interventions improve well-being most effectively in 

some individuals but not others, investigating other individual characteristics (e.g., personality 

traits). The main limit in this study regarding these research questions concerns the low sample 

diversity despite a large number of participants (83.9% females, 76.2% with European origins, 

and an average education corresponding to the Masters's level). The survey used in this study 

has now been translated into several other languages, which should increase diversity in future 

studies (along with online access).  

5.4.2. Convergent validity 

Convergent validity was reinforced by our findings on a large sample. The correlation coefficient 

(r = .71) was higher than the one observed by Bell et al. (2004, i.e., r = .64), and Tuason, Güss 

and Boyd (2021, i.e., r = .58). This could be because the power is increased with the sample size 

of this study, or because of the robust statistical methods employed, or because well-being was 

more stable over the past month in this population compared to the ones in these two other 

studies.  

5.4.3. Test-retest reliability 

While previous authors did not validate the scale in terms of test-retest reliability, we found a 

significant correlation between pre-AIOS-24h and post-AIOS-24h over 401 people that 

completed the survey before and after the intervention. The correlation was significant, 
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indicating test-retest reliability of the scale, and moderate (r = .36), indicating changes in well-

being levels. This moderate correlation was expected as the interventions aimed at elevating 

well-being and personal transformation and development in these individuals, and likely affected 

individuals in different ways. This correlation coefficient is similar to the one obtained by Bell et 

al. (2004) when correlating AIOS-1m and AIOS-24h in patients following treatment over the 

past month (r = .33).  

5.4.4. Discriminant validity 

While we did not have a control group in this study to assess discriminant validity of the AIOS 

(i.e., no group did pre- and post- survey with a placebo or no intervention between), the mean 

pre-AIOS-24h scores showed differences between healthy and unhealthy individuals (62.8 ± 20.3 

for participants who were never diagnosed with a medical condition vs. 57 ± 21.5 for those who 

did). This was also the case for people not currently taking treatment for a psychiatric condition 

vs. people who were (mean pre-AIOS-24h was 61.3 ± 20.7 vs. 55.6 ± 21.9, respectively). 

However, the scale did not discriminate between well-being levels in the presence or absence of 

current medical treatment (60.9 ± 20.5 vs. 59.7 ± 21.6). Note that we also found the subjective 

overall health measure to be significantly correlated in the body mass index (BMI), reinforcing 

the validity of this measure assessed with a 1-item self-report scale.  

5.4.5. Pre/post changes in well-being levels 

Multidimensional well-being was the most elevated by the interventions in individuals that did 

not have a current psychiatric condition but with a previous medical condition. Although 

individuals with no previous condition and with or without a current medical condition also 

showed significant improvements in well-being. The only group that did not report significant 

changes in multidimensional well-being were people currently treated for a psychiatric condition. 

This makes intuitive sense since these interventions are aimed to elevate well-being and improve 

self-transformation, which does not compare to the medical treatment that these individuals may 

require for their mental health. Future studies will elucidate whether some of these interventions 

did improve well-being in these individuals, but not others. These interventions can be used to 

improve well-being levels in both healthy and unhealthy populations.  
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5.4.6. Well-being dimensions 

We observed that AIOS-24h can be used to capture, in one visual scale, the hedonic 

(positive/negative affect), the eudaimonic (life purpose, autonomy, and environmental mastery), 

and the physical (overall health, pain intensity, and sleep disturbance) dimensions of well-being. 

The social dimension (measured by the sense of connection with other people) was not associated 

with multidimensional well-being. This is likely because this study was conducted during the 

world COVID-19 pandemic, and that most people were isolated or confined in their homes.  

Together, these three well-being dimensions explained 44.6% of the variance in multidimensional 

well-being. Tuason, Güss and Boyd (2021) reached 53% of the variance in AIOS using 11 

variables. While one should be cautious when interpreting R2, it can be considered a moderate-

to-high effect size in humanities and social sciences (and especially with abstract variables as 

multidimensional well-being) since human behavior is hard to predict accurately (Cohen, 1977). 

However, an R2 of 44.6% also indicates that we might have missed some other important 

dimensions that contributed to the participants’ multidimensional well-being (to get closer to 

100% of the variance in well-being explained). It could also be because the measures used in this 

study to assess hedonic, eudaimonic, physical, and social WB lacked accuracy/consistency as they 

were also quick scales and questionnaires, designed to be easily completed by the participants. It 

could also be that subjective self-report is less stable across participants (large residuals), making 

it more difficult to obtain robust linear relationships compared to lengthy, multi-item measures. 

Data transformations were not explored in this study to keep interpretations of coefficients easier 

but they are often used to improve models’ fit (Piepho, 2009).  

5.4.7. Predictors/mediators of multidimensional well-being 

In decreasing order of strength of association, multidimensional well-being was positively 

correlated with personality traits, connection with nature, physical activity during leisure, and 

religion/spirituality. Note that physical activity during leisure, but not at work, was associated 

with well-being, suggesting physical activity at work might represent a negative health outcome 

depending on the type of work and activity (e.g., if it is associated with chronic pain or injuries), 

whereas physical activity during leisure can be considered a positive predictor outcome. Contrary 

to expectation, meditation practice, relationship status, and creativity were not significantly 

associated with multidimensional well-being.  
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5.4.8. AIOS-24h and longer-term well-being 

AIOS-24h (well-being over the past 24h) being associated with AIOS-1m (well-being over the 

past month) and with personality traits (considered to be highly heritable e.g., Lucas and Diener, 

2008) suggest that the AIOS-24h can be used to capture longer-term (trait) well-being levels 

than just the past 24 hours. Future research should determine whether this is true correlating 

AIOS-24h with more trait variables (e.g., genetic predisposition, optimism, life management 

strategies, empathy, emotional intelligence, or perceived independence). 

Additional health outcomes research should focus on developing systematic approaches to 

identifying these types of individualized needs and preferences and implementing the most 

appropriate, complementary interventions, which together may improve overall well-being and 

facilitate achieving very high scores on the AIOS. 

5.4.9. Limits 

Positive bias in AIOS scores 

Note that the overall average pre-AIOS-24h score was 61.8 out of 100, and quartiles indicated 

that 25% of the scores were below 49, 50% below 64, and 75% below 77. This might indicate that 

people seeking these types of interventions coped well despite the stressful circumstances of the 

COVID-19 pandemic. Participating in these interventions indicates, in itself, a certain approach 

motivation as participants are seeking to elevate their well-being, whereas individuals with 

avoidance motivation withdraw and are harder to motivate to get better. However, it could also 

indicate that the scale is biased towards higher scores. Contrary to Bell et al. (2004), we observed 

a ceiling effect, with 17 individuals reporting well-being scores of 100 before the intervention, 

leaving no place for measurement of improvements following the intervention. Future studies 

should confirm or disprove this potential issue and compare scores of individuals not seeking an 

intervention with those who are to determine if the positive bias is due to motivation or a lack of 

accuracy from the scale. However, despite these limitations, this quick scale was able to measure 

the main dimensions of well-being, changes in well-being changes following interventions, and 

to discriminate between different health groups.  
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Remote, subjective, brief self-report 

Brief, subjective, self-report measures have many advantages (reduce participants’ burden, 

increase motivation and attention, capture other dimensions that may be missed with preselected 

items, etc.), and be as accurate as conventional lengthy questionnaires or interviews (see 

Introduction). However, their reliability is harder to validate (e.g., internal consistency is not 

possible with a few items) and they are more prone to extreme, low-quality outlier responses. 

Whether this brief global scale is the most accurate measure of multidimensional well-being 

remains the subject of further research. Additionally, online survey completion is a recent, 

modern phenomenon. While it offers tremendous advantages for data collection, it remains to 

validate whether participants; responses are as reliable and accurate as in-person completion. 

Situational variables that can occur in the participant's home are uncontrollable and could 

seriously affect accuracy in the responses.  

However, by combining the large samples they allow to access more easily with robust statistical 

methods that deal with the increased noise, they can be useful to measure well-being levels, 

discriminate between groups, capture different well-being dimensions, and measure well-being 

changes following interventions. It is encouraging that group differences emerged, even within 

this limitation.  

Two recent short scales that seem to achieve a satisfying balance between psychometric 

properties and respondent burden are the “flourishing scale”, and the “Scale of Positive and 

Negative Experience”  (Diener et al., 2010; Hone, Jarden and Schofield, 2014; Schotanus-Dijkstra 

et al., 2016). The former is a brief 8-item measure of psychological “flourishment” capturing self-

perceived success in relationships, self-esteem, purpose, and optimism, whereas the latter is a 12-

item brief scale of positive and negative feelings supposed to better capture a wider range of 

emotions and a longer period (over the past 4 weeks) compared to the PANAS used in Chapter 

5.  

5.5. Conclusion 

We validate the use of the AIOS to measure multidimensional well-being and the underlying 

dimensions (hedonic, eudaimonic, physical), assess associations with individual characteristics 

and predictor variables, and measure changes induced by well-being-targeted interventions. 
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Additional quantifiable robust measures (e.g., hormone levels, heart rate variability, 

electroencephalography) under controlled conditions would provide a more complete picture of 

individual well-being status.  
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Chapter 6. Validating a low-cost wearable EEG headset for 

spectral analysis  

______________________________________________________________________________ 

 

6.1. Introduction 

6.1.1. The MUSE 

The MUSE (InterAxon Inc.) is a low-cost, off-the-shelf, wearable EEG headset that has two 

frontal and two temporoparietal (TP) dry active EEG channels. It has been validated for evoked-

response potential (ERP) research (i.e., time-domain; Krigolson et al., 2017) and used in many 

recent studies (Hashemi et al., 2016; Krigolson, Williams and Colino, 2017; Papakostas et al., 

2017; Amores et al., 2018; Cochrane et al., 2018; Arsalan et al., 2019; Asif, Majid and Anwar, 2019; 

Qu et al., 2020; Herman, Ciechanowski and Przegaliń ska, 2021; Hunkin, King and Zajac, 2021; 

Krigolson et al., 2021). However, to our knowledge, it has not yet been validated for frequency 

domain analysis (power spectra on continuous EEG data), with one study showing mixed results 

(Ratti et al., 2017). In addition to assessing the validation of MUSE spectral measures, it is 

relevant to test if the MUSE could be used to estimate clinically- and research-relevant spectral 

measures, such as the frontal alpha asymmetry (FAA) and the individual alpha frequency (IAF). 

See sections 4.4.2. and 4.4.3. for more detail on these two spectral measures.  

IAFs and FAA seem like promising candidate measures for wearable EEG systems, as they 

require simple calculations in the frequency domain and a few EEG channels covering the frontal 

regions of each hemisphere. While these measures have not been validated using these systems 

against research-grade EEG, wearable EEG systems have been used extensively over the past 

few years to measure frontal asymmetry, suggesting this measure is well-suited for these 

technologies (Peng, Majoe and Kaegi-Trachsel, 2011; Hashemi et al., 2016; Jebelli, Hwang and 

Lee, 2017; Wu et al., 2017; Hwang et al., 2018; Jebelli et al., 2018; Umar Saeed et al., 2018; Cao et 

al., 2019; Arpaia et al., 2020; Saeed et al., 2020). Wearable systems, when reliable, can offer 

advantages for researchers through easeful EEG data collection for over large samples, increased 
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access to populations that are hard to study with conventional systems (e.g., children, elderly, 

patients), reduced hardware and software costs, and facilitated EEG research in real-world 

environments by increasing subjects’ mobility and streaming the data wirelessly (see section 9.4. 

and Cannard et al., 2020). For example, both IAF and FAA are promising EEG measures for 

neurofeedback applications (Angelakis et al., 2007; Quaedflieg et al., 2016), which would benefit 

from mobile data collection. 

However, there is still a lack of validation of the data collected by such devices and the 

interpretation of the results based on the literature based on conventional higher-density systems 

and different referencing methods (i.e., linked-mastoids or average reference). The reference 

method implemented for low-density wearable systems is of particular importance when 

considering measuring EEG asymmetry (Allen, Coan and Nazarian, 2004; Smith et al., 2017).  

The present study tested whether the 4-channel wearable MUSE EEG system can quickly 

measure continuous EEG data with a maximum of 5-minute set-up and data collection time, that 

would yield quantifiable frequency components comparable to research-grade systems and if it 

can extract clinically relevant measures such as IAF and FAA.  

6.1.2. Validating new EEG systems 

Once the minimum hardware requirements are met, signal validation is required to ensure that 

the EEG components of interest (e.g., raw waveform, ERP, power spectra) are captured 

accurately and reliably. This is generally done by comparing them with those obtained from 

conventional high-grade systems.  

For example, Barham et al. (2017) showed that while significantly more trials are rejected from 

data acquired by these systems, the raw EEG waveforms captured were found to have a high 

degree of similarity with those measured by a clinical-grade system. Mayaud et al. (2013) 

compared the performance of six traditional EEG disc electrodes (i.e. electrodes made from silver 

metal and lead wires) with the electrodes provided by the Emotiv Epoc wearable headset and 

found no significant difference in performance between the two. Pinegger et al. (2016) evaluated 

three different commercially available EEG acquisition systems that differ in the type of electrode 

(gel-, water-, and dry-based), the amplifier technique, and the data transmission method. Every 

system was tested regarding three different aspects, namely technical, BCI effectiveness and 

efficiency (i.e. P300 detection, communication, and control), and user satisfaction (comfort). They 
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found that the water-based system had the lowest short circuit noise level, the hydrogel-based 

system had the highest P300 spelling accuracies, and the dry electrode system caused the least 

inconveniences. They concluded that building a reliable BCI was possible with all three systems 

(Pinegger et al., 2016).  

Other authors were able to validate low-cost wearable systems for ERP research. Kotowski et al. 

(2018) successfully measured differences in the early posterior negativity (EPN) component 

between neutral and emotional stimuli using the low-cost Emotiv Epoc+. Krigolson, Williams 

and Colino (2017)were able to reliably identify the N200, P300, and reward positivity ERP 

components with the Muse, an off-the-shelf low-cost wearable system. De Vos et al. (2014)  

revealed classification accuracies of P300 for both indoor (77%) and outdoor (69%) recording 

conditions. Other studies that have done so suggest that it is possible to collect data of sufficient 

quality for ERP analyses using such low-cost systems (e.g., Debener et al., 2012; Duvinage et al., 

2013; Mayaud et al., 2013; De Vos et al., 2014; Badcock et al., 2015; Maskeliunas et al., 2016; 

Pinegger et al., 2016; Barham et al., 2017; Krigolson, Williams and Colino, 2017; Kuziek, Shienh 

and Mathewson, 2017; Kotowski et al., 2018; Williams et al., 2020).  

6.1.3. Trait vs. state EEG 

While ERPs are useful to study EEG components associated with changes in brain state-related 

activity (as an outcome, in response to an event), resting-state EEG data is thought to provide 

information about individual traits (Allen, Coan and Nazarian, 2004). Trait EEG can be used to 

assess current or predict future psychopathological states such as the risk for depression (Smith 

et al., 2017). Alpha oscillations have been historically measured as both a state and a trait to study 

constructs such as affect, cognition, or neuropsychology.  

6.1.4. Referencing method 

The issue of the electrode reference and its impact on asymmetry scores has been detailed and is 

of high importance (Allen, Coan and Nazarian, 2004; Smith et al., 2017). The recommended 

referencing methods (i.e., average-referencing, current-source density) or the “residualization 

procedure” are not feasible with the low density of the Muse montage. The Muse frontal channels 

are located very close to the Fpz reference, potentially providing invalid asymmetry scores for 

the frontal channels, by not reflecting the same underlying cortical activity as in the literature. 
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Since frontal asymmetry estimated on linked-mastoids data are associated with the severity of 

current depression (Stewart et al., 2010), we tested the validity of re-referencing the Muse frontal 

channels offline to TP9 and TP10 by comparing the resulting PSD and asymmetry scores to the 

ones obtained on averaged-referenced 64-channel Biosemi Active Two. 

6.1.5. Study goals  

The present study aimed to test whether or not a low-cost, 4-channel wearable EEG system (The 

Muse EEG headset) could be used to quickly measure continuous EEG data that would yield 

observable and quantifiable frequency components similar to research-grade systems (a 

BIOSEMI Active 2 EEG system) such as power spectral density (PSD), IAF (PAF and CoG), 

and alpha asymmetry. Furthermore, one of the principal goals of this experiment was to develop 

a portable, efficient, and affordable method of measuring these spectral components for field and 

clinical research, making the trade-off between electrode location and ease of use worthwhile. As 

such, we deliberately collected a minimal amount of data. Our goal was for EEG setup and data 

collection to be completed in under 5 min.  

6.2. Methods 

6.2.1. Participants 

Participants for this study were 40 English-speaking adults in the San Francisco Bay area. 

Exclusion criteria were: aged younger than 18 years old, unable to read, having an acute or 

chronic illness that interfered with the completion of the experiment, or being unable to sit on a 

chair for about 30 minutes. Participants had their EEG recorded with a 64-channel EEG system 

at the laboratory for another study (~2h session) and were asked if they wanted to volunteer a 

few more minutes of their time for an additional ~5 minutes EEG recording using the wearable 

headset. They were compensated only for their participation in the initial study. They gave 

informed consent, and the study was approved by the IONS Institutional Review Board. 

6.2.2. EEG data collection procedures 

EEG data were collected with the active dry MUSE 1 (version 2016) at 256 Hz and a 64-channel 

gel-based BIOSEMI Active 2 system (BIOSEMI Inc.) at 512 Hz. Simultaneous recording of both 

systems was not possible due to their configurations. The MUSE data were recorded first, and 

then the BIOSEMI data about 30 minutes later, which corresponded to the time necessary to set 
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up the BIOSEMI equipment and optimize channel impedance). A comparison of the two systems’ 

hardware specifications can be found in Table 5. For both systems, the participants’ skin was 

cleaned with alcohol wipes at electrode sites before positioning the headband/head cap.  

MUSE - A thin layer of water was applied to the dry electrodes with a sponge for both the frontal 

metallic sensor and the conductive silicone rubber mastoid sensors behind the ears to decrease 

the impedance and increase signal quality. The MindMonitor App (Clutterbuck, 2015) running 

on a Chromebook laptop was used to record the EEG signal and check electrode contact (a 

colored circle for each electrode was filled when the software deemed the connection acceptable). 

Visual examination of the raw EEG waveforms was also performed while participants were asked 

to generate eye blinks to provide an additional index of signal quality. The headset position was 

adjusted if the signal was judged too noisy by visual inspection of the data. 

BIOSEMI - Highly conductive electrolytes SignaGel was injected into the electrode sites of the 

BIOSEMI head cap. BIOSEMI active electrode offsets were kept below offset 20 using the 

Actiview software. 

Table 5. Hardware specifications of each system 

 Biosemi Active Two InteraXon MUSE 

Electrode montage 64 wet active electrodes (10-20 
system) 

4 dry active electrodes (AF7, AF8, 
TP9, TP10)b 

Sampling rate 512 Hz 256 Hz 

Resolution 24 bits 12 bits 

Active electrode 
system 

Passive DRL and active CMS 
located around POz 

Passive DRL and active CMS 
located at Fpz 

Head sizes 3 different head cap sizes covering 
54-62 cm  

Adjustable headband, 52-60 cm 
range 

Recording apparatus Optic fiber and amplifier, 
MacBook Pro, Actiview Software 

Bluetooth on a low-cost 
Chromebook, Mind  

Monitor App 

Reference Reference-freea Fpz 

a Data is reference-free at data collection time. A reference must be chosen when importing the data. Not 

choosing a reference led to a 40 dB loss of signal-to-noise (SNR) ratio. 
b Approximate positions.  
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MUSE and BIOSEMI - Recordings were performed at the same location within the recording 

room, minimizing the differences in terms of potential electrical artifacts from the environment. 

One minute of data was recorded with eyes open gazing at the computer screen in front of them, 

and one minute was recorded with eyes closed. Half the participants did eyes open before eyes 

closed, and the other half did the reversed order to avoid carry-over effects. Participants were 

instructed to sit still on a chair, limit their movements, and focus their attention on their breath 

by counting each inhalation/exhalation cycle. In this manuscript, we only process eyes’ closed 

data. 

6.2.3. EEG data preprocessing 

We developed an EEGLAB plugin named import_muse (see Annexe 1) to import the MUSE data 

into EEGLAB v2021.1 (Delorme and Makeig, 2004), integrated into MATLAB R2021 (The 

MathWorks, Inc.). BIOSEMI data were imported into EEGLAB using the BIOSIG plugin 

(v3.7.5). BIOSEMI data were downsampled to 256 Hz. Raw data were high-pass filtered with 

EEGLAB’s linear non-causal Finite Impulse Response (FIR) filter of the FIRFILT (v2.4) plugin 

(filter order = 1129; transition bandwidth = 0.75 Hz; passband edge = 0.75 Hz; -6 dB cutoff 

frequency = 0.375 Hz). No low-pass filter was used to evaluate frequencies 1-100 Hz.  

Files were inspected visually for abnormal channels (bad connection, impedance, very high noise, 

flat sections from disconnections, etc.) and artifactual segments (eye and muscle artifacts, high-

frequency bursts, etc.). Artifactual regions and channels were manually rejected. MUSE data files 

with at least 1 visually abnormal channel were removed. If the BIOSEMI or the MUSE file was 

shorter than 45 s, the participant data was also excluded from further analysis. Using these 

criteria, three out of 40 data files were excluded (N = 37).  

6.2.4. Reference method and montages 

Since the BIOSEMI (64-channel montage) does not include the MUSE TP9 and TP10 channels, 

we selected the closest channels, i.e. TP7 and TP8, to compare spectral data in the 

temporoparietal (TP) regions.  

The default reference channel for the MUSE is Fpz which is close to the frontal channels AF7 

and AF8 and may lead to biased spectral values at these channels. The FAA has been extensively 

calculated on frontal channels F7 and F8, with Cz-, mastoid-, or average- reference methods 



 

103 
 

(Allen, Coan and Nazarian, 2004; Smith et al., 2017). However, the average-reference (and more 

recently the current-source density or surface Laplacian transformations) was shown to be 

preferable (Smith et al., 2017).  

With 4 electrodes, an average reference (or CSD-transformation) is not meaningful for the 

MUSE system since it requires a whole-head (and spherical) electrode coverage. Hence, spectral 

measures were computed on MUSE frontal channels 1) referenced Fpz (default), 2) re-referenced 

to mastoids (i.e., TP9/TP10, termed the “mastoid-ref montage”), and 3) on the temporoparietal 

(TP) channels referenced to Fpz (default, termed “Fpz-ref montage”). Data obtained with these 

montages were compared to 1) BIOSEMI AF7 and AF8 referenced to mastoids (mastoid-ref 

montage), 2) TP7 and TP8 referenced to Fpz (Fpz-ref montage), and F7, F8, TP7, TP8 referenced 

to average (average-ref montage). Note that 1) and 2) were only tested in the first analysis only to 

determine which one was most accurate compared to BIOSEMI. Then, only the best referencing 

method for frontal channels was used for subsequent analyses.  

The spectral measures described below were obtained for each system and montage. The 

measures from BIOSEMI average-ref montage were used as “optimal” spectral estimates and 

compared to MUSE estimates to determine whether they shared the same underlying neural 

activity and scalp distributions.  

6.2.5. Power spectral density (PSD)  

Power spectral density (PSD) over frequencies 1-100 Hz was computed using the pwelch function 

in MATLAB 2021 (The MathWorks Inc.) for each EEG channel on 4-second hamming windows, 

with 50% overlap and 200% padding (better accounting for data discontinuity due to excluded 

artifactual regions). The mean was removed from PSD data, and they were converted to decibels 

(10*Log10(power); Allen, Coan and Nazarian, 2004). Mean PSD was extracted for each frontal 

channel for each frequency band: delta (1-3 Hz), theta (3-7 Hz), alpha (8-13 Hz), beta (14-30 Hz), 

and gamma (>30 Hz). Then, the average between the two channels was used for analyses.  

6.2.6. Individual alpha frequency (IAF) 

Both the peak alpha frequency (PAF) and the alpha center of gravity (CoG) were estimated using 

the open-source and automated restingIAF toolbox (v1.0.2; Corcoran et al., 2017). The algorithm 

smoothes alpha power distribution with a Savitzky-Golay filter and uses curve-fitting and zero-
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crossing methods to estimate the PAF and CoG for each EEG channel and subject. Since we use 

a low-density system, and that some individuals present alpha power outside of the traditional 8-

13 Hz range (see section 4.4.2.), a minimum of 1 channel and a window of 7-14 Hz were selected 

in the toolbox parameters for IAF-estimation (all other parameters were kept at default values).  

6.2.6. Alpha asymmetry  

Based on the previous discussion (and section 4.4.2.), three methods were used to calculate alpha 

asymmetry (for both frontal and TP channels):  

●  Traditional asymmetry: difference in alpha power (averaged over the 8-13 Hz) band 

between the right and left channels averaged over the 8-13 Hz band (mean_alpha_right - 

mean_alpha_left). 

●  PAF-asymmetry. Same as above but on power at the peak alpha frequency (PAF). 

●  CoG-asymmetry. Same as above but on power at the alpha center of gravity (CoG). 

6.2.7. Internal consistency reliability 

The power spectrum of one large epoch is the exact representation of the frequency content of 

that EEG segment and is used for all main EEG results. However, one cannot estimate the 

statistical properties of the random process generating the EEG under the assumption of weak 

stationarity, which assumes that the mean and variance of the signal do not change over time 

(Bendat and Piersol, 2011). While this assumption of weak stationarity is generally valid in 

continuous EEG data, it is not in event-related signals where stimuli are presented and eliciting 

large changes in mean and variance (Ombao et al., 2016). Nevertheless, the weak stationarity of 

continuous signal can be tested with internal consistency reliability by obtaining an estimate of 

mean and variance of EEG signal for several epochs of the data.  

Previous research showed that reliable asymmetry values can be obtained with as little as 80 

seconds of data, but internal consistency reliability should be reported when assessing 

asymmetry on less than 8 minutes of data (Towers and Allen, 2009). To confirm internal 

consistency reliability of the asymmetry measures with the different montage methods and with 

very short segments of data (45 seconds for the shortest file after data cleaning), mean alpha 

power and FAA (traditional method only) were also computed for each montage on eleven 4-s 

blocks of data (mean for each block). Internal consistency reliability of alpha PSD and FAA was 

evaluated using Cronbach’s standardized alpha on the blocks of spectral data (Cronbach, 1951; 



 

105 
 

Schlegel, 2010). Similar to correlation coefficients, values >.8 indicate high internal consistency 

reliability, and <.3 indicate low internal consistency reliability).  

6.2.6. Statistics 

Finding the best-referencing method for the frontal channels 

Since it is well established that alpha power increases when participants close their eyes (Berger, 

1929), the PSD difference (frequencies 1-100 Hz) between eyes closed/open was used as a 

measure of each system’s capacity to detect basic frequency components underlying physiological 

brain processes. The trimmed means of these differences were compared between the two systems 

using Yuen t-statistics (Yuen, 1974; Wilcox, 2005). Trimmed means are robust estimators of 

central tendency because they are less affected by outliers (e.g., measurement error or fixed 

effects), and therefore provide probability coverage for the confidence intervals (CI) and tighter 

control of the type I error.  

 

Because EEG data are highly correlated across neighboring channels, time points, and 

frequencies (Pernet et al., 2015), p-values were corrected to control for the false discovery rate (FDR; 

Benjamini and Yekutieli, 2001). Significant frequencies are reported as a black bar at the bottom 

of the plots. Frequentist CIs only indicate if the observed values can be rejected by a (two-tailed) 

test with a given alpha. So a 95% CI on a difference that includes 0 indicates that H0 (the 

hypothesis of no effect) cannot be rejected with a 5% chance to be wrong in the long run (Pernet, 

2017). Thus, classic CIs do not inform on the variation of the statistics (e.g., whether the mean 

difference varies between the two variables or not), but only about the hypothesis that the 

difference is 0 (Pernet, 2017). In contrast, high-density intervals (HDI), computed using a Bayesian 

bootstrap (Rubin, 1981), give the actual probability coverage of the summary statistics (e.g., the 

mean difference varies between the two variables). Bayesian HDIs test H1 (the hypothesis of a 

difference), so if the HDIs of each variable overlap (or if the HDI of the difference between the 

two variables always include 0), one can be more confident that there is no effect (rather than 

accepting H0 without testing it; Pernet, 2017). While the t-statistics require correction for 

multiple comparisons because they are computed independently at each frequency (but 

frequencies are not independent), bayesian HDIs are only intended to provide the actual variation 

of the summary statistics. Thus, they only provide more confidence in the absence of a difference 
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observed with the t-statistics. In this study, 95% HDIs were used for the first analysis only. They 

were computed using code adapted from the LIMO-EEG toolbox (Pernet et al., 2011) and 

correspond to the shaded intervals around the trimmed means.  

 

Comparing spectral measures from MUSE and BIOSEMI data 

All other analyses of spectral measures were compared using the skipped Pearson correlations 

from the Robust Correlation MATLAB toolbox (Pernet, Wilcox and Rousselet, 2013). See 

section 5.2.4. (previous chapter) for more detail on skipped correlations. Bivariate outliers 

correspond to the red observations in the plots. The red line corresponds to the least square fit 

line, and the red shaded areas correspond to the 95% CI.  

6.3. Results 

6.3.1. Finding the best referencing method for the frontal channels 

With the default Fpz-reference, the MUSE frontal channels did not discriminate the PSD 

between eyes open/closed conditions in the alpha frequencies (9-10.5 Hz; p < 0.05 corrected for 

FDR), contrary to the average-referenced BIOSEMI (Figure 18, top panel). However, this 

difference became non-significant when the frontal channels were re-referenced offline to the 

temporoparietal (TP) channels (i.e., mastoids; see Figure 18, middle panel). The MUSE TP9 and 

TP10 channels referenced to Fpz discriminated activity between eyes closed/open conditions 

similar to those (TP7 and TP8) from average-referenced BIOSEMI (Figure 18, bottom panel). 

Since the 95% HDIs overlap, we can be more confident that there is no significant difference in 

terms of signal discriminability between the two systems.  
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Figure 18. Comparison of power spectral density (PSD) difference between eyes closed/open conditions at frontal 

and temporoparietal (TP) channels (N = 37), between the BIOSEMI and the MUSE. Top panel shows that the 

frontal channels of the MUSE Fpz-montage do not capture alpha power activity (p < 0.05, corrected for false 

discovery rate) compared to the BIOSEMI average-ref montage (same channels). Middle panel shows that this is 

corrected when the MUSE frontal channels are re-referenced offline to TP9 and TP10 (i.e., mastoid-ref montage). 

Bottom panel shows the temporoparietal channels (TP9/TP10) of the MUSE with the default Fpz reference 

capturing the whole PSD similarly to BIOSEMI (average-ref montage). Notes: Significance bars (p < 0.05) are 

obtained using Yuen t-tests testing H0 at each frequency, corrected for false discovery rate (FDR). Thick lines are 

trimmed means of the power difference between eyes closed/open conditions. Shaded areas are 95% high-density 

intervals (HDI) testing H1 using a Bayesian bootstrap, confirming the absence of a difference when they overlap.  
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6.3.2. Spectral power in each frequency band (eyes closed only) 

Mastoid-ref montage (frontal channels) 

The averaged PSD of each frequency band was first compared between the BIOSEMI and the 

MUSE (mastoid-ref montage for both). All frequency bands were significantly correlated between 

at frontal channels: delta (1-3 Hz, r = .57*, CI [0.32 0.75]), theta (3-7 Hz, r = .71*, CI [0.48, 

0.84]), alpha (8-13 Hz, r = .88*, CI [0.74, 0.94]), beta (14-30 Hz, r = .80*, CI [0.59, 0.91]), and 

gamma (>30 Hz, r = 0.51*, CI [0.24, 0.70]). These results are plotted in Figure 19.  

 

Figure 19. Correlations between BIOSEMI and MUSE (mastoid-ref montage for both) of mean power spectral 

density (PSD) for each frequency band, at frontal channels: delta (1-3 Hz), theta (3-7 Hz), alpha (8-13 Hz), 

beta (14-30 Hz), and gamma (> 30 Hz). All frequency bands were significantly correlated. Statistics are reported 

in the text of the Results section. Red dots are bivariate outliers accounted for by the skipped Spearman correlations. 

The red line is the least-squares fit line. Shaded areas are the 95% confidence intervals (CI). The power spectral 

density (PSD) unit is deciBels (10*log10(μV2/Hz)).  

  

Fpz-ref montage (temporoparietal channels) 

The averaged PSD of each frequency band from temporoparietal (TP) channels was compared 

between the BIOSEMI and the MUSE (Fpz-ref montage for both). All frequency bands were 

significantly correlated at TP channels: delta (r = .70*, CI [0.50, 0.84]), theta (r = .68*, CI [0.46, 

0.81]), alpha (r = .88*, CI [0.76, 0.94]), beta (r = .75*, CI [0.50, 0.88]), and gamma (r = 0.53*, 

CI [0.29, 0.67]). These results are plotted in Figure 20.  

 

Figure 20. Correlations between BIOSEMI and MUSE (mastoid-ref montage for both) of mean power spectral 

density (PSD) for each frequency band, at temporoparietal (TP) channels: delta (1-3 Hz), theta (3-7 Hz), alpha 
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(8-13 Hz), beta (14-30 Hz), and gamma (> 30 Hz). All frequency bands were significantly correlated. Statistics 

are reported in the text of the Results section. Red dots are bivariate outliers accounted for by the skipped Spearman 

correlations. The red line is the least-squares fit line. Shaded areas are the 95% confidence intervals (CI). The 

power spectral density (PSD) unit is deciBels (10*log10(μV2/Hz)).  

 

Average-ref montage (frontal and temporoparietal channels) 

The averaged PSD of each frequency band at frontal channels was then compared between the 

BIOSEMI average-ref montage and the MUSE mastoid-ref montage. All frequency bands were 

significantly correlated except the gamma band: delta (r = .53*, CI [0.20 0.77]), theta (r = .66*, 

CI [0.38, 0.82]), alpha (r = .75*, CI [0.56, 0.88]), beta (r = .60*, CI [0.34, 0.76]), and gamma (r 

= 0.17, CI [-0.16, 0.48]). These results are plotted in Figure 21.  

 

Figure 21. Correlations between BIOSEMI (average-ref montage) and MUSE (mastoid-ref montage) of mean 

power for each frequency band, at frontal channels: delta (1-3 Hz), theta (3-7 Hz), alpha (8-13 Hz), beta (14-

30 Hz), and gamma (> 30 Hz). All frequency bands except gamma were significantly correlated. Statistics are 

reported in the text of the Results section. Red dots are bivariate outliers accounted for by the skipped Spearman 

correlations. The red line is the least-squares fit line. Shaded areas are the 95% confidence intervals (CI). The 

power spectral density (PSD) unit is deciBels (10*log10(μV2/Hz)).  

 

Correlations between frequency bands at temporoparietal (TP) channels from BIOSEMI average-

ref montage and from MUSE fpz-ref montage are reported in Figure 22. Significant correlations 

were observed for all frequency bands: delta (r = .53*, CI [0.22, 0.75]), theta (r = .56*, CI [0.27, 

0.75]), alpha (r = .80*, CI [0.58, 0.90], beta (r = .65*, CI [0.38, 0.81]), and gamma (r = .34*, CI 

[0.02, 0.63]).  
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Figure 22. Correlations between BIOSEMI (average-ref montage) and MUSE (fpz-ref montage) of mean power 

for each frequency band, at temporoparietal (TP) channels: delta (1-3 Hz), theta (3-7 Hz), alpha (8-13 Hz), beta 

(14-30 Hz), and gamma (> 30 Hz). All frequency bands were significantly correlated. Statistics are reported in the 

text of the Results section. Red dots are bivariate outliers accounted for by the skipped Spearman correlations. The 

red line is the least-squares fit line. Shaded areas are the 95% confidence intervals (CI). The power spectral density 

(PSD) unit is deciBels (10*log10(μV2/Hz)).  

6.3.3. Individual alpha frequency (IAF) 

Mastoid-ref  (frontal channels) and Fpz-ref (temporoparietal channels) montages  

IAFs at frontal channels estimated on BIOSEMI were significantly correlated with those 

obtained on MUSE using the same mastoid-ref montage (Figure 23, left ), for both the PAF (r = 

.83*, CI [0.58, 0.94]) and the CoG (r = .94*, CI [0.85, 0.98]). However, frontal PAF could not 

be estimated on 4 BIOSEMI files and 11 MUSE files, whereas frontal CoG could not be estimated 

on 2 BIOSEMI files and 2 MUSE files. Correlations were also significant at temporoparietal (TP) 

channels (Figure 23, right), for both the PAF (r = .92*, CI [0.78, 0.98]) and the CoG (r = .88*, 

CI [0.73, 0.95]). The TP PAF could not be detected on 8 BIOSEMI files and 8 MUSE files, 

whereas the TP CoG could not be detected on 2 BIOSEMI files and 1 MUSE file.  

 

Figure 22. Correlations between BIOSEMI and MUSE (same mastoid-ref montage for both) of individual alpha 

frequency (IAF), at frontal (left) and temporoparietal (TP, right) channels. Both the peak alpha frequency 

(PAF) and the alpha center of gravity (CoG) were significantly correlated between the two systems, for both 

frontal and TP sites. Statistics are reported in the text of the Results section. Red dots are bivariate outliers 

accounted for by the skipped Spearman correlations. The red line is the least-squares fit line. Shaded areas are the 

95% confidence intervals (CI). Units are frequency bins (in Hz).  
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Average-ref montage (frontal and temporoparietal channels) 

Correlations between IAF for the BIOSEMI average-ref montage and the MUSE mastoid-ref 

montage were significant for frontal channels (Figure 23, left): PAF (r = .93*, CI [0.78, 0.97]) 

and CoG (r = .85*, CI [0.69, 0.93]). Note, however, that the automated algorithms could not 

detect the frontal PAF for 8 BIOSEMI files and 10 MUSE files. The frontal CoG was detected 

for all BIOSEMI files and undetected for 1 MUSE file. IAFs were also significantly correlated 

for TP channels (Figure 23, right): PAF (r = .93*, CI [0.80, 0.98]) and CoG (r = .86*, CI [0.68, 

0.95]).  

 

Figure 23. Correlations between BIOSEMI (average-ref montage) and MUSE (mastoid-ref montage for frontal 

channels and fpz-ref montage for TP channels) of individual alpha frequency (IAF), at frontal (left) and 

temporoparietal (TP, right) channels. Both the peak alpha frequency (PAF) and the alpha center of gravity 

(CoG) were significantly correlated between the two systems, at both frontal and TP sites. Statistics are reported 

in the text of the Results section. Red dots are bivariate outliers accounted for by the skipped Spearman correlations. 

The red line is the least-squares fit line. Shaded areas are the 95% confidence intervals (CI). Units are frequency 

bins (in Hz).  

 

6.3.4. Alpha asymmetry 

Internal consistency reliability 

The following Cronbach’s alpha scores were obtained for frontal alpha power (.98 -  BIOSEMI 

average-ref montage; .95 - MUSE mastoid-ref montage) and frontal alpha asymmetry (.67 - 

BIOSEMI average-ref montage; .76 - MUSE mastoid-ref montage).  

Mastoid-ref montage (frontal channels) 

Only the frontal alpha asymmetry (FAA) calculated with the traditional method (whole alpha 

band) was significantly correlated between BIOSEMI and MUSE with the same mastoid-ref 
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montage: traditional asymmetry (r = .76*, CI [0.53, 0.89]), PAF-asymmetry (r = .23, CI [-0.11, 

0.53], CoG-asymmetry (r = 0.02, CI [-0.38, 0.48]). These results are plotted in Figure 24. 

 

Figure 24. Comparison of frontal alpha asymmetry (FAA) measures from BIOSEMI and MUSE (mastoid-ref 

montage). Only FAA calculated with the traditional method (i.e., whole alpha band) was significantly correlated 

between the two systems. Statistics are reported in the text. Red dots are bivariate outliers accounted for by the skipped 

Spearman correlations. The red line is the least-squares fit line. Shaded areas are the 95% confidence intervals (CI). 

The asymmetry unit is deciBels (10*log10(μ V2/Hz)).  

 

Fpz-ref montage (temporoparietal channels) 

Only the temporoparietal (TP) alpha asymmetry calculated with the traditional method (whole 

alpha band) was significantly correlated between BIOSEMI and MUSE with the same mastoid-

ref montage: traditional asymmetry (r = .68*, CI [0.43, 0.85]), PAF-asymmetry (r = .18, CI [-

0.20, 0.52], CoG-asymmetry (r = 0.20, CI [-0.19, 0.54]). These results are plotted in Figure 25. 

 

Figure 25. Comparison of temporoparietal (TP) alpha asymmetry measures from BIOSEMI and MUSE 

(mastoid-ref montage). Only asymmetry calculated with the traditional method (i.e., whole alpha band) was 

significantly correlated. Statistics are reported in the text. Red dots are bivariate outliers accounted for by the 

skipped Spearman correlations. The red line is the least-squares fit line. Shaded areas are the 95% confidence 

intervals (CI). The asymmetry unit is deciBels (10*log10(μ V2/Hz)).  
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Average-ref montage (frontal and temporoparietal channels) 

Finally, alpha asymmetry measures were compared between the  BIOSEMI average-ref montage 

and the MUSE mastoid-ref montage. FAA calculated on the average power over the whole alpha 

band (i.e., traditional method) was significantly correlated (r = .55*, CI [0.20, 0.79]). However, 

asymmetry scores calculated on power at the PAF (r = -0.07, CI [-0.38, 0.25]) and at the CoG 

(r = .26, CI [-0.14, 0.63]) were not significantly correlated. These results are reported in Figure 

26.  

 

Figure 26. Comparison of frontal alpha asymmetry (FAA) measures from BIOSEMI (average-ref) and MUSE 

(mastoid-ref montage). Only asymmetry calculated with the traditional method (i.e., whole alpha band) was 

significantly correlated. Statistics are reported in the text. Red dots are bivariate outliers accounted for by the 

skipped Spearman correlations. The red line is the least-squares fit line. Shaded areas are the 95% confidence 

intervals (CI). The asymmetry unit is deciBels (10*log10(μ V2/Hz)).  
 

Results were obtained for the temporoparietal (TP) alpha asymmetry compared between 

BIOSEMI average-ref montage and MUSE Fpz-ref montage (Figure 27): traditional method (r = 

.76; CI [0.54, 0.88]), PAF-asymmetry (r = .22, CI [-0.17, 0.55]), CoG-asymmetry (r = 23, CI [-

0.1, 0.49]). 

 

Figure 27. Comparison of temporoparietal (TP) alpha asymmetry between BIOSEMI (average-ref) and MUSE 

(Fpz-ref montage). Only asymmetry calculated with the traditional method (i.e., whole alpha band) was 

significantly correlated. Statistics are reported in the text. Red dots are bivariate outliers accounted for by the 

skipped Spearman correlations. The red line is the least-squares fit line. Shaded areas are the 95% confidence 

intervals (CI). The asymmetry unit is deciBels (10*log10(μ V2/Hz)).  
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6.4. Discussion 

6.4.1. Results and interpretations 

Validating the reference method 

The MUSE frontal channels discriminated against power differences between eyes open/closed 

only when they were re-referenced to mastoids (TP9 and TP10 electrodes), especially in the 

alpha band. On the other hand, the TP channels did not require to be re-referenced offline and 

were left referenced to Fpz. The absence of difference in the 95% high-density intervals (HDI) 

indicated with more confidence that the MUSE could discriminate spectral power between eyes 

open/closed similarly to the research-grade BIOSEMI. These reference montages (i.e., mastoid-

ref for frontal channels and Fpz-ref for temporoparietal ones) were therefore used for subsequent 

validation of the MUSE.  

Power in each frequency band 

To further confirm that the MUSE could capture spectral content from each frequency band 

more accurately, we compared the spectral data directly between the two systems. Power in all 

frequency bands (i.e., delta, theta, alpha, beta, and gamma) from MUSE was similar to that of 

BIOSEMI, in all montage and electrodes, except in the gamma band (> 30 Hz) for frontal 

channels when comparing MUSE mastoid-ref montage with BIOSEMI average-ref montage. These 

findings indicate that the wearable MUSE headset can reliably measure power spectral density 

in all frequency bands, but that caution should be taken when interpreting gamma oscillations 

recorded over frontal electrodes and their underlying sources. Note that similar caution should 

be taken regarding interpreting gamma power at TP channels, as the lower bound of the 95% 

confidence interval (CI)  is close to 0 (i.e., the null hypothesis of independence).  

Individual alpha frequency (IAF) 

IAFs estimated on MUSE data were strongly correlated with those from BIOSEMI data, for 

both estimation methods and both frontal and TP channels. Note, however, that the PAF was 

not detected by the automatic algorithms for more files than the CoG, especially on MUSE data, 

confirming the higher robustness of the CoG method compared to the PAF when facing 

ambiguous alpha peaks (see section 4.4.2.). While the automated IAF-estimation toolbox 
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performs best in high-density conditions by allowing to combine alpha activity across 

neighboring channels to improve detection performance (Corcoran et al., 2017), it performed well 

on low- and sparse- density montages used in this study. Thus, the automated and open-source 

restingIAF plugin (Corcoran et al., 2017) can be used on MUSE data (with frontal channels re-

referenced offline to mastoids) to estimate the IAF on large datasets. And the CoG approach 

should be preferred over the PAF to better account for interindividual differences in alpha power 

distribution. Furthermore, interpretations can be made in line with the literature using the same 

EEG channels averaged to reference. However, the superior performance of the CoG method 

compared to the PAF method was apparent since it was able to find IAF in many more 

participants.  

Alpha asymmetry 

Alpha asymmetry calculated with the traditional method (difference in alpha power averaged 

over the whole 8-13 Hz band) obtained from MUSE data  (frontal and temporoparietal channels) 

were significantly correlated with those from BIOSEMI data for both Fpz- mastoid- and average- 

reference montages. However, asymmetry values calculated on the PAF and CoG frequencies were 

not correlated. These findings indicate that the MUSE can be used to measure frontal and TP 

alpha asymmetry (with the reference methods used in this study), and findings can be interpreted 

in line with previous findings obtained with the average-ref montage.  

Previous research suggested that EEG asymmetry is influenced by different neural processes 

between the lower and the upper frequencies of the alpha band (Klimesch, 1997). Thus, while 

IAFs better account for interindividual differences and are associated with some cognitive 

processes (e.g., memory), they might reflect different underlying neural processes than those 

underlying alpha asymmetry (e.g., executive control, attention, emotion regulation). Thus, IAF-

asymmetries might not be well-suited for asymmetry research.  

The restingIAF toolbox also provides individualized lower and upper bounds of the alpha band. 

The alpha asymmetry calculated on the resulting individualized alpha range might be better 

suited to account for interindividual differences. Future studies should examine whether 

asymmetry measures obtained in this manner are more robust than the traditional method.  
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6.4.2. Limitations and recommendations for future research 

The main limitation of this study is the ~30 minutes difference between the two recordings (due 

to the preparation time for the BIOSEMI recording). Mental states may likely have changed 

between the two recordings. Previous research indicated that FAA during rest can vary ~60% 

from trait influences and 40% from state influences (Hagemann et al., 2002), the former being the 

target measure in this study. While internal consistency reliability of asymmetry measures was 

relatively high, more variation and lower values were observed compared to the internal 

consistency reliability of the alpha power data (as in previous publications; Towers and Allen, 

2009). This might explain the absence of correlation in the gamma frequencies when comparing 

MUSE mastoid-ref montage and BIOSEMI average-ref montage. Increasing the data length (e.g., 3 

minutes of artifact-free data) might increase the trait influence by reducing the fluctuations due 

to state influences, and in turn, increase internal consistency reliability. We purposely used short 

segments to determine if they could be easily and reliably used in experimental and clinical 

conditions, but we did not compare different data lengths and their impact on these trait EEG 

measures. Future studies should compare asymmetry measures from a clinical system and a low-

cost wearable system (as in this study) with longer data lengths to address this potential 

limitation. Ideally, both types of data should have been recorded simultaneously using markers 

to synchronize the data at the millisecond resolution. While no easy solution was found in this 

study, future research should aim to find a solution to address this limitation. However, 

correlations were still significant when comparing the MUSE and the BIOSEMI with different 

montages, suggesting trait spectral components were still captured.  

Gamma oscillations from the MUSE frontal channels with mastoid-ref montage were not 

correlated to those from BIOSEMI average-ref montage. This is likely because these higher 

frequencies are prone to be contaminated with muscle artifacts, and that no advanced 

preprocessing cleaning method was used in this study since we aimed to keep data as raw as 

possible and remove as little data as possible considering the short data length. Future 

investigators using the MUSE headset might address this issue by collecting more data and using 

advanced preprocessing techniques to extract high-frequency artifacts from the data (e.g., 

independent component analysis or artifact subspace reconstruction; see section 3.2.2.). Another 

explanation might be that these frequencies may reflect activity from other brain processes when 
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referenced to average than those captured with the mastoid-ref montage. Thus, these frequencies 

should only be interpreted in the mastoid-ref montage context when using this system. 

6.5. Conclusion 

Our study validates the use of the low-cost MUSE headset for accurately and reliably measuring 

power spectral density, individual alpha frequency, and alpha asymmetry calculated with the 

traditional method. This system can help advance human neurophysiological monitoring 

techniques on large datasets using wearable neurotechnologies and increase the feasibility of 

their implementation into real-world applications. 
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Chapter 7. EEG asymmetry and well-being 

This Chapter uses the tools validated in the two previous chapters to examine the EEG correlates 

of well-being in a large sample.  

______________________________________________________________________________ 

 

7.1. Introduction 

7.1.1. Context 

For decades, frontal alpha asymmetry (FAA) has been a useful EEG measure to study emotion-

related states and traits, motivation, temperament, cognitive control, and psychopathologies (see 

section 4.4.3.). Similarly, the individual alpha frequency (IAF) has been used for decades as an 

index to study cognition (see section 4.4.2.). We found that both measures can be reliably 

estimated using the low-cost, wearable MUSE EEG headset (see Chapter 6), and are promising 

measures for the study of multidimensional well-being that involves emotional and as well as 

cognitive functions (see Chapter 4). 

While the literature on EEG asymmetry is sizable and robust, it is important to note that there 

have also been failed replications and contradictory results (e.g., Gotlib, 1998; Reid, Duke and 

Allen, 1998; Hagemann et al., 1999; Müller et al., 1999; Coan, Allen and Harmon-Jones, 2001; 

Gale et al., 2001; Papousek and Schulter, 2002; Dennis and Solomon, 2010; Kop et al., 2011; 

Koslov et al., 2011; Quinn et al., 2014; Meyer et al., 2015; Arns et al., 2016; Palmiero and Piccardi, 

2017). These inconsistencies can be explained by heterogeneity in the experimental designs, EEG 

preprocessing techniques, and statistical approaches employed across investigators over the 

years (Allen, Coan and Nazarian, 2004; Smith et al., 2017). A summary of the main limitations of 

EEG asymmetry research and proposed solutions that were implemented in this study are now 

described. 
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7.1.2. Alpha asymmetry as a state vs. trait 

First, one limitation is that EEG asymmetry can reflect trait or state aspects and thus, designing 

experiments to highlight one over the other depending on the research question is essential. 

When measured during rest, EEG asymmetry is considered a  trait variable related to various 

psychological constructs and predictive of future emotional behavior or psychopathology. When 

measured as an event-related response, it is considered a state variable reflecting the person’s 

current emotional state (Allen, Coan and Nazarian, 2004; Hagemann et al., 2005; Smith et al., 

2017). Some authors estimate that 60% of the variance in asymmetry measure within a resting 

session is due to trait influence, and the 40%  to state influences (Hagemann et al., 2002). Hence, 

the first approach aims to reduce the state influence during rest, whereas the second one aims to 

increase it using emotion-elicitation perturbations (Coan, Allen and McKnight, 2006). The 

present study focused on trait asymmetry related to subjective well-being levels. 

7.1.3. Sample-specific characteristics 

Second, sample-specific characteristics (e.g., age, gender) have been shown to significantly 

influence EEG findings because of functional and anatomical differences (Klimesch, 1999; Sowell 

et al., 2007; Hagemann et al., 2008; Finley et al., 2020). Many EEG asymmetry studies include 

participants of one gender to reduce this bias (Tomarken, Davidson and Henriques, 1990; 

Wheeler, Davidson and Tomarken, 1993; Jacobs and Snyder, 1996; Reid, Duke and Allen, 1998; 

Gale et al., 2001; Dennis and Solomon, 2010; Mikolajczak et al., 2010; Koslov et al., 2011). 

However, this prevents investigators from examining gender as a potential mediator or 

moderator of asymmetry findings (MacKinnon et al., 2013). There is a lack of consensus of the 

role gender plays in EEG asymmetry in the limited studies that have addressed this question 

(Veldhuizen, Jonkman and Poortvliet, 1993; Carrier et al., 2001; Miller et al., 2002; Otero et al., 

2003; Morgan et al., 2005; Gasbarri et al., 2006, 2007; Stewart et al., 2010; Müller et al., 2015). 

Similarly, the role age plays in EEG asymmetry is also not very well known. One solution to the 

lack of understanding of if and how demographic variables influence EEG asymmetry and well-

being is to collect large and diversified datasets that better reflect the general population. A few 

studies with large samples found that age and gender mediate frontal asymmetry but that race 

or ethnicity or socioeconomic status did not (Stewart et al., 2010; Gable et al., 2015; Arns et al., 

2016)(Arns et al., 2016; Gable et al., 2015; Stewart et al., 2010). However, these studies are rare 
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and hard to replicate because of the time and cost involved in recording EEG data on a large 

number of subjects with conventional systems (equipment cost, EEG preparations time, 

participants compensation for their time, equipment cleaning, etc.). 

Wearable EEG technologies can address this issue by making the collection of large datasets of 

diversified and under-represented populations more feasible (see section 3.2.3.).  

7.1.4. Targeted components of the alpha band 

The third main limitation in EEG asymmetry research is the handling of alpha-band frequencies 

and bounds. The alpha band should not be considered as a single phenomenon because of 

interindividual differences in alpha power distribution, and frequency bounds (see Section 2.3.5; 

(Klimesch et al., 1990; Klimesch, 1997). Furthermore, differential changes (sometimes in opposing 

directions) within the same dataset have been observed between lower (8-10.5 Hz) and upper (11-

13 Hz) frequencies, as well as between local and global properties (Klimesch, 1999; Nunez, 

Wingeier and Silberstein, 2001).  

The individual alpha frequency (IAF), described in more detail in Section 2.3.5., is associated with 

cognitive constructs and better accounts for these interindividual differences. It has not been 

used to study well-being directly. While we suspected that asymmetry estimates calculated on 

the IAF might better account for interindividual differences (see section 4.4.2.), we found them 

to be unreliable in Chapter 6, at least when using the MUSE’s montage. Thus, we evaluated the 

potential relationship between well-being and IAF, but not IAF-asymmetry in this study.  

7.1.5. Other frequencies than alpha 

The need to expand EEG asymmetry analyses to other frequency bands and areas of the brain 

has been expressed (e.g., Davidson, 1988, 1992; Ota, Toyoshima and Yamauchi, 1996; Ambrosini 

and Vallesi, 2016). Several studies have explored interactions between bands or other brain areas 

without a clear consensus on the findings (Sutton and Davidson, 1997; Hagemann et al., 1999; 

Laufs et al., 2006; Mathersul et al., 2008; Müller et al., 2015). Although it is likely that EEG 

frequency bands functionally interact with one another (Klimesch, 1999; Laufs et al., 2006; Finley 

et al., 2020), as far as we know, no robust literature is available to make reasonable interpretations 

about how alpha power may interact with other frequency bands, especially in the realm of EEG 

asymmetry (Smith et al., 2017). While theta and beta oscillations are associated with well-being 



 

122 
 

and stress (see Section 8.4.4. and 8.4.5.), no asymmetry in these frequency bands (or others) have 

been robustly identified as a marker of well-being yet, to our knowledge. Therefore, this study 

includes asymmetry scores estimated on the delta (1-3 Hz), theta (4-7 Hz), and beta (14-30 Hz) 

frequency bands, for both frontal and TP sites.  

7.1.6. Limiting EEG asymmetry to the frontal areas 

The fourth limitation is the reduction of the study of EEG asymmetry phenomenon to only the 

frontal areas. It has been expressed for a long time that both anterior and posterior cortical 

regions show asymmetric activity patterns (Davidson, 1988, 1992). This is also reflected by 

studies showing that FAA obtained on data referenced with the current-source density (CSD) 

transformation (i.e., reflective of alpha power from local frontal sources only) correspond to a 

marker for depression risk, whereas  FAA obtained on data referenced to mastoids or average 

(i.e., containing alpha power from distal, posterior cortical regions) correspond to a better marker 

of current depression severity (Stewart et al., 2010).  

Furthermore, expanding the analysis of alpha asymmetry to the temporoparietal (TP) regions 

seem particularly relevant since alpha asymmetries were source-localized to the frontoparietal 

network (FPN), which includes brain structures in both the frontal and the TP regions (see 

above; Vossel, Geng and Fink, 2013). Furthermore, different subtypes of anxiety disorders are 

differently associated with asymmetric activity in frontal and TP regions (Heller et al., 1997; 

Engels et al., 2007; Mathersul et al., 2008; Müller et al., 2015); Heller 1997; Mathersul 2008; 

Müller 2015). Together, these findings suggest that anxious arousal (physiological arousal and 

hyper-reactivity under conditions of panic) is associated with relatively greater right than left 

frontal activation, whereas anxious apprehension (involving worry and verbal ruminations; i.e., 

trait anxiety and generalized anxiety disorder) is linked to the opposite asymmetry in frontal 

area and asymmetry in the same direction in the TP area.  

However, other findings suggested that TP asymmetry was less stable over time compared to 

frontal asymmetry (Müller et al., 2015) and sometimes not associated with self-reported measures 

of affect and motivation (Sutton and Davidson, 1997). Other previous research suggested that 

frontal asymmetry is more associated with affective components, whereas posterior asymmetry 

is associated with the cognitive demands of the task, and their direction is generally not 

correlated, even sometimes anticorrelated (Davidson, 1988). In this study, we examine the 
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relationship between well-being and asymmetry in both frontal and TP regions and hypothesize 

that alpha asymmetry in both regions will be associated with well-being (with potentially a 

different direction). 

7.1.7. Limiting EEG asymmetry to the alpha oscillations 

The Fifth and last main limitation in EEG asymmetry research is the need to expand analyses to 

other frequency bands. Coherence in both alpha and theta oscillations has been highlighted 

during both relaxation and mental calculation (Nunez and Srinivasan, 2006). This widespread 

(global) phase coherence phenomenon increases in the upper frequencies of both alpha and theta 

bands while it simultaneously decreases in the lower frequencies (Wingeier, 2000; Nunez and 

Srinivasan, 2006). These findings go along with other findings indicating that global alpha and 

theta rhythms functionally interact during both relaxation and attentional tasks (Klimesch, 1999; 

Buzsaki, 2006; Laufs et al., 2006).  

Furthermore, theta power has been used to predict response to depression treatment in several 

studies (Knott et al., 1996, 2000; Cook and Leuchter, 2001; Cook et al., 2002; Bares et al., 2008; 

Iosifescu et al., 2009; Spronk et al., 2011; Baskaran, Milev and McIntyre, 2012; Olbrich and Arns, 

2013). Furthermore, theta power decreases while upper alpha power increases in several 

conditions (i.e., the early part of life until adulthood, in neurological disorders, and in the 

transition phase from awake to sleeping), whereas the direction of their relationship is opposite 

for the late part of the lifespan (Klimesch, 1999). 

Similarly, alpha and beta spectral power have been found to interact (Laufs et al., 2006; Hamid et 

al., 2010), and both are associated with high levels of mental stress and depression (Hayashi et 

al., 2009; Jena, 2015; Al-shargie et al., 2016; Jun and Smitha, 2016; Díaz et al., 2019; Al-Dabass, 

2020; de Hemptinne et al., 2021). More specifically, prefrontal beta power in lateral areas was 

found to be positively associated with depression and anxiety, whereas lateral beta power was 

negatively associated with mood (de Hemptinne et al., 2021). The authors interpreted these 

results to be in line with the organization of the reward networks in the prefrontal cortex (PFC). 

However, no robust literature is available to make specific interpretations about how alpha 

asymmetry interacts with other frequency bands, and whether asymmetries in other frequency 

bands could be associated with psychological constructs such as well-being. Thus, we aim to 
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bring light to this matter in this study and hypothesize that well-being will be associated with 

asymmetries in other frequency bands. This study includes asymmetry scores estimated on the 

delta (1-3 Hz), theta (4-7 Hz), and beta (14-30 Hz) frequency bands, for both frontal and TP sites.  

Since no previous research exists on this matter, we have no specific hypothesis concerning the 

direction of these potential associations.  

7.1.8. Study goals and hypotheses 

Considering the potential importance of alpha asymmetry as a physiological correlate in general, 

and for well-being specifically, the overall objective of this study was to determine whether a 

low-cost wearable EEG headset (the Muse by Interaxon) could be used to measure EEG 

correlates (CoG, EEG asymmetry) of well-being on a relatively large sample (N = 353). The 

analyses were designed to address the main limitations of EEG asymmetry research addressed 

above.  

The hypotheses for the study were as follows: 

1. The wearable MUSE EEG headset can be used to examine associations between well-

being and EEG spectral measures such as the IAF and the alpha asymmetry. We expect 

the IAF and FAA to be positively correlated with well-being.  

2. Age and gender will be associated with both well-being and mean alpha asymmetry 

(predefined 8-13 Hz band). 

3. Asymmetry scores estimated on sub-components of alpha oscillations (namely 

lower/upper alpha) will provide different correlations regarding the relationship between 

well-being and alpha asymmetry than those estimated on the predefined alpha band (8-

13 Hz), by better accounting for different sources and mechanisms underlying alpha 

oscillations. 

4. Well-being levels will be associated with alpha asymmetry in the TP regions and with 

EEG asymmetries in other frequency bands (namely theta, and beta). 
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7.2. Methods 

7.2.1. Participants 

353 participants were recruited from groups attending workshops focusing on well-being and 

personal development at the Earthrise Campus. Exclusion criteria: people younger than 18 years 

of age, inability to read or understand the consent form, acute or chronic illness precluding 

completion of measurements. Upon arrival at the research laboratory, participants were briefly 

interviewed by the research assistants to ensure they met the inclusion/exclusion criteria and 

were then allocated to a carrel where the following equipment was available for their 

participation: a wearable EEG headset, a Chromebook, and a pair of headphones. The settings 

allowed the recording of up to 9 participants simultaneously. Participants volunteered and were 

not compensated for participation. The study and the consent form were approved by the 

Institute of Noetic Sciences' institutional review board (IRB). All questionnaires were optional 

and anonymous. 

7.2.2. Subjective and multidimensional well-being 

Participants' multidimensional well-being was assessed on-site using the Arizona Integrative 

Outcomes Scale (AIOS; Bell et al., 2004) in SurveyMonkey (SurveyMonkey, 2021). We confirmed 

the reliability, and validity of the AIOS at capturing multidimensional well-being and its main 

underlying components in Chapter 5. Only the 24h version of the AIOS was used in this study 

since we found that it was highly correlated with the 1-month form.  

7.2.3. Electroencephalography (EEG) 

Data collection 

Once participants completed the survey, their EEG was recorded using InteraXon's Muse 

wearable EEG headband (version 2016), with a sampling rate of 256 Hz and 12-bits of data 

resolution. See Chapter 6 for more detail on the hardware specifications of the system, and its 

validation for measuring frequency domain EEG. Before positioning the headband on the 

subjects' heads, their skin was cleaned with alcohol swipes at electrode sites, and a thin layer of 

water was applied with a sponge to the electrodes to improve signal quality. EEG data were 

acquired on Chromebooks using the MindMonitor App (Clutterbuck, 2015) and were uploaded 

onto Dropbox at the end of the recording. Random unique identifiers were generated 
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automatically when participants signed the consent form digitally and used to link survey and 

EEG data. Impedance check was provided by the App (horseshoe symbol) and visually confirmed 

by the raw signal displayed on the screen in real-time. 

EEG data were recorded while participants were instructed to focus their attention on their 

breath and count inhalation/exhalation cycles. They were instructed to bring their attention 

back to their breath and start counting again if they lost track of their count or noticed that their 

minds wandered. This task reduces EEG artifacts occurring naturally with eye movements. Most 

importantly, this task can later be implemented into practical translational and therapeutical 

applications aimed at increasing well-being levels through the modulation of alpha asymmetry 

and the underlying brain processes (Angelakis et al., 2007; Sessa, 2007; Moynihan et al., 2013; 

Doll et al., 2016; Schmalzl et al., 2018; Prpa et al., 2020). 

As shown in previous publications (Towers and Allen, 2009) and Chapter 6, satisfying internal 

consistency reliability of FAA can be obtained with as few as 45 s of data. Furthermore, a recent 

publication showed that individuals can robustly be “authenticated” using spectral EEG data 

obtained on segments as short as 30 s (and this was stable weeks later; da Silva Castanheira et al., 

2021). Thus, two minutes of EEG data were recorded for each participant. Raw data were made 

open-source, available at https://www.doi.org/10.17605/OSF.IO/NQ7GA. 

Data Preprocessing 

Data preprocessing was done in EEGLAB version 2020.0 (Delorme & Makeig, 2004a) in 

MATLAB v2020a. EEG data were imported with the muse_monitor plugin v3.2, low-pass filtered 

at 30 Hz (transition bandwidth 12.5 Hz; passband edge 50 Hz; cutoff frequency -6 dB 56.25 Hz; 

linear non-causal filter) to remove high-frequency artifacts, and high-passed filtered at 1 Hz 

(transition bandwidth 1 Hz; passband edge 1 Hz; cutoff frequency -6 dB 0.5 Hz; linear non-causal 

filter) to remove low-frequency drifts. 10-20 channel template locations from BESA spherical 

coordinates were used in EEGLAB. Following our findings reported in Chapter 6, frontal 

channels were re-referenced to TP9/TP10, while TP channels were left referenced to Fpz 

(manufacturer’s default).  

No automated method tested on these data reliably removed bad channels from the MUSE signal. 

Thus, artifactual channels (with ~50% of data being noisy or artifactual) were manually tagged 

https://www.doi.org/10.17605/OSF.IO/NQ7GA
https://www.doi.org/10.17605/OSF.IO/NQ7GA
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and removed with a custom-made single-page figure displaying each channel's overall raw data, 

standard deviation, and power spectra (see Figure 28). Files with at least one bad channel were 

removed for analyses.  

 

Figure 28. MATLAB function developed for the project to tag bad channels quickly over a large dataset. The left 

panel displays raw data (4 channels) in 30 s blocks, the top right plot shows the power spectra for each channel, and 

the bottom right plot provides the standard deviation and a check box to tag bad channels. This information is then 

saved in a structure variable to reject files with bad channels automatically over the whole sample.  

 

We aimed to use the automated ASR algorithm (see section 3.2.2.), available in the open-source 

clean_rawdata v2.2 EEGLAB plugin, to detect and remove non-brain artifacts on the large 

sample. Since it was never used on MUSE data before, we first cross-validated this method. The 

Riemannian method (reconstruction of the signal after removing artifacts to preserve the brain 

data of that section) did not perform well because it reconstructs the signal using a mixing matrix 

calculated on the reference data and then interpolates artifactual section based on the rest of the 
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EEG signal during that period. Since there are not enough channels without artifacts at the same 

period with 4 channels of only two different regions to create a good interpolation, this method 

could not be used. Thus, we used the Euclidean method, which rejects the detected artifactual 

segments instead of attempting to reconstruct them.  

150 files (~half the sample) were randomly selected from the database to be cleaned manually 

first, and then automatically with the Euclidean method. Figure 29 shows an example of 

automatic artifact cleaning performed by the automatic method.  

 
Figure 29. Illustration of artifact rejection performed by the automatic Euclidean method integrated into EEGLAB 

and cross-validated in this study, to preprocess a large dataset automatically.  

 

Performance was calculated on each channel by comparing each sample as either true positive 

(bad sample correctly rejected), true negative (good sample correctly kept), false positive (good 

sample incorrectly rejected), or false negative (bad sample incorrectly kept). "Positive" and 

"negative" refer to presence or absence (see Figure 30). Then, the true positive rate (TPR, i.e., 

sensitivity) and the true negative rate (TNR, i.e., specificity or selectivity) were calculated for 

each channel with TPR = true positives / (true positives+false negatives) and TNR = true negatives / 

(true negatives+false positives).  
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Figure 30. Representation of the true negative/true positive evaluation concept. Source: Maria (2021). 

The average sensitivity and specificity were then calculated over all channels to obtain the overall 

performance of the automatic method compared to manual rejection. After testing different 

parameters, the best performance obtained showed 81% sensitivity and 83% specificity (settings: 

‘burst_criteria’ = 6, ‘window_criteria’ = 0.3, ‘window_tolerance’ = ‘[-Inf  7]’). 50 additional datasets 

were randomly selected for cross-validation (reversed order, i.e., data were cleaned manually first 

and then compared to automated cleaning data), showing 84% sensitivity and 89% specificity. 

Since further increasing the sensitivity scores (i.e., removing more subtle artifacts) corresponded 

to a decrease in specificity (i.e., removing more non-artifactual data), these thresholds were 

considered most suited for this analysis. On average, this method removed an additional 11.4 

seconds of data (+/- 23.0). Files with less than 60 s of remaining artifact-free data were not 

included in the analyses to preserve high internal consistency reliability and as much trait 

variable as possible (see Chapter 6 for more detail on this). 

Note that these preprocessings were done on duplicated data that were averaged-referenced to a 

fifth zero-filled channel as it increased performance by homogenizing raw signal amplitude across 

channels. But because this average re-referencing method was not validated for this specific 

montage and is not recommended with less than 30 channels (Smith et al., 2017), artifactual 

sections were removed from the original raw files and then re-processed as above. This step was 

only used to increase the performance of the EEGLAB plugin.  

Power spectral density (PSD), individual alpha frequency (IAF), and EEG asymmetry 

PSD was calculated using MATLAB’s pwelch function on 2-s hamming tapered windows (42.5 dB 

sidelobe attenuation) with 50% overlap (per guidelines; Allen, Coan and Nazarian, 2004; Smith et 

al., 2017), since the Welch method smooths over non-systematic noise and is more robust 
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compared to the more popular FFT method that is more sensitive to noise and nonstationarities. 

PSD estimates were then converted to 10*log10(power) deciBels (dB) as untransformed power 

values tend to be positively skewed due to individual differences in skull thickness that influence 

the signal amplitude (Allen, Coan and Nazarian, 2004). 

The individual alpha frequency (IAF) was estimated only using the alpha center of gravity (CoG) 

using the automated, open-source restingIAF plugin (Corcoran et al., 2017) since it provided the 

most robust estimates in our validation analyses reported in Chapter 6.  

Alpha asymmetry scores were obtained on the alpha PSD averaged over the predefined band (8-

13 Hz), averaged over the predefined lower (8-10.5 Hz) and upper (11-13 Hz) sub-bands. They 

were calculated following standard procedures by subtracting the alpha power of interest of the 

left channel from the right channel (alpha_power_dB – alpha_power_dB). Positive scores, 

therefore, indicate greater alpha power in the right relative to the left electrode. Asymmetry 

scores were also obtained from the temporoparietal (TP) channels, as well as on the delta (1-3 

Hz), theta (4-7 Hz), and beta (14-30) frequency bands. Gamma was not included due to the MUSE 

vulnerability to line noise and other non-brain artifacts that can occur in the high spectral 

frequencies, that are not accounted for by the cleaning method used in this study.  

7.2.4. Statistics 

Because of small portions of artifacts remaining in some EEG data after automatic preprocessing, 

robust least-squares regressions (Tukey's bisquare function; default tuning constant = 4.685) 

were used for statistical analysis to down-weight the residuals’ influence on the model, using 

iterative reweighted least-squares (IRLS; Huber and Ronchetti, 2009). See more detail on robust 

linear regressions in Section 5.2.4.). Robust linear regression models were generated in 

MATLAB 2021a using MATLAB’s fitlm package. All models were tested for lack of fit first 

using a degenerate model consisting of only a constant term (indicated by the F-statistics and 

associated p-value). The coefficient estimates are reported in the first column and indicate a 

significant linear relationship between the predictor and the outcome variables when p-values 

are present. Summary statistics of the models include the number of observations, the error 

degrees of freedom, the root mean squared error (RMSE), R2 (for models with one predictor), 

adjusted R2 (for models with multiple predictors).  
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7.3. Results 

230 participants remained for analyses after preprocessing (83 with at least one bad channel and 

36 with less than 60 s of artifact-free data; the data loss due to signal quality is discussed in the 

Discussion). They were aged from 22 to 80 years old (mean age was 55 +/- 13.4) and were 64.3% 

female, 28.7% males, and 7% "Other" or missing.  

7.3.1. Well-being and alpha asymmetry 

No association was observed between multidimensional well-being and FAA (whole band; Table 

6 and Figure 31). However, well-being was negatively correlated with temporoparietal (TP) 

alpha asymmetry scores (predefined 8-13 Hz band), reflecting greater cortical activity in the right 

TP area relative to the left is associated (assuming the inhibitory role of alpha oscillations on 

regional cortical activity; see Introduction). Detailed statistics are reported in Table 6 and an 

illustration of the results in the frequency and the scalp topography domain can be found in 

Figure 31, using the 20 participants with the highest well-being levels. The relationship between 

well-being and TP total alpha asymmetry scores appear to be driven more specifically by neural 

activity in the lower frequencies of the alpha band (8-10.5 Hz) because well-being was 

significantly correlated with lower alpha asymmetry but not with upper alpha asymmetry (see 

Table 7). 

Table 6. Well-being and alpha asymmetry (strict bounds at 8-13 Hz). 

Predictor  

variable β (SE) N (DF) 

Model 

 RMSE 

Model   

R2 

Model F-

statistic 

Frontal α  asymmetry 0.001 (0.002) 230 (228) 0.468 0.158 42.8*** 

TP α  asymmetry -0.007* (0.003) 0.808 0.036 8.51** 

p-values are reported with * (p-value < 0.05; significance at the 95% level), ** (p < 0.01; significance at the 99% 

level, and *** (p < 0.001; significance at the 99.9% level). p-values on the F-statistic indicate whether the model 

fit is valid or not, and p-values on the coefficient estimate that the linear relationship between the predictor and the 

response variables is significant. The standard error (SE) of the β coefficients' distribution is reported in parentheses. 

Each simple linear model follows the equation: Response variable ~ 1 + predictor. 
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Figure 31. Column A: These linear regression models of well-being and mean alpha asymmetry (predefined 8-13 

Hz band) show the absence of relationship at frontal channels (top) and the presence of one at temporoparietal (TP, 

bottom) channels. Higher well-being levels are associated with greater cortical activity in the right TP area relative 

to the left (assuming alpha inhibits regional cortical activity). Column B: Mean and standard error of the alpha 

power spectral density (PSD) from the 20 participants with highest reported well-being level at frontal (top) and 

TP (bottom) channels, illustrating the results reported in Panel A. Column C: Scalp topography of mean alpha 

PSD on a typical subject with low self-reported well-being (AIOS = 17; top) and high self-reported well-being 

(AIOS = 100; bottom), as an illustration of the effect reported in Panel A. 

 

Table 7. Well-being and temporoparietal (TP) lower/upper alpha asymmetry. 

Predictor  

variable β (SE) N (DF) 

Model 

 RMSE 

Model   

R2 

Model F-

statistic 

Lower α -asymmetry 

(8-10.5 Hz) 

-0.008* (0.003) 230 (228) 0.981 0.035 8.28** 

Upper α -asymmetry 

(11-13 Hz) 

-0.005 (0.003) 0.863 0.011 2.61 

p-values are reported with * (p-value < 0.05; significance at the 95% level), ** (p < 0.01; significance at the 99% level, and 

*** (p < 0.001; significance at the 99.9% level). p-values on the F-statistic indicate whether the model fit is valid or not, and 

p-values on the coefficient estimate that the linear relationship between the predictor and the response variables is significant. 

The standard error (SE) of the β coefficients' distribution is reported in parentheses. The multiple linear model follows the 

equation: Response variable ~ 1 + predictor1 + predictor2. 
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7.3.2. Well-being, alpha asymmetry (predefined 8-13 Hz band), and covariates 

Age was negatively correlated with alpha asymmetry calculated on the predefined 8-13 Hz band 

(meaning the older the individual, the greater cortical activity is in the right frontal and TP areas 

relative to the left ones) and positively correlated with subjective well-being levels (i.e., older age 

reflecting greater well-being score). However, gender was not associated the well-being or alpha 

asymmetry (Table 8 and Figure 32). 

 

Table 8. Well-being and alpha asymmetry, and covariates. 

Predictor 

variable β (SE) 

N (DF) Model 

 RMSE 

Model   

R2 

Model F-

statistic 

α -asymmetry (Frontal) 

Age -0.006* (0.002) 218 (216) 0.469 0.188 50*** 

Gender_Male 0.009 (0.071) 214 (212) 0.477 0.162 41*** 

α -asymmetry (TP) 

Age -0.009* (0.004) 218 (216) 0.819 0.026 5.76* 

Gender_Male 0.129 (0.123) 214 (212) 0.833 0.01 2.09 

Well-being 

Age 0.258* (0.100) 218 (216) 19.7 0.031 7** 

Gender_Male 0.68 (2.914) 214 (212) 19.7 0.003 0.56 

p-values are reported with * (p-value < 0.05; significance at the 95% level), ** (p < 0.01; significance at the 99% 

level, and *** (p < 0.001; significance at the 99.9% level). p-values on the F-statistic indicate whether the model 

fit is valid or not, and p-values on the coefficient estimate that the linear relationship between the predictor and the 

response variables is significant. The standard error (SE) of the β coefficients' distribution is reported in parentheses. 

Each simple linear model follows the equation: Response variable ~ 1 + predictor. 
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Figure 32. Left: Age is negatively associated with frontal (top) and TP (middle) alpha asymmetry scores, reflecting 

greater cortical activity in the right hemisphere relative to the left in older individuals. Age is positively associated 

with well-being levels (bottom). Right: Gender was not associated with any of the three variables. 

 

7.3.3. Well-being and alpha center of gravity (CoG) 

No linear relationships were observed between well-being and the CoG (Table 9), for both frontal 

and TP channels. 

Table 9. Well-being and alpha center of gravity (CoG). 

Predictor 

variable β (SE) N (DF) 

Model 

 RMSE 

Model   

R2 

Model F-

statistic 

Frontal CoG 0.001 (0.004) 
222 (220) 

  

1.04 0.003 0.735 

TP CoG 0.002 (0.003) 1.06 0.004 0.985 

 p-values are reported with * (p-value < 0.05; significance at the 95% level), ** (p < 0.01; significance at the 99% 

level, and *** (p < 0.001; significance at the 99.9% level). p-values on the F-statistic indicate whether the model 

fit is valid or not, and p-values on the coefficient estimate that the linear relationship between the predictor and the 

response variables is significant. The standard error (SE) of the β coefficients' distribution is reported in parentheses. 

Each simple linear model follows the equation: Response variable ~ 1 + predictor. 
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7.3.4. Well-being and EEG asymmetry in other frequency bands 

No associations were observed between well-being and EEG asymmetry in the delta (1-3 Hz), 

theta (3-7 Hz), or beta (14-30 Hz) frequency bands (Table 10, Figure 33). 

 

Table 10. Well-being and asymmetry in other frequency bands. 

Predictor 

variable β (SE) N (DF) 

Model 

 RMSE 

Model   

R2 

Model F-

statistic 

Frontal asymmetry 

Delta (1-3 Hz) 0.001 (0.003) 

230 (228) 

0.99 0.0313 7.37** 

Theta (3-7 Hz) 0.001 (0.002) 0.695 0.064 15.6*** 

Beta (14-30 Hz) 0.003 (0.003) 0.851 0.135 32.4*** 

TP asymmetry 

Delta (1-3 Hz) 0.001 (0.003) 

230 (228) 

1.03 0.001 0.029 

Theta (3-7 Hz) -0.003 (0.003) 0.775 0.006 1.36 

Beta (14-30 Hz) 0.001 (0.003) 0.909 0.002 0.41 

 p-values are reported with * (p-value < 0.05; significance at the 95% level), ** (p < 0.01; significance at the 99% 

level, and *** (p < 0.001; significance at the 99.9% level). p-values on the F-statistic indicate whether the model 

fit is valid or not, and p-values on the β coefficient estimate that the linear relationship between the predictor and 

the response variables is significant. The standard error (SE) of the β coefficients' distribution is reported in 

parentheses. The number of observations (N) and degrees of freedom (DF) are reported in column 3. Each simple 

linear model follows the equation: Response variable ~ 1 + predictor. 
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Figure 33. These linear regression models showed an absence of association between subjective well-being levels and 

PSD asymmetry in the Delta (1-3 Hz), Theta (3-7 Hz), and Beta (14-30 Hz) frequency bands. Note: Detailed 

statistics are reported in Table 10.  

 

7.4. Discussion 

7.4.1. Results summary 

Contrary to the existing literature on the emotional valence and the motivational models of 

frontal EEG asymmetry, we found an absence of association between multidimensional well-

being levels and FAA (whole band). However, well-being was negatively correlated with alpha 

asymmetry at the temporoparietal (TP) sites, reflecting greater cortical activity in the right TP 

area relative to the left (assuming the inhibitory role of alpha oscillations on regional cortical 

activity). Interestingly, the direction of the asymmetry is opposite to the one in the frontal areas 

in the literature of FAA. This effect appears to be driven more specifically by oscillatory activity 

in the lower frequencies of the alpha band (8-10.5 Hz), aligning with studies highlighting the 

inhibitory function of these lower frequencies (Oakes, 2004). Making the distinction between 

lower and upper frequencies of the alpha band seems therefore especially relevant for 

neurophysiological studies using source-localization or simultaneous EEG-fMRI techniques to 
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identify the intricate mechanisms involved in EEG asymmetry. Hence, while approach 

motivation and the related emotional processes are associated with relatively greater left than 

right frontal cortical activation, multidimensional well-being seems to be associated with 

asymmetric activation in the opposite direction in the TP areas, and specifically in the slower 

frequencies of the alpha range.  

While CoG is associated with cognitive processes, we hypothesized that it would also be 

associated with multidimensional well-being. Contrary to our expectations, the alpha center of 

gravity (CoG; robust estimate of the IAF) did not show associations with well-being levels.  The 

CoG may reflect other brain processes associated with cognition (e.g., memory) that are different 

from those involved with multidimensional well-being (e.g., emotion regulation, executive 

control). Future studies using advanced source localization methods and high-density EEG 

systems should elucidate the different sources and networks associated with the different sub-

components of alpha oscillations (i.e., CoG, lower/upper alpha), and identify their different 

associations with cognitive and executive systems. 

While some researchers suspected that gender was the main driver of frontal alpha asymmetry 

levels (Gale et al., 2001; Dennis and Solomon, 2010; Mikolajczak et al., 2010), it was not associated 

with well-being or alpha asymmetry measures (for both frontal and temporoparietal sites) in this 

sample. However, age was negatively correlated with alpha asymmetry scores of both regions 

(meaning that cortical activity is greater in the right areas relative to the left ones as age 

increases) and positively correlated with subjective well-being levels. This finding aligns with 

the well-being literature (e.g., Carstensen et al., 2011), and supports a strong mediator role of age 

on the relationship between well-being and TP alpha asymmetry. Age is likely not the 

mechanism of change itself but may represent many underlying factors associated with brain 

changes and well-being (Kazdin, 2007). Thus, future studies using larger samples and higher 

density EEG data are necessary to better understand this meditation effect of age. Interestingly, 

age was negatively correlated with alpha asymmetry scores of both regions (meaning that 

cortical activity is greater in the right areas relative to the left ones as age increases) and 

positively correlated with subjective well-being levels. While the latter goes along with well-

being literature (e.g., Carstensen et al., 2011), the former goes against the literature where 

positive emotional valence and approach motivation is associated with relatively greater left than 

right frontal cortical activity. These findings suggest that alpha asymmetry behaves in the 
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opposite direction for the TP area, and confirm the mediator role of age on the relationship 

between well-being and TP alpha asymmetry. Age is likely not the mechanism of change itself 

but may represent many underlying factors associated with well-being and brain changes 

(Kazdin, 2007). While some researchers suspected that gender was the main driver of frontal 

alpha asymmetry levels (Gale et al., 2001; Dennis and Solomon, 2010; Mikolajczak et al., 2010), it 

was not associated with well-being or alpha asymmetry measures in this sample. Further studies 

are needed to elucidate further EEG asymmetry's relationship with age, gender, and other 

associated factors. 

No associations were observed between subjective well-being and PSD asymmetry in the delta 

(1-3 Hz), theta (3-7 Hz), or beta (14-30 Hz) frequency bands, supporting the specificity of 

interhemispheric alpha asymmetry in the brain processes underlying well-being. 

7.4.2. Interpretations of the findings 

Despite these limitations, this study showed that it is feasible to use a low-cost, low-density 

wearable EEG system to examine the relationships between well-being and alpha asymmetry in 

a relatively large and diverse population. 

Previous research suggested that asymmetries in the anterior regions are more closely associated 

with affective processing, whereas those in posterior regions are more related to cognitive 

processing (Davidson, 1988). For example, stimuli that differ in affective valence affect FAA in 

the absence of any influence on parietal alpha asymmetry, whereas tasks designed to differentially 

require verbal versus visuospatial processing produce changes in parietal and temporal 

asymmetry in the absence of any modifications in frontal asymmetry (Davidson, 1985). Not only 

frontal and posterior regions may have a different functional significance of hemispheric 

specialization, but they seem orthogonal to each other (i.e., asymmetric activation in one area is 

not correlated with one in the other region, or even sometimes anticorrelated; Davidson 1988). 

Davidson and Tomarken suggested that the functional significance of asymmetries in these 

regions differ and that the degree to which one hemisphere is relatively more activated than the 

other in the frontal region is relatively independent of activation asymmetry in the parietal region 

at the same moment in time (Davidson, 1988). However, this relation between activation 

asymmetries was suspected to differ in certain clinical populations (Davidson, 1985).  
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Similarly, different subtypes of anxiety disorders are differently associated with asymmetric 

activity in frontal and TP regions (Heller et al., 1997; Nitschke et al., 1999; Engels et al., 2007; 

Mathersul et al., 2008; Müller et al., 2015). Greater left than right posterior alpha power is 

significantly predictive of antidepressant treatment response, whereas non-responders have 

shown the opposite asymmetric pattern in the frontal regions (Bruder et al., 2001, 2008). 

Decreased left anterior activation associated with depression remains even after remission, 

suggesting frontal asymmetry patterns may be a state-independent marker that indexes risk for 

depression (Davidson, 1988). Conversely, other findings suggested that TP asymmetry might be 

less stable over time compared to frontal asymmetry (Müller et al., 2015) and sometimes not 

associated with self-reported measures of affect and motivation (Sutton and Davidson, 1997).  

Furthermore, anxious arousal (i.e., panic) is associated with only frontal asymmetry (greater 

right than left frontal activation), whereas anxious apprehension (i.e., trait anxiety and 

generalized anxiety disorder) is associated with both frontal (the reverse direction) and TP (same 

direction) asymmetry (greater activation in the right relative to the left hemisphere; (Mathersul 

et al., 2008). Interestingly, anxious apprehension involves more worry and verbal ruminations 

whereas anxious arousal involves the physiological arousal and hyper-reactivity under conditions 

of panic, suggesting asymmetric activity in the TP area might be reflective of inner speech 

processes. Overt speech is associated with stronger activity in motor and sensory areas, 

associated with production (Broca’s area in the frontal lobe) and processing (auditory, Wernicke’s 

area, and associative regions in the temporoparietal areas) of one’s speech, whereas inner speech 

involves different areas that are associated with inhibition of overt response (cingulate gyrus, left 

frontal gyrus), suggesting inner speech is a motor simulation of speech that include motor 

planning but exclude motor execution (Perrone-Bertolotti et al., 2014; Loevenbruck et al., 2018). 

Decreased activation of Heschl’s gyrus (part of the temporal lobe containing the primary auditory 

cortex) and decreased activation of the left frontal gyrus was found during elicited inner-speech, 

whereas spontaneous inner speech (i.e., verbal ruminations or verbal mind wandering) is 

associated with increased activation of Heschl’s gyrus and no association with the left frontal 

gyrus (Hurlburt et al., 2016). Hence, the TP asymmetry associated with affect and anxiety might 

be associated with mental ruminations (involving inner speech), whereas frontal asymmetry 

might be more directly linked to affective and emotional processes directly. This was confirmed 

by Heller et al. (1997) that found a selective increase in right parietal activity in anxious 
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participants only during an emotional narrative task (involving verbal mechanisms) but not at 

rest.  

This body of literature suggests that EEG asymmetry in the TP areas might reflect different 

processes that are indirectly associated with depression, affect, and motivation or that might be 

more state-related (e.g., negative mind wandering and inner speech) compared to frontal 

asymmetry that seems more stable over time and to better reflect affective and motivational 

processes.  

Thus, alpha power picked up by posterior electrodes might reflect short-term current depression 

status and treatment response (therapeutic applications), whereas alpha power generated by 

frontal sources might better reflect traits and processes associated with the risk of depression 

(preventive applications). Frontal channels containing alpha activity from distal parietal and 

occipital sources might therefore reflect additional processes involved with current depression 

(and serve better as a rehabilitation tool), whereas alpha activity localized solely to the frontal 

areas would reflect the risk of future depression (and serve better as a predictor).  

Additionally, “manipulations of emotion systematically affects asymmetries in the frontal leads, 

in the absence of any reliable effects in parietal asymmetry at the identical points in time. 

Conversely, data were described which illustrated the effects of cognitive task demands on 

parietal asymmetry in the absence of any effects on frontal recordings at the same moments in 

time.” (Davidson, 1988).  

Depression is associated with a strategic attentional bias towards negative information and that 

this bias is stronger in individuals who habitually ruminate (Donaldson, Lam and Mathews, 2007; 

Peckham, McHugh and Otto, 2010). Parallel cognitive and affective phenomena associated with 

depression: discrepancies between perceived real and ideal self, increased affective response, self-

attribution for negative events, and accurate self-reports. And these processes are modulated by 

self-focused attention and can maintain or exacerbate depression by affecting how an individual 

regularly tends to attend to its inner thoughts and feelings (Smith and Greenberg, 1981; 

Paelecke-Habermann, Pohl and Leplow, 2005). Since participants were instructed to count their 

breath-cycle with eyes closed in this study, we may have measured the state-related variable 

associated with this task, which contains some attentional (focus of the breath), cognitive 

processes (counting), with distractions from the objective when mental ruminations (often of 
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inner speech nature) occurred. These mechanisms may therefore reflect the trait variable 

(dispositional tendency to attend to one’s inner thoughts and feelings) and explain the effects for 

this area in anxiety and depression. It may also reflect the general ability of individuals to do 

daily tasks (requiring attention and cognitive systems) and not get distracted and immersed in 

negative thoughts and ruminations (Donaldson, Lam and Mathews, 2007; Peckham, McHugh 

and Otto, 2010).   

Additionally, findings from studies using source-localization methods may have brought light to 

this matter. They show that FAA is source-localized mainly to the dorsal system of the 

frontoparietal network (dFPN; 13). Functional magnetic resonance imagery (fMRI) showed that 

this system is organized bilaterally and comprises the intraparietal sulcus (IPS) and the frontal 

eye fields (FEF) of each hemisphere, and is thought to mediate top-down guided voluntary 

allocation of attention to locations or features (Vossel, Geng and Fink, 2013). Both IPS and FEF 

are active when attention is overtly or covertly oriented in space and are suspected to be the 

regions for the maintenance of spatial priority maps, saccade planning, and visual working 

memory. In contrast, the ventral system of the frontoparietal network (vFPN) comprises the 

temporoparietal junction (TPJ) and the ventral frontal cortex (VFC) and is associated with 

detecting unattended or unexpected stimuli and triggering shifts of attention (Vossel, Geng and 

Fink, 2013). It has been proposed that the ventral system is lateralized to the right hemisphere 

of the brain and exhibits asymmetric activity during attentional reorientation, the processing of 

rare deviant stimuli, and the response to valid vs. invalid cued targets (Corbetta and Shulman, 

2002; Corbetta, Patel and Shulman, 2008; Doricchi et al., 2010). The functional role of the TPJ 

also includes filtering irrelevant distractors during focused states of attention, modulating neural 

activity between various networks, and it has been implicated in social cognition and theory of 

mind (Vossel, Geng and Fink, 2013). 

Hence, one might speculate that participants with lower subjective well-being were more likely 

to ruminate on negative thoughts or memories (associated with negative valence and a 

withdrawal motivation; Mason et al., 2013; Smallwood and Andrews-Hanna, 2013) and less able 

to redirect their attention to their breath. This would decrease their capacity to detect negative 

thoughts and redirect their attention to their breath, corresponding to relatively greater left than 

right cortical activity in the TP area. On the other hand, participants with higher well-being 

would be more likely to engage in mind wandering with positive valence and more likely to 
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redirect their attention to their breath, which would correspond to greater right than left cortical 

activity in the TP area. 

Furthermore, aging is associated with a positivity bias (referring to an “age-related trend that 

favors positive over negative stimuli in cognitive processing”; Reed and Carstensen, 2012), which 

could potentially explain the mediator role of age on TP alpha asymmetry and well-being. This 

phenomenon is thought to result from the fact that chronological age is inversely associated with 

actual and perceived time left in life, which drives differences in life goals (Reed and Carstensen, 

2012). 

CoG, typically associated with cognitive performance, was not associated with well-being levels, 

suggesting that the asymmetry was not largely affected by the cognitive component. The CoG 

was not associated with either well-being or alpha asymmetry (both frontal and TP areas).   

Future studies using high-density systems and advanced source-localization methods are 

necessary to confirm or disprove these hypotheses; i.e., TP asymmetry better reflects brain 

processes associated with mental rumination and cognition, are generated in the dFPN (with a 

focus on the TPJ), and is more influenced by the state variable. On the other hand, FAA would 

be more associated with brain processes involved in affect, motivation, and visual attention, 

generated in the vFPN, and more influenced by the trait variable and more stable over time.  

7.4.3. Limits 

There are several limitations of this study that should be considered when reviewing the results.  

While the AIOS-24h was found to be associated with longer-term well-being levels (see Chapter 

5), further validation is required to fully validate it as a measure of trait well-being. 

While the asymmetry scores showed a relatively high internal reliability consistency and the 

MUSE signal was validated for ERP and continuous research (Chapter 6), 83 files had at least 

one bad channel and 36 had less than 60 s of remaining artifact-free data after preprocessing. 

This is a significant loss of data. The largest loss of data came from the presence of bad channels 

(considered bad when at least 50% of the channel was artifactual), likely due to the headband’s 

flexibility that is prone to moving and disconnecting electrodes. Thus, future investigators could 

consider using the more recent Muse S that was developed for sleep studies. The Muse S is made 
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of a flexible fabric that can stretch and keep stronger pressure on the electrodes, preventing them 

from disconnecting as much. Furthermore, we recorded the data when participants already 

started the task with their eyes closed to reduce data cleaning over the large sample. Automatic 

cleaning performance would have likely been increased by adding a period before the task that 

includes obvious artifacts (e.g., asking participants to produce eye blinks and jaw clenching) to 

help the automatic method algorithms create a more robust baseline and therefore reject artifacts 

more efficiently. Thus, higher-grade and -density wearable EEG systems and longer recordings 

(at least 4 minutes of continuous data to ensure having at least 2 minutes of artifact-free data on 

a larger portion of the sample) are recommended for future studies to keep the advantages of 

wearable technologies to acquire large datasets without compromising data quantity and quality. 

The automatic artifact rejection method tested and used in this study showed  81% sensitivity 

(true positive rate) and 83% specificity (true negative rate), suggesting some subtle artifacts may 

have remained in the datasets and potentially affected the results. While high-frequency artifacts 

were removed by the 30 Hz low pass, and main ocular artifacts were removed by the algorithm 

(artifacts with high amplitude are the easiest to detect automatically), slow frequency artifacts 

can be produced by slow eye movements, even with eyes closed. Frontal recording sites are 

especially sensitive to this type of ocular artifact. While large eye movements famously generate 

lateral dipoles that could completely interfere with asymmetry measures (they are used to 

identify and reject eye movement artifact using ICA for example; Delorme and Makeig, 2004), 

whether slow eye movements with eyes closed create the same typical artifact dipoles is unknown 

to our knowledge and can vary depending on the direction of the eye movements. These artifacts 

might not be easily detected by both data analysts and automated methods. Electrooculography 

(EOG) electrodes can help in this regard but were not included in the wearable EEG system we 

used, since they typically require to be taped to the skin near the eyes. However, these artifacts 

contaminate mainly slow frequency spectral content (e.g., delta and theta; Davidson, 1988) and 

should therefore not have influenced too much the frontal alpha asymmetry measures in this 

study (and should therefore not explain the absence of association with well-being). Furthermore, 

biased asymmetry scores would represent large outliers in the data that were accounted for by 

the robust regression models.  

The Muse only has four channels. There are obvious benefits to having more EEG channels in 

terms of scalp distribution and data quality, which allow the use of advanced methods such as 
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independent component analysis (ICA) which can be used to remove subtle artifacts such as 

muscle activity, subtle eye movements, or channel noise (Makeig et al., 1996; Delorme and 

Makeig, 2004). Furthermore, while we controlled for the potential reference issue using this 

system, a wearable headset with at least 30 channels would allow multiple referencing potentials 

(e.g., average or CSD) and ensure highly accurate asymmetry estimates. However, this study 

showed that it is feasible to use a low-cost, low-density wearable system to examine the 

relationships between well-being and alpha asymmetry in a relatively large and diverse 

population. 

Linked-mastoids can contaminate alpha power in the frontal channels with the artifactual activity 

of opposing polarity from an occipital dipole (i.e., “alpha mirroring”; Hagemann, Naumann and 

Thayer, 2001). Thus, while the re-referencing method used in this study to obtain asymmetry 

scores that were correlated with conventional ones (F7/F8 averaged-referenced) compared to 

those using the Fpz-reference (see Chapter 6), it is possible that asymmetry scores in the frontal 

channels were contaminated by occipital alpha activity that was interfering with the alpha 

activity originating from frontal sources. However, Stewart and Colleagues (2010) found using 

advanced methods and a large sample that frontal asymmetry measured by CSD reference was 

associated with a trait-like marker of depression risk, whereas those obtained from average 

reference or linked-mastoids were found to be more strongly associated with the severity of 

current depression. Thus, frontal channels containing alpha activity from distal parietal and 

occipital sources might reflect processes involved with current depression (and serve better as a 

rehabilitation tool), whereas alpha activity localized solely to the frontal areas would reflect the 

risk of future depression (and serve better as a predictor). Similarly, alpha asymmetry solely 

captured in temporoparietal areas might reflect another dimension of depression.  

Lastly, cross-sectional designs are always a limitation to consider. More sessions would be 

beneficial for the field to confirm the results and assess changes in both well-being and EEG 

asymmetry to evaluate the stability of this relationship over time. 
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7.5. Conclusion 

Overall, this study brings practical methodological information, challenges, and guidelines for 

conducting EEG research in large samples on well-being or related neuropsychological 

constructs, using wearable EEG technologies. Despite the limitations discussed, our findings 

bring novel knowledge that will help deepen our understanding of EEG asymmetries and their 

relations with well-being, the potential underlying neural networks and mechanisms, and the 

foreseeable long-term applications.  
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Chapter 8. Future directions related to the project 

This chapter discusses the short-term future directions, directly related to this project.  

______________________________________________________________________________ 

 

8.1. Experimental design 

The first direction is to assess whether the MUSE can detect the typical association between 

FAA and affective and motivational measures (as in most of the literature) to confirm whether 

the absence of effect is due to the EEG recording system and referencing method (although we 

suspect it is not the case since other studies observed FAA effects with similar montages and we 

validated the measurements obtained with this system), or because multidimensional well-being 

encompasses other psychological constructs not associated with FAA, or if it is due to the 

experimental task (breath-counting instead of rest without instructions). Longer periods of data 

should be used (e.g., 8 1-m segments) to optimize internal consistency reliability, optimize data 

cleaning performance using more advanced methods (e.g., ICA), and increase influences from the 

trait variable while reducing state-related ones (e.g., inner speech, mind wandering, the current 

state during participation). Angelakis and colleagues (2007) proposed that “Traits are better 

reflected during post-task rest, whereas states are better reflected during initial resting baseline 

recordings.” Hence, one might better capture trait EEG asymmetry with several longer segments 

alternating between two types of task for example. Addressing these points will elucidate 

whether the effect in the TP alpha asymmetry is due to these factors associated with the short 

data length and the task, or with robust trait-related processes associated with multidimensional 

well-being.  

Additionally, basal cortisol and depressed mood levels are highest during the fall and winter and 

lowest in spring (King et al., 2000; Oyane et al., 2008), and both are associated with relatively 

greater right than left frontal activity (Kalin et al., 1998; Buss et al., 2003). Like frontal 

asymmetry, higher basal cortisol is linked to personality traits (Schmidt, 1997) and anxious 

depression, and are modulated by genes and allostatic load (i.e., cost of chronically elevated 

endocrine or neural responses resulting from chronic stress associated with the HPA function 
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described in section 4.2.; e.g., Schulkin, Gold and McEwen, 1998). Similarly with circadian 

rhythms, basal cortisol levels and negative mood increase in the morning and decrease 

throughout the rest of the day, with the lowest levels at night (King et al., 2000; McClung, 2013). 

Thus, future research might cluster participants per time of day and time of year to see if 

differences in FAA can be detected. In which case it would suggest that this variable should be 

taken into account when investigating EEG asymmetry. Alternatively, one might measure 

cortisol levels using simple, stress-free, non-invasive collection procedures of salivary cortisol 

(e.g., Vining et al., 1983) and test direct correlations between the FAA, well-being, and time of 

day and year.  

8.2. Automated removal of non-brain artifacts 

Critiques have been made regarding the viability of wearable EEG headsets for conducting EEG 

research in non-laboratory or non-clinical settings (Cester et al., 2008; Przegalinska et al., 2018). 

EEG wearables systems will always face the challenges (that can exist in almost any data 

collection environment) of successfully collecting high fidelity EEG data acquisition. Real-time 

applications require the online detection of EEG markers for each individual, which can be 

largely biased by contamination of the data from non-brain artifacts. This is especially relevant 

since EEG data are more contaminated by artifacts and noise with wearable systems since 

participants have more mobility, and dry electrodes disconnect more easily and contain more 

noise (poorer impedance) than conventional wet electrodes.  

Electromyogenic (EMG; i.e., electric signals associated with muscle activity) artifacts are the 

biggest threat to mobile EEG applications focusing on the frequency domain, because it is often 

subtle and hard to detect automatically, and can mask relevant brain signals. While some 

advanced methods have been developed to protect against them during offline analysis (e.g., ICA; 

see section 3.2.2.), they perform best on higher-density EEG montages and more data. No real-

time automatic technique addresses this issue perfectly yet, to our knowledge. 

The automated method employed in this study to preprocess 353 files achieved satisfying 

performance but missed some small artifacts and removed more data than manual cleaning on 

already short data files. However, ASR (Euclidean or the Riemannian method; see section 3.2.2.) 

should perform better on similar montage but longer data files (at least 4 minutes) and by adding 
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a period before the task where participants would be instructed to open and close their eyes, do 

slow eye movements, and clench their jaw to generate several different types of non-brain 

artifacts, to improve the accuracy of the “reference” data used to detect artifacts.  

Some authors proposed that clean EEG data is not necessarily crucial when the sample size and 

several observations can reach large scales (i.e., big-data) since outliers can be dealt with 

efficiently and statistical power is increased (Meisler, Kahana and Ezzyat, 2019). Machine-

learning (ML) algorithms (described in more detail in section 9.1.) might increase the reliability, 

accuracy, and variety of artifacts that can be corrected without losing the brain signal of interest 

(e.g., (Shao et al., 2009; Barua and Begum, 2014; Radüntz et al., 2017; Kang et al., 2018; 

Golmohammadi et al., 2019; Nejedly et al., 2019; Pedroni, Bahreini and Langer, 2019). However, 

caution should be taken as they can also present biases, including sampling error, measurement 

error, multiple comparisons errors, or large inferential error (Kaplan 2014). These biases have 

greater implications on large datasets because they can magnify sampling or study design biases. 

Furthermore, these solutions can only be applied offline on large EEG data, but cannot be 

implemented in real-time for mobile or remote EEG applications, since the algorithms “learn” 

from an existing dataset. 

Alternatively, some recent “simpler” methods have been developed specifically in the context of 

single-channel processing for wearable EEG applications, which may be promising for this field. 

For example, some researchers used a gaussian mixture model to improve the quality of EEG 

signals and a canonical correlation analysis decomposes the signals into different components 

(similar to PCA and ICA), followed by feature extraction and clustering to remove artifacts (Cao 

et al., 2019). Other investigators implemented a discrete wavelet transformation (multi-resolution 

representation of signals and images that decomposes signals into multiscale representations) to 

reconstruct ocular artifacts and adaptive noise cancellation based on recursive least squares to 

remove them from the original data (additive noise interference used as a reference when 

adjusting coefficients automatically to achieve optimal results; Hu et al., 2015). These approaches, 

along with other recent ones (Lan et al., 2005; Lemm et al., 2005; Dhindsa, 2017; Chavez et al., 

2018; Jebelli et al., 2018; Mahmoodi et al., 2021) are developed for real-time mobile EEG purposes 

and are therefore proposed to be more suitable for non-stationary EEG signals by providing fast 

computation and reliable artifact rejection and reconstruction on single-channels. These 
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algorithms are designed to detect small artifacts in the presence of high amplitude EEG, making 

it particularly useful for wearable EEG uses.  

8.3. Spatial and source distributions of alpha oscillations 

While alpha activity reflects the large-scale synchronous activity of broad networks and can be 

recorded at all recording sites (and therefore a few sparse recording sites as with the low-cost 

system used in this study; see section 4.4.2.), the spatial differences and their meaning in terms 

of physiological and cognitive processes must be better understood.  

Nunez and Colleagues (2016) showed that “split” alpha peaks (several spectral peaks in the alpha 

band distribution) have distinct spatial and source distributions over the scalp and that the choice 

of epoch length to calculate the spectra will either enhance or smooth this phenomenon (Nunez 

et al 2016). This is illustrated in Figure 34 where a resolution of 0.5 Hz (2 s window) reveals one 

peak below 10 Hz and one above (left), whereas a lower resolution of 1 Hz only highlights a 

single peak below 10 Hz (right). The higher the frequency resolution (one 60 s epoch without 

averaging), the more precision in the FFT is obtained, but no information about the statistical 

properties of the underlying random process is gained. To go further, the authors found that the 

two distinct peaks had distinct spatial distributions over the scalp, suggesting that they have 

different source distributions (Ombao et al., 2016).  
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Figure 34. Left: power spectra (top) and IAF (bottom) of 30 2-sec epochs (0.5 Hz resolution) showing one peak 

below 10 Hz and one above. Right: power spectra (top) and IAF (bottom) calculated on 60 1-sec epochs (1 Hz 

resolution) showing only the peak below 10 Hz. Source: Nunez, Nunez and Srinivasan (2016).  

Hence, the choice of the epoch length is crucial when calculating alpha power. Higher-resolution 

should be favored when examining the spatial distribution and resolution of alpha oscillations. 

We used the default 4 s window (high-frequency resolution) in this study to estimate the IAF, 

which better reflects global dynamics relative to local dynamics that fluctuate more (see section 

4.4.2.). As a consequence, split peaks were enhanced, which may have led to the misestimation of 

peak alpha frequency (PAF) for some subjects in Chapters 6 and this chapter. While the alpha 

center of gravity (CoG) performed better in these situations, further research should determine 

what source(s) and processes this measure reflect, and if it misses important nuances between 

subcomponents of the band (e.g., lower and upper alpha frequencies) by assessing the IAF over 

the smoothed distribution over the whole alpha range (the restingIAF toolbox uses smoothing 

filters).  

Similarly, future research should confirm whether asymmetry in frontal areas has different 

sources than that in the TP areas, or whether they have different phases but represent delayed 

conduction between the two areas. Coherence analyses could provide light to this question by 

determining whether left frontal activation precedes right TP activation, which inhibits the 
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contralateral hemisphere (which would correspond to the synchronized phase with a lag between 

the two areas). Future studies using high spatial and temporal resolution methods (e.g., surface 

Laplacian or EEG source-localization) should attempt to determine which subtypes of inhibition 

alpha oscillations reflect (see sections 1.3. and 4.4.2.). One may speculate that local alpha reflects 

feedback inhibition (interneuron’s activity to reduce the increased activity of a principal cell in an 

oscillatory manner, increasing its spike timing) necessary for modules coherence at the local 

level, whereas global alpha may reflect lateral inhibition (activation of a principal cell targetting 

another interneuron) that can trigger chains of inhibitory/excitation reactions in a whole 

network. Interestingly, lateral inhibition shows competitive asymmetric phenomena that are 

responsible for the necessary segregation of cortical assemblies (i.., winner-take-all mechanism). 

These lateral inhibitory dynamics may be the basis of alpha asymmetries, and dysfunctions in 

this system may explain the neuropathologies associated with abnormal asymmetries (see section 

4.4.3.).  

An exploratory analysis assessing interactions between asymmetries in different frequency bands 

(see Annexe 2) suggests that asymmetries in lower frequencies (delta, theta, and alpha) interact 

locally (within frontal and TP areas), whereas only alpha asymmetries interact with themselves 

between distant regions (frontal and TP areas). These findings go along with the literature 

described in section 4.4.2. on alpha coherence at both short and long distances, and reinforce the 

top-down regulatory role of alpha oscillations at the global level. Interventions implementing 

neurofeedback or neuromodulation techniques (described in more detail in sections 9.3. and 8.4.6., 

respectively) might be especially useful to re-establish the balance of these top-down inhibitory 

systems.  

Future research should further elucidate the sources and distributions of alpha oscillations and 

asymmetries (including their sub-components) associated with well-being, as well as the 

asymmetric interactions with these other slow frequencies. This can only be done using high-

density EEG recordings, and high-resolution methods such as the Spline-Laplacian or Dura 

image (see section 2.1. and 4.4.2.), current-source density (CSD) reference-free signal (Tenke et 

al., 2011; Smith et al., 2017), source separation as with ICA (see section 3.2.2.), or source-

localization methods like eLoreta (Marqui 1999; Aoki 2015). The independent modulator analysis 

(IMA; Onton and Makeig, 2009a), implemented in EEGLAB, is a promising tool to advance this 

area of research, by identifying the nodes generating alpha oscillations measured at the scalp in 
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the source domain using ICA (Julie Onton and Makeig, 2009). Better understanding the 

interactions between subcomponents of alpha oscillations and sources in different states will be 

crucial for the accurate implementation of this spectral measure into interventions.  

Simultaneous EEG-functional magnetic resonance imaging (fMRI) recordings (Allen, 2013), 

magnetoencephalography (Domschke et al., 2015; Onoda et al., 2007), source estimation 

(Pizzagalli et al., 2005; Smith, Cavanagh, & Allen, 2013), time-frequency analyses (Allen & 

Cohen, 2010), and scalp-level functional connectivity metrics may all be useful for revealing 

neural circuitry that contributes to alpha asymmetries and how subcomponents might be 

differentially involved in processes associated with well-being (Pizzagalli 2005; Smith 2018). 

Ultimately, a comprehensive model should examine EEG asymmetry as an indicator of both 

psychological and neural phenomena. 

8.4. Theta oscillations and well-being 

Aside from EEG asymmetry, theta power has been used to study depression and predict the 

antidepressant response (Baskaran, Milev and McIntyre, 2012; Olbrich and Arns, 2013). Theta 

power showed mixed associations with depression. While decreased theta band activity before 

treatment has been associated with treatment response (Knott et al., 1996; Iosifescu et al., 2009), 

increased theta power before treatment has also been associated with respondent/non-

respondent differentiation (Knott et al., 2000; Spronk et al., 2011). Studies using low-resolution 

electromagnetic tomography analysis (LORETA) source-localized pre-treatment theta power 

positively associated with treatment response to the rostral ACC (rACC; Pizzagalli et al., 2001; 

Mulert et al., 2007; Korb et al., 2009).  This relation was later confirmed to be (Pizzagalli et al., 

2001, 2018). Theta cordance combines absolute and relative power (percentage relative to the 

total spectrum) and was suggested to better reflect regional cerebral perfusion than mean theta 

power  (Leuchter et al., 1994). It is less affected by demographic covariables or depression severity 

(Morgan et al., 2005). Frontal theta cordance has been used to predict antidepressant treatment 

response in depressed patients with 77-88% accuracy (Cook and Leuchter, 2001; Cook et al., 2002; 

Bares et al., 2008). Theta cordance involves very simple computation resources (like alpha 

asymmetry) and should be considered in future research using wearable systems to study well-

being. Similarly, cross-frequency analyses of asymmetry should be investigated.  
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8.5. Beta oscillations and well-being 

Both alpha and beta power are associated with high and severe mental stress (Hayashi et al., 2009; 

Jena, 2015; Al-shargie et al., 2016; Jun and Smitha, 2016; Al-Dabass, 2020). Note that several of 

these studies use a nonlinear approach to study beta spectral power in relation to stress. Another 

study using an inter-channel frequency correlation approach suggested that stress and anxiety 

were more specifically associated with high-beta frequencies (22-30 Hz), rather than only the 

power activation of the beta frequency range (Díaz et al., 2019). Other studies found alpha-beta 

ratios (Hamid et al., 2010) and theta-beta ratios (Putman et al., 2014) to be negatively associated 

with stress levels. While beta power seems like a good candidate to study stress and well-being, 

no consensus exists to our knowledge regarding the direction or the spatial location of these 

associations, or the underlying mechanisms. Some authors report positive correlations between 

stress and beta power, while others report negative relationships. A recent paper addresses these 

limitations. The authors observed positive correlations between prefrontal beta power and 

depression (r = 0.31) and anxiety (r = 0.48). Mood scores were negatively correlated with beta 

power in the lateral sites and positively correlated with beta power in the mesial areas. The 

authors suggested that the results were in line with the dichotomous organization of reward 

networks in the PFC (de Hemptinne et al., 2021).  

8.6. Multimodal neuroimaging  

Future research might find more robust correlates of well-being by combining EEG with other 

physiological measures such as electrocardiography (ECG; Riera et al., 2008; Ahn, Ku and Kim, 

2019), eye-tracking (Soussou et al., 2012), or galvanic skin response (GSR; Udovič ić  et al., 2017) 

that can easily be combined with wearable EEG systems.  

Heart rate variability (HRV) is the change in the time intervals between adjacent heartbeats that 

may be used to predict future health outcomes (Tsuji et al., 1994; Dekker et al., 1997; Shaffer, 

McCraty and Zerr, 2014). Reduced HRV has been shown to correlate with disease onset and 

mortality as it reflects the reduced regulatory capacity of the body to adapt and respond to 

challenges like exercise or stressors (Dekker et al., 1997; Beauchaine, 2001).  
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We built custom ECG electrodes that connect to the MUSE Auxiliary port and can be simply 

taped to the participants’ wrist. Both EEG and ECG signals are then time-locked, meaning they 

are synchronized in time, and interactions between the EEG and the ECG can easily be analyzed 

without requiring offline synchronization. We recorded simultaneous EEG and ECG on 62 

participants during this project using our custom-made ECG electrodes and the MUSE, which 

can be easily imported into EEGLAB using the plugin developed for this study (see Annexe 1). 

However, these data have not been analyzed yet. ECG signals can be used to evaluate the HRV 

correlates of well-being (Geisler et al., 2010), to remove ECG artifacts from the EEG data 

(Nakamura and Shibasaki, 1987), to improve the performance of pathology detection by 

combining information from both EEG and ECG (Valderrama et al., 2012), or to assess the 

interactions between the heart and the brain activity (e.g., Jurysta et al., 2003; Kokonozi et al., 

2008; Valderrama et al., 2012; Schiecke et al., 2016; Raimondo et al., 2017; Ramasamy and 

Varadan, 2017).  

To go further, research-grade wearable EEG systems can now be combined with fNIRS (Kernel, 

2021; Neuroelectrics, 2021d) or neuromodulation tools transcranial direct current stimulation 

(TDCS; Neuroelectrics, 2021b). Combining EEG and fNIRS will help better understand the 

interactions between the hemodynamic (BOLD) response and mean-field potentials, or improve 

the performance of EEG classification (Yin et al., 2015). Neuromodulation techniques may be 

used to directly modulate specific networks such as the frontoparietal network (FPN), associated 

with processes underlying EEG asymmetry. For example, some clinical studies have shown that 

exciting the left dlPFC with transcranial magnetic stimulation (TMS) or transcranial direct 

current stimulation (tDCS) improved depression symptoms (Kalu et al., 2012). Conversely, 

excitation of the right dlPFC led to reductions in craving (Boggio et al., 2008; Fregni et al., 2008) 

and risky decision-making (Fecteau et al., 2007), i.e., behaviors associated with difficulty in 

inhibiting extreme rewards with positive valence and urgency. Additionally, Sanguinetti et al. 

(2020) recently used novel transcranial focused ultrasound stimulation to target the right 

prefrontal cortex with higher resolution and depth than TMS or tDCS and successfully 

modulated mood and emotion regulation. By modulating both bottom-up and top-down systems, 

long-term solutions without side effects and at lower costs will emerge by helping patients self-

control negative biases (Moser et al., 2002; Hanslmayr et al., 2011).  
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In the “open-loop” approach, currents are applied to the brain independently of the brain state. 

The biggest limitation for neuromodulation techniques is the state-dependency of the brain, i.e., 

neural populations are modulated differently depending on their current excitation states, 

leading sometimes to opposed effects than those desired (e.g., exciting instead of inhibiting a 

network because of an emotion the subject is experiencing at that moment).  New advancements 

in this area should solve this issue (Metsomaa et al., 2021). In the “closed-loop” approach, real-

time EEG is used to assess the current states of brain regions and adjust the TDCS parameters 

accordingly. For example, the peak frequency of a given frequency band measured by EEG can 

be used to modify the stimulation frequency (the same can be done with phase but requires faster 

temporal resolution). Hence, a simultaneous EEG-TDCS headset can not only help better 

understand the mechanisms underlying specific cognitive processes and systems (via inhibition 

and excitation of neuronal populations) but also observe the effects on the EEG data that are 

recorded simultaneously.  
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Chapter 9. Future directions for the broader field of wearable 

EEG  

This chapter discusses the current and future applications of wearable EEG technology in experimental, 

clinical, and “real-world” settings.  

______________________________________________________________________________ 

 

9.1. Big data and machine learning 

A majority of neuroimaging studies are conducted on small samples due to the cost and time-

consuming nature of measuring EEG on large groups of participants. One main limitation for 

using wearable EEG systems in ecological environments or collecting large datasets used to be 

the need for fragile, costly optic fibers to stream the data or the advanced programming skills 

required to interface with the recording system to collect the raw data (using APIs from 

manufacturers). The lab streaming layer (LSL) is “a system for the unified collection of 

measurement time series in research experiments that handles both the networking, time-

synchronization, (near-) real-time access as well as optionally the centralized collection, viewing 

and disk recording of the data.” (Lab Stream Layer, 2021). It is compatible with all the main 

programming languages and interfaces and is integrated into EEGLAB. This tool simplifies the 

acquisition and recording of EEG data from portable consumer devices by providing a single 

efficient interface, with applications in areas such as basic and behavioral research, prototyping, 

neurogaming, arts, and home-based applications. Such tools are actively being developed to help 

facilitate the recording and streaming of EEG data from consumer headsets that can be interfaced 

with a variety of programming languages and software packages, allowing for interchangeability 

across devices. Furthermore, recent advancements in cloud data storage and open-source 

platforms can lead to the availability of large datasets, reducing costs associated with data 

collection (purchase of equipment, financial compensations to subjects, salary of the person 

recording the data, repairs, etc.).  
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With larger data samples come more robust statistical inferences about the general population, 

as well as a better representation of the sociodemographic differences. Large datasets bring many 

advantages, such as capturing rare events, and implementing robust statistical methods that 

better account for outliers (e.g., IRLS, WLS). They can also reduce costs of investigation and 

time to evaluate research questions or record new participants (by answering different research 

questions with the same dataset).  

The use of wearable EEG technology can help record patients that cannot attend specialized 

centers and facilitate access to more diverse populations and to larger samples, which improves 

the accuracy of the statistical inferences about the general population, and classification accuracy. 

For instance, Hashemi and colleagues (2016) recorded EEG data on 6029 subjects ranging from 

18 to 88 years in age using the MUSE headset in a representative population of individuals 

completing the tasks in uncontrolled natural environments. They identified age-related shifts in 

EEG activity on a year-by-year scale, as well as how these changes differed between males and 

females.  

Furthermore, the increasing availability of large, openly available datasets and advanced 

computational tools like machine learning (ML; Marcus et al., 2011; Poldrack and Gorgolewski, 

2014; Niso et al., 2016) is propelling the field toward understanding the biological nature of 

individual traits and behavior, an overarching objective of neuroscience research ((Miller and 

Van Horn, 2007; Van Horn, Grafton and Miller, 2008). For example, in the clinical field of 

“pathology decoding” (diagnostic and prediction of pathology from EEG recordings using 

machine learning methods), Gemein et al. (2020) found differences in age and gender as a function 

of the evolution of pathology between the first and final clinical evaluations, using a sample of 

3000 clinical EEG recordings (Figure 35; Gemein et al., 2020).  

Machine learning (ML) methods for automatic EEG classification are being developed to detect 

and predict pathologies such as epileptic seizures (Subasi, Kevric and Abdullah Canbaz, 2019), 

depression (Cai et al., 2016), stroke (Giri et al., 2016), or general abnormal EEG (López et al., 

2015; Roy, Kiral-Kornek and Harrer, 2019). They address limitations from traditional 

manual/visual evaluation that are time-consuming, require extensive training, present unclear 

criteria for decision making, and can be prone to subjective judgment errors. Automatic ML 

algorithms can support clinicians in making decisions regarding the presence or absence of 
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pathology, or help predict their future appearance, by identifying features that might be invisible 

with small samples or visual examination.  

 

 

Figure 35. Examples of trends in EEG as a function of age and pathology can be highlighted using big data and 

machine-learning methods. These results show trends in the data, i.e., mediator roles of covariables such as age and 

gender on the relationship between EEG and mental illness. This type of data clustering and identification of trends 

is not possible with small samples and is useful for mental illness detection applications to take into account 

interindividual differences. Source: (Gemein et al., 2020). 

There are two main ML approaches for EEG research. “Feature-based” and end-to-end (deep 

learning) decoding. The former is the most used historically in the clinical context, and consists 

of preselecting features in the EEG data for the detection of pathology (e.g., the specific frequency 

band of the power spectrum). This method is limited by the expertise of the experimenter and 

knowledge available in the literature, which can limit the quality of the results, but is easier to 

interpret and make decisions from these results. Feature-based ML methods include for example 

random forest (RF; Breiman, 2001), support vector machine (SVM; Boser, Guyon and Vapnik, 

1992), Riemannian geometry (RG; Congedo, Barachant and Bhatia, 2017), or the auto-sklearn 

classifier (ASC; Feurer et al., 2015). 



 

162 
 

Deep learning, “end-to-end” decoding has been more dominantly used in the research field such 

as computer vision (Krizhevsky, Sutskever and Hinton, 2017), speech recognition (Hinton et al., 

2012), and artificial neural networks (Craik, He and Contreras-Vidal, 2019; Roy et al., 2019). This 

approach deals better with minimally processed data, and the algorithms learn features 

themselves, optimizing the feature extraction and classification. The advantage is that it can lead 

to unexpected features that were not anticipated, but can be a problem because it is a challenge 

to understand what they learned (the “black box” problem; Montavon, Samek and Müller, 2018). 

Convolutional neural networks (CNN or ConvNets) are neural networks using filters and 

weights to represent an organization in layers and interconnections inspired by the brain 

architecture (LeCun et al., 1999). They are promising end-to-end decoding tools for EEG 

classification. For example, the 4-layer “Brain decode Deep4 ConvNet'' (BD-Deep4; van Leeuwen 

et al., 2019) has shown success for decoding motricity (movement preparation and execution; 

Schirrmeister et al., 2017), velocity, and speed decoding (Hammer et al., 2013), and pathology 

(van Leeuwen et al., 2019). Another example is the TCN (Bai, Kolter and Koltun, 2018), a CNN 

optimized for EEG decoding with a neural architecture search.  

Both feature-based and deep learning decoding approaches present many groundbreaking 

advancements in personalized medicine and healthcare quality (Rajkomar et al., 2018). Recent 

findings suggested that both approaches (including several ML methods from each approach) 

perform similarly in the range of 81-86% of accuracy at decoding EEG pathology (van Leeuwen 

et al., 2019; Gemein et al., 2020). Interestingly, they focused on similar features of the EEG data, 

that is delta and theta band power at temporal electrode locations (Gemein et al., 2020). These 

big-data archives along with the use of robust ML and statistical methods might uncover, in the 

long term, robust patterns and trends in brain activity that have not been previously possible 

with smaller data sets.  

However, the challenge is to identify individual differences using large group datasets (Dubois 

and Adolphs, 2016; Mišić  and Sporns, 2016; Mars, Passingham and Jbabdi, 2018). Similar to 

fMRI research, recent findings suggest that EEG signals can be used to authenticate and 

differentiate individuals, corresponding to the human brain's “fingerprint” (Van De Ville et al., 

2021). While longer periods of signal show higher performance (frontoparietal-DMN driven), 

this was possible with very short segments of data (“bursts of identifiability”, visual-somatomotor 

driven). This was done using both advanced functional connectome and simpler spectral 
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measures. Another study indicated that differentiation of individuals could be achieved from the 

simple spatial distribution of spectral power, with as short as 30 seconds of resting-state data, 

and that this was robust over time (weeks later; da Silva Castanheira et al., 2021). Individual 

connectomes were derived in all frequency bands from an amplitude envelope correlation 

approach, suggested to detect signal-coupling without phase coherence even among incoherent 

signals (Bruns et al., 2000). These findings suggest that interindividual differences might be 

detected using these signal processing methods. This analysis was done using 158 participants 

from the OMEGA Open MEG Archives (Niso et al., 2016). Interestingly, individual 

differentiability was not associated with demographics or data length in this study.  

Similar to the anatomical brain atlases constructed from MRI data (e.g., the Julich-Brain Atlas; 

Amunts et al., 2020), EEG atlases could be built in the near future, using large samples collected 

with wearable technologies, to obtain templates of “normal EEG” or “healthy EEG” for example. 

In the case of the Hashemi (2006) study mentioned above, the groundbreaking component is that 

EEG data were self-recorded by the participants from their homes (InteraXon, 2021). The 

validity and value of such databases will depend on the signal quality being measured by users. 

Users lack basic training and experience in EEG recording movement artifacts and inaccurate 

electrode position (even if some Apps provide clear instructions and visual feedback about 

electrode impedance). As a consequence, a large portion of data is usually lost due to these low-

quality recordings. Future advancements in artifact reconstruction might solve this issue (see 

Section 8.4.2.). 

9.2. Brain-computer interfaces (BCI)  

A brain-computer interface (BCI) is defined as “a system that records central nervous system 

(CNS) activity and translates it into artificial output that replaces, restores, enhances, 

supplements, or improves natural CNS outputs; it thereby modifies the interactions of the CNS 

with the rest of the body or with the external world.” (Wolpaw, Millán and Ramsey, 2020). The 

most used target for BCI applications is the detection of a particular pattern in EEG signal, 

following fast preprocessing and extraction of the feature (Nicolas-Alonso and Gomez-Gil, 2012). 

Thus, most non-invasive BCIs rely on the high temporal resolution of EEG. Furthermore, EEG-

based BCIs hold the most potential for true wearable BCIs with its low-cost and accessibility 
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(Cohen and Gulbinaite, 2017). Features from EEG signals, often in the time domain (i.e., ERP 

components), are translated by the interface into commands that can replace, restore, enhance, 

supplement, or improve natural CNS outputs (see Figure 36).  

 

Figure 36. The five types of uses of a brain-computer interface (BCI): replace, restore, enhance, supplement, or 

improve, central nervous systems outputs (e.g., movement, communication). Source: (Wolpaw, Millán and 

Ramsey, 2020).  

The four typical EEG patterns used in BCI systems include the P3 (used generally for bi-

directional communication BCIs),  the mu  (i.e. 8-12 Hz) and beta (i.e. 18-26 Hz) rhythms (usually 

used for sensorimotor BCIs), and the steady-state visual evoked potentials (SSVEP;  visual BCIs). 

For bidirectional BCIs, a decoder translates recorded EEG signals into motor commands and an 

encoder delivers sensory information from the environment to the brain creating a closed-loop 

system (Boi et al., 2016).  

BCIs can be used to facilitate linguistic communication, with the most renowned BCI paradigm 

being the P3/P300 speller dating back to 1988 (Farwell and Donchin, 1988; Mellinger et al., 

2004; Cipresso et al., 2012). Other BCIs allow the patients to navigate text, to control a cursor 
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on a computer screen, browse forward and backward or use bookmarks (Kübler et al., 2005; 

Krusienski et al., 2007; Fruitet, McFarland and Wolpaw, 2010; Mugler et al., 2010).  

Under certain circumstances, patients can regain partial if not all of the lost motor control if 

provided effective rehabilitation. Motor-imagery-based BCI (Curran and Stokes, 2003) have been 

used as a means of providing patients real-time visual feedback of limb movement (corresponding 

to the injured limb) through a representative simulation on a computer screen. BCI protocols 

host the potential to accelerate rehabilitation through repeated reactivation of the underlying 

neural pathways (Pfurtscheller et al., 2006; Güneysu and Akin, 2013). A difficult and frequent 

obstacle present in patient rehabilitation involves maintaining the necessary levels of motivation 

to remain persistent during repetitive and demanding physical tasks. BCI rehabilitation 

paradigms may improve patients’ sense of well-being and motivation by providing more 

entertaining and engaging interfaces (e.g. video games) as opposed to more traditional 

clinical/medical settings.  

When rehabilitation is not possible, prosthetic control can still provide improved mobility 

assistance, while promising research on BCI-controlled wheelchair movements may soon be an 

option for patients with paralysis (Carlson and Millan, 2013). The complex control commands 

required for robotic prosthetic limbs or exoskeletons have evaded BCI scientists for the last few 

decades. However, recent advancements have overcome several key limitations (McFarland, 

Sarnacki and Wolpaw, 2010). BCI patients are now capable of moving prostheses with increasing 

accuracy, flexibility (Clement, Bugler and Oliver, 2011), and affordability with the advancements 

in 3-D printing technology (Sullivan, Oh and Taylor, 2017).  

Some simple versions of BCI (prototypes) use simple features like eye-blinks or the breath, which 

cannot be used by patients with paralysis (e.g. late-stage ALS, high-level spinal cord injury, 

stroke/aphasia, autism, severe cerebral palsy). A recent study developed a way to allow locked-

in amyotrophic lateral sclerosis patients (ALS, a progressive neurodegenerative disease that 

affects nerve cells in the brain and the spinal cord leading to paralysis) to remotely control a 

humanoid robot using their EEG activity (Spataro et al., 2017). Their findings show that three 

out of four subjects were able to control the robot so that he could speak, move and act for them. 

While medical treatments are still required to be found to reverse neurodegeneration, BCIs can 

provide some autonomy to these patients. 



 

166 
 

In clinical settings, BCIs are typically integrated into bulky external devices (Shih, Krusienski 

and Wolpaw, 2012), and the main goal of BCI is to support these patients with severe motor and 

sensory deficits for their daily lives (outside of the laboratory), requiring wireless, battery-

powered, portable systems, and to process EEG signal in real-time to detect ERPs and provide 

a fast output (Sullivan, Delorme and Luo, 2012). Some wearable EEG systems were shown to 

accurately measure ERPs during mismatch negativity tasks (Badcock et al., 2015), during an 

auditory oddball task (Mayaud et al., 2013; Barham et al., 2017), or during visual oddball and 

reward-learning tasks (Krigolson et al., 2017), depending on the ERP of interest. Thus, wearable 

EEG systems make daily BCI applications possible by addressing the limits of bulky medical 

systems.  

While only a limited number of studies have integrated functional near-infrared spectroscopy 

(fNIRS) for BCI applications (Coyle, Ward and Markham, 2007; Aranyi, Charles and Cavazza, 

2015) an increasing number of researchers are developing hybrid P300-based BCI interfaces via 

simultaneous fNIRS and EEG (Coyle, Ward and Markham, 2007; Pfurtscheller et al., 2010; Fazli 

et al., 2012; Liu et al., 2013; Blokland et al., 2014; Kaiser et al., 2014; Khan, Hong and Hong, 2014; 

Tomita et al., 2014; Yin et al., 2015; Buccino, Keles and Omurtag, 2016). These studies show that 

simultaneous measurements of fNIRS and EEG can significantly improve the classification 

accuracy of brain signals, improve user performance, and may serve to be a viable multimodal 

imaging technique suitable for future BCI applications. fNIRS provides similar advantages as 

fMRI by focusing on the BOLD response (see section 2.2.) but is more affordable and less bulky. 

While its spatial resolution is much lower than fMRI, some new systems show tremendous 

progress on this level while keeping the mobility of the fNIRS technology, by using high-density 

hexagonal tile modules (e.g., (GowerLab, 2021; Kernel, 2021).  

The main limitation with ERP-based BCI using low-cost wearable systems is the reliance on 

stimuli and the lack of control over them. In the laboratory, triggers are produced and controlled 

by the experimental paradigm and stimulation program, whereas many manufacturers of 

wearable EEG systems do not offer this feature since they sell their software for a specific 

purpose. Furthermore, even with the feature, this limitation will persist in real-world applications 

(discussed later in section 9.4.2.) where stimuli can originate from the environment upon which 

the experimenter or developer has no control. These stimuli might greatly interfere with both 

the online monitoring of EEG activity and the decoding-encoding algorithms of BCI systems 
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designed to detect predefined features in the signal (e.g., a P300 will hardly be detected if there 

are other conflicting stimuli occurring at the same period). Combining wearable EEG with other 

(time-locked) sensors might solve this issue. For example, smart glasses (for visual stimuli) and 

smart headphones (for auditory stimuli) might encode triggers in the EEG signal when specific 

stimuli are detected and recognized using online feature-based algorithms. However, no 

algorithm is capable of such performance (accuracy and speed) to solve this issue at the 

millisecond accuracy.  

While this may be solved in the next decade, BCIs based on the frequency domain might be more 

promising, since the millisecond accuracy is not necessary when looking at spectral data over 

several seconds or minutes, and the features of interest might be less affected by such events 

(average spectra over a period). Computing spectra used to take time and bulky computers, which 

would lead to large lags in the BCI output and no mobility. With recent advancements in 

computation speed using small components that can be embedded in wearable systems, BCIs can 

also use frequency signals (Tonin et al., 2012). For example, posterior steady-state evoked 

potentials (SSEP) in the alpha band associated with covert attention to spatial locations in the 

visual field can be used as a control signal for BCI (Kelly et al., 2005). This is also the case for 

spontaneous alpha activity modulated by spatial attention (van Gerven and Jensen, 2009). 

Shifting and maintenance of attention generate different patterns of posterior (i.e., occipito-

parietal) alpha oscillations and distributions that can be used in BCI (Rihs, Michel and Thut, 

2007, 2009). These shifts were successfully decoded and classified, and the performance correlates 

with the strength of resting-state alpha power (Treder et al., 2011).  

While these studies were done offline, others showed that it was possible online, i.e. in real-time 

(Bahramisharif et al., 2010; Tonin et al., 2013). Posterior alpha activity is now established as a 

reliable control signal for continuous online BCIs (Horschig et al., 2015). Continuous online BCIs 

are crucial for real-world BCI applications needed by these patients. Furthermore, these authors 

showed that shifts in covert spatial attention can be picked up at the single-trial level, which is 

crucial for the consistent performance of a BCI (whereas ERPs are not always visible and can 

require an average over many trials).  

Posterior alpha oscillations might constitute a promising feature for BCIs because it is more 

protective against muscle artifacts compared to motor imagery for example (Neuper et al. 2006). 
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While ocular artifacts will greatly affect posterior alpha and bias BCI classification (Jensen et al., 

2011), they are much easier to extract than muscle artifacts (see Section 8.4.2.). Furthermore, 

motor-imagery-BCIs have only been shown successfully in a few conditions and require training 

participants (to accurately visualize movements mentally), which is not the case with alpha 

activity associated with covert attention (Wolpaw and McFarland, 2004). Alpha activity 

associated with covert attention can be used for useful BCI applications such as the control of 

objects or a cursor on a screen (Bahramisharif et al., 2010).  

Note that intracranial BCIs address these issues to a much greater level (with higher spatial and 

temporal resolution, as well as not being affected by artifacts inside the brain) and show 

groundbreaking results. For example, Willett et al. (2021) were able to translate intended 

handwriting movements from intracranial signals in the motor cortex into text in a patient with 

hand paralysis from spinal cord injury. Using a recurrent neural network decoding approach, the 

patient was able to “type” 90 characters per minute with 94.1% accuracy in real-time, and 99% 

accuracy offline with an additional autocorrect feature. Such performance has never been reached 

before and is comparable to smartphone typing speed (115 characters per minute). The authors 

propose that while most BCI research attempts to restore gross motor skills (e.g., reaching, 

grasping, point and click with computer cursor; (Hochberg et al., 2012; Aflalo et al., 2015; Bouton 

et al., 2016; Ajiboye et al., 2017; Pandarinath et al., 2017), fast and complex dexterity (e.g., 

handwriting or touch typing) might enable faster rates of communication.  

While intracranial BCI interfaces will certainly become the new “pacemaker” of tomorrow for 

the disabled with the constant improvements in this field, they are invasive and not realistic for 

healthy individuals (requiring craniotomy). Hence, wearable EEG technologies should be more 

suited for the general population, and patients once they match the performance of intracranial 

BCIs.  

 

9.3. Awareness, self-regulation, and neurofeedback 

Chronic stress has strong repercussions on both the individual’s psychological and physical 

systems, and is associated with unhealthy behaviors that contribute to morbidity and mortality 

such as obesity, sleep deprivation, attention deficit, mood disorders, grey matter atrophy in the 
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brain, or substance abuse, to name a few (Sapolsky, 1996; Dallman et al., 2003; Duman and 

Monteggia, 2006; Juster, McEwen and Lupien, 2009; Jackson, Knight and Rafferty, 2010; Miller, 

Chen and Parker, 2011).  

Better understanding the brain processes associated with stress and self-regulation, as well as 

predictor variables that mediate both well-being and brain changes will be valuable for therapies 

and interventions aiming to elevate well-being or reduce depression and anxiety. Xu et al. (2018) 

found that positive-psychology interventions (PPI) increased not only subjective well-being and 

relief in depression but also left frontal asymmetry scores. Positive reappraisals techniques are 

PPI that train the participants to recognize the negative pattern that their thoughts have taken 

using meta-awareness and to cognitively reframe them as more positive, increasing the sense of 

well-being in the long term. Kim, Cornwell and Kim (2012) found that positive reappraisals 

showed an increase in metabolic activity in the left dlPFC, caudate, and cingulate regions. Self-

regulation is a skill that can be trained to improve cognitive function and the parasympathetic 

system, as well as a wide range of clinical outcomes, by providing a daily tool to individuals to 

detect and monitor the occurrence and effects of chronic stress on their mental and physical 

health (Lehrer et al., 2003; Alabdulgader, 2012; McCraty and Zayas, 2014).  

Meditation encompasses several ancient self-regulation practices, and can greatly improve 

stress-related outcomes (Goyal et al., 2014; Brandmeyer and Delorme, 2016, 2020b; Brandmeyer, 

Delorme and Wahbeh, 2019). A popular form of meditation practice is the focus of attention onto 

an object (e.g., mantra, beads counting, breath focus) and the monitoring of mind-wandering 

thoughts (i.e., distractor), to then reallocate attention to the object. Targeting the underlying 

neural processes and systems with NF can help users become aware of repetitive negative 

thoughts occurring daily, and reshape them towards positive ones. Meditation techniques include 

focused breathing exercises that help to directly regulate the cardiovascular system (Steinhubl et 

al., 2015), negative mood, stress, pain, anxiety, and mind wandering (Zeidan et al., 2010; Bhasin 

et al., 2013; Prinsloo et al., 2013; Steinhubl et al., 2015; Brandmeyer and Delorme, 2020b). 

Moreover, meditation practices were found to increase regional brain gray matter density (Hölzel 

et al., 2011). Moynihan et al. (2013) found that mindfulness-based stress reduction produced 

significant improvements in executive and immune functions, as well as increases in left-

lateralized frontal alpha power.  
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Neurofeedback (NF) refers to the monitoring of neural activity in real-time using technology 

(electrophysiological sensors) to facilitate self-regulation of a targeted brain activity that was 

previously found to be associated with a mental state or behavior of interest (“operant 

conditioning”; Hammond, 2007; Sitaram et al., 2017). NF originated in the late 1960s: “People 

can be taught to voluntarily control their alpha rhythms. This can be used to send messages in 

Morse code when an electroencephalogram pattern is used as part of a computer program. Such 

procedures may help to explain the mechanisms by which the alpha rhythm is blocked or 

unblocked.” (Dewan, 1967). However, many of the difficulties faced by the pioneers of BCI and 

NF (Dewan, 1967; Vidal, 1977) have been solved only recently with modern technological 

advancements. Several EEG measures have been used for neurofeedback research, including 

power spectra, functional connectivity, or other spatiotemporal patterns of EEG activity (Sitaram 

et al., 2017).  

NF has now been implemented in a large number of studies assessing its effectiveness as an 

alternative or complementary treatment of a myriad of conditions including epilepsy (Sterman 

and Egner, 2006), attention-deficit hyperactivity disorder (ADHD; Gevensleben et al., 2009; 

Arns, Heinrich and Strehl, 2014), anxiety (Hammond, 2005), alcoholism (Saxby and Peniston, 

1995), posttraumatic stress disorder (PTSD; Kluetsch et al., 2014; Kolk et al., 2016), mild head 

injuries (Byers, 1995), learning disabilities (Fernandez et al., 2003), stroke (Shindo et al., 2011), 

depression (Hammond, 2005), autistic spectrum disorder (Coben, Linden and Myers, 2009), 

tinnitus (i.e., chronic ear ringing that significantly interferes with daily tasks; Dohrmann et al., 

2007), recurrent migraine headaches (Walker, 2011), etc. Furthermore, NF can present 

interesting applications for healthy populations as well, by enhancing well-being (Kluetsch et al., 

2014), memory, attention, cognitive performance (Zoefel, Huster and Herrmann, 2011; Nan et al., 

2012; Wang and Hsieh, 2013), or peak performance (Hammond, 2007).  

A few studies have investigated fMRI-neurofeedback and suggested it was possible (Wang, 

Mantini and Gillebert, 2018). The regular endogenous manipulation of one’s EEG activity 

through NF can improve both the targeted behavior and the associated symptoms, as well as 

longer-term changes in grey and white matter  (i.e., brain plasticity; Sitaram et al., 2017). Brain 

self-regulation is associated with structures including the thalamus and the dorsolateral 

prefrontal (dlPFC), posterior parietal and occipital cortices in neurofeedback control, and the 

dorsal and ventral striatum, anterior cingulate cortex (ACC), and anterior insula in 
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neurofeedback reward processing (Sitaram et al., 2017). Some authors even suggested that NF 

could slow down neurodegeneration (i.e., neuronal death associated with aging or diseases like 

Alzheimer’s disease or Parkinson’s disease; Hölzel et al., 2011). However, the bulkiness and costs 

of MRI equipment make it much less transferable to real-world applications.  

Meditation-based NF can help users become aware of their emotions that are associated with 

many psychological conditions (e.g., anxiety, depression), and can help overcome them 

(Brandmeyer and Delorme, 2013, 2016; Mooneyham and Schooler, 2013). NF might increase the 

efficacy of interventions using positive reappraisal or meditation strategies by helping individuals 

detect negative thoughts (if the EEG markers are reliably classified) to then self-modulate their 

brain networks associated with the targeted neural processes (Linden, 2014; Brandmeyer and 

Delorme, 2020a). This might be especially true for individuals with social withdrawal, anhedonia 

(i.e., inability to experience pleasure from activities usually found enjoyable), and apathy (i.e., 

feeling indifferent or lacking emotion, often a sign of depression or misuse of alcohol or drugs) 

that cannot find the motivation or even the intention to get better and participate in interventions 

with clinicians. Note that these behaviors are all associated with greater right than left frontal 

alpha asymmetry, which would therefore potentially constitute a good target for NF training in 

these individuals. Allen, Harmon-Jones and Cavender (2001) found that increasing right frontal 

activity relative to the left using frontal asymmetry neurofeedback led to decreased positive 

affect. Angelakis et al. (2007) improved cognitive processing speed and executive function of 

elderly individuals using peak alpha frequency as a neurofeedback index.  

By combining neural and physiological measures such as EEG and HRV (see section 8.4.6.) it is 

possible to develop NF paradigms aimed at improving measures related to anxiety, stress, 

emotions, cognition, and performance (Thompson and Thompson, 1998; Shaw, Zaichkowsky and 

Wilson, 2012; Gruzelier, 2014). Given that some NF protocols are already considered a first line 

of treatment for children with ADHD (Gevensleben et al., 2009; Arns, Heinrich and Strehl, 2014), 

new NF protocols may soon be available as treatment options for stress management and the 

associated physical outcomes. 

Wearable EEG technologies offer the benefits of EEG-NF while maintaining comfort, mobility, 

fast computation algorithms, high temporal resolution, and affordability (Cannard et al., 2020). 

Other recent innovations include for example the development of assistive robots that provide 
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NF training sessions to elevate user engagement and motivation (Tsiakas et al., 2017), or musical 

NF that might be particularly suited for art and educational purposes (Kovacevic et al., 2015; 

Grandchamp and Delorme, 2016). Technological industries now offer products (wearable 

hardware and softwares accessible on phones) that can process EEG data in real-time and provide 

neurofeedback applications directly in the hands of consumers from home (Sullivan, Deiss and 

Cauwenberghs, 2007; Hu et al., 2015; Hashemi et al., 2016). Kovacevic et al. (2015) recorded 523 

subjects with the same wearable EEG system in a collective and immersive neurofeedback 

science-art installation. They found that the participants' EEG baseline activity predicted 

subsequent NF training, indicating the existence of a state-dependence effect in learning ability 

during NF. The brain data recorded by NF Applications available on smartphones/tablets is 

currently aggregating some of the largest EEG databases in history (Hashemi et al., 2016).  

However, this body of literature must be considered with caution. These systems are often 

marketed to consumers as forms of cognitive enhancement and entertainment (Sandford, 2009) 

and may present potential dangers, as they do not involve professional supervision. Not only do 

appropriate methods need to be employed, but more transparency on the algorithms that are 

being used by these private software companies must be enforced so researchers can validate 

their use. Furthermore, no robust consensus exists in randomized controlled trials examining 

the efficacy of NF in clinical settings. This is due to the large differences in study design, the 

difficulty of identifying responders, the heterogeneity in the studied populations, differential 

influence of feedback, reward, and experimental instructions,  or the sense of agency and self-

control (Sitaram et al., 2017). Some critics go as far as suggesting that NF works only via placebo 

but indicate that well-controlled experiments are feasible and “indispensable to elucidate how 

this contentious intervention promotes adaptive brain activity and desired behavior” (Thibault, 

Lifshitz and Raz, 2017). Additionally, neurofeedback results provided by these smartphone Apps 

as the algorithms used to generate these values are company trade-secret. It is therefore unknown 

what type of EEG activity they are targeting for the NF they provide, and often these algorithms 

have not been validated. 

Nevertheless, while these questions require more research, NF training is a promising alternative 

and complementary treatment for many conditions treated with medications that are costly and 

present negative side effects for a large portion of the population (e.g., antidepressants;  

Ferguson, 2001; Cascade, Kalali and Kennedy, 2009). Such brain modulation can present useful 
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therapies of brain disorders associated with abnormal cortical rhythms, and support the use of 

NF as a non-invasive tool for establishing a causal link between rhythmic cortical activities and 

their functions.  

9.4. Wearable EEG and “real-world” applications 

The applications described below can be used either offline using traditional methods on data 

recorded with wearable EEG systems or online (real-time) using cloud-based recording methods 

(e.g., Cassani, Banville and Falk, 2015; Lab Stream Layer, 2021).  

9.4.1. Virtual Reality (VR) 

The accelerating development of increasingly sophisticated virtual reality (VR) platforms is now 

advancing our ability to study the brain and cognition in environments that simulate the 

ecological conditions of natural environments while staying in a controlled laboratory setting. 

Wearable EEGs have been combined with VR in a range of studies investigating the cognitive 

processes underlying (simulated) driving conditions such as alertness, vigilance, reaction time, 

fatigue, and drowsiness of automobile drivers in simulations (Brown, Johnson and Milavetz, 

2013; Wascher, Heppner and Hoffmann, 2014; Armanfard et al., 2016; Foong, Ang and Quek, 

2017; Wang and Phyo Wai, 2017). This combination allows for the development of new closed-

loop systems that may be integrated into the technology of newly manufactured vehicles in the 

near future. This technology holds the potential to ensure safer driving performances through 

the incorporation of features such as feedback alarms (Berka, Daniel J Levendowski, et al., 2005), 

emergency braking predictions based on EEG signatures (Haufe et al., 2011), red and yellow stop 

lights distinctions (Bayliss and Ballard, 2000), or the control of virtual cars (Zhao, Zhang and 

Cichocki, 2009). While the continued use of standard research-grade equipment is more 

appropriate when studying specific neural mechanisms and processes implicated in VR 

environments, these findings can later be used to inform models applied to real-world 

investigations implementing wearable EEG technologies.  

Video-game-NF was found to improve symptoms associated with ADHD and anxiety, by making 

it more interactive and enjoyable (deBeus and Kaiser, 2011; Muñoz et al., 2015; Schoneveld et al., 

2016; Perales and Amengual, 2017). The Neuroscape center for translational neuroscience at the 

University of California, San Francisco has developed multiple popular video games that 
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implement NF such as the “NeuroRacer”, “Meditrain”, the “Ace”, or the “Beep seeker”, to name a 

few. These applications are ready for use with a traditional monitor screen as well as in 3-

dimension (3D) VR environments (Desai et al., 2014). Combining VR with NF training was 

suggested to successfully enhance attention (Cho et al., 2002) and learning (Hubbard, Sipolins 

and Zhou, 2017), by providing better motivation through immersion (Lécuyer et al., 2008). For 

instance, a multimodal interface prototype allowed participants to be suspended in the air by a 

harness, immersed in a 3D VR environment, controlling their “flight experience” using a 

wearable EEG (Perusquía-Hernández et al., 2016).  

9.4.2. Real-world settings 

Clinical environments 

In clinical settings, the feasibility of wearable neurotechnologies for real-world applications have 

been tested with advanced Alzheimer’s disease (AD) patients in a nursing home (Abbate, 

Avvenuti and Light, 2014), in Parkinson’s disease (PD) patients during a walking task (wearable 

fNIRS; Nieuwhof 2016), or in expert vs novice surgeons to assess stress levels during simulated 

operations (Maddox et al., 2015). 

Educative and artistic environments 

Cultivating and enhancing creativity within the domains of science and education is another 

potential avenue whereby these technologies may help to facilitate improved and engaging 

educational opportunities while educating the next generation of future neuroscientists in a more 

engaged and interactive way. BCIs have now been developed to create music using devices such 

as the Emotiv Epoc (Levicán et al., 2017) and the ‘Encephalophone’ system (Deuel et al., 2017), 

as well as visualize music performance (T. Mullen et al., 2015; Grandchamp and Delorme, 2016). 

For example, Grandchamp and Delorme (2016) developed the ‘Brainarium’, a portable 

planetarium dome on which the real-time EEG data is recorded from a subject and directly 

projected as vibrant and colorful multimedia content. These types of applications demonstrate 

the growing importance of the art and its contribution to the sciences in ways that have been 

overlooked for the last several decades (Andujar et al., 2015). The ‘Unicorn Education Kit’ 

contains 8 wearable EEG headsets and software that allows professors to easily teach BCI 

technology to students, for $13,168 at the time of writing. The kit is designed to teach a class of 
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up to 40 students (in groups of 5) during the beginning of a school term, and let them take the 

system to their home during the second half of the term to further learn the technology and 

principles of BCI. Students can learn how to assemble EEG electrodes, calibrate the system, run 

a P300 speller, interface with a robot, send commands to other applications, and develop their 

own BCI application using the API. For younger children, a 3-D printed wearable EEG system 

with cat ears connected to a spherical moving robot was developed to make the process more 

entertaining and engaging (Unicorn, 2021).  

Physical activity 

While sedentarity is considered a high-risk factor for health, the benefits of physical activity have 

been extensively documented in the scientific literature (Tremblay et al., 2010; de Rezende et al., 

2014). Several studies have shown that regular sport-based activities produced neuro-

angiogenesis (i.e. creation of new blood vessels) and neurogenesis (i.e. creation of new neurons) 

in the brain (Fabel et al., 2003; Olson et al., 2006; Pereira et al., 2007).  While most of the studies 

on exercise assess pre/post measures, a lack of research studying the neural mechanisms taking 

place during the practice of exercise is due to the reduced mobility imposed by cables and the 

artifacts produced by the participants’ movements.  

With the development of wearable neurotechnologies, researchers have been able to study EEG 

activity during attentional tasks while walking outdoors (Debener et al., 2012; Aspinall et al., 

2015), or riding a stationary bike (Scanlon et al., 2017). Some expert athletes train their whole 

life to develop self-regulation techniques to keep a steady performance under stress and muscular 

fatigue. Some researchers were able to record EEG data from expert archers to study their 

relaxation capacities under stress and muscular activity (Lee, 2009), while others have accelerated 

the training of archers, golf players, and rifle marksmen using NF strategies (Berka et al., 2010).  

However, the challenge of dealing with EEG artifacts related to movements is most important 

for these applications (see section 8.4.2.). When these limitations are overcome, studying the 

brain of individuals while they are doing a physical activity will bring precious information on 

the effects and mechanisms of physical activity on the brain, which may have an important impact 

on both sports science (e.g. training strategies) and medical applications. Such studies could 

compare the long-term effects of different types and intensity of physical activity on different 

cognitive measures and various populations.  
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Sleep 

Poor sleep quality concerns one-third of the adult population (Roth, Roehrs and Pies, 2007), has 

been linked to many clinical and medical conditions such as depression and pain (Giron et al., 

2002), and is costly for both the individuals and society (i.e. lost productivity, sleep medication, 

etc.). The deleterious effects of chronic sleep deprivation and the associated outcomes have 

potentially dangerous and expensive consequences as a result of impaired neuropsychological 

functions for individuals at work, at home, and on the roads (Pilcher and Huffcutt, 1996; Dongen 

et al., 2003). In addition, long-term health-related concerns include increased risk for metabolic 

and cardiovascular diseases (Cappuccio et al., 2011), as well as an overall decrease in the immune 

system (Bryant, Trinder and Curtis, 2004). Research shows that 90% of the American population 

is using a technological device (e.g. television, laptop, or smartphone) in the hour preceding sleep, 

which disrupts the natural melatonin production and circadian rhythms necessary for good sleep 

quality (Gradisar et al., 2013; Mortazavi et al., 2018). “Night shifts” (i.e., blue light filters) now 

implemented in most computers and phones do not seem to solve the problem (Nagare, Plitnick 

and Figueiro, 2019; Duraccio et al., 2021) 

Some wearable technologies developed in the last decades (e.g. wristbands, mobile apps, smart 

pillows) target sleep quality monitoring but do not focus on interventions supporting a healthier 

sleep or making use of sleep cognition (Ravichandran et al., 2017; Bianchi, 2018). Some wearable 

EEG headbands are more suited than others for sleep application by including soft flexible fabrics 

that are more comfortable and better prevent electrodes from disconnecting and focus the 

electrode coverage of frontal areas to limit artifacts (e.g., MUSE S by InteraXon, or the Dreem 

headband; Dreem, 2021; InteraXon, 2021). Only a limited number of sleep studies have been 

conducted using wearable EEG systems to our knowledge with mixed results (Berka et al., 2007; 

Onton, Kang and Coleman, 2016; Debellemaniere et al., 2018; Liang and Chapa Martell, 2018). 

This is because of the large difficulty to obtain quality signals (pressure from the head-on 

posterior and lateral electrodes, movements, etc.). The challenge is even more difficult for 

patients suffering from pathological conditions such as Alzheimer’s disease (AD; Abbate, 

Avvenuti and Light, 2014).  

In the long term, advancements in this area might provide complementary or alternative pro 

tools to improve sleep quality in the individuals’ home, using wearable neurotechnologies. A 
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closed-loop system could detect when sleep is disrupted and modulate the appropriate networks 

to prevent the individual from waking up. Some of these wearable neurotechnologies may allow 

for closed-loop auditory stimulation to modulate brain oscillations at the right moment by using 

a classification of sleep cycles (Chambon et al., 2018; Debellemaniere et al., 2018), enhancing sleep 

quality at night (Arnal et al., 2017). To go further, a team from MIT media labs developed the 

first sleep BCI, an interactive interface named ‘Dormio’ (Haar Horowitz et al., 2018). When the 

user enters the hypnagogic sleep stage (associated with high creativity), EEG and motor signals 

detect it and trigger an auditory feedback response provided by a robot located next to the 

sleeping user. The sound makes the user more aware of being in that state and extends the 

duration of the semi-lucid hypnagogic period, enhancing his/her creativity. Semantics can be 

used instead of a sound to influence the dreams of the users. Neuromodulation methods have been 

explored in sleep studies, such as attempting to increase awareness in dreams with gamma tDCS 

during rapid eye movement (REM) sleep (Voss et al., 2014) or transcranial magnetic stimulation 

(TMS; Massimini, Tononi and Huber, 2009). The most sophisticated wearable EEG systems, 

therefore, present a promising future for sleep research, management, and monitoring. 

EEG-assisted driving 

New research may lead to the first ‘prevention systems’ which uses real-time data recorded from 

a pilot or driver’s brain that would enable the detection of mind wandering, the loss of attention, 

and/or drowsiness and could provide auditory, tactile, or visual feedback cue to the driver to 

avoid an accident (Healey and Picard, 2005; Akbar et al., 2017; Wei et al., 2018). Several studies 

have also examined the possibility of such EEG interfaces in real-life driving situations to identify 

an EEG marker of an individual's intention to brake or to turn at an intersection (Zhang et al., 

2015; Chavarriaga et al., 2018; Martínez, Hernández and Antelis, 2018). 

While these findings are groundbreaking, the machine learning methods used by these BCI 

systems still need to be improved to further reduce the margin of error. Only a 0% error rate will 

make these applications feasible to avoid accidents. Chavarriaga et al. (2018) suggested that 

combining EEG features with other physiological measures (e.g., eye tracking, ECG, EMG) as 

well as other car sensors (smart cars) might help improve the performance of such interfaces.  
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Real-world applications 

In the long term, BCI applications using wearable neurotechnologies are aimed to be delivered 

in “home-based” settings. Home-based applications are key as they can facilitate accessible and 

high-quality treatment options, reduce commute times, reduce the volume of consultations at 

clinics, increase the quality and quantity of patient information collected by healthcare 

professionals, and improve longitudinal measures of care quality.  

Some preliminary studies have tested the feasibility of home-based EEG. Askamp and van Putten 

(2014) reported that 33% of Dutch neurologists use home EEG recordings collected with 

wearable systems in the context of epilepsy research and that patients are generally satisfied with 

the 24h home EEG procedure they use. While they report this type of application is not 

necessarily useful for the initial diagnosis after the first seizure, they indicated that mobile EEG 

can be largely useful in better understanding unclear paroxysms (i.e., sudden epileptic seizure 

event) that occur unexpectedly when the patients are at home (Askamp and van Putten, 2014). 

Wolpaw et al. (2018) had BCI placed in the home of 27 patients with advanced amyotrophic lateral 

sclerosis (ALS; i.e., break down of nerve cells supplying leading to the loss of muscle function), 

trained their caregivers to use them, and collected the data via the internet. They evaluated the 

benefits, burden, and quality of life with periodic visits over up to 18 months. They reported that 

only 33% completed the study and used the BCI for communication purposes. 12 could not 

continue due to death or rapid disease progression, and 6 because of decreased interest. They 

observed rare technical problems, low burden, and no improvements in quality of life (Wolpaw 

et al., 2018).  

Other limitations to these applications include poor signal quality and electrode contact, 

assistance in the interpretation of EEG, and motivation of the patients. Motivation generally 

relies on the efficacy of the technology (speed and accuracy), comfort and design, and of the 

system that facilitates its wear over long periods at home or in public (Askamp and van Putten, 

2014; Käthner et al., 2017). As discussed in previous sections, tremendous improvements are 

being made in the field with the constant improvements in signal acquisition and classification 

(for performance) as well as more elegant and comfortable systems (e.g., Muse S). Companies 

specialized in mobile neurology diagnostic devices are developing potential solutions for epilepsy 

using mobile and continuous EEG recording, smart clothing, smartphone application, and cloud 
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platforms (Valenza et al., 2015). In a study by Valenza et al. (2015), they used wearable textile 

technology to characterize depressive states in bipolar patients during their normal daily activity.  

“Neuro-phones” (phone-based BCI applications) have also been developed to enable practical and 

affordable everyday use, by allowing EEG signals to interface with mobile phone applications 

despite paralysis using wireless EEG headsets (Campbell et al., 2010; Wang, Wang and Jung, 

2011; Kumar, Aggrawal and Gupta, 2012; Stopczynski et al., 2014; Debener et al., 2015).  

Another growing field is the development of Smart houses (Lee et al., 2013). Numerous intelligent 

devices, embedded into the home environment, can provide the resident with both movement 

assistance (e.g. intelligent bed, intelligent wheelchair, and robotic hoist for effortless transfer of 

the user between bed and wheelchair), and 24-h health monitoring. They are therefore 

particularly relevant for elderly and disabled populations, as it helps restore independence and 

autonomy. However, these devices lack methods for decoding the intentions of disabled residents, 

which may be solved through the integration of wearable EEG headsets (Lee et al., 2013; 

Hintermüller et al., 2015; Miralles et al., 2015; Käthner et al., 2017). Measuring patients’ vital 

signs at home may result in higher quality, individualized treatment protocols that incorporate 

continuous, detailed information about the patients’ ongoing physiological status (Muse et al., 

2017). A variety of prototypes and commercial products have been recently developed that 

provide real-time health data directly to the user or the medical center/professional physician 

and can alert an individual or care provider in the event of a potentially threatening or imminent 

health emergency (Kumar, Aggrawal and Gupta, 2012).  

Home-based BCI systems, once the limitations are addressed, may help support the autonomy 

and independence of patients with disabilities or paralysis, improve early detection of certain 

medical conditions, monitor progression of symptoms and effects of treatment remotely, sleep 

quality, and ultimately, provide large-scale longitudinal data on the effects of aging in the brain 

and body (Light, Li and Abbate, 2011). Furthermore, patients or elderly with low autonomy can 

gain better access to information as well as access applications that train mindfulness and stress-

reduction techniques and can improve secondary symptoms (Gray, 2017).  

Some advanced wearable neurotechnologies such as those developed by Neuroelectrics could also 

be very valuable for home-based use as they enable simultaneous EEG recording and brain 

stimulation (Dutta and Nitsche, 2013; Helfrich et al., 2016), which was found to improve 
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neurorehabilitation effects by training motor function and learning processes (Gandiga, Hummel 

and Cohen, 2006). These technological advancements present valuable applications for many 

clinical conditions such as epilepsy, depression, or Parkinson’s disease (PD), to name a few. The 

Starstim (wearable system combining EEG and tDCS) is now approved for medical use and 

complies with the European legislation for clinical research (e.g. depression, pain, addiction, 

stroke). The NUBE Cloud Service and Neuroelectrics Instrument Controller (NIC; 

(Neuroelectrics, 2021a) provides a telemedicine platform, wherein clinicians and researchers can 

prepare general stimulation protocols, schedule the stimulation sessions for patients, confirm 

whether the sessions have been executed or not, and create pre/post-stimulation questionnaires 

(Aguilar Domingo, 2015). Remote (supervised) neurofeedback or neuromodulation protocols can 

therefore be accessible at a low cost while patients are in the comfort of their homes, reducing 

the logistics required to transport patients to the hospital and the clinical equipment (Biondi et 

al., 2021).  

 

9.5. Other applications 

A new interesting area of research that emerged from the development of wearable 

neurotechnologies and wireless data streaming is dyadic EEG research, i.e. recording several 

individuals simultaneously. Dyadic EEG can be useful to better understand interindividual 

interactions, such as behavioral synchrony during social interactions (Anaya, Vallorani and 

Pérez-Edgar, 2021), action planning in the social context in children (Liao et al., 2015), “brain-

to-brain entrainment” (i.e, interbrain synchronization) during speech (Pérez, Carreiras and 

Duñabeitia, 2017), joint attention (i.e., one person follows another’s gaze onto an object leading 

to both individuals’ attention focused on the same object playing an important role in social 

interactions; (Lachat et al., 2012), cooperation between workers and its role on safety and 

performance (Verdière, Dehais and Roy, 2019), cooperation vs competition between individuals 

facing (simulated) mortality threats (Zhou et al., 2021), infant-mother EEG interactions 

(Krzeczkowski, Lieshout and Schmidt, 2020), group dynamics and team cohesion (Stevens et al., 

2010, 2012, 2013).  

Other secondary real-world applications include neuromarketing (i.e., the measurement of EEG 

signal to gain insight into customer’s motivations, preferences, and decisions to inform 
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marketing and product development; (Cartocci et al., 2018; Ramsøy et al., 2018; Vences, Díaz-

Campo and Rosales, 2020), and neuroaesthetics (i.e., the science studying the biological 

underpinnings of aesthetic experience; (Cheung et al., 2019; Cartocci et al., 2021).  

9.6. Other limitations 

We already discussed the main limitations for real-world EEG applications, i.e. the problem of 

EEG artifacts (section 8.4.2), the potential bias of big data analysis on noisy signals (section 9.1.), 

the challenge of tracking uncontrolled stimuli from the environment (section 9.2.).  

9.6.1. Interindividual differences 

An important remaining limitation to these applications is to integrate individual differences 

from individual characteristics (e.g., age, brain anatomy, skull thickness) and from electrode 

positioning that can slightly differ across subjects (or across sessions with the same subjects). 

Addressing these issues is crucial to gain accuracy at the subject level at detecting specific mental 

states and providing the corresponding therapy successfully.  

Electrode positioning 

While a majority of NF and BCI systems require a minimal level of experience and knowledge 

to effectively acquire quality data and the targeted EEG correlates that have specific scalp 

distribution (see section 2.3.5.). While misplacing electrodes is most concerning for high-

resolution applications such as source localization (Dalal et al., 2014; Shirazi and Huang, 2019), 

ensuring the proper application of wearable technologies is also essential, especially if users are 

going to place their EEG systems on their head as for real-world applications. Manuals and 

tutorials provided in the documentation are generally not sufficient to cover the complexities of 

measuring, analyzing, and interpreting physiological data (let alone factoring in potential 

confounds and placebo effects that can interfere with the proper use of the technology). Misplaced 

electrodes even occur in laboratories with traditional preparation methods using the traditional 

nose (i.e., the lowest point between the nose and forehead) and ear (i.e., the intersection between 

the helix and the tragus of the ear) fiducial landmarks. This problem is likely exacerbated by 

wearable systems that have only a few electrodes that can be positioned quickly and easily at the 

wrong location.  
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One innovative existing solution is to obtain a quick 3-D head image that captures both the head 

fiducials and electrode positions (after electrodes are placed on the head) using a structure sensor 

camera that can be attached to a tablet or a phone (e.g., Structure, 2021) and can be used with an 

App on a phone or tablet (e.g., the itseez3d, 2021, has shown the best results for this EEG 

application; Clausner, Dalal and Crespo-García, 2017). These scans can be imported into 

EEGLAB using the get_chanlocs plugin (Lee, 2021). Then, a low-resolution 3D head image can 

be previewed to check the overall quality of the scan (Figure 37, left), and once a satisfying image 

is obtained, the high-resolution model is obtained (Figure 37, right). Then the plugin locates the 

exact 3-D electrode positions from the 3-D scanned head image.  

 

Figure 37. Illustration of the 3D head image captured by a structure sensor camera and imported into EEGLAB 

with the get_chanlocs plugin to obtain accurate electrode locations and their accurate relation to nose and ear 

fiducials. Note: a different participant and scan are illustrated here. Source: Lee (2021).  

This process can be done in under 1 minute. Future improvements will allow the use of 3D head 

scans to fit subject structural MR images and better account for volume conduction effects, gyri 

orientation, and other anatomical features that may affect each individual’s EEG differently. This 

is especially crucial for neuromodulation applications that require high spatial accuracy 

(Mosayebi-Samani et al., 2021), but also for BCI and neurofeedback applications since the mean-

field potentials measured with EEG are greatly affected by these factors, and no solution 

currently exists to address this issue. One can imagine a wearable EEG toolkit that includes a 

3D head scan feature, warns the user if the electrodes are not placed correctly, and directs the 
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user in which direction they should be adjusted (similar to the already existing impedance 

monitoring feature for electrode contact with the scalp; see section 3.1.). 

Additionally, variability in electrode types, location, software, file formats, or interfaces 

constitutes a barrier in attempting to combine big databases across a range of sources. Research 

resource identifiers (RRID; e.g., SciCrunch, 2021) may help resolve this limitation by offering a 

platform to search for this information. Unlike more general search engines, they provide 

extensive access to a focused set of resources relevant to their communities and provide access 

to content that can be hard to find using standard web search engines. Users can also add their 

data to the platform. Furthermore, the brain imaging data structure (BIDS) is used more and 

more across modalities (e.g., EEG, fMRI), homogenizing the way neuroimaging data are 

organized and stored. Tools (e.g., BIDS-EEG integrated into EEGLAB; Pernet et al., 2019; 

Delorme et al., 2021) allow researchers to automatically convert their data into the BIDS format, 

greatly facilitating data sharing within and between laboratories, reuse of datasets knowing what 

the conditions, files, and markers correspond to, and most importantly replication of findings. 

Furthermore, the BIDS EEGLAB plugin allows the importation of large datasets into the 

software and to process and analyze them automatically.  

Self-calibration protocols (SCP) 

Matching an individual’s EEG signal to a normalized one over large samples loses accuracy and 

the specificity necessary for reliable and accurate individualized NF or BCI. The self-calibration 

protocols (SCP) can address this issue (Karydis et al., 2015b, 2015a; Karydis, Foster and Mershin, 

2016). The SCP establishes a baseline EEG activity of the user to obtain results that are 

specifically adapted to that signal. The SCP consists of a series of short assessments (tasks) on a 

PC, tablet, or phone while the EEG is recorded (before the actual experimental task or EEG 

application). The goal is to discriminate between the targeted state (e.g., pain sensation, positive 

emotion, perceived mind wandering) from the other non-targeted states, using the user’s 

feedback. The user self-classifies his/her states using annotations on the device, guided by the 

task instructions. Then, semi-supervised machine learning algorithms can be used to train 

accurate, individualized classifiers.  

The authors of this approach claim that relying on specific EEG correlates predefined using 

previous research (e.g., alpha asymmetry, or increased beta power at an electrode site) is no 
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longer necessary. Understanding the impact of individual characteristics such as age or gender 

would no longer be necessary by such an approach. However, this approach depends solely on 

the subject’s feedback and might not reflect the targeted mental states and underlying EEG 

correlates because meta-awareness accuracy is not guaranteed (Kringelbach and Berridge, 2009; 

Polychroni, Hedman and Terhune, 2020), especially if participants are not motivated to do the 

task or have a hard time focusing their attention to do the task (as in clinical settings with patients 

with apathy, anhedonia, or ADHD for example). One approach that seems more reliable would 

be to use the same SCP but still target EEG correlates identified on large populations, but 

rendering them more accurate for each individual with the SCP. The algorithms can then be 

adjusted to provide neurofeedback, BCI, or neuromodulation for each individual while accounting 

for these factors. Other factors could be added once they are robustly identified, such as age and 

gender.  

Furthermore, this approach may address the state-dependence problem highlighted in 

neuromodulation research (Metsomaa et al., 2021; Mosayebi-Samani et al., 2021).  This concept 

refers to the stimulation of an area that can either excite or inhibit that region depending on the 

current state and activity of the network in that region. For example, if the person was presented 

with a positive-valence image, the neural networks processing emotion might be in a state of 

excitation or hyperpolarization (if inhibited) that will make it easier or harder to modulate them. 

The opposite effect can even be obtained (e.g., inhibiting when trying to excite). Progress has 

been made in this area for neuromodulation applications (Metsomaa et al., 2021). Future 

developments are required to take this phenomenon into account for BCI and neurofeedback 

applications as well.  

Once these intricacies are better understood, these technologies could be integrated into efficient 

methods and toolkits that might be useful for therapies aiming at tackling large societal problems 

such as depression. Furthermore, these improvements will help assess personalized benefits of 

interventions for each individual (as opposed to assessing how an intervention helps a large 

group), and identify why they might not help certain individuals.  

9.6.2. Comfort and design 

A major limitation to the daily integration of wearables remains the feasibility of people feeling 

comfortable wearing such devices in public spaces. Mayaud et al. (2013) found that performance 
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and ‘level of comfort’ decreased after long periods of recording using low-cost wearable headsets 

(i.e. between 2 and 3 hours of use). Furthermore, populations such as the elderly often prefer 

simple, loose, and comfortable clothing, making the necessary placement of tight-fitting wearable 

devices close to the body difficult (Abbate, Avvenuti and Light, 2014).  

However, Abbate, Avvenuti and Light (2014) showed in a study with Alzheimer’s disease (AD) 

patients, that a few simple modifications to the placement of the wearable EEG system, its color, 

and how it is integrated with clothing significantly improved its usability and acceptance, 

especially in the elderly population. While great improvements in design, weight, and comfort 

are under active development, wearable neurotechnologies will eventually need to diversify their 

designs to satisfy cultural differences, characteristics, and sensitivities, while maintaining the 

specific electrode locations required to target the right EEG correlates and the corresponding 

scalp spatial distributions.  

New technologies developed by companies that offer innovative solutions such as the production 

of smart clothing that incorporates biometric sensors embedded into the material (see section 

9.4.2.; Valenza et al., 2015) are promising. However, more research will be necessary to establish 

and ensure high SNR as well as comfort to users.  

A promising recent innovation is the development of transparent “in-ear EEG” (or ear-EEG) 

systems that provide microelectrodes in the ear canal (i.e. Goverdovsky et al., 2016; Nakamura et 

al., 2017) or the “cEEGrids”, a flex-printed C-shaped 10-channel grid that can be placed around 

the outer ear on the scalp (Bleichner et al., 2015; Bleichner and Debener, 2017). These systems 

are capable of extracting relevant focal temporal features such as the P300, presenting promising 

innovative solutions and applications for augmenting hearing technology or BCI systems 

(Christensen et al., 2018). The electrode location is the same as the MUSE TP channels used in 

this study, suggesting these systems would be well-suited to measure temporoparietal alpha 

asymmetry and well-being.  

Grids with many channels will be particularly groundbreaking in the years to come because of 

the triangulation capacity they offer (as with intracerebral tetrodes or microelectromechanical 

system (MEMS)-based recording). They are very small and their geometrical distribution (3D 

arrays) provides a better spatiotemporal representation and estimation of neuronal connectivity 

(Wise and Najafi, 1991). Additionally, the chips they contain can amplify, filter, compute real-
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time signal processing, and carry microstimulations at the recording site (Olsson and Wise, 2005; 

Olsson et al., 2005), paving the path for implantable brain-chip interfaces and neural prosthetic 

devices. 

Technological improvements have gone as far as the development of sensors integrated into 

smart glasses (Vahabzadeh et al., 2018), smart EEG-glasses (Jiang et al., 2017), stick-on electronic 

tattoos (Zheng et al., 2014), and chemical wearable sensors (Matzeu, Florea and Diamond, 2015), 

or EEG-hats with hair-separation (Kawana et al., 2019, 2020).  

9.6.3. Ethical and safety concerns 

The rapid advancements in the biomedical-tech sector present clear ethical concerns such as 

consent, data protection, and identity protection (Trimper, Root Wolpe and Rommelfanger, 

2014). These concerns are especially important when new signal processing techniques can allow 

to “authenticate” or differentiate individuals based on short segments of EEG data (see section 

9.1.). At present, there is no globally established legislation regulating informed consent, 

personal data protection, or guidelines to avoid psychological and physical effects associated with 

BCI/NF or brain stimulation technologies (Kubler et al., 2006; Evans et al., 2009; Haselager et 

al., 2009; Jwa, 2015; Wurzman et al., 2016; Coin, Mulder and Dubljević , 2020; Naufel and Klein, 

2020; Jawad, 2021). While the research and clinical use of BCIs across the world is regulated by 

national laws and Institutional Review Boards (IRBs), the private and commercial use falls out 

of these legislations, allowing the potential for non-ethical practices and applications of the 

technology.  

Furthermore, while these technologies are considered non-invasive, their use as therapeutic tools 

proves that they might also have detrimental brain modifications if misused (if they can improve 

some brain processes, they can also damage them). This is especially true for neuromodulation 

tools. Furthermore, the ease of engineering the relevant hardware, the decrease in costs, and the 

enthusiastic ‘do it yourself’ (DIY) culture interested in cognitive enhancement make exploring 

these ethical issues especially pressing (Jwa, 2015; Wurzman et al., 2016). Having observed the 

public outrage and opposition to previous scientific and technological advancements, such as was 

seen with the cloning of Dolly the sheep, ethicists and scientists must work together to ensure 

that the technology is developed with the highest ethical standards and that the public is 

informed accordingly (Wolpe, 2006). 
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Recent findings suggest highlight concerns surrounding the potentially deleterious effects of 

chronic and long-term exposure to the radio (RF), Bluetooth, and WIFI frequencies on biological 

and brain systems. Detrimental effects are generally considered to be dependent on the distance 

and relative size of a given object, but also on the environmental parameters, and there may be 

additional interindividual differences in sensitivities to RF, making the assessment of these risks 

difficult (Krause et al., 2006; Hung et al., 2007; Croft et al., 2010; Ishak et al., 2011; Volkow et al., 

2011; Avendaño et al., 2012; Balachandran et al., 2012; Laudisi et al., 2012; Megha et al., 2012, 

2015; Banaceur et al., 2013; Kesari et al., 2013; Shahin et al., 2013; Mandalà et al., 2014; Saili et al., 

2015; Mohan et al., 2016; Othman et al., 2017). Wearable neurotechnologies concentrate 

Bluetooth and Wifi energies in and around the area of the brain in larger amplitudes than has 

been studied previously (wireless intracerebral electrodes might be especially concerning). The 

potential for chronic exposure to RF frequencies resulting from daily use of EEG/BCI/NF 

technologies in the long term demands that future studies explore solutions for RF protection or 

alternative deliverance modalities. 

While it is safe to say that a majority of wearable technologies are designed under the premise of 

improving health monitoring and outcomes, and or enhancing or regulating cognitive and 

emotional processing, these technologies also host tremendous power and potential to drastically 

influence the choices and actions of the users (i.e. how to breathe, eat, drink, exercise, work, sleep, 

shop, regulate emotions, etc.). The short-term reality is that the user is often in the illusion that 

the feedback provided is highly accurate, which can heavily influence the way of life of that user. 

This is seen heavily with companies claiming their device can “read the mind” of the users. This 

concern has been already occurring with personal genome testing provided by private companies 

(McGuire and Burke, 2008).  

Additionally, by offering consumers a way to delegate the task of lifestyle management to the 

technology, such products could alter individual responsibility and self-regulation (Schüll, 2016). 

This concern is even greater regarding the potential for neuromodulation technologies (e.g. 

tDCS) becoming available to the public (Walsh, 2013; Jwa, 2015; Wurzman et al., 2016). 

Following the advice of commercial applications wherein participants are instructed to actively 

modulate their brain with technologies such as tDCS without any validation or control, presents 

a major concern.  
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As lifestyle, health, and technology become increasingly integrated and interfaced, these devices 

must remain tools to support and assist human needs, and not replace them. With an increasing 

rate of reliance on our technology, human beings are increasingly vulnerable to the potential 

dangers and pitfalls of this reliance. When technology is used to enhance or assist a function, this 

function no longer needs to be accomplished by the body, further directing one's attention 

towards additive systems. For example, recall is often better for self-generated answers than for 

answers obtained from an external technological source (Pyke and LeFevre, 2011). This 

phenomenon of cognitive loss following the delegation of a mental task to technology might be 

hard to predict with real-world BCI integration. However, neurofeedback (considering the 

intended effects are reached and the limitations discussed are overcome) might be less affected 

by this risk, since it relies on self-regulation and only provides sensory support to the user 

(guiding the user to detect subtle mental states through feedback). As neurofeedback might help 

users become aware of detrimental thought patterns or emotional responses, it is also possible 

that BCIs might enhance natural abilities beyond their initial potential (e.g. a system detecting 

cues that are imperceptible to the awareness to warn from a danger, could potentially train the 

brain to detect these stimuli that were previously subliminal through reward-conditioning 

mechanisms. The brain is constantly evolving and aiming to improve the prediction of 

environmental perturbations).  

Species knowledge used to be carried and orally transferred by the tribe members, leading to 

each individual possessing the whole species’ knowledge. With the invention of books, 

computers, and the Internet, an ever-increasing portion of species knowledge has become 

externalized from individuals. For example, most people do not know how to build a car they 

drive or harvest electricity, because they do not need to (and cannot) possess all the species 

knowledge. This evolution has led to a vast distinction between species and individual 

knowledge. This increasing externalization of information into technology (instead of in the 

individual brain and memory) produces a constant increase in species knowledge linearly 

associated with a constant decrease in individual knowledge (Buzsaki, 2006). 

One can argue that brain resources that are no longer necessary because they are supplemented 

by technology could be recruited for new abilities. If this is possible, future studies should focus 

on how to develop technologies that aim to produce long-term benefits (like neurofeedback). 
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However, as basic cognitive abilities are more and more delegated to technology over 

generations, these cognitive abilities might be hard to recover when the system fails.  

 

 

General conclusion 

In this 3-year project, we validated the use of a quick scale to evaluate multidimensional well-

being, identified predictors of well-being in a large sample, and observed improvements in well-

being levels following interventions. We validated the use of a low-cost wearable EEG headset 

to measure EEG spectral measures and used it to study the EEG correlates of multidimensional 

well-being on a large sample. We found a potential EEG marker that could be used to monitor 

and predict well-being levels, or that could be implemented into neurofeedback or 

neuromodulation interventions if further research supports this finding and brings more light to 

the underlying mechanisms. We show that affordable wearable neurotechnologies can provide 

solutions to the global increase in poor mental health associated with limited access to healthcare 

and treatment for a majority. While significant limitations and challenges remain, these 

technologies might be used in the long term to detect and predict mental health outcomes, 

support brain-computer interface, neurofeedback, or neuromodulation applications in real world 

settings, and elevate global well-being at affordable costs and no side effects.  
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Annex 1: An EEGLAB plugin to import MUSE data 

______________________________________________________________________________ 

A new EEGLAB plugin named import_muse was developed to import EEG data collected with 

the wearable MUSE headset for this project (Cannard, 2021). This plugin functions in MATLAB 

and imports Muse .csv files recorded with either the Mind Monitor App (Clutterbuck 2021) or 

the Muse Direct IOS App (InteraXon 2021). It is compatible with different hardware models: 

Muse 1 (2014 and 2016), Muse 2, and Muse S.  

Using either the graphical user interface (GUI) or the command lines, users can choose to import 

EEG, accelerometer (ACC), gyroscope (GYR), photoplethysmography (PPG), or auxiliary 

(AUX) data (Figure 38). They can also choose to have the non-EEG signals time-synchronized 

to the EEG data, for multimodal analyses (Figure 38).  

 

Figure 38. Graphical user interface (GUI) window when importing data recorded with the MUSE wearable 

systems. Users can select which data they wish to import for analysis, including EEG, accelerometer (ACC), gyroscope 

(GYR), photoplethysmography (PPG), or auxiliary (AUX).  

The plugin automatically detects which hardware was used to record the data and detects the 

sample rate for each signal (that is different). EEG data  are converted to the EEGLAB format, 

so that users can access all the advanced EEGLAB tools and use them on the data recorded with 

MUSE, such as low- and high- pass filtering, re-referencing, automatic artifact removal 

techniques (e.g., ASR used in this study; Figure 39), power spectra (Figure 40), or robust 

statistical tools (e.g., LIMO-EEG, see Annexe 3).  
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Figure 39. Illustration of the artifactual segments detected and removed by the EEGLAB clean_rawdata plugin, 

on EEG data recorded with a wearable MUSE headset.  

 

 

Figure 40. Power spectral density of EEG data recorded with the MUSE obtained with EEGLAB.  

 

If users chose to synchronize the non-EEG signals with the EEG signals for multimodal (time-

locked) analysis, these signals are resampled to match the EEG sample rate and converted to 

EEGLAB format. Figure 41 illustrates this feature with ECG data recorded by a custom 

electrode that connects to the auxiliary port of the MUSE, and Figure 42 with PPG signal 

recorded with a MUSE 2 or MUSE S (the PPG sensor was added in these recent models).  
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Figure 41. Plot of raw EEG and ECG data recorded with MUSE in EEGLAB. The ECG data was collected 

with a custom-made electrode that plugs into the auxiliary port, and time-synchronized to the EEG data for 

multimodal analysis 

 

Figure 42. EEG and PPG data recorded with the MUSE S or MUSE 2, imported and time-locked by the 

import_muse EEGLAB plugin for analysis.  

 

Note that non-EEG data (ACC, GYR, PPG, AUX) can also be exported as separate outputs (raw, 

untouched) for simpler physiological analyses (not time-locked to EEG), and are not illustrated 

here.    
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Annex 2: Asymmetric interactions between frequency bands 

______________________________________________________________________________ 

Attempting to link EEG asymmetry not just to psychological constructs, but to other measures 

of neural function can identify potential mechanisms underlying EEG asymmetry and reveal 

more about the pathway from lateralized alpha power to psychological functioning (Smith et al 

2017). Interactions between EEG asymmetries across different frequency bands were explored 

using Skipped Spearman correlations (see section 5.2.4. for more detail on the statistical methods) 

on the same data cleaned and used in Chapter 7 (N = 230). Only p-values corrected  with the 

Bonferroni method for multiple comparisons to control for Type 1 error were considered as 

significant (see caption below Table 11 for more detail). Results are reported in Table 11.  

Table 11. Skipped Spearman correlations between EEG asymmetries across different 

frequency bands, for both frontal and temporoparietal (TP) regions.  

 Frontal 
delta 

Frontal 
theta 

Frontal 
alpha 

Frontal 
beta 

TP delta TP theta TP alpha TP beta 

Frontal 
delta 

1 
       

Frontal 
theta 

.68* 
1 

      

Frontal 
alpha 

. 23* .49* 
1 

     

Frontal 
beta 

.26* .31* .31* 
1 

    

TP 
delta 

.01 .03 .03 .01 
1 

   

TP 
theta 

.01 -.12 -.13 .01 .60* 
1 

  

TP 
alpha 

.07 .08 -.24* -.03 .29* .51* 
1 

 

TP beta .01 .05 -.08 -.07 .18* .43* .43* 1 

Correlation coefficients from the skipped Spearman correlations are reported in the table (N = 230). Since 28 tests 

were done (asymmetries in theta, delta, alpha, beta, in both frontal and temporoparietal regions), corrected p-value 

was 0.0018 at 95% confidence level (*), 0.00036 at the 99% confidence level (**), and 3.5714e-05 at the 99.9% 

confidence level (***).  

We observed asymmetric associations across all bands in the same direction within frontal and 

TP areas (e.g., greater left than right theta power is associated with greater left than right power 

in alpha and beta frequencies), and an asymmetry in alpha frequencies in the opposite direction 

between frontal and TP areas (e.g., when alpha power increases in frontal left relative to frontal 
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right, it increases in the TP right relative to TP left). Note that the strongest correlations 

occurred locally between theta-delta and theta-alpha frequencies, suggesting the mechanisms 

underlying these asymmetric patterns may involve these frequencies specifically at the local level, 

whereas alpha oscillations may be involved in mechanisms underlying global (frontal-TP) 

asymmetries.  
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Annex 3: A hierarchichal linear modelling of broad-band EEG 

power and well-being 

______________________________________________________________________________ 

 

An additional exploratory analysis was conducted to look at the data differently, using the 

advanced hierarchical linear modeling  (HLM) provided by the EEGLAB LIMO-EEG plugin 

(Pernet et al., 2011). This statistical tool tests for effects at all electrodes and frequency points, 

contrasting with traditional approaches that preselect features of interest based on the literature 

(e.g., alpha asymmetry, individual alpha frequency). While traditional analyses methods focus on 

averaged data over trials and subjects, this toolboc deals with both within- (1st level, i.e., single-

trial analysis) and between- (2nd level, i.e., group level) subject variance.  

Beta (β) coefficients  (or parameters) are estimated for each subject at each frequency point and 

each electrode independently (1st level), then the β coefficients are analyzed across subjects for 

robust statistical testing (2nd level). Confidence intervals (CI) are computed to test H1 (the 

hypothesis of a difference) and corrections for multiple comparisons under H0 (hypothesis of 

absence of a difference) are applied to control for the Type 1 error (i.e., false positives).  The 

regression analysis employed consists in sampling with replacement 230 (number of subjects) 

matrices of frequency data (electrodes × frequency bins). In ther words, trial indices are sampled. 

The obtained regression β coefficients are then computed for each bootstrap and sorted in 

ascending order. For simple regressions, 599 bootstraps are performed to calculate  the 95% CI 

(Wilcox, 2011). 

We used the weighted least square (WLS) optimization method (1st level) to better account for 

outliers, and the maximum likelihood estimation method (Ward and Ahlquist, 2018) for 

correction for multiple comparison (the spatiotemporal correection was not possible with this 

montage). We found a significant association between well-being and beta power in the left 

frontal region (AF7 electrode), with a peak at 16 Hz (Figure 43). No covariate effect was found 

with age or gender. 
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Figure 43. Associate between well-being and beta power in the left frontal region (AF7), with a peak at 16 Hz 

(p<0.05, corrected for multiple comparisons with the maximum likelihood estimation method).  

 

This finding goes along with some literature on stress, anxiety, and depression (Hamid et al., 

2010; Putman et al., 2014; Jena, 2015; Jun and Smitha, 2016; Díaz et al., 2019; de Hemptinne et 

al., 2021).  
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Abstract

Brain-computer interfaces and wearable neurotechnologies are now used to measure real-time neural
and physiologic signals from the human body and hold immense potential for advancements in medical
diagnostics, prevention, and intervention. Given the future role that wearable neurotechnologies will
likely serve in the health sector, a critical state-of-the-art assessment is necessary to gain a better under-
standing of their current strengths and limitations. In this chapter we present wearable electroencephalog-
raphy systems that reflect groundbreaking innovations and improvements in real-time data collection and
health monitoring. We focus on specifications reflecting technical advantages and disadvantages, discuss
their use in fundamental and clinical research, their current applications, limitations, and future directions.
While many methodological and ethical challenges remain, these systems host the potential to facilitate
large-scale data collection far beyond the reach of traditional research laboratory settings.

INTRODUCTION

Our society faces increasing health disparities, limited
access to healthcare, and rising healthcare costs. Simul-
taneously, the technological sector has entered an era of
bio- and neurotechnology producing wearable neuro-
technologies that provide real-time and longitudinal
monitoring of physiologic and neural activity and may
present viable solutions to many of these issues (Ghose
et al., 2012). Consumers can now access a wide array
of wearable technologies that measure, monitor, and
receive feedback from ongoing physiologic and neural
activity. The information provided by wearable technol-
ogies has numerous overlapping applications. For exam-
ple, measuring patients’ vital signs at home may result in
higher quality, individualized treatment protocols that
incorporate continuous, detailed information about the

patients’ ongoing physiologic status (Muse et al., 2017).
A variety of prototypes and commercial products have
been recently developed that provide real-time health
data directly to the user or the medical center/
professional physician, and can alert an individual or
care provider in the event of a potentially threatening
or imminent health emergency (Kumar et al., 2012).
With an increasing capacity to acquire, share, process,
store, retrieve, and apply big data methods, wearable
technologies may significantly improve our ability to
tackle some of the major challenges of today’s society
(Zheng et al., 2014).

While the application of wearable technologies was
previously limited to physiologic measurements (e.g.,
heart rate, step counter), recent advancements in wireless
electroencephalography (EEG; the measurement of
neural electrical activity from electrodes placed on the
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scalp) is now leading to the development of new applica-
tions. While wearable EEG technology faces a number
of limitations and challenges to match state-of-the-art
(SoA) research grade EEG equipment (e.g., number of
electrodes and electrode locations, signal-to-noise ratio,
and markers), they do hold immense potential, allowing
direct interfacing between an individual’s brain activity
and a digital recording device in environments other than
clinical and research infrastructures and at affordable
prices for a wider part of the population. These devices
will eventually allow us to train and target specific cog-
nitive skill sets (Vernon et al., 2003), reinforce specific
brain rhythms (Brandmeyer and Delorme, 2013), play
video games (Schoneveld et al., 2016), and create art
and music based on measured real-time neural activity
(Grandchamp and Delorme, 2016).

EEG measurement reflects the cumulative electrical
activity associated with the depolarization of cortical
neurons, can reflect rhythmic and transient activity
(Buzsáki, 2006), and facilitates analyses of neuroimag-
ing data with very high temporal resolution. Brain oscil-
lations reflect the postsynaptic potentials of neuronal
populations, either in response to a stimulus from the
environment (i.e., event-related potentials, ERP), or
associated with mental states (e.g., sleep, coma, and
cognitive activity). EEG scalp electrodes measure the
electrical waves as they spread across the scalp (see
Chapter 18 for more information on EEG). This rhythmic
activity of the brain is then analyzed in the temporal
domain (i.e., frequency domain), and most often within
subbands of specific frequencies, customarily defined
based on their spectral content such as d (<4 Hz), y
(4–7 Hz), a (8–13Hz), b (14–30Hz), and g (>30Hz).
Frequency bands are believed to be functionally corre-
lated with specific cognitive processes or with specific
steps of processing depending on the location of their
measurement or their latency within a specific process.
The high temporal accuracy of EEG also provides pre-
cise temporal information about brain processing. EEG
is also used clinically to diagnose and localize which
steps in the brain’s information processing pathways
are malfunctioning (e.g., visual, auditory, and tactile
processing).

The recent development of dry electrodes (Taheri
et al., 1994) and wireless technologies have led to inno-
vative wearable EEG systems, which offer quick and
practical EEG data acquisition solutions (i.e., no gel,
cleaning, or cables) and usually include real-time data
preprocessing as well as correction for head movements.
Several new systems are now fully portable, where data
recordings can be stored directly on the device (i.e.,
microSD) or transmitted wirelessly to a smartphone
(Stopczynski et al., 2014; Debener et al., 2015). As a
result of these technological improvements, new possi-
bilities in the domains of fundamental and clinical

research have now emerged. With features such as the
lightweight portability, the ease of dry electrodes, and rel-
atively fast set up times, well-designed wearable technol-
ogies enable access to populations that were previously
harder to include in research laboratories settings.

By gaining access to wider range of populations, such
as young children, the disabled, and elderly (Ramirez
et al., 2015; Neale et al., 2017), neurotechnologies
may enable longitudinal designs with larger sample-size
studies (Kovacevic et al., 2015; Hashemi et al., 2016),
and improve our ability to study the human brain in nat-
uralistic settings (Debener et al., 2012). Many modern
wearable EEG headsets are now comfortable to wear,
incorporate elegant designs, and are becoming increasingly
attractive for general public use (Nijboer et al., 2015).
Innovative applications including practical, easy, and
high fidelity at home recordings, have the potential to
enable neurofeedback (NF) and brain-computer interface
(BCI)-based cognitive interventions, applications, group
studies (i.e., simultaneous recording of different partici-
pants), big data analyses, and more.

At present, wearable EEG technologies remain one
of the most promising candidates for the real-world
applications of self-health monitoring solutions (see
Chapter 1 for more details on BCI principles, concepts,
and domains). Recent innovations in wearable headset
design enable the delivery of both transcranial current
stimulation (TCS), functional near-infrared spectroscopy
(fNIRS), in addition to the simultaneous combination
of these methods with EEG (see Table 16.1). In the
following chapter, we review several high-fidelity EEG
wearable systems currently available (both consumer
and research grade products), in addition to systems
that combine EEG, TCS with fNIRS, or TCS. We
then explore the different applications that already
exist using wearable technologies and address the
limitations, prospects, and precautions associated with
such technologies.

WEARABLE NEUROTECHNOLOGIES

In this section, we provide a list of both relatively
low-cost (i.e., under a $1000) and widely used (as of
2018) wearable EEG systems that are available for both
fundamental and clinical research, NF, BCI, and home
use-based applications. We also review a nonexhaustive
list of less affordable (i.e., more than a $1000) and
more advanced systems that are destined for profes-
sionals who have access to funding and are interested
in the applications using these systems. Excluded from
this review are several single channel EEG devices—
which are relatively limited based on today’s standards
(Picton et al., 2000; Luck, 2014)—or EEG devices that
lacks significant technical or scientific evidence or were
proven to provide poor signal quality (e.g., Emotiv

208 C. CANNARD ET AL.



Table 16.1

This table reviews a range of different wearable headsets and their different features and specificities, going from low to high costs and functions. This table includes information about each

device’s sensors, sampling rate, connectivity type, and data resolution

Sensors Price ($)

Battery

autonomy

(h)

Connectivity/

storage

Signal

resolution

(bits)

Sampling

rate (Hz)

Weight

(g) Additional features

Auxiliary

measures (EXG) EEG

NF/BCI

(included) fNIRS Neuromodulation Audience and applications

Muse (Interaxon) – Four dry active electrodes (TP9, TP10,

AF7, AF8): two silver and two

conductive silicone rubber

– Reference on Fpz (DRL/DMS)

– Adjustable headband (52–60cm)

180 5 BLE 12 256 60 – Allows recording of raw EEG data

directly on iPod, smartphone, or tablet

– NFApp

– Allows to record data from multiple

devices simultaneously on computer

– Real-time impedance check

– Triggers

– 6-axis motion

sensor

– One input for

custom

physiologic

sensor

– HR (Muse 2)

– Respiration

(Muse 2)

X X For researchers and the public: home

use, real-world recordings, attention/

meditaiton training, relaxation, raw

EEG recording, big data analyses,

sleep research, BCI

EPOC+ (Emotiv) – 14 saline soaked felt pads (AF3, AF4,

F3, F4, FC5, FC6, F7, F8, T7, T8, P7,

P8, O1, O2)

– CMS/DRL references (P3/P4)

– Adjustable by pressure control

800 6 BLE 14/16 128/256 120 – Raw EEG data

– Available detections of mental

commands (neutral+up to four

pretrained items per training profile),

performance metrics (excitement,

engagement, relaxation, interest,

stress, focus), facial expressions

(blink, wink L/R, surprise, frown,

smile, clench, laugh, smirk)

– Real-time impedance check

– 9-axis motion

sensors

X X For researchers and the public: home

use, real-world recordings, raw EEG

recording, enhancing brain

performance, 3D brain visualization,

BCI

Dreem (Rythm) – Six channels (four frontal and two

occipital)

– One microamplifier

– Adjustable headband

– Reference electrodes on O1 and O2

(but flexible)

500 12 Wi-Fi and BLE 24 250 120 – Sound is discretly diffused to the inner

ear via your forehead (using bone

conduction technology)

– Can connect to smartphone and iPod

directly

– Sleep monitoring App that works

without BLE and Wi-Fi during sleep

(data transferred later for report)

– 3-axis motion

sensor

– Two pulse

oximeters

(respiration and

HR)

X X Sleep monitoring, managing, and

improvement

4.5k 4 BLE/microSD 24 250/1000 110 – Real-time impedance monitoring X X

Continued



Table 16.1

Continued

Sensors Price ($)

Battery

autonomy

(h)

Connectivity/

storage

Signal

resolution

(bits)

Sampling

rate (Hz)

Weight

(g) Additional features

Auxiliary

measures (EXG) EEG

NF/BCI

(included) fNIRS Neuromodulation Audience and applications

Sleep headband

(Cognionics)

– 2–8 active dry and semi dry electrodes

(can be placed in any of 14 positions

along the band)

– Optional wireless triggers

– Raw EEG

– Recording via microSD card possible

– Optional add-on

module for EXG

Sleep monitoring, managing, and

improvement

Quick 20/30

(Cognionics)

– 20/30 active dry and semi dry

electrodes (10/20 system

+10 additionnal from 10/5 system)

– Adjustable by pressure control

24k 8 BLE/microSD 24 500/1000 610 – 3-axis motion

sensor

– Two

optional EXG

X X Designed for real-world applications,

BCIs

Ultracortex Mark IV

(OpenBCI)

– 8 (cyton board) or 16 (cyton+daisy

boards) channels, with 35 possible

different locations

– Passive gold cup electrodes using gel

paste; or any standard electrode using

adapter cables

– DRL, positive voltage supply (Vdd),

and a negative voltage supply (Vss)

– Three different head sizes, and flexible

structure

�850/1.4k ? BLE and Wi-Fi 24 250/500 – Compatible with active and passive

electrodes (adapters)

– 3D printable

– 30s to set up

– MicroSD input for local storage

– The prices correspond to the printable

EEG headset with the OpenBCI

boards. The headset can also be

purchased printed but unassembled, or

fully assembled for higher prices.

Batteries are not included but represent

a cost of around $10

– 3-axis motion

sensor

– Optional EXG

(EMG, ECG)

X X Raw EEG recording, BCI, NF, first 3D

printable device

B-Alert X10/X20

(ABM)

– 9 or 20 channels (frontal, central,

parietal lobes), using a conductive

cream

– Fixed gain referenced to mastoids

– Three sensor strip sizes (S, M, L)

11.5k 12–24 BLE 16 256 11 – Ultra-low profile and comfortable fit

allows for 8+ hour recording sessions

– Patented real-time artifact

decontamination

– Software with classifications of

cognitive states (for $16.5 k in total

price)

– Setup: 10/20min

– 3-axis motion

sensor

– 1 EXG with the

B-Alert X10;

and 4 EXG for

the B-lert X20

(EOG, ECG,

EMG)

X X Raw EEG recording, BCI, cognitive

assessment or training, performance

enhancement, group studies, sleep

studies, military studies



DSI 10/20 (Quasar) – Up to 21 dry EEG electrodes (flat-

ended finger electrodes)

– Ground at Fpz and references on

mastoids

7k 24 BLE 16 300/600 500 – Patented shielding and circuit design

reduce environmental noise

– Mechanical design carefully controls

contact pressure allowing comfortable

wear all day

– Internal storage (1GB)

– Impedance monitoring for each sensor

– Cognitive states classification

software

– Wireless belt

that measures

EKG, skin

temperature,

and 3D body

acceleration and

position

– Trigger inputs

X Raw EEG recording, BCI and NF,

cognitive states classification, real-

world recordings

Enobio

(Neuroelectrics)

– 8/16/32 channels, using innovative

solid-gel electrodes or dry electrodes

– A disposable pregelled electrode or a

earclip can be used for CMS/DRL

reference

– Six different neoprene, flexible, head

cap sizes

�4k/14k/

20k

16/15/14 BLE 24 500 65 – 3D visualization real time

– Specific headcaps for children

– MicroSD card for internal storage

– Compatible with TES and TMS

– “Mickey Mouse” Headcap Cover

for kids

– EOG/ECG X Researchers and clinicians: high-quality

raw EEG, high mobility, real-world

studies, BCI, and NF applications

OctaMon (Artinis) – 8-channels fNIRS headband �17k 6 BLE 10 230 – 8 � 2 wavelengths: 760/850

(standard)

– Optode distance: 35mm

– No interference with EEG, EOG,

ECG, EMG

– TMSI packages: Octamon+EMG

(2 channels or more), and Octamon

+EEG (16 channels or more)

– Real-ime processing of fNIRS data in

3D

– Can be

combined with

external EEG

and EXGs

X Researchers and clinicians only: study of

hemodynamic response with very

high mobility, real-world studies, can

be combined with other

neuroimaging techniques, BCI,

educational applications

g.Nautilus (g. tec) – 8, 16, 32, 64 active, dry, or gel-based

EEG electrodes

– GND and REF

– Flexible positioning of electrodes,

three head sizes for both adults and

children

From 5k 6–10 2.4 GHz ISM 24 250/500 <140 – Contactless charging of the battery

– Waterproof

– Allows simultaneous tDCS and TMS

– Internal impedance check

– Eight digital triggers

– MicroSD (up to 2GB)

– BCI software applications available

– 3-axis motion

sensor

– Four possible

exg (ECG,

EMG, EOG,

GSR, limb

movement,

oxygen

saturation,

respiration

effort, and flow)

X X For researchers and clinicians only: high

quality raw EEG, possible

simultaneous EEG-fNIRS, and

compatible with EEG-tDCS and

EEG-TMS (with external

equipment). Recording during

physical activity, easy access to

children and the elderly,

rehabilitation, real-world recordings,

BCI

– 8 fNIRS channels, combined

with EEG

– Works with both dry and gel-based

electrodes (8/16/32 channels)

– Flexible positioning of electrodes,

three head sizes (including for kids)

From 25k 1.5–6 BLE 10 <140 – 4 � 2 wavelengths: 760/850nm

– Optode distance: 35mm

– Control box weight: 230g including

battery

– LED based

Continued



Table 16.1

Continued

Sensors Price ($)

Battery

autonomy

(h)

Connectivity/

storage

Signal

resolution

(bits)

Sampling

rate (Hz)

Weight

(g) Additional features

Auxiliary

measures (EXG) EEG

NF/BCI

(included) fNIRS Neuromodulation Audience and applications

Starstim 8, R20, R32,

(Neuroelectrics)

For EEG specifications, see the Enobio above – 3-axis motion

sensor

– ECG, EOG

X X X X For researchers and clinicians only:

EEG recording, NF, simultaneous

EEG and TES/fNIRS (all in one

headset), BCIs, telemedicine, home

use, real-world recordings

– Up to 20 or 32 electrodes with

39 possible locations

– The Pistim hybrid electrodes allow for

both EEG recording and TES

(includes tDCS, tACS, tRNS) at the

same site but not simultaneously. The

geltrodes and sponstim electrodes

allow for simultaneous EEG/TES, but

at different sites

– Multiple head cap sizes

�11k/29k/

43k

4 Wi-Fi 1 mA 1000 65 – Frequency stimulation: 0–250Hz for

tACS and 0–500Hz for tRNS

– �15V per electrode (30V potential

difference)

– 2 mAmax current, 1 hmax duration of

stimulation

– Abortion possible at any time

– MRI compatible stimulation

electrodes

– Nube cloud platform allows scheduled

stimulation from distance

– Can be combined with the OctaMon

fNIRS

Sensors: EEG activity is typically recorded from the scalp using gel-based electrodes to achieve a high signal-to-noise ratio (SNR) between the source (the brain activity) and the measurement device (the electrode). Active

electrodes contain individualmicroamplifierswhich significantly improve the SNRand reduce application time.When passive electrodes are used, the skinmust be properly prepared and abraded in order to achieve a high SNR.

The main advantage of gel-based active electrodes is their high SNR. Disadvantages include high cost and relatively lengthy preparation and cleaning time. The recent development of dry electrodes (Taheri et al., 1994) along

with wireless technologies have led to the development of innovative wearable EEG systems. While dry electrodes have an increased sensitivity to motion artifact, movement of cables, and electrostatic charges, they do not

require extensive cap mounting time, skin abrasion, or hair washing.

Sensor locations: The international 10–20 system is an internationally recognized method to describe and apply the location of scalp electrodes for EEG (Klem et al., 1999). The 10–20 system is necessary for the comparison of

brain data collected fromdifferent laboratories, which entails the comparison across subjects and populations, variations in equipment, and variations in the electrodemontage. In the 10–20 system, each electrode placement site

is labeled according to the corresponding topographical location on the scalp prefrontal (Pf ), frontal (F), temporal (T), parietal (P), occipital (O), and central (C).

Motion sensors: To prevent the loss in signal quality, a majority of high-end wearables using dry electrode technology generally include motion sensors. The gyroscope indicates the orientation of an object in space (i.e., Along

the 3-axis: X, Y, Z), and the accelerometer measures the acceleration (along the 3-axis as well). Their sampling rates are similar to those of EEG. This information can be used to reject artifacts in the data. However, motion

sensors—especially gyroscopes—generally present a significant drain on battery power and may decrease battery life.

Sampling rate: Sampling rates generally vary from 128Hz to 2048kHz. Low cost EEG usually use multiplexing of a single analog to digital (AD) converter which scan each channels sequentially. So a 2048kHz AD converter

can convert 8 channels at 256Hz sampling rate. Note that research systems usually have one AD converter per channel which not only allows for higher sampling rate but also ensures simultaneous acquisition of all channels

(with the sequential solution, the acquisition time of each channel is slightly delayed for each channel which could potentially affect subsequent processing—although resampling techniques may be used to realign data

collection time of each channel).

Connectivity: Bluetooth andWi-Fi use the same band at 2.4 GHz (Wi-Fi may also use the 5.0 GHz frequency). Wi-Fi direct promises device-to-device transfer speeds of up to 250MBPS, while Bluetooth 4.0 promises speeds

similar to Bluetooth 3.0 of up to 25MBPS. Bluetooth technology cannot transmit as much data as Wi-Fi.

Sampling rate: Sampling rates generally vary from 128Hz to 2048kHz. Low cost EEG usually use multiplexing of a single analog to digital (AD) converter which scan each channels sequentially. So a 2048kHz AD converter

can convert 8 channels at 256Hz sampling rate. Note that research systems usually have one AD converter per channel which not only allows for higher sampling rate but also ensures simultaneous acquisition of all channels

(with the sequential solution, the acquisition time of each channel is slightly delayed for each channel which could potentially affect subsequent processing—although resampling techniques may be used to realign data

collection time of each channel).

Data resolution (in bits): It is generally accepted that EEG signal resolution does not go beyond 24 bits (due to environment and electric noise). However, this means that all systems acquiring less than 24 bitsmay lose important

data, unless a dynamical gain mechanism is implemented to increase the range of possible values. Most low-cost wearable EEG system use 16-bit A/D (analog/digital) conversion resulting in some loss of data.



Insight, Foc.us EEG Dev Kit, FocusBand, Imec, Neu-
rosky Mindwave, and the two Kickstarter products:
Melon and Melomind) (Fig. 16.1).

APPLICATIONS

Fundamental research

Over the past century, EEG studies have served as a key
methodological tool for the scientific study of human
cognition, sleep, neurodegenerative diseases, and brain
disorders (Regan, 1989; Luck and Kappenman, 2011).
While traditional EEG laboratory recordings require
lengthy application and recording procedures, several
of these technical factors can be overcome by increas-
ingly sophisticated lightweight, easy to setup wearable
EEG headsets and headbands that implement wireless
and dry electrode technologies and allow scientists to
gain access to large volumes of raw data for research
purposes.

However, it is important to note that several technical
specifications are required to obtain good data quality
when conducting both continuous EEG and event-
related brain potential (ERP) research (Picton et al.,
2000; Luck, 2014)—the type of electrode used, the
minimum number of electrodes needed for meaningful
interpretation, the importance of the scalp electrode loca-
tions (i.e., standard nomenclature of the 10/20 and 10/10
systems), interelectrode impedance, reference-electrode
selection, and amplifier capabilities (e.g., number of bits
available, the common-mode rejection ratio, or the
amplifier gain). An obvious concern with low-cost
EEG systems is whether the actual hardware meets the
standards necessary to achieve sufficient EEG signal
quality. As described in Table 16.1, not all, but some
wearable neurotechnological systems currently record
the data at high-fidelity sampling rates (i.e., >256Hz)
and with high signal resolution (i.e., superior to 8 bits).

Regarding the argument for increased number of elec-
trodes, as highlighted by Picton et al. (2000), “the
optimal number of recording channels is not yet known.
This number will depend on the spatial frequencies that
are present in the scalp recordings (Srinivasan et al.,
1998), provided that such frequencies are determined
by the geometry of the intracerebral generators and not
by errors in positioning the electrodes or modeling the
impedances of the head” (Picton et al., 2000). To deter-
mine if wearable neurotechnologies meet such signal
quality requirements, several studies have directly tested
the signal quality of some advanced EEG wearable
headsets (see Table 16.1) to directly determine whether
they can provide data that reliably results in visible
and statistically quantifiable ERP components.

Krigolson et al. (2017b) were able to reliably identify
the N200, P300, and reward positivity ERP components
with theMuse EEG headband in two 5-min experimental
paradigms. De Vos et al. (2014) conducted a single-trial
P300 classification with linear discriminant analysis
and revealed high classification accuracies for both
indoor (77%) and outdoor (69%) recording conditions.
Barham et al. (2017) showed that while significantly
more trials are rejected from data acquired by systems
such as the Emotiv Epoc, the raw EEG waveforms cap-
turedwere found to have a high degree of similarity to the
corresponding waveforms measured with a SoA system
(e.g., SynAmps). Similarly, Mayaud et al. (2013) com-
pared the performance of six traditional EEG disc elec-
trodes (i.e., electrodes made from silver metal and lead
wires) with the electrodes provided by the Emotiv Epoc
wearable headset, and found no significant difference in
performance between the two. They did find, however,
that performance and “level of comfort” decreased after
long periods of recording using the wearable headset
(i.e., between 2 and 3 h of use). Pinegger et al. (2016)
evaluated three different commercially available EEG

Fig. 16.1. Illustration of the wearable EEG headsets reviewed in Table 16.1. Top row (from left to right): Muse (Interaxon), Epoc

(Emotiv), Dreem (Rythm), Sleep headband (Cognionics), Quick 30 (Cognionics), Ultracortex, Mark IV (OpenBCI), B-Alert X10

(ABM). Bottom row (from left to right): DSI 10/20 (Quasar), Enobio (Neuroelectrics), Octamon (Artinis), g.Nautilus (g.tec), g.

Nautilus EEG-fNIRS (g.tec), Starstim 8 and 32 (Neuroelectrics). Reproduced with permission.
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acquisition systems that differ in the type of electrode
(gel-, water-, and dry-based), the amplifier technique,
and the data transmission method. Every system was
tested regarding three different aspects, namely techni-
cal, BCI effectiveness and efficiency (i.e., P300
detection, communication, and control), and user satis-
faction (comfort). They found that the water-based sys-
tem had the lowest short-circuit noise level, the
hydrogel-based system had the highest P300 spelling
accuracies, and the dry electrode system caused the
least inconveniences. They concluded that building a
reliable BCI was possible with all evaluated systems
and it is for the user to decide which system meets the
given requirements best (Pinegger et al., 2016).

While these findings suggest that the hardware
specifications of these wearable EEG systems are
sufficient to conduct ERP studies successfully, some
studies found that such low-cost wearable EEGs
(e.g., Emotiv Epoc) showed poor performance com-
pared to clinical-grade equipment (Duvinage et al.,
2013). This highlights the importance of the methods
employed by the experimenter. When thorough
methods are employed, such as specific methods to
increase the signal quality (i.e., clean hair, clean
skin, a shielded environment, comfortable recording
conditions), accurate results can be obtained. In fact,
a fair number of studies have now used several
different sophisticated low-cost wearable EEG head-
sets to study a wide array of fundamental topics
such as visual and auditory attention and perception
(Debener et al., 2012; Boutani and Ohsuga, 2013;
Wascher et al., 2014; Badcock et al., 2015; Abujelala
et al., 2016; Maskeliunas et al., 2016; Barham et al.,
2017;Kuziek et al., 2017;Krigolson et al., 2017a, b), emo-
tions (Peter et al., 2005; Brown et al., 2011; Bashivan
et al., 2016; Jiang et al., 2016, 2017; Brouwer et al.,
2017), learning, andmemory (Berka et al., 2005a, 2007b).

Laboratory studies in psychology and cognition that
have conducted research using artificial stimuli and
fixed response options inevitably result in findings that
are less ecologically valid in relation to real-world
behavior. Advanced wearable EEG systems may facil-
itate a more accurate understanding of the human
brain and its highly complex mechanisms occurring
in natural settings. Data from wearable EEGs have
now been collected on participants walking outdoors
on university campuses (Debener et al., 2012) and in
urban and green space environments (Aspinall et al.,
2015; Neale et al., 2017; Tilley et al., 2017). Wearable
EEG systems also facilitate an improved access to
populations that were previously harder to include in
studies due to lengthy uncomfortable experimental
conditions, such as in studies with children (Badcock
et al., 2015), in classrooms (Mohamed et al., 2020),

and with elderly populations (Abbate et al., 2014;
Ramirez et al., 2015; Dimitriadis et al., 2016; Neale
et al., 2017; Tilley et al., 2017).

There have been several critiques of the viability of
wearable EEG headsets for conducting EEG research
in nonlaboratory or nonclinical settings (Przegalinska
et al., 2018). EEG wearables systems will always face
the challenge (that can exist in almost any data collection
environment) of successfully collecting high-fidelity
EEG data. While EEG wearables allow for more mobil-
ity, they remain highly sensitive to movement artifacts.
High-fidelity EEG data require individuals to limit all
body and face movements as much as possible and will
always present a challenge in signal analysis. More
advanced machine-learning algorithms must be devel-
oped to increase the variety of artifacts that can be
corrected in real time while not losing the signal of
interest. Another considerable challenge involves the
inability to directly control events occurring in the
environment, while under laboratory settings, stimulus
timing is the highly accurate mark of the occurrence of
an experimental event. To our knowledge, no simple
solutions have been found to mark the occurrence of nat-
ural events, except for the use of a synchronized video
recording and then a manual synchronization offline. It
is important to note that while some of these devices
may offer a high signal-to-noise ratio (SNR) and wave-
form quality when thorough methods are applied, other
technical aspects are equally important when recording
EEG such as the number of electrodes and accurate elec-
trode placement. Wearable EEG headsets often use dry
electrodes that are practical; however, they are often
reported to be less comfortable over long periods of time.
Wearable headsets are equally sensitive tomovement arti-
facts as SoA systems; they do not allow marker informa-
tion and events to be directly embedded into the raw data,
are often mishandled by users, and vary significantly in
their advantages and disadvantages across devices (see
Table 16.1). While these limits are important to keep in
mind, some promising applications of advanced, low-cost
wearable EEG systems have already emerged.

FROM VIRTUAL REALITY TO REAL-WORLD

APPLICATIONS

The accelerating development of increasingly sophisti-
cated virtual reality (VR) platforms is now advancing
our ability to study real-world environment simulations
in laboratory settings. VR is now being applied in
neuroscience research and is also expanding the develop-
ment of clinical interventions (Bohil et al., 2011)
through the creation of immersive and highly controlled
environments wherein the ecologic conditions of natural
environments can be simulated. Wearable EEGs have
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been combined with VR in a range of studies investigat-
ing the cognitive processes underlying (simulated)
driving conditions such as alertness, vigilance, reaction
time, fatigue, and drowsiness of automobile drivers in
simulations (Johnson et al., 2011; Brown et al., 2013;
Lin et al., 2014; Wascher et al., 2014; Armanfard
et al., 2016; Foong et al., 2017; Wang and Phyo Wai,
2017). This combination allows for the development of
new closed-loop systems that may be integrated into
the technology of newly manufactured vehicles in the
near future. This technology holds the potential to ensure
safer driving performances through the incorporation of
features such as feedback alarms (Berka et al., 2005b),
emergency braking predictions based on EEG/ERP
signatures (Haufe et al., 2011), red and yellow stop lights
distinctions (Bayliss and Ballard, 2000), in addition to
the control of a virtual car based on EEG activity
(Zhao et al., 2009). While the continued use of standard
research grade equipment is more appropriate when
studying specific neural mechanisms and processes
implicated in VR environments, these findings can later
be used to informmodels applied to real-world investiga-
tions implementing wearable EEG technologies.

Wearable EEG devices offers advantages such as
increased freedom of movement for research partici-
pants, increased accessibility (i.e., low-cost equipment),
and research that studies properties of locomotion (REF).
However, often these technologies have yet to bring
about a better understanding of brain processes than
what has been shown by studies using the conventional
golden standard (i.e., 64-channel research grade EEG
equipment) that contain >32 electrodes and provide
higher signal quality and SNR (e.g., gel-based systems).
The application of wearable systems can be highlighted
by new research that may lead to the first “prevention
system,” which uses real-time data recorded from a
pilot or driver’s brain that would enable the detection
of mind wandering, loss of attention, and/or drowsiness
and could provide an auditory, tactile, or visual feedback
cue to the driver to avoid an accident (Healey and Picard,
2005; Akbar et al., 2017;Wei et al., 2018). Recently, new
research (Zhang et al., 2015; Chavarriaga et al., 2018;
Martínez et al., 2018) developed innovations in the
EEG paradigms designed to study real-life driving
situations that aimed to identify an EEG marker of an
individual’s intention to brake or to turn at an intersec-
tion. While these findings are groundbreaking, the
machine-learning methods used by these BCI systems
still need to be improved to bring to the margin of
error to zero. One way of compensating for changes in
SNR while driving, as suggested by Chavarriaga et al.
(2018), is the inclusion of additional physiologic
measures, such as eye movements, the heart rate, or
the electromyography (EMG) of the driver, as well as

contextual information gathered by in-car sensors,
which will allow intelligent cars to provide timely and
tailored assistance.

SCIENCE AND EDUCATION

Cultivating and enhancing creativity within the domains
of science and education are another potential avenue
whereby these technologies may help to facilitate
improved and engaged educational opportunities, while
educating the next generation of neuroscientists in a
more engaging and interactive way. Grandchamp and
Delorme, 2016 developed the “Brainarium,” a portable
planetarium dome on which the real-time EEG data is
recorded from a subject and directly transformed to
visually represent the real-time activity as vibrant and
colorful multimedia content. Projects such as these dem-
onstrate the growing importance of the art and its contri-
bution toward the sciences in ways that have been
overlooked for the last several decades (Andujar et al.,
2015). BCIs have now been developed to create music
using devices, such as the “Encephalophone” system
(Deuel et al., 2017), as well as visualize music perfor-
mances (Mullen et al., 2015).

GROUP STUDIES AND BIG DATA

Wearable technologies also enable the simultaneous
recording of multiple individuals, opening up new
applications of EEG research for the study of group
dynamics, team cohesion, or social synchronicity
(Stevens et al., 2012, 2013). Big data research studies
have the potential to revolutionize thewaywe investigate
individual differences and differentiate commonalities
in brain activity across subjects due to the power that a
large participant sample size provides in distinguishing
nuanced individual characteristics. A majority of neuro-
imaging studies is conducted on small samples due to
the cost and time-consuming nature of measuring EEG
on large groups of participants. With larger samples
come more robust statistical inferences about the general
population as well as a better representation of the
sociodemographic differences. For instance, Hashemi
et al. (2016) used the Interaxon wireless four-channel
EEG headband to analyze the brain data (i.e., the partici-
pants were doing a NF mindfulness task such as a breath-
focus exercise) of 6029 subjects ranging from 18 to
88 years in age and were able to identify subtle but robust
age-related shifts in EEG activity (i.e., EEG power, peak
frequencies, asymmetry measures between frontal and
temporoparietal sites) on a year-by-year scale, as well as
how these changes differed between males and females
in a representative population of individuals comple-
ting the tasks in uncontrolled natural environments.
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In another study, Kovacevic et al. (2015) recorded 523
subjects with the same wearable EEG system for 12h in
a collective and immersive NF multimedia science–art
installation. They found that the participants’ EEG base-
line activity predicted subsequent NF training, indicating
the existence of a state-dependence effect in learning abil-
ity during NF.

The brain data recorded by NF applications available
on smartphones/tablets is currently aggregating some of
the largest EEG databases in history (Hashemi et al.,
2016). These big data archives will allow for the devel-
opment of new types of statistical analyses implemented
via machine learning, and may highlight patterns and
trends in brain activity that have not been previously pos-
sible with smaller datasets. The validity and value of such
databases will depend on the signal quality being mea-
sured by users. Given that these users lack advanced
training and experience in EEG, recording movement
artifacts and placing electrode positions inaccurately
(even though some Apps provide clear instructions and
visual feedback about electrode impedance) are inevita-
ble. As a consequence, a large portion of data is usually
lost due to these low quality recordings. Furthermore,
these devices measure the EEG from only a few elec-
trodes and therefore lack the accuracy and value of a
brain signal that is normally recorded from multiple sites
on the scalp. As a consequence, the use of these databases
is limited to small regions of the brain related to electrode
placement (e.g., frontal and temporal for the Muse head-
band). In addition, the NF algorithms used by the smart-
phone Apps are the company’s trade secrets (which have
sometimes not been validated), making it impossible for
researchers to know what brain mechanisms and activity
were targetted to obtain these results.

In conclusion, sophisticated wearable neurotechnolo-
gies should be used by experienced EEG practitioners
and reserved to real-world applications as they cannot
yet replace SoA systems (e.g., gel-based electrodes) in
controlled conditions for testing fundamental questions.
Each device offers advantages and disadvantages com-
pared to others, therefore researchers should determine
which is best suited to their needs, taking into account
all the features of the devices (i.e., sampling rate, electrode
locations, SNRs, expected length of use, the availability of
skilled labor for system setup and patient comfort). We
recommend the collection of raw data and the develop-
ment of customized NF codes instead of using the non-
transparent programs provided by companies designing
these devices.

Clinical applications

One of the more significant clinical applications of wear-
able EEG involves the use of event-related potentials

(ERP), which reflect stereotypical changes in EEG activ-
ity evoked by environmental events. They have played a
pivotal role in our understanding of the relationships
between physical stimuli and brain activity (Luck and
Kappenman, 2011) and have been widely used in the
study of cognitive disorders such as developmental dys-
lexia (H€am€al€ainen et al., 2013), specific language
impairment (McArthur and Bishop, 2004), psychiatric
disorders (Park et al., 2010), and autism (�Ceponien_e
et al., 2003) among others. The four main EEG patterns
used in BCI systems include the P300 (i.e., positive brain
oscillation occurring at 300ms), used generally for bidi-
rectional communication BCIs, the m (i.e., 8–12Hz) and
b (i.e., 18–26Hz) rhythms, usually used for sensorimotor
BCIs, and the steady-state visual evoked potentials
(SSVEPs), which correspond to the measured active
visual focus (see Chapters 7–11 and 14 for more details).

As described in section “Fundamental research,”
some wearable EEGs were shown to accurately measure
certain types of ERPs, such as the P1/P100, N1/N100,
P2/P200 assessed by their peak amplitude, latency, and
mismatch negativity (Badcock et al., 2015) and the
N2/N200 and P3/P300 assessed by latency and peak
amplitude during an auditory oddball task (Mayaud
et al., 2013; Barham et al., 2017), assessed by classi-
fication accuracy (Jijun et al., 2015) and by a visual
oddball task and a reward-learning task (Krigolson
et al., 2017b).

As BCIs integrate the real-time analysis of ERPs
(Sullivan et al., 2012), new potential applications emerge
with the continuous improvement of wearable EEGs by
maintaining this type of brainwave discrimination in
real-world settings while the individuals are moving,
by monitoring the events occurring in the environment,
and by improving these neurotechnologies in terms of
discreteness and design. For instance, early diagnosis
of brain disorders by detecting specific EEG components
and markers associated with a given disorder may be
possible in the patient’s home (e.g., unclear paroxysms
in epileptic patients; Askamp and van Putten, 2014;
Nunes et al., 2014). Hofmeijer et al. (2018) were able
to detect the cortical spreading depolarization producing
detrimental effects in patients with traumatic brain
injury and ischemic stroke. Abbate et al. (2014) tested
the usability of wearable technologies (both physio-
logic and EEG activities) with elderly victims of
advanced Alzheimer’s disease (AD) in a nursing home.
Nieuwhof et al. (2016) tested the feasibility of using a
new portable and wireless fNIRS device to measure pre-
frontal cortex activity during different dual task walking
protocols in Parkinson’s disease (PD). Billeci et al.
(2016) showed evidence of changes in neurophysiologic
and autonomic response from the state of disengage-
ment to the state of engagement of autistic children.
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Maddox et al. (2015) measured brain activity for asses-
sing concentration and stress levels during surgical sim-
ulator performance of laparoscopic tasks to determine if
expert surgeons have different brain activity patterns
compared to intermediate and novice surgeons.

PHYSICAL ACTIVITY

While sedentarity is considered a high-risk factor for
health, the benefits of physical activity have been exten-
sively documented in the scientific literature (Tremblay
et al., 2010; de Rezende et al., 2014). Several studies
have shown that regular sport-based activities produced
neuroangiogenesis (i.e., creation of new blood vessels)
and neurogenesis (i.e., creation of new neurons) in the
brain (Fabel et al., 2003; Olson et al., 2006; Pereira
et al., 2007). While most of the studies on exercise assess
pre-/postmeasures, a lack of research studying the neural
mechanisms taking place during the practice of exercise is
due to the reduced mobility imposed by cables and the
signal artifacts produced by the movements of the
subjects. However, with the development of wearable
technologies, researchers have now been able to study
the electrical activity of the brain during exercise, during
performance on attentional tasks while walking outdoors
(Debener et al., 2012; Aspinall et al., 2015; Armanfard
et al., 2016), walking on a treadmill (Lin et al., 2014),
or riding a stationary bike (Scanlon et al., 2017). Some
expert athletes train their whole life to develop relaxation
techniques to keep a steady performance under stress
and muscular fatigue. Some researchers were able to
recordEEGdata fromelite archers to study their relaxation
capacities under stress and muscular activity (Lee, 2009),
while others have accelerated the training of archers, golf
players, and rifle marksman using NF strategies (Berka
et al., 2010). Studying the brain of individuals while
they are doing a physical activity will bring precious
information on the effects and mechanisms of physical
activity on the brain, whichmay have an important impact
on both sports science (e.g., training strategies) and
medical applications. In addition, longer recordings using
wearable neurotechnologies would allow long-term
assessment (i.e., from several days to several months or
years) of a regular physical activity on the brain, as
opposed to measuring only the pre- and postsession
differences. Such studies could compare the long-term
effects of different types of physical activity (e.g., weekly
frequency of training sessions, interruptions, intensity, and
nature of the exercise) on different types of populations.
This would apply to clinical therapies as well.

NEUROFEEDBACK

Stress has strong repercussions on both psychologic and
physical systems. As a consequence, chronic stress was

shown to trigger unhealthy behaviors that contribute to
morbidity and mortality (Jackson et al., 2010), such as
depression, obesity, sleep deprivation, attention deficit,
mood disorders, gray matter atrophy in the brain, or sub-
stance abuse, to name a few (Sapolsky, 1996; Dallman
et al., 2003; Duman and Monteggia, 2006; Miller
et al., 2011). However, meditation has been found to
improve stress-related outcomes (Goyal et al., 2014).
Meditation techniques include focused breathing exer-
cises that help to directly regulate the cardiovascular
system (Steinhubl et al., 2015), negative mood, stress,
pain, anxiety, and mind wandering (Zeidan et al., 2010;
Bhasin et al., 2013; Prinsloo et al., 2013; Brandmeyer
and Delorme, 2016). Moreover, meditation practices were
found to increase regional brain gray matter density
(H€olzel et al., 2011). NF provides the possibility of endog-
enouslymanipulating brain activity as an independent var-
iable, making it a powerful neuroscientific tool. NF
training results in specific neural changes relevant to
the trained brain circuit and the associated behavioral
changes. These changes have been shown to last anywhere
from hours to months after training and to correlate with
changes in gray and white matter structure (Sitaram
et al., 2017). Thus, by implementing meditation tech-
niques, NF can help users become aware of their emotions
or negative mind wandering (Brandmeyer and Delorme,
2013;MooneyhamandSchooler, 2013) that are associated
with stress, and develop strategies to overcome them
(Brandmeyer and Delorme, 2016), as well as slowing
down the neurodegenerative process of neuronal struc-
tures (H€olzel et al., 2011). The demonstration of robust
clinical effects remains a major hurdle in NF research.
The results of randomized controlled trials in attention-
deficit and hyperactivity disorder and stroke rehabilitation
have beenmixed, and have been affected by differences in
study design, difficulty in identifying responders, and the
scarcity of homogenous patient populations (Sitaram
et al., 2017).

These benefits apply to cognition as well, as findings
showed that NF increased memory, attention, and
cognitive performance (Zoefel et al., 2011; Nan et al.,
2012; Wang and Hsieh, 2013; Mishra and Gazzaley,
2015). Brainwave training provided by NF induces
neuroplastic changes (Ros et al., 2010), suggesting
important implications for therapies of brain disorders
associated with abnormal cortical rhythms and sup-
porting the use of NF as a noninvasive tool for establish-
ing a causal link between rhythmic cortical activities
and their functions. NF has been well investigated in
the treatment of attention-deficit/hyperactivity disorder
(ADHD) and has shown clinical efficacy (Gevensleben
et al., 2009; Arns et al., 2014).

The sharp rise of computer processing capacity has
solved many of the difficulties faced by the NF and
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BCI pioneers of the 1970s (Dewan, 1967) and 1980s
(Vidal, 1977). Some of the sophisticated software and
hardware are now designed to process EEG data in real
time (Hu et al., 2015), facilitating reliableNF andBCIs to
consumers. Video games have been shown to be power-
ful NF companions. Research suggests that the com-
bination of NF methods and video game interfaces
significantly improves symptoms associated with condi-
tions such as ADHD and anxiety (deBeus and Kaiser,
2011; Muñoz et al., 2015; Schoneveld et al., 2016;
Perales and Amengual, 2017). In addition, some studies
have combined NF, video games and VR to obtain more
immersive results (L�ecuyer et al., 2008).Musical NF par-
adigms are being developed as well, presenting an inter-
esting alternative to other treatments by offering to users
the ability to manipulate expressive parameters in music
performances using their emotional state (Ramirez et al.,
2015). However, these systems are now marketed to
consumers as forms of cognitive enhancement and enter-
tainment (Sandford, 2009) and may present potential
dangers, as they do not involve professional supervision.
Not only should appropriate methods be employed but
more transparency in the algorithms that are being used
by these private software companies must also be
enforced so researchers can validate their use.

NF may also be coupled with other technologies to
enhance its efficacy. The Neuroscapea center for transla-
tional neuroscience at the University of California, San
Francisco has developed multiple games that implement
NF, neuromodulation, and VR/AR such as the NeuroR-
acer, Meditrain, the Ace, or the Beep seeker to name a
few. Neuroelectrics developed the Neurosurferb software
for advanced NF applications, offering for the first time
the possibility of combining NF with brain stimulation
(when combined with the Starstim device; Aguilar
Domingo, 2015). Combined with VR, NF training may
be used to enhance attention (Cho et al., 2002) and
learning (Hubbard et al., 2017). In another experiment,
a multimodal embodied interface was designed for 3D
navigation as a modular wearable, with the user sus-
pended in a harness that was directly controlled by
the EEG activity of the user. This allows both physical
and virtual displacement within an immersive virtual
environment, allowing to simulate a flying experience
(Perusquía-Hernández et al., 2016).

Heart rate variability (HRV) is the change in the time
intervals between adjacent heartbeats that may be used to
predict future health outcomes (Tsuji et al., 1994; Dekker
et al., 1997; Shaffer et al., 2014). Reduced HRV has been
shown to correlate with disease onset and mortality as it

reflects reduced regulatory capacity of the body to adap-
tively respond to challenges like exercise or stressors
(Dekker et al., 1997; Beauchaine, 2001). Self-regulation
techniques (Alabdulgader, 2012) were found to improve
the cognitive function, the parasympathetic system, as
well as a wide range of clinical outcomes (Lehrer
et al., 2003; McCraty and Zayas, 2014). It can be
enhanced by HRV feedback (McCraty et al., 2003),
representing a therapeutic tool with a considerably
reduced health care cost (Bedell and Kaszkin-Bettag,
2010). Several wearable headsets offer features that
allow for the simultaneous recording of the heart rate,
heart pressure, respiration, and EEG (see Table 16.1).
By combining neural and physiologic measures, such
as EEG and HRV (Steinhubl et al., 2015; Billeci et al.,
2016), it is possible to develop NF paradigms aimed
at improving measures related to anxiety, stress, emo-
tions, cognition, and performance (Shaw et al., 2012;
Thompson et al., 2013; Gruzelier et al., 2014).
Given that some NF protocols are already considered
a first line of treatment for children with ADHD
(Gevensleben et al., 2009; Arns et al., 2014), new NF
protocols may soon be available as treatment options
for stress management and the associated physical
outcomes.

SLEEP

Poor sleep quality concerns one-third of the adult pop-
ulation (Roth et al., 2007) and has been linked to many
clinical and medical conditions such as depression and
pain (Giron et al., 2002), and has proven costly (i.e.,
lost productivity, health) for societies and individuals.
The deleterious effects of chronic sleep deprivation and
the associated outcomes have potentially dangerous
and expensive consequences as a result of impaired
neuropsychologic functions for individuals at work,
at home, and on the roads (Pilcher and Huffcutt,
1996; Van Dongen et al., 2003). In addition, long-term
health-related concerns include increased risk for met-
abolic and cardiovascular diseases (Cappuccio et al.,
2011) as well as an overall decrease in immunity
(Bryant et al., 2004). Research shows that 90% of the
American population is using a technologic device
(e.g., television, laptop, or smartphone) in the hour
preceding sleep (Gradisar et al., 2013). Some
wearable technologies developed in the last decades
(e.g., wristbands, mobile apps, smart pillows) target
monitoring of sleep quality, but do not focus on
interventions supporting healthier sleep or making

ahttps://neuroscape.ucsf.edu/technology/
bhttps://www.neuroelectrics.com/products/software/neurosurfer/
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use of sleep cognition (Ravichandran et al., 2017;
Bianchi, 2018). While only a limited number of sleep
studies have been conducted using wearable EEG sys-
tems (Berka et al., 2007a; Debellemaniere et al., 2018),
recent advancements in neuroimaging research offer
new ideas. These include the use of transcranial direct
current stimulation (tDCS) in the gamma frequency
band during rapid eye movement sleep to increase
self-reflective awareness in dreams (Voss et al.,
2014), the use of transcranial magnetic stimulation
(TMS), and the use of pink noise to effectively manip-
ulate sleep depth thereby increasing sleep efficiency
(Suzuki et al., 1991; Massimini et al., 2009). Those
findings could be implemented in BCI or NF applica-
tions with the help of wearable headsets such as the
Starstim that allows simultaneous EEG and TCS (see
Table 16.1). Some wearable EEG headbands that do
not have electrodes behind the head and focus on
frontal and temporoparietal brain activity offer the pos-
sibility to record EEG during sleep in the user’s home
environment (Onton et al., 2016; Debellemaniere et al.,
2018, respectively). Although these studies are easy to
perform with healthy individuals who are aware of
the situation and make a conscious effort to limit their
movements, it might prove more difficult for patients
suffering from pathologic conditions such as AD
(Abbate et al., 2014). Furthermore, some of these wear-
able neurotechnologies may allow for closed-loop
auditory stimulation to modulate brain oscillations at
the right moment by using a classification of sleep
cycles (Chambon et al., 2018; Debellemaniere et al.,
2018), enhancing sleep quality at night (Arnal et al.,
2017). To go further, a team from MIT media labs
developed the first sleep BCI, an interactive interface
named “Dormio” (Haar Horowitz et al., 2018). When
the user enters the hypnagogic sleep stage (associated
with high creativity), EEG and motor signals detect it
and trigger an auditory feedback response provided
by a robot located next to the sleeping user. The sound
makes the user more aware of being in that state and
extends the duration of the semilucid hypnagogic
period, enhancing his/her creativity. Semantics can
be used instead of a sound to influence the dreams of
the users. The most sophisticated wearable EEG
systems, therefore, present a promising future for sleep
research, management, and monitoring.

BIOMEDICAL BCI

Modern BCI present a number of solutions for individ-
uals with disabilities. Under certain circumstances,
patients can regain partial if not all of the lost motor
control if provided effective rehabilitation. Motor
imagery-based BCI (Curran and Stokes, 2003) have been

used as a means of providing patients real-time visual
feedback of limb movement (corresponding to the
injured limb) through a representative simulation on a
computer screen. BCI protocols host the potential to
accelerate rehabilitation through repeated reactivation
of the underlying neural pathways (G€uneysu and
Akin, 2013; Pfurtscheller et al., 2006; see Chapter 9).
A difficult and frequent obstacle present in patient reha-
bilitation involves maintaining the necessary levels of
motivation to remain persistent during repetitive and
demanding physical tasks. NF and BCI rehabilitation
paradigms may improve patients’ sense of wellbeing
and motivation by providing more entertaining and
engaging interfaces (e.g., video games) as opposed to
more traditional clinical/medical settings.

When rehabilitation is not possible, prosthetic control
can still provide improved mobility assistance, and
promising research on BCI-controlled wheelchair move-
ments may soon be an option for patients with paralysis
(Carlson and Millán, 2013; see Chapter 8). The complex
control commands required for robotic prosthetic limbs
or exoskeletons have evaded BCI scientists for the last
few decades; however, recent systems have overcome
several key limitations (McFarland et al., 2010). BCI
patients are now capable of moving prostheses with
increasing accuracy and flexibility (Clement et al.,
2011), and prostheses have become more affordable
(using 3D printing technology; Sullivan et al., 2017).
An exciting new study developed a way to allow
locked-in ALS patients (see Chapter 4) to remote control
a humanoid robot using their EEG activity (Spataro et al.,
2017). Their findings show that three out of four subjects
were able to control the robot so that he could speak,
move, and act for them. These technologies have tremen-
dous potential for patients who are unable to engage with
single-switch systems operated by movements such as
eye blinks, or the breath (e.g., in late-stage ALS, high-
level spinal cord injury, stroke/aphasia, autism, severe
cerebral palsy; see Chapters 3–6). BCIs can also be used
to facilitate linguistic communication, with the most
renowned BCI paradigm being the P300 speller designed
by Cipresso et al. (2012), Farwell and Donchin (1988),
andMellinger et al. (2004). Other BCIs allow the patients
to navigate text, to control a cursor on a computer screen,
browse forward and backward or use bookmarks (K€ubler
et al., 2005; Krusienski et al., 2007; Fruitet et al., 2010;
Mugler et al., 2010). While only a limited number of
studies have integrated fNIRS for BCI applications
(Coyle et al., 2007; Aranyi et al., 2015) an increasing
number of researchers are developing hybrid P300-based
BCI interfaces via simultaneous fNIRS and EEG (Coyle
et al., 2007; Pfurtscheller et al., 2010; Fazli et al., 2012;
Liu et al., 2013; Blokland et al., 2014; Kaiser et al., 2014;
Khan et al., 2014; Tomita et al., 2014; Yin et al., 2015;
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Buccino et al., 2016). These studies show that simulta-
neous measurements of fNIRS and EEG can signifi-
cantly improve accuracy of classification of brain
signals, improve user performance, and may serve to
be a viable multimodal imaging technique suitable for
future BCI applications.

REMOTE MONITORING AT HOME

BCI-based applications have now been effectively deliv-
ered in home-based settings (Askamp and van Putten,
2014;K€athner et al., 2017;Wolpaw et al., 2018), and have
shed light on the potential for future clinical-based inter-
ventions. The “home-based” setting is key here as it can
facilitate accessible and high-quality treatment options,
reduce commute times, reduce the volume of consulta-
tions at clinics, increase the quality and quantity of patient
information collected by healthcare professionals, and
improve longitudinal measures of care quality. With
increasing availability and integration of wearable EEG
headsets, phone-basedBCI applications have been devel-
oped to enable practical and affordable everyday use.

Neurophones are brain–mobile phone interfaces,
which allow neural signals to drive mobile phone appli-
cations on the iPhone using wireless EEG headsets
(Campbell et al., 2010; Wang et al., 2011; Kumar
et al., 2012). Applications of NF devices in home-based
settings could provide significant aid to patients with
traumatic brain injuries, ADHD, andmore, by improving
motivation for engaging in treatment, as well as directly
improving secondary symptoms through access to appli-
cations that train mindfulness and stress-reduction tech-
niques (Gray, 2017). Advanced wearable EEG systems
may help support the autonomy and independence of peo-
ple with disabilities living at home, improve early detec-
tion of certain medical conditions, monitor sleep quality,
and ultimately, provide large-scale longitudinal data on
the effects of aging in the brain and body (Light et al.,
2011). Companies specializing inmobile neurology diag-
nostic devices are developing potential solutions for epi-
lepsy using mobile and continuous EEG recording, smart
clothing, a smartphone application, and cloud platforms
(Valenza et al., 2015). In the Netherlands, this type of
home-based EEG applications are currently used in
�30% of hospitals for the treatment and monitoring of
epileptic patients (Askamp and van Putten, 2014).

In a study byValenza et al. (2015), they used wearable
textile technology to characterize depressive states in
bipolar patients during their normal daily activity. Some
very advanced wearable neurotechnologies such as those
developed by neuroelectrics could also be very valuable

for home-based use as they enable simultaneous EEG
recording and brain stimulation (Dutta and Nitsche,
2013; Helfrich et al., 2016), which was found to improve
neurorehabilitation effects by training motor function
and learning processes (Gandiga et al., 2006). These
technological advancements present valuable applica-
tions for many clinical conditions such as epilepsy,
depression, or PD. The NUBE Cloud Servicec from
neuroelectrics provides a telemedicine platform, wherein
clinicians and researchers can prepare general stimula-
tion protocols, schedule the stimulation sessions for
patients, confirm whether the sessions have been
executed or not, and create pre-/poststimulation ques-
tionnaires. Clinicians can also remotely guide the stimu-
lation sessions that patients can conduct by themselves
from home. While Starstim is currently classified as
an investigational device under US federal law, it is
approved in Canada for medical use and complies
with the European legislation for clinical research
(e.g., depression, pain, addiction, stroke).

Another growing field is the development of Smart
houses (Stefanov et al., 2004; Yin et al., 2015). Numer-
ous intelligent devices, embedded into the home environ-
ment, can provide the resident with both movement
assistance (e.g., intelligent bed, intelligent wheelchair,
and robotic hoist for effortless transfer of the user
between the bed and wheelchair), and 24-h health
monitoring. They are therefore particularly relevant for
elderly and disabled populations, as it helps restore
independence and autonomy. However, these devices
lack methods for decoding the intentions of disabled res-
idents, which in the future may be solved through the
integration of BCI and wearable headsets (Vaughan
et al., 2006; Lee et al., 2013; Miralles et al., 2015).

DISCUSSION

Limits and possible solutions

While a majority of NF and BCI systems require a min-
imal level of experience and knowledge to effectively
acquire quality data, misrepresentative findings and
applications are always potential confounds to be taken
into consideration when assessing the validity of scien-
tific findings. Ensuring the proper application of wear-
able technologies is essential. Manuals and tutorials
provided in the documentation are generally not suffi-
cient to cover the complexities of measuring, analyzing,
and interpreting physiologic data, let alone factoring
in potential confounds and placebo effects that can
interfere with the proper use of the technology. Further-
more, both structural (i.e., anatomical) and functional

chttps://www.neuroelectrics.com/products/services/nube-stimulation/
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(i.e., brain activity) differences in brain activity have
been observed across different categories of the popula-
tion (e.g., children, the elderly, people with mental disor-
ders) (Reiss et al., 1996; Schlaggar et al., 2002; Bjork
et al., 2004; Paus, 2005). Moreover, no gold standard
has been established regarding the choice of reference
electrode(s), with the region of interest playing a key role
when selecting the appropriate measures for obtaining
good signal quality. Consequently, comparing different
EEG systems remains a challenge. Future studies should
aim to identify reference systems that could be standard-
ized across protocols and headsets. In addition, the
correct positioning of electrodes across the scalp is
critical for applications involving neuromodulation,
wherein cortical regions are selectively targeted and
exert neuromodulatory effects (Villamar et al., 2013).
Variability in electrode types, location, software, file for-
mats, or interfaces constitute a barrier in attempting to
combine big databases across a range of sources. The
newly developed Research Resource Identifiers, such
as SciCrunch,d may help resolve these issues, as they
offer a platform, which enables straightforward searches
of information pertaining to research studies implemen-
ted with specific types of technology, and contain user
information about the device, signal quality, and the
literature. Unlike more general search engines, they
provide extensive access to a focused set of resources rel-
evant to its communities and provide access to content
that is traditionally “hidden” from web search engines.
Users can also add their own data to the platform.
Novel tools are actively being developed to help facili-
tate the recording and streaming of EEG data from
consumer headsets that can be interfaced with a variety
of programming languages and software packages,
allowing for interchangeability across devices. The
MuSAE lab is developing the MuSAE Lab EEG Server
(MuLESe), an EEG acquisition and streaming server
that aims to create a standard interface for portable
EEG headsets to accelerate the development of BCI
and of general EEG applications in novel contexts. Sim-
ilarly, the Lab Streaming Layer (LSLf) from OpenBCI
allows to synchronize streaming data for live analysis
or recording via applications such as MATLAB. Suc-
cessful, large studies could be conducted using these
servers, with the open source data then available for
future studies, limiting costs, and time spent collecting
new data.

Another limitation regarding wearable devices per-
tains to the identification of event-related signal onset.

In laboratory settings, these triggers are produced by a
controlled system or by the experimental paradigm
whereas in real-life conditions these events can originate
from the environment upon which the experimenter or
developer has no control. While some companies
provide features for markers and triggers that indicate
the beginning and end of epochs in the data, several
companies do not incorporate such features, making
the analyses of data time consuming, a challenge when
attempting to identify event-related activity. For studies
comparing conditions across trials, it is crucial that these
features are implemented in all wearable EEG devices.
One solution (although not ideal) is the instruction for
the subject to perform a small series of eye blinks at
the beginning and end of each trial, as it is very easy
to identify in the EEG signal. While this alternative is
not sufficient for ERP type studies that require high tem-
poral accuracy of the markers (i.e., in milliseconds), it
highlights simple and novel methods that can be imple-
mented for advancing wearable methodologies. While it
is likely that significant challenges pertaining to the
proper annotation of events that occur in real-life con-
ditions will persist (i.e., the generators of such triggers),
new and novel solutions are needed to address this
critical shortcoming.

The future of wearable
neurotechnologies

A major limitation to the daily integration of wearables
remains the feasibility of people feeling comfortable
wearing such devices in public spaces. Abbate et al.
(2014) showed that in a study with AD patients, a few
simple modifications to the placement of the wearable
EEG system, its color, and how it is integrated with
clothing significantly improved its usability and accep-
tance, especially in the elderly population. While great
improvements in design, weight, and comfort are under
active development, wearable neurotechnologies will
eventually need to diversify their designs to satisfy
cultural differences, characteristics, and sensitivities.
Furthermore, populations such as the elderly often prefer
simple, loose, and comfortable clothing, making the
necessary placement of tight fitting wearable devices
close to the body difficult (Abbate et al., 2014). New
technologies developed by companies that offer innova-
tive solutions such as the production of smart clothing
that incorporates biometric sensors embedded into the
material (see section “Remote monitoring at home”;

dhttps://scicrunch.org/
ehttp://musaelab.ca/news/mules-musae-lab-eeg-server-codes-up-on-github/
fhttp://docs.openbci.com/3rd%20Party%20Software/04-LSL
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Valenza et al., 2015) are promising; however, more
research will be necessary to establish and ensure high
SNR as well as comfort to users.

Within the BCI domain, transparent EEG systems
such as the “Ear-EEG” include both microelec-
trodes located in the ear canal (i.e., “in-ear EEG”)
(Goverdovsky et al., 2016; Nakamura et al., 2017) as
well as cEEGrids, a flex-printed C-shaped 10-channel
grid that can be placed around the outer ear (Bleichner
et al., 2015; Bleichner and Debener, 2017). The
Ear-EEG is capable of extracting relevant focal tem-
poral neural features such as the P300 ERP, presenting
potential innovative solutions and applications for
augmenting hearing technology (Fiedler et al., 2016;
Christensen et al., 2018). Sensors are also being
integrated into accessories such as smart glasses
(Vahabzadeh et al., 2018), smart EEG-glasses (e.g.,
Jiang et al., 2017), stick-on electronic tattoos (Zheng
et al., 2014), and chemical wearable sensors (Matzeu
et al., 2015). Another feature necessary for the future
of wearable neurotechnologies is the development of
advanced machine-learning algorithms that monitor
and correct artifacts in real time so that movement and
muscular activities no longer interfere with the perfor-
mance of BCI systems. To accomplish this, techniques
must be developed that would allow for markers in
the data, which would reflect the occurrence of uncon-
trolled events taking place in real-world environments,
to build a better understanding of their impact on the
brain and body activity. Given the rapid advancements
in machine-learning techniques and analyses (see
Chapter 23), in the not-so-far future we will most likely
acquire a far more extensive knowledge and understand-
ing of unknown EEG artifacts and themethods necessary
to correct them (in real time) without losing the brain
activity of interest (i.e., nonartifactual).

Ethical and safety questions

The rapid advancements in the biomedical-tech sector
present clear ethical questions such as consent, data
protection, and identity (Trimper et al., 2014; see
Chapter 25). At present, there is no legislation regulating
informed consent and protecting personal data extracted
via BCI, either therapeutically or outside clinical and
research contexts. While the research and clinical use
of BCIs across the world is regulated by national laws
and Institutional Review Boards, the private and com-
mercial use falls out of these legislations, allowing the
potential for nonethical practices and applications of
the technology. Furthermore, the noninvasive nature
of these technologies, the ease of engineering the rele-
vant hardware, and the enthusiastic “Do It Yourself”
(DIY) culture interested in cognitive enhancement
make exploring these ethical issues especially pressing.

Having observed the public outrage and opposition to
previous scientific and technological advancements,
such as was seen with the cloning of Dolly the sheep,
ethicists, and scientists must work together to ensure that
the technology is developed with the highest ethical
standards and that the public is informed accordingly
(Wolpe, 2006).

While it is safe to say that a majority of wearable tech-
nologies are designed under the premise of improving
health monitoring and outcomes or enhancing or regu-
lating cognitive and emotional processing, these technol-
ogies also host tremendous power and potential to
drastically influence the choices and actions of the users
(i.e., how to breathe, to eat, drink, exercise, work, sleep).
The short-term reality is that the user is often under the
illusion that the feedback provided is highly accurate,
which can heavily influence the user’s way of life. This
is seen heavily with companies claiming their device can
“read the mind, thoughts or intentions” of the users. By
offering consumers a way to simultaneously embrace
and outsource the task of lifestyle management, one
could imagine that such products both exemplify cultural
ideals and short-circuit them for individual responsibility
and self-regulation (Sch€ull, 2016). This concern is
even greater with regard to the potential for electrical
simulation technologies (e.g., tDCS) becoming widely
available to the public. Following the advice of commer-
cial applications, wherein participants are instructed to
actively modulate their brain with technologies such
as tDCS without any validation or control, presents a
major concern (Walsh, 2013). Ultimately, the companies
depend on the engagement and participation of their
customers, and thus it is the role of consumers to educate
themselves and to exert the “consumer influence” over
the quality and trajectory of future technologies.

As lifestyle, health, and technology become increas-
ingly integrated and interfaced, it is crucial that these
devices remain as tools to support and assist human
needs. With an increasing rate of reliance on our technol-
ogy, human beings are increasingly vulnerable to the
potential dangers and pitfalls of this reliance. Further-
more, when something is used to enhance or assist a func-
tion, this function no longer needs to be accomplished by
the body, further directing one’s attention toward addi-
tive systems (e.g., atrophied muscle after injury). This
could potentially apply to the brain itself, given that
too many cognitive functions were to be supported or
replaced by technologies. On the other hand, it is also
possible that the technological support could participate
in training natural abilities beyond their initial potential
(e.g., a system detecting normally imperceptible cues
that warn of danger could train the brain to detect
these stimuli). In addition, one can argue that the brain
resources are no longer necessary because they are sup-
plemented by technology that could be recruited for
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new abilities (e.g., the invention of writing offered many
new possibilities for human cognition). If this is possible,
future studies should focus on how to develop technolo-
gies that aim to produce long-term benefits. For example,
NF systems are used to help users train cognitive regula-
tion (e.g., increased attention and improved emotion
regulation).

Along with the development of new wearable tech-
nologies, concerns surrounding the potentially deleteri-
ous effects of radio frequencies (RF), cell phones
(Pyrpasopoulou et al., 2004; Krause et al., 2006; Hung
et al., 2007; Croft et al., 2010; Vecchio et al., 2010;
Laudisi et al., 2012; Cassani et al., 2015; Mohan et al.,
2016), bluetooth, and Wi-Fi frequencies (Balachandran
et al., 2012; Banaceur et al., 2013; Mandalà et al.,
2014; Saili et al., 2015; Othman et al., 2017) on the
biologic systems also surface. Detrimental effects are
generally considered to be dependent not only on the dis-
tance and relative size of a given object but also on the
environmental parameters, and there may be additional
interindividual differences in sensitivities to exposure,
making the assessment of these risks difficult. However,
research suggests that regular and long-term use of RF
emitting devices (especially at close distance to the body)
can have a negative impact on biologic systems, most
notably on the brain (Ishak et al., 2011; Volkow et al.,
2011; Avendaño et al., 2012; Megha et al., 2012,
2015; Atasoy et al., 2013; Kesari et al., 2013; Shahin
et al., 2013). Wearable neurotechnologies concentrate
RF energy from bluetooth and Wi-Fi in and around the
area of the brain in larger amplitudes than has been stud-
ied previously. The potential for chronic exposure to RF
frequencies resulting from daily BCI use demands that
future studies explore solutions for RF protection or
alternative deliverance modalities.

CONCLUSION

Advancements in EEG wireless technology allow
researchers and clinicians to study the brain easily, in nat-
ural environments, and with greater access to a wide
range of the population (i.e., children, the elderly). While
several newwireless devices enable the collection of data
with both high temporal and spatial resolution (i.e., com-
bined EEG and fNIRS, respectively), they also facilitate
the simultaneous modulation of brain activity through
the addition of stimulation sensors that administer
TCS. At home use of wireless and wearable technologies
has the potential to significantly reduce medical costs
for both patients and medical centers in terms of both
diagnosis and long-term treatment options. Online
platforms now enable clinicians to arrange medical
assessments and treatment interventions, such as EEG
recordings or TCS therapeutic sessions for patients
(e.g., epileptic or disabled patients) without ever

having to leave the comfort of their home. Advanced
wearable neurotechnologies, such as the ones listed in
Table 16.1, show recent improvements in terms of signal
quality, sampling rate capacity, battery life, affordability,
setup speed, implementation of manual triggers in the
signal, data storage, comfort, and design. However, cau-
tion must be exercised when using these devices as they
still encounter limits such as their sensitivity to move-
ments, limited number of electrodes and their locations
(i.e., limiting the variety of cognitive processes that
can be studied), the lack of control regarding events
occurring in the environment (when used in real-life set-
tings), and the validity and reliability of the software- and
phone-based applications that claim to train certain neu-
ral features but fail to provide transparency as to how
they are designed (which are mainly due to proprietary
reasons). We therefore suggest that these technologies
are used primarily by informed and educated users for
raw data acquisitions in nonordinary situations (e.g.,
real-life environments) and in a controlledmanner. These
technologies hold great potential for the home use of BCI
and NF therapies by using simple and robust EEG fea-
tures such as ERPs, frontal y, sensorimotor m, and occip-
ital a that have been accurately measured by advanced
wearable EEG systems. With time, widely accessible
wearable EEG technology and large-scale data collection
will inevitably lead to an increased understanding of the
brain and our abilities to interface with technology. By
allowing patients to move, communicate, and create,
these technologies aid not only in rehabilitation but also
hold promise in aiding an individual’s ability to regain a
sense of wellbeing, autonomy, and independence. These
technologies also present applications to the healthy
population such as entertainment, art, education, and
cognitive enhancement.

Major advancements in the technological sector
combined with advanced data processing are bound to
lead to an exciting and unpredictable future for wear-
able technologies. While these technological advance-
ments host the potential for significantly improving
the monitoring of one’s health and in rehabilitation,
mindful measures need to be taken to direct the evolu-
tion of wearable neurotechnologies toward positive
applications serving the general interests of the public
ethically.
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Abstract— EEG power spectral density (PSD), the individual 

alpha frequency (IAF) and the frontal alpha asymmetry (FAA) 

are all EEG spectral measures that have been widely used to 

evaluate cognitive and attentional processes in experimental and 

clinical settings, and that can be used for real-world applications 

(e.g., remote EEG monitoring, brain-computer interfaces, 

neurofeedback, neuromodulation, etc.). Potential applications 

remain limited by the high cost, low mobility, and long 

preparation times associated with high-density EEG recording 

systems. Low-density wearable systems address these issues and 

can increase access to larger and diversified samples. The 

present study tested whether a low-cost, 4-channel wearable 

EEG system (the MUSE) could be used to quickly measure 

continuous EEG data, yielding similar frequency components 

compared to a research-grade EEG system (the 64-channel 

BIOSEMI Active Two). MUSE data can be live-streamed using 

the Lab Stream Layer (LSL), and can therefore be implemented 

into real-world EEG monitoring, brain-computer interfaces 

(BCI), or neurofeedback applications. We compare the spectral 

measures from MUSE EEG data referenced to mastoids to those 

from BIOSEMI EEG data with two different references for 

validation (mastoids and average reference). A minimal amount 

of data was deliberately collected to test the feasibility for real-

world applications (EEG setup and data collection being 

completed in under 5 min). We show that the MUSE can be used 

to examine power spectral density (PSD) in all frequency bands, 

the individual alpha frequency (IAF), and frontal alpha 

asymmetry (FAA). Furthermore, we observed satisfying 

internal consistency reliability in alpha power and asymmetry 

measures recorded with the MUSE. However, estimating 

asymmetry on the IAF did not yield significant advantages 

relative to the traditional method (average over the 8-13 Hz 

range). These findings should advance human 

neurophysiological monitoring using easily accessible wearable 

neurotechnologies in large samples and increase the feasibility 

of their implementation in real-world settings. 

 
Keywords— wearable EEG, power spectral density (PSD), 
frequency domain, signal validation, frontal alpha asymmetry 

(FAA), individual alpha frequency (IAF). 

 

I. INTRODUCTION 

The MUSE (InterAxon Inc.) is a low-cost, off-the-shelf, 
wearable EEG headset that has two frontal and two 
temporoparietal (TP) dry active EEG channels. It has been 
validated for event-related potential (ERP) research (i.e., time 
domain; [1]) and used in many recent studies [2]–[12]. The 
open-source Lab Streaming Layer (LSL) and MuSAE Lab 
EEG Server (MuLES) are acquisition and streaming servers 
that can be used to collect MUSE signals in real-time, 
facilitating its use for research, real-world EEG monitoring, 
brain-computer interfaces (BCI), or neurofeedback 
applications [13]. However, to our knowledge, the MUSE has 
not yet been validated for frequency domain analysis (i.e., 
power spectra on continuous EEG data), with one study 
showing mixed results [14]. In addition to assessing the 
validation of MUSE spectral measures, it is relevant to test if 
the MUSE could be used to estimate clinically- and research-
relevant spectral measures, such as the frontal alpha 
asymmetry (FAA) and the individual alpha frequency (IAF). 

Frontal alpha asymmetry (FAA; or frontal EEG asymmetry) 
refers to the relative difference in log alpha power (average 
over the 8-13 Hz range) between the right and the left frontal 
regions. This spectral measure has been widely used to 
evaluate participants’ cognitive, emotional, and attentional 
processes, both as an event-related state response and as a 
trait during rest [15]–[20]. Because of the inhibitory role of 
alpha oscillations [21]–[24], relatively greater right than left 
alpha power is associated with relatively greater left than 
right cortical activity (inverse correlation). In turn, greater 
activation of the left frontal region relative to the right is 
related to approach motivation and emotions with positive 
valence (e.g., happiness, positive urgency), whereas the 
reverse is associated with brain processes underlying 
avoidance motivation and negative emotional valence (e.g., 
depression, anxiety, withdrawal). FAA is suspected to reflect 
neural processes of the executive control systems and has 
been source-localized to the frontoparietal network [20]. 

The individual alpha frequency (IAF) refers to the frequency 
within the alpha band with dominant spectral power [25]. It 
is associated with cognitive performance [26], considered a 



trait-like characteristic of human EEG [27], has high 
heritability and test-retest reliability [28], [29], and better 
accounts for interindividual differences in alpha activity [25], 
[30]. It has been traditionally examined using the peak alpha 
frequency (PAF) approach, which takes the frequency with 
the highest alpha power within the alpha band [31]–[33]. 
However, it has been highlighted that this approach does not 
perform well in a large portion of the population (up to 44%) 
that displays absent, ambiguous, or “split” alpha peaks [25], 
[34]. The alpha center of gravity (CoG) is considered a more 
robust approach to calculate the IAF by considering the 
whole alpha power distribution [25].  

The IAF may be used to estimate FAA. Since alpha power 
distribution can fall outside the traditional predefined range 
(8-13 Hz) for some individuals [33], asymmetry scores based 
on the IAF (instead of the traditional band) might better 
address interindividual differences and might therefore 
provide more accurate asymmetry indexes method for 
research and clinical applications [35], [36].  

IAFs and FAA seem like promising candidate measures for 
wearable EEG systems, as they require simple calculations in 
the frequency domain and a few EEG channels covering the 
frontal regions of each hemisphere. While the acquisition of 
these measures has not been validated using low-cost 
wearable systems against research-grade ones, such systems 
have been used extensively over the past few years to 
measure FAA, suggesting this measure is well-suited for 
these technologies [2], [37]–[46]. Wearable systems, when 
reliable, can offer advantages for researchers through easeful 
EEG data collection over large samples, increased access to 
populations that are hard to study with conventional systems 
(e.g., children, elderly, patients), reduced hardware and 
software costs, and facilitated EEG research in real-world 
environments by increasing subjects’ mobility and streaming 
the data wirelessly [47].  

However, there is still a lack of validation of the data 
collected by such devices and whether the obtained findings 
can be interpreted based on literature built on conventional 
systems that use different montages and referencing methods 
(and may therefore represent different spatial distributions ad 
sources). The reference method implemented for low-density 
wearable systems is of particular importance when measuring 
EEG asymmetry [48], [49]. Both IAF and FAA are promising 
EEG measures for neurofeedback applications [36], [50], 
which would benefit from mobile data collection. 

The present study tested whether the 4-channel wearable 
MUSE EEG system can quickly measure continuous EEG 
data with a maximum of 5-minute setup and data collection 
time, which would yield quantifiable and clinically-relevant 
frequency components comparable to research-grade 
systems.  

II. METHODS 

A. Participants 

Participants for this study were 40 English-speaking adults in 
the San Francisco Bay area. Exclusion criteria were: aged 
younger than 18 years old, unable to read, having an acute or 
chronic illness that interfered with the completion of the 
experiment, or being unable to sit on a chair for about 30 

minutes. Participants had their EEG recorded with a 64-
channel EEG system at the laboratory for another study (~2h 
session) and were asked if they wanted to volunteer a few 
more minutes of their time for an additional ~5 minutes EEG 
recording using the wearable headset. They were 
compensated only for their participation in the initial study. 
They gave informed consent, and the study was approved by 
the IONS Institutional Review Board. 

B. EEG data collection procedures 

EEG data were collected with the active dry MUSE 1 (version 
2016) at 256 Hz and a 64-channel gel-based BIOSEMI 
Active 2 system (BIOSEMI Inc.) at 512 Hz. Simultaneous 
recording of both systems was not possible due to their 
configurations. The MUSE data were recorded first, and then 
the BIOSEMI data about 30 minutes later, which 
corresponded to the time necessary to set up the equipment 
and optimize channel impedance. A comparison of the two 
systems’ hardware specifications can be found in Table 1. For 
both systems, the participants’ skin was cleaned with alcohol 
wipes at electrode sites before positioning the headband/head 
cap.  

TABLE I. HARDWARE SPECIFICATIONS OF EACH SYSTEM 

 Biosemi Active Two InteraXon MUSE 

Electrode 

montage 
64 wet active electrodes (10-20 

system) 
4 dry active electrodes 

(AF7, AF8, TP9, TP10)b 

Sampling 

rate 
512 Hz 256 Hz 

Resolution 24 bits 12 bits 

Active 

electrode 

system 

Passive DRL and active CMS 
located around POz 

Passive DRL and active 
CMS located at Fpz 

Head sizes 3 different head cap sizes 
covering 54-62 cm  

Adjustable headband, 52-60 
cm range 

Recording 

apparatus 
Optic fiber and amplifier, 
MacBook Pro, Actiview 

Software 

Bluetooth on a low-cost 
Chromebook, Mind  

Monitor App 

Reference Reference-freea Fpz 
a Data is reference-free at data collection time. A reference must be chosen when importing the data. 
Not choosing a reference led to a 40 dB loss of signal-to-noise (SNR) ratio. 
b Approximate positions.  

MUSE - A thin layer of water was applied to the dry 
electrodes with a sponge for both the frontal metallic sensor 
and the conductive silicone rubber mastoid sensors behind the 
ears to decrease the impedance and increase signal quality. 
The MindMonitor App [51] running on a Chromebook laptop 
was used to record the EEG signal and check electrode 
contact (a colored circle for each electrode was filled when 
the software deemed the connection acceptable). Visual 
examination of the raw EEG waveforms was also performed 
while participants were asked to generate eye blinks to 
provide an additional index of signal quality. The headset 
position was adjusted if the signal was judged too noisy by 
visual inspection of the data. 

BIOSEMI - Highly conductive electrolytes SignaGel was 
injected into the electrode sites of the BIOSEMI head cap. 
BIOSEMI active electrode offsets were kept below offset 20 
using the Actiview software. 



MUSE and BIOSEMI - Recordings were performed at the 
same location within the recording room, minimizing the 
differences in terms of potential electrical artifacts from the 
environment. One minute of data was recorded with eyes 
closed. Participants were instructed to sit still on a chair, limit 
their movements, and focus their attention on their breath by 
counting each inhalation/exhalation cycle.  

C. EEG data preprocessing 

BIOSEMI data were imported into the EEGLAB processing 
software (v2021.1; [52]) using the BIOSIG plugin (v3.7.5). 
MUSE data were imported using the MUSEMonitor (v3.2) 
plugin of EEGLAB. BIOSEMI data were downsampled to 
256 Hz. Raw data were high-pass filtered with EEGLAB’s 
linear non-causal Finite Impulse Response (FIR) filter of the 
FIRFILT (v2.4) plugin (filter order = 1129; transition 
bandwidth = 0.75 Hz; passband edge = 0.75 Hz; -6 dB cutoff 
frequency = 0.375 Hz). No low-pass filter was used.  

Files were inspected visually for abnormal channels (bad 
connection, impedance, very high noise, flat sections from 
disconnections, etc.) and artifactual segments (eye and 
muscle artifacts, high-frequency bursts, etc.). Artifactual 
regions and channels were manually rejected. MUSE data 
files with at least 1 visually abnormal channel were removed. 
If the BIOSEMI or the MUSE file was shorter than 45 s, the 
participant data were also excluded from further analysis. 
Using these criteria, three out of 40 data files were excluded. 

The traditional method to compute frontal alpha asymmetry 
(FAA) is to subtract the mean log-transformed alpha power 
of the left channel (generally F7) from the right one 
(generally F8) on 64-channel EEG data [48], [49]. While 
average-referencing was shown to be preferable to estimate 
FAA [48], it is not meaningful with 4 electrodes since it 
requires a whole-head electrode coverage. The default 
reference channel for the MUSE is Fpz which is close to the 
frontal channels AF7 and AF8 and may lead to different 
spectral and asymmetry estimates than those obtained on 
conventional montages. Thus, the MUSE frontal channels 
(AF7 and AF8) were re-referenced to the TP9/TP10 mastoid 
electrodes (the two other channels available on the MUSE), 
termed in this study the “mastoid-ref montage”. This 
reference method has been widely used in the asymmetry 
literature (e.g., [48], [53]). Spectral estimates from BIOSEMI 
data were calculated on: 1) AF7-AF8 re-referenced to 
mastoids (to match the MUSE montage, i.e., “mastoid-ref 

montage”); and on 2) F7-F8 referenced to the average prior 
removal of the additional 62 channels (called “average-ref 

montage”, corresponding to the preferred montage for FAA 
analysis).  

To assess if spectral measures obtained with the MUSE 
mastoid-ref montage are reliable and interpretable in terms of 
underlying neural activity, we tested whether they were 
comparable to those obtained with the BIOSEMI mastoid-ref 

montage (same montage) and the BIOSEMI average-ref 

montage (traditional montage). 

D. Power spectral density (PSD) 

Power spectral density (PSD) was computed using the pwelch 
function in MATLAB 2021a (The MathWorks Inc., MA, 
United States) for each EEG channel on 4-second hamming 

windows, with 50% overlap and 200% padding (taking into 
account data discontinuity due to excluded artifactual 
regions). PSD data were then converted to decibels 
(10*Log10(power)) [49]. Mean PSD was extracted for each 
frontal channel for each frequency band: delta (1-3 Hz), theta 
(3-7 Hz), alpha (8-13 Hz), beta (14-30 Hz), and gamma (>30 
Hz). Then, the average between the two channels was used 
for analyses.  

E. Individual alpha frequency (IAF) 

Both the peak alpha frequency (PAF) and the alpha center of 
gravity (CoG) were estimated using the open-source and 
automated restingIAF toolbox (v1.0.2; [25]). This method 
uses curve-fitting algorithms, zero-crossing, and Savitzky-
Golay Filter (SGF) smoothing techniques (same parameters 
as above for PSD estimation, a minimum of 1 required 
channel to estimate PAF and CoG, and the default values for 
the other parameters). 

F. Frontal alpha asymmetry 

Three methods were used to calculate alpha asymmetry:  
• Traditional method: the difference between the frontal 

channels on alpha power (in dB) averaged over the 8-
13 Hz band (mean_alpha_right - mean_alpha_left).  

• PAF-asymmetry. Same as above but on power at the peak 
alpha frequency (PAF).  

• CoG-asymmetry. Same as above but on power at the 
alpha center of gravity (CoG). 

G. Internal consistency reliability 

Previous research showed that reliable asymmetry values 
could be obtained with as little as 80 seconds of data [54]. To 
confirm internal consistency reliability of the asymmetry 
measures with the different montage methods and with very 
short segments of data (45 seconds for the shortest file after 
data cleaning), mean alpha power and FAA (traditional 
method only) were also computed for each montage on 
eleven 4-s blocks of data (mean for each block). Internal 
consistency reliability of alpha PSD and FAA was evaluated 
using Cronbach’s standardized alpha on the blocks of spectral 
data [55], [56]. Values >.8 indicate high internal consistency 
reliability and <.3 indicate low internal consistency 
reliability; [54].  

H. Statistics 

All spectral measures were compared using the skipped 
Pearson correlation from the open-source Robust Correlation 
MATLAB toolbox [57]. Skipped Pearson correlations detect 
and remove bivariate outliers using the minimum covariance 
determinant (MCD) estimator, and better control for the type 
I error by accounting for their deletion when testing for 
significance, and by using bootstrapped 95% confidence 

intervals (CI; [57]–[59]). If the CI encompasses 0, then the 
null hypothesis (H0) of independence cannot be rejected. 
This approach is less sensitive to heteroscedasticity (i.e., 
change in the spread of the residuals over the range of 
measured values leading to biased results) and therefore, 
more robust against the type I error [57], [58]. Rejections of 
H0 at the 95% confidence level (i.e., significant correlations) 
are reported next to the skipped Pearson correlation r 

coefficient scores with * (i.e., p < 0.05). Bivariate outliers 
correspond to the red observations in the plots. The red line 



corresponds to the least square fit line, and the red shaded 
areas correspond to the 95% CI.  

III. RESULTS 

A. Internal consistency reliability 

The following Cronbach’s alpha scores were obtained for 
frontal alpha power (.98 -  BIOSEMI average-ref montage; 

.95 - MUSE mastoid-ref montage) and frontal alpha 
asymmetry (.67 - BIOSEMI average-ref montage; .76 - 
MUSE mastoid-ref montage).  

B. Power spectral density (PSD) for each frequency band 

The averaged PSD of each frequency band was first 
compared between the BIOSEMI mastoid-ref montage and 
the MUSE mastoid-ref montage. All frequency bands were 
significantly correlated between the two montages: delta (1-
3 Hz, r = .59*, CI [0.38, 0.75]), theta (3-7 Hz, r = .73*, CI 
[0.55, 0.85]), alpha (8-13 Hz, r = .87*, CI [0.77, 0.93]), beta 
(14-30 Hz, r = .84*, CI [0.70, 0.91]), and gamma (>30 Hz, r 
= 0.48*, CI [0.19, 0.69]). These results are plotted in Fig. 1.  
 

 
 
Correlations between PSD estimates from MUSE mastoid-ref 

montage and those from BIOSEMI average-ref montage are 
reported in Fig. 2. Significant correlations were observed for 
the delta (r = .47*, CI [0.19, 0.69]), the theta (r = .63*, CI 
[0.43, 0.78]), the alpha (r = .80*, CI [0.65, 0.90], and the beta 
(r = .74*, CI [0.58, 0.86]) bands. However, the correlation 
was not significant for the gamma band (r = .17, CI [-0.13, 
0.50]).  
 

 
 

C. Individual alpha frequency (IAF) 

IAFs estimated on BIOSEMI mastoid-ref montage were 
significantly correlated with those obtained on MUSE 
mastoid-ref montage (Fig. 3, left), for both PAF (r = .91*, CI 

[0.79, 0.97]) and CoG (r = .78*, CI [0.64, 0.88]). However, 
PAF could not be estimated on 7 BIOSEMI files and 13 
MUSE files. CoG could not be estimated on 5 BIOSEMI files 
and 4 MUSE files.  

 
Correlations between IAF for the BIOSEMI average-ref 

montage and the MUSE mastoid-ref montage (Fig. 3, right) 
were also significant for both estimation methods: PAF (r = 
.95*, CI [0.86, 0.98]) and CoG (r = .84*, CI [0.69, 0.93]). 
However, the automated algorithms could not detect the PAF 
for 11 BIOSEMI files and 13 MUSE files, and the CoG for 6 
5 BIOSEMI files and 4 MUSE files.  
 

 

D. Frontal alpha asymmetry (FAA) 

The three methods to compute FAA were significantly 
correlated between BIOSEMI and MUSE with the same 
mastoid-ref montage: traditional asymmetry (r = .67*, CI 
[0.40, 0.93]), PAF-asymmetry (r = .35*, CI [0.7, 0.62], CoG-
asymmetry (r = 0.42*, CI [0.05, 0.69]). These results are 
plotted in Fig. 4. 

 

Finally, FAA measures were compared between 
the  BIOSEMI average-ref montage and the MUSE mastoid-

ref montage and are plotted in Fig. 5. FAA calculated on the 
average power over the whole alpha band (i.e., traditional 
method) was significantly correlated (r = .37*, CI [0.06, 
0.60]). However, asymmetry scores calculated on power at 
the PAF (r = .12, CI [-0.24, 0.44]) and at the CoG (r = .26, CI 
[-0.02, 0.55]) were not significantly correlated.  

 
Fig. 1. Correlations between BIOSEMI (mastoid-ref montage) and 

MUSE (mastoid-ref montage) of mean power spectral density (PSD) for 
each frequency band: delta (1-3 Hz), theta (3-7 Hz), alpha (8-13 Hz), 

beta (14-30 Hz), and gamma (> 30 Hz). All frequency bands were 

significantly correlated. Statistics are reported in the text of the Results 
section. Red dots are bivariate outliers accounted for by the skipped 

Pearson correlations. The red line is the least-squares fit line. Shaded 

areas are the 95% confidence intervals. The power spectral density 
(PSD) unit is deciBels (10*log10(μV2/Hz)).  

 
Fig. 2. Correlations between BIOSEMI (average-ref montage) and 

MUSE (mastoid-ref montage) of mean power spectral density (PSD) for 
each frequency band: delta (1-3 Hz), theta (3-7 Hz), alpha (8-13 Hz), 

beta (14-30 Hz), and gamma (> 30 Hz). All frequency bands except 

gamma were significantly correlated. Statistics are reported in the text 
of the Results section. Red dots are bivariate outliers accounted for by 

the skipped Pearson correlations. The red line is the least-squares fit 

line. Shaded areas are the 95% confidence intervals. The power spectral 
density (PSD) unit is deciBels (10*log10(μV2/Hz)).  

 
Fig. 3. Left: Correlations between BIOSEMI (mastoid-ref montage) 

and MUSE (mastoid-ref montage) of individual alpha frequency (IAF). 

Right:between BIOSEMI (average-ref montage) and MUSE (mastoid-

ref montage). All estimates using both the peak alpha frequency (PAF) 
and the alpha center of gravity (CoG) were significantly correlated 

between the two systems and montages. Statistics are reported in the text 

of the Results section. Red dots are bivariate outliers accounted for by 
the skipped Pearson correlations. The red line is the least-squares fit 

line. Shaded areas are the 95% confidence intervals. The power spectral 

density (PSD) unit is deciBels (10*log10(μV2/Hz)).  

 
Fig. 4. Comparison of frontal alpha asymmetry measures from 

BIOSEMI mastoid-ref montage and MUSE mastoid-ref montage. The 
three forms of frontal alpha asymmetry were significantly correlated 

between the two systems. Statistics are reported in the text. Red dots are 

bivariate outliers accounted for by the skipped Pearson correlations. 
The red line is the least-squares fit line. Shaded areas are the 95% 

confidence intervals. The power spectral density (PSD) unit is deciBels 

(10*log10(μV2/Hz)).  



 

IV. DISCUSSION 

A. Results and interpretations 

When comparing MUSE mastoid-ref montage with 
BIOSEMI mastoid-ref montage, all spectral measures 
significantly correlated, indicating that this low-cost 
wearable EEG system can accurately capture these frequency 
components and that interpretations can be made in line with 
the literature using mastoid-ref montages (e.g., [53]). 
However, correlation coefficients and CIs indicate that the 
traditional method to calculate frontal alpha asymmetry is 
recommended compared to the PAF- and CoG- asymmetry 
methods.  

When comparing MUSE mastoid-ref montage with 
BIOSEMI average-ref montage, PSD (in all frequencies 
below 30 Hz), IAF, and FAA (traditional method) were 
significantly correlated, indicating that the MUSE can be 
used to examine these measures and interpret the findings in 
line with the literature using the average-ref montages (i.e., 
F7 and F8 sites referenced to average). However, PAF- and 
CoG- asymmetry measures were not significantly correlated.  

These latter findings may suggest that: 

1. The automated toolbox used for IAF-estimation does not 
perform well on low-density sparse montages and is 
better suited for higher density montages (since it can use 
neighboring channels to improve detection performance; 
[25]). Channels referenced to average may have 
contained alpha spectral components from other 
channels that were not captured by the mastoid-ref 

montage. IAF measures (PAF and CoG) could not be 
estimated for some files, which could have reduced 
statistical power compared to the traditional measures. 
However, the superior performance of the CoG method 
compared to the PAF method was apparent since it was 
able to find the IAF in more participants.  

2. The traditional asymmetry method is more robust and 
grounded in theory (independently of the montage). 
Previous research suggested that EEG asymmetry is 
influenced by different neural processes between the 
lower and the upper frequencies of the alpha band [33]. 
Thus, while IAFs better account for interindividual 
differences and are associated with some cognitive 
processes (e.g., memory), they might reflect different 
underlying neural processes than those underlying alpha 
asymmetry (e.g., executive control, attention, emotion 

regulation). Thus, IAF-asymmetries might not be well-
suited for asymmetry calculation.  

B. Limitations 

The first limitation of this study is the 30-minute difference 
between the two recordings. Mental states may likely have 
changed between the two recordings. However, correlations 
were still significant when comparing the MUSE and the 
BIOSEMI (except for gamma and IAF-asymmetries when 
compared to BIOSEMI averaged-ref montage), suggesting 
the main trait spectral components were still captured. 
Ideally, both types of data should have been recorded 
simultaneously using markers to synchronize the data at the 
millisecond resolution. While this was not possible for this 
study, future studies should aim to record both systems 
simultaneously. 

Second, FAA during rest was previously estimated to vary 
~60% from trait influence and 40% from state influences 
[60], the former being the target measure in this study. While 
internal consistency reliability of asymmetry measures was 
relatively high, more variation and lower values were 
observed compared to alpha power (as in previous 
publications; [54]). Increasing the data length (e.g., 3 minutes 
of artifact-free data) might increase the trait influence by 
reducing the fluctuations due to state influences, and in turn, 
increase internal consistency reliability. We purposely used 
short segments to determine if they could be easily and 
reliably used in experimental and clinical conditions, but we 
did not compare different data lengths and their impact on 
these EEG measures. Future studies should compare 
asymmetry measures from a clinical system and a low-cost 
wearable system (as in this study) with longer data lengths to 
address this potential limitation.  

The absence of correlation in the higher frequencies (PSD > 
30 Hz) when comparing MUSE with BIOSEMI average-ref 
montage but not mastoid-ref montage may suggest that these 
frequencies may reflect field potentials from other brain 
processes when referenced to average than those captured 
with the mastoid-ref montage. Thus, these frequencies should 
only be interpreted in the mastoid-ref montage context when 
using this system.  

C. Recommendations for research and clinical MUSE 

recordings 

Recommendations for using the MUSE in future clinical and 
experimental research are as follows: 
• Eyes closed recordings of at least 1-minute 

corresponding to a total preparation and recording time 
of about 3 minutes (although longer segments should 
further increase the trait variable and internal consistency 
reliability). 

• Cleaning the participants’ skin with alcohol wipes and 
wetting the dry electrodes to reduce impedance (this is a 
general recommendation since we did not quantify the 
benefits here). 

• Re-referencing the frontal channels to linked mastoid 
electrodes (i.e., TP9/TP10). 

• Using measures found to be reliable with this system: 
PSD<30 Hz, traditional FAA, and the IAF (in particular 
the CoG).  

 
Fig. 5. Comparison of frontal alpha asymmetry measures from 

BIOSEMI average-ref montage and MUSE mastoid-ref montage. Alpha 

asymmetry calculated using the traditional method (on average power 
over the whole alpha band) was significantly correlated between the two 

systems. However, asymmetry scores calculated on the PAF and CoG 

power were not significantly correlated. Statistics are reported in the 
text. Red dots are bivariate outliers accounted for by the skipped 

Pearson correlations. The red line is the least-squares fit line. Shaded 

areas are the 95% confidence intervals. The power spectral density 
(PSD) unit is deciBels (10*log10(μV2/Hz)).  



V. CONCLUSION 

Our study validates the use of the low-cost MUSE headset for 
accurately and reliably measuring PSD, IAFs, and FAA 
(calculated on the whole band). This system can help advance 
human neurophysiological monitoring techniques on large 
datasets using wearable neurotechnologies and increase the 
feasibility of their implementation into real-world 
applications. 
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Electroencephalography (EEG) alpha asymmetry is thought to reflect crucial brain
processes underlying executive control, motivation, and affect. It has been widely used
in psychopathology and, more recently, in novel neuromodulation studies. However,
inconsistencies remain in the field due to the lack of consensus in methodological
approaches employed and the recurrent use of small samples. Wearable technologies
ease the collection of large and diversified EEG datasets that better reflect the
general population, allow longitudinal monitoring of individuals, and facilitate real-
world experience sampling. We tested the feasibility of using a low-cost wearable
headset to collect a relatively large EEG database (N = 230, 22–80 years old, 64.3%
female), and an open-source automatic method to preprocess it. We then examined
associations between well-being levels and the alpha center of gravity (CoG) as well
as trait EEG asymmetries, in the frontal and temporoparietal (TP) areas. Robust linear
regression models did not reveal an association between well-being and alpha (8–
13 Hz) asymmetry in the frontal regions, nor with the CoG. However, well-being was
associated with alpha asymmetry in the TP areas (i.e., corresponding to relatively less
left than right TP cortical activity as well-being levels increased). This effect was driven by
oscillatory activity in lower alpha frequencies (8–10.5 Hz), reinforcing the importance of
dissociating sub-components of the alpha band when investigating alpha asymmetries.
Age was correlated with both well-being and alpha asymmetry scores, but gender was
not. Finally, EEG asymmetries in the other frequency bands were not associated with
well-being, supporting the specific role of alpha asymmetries with the brain mechanisms
underlying well-being levels. Interpretations, limitations, and recommendations for future
studies are discussed. This paper presents novel methodological, experimental, and
theoretical findings that help advance human neurophysiological monitoring techniques
using wearable neurotechnologies and increase the feasibility of their implementation
into real-world applications.

Keywords: wearable EEG, alpha asymmetry, frontal, temporoparietal, executive control, well-being, large sample
analysis
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INTRODUCTION

Well-Being
The question of what determines well-being has intrigued
humans throughout recorded history and to this day remains
a topic of significant interest and debate (Dodge et al., 2012;
Alexandrova, 2015). The hedonic view of well-being focuses on
the emotional dimension (i.e., positive and negative affect) to
address this question. The eudaimonic perspective focuses on the
sense of striving toward realizing one’s potential or goals, a life
purpose, and seeking personal growth (Ryan et al., 2008). Well-
being is now understood as a multidimensional and dynamic
construct encompassing both views and other new essential
components such as mental and physical health, autonomy,
social relationships, spirituality, self-acceptance (Keyes and
Waterman, 2003; Ryff and Singer, 2013). Well-being can be
mediated by numerous factors such as demographics (Keyes and
Waterman, 2003; Carstensen et al., 2011), genetic predisposition
(Keyes et al., 2010), personality traits (Lucas and Diener,
2008), income (Luhmann et al., 2011), exercise (Hassmén
et al., 2000; Svensson et al., 2021), mindfulness meditation
practice (Carmody and Baer, 2008), or connectedness with
nature (Howell et al., 2011; Russell et al., 2013). These
factors also shape the structure and function of our brains
throughout the lifespan, with important implications for well-
being levels. While progress has been made recently regarding
our understanding of the relationships between well-being
and the brain, much is still unknown (Dolcos et al., 2018).
By identifying the neural correlates of well-being, we may
better understand the mechanisms that underly higher levels
of well-being, and in turn, develop promising interventions
aiming at helping people live happier and more successful lives
(Dolcos et al., 2018).

Frontal Electroencephalographic
Asymmetry
Definition and Calculation
For decades, frontal electroencephalographic (EEG) asymmetry
has been a useful tool to study emotion-related states and
traits, motivation, temperament, cognitive control, and
psychopathologies (Coan and Allen, 2003, 2004; Allen et al., 2004;
Harmon-Jones et al., 2010; Scherer and Ekman, 2014; Allen and
Reznik, 2015; Smith et al., 2017). Frontal EEG asymmetry refers
to a relative difference in alpha power spectral activity (8–13 Hz)
between the left and right frontal regions of the brain. Because
alpha oscillations are known to functionally inhibit regional
cortical activity (Laufs et al., 2003, 2006; Oakes, 2004; Mathewson
et al., 2011; Scheeringa et al., 2012; Grimshaw and Carmel,
2014), authors have associated an increased alpha activity with a
decrease in brain activity or a decrease in allocation of cortical
resources in the same region (Davidson, 1988; Davidson et al.,
1990; Gevins et al., 1997; Cook et al., 1998; Allen et al., 2004).
Thus, positive asymmetry scores (i.e., greater alpha power in
the right frontal area relative to the left) are thought to reflect
relatively lower right than left frontal cortical activity, and vice
versa for a negative asymmetry score.

The Main Models
Decades of work using the alpha asymmetry metric have led to
emotional valence and motivation models (Allen et al., 2004;
Harmon-Jones et al., 2010). These models highlight that approach
motivation emotional processes are associated with relatively
greater cortical activity in the left frontal area compared to
the right, which in turn, is inversely correlated with alpha
power (i.e., greater right than left alpha power in these areas).
Inversely, emotional processes related to avoidance motivation
and a negative valence are associated with relatively greater right
than left frontal cortical activity (corresponding to greater left
than right frontal alpha power). Extreme approach-oriented traits
and behaviors include for example positive urgency (i.e., the
tendency toward rash action in response to extreme positive
emotional states (Tomarken and Davidson, 1994), sensation-
seeking (Santesso et al., 2008), and high reward sensitivity
(Pizzagalli et al., 2005), whereas avoidance-related traits and
behaviors include depression and anxiety (Thibodeau et al.,
2006), shy temperament (Fox et al., 1995), negative dispositional
affect (Tomarken and Davidson, 1994), and poor regulation of
negative emotions (Jackson et al., 2003). These models align with
the clinical literature showing that lesions in the left frontal area
are associated with depression symptoms (Robinson and Price,
1982; Harmon-Jones et al., 2010).

The Underlying Brain Networks and Systems
Going one step further beyond these descriptive models,
investigators using EEG source-localization techniques (Laufs
et al., 2003; Pizzagalli et al., 2005; Mantini et al., 2007; Koslov
et al., 2011; Gable et al., 2015; Smith et al., 2018) found that frontal
asymmetries originate from the dorsal frontoparietal network
(dFPN), the inferior frontal gyrus, and the right dorsolateral
prefrontal cortex (dlPFC; which is part of the dFPN). These
results led them to suspect that frontal asymmetries reflect
the integrity of the supervisory system, which is theorized
to generate effortful constraint and self-control (Sutton and
Davidson, 1997; Cacioppo et al., 2007; Gable et al., 2015). Gable
et al. (2015) suspected that the alpha asymmetry is driven
by the activity of this supervisory control system, supposedly
located in the right frontal area (Gable et al., 2015). Frontal
asymmetries may also reflect other associated executive control
mechanisms, which play an essential role in allocating attention
toward a goal and inhibiting interference from distractors
(Corbetta et al., 2008; Vossel et al., 2013; Grimshaw and
Carmel, 2014; Gable et al., 2015). In this view, termed the
asymmetric inhibition model, mechanisms in the left frontal
cortex would inhibit negative distractors, whereas mechanisms
in the right frontal cortex would inhibit positive distractors.
Consequently, asymmetric aberrations in these systems result
in bottom-up and top-down dysfunction, such as the difficulty
in disengaging attention from negative/avoidance-motivation
information AS in depression and anxiety (Eysenck et al., 2007;
Shackman et al., 2009; Cisler and Koster, 2010; De Raedt
and Koster, 2010; Engels et al., 2010; Gotlib and Joormann,
2010; Kim et al., 2012; Gable et al., 2015), whereas difficulty
in inhibiting positive/approach-motivation distractors results
in addiction and positive urgency behaviors (Bechara, 2005;
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Garavan and Hester, 2007; Goldstein and Volkow, 2011). Thus,
multiple lines of research demonstrate that the mechanisms
underlying alpha asymmetry measurements are highly implicated
in processes that contribute to well-being (positive/negative
affect, capacity to fulfill one’s potential and life goals, etc.).

Limitations in Electroencephalographic
Asymmetry Research
While the literature on EEG asymmetry is sizable and robust, it is
important to note that there have also been failed replications and
contradictory results (Gotlib, 1998; Reid et al., 1998; Hagemann
et al., 1999; Müller et al., 1999; Coan et al., 2001; Gale et al., 2001;
Papousek and Schulter, 2002; Dennis and Solomon, 2010; Stewart
et al., 2010; Kop et al., 2011; Koslov et al., 2011; Quinn et al.,
2014; Meyer et al., 2015; Arns et al., 2016; Palmiero and Piccardi,
2017; van der Vinne et al., 2017). These inconsistencies can be
explained by the heterogeneity in the experimental designs, EEG
preprocessing techniques, and statistical approaches employed
across investigators over the years (Allen et al., 2004; Smith et al.,
2017). A summary of the main limitations of EEG asymmetry
research and proposed solutions that were implemented in this
study are now described.

Trait Versus State
One limitation is that EEG asymmetry can reflect trait or
state aspects and thus, designing experiments to highlight one
over the other depending on the research question is essential.
When measured during rest, EEG asymmetry is considered a
trait variable related to various psychological constructs and
predictive of future emotional behavior or psychopathology
(Wheeler et al., 1993; Davidson, 1994; Sutton and Davidson,
1997; Stewart et al., 2010; Nusslock et al., 2011; Papousek
et al., 2012). When measured as an event-related response, it
is considered a state variable reflecting the person’s current
emotional state (Coan et al., 2001; Harmon-Jones and Sigelman,
2001; Harmon-Jones, 2004). Some authors estimate that 60%
of the variance in asymmetry measure within a resting session
is due to trait influence, and the 40% to state influences
(Hagemann et al., 2002). Hence, the first approach aims to
reduce the state influence during rest, whereas the second one
aims to increase it using emotion-elicitation perturbations (Coan
et al., 2006). In this study, we focus on the trait variable and
hypothesize that trait frontal alpha asymmetry will be associated
with multidimensional well-being (since well-being is driven by
both emotional valence and motivational components).

Sample Characteristics
The second limitation to EEG asymmetry research is that sample-
specific characteristics (e.g., age, gender) have been shown to
significantly influence EEG findings because of functional and
anatomical differences (Klimesch, 1999; Sowell et al., 2007;
Hagemann et al., 2008; Finley et al., 2020). Many EEG asymmetry
studies include participants of one gender to reduce this bias
(Tomarken et al., 1990; Wheeler et al., 1993; Jacobs and Snyder,
1996; Reid et al., 1998; Gale et al., 2001; Dennis and Solomon,
2010; Mikolajczak et al., 2010; Koslov et al., 2011). However,
this prevents investigators from examining gender as a potential

mediator or moderator of asymmetry findings (MacKinnon et al.,
2013). There is a lack of consensus regarding the role gender plays
in EEG asymmetry in the limited studies that have addressed
this question (Veldhuizen et al., 1993; Carrier et al., 2001; Miller
et al., 2002; Otero et al., 2003; Morgan et al., 2005; Gasbarri et al.,
2006, 2007; Stewart et al., 2010; Kovacevic et al., 2015; Müller
et al., 2015; Hashemi et al., 2016). Similarly, the role age plays
in EEG asymmetry is also not very well known. One solution to
the lack of understanding of if and how demographic variables
influence EEG asymmetry and well-being is to collect large and
diversified datasets that better reflect the general population.
A few studies with large samples found that age and gender
mediate frontal asymmetry but that ethnicity or socioeconomic
status did not (Stewart et al., 2010; Gable et al., 2015; Arns
et al., 2016). However, these studies are rare and hard to replicate
because of the time and cost involved in recording EEG data on a
large number of subjects with conventional systems (equipment
cost, EEG preparations time, participants compensation for their
time, equipment cleaning, etc.).

Wearable EEG technologies make the collection of large
datasets of diversified and under-represented populations more
feasible and offer promising new applications for both clinicians
and researchers in the long term (Cannard et al., 2020). These
applications include brain monitoring in naturalistic settings and
in real-time (Hu et al., 2015; Jebelli et al., 2017), brain-computer
interfaces (BCI; Park et al., 2020), neurofeedback interventions
(Angelakis et al., 2007; Quaedflieg et al., 2016; Brandmeyer and
Delorme, 2020a), neuromarketing (Cartocci et al., 2018; Ramsøy
et al., 2018), or neuroaesthetics research (i.e., the science studying
the biological underpinnings of aesthetic experience; Cheung
et al., 2019; Cartocci et al., 2021). While these EEG systems can
have inferior hardware capacities than conventional ones, recent
technological and algorithmic advancements make the detection
and measurement of mental states increasingly reliable (Wu et al.,
2017), with as few as a single EEG channel (Umar Saeed et al.,
2018; Arpaia et al., 2020; Mahmoodi et al., 2021). Additionally,
these systems can easily combine other physiological measures
such as electrocardiography (ECG) or galvanic skin response
(GSR) to improve the efficacy of mental states detection (e.g., Ahn
et al., 2019). Wearable EEG systems have been used extensively
over the past few years to measure frontal asymmetry (Peng et al.,
2011; Hu et al., 2015; Hashemi et al., 2016; Jebelli et al., 2017,
2018; Wu et al., 2017; Zhao et al., 2017; Hwang et al., 2018;
Umar Saeed et al., 2018; Cao et al., 2019; Arpaia et al., 2020;
Park et al., 2020; Saeed et al., 2020) and were used in this present
study to enable the collection of a large dataset. Hence, in this
study, we aim to evaluate the potential relationship between well-
being, alpha asymmetry, and individual characteristics (namely
age and gender) in a large sample, collected using a low-cost
wearable EEG headset.

Alpha Frequencies and Bounds
The third main limitation in EEG asymmetry research is the
handling of alpha-band frequencies and bounds. The alpha
band is dominantly considered as a single phenomenon in EEG
asymmetry studies. However, previous evidence suggested that it
should not. For instance, measuring alpha power spectral density
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(PSD) on the traditionally a priori-defined bandwidth 8-13 Hz
does not account well for interindividual differences because
parts of the alpha power distribution fall outside this range
for some individuals (Klimesch et al., 1990; Klimesch, 1997).
Furthermore, differential changes in opposing directions within
the same dataset have been observed between lower (8–10.5 Hz)
and upper (11–13 Hz) alpha oscillations, as well as between local
and global properties (Klimesch, 1999; Nunez et al., 2001; Nunez
and Srinivasan, 2006).

The individual alpha frequency (IAF) refers to the dominant
frequency within the alpha power distribution and is thought
to reflect the dominant neural circuits that generate alpha
oscillations. Because it varies within and across individuals,
measuring alpha power on each individual’s IAF better accounts
for inter-individual variability (Klimesch, 1999; Haegens et al.,
2014; Mierau et al., 2017). Individual alpha frequency estimates
are considered a trait-like characteristic of the human EEG
(Grandy et al., 2013), have high heritability (Smit et al., 2006),
decrease with age (Klimesch, 1997; Corcoran et al., 2017; Finley
et al., 2020), and have good test-retest reliability (Näpflin et al.,
2007). Few studies have investigated EEG asymmetry using IAF
estimates to our knowledge (Klimesch et al., 1998; Angelakis
et al., 2004a; Vecchiato et al., 2012; Quaedflieg et al., 2015, 2016;
Di Flumeri et al., 2016).

The first approach to estimate IAF is to use the peak alpha
frequency (PAF; frequency within the alpha band with the highest
power). While this technique has been extensively used for the
study of cognition (Klimesch, 1999; Angelakis et al., 2004b;
Rathee et al., 2020), it does not perform well with a portion of the
population that have ambiguous alpha peaks, “split peaks” (i.e.,
several peaks within the alpha band), or no peak at all (Anokhin
and Vogel, 1996; Chiang et al., 2008, 2011). A second approach
called the alpha center of gravity (CoG) considers the shape of the
alpha PSD distribution and is thought to provide a more accurate
summary of the underlying alpha activity. Initial techniques to
estimate IAFs relied on visual and manual inspection (Klimesch
et al., 1990) or cross-frequency assumptions (Doppelmayr et al.,
1998; Klimesch, 1999; Posthuma et al., 2001; Goljahani et al.,
2012). These methods were very time-consuming and prone
to subjective judgment error. Novel automated methods have
now been developed to avoid these limitations. While the
channel-based method (CRB; Goljahani et al., 2012, 2014) is
better suited for event-related EEG asymmetry, other statistical
curve-fitting and clustering techniques are particularly promising
for IAF-estimation of resting EEG data (Chiang et al., 2008,
2011; Lodder and van Putten, 2011, 2013; Van Albada and
Robinson, 2013; Corcoran et al., 2017). Corcoran et al. (2017)
have implemented these algorithms into a fast, reliable, open-
source toolbox operating in MATLAB and Python (Corcoran
et al., 2017). This method seems suitable for large datasets with
a relatively low signal-to-noise ratio (SNR) acquired with a
wearable dry EEG system.

Hence, calculating alpha asymmetry scores on PSD estimated
on the predefined alpha band (8–13 Hz), the lower (8–10.5 Hz)
and upper (11–13 Hz) alpha sub-bands, and the CoG may help
us understand more about the underlying mechanisms of alpha
asymmetry. The present study incorporates these metrics to

evaluate differences in these measures and their relationship to
well-being. We expect well-being to be positively correlated with
CoG values, differently correlated with lower and upper alpha (no
specific direction is hypothesized), and positively correlated with
CoG-asymmetry (and we expect this association to be stronger
than that with the traditional whole alpha band asymmetry, by
better accounting for interindividual differences).

Limiting Electroencephalographic Asymmetry to the
Frontal Areas
The fourth limitation is the reduction of the study of EEG
asymmetry phenomenon to only the frontal areas. It has been
expressed for a long time that both anterior and posterior
cortical regions show asymmetric activity patterns (Davidson,
1988, 1992). This is also reflected by studies showing that FAA
obtained on data referenced with the current-source density
(CSD) transformation (i.e., reflective of alpha power from local
frontal sources only) correspond to a marker for depression risk,
whereas FAA obtained on data referenced to mastoids or average
(i.e., containing alpha power from distal, posterior cortical
regions) correspond to a better marker of current depression
severity (Stewart et al., 2010). Furthermore, expanding the
analysis of alpha asymmetry to the temporoparietal (TP) regions
seems particularly relevant since alpha asymmetries were source-
localized to the frontoparietal network (FPN), which includes
brain structures in both the frontal and the TP regions (see
above; Vossel et al., 2013). Furthermore, different subtypes of
anxiety disorders are differently associated with asymmetric
activity in frontal and TP regions (Heller et al., 1997; Engels
et al., 2007; Mathersul et al., 2008; Müller et al., 2015). Together,
these findings suggest that anxious arousal (physiological arousal
and hyper-reactivity under conditions of panic) is associated
with relatively greater right than left frontal activation, whereas
anxious apprehension (involving worry and verbal ruminations;
i.e., trait anxiety and generalized anxiety disorder) is linked to
the opposite asymmetry in frontal area and asymmetry in the
same direction in the TP area. However, other findings suggested
that TP asymmetry was less stable over time compared to frontal
asymmetry (Müller et al., 2015) and sometimes not associated
with self-reported measures of affect and motivation (Davidson
et al., 1990). In this study, we examine the relationship between
well-being and asymmetry in both frontal and TP regions
and hypothesize that alpha asymmetry in both regions will be
associated with well-being (with potentially a different direction).

Limiting Electroencephalographic Asymmetry to the
Alpha Oscillations
The Fifth and last main limitation in EEG asymmetry research is
the need to expand analyses to other frequency bands. Coherence
in both alpha and theta oscillations has been highlighted during
both relaxation and mental calculation (Nunez and Srinivasan,
2006). This widespread (global) phase coherence phenomenon
increases in the upper frequencies of both alpha and theta
bands while it simultaneously decreases in the lower frequencies
(Wingeier, 2000; Nunez and Srinivasan, 2006). These findings
go along with other findings indicating that global alpha and
theta rhythms functionally interact during both relaxation and
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attentional tasks (Klimesch, 1999; Buzsáki, 2006; Laufs et al.,
2006). Furthermore, theta power has been used to predict
response to depression treatment in several studies (Knott et al.,
1996, 2000; Cook and Leuchter, 2001; Cook et al., 2002; Bares
et al., 2008; Iosifescu et al., 2009; Spronk et al., 2011; Baskaran
et al., 2012; Olbrich and Arns, 2013). Furthermore, theta power
decreases while upper alpha power increases in several conditions
(i.e., the early part of life until adulthood, in neurological
disorders, and the transition phase from awake to sleeping),
whereas the direction of their relationship is opposite for the late
part of the lifespan (Klimesch, 1999).

Similarly, alpha and beta spectral power have been found
to interact (Laufs et al., 2006; Hamid et al., 2010), and both
are associated with high levels of mental stress and depression
(Hayashi et al., 2009; Alonso et al., 2015; Jena, 2015; Al-
shargie et al., 2016; Jun and Smitha, 2016; Díaz et al., 2019;
Al-Dabass, 2020; de Hemptinne et al., 2021). More specifically,
prefrontal beta power in lateral areas was found to be positively
associated with depression and anxiety, whereas lateral beta
power was negatively associated with mood (de Hemptinne
et al., 2021). The authors interpreted these results to be in
line with the organization of the reward networks in the
prefrontal cortex (PFC).

However, no robust literature is available to make specific
interpretations about how alpha asymmetry interacts with other
frequency bands, and whether asymmetries in other frequency
bands could be associated with psychological constructs such
as well-being. Thus, we aim to bring light to this matter in
this study and hypothesize that well-being will be associated
with asymmetries in other frequency bands. This study includes
asymmetry scores estimated on the delta (1–3 Hz), theta (4–
7 Hz), and beta (14–30 Hz) frequency bands, for both frontal
and TP sites. Since no previous research exists on this matter,
we have no specific hypothesis concerning the direction of these
potential associations.

Summary of the Study Goals and Hypotheses
Considering the potential importance of alpha asymmetry as a
physiological correlate in general, and for well-being specifically,
the overall objective of this study was to determine whether a
low-cost wearable EEG headset (the Muse by Interaxon) could
be used to measure EEG correlates (CoG, EEG asymmetry) of
well-being on a relatively large sample (N = 353). The analyses
were designed to address the main limitations of EEG asymmetry
research addressed above. The hypotheses for the study were as
follows:

1. Well-being will be positively associated with approach-
motivation processes and positive valence of emotion, as
reflected by relatively greater right than left alpha power.
We hypothesize that this will be the case for both frontal
and temporoparietal (TP) areas (although the direction
might be different, based on the literature discussed).

2. Age and gender will be associated with both well-being and
mean alpha asymmetry (predefined 8–13 Hz band).

3. The CoG will be positively correlated with
well-being levels.

4. Asymmetry scores estimated on sub-components of alpha
oscillations (namely lower/upper alpha and CoG) will
provide stronger correlations regarding the relationship
between well-being and alpha asymmetry than those
estimated on the predefined alpha aband (8–13 Hz), by
better accounting for alpha source differences (lower/upper
alpha) and interindividual differences (CoG).

5. Well-being levels will be associated with asymmetries in
other frequency bands (namely delta, theta, and beta),
although we do not have specific hypotheses regarding
which bands and their directions.

MATERIALS AND METHODS

Participants
353 participants were recruited from groups attending workshops
focusing on well-being and personal development at the Earthrise
Campus. Exclusion criteria: people younger than 18 years of
age, inability to read or understand the consent form, acute or
chronic illness precluding completion of measurements. Upon
arrival at the research laboratory, participants were briefly
interviewed by the research assistants to ensure they met
the inclusion/exclusion criteria and were then allocated to a
carrel where the following equipment was available for their
participation: a wearable EEG headset, a Chromebook, and
a pair of headphones. The settings allowed the recording of
up to 9 participants simultaneously. Participants volunteered
and were not compensated for participation. The study and
the consent form were approved by the Institute of Noetic
Sciences’ institutional review board (IRB). All questionnaires
were optional and anonymous.

Multidimensional Well-Being
Participants’ multi-dimensional well-being was assessed on-
site using the Arizona Integrative Outcomes Scale (AIOS; Bell
et al., 2004) in SurveyMonkey1. The AIOS is a horizontally
displayed scale that provides a quick and accurate assessment
of the participants’ self-rated global sense of physical, social,
psychological, affective, and spiritual well-being over the past
24 h (Bell et al., 2004). The low anchor is “Worst you have ever
been” (AIOS score = 0) and the high anchor is “Best you have
ever been.” (AIOS score = 100). The 24-h AIOS score was found
to significantly reflect psychological well-being, global health,
psychological distress, the positive and negative affect, and the
positive states of mind, and was significantly correlated with the
1-month AIOS scores (Bell et al., 2004; Otto et al., 2010; Tuason
et al., 2021). Furthermore, AIOS-24 h was found to be associated
with personality traits (Wahbeh et al., 2021). While these findings
suggest the AIOS-24 h reflects trait components of well-being,
validation of this hypothesis requires further testing. The online
survey included additional questionnaires that are not included
in this study and are reported elsewhere (Wahbeh et al., 2021).

1https://www.surveymonkey.com/
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EEG
Data Collection
Once participants completed the survey, continuous EEG was
recorded using InteraXon’s Muse wearable EEG headband
(version 2016). Electroencephalography data were recorded
while participants were instructed to focus their attention
on their breath and count inhalation/exhalation cycles. They
were instructed to bring their attention back to their breath
and start counting again if they lost track of their count or
noticed their minds wandered. This task reduces EEG artifacts
occurring naturally with eye movements. Most importantly, this
task can later be implemented into practical translational and
therapeutical applications aimed at increasing well-being levels
through the modulation of alpha asymmetry and the underlying
brain processes (Angelakis et al., 2007; Sessa, 2007; Moynihan
et al., 2013; Doll et al., 2016; Schmalzl et al., 2018; Prpa et al.,
2020). Electroencephalography data were with a sampling rate
of 256 Hz and 12-bits of data resolution. This system has five
active dry electrodes: two frontal silver (AF7 and AF8), two
temporoparietal (TP) silicone electrodes (TP9 and TP10), and a
reference electrode (FPz). Before positioning the headband on
the subjects’ heads, their skin was cleaned with alcohol swipes
at electrode sites, and a thin layer of water was applied with
a sponge to the electrodes to improve signal quality. EEG data
were acquired on Chromebooks using the Muse Monitor App
and were uploaded onto Dropbox at the end of the recording.
Random unique identifiers were used to link survey and EEG
data. Impedance check was provided by the App (horseshoe
symbol) and visually confirmed by the raw signal displayed on
the screen in real-time.

As shown in previous publications, good internal consistency
reliability of frontal EEG asymmetry can be obtained with as few
as 100 epochs, corresponding to one to 3 min of artifact-free
recorded data [depending on window size; (Allen et al., 2004;
Towers and Allen, 2009; Smith et al., 2017)]. Allen et al. (2004)
found that the number of epochs used to estimate the asymmetry
scores matters more than the number of minutes of data (Allen
et al., 2004), with asymmetry scores estimated on 2 min of data
showing similar consistency reliability than those obtained on
8 min of data. Furthermore, a recent publication showed that
individuals can robustly be differentiated using spectral EEG data
obtained on segments as short as 30 s (and this was stable weeks
later; da Silva Castanheira et al., 2021). Thus, 2 min of EEG data
were recorded for each participant. When less than 8 min of data
is available, Allen et al. (2004) recommend reporting the internal
consistency reliability and how many blocks were treated through
the calculation of Cronbach’s alpha (see below).

Data Preprocessing
Data preprocessing was done in EEGLAB version 2020.0
(Delorme and Makeig, 2004) in MATLAB v2020a. EEG data
were imported with the muse_monitor plugin v3.2, low-pass
filtered at 30 Hz (transition bandwidth 12.5 Hz; passband edge
50 Hz; cutoff frequency -6 dB 56.25 Hz; linear non-causal filter)
to remove high-frequency artifacts, and high-passed filtered at
1 Hz (transition bandwidth 1 Hz; passband edge 1 Hz; cutoff

frequency -6 dB 0.5 Hz; linear non-causal filter) to remove low-
frequency drifts. 10–20 channel template locations from BESA
spherical coordinates were used in EEGLAB. Artifactual channels
(with ∼50% of data being noisy or artifactual) were manually
tagged and removed with a custom-made single-page figure
displaying each channel’s overall raw data, standard deviation,
and power spectra. Files with at least one bad channel were
removed for analyses.

An existing automatic method to clean EEG artifacts over this
large sample was cross-validated: 150 files were randomly selected
from the database to be cleaned manually and automatically
with EEGLAB’s clean_rawdata plugin v2.2 (Euclidean method).
Performance was calculated on each channel by comparing
each sample as either true positive (TP, bad sample correctly
rejected), true negative (TN, good sample correctly kept),
false positive (FP, good sample incorrectly rejected), or false
negative (FN, bad sample incorrectly kept). “Positive” and
“negative” refer to presence or absence. Then, the true positive
rate (TPR, i.e., sensitivity) and the true negative rate (TNR,
i.e., specificity or selectivity) were calculated for each channel
with: TPR = TP/(TP + FN) and TNR = TN/(TN + FP).
The average sensitivity and specificity were then calculated
over all channels to obtain the overall performance of the
automatic method compared to manual rejection. After testing
different parameters, the best performance obtained showed 81%
sensitivity and 83% specificity [settings: “burst_criteria” = 6,
“window_criteria” = 0.3, “window_tolerance” = “(-Inf 7)”].
50 additional datasets were randomly selected for cross-
validation, showing 84% sensitivity and 89% specificity. Since
further increasing the sensitivity scores (i.e., removing more
subtle artifacts) corresponded to a decrease in specificity (i.e.,
removing more non-artifactual data), these thresholds were
considered most suited for this analysis. On average, this
method removed an additional 11.4 s of data (± 23.0).
Thus, bad channels were manually tagged and data were
cleaned using this automated method and parameters. Files
with less than 60 s of remaining artifact-free data were
removed for analysis.

Note that this was done on duplicated data that were
averaged-referenced to a fifth zero-filled channel as it increased
performance by homogenizing raw signal amplitude across
channels. But because this average re-referencing method was
not validated for this specific montage and is not recommended
with less than 30 channels (Smith et al., 2017), artifactual sections
were removed from the original raw files and then re-processed
as above. The issue of the electrode reference and its impact on
asymmetry scores has been detailed and is of high importance
(Allen et al., 2004; Smith et al., 2017). The recommended
referencing methods (i.e., average-referencing, current-source
density transformation) or the “residualization procedure” are
not feasible with the low density and sparse montage of the
Muse headset. The frontal channels are located close to the
Fpz reference, potentially providing invalid asymmetry scores
for the frontal channels by not reflecting the same underlying
cortical activity as in the literature. Since frontal asymmetry
estimated on linked-mastoid data is associated with the severity
of current depression (Stewart et al., 2010), frontal channels were
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re-referenced to TP9/TP10. Temporoparietal channels were kept
with the default Fpz reference.

Power Spectral Density and Asymmetry Estimates
Power Spectral Density (PSD) was calculated using MATLAB’s
pwelch function on 1-s hamming tapered windows (42.5 dB
sidelobe attenuation) with 50% overlap [per guidelines (Allen
et al., 2004; Smith et al., 2017)], since the pwelch method smooths
over non-systematic noise and is more robust compared to the
more popular fft method that is more sensitive to noise and non-
stationarities. Power spectra were then converted to 10∗log10
deciBels (dB) as untransformed power values tend to be positively
skewed due to individual differences in skull thickness that
influence the signal amplitude (Allen et al., 2004).

The CoG was estimated for each channel using the automated,
open-source method developed by Corcoran et al. (2017) which
uses curve-fitting algorithms and a smoothing Savitzky-Golay
Filter (SGF). This technique is thought to better account
for interindividual variance and to be more reliable under
low SNR conditions.

Asymmetry scores were obtained on the alpha PSD averaged
over the predefined band (8–13 Hz), averaged over the predefined
lower (8–10.5 Hz) and upper (11–13 Hz) sub-bands, and the
individualized CoG.

They were calculated following standard procedures by
subtracting the alpha power of interest of the left frontal
channel from the right frontal channel (alpha_power_dB_AF8 –
alpha_power_dB_AF7). Positive scores, therefore, indicate
greater alpha power in the right relative to the left electrode.
Asymmetry scores were also obtained from the temporoparietal
(TP) channels. Finally, asymmetry scores were also computed on
the delta (1–3 Hz), theta (4–7 Hz), and beta (14–30) frequency
bands. Gamma was not included due to the Muse’s vulnerability
to line noise in the high frequencies.

Statistical Analyses
Robust linear regression models were generated in MATLAB
2021a using MATLAB’s fitlm package. Because of small portions
of artifacts remaining in some EEG data after automatic
preprocessing, robust least-squares regressions (Tukey’s bisquare
function; default tuning constant = 4.685) were used for
statistical analysis to down-weight the residuals’ influence on the
model, using iterative reweighted least-squares (IRLS; Huber and
Ronchetti, 2009). All models were tested for lack of fit first using a
degenerate model consisting of only a constant term. Reported F-
statistics with a p-value, therefore, indicate a valid fit for the model
but do not inform on the relationship between the dependent
and independent variables. The Beta (β) coefficient estimates and
their standard error (SE) are reported in the first column and
indicate a significant linear relationship between the predictor
and the outcome variables when p-values are present. Summary
statistics of the models include the number of observations, the
error degrees of freedom, the root mean squared error (RMSE),
R2 (for models with one predictor), adjusted R2 (for models with
multiple predictors). Note that the descriptions below each table
reporting the statistical results indicate whether the models were
simple or multiple linear regressions (i.e., one or more predictor

variables). In sum, all models were simple linear models and one
was a multiple linear model (the two variables being lower and
upper alpha asymmetry). Finally, following recommendations
(Allen et al., 2004), asymmetry scores were also calculated on
eleven 4-s blocks (as opposed to the average alpha power over
all blocks for the asymmetry measures) to validate the internal
reliability consistency of alpha asymmetry scores obtained on
these short file lengths, using Cronbach’s alpha method, where
a value below 0.2 indicates poor internal reliability consistency
and greater than 0.8 a high internal reliability consistency
(Cronbach, 1951).

RESULTS

230 participants remained for analyses after preprocessing.
83 files contained at least one bad channel and 36 had
less than 60 s of artifact-free data and were excluded
from the analyses (the data loss due to signal quality
is discussed in the Discussion). They were aged from 22
to 80 years old (mean age was 55 ± 13.4) and were
64.3% female, 28.7% males, and 7% “Other” or missing.
Cronbach’s alpha scores indicated a high internal reliability
consistency of the asymmetry scores estimated on both
frontal (Cronbach α = 0.95) and temporoparietal (Cronbach
α = 0.82) channels.

Well-Being and Alpha Asymmetry
(Predefined Frequency Bands)
No association between subjective well-being levels and frontal
alpha (predefined 8–13 Hz band) asymmetry was found (Figure 1
and Table 1). However, well-being was negatively correlated with
TP alpha asymmetry scores (predefined 8–13 Hz band), reflecting
greater cortical activity in the right TP area relative to the left
is associated (assuming the inhibitory role of alpha oscillations
on regional cortical activity; see Introduction). Detailed statistics
are reported in Table 1 and an illustration of the results in
the frequency and the scalp topography domain can be found
in Figure 1, using the 20 participants with the highest well-
being levels. The relationship between well-being and TP total
alpha asymmetry scores appear to be driven more specifically
by neural activity in the lower frequencies of the alpha band
(8–10.5 Hz) because well-being was significantly correlated with

TABLE 1 | Subjective well-being and alpha asymmetry (strict bounds at 8–13 Hz).

Predictor variable β (SE) N (DF) Model
RMSE

Model
R2

Model
F-statistic

Frontal α asymmetry 0.001 (0.002) 230 (228) 0.468 0.158 42.8***

TP α asymmetry −0.007* (0.003) 0.808 0.036 8.51**

Column 2: p-values next to the Beta (β) coefficients and their standard error (SE)
indicate a significant association between the predictor and the response variable
at 95% confidence level (*), 99% confidence level (**) and 99.9% confidence level
(***). Column 3: number of observations (N) and degrees of freedom (DF). Column
4–6: root mean square error (RMSE), R-squared, and F-statistic of the linear model.
p-values next to F-statistic indicate a significant fit (see above for confidence levels).
Each simple linear model follows the equation: Response variable ∼ 1 + predictor.
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FIGURE 1 | (Panel A) These linear regression models of well-being and mean alpha asymmetry (predefined 8–13 Hz band) show the absence of relationship at
frontal channels (top) and the presence of one at temporoparietal (TP, bottom) channels. Higher well-being levels are associated with greater cortical activity in the
right TP area relative to the left (assuming alpha inhibits regional cortical activity). (Panel B) Mean and standard error of the alpha power spectral density (PSD) from
the 20 participants with highest reported well-being level at frontal (top) and TP (bottom) channels, illustrating the results reported in (Panel A). (Panel C) Scalp
topography of mean alpha PSD on a typical subject with low self-reported well-being (AIOS = 17; top) and high self-reported well-being (AIOS = 100; bottom), as
an illustration of the effect reported in (Panel A).

TABLE 2 | Subjective well-being and temporoparietal (TP) lower/upper
alpha asymmetry.

Predictor variable Estimate
(SE)

N (DF) Model
RMSE

Model
R2

Model
F-statistic

Lower α-asymmetry
(8–10.5 Hz)

−0.008* (0.003) 230 (228) 0.981 0.035 8.28**

Upper α-asymmetry
(11–13 Hz)

−0.005 (0.003) 0.863 0.011 2.61

Column 2: p-values next to the Beta (β) coefficients and their standard error (SE)
indicate a significant association between the predictor and the response variable
at 95% confidence level (*), 99% confidence level (**) and 99.9% confidence
level (***). Column 3: number of observations (N) and degrees of freedom (DF).
Column 4–6: root mean square error (RMSE), R-squared, and F-statistic of the
linear model. p-values next to F-statistic indicate a significant fit (see above
for confidence levels). The multiple linear model follows the equation: Response
variable ∼ 1 + predictor1 + predictor2.

lower alpha asymmetry but not with upper alpha asymmetry (see
Table 2).

Well-Being, Alpha Asymmetry
(Predefined 8–13 Hz Band), and
Covariates
Age was negatively correlated with alpha asymmetry calculated
on the predefined 8–13 Hz band (meaning the older the
individual, the greater cortical activity is in the right frontal
and TP areas relative to the left ones) and positively
correlated with subjective well-being levels (i.e., older age

FIGURE 2 | Left: Age is negatively associated with frontal (top) and TP
(middle) alpha asymmetry scores, reflecting greater cortical activity in the
right hemisphere relative to the left in older individuals. Age is positively
associated with well-being levels (bottom). Right: Gender was not
associated with any of the three variables.

reflecting greater well-being score). However, gender was not
associated with well-being or alpha asymmetry (Figure 2 and
Table 3).
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TABLE 3 | Subjective well-being and alpha asymmetry, and covariates.

Predictor
variable

Estimate
(SE)

N (DF) Model
RMSE

Model
R2

Model
F-statistic

α-asymmetry (Frontal)

Age −0.006* (0.002) 218 (216) 0.469 0.188 50***

Gender_Male 0.009 (0.071) 214 (212) 0.477 0.162 41***

α-asymmetry (TP)

Age −0.009* (0.004) 218 (216) 0.819 0.026 5.76*

Gender_Male 0.129 (0.123) 214 (212) 0.833 0.01 2.09

Well-being

Age 0.258* (0.100) 218 (216) 19.7 0.031 7**

Gender_Male 0.68 (2.914) 214 (212) 19.7 0.003 0.56

Column 2: p-values next to the Beta (β) coefficients and their standard error (SE)
indicate a significant association between the predictor and the response variable
at 95% confidence level (*), 99% confidence level (**) and 99.9% confidence level
(***). Column 3: number of observations (N) and degrees of freedom (DF). Column
4–6: root mean square error (RMSE), R-squared, and F-statistic of the linear model.
p-values next to F-statistic indicate a significant fit (see above for confidence levels).
Each simple linear model follows the equation: Response variable ∼ 1 + predictor.

Well-Being, Alpha Center of Gravity, and
Center of Gravity-Asymmetry
No linear relationships were observed between well-being and
the CoG (Supplementary Table 2), and between well-being
and asymmetry scores calculated on the CoG (Supplementary
Table 3), for both frontal and TP channels.

Well-Being and EEG Asymmetry in the
Other Frequency Bands
No associations were observed between well-being and EEG
asymmetry in the delta (1–3 Hz), theta (3–7 Hz), or beta
(14–30 Hz) frequency bands (Supplementary Figure 1 and
Supplementary Table 1).

DISCUSSION

Results Summary
Contrary to the existing literature on the emotional valence
and the motivational models of frontal EEG asymmetry, we
found an absence of association between multidimensional well-
being levels and frontal alpha asymmetry (predefined 8–13 Hz
band, 8–10.5 Hz, and CoG-asymmetry). However, well-being
was negatively correlated with alpha asymmetry at the TP
sites (predefined 8–13 Hz and 8–10.5 Hz bands, but not for
CoG-asymmetry), reflecting greater cortical activity in the right
TP area relative to the left (assuming the inhibitory role of
alpha oscillations on regional cortical activity; see Introduction).
Interestingly, the direction of the asymmetry is opposite to
the one in the frontal areas in the literature of frontal alpha
asymmetry. Hence, while approach motivation and the related
emotional processes are associated with relatively greater left than
right frontal cortical activation, multidimensional well-being
seems to be associated with asymmetric activation in the opposite
direction in the TP areas.

This effect appears to be driven more specifically by oscillatory
activity in the lower frequencies of the alpha band (8–10.5 Hz),

aligning with studies highlighting the inhibitory function of these
lower frequencies (Oakes, 2004). Making the distinction between
lower and upper frequencies of the alpha band seems therefore
especially relevant for neurophysiological studies using source-
localization or simultaneous EEG-fMRI techniques to identify the
intricate mechanisms involved in EEG asymmetry.

Contrary to our expectations, the CoG did not show
associations with well-being levels. While CoG is associated with
cognitive processes in the literature on the individual alpha
frequency (IAF), we hypothesized that it would also be associated
with self-reported well-being levels. However, the CoG may
reflect other brain processes associated with cognition that are
different than those involved with multidimensional well-being.
Future studies using advanced source localization methods and
high-density EEG systems should elucidate the different sources
and networks associated with the different sub-components of
alpha oscillations, and their associations with cognitive systems
(i.e., PAF, CoG, lower/upper alpha).

While some researchers suspected that gender was the main
driver of frontal alpha asymmetry levels (Gale et al., 2001;
Dennis and Solomon, 2010; Mikolajczak et al., 2010), it was not
associated with well-being or alpha asymmetry measures (for
both frontal and temporoparietal sites) in this sample. However,
age was negatively correlated with alpha asymmetry scores of
both regions (meaning that cortical activity is greater in the right
areas relative to the left ones as age increases) and positively
correlated with subjective well-being levels. This finding aligns
with the well-being literature (e.g., Carstensen et al., 2011),
and supports a strong mediator role of age on the relationship
between well-being and TP alpha asymmetry. Hence, the absence
of a relationship between well-being and CoG-asymmetry might
further indicate that there is a strong relationship between well-
being, age, and alpha asymmetry in the TP area. Age is likely
not the mechanism of change itself but may represent many
underlying factors associated with brain changes and well-being
(Kazdin, 2007). Thus, future studies using larger samples and
higher density EEG data are necessary to confirm the accuracy of
the asymmetry estimates obtained with this automated method,
as well as to confirm or disprove the relationship between age,
well-being, and alpha asymmetry in the TP area. If confirmed,
the IAF-estimation method can be used to homogenize EEG
asymmetry estimation procedures across investigators, and the
specific interactions between these three variables should be
further elucidated to determine the underlying mechanisms.

No associations were observed between subjective well-being
and PSD asymmetry in the delta (1–3 Hz), theta (3–7 Hz), or
beta (14–30 Hz) frequency bands (Supplementary Figure 1 and
Supplementary Table 1), supporting the specific role of alpha
oscillations in the brain processes underlying well-being.

Interpretations of the Results and
Potential Mechanisms
Studies using source-localization methods found the alpha
asymmetry to originate mainly from brain activity in the dorsal
system of the frontoparietal network (FPN; 13). Functional
magnetic resonance imagery (fMRI) showed that this system
is organized bilaterally and comprises the intraparietal sulcus
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(IPS) and the frontal eye fields (FEF) of each hemisphere, and
is thought to mediate top-down guided voluntary allocation of
attention to locations or features (Vossel et al., 2013). Both
IPS and FEF are active when attention is overtly or covertly
oriented in space and are suspected to be the regions for the
maintenance of spatial priority maps, saccade planning, and
visual working memory. In contrast, the ventral system comprises
the temporoparietal junction (TPJ) and the ventral frontal cortex
(VFC) and is associated with detecting unattended or unexpected
stimuli and triggering shifts of attention (Vossel et al., 2013).
It has been proposed that the ventral system is lateralized to
the right hemisphere of the brain and exhibits asymmetric
activity during attentional reorientation, the processing of rare
deviant stimuli, and the response to valid vs. invalid cued targets
(Corbetta and Shulman, 2002; Corbetta et al., 2008; Doricchi
et al., 2010). The functional role of the TPJ also includes
filtering irrelevant distractors during focused states of attention,
modulating neural activity between various networks, and it
has been implicated in social cognition and theory of mind
(Vossel et al., 2013).

Hence, since our experimental task consisted of focusing
attention on the breath, detecting mind-wandering thoughts (i.e.,
mental distractions), and reallocating attention to the goal, the TP
alpha asymmetry may reflect these attentional processes and the
underlying activity of the TPJ. Whereas, frontal alpha asymmetry
may better reflect the dorsal system, as most studies use
traditionally a cross-fixation task or resting-state condition with
no focus of attention on any object. In line with these systems,
one might speculate that participants with lower subjective well-
being were more likely to ruminate on negative thoughts or
memories (associated with negative valence and a withdrawal
motivation; Mason et al., 2013; Smallwood and Andrews-Hanna,
2013) and less able to redirect their attention to their breath.
This would decrease their capacity to detect negative thoughts
and redirect their attention to their breath, corresponding to
relatively greater left than right cortical activity in the TP area
(positive TP asymmetry score). On the other hand, participants
with higher well-being would be more likely to engage in mind
wandering with positive valence and more likely to redirect their
attention to their breath, which would correspond to greater
cortical activity in the right TP area (negative TP asymmetry
score). Another possibility is that alpha asymmetry in the TP
regions might simply occur in opposite direction compared
to the alpha asymmetry in the frontal areas (Davidson et al.,
1990). Future studies using high-density systems and advanced
source-localization methods are necessary to confirm or disprove
this hypothesis.

Limits and Recommendations
There are several limitations of this study that should be
considered when reviewing the results.

While the AIOS-24h was found to be associated with longer-
term well-being levels (i.e., reported well-being levels reflective
of the past month and personality trait; see Methods), further
validation is required to fully validate it as a measure of
trait well-being.

While the asymmetry scores showed a relatively high
internal reliability consistency and the Muse was validated for
ERP research (Krigolson et al., 2017), 83 files had at least
one bad channel and 36 had less than 60 s of remaining
artifact-free data after preprocessing. This is a significant loss
of data. The largest loss of data came from the presence
of bad channels (considered bad when at least 50% of
the channel was artifactual), likely due to the headband’s
flexibility that is prone to moving and disconnecting electrodes.
Thus, future investigators could consider using the more
recent Muse S that was developed for sleep studies. The
Muse S is made of a flexible fabric that can stretch and
keep stronger pressure on the electrodes, preventing them
from disconnecting as much. Furthermore, we recorded the
data when participants already started the task with their
eyes closed to reduce data cleaning over the large sample.
Automatic cleaning performance would have likely been
increased by adding a period before the task that includes
obvious artifacts (e.g., asking participants to produce eye
blinks and jaw clenching) to help the automatic method
algorithms create a more robust baseline and therefore reject
artifacts more efficiently. Thus, higher-grade and -density
wearable EEG systems and longer recordings (at least 4 min
of continuous data to ensure having at least 2 min of
artifact-free data on a larger portion of the sample) are
recommended for future studies to keep the advantages
of wearable technologies to acquire large datasets without
compromising data quantity and quality.

The Muse has only four channels. There are obvious benefits
to having more EEG channels in terms of scalp distribution and
data quality, which allow the use of advanced methods such
as independent component analysis (ICA) which can be used
to remove subtle artifacts such as muscle activity, subtle eye
movements, or channel noise (Makeig et al., 1996; Delorme and
Makeig, 2004). Furthermore, while we controlled for the potential
reference issue using this system, a wearable headset with at
least 30 channels would allow multiple referencing methods (e.g.,
average or CSD) and ensure highly accurate asymmetry estimates.
However, this study showed that it is feasible to use a low-
cost, low-density wearable system to examine the relationships
between well-being and alpha asymmetry in a relatively large and
diverse population.

Alpha center of gravity (CoG) and therefore CoG-asymmetry
is expected to better account for interindividual differences. The
automated IAF-estimation toolbox used in this study was not able
to detect the CoG for 8 subjects (see Supplementary Tables 2, 3).
We wanted to ensure that the absence of association between
well-being and TP asymmetry calculated on the CoG was not
due to this small sample difference (8 subjects missing compared
to models on predefined alpha bands). Thus, we removed these
8 subjects from the model assessing the association between
well-being and TP-asymmetry (predefined 8–13 Hz band) to see
if the effect disappeared as a consequence of these 8 subjects
being removed. Results showed that the significant association
was still present (see Supplementary Table 4). Hence, this
absence of association between well-being and CoG-asymmetry
is either due to:
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1) poorer estimation of alpha activity by the automatic
method compared to the predefined band since the method
performs best with more neighboring EEG channels (and
the Muse has only four sparse channels). Here, we fed
the algorithm with 2 channels at a time to avoid alpha
contamination from distal channels (to keep alpha activity
from frontal and TP channels separate).

2) this method better accounting for interindividual
differences, which would indicate that the main effect (TP
asymmetry calculated on the predefined 8–13 Hz band)
might be a consequence of the relationship between age,
well-being, and related brain activity.

Lastly, cross-sectional designs are always a limitation to
consider. More sessions would be beneficial for the field
to confirm the results and assess changes in both well-
being and EEG asymmetry to evaluate the stability of this
relationship over time.

Long Term Applications and Goals
Attentional and inhibitory impairments are thought to be
crucially associated with an increased vulnerability to depressive
episodes and cognitive vulnerability (De Raedt and Koster, 2010).
Alpha asymmetry (both frontal and TP) seems to play an essential
role in understanding the neural networks underlying executive
functions, attention, emotion regulation, and well-being. A better
understanding of these processes is crucial to improving general
well-being levels via targeted interventions. For example, Xu et al.
(2018) found that positive psychological interventions (PPIs)
increased not only subjective well-being and relief in depression
but also left frontal asymmetry scores (Xu et al., 2018). Kim
et al. (2012) found that positive reappraisals (i.e., techniques to
recognize the negative pattern that one’s thoughts have taken
using meta-awareness to cognitively reframe an event as more
positive and therefore increase the sense of well-being) showed
an increase in metabolic activity in the left dlPFC, caudate, and
cingulate regions (Kim et al., 2012). Moynihan et al. (2013) found
that mindfulness-based stress reduction produced significant
changes in executive and immune functions, as well as in left
frontal alpha asymmetry scores.

Neuroscientific tools such as neurofeedback (Linden,
2014; Brandmeyer and Delorme, 2020b) might increase these
interventions’ efficacy by targeting brain networks on the same
occasion. For instance, Angelakis et al. (2007) improved cognitive
processing speed and executive function of elderly individuals
using PAF as a neurofeedback index (Angelakis et al., 2007).
Allen et al. (2001) found that increasing right frontal activity
relative to the left using frontal asymmetry neurofeedback led to
decreased positive affect (Allen et al., 2001).

Furthermore, neuromodulation techniques may be used
to directly modulate specific networks such as the FPN.
For example, some clinical studies have shown that exciting
the left dlPFC with transcranial magnetic stimulation (TMS)
or transcranial direct current stimulation (tDCS) improved
depression symptoms (Kalu et al., 2012). Conversely, excitation
of the right dlPFC led to reductions in craving (Boggio et al.,
2008; Fregni et al., 2008) and risky decision-making (Fecteau
et al., 2007), i.e., behaviors associated with difficulty in inhibiting

extreme rewards with positive valence. Additionally, Sanguinetti
et al. (2020) recently used novel transcranial focused ultrasound
stimulation to target the right prefrontal cortex with higher
resolution and depth than TMS or tDCS and successfully
modulated mood and emotion regulation. By modulating both
bottom-up and top-down systems, long-term solutions without
side effects and at lower costs will emerge by helping patients
self-control negative biases (Moser et al., 2002; Hanslmayr et al.,
2011).

Understanding the role of third variables on these
mechanisms will help adapt these therapies to meet each
individual’s anatomy, physiology, and medical history, for
more efficiency and safety. Once these intricacies are better
understood, neuromodulation therapies might positively affect
both the executive control and perceptive systems to decrease
the propensity of depressive patients to focus on negative
information and ruminative thought.

Finally, advancements in wearable technologies may allow
care providers to monitor patients and apply neurofeedback or
neuromodulation protocols at a low cost and remotely while
patients are in the comfort of their homes (Cannard et al., 2020;
Biondi et al., 2021).

CONCLUSION

Overall, this study brings practical methodological information,
challenges, and guidelines for conducting EEG research on large
samples on well-being or related neuropsychological constructs,
using wearable EEG technologies. Our findings bring novel
knowledge that will help deepen our understanding of EEG
asymmetries and their relations with well-being, the potential
underlying neural networks and mechanisms, and the foreseeable
long-term applications.
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