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Conventions and units

Natural units

In Chapters 2 and 3, we use the so-called natural or rationalized Gaussian c.g.s.
units. In this system of units, we have A = ¢ = 1 and the fine structure constant «
is related to the electron charge e by

a=—. (1)
Maxwell’s equations then take the form
V-E=p, VxB=0E+7, (2)

while the Coulomb field between two charges (1 and ()5 takes the following form
_ Q1@

dmr

V(r) (3)

Furthermore, the energy density of the electromagnetic field reads

E:%(E2+B2). (4)
In this systems of units
[velocity] = pure number, (5)
[energy] = [momentum]| = [mass], (6)
since ¢ = 1, while
[length] = [mass] !, (7)

since ii/(mc) is a length. Therefore, all physical quantities can be expressed as
powers of mass, or equivalently as powers of length.

ST units

In chapter 4 and Parts II and III, we use the International System of Units or SI
units in short. In this system of units, the fine structure constant « is related to the
electron charge e by

e2

(8)

“= Ameghc

Maxwell’s equations then take the form
1
V-E=L, VxB=uj+;0E, (9)
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while the Coulomb field between two charges (1 and ()2 takes the following form
 1Q2

Vir)= . 10
(r) 4dmegr (10)
Furthermore, the energy density of the electromagnetic field reads
€0 72 1 2
E=—FE+—B~". 11
2 + 2110 (11)
Indices
Throughout this thesis, we use the flat Minkowski metric with signature (+, —, —, —),
i.e.
nt = diag(+1,—-1,-1,-1). (12)

Lorentz indices are written with Greek characters and take values u = 0,1,2,3,
while we use Latin characters for spatial indices, ¢, j,... = 1,2,3. Repeated upper
and lower Lorentz indices are summed over, ie. A,B* = 3 , 3A,B". The
Levi-Civita symbols €#*#? are chosen so that €"123 = +1 (and therefore ep123 = —1).

Fourier transforms and Dirac § distribution

We adopt the following conventions. For four-dimensional Fourier transforms

4 . ~
f@) = [ e i), (13a)
Pk = / g e f () (13D)
and for three-dimensional Fourier transforms
3 . ~
flx) = / (gﬂljg etk f(k) (14a)
fk) = / P e f(z) (14b)

For any integer n, n-dimensional Dirac delta functions are defined so that

/ d"z e = (271)"5(n) (k) . (15)
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Chapter 1

Introduction

In the fabric of space and in the nature of matter, as in a
great work of art, there is, written small, the artist’s signa-
ture

Carl Sagan (1985), in Contact

Contents

1.1 Strong-field regime of quantum electrodynamics . . . . . . . . .. .. 2

1.2 Schwinger-Sauter mechanism . . . . . ... ... ... ... ..... 3

1.3 Strong-field QED processes . . . . . . . ... ... 3

1.4 Sources of strong fields and high-energy particles in nature and in the
laboratory . . . . . . . . .. 4

1.5 Laser-plasma interaction at ultra-high intensity . . . . . .. ... .. 5

1.6 Presentation of thiswork . . . . ... .. ... ... ......... 8

1.1 Strong-field regime of quantum electrodynamics

Modern physics describes nature using four fundamental forces : gravity, the electro-
magnetic force, the weak and the strong interactions. Excluding gravity, the three
remaining forces are described through the Standard Model of particle physics, which
describes all known elementary particles. It has been tested with an outstanding
precision, and the last experimental evidence was recently given with the discovery
at the LHC of the Higgs boson [CMS, 2012], which explains why elementary parti-
cles (except the photon and the gluon) are massive [Englert and Brout, 1964, Higgs,
1964]. Within this theory, quantum electrodynamics (QED) is the unbroken part of
the spontaneously broken Glashow-Salan-Weinberg model of electro-weak interac-
tion. More simply, QED is the quantum theory of the electromagnetic interaction.
It is an extremely precise theory with an incredible agreement with experiment. For
example, the fine structure constant o has been measured experimentally with a
precision of more than 8 digits [Aoyama et al., 2012]. However, certain questions
still remain unanswered. In particular, the Standard Model requires the experimen-
tal determination of 19 parameters (among which we find the masses and couplings)
and for which the theory does not provide any explanation of why they have these
precise values. Moreover, the simple fact that the Standard Model does not comprise
gravity has lead physicists to think that it only represents the low-energy limit of a

2



Chapter 1 3

”grand unified theory” (GUT) that should include a quantum description of gravity
at the Planck scale.

For all these reasons, it is desirable to test the Standard Model in new, unexplored
regimes of interaction, in order to provide the theory a possibility to fail. In usual
collider experiments used to confront the theory, computations rely on perturbation
theory. A possible complementary approach can therefore be the investigation of
highly nonlinear or nonperturbative phenomena such color confinement in Quantum
Chromodynamics (QCD). Another path is the study of QED in a strong background
field such as a high-intensity laser field, for which the electron exhibits a nonpertur-
bative coupling with the laser field. This is the field of Strong-field QED to which
this thesis is devoted.

1.2 Schwinger-Sauter mechanism

Among the nonperturbative features that QED acquires in the presence of a back-
ground field, stands the so-called Schwinger-Sauter mechanism. This process was
first discovered by Sauter [Sauter, 1931] as an explanation for the Klein para-
dox [Klein, 1929] and later formalized by Schwinger in the context of QED [Schwinger,
1951]. Because of the Heisenberg uncertainty principle and of the Einstein mass-
energy equivalence, an electron-positron pair with energy € > mc? can spontaneously
appear in vacuum for a short time ¢ < h/e. Pictorially speaking, we say that vac-
uum is full of virtual electron-positron pairs. In the presence of a strong external
electric field, electrons (and positrons) will be accelerated as € = ecEt where E is
the external electric field. If this field has an amplitude E > Eg = m?c3/(eh), it
will provide a work of mc? over a Compton wavelength \. = h/mec to the virtual
pairs and will therefore bring them on shell. We talk about spontaneous pair cre-
ation from vacuum. This QED critical field is called Schwinger field and has the
numerical value Eg ~ 1.3 x 10'® V/m. Unfortunately, fields corresponding to such
an intensity Ig >~ 4.6 x 102 W /cm? are not attainable in the near future in exper-
iments. Several catalyzing mechanisms are however possible, among which we find
the so-called assisted Schwinger mechanism [Schiitzhold et al., 2008, Dunne et al.,
2009], where a strong, low frequency (for example a high-intensity optical laser) and
a weak, high frequency field (for example, a XFEL) are superimposed. Intuitively
speaking, the effective tunnelling barrier is reduced by absorbing several photons
from the high-frequency field. This configuration has also been proposed in order to
observe other pure vacuum QED effects such as the vacuum birefringence [Schlen-
voigt et al., 2016]. Alternatively, the Schwinger field can be reached in a boosted
Lorentz frame. In the case of a photon beam with energy > 2mc?, counterpropagat-
ing with a laser field with amplitude E, pair creation occurs if x, = 2v,E/Es 2 1.
This quantity x is called nonlinear photon quantum parameter and controls the
process of pair production by a high energy photon in a strong background field.
This process is called nonlinear Breit-Wheeler pair production and will be studied
in this work.

1.3 Strong-field QED processes

In addition to the nonlinear Breit-Wheeler process, many other strong-field QED
processes exist, that take advantage of this Lorentz boost factor. Among these,
we find the well known nonlinear Compton scattering. This process consists in the
emission, by an electron in a strong external field, of a high-energy photon, after
the absorption of n external field photons: e~ 4+ nAwyg — e~ + «. It is controlled
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by the nonlinear electron quantum parameter x, which measures the ratio of the
electric field seen by the electron in its proper frame and the Schwinger field. For a
counterpropagating configuration, is given by x = 2vE/FEg, similarly to the photon
case. In matter, there exist analogous processes, where the external field is the
Coulombian field of a heavy nucleus. The decomposition of a gamma photon into
an electron-positron pair at proximity of a heavy nucleus is called Bethe-Heitler
process: v+ Z — e~ + et + Z. Similarly, the emission of a high-energy photon
by an electron deflected at proximity of a heavy nucleus is called Bremsstrahlung:
e~ +2Z — e~ +v+Z. Finally, because of crossing symmetry, all the inverse processes
are also possible, such as the photon absorption by an electron (or positron): v +
e~/* — e/ or the recombination of an electron-positron pair into a gamma photon
e +et — Y.

In this work, we will focus our attention on the nonlinear Compton scattering
and the nonlinear Breit-Wheeler process which are dominant in vacuum.

1.4 Sources of strong fields and high-energy particles in
nature and in the laboratory

All the previously described processes occur in a strong external background field
and involve high energy particles. These can be found in a variety of environnements,
from astrophysics to the laboratory :

e Pulsars are highly magnetized rotating neutron stars. They emit collimated
electromagnetic radiation and are believed to be the source ultra-high-energy
cosmic rays. The magnetic field at their surface is of the order of 108 T, i.e.
almost of the order of the Schwinger magnetic field (Bg ~ 4.4 x 109 T).

e Magnetars are a type of neutron star that have an extremely powerful magnetic
field, going from 100 to 1000 times that of a usual pulsar (~ 100 — 10! T),
that is from 10 times to 100 times the Schwinger field.

e Heavy nuclei with very high charge have an ultra-strong Coulomb field at
their vicinity. Using the estimate! r ~ A, nuclei with a Z bigger than Z ~
deghc/e? = 1/a ~ 137 would therefore be unstable and create pairs. This
explanation is sometimes invoked to explain why the periodic table has less
than 137 elements.

e Ultra-High Intensity (UHI) optical lasers are now considered an interesting
platform to test strong-field theories. The next generation of high-power lasers
should reach intensities of the order of 1024=2> W /cm?. They play a central
role in the processes/scenarios studied in this thesis.

e X-ray Free Electron Lasers (XFELs). Although their output peak power does
not exceed the GW level (to be compared to the PW levels offered by UHI
optical lasers), their short wavelength allows for much tighter diffraction lim-
ited focal spots, opening the possibility for very high peak field. In partic-
ular, the European XFEL aims at reaching field strengths of the order of
10'7 V/m [Ringwald, 2001].

!Electron-positron pairs cannot be created in the Euler-Heisenberg theory, which is valid for
wavelengths greater than ~ A.. Pair production would therefore begin for Z large enough so that
Es ~ eZ/(4meo)2).
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e Linear or circular accelerators. Nowadays, the biggest circular accelerator is
the LHC at CERN, which is able to accelerate protons to energies up to 8
TeV. The previous world record was the Tevatron at Fermilab which was able
to produce proton-proton collisions with energies of up to 1.6 TeV. The RF
linear accelerator (LinAc) of the Linac Coherent Light Source (LCLS) at SLAC
accelerates electrons and positrons up to 50 GeV. It was used in the Burke
experiment [Burke et al., 1997] where it was collided with terawatt pulse from
a Nd:glass laser at 527 nm wavelength. Other accelerators are today being
constructed [?].

e Plasma accelerators are able to support fields of the order of 100 GV/m (to
be compared to the RF linac limitation which is currently around 100 MV /m,
partly due to breakdown that occurs on the walls of the structure). Currently,
laser wakefield accelerator (LWFA) are able to accelerate electrons up to the
GeV level on the centimeter scale [Leemans et al., 2006].

1.5 Laser-plasma interaction at ultra-high intensity

The introduction, in the mid-1980’s by Strickland & Mourou [Strickland and Mourou,
1985], of the Chirped-Pulse Amplification (CPA) technique in the optic domain
has since allowed for the generation of short, ultra-intense laser pulses. Today,
ultra-short (from few to tens of femtosecondes) laser pulses with central wavelength
~ 0.8 pm (for Ti-Sapphire laser) or ~ 10 pum routinely reach intensities beyond
10'® W /em?. Under such a large intensity, the electron in the laser electromagnetic
field quickly (in less that an optical cycle) reaches relativistic velocities. This is the
field of so-called ultra-high intensity (UHI) physics, a field that opens a wide range
of applications, from particle acceleration to new sources of light and laboratory
astrophysics studies. This paragraph briefly reviews some of these applications, fo-
cusing on those most interesting for my host-laboratory, and provides references for
the interested reader.

e Laser wakefield acceleration (LWFA): LWFA of electrons was first envisioned
by Tajima & Dawson in the late 1970’s [Tajima and Dawson, 1979]. It con-
sists in exciting an electron plasma wave in the wake of an UHI laser pulse
propagating through a low density (undercritical) plasma. Electrons can be
efficiently accelerated in this longitudinal wave, and gain relativistic velocities
over few mm to few cm of propagation. In 2004, the so-called Dream Beam
issue in Nature presented the work of three experimental teams demonstrat-
ing the feasibility of creating high-energy electron bunches with low energy
spread and divergence. Mangles et al. [Mangles et al., 2004] and Geddes et
al. [Geddes et al., 2004] demonstrated the production of 70-80 MeV electrons,
with small (< 2 MeV) energy spread and small (few mrad) divergence using
40-55 fs pulses at intensity of a few 10'® W/cm?, for a total laser energy of
about 500 mJ. Faure et al. [Faure et al., 2004] demonstrated the production
of an electron beam with an energy of 170 MeV at the price of a larger energy
spread (~ 20 MeV) and divergence (~ 10 mrad), but that also carried an
important charge, of the order of 0.5 nC. Since then, LWFA has been repro-
duced and is routinely used in various laboratories worldwide, in particular in
the strongly nonlinear, so-called bubble regime [Pukhov and Meyer-ter Vehn,
2002]. Today, electron beams with energy of 4.2 GeV have been produced
at the BELLA facility in Berkeley, US [Leemans et al., 2014]. At Apollon,
electron beams with energies of the order 10 GeV are envisioned [Cros et al.,
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2014a], and will play a significant role in experiments testing the physics stud-
ies in this thesis. Recent papers also investigate the possibility of LWFA of
positrons [Vieira and Mendonga, 2014] with the (long-term) goal to build-up
laser-plasma-based electron-positron colliders [Leemans and Esarey, 2009].

e Laser-plasma acceleration of ions has also been a strong focus of the UHI com-
munity. As ions are much more massive than electrons, accelerating them is
more tricky. Today, most of the experiments aiming at ion acceleration rely
on the so-called Target Normal Sheath Acceleration (TNSA) process [Wilks
et al., 2001]. This mechanism relies on the irradiation by an UHI laser pulse
of a solid density target, and proceeds as follows: first, electrons at the laser-
plasma interaction surface are strongly heated by the UHI laser. Some of
these hot electrons travel through the target, and as they cross its rear-side
build up a strong (of the order the TV/m) electrostatic field. It is this elec-
trostatic field that accelerates the ions (mainly protons present in pollutants
at the target rear-side). As put forward by Mora in his seminal paper [Mora,
2003] ion acceleration then proceeds as the expansion of a (hot) plasma in a
vacuum. This mechanism is routinely reproduced in today’s experiments, and
laser-plasma accelerated protons are already used in the lab as a diagnostic:
the so-called proton radiography indeed allows to probe with interesting time
(ps) and spatial (few pum) resolutions, the electromagnetic fields developing in
various experiments [Borghesi et al., 2001]. Yet, this mechanism comes with
strong limitations. In particular, the resulting accelerated ions have a very
broad (thermal) energy distribution. Also, today’s experiments face difficul-
ties in reaching very high proton energies, and 100 MeV /nucleon stands as one
limit yet to overcome. This is particularly constraining for some envisioned
applications of laser-accelerated ions that range from hadron-therapy [Tajima
et al., 2009, Ledingham et al., 2014] to the abundant production of neutrons,
as proposed e.g. by Julien Fuchs in his Genesis ERC project?. To break this
limit, different acceleration schemes have been proposed. While it would be
too long to explain all of them, one should note the possibility to accelerate
ions using the strong radiation pressure associated with UHI lasers [Esirkepov
et al., 2004]. Recent experiments have claimed evidence of this process using
circularly-polarized light pulses [Henig et al., 2009], and future experiments on
the Apollon laser will be devoted to this regime of ion acceleration. More de-
tails on laser-plasma acceleration of ions the reader are available in the review
article [Macchi et al., 2013].

e Laser-plasma interaction in the UHI regime also offers new opportunities for
the generation of novel light sources, ranging from the THz [Déchard et al.,
2018] to XUV [Thaury et al., 2008] and gamma-rays [?]. On the experimen-
tal side, XUV and X-ray sources have attracted a special attention. In the
review [Corde et al., 2013], the authors discuss the generation of femtosecond
X-ray pulses from betatron, synchrotron or nonlinear Thomson scattering ra-
diation from LWFA electrons. These sources are particularly interesting for a
wide range of applications, from ultra-fast highly resolved radiography to bi-
ological or medical applications [Albert and Thomas, 2016]. XUV radiations,
and in particular attosecond pulses of light, can also be generated by irradiat-
ing a solid-density plasma target. There exists various mechanisms responsible
for the generation of ultra-short XUV light pulses [Thaury and Quéré, 2010].
Among the most popular is the relativistic oscillating mirror where, due to

’https://www.polytechnique.edu/en/content/julien-fuchs-recipient-2018-erc-advanced-grants-his-genesis-
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the strongly nonlinear dynamics of the target electrons interacting with the
UHI laser, the irradiated target surface acts as a relativistic oscillating mir-
ror and leads to the generation of high-harmonics of the reflected laser. This
mechanism has been well established in various experiments worldwide, and
has recently been brought forward as a potential path toward the generation of
extremely short, extremely intense light pulses, potentially up to the Schwinger
limit [Baumann et al., , Vincenti, |.

e The possibility to bring matter under extreme conditions of temperature and
pressure or to drive fast plasma flows with UHI laser can also be used to recre-
ate, in the laboratory, conditions relevant to space plasmas or astrophysics
studies. While these studies are usually conducted using more energetic but
less intense lasers [Remington et al., 2006], recent theoretical works [?,?, Lobet
et al., 2015, ?] have brought forward the possibility of recreating collisionless
shocks of paramount interest for the astrophysics community as held responsi-
ble for accelerating the most energetic particles - so-called cosmic rays - in the
Universe. In [?,7?], it was for instance shown that fast quasi-neutral flows can
be launched into an overdense target by the strong laser radiation pressure, as
a result of the fast flows interaction with the back-ground plasma of the target,
strongly nonlinear effects develop that lead to the formation of a collisionless
shock. In these studies, however, most of the nonlinear effects at play were
driven by the hot electron population, easily obtained with UHI lasers, but ab-
sent in most of the astrophysical scenarios of interest. Grassi et al. [?] showed
that by carefully tuning the laser-target interaction conditions (in particular
the incidence angle and laser polarization), it was possible to strongly mitigate
electron heating, so that shock formation follows from the nonlinear develop-
ment of the ion Weibel instability, as expected in various astrophysical envi-
ronments such as super-novae remnants or gamma ray bursts. The required
laser energy however stays beyond the reach of current lasers. Similarly, Lobet
et al. [Lobet et al., 2015] have studied the possibility of driving such shocks
in the interpenetration of two dense electron-positron plasmas produced by
irradiating two dense targets with two extreme light lasers. These two lasers,
with duration of typically 60 fs and intensity of the order of 1024 W /cm? drive
the Breit-Wheeler pair production process earlier introduced. Recent works,
that build on the possibility to create dense electron-positron flows in dense
high-Z targets [Chen et al., 2009, Sarri et al., 2015], have also started consid-
ering the interaction of electron-positron pair jets colliding with a background
electron-proton plasma [Dieckmann et al., 2018]. These on-going efforts shall
help shade a new light on various processes taking place in the most violent and
energetic environments in the Universe such as Pulsar Wind Nebulae, Gamma
Ray Bursts or at the vicinity of Active Galactic Nuclei.

e The advent of multi-petawatt laser systems such as CoReLS (4PW demon-
strated, in South-Korea) [Nam et al., 2018], Apollon in France [Cros et al.,
2014b] or ELI [ELI, | in Czech Republic, Hungary and Romania, offer the
possibility to probe laser-matter under extreme light conditions. This PhD
work is largely devoted to this new physics, that bridges relativistic plasma
physics and QED. These extreme light facilities also provide a wide range
of new opportunities in fields as exotic as relativistic atomic dynamics and
nuclear physics in strong electromagnetic fields, vacuum polarization effects,
pair production beyond electron-positron pairs (e.g. muon-antimuon or pion-
antipion pairs), particle physics within and beyond the standard model, etc.
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All these exciting studies are presented in the review article [Di Piazza et al.,
2012].

1.6 Presentation of this work

With the advent of the new generation of petawatt and multi-petawatt lasers, it will
become more and more important in the near future to study strong-field QED. As
previously mentioned, SFQED can either serve as a new nonperturbative regime for
physics beyond the standard model, allow to understand extreme astrophysics events
(such as magnetars), or even become a dominant effect in laser-plasma interaction.
However, in all these cases, the system under consideration is not a single particle as
usually considered in pure SFQED works [Ritus, 1979, Harvey et al., 2009, Di Piazza
et al., 2012}, but will be a collection of such particles (either electron/photon beams
or pair plasmas etc.). It will therefore be important to understand how the behavior
of single particles affect the overall state of the system. In particular, as electrons
are the first to suffer such effects, one has to better understand how the shape of
its electron distribution function will be modified and its impact on the spectrum
of the emitted radiation. This is what this work is focused on. The manuscript is
organized as follows :

e Chapter 2 : we introduce the basis of classical electrodynamics and derive
all the results and notations that will be useful in the rest of this thesis.
We explain why any accelerated charge radiates an electromagnetic field and
compute the spectrum radiated by an ultrarelativistic electron®. We show that
it follows the well-know synchrotron spectrum. When the energy radiated by
the electron is no longer negligible, the emitted radiation will counteract on
the trajectory of the particle itself. This is the so-called radiation reaction. We
derive the Lorentz- Abraham-Dirac (LAD) equation, that describes the motion
of an electron, taking into account radiation reaction (RR). We show that this
equation presents unphysical solutions and deduce the Landau-Lifshitz (LL)
equation, that we will use to describe RR in the classical regime in the rest
of this work. We then consider the solution of the LL equation in simplified
fields such as plane-waves or constant uniform magnetic fields. The classical
radiation dominated regime (CRDR) is described and the limit of validity of
the classical description analyzed.

e Chapter 3 : when the electron quantum parameter is of the order of unity,
emitted photons can have an energy close to that of the emitting electron.
In this case, radiation reaction can no longer be treated classically. In this
chapter, we present the basis of quantum electrodynamics (QED), which is
the framework in which such quantum effects can be computed. We derive the
Volkov states that take into account exactly the nonperturbative coupling be-
tween the electron and the strong background field. These fields are used in the
so-called Furry picture in order to compute the different QED processes such
as the nonlinear Compton scattering or the nonlinear Breit-Wheeler process.
The cross-sections for these two processes are then analyzed.

e Chapter 4 : so far, the description of radiation concerned only single parti-
cles. Here we introduce the Vlasov equation that describes the evolution of

3 All the results remain valid for any charged particle but from now on, we will use the generic
term of ”electron” for simplicity.
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the function distribution of a set a particles. We then see how to modify this
equation in order to take into account classical and quantum RR. The nu-
merical resolution of this equation, together with Maxwell’s equations is then
described, in particular through the well-known PIC loop. We describe how to
modify this classical PIC loop in order to include classical and quantum RR,
in particular through the use of a Monte-Carlo module.

Chapter 5 : we present the state of the art on RR in our community and a
brief introduction to the second part of this thesis where most of the original
results are reported.

Chapter 6 : after a brief reminder of the Landau-Lifshitz (LL) equation,
which describes radiation reaction (RR) in classical electrodynamics (CED) as
a deterministic force in the particle momentum equation, we recall the emis-
sion properties of a quantum radiating electron. We then turn our attention
to the linear Boltzmann equation which is at the center of the kinetic descrip-
tion of RR explored in this thesis. Our analysis relies on the local constant
field approximation (LCFA) and concerns ultrarelativistic radiating charges.
An expansion for small ratios of the energy of the emitted photon over the
electron’s energy to second order allows to simplify the linear Boltzmann (1B)
equation to a Fokker-Planck (FP) equation. By considering the expansion
at first order, we find the classical deterministic description corrected by the
quantum Gaunt factor. We then consider the equation of evolution of the
successive moments of the electron distribution as described by the full lin-
ear Boltzmann (1B) equation, the second order expansion [referred to as the
Fokker-Planck (FP) model] and the first order expansion [referred to as the
corrected Landau-Lifshitz (cLL) model]. The equation of evolution of the mean
electron energy is found to be formally the same in the three description. The
effective discrepancy in the average energy in the three models is computed
and shown to be smaller than a few % for y < 1. The equation of evolution
of the electron energy spread is shown to be formally the same in the 1B and
FP descriptions but different from the cLL description. In the cLL case, the
electron distribution function can only cool down because of RR while in the
FP and 1B case, we compute analytically the threshold between the cooling
and heating domains. Finally, the equation of evolution of the third order mo-
ment in energy of the electron distribution function is different in the cLL, FP
and 1B models. This third order moment u3 can either increase or decrease
in the 1B model and the threshold between these two domains is computed
analytically. The decrease of this moment yielding to a negative us is iden-
tified as a signature of quantum RR. Another interesting consequence of this
study is that, for physical problems in which only the average electron energy
is important, the cLL description of RR is sufficient. If one needs only the
energy average and spread, the FP description is enough. If finally the exact
shape of the electron distribution function is important, one needs to use the
full IB description.

Chapter 7 : it is usually admitted that the classical LL equation is valid
for small values of the electron quantum parameter y. Based on the kinetic
description of RR, we derive more rigorous limits of validity of the different
models depending not only on the average x parameter, but also on the electron
distribution itself. We find that quantum effects can be important in some
cases for relatively small values of x and vice versa the cLL description can be
sufficient in some cases for quantum parameters close to 1. We support these
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claims with numerical simulations of the three models with initially narrow
electron beams as well as broad Maxwell-Jiittner distributions, interacting with
linearly or circularly polarized plane-waves and constant uniform magnetic
fields. These simulations also allow us to verify the results derived in the
previous chapter, such as the discrepancy in the average energy in the three
models, the maximum electron energy spread as well as the evolution of these
quantities and of the third order moment.

e Chapter 8 : we then turn our attention to the photon spectrum and link
its properties to the electron distribution function described in the previous
chapter. The instantaneous and time integrated spectra are investigated using
numerical simulations of the three models. We find that the predictions of the
FP and 1B model are in good agreement even for x close to one and different
than the cLL model. In particular, the 1B and FP models exhibit a hardening
of the photon spectrum. This phenomenon is observed for initially narrow
electron beams as well as broad Maxwell-Jiittner distributions, interacting with
linearly or circularly polarized plane-waves and constant uniform magnetic
fields. The discrepancies between the three models are much smaller than on
the electron distribution functions which makes us conclude that the electron
distribution function is a better candidate to observe the transition between
the classical and quantum regime.

e Chapter 9 : in the previous chapters, the external fields that were considered
(linearly or circularly polarized plane-waves and constant uniform magnetic
fields) had in common that they did not increase the mean energy of the electron
distribution. Here we consider the superposition of two circularly polarized
plane waves. The resulting field is a stationary wave, which, in the magnetic
nodes, reduces to a pure rotating electric field. We study the evolution of
an electron population initially at rest or of an initially hot Maxwell-Jiittner
distribution function, initially in these magnetic nodes. In this case, the motion
is 2D and the electrons remain infinitely in the magnetic node plane. We find
that after a few rotations of the electric field, the electron distribution function
reaches a stationary state. All of its moments are therefore constant. We
then apply the previous kinetic equations, taking into account the new source
term, that comes from the fact that the external field now brings energy to
the particles. The average asymptotic energy is computed numerically in the
cLL and 1B models and the discrepancy between these two values is deduced
analytically from the kinetic equations. We show that the source term in
the equation of evolution of the energy spread is negligible for y < 1 and
the asymptotic energy spread in this configuration is therefore the same as
the threshold of the energy spread computed in chapter 6. For x < 1, the
asymptotic electron distribution function is shown to be a gaussian in energy.
For x > 1, nonlinear Breit-Wheeler pair production (NBWPP) is no longer
negligible. We see that the asymptotic average energy is almost the same with
or without pair production, while the asymptotic energy spread increases a lot
when pair production is taken into account.

e Chapter 10 : in this third part, we turn our study to the so-called Laguerre-
Gaussian (LG) beams. These beams have recently received a great attention
from the physics community. They indeed carry orbital angular momentum
(OAM) which is believed to play a role in some astrophysical phenomena,
such as the radiation from the accretion disk around Kerr black holes or the
radiation by rotating pulsars or quasars. Here we derive them from the paraxial
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equation and review their main properties such as their helical phase and
orbital angular momentum.

Chapter 11 : we then examine the possibility of producing pairs by collid-
ing such a LG beam with a high-energy photon beam (so called shower). It
is found that the number of created pairs increases with the orbital angular
momentum of the LG beam (at fixed energy). This effect is found to be geo-
metrical and linked to the effective transverse size of the beam. In particular,
it increases when increasing the orbital angular momentum of the external
field. We confirm this effect by comparing the pair yields of gaussian beams
with different transverse sizes. We therefore obtain the counter-intuitive con-
clusion that the number of created pairs increases with decreasing intensity at
fixed energy (as long as the photon quantum parameter remains larger than a
threshold value).

Chapter 12 : we finally conclude on our findings and present perspectives for
future works.
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Chapter 2

Classical electrodynamics

The views of space and time which I wish to lay before
you have sprung from the soil of experimental physics, and
therein lies their strength. They are radical. Henceforth,
space by itself, and time by itself, are doomed to fade away
into mere shadows, and only a kind of union of the two will
preserve an independent reality.

Hermann Minkowski (Sep 21, 1908), to the 80th Assembly
of German Natural Scientists and Physicians.
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2.1 Outline

This first Chapter focuses on classical electrodynamics (CED), that is, the classical
and relativistic theory of charged particles' and electromagnetic field interaction. It
aims at introducing the principal notions and physical quantities that will be used
throughout this thesis, and it is presented in a logico-deductive order so that the
reader will be able to draw some lines between this classical description and the
quantum description of electrodynamics presented in the next Chapter. In order to
maintain the presentation both logical and compact, not all derivations presented
here are straightforward: some results may require quite some algebra before being
derived. I have however tried to state clearly all assumptions used in the derivations,
and to provide physically intuitive pictures when possible in order to get a qualitative
idea before going to the computational part. The reader interested in the details of
the derivations is referred to the seminal books on CED by Jackson [Jackson, 1999]
and Landau & Lifshitz [Landau and Lifshitz, 1947]. Moreover, during this work, I
have benefited a lot from the book Classical charged particles by Rohrlich [Rohrlich,
1964] which I have found illuminating on many aspects of CED.

This Chapter is structured as follows. Section 2.2 introduces some general results
on Classical Field Theory (CFT). The notions of action, Lagrangian and classical
equations of motion are introduced. Omne then presents Noether’s theorem which
by allowing to derive conservation laws from symmetries plays a central role in the-
oretical physics. Introducing Poincaré’s group of symmetry, Noether’s theorem is
used to derive the energy-momentum and angular momentum tensor as conserved
quantities. In Sec. 2.3, one then applies these results to CED explicitly defining its
Lagrangian. Equations of motion and conserved quantities are then derived con-
sidering either a free electron, a free electromagnetic field or the coupled system.
Section 2.4 then focuses on the radiation by moving charges. The basic properties
(power, angular and frequency spectra) of the emitted radiation are derived. Sec-
tion 2.5 then introduces the problem of (classical) radiation reaction which is central
to this PhD work. This long standing problem of CED arises when one wants to
describe the dynamics of a radiating charge in a prescribed (background) electro-
magnetic field. Here radiation reaction is presented considering a single electron,
and will lead us to introduce some limit of validity for CED itself.

2.2 Classical field theory

2.2.1 Euler-Lagrange equations

Let us consider a physical system described by a set of fields [¢;(x)]i=1.., that depend
on the space-time coordinate? z#. We assume that for this system, there exists
a scalar function L£(¢;,0,¢;), called Lagrangian density, from which we build the

! Throughout this Chapter, we will in particular focus on the electron.

2 Throughout this work, we assume a flat Minkowski metric with signature (4, —, —, —). Fur-
thermore, greek indices take values p = 0,...,3 while spatial indices are denoted by Latin letters
i=1,2,3.
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action [Landau and Lifshitz, 1947]

S = /d‘*xc(@,am). (2.1)

The principle of least action then states that the classical dynamics is found when
the action is stationary

5S = 5/d4x£(¢¢, i) = 0. (2.2)

This condition can be shown to be equivalent to the following set of partial differ-
ential equations [Landau and Lifshitz, 1960]

oL oL
"0(0udi) O

(2.3)

which are called the Euler-Lagrange equations (ELE) [Lagrange, 1811] and will also
be referred to as the classical equations of motion.

Finally, note that, since the equations of motion are determined by the action
S through the principle of least action (2.2), any Lagrangian density of the form
L' = L+0, f" where f"is any function that decreases sufficiently quickly at infinity,
will yield the same equations of motion. The Lagrangian density is therefore defined
up to a 4-divergence.

2.2.2 Noether’s theorem

In field theories, the link between symmetries and conserved quantities is given
by Noether’s theorem [Noether, 1918]. Basically, this theorem states that to any
continuous symmetry of the action of a system, there exists a conserved quantity.
More precisely, let us consider a set of infinitesimal space-time (or external) and
intrinsic (or internal) transformations :

i o — gt 4o AR
T:{x — T x4+ €*Ag () (2.4)

¢i(x) — () = ¢i(x) + € Fia(d), 00;)

where (€*),=1.4n and (€'*),=1.4n are two sets of 4N infinitesimal parameters and
(AL (2)]a=1.4n (vesp. [F} (¢, 0¢)|a=1.4n) are given functions of z (resp. ¢; and d¢;).
Noether’s theorem states that, if 7" is a symmetry of the system (i.e. if 7" leaves
the action S invariant), then there are 4N currents j4'(¢) that are conserved on a
classical solution ¢ of the equations of motion [Landau and Lifshitz, 1947, Maggiore,
2005]

ap]ff(d’cl) = Oa (25)

with

oL

a(ay,d)l) [Azal/d)l - F’L,d(¢]7 agbj)] - AZ[’ (26)

Ja =

In this work, a will be? a set of N Minkowski indices (u;)i=1..n and ji = iy @
rank-(N+1) tensor (see for example Sec. 2.2.4 and 2.2.5).

3At the moment, @ is just an indice.
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In special relativity, any instant of an inertial observer is characterized by a
space-like hyperplane ¥ of equation

nr—cr =0, (2.7)

where n* is a unit vector orthogonal to ¥ and pointing toward the future (n? =
and n° > 0), c is a constant and 7 the proper time [Rohrlich, 1964]. Integrating j
over the space-like hyperplane ¥ yields the so-called Noether’s charge

1
I
a

Qo = /Zdaujfj (2.8)

Furthermore, it is possible to show that, for a rank-(N + 1) divergenceless tensor
j& the integral fz do,, j% is independent of ¥ and @, is a rank-N tensor [Rohrlich,
1964]. We can then in particular choose n* = (1,0). In this case, the hyperplane is
given by the equation 2" = 7 and do, = d3z. We then get

Qu = / 3z 0. (2.9)

In the following, we will always make this choice. Integrating (2.5) over all space
yields

Do Qu — / P 900 = — / Pzl =0, (2.10)

since this is the integral of a total divergence (and assuming that the fields decrease
sufficiently fast at infinity). We therefore deduce that the charge @, is conserved. Fi-
nally note that, since Noether’s current is derived as the quantity satisfying Eq. (2.5),
it is defined up to a divergenceless tensor [Soper, 1976]. This fact will be used in
Sec. 2.2.4 and 2.2.5 to define "refined” Noether’s currents [Banados and Reyes, 2016].

2.2.3 Poincaré invariance

In practice, Lagrangians will have symmetries and more precisely, they will be in-
variant by Poincaré transformations. Poincaré invariance is a fundamental sym-
metry in physics and any relativistic field theory must have a Poincaré-invariant
action [Poincaré, 1906, Peskin and Schroeder, 1995, Schwartz, 2014]. Poincaré trans-
formations form a Lie group called the Poincaré group (or inhomogeneous Lorentz
group) I1S0O(3,1). This group is composed of two subgroups : the group of space-
time translations R and the Lorentz group® O(3,1) [Zee, 2016].

Space-time translations form a four dimensional group (one dimension for time
translations and the three others for ordinary space translations). Using the same
notations as in Eq. (2.4), the index ”a” will be a Minkowski index ”u” and in-
finitesimal space-time translations will be described by Eq. (2.4) with® A = 6, and
F; . = 0, that is to say by

1 W — gt 4 gt
T:{ x — x4+ a”, (2.11)

¢i(z) — (') = di(x).
The Lorentz group is a six dimensional group composed of spatial rotations and

Lorentz boosts (three dimensions for rotations and three dimensions for Lorentz
boosts). More formally, it is the group of linear coordinate transformations

ot — P =AM Y, (2.12)

“More precisely, we consider the proper orthochronous Lorentz group SO™(3,1).
5Here the index a of Eq. (2.4) becomes a Minkowski index v. Moreover, F; , = 0 since all fields
are scalar under translation.



Chapter 2 19

which leave the quantity
'z, 1, =25 — 27 — 15 — 73, (2.13)
invariant. For this condition to hold, we must have
Nuw = Tpo AP, A, (2.14)

Using the same notation as in Eq. (2.4), the index ”a” will be written as two
Minkowski indices "vp” and infinitesimal Lorentz transformations will be described

by A!(Lyp) = —%(Jup)ud z? and F, () = —%(Jyp)o‘n ®a(x), that is to say
xt — 2=kt — (], 2
T = 2 ZVP VU ? o 2.15
{50 3 5 s oG @) (213)

where (J,,)" is the generator of Lorentz transformations on 4-vectors (see App. 77
for more information).

2.2.4 Energy-momentum tensor

As stated before, all relativistic field theories are Poincaré invariant, so in particular,
they will be invariant by space-time translations. Using Eq. (2.11), we deduce the
associated Noether currents j(“V) = ! (i.e. 7a” is here a Minkowski index that we
call 7v”). They form a rank-2 Lorentz tensor called the energy-momentum tensor

oL
. 0" i — "L 2.16
which is conserved according to Noether’s theorem [Noether, 1918]
0,0" =0. (2.17)
Let us define the Noether’s charge associated to Noether’s current (2.16)
Pt = /d% Q% (2.18)

which is a 4-vector called 4-momentum (and where the integral is over all 3-space).
The 0th component P° will therefore be interpreted as the energy W and the ith
component P as the ith component of the momentum. The remaining components
©Y are interpreted by integrating the i component of Eq. (2.17) over a finite volume
V' around the system. This gives rise to the following continuity equation

P, = — / d*r ;07" = / dS; e, (2.19)
\% ov

where P‘i/ = fV d3xz ©% is the momentum contained in the volume V and #i is a
unitary vector normal to the surface 9V around V and directed outward. This
equation allows us to interpret ©% as the flux of the component i of the momentum
P’ through a closed surface 9V around the volume V. Doing the same with the Oth
component of Eq. (2.18) yields

AWy = —/d%aipi—/a dSn; P", (2.20)
\% \%

where Wy = fV d32 ©% is interpreted as the energy contained in the volume V. This
allows us to interpret P as the flux of energy through a closed surface 0V around
the volume V. We finally define the energy density w and momentum density p by
= 0%, (2.21a)

p = 0%, (2.21D)
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2.2.5 Angular momentum tensor

In addition to translational invariance, Poincaré invariance includes Lorentz invari-
ance. Using Eqgs. (2.15) and (2.6), we deduce the associated Noether’s current by

MHP = gVQHP — zPQHY 4 (‘]Vp)na ¢a8(§£¢) (2.22)
1P

which is a rank-3 tensor called the angular momentum tensor. According to Noether’s
theorem, this tensor is conserved

OuMH*P =0, (2.23)
and its associated charge is given by

JH = / d3z MO (2.24)

which is a time invariant rank-2 tensor. It is convenient to decompose MH*P into
two parts

L#P = g"OH — xPOHY (2.25a)
oL

SHVP = (JVP) ¥ 2.25b

(J"), O] ( )

for which we can define [similarly to (2.24)]
v = / d3x L0 (2.26a)
S = / d3x SO (2.26b)

MO23 MO31 and MO12 being respectively the 1, 2 and 3 components of the angular
momentum density, it is convenient to define the angular momentum density as

1 |
Ji = §Ez’jkM0]k7 (2.27)

for which we deduce the corresponding continuity equation by multiplying Eq. (2.23)
by §é€ijh
oji + Om;' =0, (2.28)

and where mil = %eijkM 17k is interpreted as the angular-momentum flux density

through a surface pointing in the [ direction. Integrating over a volume V', we get

dtJZ-:—/ d%ajmij:/ s am; (2.29)
14 ov

which extended over all 3-space yields the conservation of the total angular momen-
tum

—J;=0. (2.30)
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2.3 Classical electrodynamics

Classical electrodynamics (CED) is described by the following action [Landau and
Lifshitz, 1947]

1
Scep = —-m / dr — / d4x1F’"“’FW — / diz Arj, .
N—_——

Smatter Sﬁeld Sint

All the terms in this action will now be discussed one by one using the theoretical
tools described in the previous section.

2.3.1 Lagrangian

Matter in the absence of external field is described classically by the following action

Smatter = —m/d’T, (231)

where m is the so-called bare mass® of the particle. The corresponding Lagrangian
density can be written as

1
Lnatter = _imnuuuuuy ) (2'32)

where u# = & = dx*/dr is the particle four-velocity, z# = (¢,x) its four-position
and 7 its proper time.

The free electromagnetic field action already takes the form of a four-dimensional
integral. Its Lagrangian density is therefore readily deduced as

1
Lfield = —ZFWF#w (2.33)
where
FH = gFAY — 9Y A* (2.34)

is the antisymmetric electromagnetic strength tensor, derived from the four-potential
AP = (V, A) [Jackson, 1999]. Defining the dual electromagnetic strength tensor as
v = %e‘“’ P9 F,q, we deduce the two following Lorentz invariants

1

Cl = _ZFMV F/ux y (235&)
1
G = _ZFW Fu, (2.35b)

where €77 is the four dimensionnal Levi-Civita antisymmetric symbol. The usual
electric and magnetic fields E and B are linked to these tensors as

F% = _—E', (2.36a)
Fii = _cikpk, (2.36D)
F*% — _pt, (2.36¢)
F*i = dikpk, (2.36d)

and thus the two previous invariants read ¢; = %(E2 -B?),( =E-B.

6See Sec 2.5 for a discussion about the bare mass in CED.
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Note that, in addition to Poincaré invariance, the free electromagnetic Lagrangian
density is gauge invariant, that is to say, we can change the 4-potential as

AP 5 AP 4 9Pe(z), (2.37)

where €(z) is any function of x, without changing F'*¥ and thus without changing
the Lagrangian (3.25).

Finally, the interaction of a charged particle with an external electromagnetic
field is described by

Ling = —A"j,, . (2.38)

where j# is the charged particle current density. Note that, in order for the action
to remain gauge invariant” when the interaction term is considered, we must have

B =0. (2.40)

In other words, in order to have a gauge invariant Lagrangian, the interaction has
to take place with a conserved current®. In the same way as for Noether’s charge,
we can define the Lorentz invariant charge

Q= / d3z j°, (2.41)
\%4
which will satisfy the continuity equation
Q= — / dsS i jt (2.42)
ov

where j° therefore denotes the flux of charge, called 3-current density. The La-
grangian density of CED finally reads

1 1 ,
Lcep = —5m Nt u” — 1 FME,, — A"j, (2.43)

2.3.2 Equations of motion

Application of the ELE for the 4-coordinate x* to Lcgp yields the Newton-Lorentz
equation

mat = g F*u, (2.44)

where a# = dut/dr is the particle four-acceleration and ¢ the bare charge® of the
particle. On a classical equation of motion, the four-velocity satisfies the so-called
on-shell condition u?> = 1. Differentiating this identity with respect to the proper
time 7, we see that the 4-acceleration a and the 4-velocity u are orthogonall® to
each other, that is

au=20. (2.45)

"The action indeed transforms as
S-S = —/d4wj“8#e = —/d4ac Du(5*e) +/d4:1c Dujte. (2.39)

under the gauge transformation A* — A* + 9"e(x).

8Note that, contrarily to Noether’s theorem, there is no need for the classical equations of motion
to be verified for this conservation law to hold.

9See Sec. 2.5 for a discussion about the bare charge in CED.

10This can also be seen by multiplying Eq. (2.44) by u, and by antisymmetry of F'.
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Further differentiation of this identity yields'!

au+a’> = 0, (2.46a)
204 +a*+ui = 0. (2.46D)

The same procedure for the 4-potential A* yields the usual inhomogeneous
Maxwell’s equations [Maxwell, 1865]

0, F = j (2.47a)
O F* =0 (2.47b)

In 3-vector notation, Eq. (2.47a) gives the first pair of Maxwell’s equations, namely
Poisson and Ampere’s equations
V-E = p, (2.48a)
VxB = j+0E, (2.48Db)
while Eq. (2.47b) yields the second pair, namely the free-divergence magnetic field
and Faraday’s equations

vV-B = 0, (2.49a)
VxE = —9B. (2.49b)

2.3.3 Energy-momentum

Applying Noether’s theorem for space-time translations (2.11) to the Lagrangian of
the free electromagnetic field (3.25), we get the energy-momentum tensor for the
electromagnetic field

y 1
Ok = —FMo A, + Znﬂ”zﬂ (2.50)

which satisfies §,0%., = 0. We will call this energy-momentum tensor the canonical
energy-momentum tensor. In 3-vector notation, its different components read

1
Wean = /dg:c@ooz/d?’x [2(E2+B2)+E-VV : (2.51a)
Pl = / dre = / Pz BT VAT (2.51b)
04, = E'OV-BB + %5’7(E2 +B2). (2.51c)

The canonical energy-momentum tensor has a number of deficiencies [Jackson, 1999].
In particular, it is manifestly not gauge invariant, is not symmetric and not trace-
less'?. Let us therefore follow the procedure described in Sec. 2.2.2 with AP* =
Fre@”§ and change O, as Thoy = Ofuq + 0,(F#P9¥0). This yields

1
T, = FMPFY + Zn“”FQ : (2.52)

" These relations will be useful for the derivation of the regularized self-field in Sec. 2.5.
2which should be the case since the photon is massless.
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which we call the symmetrized (or Belinfante-Rosenfeld) energy-momentum ten-
sor [Belinfante, 1940, Rosenfeld, 1940, Banados and Reyes, 2016]. Of course this
energy-momentum tensor is still conserved

AT =0, (2.53)

and it is now manifestly gauge-invariant. Moreover, it is obviously symmetric and
traceless [Jackson, 1999, Landau and Lifshitz, 1947]. Its different components read

1
W= /d3xTOO = 2/d3x (E? + B?), (2.54a)
Pl = /dS;UTOZ‘:/d%eUkEjBk, (2.54b)
T = —T9 =FEFE + BB — 55%}:«32 + B?). (2.54c)

Integrating the ith component of Eq (2.53) over a finite volume V' around the system
gives rise to the two following continuity equations

W = /d%aipi:—/ dsi; P', (2.55a)
14 ov

P = /d%ajTl{}:—/ S i, T | (2.55h)
14 ov

where P! is the momentum contained in the volume V and f is a unitary vector
normal to the surface 0V around V and directed outward. This equation allows us
to interpret Ty as the flux of momentum and P? as the flux of energy through a
surface.

Similarly, one can derive the conserved energy-momentum tensor for a free charge

dr

T s = mu“u”aé(?’) (x —r(7)) (2.56)

where x is the position at which this tensor is evaluated and r(7) the world-line of the
charge [Rougé, 2001]. The associated Noether’s charge yields the energy-momentum
4-vector

0
Prlrllatter = /de Tml;tter = mu,u, ’ (257)

where u* = (y,u) = v(1,8), v = 1/4/1 — B2 is the so-called Lorentz gamma factor
and B3 the three-velocitiy of the particle. In 3-vector notation, this reads

Wmatter = /dgx Tr?l%tter =mr, (258&)
Pratter = /dsl‘ Tomtter = mYB" - (2.58b)

Finally, for a system of interacting charges and fields, the full energy-momentum
tensor is simply the sum of the two previous free energy-momentum tensor

TH = T+ T (2.59)

matter »

and the corresponding conservation law reads

BT = 8, (T, + T ) = 0. (2.60)

matter
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2.3.4 Angular momentum

Applying Eq. (2.22) to the Lagrangian (3.25) yields

LEYP = gV QHP — xPOHY (2.61a)
SEP = — (APFHY — AV FHP) (2.61b)
In 3-vector notation, and using Eq. (2.51a), we get [Jackson, 1999]
Lean = /d% Fi(x x V)A?, (2.62a)
Scan = / PrE x A. (2.62b)

However, L¢a, and Scan are not gauge invariant nor relativistic tensors and so are
not physical observables.

If we use instead of the canonical energy-momentum tensor (2.50), the sym-
metrized energy-momentum tensor in the definition of the angular momentum, we
get the so-called Belinfante-Rosenfeld angular momentum [Belinfante, 1940, Rosen-
feld, 1940, Soper, 1976]

MPP = oV THe — P T (2.63)

In this case, the obtained angular momentum tensor is symmetric and the associated
total angular momentum has the following expression

Jpel = /d3xx x (E x B), (2.64)

and using (2.54c), we get the angular-momentum flux density through a surface in
the [ direction

) o T1
mity = €’ [25lk(E2 +B?) - E'EF — B!B*| . (2.65)

This angular momentum can also be obtained by applying the procedure described
in Sec. 2.2.2 with

1
KO = 5 (St + ekt = S0 (2.66)
The Belinfante and canonical angular momentum tensors are therefore linked by
1
Thet = Jean + 50, (Seatd + Seard — Sean') - (2.67)

This tensor is now both gauge invariant and relativistically covariant and is phys-
ically observable. There is a lot more to say about the separation of the angular
momentum into its spin and orbital part and we will discuss this issue in more details
in Part. III.

Applying the same procedure to the free matter Lagrangian yields the angular
momentum tensor of a free relativistic particle (without spin) [Tsamparlis, 2010]

Mrl:l;fc)ter = qunligtter - xpTr;rLthter (268)
The angular momentum density is thus given by
Lél;tter = ‘TMPrI;latter - ‘Typglatter (269)
Its derivative gives the 4-torque of the particle
Grnatter = 7dLgll;tter =zt " _ :E”M (2.70)
fnatter dt dr dr ’ '

(2 =0

and is conserved, G\ itor =
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Similarly to the energy-momentum tensor, if we consider the case of an interact-
ing system of charges and fields, the total angular momentum tensor of the system
is given by

MM = MR 4 MR (2.71)

matter

and the corresponding conservation law reads

OuMHMP =0, (MEE .+ MESE) =0. (2.72)

matter

2.4 Radiation by moving charges

2.4.1 Physical picture

Let us first note that, because of the equivalence of all inertial frames, a uniformly
moving particle does not radiate. Let us now assume that, in an inertial frame in
which the particle is at rest at position A, it accelerates to a velocity Av in a short
time At, to reach position B. Then the information about this change in velocity
propagates at a the speed of light'? ¢ and reaches a radius R = ct after time t (see
Fig 2.1). Therefore, for radiuses r < R, there exists a static Coulomb field pointing
to B. However for r > R+ cAt, the information about the acceleration of the charge
has not arrived yet and there exists a static Coulomb field pointing to the former
charge’s position A. Because of the continuity of the electromagnetic field, one thus
deduces that, in the region R < r < R + cAt, there exists a transverse field, that is
to say, a pulse of electromagnetic radiation.

Let us evaluate the magnitude of this transverse field. As can be seen in Fig. 2.1,
the ratio of the perpendicular to the parallel field is given by

E, tAvsinf

= — 2.73
E” CAt ’ ( )

where E is the usual Coulomb field given by Fj = q/(4megr?) with r = ct. We then
find

qasinf
E,=—+ 2.74
L7 Yregetr (2.74)
where a = Av/At. We can then deduce the Poynting vector magnitude as
2.2 2
q°a”sin” 0
S="""_" 2.75
16m2eqc3r? ( )

which after integration over a spherical surface surrounding the radiating particle
yields the well-know Larmor power

q2a2

PLarmor = (276)

6megcd

This explanation is attributed to Thomson'* and is useful to understand qualita-
tively was happens when a particle radiates because of its acceleration. We will now
rederive this result in a more rigorous way by direct use of the so-called Liénard-
Wiechert potentials.

3While the theoretical calculations are done in natural units, we use SI units for all the numerical
applications and physical pictures.
and was reproduced here based on [Purcell, 2011]
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(a) We consider a charge initially in A and accelerating to a speed Av in
an interval of time At. It is then in B at time ¢. The blue circle represents
the place where the information about the velocity change arrives at time
t (this circle has a radius R = ct). For r < R (inside the circle), the
electric field is a pure Coulomb field pointing to B. Outside of the blue
circle (r > R), the information about the velocity change did not arrive
vet and the electric field is a pure Coulomb field pointing to A (black
dashed lines). In the blue area, the field is a burst of electromagnetic
radiation. We will detail this zone in the figure below.

(b) In the interval R < r < R + cAt, the electromagnetic field will have
a perpendicular component because of the particle’s acceleration. It is
possible to link this perpendicular component to the parallel Coulomb
field [Eq. (2.73)] from which we deduce the Larmor power [Eq. (2.76)].

Figure 2.1: Intuitive explanation of the radiation of accelerated charges.
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2.4.2 Retarded and advanced propagators

As previously explained, accelerated charges emit electromagnetic radiation [Rohrlich,
1964, Jackson, 1999]. To compute the radiated field in terms of the particle trajec-

tory, we need to solve Maxwell’'s Eq. (2.47a) knowing the trajectory of the particle

(and therefore j#). This can be done using Green’s function method. Let us ex-

press Eq. (2.47a) in terms of A" in the Lorenz gauge (0A) = 0, we get (introducing

0 = 0,0")

OA* = 4+, (2.77)
for which there are two Green’s functions,

0(xo — xf)

0(xy — xo)

which are called, respectively, the retarded and the advanced Green’s functions.

They can be rewritten in a covariant way as'®
1
D.(z—12") = o 0(xo — xp) O[(z — )], (2.79a)
1
Dy(x —2') = o 0(xfy — x0) O[(z — 2')?]. (2.79D)

The solutions of the wave equation (2.77) now read
Arr) = Al (x)+ / 4o Dz — )" (x), (2.80a)
Alfa) = e+ [ @ Dula — ) e) (2.80)

where Al and A% are the so-called retarded and advanced fields while A! and A

out
are the incoming and outgoing fields'®.

2.4.3 Liénard-Wiechert potentials
Considering the potential created by a single particle, j# is given by
jH(x) =q / dr 6t [z — r(7)| uk (7). (2.81)

Inserting this expression in Eq. (2.80) yields the so-called Liénard-Wiechert poten-
tials [Rohrlich, 1964]

“w
Abz) =+ L8

2.82
o (2.82)

T=Tret
T=Tadv

where Tret = r0(7) F |x — r(7)| and p = u (z — r). In 3-vector notation, this reads

adv
or(z) = a (2.83a)
a ATR(1F B n)|7=Tet
T=Tadv
B
Ar = 2.83b
a(:r) ATR(1F B n)|7=met ( )
T=Tadv

15The theta functions, apparently noninvariant are actually Lorentz invariant when constrained
by the delta functions.
16See [Coleman, 1961] of their interpretation.
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Figure 2.2: Schematic representation of the different vectors and coordinates involved
in the computation of Liénard-Wiechert potentials (2.83) and fields (2.84). The particle
trajectory is represented by the black line and is parametrized by the vector r(7) which is at
a distance r(7) from the origin o. Its normalized velocity B(7) is tangential to the trajectory.
We consider an observation point at a distance x from the origin o in the direction x/x. The
unitary vector n points from the particle’s position to the observation point. For observers
far from the particle, x > r(7), we can approximate the distance from the observer to
the particle by its distance to the origin # ~ R and the direction from the particle to the
observer by the direction from the origin to the observer n ~ x/x. We talk about radiation
zone. The blue surface represents a fictitious surface around the particle that illustrates the
integration volumes that we use in the derivation of the radiated power.

where R = 20 —70(7) = |x — r(7)|, v*(7) = (1, 8(7)) and n = r/R. Note that the
factor (1 F 3 - n) is a purely relativistic term. For nonrelativistic motions, |3| < 1
and we find the well-known nonrelativistic form of the potentials.

2.4.4 Radiated electromagnetic field

Using the definition of the electromagnetic field tensor (2.34) and the previous ex-
pression of the Liénard-Wiechert potentials, we get the expression of the electro-
magnetic field created by a single accelerated particle

a B 27rp% p

(2.84)

T=Tret
T=Tadv

where R* = z# — r# and altp¥] = % (a*b” — b*a”). Because of relativistic causality,
from now on, we will only consider the retarded fields. More explicitly (and dropping
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the "ret” subscripts), Eq. (2.84) reads, in 3-vector notation

| a n—pz qnx{(n—ﬁ)xé}
E(z) = E’yz(l—ﬁ-n)‘gR?—i_E (-3 n)PR , (2.85a)
B(z) = nxE(z). (2.85Db)

We immediately see that E is composed of two physically different fields : a ”velocity
field” that does not depend on the acceleration of the particle and that falls off as
R~2. This field represents the static field of the particle. The second part of E is
an ”acceleration field” which is electromagnetic and falls off as R~!. This part is
the field radiated by the particle. In the following, except if otherwise mentioned,
we will only refer to the radiation field when referring to E. Moreover, we notice
that far from the source, E and B are orthogonal to each other and to n. In other
words, the radiated field looks like a plane wave far from the radiating particle.

2.4.5 Larmor formula

We want to compute the energy-momentum tensor of the radiating field in terms
of the particle’s quantities like its acceleration. Plugging Eq. (2.84) into Eq. (2.52)
yields

™ = ¢ NHNY — yf? — }77’“‘”
rad 47.[.p4 2
2 v v}
N — (ult(aN ﬂ) 2.
+ S (aN) = ut*(aN) +a 5 (2.86)
2 v
q 2 01 MR
N)2 —
A7 p? [(aN)? — a”] 2

where alFp¥} = 3 (a"b” + b"a”) and from which we deduce, using Eq. (2.53), the
so-called Larmor formula

—% = —g*a ut (2.87)

which represents the rate at which the charge loses 4-momentum in terms of the
particle’s proper time 7. As stated in Sec. (2.4.4), the radiated 4-momentum corre-
sponds to the radiation field (which is in 1/p) which is the only one which ”detaches”
itself from the particle, contrarily to the velocity field which remains attached to the
particle and has a vanishing 4-momentum far from the charge. Integrating over dr
and using Eq. (2.44), we get

T

AP! = Po/n2 dz (2.88)

where Py = %Tm, T. = ¢*/m and
e

F' p,
Eo m

- ]; V(E+BxB2— (B-E? (2.89)

x

which is manifestly Lorentz and gauge invariant and where E., = m?/¢®. Moreover,
it will be useful in the rest of this work to define the quantity

Py = Pon?, (2.90)



Chapter 2 31

that we call the classical radiated power.

In order to interpret these newly introduced quantities, let us briefly use SI
units. We can then rewrite 7. = r./c = ¢%/(4megmc?®) ~ 9.37 x 10723 s where r, =
q?/(4megmc?) =~ 2.82x1071° m is the so-called classical electron radius, defined as the
radius of the sphere in which the Coulomb potential energy is equal to the relativistic
electron rest-energy mc?. This represents the characteristic length of CED. The
quantity 7. therefore represents the time for light to travel the classical electron
radius and represents a characteristic time for CED. From this characteristic time
it is possible to construct a characteristic power Py = %mc2 /Te = 36.4 keV /fs which
is the characteristic power of CED. Finally, E., = 4regm?c*/q® ~ 1.8 x 10?° V/m is
the so-called critical field of CED and represents the field that produces a work of
mc? over .. It corresponds to an intensity of I, ~ 3.18 x 103! W/cmz. In order to
interpret 7, we evaluate it in the particle’s proper frame. We obtain

E
Ecr ’
which therefore represents the magnitude of the electric field in the particle’s proper
frame compared to the critical field of CED E.,. In the particular case of a plane-
wave of amplitude Ey, we have

n= 752(1 -8y (2.92)

where f3)| is the component of 3 parallel to the direction of propagation of the plane-
wave. This expression shows that, not only the amplitude of the field plays a role
in the value of 7 (and therefore in the total radiated power) but also the geometric
configuration. In particular, we see that, for a given Ey, n (and therefore in the
total radiated power) is maximum when the electron counter-propagates against
the plane-wave. On the contrary, for an ultra-relativistic charge propagating in the
direction of propagation of the plane-wave, 7 — 0 whatever the value of Ej.

n= (2.91)

2.4.6 Radiated spectrum
Plugging Eq. (2.85) into (2.54b) and (2.55a) yields

W = —/ dQ |REJ?, (2.93)
OV N ——r
dPrad

in spherical coordinates where df? is an infinitesimal solid angle element. This equa-
tion means that the energy leaving a closed surface surrounding the radiating charge
(blue surface on Fig. 2.2) is carried away by a radiating field with an infinitesimal
radiating power dP;,q. We therefore deduce that

dP;aq(t)
ds

Using Parseval’s theorem, we deduce the energy radiated per unit solid angle per
unit frequency as

= |RE(1)[?, (2.94)

I
dwdQ

where C(w) is the Fourier transform!” of C(t) and is given by

2|C(w)|?, (2.95)

C(w)

e /+°° ~Inx [(n—ﬁ) XB}
dt . (2.96)

- iwt
47

o (1—B-nPR

ret

7and where the factor 2 comes from the fact that negative frequencies are unphysical.
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Assuming that the observation point is far from the radiating particle, we have
|x —r(t)| ~ x| —n-rt). (2.97)

Using this approximation, we finally get the energy radiated per unit solid angle per
unit frequency

d2I €2w2 +oo ) o 2
RSl / mxmx gt g (2.98)
This formula can be rewritten in 4-vector notation as
d2T 2,,2 +o0 2
_ v / at P20 ke[ (2.99)
dwdQ  4m? | J_ e(t)

where k = w(1,n), r = (t,r(t)) and €(t) = p°(t).

2.4.7 Charged particle in a plane-wave field
General solution

The simplest possible electromagnetic field is that of a plane monochromatic wave.
Such a field depends only on the Lorentz invariant parameter ¢ = kx and can be
described by the following four-potential

At () = A1 (9) + Abea(9) (2.100)

where ¢); are arbitrary scalar functions and A!" are the two polarization directions
satisfying A1 A2 = 0 and kA; = 0. Defining a*(¢) = gA*(¢)/m, we have

a'(¢) = ay¥1(¢) + ahib2(9), (2.101)

where ajas = 0 and ka; = 0. From this four-potential, we deduce the normalized
electromagnetic strength tensor f*”(¢) = qF*(¢)/m

(@) = 1791 (¢) + 15" ¥5(9) (2.102)
where

Y = kray — K al' fF = —kMEYai0y kil =0. (2.103)
Knowing that kp = kpy = cte and changing the proper time derivative to a derivative
with respect to ¢, with % = (kpo)/m = (kuo), the solution is readily obtained
as [Sarachik and Schappert, 1970, Meyer, 1971]

PO =1k — qlAr(9) — A%(gn)] + ¢ DD ARo

kpo
2 [4%(0) — A%(¢0)]
q T k. (2.104)
Defining the integrated electromagnetic strength tensor as
¢
FrG.o0) = [ a6 pe) = 3 fe) -~ ilen)) . (2109

0 i=1,2
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Figure 2.3: Schematic of the different vectors and angles involved in the solution (2.110)
and in (2.109). The initial electron velocity is represented by By and forms an angle 6
with the z axis and an angle ¢q from the x axis in the (z,y) plane. The position r forms
an angle 6 with respect to the z axis and an angle ¢ from the z axis in the (z,y) plane.
The plane-wave propagates in the direction k = —2. In the head-on configuration (2.112)
and (2.116), we have 6y = o = 0.

we can rewrite the solution in a more compact way

_ FH (b, do)poy — F2H(d, ¢o)pow
P'(¢) =pp + o T S g ? (2.106)
More explicitly, for the 4-velocity, we have
WO) =+ 3 1i(6) — oo [amuo)k* — (kuo)af]
i=1,2
1 20 (N 2
T 1212 ai [$i(6) — i(o0)] K, (2.107)
from which we deduce the classical trajectory
¢ B
a(¢) = xf + /¢>0 d¢'“k§i) (2.108)
where xf) = z#(¢o) is the initial four-position. Taking
a'(8) = ao(0,dc0s(9),v/1 = 9?sin(6),0), v =(1,8),
uf = (1L, B0), k' =w(l,k), z*=(tx), (2.109)
¢ = wo(t—k x), kug=rowo(l—k-Bo),
we obtain in 3-vector notation,
__[a(@) —a(¢o)] - Bo | [2°(¢) —a®(do)]
o) = k. 5, + o=k o) (2.110a)
o) = o~ fale) — a(on)) — ML
2 _ 2
+ [a(¢) a(d’O) ] 1;7 (2.110b)

270(1 — k - Bo)
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from which we deduce

¢
x(p) =x0 + /(z)d¢

+ /¢>jd¢

Head-on collision

,uo — [a(¢ )j
’Yowo(l
@ —aen)]

2’YOW0(1 —k-fo)?

 [a(¢') — a(¢o)] - Bo

=

a(¢o)]
5 ) /¢ 0

Yowo(1 — k - Bo)?

(2.111)

In the following, we will mainly consider the situation of an initially ultra-relativistic

electron!®

counter-propagating With the plane-wave propagating in the direction

k = —2. In this case, By ~ 1 — W and we write kuy = wohg with hg = vo(1 + Bo)

In the case of the linearly polarized plane-wave (§ = 1), we get

= ag CcosQ,
= 0,

h 1 5
= 0[1—[1—}—6;0(14-0082@

2 h3

from which we deduce the position of the particle

(2.112a)
(2.112b)

H : (2.112¢)

x(p) = xo + 21 sing,
Y(®) = yo,
2(¢) = 20 + 21 ¢ + 22 8in 20,

(2.113a)
(2.113b)
(2.113¢)

where x is normalized in wq, xg, yo and 2y are the initial positions normalized in wy
and

x = B (2.114a)
1 1 a?

= Z|1-=(14+22 2.114b

a 2{ h(%(*z)]’ (2.1140)
2
ag

= -9 2.114

2 8h3 (2.114c)

From Egs. (2.113), we see that the electron drifts at a speed hgz; in the z direction,

oscillates in the direction of the laser polarization and follows a figure-8 trajectory
(Lissajou curve) with a longitudinal (transverse) extension of the order of a3 (ag) (see
Fig. 2.4.7). The parameter ag is linked to the potential and electric field amplitudes
Ap and Ey by

[AV] —A? _ eEo

m mwg

ap = (2.115)
It is a Lorentz and gauge invariant parameter. Going back temporarily to SI units,
we can rewrite ag = eEg\g/ (27rmc2) where A\g = 27c/wy is the laser wavelength in the
laboratory frame. The parameter ag thus represents the work of the laser over one
wavelength Ag. If ag ~ 1, the electron becomes relativistic over one wavelength and
we therefore talk about relativistic regime. In this regime, the magnetic component
of the Lorentz force becomes of the same order of magnitude as the electric part and
the electron motion becomes nonlinear. We therefore sometimes refer to ag as the
classical nonlinear parameter.

18] e. we take in the preceding equations ¢ = —e.
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Figure 2.4: Trajectory of an electron initially at rest a) in a linearly polarized plane-wave
(LPPW) with agp = 0.5 and ag = 1.5 in black and red line (resp.) and b) in a circularly
polarized plane-wave (CPPW) with ag = 0.5 and ag = 1.5 in black and red line (resp.). The
trajectories are represented in the average rest frame which is defined as the frame in which
the average drift velocity is equal to 0. The distances are normalized to w/c. In the case of
the LPPW, the trajectory has a figure-8 shape with a longitudinal (transverse) extension of
the order of a? (ag), while in the CPPW case, the trajectory is a circle with radius ~ ag in
the (z,y) plane.

In the nonrelativistic regime (ap < 1), the equation of motion is linear and the
electron oscillates sinusoidally in the external plane-wave. In terms of radiation, we
therefore expect the electron to radiate at the same frequency as the laser frequency
in its rest frame. On the contrary, for ag > 1, the electron motion becomes nonlinear
and the trajectory sharpens at the instants where the velocity along the laser polar-
ization reverses. In terms of radiation, we expect the electron to radiate harmonics
of the laser frequency in its rest frame. Finally, the solution (2.113) indicates that
in the relativistic regime, the electron acquires a drift in the longitudinal direction,
which is proportional to ag.

Let us now consider the case of a circularly polarized plane-wave (§ = 1/v/2),
we get
uy(¢) = @ cos ¢ (2.116a)
T - \/i ) .
uy(p) = 4o sin ¢ (2.116Db)
Yy - \ﬁ ’ )
ho 1
() = Wi (14% 2.11
wio) = P - (1 (2.1160)
The position of the particle is then given by
z(¢) = xo + z2 sing, (2.117a)
Y(#) =yo+y2 cos ¢, (2.117b)
2(9)=z20+20, (2.117c¢)

where x is normalized in wq, xg, yo and 2y are the initial positions normalized in wy
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and
ap
To — , 2.118a
2 \/§h0 ( )
agp
= —— 2.118b
Y2 \@ho ( )
1 1 a?
= —1-=(1+2)]. 2.11
a 2[ h%(wﬂ (2.118¢)

We draw the same conclusions in the case of the linearly polarized plane-wave ex-
cept that the trajectory is now a circle with radius proportional to ag and a drift
proportional to a3 (see Fig. 2.4.7).

2.4.8 Linear and nonlinear Thomson scattering

In order to evaluate Eq. (2.98) explicitly, we need to compute its vector part n x
(n x B) and its phase (¢) = w(t —n-r(¢)). To do so, we choose the observation
direction n = E, and we take r = (z,y, 2) and 8 = (s, By, 5-). The coordinates of
3 in spherical coordinates are then given by

Br = Brsinfcosep + By sinfsingp + 3, cosb, (2.119a)
By = PBzcosbcosp+ [, cosblsing — [,sinb, (2.119b)
By = —Busing+ Bycosp. (2.119c¢)

We then have the vector part and phase given by

wt—n-r(¢) = §[¢ — #(¢) sin 0 cos p (2.120)
0
7(¢)sinfsing — Z(¢)(1 + cos6)],
nx (nxpB) = —(Bycosfcosp+ fBycoshsing — f,sinf)Ey
+ (Bzsing — Bycosp)E,, (2.121)

where ¥(t) = (2,7, 2) = wo(z,y,2). The evaluation of Eq. (2.98) now amounts to
evaluate the integrals

7 40 (D) o)
K—/_nqu R (2.122)

where 7 is an arbitrary phase. The scattered radiation will be polarized in the
direction of n x (n x B3). We can thus decompose (2.98) as

?1 &P N d?1,
dwdQ  dwdQ  dwdQ’

(2.123)

where Iy and I, are the energies radiated with polarization in the Eg and E,, direc-
tions. Using (2.121), we get

d2I9 e2w? . . 9

odq = W]cos@coscpKa;+cos€smg0Ky—sm9Kz| , (2.124a)
d2[ 2,,2

o d?) = % |sin ¢ K, — cos ¢ K,|* . (2.124b)
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Circularly polarized plane-wave

Let us evaluate explicitly Eqgs. (2.124) in the case of a circularly polarized plane-
wave. To do so, we use the results of Sec. 2.4.7 and compute the phase and vector
part of Eq. (2.122). Using the Bessel function identities developed in App. A.1 and
in particular the Jacobi-Anger expansion, we get [Esarey, 1993, Salamin, 1998]

df;zlﬂ o 620;?72 :i; R(w, nwo)” [(COSH - :1(119+ - 9)>2 Tn(2)? + 23 T, (12)?
where

O E 8 (21250

o= % [1 - hl% <1 + aj)] : (2.125b)

2y = fa?(;m (2.125¢)

R(w,nwo) = 217]/_: dg lVr—mle — w (2.125d)

The resonance function R(w,nwy) is strongly peaked at 11 = n. We therefore have
a spectrum of harmonics at

. nwo
1 —2z(14cosf)’

wn (2.126)
with width Aw,/w, = 1/(nNy), where Ny is the number of wavelengths of the
pulse. In the low intensity case (ap < 1), the spectrum is strongly peaked at the
fundamental frequency wg. On the contrary, for high intensity lasers (ag > 1), the
spectrum is composed of many closely spaced harmonics that appear broadband.
Assuming that n > 1, and using Egs. (A.9a) to (A.10), we deduce that the spectrum
has the following asymptotic form

d’I n <5\ 3/2
~ (1= o2
dwd | p eXp[ 3 (1-43) } ’

where

~ To sinf

Y2 = 1—2z1(14cosh)’ (2.127)

It therefore extends up to a critical frequency corresponding to n, = 3(1—@@%7max)_3/ 2,
This critical frequency is reached (at fixed ag) for

21

cosfy = , (2.128)

1-— Z1
and corresponds to
3a3
Ne=—+~.
2v/2

Finally, in the ultra-relativistic case (ap > 1), n > 1 and the radiation is confined
around the angle 6. Therefore, taking 6 = 6y + 60 with 6 < 1 in Eq (2.125) and
using Eqgs. (A.9a), we get

d2I N 3762 7252 72592
dwdQ|op w2 1442602 |1+ ~2602

(2.129)

Ki5(8) + K35(6) | (2.130)
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where
£ = wi (1+ 725192)3/2 : (2.131)
1-— Z1
e = Ng . 2.132
w Me 7 22 wo (2.132)

Integrating this equation over all frequencies and angles, we get the intensity distri-
bution in angles and frequencies (respectively)

2 2 2502
KL [1 S L PP )
Q| op 48 (1 +~2662) 7 (1 +12662)
dI +oo
— ~ Ng2ﬁe27w/ d€ K55() . (2.134)
dw |op We J2w fuwe

Linearly polarized plane-wave

Let us now study the case of a linearly polarized plane-wave. We follow the same
steps as for the case of the circularly polarized plane-wave and get (see App. A.6 for
more details)

d*1 lw? X 2 2 2, N\ 72 2 7 2 72
= E R(w, nwyp) [(1—sin Ocos” p)K; —sin“fOcosp K, K, +sin“0 K| |
dwdQ| p  4m? ~ r T o

where we used the same notations as in Sec. 2.4.7 and where

+oo
Ky = am Y (=1 Jn(¥3) [Jnom-1(1h2) (2.135)
+ Jn—ami1 (i),
+oo
Ko o= 20 % (<1 Jnlls) [21 Ju-2m (i) (2.136)

+ 2 (Jn—2m—2(7vz2) + Jn—2m+2(¢~)2))} ;

L7 - sin [(¢1 — n)n]
- = i[Yr1—nlp _
R(w,nwp) = 2 /_77 dpe = = (2.137)
Y1 = w% [T —21(1 +cosB)] , (2.138)
By = nx1 sin 0 cos ¢ (2.139)

1—21(1+cosf)’
-~ —nz(1 4 cosb)
1 —2z(14cosh)’

(2.140)

Similarly to the circularly polarized case, the resonance function R(w, nwy) is sharply
peaked in i1 = n. We therefore have a spectrum of harmonics at frequencies

. nwo
1=z (14cosh)’

wn (2.141)
For ag < 1 the radiation is mainly in the fundamental mode n = 1 (as was already
predicted from the electron motion). On the contrary, when ag > 1, the radiation is
dominated by high harmonics and appears like a continuum spectrum. Considering
the case where ¢ = 7/2, and in the limits where ag > 1, n > 1 and the radiation
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is mainly backscattered. We therefore assume that < 1 and using Eqs. (A.9a) to
(A.10) in a completely analogous way to the circularly polarized case, we get

d*1 12€2 &252 ,.3/202 ) ,
dod| =N T |1 e (&) T K@) (2.142)
where
¢ = e (2.143a)
Vo= /2, (2.143D)
nC
¢ ; 2.14
“ 1—221 “o ( 3(3)
ne = 3a5/4, (2.143d)

2.4.9 Radiation by an ultra-relativistic particle in arbitrary motion

We saw previously that in the ultra-relativistic limit, the spectrum radiated by a
charged particle in a plane wave field is the same in linear as in circular polarization.
We will see that this result is actually true for any particle!? in ultra-relativistic
motion [Schwinger, 1949, Jackson, 1999]. First we will analyze qualitatively the
main features of the radiation to then compute its full analytical expression from
Eq. (2.98).

In the nonrelativistic limit, it is well known that the angular distribution of
radiated energy is dI/dQ ~ sin? f, (dipole-like radiation [Jackson, 1999]), where 6,
is the angle between the acceleration and the direction of observation. For latter
convenience, we define the angle 6 as 6 = 7/2—60, (Fig. 2.5a). Because of relativistic
aberrations, the angle 6, in which a ray of light is seen by a non-moving observer,
will be seen by an observer in inertial motion with speed 8 at an angle 6" satisfying

o [1-p 0
tan— = |~ tan 2. 2.144
Mo T\ 15 M2 (2.144)

For an ultrarelativistic motion, light that would be emitted at # = /2 in the rest
frame of the emitter would then be seen at
o’ 1 1
tan — ~ — = 0 ~ —| (2.145)
2 2y ¥

by an observer moving at 8 ~ 1 — 1/(27?) with respect to the emitter. For an
emitter with its velocity 3 perpendicular to its acceleration a, most of the radiation
is emitted in an angle 1/ in the direction of its velocity (Fig. 2.5b), while in the
case of an acceleration parallel to its velocity, there is no radiation in the direction
of propagation and all the radiation is confined in two lobes separated by an angle
of 1/~ (Fig. 2.5¢).

It is possible to show that the radiation due to a charge accelerated by an external
force (with comparable parallel and perpendicular components) is mainly due to the
perpendicular component of the force (more precisely, it is 42 larger than due to
the parallel motion). The radiation due to a particle in ultra-relativistic motion
can therefore be approximated by the radiation due a particle in an instantaneous
circular path of radius of curvature p ~ 1/0; where ©; denotes the perpendicular
acceleration of the particle (see Fig. 2.6). Let us evaluate the duration At of the

9We don’t consider here pure longitudinal accelerations.
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Figure 2.5: a) In the nonrelativistic regime, the angular distribution of radiated energy
is that of a dipole : dI/dQ ~ sin®6@,. Because of the relativistic aberration (2.144), if b)
the particle moves at a speed B (with v > 1) orthogonal to its acceleration a, most of
its radiation is emitted within an angle 1/v around its direction of propagation. If ¢) the
particle moves at a speed B (with v > 1) parrallel to its acceleration a, there is no radiation
in the direction of propagation and all the radiation is confined in two lobes separated by
an angle of 1/~.
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Figure 2.6: It is possible to approximate the trajectory of any ultra-relativistic particle as
locally circular with radius of curvature p = 1/0,, where ©, is the perpendicular acceler-
ation. This trajectory is represented in black dotted line. The direction of observation n
forms an angle 6 with the = axis. According to Eq. (2.144), the radiation is emitted in an
angle ~ 1/ in the direction of propagation (represented as a yellow cone). The contribution
to the radiation, as seen by a distant observer, therefore comes from a portion of trajectory
of length L = p/v and represented in purple. The polarization of the emitted radiation
is computed using the vector € (resp. €.) which is in the (z,y) and orthogonal to the
particle’s trajectory (in the (z, z) plane and orthogonal to the direction of observation n.).

beam of radiation as seen by a fixed observer at a distance R of point B of the
trajectory of the radiating particle. As was previously shown, the radiation is mainly
emitted in an angle of 1/v. The segment of the charge’s orbit that contributes to the
radiation seen by the observer therefore comes from a segment of length L = p/~ of
the charge’s trajectory (highlighted in purple in Fig. 2.6). However, the duration of
the radiation seen by the observer is not simply L/ but much less since for an ultra-
relativistic charge, the radiation emitted at the trailing edge of the purple area in
Fig 2.6 almost catches up the radiation emitted at the leading edge. Approximating
this arc of circle by a straight line, the radiation emitted at the trailing edge takes

L + R to reach the observer, while the one emitted at the leading edge takes % + R.

The duration of the beam of radiation seen by the observer has therefore a duration®”

of At=L/B+R—L—R=L(1-8)/8~L/(2y?). Using the uncertainty relation
for time and angular frequency, we find that the higher frequency emitted by the
charge is of the order of

2 3
werw 21 (2.146)
1)

2ONote that this factor is already present in the expression of Lineard-Wiechert potentials (2.83).
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Let us now evaluate quantitatively the spectrum of the emitted radiation. Fol-
lowing the same steps as in the previous section, we are led to evaluate the vector
part and the phase part of Eq. (2.98). Choosing the coordinates so that the particle
is at the origin at ¢ = 0, we approximate the trajectory by a circle of radius of
curvature p for t < 1. We get

tenrt) = o psin (2 o] M.
x(nxp) = B [—e sin (f) + €, cos <it> sinH] . (2.147Db)

where €| is a unitary vector in the y direction corresponding to the polarization
in the plane of the orbit, while €, = n x ¢ is the orthogonal polarization and
corresponds approximately to polarization perpendicular to the plane of the orbit
for 8 < 1 (see Fig. 2.6). As mentioned previously, the radiation perceived by a
fixed observer is a coherent sum of the radiation emitted on an arc of circle of length
~ p/~. We are thus interested in the part of Eq. (2.147) for which § < 1 and around
t = 0. We get the following approximate form

w 1 9 1
X (nxp) =~ —€||E +e€,6. (2.148b)
p
Inserting these equations into (2.98) yields
21 e2w? )
dod0 — an? |TEE e KL (2.149)
where
412
B = / are el o)eal, (2.150a)
t+ £
e = 9/ ane$|Go)er iz, (2.150D)

correspond, respectively, to the parallel and perpendicular polarizations of the radi-
ation and where we recognize the Airy function and its derivative (See App. A.2).
Expressing them in terms of modified Bessel functions of the second kind thanks to
Egs. (A.15), we finally get

Bl i (540 [ Ko+ K| 215y
— =W — —_— .
dwodQ ~ 3:2@° ¥2 (1/42)+ 62 1/3 2/3 ’
where £ = 93 where w, is given by Eq. (2.146) and 6, = (1 + 62+?).
Integratlng thls equation over all frequencies yields the distribution of energy in
angle

dl oo d?T 7 €2 1 5 2
g0 d =— 514+ 55— . 2.152
dQ) /o wdwdQ 16 p (92_‘_1/72)5/2 [ + 7 924_1/72] ( )

Finally, integration over all angles of Eq. (2.151) gives the emitted power distri-
bution as a function of the frequency w of the emitted photons [Jackson, 1999]

do = 81 w we dy Ks/3(y) (2.153)

Al 9V3 Py w /+°°
w/we
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Figure 2.7: Spectrum radiated by an ultra-relativistic electron as given by Eq. (2.153) (red
line) and its asymptotic expressions (black dotted lines) as given by Eqs. (2.154).

where w. = 39n/(27.) is the critical frequency for synchrotron emission, and where
the instantaneous power radiated away is given by Eq. (2.90). This distribution
has a maximum for photon frequencies w ~ 0.29 w, and admits the two following
limiting forms

ar { (w/we)?, w < we (2.154)

dw Vw/we exp(—w/we), w > we

2.5 Classical radiation-reaction

So far we have either considered the motion of charged particles in prescribed ex-
ternal electromagnetic fields, or the electromagnetic field generated by charged par-
ticles moving on prescribed trajectories. However, in the most general case, these
two problems need to be solved consistently since an accelerated charge moving in
external fields F!,; radiates and therefore will then interact not only with the initial
prescribed external electromagnetic field but with the sum of the external field and
its own radiated field FL + F'™". We are thus led to solve consistently the system

rad*
dut y y
mo— =1 (Féfct + ng) Uy, (2.155a)
9F™ = g / a7 8l — r(7)] (7). (2.155b)

Accounting for the back-reaction of radiation emission on the electron dynamics
has been a long standing problem of classical electrodynamics (CED) [Jackson,
1999, Rohrlich, 1964]. As such, it has been the focus of many studies, and various
equations of motion of a radiating charge in an external field have been proposed [Di
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Piazza et al., 2012]. In this Section, we derive the so-called LAD (Lorentz-Abraham-
Dirac) equation of motion [Dirac, 1938] and deduce its limiting case, valid in CED,
the LL (Landau-Lifschitz) equation [Landau and Lifshitz, 1947]. We then analyze
the motion of a charged particle with RR in some simple external fields (such as a
constant-uniform magnetic field or a plane-wave field) and compare it to the corre-
sponding case without RR.

2.5.1 The Lorentz-Abraham-Dirac equation

The most natural way to solve the problem (2.155) is to solve Eq. (2.155b) using
the Green function (2.80) and insert it into Eq. (2.155a). However, in the same way
as the stationary (Coulomb) field of a particle diverges at the particle’s position,
the full field (A.62) will diverge at the particle’s position. This type of divergence
is ubiquitous in quantum field theory and we will solve it using the renormalization
theory [Nakhleh, 2013, Coleman, 1961, Weinberg, 2005].

When we introduced the Lagrangian of CED (2.43), we did not discuss the
meaning of the parameters m and g. These parameters are called bare mass and
bare charge (we shall write them mg and ¢o in this Section) and are different from
the physical mass and charge mppys and gpnys. Indeed, current theories cannot pre-
dict such quantities such as the mass or charge of elementary particles and these
quantities need to be measured experimentally and then plugged into the theory.
The parameters mg and ey must therefore be "tuned” so that the theory repro-
duces a particle with physical mass and charge mppnys and gpnys. We will carry this
identification on CED after having introduce the reqularized self-field.

e Regularized self-field :

To better study how the field diverges near the position of the particle, we
introduce a cutoff parameter e. Basically, this means that length-scales that
are under € will not be taken into account in the "regularized” theory. We first
compute the regularized potential [Nakhleh, 2013, Coleman, 1961]

Ab(z) = 2 /m dr 0z — ) 6 (& — )% — ] uh(7), (2.156)

:% .

from which we deduce the regularized self-field at first order in € (see App. A.7)

HY :i _l [, V] g[u V]
Fr(r)] 27r[ S0 u + 2|+ Ofe). (2.157)

Inserting this field into Eq. (2.155a) yields

2 2
moa = qoF™r, — (90 ) gu 4 2 (% [0 + a®u!] + O(e) . (2.158)
ext 2¢ \ 47 3 \4r

e Mass renormalization :

' 2e \ 4Am
However, as mentioned above, this comes from the fact that mg is not the
physical mass. Going back to the definition of the inertial mass, we consider
the situation of a very slightly accelerated particle. Eq. (2.158) then reduces
to

2
We notice that when € — 0, (q—o) a* diverges, which seems problematic.

2
[mo + — <q$r>} a* = qoFtiu, . (2.159)
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The coeflicient multiplying the acceleration is clearly the physical mass of the

@
4T

tune mg(e) (which depends on the cutoff €), so that mphys remains unchanged
and equal to the measured particle’s mass.

particle, and we therefore identify mppnys = mo + i ( ) In other words, we

e Charge renormalization :
Doing the same for the particle’s charge, let us now consider Eq. (2.155b) in
which we set A* = (V,0), we get
AV = qo6¥)(x). (2.160)

The coefficient ¢q is therefore obviously the electric charge and we make the

identification gpnys = qo 21

e Equation of motion :

Taking the limit ¢ — 0, all lengthscales are now included in the theory and
the final equation of motion reads

a = f*u, + 19 (d“ +a? u“) (2.161)

where 790 = 2/37., 7. = ¢*/(47m), f* = (q/m)F" and where we dropped
the subscript ”"phys” in the physical mass and charge, and ”"ext” in the ex-
ternal field for clarity. This equation is the Lorentz-Abraham-Dirac (LAD)
equation [Dirac, 1938].

The LAD equation is known to be plagued with physical inconsistencies [Di
Piazza et al., 2012]. We will illustrate these unphysical behaviours. In the case of a
free particle, multiplying the LAD equation by a, gives

a? = T(]iCLQ — o> =Ce/™, (2.162)
dr

where we have a runaway solution for C' # 0, that is to say, the particle accelerates to
the speed of light in the absence of external force. Of course, we could choose C' = 0
to avoid such runaway solutions. Let us examine when we impose such condition.
Let us assume that the field F' is weak and that the solution of (2.161) reads z# =
xh + 02+ where ) is the solution in absence of field, and therefore the corresponding
velocity ufy is constant. The total velocity therefore reads u# = ufy + dut and its
corresponding acceleration a# = da*. At first order, Eq. (2.161) therefore reads

dak () = fH(7) + 10 da* (1), (2.163)

where fH(1) = f"[zo(T)]uo,. Assuming that there is no acceleration at infinity,
Eq. (2.163) integrates into

= [T dr _
a’(t) =em / — (e . (2.164)
T 70
Changing the integration variable to s = (7 — 7’) /70, we get
“+oo
at(t) = / ds fH(T 4+ s79) ™" (2.165)
0

This solution violates causality since the acceleration at 7 depends only on times
later than 7.

2IThere is therefore no charge renormalization in CED, contrarily to QED.
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2.5.2 The Landau-Lifshitz equation

In order to better understand the issue with the LAD equation, let us recall that, in
its derivation, we neglected the terms in O(e) in the regularized self-field expansion
(See Sec. 2.5.1 and App. A.7). These terms were of the form € d;f:. So the approx-
imation that led to the LAD equation is that the motions that we consider do not
vary on proper-time scales smaller than the cut-off. More precisely, we require that
ndtat

dr™

and we call such motions admissible motions [Bhabha, 1946, Rohrlich, 1964]. Going
back to the LAD equation, let us evaluate 7, the time for light to cross the classical
radius of the electron. To do so, we briefly go back to SI units and get 7. = r./c =
e?/(4megmec®) ~ 9.36 x 1072* s < 7. = are. In other words, 7. is much smaller
than the scale at which quantum effects start to appear, i.e. well in the quantum
regime. We therefore don’t expect the LAD equation, which is a classical equation,
to work at such scale. Choosing the cutoff € to be 7., we therefore require that

|T0a"| < |a¥| . (2.167)

vn,

¢ < la*|, (2.166)

This allows us to do a reduction of order in the LAD equation to obtain
a = " u, + 79 [anflw uy u'l — fH an ul 4 (f1 un) (fra u®)ut]

This equation is the Landau-Lifshitz (LL) equation [Landau and Lifshitz, 1947].
It is valid for admissible motions (2.166) and is free of all the inconstancies that
plagued the LAD equation. The fact that the LL equation is derived from the LAD
equation which exhibits unphysical behaviours has led people to question its validity.
However, it has been shown by [Spohn, 2000] that the subspace of physical solutions
of the LAD equation coincides with the solutions of the LL equation.

In 3-vector notation, this equation reads

d .
mdfz = ¢B-E+qrovE- 3
+ nE-(E+3xB) (2.168)
- 17’ [(E+BxB)*—(8-E)’],
d . .
d—It) = q(E+B8xB)+qgmny (E+,3><B>

+ 7 [(B-E)E-Bx (E+3x B)] (2.169)
- 7 [(E+BxB)?—(B3-E)?] 8.
We see that the second and last terms are respectively v times and 2 times bigger

than the first one. For ultra-relativistic particles, the last term will therefore be
dominant and we can approximate Eq. (2.168) as

mfl—z = ¢B-E— Py, (2.170)
dp
T ¢(E+BxB)-FupB, (2.171)
where
Py = Pyn?. (2.172)

We shall actually see in Sec. 5.2 a more careful way to approximate Eq. (2.168) for
an ultra-relativistic charge which takes into account the conservation of the on-shell
condition and the fact that the radiation-reaction force should be a 4-force.
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2.5.3 Charged particle in a constant-uniform magnetic field with
RR

The LL equation for a charged particle in a constant-uniform magnetic field reads
in 3-vector notation
du
= LuxB) - 2B x(3xB)
m

70
dr  m

—(ux B)’u. (2.173)

We decompose the 4-velocity into its transverse component to the magnetic field
u| = (ug,uy) and its longitudinal component u,, we get

d
% _ %(MXB)_%BZ(H@)M, (2.174a)
du;

- ~2 Bl u,. (2.174D)

Going to polar coordinates in the plane orthogonal to the magnetic field, we write
(Uz, uy) = uy (cos,sinp) where ¢ = Qr and Q = ¢B/m is the rotation frequency
in the particle’s rest frame. Eq. (2.174) then takes the form

duJ_
e ~K(1+u})uy, (2.175a)
du,
i = —Ku? u,, (2.175b)

where K = 70B2/(mf)). Eq. (2.175a) admits a separation of variables and integrates
into

uy(p) = = . (2.176)

\/(1 + ud ) e2K(p=wo) — 42

Injecting this solution into Eq. (2.175b), the obtained equation admits a separation
of variables and integrates into

K(o—v0)
uz(p) = U0 ¢ . (2.177)

V@ +ud) ekl — 2

The 4-velocity thus finally reads

1 ' B
u(<p) = (UJ_O COS((p — (po), U0 Sln(gp — (PO); U0 eK(<P @O))

e

Direct integration of u with respect to ¢ yields

z(p) — o %] [ i 2\ 2K (p'— 2
— /(1 w2 ) e2K (@ —vo) —q 2.178
[Q(W) - yo] [% Ulo \/( Lo) +0 ( )
1 i i (14+u3) ar(w— v
<SP (1,+,1+,e (¢'~0)
2 2K 2K WA, o

Equation (2.178) is exact, but not easy to interpret. Let us derive an approxi-
mate solution for the electron trajectory that will be transparent to interpret. The
equation of evolution of the electron Lorentz factor reads

dy _

7 = K(l — 72) , (2179)
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Figure 2.8: Normalized energy a) and trajectory b) with (red line) and without (black line)
RR for an electron in a constant uniform magnetic field with quantum parameter x = 1072,

with K = AB?/B2, and A = %‘:—j This easily integrates into
~(t) = tanh (artanh o + Kt) , (2.180)
which approximates to
y(t) ~ — 0 (2.181)

1+ Kt’

for 79 > 1 where 79 = 7(0). Assuming that the electron motion with RR is close
enough to its trajectory without RR over one period, we can write
r(t)

)

= m [sin(wct), — cos(wct)] . (2.182)

The energy and trajectory are plotted with and without RR on Fig. 2.8 for an
electron with initial quantum parameter yo = 1072.

2.5.4 Charged particle in a plane-wave field with RR
We consider the LL equation

a = " uy, + 1o [On M up u — R frp ! + (F uy) (foa u®) u] .

The solution of this equation in a Plane-Wave field has been derived for the first
time by [Di Piazza, 2008]. We reproduce here the main steps (see App A.8 for more
details). Following the same steps as for the case without RR, we start by computing
d(ku)/dr. This quantity ku is however here not constant and follows

1 (ku) 710 9,
- —==—f"uou, 2.1
R dp ~po? O (2.183)
which readily integrates into ku(¢) = %, where pg = kug and
¢ 2
h(¢, ¢o) =1+ To/ T (@, do)uo,y - (2.184)
%o

Defining the "reduced” speed as @* = h(¢, ¢o)u*, we can show that it satisfies the
following differential equation
dut 1

T = oo (1060 P (6) 700 1 (6) ]y + 16, 60) T (D), (2185)



Chapter 2 49

where the prime denotes the derivation with respect to the phase ¢. The solution to
this equation can be obtained using Picard’s method?? and the orthogonal properties
of the constant field tensors ' (see App A.3.2). The exact solution is then given
by

124 ” 2 u
h(¢, po)u’ (¢) = ug + FRR(?;;;;O) LNt ]:RRZE(;;;L?;Q 0¥
o) [h?(¢, do) — 1] K* (2.186)
with

Fhi(d,00) = Ti(h, ¢0)F* (¢, o) , (2.187)

L0 00) = [1i(9) —11/%(9250)] hi9 o), (2.188)

¢
160) = [ do M) + vt (0]
= h@)¥i(¢) — Yi(do) + Topo [w’@s) —¥i(¢o)]  (2.189)

+ oo / dotile) 3 a2 (e
%0

7j=1,2

The trajectory of the electron is then deduced by

ol
w(¢) = b+ — [ doh(ppi(p). (2.190)
PO J o

In the limit where 79 — 0, h(¢) = Z;(¢) = 1 = Fhp — F* and we recover the
case without RR (2.107) as expected.

In the case of an initially ultra-relativistic electron counter-propagating with the
plane-wave propagating in the direction k = —%, we have By ~ 1 — 1 /(27) and
therefore kug = woho = woyo(1 + Bo). We consider the two simple cases of a linearly
and circularly polarized plane-wave.

e Linearly polarized plane-wave (§ = 1)

1 1
16) = i ot g (026 - ) + @0 |
1
u$(¢) = 7h(¢) a011(¢) s
Uy(¢) = 07
1 1
w@) = i [ g [(0%0) 1) + adner) |
h(¢) = 1- %Toﬂoag sin 2¢ — %Topoa%@
Li(¢) = sing— %Topoag¢ sin ¢ + 10p0 [1 - 2613] cos ¢ — éTopoag cos 3¢,
L(¢) = 0.

22Qnly two iterations are needed
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e Circularly polarized plane-wave (§ = 1/1/2)

(12
ww:h@h+$wwwmuﬁmwumww
%w>:—J@%hw,
w(9) = —— 1),

h®) V2

1 1
w@) = i [ g (20 =1) = £ (00 + B(6)]
L(p) = \}i sin ¢ — 2\1/§Topoa%¢ sin ¢ + \}impo [1 — ;ag] cos ¢,
L) = —\2 cos ¢ + 2\1&7'0[)0&%@25 cos ¢ + \}impo sin ¢,

2.5.5 Limit of applicability of CED and Classical Radiation Domi-
nated Regime (CRDR)

All the results derived in this Chapter are valid in the realm of CED, that is to say
when the electron quantum parameter is small compared to unity. As will be seen
in the next Chapter, when the quantum parameter approaches unity, most of the
electron’s energy can be emitted in one single photon, making the classical picture
of the electromagnetic field no longer valid. Moreover, in such a situation, it is
impossible to model RR like a continuous friction force like was done in this Chapter.
Although it is impossible, in the realm of CED, that the electron loses most of its
energy in one single photon emission, it is possible to radiate most of its energy in one
laser period in many photons, each having a small fraction of the electron’s energy.
This is the so-called Classical Radiation Dominated Regime (CRDR) [Shen, 1970,
J. Koga and Bulanov, 2005,Di Piazza, 2008,Di Piazza et al., 2012]. Using Eq. (2.90)
to evaluate the classical radiated power, the Classical Radiation Dominated Regime
(CRDR) is described by

R.=axpap~1, xo<l1. (2.191)
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Quantum electrodynamics

There are no real one-particle systems in nature, not even
few-particle systems. The existence of virtual pairs and of
pair fluctuations shows that the days of fized particle num-
bers are over.

Victor Weisskopf
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3.1 Outline

In the previous Chapter, we described Classical Field Theory (CFT) and its appli-
cation to the electromagnetic interaction : Classical ElectroDynamics (CED). This
description was purely classical. However, we know that when the energy of the
photon emitted by an accelerated electron is no longer negligible compared to the

o1
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energy of the electron itself, the particle-like character of light starts to manifest it-
self and we need a quantum description to study this phenomenon. Quantum Field
Theory (QFT) is the synthesis of quantum mechanics and CFT and it has been
discussed in many textbooks (See, e.g. the seminal books by [Peskin and Schroeder,
1995, Weinberg, 2005, Schwartz, 2014]). However, QFT and more precisely Quantum
Electrodynamics (or QED, the QFT of the electromagnetic interaction) only starts
recently to be of use in laser-plasma interaction. Our goal here is therefore to pro-
vide a self-consistent summary for researchers and students that are not familiar with
this theory. In order to maintain the presentation both logical and compact, not all
derivations presented here are straightforward: some results may require quite some
algebra before being derived. I have however tried to state clearly all assumptions
used in the derivations, and to provide physically intuitive pictures when possible
in order to get a qualitative idea before going to the computational part. Moreover,
the focus of this Chapter is also Strong Field QED (SFQED), which differs from
vacuum QED, in that the former takes place in a strong background electromag-
netic field (instead of vacuum). Strong field QED has (perhaps surprisingly) been
discussed in very few books and one usually has to refer to articles or PhD thesis.
We list here some references that can help the interested reader. The seminal results
of SFQED were derived by [Ritus, 1979]. The excellent textbook by [E. S. Fradkin
and Shvartsman, 1991] gives a consistent exposure of SFQED from first principle
(In addition, it treats the case of unstable vacuum which we don’t consider in this
work). Finally, I would like to note that I have benefited a lot from the excellent
thesis by [Seipt, 2012, Mackenroth, 2012, Meuren, 2015, Torgrimsson, 2016].

This Chapter is structured as follows. Section 3.2 introduces some general con-
cepts of QFT, such as canonical quantization, Fock spaces and the scattering ex-
periment that is central to the S-matrix. We then apply these results to QED and
in particular, we discuss the Dirac Lagrangian, equation of motion and propagator
in Sec. 3.3. We then turn to SFQED which is central to this thesis. In particular,
the background electromagnetic field is described by a coherent state, which is the
quantum state that is the closest to a classical one. The Fock states are generalized
to semi-coherent states in order to take into account the presence of the background
field (Sec. 3.4.1). Finally the Feynman rules in the Furry picture are enunciated and
used to derive the different probabilities for nonlinear Compton scattering (Sec. 3.5)
and nonlinear Breit-Wheeler pair production (Sec. 3.6).

3.2 Quantum field theory

3.2.1 Canonical quantization of classical fields

In order to quantize a set of classical non-interacting bosonic [¢;(z)]i=1.» and fermionic
[¥j(x)]j=1..m fields described by a free Lagrangian density Lo(¢;, 0u¢i, ¥i, 0u10;), we
need to promote them to operators and to impose to them the equal time commuta-
tion (for bosonic fields) and anticommutation® (for fermionic fields) relations [Peskin
and Schroeder, 1995, Weinberg, 2005, Schwartz, 2014]

[(Z)i(a:),ﬂj(m')]xoz% = 10 (53(x—x'), (3.1a)
{$i(2). 552}, = 160 (x—x), (3.1b)

[1]

las imposed by the spin-statistics theorem.
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while

[¢l(x)7 ¢j ('T/)] =0, [Hi(x)v Hj (.’L‘,)] =0, (3'23‘)
{vi(@), v} =0, {Ei(),E;(x")} =0, (3.2b)

where II; (resp. Z;) is the conjugate momentum associated to ¢; (resp. v;) defined
as

II; = 8(68?)@(;1-)7 (3.3a)
5 = 8(%%. (3.3b)
Expanding ¢; and ; in Fourier components yields
60) = [ s (s + alydiate) (3.40)
v = [ @jf;ﬁ) (bip Bip(a) + 0] Tl (3.40)

where <Z~>lk(a:) and ﬁi,p (x) are solutions of the momentum space bosonic and fermionic

free equations of motion (2.3). The coefficients aL and ax (resp. bI, and bp) are
interpreted as bosonic (resp. fermionic) creation and destruction operators which

satisfy the commutation (resp. anticommutation) relations?

ik alyo] = 2m)% 0, 0P (k =K, [aix.aj0] =0, [aly,al ] =0, (3.52)
{bip, bl b = (27)% 6550 (p = P'), {bip,bjp} =0, {b,.01 }=0. (3.5b)

3.2.2 Fock space

In QFT, particles are defined as excitations of quantum fields® and more precisely,
the creation and annihilation operators defined in (3.4a) can be used to define a space
of eigenstates of the free Hamiltonian®. For example, one-particle states would be
defined as |p) = a;r) |0). More generally, the state of a system of any given number
nk of bosons in the momentum mode k and np fermions in the momentum mode p
is described by the so-called Fock state [Fock, 1932]

al Y (1o
Ki...,p1,...) :H( )™ (bp) 0, (3.6)

kp nk! w/np!

where |0) is the vacuum state of the free theory, defined as the state annihilated by
all destruction operators ax |0) = by [0) = 0.

2Note that this quantization procedure can be complicated by the vector nature of the field. We
meet this difficulty in the quantization of the spin-1 particles.

3The consistency of quantum mechanics with special relativity indeed forces us to abandon the
interpretation of the single-particle interpretation of the wave function (see Klein paradox and
Schwinger effect in Chap. 1).

4For an interacting system, it is not possible to enumerate the number of particles in a given
state since quantum fluctuations may temporarily create additional virtual particles. From a math-
ematical point of view, the equation of motion of an interacting field will be non-linear. The simple
plane-wave expansion (3.4a) used for non-interacting fields where the coefficients are interpreted as
creation and annihilation operators will therefore no longer be possible which renders the following
construction impossible.
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3.2.3 The S-matrix

So far, we have only considered non-interacting systems, which are of course of
limited interest in practice. We will develop here the formalism used to describe
interacting systems.

The scattering experiment

A key experiment in QFT is the scattering experiment in which we assume that the
actual interaction region is confined in a small region in space and time [Heisenberg,
1943]. The interaction term is therefore assumed to turn off asymptotically in the
remote past and future and that, there, the theory is a free theory whose spectrum
is made of eigenstates of the free Hamiltonian. We write ¢ the full interacting field
and ¢i, and @oy; the free fields in the far past and future. We then have®

xolinilooﬁb(x) = (), (3.7a)
xol—lgﬂoogi)(x) = ¢out(T) . (3.7b)

Assuming that the Lagrangian density £ of the interacting system is such that £ =
Lo+ Lint where Ly is the free Lagrangian density and Ly the interaction term, then
the corresponding Hamiltonian density reads H = Ho + Hint, where® Hing = —Lint.
The evolution of the different fields is then determined, in the Heisenberg picture,
by

o(t,x) = eHt=) gz x) e~ tH(t=t0) (3.8a)
Gin(t,x) = MU0 6o (19, %) e Holl—to) (3.8b)
¢out (tu X) = eiHO(t_tO) Dout (t07 X) e_iHo(t_tO) , (3'80)

where the Hamiltonian H is related to the Hamiltonian density H by H = [ d®z H.
The physical quantities that we wish to compute are the transition amplitudes

out <qlaq27"'7qi|p17p27"'7pf>int ) (39)

whose square modulus will enter in cross-sections [Peskin and Schroeder, 1995]. The
states |p1, P2, ..., Pf);, and [q1, gz, ..., Qi) oy are asymptotic states that belong to the
free in and out Fock spaces (3.6). In order to compute these transition amplitudes,
we need to relate these free states to the full interacting state ¢.

The interaction picture

In order to compute (3.9), we need to relate the interacting field ¢ to a field ¢y,
called the interaction picture field, that evolves according to the free Hamiltonian
Hy

$1(t,x) = €07 oy (to, x) e~ 07, (3.10)
where 7 =t — tg. We can therefore link this field to the full interacting field as

gb(t,x) — eiHT gb(to,x) e—iHT — eiHTe—iHoT ¢[(t0,x) eiHoTe—iHT7 (3‘11)

SWe ignore here the issue of field renormalization for the sake of simplicity.
5Note that this relation holds only if the interaction Lagrangian does not contain any derivative
of the fields.
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o P1
far past 92 far future
interaction 2
free states region free states
q;
P

Figure 3.1: Because of quantum fluctuations, an interacting system does not have, in QFT
a given, fixed number of particle. In order to overcome this problem, we consider scattering
experiments in which we only consider asymptotic free states. Given a free state in the far
past, we want to compute the probability of each outcome in the far future. This is done
using the S matriz (3.18).

from which we define the time evolution operator
Ult,tg) = eTomeHT (3.12)

It is possible to show that it satisfies the following differential equation

i%U(t,to) = H;(HU(t, t), (3.13)

where H; = 107 H;, e ~"H07 ig the interaction picture Hamiltonian. We thus deduce

U(t,to) = T exp [—i/tt dt’HI(t’)] , (3.14)
0

where 7 is the so-called time-ordering operator defined as

T ¢(21)d(2)..0(xn) = O(20,)d(0,).-P(20,) (3.15)
for bosonic fields and

T (1) (x2)...t(xn) = sgn(o) ¥ (2g, )¢ (x5, ) ¥(z3,) (3.16)
for fermionic fields, where 2J < 29 < .. < 20 and where o is the permutation
that brings {x(l), 9, ..., mg} to {1'21 , xSQ, ey mgn } The sign of the permutation sgn(o)

in (3.16) is equal to +1 for cyclic permutations and —1 for non-cyclic permutations.

The S-matrix
Writing |7);, and |f),, & generic in and out state, they are therefore related by
1f)out = U(—00,+00) |3);, - (3.17)

The operator S = U(—o0, +00) is called the S-matriz. Using L1 = —H  the inter-
action picture Lagrangian, it reads

S =T exp [2 / d*z 51] (3.18)

However, no exact solution of S is known. We therefore need to rely on perturbation
theory. We write

“+o0o
§=> "s5m, (3.19)
n=0
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where SM = L [dizy [ dizs... [ d*z, T [L1(21)L1(22)...L1(2,)]. Going back to the
transition (3.9), we have

out <f‘Z> int —  out <f’5|7’> out — in <f’S’Z> in ? (320)
which in perturbation theory yields

+oo
Spi=>_ 8%, (3.21)

n=0

with S](v?) = ., (fIS ()7 .- This procedure leads to the well known Feynman dia-
grams [Feynman, 1949, Weinberg, 2005] that we will describe in more details in the
case of strong field QED (SFQED).

3.3 Quantum electrodynamics

QED is described by the following Lagrangian density [Landau and Lifshitz, 2012]

_ 1 _
Lqep = Y(id — m)¥ —EF’“’F,“, —e AP U (3.22)
N———— N————
EDirac £ﬁ d L‘/int

In the same way as for CED, all the terms in this Lagrangian density will now be
discussed one by one.

3.3.1 Lagrangian

Spin % particles are described in QED by the so-called Dirac Lagrangian [Dirac,
1928]

Lpirac = \I’(Za - m)\Ij, (323)

where U is the Dirac field, ¥ = ¥~0 its adjoint and 4* the so-called gamma matrices
(see App. B.1). Note that this Lagrangian is invariant by global U(1) symmetry,
that is to say it is invariant by

U — e, (3.24)

where” § an e are two constants.
Spin 1 particles, and in particular here, photons, are described by the Lagrangian
of the electromagnetic field

1
Lfiela = _ZFMVF#I/- (3.25)
In the same way as for CED this Lagrangian is gauge invariant, i.e. invariant by
Al — AP — OF0 . (3.26)

The Lagrangian obtained by combining (3.23) and (3.25) is still invariant by
global U(1) symmetry, but under a local one. It is indeed transformed as

LDiraC + Eﬁeld — »CDirac + ['ﬁeld +ie aue \TJ’YH\II ’ (327)

"We will see that ¢ is associated to the electric charge.
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where 0 is a function of z. In order to make this Lagrangian invariant under local
U (1) symmetry, we change all the partial derivatives 0, by covariant derivatives D,,.
This yields

_ 1
L=V(D—m)¥ — ZFWFW, (3.28)

where
D,V = (0, —ieA,)V. (3.29)

We say that we have gauged the global U(1) symmetry®. Expanding the covariant
derivative in this Lagrangian, we get the Lagrangian of QED

_ 1 _
Lqep = Ui —m)V — ZFMF,, — e AV Ty (3.30)

Thus, the electromagnetic field is coupled to the Dirac field by the interacting term
Ling = —e AP UM, (3.31)

To the Dirac field, we therefore associate the following current
e = T (3.32)

from which we deduce the conserved charge
Qirac = /dS-29 A (3.33)

This current can also be derived from Noether’s theorem applied to the global U(1)
symmetry.

3.3.2 Equations of motion

Application of ELE to Eq. (3.23) yields the Dirac equation

(i —m)¥ =0 (3.34)

and the corresponding one for its adjoint

I
V(i@ +m)=0. (3.35)
The solution of the free Dirac equation is given by

U(z) = us(p)efipx, (3.36a)
U(x) = wvs(p)e?”. (3.36D)

They are interpreted respectively as particles and anti-particles of energy ¢, =
v/pP?2+m? and spin s = :l:%. The components ug(p) and vs(p) are called Dirac
spinors (see App. B.3 for more details.).

As mentioned Chap. 1, in QFT wave functions are no longer sufficient to describe
the physical situation and we need to turn to quantum fields. To do so, we follow

8The obtained theory is called a gauge theory and A* a gauge field.
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the procedure described in Sec. 3.2 and promote ¥ and V¥ to operators and impose
to them the canonical anti-commutation relations

{‘%w}(x’)} =000 =x), (3.37)
X 77)0
since
aACDiram .= 0 .
[y = =040 =0T, :
o 20) iUy =1 (3.38)

We obtain the quantized Dirac field

&k —ipx ipx
U(r) = /W Z [Cp,sus(}?)e P +d;f,,svs(p)ep} , (3.39a)
s:i%
_ Bk B i B Cion
V() = /(2”)3%7() [CL,sus(p)eP +dp sUs(p)e p}, (3.39b)
s=+1

2

where the creation and anhilation operators (cpﬁ, ch, o> dp.s; d;r), S,) obey the follow-

ing anti-commutation relations

{epsrchi o} = (21)° (2ko) 6©) (p — P/) Ouwr . (3.40a)
{dpdl, 3 = (27)% (2k0) 0P (p — D) busr - (3.40b)

Application of ELE to Eq. (3.25) yields Maxwell’s equations exactly like in CED
(see Chap. 2.). We then need to quantize the obtained field. However, we see that in
this case the canonical quantization procedure cannot be straightforwardly applied®.
In particular, we have

_ O0Lfela
Ty = =55 =0, (3.41)

Following the covariant quantization procedure, we add the so-called gauge firing

term 2—15 (@LA“)2 to Eq. (3.25) and require that 0,A* vanishes between physical

states [Gupta, 1950, Bleuler, 1950]. Then the obtained quantized electromagnetic
field reads

d3kf —ik T ik
ww = [ Bz 2 ke o o e (3.42)

where €],  are orthogonal polarization 4-vectors
eﬁja €uk o' = =050, (3.43)

and the creation and annihilation operators follow the commutation relation

(O e o) = —(27)° 21 8% (K = K) g (3.44)

9There are many other subtleties in the quantization of gauge fields which we will not detail
here. The interested reader is referred to [Gupta, 1950, Bleuler, 1950, Peskin and Schroeder, 1995,
Weinberg, 2005, Landau and Lifshitz, 2012, Schwartz, 2014]
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3.3.3 Propagators

In the expansion of the S-matrix (3.21), we encounter (at loop order [Schwinger,
1948, Feynman, 1949]) terms of the form (0| 7 1 (z')v(z) |0) and (0| T~ A*(z') A (z) |0)
where 1) and A" are the free Dirac field and electromagnetic field potential (resp.)
and |0) is the vacuum of the free theory. It is possible to show that these vacuum ex-
pectation values are linked to the Green’s functions of the Dirac and electromagnetic
field equations. They satisfy, in momentum space

(p-m)Sp) = 1, (3.450)
v 1 vl A
[an“ — (1 — 6) KMk ] Gup(k) = nt,, (3.45b)
where S(p) and éup(k‘) are the Fourier transform of the solutions in position space
S(z — 2') and G,,(x — ). Moreover, in the second equation, we have added the

gauge fixing term!? —%(814)2 to the Lagrangian (3.25). The solutions of (3.45)
read, in position space

d4p Z(p+m) ip(x—a’
Sz —a) = / i e "), (3.46a)

y Ak —i y EPEY ] (e

The functions S and G*” are called Dirac and photon propagators (resp.) and they
are linked to the vacuum expectation values of the free fields (3.45) by

O] T (" )p(x)|0) = iS(z—2'), (3.47a)
(O] T A (2)AY (2) [0) = —iGH(z — ). (3.47b)

3.3.4 Energy-momentum tensor

In the same way as in Chap. 2, we will derive here the energy-momentum tensor for
the Dirac field. Using the formula for the canonical energy-momentum tensor (2.16),
we obtain

T = iUyrOY Y — U (i — m)V . (3.48)

Dirac

from which we get the energy and momentum

Whirae = T]g(i)rac = z\IITﬁt\II’ (349&)
Phirae = Tac = 1000 (3.49D)

The energy-momentum for the electromagnetic field is already given in Chap. 2.

3.3.5 Angular momentum tensor

Following Sec. 2.3.4, the angular momentum tensor of the Dirac field is given by

MFYP = §Byh (27 0P — 2P + TVP)T (3.50)

Dirac

from which we deduce

Dirac Dirac

P / B M — / B iU (2700 — 2P0 4 SVPV (3.51)

10The photon wave operator in momentum space is otherwise not invertible.
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where 7P = %J”” with o¥? = %[7”, ~P]. In the same way as in Chap. 2, we define

. 1 i i 5 T T,
IDirac = 56” I ne = /d :C\I/T(GZ] 70 +§€U DI\ (3.52)
It is possible to show that the first term corresponds to the orbital angular mo-
mentum while the last term corresponds to the spin angular momentum. We then
write

Jpirac = Lpirac + SDirac » (3.53)
with
Lpiae = / BrUix x v, (3.54a)
Spirac = / Bruisw, (3.54b)
where
3= % (‘g 2) : (3.55)

and where ¢* are the Pauli matrices (see App. B.1).

3.4 Strong field QED

The success of vacuum QED relies on the smallness of the fine-structure constant
which makes the perturbative development of the S-matrix extremely efficient [Pe-
skin and Schroeder, 1995, Weinberg, 2005, Landau and Lifshitz, 2012,Schwartz, 2014].
However, in presence of a strong external electromagnetic field, this perturbative
expansion breaks down and we need to develop non-perturbative methods [Ritus,
1979, Mitter, 1975, E. S. Fradkin and Shvartsman, 1991, Baier et al., 1998, Di Piazza
et al., 2012]. Indeed, the Dirac propagator in presence of an external field Ayt
satisfies the equation

(i — elexs —m) S(z —2') = 6§z —a). (3.56)

Performing a naive perturbative expansion in Aey the so-called dressed propagator
S(x—2a') (represented diagrammatically by the double horizontal line on Fig. 3.2) is
expressed as an infinite sum of diagrams involving free electron propagators (3.46a)
(simple horizontal lines on Fig. 3.2) and vertices (black dots on Fig. 3.2) representing
the coupling with the external field Acy; (denoted by ® on Fig. 3.2). For each
coupling, we obtain one more vertex and free propagator!'!. Each vertex corresponds
t0 —ieex; ~ eAext While each free propagator is 1/(p—m) ~ 1/m (see Eq. (3.46a)).
Hence, the expansion parameter is of the order eAey;/m = ag > 1 which makes the
perturbative expansion blow up for strong fields. The regime ag > 1 is therefore
referred to as non-perturbative. We also talk about multi-photon or nonlinear regime.
This is due to the fact that (going back temporarily to SI units)
eFext eE ).

= = 3.57
ag mew heo ) ( )

represents the number of photons (of energy fiw where w is the frequency of the
external field, which we will refer to as ”the laser field”) absorbed over one Compton
wavelength ..

LA classical background field is incapable of forming loops.
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Figure 3.2: Perturbative expansion of the dressed Dirac propagator (double horizontal
line) with respect to the external field Aext (denoted by ®). Each order adds one vertex
(black) and one free Dirac propagator (simple black horizontal line) making the nth order
being of magnitude ~ ag.

3.4.1 Coherent states

The usual formulation of QED in which the states belong to a Fock space as described
in Sec. 3.3 is inadequate in SFQED. Indeed, the number of photons in a laser field
is huge (see previous Sec.) and the usual perturbative treatment in this case would
yield a tremendous amount of diagrams to be taken into account. Actually, for such
a big amount of photons, the electromagnetic field will behave classically. Indeed,
when the number of photons Ni in the state of momentum k is large, so will be the
coeflicients cy , and CLU in Eq. (3.42). Therefore, neglecting the RHS of Eq. (3.44)
which is of the order of 1 yields

ck,UcLU ~ cLUck,J , (3.58)

and the creation and annihilation operators thus become the classical commuting
coefficients ¢k, and ¢y . Intuitively, this is due to the fact that for strong enough
fields, their amplitude is so large that the quantum fluctuations on top of them can
safely be neglected. More quantitatively, let us evaluate the number of photons of
the laser field. We consider an interval of time At during which the field £ does
not vary too much. According to the uncertainty relation, such a field will have
frequencies up to w ~ 1/At. The density of modes with frequency w is therefore
given by

(3.59)

According to Eq. (2.54a), the energy density of the field is proportional to <E>2,
from which we deduce the order of magnitude of number of photons as

2
E)¢?
Ny ~ < hz)4 (3.60)
The condition of classicality Nyx > 1 is therefore equivalent to
Vh
(E) > 20 (3.61)

(cAt)2”

We therefore conclude that variable fields, if sufficiently weak, can never be treated
classically. On the contrary, static fields, whatever their strength, are always classi-
cal. In the case of laser fields, it is interesting to express this condition in terms of
the laser intensity. We get [Landau and Lifshitz, 2012]

hw 4
I>6x10° W/cm? <1eV> : (3.62)
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In the case of relativistic (I > 10'® W/cm?) optical lasers that we will consider in
this thesis, the classical condition will thus always be satisfied.

The other assumption that must be verified is that the external field does not
get depleted during the interaction, that is to say, the number of photons that are
absorbed must be small compared to the total amount of photons in the laser field.
A laser contains approximately 6 x 10'® photons of 1 eV per Joule of laser energy.
As explained in Sec. 2. 4 8, an electron in an external electromagnetic field emits
harmonics up to n. ~ ao Quantum mechanlcally, this means that the number of
photons emitted is of the order of aj. For a typical laser strength of ag ~ 102,
we therefore have 105 photons absorbed per electron. For a typical number of 10°
electrons, the total number of absorbed photons is around 10'® which leaves a typical
laser beam with 100 J almost unaffected!?.

Under these conditions, we will model the laser field by a coherent state [Glauber,
1963, E. S. Fradkin and Shvartsman, 1991, Harvey et al., 2009]. Quantum mechani-
cally, a coherent state of the photon field has the form

|A) = D10} , (3.63)

where D is the so-called displacement operator and |0) the vacuum state of the
photon Fock state. If the classical 4-potential associated with this displacement
operator is

3 . .
Al (z) = / (dk 3 [Ck,g ey e“ﬂ : (3.64)

277)32wk o019

where Cy , are a c-numbers, then the displacement operator reads

D = exp Z / 27) 32k0 CkUCka Cfi,gr:k,a) (3.65)

where CLU and cg, are the creation and annihilation operators of the quantized

photon field (3.42). Using the commutation relation (3.44), we can show that

D7lex oD = cxp+Cko, (3.66a)

Dl D = o, +Ci,, (3.66b)
from which we deduce that

(A|A*(x)|A) = A (x) . (3.67)

It is in that sense that we say that the coherent state is ”the most classical state”
of the photon field. Finally, application of the displacement operator on the photon
field operator A*(x) yields

DA*(z)D™' = AM(z) + A*(2) (3.68)

In order to describe scattering processes in a background field, we will thus have
to generalize the Fock states defined in Sec. 3.3 in order to incorporate the coherent

2The reader interested about the treatment of depletion is referred to [[lderton and Seipt,
2018, Heinzl et al., 2018]
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P1 far future
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far past
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state VNN state

Figure 3.3: In the presence of an external field, the scattering experiment described for
vacuum QED in Fig. 3.1 is modified by the presence of the external field both in initial and
final states (if depletion is neglected) modelled by a coherent state (3.63).

states that will describe the classical background field. These generalized states are
written |N; C') obtained by acting the displacement D on a Fock state |N)

IN:C)=D|N), (3.69)
with
) = fmeot) = T 2 o) (3.70)
7 ko V nk,U!

These states are called semi-coherent and satisfy

(N; C|A*(2)|N; C)

NIV A (z), (3.71a)
<N;C<|xT}3’>N;C> = |G + e, (3.71b)

where ]\Afkvg = CL »Ck,o is the photon number operator. A semi-coherent state can
therefore be pictured as N photons over a classical background A*. We will thus
consider scattering processes of the form |C;i) — |C; f) (see Fig. 3.3) and so we will
be led to compute matrix elements of the form

out <f’ Ch? C> in — in <f’ C’S’Z7 C> in = in <f7 O’S [\Il’ \II’ A] |Z, C> (372)

in °

Using the definition of the semi-coherent state (3.69) and Eq. (3.68), we deduce
that

w (OIS [0, W A i:C) = | (FIS[P, ¥, A+ A]|3)

in

(3.73)

in

Equation (3.73) shows that computing S-matrix elements between coherent states,
is equivalent to compute S-matrix elements between usual vacuum states with the
shift A# — A% | + A" to the Lagrangian (3.30), which yields

_ 1 _
Lsrqep = V(i — e A —m)¥ — ZFM Fuy — eUhq¥ (3.74)

We will use this fact extensively in the rest of this thesis in order to compute processes
in strong background fields.
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3.4.2 Furry picture

Following the procedure described in Sec. 3.2.3, we split the Lagrangian (3.74) into
a free and an interacting part like

Lsrqep = Lo + Lint , (3.75)
with
— 1
Lo = \I/(i(ﬁ—e./l—m)\I/—ZF“”FW, (3.76a)
Eint - _eliJArad\I/ . (376b)

The interaction picture with such a splitting of the Lagrangian is called Furry pic-
ture [Furry, 1951]. The equation of motion for ¥ corresponding to the free La-
grangian L is then

(id —eA—m) ¥ =0 (3.77)

3.4.3 Volkov states

In order to apply the S-matrix expansion described in Sec. 3.2.3 with the split-
ting (3.75), we need to have a solution of (3.77). This is provided by the Volkov
states [Volkov, 1935] (see App. B.4 for more details)

v, () = \/E Ey(x)ur(p), (3.78)

where u,(p) is the free Dirac spinor defined in Sec. 3.3.2, while
G%A(Cf))] RENE
2(kp)

is the so-called Ritus matriz. The phase Sy(x) is the classical Hamilton-Jacobi
function for a charged particle in a potential A and is given by

e [P [eRAGR) e A(p)?
Sp(x) = —p / dy [ ) 2k ] : (3.80)

Ep(x) = [1 + : (3.79)

The Volkov states are therefore quasi-classical states. Finally, the constant , /ﬁ

is chosen so that the states are normalized to one particle per volume V

/V\IJXJ vy=1. (3.81)

Let us analyze in more detail each term of this solution. First of all, we notice
that for A(p) — 0, \I’XT(.CE) — ¥, »(z) as we would expect. Multiplying Eq. (3.77)
on the left by p — e/l +m, yields (see App. B.4)

[(p —eAd)? —m? - %eF,WaW =0, (3.82)

where %a’“’ represents the spin of the electron as shown in Eq. (3.51). Therefore,
taking o#*¥ = ( yields the spinless Gordon-Volkov equation

[(p—eA)? —m*| ¢ =0, (3.83)
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\I/G _ iSp(x) . 84
p,’/‘(x) 2€pV € U (p) Y (3 8 )

where Sy, (z) is given by (3.80). We therefore see that the term efégj) represents the
change in the spin of the electron due to the external field. Moreover, it is easy to
see that the spin of the electron returns to its initial state after leaving the field!3.
Computing the associated Volkov current yields

whose solution reads

epA 2 A?

]‘L/ = 0Vy, UV ~ o — AP 4 (

which is exactly the 4-momentum of a classical particle in a plane-wave. Before
entering the plane-wave, the electron wave-function is a plane-wave field ¥, .(z).
Then, when entering the plane-wave, the centroid of the wave function follows the
classical trajectory (3.85) while its phase is shifted like [Seipt, 2012] pzr — px +
f¢> dop {e(pA(@)) _ 62«4(@)2}_
do (kp) 2(kp)

Finally, following the procedure described in Sec. 3.2, the quantized Dirac-Volkov

field is given by

3
Vo) = [ G Y [oos Boleptr) . Efo)unl] - @50

2

3.4.4 Volkov propagator

As shown in Sec. 3.4, the dressed Dirac propagator needs to be solved non pertur-
batively. The solution is the so-called Volkov propagator [Volkov, 1935]

SV (z—a) = / d'p By@)— ™ gy (3.87)

(2m)4 p? —m?2 + ic

On the other hand, the photon propagator is not changed by the presence of the
external field and is given by Eq. (3.46b).

3.4.5 Position space SFQED Feynman rules

In the same way as vacuum QED, the perturbative expansion of the S matrix can be
represented diagrammatically by Feynman diagrams [Feynman, 1949, E. S. Fradkin
and Shvartsman, 1991]. The rules to build these Feynman diagrams in SFQED are
formally obtained from vacuum QED by replacing free spinors u, , by the Volkov
dressed spinors E,(x)u,,, while the fermion free propagators are replaced by the
Volkov-Dirac propagator (3.87). On the contrary, the photon wave function and
propagator are left unchanged by the background field. These rules' are summa-
rized on Tab. 3.1

131n addition to the classical fact that the momentum of the electron also returns to its initial
value after leaving the pulse (See Chap. 2)

These rules apply to stable vacua, i.e. in the presence of fields with ¢1 = (2 = 0 [Eq. (2.35)].
For Feynman rules in unstable vacuum, the reader is referred to [E. S. Fradkin and Shvartsman,
1991].
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Table 3.1: Strong field QED Feynman rules for the calculation of S-matrix elements in the
presence of a strong background electromagnetic field. The double line in the fermion states
and propagators stress the fact that the interaction with the background field is taken into
account non perturbativly.

Vertex —ieyH vVV~<

Photon propagator —iGM (x — ') xSy
Dirac propagator iSV(x — ') x —— ¥
. . x e—pr—
Incoming fermion Ey(2) upo —
— :b X
Outgoing fermion Up,o Ep(x) R
P
Incoming anti-fermion v, , E_p(x) ) 1
p
. . . —— x
Outgoing anti-fermion Ep(z) vp 4 o
. X &~~~
Incoming photon et e~ikz —
k
. . . ik S X
Outgoing anti-fermion €*# '*® -

3.5 Non-linear Compton scattering

We apply SFQED Feynman rules 3.1 to the Compton scattering process described
by the Feynman diagram 3.4. The S-matrix element for this process is given by

sz = —'ie /d4.’1,”(/}p/78/ AZ/})\ ’l/]p757 (388)

in which we insert Eq. (3.78) and the gamma quantum described as a single mode
{ky, Ay} of a quantized radiation field A"

Ag = me_“gwxfg . (389)
v

Moreover, we make the following assumptions : (i) the electron interacts with a
slowly varying external field compared to the formation time of the radiated photon
[this is the so-called local constant field approximation (LCFA)]. The local constant
field approximation relies on the possibility of neglecting space-time variations of
the external field within the region of formation of the considered process (here a
high-energy photon, see also Ref. [Baier and Katkov, 2005]). It is possible to show
that the photon formation length is inversely proportional to ag = e|A*|/(mc?),
which makes this condition valid for ag > 1. The LCFA has been the focus of many
recent papers. The interested reader is referred to [Di Piazza et al., 2018, A. Tlderton
and Seipt, 2018, A. Di Piazza and Keitel, 2019].

In addition, we assume that : (ii) the external field is undercritical, i.e. both
Lorentz invariants of the electromagnetic fields (2.35) are small with respect to the
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Figure 3.4: Feynman diagram for the nonlinear Compton scattering e~ +nyy — ¢~ + in
which an initial electron with momentum p in a background laser field yields a photon with
momentum k& and a final electron with momentum p’ in the same background laser field.
This Feynman diagram is associated to the S-matrix element (3.88).

corresponding invariants of the critical field of QED Es = a E,, ~ 1.3 x 108 V /m

(1 < EZ, (3.90a)
G < E?, (3.90b)

and (iii) small compared to the square of the electron quantum parameter x and
normalized field strength ag

max((1, (2) <K X2, a% . (3.91)

Under condition (ii), vacuum is stable and one can use the usual Volkov states (3.78)
and Furry picture 3.4.2 to compute the desired SFQED cross sections. Moreover,
under condition (iii) together with condition (ii), all the emission probabilities (that
we generically denote W) will depend only on y and ag

W(ao, x,{¢i}) = W(ao, x,0) + O({G}) - (3.92)

The reader interested in cases where vacuum is unstable under particle creation'?,

is referred to [E. S. Fradkin and Shvartsman, 1991].

Under these assumptions, Eq. (3.88) yields after lengthy calculation (See App. 3.5
for more detail) the Lorentz invariant differential probability of photon emission [Ri-
tus, 1979, Seipt, 2012, Mackenroth, 2012]

danCs o 20472 G(X7X’y)

drdv, 31 v (3.93a)
\/gx +o0 3
G(X;Xy) = gi {/ dy K5/3(y) + §X7VK2/3(V) (3.93Db)

where G(x, X~) is the so-called quantum emissivity (see Fig. 3.5b), and v = 2 x,,/[3x (x—
X))

In Eq. 3.93a, the differential probability of photon emission is written in a man-
ifestly Lorentz invariant way using the proper time 7 and the photon quantum
parameter x~. However, it can be convenient in practice to write it as a function of
the laboratory time ¢ and normalized energy -,

PNacs| (20 G(x.9)
dtdry, X%ﬁ 3Te Yy

: (3.94)

5These are electron-positron in QED
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where:

Giee =] [

3
9 dy Ks/3(y) + XY Ky3(v)| (3.95)

with § = x5/Xx = 7y/7 and v = 2¢/[3x(1 - £)].
Multiplying Eq. (3.94) by ymc? yields the radiated spectrum
d*&

= Py’ :
dray, ~ 10 G xy) 5 (3.96)

which integrating over all photon energies gives the total quantum radiated power

Fraa = / +Ood% Lde Pya?x* g(x) (3.97)
0 v drdyy

where (see Fig. 3.5a)

o = [l _048%, [25t
o X8 8m Jo (24 3vx)?
4v (3vy)?

The quantum emissivity G is represented as a function of xy and £ = x,/x in Fig 3.5b.
We see that it presents a cut-off at £ = 1 (electrons cannot emit photons with an
energy greater than their own energy), which is not the case of the classical emissiv-
ity (2.153) (Fig. 3.5¢) for which electrons can radiate frequencies corresponding to an
energy greater than the electron’s energy. The total quantum radiated power (3.97)
is attenuated by a factor g(x) [given by Eq. (3.98) and represented in Fig. 3.5a]
compared to the classical one (2.90). To better see this effect, let us represent the
radiation spectrum as a function of ¢ for different fixed y. For y = 1072 (Fig. 3.9a),
the difference between the classical and quantum radiation spectra is very small and
both spectra are exponentially attenuated below & = 1. For x = 107! (Fig. 3.9b),
we notice a small difference in the total radiated power and in the peak of the two
spectra. There is barely any radiation above £ = 1 in the classical spectrum. Fi-
nally, for x = 1 (Fig. 3.9¢), there is a big difference in the total radiated powers and
in the maximum of the spectra. Moreover, the classical predicts (incorrectly) non
negligible radiation above £ = 1.

In the quantum case, it is possible to evaluate the maximum of the radiation as
Emax ~ %X- For x above unity, since we cannot radiate above £ = 1, &yax of course
saturates to 1 :

1 <1
~ 2X7 X ~
Emax { S (3.99)

As we can see from this simple formula, for small values of y, electrons radiate
photons with an energy much smaller than the energy of the electron itself. In these
conditions, the electron loses energy in a succession of small jumps that can correctly
be modelled by a classical friction force (Fig. 2.8) such as the LL force (2.168)
introduced in the previous chapter 2. On the contrary, for x approaching unity or
above, electrons emit photons with energies close to their own energy. The time
evolution of the electron’s energy will therefore be composed of a succession of large
jumps which cannot be modelled by a classical force. More precisely, the proportion
of emitted photons having an energy larger than 10% of the electron’s energy is
represented in Fig. 3.7.



Chapter 3 69

0
05
st

D
= -

o0

2
-1.51

log X'y/X

log X’y/X

c) logy x

Figure 3.5: (a) Dependence of ¢g(x) on the electron quantum parameter x leading to a
reduction of the emitted power due to quantum effects. (b) Quantum emissivity G(x/x~)/x>
and (c) its classical limit as a function of x and x,/x = 7,/7. Dashed lines in panel (b)
and (c) show x. ~ 0.435x? for which the classical limit of G(x, x~) is maximum.
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Figure 3.6: Comparaison of the radiation spectra calculated in the classical and quantum
frameworks for y = 1072 (a), x = 107! (b) and x = 1 (c). The red dashed line represents
the critical frequency (maximum of the classical spectrum) and the black line the maximum
of the quantum spectrum. The green dashed line represents the limit £ = 1.

From the time-energy differential probability of emission (3.94) we can deduce
the emission rate as
AN 20 [T Gy, §)

- — d 3.100
p (7, x) 57 o Yy y ( )

which can be approximated as

=i (3.101)

3.6 Non-linear Breit-Wheeler pair production

We apply SFQED Feynman rules 3.1 to the Breit-Wheeler process described by the
Feynman diagram 3.8. The S-matrix element for this process is given by

Sy = —ie /d4$1/)p,s Ao s (3.102)

in which we insert Eq. (3.78) and (3.89). After lengthy calculation [Ritus, 1979,
Meuren, 2015], we obtain the differential probability of pair production

d2NnBW _ 2&2 TnBW(X’va)
dtdyx 3T Xy Yy

3 +oo 3
Tupw (X&) = V3 [— / dy Ks3(y) + x4 Koyz(v') (3.103b)

(3.103a)

271' ! 2
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Figure 3.7: Ratio of the radiated power coming from high-energy photons (for which
&€ > 1071). For small values of x most of the energy is emitted in low energy photons (the
total power emitted in photons with more than 10% of the energy of the electron goes to
0) while, as x approaches unity (and above) this quantity tends to 1, i.e. all the energy is
emitted in photons with an energy larger than 10% of the electron’s energy.
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Figure 3.8: Feynman diagram for the nonlinear Breit-Wheeler pair production v + nvyy —
e~ + eT in which an initial high energy photon with momentum % in a background laser
field yields an electron-positron pair with momentum p and p’ in the same background laser
field. This Feynman diagram is associated to the S-matrix element (3.102).
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Figure 3.9: Dependence of TnBW(X'yaf/) as a function of x, and & = x/x,. For small
values of x, pair production is exponentially attenuated, while, increasing ., it reaches a
maximum and then decreases again slowly.

where v/ = % (XWXJX)X. Similarly to the case of nonlinear Compton scattering (previ-

ous section), we can rewrite Eq. (3.103a) in terms of laboratory quantities as

d’>Nypw 2a? Thpw (x4, &)
— | () = =, (3.104)
dtdry - 3T Yy
where
- V3 +oo 3
Tuew (X, &) = gfl [— /, dyKs/3(y) + §Xw’/ Ko3(V')| - (3.105)
Finally, the production rate is given by
dN, Wh
Bw _ y Warw(xr) (3.106)
dt Yy
with
V3 [t +00 3
Waw (Xy) = 5/0 de’ [— /, dy Ks,3(y) + §XW/ Ko/3(v)] - (3.107)
The function (3.107) has the following asymptotic forms
8
—.8 1
Waw () ~ { s SONE (3.108)
Xy y Xy >1

The function T,pw is represented in Fig. 3.9 as a function of X~ and &'. For
small values of x., the total pair production rate goes to 0 exponentially (no pair
creation in the classical regime), while, increasing x., it reaches a maximum and
then decreases again slowly.
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Figure 3.10: In the moderately quantum regime [Di Piazza et al., 2010] (ag > 1 and
X = 1), RR stems from multiple incoherent photon emission. At each photon emission,
the incoming electron momentum is changed by the previous photon emission. The dots
represent all the higher order terms representing 3, 4 etc. successive incoherent photon
emissions.

3.7 Quantum radiation-reaction

In CED, the problem of radiation reaction consists in solving consistently both the
equation of motion for the electron and Maxwell’s equation for the external and
radiated fields (2.155). By analogy, the equivalent problem in QED would amount
to completely determine both the S-matrix in the Furry picture (3.18) and the fi-
nal state |f) for an initial state composed of an electron alone |i) = |e7). The
first-order term of the expansion of the S-matrix corresponds to nonlinear Compton
scattering 3.4 while the higher-order terms correspond either to radiative correc-
tions [Meuren and Di Piazza, 2011a, Meuren et al., 2013] or to higher-order co-
herent or incoherent processes, that is to say processes involving more than one
basic quantum process (such as the photon emission by an electron/positron or the
electron/positron pair creation by a high-energy photon). Higher-order coherent
processes correspond to processes occurring in the same formation length [Seipt
and Kéampfer, 2012, Mackenroth and Di Piazza, 2013, King, 2015] while incoherent
higher-order processes are processes composed of several basic quantum processes
but all occurring in different formation regions. In the regime where y < 1 (and
still in the LCFA approximation ag > 1), the coherent higher-order processes are
negligible because they scale with a. Moreover, since x < 1, the subsequent emitted
photons have x- < 1 and are unable to produce pairs [see Eq. (3.108)]. We therefore
define the non-linear moderately quantum regime [Di Piazza et al., 2010, Di Piazza
et al., 2012] as corresponding to x < 1 and ag > 1. In this regime, radiation reaction
in the QED framework reduces to the overall electron energy and momentum loss
due to the emission of many photons consecutively, and incoherently (See Fig. 3.10).
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Kinetic description

This reminds him of the way blood plasma carries around red
and white corpuscles and germs. So he proposed to call our
“uniform discharge” a “plasma”. Of course we all agreed.

Mott-Smith (1971), referring to Irving Langmuir coining the
word plasma in 1927
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4.1 Outline

In the previous Chapters, we described Classical and Quantum Field Theory (CFT/QFT)
as well as their application to the electromagnetic interaction, namely Classical and
Quantum ElectroDynamics (CED/QED). These descriptions concerned only single
particles. However, in real situations, the interaction of a laser will take place ei-
ther with an electron beam or with a plasma, both being formed by many particles.
The kinetic theory describes ensemble of particles statistically through the use of
distribution functions (rather than by following individually the position and mo-
mentum of each particles at each time). It has been the focus of many textbooks

74
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(See, e.g. the books by [Krall, 1973, Landau and Lifshitz, 1979, Nicholson, 1983]).
Numerically, such systems are simulated by Particle-In-Cell (PIC) codes, which re-
produce the behavior of the assembly of charged particles which constitutes the
plasma, by consistently solving Maxwell’s equations together with the equations of
motion for the charges. They have been discussed in textbooks such as [Tajima,
1989, C.K. Birdsall, 1991].

However, the recent progress in the peak laser intensity and the emergence
of ultra-intense laser-plasma interaction has made it mandatory to take into ac-
count radiation-reaction as well as SF-QED processes in addition to classical plasma
physics both in the theoretical framework as well as in numerical schemes. Our goal
here is therefore to show how to introduce RR as well as QED effects both in the
kinetic theory and in the numerical schemes used to simulate such plasmas. In order
to maintain the presentation both logical and compact, not all derivations presented
here are straightforward: some results may require quite some algebra before be-
ing derived. For a more thorough exposure of the numerical treatment of SF-QED
processes, the reader is referred to the PhD thesis of [Lobet, 2015b] or the review
article by [Gonoskov et al., 2015].

This Chapter is structured as follows. Section 4.2 introduces the general Klimon-
tovich equation from which we derive the Vlasov equation following a mean-field
procedure. In Sec 4.3 we then show how the Vlasov equation fails to incorporate the
radiation by ultra-relativistic particles and how to modify it to include such radia-
tion as well as its counter-action under the form of both the classical and quantum
RR. In Sec. 4.4 we then remind the main part of the classical PIC loop used to sim-
ulate classical plasmas. Finally, in Sec. 4.5, we discuss how to modify the classical
PIC loop in order to simulate plasmas at ultra-high intensities where SF-QED are
no longer negligible.

4.2 Kinetic description

4.2.1 The Klimontovich equation

Clearly, the complete description of a plasma (or any set of particles e.g. an electron
beam) would involve the knowledge of the positions x;(¢) and momenta p;(t) of each
particle 7 at each time ¢t. Such a knowledge can be put for each species « into the
form of a density of particles

S (%,p,t) = Z 03 [x — x;(t)] 6P [p — pa(1)], (4.1)

where x and p are the Eulerian coordinates of the phase space and x; and p;
the Lagrangian coordinates of the ith particle and where the subscript M stands
for microscopic [Krall, 1973, Landau and Lifshitz, 1979, Nicholson, 1983]. Such a
function then completely specifies the microscopic state of the system of particles!.
To this density, we can associate a charge density and a current

pum(x,t) an/d3v far, (x,p, 1), (4.2a)

Iuxt) = D ga / Bov far, (x,p,t), (4.2b)

!This function is very spiky and is either equal to infinity (when taken on a particle trajectory)
or to 0 (where there is no particle).
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where ¢, is the charge of the species a. The electric and magnetic fields being
described by Maxwell’s equations, we then have [Jackson, 1999]

V.Ey = ™ (4.3a)
€0
1
VxBy = C*QatEM'f'/lOJM, (4.3b)
VXEM = —8tBM, (4.3(3)
V.By = 0, (4.3d)

with
PM = an/dspra(X,p,t), (448‘)
Bio= Yo [ @i xp), (4.4D)

where the subscript M emphasizes the fact that Ep; and Bjs are microscopic fields,
while the dynamic of each particle is describes by Newton-Lorentz equations

daci

dt = Vi, (45&)
dv; i

= —(E i X B . 4.
I m; ( M+ Vv X M) ( 5b)

Deriving (4.1) with respect to time, we get [using Eqs. (4.5a)] the so-called Klimontovich-
Dupree equation [Krall, 1973]

Ofm, OfMs | Ga Ofm.
ot +v Ox +ma(EM+VXBM) ap

=0 (4.6)

Although exact, this description is not very useful. Indeed, the Klimontovich equa-
tion basically just states the conservation of the number of particles in phase-space

dfr,
dt

=0. (4.7)

Moreover, this equation provides far more information than what we can treat in
practice. For example, 1 um3 of a hydrogen plasma at 107> n. contains more than
105 particles. We will thus been instead interested in averaged quantities.

4.2.2 The Vlasov equation

Let us decompose the different quantities into their average (smooth) part and a
fluctuation (spiky) part

fa, (%, p,t) = fa(x,p,t) +dfa(x,p,t), (4.8a)
Ey(x,t) = E(x,t)+0E(x,t), (4.8b)
By (x,t) = B(x,t)+0B(x,t), (4.8¢)
with
fa(x,p,t) = <fMa (x, p, t)> , (4.9a)
E(x,t) = (Eu(xt)), (4.9b)

B(x,t) = (Bu(x,t)), (4.9¢)



Chapter 4 77

and where <> represents the ensemble average over a set of realisations of the
plasma in identical prescribed macroscopic conditions. Thus taking the average
of the Klimontovich equation (4.6) and using the definitions (4.9) yields

8fa afa fa
W + v- aix‘l‘ia(E—F XB) a
B o an
= m—a<(5E+ v x 0B) (4.10)

In this equation, the left hand side describes the collective behaviour of the plasma
while the right hand side describes the discrete-particle nature of the plasma which
thus contains all the collisional behaviour.

Collisional effects stem from the Coulomb force associated to individual charges
while kinetic effects are described by the kinetic energy. A plasma will thus be
qualified of collisionless if

nl? = A=nAh>1, (4.11)

€

3

—kpT,

g Bre > 4dmeg
where T, and n. are the electron temperature and density (resp.), A is called the

plasma parameter and Ap = 4/ % the Debye length. Throughout this work,
we will consider ultra-relativistic electron beams and plasmas, for which the condi-
tion (4.11) will be verified. Neglecting the rhs, we thus get

dfa Ofa Ofa
TR a—x+m—a(E+ B)-%_O (4.12)

which is the so-called Viasov equation [Krall, 1973]. The fields satisfy the ensemble
averaged Maxwell’s equations

vVE =2 (4.13a)
€0
1
VxB = S3E+ud, (4.13b)
VxE = -B, (4.13¢)
V-B = 0, (4.13d)

where
M= an/d p fa(x,P:1), (4.14a)

I = Y [ dpviatep). (4.14b)

are the averaged charge and current. The resulting system of equations Eqs. (4.12)-
(4.13d) is the so-called Viasov-Mazwell system. In 4-vector notation, the Vlasov
equation rewrites

0
pt aifj + g F"p, =2 =0 (4.15)
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4.3 Kinetic description of radiation-reaction

4.3.1 Motivation

The Vlasov equation is an equation on the average density of particles v in an ele-
mentary volume of phase-space A3xA3p. For this equation to make sense, the fluc-
tuations ¢ fo(x, p,t) must therefore be small compared to the average f.(x,p,t) =
<fMa (x,p,t)>. This is achieved if the number of particles in A3z is big enough.
More quantitatively, we need Ax > d,, where d,, is the mean inter-particle distance
that we evaluate as d, = na 1/3 with n, the density of the species a. We consider
for definiteness the interaction between an optical laser at Ag ~ 1 pm and a plasma

at ne ~ 100 n,. where

2
ne = €00 ~ 1115 x 107 (1“m> pm=3 (4.16)
e A

is the critical density. The mean inter-particle distance is then of the order of
2.107* ym. In terms of frequency w. = 2mc/d,, this corresponds to an energies of
about hw, ~ 10 keV. Considering a typical ultra-relativistic electron with v, ~ 2000
in an external field corresponding to a quantum parameter y. ~ 1072, the typical
radiated energy is fiw. = Zegxe ~ 10 MeV [see Eq. (3.99)], which is 3 order of
magnitude above the limit of validity of the Vlasov equation. In this context, we
then need to modify it in order to take into account explicitly this radiation.

4.3.2 Vlasov equation with classical RR

As shown in Chap. 2, RR is described classically for a single particle by the LL
equation
dp

E - FLorentz + FLL . (417)

Put in matrix form, we get

d (x P2
el — PO . 4.18
dt <p> (FLorentz + FLL> ( )

Using the equivalence between deterministic differential equations and Liouville
equations [Gardiner, 1989], we deduce the equation of evolution for the electron
distribution function by

86 86 8]:?OI“enZ F €
fo P Ofe  Ol(FLorentz + FLp) Je]

ot  m 0x op

=0, (4.19)

where we interpreted the electron distribution function as the probability density
function of the electron momentum and where d/dt is the Vlasov operator (4.12).

Contrarily to the "traditional” Vlasov equation where V, - Fiorent, = 0, we have
for the RR force V,-Frpr # 0. This means that, when included, RR tends to change
the volume of phase-space that is occupied by the system?. More precisely, we can
show that [Tamburini, 2011]

2 2
Vo -Frr ~ —{ [VX-E—V-(vaB—%?ﬂJrz[E;FB]

o4y [(vxE)2+(v><B)2—2v-(ExB)} } >0, (4.20)

2Contrarily to the case without RR where the volume of phase-space is conserved.
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Figure 4.1: Schematic representation of the variation in the electron energy distribution
due to photon emission by nonlinear Compton scattering. The number of electrons at an
energy < is increased by electrons having an energy < + 7, and emitting a photon with an
energy 7, [first term of the RHS of Eq. (4.23)], while it is decreased by electrons at this
energy « emitting a photon with any energy -, [second term of the RHS of Eq. (4.23)] (see
Fig. 4.1).

The phase-space is thus contracted due to RR in the classical regime. We could
have concluded the same thing by looking at the form of the RR force (2.171). The
dominant term is in —2, which means that the more energetic particles loose more
energy. The net effect is then to narrow the distribution function of the electron
bunch. The ”improved” Vlasov equation including classical RR then reads

Ofe Ofe
ot TV ox

dfe OF
+ (FLorentZ + FLL) : 8];) = _fe¢

(4.21)

4.3.3 Vlasov equation with quantum RR

As stated in Chap. 3, when the quantum parameter of the electron approaches
unity, the radiation can no longer be modelled as a continuous electromagnetic field
but its discrete nature has to be taken into account. In order to model photon
emission, we use the discrete jump part of the differential Chapman-Kolmogorov
equation [Gardiner, 1989, Kloeden and Platen, 1991] with the differential probability
given by SFQED (3.93) and described by the Feynman diagram 3.4. We get

afe 8fe 6fe
ot +v Ox + Frorents ap

= CnCs[fe] (4'22)

where the nonlinear Compton scattering (nCs) collisional operator is given by

B +o0 dZNnCs
CnCs[fe] = dV'y dtd (Xa7+77:77) fe(t:X77+7v7Q)
0 Yy

d2 NnCs
dtdry,

“+o00
—fe(t,x,%ﬂ)/o dyy (X7 7) 5 (4.23)

with d;g;ss (X;7,7y) given by Eq. (3.103) and where we assumed that the photons

are emitted in the direction of propagation of the electron?.

Intuitively, this collision operator is just an energy balance on the electron pop-
ulation due to photon emission. The number of electrons at an energy = is increased
by electrons having an energy v + 7, and emitting a photon with an energy -, [first

3This is a good approximation for ultra-relativistic electrons as explained in Chap. 2.
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term of the RHS of Eq. (4.23)], while it is decreased by electrons at this energy ~y
emitting a photon with any energy . [second term of the RHS of Eq. (4.23)] (see
Fig. 4.1).

4.3.4 Vlasov equation with pair-production

When the quantum parameter of the emitted photons is of the order or above unity,
they can decompose into an electron-positron pair by stimulated (or nonlinear) Breit-
Wheeler pair production according to (3.103). Pair production can be taken into
account in the same way as nonlinear Compton scattering, using a collision oper-
ator to follow the electron, positron and photon distributions in the energy space.
However, the situation is more complicated here since the emitted photons can now
decompose into electron/positron pairs, which in turn radiate new photons etc. This
then yields a coupled system between electrons, positrons and photons. Writing f.,
fp and f, the electron, positron and photon distribution functions (resp.), we get

of. _ of. of :
ot +v Ox + FLorentz ap = CnCS[fe] + CnBW [f»y] (424&)
of, _ of of, .
67;) +v- 87;) + Frorentz - 871: = CnCs[fp] + CnBW[f’Y] (424]3)
of of
ot T o = Gl Gl = Copwlf] (4.24c)
with
e oo d2Nn
CnBW [f’Y] = / d’y’Y WBVV(X’Y’ Yo ’Y)f’y (t’ XYy Q) (4.253)
0 Y
oo d2N,
CZBW[f'Y] = / d’}/ WW(XW77’Y7V)f’Y(t7X77”/7 Q) (425b)
1 Y
+o0o dQNnCs
Cylfel = / dy 06T + 79 ) fe(t, %7 + 77, Q) (4.25¢)
1 dtd’yfy

where we assumed that electron-positron pairs are emitted in the direction of prop-
agation of the photon.

4.4 The classical PIC method

Numerical simulations are nowadays an indispensable tool in many fields of physics.
In plasma physics, there are two major ways of solving numerically the kinetic
Vlasov-Maxwell equations : either by direct integration of these equations on a
phase-space grid (Eulerian approach), or by solving the dynamics of individual macro
particles (Lagrangian approach). In this work, we will focus on the second approach,
the so-called Particle-In-Cell or PIC' method. PIC codes have been discussed in
many books [Tajima, 1989, C.K. Birdsall, 1991] and we will remind here only their
main aspects in order to better introduce the new modules that need to be added
to the usual PIC scheme in order to simulate laser-plasma interaction at ultra-high
intensities.
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4.4.1 The PIC method

For a plasma composed of N particles, the solution of the Vlasov-Maxwell sys-
tem (4.12)-(4.13d) reads

N
(x,pt) =) d[x )]0 [p—Pal(t)] , (4.26)
p=0
where o = i, e for "ions” and ”electrons” and where
dXo(t) Py (t)
= 4.27
i B (4.27a)
dP,(t
dt( ) = Florentz - (4.27D)

However, as stated in Sec. 4.2.1, solving the dynamics of the plasma by solving the
motion of each particle that compose it is way too costly computationally. The main
idea of the PIC method is thus to consider instead macro-particles that represent
the behavior of many real particles. In that way, we can simulate plasmas with a
number of macro-particles which will be orders of magnitude smaller than the real
number of particles to simulate*. More concretely, we then approximate (4.26) as

(x,p,t Z W lx — Xa(t)] 8 [p — pa(t)] (4.28)

where W is the so-called shape factor of the particle. Macro-particles will thus have
a certain extension in real space, while being represented by a Dirac in momentum
space.

4.4.2 The classical PIC loop

Schematically, the PIC method can be described as follows : given an initial dis-
tribution function fo(x,p), the distribution of macro-particles is determined by
Eq. (4.28). The initial electromagnetic field is then determined using the Poisson
and the Maxwell-Faraday equations. The current and charge are then determined
inserting Eq. (4.28) into Eq. (4.4). Projecting on the grid, we get

Pm = Z ap Wil[zm — Xp|, (4.29)

gm = Y G VpWilem — X, (4.29D)

where z,, is the position of the pth particle and x,, the position of the mth point
of the mesh. Using this charge and current, we solve the discretized Maxwell’s
equations onto the grid using a Finite Difference Time Domain (FDTD) scheme®.
While the fields are known on the grid, particles move in continuous space and we
therefore need to interpolate the fields at the particle’s position. This is done by

E, = Y E, Wiz, - X, (4.30a)
B, = Y BuWilzm — X)), (4.30D)

“In practice, PIC simulations will contain from several hundreds to few thousands of macro-
particles.
5 Alternative spectral methods can also be used, see [Vincenti et al., 2017].
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Figure 4.2: Schematic of a leap-frog algorithm. Position and momentum are computed at
intervals spaced by half a time-step.

where like previously, x;, is the position of the pth particle and x,, the position of
the mth point of the mesh. Finally, the particles are moved using the discretized
relativistic equations of motion. In practice, we use the Boris pusher that will be
described in the next Section. All these steps constitute what we call the classical
PIC loop.

4.4.3 The Boris pusher

The discretization of the force is called a pusher and the most used pusher for the
Lorentz force is the Boris pusher [Boris, 1970]. The particle pusher is the most ex-
pensive part of the PIC loop and most efforts on optimisation must therefore concern
this step. The Boris pusher is a centered-difference second-order explicit numerical
scheme. The positions and the speeds are calculated at different times, shifted of
half a step. We talk about leap-frog algorithm (See Fig. 4.2). The specificity of
the Boris scheme is to separate the treatment of the acceleration due to the electric
field and the magnetic rotation. In a first step, we act the electric field during At/2

on the old momentum p™~1/2. This yields a momentum that we call p— and which
reads
ETL
p=p 2 A (4.31)
2m

We then apply the so-called Boris rotation. We obtain the momentum p* by

+ —
_ +p
top = Ati(pi ><B">. 4.32
pt—p om\ (4.32)
Finally, the momentum at the next time step n + 1/2 is obtained by applying the
electric field during the remaining At/2

mn

E
A R el (4.33)
2m

where At is the time step and n the number of the loop so that ¢ = nAt.
Let us now describe the Boris rotation. In a first step, we compute an interme-
diate vector p’

p =p  +p' xB, (4.34)
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where B = q%. Then, we determine the momentum after rotation p™ by

pT=p +p' xs, (4.35)
with s = ﬁerQ. These steps can be summarised in matrix form : pt = Ap—, with
9 —b? — b; b, +bgb, —by +b.b,

by +bobe by +byb.  —b2— b2

Finally, and as stated earlier, the position is calculated at integer times (it is shifted
of a half time step compared to momentum) and is expressed as

X" = x" 4 Apy Y2 (4.37)

where v*11/2 = 75::132 and v, = \/1 + (pr12 + AtqZE—mn). Of course, other pushers
exist, like for example the Vay pusher [Vay, 2008]. However, although J. L. Vay has
demonstrated the efficiency of his scheme in a moving frame with constant electric
and magnetic field, it has been shown that in a plane-wave field, the Boris scheme
is slightly better [Lobet, 2015a] so we will only use this later one in the following.

4.5 Extended PIC method for SFQED

As previously explained, the usual Vlasov equation is not sufficient to describe
physics in the ultra-relativistic regime and one needs to improve it to include QED
processes. These processes thus need to be solved in the PIC loop. We therefore
add what we call the QED modules to the classical PIC loop. For a review of the
implementation of the QED modules in the usual PIC loop, the reader is referred
to [Gonoskov et al., 2015]. We just remind here the two main schemes to simulate
classical and quantum RR.

4.5.1 Classical RR pusher

The first and simplest pusher is the deterministic radiation reaction pusher that
allows one to describe the radiating electron dynamics in the framework of classical
electrodynamics. Its implementation closely follows that proposed by Tamburini
et al. [Tamburini et al., 2010] with the difference that it relies on the equations of
motions (5.10a) and (5.10b).

This pusher (and all pushers discussed here) are based on the leap-frog technique
(Fig. 4.2) and assume that forces and momenta are known at integer (n) and half-
integer (n — %) time-steps, respectively. Following Ref. [Tamburini et al., 2010],
we first compute the effect of the Lorentz and radiation reaction force separately.

1
Starting from momentum p("fi) and considering the Lorentz force f (n), the first
step is performed using the standard Boris pusher [Boris, 1970] giving:

_ =3 ¢
pr=p" 2+ At, (4.38)

with At the time-step. In a second step, we compute the effect of the radiation
reaction force:

(n—3) 4 ¢
Pr=p 2 +f,4At, (4.39)

ra
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where ff;l(i) = Pgu/(cu®) [Egs. (5.10b) and (5.11)] is computed using the particles
1
2

properties at time step (n — 5) and current value of the fields to estimate x. Finally,
the momentum at time-step (n + 3) is computed as:

1 a1
p(n+2):pL+pR_p( 7). (4.40)

This pusher has been validated (not shown) against analytical solutions for the
cases of a radiating electron in a constant, homogeneous magnetic field [N.V. Elkina
and Ruhl, 2014] and a plane-wave [Di Piazza, 2008].

4.5.2 Monte-Carlo module

Our implementation closely follows that presented in Refs. [Duclous et al., 2011,
Arber et al., 2015, Lobet et al., 2016]. To treat the discontinuous process of high-
energy photon emission each electron is first assigned a final optical depth 7 sampled
from 7; = —In(r) with 0 < 7 < 1 a uniform random number. At the same time,
a current optical depth 7, is assigned to each electron, which is initialized at 0 and
updated in time (possibly using a sub-cycling with respect to the main, Lorentz,
loop at At) following

dre X d? Nycs
7 :/ © (4.41)
0

dt dxydt X

When 7, reaches the final optical depth 7, the electron emits a photon. The emit-
ted photon quantum parameter is computed inverting the cumulative distribution
function

_ ST GO6 X/ d
S GOGXE) /X dxdy

with x the electron quantum parameter at the time of emission. From Eq. (5.19),
this uniquely defines the energy of the emitted photon e, = mc? Yx~/X (with v the
energy of the radiating electron), and the electron momentum right after emission
p* is then updated considering forward emission Q = p/|p|:

CDF(x,) (4.42)

pT=p- Q. (4.43)
C

Note that this implementation, which conserves momentum, does not exactly con-
serve energy. The error made on the energy is however small for ultra-relativistic
electrons (v < 1) [Lobet, 2015b]. Finally, we note that, in between emission events,
the electron dynamics governed by the Lorentz force is updated as in the previous
pushers using the Boris approach.

The Monte-Carlo has been validated (not shown here) against direct resolution
of the partial-integro differential equation (4.23) for the cases of a radiating electron
in a constant, homogeneous magnetic field as well as in a plane electromagnetic
wave.
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5.1 Outline

Over the last years, high-energy photon emission by ultra-relativistic particles and
its back-reaction on the particle dynamics, also known as radiation reaction, has
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received a large interest from the strong-field physics, laser-plasma interaction and
astrophysics communities.

The interest of the laser-plasma community is driven by the development of
multi-petawatt laser facilities such as ELI [ELL ] or APOLLON [Cros et al., 2014b).
Within the next decade, these laser systems will deliver light pulses with a peak
power up to 10 PW and durations in the femtosecond regime, thus allowing to
reach on-target intensities close to 10 W/cm?. This opens a novel regime of
relativistic laser-matter interaction ruled by both collective and quantum electro-
dynamics (QED) effects [Di Piazza et al., 2012]. Among the latter, high-energy
photon emission and electron-positron pair production have attracted a lot of at-
tention [Tamburini et al., 2010, Nerush et al., 2011b, Gonoskov et al., 2015, Ridgers
et al., 2012, Capdessus et al., 2013, Blackburn et al., 2014, Lobet et al., 2015, Lo-
bet et al., 2017, Grismayer et al., 2017a]. Some of these QED processes have been
observed in recent laser-plasma experiments, some involving pair production in the
Coulomb field of highly-charged ions [Chen et al., 2009, Sarri et al., 2015], and most
recently in link to the problem of radiation reaction [J. M. Cole, 2017, K. Poder,
2017]. This line of study is at the center of various proposals for experiments on
forthcoming multi-petawatt laser facilities.

Radiation reaction has also been shown to be of importance in various scenarios
relating to relativistic astrophysics. Kinetic plasma simulations have demonstrated
that it can alter the physical nature of radiation-dominated relativistic current sheets
at ultra-high magnetization [Jaroschek and Hoshino, 2009]. Its importance was also
demonstrated for the interpretation and modeling of gamma-ray flares in the Crab-
Nebulae [Cerutti et al., 2014] and of pulsars [Cerutti et al., 2016].

These developments have motivated various theoretical works devoted to the
treatment of radiation reaction in both classical electrodynamics [Spohn, 2000,
Rohrlich, 2008, Sokolov et al., 2009, Sokolov et al., 2010, Bulanov et al., 2011, Burton
and Noble, 2014,Capdessus et al., 2016], and QED [Moniz and Sharp, 1977, Krivitskii
and Tsytovich, 1991, Di Piazza et al., 2010, Meuren and Di Piazza, 2011b, Ilderton
and Torgrimsson, 2013a, Ilderton and Torgrimsson, 2013b] (see also Ref. [Di Piazza
et al., 2012] for a review). Radiation reaction, treated either using a radiation fric-
tion force in the framework of classical electrodynamics or a Monte-Carlo procedure
to account for the quantum process of high-energy photon emission, has also recently
been implemented in various kinetic simulation codes, in particular Particle-In-Cell
(PIC) codes [Tamburini et al., 2010, Nerush et al., 2011b,Duclous et al., 2011, Arber
et al., 2015, Lobet et al., 2016, Gonoskov et al., 2015]. These numerical tools have
been used to tackle various problems, from laser-plasma interaction under extreme
light conditions to relativistic astrophysics.

QED effects are negligible (so-called classical regime) when the energy of the
emitted photons remains small with respect to that of the emitting electron, and
radiation reaction can then be treated as a continuous friction force acting on the
particles, as proposed e.g. by Landau and Lifshitz [Landau and Lifshitz, 1947]. In
the quantum regime, photons with energies of the order of the energy of the emitting
electrons can be produced [Di Piazza et al., 2012]. The on-set of QED effects has two
important consequences [Uggerhgj, 2005]: first, the instantaneous power radiated
away by an electron is reduced with respect to the ”classical” prediction, second,
the discrete and stochastic nature of photon emission impacts the electron dynamics
(so-called straggling) which cannot be treated using the continuous friction force!

! Another purely quantum effect is the so-called spin force (see, e.g., Ref. [Walser and Keitel,
2001]) though this is not considered in this work.
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and thus motivated the development of Monte-Carlo procedures [Duclous et al.,
2011, Lobet et al., 2016].

Considering an ultra-relativistic electron beam interacting with a counter-propagating
high-intensity laser pulse, Neitz and Di Piazza have demonstrated that, even in
the limit ¥ < 1, the stochastic nature of photon emission cannot always be ne-
glected [Neitz and Piazza, 2013a]. Using a Fokker-Planck approach, the authors
show that the stochastic nature of high-energy photon emission can lead to an en-
ergy spreading (i.e. effective heating) of the electron beam while a purely classical
treatment using the radiation friction force would predict only a cooling of the elec-
tron beam [Tamburini et al., 2011, Lehmann and Spatschek, 2012, Burton and Noble,
2014]. Vranic and collaborators have further considered this scenario in Ref. [Vranic
et al., 2016] to study the competition between this effective heating and classical
cooling of the electron beam distribution.

The present study focuses on the effects of this stochastic nature of high-energy
photon emission on radiation reaction. In contrast with previous works [Neitz and
Piazza, 2013a, Vranic et al., 2016], we extend the study to x < 1 and arbitrary con-
figurations, i.e. we do not restrict ourselves to the study of an electron beam with a
counter-propagating light pulse, and demonstrate the existence of an intermediate
regime, henceforth referred to as the intermediate quantum regime. To do so, we
rely on a statistical approach of radiation reaction, starting from a linear Boltzmann
description of photon emission and its back-reaction (from which the Monte-Carlo
procedure derives), then studying in detail its Fokker-Planck limit. This procedure
and a systematic comparison with the linear Boltzmann description allow to high-
light different effects related to the quantum nature of photon emission, among which
are the stochastic energy spreading and quantum quenching of radiation losses. The
appropriate model that needs to be used in different physical situations and the
relevant measurable quantities are discussed.

In particular, beyond the situation of a plane-wave counterpropagating with a
narrow electron bunch as considered by [Neitz and Piazza, 2013a, Vranic et al.,
2016], we develop in this Chapter a formalism that can be applied to a wide variety
of situations of interest for the strong-field physics, laser-plasma interaction and
astrophysics communities.

This Chapter is structured as follows. In Sec. 5.2, we summarize the classical
treatment of the radiation emission and its back-reaction on the electron dynam-
ics and show that, in the case of ultra-relativistic electrons, the momentum and
energy evolution equations take a simple and intuitive form. This form of the ra-
diation friction force has the advantage to conserve the on-shell condition while
being straightforward to implement numerically. High-energy photon emission and
its back-reaction as inferred from the quantum approach is then summarized in
Sec. 5.2.3, which introduces the key-quantities that appear in the statistical descrip-
tions we develop in the following Sections. In Sec. 5.3, starting from a kinetic master
equation, we derive a Fokker-Planck (FP) equation where quantum effects appear
both as a correction on the friction force (drift term) and in a diffusion term, the
latter accounting for the stochastic nature inherent to the quantum emission pro-
cess. Interestingly, the leading term of the Landau-Lifshitz equation with a quantum
correction naturally appears from the FP expansion. The domain of validity of the
FP expansion is then studied in detail, and for arbitrary conditions of interaction.
In Sec. 5.4, the equations of evolution for the successive moments of the electron dis-
tribution function are discussed considering the classical, FP and linear Boltzmann
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descriptions. These equations allow for some analytical predictions on the average
energy and energy dispersion when considering, but not limited to, an electron beam
interacting with a high-intensity laser field. It also sheds light on other processes
such as the quantum quenching of radiation losses observed in recent numerical
simulations [Harvey et al., 2017]. Finally, conclusions are given in Sec. 5.6.

5.2 Dynamics of a radiating electron in classical and
quantum electrodynamics
5.2.1 Dynamics of a classical radiating electron

As explained in Chap. 2, the dynamic of a radiating electron is described in CED
by the LL equation

dp* e y 2 e 5 e2 .
& T Tmel T3 [mzc@nF“ ot B F !
2
(&
- mi A (Fynpn) (Fyapa)]?“] s (51)

where ¢ is the speed of light in vacuum, 7 the proper time, 7. = 7./c the time
for light to travel across the classical radius of the electron 7. = €2/(4megmc?), e
the permittivity of vacuum and p* = (ymec, p) the electron four-momentum with
v = /14 p?/(mc)? the electron Lorentz factor [SI units will be used throughout
this part]. Moreover, we consider a single electron with charge —e and mass m.
In 3-vector notation, Eq. (5.1) gives the equations of evolution of the energy and
momentum of the electron, respectively

ch% - —ec,B-E—§€CTe”YE':6
n ggccrE-(E—l—,BxH) (5.2a)
_ g;:ﬂz (B+BxH)’—(8-E)],
%I; — —e E—l—ﬁxH)—%eTev (E+ﬂ><H>
i gE‘; [(B-E)E —H x (E +u x H)] (5.2b)
- gérﬁ[(EJrﬁxH)?—(ﬁ-E)Q]ﬂ,

where 8 = p/(ymc) is the normalized electron velocity, E.. = 4megm?ct/ed ~
1.8 x 10%° V/m the critical field of CED, E and H are the electric and magnetic
fields, respectively, and dotted fields are (totally) differentiated with respect to time
t. We see that the last term of the RR force is 7 bigger than the other terms.
Following this observation, the LL force is often approximated by its last term as

mc? Z—Z = —ecB-E—- Py, (5.3a)
dp
i —e(E+ B xH) - Pyg, (5.3b)

where P = % T v* [(E+ B8 x H)? — (8- E)?]. Here, we shall be more careful and
analyze the consequences of such an approximation. As a guide line, the physical
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quantities that we want to conserve are : the on-shell condition, and the momentum
radiated by the electron.

Let us first analyze the on-shell condition. In the following, we will write g* the
LL force

J7a— 2 €9 7 e’ FHY R
g = _gTe m2C n pl/p +m262 an
62
v a
mA A (F npn) (Fuap )pﬂ ) (5.4)

and ¢! its ith term of g#. The first term g/', also known as the Schott term, stands
as a four-force (i.e. it is perpendicular to the four-momentum)

2 e

91 Py = =37z O puppu =0, (5.5)
2c

by antisymmetry of F*”. Moreover, the last two terms of the bracket have to be

kept together to form a four-force f# such that f#p, = 0. Indeed

) 62 2
(92 +95)pp = =3 7e | 55 B Fyp 9" p — — g (B p") (Foa ™) 1 P | = 0, (5.6)
e 6

using the on-shell condition. So while the first term can safely be neglected, we need
to keep the last two terms for the orthogonality condition to be verified.

However, if we now add the constraint that the 4-momentum emitted by the
electron ApH = fg“dT must be the same in Eq. (5.3b) as in (5.2b), we are led to
compute each term f g5 Mdr separately. We obtain

2 2 dFHv
/(9“)1dT = —37 m2 /3 F“”pup”dT——gfe < / —bvdr
2 e dpy
_ _\[Fmp,) — | Pepw :
—37 “mZc [[ P / o dT] (5.7a)
2 v
= 3Temgc2/FH Fn,,pndT,
2
(¢")odr = —2rC [ poE prar (5.7b)
g )2 37¢ 22 nvP s
I 2 62 vn v, ), fb
(g")sdr = gTeW (E"py) (Fp™)ptdr . (5.7¢)

Therefore, the first two terms cancel each other while the last term corresponds to
the total four-momentum radiated away by the particle

P = / ™y

E.. mc

with Py = 2mc?/(37.) and z* the electron four-position. Therefore, it is not pos-
sible, in general, to consider each term of the LL force separately. However, it is

possible to rearrange parts of g!' so that the constraints (on-shell condition and
emitted 4-momentum) are satisfied.

: (5.8)

5.2.2 Radiation friction force acting on an ultra-relativistic electron

To consider the action of the force on an ultra-relativistic electron, we develop the
radiation reaction force f,q [three last terms in Eq. (5.4)] as a longitudinal force
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(acting in the direction of the electron velocity) and a transverse force (acting in the

normal direction to the electron velocity). One obtains f,q = fr”a qT frJ,;d with

£l = —Zery(B-8)8/8

e
+

E-(E+ 8 xH)3/3 (5.92)

+ 3 (B-E)E, +(B-H)H, +(ExH),], (5.9b)
where || (L) denotes the vector component parallel (perpendicular) to the electron
velocity 3. Let us stress at this point that the last term in Eq. (5.9a) contains not
only the contribution of the last term of the LL radiation reaction force Eq. (5.4),
but also part of its second term.

For an ultra-relativistic electron (v > 1), the last terms in Egs. (5.4) and (5.9a)
give the important contributions, and all other terms together with the perpendic-
ular component of the radiation reaction force [Eq. (5.9b)] can be neglected?. One
then obtains the equations of evolution for the ultra-relativistic electron energy and
momentum

d
mec? d—z = —ecPB-E—-PFPy, (5.10a)
® _ _E H) - P 2 5.10b
P= (B4 xH) - Pap/(cB), (5.10)
where P, denotes the classical instantaneous power radiated away by the electron
Py = Pyn?, (5.11)
for which we have introduced
gl
n=1-V(E+BxH?- (3 E}. (5.12)
cr
In covariant notation, n clearly appears as a Lorentz invariant
F* p,
= = 5.13
E.. mc ( )

In contrast with Eq. (5.3b), the radiation reaction force, last term in Eq. (5.10b),
takes the form of a friction force fi,q = v3 [with a nonlinear friction coefficient v]
that also has the property of conserving the on-shell condition ptp, = m2c?. This
can be seen by taking the scalar product of Eq. (5.10b) by ¢3, which turns out to be
consistent with the energy conservation Eq. (5.10a). This would not have been the
case had we retained only the leading (o 7?) terms in Eqgs. (5.1). Our formulation
hence contrasts with that proposed, e.g. by Tamburini et al. [Tamburini et al., 2010],
where the authors choose to retain both last two terms in Eq. (5.1) to preserve the
on-shell condition. Beyond its simple and intuitive form, the radiation force given
by Eq. (5.10b) is also straightforward to implement in numerical tools. It also allows
to avoid the computation of two components in the radiation reaction force which
have large (o< v2) differences in their magnitude and that may lead to accumulation
of round-off errors (see, e.g., Ref [N.V. Elkina and Ruhl, 2014] for an accurate
treatment of this problem).

2This is coherent with the well known result discussed in Chap. 2: the radiation of an ultra-
relativistic electron is directed in a cone of angle ~ 1/~ in the direction of its velocity.
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5.2.3 Dynamics of a quantum radiating electron

Let us now recall some notations as well as the results derived in Chap. 3 that
will be useful in this chapter. We make here the same assumptions as made in
Sec. 3.5 (we consider a stable vacuum, in the LCFA and in the nonlinear moderately
quantum regime). Under these assumptions, the (Lorentz invariant) production rate
of high-energy photons emitted by the electron can be written as [Ritus, 1979]:

’N _ 20% G(x; xy)

= 5.14
drdxy 37 Xy (5.14)
where
\/g X +00 3
Gl = 320 | [ Koty + G Kalv)] (5.15)
T X |Jo 2
is the so-called quantum emissivity, v = 2 x~/[3x (X — X5)] and where
Frop, |
— v d 5.16
‘ Es me| o’ (5.16)

is the Lorentz invariant quantum parameter for the electron. We will also need

e|AH|
ag =

> 1, (5.17)

mc?
where A* is the four-potential corresponding to the electromagnetic field tensor
FH = 9FAY — 9¥AH. The production rate Eq. (5.14) only depends on the electron
quantum parameter x and on the (Lorentz invariant) quantum parameter for the
emitted photon:

Es; mce

: (5.18)

Xq/:‘

where k¥ = (hw/c, hk) is the four-momentum of the emitted photon. Considering
an ultra-relativistic electron, the photon quantum parameter x-, can be expressed
in terms of the electron quantum parameter y and the electron and photon energies
as

v
Xy = ﬁx, (5.19)

where chW is the photon energy. Another Lorentz invariant can be derived from
Eq. (5.14)

d’&
drdryy

= Pya®G(x, X)) (5.20)

which denotes the emitted power distribution in terms of the photon normalized
energy. The instantaneous power radiated away by the electron is another Lorentz
invariant. It is obtained by integrating Eq. (5.20) over all photon energies giving

P _/md LU ORTR (5.21)
rad — 0 Wvde%_ o X g9{X), .
where
Q(X) _ /—H;X G(X?X’Y) _ 9\/§ +o(}>y 2V2K5/3(V)
o X 81 Jo (2 +3vx)?
4v (3vy)?
— > K . .22
(2+3VX)4 2/3(”) (5 )
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Figure 3.5(a) shows g(x) for x ranging from 107> to 10.
Let us now stress that Eq. (5.21) is nothing but the classical instantaneous
power radiated away by the electron [Eq. (5.11)] multiplied by g(x) (we recall that

X =n/a):
Prad = Pclg(X)‘ (523)

The classical limit is recovered when the emitted photon energies remain much
smaller than the emitting electron energy, i.e. by taking the limit x, < x < 1
[correspondingly v ~ 2x~/(3x?)]. In this limit, g(x) ~ 1, and Egs. (5.20) and (5.21)
reduce to their classical forms Eqs. (2.153) and (5.11), respectively.

Therefore, to take into account the difference between the classical and quantum
radiated spectrum in our classical equation of motion [Eqgs (5.10a) and (5.10b)], we
can replace phenomenologically P by its quantum expression Paq, g(x) giving a
so-called quantum correction (see, e.g., [Erber, 1966, Ridgers et al., 2014]) If this
approach is here mainly heuristic, we will see in Sec. 5.3 that it has a rigorous inter-
pretation, the statistical average of the quantum description providing the quantum
correction naturally.

Finally, to highlight QED effects on the emitted radiation properties, we have
plotted G(x,x4)/x? and its classical limit in Fig. 3.5(b) and 3.5(c), respectively.
As can be seen, quantum effects mainly tend to decrease the photon emission rate
at high-energies. In particular, emission of photons with an energy larger than the
emitting photon energy (i.e. for x, > x) is prevented. As a result, the overall
emitted power is reduced [see also Fig. 3.5(a)].

The process of photon emission can be described by three different (but related)
random variables: (i) the electron energy itself, (ii) the number N; of photon emission
events in a time interval [0, ], and (iii) the time T}, of the n'" emission event. The
last two variables are of course equivalent since T,, >t <= N; < n, both denoting
that there are at least n emissions in the time interval [0, ¢]. It is possible to show
that N; follows a Poisson process of parameter

TW%&ZAWWWW' (5.24)

which is usually referred to as the optical depth, and where:

2 oo
Wier) = 32 [ bt/ (5.25)

is the instantaneous rate of photon emission. Hence, the probability for the electron
to emit n photons during a time interval ¢ is given by

P[N(y,t) = n] = e~ 70c70) T(X’J!’ " (5.26)

while the cumulative probability of the random variable T;, is given by
P[Tys1 <t] =1 —e 7067 (5.27)
A discrete stochastic formulation of these discontinuous jumps can be rigorously

deduced [Lapeyre et al., 1998], leading to a Monte-Carlo description (see Sec. 4.5.2
and Refs. [Duclous et al., 2011, Lobet et al., 2016] for more details).
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5.3 From quantum to classical radiation reaction for
ultra-relativistic electrons

In this Section, we propose a statistical description of high-energy photon emission
and its back-reaction, starting from the quantum point of view, and getting toward
the classical regime.

5.3.1 Kinetic point of view: the linear Boltzmann equation

We assume here that all electrons are considered to emit high-energy radiation in
an incoherent way, that is the radiation emission by an electron is not influenced by
neighbor electrons. This is justified whenever the high-energy photon emission has
a wavelength much shorter than the typical distance between two electrons o n. 1/ 3,
with n. the characteristic density of the electron population [Schlegel et al., 2009].

The equation of evolution for the electron distribution function fe(t,r,~, Q)
accounting for the effect of high energy photon emission and the corresponding

photon distribution function f,(¢,r,v, ) can be written in the form:

d +oo
ale = /0 dyy Wy (Y + 775 1) fe(t, %7 + 74, £2)
400
- fe(tv X7, Q) /0 drY’wa(fYa ’Y’Y) ) (5283)
d +oo
%fw = /1 dy wy (7 + Vs ) fe(t, %7 + 77, ), (5.28b)

where it has been assumed that radiation emission (and its back-reaction) is domi-
nated by the contribution of ultra-relativistic electrons (for which p ~ mecy§), and
that such ultra-relativistic electrons emit radiation in the direction €2 of their ve-
locity, and the total time derivatives in Egs. (5.28a) and (5.28b) will be detailed in
Sec. 5.3.2. The system of Egs. (5.28a) and (5.28b) stands as a Master equation. It
describes a discontinuous jump process with w, (7, 7,) giving the rate of jump from
a state of electron energy mc?y to the state of energy mc?(y — 7~), via the emission
of a photon of energy mc?y,.

Equation (5.28a) is a linear Boltzmann equation, and its right-hand-side (rhs),
henceforth denoted C[f], acts as a collision operator (see also Refs. [Sokolov et al.,
2010, Elkina et al., 2011a, Neitz and Piazza, 2013a, Ridgers, 2017]). It accounts for
the effect of high-energy photon emission on the dynamics of an electron radiating
in the electromagnetic fields E and H, that is for radiation reaction. It depends on
wy, (7, 7y) which denotes the rate of emission of a photon with energy mc?y, by an
electron with energy mc?y and quantum parameter y. Note that the dependency
on x implicitly states that the emission rate is computed locally in space and time,
i.e. taking the local value of the electromagnetic field at time ¢ and position x,
for a given electron momentum direction 2. Under the assumptions previously
introduced (Sec. 5.2.3), this emission rate reads:

d*N 2a? G(x,74/7)
wy (7, = — ,Y) = - ———— 5.29
where:
. \/g +o0o 62
G(x,§) = ﬁf Ks,3(y)dy + 1= €K2/3(V) ; (5.30)
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with £ = x4/x = 7y/7 and v = 2§/[3x(1 — &)]. It is complemented by Eq. (5.28b)
that describes the temporal evolution of the photon distribution function. In this
work, photons are simply created and then propagate freely. The rhs of Eq. (5.28b)
thus stands as a source term and will be denoted S[f.] in the rest of this work.

In Sec. 5.4, we will show that Eq. (5.28a) conserves the total number of electrons,
while Eq. (5.28b) predicts a total number of photons increasing with time as more
and more photons are radiated away. It will also be demonstrated that the total
energy lost by electrons due to radiation emission is indeed transferred to high-energy
photons, that is, the system of Eqs. (5.28a) and (5.28b) does conserve the total
energy in the system. While it allows to fully model high-energy photon emission and
its back-reaction as depicted by the linear Boltzmann Eq. (5.28a) and Eq. (5.28b),
the Monte-Carlo procedure (Sec. 4.5.2) has some limitations. Indeed, in regimes of
intermediate x parameters, numerous discrete events of small energy content may
occur, giving rise to computational cost overhead. These events may however have
a non-negligible cumulative effect. As will be shown in what follows, this case is
precisely the operating regime of the Fokker-Planck approximation (a by-product of
the master equation). In the following, we show that a Fokker-Planck approach can
be used to treat many discrete events at once.

5.3.2 Toward the classical limit: the Fokker-Planck approach

Let us now focus on the linear Boltzmann Eq. (5.28a) which we rewrite in the form
(see App. C.1 for more details):

Ofe + V(AR - — 0,lecB( - B)f] (5.31)

mc

_ ;vn.[(ﬂfﬂ®ﬂ)~(E+ﬁQXH)fe]:C[fe]a

where 8 = /7% —1/v, p = mc/v? — 1, Vq denotes the derivative with respect to
2, 1 the rank 2 unit tensor and ® stands for the dyadic product. While the left hand

side of Eq. (5.31) is the standard Vlasov operator written for the energy-direction
distribution function f.(t,r,v, ) (see e.g. Ref. [Touati et al., 2014]), C[fe] is the
collision operator given by the rhs side of Eq. (5.28a).

Rewriting the integrand in the first integral of C[f.] as a Taylor series in 7, /7,
the collision operator can be formally casted in the form of the Kramers-Moyal
expansion:

o0

AED SETATHESINAR (532)

n=1

with A, (x,7) = [ dyy 72 wy(7,7,) the n'" moment associated to the kernel wy (7, v,).
For the particular kernel given by Eq. (5.29), we get for the associated moments:

2
An(x:7) = %% 7" an(x) (5.33)
with:
+oo -
<mm:A dE €L Gl ). (5.34)

Plugging the expression for G(x, &) (5.30) in Eq. (5.34) yields after integration by
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Figure 5.1: Plot of a,(x) for n = 0...4 and their asymptotic expansion in dashed lines, for
x = 107% to 10%.

parts

\/g +o0o 9X2yn+2
an(x) = 27ﬁ”“x"“/o dv [(2+3V><)”+3K2/3(V) (5.35)

Vn+1

(n+1)(2 + 3vy)nt+!

K5/3(V)] : (5.36)

which in the limit y < 1 reduces to:

V3 n 1 n 11
n ~ 73n+lr e - T2 - n+1
w00~ T <2+6) <2+ G)X ’

with T' the Gamma function (See App. C.3 for more details). In Fig. C.1 we plot
ap(x) to as(x) as well as their asymptotic expansions as given by (5.37) in dashed
lines.

Note that the first moment depends on v only through x and reads A;(x,v) =
%%: X2 g(x) [where x%g(x) = ai(x), and g(x) is the quantum correction given by
Eq. (5.22)] (See App. C.3 for more details about the functions a,(x)). In general,
using expansion (5.32) for the operator in the linear Boltzmann Eq. (5.31) would
require to solve an infinite order partial differential equation. Therefore, it is com-
mon to truncate Eq. (5.32). This truncation cannot however be done properly by a
finite and larger than two number of terms [Pawula, 1967].

The truncation using the first two terms in Eq. (5.32) is actually justified in the
limit v, < 7. This is ensured for x < 1, i.e. in the classical regime of radiation

emission, and the resulting truncation corresponds to a Fokker-Planck expansion.
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In this limit, the collision operator reduces to:

Cer 11 = BHSCO L) + 32 IROG], (531)

the first term being referred to as the drift term, and the second one as the diffusion
term, and where we have introduced:

+0c0 2 042
Six) = Ailx) = /0 vy 1y (7, 7) = 3 — Y a(x), (5.38a)

+oo 9 ) C¥2
R(x,v) = Ax) = /0 dryy 7 Wy (7, 7y) = gT—wh(X), (5.38b)

where h(x) = aa(x) reads:
9v/3 [T 2y33
h = —— | dv|—F——=K
() 4 Jo v [(2 + 3vy)? 5/3(V)
54x°vt

m 2/3(’/)] : (5.39)

Equation (5.31) rewritten using the operator Eq. (5.37) is a Fokker-Planck equa-
tion. Mathematically, it is equivalent to the Ito stochastic differential equation for
the random process y(t) [Kloeden and Platen, 1991]:

mc?dy = —ec(B-E)dt —mc*S(x)dt
+ mc®/R(x,v)dW , (5.40)

together with the equation on the electron momentum direction €2:

a2 e
E:—}—)(]l—ﬂ@ﬂ)-(E—kﬁQxH). (5.41)

Note that Eq. (5.40) on the electron energy contains both deterministic (first two
terms in its rhs) and stochastic (last term) increments, the latter being modeled
using dW, a Wiener process of variance dt. As high-energy photon emission does
not modify the direction €2 of the emitting ultra-relativistic electron, the equation
on the momentum direction €2 is found to be given by the Lorentz force only. It
follows that the electron momentum satisfies the stochastic differential equation:

dp = —e(E+ B xH)dt—mc*S(x)B/(cB%)dt
+ mcA/R(x,v)dW B/(c3?). (5.42)

Derived from the framework of quantum electrodynamics in the limit v, < 7,
Egs. (5.40) and (5.42) are the generalization of the purely deterministic equations
of motion Egs. (5.10a) and (5.10b) derived in the framework of classical electro-
dynamics (CED). The first terms in the rhs of Egs. (5.40) and (5.42) correspond
to the effect of the Lorentz force. The second terms follow from the drift term of
the Fokker-Planck operator [Eq. (5.37)] and account for the deterministic effect of
radiation reaction on the electron dynamics. It is important to point out that, from
Eq. (5.38a), we get

Praq = Py g(x) = me® S(x). (5.43)

The deterministic terms thus turn out to be the leading terms of the LL equation
including the quantum correction introduced phenomenologically in Sec. 5.2.3, and
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here rigorously derived from the quantum framework. Note that this procedure
fully and rigorously justifies the use of the quantum corrected LL friction force in
Particle-In-Cell codes.

Finally, the last terms in Egs. (5.40) and (5.42), which follow from the diffusion
term of the Fokker-Planck operator [Eq. (5.37)], account for the stochastic nature
of high-energy photon emission and its back-reaction on the electron dynamics. It
is a purely quantum effect, which is not present in the framework of CED. As a re-
sult, Egs. (5.40) and (5.42) extend the validity of Egs. (5.10a) and (5.10b) from the
classical regime of radiation reaction (x < 1) to the intermediate quantum regime
(x £ 1) by accounting for both the deterministic radiation friction force, and the
stochastic nature of radiation emission. The domain of validity of this Fokker-Planck
description and the extension of validity to the weakly quantum regime y < 1 will
now be discussed in more details.

Before doing so, however, we want to briefly discuss how our findings fit in with
respect to previous works. In contrast with the work of Elkina et al. [Elkina et al.,
2011a] (in which the Master equation approach is applied to the cascades in cir-
cularly polarized laser fields), and that by Neitz and Di Piazza [Neitz and Piazza,
2013a] (in which the authors provide a Fokker-Planck based analytical description
of an electron beam colliding with an ultra-relativistic light pulse), our approach is
more general. No assumption is here done on the electron and field configuration,
which led us to treat the full Vlasov operator in Eq. (5.31) and allowed us to derive
Eq. (5.42), valid for arbitrary geometries. As we will show in the next Sections, this
will allow us to bring new useful insights and predictions, and opens new opportu-
nities in the numerical treatment of radiation reaction in arbitrary geometries.

5.3.3 Domain of validity of the Fokker-Planck and quantum-corrected
Landau-Lifshitz descriptions

Let us now study the domain of validity of the previously derived Fokker-Planck
and quantum-corrected Landau-Lifshitz descriptions. We use as a starting point the
Kramers-Moyal expansion [Eq. (5.32)] for the collision operator. If the high-order
moments of the kernel in Eq. (5.32) do not give a proper description of the collision
operator unless all accounted for, computing them still allows us to infer the limit
of validity of the Fokker-Planck and corrected Landau-Lifshitz descriptions, and of
Egs. (5.40) and (5.42), in particular.

Here we derive an estimate of the relative importance of the successive terms in
the Kramers-Moyal expansion (5.32), by computing:

n! a?+1[An+1fe] -~ An+1
m+ 1) 2[AL] A+ DA,

Bl = (5.44)

For the particular kernel Eq. (5.29), we can use Eq. (5.33), and the ratio of the
(n 4+ 1)*" to the n'" contribution is found to depend on the x parameter only:

1
n+1 ap(x)

In the limit x < 1, which ensures v, < 7, the previous ratio reduces to Brtl
bnx, where (introducing the Gamma function T')

(2 + 2\[(2
by = %+f)%+ N (5.46)
n+2T(5+ 505+ %)

NIEN

o=
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slowly increases with n from b; ~ 1.07, up to its asymptotic value by, = 3/2 for
n > 1. This ordering o< x™ confirms that the Fokker-Planck expansion (5.37) and
therefore Eqs. (5.40) and (5.42) are valid for small x. As x — 1, all terms in the
Kramers-Moyal expansion (5.32) become of the same order, no truncation can be
made in the collision operator, and the full linear Boltzmann Eq. (5.31) needs to be
considered. It is however well known that this limit also corresponds to the onset
of various other QED processes such as electron-positron pair production, and the
present approach is not satisfying anymore.

To be more quantitative on the domain of applicability of the Fokker-Planck
and quantum-corrected Landau-Lifshitz descriptions, a first general criterion can be
obtained by comparing the relative importance of the various terms in the Kramers-
Moyal expansion as given by the approximated expression Eq. (5.45). For this
reason, we have plotted in Fig. 5.2 the functions a,(x)/n! for n = 1 to 4. The classical
regime of radiation reaction can now be defined as the region y < yq ~ 1 x 1073 for
which the second term in the Kramers-Moyal expansion (diffusion term) is at least
three order of magnitude below the first (drift) term. The intermediate quantum
regime is defined as the region xa < X < Xqu =~ 2.5 x 107! where the diffusion
term contribution is not negligible but the higher-order terms in the Kramers-Moyal
expansion are. Finally, the quantum regime is the region x > Xqu for which the third
term in the Kramers-Moyal expansion becomes larger than a tenth of the diffusion
term.

This criterion is based on a statistical description of the system and is consistent
with the one proposed in the literature, which is solely based on the argument
that the recoil of a single emitting photon can be neglected. This first criterion,
that depends only on the quantum parameter Y, gives a first approximation for
the validity of the deterministic (quantum corrected LL) or FP description when
considering an arbitrary electron distribution function. In the next Chapter 6, we
will derive a more general criterion for the domain of validity of the different models
that accounts for the general energy distribution of an arbitrary distribution function
by analyzing into more details the temporal evolution of its successive moments.

5.4 Local temporal evolution of integrated quantities

In this Section, we discuss the local temporal evolution of the successive moments of
the electron distribution function as inferred from the different descriptions discussed
in Sec. 5.3. These are defined as

Gt %) = / PQdyq ., (5.47)

which denotes for a given quantity ¢ its local average over the normalized electron
distribution function f. = fe/n. taken at a time ¢ and position x, with

ne(t,x) = /dQQ dy fe, (5.48)

the electron density at this time and position and where the index « indicates the
method used to compute the distribution function [ = cLL,FP,MC for the de-
terministic (quantum corrected Landau-Lifshitz friction force), Fokker-Planck and
linear Boltzmann (Monte-Carlo) approach, respectively]. The deterministic descrip-
tion here corresponds to Eq. (5.31) accounting for the drift term only in the collision
operator that is equivalent to the LL formalism including the quantum correction
g(x) in the radiated power, hereafter indicated as ” corrected Landau-Lifshitz” (cLL).
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Figure 5.2: Dependence with x of the functions a,(x)/n! for n = 1 to 4, in black, blue,
green and red (respectively). The left vertical line at x = xo = 1 x 1073 indicates the
threshold of the classical to the intermediate regime and the right vertical line at x = xqu =
2.5 x 1071 the limit of the intermediate to the quantum regime (see explicit definitions in
the text).
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The Fokker-Planck description corresponds to Eq. (5.31) with the collision operator
given by Eq. (5.37), and the linear Boltzmann description corresponds to Eq. (5.31)
with the full collision operator.

5.4.1 Local energy moments of the collision operators

Let us start by discussing briefly the first moments, in energy, of the collision op-
erators. Computing the order 0 and 1 moments for all three descriptions leads to:

/ d*Q / dvColf] = 0, (5.49a)
/d2 /dwc [fe] = Sx),- (5.49b)

Concerning the second order moment of the collision operators, only the linear
Boltzmann and Fokker-Planck methods give a similar form:

/dm Y (1=70) Calfol = ~2—70) S () + R 7 (5.50)

while the deterministic description simply leads to:

/dQQ d'y (V_WCLL)ZCCLL [fe] = _2(’7_7:LL)S(X)CLL ) (5'51)

The third order moment is the first for which all three descriptions lead to
formally different equations of evolution:

A~

/CFQ dy (v=72)> Calfe] = (5.52)

—3(7 =7a)? S (X4 a = e

=3(Y = 7a)? S(X)a +3(v = V) R(X,7), @ = FP

=3(Y = ¥a)?* S(X)a +3(7 = Va) R(X; V)
(—A30¢:7)a o =MC

Finally, the n'” order moment of the collision operator for any order n reads:

/ Py (1-7,)" Calfu] = (5.53)

—n(y =) S(X)q = L

7”(’7 - Wa)nil S(X)oz
= § +t5(n =1 =7)" 2 R(x,7), «=FP

St (CDF) (= )" Ak (X, V)a
a = MC

and we can verify that for n > 3, the three description give different results.

Note that in the complete (MC) description, the evolution of the energy moment
of order n involves the first n* moments associated to the kernel of the Kramers-
Moyal expansion, so that only the equation for the first two moments are formally
the same for the FP and MC description.
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5.4.2 Equations of continuity for the electrons and photons

Let us first compute the moment of order 0 of Eq. (5.28a) according to the defini-
tion (5.47), we get

O ne(t,r) + V- [vne(t,r)] =0. (5.54)

This is the usual continuity equation, which is consistent with the fact that the
number of electrons is conserved. Doing the same for photons, Eq. (5.28b) yields

Orny(t,r) +c- Vien,(t,r) = W(x,v),(t 1), (5.55)

where W (x,7v) = Ao(x,7) as defined in Eq. (5.33) and (5.34). This equation shows
that the number of photons at r in ¢ increases with a rate equal to the mean over
all the momenta of the electrons at r in t of the emission rate for a single electron
as given in 5.2.3.

5.4.3 Equation of evolution of the mean momentum

Computing the first order moment in momentum of Eq. (5.28a) with the defini-
tion (5.47) yields

AP+ Ve PP = —e(E+7xB)—me [S(X)Q] (t,r).

which shows that the variation of the average momentum in a closed volume is due
to the flux of momentum entering this closed volume, to the Lorentz force acting on
the average velocity and to the average of the quantum corrected radiated power.

5.5 Global temporal evolution of average quantities

In this Section, we discuss the global temporal evolution of the successive moments
of the electron distribution function, that is to say, we don’t look at local quantities
like in the previous Section, but we now integrate over all space. These are defined
as

_ [Pad®Qdyyfe
(Malt) = T 2 dy £, (5.56)
and for n > 1,
fin]a(t) = de:B *Q dy (v — (7)a(t))" fe (5.57)

[Pz d>Qdy fe ’

where the index « indicates the method used to compute the distribution function
[a = cLL, FP,MC for the deterministic (quantum corrected Landau-Lifshitz friction
force), Fokker-Planck and linear Boltzmann (Monte-Carlo) approach, respectively].
The deterministic description here corresponds to Eq. (5.31) accounting for the drift
term only in the collision operator. The Fokker-Planck description corresponds to
Eq. (5.31) with the collision operator given by Eq. (5.37), and the linear Boltzmann
description corresponds to Eq. (5.31) with the full collision operator.

In this Section, we first give the equations of evolution for the successive moments
of the electron distribution function and then discuss their implications on both the
different (cLL, FP, MC) descriptions, and the physics they describe.
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5.5.1 Conservation of the number of electrons and total energy,
and photon production rate

As shown in Sec. 5.4.1, the integral over all possible electron energies of the collision
operators for all three description is identically zero. For all three descriptions, the
photon emission process does not impact the electron density distribution in the
(x,€2) phase-space and all three descriptions conserve the total number of electrons
N, = [d3z d*Qdyfe, as expected.

The situation is obviously different when looking at the total number of photons.
Indeed, integrating the source term, rhs of Eq. (5.28b), over all possible photon
energies and directions provides us with the local photon production rate:

Wioe(t,x) = / Py, S[f] = (%) (W (7)), (5.58)

where n(t,x) is the electron density, and W (x, ) = Ao(x, ) is the rate of photon
emission [Eq. (5.25)] introduced in Sec. 5.2.3. As a result, the total number of
photons N, (t) = [d3x d*Q., dv, f, increases with time as:

d
=Ny = / A3z Wioe(t, x) (5.59)
the rhs of the previous equation denoting the total photon production rate.

Finally, the equations of evolution for the total energy U, - (t) = mc?[d3z d*Q dy v f. ~
of the electron and photon population reads:

d
2v. = /d?’xJe-E—P;;;(t), (5.60a)
d O
—Ur = Pad(t), (5.60D)
where:
PLEH®) = me [ n(6.3) (S0 (5.61)

is the total power radiated away by the electrons, and J.(t,x) = —en.(t,x)V¢(t, %)
is the electron current density [with V(¢,x) = ¢ (u ), the electron mean velocity
and where u = v/c is the individual electron speed normalized to the speed of light
c]. This confirms that all three descriptions conserve the total energy in the system,
the only source of energy being the work of the external electromagnetic field.

5.5.2 Equations of evolution

Let us first discuss the temporal evolution of the electron average energy. Dividing
Eq. (5.60a) by the total (constant) number of electrons N, = [d3xn(t,x) (see
Sec. 5.5.1), one finds that all three descriptions lead to the same equation of evolution
for the average electron energy:

2 d<’7>a
dt

= —ec(B-E)g — mc® (S(x))a (5.62)

where (q)o(t) = [Pz d*Qdyqfe/ [d3x d*Qdy f. stands as the total (including spa-
tial) average of q over the distribution function. The first term in the rhs of Eq. (5.62)
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stands for the average work rate of the external field, and the second term denotes
the power radiated away averaged over the whole distribution function.

It is important to stress that the distribution functions considering the different
descriptions are not necessarily the same. Therefore, Eq. (5.62) does not, in general,
predicts that all three approaches will give similar results on the average electron
energy. We will later quantify this difference in Section 5.5.4.

Let us now turn to the derivation of the equation of evolution for the variance
in energy. To do so, we focus on the radiation reaction effect and will thus neglect
the effect of the external field on the energy dispersion which cannot be treated for
arbitrary configurations. This is justified in particular for the case of an electron
population evolving in a constant magnetic field or interacting with a plane wave.
In those cases indeed, the additional Vlasov term is either zero or negligible and the
numerical simulations presented in Sec. 6.4 will show very good agreement with the
present analysis.

The equations of evolution of the energy variance are obtained by multiplying
the Master equations for the electron distribution by (y— (7))?, and integrating over
v, © and space. In contrast with the previous case (mean energy), only the linear
Boltzmann and Fokker-Planck descriptions formally give the same equation for the
time evolution of 02 = ((y — (7))?),, [here a = FP,MCJ:

2
dO’,Y

dt

o= (RO6Ma=2((r = (Ma)S()q » (5.63)
while the deterministic description gives:

2
de

dt

o —2((v = (Me)SX)) .. - (5.64)
Present in all three descriptions, the term —2 ((y — (7))S(x))a 18, in most cases,
negative since high-energy photon emission and its back-reaction is dominated by
electrons at the highest energies. It will therefore lead to a decrease of o4, i.e. to a
cooling of the electron population.

In contrast, the term (R(x, ")), which pertains to the stochastic nature of high-
energy photon emission in the QED framework, is a purely quantum term, and as
such is absent from the deterministic description. This quantum term is always
positive and leads to a spreading of the energy distribution, i.e. to an effective
heating of the electron population.

In the following, we will further discuss the relative importance of the determin-
istic (cooling) and quantum (energy spreading/heating) terms and their impact on
the electron population.

Using Eq. (5.52) for the third moment of the collision operators, an equation of
evolution for p3(t) = ((7—(7)a)?)a can be derived. As the three descriptions lead to
a different form for the third moment of the collision operator, they will also lead to
different equations of evolution for g (note that the contribution from the Vlasov
operator® is not considered, and one focuses on the radiation reaction contribution
only).

3Rigorously, in Egs. (5.63) and (5.64), an additional contribution from the Vlasov op-

2
erator should be accounted for so that the lhs of these equations generally reads: L%” +
2e/(me) ((vuf2 - E)a — (7)o (uf2 - E),). Similarly, for any order n moments, an additional con-
tribution from the Vlasov operator would appear in the left hand side term of the equation of
evolution, so that it should read dipn|a +ne/(me) (v — (7)a)" " u(S2- E)>a
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The equation of evolution in the deterministic description is given by

dus
dt

= 3(SCON(v = (M?) = 3((r = M) 25 00)

LL cLL’

(5.65)

in the Fokker-Planck description by

% FP = 3500} <(7 N <’7>)2>FP_ 3<(7 - <7>FP)ZS(X)>FP
+ 3((v = M) ROGY)) pp » (5.66)
and in the linear Boltzmann (MC) description by

iz

W= 380 (O = 1) )use = 37 = (Maie) S (0 e
+3((v = M) ROG) ) ys (As067) e (5.67)

As will be further discussed in Sec. 5.5.6, this third order moment relates to the skew-
ness (asymmetry) of the electron distribution function. In particular, we will show
that it provides a link to the so-called quenching of radiation losses, as introduced
and discussed in Ref. [Harvey et al., 2017].

Finally, for any order n, we get for the n' moment i, |a(t) = (7 — (7)a)™)y:

iin

dt e = n<S( )>cLL Hn— 1’cLL (5'683)
B n<(7 MC n IS( )>CLL ’
Po| = n<s<x>>Fp " (5.68)
_ n<( FP n IS( )>FP
g s ), (= ) 2RO
Wl = 0 (S00)e nilue (5.65¢)
n—1 n
£ ()6 e i),
k=0

Before investigating into more details the evolution of the first two moments, let
us discuss more closely these equation of evolution for an arbitrary order n.

At any order n, the purely deterministic term o< S() comes in the form —n((y—
(y))""1S(x)), while the n'-order moment of the kernel w, comes in the form
(—=1)™(A,(x,7)).- This implies that, while the purely deterministic term always
tends to decrease any moment of the electron distribution function (except in spe-
cial geometries where the external field would take small enough values whenever?
~v > (), the purely quantum term o A, (x,~) tends to increase even moments and
decrease odd moments. Concerning the other terms, it is in general difficult to state
the behavior of the n*” moment since it will involve all moments from 0 to n.

5.5.3 The perturbative expansion

The equations of evolution of the successive moments of the distribution function,
Egs. (5.62) to (5.68), are exact. Yet, to evaluate the rhs of these equations, one

4Some pathological situations can be found where it is actually positive, their physical signifi-
cance is however questionable and these scenarios will not be considered here.
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needs to consider a particular distribution function. This would in general require
to solve the full linear Boltzmann Eq. (5.28a). Throughout this work, we have
often adopted the approach that consists in developing the various functions of x
around the average value (x). In what follows, we list the resulting (approximated)
equations of evolution [introducing 7 = 37./(2a?)]. The equation of evolution of the
mean energy is approximately given at first order by [here o = cLL, FP, MC]:

da = =S((X)a) = 552 028" ()a). (569

In this case, the first order is identically zero while the second order term only
involves the variance and second derivative of S(). In the case of the variance, the
first order expansion involves only the derivative of S for the cLL description, while
it involves in addition h and its derivative for the FP and MC descriptions

)
doilay, = 20575 S((0), (5.70a)
Tdol|, = Tdod] (5.70b)

n <w>h<<x>>+rf§f;§h’<<x>>.

More generally, at order n, the expansion of the equation of evolution of the nth order
moment u, of the electron distribution function in the MC description involves all
the moments px from 0 to n as well as the functions aj and their first order derivative
aj, for k =0...n. For n = 3, we thus get

delas, = 32 205'(00). (5.71a)
Tdipslpp ~ T dypslory, + 302 [R((X))
RO+ 3 (), (5.71b)
Tdipslye = T dipalep — (1) az((x)
— o2as((x) +2 () 5 ((0)

- uggiag«m (5.71¢)

while for any n, we can write

(x)

= =P 5(00). (5.720)
Pl 7|+ D h((0)
b P G0) + R ()) (5.72b)
M, ).
[ sran(00) s 2 (0] (5.720)

As we saw in this Section, the perturbative expansion of the equations of evolu-
tion of the average quantities (5.62) to (5.53) yields terms of the form <X>na,(1n) ((x))-
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Figure 5.3: Dependence of 1/2x%a!(x)/al,(x) with respect to x for n = 0 (black), 1 (blue),
2 (green), 3 (red) and 4 (cian).

In order to ascertain the validity of the perturbative expansion at a given order, we
want to check that all higher orders are negligible compared to the actual order of
expansion. In particular, for the first order perturbation (5.69) to (5.72), we want
the second order to be negligible compared to the first one. For definiteness, let
us consider the case of the second order expansion of the equation of evolution for
the variance (5.63). It will lead first order terms of the form 64aj, ({(x)) and second
order terms of the form fiza! (<X>) As will be seen in Chap. 6, we have the fol-
lowing rough estimate fi3/d~ ~ <X> We are therefore lead to estimate the ratio of
the second order term to the first order one by 1/2x%a!(x)/al,(x). This function is
plotted on Fig. 5.3 for n = 0 (in black), 1 (blue), 2 (green), 3 (red) and 4 (in cian).
We see that the ratio becomes of the order of unity around (x) ~ 1 (red area on
Fig. 5.3). Note that, in practice, the second order term involves a more complicated
combination of functions a, and its derivative and we will establish a more rigorous
domain of validity for the perturbative expansion in Chap. 8.

5.5.4 Electron mean energy

Let us now further discuss the temporal evolution of the electron mean energy as
inferred from all three descriptions. As previously discussed, we will not consider
here the additional Vlasov term and focus on the effect of radiation reaction.

The fact that the quantum-corrected leading term of the LL friction force nat-
urally appears by taking the FP limit of the linear Boltzmann description already
leads us to stress that, whenever the diffusion term [in Eq. (5.42)] can be neglected,
all three descriptions will lead to the same evolution of the distribution function,
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and therefore to the same mean energy prediction [as seen from Eq. (5.62)]. This
can be easily understood as all three models have been proved to share the same
deterministic (drift) term.

Yet, even in a regime where the diffusion term is not negligible and where the
three models result in sensibly different distribution functions, simulations relying
on either the quantum-corrected friction force only or full MC simulations have
been shown to lead to similar predictions on the electron mean energy (see, e.g.,
Ref. [Ridgers et al., 2014]). In Sec. 6.4, we will actually see that all three approaches
lead to very similar predictions on the electron mean energy even when the overall
electron distribution is very different from one model to another. In what follows,
we explain this result.

To do so, we need to quantify the difference on the mean electron energy predic-
tions by the different approaches. Our first step is to formally expand S(x) around
the average value (x)q in the last term of the rhs of Eq. (5.62)

1
(S = 8 ()a) + 505 5" ((X)a) (5.73)
where S”(x) is the second derivative of S(x) with respect to x, and

oy = ((x = ()a)?), (5.74)

measures the variance of the distribution in x of the electron population. From
this, one expects all three descriptions to predict similar average electron energies
whenever the first term in Eq. (5.73) dominates.

Then, we introduce the error on the rate of change of the electron energy:

dihvc —dily) _ FPE00°5"(00) _ =
dt<7> - S((X)) E (<X>7UV?F)7

(5.75)

where we have introduced F' = 6,/6,, 6, = 0/(7y) and 6, = 0,/(x). Consider-
ing situations where all particles radiate in a similar field (e.g. localized electron
bunch and/or uniform electromagnetic field), &, ~ 64 (F' = 1) and we introduce
Er((x),0,) = EI“((X%‘AH: 1) that now depends only on (x) and 6, as presented in
Fig. 5.4. We can see that, for a given -, Er((x), ) is only weakly dependent on
(x), while it depends more strongly on &, at fixed (x).

In next Sec. 5.5.5, we will show that whenever the initial electron distribution
is such that 6, < 61, with 6! a threshold energy dispersion [given by Eq. (5.81)]
that depends only on (x), the energy dispersion of the electron distribution can
increase up to, but never exceed c}ghr. Replacing 6 by this threshold value c}ghr in our
previous estimate thus provides us with an estimate of the error on the rate of change
Eq. (5.75) that depends on (x) only. It is plotted (solid line) in Fig. 5.5 for mean
quantum parameters in the range 1073 < (x) < 2, and does not exceed a few percents
(at (x) ~ 1). It increases with (x) as the threshold energy dispersion increases
with (x). We also report in Fig. 5.5 the relative discrepancy (at the end of the
simulation) in between Monte-Carlo and deterministic modeling, measured as Ay =
((V)e — (7)err) /Y0 [with 9 = () (¢t = 0)]. This discrepancy follows the same trend
as Er (solid line) and the latter is found to provide an upper-bound to A~. For the
two cases presented here [initially narrow electron bunch interacting with a constant
magnetic field (blue crosses) and linearly polarized plane-wave (green crosses)], the
two methods predict similar average energies with a relative discrepancy of a few
percents, maximum at initially large average quantum parameters. Note that the
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Figure 5.4: Dependence with (x) and 6, of Er((x),&,) which represents the relative
difference between d;(y)nmc and di(y)err. The curve Er = 1073,1072 and 10~ are plotted
in white lines.

results derived in this work are on the average quantities (and in particular the
average X here) and not on the "typical” x of a narrow electron bunch. The equations
derived here therefore still work for a more complicated electron distribution function
than a regular one narrowly centered around a typical value of y.

5.5.5 Variance in energy: radiative cooling vs energy spreading

We now get back to the equation of evolution of the variance 0',2Y and discuss the
relative importance of radiative cooling and ‘stochastic’ energy spreading. To do so,
we rewrite (exactly) Eq. (5.63) in the form

0.2
(32) % = Ghathton,
(- (S0 — ), (5.70

where S(x) = x2 g(x). There are now two possible situations : either (i) the energy
distribution of the electron population is initially broad and the standard deviation
o, is of the same order than the average energy, or (ii) it is initially narrow and o,
is small with respect to the average energy.

In the first case, the second term in Eq. (6.1b) will be dominant at all times, and
since for x < 1, 25(x) — h(x) > 0 there will be cooling of the electron population
even for initially large values of x. In the second case, the first term in Eq. (6.1b)
dominates and results in an energy spreading of the electron population. As the
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Figure 5.5: Dependence with (x) of Er({x), afyhr), which represents the relative difference

between dy(y)mc and dy(y)crr using 65" ((x)). The green and blue crosses represent the
value of ({(v)mc (theat) — (V) eLL (tneat )/ {7) cLL (theat ) for the plane-wave field and the constant-
uniform magnetic field (respectively) and for xo = 1072,107! and 1, tpcat being the time at
which o, stops to increase.
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Figure 5.6: Dependence with (x) and 6 of ¢((x),5,). When ¢ > 1, the electron pop-
ulation is predicted to experience energy-spreading (heating), while it is predicted to cool
down when ¢ < 1. The black dashed line corresponds to ¢ = 1 and represents the threshold
&Eyhr( (x)) between the regions of energy spreading (heating) and cooling. The green dashed
line shows the first order expansion in (x) of the previous equation and corresponds to the
prediction of Ref. [Vranic et al., 2016]. The black lines represent the trajectories 6. ((x)) for
the interaction of an ultra-relativistic electron bunch with different constant-uniform mag-
netic fields corresponding to a) xo = 1072, b) xo = 107! and c) xo = 1 (the corresponding
simulations are discussed in Sec. 6.4). The green and blue crosses represent the value of 5,
extracted from the simulations considering the plane-wave field and the constant-uniform

magnetic field (respectively) for xo = 1072,107! and 1.

variance increases, so does the second term that will eventually become dominant:
a phase of cooling will then take place.

To be more quantitative, let us consider the latter case (o0, < (7)) in more
details. Expanding Eq. (5.63) at first order in x around (x)., we get:

Te do?
(50) G = ah(txdn) (.77

202
— Cov(7,X)a 25 ((X)a) = B'((X)a)] ,

where Cov (7, x)a = (7 = (Vo) (X = (X)a))a-
Whether one should expect heating or cooling depends on the sign of the rhs

of the previous equation. In particular, heating is expected whenever this rhs is
positive, which arises for

(o h((X)a)
Cov(7, X)a[25((X)a) = W ((X)a)]

> 1, (5.78)
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with 25"(x) — I/(x) > 0 whenever x < 1.

Introducing F' = &,/6, and the correlation factor p,, = Cov(v,x)/(oy0y),
where both coefficients F' and p,~ depend on the geometry of the interaction, one
can rewrite Cov(7, X)a = pyxF(X)(7)62. The previous condition Eq. (5.78) can then
be rewritten in the form:

7 h((x)a)/(X)a

on&wF? ) = [ 17
(000 ) = e

(5.79)

with 64 = 04/(q)a- )

This new functional parameter ¢ allows to account for the overall properties
(mean energy and energy spread) of the electron population, and shows that electron
heating is not only correlated to large values of the quantum parameter x, as will
be further demonstrated in Sec. 6.4.

Let us now focus on the case where all particles radiate in a similar external field
(e.g. a localized electron bunch and/or uniform external field) for which 4, ~ &,
(F ~1) and py, ~ 1. Equation (5.79) then reduces to:

s h((0a)/ e 1) 5.80
3((x)as 64) 52 [25(()a) — H((0a)] o

Comparing the value of ¢(<X>a,5y) with respect to 1, one can deduce whether
heating (¢ > 1) and by extension cooling (¢ < 1) will take place. A threshold value
&,tyhr for the standard deviation can be derived considering ¢ = 1, that reads:

a,’tyhr:\/ _ h’(<X>a) ) (581)
(X)al25"((X)a) — I ({(X)a)]

This threshold value gives the maximal standard deviation (in energy) that can be
reached starting from an initially narrow electron energy distribution. Once the
energy spread has reached this threshold, the cooling phase will take over.

Figure 5.6 presents, in color scale, ¢({x)a, &A,) as a function of the normalized
standard deviation in energy ¢, and the average quantum parameter (x). The
dashed line corresponds to the threshold value ot [Eq. (5.81)] delimiting the re-
gions in parameter space where cooling and heating are expected. The first order
expansion of Eq. (5.81) is plotted as a green dashed line and corresponds to the
prediction (derived in the limit xy < 1) by Vranic et al. [Vranic et al., 2016]. We plot
in the same figure the measures of the maximal standard deviation extracted from
simulations (discussed in Sec. 6.4) of an initially narrow electron bunch interact-
ing with a constant magnetic field (blue crosses) and linearly polarized plane-wave
(green crosses). These measures show the maximum (normalized) standard devia-
tion 63 obtained in the simulations as a function of the initial average quantum
parameter xo = (x)(t = 0). Values reported here correspond to the results of either
Monte-Carlo or Fokker-Planck simulations that lead to the same predictions, even
for xo = 1. The evolution of the normalized standard deviation as a function of (x)
(as it evolves with time) in the simulations considering a constant uniform magnetic
field is also reported (solid lines). During the energy spreading (heating) phase (for
t < theating @s defined in Sec. 6.4), the average x is approximately constant, justify-
ing the fact that in this phase, we can make the approximation (x)(theat) =~ Xo When
plotting the maximum standard deviation (ﬁhr (blue and green crosses in figure 5.6).
Moreover, we note that all curves end on the same line which acts as an attractor.




Chapter 5 113

Note that, when the electron distribution function is initially broad, the hypothe-
sis leading to the calculation of U,tyhr are not valid. The general reasoning nevertheless
holds and simulations presented in Sec. 6.4 indicate that (ﬁfhr can still be interpreted
as a threshold: whenever the standard deviation of the considered electron distribu-
tion initially exceeds this threshold, only cooling of the electron population will be

observed.

5.5.6 Third order moment and link to the quenching of radiation
losses

In this section, we wish to show that the evolution of the third order moment can
be used in order to interpret some interesting phenomenon associated to the quan-
tum behavior of the system. As previously mentioned, we wish to link us to the
so-called quenching of radiation losses. This process follows from the discrete nature
of photon emission by the radiating electron in a quantum framework. As shown in
Ref. [Harvey et al., 2017] for an electron bunch interaction with a high-amplitude
electromagnetic wave, a deformation of the distribution function can appear on short
time scales as some electrons did radiate high-energy photons away thus decreasing
their energy, while other electrons have not yet emitted any photon thus conserving
their initial energy. As a result, the electron distribution function becomes asymmet-
ric, showing a low energy tail, associated to a negative third order moment (negative
skewness).

It is therefore interesting to investigate under which conditions the third order
moment assumes negative values. As its evolution is correctly described in general
in the linear Boltzmann (MC) approach only, we will consider Eq. (8.9d) and derive
the conditions under which dug/dt < 0. This would require to compute the aver-
age over the electron distribution function of the different quantities appearing in
Eq. (8.9d), which implies solving the full linear Boltzmann equation. Instead, we
proceed as previously done and expand at first order the different functions in the
rhs of Eq. (8.9d) that depend on x around (x). We find that dus/dt < 0 whenever

1;<<X>a767>F7 Py Cyx) <1 (5.82)

where we have introduced:

Cox = (v = Ma)*(x = (X)a)) o /(e (5.83)
and
b =62 [A1(00) + Fryx(x) f2(00)] = Crx f3(()) (5.84)
with:
) = W , (5.85a)
f2(x) 3h/(X;3?X2)aé(X) , (5.85b)
B = S00F Zi’é;)) =300 (5.85¢)

Interestingly, Eq. (5.82) simplifies when considering a well localized (in space)
electron population (e.g. narrow electron bunch and/or uniform electromagnetic
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field) so that F ~ 1 and C,, =~ (x)i3. The condition given by Eq. (5.82) then
reduces to:

V((X)a»r 0rs f13) < 1, (5.86)

where:

=62 [f1((x) + () (0] = a3 (x) f3((x)) - (5.87)

Considering the situation of an initially symmetric (in energy) electron beam,
ps = 0, the condition for us to decrease (and thus assume negative values) can then
be reduced to a condition on the normalized energy variance 63 and average quantum
parameter only (x). Figure 5.7 presents, in color scale, the function ¥((x)a, 6, i3 =
0) as a function of both (x) and 6. The solid line corresponds to the condition ¢ = 1
and defines, for a given initial value of (x), a limiting energy variance for the electron
bunch:

G35 (00) = [A1(00) + (0 fo ()2 (5.88)

This value of the initial electron bunch energy dispersion delimits the regions in
parameter space where us is expected to increase or decrease.

Also reported are the measures of the standard deviation extracted from the
simulations (discussed in Sec. 6.4) of an initially spatially narrow and energy sym-
metric [p3(t = 0) = 0] electron bunch interacting with a constant magnetic field
(blue crosses) and linearly polarized plane-wave (green crosses) considering different
initial values for the average quantum parameter (x). Vertical (+) crosses report
the corresponding values of (x) and 6., at time ¢t = 0. Crosses for (y) = 1072 and
1072 are either above or close to the delimiting solid line. In this simulation, one
could thus expect an increase of 3. In our simulations, however, (and as expected
from the scaling in x™ of the successive moments discussed in Sec. 5.3.3), ps assumes
very small values and it was not possible to confirm this prediction. Nevertheless,
for the case (x) = 107! and 1, where |u3| reaches larger values, all crosses are found
to be below the limiting &Efg (solid) line, and the third order moment is found to
decrease in the corresponding simulations, consistently with the present analysis.
Also reported as ”diagonal” (x) crosses are the corresponding values of (x)(t*) and
G~(t*) extracted from the simulations at the first time ¢* for which pu3 is found to
vanish. In every cases, us crosses 0 again when increasing, and finding all these
points above the &E%‘ limit further confirms the present analysis.

For completeness, we study the influence of the initial value of fi3 on its evolution,
and we compute the limiting value of 6, at which dus/dt changes sign for an initial
non-zero value of fig

3™ (), f13) = 855 (0)VT+ () f3((X) - (5.89)

Figure 5.8 presents, in color scale 6lvim(<x>, fi3) as a function of the average quan-
tum parameter (x) and for different values of fi3. The black dashed line represents
the value of cﬂhr [Eq. (5.81)], while the straight black line represents the value of

olim [Eq. (5.88)]. The other lines following the colorscale are the values of &Em for

7,0
different values of f13. For a given initial fi3, as for 6}%, if the initial values of &,
and () are above the limiting curve, the skewness will increase, and if below it will
decrease.

We recall the meaning of the quantity 6%}“ (dashed line): if 6, is above this curve

there will be cooling, and below, heating. For a system starting from initial non zero
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Figure 5.7: Dependence with (x) and 6., of ¥({(x), 6, fi3 = 0). When ¢ > 1, the electron
population is predicted to acquire an asymmetry toward high energies (u3 increases, positive
skewness) while it is predicted to acquire an asymmetry toward low energies (us decreases,
negative skewness) when 1 < 1. The black dashed line correspond to 1) = 1 and represents
the threshold 625((x)) [Eq. (5.88)]. The blue and green crosses represent the value of &
when p3 = 0 in the interaction of an ultra-relativistic electron bunch with different constant-
uniform magnetic field and plane-waves (respectively) and initial quantum parameter a)
xo =1072,b) xo = 107! and c) xo = 1. Vertical crosses correspond to the initial values of
& and x. Diagonal crosses correspond to the values of ¢, and x when us goes back to 0
(see, the 6th panel of Figs. 6.2 and 6.5). These simulations are discussed in Sec. 6.4.
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Figure 5.8: Dependence of c}lyim [Eq (5.89)] with (x) for different values of fi3. The red
line represents &Em for the case i3 = 0.2 used in Sec. 6.4.3. The black solid line corre-
sponds to fiz = 0 while the black dotted line corresponds to &fyhr [Eq. (5.81)]. The green
crosses correspond to the three initial situations considered in Sec. 6.4.3 considering a broad
Maxwell-Jiittner energy distribution.

positive i3 (blue-shaded curves), the higher the value of fi3, the broader the range
of parameter in which we have cooling and decrease of ug, especially for small (x).
On the contrary, for a system starting from an initially negative fi3 (brown-shaded
curves), we have the possibility of a range of parameters for which we can have both
heating and an increase of us.

The situation is different if we start from a symmetrical distribution function
(or quasi-symmetrical distribution function, with very small values of us3). As we
can see the lines 653 and 63/}“ are very close, and in this case values of ¢, above
this line correspond to an electron beam acquiring an asymmetry toward the left
(negative skewness). Because of the proximity of these two lines, we can see in
Fig. 5.8, that in most cases (for x < 1), cooling is accompanied by an increase of fi3
and heating by a decrease of fi3. In Sec. 6.4.3, we will examine in more detail the
case of a Maxwell-Jiittner distribution that has a non-zero initial value of p3. The
corresponding limiting line is marked in red in figure 5.8 and the initial conditions
in (x) and 64 of the three simulations considered in that Section are reported in
the figure as green crosses. According to our prediction, the system will cool down
while its skewness diminishes (all points are below the red line), as will indeed be
demonstrated in all these simulations.
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5.6 Conclusion

The radiation reaction force acting on particles in strong electromagnetic fields has
recently attracted increased attention as it may affect laser-plasma interaction under
extreme light conditions, and for its impact on the particle dynamics in extreme
astrophysical scenarios. It is usually described using either a classical (potentially
quantum corrected) friction force or a full Monte-Carlo (MC) treatment, the latter
allowing to account for the quantum and discrete nature of the photon emission.

In the first part of this chapter, we have revisited the basis of the classical treat-
ment of radiation reaction. The Landau and Lifshitz (LL) force was rewritten in the
simple and intuitive form of a friction force for radiating ultra-relativistic particles.
Like the full LL equation, this reduced friction force also conserves the on-shell con-
dition. Its correction to account for the quantum reduction of the power radiated
away by the emitting particle was then introduced heuristically (as previously sug-
gested in other works).

After briefly presenting the properties of high-energy photon emission as in-
ferred from quantum electrodynamics (QED) in the non-linear moderately quantum
regime, we then focused on a statistical description of photon emission and its back-
reaction considering a population of ultra-relativistic electrons. Starting from a lin-
ear Boltzmann (1B) equation with a collision operator describing incoherent photon
emission in a quantum description, we performed a Fokker-Planck (FP) expansion
of the collision operator in the parameter 7. /v, the limit of which were discussed in
details. The resulting FP description, derived here for the first time under arbitrary
particle and electromagnetic field configurations, is interesting for several reasons.

e (i) First, it takes the simple form of a partial differential equation, more easily
handled in theoretical models than the 1B description that relies on an integro-
differential equation.

e (ii) The derived FP description is equivalent to a stochastic differential equa-
tion (SDE) for the electron momentum. In addition to the standard Lorentz
force, this equation contains a deterministic drift term which is found to be
leading term of the LL friction force with the quantum correction discussed
above, hence justifying the heuristic treatment that consists in systematically
correcting the LL friction force to account for the quantum reduction of the
power-radiated away by the ultra-relativistic electron. Note that throughout
this work, this quantum-corrected LL friction force provides the deterministic
treatment of radiation reaction. Most importantly, this kinetic treatment also
fully justifies - for the first time - the use of the quantum-corrected LL friction
force to account for radiation reaction in Particle-In-Cell (PIC) codes.

e (iii) An additional diffusion term in the SDE is also derived for any x < 1. It
accounts for the stochastic nature of photon emission inherent to its quantum
nature.

Special attention was paid to the study of the successive moments of the electron
distribution function. Using both analytical and numerical modelling, we evidence
that the equation of evolution for the average energy of the particle ensemble is
formally the same in all three models (quantum-corrected LL/deterministic, FP,
IB/MC). An estimate on the discrepancy on the mean electron energy predicted by
the different models is derived, and it is shown to be small for most cases: that is
all three descriptions lead to the same prediction for the electron mean energy. This
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has serious implications for experiments, as the mean electron energy proves not
to be, in general, a relevant measure to assess the importance of quantum effects
beyond the simple reduction of the power radiated away by the particles.

The situation is different when considering the evolution of the higher order mo-
ments of the particles’ energy distribution. In particular, only the FP and 1B/MC
descriptions provide the correct equation of evolution for the variance (energy dis-
persion). Instead the third and higher order moment equations of evolution differ
from one approach to another.

The study of the equation of evolution of the energy variance allows us to define
an energy spreading (heating) time, when the variance of an initially narrow beam
reaches a maximum value. The existence of this maximum energy spread follows
from the competition between the deterministic part of the radiation reaction force
and the stochastic nature of the quantum process of high-energy photon emission.
The former acts as a friction term and results in a cooling of the electron population,
while the former leads to a natural spreading of the electron energy distribution
function, associated to an increased effective temperature of the electron population.
This spreading can set in the moderately quantum regime of radiation reaction (y <
1), and is shown to be correctly modelled by both the FP and 1B/MC treatments.
This has also interesting implications for experiments, as the stochastic nature of
high-energy photons on the electron dynamics can then be diagnosed by a careful
analysis of the resulting spread of the particle energy distribution.

Finally, the study of the evolution of the third order moment proved also to
be particularly interesting as it reveals the discrepancy between all three models.
In particular, this study allows us to link negative values of the third moment to
the so-called quenching of radiation losses. This process is intimately linked to
the discrete nature of high-energy photon emission and can be accounted for only
using the 1B/MC procedure. We show that this quenching process can be more easily
observed, and impact the electron distribution, when the electron initial distribution
is quite narrow. This has important implications for future experiments on radiation
reaction, as it is here shown that ”quenching”, a purely quantum effect, can be
diagnosed as a negative skewness of the resulting electron distribution function. Let
us further note that, unlike previously claimed, even though quenching affects the
overall shape of the electron distribution function, it does not impact the mean
electron energy that is correctly modelled using the deterministic radiation reaction
force, provided it is corrected to account for the quantum reduction on the radiated
power.
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6.1 Outline

In the previous Chapter, we introduced three models for radiation reaction, de-
rived the equation of evolution for their successive energy moments and deduced
the threshold for the increase or decrease of these moments. Here, we will use this
hierarchy of moment equations to identify the domains of validity of the various
descriptions of radiation reaction. These domains being intimately linked to the
relative importance of different effects of radiation reaction, our analysis provides
new physical insights into how to observe these different effects. Moreover, they will
also help ourselves better determine the threshold parameters between the different
methods in numerical codes.

This Chapter is structured as follows. In Sec. 6.2, we establish the limit between
the different regimes of validity using the equations of evolution of the electron
energy moments. Section 6.3 then presents - in addition to the two numerical al-
gorithms described in Chap 4 to account for radiation reaction - the new particle
pusher obtained from the FP description. Beyond the theoretical insights offered by
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the developed descriptions, this approach is also particularly interesting for numer-
ical [in particular Particle-In-Cell (PIC)] simulations as a simple solver (so-called
particle pusher) is obtained which can be easily implemented in kinetic simulation
tools to account for the on-set of QED effects (namely the reduction of the power
radiated away by the electron, so-called quantum correction, and the straggling fol-
lowing from the stochastic nature of photon emission) in the intermediate quantum
regime, without having to rely on the computationally demanding Monte-Carlo ap-
proach. Section 6.4 then considers different physical configurations to validate both
our theoretical analysis and numerical tools, and allows us to further investigate
both the domains of validity of the different descriptions as well as the different
aspects of radiation reaction.

6.2 Domain of validity of the three descriptions

The analysis of the evolution of the successive moments allows us to infer more
precisely the domain of validity of the three descriptions by taking into account the
properties of the electron distribution function (in particular its first three moments).
Most importantly, these domains of validity also provide us with a deeper insight into
the various aspects of radiation reaction from which can be drawn new guidelines
for designing experiments, as will be further discussed in Sec. 6.2.3.

In what follows, we discuss this, first considering an initially symmetric distribu-
tion function for the electron (most interesting when considering, e.g., an electron
beam), then considering an asymmetric electron distribution function (as can be
expected considering a hot relativistic electron plasma, see, e.g., Sec. 6.4.3).

6.2.1 Case of an initially symmetric energy distribution

In the case of an initially symmetric (or nearly symmetric) distribution function, the
initial third order moment fi3 is equal to zero. In this situation, the deterministic
(cLL) description is expected to hold whenever:

e (i) the purely quantum terms in the equation of evolution for the variance
[second and third terms in the rhs of Eq. (6.1b)] are negligible with respect to
the classical one [Eq. (6.1a)], and

e (ii) the third order moment remains negligible compared to the second or-
der one (i.e. it does not play any role in the description of the distribution
function).

Let us recall for convenience the equations of evolution for the variance and third
order moment of the electron distribution function as described by the cLL and by
the FP/MC methods, at first order in perturbation (see Sec. 5.5.3)

)
dtU?Y‘cLL ~ —QJin'((X)) , (6.1a)
%dta’%‘a >~ %dtU“/’CLL (61b)
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dlas, = 32 205'(00). (6.22)
Tdipalpp =~ T dipsl g, + 305 [h((X))

QO (0] + 3 I, (6.2b)
Fdussle =~ 7 dusler — ()% as(0)

o3 las((x)) + 2 (x) a5((x))]

- uggiag«x», (6.20)

where a = [FP,MC]. The first condition (i) then reads:

202808 ()| > |y () +03§§§h' ()] (63

)

>

and reduces to:

o h00) + (OR(0)) 7

oL, >

K 2(x) 5" ({(x))

The second condition (ii) can be computed estimating the extremum value of fi3
[obtained canceling the rhs of Eq. (6.2¢)]. This yields (setting ) = 1 in Eq. (6.5))

At a3 LA () + 00 L)) -

(6.4)

e (0 A(00) ’ (0:2)
where we used the functions fi 2 3 defined in Sec. 5.5.6 by
Hilx) = W (6.6a)
Ao = PEG00, (6.6b)
Ry = G Z I (6.60)
The condition (ii) then reads
52(x) f3((x)) o1 6.7)

[G207 (00 + 00 20T — 1]

In contrast, the FP model providing the correct description for the energy vari-
ance, its validity is constrained by the second condition (ii) [Eq. (6.7)] only.

The derived conditions, Eqgs. (6.4) and (6.7), depend on both, the average quan-
tum parameter (x) and the electron distribution normalized energy variance &..
They provide us with a path to define the domain of validity of the different ap-
proaches (deterministic/cLL, FP or MC) in the ((x),0) parameter-space. Our re-
sults are summarized in Fig. 6.1.

The blue shaded regions correspond to the parameter-space for which condition
(ii) [Eq. (6.7)] is not satisfied (more exactly the lhs of Eq. (6.7) is < 10 [foo, ]). In
this region, the third order moment of the distribution function can assume large
values, so that only the MC procedure provides a correct description.

Finally, outside of this domain (grey and red shaded regions), the FP description
holds while the gray shaded region corresponds to the region where the deterministic
(cLL) description is valid, i.e. both conditions (i) and (ii) [Egs. (6.4) and (6.7),
respectively] are satisfied [for condition (i), we specify here that the lhs of Eq. (6.4)
is > 10 which defines the region above the black-dashed line].
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Figure 6.1: Domain of validity of the different approaches. a) In the case of an initially
symmetric electron energy distribution; as given by Egs. (6.4) and (6.7) for a symmetric
distribution function (fi3 = 0). b) In the case of an initially asymmetric distribution function;
as given by Egs. (6.9) and (6.11). Here presented for fiz ~ 0.2 corresponding to the Maxwell-
Jiittner distribution presented in Sec. 6.4.3.

6.2.2 Case of an initially non-symmetric energy distribution

A similar analysis can be performed with an initially asymmetric distribution func-
tion. In that case however, even though condition (i) [Eq. (6.4)] is unchanged, one
has to reconsider the condition on fi3 that is now not negligible, but should be
correctly handled by the various description. More precisely, for the deterministic
(cLL) description to hold, one thus requires that all the purely quantum terms in
the equation of evolution (6.2¢) of ug are negligible compared to the classical term
appearing in (6.2a). This condition writes

‘ dt,Uf3|cLL‘ > ‘ dipislyvic — depslery, | 5 (6.8)

and simplifies to:

3i3(x)S" ((x))/a3({x))

. >1. (6.9)
—13(x) f3(00) + 3300 S () /as((x)) + 65 [f1((0) + () f2(00)] — 1
Proceeding in a similar way for the FP description, we require that
’ dipis|pp ‘ > ‘ dypislyic — dipslpp ’7 (6.10)
which leads condition (ii):
[362[((0) + COR ()] + 300 () = S(00)]|
1, (6.11)

|as((x)) + 62[as({x)) + 200 a5({0))] + As(x)as((x))|

The derived conditions of validity, Eqgs. (6.4) and (6.9) for the deterministic
(cLL) description and Egs. (6.4) and (6.11) for the Fokker-Planck description now
depend not only on (x) and &, but also on the normalized third order moment fi3.
In figure 5.8, we have projected them on the ((x),d,) parameter-space assigning
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for fi3 its initial value (i3 = 0.2) for the particular case (broad Maxwell-Jiittner
distribution) studied in Sec. 6.4.3.

The regions of validity of the different models are shown in Fig. 6.1b following
the same lines then for Fig. 6.1a. While the region of validity of the deterministic
(cLL) description is mainly unchanged (note that the range of accessible 5 is larger
for asymmetric functions), one finds that the region validity of the FP description
is significantly increased. As will be discussed in Sec. 6.4.3, this is indeed what is
observed in our simulations.

6.2.3 Physical implications

Our analysis of the successive (and in particular second and third) moments has
allowed us to identify more clearly the domain of validity of the different descriptions
in terms of both the initial average quantum parameter and shape of the energy
distribution of the electron population. As each of these descriptions account for
different physical effects of radiation reaction, these domains of validity provide us
with some insights on which processes play a dominant role under given conditions of
the external field and properties of the electron population, as well as some guidelines
for future experiments to observe various aspects of radiation reaction.

Indeed, should our physical conditions (e.g. experimental set-up or astrophys-
ical scenario) lie in the regime where the deterministic (cLL) description is valid,
radiation reaction acts as a friction force and one can expect to observe both a
reduction of the electron population mean energy as well as a narrowing (cooling)
of the electron energy distribution function. In the case where our physical con-
ditions are characteristic of the regime where the deterministic description is not
valid anymore but the FP approach is, the stochastic nature of high-energy photon
emission starts to play an important role. Under such conditions, and in particular
for short (with respect to the so-called heating time that will be further discussed in
Sec. 6.4) times, one can expect to observed a measurable broadening of the electron
energy distribution. Finally, should our experimental (or astrophysical) conditions
lie in the regime where only the linear Boltzmann (MC) description is valid, not
only the stochastic nature of photon emission, but its discrete nature will play a
role. In particular, this defines the experimental regime for which the quenching of
radiation losses can be observed, and diagnosed as a negative skewness of the elec-
tron distribution function. In this regime, and for short enough times, the diffusion
approximation supporting the FP approach is not valid anymore and rare emission
events, that can be described only as a Poisson process (i.e. by the MC procedure),
are of outmost importance.

6.3 Stochastic (Fokker-Planck) pusher

The stochastic pusher we now describe is based on the Fokker-Planck treatment
developed in Sec. 5.3. It follows the very same step as described earlier for the
deterministic pusher with the difference that the radiation reaction force in Eq. (4.39)
now contains an additional stochastic term:

£l = |~ Paalt + meVR(7) AW B/(c?). (6.12)

1
where 8 = p(”fﬁ) /(mey), and dW is a random number generated using a normal
distribution of variance At. Both functions g() and h(x) [the latter appearing when
evaluating R(x,~y) using Eq. (5.38b)] can be either tabulated or estimated from a fit.
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Let us now note that Eq. (6.12) can in some cases (when its rhs is positive) lead
to an electron gaining energy. This up-scattering is not physical, and is a well-known
short-cut of the Fokker-Planck approach. It may become problematic only in cases
where xy — 1 for which the stochastic term can become of the order of the drift
term. However, if this may be a problem should one consider only a single particle
dynamics, this problem is alleviated when using this kind of pusher in Particle-In-
Cell (PIC) codes. In that case indeed, one deals not with real particles but with
so-called macro-particles that actually represent discrete element of a distribution
function (see, e.g., Ref. [Derouillat et al., 2018]), and up-scattering is then in average
suppressed. This will be discussed into more details in the next Sec. 6.4.

For the sake of completeness, we also note that Wiener process involve sample
paths that are non-differentiable [Kloeden and Platen, 1991]. This requires much
care when the issue comes to the numerical treatment of these random discrete
increments. Here, as a first tentative, we introduce the simplest possible scheme,
know as Euler-Maruyama [Kloeden and Platen, 1991]. Of course more sophisticated
and accurate schemes exist, that have not been tested in this work. An importance
issue lies in the stiffness of the Stochastic Differential Equation (SDE). This stiffness
can be quantified with use of the SDE Lyapunov exponents, which basically indicates
the presence of different scales in the solution [Kloeden and Platen, 1991]. A priori,
the stiffness of the rate of photon emission is avoided by the SDE because it is
precisely the operating regime of the Monte-Carlo pusher.

6.4 Numerical results

In this Section, we confront the various numerical algorithms (pushers) introduced
above against each other as well as against our theoretical predictions (Section 5.4).
We consider an electron beam, first in a constant magnetic field, then in a counter-
propagating linearly polarized plane-wave. The case of an electron bunch with a
broad (Maxwell-Jiittner) energy distribution in a constant magnetic field is also
discussed. Note that, throughout this Section, the Monte-Carlo (MC) simulations
will be used as a reference as they provide a more general description equivalent to
the full linear-Boltzmann description.

6.4.1 Constant-uniform magnetic field

We start by simulating the interaction of a Gaussian electron beam with mean energy
~vo = 1800 and standard deviation og = 90 (corresponding to approximately 920 +
46 MeV) with different constant-uniform magnetic fields of magnitude corresponding
to xo = (x)(t =0) = 1073, 1072, 107! and 1 (correspondingly, B = 2.5 kT, 25 kT,
250 kT and 2.5 MT). The end of the simulation is taken when the energy decrease
becomes very slow (i.e. we approach a regime in which radiation losses are not
important) except for the case o = 1073, where the energy loss is always small and
we stop arbitrarily at teng = 20/we, with we. = eB/(m~) the synchrotron frequency.
For xo = 1 the simulation ends at tenq = 3/we, for xo = 107! at teng = 5/we, and
for xo = 1072 and 1072 at tenq = 20/we.. In all cases, we used 10 000 test particles.
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Figure 6.3: Simulations of an ultra-relativistic electron beam in a constant uniform mag-
netic field for a) xo = 1073, b) xo = 1072, ¢) xo = 107! and d) xo = 1 electron distribution
functions at times t = 0, t = tena/2 and t = tenq (from right to left). The red lines correspond
to FP simulations, the blue one to MC simulations.

The results are summarized in Fig. 6.2. The first row a) corresponds to xo =
1073, the second b) to xo = 1072, the third c) to xo = 107! and the last one d)
to xo = 1. The first three columns correspond to the evolution of the distribu-
tion function f.(,7) respectively in the case of the Monte-Carlo simulation (MC),
the stochastic (Fokker-Planck) pusher (FP) and the deterministic (cLL) radiation
reaction pusher [including the quantum correction g(x)]. The fourth column cor-
responds to the (normalized) difference between the average energy extracted from
the Monte-Carlo simulations and the average energy obtained from the stochastic
pusher (red line), and that obtained using the deterministic pusher (black line).
Both are normalized to the initial mean energy vo: Ava/7% = ((V)me — (V)a) /70,
with @ = cLL or FP. Finally the last two rows correspond to the normalized vari-
ance 02/70 = ((’y — (v))?) /42 and to the normalized moment of order 3, us3/v5 =
((v—={v >) )/~8 (in all plots, the blue line corresponds to the Monte-Carlo simulation,
the red line to the stochastic pusher and the black line to the deterministic pusher
[with the quantum correction g(x)].

Let us first consider the case xo = 1073. As xo < Xa , one could expect all three
descriptions to lead to similar results, and indeed, there is a very good agreement
in the evolution of the distribution function as calculated by the three models [see
first three panels of Fig. 6.2a]. Small differences eventually appear that are as pre-
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Figure 6.4: Simulations of an ultra-relativistic electron beam in a constant, uniform mag-
netic field for a) yo = 1071, b) xo = 1. This figure focuses on the early times of interaction
(t < theating during which the energy dispersion increases). The first column corresponds to
MC simulations, the second to the FP ones. The last row shows snap-shots of the electron
distribution functions at different times ¢t = 0, ¢ = theating/4 and t = theating/2 (from right
to left). The red lines correspond to FP simulations, the blue one to MC simulations.

dicted by the analysis performed in the previous sections. In particular we see in
the variance [fifth panel of Fig. 6.2a] that cooling is slightly overestimated by the
deterministic (cLL) model. This is expected as we are close but not exactly into the
deterministic domain of validity (see Fig. 6.1a) so that the quantum terms leading to
energy spreading are not completely negligible. Moreover, there is a small difference
between models in the third order moment [last panel of Fig. 6.2a], as expected from
Sec. 5.5. Yet this moment remains 3 orders of magnitude smaller than the variance,
as expected from the scaling o< y of the various moments (see Sec. 5.3.3), and it is
thus negligible (see also Fig. 6.3a).

We now examine the cases xg = 1072 and 10~!. We are now in what we called
the intermediate quantum regime (xq < X < Xqu), and one expects the determinis-
tic (cLL) description to fail in describing the evolution of the electron population.
It turns out to be the case as, while the evolution of the distribution function ob-
tained from the stochastic (FP) pusher is in good agreement with the one obtained
using the MC procedure, both are very different from the deterministic one. Still,
and as expected from Sec. 5.5, all three models give similar results concerning the
evolution of the average energy which is found to be very close to the evolution of a
single classical particle with initial energy equal to the average energy of the initial
population (see the fourth panels of Fig. 6.2b and 6.2c.).

The main difference between the deterministic model and the quantum (FP and
MC) models is in the variance (fifth panels of Figs. 6.2b and 6.2c). The quantum
models exhibit an energy spreading (effective heating) phase, with o, increasing up
to a maximum value, and a later phase of cooling, while the deterministic model
predicts only cooling. As predicted, both quantum models (MC and FP) predict the
same evolution of the energy variance, and the maximum value of 6, is found to be
in perfect agreement with the predicted value &fyhr given by Eq. (5.81). The good
agreement between both quantum models with respect to the temporal evolution
of the distribution function can be clearly seen in Fig. 6.3b and 6.3c, where we
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superimposed the electron distribution functions obtained from the stochastic (FP)
pusher (blue line) and Monte Carlo approach (red line) at different times ¢ = 0,
t= tend/2 and t = tend-

As expected, differences in between the FP and MC models only appear in the
evolution of the third order moment (last panels in 6.2b and 6.2c). Yet, for both
cases, this third order moment is found to be y times smaller than the second order
moment. For the case yo = 1072, this discrepancy is negligible and both FP and
MC are equivalent. For the case yo = 107!, one can argue that for short times,
this difference of the order of 10% is not so negligible. This is exactly what one
could have expected from the extended analysis of the domain of validity presented
in Sec. 6.2, and Fig. 6.1a, where the case yo = 107! is found to lie close to, yet
outside of the domain of validity of the FP description. Furthermore, at longer
times (t > theat), the slight decrease of (x) and significant increase of &, bring the
simulation conditions back into the FP domain of validity as shown by the solid
black line in Fig 6.1 Note that this finding supports our claim that not only () but
also ., are relevant to discriminating which physical processes of radiation reaction
are important, in particular at short times.

Finally, for xo = 1 > Xqu, we are in the quantum regime and we start to see some
differences in the global shape of the distribution function among the two different
quantum models (see first two panels of Fig. 6.2d and 6.3d), in particular during
the early stage of interaction. This is expected as, for xy ~ 1, the higher order
moment (n > 3) contributions are not negligible anymore (see Sec. 5.3.3) and leads
to different predictions whether one considers the FP or linear Boltzmann approach
(see Sec. 5.4), as clearly seen in the last panel of Fig. 6.2d. This particular case
also clearly lies outside of the deterministic and FP domains of validity (as shown
in Fig. 6.1a and discussed in Sec. 6.2). Let us note however that the prediction of
the average electron energy (fourth panel of Fig. 6.2d) and energy dispersion (fifth
panel of Fig. 6.2d) is consistent in between all three approaches.

In addition, the clear difference between the FP and MC description is in the
third order moment. Figure 6.4 shows the evolution of the distribution function in
the FP and MC models focusing on the initial stage of interaction (heating phase,
corresponding to an increase of the variance) at three different times t = 0, ¢t =
theating/4 and t = theating/2. Let us first note that the FP simulation, in contrast
with the MC one, exhibits a non negligible amount of particles gaining energy. This
unphysical behavior follows from what we earlier introduced as particle up-scattering
(see Sec. 6.3). As x — 1, the contribution of the diffusion term becomes of the same
order of the drift term, and clearly the FP model reaches his limit.

Furthermore, the energy spreading in the MC simulation is, for such large values
of x, strongly asymmetric (see also Fig. 6.3d). As the variance increases, the moment
of order 3 (that becomes of the same order than the variance as x — 1, see Fig. 6.3d
last two panels) is negative. This corresponds to a tail towards the low energies, with
the distribution still being peaked at high-energy (similar to the time ¢t = 0 peak).
As the variance reaches its threshold value [still correctly predicted by Eq. (5.81),
see also Fig. 5.6 (blue crosses)|, we reach t = tpeating and our simulation shows that
the sign of the third order moment changes at this time. This is coherent with the
fact that 5.%hr ~ &1}(’)““ as explained in more detail in Section 5.5.6.

This function peaked at high (close to initial) energy can be interpreted as the
result of the quenching of radiation losses [Harvey et al., 2017]. This quantum
quenching, which is not accounted for in the deterministic (even quantum corrected)
and FP approaches, follows from the discrete nature of photon emission. As a result,
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in the regime where quenching is important, each electron trajectory can be modelled
only considering the discrete nature of the emission process, i.e. it requires the use
of the full Monte-Carlo approach.

Yet, when one follows the mean energy only, all three descriptions provide similar
results. That is, even in this regime of quantum quenching, the mean energy of the
overall electron population is reduced and still closely follows deterministic radiation
reaction (quantum corrected) and FP predictions. This has consequences on future
experiments, where only a careful measurement of the electron energy spectra (and
in particular their symmetry) will allow to observe this quenching process. We will
get back to this particular point in more detail at the end of next Sec. 7.3.3.

6.4.2 Linearly polarized plane-wave

We now consider the interaction of this same Gaussian electron beam (mean energy
v = 1800 and standard deviation op = 90) with counter-propagating (linearly
polarized) electromagnetic plane-waves with different amplitudes with xo = (x)(t =
0) = 1072, 107! and 1 (corresponding to the wave normalized vector potentials
ap = 1.14, 11.4 and 114, respectively). The duration of each simulation is chosen so
that we get the interesting features of the interaction. For yg = 1072, the duration
of the simulation is tenq = 2000/wp, for xg = 107! tenq = 200/wg and for yo = 1
tend = 40/wp, where wy is the electromagnetic wave angular frequency (wg = 2wc/ )\,
where we have considered \g = 1 um). In all cases, 10 000 test particles were used.

The simulation results are summarized in Fig. 6.5, following the same presen-
tation than Fig. 6.2. The first row a) corresponds to xo = 1072, the second b) to
xo = 1071, the third c) to xo = 1. The interpretation of these simulations follows
the same lines than for the case of a constant magnetic field and, as a result, the
same conclusions can be drawn.

Let us start by considering the case xq < xo = 1072 < Xqu- As xo < 1then <2
higher order moments (o< x"*1) are small, and the overall evolution of the electron
distribution function f, is well reproduced, as shown in Fig. 6.5a should one focus on
the first four panels in Fig. 6.5a only. Looking into more details, and in particular
to the fifth panel (energy variance), one sees that here again the deterministic (cLL)
description strongly overestimate the electron beam cooling. This is explained again
by this particular case lies outside of the regime of applicability of the deterministic
(cLL) description (Fig. 6.1a), and well into that of the FP description.
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Figure 6.5: Simulations of an ultra-relativistic electron beam in a counter-propagating linearly polarized plane wave for a) xo = 1072, b) xo = 107!, and c)
Xo = 1. The first three panels of each row show the electron distribution functions from the Monte-Carlo simulations (MC, first panels), stochastic (Fokker-Planck)
simulations (FP, second panels) and quantum-corrected deterministic simulations (cLL, third panels). The fourth panel shows the difference in the prediction
of the mean electron energy in between the MC simulation and the deterministic (black line) and FP (red line) simulations. The two last panels (in each row)
correspond to the moments of order 2 (energy variance) and 3 for the MC (blue line), FP (red line) and deterministic (black line) simulations.
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Figure 6.6: Simulations of an ultra-relativistic electron beam in a counter-propagating
linearly polarized plane wave for a) xyo = 1072, ¢) xo = 107! and d) yo = 1 electron
distribution functions at times ¢t = 0, t = tend/2 and ¢ = teng (from right to left). The red
lines correspond to FP simulations, the blue one to MC simulations.

Similarly, for xa < xo = 107! < xqu, the stochastic (FP) scheme reproduces
correctly the evolution of both the electron mean energy and variance, and the
global properties of the electron distribution function f. considering the two quan-
tum approaches are similar. In particular, the existence of a heating to cooling
transition is recovered, and analytical predictions of Eq. (5.81) are found to be in
excellent agreement with our simulation results, see also Fig. 5.6 (green crosses).
As discussed previously for the case of an electron beam radiating a constant mag-
netic field, and as predicted by our theoretical analysis (this particular simulation
lies slightly outside of the regime of validity of the FP description, see Fig. 6.1a),
discrepancies in the third order moment appear on short time. For this case how-
ever, this error remains quite small, of the order of yo = 10~! times the normalized
variance (second order moment). Here again, our numerical results support the
extended analysis of the domains of validity of the different approaches (Sec. 6.2).

Finally, when xo = 1 > Xxqu, important differences in the different approaches
are observed, in particular visible in the third momentum, and in the overall shape
of the distribution function at early times as ps then assumes values of the same
order than o,. Once more, 3 is negative during the heating phase, and quantum
quenching sets in. Here again, this third order moment flip signs at tpeating ~ 27 /wo,
which thus provides a good measure for the time up to which the discrete nature
of photon emission has a noticeable effect on the overall shape of the distribution
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function.

As previously stressed, this quenching is intimately linked to the discrete nature
of photon emission, and is here shown to greatly impact the physics at (x) — 1.
As it is associated to negative values of the third order moment pg, the impact of
quenching can be measured in forthcoming experiments by analysing the skewness of
the measured electron energy spectrum. This would provide a clear signature of the
quantum (discrete) nature of radiation reaction. Yet, unlike previously claimed in
Ref. [Harvey et al., 2017], this does not translate in the electron bunch mean energy
which is correctly described by the deterministic (radiation friction) description
provided that it accounts for the quantum correction as previously underlined in
Sec. 5.4, and demonstrated in Fig. 6.5 (fourth panels) where all three descriptions
are shown to give similar results on the mean energy.

6.4.3 Electron population with a broad energy dispersion

For the sake of completeness, we finally consider the evolution of an electron pop-
ulation with an initially broad energy distribution radiating in a constant uniform
external magnetic field. The electron energy distribution at the beginning of the
simulation follows a (zero-drift) 3D Maxwell-Jiittner distribution:

Je(t =0,7) = W exp (—%) , (6.13)

where K3 is the modified Bessel function of second kind, and 6 = T'/(mc?) = 600 is
the normalized temperature corresponding to an initial electron mean Lorentz factor
Y0 = () ~ 1800, and initial energy standard deviation 0., ~ 0.57 7y. Note also that
such a broad distribution also presents a large initial asymmetry and jiz ~ 0.2 at the
beginning of the simulation. Three magnetic field strengths have been considered
corresponding to xo = (x)(t =0) = 1072, xo = 107! and x = 1.

The simulation results are summarized in Fig. 6.8 following the same presentation
than Figs. 6.2 and 6.5.

Let us first briefly focus on the case yo = 1072. This particular case is indeed
particularly interesting as for such yg, both our extended analysis of the domain
of validity (Sec. 6.2) and previous simulations considering an initially narrow and
symmetric electron beam showed that the on-set of stochasticity effects translate
in an overestimated cooling by the deterministic (cLL) description. In contrast, for
this particular case of a broad energy distribution, and as predicted in Fig. 6.1b, this
particular case xo = 1072 now lies exactly into the regime of the deterministic (cLL)
approach. This is indeed confirmed by our simulations results (Fig. 6.8a) where all
three models predict the same evolution for all three moments. This finding further
confirms our analysis that not only the average quantum parameter, but also the
shape of the energy distribution of the electron population is important to assess the
relative importance, and measurable aspect, of various effects of radiation reaction.

Furthermore, and for all values of g, the very large initial standard deviation,
0y/70 =~ 0.57, exceeds the predicted threshold O',tyhr /70 =~ 0.37 [here computed for
x = 1 using Eq. (5.81)]. As a result, and even at large x, all simulations (and in
particular all quantum ones) predict only a cooling of the electron distribution with
o~ continuously decreasing with time.

Another remarkable point is that the FP description reproduces the MC results
for xo = 107! (and to some extent for xg = 1) much more closely than for the
initially narrow electron beam. Again, this is in good agreement with our extended
analysis of the domain of valid of the different descriptions of radiation reaction and is
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explained by the initially broad energy dispersion (variance) so that the deterministic
terms in the equation of evolution of the moments are dominant, while the quantum
terms only give a correction.

Let us finally note that, beyond demonstrating the validity our approach and
its capacity at being applied to general electron populations, this particular case
of a Maxwell-Jittner distribution is also interesting to broaden the spectrum of
applications of our study. Indeed, such relativistic distribution functions are typical
of laser-solid interaction in the ultra-high intensity regime, as well as in relativistic
astrophysics.

6.5 Order of magnitude of the ”Vlasov terms”

Let us analyze in more details the so-called ”Vlasov terms” obtained in the previous
chapter by computing the successive moments of the operator

d

1
%fe = V. [Cﬁnfe] - @ 67[666(9 : E)fe]

- gVn'[(ﬂ—Q®ﬂ)'(E+ﬁﬂ < H)fe] . (6.14)

As indicated previously, these terms take the following form

ne

(v= )" (B-E)), , (6.15)

mc

and they are due to the action of Lorentz force alone on the electron distribution
function. Indeed, considering a particle subject to the Lorentz force only, we have
dy

e
- _ " 3.E 1
dt mc'6 ’ (6.16)

from which we easily deduce for any integer n

dy™ ne ,_i

1 — - 2ynlg. R, (6.17)
which leads, after averaging, the different terms (6.15). In the work by [Neitz and
Piazza, 2013a], the considered situation was that of an electron bunch of energy 7o
counterpropagating with a laser with normalized strength ag < 7. In this situation,
B L E and all the Vlasov terms vanish. Here we developed the formalism keeping
these term. This allows us to see how the different equations developed in this
chapter and the previous (in particular for the maximum variance &g) are changed
by the Vlasov terms. Moreover, we will see in Chap. 8 that these terms are negligible
in other situations than that considered in this chapter. From a conceptual point of
view, our goal here was to investigate RR. The stochastic heating coming from the
Lorentz force only is therefore out of the scope of this work. The interested reader

is referred to [Doveil, 1981, Bauer, 1995, Esirkepov, 2015, Esirkepov, 2017].

6.6 Conclusion

The formalism developed in the previous Chapter allowed to identify the limit of
validity of the deterministic approach and to propose a first criterion, in terms of
the quantum parameter y, for the transition between FP and 1B/MC treatments,
namely x < xqu =~ 0.25. This criterium is not strict and has been extended in this
Chapter, following considerations on the evolution of the successive moments of the
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distribution function, to account for the general shape of the electron distribution
function

The analytical study of the successive moments of the electron energy distribu-
tion function allowed us to gain a deeper insight into the regimes of validity of the
various approaches considering more general distribution functions than usually in-
vestigated. While previous studies have considered the average quantum parameter
(x) as the only relevant parameter, we show that the initial electron spread in energy
is also a key-parameter for determining the validity of the different (deterministic,
FP or IB/MC) models. Our moment analysis thus allowed us to identify more rig-
orously the various regimes of validity of the different models as a function of both,
the initial quantum parameter (x) and normalized electron energy spread o, /(7).
By doing so, we could also highlight under which conditions the various physical ef-
fects, and in particular the stochastic and/or discrete nature of high-energy photon
emission may be more easily accessible in forthcoming experiments.

The numerical implementation of the SDE accounting for this diffusion term is
discussed, leading to the development of a new stochastic pusher for PIC codes that
can be easily implemented by modifying the pusher accounting for the (quantum-
corrected) radiation-reaction force. Its ability to correctly address various physical
configurations is demonstrated, and it can be used in an intermediate regime where
the lowest order term (deterministic friction force) is not accurate enough, and the
full MC procedure (equivalent to the 1B description) is not yet necessary.

The theoretical findings of this work as well as the numerical tools developed
here are important for future experiments on extreme light facilities. They are also
important to the relativistic astrophysics community as radiation reaction is known
to strongly affect the particle dynamics in various extreme scenarios.
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7.1 Outline

Radiation reaction (RR) is the influence of the electromagnetic field emitted by
a charged particle on its own dynamics. It is one of the oldest problems in elec-
trodynamics [Landau and Lifshitz, 1947, Spohn, 2004, Di Piazza et al., 2012] and
it has recently been at the center of various studies motivated either by relativis-
tic astrophysics studies [Jaroschek and Hoshino, 2009, Cerutti et al., 2014, Cerutti
et al., 2016], or by the advent of multi-petawatt laser systems [Tamburini et al.,
2010, Sokolov et al., 2010, Duclous et al., 2011, Nerush et al., 2011b, Ridgers et al.,
2012, Capdessus et al.,; 2013, Blackburn et al., 2014, Gonoskov et al., 2015, Lobet
et al., 2015, Vranic et al., 2016, Martins et al., 2016, Lobet et al., 2017, Grismayer
et al., 2017a]. Among the latter, the Apollon [Cros et al., 2014b], Gemini [J. M. Cole,
2017,K. Poder, 2017] and ELI [ELI, | facilities provide us with test beds for our mod-
els of high-energy photon emission and its back-reaction on the particle dynamics.

In order to provide a link between theoretical/numerical modelling and exper-
iments, many authors have studied the signatures of RR on either the electron or
photon distributions and proposed accordingly possible experimental setups in or-
der to observe such signatures. Among the signatures in the electron distribution
function, one can mention the (quantum) stochastic heating first predicted by Neitz
and Di Piazza [Neitz and Piazza, 2013b] and further investigated in Refs. [Vranic

136
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et al., 2016, F. Niel, 2018, Ridgers, 2017] or the quenching of radiation losses first
introduced in Ref. [Harvey et al., 2017] and more recently revisited as an asymmetry
(or skewness) of the electron distribution function in Ref. [F. Niel, 2018].

Signatures in the emitted photon spectrum have also been studied. RR was
identified with the multiple photon recoils experienced by electrons emitting consec-
utively and incoherently high-energy photons in Ref. [Di Piazza et al., 2010], a study
in which the authors also highlighted the impact of RR on the multi-photon Comp-
ton spectra. More recently, Neitz and Di Piazza also used a kinetic approach to
study the interplay of RR and quantum electrodynamics (QED) effects on both the
electron and emitted photon spectra, suggesting that such effects could be observed
at already available laser intensities [Neitz and Di Piazza, 2014]. Such findings were
further supported by Blackburn et al., who used a Monte-Carlo based Particle-In-
Cell (PIC) approach to study high-energy photon emission in the head-on collision
of an electron-beam with an ultra-intense laser pulse in a regime where QED effects
are important [Blackburn et al., 2014].

In the present Chapter, we investigate RR effects on the spectrum of high-
energy photons focusing on the comparison of the three different models discussed
in Ref. [F. Niel, 2018]. A remarkable result is that the emitted radiation spectrum is
weakly sensitive to the details of the electron energy distribution function as long as
the average energy is the same and the energy spreads are comparable. The chapter
is structured as follows. First, Sec. 7.2 lays the basis for this study. We summarize
previous results on the radiation spectrum considering a single radiating electron
in the local constant field approximation. We then remind briefly the three com-
plementary approaches for treating RR in the moderately quantum regime which
have been recently presented in Ref. [F. Niel, 2018] and discuss how the emitted
high-energy photon properties can be extracted using these approaches. Then, in
Sec. 7.3, we present the results of PIC simulations performed with the open-source
code SMILEI [Derouillat et al., 2018]. These simulations shed a new light on how the
three models for RR mentioned above perform in predicting the spectral properties
of the emitted high-energy photons. Finally, Sec. 7.4 summarizes our findings.

7.2 High-energy photon emission and its back reaction

Throughout this work, we place ourselves within the local constant field approxima-
tion (LCFA) which relies on the possibility of neglecting the space and time variation
of the external field over the region of formation of a high-energy photon emitted
by an ultra-relativistic electron. The LCFA validity has been investigated in recent
works [Di Piazza, 2018], but its discussion remains beyond the scope of this work.

In what follows, we first recall the properties of high-energy photon emission
under the LCFA, focusing on the single electron emission rate and spectral proper-
ties of the emitted photons (Sec. 7.2.1). We then summarize previous findings on
the modelling of the back-reaction of high-energy photon emission on the radiating
electron dynamics, a.k.a. radiation reaction, in the moderately quantum regime
(Sec. 7.2.2). Finally, in Sec. 7.2.3, we take a closer look at the high-energy photon
emission by an ensemble of ultra-relativistic electrons.

7.2.1 Photon emission rate and energy spectrum

Let us consider an electron (with charge —e and mass m) radiating in an external
electromagnetic field with relativistic strength:
e| A¥|

= > 1, 7.1
ag me2 ( )
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where ¢ is the speed of light [SI units will be used throughout this work unless
specified otherwise], and A,, is the four potential associated to the electromagnetic
field tensor F* = ot AY — 0¥ A*. We will further consider undercritical (otherwise
arbitrary) electromagnetic fields, that is both field invariants are small with respect
to the square of the Schwinger field Es = m?c®/(eh) ~ 1.3 x 10*® V/m. The Lorentz
invariant rate of photon emission by the electron has been first derived in the LCFA
by Nikishov and Ritus [Nikishov and Ritus, 1964]. It reads:

PN, 20 Gx,xy)
drdy, 37, X~

, (7.2)

where 7 is the electron proper time, o = €2/ (4meghc) is the fine structure constant (eg
and h being the permittivity of vacuum and reduced Planck constant, respectively),

Te = Te¢/c is the time for light to cross the classical radius of the electron r, =
e?/(4regmc?), and G(x, x+) is the quantum emissivity:
\/g % +00 3
G, xy) = gﬁ [ Ks)3(y) dy + 2XWK2/3(V)] (7.3)

with v = 2x,,/[3x(x—x~)]- Both the photon emission rate and the quantum emissiv-
ity depend only on the electron and photon parameters at the moment of emission:

F* p,

E, mc

E; mc

(7.4)

X = ‘ and x, = ‘
with p#* and hk* the electron and photon four-momentum, respectively.

Let us now consider a reference frame, henceforth referred to as the laboratory-
frame, in which the electron is ultra-relativistic (that is the electron Lorentz factor
is v > 1). The photon quantum parameter at the time of emission can be directly
linked to the electron quantum parameter at this time as x, = {x, with { =
vy/7 the ratio of the photon normalized energy ~, = hw/(mc?) (w denoting the
photon angular frequency) by the electron Lorentz factor. The instantaneous power
spectrum of the emitted high-energy photons (in this frame, and for a single radiating
electron) is obtained from Eq. (7.2) and reads:

dPis \/g +oo 2
"t = =P 5[ K5/3(y)dy+1£_£

with P, = 2a?mc?/(37.). Let us note that, in the classical limit y < 1, Eq. (7.5)
reduces to the standard synchrotron energy spectrum (see, e.g., Ref. [Jackson, 1999]),
and integration of Eq. (7.5) over all photon energies leads to the quantum corrected
instantaneous power radiated away by the electron:

«

dryy T om y

K2/3(V) ’ (75)

Prad = Pclg(X) ) (76)

with Py = P,x? the classical Larmor power and

+o00
= 9v3 dv

202 Ks/5(v) 4 (3vy)?
o0 = 203 5/3 (Bvx)
™ Jo

(2 + 3vy)? (2 + 3vy)?

Ky/3(v) (7.7)

the quantum correction introduced in various works [Erber, 1966, Ridgers et al.,
2014] (see also Ref. [F. Niel, 2018] for more details). Let us finally stress that
considering ultra-relativistic electrons further allows us to assume that all photons
are emitted in the direction €2 of the electron velocity at the moment of emission.
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7.2.2 Radiation reaction

In the moderately quantum regime [Di Piazza et al., 2012] (ag > 1 and x < 1),
electron-positron pair production can be neglected and the problem of radiation
reaction acting on a population of ultra-relativistic electron can be casted in the form
of a Master equation for the electron and photon distribution functions f. (¢, x,~, Q)
and f,(t,x,7,8Q), respectively [Sokolov et al., 2010, Elkina et al., 2011a, Neitz and
Piazza, 2013a, Ridgers, 2017, F. Niel, 2018]:

d +oo
%fe = /0 dyy Wy (7 + s Vo) fe(t, X7 + 7, 82)
“+o0
- fe(ta X7 Q) 0 dﬁY’YwX(’Va 7’}') 9 (78)
d +oo
Gho= | e flexae. (7.9

where w, (v, 7,) is the rate of emission of photons with energy m6277 by an electron
with a given quantum parameter y and energy mc>y:

2a” G(x, xy)
wX(Pya’Y'Y) = 57\«3 Yy s ) (710)

and where it has been assumed that radiation emission (and its back-reaction) is
dominated by the contribution of ultra-relativistic electrons (for which p ~ mcy€2),
and that such ultra-relativistic electrons emit radiation in the direction € of their
velocity. Note also that the time derivative d/dt in the left-hand-side of Eqgs. (5.28a)
and (5.28b) are total time derivatives and have to be handled carefully.

This Master equation describes the process of high-energy photon emission as
a discontinuous jump process. Equation (5.28a) is a linear Boltzmann equation
whose rhs acts as a collision operator, while the rhs of Eq. (5.28b) is a source term
for the photon population. A discrete formulation of this Master equation can be
rigorously derived in the form of the Monte-Carlo procedure [Lapeyre et al., 1998]
routinely implemented in Particle-In-Cell (PIC) codes to account for high-energy
photon emission and its back-reaction on the electron dynamics [Duclous et al.,
2011, Lobet et al., 2016].

In a recent work, Ref. [F. Niel, 2018], it was shown that for x < 1 (and arbitrary
geometry of interaction), this discontinuous jump process is well approximated by
a diffusion process. Performing a Fokker-Planck expansion of the collision operator
in the limit v, < 7, it was shown that the electron momentum obeys a stochastic
differential equation with a deterministic term containing both the Lorentz force
and quantum corrected Landau-Lifshitz radiation friction force [Landau and Lifshitz,
1947] and a (stochastic) diffusion term accounting for the stochasticity of high-energy
photon emission inherent to its quantum nature. This work allowed us to bridge
the quantum (MC) and deterministic [quantum-corrected Landau-Lifshitz (cLL)]
descriptions of radiation reaction. It also provided us with an additional description,
henceforth referred to as the Fokker-Planck (FP) description, of radiation reaction to
complement the standard MC and cLL descriptions. We then computed the equation
of evolution of the successive (energy) moments of the electron distribution function
for all three descriptions. Doing so, we were able to show that the average energy
was well reproduced by all three models. The FP or MC were needed to reproduce
correctly the energy spread (second order moments) while the third order moment
was predicted correctly only by the MC method. Using this, we investigated the
domain of validity of the various descriptions to correctly model the evolution of
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the electron distribution function. In the next section, we will focus on the ability
of the various models to correctly describe the spectral properties of the radiation
associated to RR.

7.2.3 High energy photon spectrum accounting for radiation reac-
tion

The Master Eqs (5.28a) and (5.28b) capture the physical picture of RR being the
cumulative effect of the successive and incoherent emissions of high-energy photons
by the radiating electrons. Hence, the instantaneous photon energy spectrum can
be obtained at any given time ¢ by multiplying Eq. (5.28b) by ~, leading:

dplzg Foo dpinst
(1,7, ) = [y S x7,9), 711
2 0) = [y T ) (7.11)

where dPingt/dvyy is the (single electron) instantaneous power spectrum given by
Eq. (7.5). The remarkable thing here is that, as the effect of RR is encompassed
into the electron distribution function fe, Eq. (7.11) returns the spectrum of high-
energy photons accounting for the effect of RR. It can be computed at any given
time ¢ provided that the electron distribution function is known at this time. The
remarkable thing here is that the final radiated spectrum (with RR) depends only on
the instantaneous electron distribution function. In other words, all the effects of the
RR will materialise in f.. This allows us to readily apply all of the predictions on the
electron distribution function discussed in Ref. [F. Niel, 2018] to assess the effects of
RR on the high-energy photon spectrum. In the next Sec. 7.3, we will in particular
demonstrate that both the MC and FP descriptions for the evolution of the electron
populations, which were shown to correctly describe the evolution of the first two
energy moments of the electron distribution function (namely the electron mean
energy and energy dispersion) provide similar predictions for the emitted photon
spectra, while the cLL description fails in predicting the correct photon spectrum
at large x.

Let us finally note that, interpreting f. not as a distribution function for a set
(population) of electrons but as the probability density function for a single electron
to have an energy between v and v+ dy at a time ¢, Eq. (7.11) can also be employed
to compute the radiation spectrum of a single electron taking into account RR.

7.3 Numerical simulations

In what follows we first detail the numerical method developed in the PIC code
SMILEI to simulate the evolution of a radiating electron population in a given exter-
nal electromagnetic accounting for RR, focusing in particular on how we extract the
emitted radiation properties. We then present the results of simulations considering
both the head-on collision of an ultra-relativistic electron beam with an electromag-
netic plane-wave, and the evolution of a hot electron population in a constant and
homogeneous magnetic field.

7.3.1 Method

To investigate the properties of high-energy photons emitted by radiating ultra-
relativistic electrons in various configurations, two series of simulations (one for an
electron bunch with large mean energy and small energy dispersion and the other
considering a hot electron population) have been performed with the PIC code
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SMILEI [Derouillat et al., 2018]. This open-source code has been upgraded to allow
for the treatment of radiation reaction either by considering the quantum-corrected
Landau-Lifshitz (cLL) force acting on an electron population, the Fokker-Planck
(FP) pusher developed in Ref. [F. Niel, 2018] which complement the deterministic
cLL description by adding a stochastic diffusion term, or the full Monte-Carlo (MC)
procedure allowing to generate high-energy (macro-)photons. The implementation
of these three descriptions closely follows what is presented in Ref. [F. Niel, 2018] (see
also Refs. [Duclous et al., 2011, Lobet et al., 2016] for the cLL and MC descriptions).
It has been improved to allow for a better handling of the vectorization capabilities
of new high-performance super-computers, but these improvements are beyond the
scope of this work and will be presented elsewhere.

From these simulations, we have been able to extract the spectral properties (en-
ergy and angular distributions) of the emitted radiation. This is particularly simple
when using the MC procedure as (macro-)photons are naturally created at runtime.
The spectral properties of the radiated light can then be easily reconstructed (at
each time-steps or integrated over the full simulation time) by depositing the (macro-
)photons energy over a regular grid in energy (and/or angle). When considering the
two other (cLL or FP) descriptions, the spectral properties of the emitted radiation
where computed, at runtime, considering that all electrons emit, at each timestep
and in their direction of propagation €2, the full spectrum given by Eq. (7.5). Let
us recall here that the descriptions of radiation reaction used in this work rely on
the LCFA.

This procedure allowed us to access the spectral properties of the emitted radia-
tion, accounting for radiation reaction, in various configurations. In what follows, we
detail the results obtained considering (i) an ultra-relativistic electron bunch head-
on collision with an electromagnetic plane-wave (Sec. 7.3.3) and (ii) a hot electron
population (broad zero-drift Maxwell-Jiittner distribution) radiating in a constant
magnetic field (Sec. 77). In all these simulations, the electron feedback on the ex-
ternal electromagnetic field was turned off (no-current deposition) to focus on the
particle dynamics in the external field without accounting for Coulomb repulsion.
The timestep and number of macro-particles were chosen to ensure convergence of
the simulations and will be detailed for each case.

7.3.2 Results

In our previous work [F. Niel, 2018], it was shown that not only the average quan-
tum parameter x but also the initial energy spread 6, = ((vy — 70)2>1/ 2 /o (with
~o the electron distribution initial mean Lorentz factor) is important in determin-
ing the overall dynamics of a radiating electron population. Thus, in what follows,
we consider two complementary set-ups in the limits 6, < 1 and 6, ~ 1, respec-
tively. First (Sec. 7.3.3), an ultra-relativistic electron beam is considered, following a
Maxwell-Jiittner distribution with drift velocity vq = ¢ /73 — 1/70% with 7o = 1800
and (proper) temperature Ty = 2.5 x 1072 mc?. Second (Sec. ?7), a hot electron
population with zero-drift Maxwell distribution and temperature Ty = 600 mc? [cor-
responding to an initial average electron Lorentz factor vo = (v)(t = 0) = 1800] is
considered. Note that, in SMILEI, the correct loading of the relativistic Maxwell-
Jittner distribution is ensured following the method proposed in Ref. [Zenitani,
2015].

Note that both sets of simulations were conducted in 1D3V (one dimension in
space and three dimension in momentum). The simulation box size were chosen so
that boundary condition would not pay any role. The spatial (Az) and temporal
(cAt) resolutions were chosen to ensure convergence. For the first set-up (head-on
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collision), we used Az = \¢/128 and cAt = 0.95 Az, with )¢ the wavelength of the
UHI electromagnetic wave. For the second set-up (constant magnetic field), we used
At = 27 /w./128 and Az = ¢ At/0.95, with w, the characteristic cyclotron frequency
(see below for details).

7.3.3 Electron beam head-on collision with an UHI plane-wave

We start by simulating the interaction of an ultra-relativistic electron beam collid-
ing head-on with a large amplitude, linearly polarized electromagnetic plane-wave
(henceforth referred to as the laser), a configuration of particular interest for current
and soon-to-come experiments [Cros et al., 2014b,J. M. Cole, 2017, K. Poder, 2017]
on extreme light laser facilities. The ultra-relativistic electron beam is initialized as
following a Maxwell-Jiittner distribution with temperature Ty = 2.5 x 1073 mc? and
drift velocity vy corresponding to the Lorentz factor 79 = 1800. This is similar to
one of the configuration investigated in Ref. [F. Niel, 2018] and corresponds to an
initial energy spread 6, ~ 5 x 1072

The amplitude of this plane-wave is chosen so that xo = 2ap7yo Tewo/a = 1071
and 1 (corresponding to normalized vector potential ay = 11.4 and 114, respectively,
and considering Ao = 1 pum the laser wavelength). The end of the simulation is taken
when the energy decrease of the electron population has considerably slowed down
(i.e. we approach a regime in which radiation losses are not important). We used
tend = 190/wy for xo = 0.1 and teng ~ 60/wq for xo = 1, with wg = 2we/ N the laser
angular frequency.

For both simulations, the electron distribution function evolves exactly as re-
ported in Fig. 11 of Ref. [F. Niel, 2018]. The simulation results concerning the
radiation spectra are summarized in Figs. 7.1 and Fig. 7.2 considering the time-
integrated or instantenous spectra, respectively. Let us start by noticing that all
three descriptions (cLL, FP and MC) predict similar time-integrated energy and
angular distributions (Fig. 7.1). Note also that, as expected for this interaction
configuration, the photon emission is beamed in the direction of the electron beam
(0 ~ —180°, with € the angle of emission in the laser polarization plane). In partic-
ular, for the case xo = 0.1, all three descriptions provide the very same prediction
for the time-integrated radiation energy spectrum (Fig. 7.1a). Discrepancies can be
seen when xo = 1 between the FP/MC models on the one hand and the (determin-
istic) cLL description on the other hand. In particular, we note a hardening of the
photon spectrum (increase of the radiated power at high energies) for the FP/MC
predictions, while the (deterministic) cLL one overestimates the power spectrum at
intermediate photon energies. Both stochastic descriptions (FP and MC) are how-
ever in very good agreement for both initial values of x(. A small discrepancy for the
highest energy photons can still be observed in between these two methods which
follows from the spurious up-scattering of electrons appearing at high-y in the FP
model (see Ref. [F. Niel, 2018]). Still, the discrepancies in between the two stochas-
tic methods are much more tenuous than those observed in the electron distribution
functions reported in Ref. [F. Niel, 2018].

In order to study more precisely the radiation spectrum, we now turn to the
instantaneous spectra reported at different times in Fig. 7.2. At ¢ = 0, Fig. 7.1
(panels a and d), the three models give the exact same spectrum. This is due to
the fact that the total spectrum only depends on the electron distribution function
[see Eq. (7.11)], which is the same initially in the three simulations. At later times,
Fig. 7.1 (panels b and e), differences can be clearly observed between the FP/MC
predictions and those of the cLL description for yg = 1 (panel e), while all three
methods lead to the same instantaneous spectra at lower yo = 0.1 (panel b). The
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Figure 7.2: Instantaneous high-energy photon spectra considering a high-energy electron bunch head-on collision with a large amplitude electromagnetic plane
wave. Top panels (a-c) correspond to an initial electron quantum parameter yo = 0.1, bottom panels (d-f) to x = 1.0. Color-coding is the same than for Fig. 7.1.
Spectra are reported at the early time of interaction ¢t = 0 (a,d), at the time of maximum energy spread of the electron distribution function [theat 2~ 100wy L for
Xo = 0.1 (panel b) and tpeat =~ 4.4wy * for xo = 1.0 (panel e)], and at the end of the simulation (c,f).
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particular time ¢ = tpc,¢ reported in panels b and e correspond to the time at which
the energy dispersion of the electron population (second order moment of the elec-
tron distribution function) is maximal (see our discussion in Ref. [F. Niel, 2018] as
well as Refs. [Vranic et al., 2016, Ridgers, 2017]). This spread of the electron distri-
bution follows from the stochastic nature of high energy photon emission (see also
Ref. [Neitz and Piazza, 2013a]). While it is correctly described by both the FP and
MC approaches, it is not accounted for in the deterministic (cLL) approach which
only predicts a narrowing (cooling) of the electron distribution function [Tamburini
et al., 2010, F. Niel, 2018]. Due to this increased energy spread (quantum stochastic
heating), we have at t = tpeat a non-negligible number of electron with v > () in the
FP/MC models with respect to the deterministic cLL model allowing for the emis-
sion of very high energy photons (hence the observed hardening of the radiation).
We note for xyo = 1 a slight overestimate with the FP method of the power emit-
ted at large photon energy, which as discussed above, follows from the FP-inherent
spurious electron up-scattering. In addition, the number of particles with an energy
v ~ () is larger in the cLL model than in the FP/MC models and we observe a
spectrum which is more intense at intermediate energy in the cLL descriptions than
in the FP/MC ones. Similarly, we find more electrons at lower energy v < () in
the FP/MC models than in the cLL model, and the energy yield at these low en-
ergies is larger considering the stochastic models (FP & MC) than considering the
deterministic one (cLL). Finally, at ¢ = tenq, we make the same observations as for
t = theat, With the additional particularity that the MC and FP models are now in
perfect agreement, which is coherent with the analysis carried in Ref. [F. Niel, 2018]
that the FP and MC models, while yielding different predictions at high x and early
times, are in good agreement at longer times.

To conclude with this first series of simulations, we would like to point out that
the discrepancies in the emitted radiation spectra predicted by all three methods are
much more tenuous than those observed in the electron distributions as discussed
in Ref. [F. Niel, 2018]. This follows from the fact that a single energetic particle
along its trajectory will emit photons with a very wide range of energies resulting in
the smoothing of the overall photon spectrum, in particular when considering time-
integrated spectra. Furthermore, while some large discrepancies on the highest (;2)
energy moments of the electron distribution were reported in between the FP and
MC predictions for large xo ~ 1, both FP and MC methods are here demonstrated
to provide interestingly similar predictions on the emitted radiation properties. This
indicates that the emitted radiation properties depend mainly on the first two energy
moments of the electron distribution function.

7.3.4 Hot (Maxwell-Jiittner) electron population radiating in a con-
stant magnetic field

We now simulate the evolution of a hot Maxwell-Jiittner electron population [with
zero drift and temperature § = T//(mc?) = 600] in a constant-uniform magnetic field
with magnitude corresponding to initial average electron quantum parameters xg =
(x)(t = 0) = 107! and 1 (correspondingly, 225 kT and 2.25 MT). This situation
now refers to an initially broad energy distribution with an initial energy spread
0, ~ 0.57, a situation that may be encountered in various environments such as
following the strong heating of a dense target by a laser pulse or in some astrophysical
scenarii involving hot electron-positron plasmas evolving in high magnetic fields.
The duration of the simulations was here taken arbitrarily as tenq ~ 235/w, for
xo = 0.1, and tepq ~ 16/w, for xo = 1, with w. = eB/(m~y) the cyclotron frequency
for an electron with the average Lorentz factor 9 = (7)(t = 0) = 1800. As shown
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Figure 7.3: Time integrated high-energy photon spectra considering a hot (Maxwell
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-Juttner) electron population radiating in a constant magnetic field. Top

panels (a-d) correspond to an initial electron quantum parameter xo = 0.1, bottom panels (e-h) to x = 1.0. Color-coding is the same than for Fig. 7.1. Left panels

(a,e) report the energy spectra integrated over the full simulation time
y-angle-

photon energ
method. Pan

(the y-axis is reported in linear scale in the inserts). Panels (b,f) show the high-energy
distributions computed using the MC method. Panels (c,g) show the high-energy photon energy-angle-distributions computed using the FP

els (d,h) show the high-energy photon energy-angle-distributions computed using the cLL method. Here, the angle 6 denotes the direction of photon
emission in the plane perpendicular to the magnetic field lines.
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in Ref. [F. Niel, 2018], for this particular case of a broad Maxwell-Jiittner distribu-
tion, all three descriptions predict a cooling (narrowing) of the electron distribution
function and the reported simulations were long enough for the electron populations
to significantly cool down. The simulation results are presented in Figs. 7.3 and 7.4.
For this particular simulations, and similarly to what was reported in the previous
section, all three models are in perfect agreement for yp = 0.1 and only slight devi-
ations are observed at yp = 1 in the time-integrated spectra (Fig. 7.3, note however
the isotropy of the angular distribution in the plane transverse to the magnetic fields
which follows from the symmetry of the system, vy = 0). The excellent agreement
at all times is confirmed in Fig. 7.4 for yo = 0.1 while discrepancies at larger initial
quantum parameter Yo = 1 are found to follow the same line as observed in the
previous Sec. 7.3.3. Again, in light of our previous study on the successive moments
of the electron distribution function, and in particular in the ability of only the FP
and MC descriptions to correctly capture the temporal evolution of the electron
population first two moments, the excellent agreement between FP and MC sim-
ulations observed here once more indicate that the emitted radiation spectrum is
mainly sensitive to this first two moments.

7.4 Conclusions

In this chapter we showed that the radiated spectrum in laser-electron beam in-
teraction or in the evolution of a hot plasma in a constant uniform magnetic field
accounting for RR effects can be easily reconstructed, in the LCFA, from the in-
stantaneous electron distribution function. We can then apply predictions to the
electron distribution function [F. Niel, 2018] to the radiated spectrum. In particu-
lar, a reduced description of the distribution function evolution involving two energy
moments (when the Fokker Planck modelling is appropriate) or three energy mo-
ments (when the Monte-Carlo modelling is necessary) of f. can be used in principle.
In practice, the excellent agreement of the FP model with the MC procedure, sup-
ported by PIC simulations, up to xg = 1 shows that only the first two moments of
the electron distribution are actually sufficient to describe the qualitative features of
the photon spectrum. Indeed, a remarkable result is that, while the electron energy
distributions from the three models showed large differences as the quantum pa-
rameter () was getting close to one, differences in the radiated spectrum from the
different models are smoothed out even for y ~ 1 so that, as far as radiation emission
only is considered, the range of parameters for which the FP description is correct
becomes very broad. Only a hardening of the photon spectrum is observed consis-
tently for the FP and MC that does not exist in the classical (quantum-corrected,
cLL) description. The fact that this hardening is correctly modeled by both the
FP and MC procedures indicates that it follows from the broadening of the elec-
tron energy distribution (correctly modeled by both FP and MC procedures, and by
the cLL one), and is weakly affected by the quenching process (related to the third
energy moment of the electron distribution and not correctly handled by the FP
description, as shown in Ref. [F. Niel, 2018]). Yet, this hardening vanishes at long
enough times and is further reduced considering time-integrated measurements. It
thus appears clear that, in order to discriminate experimentally between the dif-
ferent models and evidence more easily pure quantum effects, a direct observation
of the electron (energy) distribution function will prove more advantageous than a
study of the photon spectrum.

With respect to previous literature, we would like to point out that it was al-
ready suggested by Thomas et al. [Thomas et al., 2012] (see also Ref. [Ilderton and
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Torgrimsson, 2013a]) that, in the case of a narrow electron beam interacting with an
intense laser pulse, the measure of the particle energy spectrum (and in particular
its shift toward low energy) would give a more reliable observable than the radiation
spectrum itself to evidence the onset of quantum effects. Yet, in this previous work,
although values of x ~ 0.1 or 1 were used, the quantum effects studied by Thomas
et al. were limited to the quantum reduction of the radiated power as described
by the g(x) term and accounted for in the cLL description of the present paper.
As such, this work did not assess additional quantum effects, such as the stochastic
nature of high-energy photon emission that is at the center of our study. By cor-
rectly including the stochastic nature of the quantum description by use of the MC
procedure, Blackburn et al. [Blackburn et al., 2014] suggested that, for a certain
range of parameters, the hardening of the photon spectrum could be measured and
may give a more reliable diagnostics of quantum effects on radiation reaction. Our
results allow to generalize Blackburn et al. results by showing that the hardening
of the photon spectrum can only be observed for short enough times, of the order
of or smaller than the characteristic time tpeat over which quantum stochasticity
leads to a broadening of the electron distribution. As a result, observing this effect
in future experiments would require either ultra-short laser pulses or (technically
challenging) time-resolved photon spectrum measurements. Clearly, measuring the
electron energy distribution will provide a more complete diagnostics of quantum
effects on radiation reaction.
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8.1 Outline

One of the first effects that can be studied with high-intensity lasers is radiation re-
action [J. M. Cole, 2017,K. Poder, 2017]. Several configurations are possible to study
this effect, among which we find : the head-on collision between a high-intensity laser
and a high energy electron beam, or the interaction of a high-intensity laser with a
hot Maxwell-Jiittner distribution. These two configurations were studied in details,
first focusing on the electron distribution function in Chapters 5 and 6, second look-
ing at the photon spectrum in Chapter 7. At higher intensities, another effect of
interest is the creation of electron-positron pairs via nonlinear Breit-Wheeler. This
effect can be studied using the head-on collision of a high-intensity laser with a high
energy electron (resp. photon) beam. In this case, the incident high-energy electrons
(resp. photons) emit high energy photons by nonlinear Compton scattering (resp.
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decompose into electron-positron pairs via nonlinear Breit-Wheeler) which subse-
quently decompose into electron-positron pairs (resp. emit high-energy photons)
etc. This process stops when the new high-energy photons have an energy smaller
than 2mc? and are thus not able to subsequently decompose into an electron-positron
pair. We talk about showers [Fedotov, 2016]. Another configuration of interest for
pair creation is that of the interaction of two counter-propagating plane-waves with
a seed electron. In this situation, the same occurs as what described previously
for showers, with the difference that the external field is now able to restore the
particle’s energy [Bell and Kirk, 2008, Kirk et al., 2009, Fedotov et al., 2010, Elkina
et al., 2011b, Grismayer et al., 2017b]. The chain reaction is therefore not limited
by the energy of the initial particle but by the time of stay of the particles in the
external field (or under more extreme conditions by the energy of the external field
itself) [Fedotov et al., 2010]. We talk about cascades. Cascades have been the
subject of extensive numerical [Elkina et al., 2011b, Grismayer et al., 2017b, Gris-
mayer et al., 2017a, Tamburini et al., 2017] as well as analytical studies [Nerush
et al., 2011a, Kostyukov and Nerush, 2016, Samsonov et al., 2018]. Here we wish to
investigate the properties of the electron’s distribution in the interaction with two
counter-propagating plane-waves. This is a first step towards a better understanding
of QED cascades.

This Chapter is structured as follows. In Sec. 8.2, we review the motion of
an electron in the magnetic nodes of two counter-propagating plane-waves without
radiation-reaction. In Sec. 8.3, we then adapt the results of Chap. 5 about the
moments of the electron distribution function to the present case where the so-
called Vlasov terms are no longer negligible. From the asymptotic moments, we
deduce the analytical expression for the asymptotic stationary electron distribution
function in the case where <X> < 1. In Sec. 8.4, we study the effect of the initial
electron distribution function on this asymptotic expression. Finally, in Sec. 8.5, we
investigate the case where <X> > 1 with and without pair production.

8.2 Two counter-propagating plane-waves

Let us first consider the configuration of two circularly polarized plane-waves. The
obtained field is a stationary wave given by

E = a <0, cos(kx) cos(wt), — cos(kx) sin(wt)) , (8.1a)

B = ag (0, —sin(kz) cos(wt), — sin(kx) sin(wt)) . (8.1b)

where E = eE/(mcw) and B = eB/(mw) are the electric and magnetic fields nor-
malized in Compton units. As shown by [Doveil, 1981, Bauer, 1995, Esirkepov,
2015, Esirkepov, 2017], for ag > 1, the motion in such a field is in general chaotic.
Here, we avoid this complication by placing ourselves in the anti-nodes (magnetic
nodes in which B = 0) in which the field is simply that of a uniformly rotating
electric field described by

E(t) = ag [0, cos(wt), sin(wt)] . (8.2)

In this case, the equation of motion without RR simply reads
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where p is normalized in mc and ¢ in w (f = wt). Its solution is obtained by direct
integration as

py(t) = py, — ao [sin(f) —sin(fo)] , (8.4a)

pz(t) Pz 1 Qo [COS(I?) - COS(EO)] ’ (8'4b)

where py, = py(to) and p,, = p.(to) and p, and p, are normalized in mc. From this
solution and the expression for the field (8.2), we deduce the energy of an electron
initially at rest (at £y = 0) as

v(t) = \/1+4agsm2 (;) (8.5)

This leads to the electron quantum parameter

hwo e
x(t) = 5 a0 \/1 + 4a3 sin <2> , (8.6)

and the normalized velocities 5, = v, /c and B, = vy/c

8, - ag sin(?) ’ (8.7)

\/1 + 4a3 sin? (%)

5, = ao[1l — cos(t)] . (8.7b)

\/1 + 4a3 sin? (%)

When radiation reaction is added, the equation of evolution of the gamma factor of
the electron is that of a forced damped oscillator

mc2cfi—z = —ecB-E—-mc®S(x). (8.8)

The nonlinearity of the damping term and the fact that the source term 8- E is not
independent of the current value of v makes this equation hard to solve analytically.
We therefore solve it numerically in the case of a) an electron initially at rest and
b) an electron with an initial momentum p,, = 1000 and p,, = 0 for ag = 500.
The results are plotted on Fig. 8.1. We see that after a few periods, the energy
and quantum parameter stabilize to approximately ag for the normalized energy and
a/aps for the quantum parameter [Fig. 8.1 a) and b)], where ags = eEs/(mecw)
is the Schwinger field in Compton units. Moreover, these asymptotic values don’t
depend on the initial energy of the particle. In the same way, independently of
the initial momentum of the particle, the normalized speeds along y and z, 3, and
B stabilize (with RR) after a few periods and oscillate at w between —1 and +1
[Fig. 8.1 ¢) and d)].

We plot on Fig. 8.4 the asymptotic value of the electron Lorentz factor 7
normalized to ag as a function of ay going from 10 to 10%. We see that for ag < 600
(corresponding to Xasymptotic < 1) it is reasonable to assume that Yasymptotic = @0,
while for ag > 1 it stabilizes around Yasymptotic/@0 =~ 0.3.

In the same way, we plot the asymptotic value B - Easymptotic for ag = 10 to 10*
on Fig. 8.4 (black line). For small values of ag, 8 - Easymptotic = 0 while it stabilizes
around 3 - Easymptotic ~ —0.9 for ag > 1.
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Figure 8.1: Temporal evolution of a) the Lorentz factor normalized to ag b) the electron
quantum parameter c¢) the normalized speed along the y axis and d) the normalized speed
along the z axis. For an electron initially at rest and without RR (black dashed line), an
electron initially at rest with quantum corrected classical RR (black line) and an electron
with initial momentum p,, = 1000 and p., = 0 with quantum corrected classical RR (red
line). In all cases ag = 500.
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Figure 8.2: Temporal evolution of the average <ﬂ . E> that appears in the equation of evo-
lution of the mean energy (8.9a). When RR is not considered, this term oscillates infinitely
(black dashed line). On the contrary, when RR is taken into account, and whatever the
initial momentum, it stabilizes after a few oscillations (plain black and red lines correspond
t0 Py, = Pz, = 0 and p,, = 1000 and p., = 0 respectively).
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Figure 8.3: Trajectory of a particle initially at rest (black line) and with initial momentum
Py, = 1000 and p,, = 0 (red line) with (straight line) and without (dashed line) RR in a
uniformly rotating electric field [Eq. (8.2)]. After a few periods, the trajectory with RR
stabilizes to a circle with a given radius independent of the initial momentum. Without RR,
the distance to the initial position of the particle increases with time without stabilizing.
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Figure 8.4: Asymptotic value of the average Lorentz factor <’y> (normalized to the normal-
ized field strength ag). The black plain line represents the value in the case of the classical
model (quantum corrected LL pusher), the blue crosses the value in the quantum case (MC
algorithm) without pair production and the orange crosses to the value in the quantum case
with pair production. The vertical red dashed line represents the value of ay corresponding
to an asymptotic value of x = 1 (which is approximately ag ~ 600).
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Figure 8.5: Asymptotic value of the Vlasov term <ﬁ . E> (normalized to the normalized
field strength ag) coming from the equation of evolution of the average energy (8.9a) as a
function of ag. The black plain line represents the value in the case of the classical model
(quantum corrected LL pusher) while the blue crosses represent the value in the quantum
case (MC algorithm). The vertical red dashed line represents the value of ag corresponding
to an asymptotic value of x = 1 (which is approximately ag ~ 600).

8.3 Evolution of the electron distribution function in a
uniformly rotating electric field

8.3.1 Equations of evolution of the energy moments of the electron
distribution function in the presence of a source

Let us rewrite the equation of evolution of the integrated quantities (q)(t) =
i drd*Qdyqf./ J d3x d*Q d f, without neglecting the terms coming from the Vlasov
operator 5.31, as was done in the previous chapters. We obtain

mCZdiz? = —ec(B-E) —me* (S(0)). (8.92)
o2 e
dd; = _%<(’Y—<’7>)ﬁ‘E)>+<R(><,7)> (8.9b)
= 2((y = (M),
% = —%<(’7—< )8 E))
3(S(x)

+ Y (v =) =3((v = (")*S () (8.9¢)
+ (

3{(v = (MRO7)) — (As(x. 7)) -

We now evaluate the Vlasov terms by simulating the interaction of a cold electron
distribution in the anti-node (where the total field is a uniformly rotating electric
field) of two counter propagating circularly polarized plane waves of magnitudes
corresponding to xo = <X>(t = tenq) = 1072, 107! and 1 [where we take the estimate
v ~ ag and thus xgo ~ a% /aos, with agg the Schwinger field normalized in Compton
units: ags = eEg/(mcwpy)]. The corresponding normalized laser field strengths
are ag ~ 45, 145 and 454 (resp.). The end of the simulation is taken when the
electron distribution function has converged to its asymptotic form. For xg = 1, the
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Figure 8.6: Temporal evolution of the Vlasov terms for the equation of evolution of the
mean energy (3 - E (first column) and of the variance ((y — (7))8 - E) (second column).
The first line corresponds to the a final mean quantum parameter xo = a3/ags = 107! and
the second line to xo = a%/aos = 1. The blue line corresponds to the MC model while the
red one to the FP model.

simulation ends at tenq = 20/w, for xo = 107! at tenq = 200/w, and for xo = 1072
at teng = 2000/w. In all cases, we used 10 000 test particles.

The results are summarized on Fig. 8.6 where we plotted in blue the results of
the MC simulation and in red the results of the FP simulation. We did not consider
the cLL description since, starting from a cold distribution, we necessarily have
v = <’y> for all the particles and therefore all the Vlasov terms are strictly equal to
zero. The first row a) corresponds to xo = 10~! and the second b) to xo = 1. The
first column corresponds to the evolution of the Vlasov term coming into play in the
equation of evolution (8.9a) of the mean energy <,6' . E> while the second column
corresponds to the evolution of the Vlasov term coming into play in the equation of
evolution (8.9b) of the variance in energy ((y—(v))8" E> The two are normalized
to ap. In the case where xo = 107! (Fig. 8.6a)), both the Vlasov term for the
energy and the variance go to zero after an oscillatory phase lasting approximately
100 wy ! The FP method however has a residual oscillation at asymptotic time
for the Vlasov term of the variance equation <(’y — <’y>),@ . E> In the case where
xo = 1 (Fig. 8.6b)), <5 . E> converges, after an oscillatory phase, to a non zero
value, while <(’y — <’y>),6 . E> keeps an oscillatory character at asymptotic time. In
view of this behavior of the Vlasov terms —ne/(mc)((y —(7))" "' 8-E), we will now
reconsider the results developed in the previous chapter 5 about the mean energy
and the variance in the different models for RR.



Chapter 8 157

8.3.2 Electron mean energy

In the same way as in Sec. 5.5.4, we compute the difference between the equation
of evolution of the mean energy in the different models, this time using Eq. (8.9a).
We obtain

di{v)mc — di(y) ~ </6 ) E>cLL — </B ' E>MC
di(y) B §(<X>)

+Ex((x), 64, F),

(8.10)

where Er((x), G+, F) is given by Eq. (5.75) as

_ F252(x)25"((x)) '

Ex((x), 64, F) = 00 (8.11)

with F' = 6,/6,, 6, = 0,/(7) and 6, = 0, /(x). Contrary to Eq. (5.75), we see that
we have an additional term coming from the Vlasov terms. In order to evaluate this
new term, we simulate (as previously) the interaction of a cold electron distribution
(with 10 000 particles) with a uniformly rotating electric field. We stop the simula-
tion when the electron distribution function is stationary. The asymptotic values of
the Vlasov term <,3 . E> (normalized to ag) are plotted on Fig. 8.5 where the blue
crosses represent the values for the MC simulation and the black line for the cLL
simulation. We see that whatever the value of the a¢ (and therefore, whatever the
asymptotic value of y), <,@ . E>MC ~ <B-E>CLL. The first term in Eq. (8.10) is there-
fore approximately equal to 0 and we can apply Eq. (5.75) to find an upper bound
in the difference in the average energies. The results are sumarised on Fig 8.7 where
the black line represents Eq. (5.75), the blue crosses represent the relative difference
between the asymptotic values of <’y> as given by the MC and cLL numerical simu-
lations. The vertical red dashed line represents the value x = 1. We see that beyond
this value, Er((x), 6~, F') no longer gives an upper bound for the difference in energy
but the exact value of the difference in the asymptotic average energies in the MC
and cLL models. Finally, the actual values of the asymptotic average energies <"y>
(normalized to ag) are plotted in Fig. 8.4 where the blue crosses represent the values
for the MC simulation and the black line for the cLL simulation.

8.3.3 Variance in energy

In the same way as in Sec. 5.5.5, we find the asymptotic energy spread of the electron
distribution function by solving dtcrg = 0 using Eq. (8.9b), we find

o h({(X)a) = 2((v = (1))B-E)),/
o | M (v = )a/ () (8.12)

<X>a[2§/(<x>a) - hl(<X>a ]

%

As shown on Fig. 8.6, the asymptotic value of the Vlasov term <(’y — <’y>),6 . E)> is
approximately equal to 0 for x < 1. We can therefore apply Eq. (5.81) to evaluate
the asymptotic energy spread o3 in this case. The results are summarized on
Fig. 8.8 where the black dashed line represents Eq. (8.9b) and the blue crosses the
asymptotic values 63° in the MC case. Beyond x =1 (vertical red dashed line), the

perturbative expansion (5.70) breaks and we need to evaluate ¢5° numerically.
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Figure 8.8: Dependence with (x) of 63”(()()) (black dashed line). The blue crosses repre-
sent the asymptotic value of 6., extracted from the simulations considering the interaction of
the uniformly rotating field with the initially at rest electron bunch without pair production,
the orange crosses the same situation, taking into account pair production and the black
triangles the same quantity for the interaction with a initial Maxwell-Jittner (8.14) with
normalized temperature T/mc? = 100. The vertical red dashed line represents the value
<x> = 1 beyond which the perturbative expansion (5.70) breaks and therefore the numerical
values (blue crosses) differ from the theoretical value (black dashed line).
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8.3.4 Evolution of the electron distribution function

We simulate the interaction of a set of 10 000 particles initially at rest with a
uniformly rotating electric field of the form (8.2) with ay = 45, 145 and 500 (cor-
responding roughly to xy = 1072, 107! and 1). The end of the simulation is taken
when the electron distribution function has converged to its asymptotic form, that
is to say tena = 2000w ™!, 200wt and 20w™! for ag = 45, 145 and 500 (resp.).

The results of the simulations are summarized on Fig. 8.9.
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Figure 8.10: Asymptotic electron distribution function in the interaction of a uniformly
rotating electric field with an initially cold electron distribution at rest. The first line a)
corresponds to ag = 45, the second b) to ag = 145 and the third one ¢) to ag = 454. The
blue line corresponds to the MC simulation, the red one to the FP simulation and the black
dashed line to the analytical solution (8.13).

The first row a) corresponds to xo = 1072, the second b) to xo = 10~! and the
third c) to xo = 1. The first three columns correspond to the evolution of the distri-
bution function f.(t, ) respectively in the case of the Monte-Carlo simulation (MC),
the stochastic (Fokker-Planck) pusher (FP) and the deterministic (cLL) radiation
reaction pusher [including the quantum correction g(x)]. The fourth column corre-
sponds to the (normalized) difference between the average energy extracted from the
Monte-Carlo simulations and the average energy obtained from the stochastic pusher
(red line), and that obtained using the deterministic pusher (black line). Both are
normalized to the normalized field strength ag: Ave/v0 = ((V)me — (V)a) /70, With
a = cLL or FP. Finally the last two rows correspond to the standard deviation
normalized to the average energy 6, = o,/ <’y> and to the normalized moment of
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Figure 8.11: Simulations of a cold electron beam initially at rest in a uniformly rotating
electric field for a) ag = 145, b) ap = 454. This figure focuses on the early times of
interaction during which the mean energy and energy dispersion increase. The first column
corresponds to MC simulations, the second to the FP ones. The red dashed line corresponds
to the mean energy. The last row shows snap-shots of the electron distribution functions
at different times ¢ = 20w™! and ¢t = 40w ™! for ag = 145 and ¢t = 2w™! and t = 4w~ ! for
ag = 454. The red lines correspond to FP simulations, the blue one to MC simulations.

order three normalized to a3: ps/ag = ((v — (7))3)/ad (in all plots, the blue line
corresponds to the Monte-Carlo simulation, the red line to the stochastic pusher
and the black line to the deterministic pusher [with the quantum correction g(x)].
In addition, the green dashed line on the fourth column corresponds to the value
A~ = 0 (to facilitate the reading of the plot), while the black dashed line on the
fifth row corresponds theoretical value as given by Eq. (5.81).

Let us first consider the case yo = 1072. As shown in the previous Section,
in this case the Vlasov terms are negligible and we therefore expect the results of
Chap. 5 to hold. In particular, the average energy as given by the three descriptions
is approximately the same (Fig. 8.9d)) while the standard deviation, after a phase
of oscillation, stabilizes to the theoretical value given by Eq. (5.81). The electron
distribution function, as described by the FP model, reproduces well the MC sim-
ulation, while the cLL description corresponds to the trajectory of a single particle
(since we start from a cold distribution) and reproduces only the average of the
FP/MC distribution functions (see Sec. 5.5.4).

We now examine the case yg = 10~!. The FP and MC description still agree
well. In particular, the difference in the mean energies between the two models
remains small, and smaller than the difference between the MC and cLL models (see
Fig. 8.7). The variance as given by the FP and MC models agrees well and agrees
asymptotically with the theoretical value given by (5.81). Finally, the third order
moment oscillates at initial times both in the FP and MC descriptions and their value
disagree slightly, while their asymptotic values agree well are is approximately equal
to zero (the asymptotic distribution function both in the MC and FP descriptions
are approximately symmetric around the average value.).

Finally, we examine the case xo = 1. In this case, the average of the MC is
well reproduced by the FP, while the cLL exhibits a discrepancy even at asymptotic
times. The variance is still well reproduced by the FP while it exhibits a slight
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difference with the theoretical value (};hr

not well reproduced by the FP description (as in the case of the collision of an
electron bunch with a counter propagating plane-wave). In the case of the MC, the
third order moment goes to zero after an oscillatory phase of a few w™! indicating a
symmetric asymptotic distribution function (contrarily to the FP which exhibits a
residual asymptotic us and therefore the asymptotic distribution function will not
be symmetric).

The good agreement between both quantum models (MC and FP) with respect
to the temporal evolution of the distribution function can be clearly seen in Fig. 8.10a
and 8.10b, where we superimposed the electron distribution functions obtained from
the stochastic (FP) pusher (red line) and Monte Carlo approach (blue line) at asymp-
totic time t = tenq. According to the numerical simulations (Fig. 8.9), the asymptotic
average energy is approximately equal to ag, the asymptotic standard deviation is
given by (5.81) and the asymptotic third order moment is approximately zero. This
motivates us to postulate that the asymptotic electron distribution function in a
uniformly rotating electric field is given by

. The third order moment in this case is

2
foly) = —— Waol)] (8.13)

————exp |— i
Jamein i

We verify this hypothesis (plotted in black dashed line on Fig. 8.10) with the MC
simulations. We see that this solution is in good agreement even for y ~ 1.

Finally, let us examine the electron distribution function in the heating phase
before the electron distribution function becomes stationary. The results are sum-
marized on Fig. 8.11 where the first row corresponds to the case where ag = 145 and
the second to ag = 500 (corresponding roughly to an asymptotic value of y = 1071
and 1 resp.). The first column corresponds to the electron distribution function in
the MC case and the second one to the FP case. In both cases, the red dashed
line corresponds to the average energy. The third row corresponds to the electron
distribution function at times ¢ = 10w™! and 20w™! for xo = 10~! and ¢t = 2.5w ™!
and 5w~ for yo = 1. For xo = 107!, the FP agrees well with the MC result. In both
cases the average energy as well as the variance oscillate with time. When g = 1,
the FP and MC electron distribution functions display a discrepancy in the heating
phase. Similarly with the case of the head-on collision of Chap. 5, the FP algorithm
displays upscatterings in the heating phase. Moreover, the third order moment is
not well reproduced either.

8.4 Interaction of a hot Maxwell-Jiittner distribution
function with a uniformly rotating electric field

As was done in Chap 6, we now consider the evolution of an electron population
with an initially broad energy distribution, radiating in a uniformly rotating electric
field. The electron energy distribution at the beginning of the simulation follows a
(zero-drift) 2D Maxwell-Jiittner distribution:

2

fe(t:O>7):M+1

vexp [—u(y —1)], (8.14)

where p = (mc?)/T = 1/20 is the inverse of the normalized temperature corre-
sponding to an initial electron mean Lorentz factor 7o = (y) ~ 200, and initial
energy standard deviation o, ~ 0.77yy. Note also that such a broad distribution also
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Figure 8.12: Simulations of an electron bunch initial at rest with no temperature in a uniformly rotating electric field (8.2) with ag such that a) xo = 1072,
b) xo = 107! and ¢) xo = 1 if ¥ = ag. The first three panels of each row shows the electron distribution functions from the Monte-Carlo simulations (MC, first
panels), stochastic (Fokker-Planck) simulations (FP, second panels) and quantum-corrected deterministic simulations (cLL, third panels). The fourth panels show
the difference in the prediction of the mean electron energy in between the MC simulation and the deterministic (black line) and FP (red line) simulations. The
two last panels (in each row) correspond to the moments of order 2 (energy variance) and 3 for the MC (blue line), FP (red line) and deterministic (black line)
simulations.
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presents a large initial asymmetry and i3 ~ 0.49 at the beginning of the simulation.
Three cases are considered, corresponding to ag = 45, 145 and 500.

The simulation results are summarized in Fig. 8.12 following the same presenta-
tion as Figs. 8.9.

Similarly to the head-collision case and to the case of the previous section, the
average energy in the three descriptions is approximately the same and below the
theoretical upper bound as given by Eq. (8.7) (the results for the initial MJ dis-
tribution are represented by the black triangles). Moreover, for the three values of
ap that we considered, the initial energy spread is above the theoretical threshold
given by (5.81), o4(to) ~ 0.7y > O‘%hr. We therefore expect the electron distribu-
tion function to cool down, even in the quantum case. In addition, the asymptotic
energy spread is given by the theoretical value (5.81). The numerical values of the
asymptotic energy spreads in this case are represented as black triangles on Fig. 8.8.

8.5 Evolution of the electron distribution function in a
uniformly rotating electric field with <X> >1

8.5.1 Without pair-production

Finally, we consider the interaction of an initially at rest set of electrons interacting
with different rotating electric fields with ag = 1250, 2500 and 5000 (corresponding to
asymptotic values of electron quantum parameters yo ~ 3, 15 and 60). The results
are presented on Fig. 8.13. The first column represents the electron distribution
function as simulated by the MC algorithm, the second, the average electron energy
normalized to ag, the third the variance in energy ag normalized to the average
energy squared and the fourth, the third order moment us normalized to the cube
of the average energy. The first line a) represents the case where ag = 1250, the
second b) to ag = 2500 and the third to ag = 5000. First, we notice that the electron
distribution function reaches its stationary state faster and faster with increasing ag
and that the ”overshoot” (that is to say, the propensity to overcome the asymptotic
value in the heating phase) also decreases with increasing ag. This is seen more
easily on the average energy and on the energy spread (second and third column of
Fig. 8.13). The discrepancy in the average energies as given by the MC algorithm
compared to the cLL pusher are plotted in blue crosses on Fig. 8.7. We see that
for x > 1, the function (8.11) no longer gives the upper bound for the difference in
energy, but the represents the exact difference between the cLL and MC models. As
mentioned previously, the perturbative expansion that leads to Eq. (8.12) breaks for
x > 1. We therefore compute the asymptotic value of 6., (which also corresponds to
a threshold between the regime of cooling and heating as explained in length in the
previous chapters) numerically. The results are plotted in blue crosses on Fig. 8.8.

8.5.2 With pair production

In the previous section, we considered values of x larger than one but considering
only RR. Of course, we know that for y > 1, pair creation is no longer negligible.
We study here the same situation as in the previous section, but allowing the high-
energy photons to decompose into electron/positron pairs. This allows us to study
the influence of pair production by nonlinear Breit-Wheeler process on the previous
results. As could be seen on Fig. 8.4, the asymptotic value of the average energy <’y>
is overestimated by the cLL model (black line) compared to the MC model (blue
crosses) without pair production, while, with pair production, it is overestimated by
the cLL model for x < 10 while it is underestimated for xy = 10. Concerning the final
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Figure 8.13: Simulations of an electron bunch initial at rest with no temperature in a uniformly rotating electric field (8.2) with ag such that a) xo = 1072,
b) xo = 107! and c) xo = 1 if v = ag. The first three panels of each row shows the electron distribution functions from the Monte-Carlo simulations (MC, first
panels), stochastic (Fokker-Planck) simulations (FP, second panels) and quantum-corrected deterministic simulations (cLL, third panels). The fourth panels show
the difference in the prediction of the mean electron energy in between the MC simulation and the deterministic (black line) and FP (red line) simulations. The
two last panels (in each row) correspond to the moments of order 2 (energy variance) and 3 for the MC (blue line), FP (red line) and deterministic (black line)
simulations.
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energy spread, as can be seen on Fig. 8.8, without pair production, 6> saturates for
X > 1 while it keep increasing when considering pair production (orange crosses).

8.6 Conclusion

As mentioned previously, the model developed in this work and in particular in
Chap. 5 is valid for arbitrary field and electron configurations. We apply it here to
the configuration of two counter-propagating plane waves with an initially at rest
electron distribution. This configuration is of extreme importance for the study of
the so-called electromagnetic cascades. Here for simplicity, and as often done in
theoretical works, we place ourselves in the magnetic anti-nodes, where the field is
simply a uniformly rotating electric field. In such a field, we need to evaluate the
so-called ”Vlasov terms” in addition to the RR terms already considered at length
in the previous chapters. In particular, we see that for any value of ag, the Vlasov
term coming into play in the equation of evolution of the average energy is the
same in the MC method as in the cLL one, while the Vlasov term coming from the
equation of evolution of the variance is approximately equal to 0 for x < 1. We
can therefore, similarly to head-on collision case, predict the upper bound for the
difference in average energy as given by the MC and cLL methods, as well as the
asymptotic value of the energy spread. When x > 1, the perturbative expansion that
leads to this asymptotic value is no longer valid. We therefore compute this value
numerically. Finally, we consider the same situation with nonlinear Breit-Wheeler
pair production. We see that with no pair production the asymptotic energy spread
saturates for x > 1 while it keeps increasing when pair production is taken into
account.



Part 111

Nonlinear Breit-Wheeler pair
production with Laguerre-Gauss
beams

168



Chapter 9

Orbital angular momentum of
light : a state of the art

Contents
9.1 Introduction . . . . . . . . .. L 169
9.2 Paraxial optics . . . . . .. .. 169
9.2.1 The Helmholtz equation . . . . . . .. ... ... .. ..... 170
9.2.2 The paraxial wave equation . . . . . ... ... ... ..... 171
9.3 Linear and angular momentum of light . . . . . .. ... ... . ... 172
9.3.1 Linear momentum of light . . . . . ... ... ... ... ... 172
9.3.2 Angular momentum of light . . . . ... ... ... ... ... 173
9.4 Gaussian beam . . . . ... Lo 174
9.5 Higher-order beams . . . . . . .. . ... .. L L 176
9.5.1 Laguerre-Gaussian beams . . . . ... ... ... ... .... 176
9.6 Angular momentum of LG beams . . . . . . ... ... 179

9.1 Introduction

Since the pioneering work by Poynting [Poynting, 1909] and the first experimental
verification by Beth [Beth, 1936], physicists know that electromagnetic fields can
carry angular momentum. However, these works all considered circularly polarized
light beams. In 1992, Allen et al. [Allen, 1992] showed that vortez beams, and in
particular Laguerre-Gaussian beams, could carry orbital angular momentum. Such
beams have a helical phase front. So far, these beams have found applications in
communication and other low intensity domains. In this chapter, we investigate the
effect of Laguerre-Gauss beams on SFQED processes such as the nonlinear Breit-
Wheeler process.

9.2 Paraxial optics

So far, we have mainly considered plane-wave fields as a simplified, analytically
tractable model for laser fields. In this chapter, we will study more realistic laser field
models such as Gaussian fields and their higher-order modes such as the Laguerre-
Gauss modes. These modes are derived in the formalism of paraxial optics. Paraxial
optics is an approximation of CED in which the fields can be written as a product
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of a rapidly oscillating monochromatic term and a slowly varying enveloppe whose
variation in the longitudinal direction are small compared to their variation in the
transverse direction (with respect to the direction of propagation). In this Section,
we derive the paraxial equation from CED (Chap. 2). Moreover, this will allow us
to define all the notations that will be useful in the rest of this part.

9.2.1 The Helmholtz equation

As stated in Chap. 2, electromagnetic fields in vacuum satisfy the homogeneous
Maxwell’s equations

OFst = 0, (9.1a)
OFf, = 0, (9.1b)
which in 3-vector notation read
V-E = 0, (9.2a)
vV-B = 0, (9.2b)
VXE = —atB, (92(3)
*VxB = OE. (9.2d)

They yield the well-kown wave equations
1
V2E — gafE = 0, (9.3a)
1
V’B — ;2833 = 0. (9.3b)

Considering monochromatic beams with frequency w, we introduce the complex
notation

E=R[Ee ™, (9.4a)
B=%R[Be ™. (9.4b
Inserting these in Egs. (9.3), we obtain the vectorial Hemholtz equations
VIE+KE = 0, (9.5a)
VB+kB = 0, (9.5b)

where k = w/c. Moreover, we introduce the 4-vector potential A* = (V, A) with the
corresponding complex notation

V=R[Ve™], (9.6a)
A=R[Ae ™. (9.6b
They are linked to the electromagnetic field by

E = -VV-0A, (9.72)
B = VxA. (9.7b)

In the Lorenz gauge, (9A) =V - A + 9;V/c? = 0 and we can rewrite

1
k2
B = VxA. (9.8b)

£ = iw [A+ VV-A}, (9.82)
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Finally, rewriting Eqs. (9.2a) and (9.2b) in terms of the envelops £ and B yields

k-& = 0, (9.9a)
k-B = 0, (9.9b)
which means that £ and B are transverse. We can thus write
E = t¢&, (9.10a)
B = tB, (9.10b)
where t and ¢’ are transverse vectors and obtain the scalar Helmholtz equations
VE+EE=0 (9.11a)
V2B + k*B=0 (9.11b)

9.2.2 The paraxial wave equation

In order to simplify the Helmholtz equation and find solutions for the fields, we will
use the parazial approrimation. To do so, we choose the direction of propagation to
be in the z direction and write

E = uge™, (9.12a)
B = uge®*. (9.12b)

Inserting these in the scalar Helmholtz equations (9.11a) yields
ViU&B + Ofuag +2ik O,us g =0. (9.13)

The paraxial approximation consists in neglecting 3§u&3 compared to the other
terms. This is achieved when the variation of the field in the longitudinal direction
z is small compared to the variation in the transverse dimension (z,y) and when the
typical length of variation of the field in the longitudinal direction is small compared
to the wavelength A = 27/k, i.e.

0
?)Z’B < |kusgl, (9.14a)
0
gi’B < |Viugpl. (9.14b)

Keeping in mind Egs. (9.2a) and (9.2b), we have V jugp = 0 which makes the
condition (9.14b) impossible to be verified [M. Lax, 1975]. As pointed out by [Davis,
1979], the solution is to instead work with the vector potential A in the Lorenz gauge

(04)= V- A+ C%atv 0, (9.15)

in which case we have V- A # 0. Following the same steps as for the electromagnetic
field, the scalar and vector potential satisfy, in the Lorenz gauge, the wave equa-
tions (9.3) from which we deduce the vectorial and scalar Helmholtz equations (9.5)
and (9.11a). Writing

A=t ue* (9.16)

where we choose the transverse vector as t 4 = (ax+ y) where « and 3 are two com-
plex numbers satisfying |a|? 4 |3]? = 1. Applying the paraxial approximation (9.14)
finally yields the parazial wave equation

V2 u+2ikdu=0 (9.17)
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The two constants o and g will be linked to the polarization of the field. More
precisely, we define the parameter o (that will be shown to be linked to the spin of
photons) as

o=1i(af* —a*p), (9.18)
where the * denotes the complex conjugate'. A circularly polarized field will have

o = =1 while linearly polarized fields have ¢ = 0. We can then go back to the
complex enveloppe of the electromagnetic field thanks to

E = iw {auﬁ—k,@uy—i-;(a@xu—i-ﬂayu)i} etz
B — ik [—ﬁuf{—i—auy—;(ﬁaxu—aayu)i] ek

in the paraxial approximation.

9.3 Linear and angular momentum of light

9.3.1 Linear momentum of light

In this chapter we use the SI units. We will therefore remind the main results of
Chap 2 in a condensed way and in SI units. The energy and linear momentum
densities of the electromagnetic field are given by

1
wo= g (eoE? + 1y 'B?) | (9.20a)
p = «©ExB, (9.20b)

and are linked together by the local continuity equation
oW +V-S=0, (9.21)

where S = ¢?p = ,ual E x B is the so-called Poynting vector. Similarly, this linear
momentum is itself conserved and we have

NS+ Ty =0, (9.22)
where

1
Tz‘j = 551] (60E2 + ualB2) — eoEZ‘E]‘ — /L()BZ‘B]' s (9.23)

is the linear momentum flux density. In practice, we will instead be interested in
their cycle-averaged momenta <p> and < j> which read

(p) = %0 (E*xB+ExBY) . (9.24)

The total average linear momenta is then simply given by

(p) = / d*z (p). (9.25)

!The parameter o is necessarily real.
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9.3.2 Angular momentum of light

As shown in Chap. 2, there are several possible definitions for the angular momen-
tum. In particular, let us focus here on the canonical angular momentum

jean = €0 (E X A) + €9 E'(r x V) A, (9.26)
and on the Belinfante angular momentum
jpa=ecrxp=erx (ExB), (9.27)

which really represents the total angular momentum, even though it looks like an
orbital angular momentum. From these expression, one is tempted to identify in the
expression of the canonical angular momentum the spin and orbital parts like

lcan = € (E X A) s (928&)
Scan = €0 Ei(r x V)A". (9.28b)

However, each term is manifestly not gauge invariant and therefore not observable.
For a more detailed discussion of these issues, the reader is referred to [Barnett and
Allen, 1994, Enk and Nienhuis, 1994, Berry, 2009, Bliokh et al., 2010, Barnett, 2010,
Bialynicki-Birula and Bialynicka-Birula, 2011,Ornigotti and Aiello, 2014, Fernandez-
Corbaton et al., 2014, Bliokh et al., 2014, Leader and Lorcé, 2014]. Actually, these
issues appear for non-paraxial or non-monochromatic beams. Here, we shall focus
on paraxial optics where it makes sense to talk separately about orbital and spin
angular momentum.

In particular, in this case we can define the cycle-averaged angular momentum

<j> as
3y = rx(p), (9.29)
and the total average angular momentum as
(J) = /d% () (9.30)

In the particular case of the paraxial fields given by Egs. (9.19), the density of linear
and angular momenta are then given by

(p) = %0 [iw (uVu* — u*Vu) —woz x V|ul> + 2kwu|*2] ,  (9.31a)
<j> = rX <p> . (9.31b)

All light beams carry angular momentum since we can always choose the axis r
so that the component of the linear momentum perpendicular to this axis is non-
zero. However a more interesting situation arises when we choose r to be in the
direction of propagation z of the beam. In this case, there are essentially two ways
in which the angular momentum can be non-zero : either the light beam is elliptically
polarized and the electric and magnetic field rotate around the propagation axis, or
the wavefront of the light beam has a helical shape.

In the case of a gaussian beam, the wavefronts (close to focus) are planes per-
pendicular to the axis of propagation 9.2. Since the electric and magnetic fields
are contained in the wavefront, the linear momentum (9.20b) is perpendicular to
the wavefront and therefore, in this case, purely longitudinal (along the z axis on
Fig. 9.2). However, if the wavefront has a helical shape, the linear momentum, still
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being orthogonal to the wavefront surface, will have an azimutal component. From
Eq. (9.27) we therefore deduce that the angular momentum density in the z direction
will be non-zero and given by

jz = PPy, (9.32)

where p is the distance to the axis of propagation. In this part, we will mainly be
interested in this second case. The exact computation of the angular momentum of
a beam with helical wavefront will be carried in Sec. 9.6.

9.4 Gaussian beam

One of the simplest and most important solution of the paraxial wave equation is
the so-called Gaussian beam given by [Siegman, 1986]

wclp, =) = AZR:‘LO(Z) exp [—itho(2)] exp [;gi)} exp [ wg’;)] (9.33)
where
p o= Val+y?, (9.34a)
w(z) = wov/T+(2/2r)?, (9.34D)
iRo= W;Ug (9.34c)
R(z) = %w%@, (9.34d)
Yo(z) = arctan (;) (9.34¢)

The distance to the axis of the beam is given by p, w(z) is the radius of the beam
which we define as the distance at which the amplitude uq falls to ug/e, wo is the
beam waist which is the smallest radius of the beam (reached in z = 0), zg is the
Rayleigh length which is the distance from the beam waist at which the radius of
the beam is equal to v/2wo, v is called the Gouy phase and R(z) is the radius of
curvature of the wavefront. All these quantities are summarized in Fig. 9.1.
The wavefront of the Gaussian beam is obtained by looking at the points where
the phase of Eq. (9.33) is constant. We obtain
2

*t R0

= constant , (9.35)

where we neglected 1. The wavefronts are therefore parabolas (see Fig. 9.2).

We have two interesting limiting cases : close to the focus of the beam, z < zp
and R(z) > 1. The wavefront equation therefore reduces to z = constant, that is
to say, the wavefronts are just planes perpendicular to the z axis, similarly to the
plane-wave case. On the contrary, far from the focus, z > zg and R(z) ~ z. The
wavefronts are spherical, similarly to spherical waves. In both cases, close to the axis,
the wavefronts are orthogonal to the direction of propagation z. The electric and
magnetic fields being orthogonal to each other and to the direction of propagation,
the linear momentum is purely longitudinal and therefore the longitudinal orbital
angular momentum is equal to zero.

Using Eq. (9.19), we can then compute the electric and magnetic fields from
the enveloppe (9.33). Taking « = 0 and § = 1, we get 0 = 0. The resulting field
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equiphase surfaces

Figure 9.1: Schematic representation of the different quantities involved in the expression
of the Gaussian beam (9.33). The distance from the optical axis at which the amplitude
falls from a factor 1/e is written w(z). At focus, w(0) = wp, which we call the waist. At a
distance zg (called the Rayleigh length) from focus, w(zr) = v/2wp. The distance from the
optical axis is parametrized by p = /22 + y2 while the angle measured from the x axis is
written ¢ = artcan(y/x).

Figure 9.2: Wavefront of the Gaussian beam Eq. (9.33). They are formed of parabolas
as given by Eq. (9.35). Here the wavefronts are represented close to focus where they are
formed of planes perpendicular to the propagation axis z.
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Figure 9.3: Electric field of a linearly (¢ = 0) polarized gaussian beam at focus (z =
0) at two different times (corresponding to (a) and (b)). The colormap represents the
amplitude (9.33) of the field while the vector field represents the electric field as given
by (9.19).

is a linearly polarized gaussian field represented in Fig. 9.3, where the colormap
represents the amplitude of the enveloppe (9.33), while the vector map represents
the electric field as given by (9.19) with w given by (9.33). The two figures (a) and
(b) represent the same field at focus for two different times. We see that the field
has a fixed direction while its amplitude oscillates.

Taking a = 1/4/2 and 3 = iv/2, we get o = 1 and the field is circularly polarized.
It is represented at two different times in Fig. 9.4 (a) and (b) similarly to the
linearly polarized case. Here again, the colormap represents the amplitude of the
enveloppe (9.33), while the vector map represents the electric field as given by (9.19)
with u given by (9.33). Here the amplitude of the field is constant while its direction
rotates.

9.5 Higher-order beams

9.5.1 Laguerre-Gaussian beams

We will now look at higher-order solutions with azimutal dependence of the form?
e% where ¢ = arctan(y/x) is the azimutal angle and [ an integer. The most general
solution of the paraxial equation satisfying this Ansatz reads (see App. D)

Cw I )
oo - e (S 0(2) o

7p

2

X exp [—wfz)2] exp [—i¢pl(z)+il¢+i22’i)] ,

where Lé are the generalized Laguerre polynomials (see App. D), [ is an integer, p
a non-negative integer, 1,(2) = (2p + |l| + 1) arctan (i) is the generalized Gouy
phase and (), ; are normalization constants. Each term of this sum is called Laguerre-

2The reason for this particular azimutal dependence will become apparent when we will study
the orbital angular momentum of the electromagnetic field.
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Figure 9.4: Electric field of a circularly (o = 1) polarized gaussian beam at focus (z =
0) at two different times (corresponding to (a) and (b)). The colormap represents the
amplitude (9.33) of the field while the vector field represents the electric field as given
by (9.19).

Gaussian beam and we will be interested in these beams in rest of this part

[
w \/§ 202
uy (p,,2) = Cpi — ( p) LL,’( p2> (9.37)

w(z) \w(z) w(z)

ol ol o]

Similarly to the case of the gaussian beam, we look at the wavefronts of the LG
beams whose equations are given by
kp?

kz + 1o+ 2R(2)

= constant . (9.38)

The behavior of the phase will therefore depend on the value of [. First of all, we
note that for | = 0 we get, as expected, the wavefronts of the gaussian beam (9.35).
For higher integer values of [, the phase fronts will look like intertwined spirals
(see Fig. 9.5). Moreover, spirals will take [ wavelengths to complete a rotation.
Therefore, the lower the value of [, the higher the rotation speed. Finally, negative
values of [ will result in right hand spirals while positive values of | will result in left
hand spirals.

From the shape of the wavefront 9.5 and knowing that the electric and magnetic
fields are orthogonal to each other and contained in the wavefront, we deduce, using
Eq. (9.20b), that the linear momentum acquires an azimutal component py. Using
Eq. (9.32), it follows that these fields will carry an OAM in the z direction. We will
carry the exact computation of the OAM in a next section.

In order to further compare the different beams, we normalize them to the same
power. Using Eq. (9.21), the power of the beam is given by the integral, on a
surface orthogonal to the direction of propagation, of the average Poynting vector
[ d?xy (II.), where

[(E;By — E}By) + (Ex By — EyB)| ~ |ul*. (9.39)

N | —

(IL) =
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Figure 9.5: Wavefront of the LG, 1y beam Eq. (9.37). It is helically shaped making one
complete revolution per wavelength. On the right, we represented the electric and magnetic
fields as well as the linear momentum p. This latest one acquire an azimuthal component

(because of the helical shape of the wavefront) at the origin of the angular momentum
(9.32).

Choosing CZI;ZG = (pfif”)! and using Eq. (D.8) yields

/ d*z, (1) =1, (9.40)

for any (p,1). For convenience, we normalize all the distance to the wavelength A of
the field in the rest of this work. Equation (9.37) then takes the form

LG oo (V3" (2
Uy (p7907C) - Cp,l w(C) <w(€)> Lp <w(€)2> (9.41)

2 2
X exp [_w&)Z] exp [—ilbpl(C) +ilp + ch(pC)Q] ,
with
LG _ p!
Cp G+t (9.42a)
w(C) = wov1+¢?, (9.42b)
z

¢ = = (9.42¢)
zp = Twi, (9.42d)
¢ = arctan <%) , (9.42¢)
Yp(2) = (2p+|l|+1)arctan((). (9.42f)

In the same way as for the gaussian beam, we use Eq. (9.19) to compute the
corresponding electric and magnetic fields in linear and right-handed and left-handed
circular polarizations (¢ = 0, 1 and —1 resp.) for the LG/o1) mode. The results are
plotted in Fig. 9.6 to 9.8. First, we notice that in these three cases, the field at the
center (z,y) = (0,0) is equal to zero. This can be explained by the fact that the
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phase term il arctan(y/x) is not defined for x = 0 and the amplitude thus has to go
to zero. We have what we call a phase singularity.

In the case of the linearly polarized LG g 1) field, the direction of the field remains
along the y axis (as for the case of the gaussian field 9.3). However, at different times,
there is an axis rotating around the center and across which the field changes sign.

Concerning the case of the right-handed circularly polarized LG g1y beam, the
electric field does not point to the same direction depending on the position (z,y)
in the transverse plane, contrarily to the case of the circularly polarized gaussian
beam 9.4. However, since the polarization is circular, at each position, the field only
rotates (clockwise since the polarization is right-handed) at frequency w exactly like
in 9.4. The particular shape of the vector field 9.7 is due to the differences in phase
due to the phase term iarctan(y/x) (or equivalently to the rotating wavefront). As
time changes the electric field goes from purely radial and oriented toward the center,
to counterclockwise purely orthoradial, to purely radial oriented toward the outside
and to clockwise purely orthoradial etc. periodically with period 27w™!. Figure 9.7
(a) shows an intermediate situation between the purely radial and purely orthoradial
cases while Fig 9.7 (b) represents the field at a time close to the time at which it is
purely radial and oriented toward the center.

Let us now look at the left-handed circularly polarized LG g ;) beam 9.8. Simi-
larly to the case of right-handed circularly polarized LG g 1) beam and of the circu-
larly polarized gaussian beam, the field rotates at each point at frequency w (coun-
terclockwise here since the polarization is left-handed), while the global shape of the
vector field 9.8 is due to the difference in phase between the points (x,y) due to the
phase term iarctan(y/x). Here the field is never purely radial nor purely orthora-
dial. Instead, there is an axis along which the field points toward the center and
an other axis, orthogonal to the previous one, along which the field points toward
the outside. Because of the rotation of the field, these two axis are displaced and
appear as rotating around the center.

If we consider a LG mode with [ = 0 and p # 0, the phase of the field is that of a
gaussian beam. The field therefore does not present any singularity in (x,y) = (0,0).
Let us, for example, consider a LG(1 ) beam. It is represented on Fig. 9.9 in the
case of a linearly polarized (LP) field and on Fig. 9.10 for a circularly polarized
(CP) field. In both cases, the field presents a zero for p # 0. Moreover, it points
in both cases in the same direction and its amplitude oscillates in the LP case and
rotates at constant amplitude in the CP case exactly like the gaussian case (since
as mentioned previously, the phase is that of a gaussian beam.).

Finally, in the case where neither [ nor p are zero, the situation is much more
complicated as can be seen on Fig. 9.11 for the case of a LG (3 3) beam.

9.6 Angular momentum of LG beams

As stated before, we expect the LG modes with [ # 0 to possess orbital angular mo-
mentum because of their spiral wavefront. Let us compute their linear and angular
momenta exactly (still within the paraxial approximation). Inserting Eq. (9.41) into
Eq. (9.31) yields

l
A T e L R L e (9.43)

where p, ¢ and z are unit vectors. The radial component of the linear momentum
relates to the spread of the beam and its azimuthal to the angular momentum along
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Figure 9.6: Electric field of a linearly polarized LG(g,1) beam at focus (z = 0) at two
different times (corresponding to (a) and (b)). The colormap represents the amplitude (9.33)
of the field while the vector field represents the electric field as given by (9.19).
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Figure 9.7: Electric field of a right-handed (o = +1) circularly polarized LG 1) beam at
focus (z = 0) at two different times (corresponding to (a) and (b)). The colormap represents
the amplitude (9.33) of the field while the vector field represents the electric field as given

by (9.19).
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Figure 9.8: Electric field of a left-handed (0 = —1) circularly polarized LG,y beam at
focus (z = 0) at two different times (corresponding to (a) and (b)). The colormap represents
the amplitude (9.33) of the field while the vector field represents the electric field as given

by (9.19).
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Figure 9.9: Electric field of a linearly polarized LGy ) beam at focus (z = 0) at two
different times (corresponding to (a) and (b)). The colormap represents the amplitude (9.33)
of the field while the vector field represents the electric field as given by (9.19).
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Figure 9.10: Electric field of a circularly polarized LG ;) beam at focus (z = 0) at two
different times (corresponding to (a) and (b)). The colormap represents the amplitude (9.33)
of the field while the vector field represents the electric field as given by (9.19).
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Figure 9.11: Electric field of a circularly polarized LG (3 3) beam at focus (2 = 0) at two
different times (corresponding to (a) and (b)). The colormap represents the amplitude (9.33)
of the field while the vector field represents the electric field as given by (9.19).
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z (as shown in Eq. (9.32)) [Allen, 1992]. The cycle averaged angular momentum is
then deduced by <_]> =r X <p> and yields

l
() = cowr [ == (F1ul? = Gouul?) -+o (2o 1)

+ (l|u]2 - %”a,,my?) z} (9.44)

The longitudinal components are given by
() = heowluf?, (9.450)
(o) = ew (l|u|2 - %a,,w) . (9.45b)

As explained previously, it is possible, in the paraxial approximation, to separate in
a physically meaningful way the orbital and spin parts of the angular momentum
of light. Here the first term of the RHS will be interpreted as the density of orbital
angular momentum (OAM) while the second term as the spin angular momentum
(SAM). It can be noted that at each point on the beam the density of spin takes
a complicated value because of the partial derivative term, but integration over the
beam profile yields a simple result.

Let us compute the ratio of the angular momentum flux to the linear momentum
flux through a surface orthogonal to the direction of propagation. It is given by

oo oo 2
[[ pdpde C<jz> B 2mwecegw UO+ dp p?|ul? — o 0+ dp%3p|u|2
[ pdpdpc®(p.) 2mc2kweg f0+°° dpp|ul?
= HTU (9.46)

Multiplying the numerator and denominator by A allows us to interpret this ratio as
the fact that each photon has an energy of hw and an angular momentum of A(l+0).
In other words, Laguerre-Gauss beams have a well defined OAM.
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10.1 OQOutline

In addition to the study of radiation-reaction (which has been extensively described
in the first two parts of this work), one of the main interest of the next generation of
PW lasers [Cros et al., 2014b, ELI, |will be the study of pair production by nonlinear
Breit-Wheeler process. One of the possible configurations to trigger pair creation
is that of two counter-propagating plane-waves (studied in the previous chapter 8).
In this case, for intensities [Fedotov, 2016] of the order ~ 5 x 102> W/cm?, the
development of an electromagnetic cascade is expected. Cascades (or avalanches as
they are sometimes called [Fedotov et al., 2010]) are qualified of self-sustained in
that the field acts as an external source of energy that constantly reaccelerates the
radiating particles. An other configuration of interest is that of the collision of a high-
energy electron or photon beam with a counter-propagating laser beam. In this case,
the particles are not reaccelerated by the external field but this later just provides a
transversal acceleration. All the energy of the subsequently produced particles comes
from the initial energy of the seed particles: we talk about showers [Fedotov, 2016]).
This configuration has been used in particular in the Burke experiment [Burke et al.,
1997] and we focus in this situation in this chapter. In particular, we will study the
nonlinear Breit-Wheeler process in presence of a Laguerre-Gaussian external field.

At first we will consider the collision of a high-energy photon beam with a strong
external LG beam, neglecting the dynamics and the radiation of the produced pairs.
This will allow us to study the effects of the LG beam on the Breit-Wheeler cross
process by itself.

184
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The effects of a LG beam compared to a gaussian beam on the particular tra-
jectory of a charged particles will be then included by considering self-consistent
PIC simulation. This allows to study the electromagnetic shower produced by the
collision of a high-energy gamma photons beam with an external LG beam, the accel-
eration of the produced pairs, and the emission of energetic photons and subsequent
decay into further pairs.

As a preliminary step in the next section we will derive some characteristic
quantities of the LG beams and compare them to the usual gaussian beam. This will
be useful in order to interpret the results obtained for the nonlinear Breit-Wheeler
process with LG beams.

10.2 The nonlinear Breit-Wheeler process

Let us first recall here some of the main results about nonlinear Breit-Wheeler pair
production (NBWPP) that will be useful in the rest of this Chapter. The differential
probability of pair production is given by

d2NnBW _ ATnBW(X’y7X)

_ , 10.1
dtdx Xy Yy (10:)
where
V3 oo 3
T (€)= 3 | = [ s + v/ a0 . (02
with v/ = %(XWXJX)X’ ¢ =x/xyand A= %%: We then define the production rate
by
dNy Wh
dNusw _ 4 WaswOy) (10.3)
dt Yy
with
\/g 1 +o00 3
Wisw (xy) = 27r/0 d¢’ {— // dy Ks/3(y) + 5)(7’/ Ky/3(1)| - (10.4)
We can rewrite it like
d> Ny, Ty N
S mBW_ 4y Tunw (X3, €) , (10.5)
dtdg’ o
with
- V3 +oo 3
T (€)= 3¢ |~ [ ko) + S/ Kaouh)| . 1089
where v/ = %m The following asymptotic forms will be useful in the rest of

this chapter

dNnpw X~y < 8 >
~ A=~ exp|——= | ,forxy, <1, 10.7a
dt ,.y’y 3X’y Y ( )
N, 2/3
dNbw AXL, for x, > 1. (10.7b)

dt Yoy
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Figure 10.1: a) Time energy differential probability of pair production by nonlinear Breit-
Wheeler process (10.1) as a function of the photon quantum parameter x~ and of the ratio
between the electron quantum parameter and the photon quantum parameter {’ = x/x~. b)
Time differential probability of pair production by nonlinear Breit-Wheeler process (10.3)
as a function of the photon quantum parameter ..

10.3 Characteristics of the LG beams

One of the quantities that will play a role in the total yield of pairs by NBWPP is the
effective radius of the external beam. As already noticed in the previous chapter, in
particular on Fig. 9.6 to 9.11, the effective size of the different LG modes increases
with p and [, while the amplitude of these fields seems to decrease. Let us analyze
more precisely these effects. The LG modes given by Eq. (9.41) all have the same
energy, while their amplitude is given by

LG p!
= _ 10.
G =\ G (10:8)

We therefore see that, for p = 0, the maximum amplitude of the fields decrease as
1/y/]1]!, while for I = 0, the maximum amplitude of the LG mode (p # 0) is the
same as for the gaussian mode. More precisely, Eq. (10.8) is plotted on Fig. 10.2.
We see that the amplitude of the LG beam decreases very quickly with [ at fixed
p, while it decreases slowly with p at fixed [. In particular, the amplitude of the
LG g5y mode is approximately 10 times smaller than the amplitude of the gaussian
mode, while the amplitude of the LG 3 5y mode is approximately 100 times less than
the gaussian mode. In this work, we only consider pretty small values for [ and
p. Indeed, the focus being here on strong-fields, it is impossible with the current
technology to produce fields having at the same time a very large ap and a very
large value! of [ and/or p.

Contrarily to the case of the gaussian mode, for LG modes with p # 0, the
amplitude does not fall off monotonically to 0 but possesses p zeros at different
radiuses p # 0. We can therefore not define the radius of the beam as the distance
to the axis at which the amplitude falls off of a factor 1/e. We will instead define

LOutside of strong fields, it should be noted that it is currently possible to produce fields with
values of [ as large as 10000 [Courtial et al., 1997].
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Figure 10.2: Coefficient C;;% for the LG modes (9.37) a) for [ and p going from 0 to 5 and
b) for p = 0,1,2, 3 in terms of I. Note that, in practice, [ and p can only take integer values.
We represent them here as taking continuous values for representation purposes.

Figure 10.3: Effective radius (10.10) (normalized to the waist wp) in terms of I for
p = 0,1,2,3. In practice, [ can only take integer values and it is represented here with
a continuous axis for representation purposes.

an effective radius as

V2
P =22 / / Py 0 ul®. (10.9)

Using Eq. (D.9), we get

pei = wo /1 + /|l +2p+1, (10.10)

where the factor v/2/7 in Eq. (10.9) allowed us to find peg = wg for ¢ = 0 and
[ = p =0, which is what we would expect for a gaussian beam at focus. The result
is plotted on Fig. 10.3. The effective radius increase with the square root of [ and p,
that is, much more slowly than the coefficients CII;lG (10.8) were decreasing with [.
Another quantity of interest is the position of the maximum of the field. As
shown on Fig. 9.6 to 9.11, the maximum of the field is no longer at (z,y) = (0,0)
contrarily to the case of the gaussian beam. We obtain this radius by solving Bp|u|2 =
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Figure 10.4: Radius of the maximum of the field as given by (10.11) [normalized to the
waist w({)] in terms of [ for p = 0,1,2,3. For p = 0 Eq. (10.11) can be solved analytically
and is plotted in continuous line (10.12) while for p # 0 we plot the integer values for
1=0,1,2,3 after numerical resolution of (10.11).

0. This yields

141 [ 2p2
|| 4p Ly (w(g)z) 2p

L — =0, (10.11)
2 I 2 2
p o w(? (w2(/2)2> w(¢)
which for p =0 (and [ # 0) gives
l
Pmax = w(C) |2| . (10.12)

For p # 0, Eq (10.11) cannot be solved analytically. We solve it numerically and
display the results on Fig. 10.4. We see that any p, the radius of the maximum
of the field increases with [. In particular, for p = 0, it increases like the square
root of [, while for p # 0 it increases more slowly with [. At a given [, the radius
of the maximum of the field decreases with p. This can be explained by the fact
that LG(,;) modes have p zeros for p # 0 while their effective size increases like
the square root of p (10.10). The number of zeros therefore increases more quickly
(linearly) than the effective size of the beam with p. Moreover, the maximum of the
field being between the center (0,0) and the first zero [because of the gaussian term
in Eq. (9.37)] has to get closer and closer to the center (i.e. pmax decreases with p).

Finally, let us compute the value of the maximum of the amplitude u. This is
easily done by inserting the value of the radius of the maximum as given by (10.11)
into (9.37). Here again it can be done analytically for p # 0 using (10.12), while for
p # 0 we solve (10.11) numerically and insert the value into (9.37). For p = 0 we
then get the following equation for the envelop

oL
|l (pmax: 0, C)| = ﬁ 1|72 =12 (10.13)

ite

The results are plotted on Fig. 10.5. The maximum of the amplitude decreases
with increasing [. This is due to the fact that the fields are computed so that
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Figure 10.5: Maximum of the field u(pmax) for p =0,1,2,3 as a function of {.

they have the same energy. Knowing that their radius increases (10.12) with [, the
maximum amplitude u(pmax) can only decrease to keep (9.40) the same. Moreover,
u(pmax) almost does not depend on p for a given [.

10.4 Nonlinear Breit-Wheeler pair production in an ex-
ternal LG beam

We now consider the collision of an external LG beam (with different values of 1)
with a high-energy photon beam. In a first time, we freeze the pairs created by the
photon conversion, that is to say, we prevent them to move and to radiate. This will
allow us to isolate the pure effect of the external field on the photon pair-conversion
from the dynamical effect of this field on the created pairs.

In this case (and because we are in the LCFA), the total pair production rate
is just the sum over the beam profile of the production rate at each point as given
by (10.4)

Wi = [ @ Wame [, (10.14)
where
_ N
XAy(x) = Fe [EL(x) + ¢ xBi(x)]
S
- JZ\/ [Ex(x) + ¢By(x))* + [By(x) — cBu(x)]?, (10.15)
with ¢ = —cz. The photon quantum parameter x. therefore just corresponds to the

modulus of the envelop (9.41) u. For example, in the case of a linearly polarized
(along y) beam, Ey = —cB, while £, = B, = 0. We therefore have x, = 27, |u|/E;.
At a given position z, in the transverse plane, photons have therefore a quantum
parameter of the form 10.6(a) (for a LP beam) and 10.7(b) (for a CP beam). In the
case of the CP beams, the electric and magnetic fields never cancel. We therefore
have rings with radius increasing as (10.12) and amplitudes decreasing as (10.13).
In the case of the LP beams, and as already observed on Fig. 9.6, there are [ axis
rotating around the center of the beam, along which the field is equal to zero. The
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Figure 10.6: Photon quantum parameter X, in the transverse plane at focus (z = 0) for a
photon of energy «, = 400 and different linearly-polarized LG beams with ag = 2000, p =0
anda)l=0,b)l=1,¢)l=2,d)=3.

resulting x is therefore composed of 2! blobs rotating around the beam center with
radius and amplitude given by (10.12) and (10.13) (resp.). The maximum photon

quantum parameter x3'** is computed using Eq. (10.13) and reads

a CLG
Xglax — 27()#[ ‘l||”/2 €_|l‘/27 (10.16)

aps /1 + (2

where ag = 2000 is the ag of the gaussian beam having the same energy and wog
and CII;lG is given by Eq. (10.8). The maximum x5'** are summarized (at ¢ = 0) on
Fig. 10.7 where the black dots represent the values taken from the simulation (that
we describe just below) while the black dotted line represents Eq. (10.16). The fact
that the wavefront is helically shaped and that the beam carries OAM has therefore
no influence on the photon quantum parameter. The change in the total number of
created pairs can therefore only come from geometrical properties of the LG beams
(for frozen pairs).

To verify this, we realize three-dimensional Particle-In-Cell (PIC) simulations
with the PIC code SMILEI In these simulations, a v-ray flash (slab of y-photons
with normalized energy v, = 400, corresponding to an energy of ~ 200 MeV) collides
head-on with a LG light pulse (I =0 —4,p = 0). For all considered values of [, the
LG pulse has a waist wg = 3 \g [as defined by Eq. (9.42)], the pulse total energy is
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Figure 10.8: Maximum photon quantum parameter x7'** as given by the PIC simulation
(black dots) and by Eq. (10.16) (black dotted line) as a function of .

kept the same as that of the Gaussian pulse (I = 0) with field strength ag = 2000,
corresponding to a laser intensity of 2.8 x 102 W/cm? (as we have considered the
laser wavelength Ao = 1 pum for these simulations). The LG pulse has a sin? intensity
profile with 6)g/c full-width-at-half-maximum and the two light pulses are tuned
to meet at the best focus of the LG pulse when the latter reaches its maximum
intensity. For these simulations, a spatial resolution Az = Ay = Az = \o/16 was
chosen and the timestep was cAt ~ 0.55 Ax, corresponding to 95% of the Courant-
Friedrich-Lewy condition for the electromagnetic solver employed in SMILEI. A
quick convergence test was made: running the simulation with a resolution increased
by a factor 2 showed similar results.

Two series of simulations were performed. In the first series, all electron-positron
pairs created by the interaction of the v-ray flash with the LG beams were created
frozen, i.e. they did not further impact the simulation and only their creation
was recorded. This first series was used to explore the total cross section of NB-
WPP driven by a LG beam. In the second series, all electron-positron pairs created
were consistently evolving in the field, i.e. they could produce additional y-photons
through inverse nonlinear Compton scattering, which themselves could produce ad-
ditional pairs through NBWPP.

Figure 10.9 summarizes the results extracted from the first series of simulations
(no feedback from the produced pairs). It shows (blue dots), as a function of the
LG beam parameter [ ranging from 0 to 4, the total number of produced pairs
(normalized to that obtained considering the Gaussian beam [ = 0). We see that the
number of produced pairs in a LG beam increases with [ compared to the gaussian
case. However, as mentioned previously, this effect is purely geometric. To verify
this, we ran a simulation with a Gaussian beam (1=0) with a reduced field strength
ay = 0.606 x ag corresponding to the maximum field strength obtained for the
LG (o) beam, but with an increased beam waist wj = wo/0.606 in order to keep
the beam energy constant. This case is represented as a red dot on Fig. 10.9 (and
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the corresponding Xx5™* as a red dot on Fig. 10.8). We therefore conclude that
the increased number of created pairs is due to a geometric effect because of the
increment in the beam effective size. As it turns out, using a LG beam with a given
effective radius is less efficient than a direct increase of the waist of a gaussian beam
(I = 0) to the same value as the effective radius, and with the same total energy.

To qualitatively understand the origin of the rise in the number of created pairs,
we use Eq. (10.14) with the asymptotic form for Wypw [x~(x)] for x, > 1 as given
by Eq. (10.7a). We get

Npar) [Pz [x29(x))*?
Npair(l =0) - fdQﬂfj_ [Xg;(x)]Q/?) )

(10.17)

where xﬁG(x) is the photon quantum parameter computed with the external LG
beam while X? (x) is the photon quantum parameter computed with the usual gaus-
sian beam. To get an analytical estimate, we approximate X,%G(X) by its maximum
X5 as given by (10.16) and the surface integral by the surface p2.. With pmax
given by (10.12) for the LG beams and to w(() for the gaussian beam. We obtain

Npair(l) l |l‘/3 —|l\/3
Npair(l = 0) — 2(11)1/3 L (10.18)

This estimation is plotted in black line on Fig. 10.9. It is in good agreement with
the value given by the PIC simulation. We therefore have the counter-intuitive
conclusion that the number of created pairs increases with decreasing ag. This
is easily understood thanks to (10.17) as the fact that the beam surface increase
more quickly than the production rate decreases with decreasing ag. Of course, this
argument only works for big enough x. so that the cross section of pair creation is
large enough, and it makes sense to approximate Wypw [x~(x)] by its asymptotic
form. However, we see that this condition is not very stringent since the approximate
formula works for x3'** ~ 3 only (see Fig. 10.8). For [ = 4, Xy ~ 1.8 and we see
that our approximation (10.18) overestimates the simulation value (Fig. 10.9). We
interpret that as due to the fact that for such a x., the production rate starts to be
closer to (10.7b) than to (10.7a) and so it is no longer beneficial to decrease y., while
increasing pmax. In addition, we report for the cases | = 0 and | = 1 (orange square
on Fig. 10.9) the results of simulations for which the LG beam had a circular (both
left- and right-handed case led to the same result) polarization. It is important to
stress here that these simulations consider once more that the energy carried by the
LG beams is the same than that considered for all the other cases. Doing so, we
find that using a circularly polarized light pulse is not beneficial for efficient pair
production as, at constant energy, this requires a reduction of the effective laser field
strength, while keeping the same waist.

Of course, in practice, created pairs are not frozen but can move in the exter-
nal field, radiate, and this subsequent radiation can in turn create new pairs. We
therefore run a second set of PIC simulations, in the same conditions as before, but
with the full dynamics. Figure 10.10 summarizes these results. In this figure we plot
the increment (%) of produced pairs for the different LG beam configurations as in
Fig. 10.9. Instead of normalizing the number of produced pairs by that obtain in
the Gaussian case (I = 0), we here normalize the number of produced pair by that
obtained in the very same configuration (i.e. same parameter [ and polarization)
but in the first series.

We see that the increase in the number of created pairs due to the subsequent
radiation goes from +13% to +0.6% (for I = 0 to 4) compared to the case with frozen
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Figure 10.9: Number of created pairs in the collision of a gamma photon beam of energy
vy = 400 with different counter-propagative LG ;—1—4 beams with ay = 2000. The blue
dots represent the PIC simulations with a LP external beam and the orange squares with a
CP external beam. The red dot represents the PIC simulation with a LP gaussian beam with
a decreased ag and increased wq, keeping the same energy. In all these cases, the created
pairs are frozen i.e. they don’t further participate in the dynamics after being created. The
plain black line represents the estimation (10.18).
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Figure 10.10: Pourcentage of additional pairs created by subsequent radiation and pair
production by the first pair conversion of the initial gamma photon beam, as a function
of I. The parameters are the same as on Fig. 10.9, that is to say, the incoming gamma
photons have an energy ., = 400 and the counter-propagative LG ;=14 beams a normalized
amplitude ag = 2000. The blue dots represent the PIC simulations with a LP external beam
and the orange squares with a CP external beam. The red dot represents the PIC simulation
with a LP gaussian beam with a decreased ay and increased wy, keeping the same energy.
The plain black line represents the estimation (10.18).
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Figure 10.11: Number of created pairs in the collision of a gamma photon beam of energy
vy = 400 with different counter-propagative LG i—1—4 beams with ag = 2000. The blue
dots represent the PIC simulations with a LP external beam and the orange squares with a
CP external beam. The red dot represents the PIC simulation with a LP gaussian beam with
a decreased ag and increased wy, keeping the same energy. In all these cases, the created
pairs are frozen i.e. they don’t further participate in the dynamics after being created. The
plain black line represents the estimation (10.18).

pairs. We qualify this situation of soft shower since most of the created pairs come
from direct conversion of the incoming photon beam. The LG 1) beam is slightly
beneficial compared to the gaussian beam, for the same transverse size (see blue vs
red dot on Fig. 10.10). However, this difference is marginal and the overall behavior
still follows the conclusion given for the first series of simulation. Moreover, we see
that as [ increases, the dynamics of the electron in the LG beam does not seem to
be beneficial since the number of additional created pairs decreases strongly. As in
the previous series of simulation, the CP beams produce less additional pairs than
the LP beams (for the same reason that the CP beams have a smaller amplitude at
given energy).

Finally, we plot the total number of created pairs in the full auto-consistent PIC
simulation as a function of [ on Fig. 10.11 (where we followed the same representation
as on Fig. 10.9). We see the same tendency as in the case where the first created
pairs were frozen.

10.5 Conclusion

In this chapter, we studied soft showers in the collisions of a gamma ray beam with
Laguerre-Gauss beams with parameters | = 0 — 4. We find that the number of
created pairs increases with increasing [. This effect is purely geometrical and due
to the fact that the total production rate increases more quickly with the effective
surface coming into play in the process than the decrease of the production rate
with the photon quantum parameter. We verify this claim by simulating the same
situation with a usual gaussian beam with increased size and decreased amplitude.
We therefore have the counter-intuitive conclusion that the number of created pair
in the collision of a gamma ray beam with an external laser field increases with
decreasing intensity. Of course, this effect is valid only for large enough photon
quantum parameter. In practice, this condition is not so stringent since in this study
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we used photon quantum parameter going from 3.3 to 1.8 approximately. Moreover,
this effect is stronger by defocusing a gaussian beam than by increasing its size by
using higher order modes such as LG (g ;) beams. These findings are interesting in the
context of the upcoming experiments on the new PW lasers such as ELI or Apollon
in that they contradict the common belief that one has to use the highest possible
intensities in order to observe nonlinear Breit-Wheeler pair production.
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Conclusion and perspectives

In the near future, the new class of petawatt lasers is expected to reach peak in-
tensities above 102> W /ecm?. In particular, in France, the laser Apollon is expected
to reach, by 2020, a peak power of 10 PW. More long-term projects, such as the
upgrade of ELI, aim at reaching powers above several hundreds of PW. At such
intensities, the electron dynamic is expected to change drastically.

In this thesis, we studied radiation reaction in the classical and quantum regime
using a kinetic description for the evolution of the electron distribution function. In
chapter 5, we start from a general linear Boltzmann (1B) equation describing RR in
the quantum regime and perform an expansion for small ratios of the energy of the
emitted photon over the electron’s energy. Stopping this expansion to second or-
der allows to simplify the linear Boltzmann (I1B) equation to a Fokker-Planck (FP)
equation. This equation is equivalent to a stochastic differential equation for the
electron momentum. The first term of this equation is a purely deterministic term
corresponding to the leading term of the LL equation, corrected by the quantum
Gaunt factor. We refer to this equation as the corrected Landau-Lifshitz (cLL)
equation. The second term corresponds to a stochastic process, representing the
quantum effects in a regime of intermediate electron quantum parameters y. We
refer to this equation as the FP model. This "effective” stochastic differential equa-
tion is interesting from both a fundamental and practical point of view. From a
fundamental point of view, this allows to study the characteristics of RR in a regime
of radiation beyond the classical/deterministic limit, and including the lowest order
quantum effects. From a practical point of view, this yields an effective stochastic
pusher that can be very easily implemented in a numerical code like a PIC code.

We then derive the equation of evolution of the successive moments of the elec-
tron distribution function as described by the full linear Boltzmann (1B) equation,
the second order expansion [referred to as the Fokker-Planck (FP) model] and the
first order expansion [referred to as the corrected Landau-Lifshitz (cLL) model]. We
show that the equation of evolution of the mean electron energy is formally the same
in the three models (1B, FP and cLL). The difference between the average energy in
the 1B and cLL models is computed and shown to be less than a few % for x < 1.
We find that the equation of evolution of the electron energy spread is formally the
same in the 1B and FP descriptions but different from the cLL description. In the
classical case (cLL), the electron distribution function can only cool down due to
RR while in the FP and 1B models, depending on the initial electron energy spread
and the initial average electron quantum parameter, RR can either lead to heating
or cooling of the electron distribution function. We compute analytically the limit
value of energy spread between the heating and cooling regimes in terms of the
electron average x parameter (called Gmax). Typically narrow beams will present
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heating, while if the initial energy spread is very large, there will be cooling. When
heating is present, it only lasts for a finite amount of time, (denoted tpeat), until
the maximum energy spread Gmax is reached. After that, the system starts to cool
down. The maximum 6y,,x coincides with the threshold between heating and cooling
calculated theoretically. It is shown that even for x of order one, the calculation
allows to predict the value of the spread of the distribution function that separates
heating from cooling. The equation of evolution of the third order moment in en-
ergy of the electron distribution function is then investigated. We find it is formally
different for the three descriptions (cLL, FP and 1B). This third order moment ps
can either increase or decrease in the 1B model and the threshold between these two
domains is computed analytically. We identify the decrease of this moment yielding
to a negative ug as a signature of quantum RR. Another interesting consequence of
this study is that, for physical problems in which only the average electron energy
is important, the cLL description of RR is sufficient. If one needs only the energy
average and spread, the FP description is enough. If finally the exact shape of the
electron distribution function is important, one needs to use the full 1B description.

In chapter 6, we study the domains of validity of the three models, and perform
numerical simulations in order to confirm the theoretical findings of the previous
chapter. Contrarily to the common belief that the classical description is valid for
small values of y and that a quantum description is needed when y approaches unity,
the domains of validity we derive are statistical ones that depend on the electron
distribution itself. In particular, if the electron energy spread is large enough, a
classical description can be sufficient, even for relatively high values of x. On the
contrary, very narrow electron beams may require a quantum treatment even for
relatively small values of x. This has fundamental but also practical implications,
for example for the implementation of RR in PIC codes, for which it allows to
better choose the threshold between the classical and the quantum modules for RR,
depending on the particular physical situation under investigation. We support
these claims with numerical simulations of the three models with initially narrow
electron beams as well as broad Maxwell-Jiittner distributions, interacting with
linearly or circularly polarized plane-waves and constant uniform magnetic fields.
When stochastic heating is important the electron distribution function displays,
not only an increasing o, but also a decreasing third order moment p3 (skewness).
In particular for a narrow beam, this reflects the fact that the heating of the electron
distribution function happens in a non symmetric way, making it acquire a long tail
toward the low energies. We quantify this asymmetry, find a theoretical condition
to have increasing or decreasing p3 depending on the initial value of the average y,
the energy spread ¢, and the initial skewness p3. In the case of a narrow beam, the
initial skewness decreases leading to a negative value, eventually stops and usg goes
to zero before changing sign. The typical time scale for this inversion is denoted
in the manuscript as t* and it is found to be of the same order as tpea: in the
examined case. We can link the asymmetry of the electron distribution function for
times shorter than t* to the so-called ”quenching” of radiation reaction, that is the
fact that, even if the average energy of the electrons decreases with time, energetic
particles have reduced radiation losses for short time scales (less than t*). This
gives an interesting way of controlling radiation in laser-plasma interaction schemes
by appropriate tuning of the laser pulse duration.

All the results that we derived here are very general and apply to a wide range of
configurations and geometries of the statistical ensemble and electromagnetic field.
The configurations considered in this thesis are i) head-on collision of a linearly
polarized plane-wave with a narrow high energy electron beam ii) head-on collision
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of a circularly polarized plane-wave with a narrow high energy electron beam iii)
collision of a narrow high energy electron beam with a constant-uniform magnetic
field iv) interaction of a 3D Maxwell-Jiittner distribution with zero drift and high
temperature with a constant-uniform magnetic field.

In chapter 7, we turn our attention to the radiation spectrum. In particular,
we link its properties to the electron distribution function described in the previous
chapters. The instantaneous and time integrated spectra are investigated using nu-
merical simulations of the three models. We consider both initially narrow electron
beams and broad Maxwell-Jiittner distributions, interacting with linearly or circu-
larly polarized plane-waves and constant uniform magnetic fields. We find that the
predictions of the FP and 1B models are in good agreement even for y close to one
and different from the cLL model. In particular, the 1B and FP models exhibit a
hardening of the photon spectrum. The fact that the 1B and FP models exhibit such
close spectra shows that the photon distribution is especially sensitive to the overall
broadening of the electron distribution function (energy spread), but not so much to
the details of the asymmetries of this electron distribution function. Moreover, this
implies that the most difference is observed around tpeat, where the broadening of
the electron distribution function is the maximum in the FP and 1B models. Finally,
we see that the discrepancies between the three models are much smaller than on
the electron distribution functions which makes us conclude that the electron distri-
bution function is a better candidate to observe the transition between the classical
and quantum regime.

In chapter 8, we consider the interaction of an electron distribution with the
superposition of two circularly polarized plane waves. This configuration is of out-
most importance for the creation of the so-called QED cascades. In the general
case, the motion of an electron in such a stationary wave is chaotic. To avoid this
difficulty, it is common to consider the configuration in the magnetic nodes, which
reduces to a pure rotating electric field. In this case, the motion is 2D and the
electrons remain infinitely in the magnetic node plane. Moreover, contrarily to the
external fields considered in the previous chapters, this configuration increases the
mean energy of the electron distribution. We find that after a few rotations of the
electric field, the electron distribution function reaches a stationary state. All of
its moments are therefore constant. We then apply the previous kinetic equations,
taking into account the new source term, that comes from the fact that the external
field now brings energy to the particles. The average asymptotic energy is computed
numerically in the cLL and IB models and the discrepancy between these two val-
ues is deduced analytically from the kinetic equations. Similarly to chapter 5, this
discrepancy is smaller than a few %, while it can reach several tenth of % for x > 1,
but in this case, the analytical equation allows to compute exactly the difference
between the mean energy as given by the cLL and 1B models.

We then consider the equation of evolution of the energy spread. In this case,
the source term is negligible for y < 1 and the asymptotic energy spread in this
configuration is therefore the same as the threshold of the energy spread computed
in chapter 5. We verify these findings with numerical simulations, considering both
an initially at rest electron distribution, and an initially hot Maxwell-Jiittner (MJ)
distribution. In the case of the initially cold distribution, and for x < 1, the average
energy, energy spread and third order moment p3 oscillates strongly in a first phase.
After a few rotations of the electric field, they then stabilize at their asymptotic
values. The average energy stabilizes to approximately ag, the energy spread to the
theoretical value dp,.x, and the third order moment p3 to approximately 0. In the
case of the initially broad MJ distribution, its initial average energy, energy spread,
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and third order moment are bigger than their asymptotic values. They therefore
all decrease to reach, similarly to the case of the initially cold distribution, ag for
the average energy, Gmax for the energy spread, and 0 for ps. In both cases, the
asymptotic electron distribution function is a gaussian in energy. As x increases,
the time it takes for the electron distribution to reach its asymptotic stationary state
decreases, and the number of oscillations as well. We then consider the case where
x > 1. We run a set of simulations, first without taking into account pair production,
in order to compare with the previous case. In this situation, the average energy
remains close to that of the cLL model, while the energy spread is no longer given
by the theoretical 6yax. The third order moment is no longer equal to 0. For large
values of , pair production [by nonlinear Breit-Wheeler pair production (NBWPP)]
has to be taken into account. We find that the asymptotic average energy is close to
the case without pairs, while the asymptotic energy spread is larger than the case
without pairs.

In chapter 9 we focus on electromagnetic field configurations that can be pro-
duced in the laboratory, in particular, having a finite size and duration. We then
turn our study to the so-called Laguerre-Gaussian (LG) beams. These beams have
recently received a great attention from the physics community. They indeed carry
orbital angular momentum (OAM) which is believed to play a role in some as-
trophysical phenomena, such as the radiation from the accretion disk around Kerr
black holes or the radiation by rotating pulsars or quasars. In this chapter, we derive
them from the paraxial equation and review their main properties such as their he-
lical phase and orbital angular momentum. We examine the electromagnetic field of
LG beams as well as their phase and see how it differs from simple gaussian beams.

Finally, in chapter 10, we examine the possibility of producing pairs by colliding
LG beams with high-energy photon beams. Such a configuration produces a so-called
electromagnetic shower. We first analyze in depth the properties of the LG beams,
and compute in particular their effective transverse size, the radius of the maximum
of the field, and the value of this maximum amplitude, for a beam fixed energy.
We then estimate analytically the total rate of pairs production by nonlinear Breit-
Wheeler (nBW) for LG beams and compare it to that of a pure gaussian beam,
both for linear and circular polarization. We find that the nBW production rate
increases with the orbital angular momentum of the LG beam. This effect is purely
geometrical and due to the increase of the transverse effective size of the field. We
confirm this effect by comparing the pair yields of gaussian beams with different
transverse sizes. We then perform full 3D PIC simulations in order to verify our
results. We find the number of pairs increases with increasing OAM, but less quickly
than by directly increasing the waist of a gaussian beam (therefore decreasing its
amplitude). We therefore obtain the counter-intuitive conclusion that the number
of created pairs increases with decreasing intensity at fixed energy (as long as the
photon quantum parameter remains larger than a threshold value).
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Appendix A

Classical electrodynamics

A.1 Bessel functions

Bessel functions are solutions of the differential equation

2y +xy + (2" —a’)y=0, (A1)
where the prime denotes the differentiation with respect to x and where « is any
complex value. This equation has many solutions which will be called differently
depending on their behavior.

A.1.1 Bessel functions of the first kind

Bessel functions of the first kind, denoted J,(z), are solutions of Eq. (A.1) that are
finite at x = 0 for integer or positive values of o and diverge for  — 0 for negative
non-integer values of . In this work, we will mainly use their integral representation
for « = n where n is an integer

1 [T . .
In(z) = or /7r glnT—esinT) g (A.2)
From this representation, we can derive the so-called Jacobi-Anger expansion
ezzcos@ = Z ian(z)ean ) (A3)
Substituting 6 by 6 — w/2, we get
. . +OO .
ezzsm@ = Z Jn(z)ezrﬁ’ (A4)
and in particular, we will use
W = o N T (18) T amr(2) €11 (A.5a)
P(@) = to+1Y19—Yosing —P3sin2¢. (A.5D)
and
+o0o
loH(e=9)]  —  ivo Z Tt (1h2) ei[wl—n]%mw, (A.6a)
V(@) = o+ 1d— osin(d— ). (A.6Db)
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Finally, the following recurrence relations will be useful
2J(x) = Jpo1(z) — Jpi1(x), (A.7a)
%"Jn(x) = et (@) (A.7b)
Let us note that .J,, satisfies

Tn(—2) = J_n(z) = (=1)"Jn(). (A.8)

A.1.2 Modified Bessel functions of the second kind

In the case where the argument x is purely imaginary, solutions of Eq. (A.1) are
called modified Bessel functions. In particular, we consider here the modified Bessel
functions of the second kind, denoted K, (x). In this work, modified Bessel functions
of the second kind will mainly be used to obtain analytical approximate forms of
Bessel functions of the first kind. In particular, for [ > 1

Ti(l2) ~ \7/f(1—12)1/4K1 (i), (A.92)
Ji(12) ~ _fu — )V (1) (A.9D)

where z = In [1 +v1-— zQ} —Inz — V1 — 22, In particular, for V1 — 22 < 1, we

have at first order z ~ (1 — 22)3/2. for Iz > 1, we have

Ky 3(la) ~ Ky s(lx) ~ —— exp(—lz) . (A.10)

s
2lx
A.2 Airy functions
Airy functions are solutions of the differential equation
' —zy=0, (A.11)

that satisfy y — 0 as © — 400, denoted Ai(x) (the prime denotes the differenti-
ation with respect to x). Throughout this work, we will mainly use the integral
representation

. 1 +oo t3 1 +0o0 ) t3
Ai(z) = 7[‘/0 dt cos (mt + 3> = 277/ dt exp [—z (mt + 3)] . (A.12)

Its derivative is given by

A/ 1 +o00 t3 1 +0oo t3 A
i = — dtt si t+— | = — dtt —i | xt+ — (A1
i'(x) 77/0 sm<$+3) 2i7r/oo exp{ z<x+3>] (A.13)

In Sec. B.5, we will use instead the following integral representations

! A'(ix) ! /+oodt [i (at® £ at)] (A.14)
—Ai(xt—) = — exp |i (a x .
3a 3a) 2n ) P

It will be useful to link Airy functions to modified Bessel functions of the second
kind, in particular, we have

. 1 =z 2
Ai(z) = ﬂ_\/gKl/g (33:3/2), (A.15a)

-/ _ =z 2 32
Ai'(z) = 71_\/§K2/3 <3x ) (A.15D)
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A.3 Tensor identities

A.3.1 Levi-Civita symbols

606575604/375 = —4!,
eaﬁweaﬁW = =31,
PPe s,y = —21 (8150 — 5L8D)
S oo = — (UG, — SHS G + LS,
SRR + oleyon — 00%0L) |
A
A TR A
Pl sys = —det| & B 0
By s& o5 o of
A
Eijkéijk = 3‘,
eimnejmn = 2!53,
€W eimn = 070 — 8T

A.3.2 Constant field tensor identities

The constant field tensor is defined as § = kta?

%e“”p"fi,pa. Then, the following results hold

11 *p oKy
Fi 170 =1 T

k“k”a?&-j ,

fw/ _ kuf*m/ _ 0

=, = R

Z i

fi ajw = dija k )
fi w = (agu) K — (ku)aj

fzﬁ‘wfj,vnun

(k:u)dijaik: s

(7 w) (15 un) = (ku)?a;

Defining f* =37, 5 f;"4i(¢), this implies that

fpu? =

o _

1 fpu =

([ uy) (frau®) =
F(8) funl) =
F(6) fon(&) Fuo (@) =

> ¢ (ku)aiy — ky(am)]

i=1,2

= DGR,
i=1,2

(ku) Y aZo?kH,

i=1,2

(ku)* Y~ afu;?,

1=1,2

— k¥al' and its dual as f;

= > VS alkt Ky,

1=1,2

(@) fun(e) £77(¢") =

0,

(A.16a)
(A.16b)
(A.16¢)

(A.16d)

(A.16e)

(A.16f)

(A.16g)
(A.16h)

i

(A.18a)
(A.18b)
(A.18¢)
(A.184)

(A.18e)

(A.18f)
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Finally, writing,

o}
F (6, o) /¢ a¢' (&), (A.19)
F(p) = FM(p,—0), (A.20)

we have

FH(d,¢0) = K'[a"(d) —a"(¢o)] — K [a"(¢) — a"(¢0)]

= D> R Ii0) — vilgo)] (A-21a)
PG = Kad)— Ko
= iZI:Qfé“jwi(ﬁb), (A.21D)
FAH (g, d0) = —’VZ a? [9i(6) — wildo)]* KR, (A21c)
FH@) = —Zzlfa?w?(cﬁ)k“k”. (A.21d)
fary)

A.4 Light-cone coordinates

The light-cone (or also called light-front) coordinates of any 4-vector a* are defined
by

a_=na, a4 =na, (A.22)

where n* = (1,n) = k*/wy and n* = (1, —n). In the case of a plane-wave propa-
gating in the Z direction, n = 2 and we have

o =a’—ad*, o =d"+d?, (A.23)
while the perpendicular components a* = (a',a?) are unchanged. The usual coor-
dinates of a are therefore given by

1
a’ = 5(3:+ +27), =" —z7), (A.24)

from which we deduce the metric tensor in light-cone coordinates

o 0 o0 1% 0 0 0 2

0 -1 0 0 0 -1 0 0
~ _ AV

3 0 0 0 2 0 0 0

The covariant components of a vector in light-cone coordinates are therefore related
to its contravariant components as

1 1
a_=—-a", a, = ia*, a, =—-a’, (A.26)

while the Minkowski scalar product reads

_ 1 _ 1 -
ry=a%y, +x y_—l—scL-yL:Qery +§x yt -z oy, . (A.27)

The integration measure is then

dz = de_de, d’x . (A.28)
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A.5 Solution of the equation of motion of a charged par-
ticle in a Plane-Wave electromagnetic field without

RR

We start from Newton-Lorentz equation (2.44) with the expression (2.102) for the
electromagnetic strength tensor. Changing the derivation with respect to the proper
time by a derivation with respect to the phase of the field ¢, we get

dp“

O)ap) k' —q Y ¢i(d)al. (A.29)

i=1,2

We now need to find an expression for (a;p) in terms of ¢. This is done by multi-
plying (A.29) by a; and integrating over ¢. This yields

aip = aipo — qa; [Yi(¢) — Pi(¢o)] - (A.30)
Inserting this expression into (A.29) and integrating over ¢ gives the desired solution

¢(A@)po) 0 CAG)
kpo 2kpo

P'(¢) =py — ¢A"(¢) + (A.31)
Writing
a'(¢) = a(0,dcos(¢), V1—42sin(4),0), v =+(1,8), uy=10(180),
o= wo(lk), o' =(ta), d=wlt—k-x), kuy=ywo(l—Fk-Bo),

where ag = eA/m, we find the 3-vector components of (A.31)

_ _a(®) - Bo a(¢)? N

@)= 1—’%‘ﬁ0+270(1—i3'/5'0)’ (A2
2

u(¢) = u—a(g) - a(@)-Poj, __ al@) k, (A.32D)

1-k-Bo 27v0(1 =k - Bo)
from which we deduce

Upg — a

(¢) (A.33)
Yowo(1 — k - Bo) '

/d) d¢/ a(gb/) /3 o a(¢/)2 I%

0 yowo(l —k - Bo)2  273wo(l — k- Bo)?

More explicitly, we parametrize By as By = [Bo(sin by cos ¢y, sin by sin g, cos bp),
which allows us to rewrite in 3-vector notation

¢
x(¢) =xo + /¢> d¢

v(¢) = ay+bycosd+ cysing 4 dycos2¢p, (A.34a)
u(¢p) = a,+b,cosp+ cysing+d,cos2¢, (A.34Db)
where
ay, = 70+ i (A.35a)
v T 47y0(1 — By cosby) ’ ‘
aoBod cos g sin Gy
by = — A.35b
K 1—fBpcosbly ( )
V1 —62si in 0
¢ = _aoﬁo sin g sin O 7 (A.35¢)
1 — By cosby

aj(6® —1/2)
270(1 — By cosby) ’

(A.35d)
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and
2
a, = %Po+ % k (A.36a)
47y0(1 — Bocosby)
aoBod cos pg sin by
b, = —agdas— , A.36b
@00 M 1 — By cosby ( )
V1 —425si infgy -
c, = —apV1—62ay— 9080 St Po 11 70 k, (A.36¢)
1 — Bycosby

a(62-1/2) .
d, = 0 k. A.36d
270(1 — By cos bp) ( )

Writing the integration constant xg, we get

1 dy .
x(¢) = x0 + Tun | + ayp — ¢, cos P+ by sin ¢ + ~ sin 20| , (A.37)
0

A.6 Non-linear Thomson scattering

A.6.1 Circularly polarized plane-wave

From Egs. (2.117a), we deduce

dz(o)
el X2 COS P, (A.38a)
de(j) = I9sing, (A.38b)
dz(¢) _
el 21, (A.38¢)
and
Y(¢) = tho + Y1 — hasin(¢p — ), (A.39)
with
vy = il [z sin 6 cos ¢ + yo sin @ sin ¢ + zo(1 + cos b)) , (A.40a)
wo
P = ud [1— z1(1+cosh)], (A.40Db)
0
o = =~ x2 sinf. (A.40c)
wo
We then have
A " A ,
K, = zpe'¥0 / d¢ cos ¢ e'lV1o—v2sin(o=¢)] (A.41a)
-7
. n . .
K, = myeo / d sin ¢ e!V19-v2sin(@=¢)] (A.41b)
-
K, = z ¢ /77 do eilb1¢—vasin(¢—¢)] (A.41c)
-7

We can then rewrite
. n . .
cos oK, +sinpK, = zge® / do cos(¢p — ) elV1e—vasin(e=e)l (A 493)
-7

) n ; .
sinpK, —cospK, = —xge'0 / do sin(¢ — @) 'lV10=v2sin(@=@)l (A 49D)
-7
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Using Eq. (A.6a), we get

cospK, +sinpK, = 2xa7 Z 1/’0”“" In(2) R(w,nwp), (A.43a)

n=-—oo

sin pKy —cospKy = 2ix91 Z ! Wot2) 1 (40) R(w, nwg),  (A.43b)

n=—oo

K, = 20z Z Jn (1) 0+ R(w nwg),  (A.43c)

n=—oo
where R(w,nwp) is the so-called resonance function, defined by

Rlw,nwy) = — d¢ezw1 ng _ sin[(1 —n)n]

2 W1 = (A-44)

Inserting these expression in Eq. (2.124) and using the fact that the resonance func-
tion R(w,nwyp) is strongly peaked at 11 = n, we get

d27 e2w2772 = 9 | [cos® — z1(1 4 cos@) 2 - o
dw dY | cp 2 nz:l R(w, nwo) ( Sin 0 > Jn(2)? + a5 Iy, (¢2)7 ]|
where

~ n Ty sinf
Yo = : (A.45)

1 —21(1+ cos®)

A.6.2 Linearly polarized plane-wave

From Egs. (2.113), we deduce

dflif) — Ticosd, (A.46a)
d:‘él(f) = 0, (A.46D)
d’z((f) = 242200820, (A.46¢)
and
(@) = Yo + 16 — Yysing — iy sin 2. (A47)
with
o = —wio [0 sinfcos p + yosinOsing + z0(1 + cos )],  (A.48a)
P = w% [1— 21 (1 + cosd)] (A.48b)
Yy = w%l‘l sin @ cos ¢, (A.48¢)
vy = —z(1+cosh). (A.48q)

wo
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We then have

) n . . .
K, = 1 e“/")/ d¢ cos ¢ ¢!l¥10=v2sing—¢ssin 29| (A.49a)
-7
K, = 0, (A.49D)
K, = ze" / " 4 a6 sing—yssin2g (A.49c)
-1
b 2290 /77 do cos 26 eil1¢—12 sin g—¢p3 sin 2]
-1
Using Eq. (A.5a), we get
K, = ame Z R(w,nwo) Jm (¥3)[Jn—2m-1(¥2) + Jn—2m+1(12)], (A.50a)
K. = 2zme™ > R(w,nwo) Jim(¥3) Jn—om (1) (A.50D)

+00
+ 2zme > R(w,nwo) Jm(¥3) [Jn-2m-2(¥2) + Jn-am2(th2)]

m,n=—o0
where R(w,nwy) is the so-called resonance function, defined by

sin (41 — )]

(Y1 —n)n (A-5)

1o
R(w,nwy) = 277/ dqﬁe’[wl_”w:
-7

The resonance function R(w,nwy) is strongly peaked in 1)1 = n, so in the following,
we make the approximation ¢ >~ n

+oo
Ky = xzme™ Y R(w,nwo) (=1)™ T (3)[Tn-2m-1(12) + Jn-2mi1(d0)],
| (A.52a)
+oo
K. = 2z2pe? > R(w,nwo) (—=1)™ Jn(ths) Jn—2m (12) (A.52b)
+ 2zme™ Y R(w,nwo) (1) Jm(¢3) [Jn—zm—Q(%) + Jn—2m+2(¢2)] )
where
- nxipsinfcosp
V2 = 1 —2z1(14cosb)’ (A-53a)
s = —nza(1 4 cos ) (A53D)

 1—2(14cosh)’

Inserting Eq. (A.52) into Eq. (2.124) and knowing that the resonance functions are
well separated for n # n’, we get

d*1 fw? 2 2 2 )2 2 27 29 72
= E R(w,nwp)” | (1 — sin® 6 cos” @) K7 — sin” 6 cos p K, K, + sin GK]
2 ’ T z|
dwd)  Arm ot
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where
~ +OO ~ ~ ~
K, = zip Y (=)™ Jn(@s) [Tn-2m-1(d2) + Ja-2mi1(¢2)],  (A.54)
+oo
K. = 27 ) (=1)™ J(ts) {Z1Jn—2m(1/~12)
+ 29 (Jn—Qm—Q(&Z)+Jn—2m+2(77;2)):| . (A55)

For ¢ = 7/2, and in the ultra-relativistic regime (ap > 1 and therefore n > 1 and
6 < 1), we have the following approximations

K3 = o’ P (i), (A.56)
K2~ n*Jf(Is), (A.57)
with [ = (n —1)/2 and ¢35 = ¢3/l. We have

d2I 02,2 I B B
T d0 S AT ZR (w, nwo) [Kg%—GQKZQ} . (A.58)

We have 1 — 221 = (1 + a2/2)/h3 and —4z9/(1 — 221) ~ 1 — 2/a? and so

. 2 h2

Py~ 1 — 2 (1 40 92> (A.59)
Using (A.9a), we get
. 1
i) = o (1= ) K (O, (A.60)
P 1 (1—1s

TP (ps) =~ W(w)KSB(@ (A.61)

3

f_n hg g2 = 343
where = & (14 720%) and ne = 3aj/4.

A.7 Regularized self-field

We will compute the regularized self-potential and field defined as

(&

Al (z) = o

+oo
/_ dr (a0 — )8 (@ — 2')% — ] W (7), (A.62)

and F!'(z) = 201 AY) (). Choosing the origin of coordinates such as z# = r#(0),
we have

2
(r) = @ +ufT+af T+ 00, (A.63)

(x — 7‘(7‘))2 = 724 O(TS) . (A.64)

Inserting these expression into Eq. (A.62) and computing the integral yields

Arpr(0)] = ST € <“u(0) - a(O)“) . (A.65)

47 € 47 €
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Generalized to any proper time 7, we get

I
A7) = — <“(7) - a“(7)> +0(e) (A.66)

4m €

from which we deduce
0
0 Ar(r)) = 5= [ drdl(a = r(r) — AIN(r) (A.67)
™ —0oQ

where N* (1) = dLZi(T) and LM (1) = % Taking the antisymmetric

part of Eq. (A.67) and performing the integration, we get

iN[MV](_e)

Fr = A.68
lr(m)] = o —— (A.68)
Expanding 7#(7) and v*(7) around 7 = 0 yields
—[z# — (7)) v (1) = A*'T + B2 o3 4 DRt 4 0(7'5) , (A.69)
with
A = upug (A.70a)
1
B = ufag + 5@6’%5, (A.70b)
nv 1 1584 1 MV 1 Ly .
cr = 5U0d0 + 5aap + gd0uo , (A.70c)
o L L, 1, 0
Dr = U040 + 0G0 + gd0a0 + 5 doup - (A.70d)

where * denotes the derivation with respect to the proper time 7. Contracting the
two indices yields [and using Eq. (2.46a) and (2.46b)], we get

— [z —=r(m)]|v(r) =7+ u06c'z07_3 - 5;57'4 +0(7%). (A.71)
We can therefore deduce L*(1),
LM (1) = AM + B 1 72 {C‘“’ - U%%AW} +0(r%), (A.72)
which after differentiation yields
N#(r) = B" + 2r [C“” - 7““)6‘3“),4#”] +0(r2). (A.73)
whose anti-symmetric part is
Nl(r) = iu[o’“”ag} + gu[o“dg] +0(e). (A.74)
The self-field is finally given by
FM[r(7)] = i —%a[wl + %d[“u’j] +0(e), (A.75)

where we dropped the ”0” subscript.
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A.8 Solution of the equation of motion of a charged
particle in a Plane-Wave electromagnetic field with

RR

We consider the LL equation
a = " u, + 79 [877]0“” uy u'l — fH fnl/ u'l 4 (f1 un) (fra u®) uu] .

We follow the same steps as for the situation without RR and look for ku. Us-
ing (2.103), we get
d(ku
W) — 7 32 aduf?(o) (b (A76)

i=1,2

which, using dr/d¢ = (ku)~!, yields

(ki)2 d(dkg )=, > aiv(9). (A.77)

i=1,2

kug

This readily integrates into ku(¢) = o0 with

¢
B o0) =1-Top0 S /¢ dp a2y/2() . (A.78)

i=1,2

and where pg = kug. We define the "reduced” 4-velocity as u#(¢) = h(¢p, ¢o)u ().
Its equation of evolution is then given by @' (¢) = h'(¢, go)ut(p) + h(d, po)u™ ()
with

1 /
hu' = —h ", + 1o f M, (A.79)
Po
— h7o Y ik + poro Y afvtut,
i=1,2 i=1,2
'u* = —poro Z a2 ut (A.80)
i=1,2

where we dropped the dependencies in ¢ for clarity. We therefore get

d/&/lt ]. ! i
= — |h " + 7 M\ fiy, — b a2 kP A.81
i [ f oo f } oi:z:; (0 (A.81)

where the prime denotes the derivation with respect to ¢. Using Picard’s method
and the orthogonality properties of f*”, we get after two iterations the exact solution

W) = uf+o [ " dp [1o, 00 (0) + ropas ()] o
0 PO J pg 7 .

¢ /
v [ dp (e, 00) 7 () + ropes ()]
PO J g
(p /
[ gl [ 00) @) + oo (] wy (A82)
PO o

¢ /
- L doh(e,d0) 3 a2g2 ()",

i=1,2
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which simplifies to

o) = {ug+;m[h2<¢,¢o)_1] "

|: ¢ ¢0 ; uO,I/ - %azz I?(¢7 ¢0)kuj| } ) (A83)

b‘,_.
=
o

=
with

¢
Ii(¢, 00) = /¢d80 [2(0, d0)1i(@) + Topoty ()]

0

= h(9,00)vi(d) — vi(¢o) + Topo [Vi(d) — ¥i(¢0)] (A.84)

+ T0p0/¢ dpti(p) Y ali (e

7j=1,2

To make the comparaison with the case without RR simpler, we can rewrite the
solution as

f§§(¢’ ¢0)UO,V i ‘FRR (¢, ¢O)u0,u

hg, do)ut(¢) = ul +

kug 2(kug)?
2
with
Fhi(@.¢0) = TLi(, ¢0)F™ (4, o), (A.86)

1
Zi(),¢0) = i (d) = i (o0)] Ii(¢, ¢o) - (A.87)

In 3-vector (with the same notations as for the case without RR)

a*(¢p) = a(0,dcos(p), V1 — 62sin(¢),0), v(1,8), uy =(1,B),
o= wo(l,k), 2" =(t=z), ¢= (t—k ZE) kuo = yowo(1 — k- Bo) ,
this reads
_ 1 Lo _
W) = e [w s [#6,00) ~ 1 (A.88)
- WOZI (&, ¢0) @i - Bo + 55— Zafff¢¢o)],
z—l2 1=1,2
uz(¢) = gb’ 40) (Voﬂo,xizl;fi(sb, ¢0)ai,a:) , (A.88Db)
uy(¢) = ¢’ 50) (7050,yi2121i(¢, ¢0)ai,y) ; (A.88c)
uy(¢) = o0) 7050 2+ ﬁ [h2(¢, do) — 1] ks (A.88d)

7o 212(
- hoi:Zm i(®: 60) ai - Bo k- +2h > aili(:00)k )

1=1,2
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More explicitly, we have

h(®, ¢o)

I ((Z)v ¢0)

I2<¢7 ¢0)

1-— 17'0poa2 <52 — ;) [sin 2¢ — sin 2¢g]

2
S7op0a® (6= 6u) (A89a)
h(¢, ¢0)d sin ¢ — d sin ¢
ToPoo [1 + %a? <52 - g)] [cos ¢ — cos ¢] (A.89b)

émpoa% (52 — ;) [cos 3¢ — cos 3¢y,
—h(d, o)V 1—0%2cosd+ V1 —d2cos gy
TopoV 1 — 62 [1 - %az (52 - ;)} [sin ¢ — sin ¢g]  (A.89c)

1 1
—T1opoaty/1 — 62 <52 - 2) [sin 3¢ — sin 3¢y] .

6
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Quantum electrodynamics

B.1 Gamma matrix algebra

The gamma matrices y* generate a matrix representation of the Clifford algebra
Cl; 3(R) and are defined by the anticommutation relation

{47} =20 (B.1)

In this thesis, we use the so-called Weyl (or chiral) representation of the gamma

matrices
o (01 i (0 o
Y= <1 0/ Y= _O.z' 0 ) (B2)

where (0');=1.3 are the Pauli matrices

d () (), .

They satisfy the algebraic identity
oio; = 09 ikt (B.4)
Similarly, the gamma matrices satisfy

,y,u,yv = T’,ul/ + O"ul/, (B5)

where o = £ [y*,7"].

Product of gamma matrices

Using (B.1), we can show the following identities

Y = 4, (B.6a)
YV = =297, (B.6b)
VAN = P, (B.6¢)
VAV = =27 (B.6d)
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Trace of gamma matrices

Using the cyclic property of the trace, one can simply calculate the trace of any
product of gamma matrices by simply permuting the first gamma matrix to the last
position and using (B.1)

iTrW’VV = g, (B.7a)

3 Tryky Py = 70" =ty (B.7b)

i TrofaPy® = phoprP — phepve (B.7c)

L TeytgraraTet = e (B.7d)

4

Finally, it is easy to convince oneself that the trace of any product of an odd number
of gamma matrices is zero.

B.2 Useful identities for QED

The computation of cross-sections in QED will require extensive use of the gamma
matrices. In this optic, we summarize here some of the most used identities.

Trace identities

We will be lead to compute products of the form

!
E : i
M, s 5 Mpsip s (B.8)
s,s’
with
/ _ /
M, s Uy s ups (B.9a)
Mp,S;P’,S’ = Up’,s’rup,s~ (B.9b)
These can be rewritten as
]\4”r M. rg = UT F/T@T Uy o LU = Uy s D'y ity oTu
,8p',8" TIPS T D,8 p,s' P8 P,s T D,S p,s' Up! s/ 1 Up s,
8,8 S,8 8,8’

- Zﬂpas L' +m)T] wps

S

= Z Z ’L_Lp,s,a [F,(ﬁl + m)F] a8 up,s,ﬁ

a,B s
= Tr[['(p + m)D(p+m)] . (B.10)
The following identities will be extensively used in the derivation of QED cross-
setions
Tr [¢f] = 4ab, (B.11a)
—%Tr [y by,] = 2ab, (B.11b)

I [ BAG] = 2 (aAW@) — o (bA@)] L (B.110
T [ BA@ I AD)] = —dabo AG)AW), (B.11d)
I [ A B s AT = 0. (B.110)
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Slashed quantities identities

b = 2ab — b, (B.12)

B.3 The Dirac spinors

The solutions of the free Dirac equation (i — m)¥ = 0 read
U(x) = ug(p)e P*, (B.13a)
U(r) = wvs(p)e?, (B.13b)
and are interpreted respectively as particles and anti-particles of energy €, = \/m

and spin s = :l:%. The components us(p) and vgs(p) are called Dirac spinors (or 4-
spinors), and are solution of the following momentum space Dirac equations

(p—m)u = 0, (B.14a)
(p+m)v = 0. (B.14b)
They can be represented as
u+%(p): «/ep+m<£ 1) , ufé(p): «/ep+m<;§f 2) , (B.1ba)
_op oD
ey ) = Vet () ()=~ e () | (Baash)

where ¢; and x; are arbitrary constant bi-spinors normalized as X;-FXz‘ = (b;.rd)i = 1.
These states are normalized as

ul(p)us(p) = 26, (B.16a)
vl (p)vs(p) = 26, (B.16b)
The states v and v are orthogonal
Uuj = 2mdy; , (B.17a)
vy = —2mdy; , (B.17b)
where 4 = u'y? and v = vT40 are the adjoint spinors associated to u and v which
satisfy
u(p—m) = 0, (B.18a)
o(p+m) = 0. (B.18b)

Multiplying Eq. (B.18a) (with spin 7) by us(p’) from the right (and similarly for v),
we get the so-called Gordon identities

2m i, (P 'us(p) = ur(p) [(p+ )" +ic™ (p' —p)|us(p'),  (B.19a)
2m o, (p)y* vs(p)) = —0:(p) [(p+ D) +ic™ (' —p)u] vs(p'), (B.19Db)
which for p = p’ yield
ur(p)yus(p) = 2p"0rs, (B.20a)
ur(p)YHvs(p) = 2pM0rs . (B.20b)

Finally, the so-called completeness relation reads

Z uss = p+m, (B.21a)

—41
s—i2

> v, = p-m. (B.21D)

—41
s—i2
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B.4 The Dirac-Volkov states
We consider the Dirac equation with the external electromagnetic potential! A
(p—eA—m)¥ =0, (B.22)

where we assume that A depends only on the phase ¢ = kx. In Lorenz gauge, we
therefore have

OA=kA' =0 = kA= const.=0. (B.23)

Multiplying Eq. (B.22) on the left by p — eA +m, we get
(p—eA)? —m?* — §eFWU“ P =0, (B.24)

which can be rewritten as
[—0% — 2ie(AD) + e A% —m* —ief Al ¥ = 0. (B.25)
We now look for a solution in the form t(z) = e "% F(¢$). We get
2i(kp)F’ + [—2e(pA) + e*A* —m® —ief A] F =0, (B.26)
which integrates into
el o [0 ) o, o

where wy, is an arbitrary constant bispinor (See Sec. 3.3.2). Using Eq. (B.12), we
can show that (f.A)? = 0, and therefore the solution can be rewritten as

1

oY (2) =)
pir(7) 2¢,V

Ep(z)ur(p) , (B.28)

where u,.(p) is the free Dirac spinor defined in Sec. 3.3.2, while

ef Ao )] £iS(@)
2(kp) ’

Ey(z) = [1 + (B.29)

is the so-called Ritus matriz. The phase Sp(x) is the classical Hamilton-Jacobi
function for a charged particle in a potential A and is given by

e [P g, [ERAGR) A
s == [ oo [ =S| .

Finally, the constant is chosen so that the states are normalized to one

1
2epV
particle per volume V'

/V\I/XJ vyo=1. (B.31)

These solutions are called the Dirac-Volkov states and will be used extensively to
compute differential probability of processes in external laser fields. The adjoint of
the Ritus matrix is given by

Ep(x)—[1 efé;))}els @) | (B.32)

Here the electron charge is ¢ = e (e < 0).
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since kA = 0. The Ritus matrices form an orthogonal and complete set

4

/ <§7§4 By(@)By(a') = W@ —a), (B.332)
4

/ (;i;; By (@)Ep(x) = 0D (p—4). (B.330)

The Ritus matrices convert momentum operators into momentum variables

[id, — eA(kx)| Epe = Epap, (B.34a)
< _
100+ cA(ha)| Bpa = ~pEpa, (B.34b)

B.5 Nonlinear Compton scattering

We consider the Volkov states normalized to one particle per volume V' on average,
that is to say

e e2 2
e%A(cb)} il s e B )
V26,V ’

2(kp)
where k is the 4-momentum of the laser field and the state of the photon with
4-momentum k' is taken to be

[ 1 -
AZ/)\(.T) = m 62’,)\ 6lk z N (B36)

where €}, , is a real polarization vector with mode index X and such that (k' ej ) =
0. At first order, the S matrix is then given by

Vp,s(T) = {1 + (B.35)

that is to say
Sfl = —je /d4x¢p’,s’ AZ:’,)\ wp,s s (B37)
which inserting Eq. (B.35) and (B.36) yields

Sf’L = SO / d4[IJ 9thl (p/7 5/7 kla )\a b, S) e—iqxeicbpyp/ @) )
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with

1 1 1
= B.
50 Ze\/2wV\/26V\/26’V’ (B.38a)
[ e

Myi(p', 8 K\ ps;0) = Ty [1— f(”;g,‘f)];é;g,,k (B.38b)
ek Alg)
SRS
¢ = pr—ph—k", (B.38c)
- ¢ en e
®pp(9,0) = /0 dw[ ]Zké ,(;0 ) _ IE’;p(;P ) (B.38d)

- et (@q ) (;fmﬂ |

Going to light-cone coordinates, we change (¢, x,y, z) to (¢, T, ) with ¢ = z_ and
T = x4 (See App A.4). Integrating over T" and x|, Sy; reduces to

Sy = So2m)*d(p- —p — k)P (pL — | —K) (B.39)
8 /d¢ mfl (p/7 Sl’ kl? )\,p, S; ¢) eiiq+¢eiépvpl(¢70) )

where x_ = ¢, ¢4 = p+ — p/, — k. and where we used Egs. (A.28) and (A.27).

What we are actually interested in is the transition probability for an incoming
state to a end up in a volume dII of the phase space of outcoming particles. In our
case, the outcoming state has two particles and this infinitesimal volume of phase
space is given by

d3 p/ d3 %

dll=V 1% . B.40
COEMCTE (540
and the transition probability by
A3k a3p' 1
_ 172 2

s,8" A

since we look here at unpolarized probabilities, that is to say we average over all in-
coming electron spins and sum over all final electron spins and photon polarizations.
Moreover, we integrate over all final electron energies. Using Eq. (B.10), we get

STl s K A p, s 0) M0, 8 K\ p, s:¢))

— sys;ﬂ{(yjﬂrm) [1 - W} e {H_e’/é;i@)} (p+m) (B.42)

[ )

N[ =

After lengthy calculations, and extensive use of the trace identities derived in App. B.2,
we obtain

’ /
Pl p- p- Py
T o m2<+/—4>+ppi—2pL'pl+])/pf

p— p_ —
vk <§L _ 1}}) [AL(D) + AL()] (B.43)
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and

1 2
5 2 ISkl = S5 em° [p- —p —#)]" [5(2)(m —p —k))

!
s,8" )\

X

]/d¢d¢’27@i%4¢w>aépw*¢¢”, (B.44)

Using the following prescription for the delta function

€

(2m)%6 (q— = 0) 6@ (gL = 0) = —V, (B.45)

and changing the infinitesimal volume to light-cone coordinates

/
3y = pefdp’_dzp'l, (B.46a)
31 il ! 32710

d°k’ = x dk_d*k| , (B.46b)

we get

dk’,d%l e? — —¢") i® (¢,

=Gy 4k’p’lt»]/d¢d¢,7¥f 140 ¢i 1 (0) (B.47)

where
p——p_ = k| (B.48a)
p.—p, = K\, (B.48b)

because of the delta functions. Writing a; = GA#, we can rewrite, after lengthy

algebra, the phase ®, (¢, ¢') = —q4(¢ — ¢') + @p,/pr(qﬁ, ¢') as

m?kL (¢ p. p-ki 2
B (0.0) =g [ 14 (B B=2ai)) | @ag
and the trace T as
T Lo ! p? opl
T +Q_Q+p%_ypm+gﬁ
m p—  p_ p_m m _
p. P
+%Q)ﬂﬂ-mu@+Agw} (B.50)



Appendix C

Electron distribution function

C.1 Derivation of the Master equation (5.31)

We start from Eq. (5.28a) where % is the usual Vlasov operator

d 0
@fe = afe(urap) + vr : |:7::’yfe(t7r7p):| (Cl)
+ Vp- [q <E+ n% X B) fe(t,r,p)] :

Let us now decompose p as p = p§2 and rewrite the Vlasov operator in accordance

d B 0 pL2
%fe(turvpv Q) - 8tfe(t7r7p7 Q) + VI‘ : I:m’yfe(t?I‘,p’ Q):|

Q
+ vp : |:q <E+ pf X B) fe(t7rapa Q):| .
my
Using the weak formulation and going to spherical coordinates, we obtain

> d
/32 dQ/O dp pQ%fe(tyrapa Q>¢1(7)¢2(Q) =

a o
/52 dQ/O dp p*fe(t, 1, p, Q)1 (7)d2(82)

ot
00 o P
. /S i /0 dp P2V, [mfe@,r,p,m] 61(7)62(€2)

[ Lo [ ay [q(E + L axB)fitrp. ﬂ)} .
S2 0 my

[61(1)d2(2)Vpy + ¢1(7)Vada(Q) - Vp€] .

where ¢1 and ¢9 are two test functions and where we performed an integral by parts
in the third integral. After some algebra, we get the following equation

o0 d —
me? [ ag [yt 201 ()on(e) =
mc2% /5‘2 dﬂ/() d’}/};e(t’r7pa Q)Qﬁl(’}/)QﬁQ(Q)
0o Q ~
e /S 0 /0 Vs [fjwfe(t,r,p, m} 61(7)62()
B > » 7 .
/52 dﬂ/o dy {q(E + mﬂ x B)fe(t,r,p, ﬂ)]
[d»a (60 L0+ 612) V(@) chVpﬂ} ,
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where we have defined a new distribution function f;(t, r,p, Q) = mypfe(t,r,p, Q).
Finally, performing an other integration by parts in the last integral we get

mé [ an [ L Er o 261 ()0x) -
meg [ dn [T dfitrp o)

vanct [ a2 [" 9o [P x| r)oal)
sme [ a0 [ a2 B o 261 ()0a(®)

+m62/s2dﬂ/0 dyVeq - H;(JL—Q®Q)} :
o(B+ L0 xB) ftr.pn®)] s0)ea(@).

We can perform the same algebra on the collision operator to get

Clfel _mCZ/ dyy /32 dﬂ/ d'YwnCS('Y“"V%'Vv)
fe t rap+p'y7 ¢1( )¢2( )

/ - / a0 / dy Wi (5, ;)

fe(t7rapa )¢1( )¢2( )7

Now equating both equations and knowing that the equality is true for any test
function ¢, and ¢2, we get

Q
7f (t r,7, )+Vl‘ |:£’L fé(taraya Q)

0 1 ]
+87,y [mcng‘ miﬂ fi(t,r, v, Q)

+Va- Hl(ﬂ—ﬂ®ﬂ)] q (E—l—pﬂ X B) fi(t,r, v, Q)
p my

o0
= /0 dryy WIS (Y + ¥y, ) FL(E T,y + 75, )

“+oo
_/0 d’Y’Y IICS(,Y’,YF}/) fé(tarvvuﬂ) .
Where we introduced f.(¢,r,~, Q) which displays explicitly the dependence on ~.

C.2 Useful mathematical relations

In the computation of the successive moments of the distribution functions, it is
useful to know the following integrals of Bessel functions

/+oodyu”K (v) =2""'T R Dl (C.2)
0 5/3) = 3 2" \372")" ‘
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for which we give some explicit expressions

oo 167 +oo 55
2 _ 3 _
/0 dl/l/ K5/3(V) = m, /0 dl/l/ K5/3(7/) = 7, (CSa)
+oo 896 7 +oo 6545
dv A K _ dviPK = .3b
| ) = SR [ w0 = SREL ()
+oo 179200 7
dv VS K 5(v _— C.3c
/ ) = (39
as well as
oo 1 5
/0 dviv"Ky3(v) = P <Z + 6) r (;l + 6) . (C4)
We also encounter terms of the form
oo n 1 n 5
dv V" K. = Ip (=42 )=+ = C.5
/0 v Ky 3(v) <2+6> <2+6> ; (C.5)
which for the first six n give
+oo 57 oo 64
dviPKys(v) = —, / dv VP Ky 5(v) = ——, C.6a
/ ) = 5 [ s0) = e (O
+oo 3857 oo 89607
dv 'K = —, / dv K = C.6b
| ) = B[ Ky = SR (o)
+oo 85085
/0 dv V6K2/3(V) = g9 - (C.6c¢)

C.3 Exact and approximate expression of a,(yx) func-
tions

Using the expression exposed in the previous section, we rewrite (in a single integral
form) the a,(x) that appear when considering the successive moments of the kernel
wy (7,7y)- To do so, we plug the expression of G(x,€) in the definition of a,(x) and
perform an integration by part knowing that

§ 3xv

2

6x
¢ = ——F—=dv. b
3 2+ 32 (C.7b)

We get
V3ot o [T 9y 2 +2
an(x) = 53 X /0 dv [W,KZ/?)(V)

Vn+1

* (n+1)(2+3ux)n+1K5/3(V)] : (C.8)

For the reader’s convenience, we also give their expansion in the limit y < 1:

V3 oainfn 1 n 11
~— 2 3 () D=4 = )
W)~ 2ts) 27w ) Y
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with I' the Gamma function. Let us give the explicit expression of the first few
terms

ao(x) = 3\[ {( ‘|‘3VX) Ks/3(v )+ng/g(u)], (C.9)
mx) = M / b [ K + )] (Co
w(x) = M O [ i) + 0] (99
) = M T [ K0+ e k)] L (©a0)
as(x) = MXE” / " [WT%K5/3(V)+MK2/3(V)] . (C9)

Their asymptotic expansions at first order read

ap(x) = 5\4/§x, (C.10a)
a(x) = X%, (C.10Db)
as(x) =~ 554\8[ ’, (C.10¢)
as(x) ~ 7x*, (C.10d)
as(x) =~ 13(231\/3)(5. (C.10e)

These results are summarized on Fig. C.1 where we plotted the functions a, and
their expansion for x > 1 in dashed lines. These functions are linked to the moments
of the nonlinear Compton scattering collision operator C[fe] (4.23) by

[eady (-7 cald] - an
—n(y — 7)1 S(x), for o = Cl
(Y = 7a)" 1 S(X)q
= +n(n2_1) (v =7a)" 2 R(x,7),for a« =FP

ZZ:l(_l)k Z) ('Y - Wa)nik Ak (Xa 7)&
for « = MC

where A, (x,7) = A7 Lan(x).
We will also use the derivative of the functions a,(x). They are given by

V3 oo T18(n 4+ 3) 2w T2
I — 73n+1 n/ d
an(Xx) o X ; v (2 + 3uy)" 2/3(”)
2yn+1
(2‘1‘31/X)"+2K5/3(V)} ) (C.12)
which for y < 1 simplifies at first order to
V3., n 1 n 11\ ,

and the second derivative of a,(x) which are given by
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1074 10° 104

X

Figure C.1: Plot of a,(x) for n = 0...4 and their asymptotic expansion in dashed lines, for
x = 107% to 10%.

100

107121

o 1wt

X

Figure C.2: Plot of a,(x) for n = 0...4 and their asymptotic expansion in dashed lines, for
x = 107% to 10%.
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|an ()]

—10 |
10 1074 109 104

X

Figure C.3: Plot of a!/(x) for n = 0...4 and their asymptotic expansion in dashed lines, for
x = 107% to 10%.

V3 onit et [T [36(n+3)x2v" 2 (—=3vx +n +2)
I ey ] e Kayal0)
4" (n — 3vy)
t ey Ks/g(y)} , (C.14)
and
V3 n 1 n 11

" ~ n+1 (= 2\l = = n—1 1

i~ Srinr (G4 ) oG ) v (©15)
for y < 1.

C.4 Exact and approximate expression of b,(x) func-
tions

When considering the successive moments of the kernel for Breit-Wheeler pair cre-
ation U’EXV(XV’ ¢'), we make use of the functions by (x~) defined by

1 ~
ba(x) = /O d¢' € g (1 €1 (C.16)

where Thw (X~,£') is defined by Eq. (3.105). Using
= g; o 2 2¢ —1
3xE(1=¢)’ 3xy §2(1 - €)%’

and performing an integration by part, we get

(C.17)

\/g 1 , 'n—1 9 1 — 9¢ , ,



228 Electron distribution function
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Figure C.4: Plot of b,(x4) for n = 0...4 and their asymptotic expansion in dashed lines,
for x = 10~* to 10%.

The first 5 moments are plotted on Fig. C.4.



Appendix D

Orbital angular momentum

D.1 Laguerre polynomials

Laguerre polynomials, or more precisely generalized Laguerre polynomials Li,(x) are
solutions of the differential equation

zy" +(+1—-2)y +py=0, (D.1)

where p is a non-negative integer and [ any real number. However, throughout this
work, [ will be an integer. If [ is non-negative, Lé has p strictly positive roots. More
explicitly, we have

zx—l dr
pl dap

Ih(z) =< (e~=zPH) . (D.2)

They can also be represented thanks to the following series

P !
(p+D!(-1)z
D.3
Z%Hk (p— k)K" (D3)

The first few generalized Laguerre polynomials read

@) = 1, (D.4)
Li(z) = —z+1+1, (D.5)
2 [+2)(1+1
Lh(z) = “% — (1 +2)z+ W;H . (D.6)
The Laguerre polynomials are orthogonal for the measure zle™?, i.e.
+oo r -1
/ doat e I!(2) LL (z) = M S (D.7)
0 n!
where I' is Gamma function and ¢ the Kronecker symbol.
The following identities will be useful
+oo 2 !
dz 2! [L‘” T } et = L, D.8
/ e o+ 1) 9
+00 2 l
/ dz 21 [LL“(:J:)} e’ = (H;p)(\l\ +p+1), (D.9)
0
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D.2 Solution of the paraxial wave equation

D.2.1 The Gaussian mode

We want to solve the paraxial wave equation (9.17). Having in mind that this
equation comes from the Helmholtz equation (9.11a), which itself is just a partic-
ular case of Eq. (2.77) for monochromatic waves of frequency w, we can use the
solution (2.78a) derived in Chap. 2. It reads in SI units

Q

¢ (z,t) = m(ﬂt — R/c), (D.10)

where R = |z| = /22 + y? + 22, @ is a constant, and where we chose 2/ = 0 for
convenience. This equation is thus the solution of Eq. (2.77) for an impulse source
of the form Q 6®) () §(t). To obtain the solution of the Helmholtz equation, which
corresponds to Eq. (2.77) with a source of the form Q5(3)(w) e~ ™t it suffices to
convolute the solution (D.10) with the funtion e™!. This yields the well-known
spherical wave solution

_ Q  _it—RJe)
bl@t) = Fe . (D.11)

Using the assumptions that led to the derivation of the paraxial wave equation, we

can write
2 2 2 2
Reaf1+ 52 0 00 (D.12)
z 2z

The spatial part of ¢(x,t), that we write u(x) = % e with k = w/c therefore
simplifies to

k(22 4 o2
u(x) = éexp (tkz) exp <k(23y)> , (D.13)

where we absorbed the 4 factor in ) for simplicity, i.e. A = Q/(47). More generally,
we will look for solutions, in cylindrical coordinates, of the form

2

u(p,z) = Aexplif(z)] exp <2Z§(pz)) ) (D.14)

where p? = (22 +y?) and f and g are functions of z. Note that this solution does not
depend on ¢ since we start to look for cylindrically symmetric solutions. We will
latter find more general solutions. Inserting this Ansatz in the paraxial equation
yields

2ik k2 p*

— +2k0,f(2) +

9(2) : 9%(2)
We note that the first two term are independent of p contrarily to the last term that
depends on p and z. We can therefore separate this equation into

(1-0.9(2)) =0. (D.15)

2ik
m—i—%@zf(z) = 0, (D.16)
k2p2
9%(2)

(1—-0:9(2)) = 0, (D.17)
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which readily integrates into

9(z) = z+g0, (D.18)
f(z) = —iln(z+go), (D.19)
where go is a constant. Inserting these solutions into Eq. (D.14) yields

u(p,z) = A

ikp?
_r ), D.20
atg ¥ (2(z+go)> (D-20)

If go was real, this would mean that the phase is changing faster and faster with p
while the amplitude would remain constant for any p at a given z. Of course this
situation is unphysical and does not describe a beam. We therefore rewrite gg = izp
and therefore

1 1 z ZR

= —1 . D.21
g(z)  z+4izr 224zh 22+ 2% (D-21)

Inserting go = izg into f(z) and using 2i arctan(x) = In (%) yields

f(z) = —iln(z +izg) = —iln <m> + arctan (;) . (D.22)

2
Writing w(z) = woy /1 + (i) , we obtain the usual expression for Gaussian beams

wa(p,2) = A exp [—ito(2)] exp [ ikp? }exp [wf } . (D.23)

2R(z) (2)
with o(z) = arctan <i), R(z) ==z [1 + (%R)Z] and where zp can be shown to be

’7T’UJ0

given by zr = 2.

zrw(z)

D.2.2 Higher-order Laguerre-Gaussian modes

In order to obtain higher-order solutions to the paraxial equation, we look for solu-
tions of the form

u(p.p.z) = Bh(@) exp il exp [-i(2)] uc(p. ) (D.24)

= F(p,p,z)uc(p; ),

where ¢ = arctan (%) is the azimutal angle, B a constant, [ an integer and h and

1 are functions to be determined. The reason for this particular dependence in
 will become apparent when we will study the orbital angular momentum of the
electromagnetic field. Inserting this Ansatz into the paraxial equation (9.17) yields

FV3ug+2[V.F-Viug] +ucV3iF + 2ikug0,F + 2ik FO,ug = 0. (D.25)
Using the paraxial equation, the first and last terms cancel out and we get
2[V,F-Viuc] +ucV3F + 2ikug d,F =0, (D.26)
which, inserting the expression of F', expands into

ik 2 1 12
2 e 2P aph+<8§h+paph—p2

) + 2ik (ihd.p + D:h) = 0.
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Using Eq. (D.7), we find
n(5) = ) B (5) (D27
P(z) = (2p+1)arctan <;{> , (D.28)

Inserting these solutions into the Ansatz (D.24) yields the so-called Laguerre-Gaussian
(LG) beams

" l )
up(p,p2) = Ap—. <ﬁp> Lja( 2 2) (D.29)

zrw(z) \ w(z) w(z)

2

exp {— wa)Q} exp [—W(Z) tilp+ Z';%i)} ’

X

where A, is a constant and ¢(z) = U(2) +1bo(z) = (2p+ 1| + 1) arctan (—) Using
Eq. (D.7), we deduce that the LG modes are orthogonal for the usual inner product
of

//pdpdsou (9, @, 2) Wi (ps 0, 2) ~ Oy S0 (D.30)

D.2.3 Longitudinal electric and magnetic fields

E.(p,p, () = i(a:c+6y) |l| 1 LHH(&&)—Q(I%O uiy (p, 0, C)
z\0, P, o 2 w(C)Z L|l|< (()) w(¢)? p \Pr ¥

l

s ol ey = Bt (.0.0), (D.31)
[+1 [ 2p2

' || 4 Ly (w(g)2) 2(1@()] LG
B.(p,0,0) = —o=(Bz—ay) |5 - N up,” (P, 5 C)

e R

Mo+ )il 0,0.0). (D.32)
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