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Deep Learning For Time Series Classification

La science des données s’intéresse aux théories et aux algorithmes permettant
d’extraire des connaissances de grandes masses de données. L’analyse de séries tem-
porelles est le sous-domaine de la science des données qui s’intéresse à l’analyse de
données composées de suites de valeurs numériques ordonnées dans le temps. Les
séries temporelles sont particulièrement intéressantes car elles permettent de com-
prendre l’évolution des états d’un processus au cours du temps. Leur analyse peut
ainsi révéler des tendances, des relations et des similarités à travers les données.
De très nombreux domaines produisent des données sous la forme de séries tem-
porelles : données de santés (électrocardiogramme, glycémie, etc.), reconnaissance
d’activités, télédétection, finance (cours de bourse), industrie (capteurs).

Au sein de la science des données, la classification est une tâche supervisée
qui consiste à apprendre un modèle à partir de données étiquetées organisées en
classes afin de prédire la classe de nouvelles données. La classification de séries tem-
porelles s’intéresse aux algorithmes de classification dédiés au traitement de séries
temporelles. Par exemple, à l’aide d’un ensemble étiqueté d’électrocardiogrammes
de patients sains ou présentant un problème cardiaque, l’objectif est d’entraîner
un modèle capable de prédire si un nouvel électrocardiogramme présente ou non
une pathologie. Les spécificités des données temporelles imposent le développe-
ment d’algorithmes dédiés au traitement de ces données, les modèles existants pour
d’autres type de données (images, vidéos, etc.) n’étant pas toujours adaptés.

Dans ce contexte, l’apprentissage profond (deep learning) s’est imposé au cours
des dernières années comme une des méthodes les plus performantes pour réaliser
la tâche de classification, notamment dans le domaine de la vision par ordinateur.
L’objectif principal de cette thèse a été d’étudier et de développer des modèles pro-
fonds spécifiquement construits pour la classification de séries temporelles. Nous
avons ainsi réalisé la première étude expérimentale permettant de comparer les
méthodes profondes existantes et de les positionner par rapport aux méthodes de
l’état de l’art n’utilisant pas l’apprentissage profond. Par la suite, nous avons ef-
fectué de nombreuses contributions dans ce domaine, notamment dans le cadre de
l’apprentissage par transfert, l’augmentation de données, la création d’ensembles et
l’attaque adversaire. Enfin, nous avons également proposé une nouvelle architecture
profonde, basée sur le célèbre réseau Inception (Google), qui se positionne parmis
les plus performantes à ce jour.

Nos expériences menées sur des benchmarks comportant plus d’un centaine de
jeux de données nous ont permis de valider les performances de nos contributions.
Enfin, nous avons également montré la pertinence des approches profondes dans
le domaine de la science des données chirurgicales (surgical data science) où nous
avons proposé une approche interprétable afin d’évaluer les compétences chirurgi-
cales à partir de données cinématiques de séries temporelles multivariées.
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Data science is about designing algorithms and pipelines for extracting knowl-
edge from large masses of data. Time series analysis is a field of data science which is
interested in analyzing sequences of numerical values ordered in time. Time series
are particularly interesting because they allow us to visualize and understand the
evolution of a process over time. Their analysis can reveal trends, relationships and
similarities across the data. There exists numerous fields containing data in the form
of time series: health care (electrocardiogram, blood sugar, etc.), activity recognition,
remote sensing, finance (stock market price), industry (sensors), etc.

In data mining, classification is a supervised task that involves learning a model
from labeled data organized into classes in order to predict the correct label of a new
instance. Time series classification consists of constructing algorithms dedicated to
automatically label time series data. For example, using a labeled set of electrocar-
diograms from healthy patients or patients with a heart disease, the goal is to train
a model capable of predicting whether or not a new electrocardiogram contains a
pathology. The sequential aspect of time series data requires the development of
algorithms that are able to harness this temporal property, thus making the exist-
ing off-the-shelf machine learning models for traditional tabular data suboptimal
for solving the underlying task.

In this context, deep learning has emerged in recent years as one of the most
effective methods for tackling the supervised classification task, particularly in the
field of computer vision. The main objective of this thesis was to study and develop
deep neural networks specifically constructed for the classification of time series
data. We thus carried out the first large scale experimental study allowing us to
compare the existing deep methods and to position them compared other non-deep
learning based state-of-the-art methods. Subsequently, we made numerous contri-
butions in this area, notably in the context of transfer learning, data augmentation,
ensembling and adversarial attacks. Finally, we have also proposed a novel archi-
tecture, based on the famous Inception network (Google), which ranks among the
most efficient to date.

Our experiments carried out on benchmarks comprising more than a hundred
data sets enabled us to validate the performance of our contributions. Finally, we
also showed the relevance of deep learning approaches in the field of surgical data
science where we proposed an interpretable approach in order to assess surgical
skills from kinematic multivariate time series data.
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Résumé des chapitres en Français

Chapitre 1: L’état de l’art de la classification de séries tem-
porelles

Au cours des deux dernières décennies, la Classification de Séries Temporelles (CST)
a été considéré comme l’un des problèmes les plus difficiles dans la fouille de don-
nées (Yang and Wu, 2006; Esling and Agon, 2012). Avec l’augmentation de la
disponibilité des données temporelles (Silva et al., 2018), des centaines d’algorithmes
de CST ont été proposés depuis 2015 (Bagnall et al., 2017). En raison de leur ordre
temporel, les séries sont présentes dans presque tout problème de fouille de don-
nées (Längkvist, Karlsson, and Loutfi, 2014). En fait, tout problème de classifica-
tion, utilisant des données enregistrées ayant un ordre spécifique, peut être con-
verti en un problème de CST (Cristian Borges Gamboa, 2017). Les séries temporelles
sont présentes dans de nombreuses applications du monde réel, allant des soins de
santé (Gogolou et al., 2018) à la reconnaissance de l’activité humaine (Wang et al.,
2018; Mathis, Ismail Fawaz, and Khamis, 2020) jusqu’à la classification des scènes
acoustiques (Nwe, Dat, and Ma, 2017) et la cybersécurité (Susto, Cenedese, and
Terzi, 2018). De plus, la diversité des types d’ensembles de données dans l’archive
UCR/UEA (Dau et al., 2019; Bagnall et al., 2017) (la plus grande base de données de
références de séries temporelles) montre les différentes applications de la CST.

Compte tenu de la nécessité de classer avec précision les séries temporelles, les
chercheurs ont proposé des centaines de méthodes pour résoudre cette tâche (Bag-
nall et al., 2017). L’une des approches de CST les plus populaires et traditionnelles
est l’utilisation d’un classifieur NN couplé à une fonction de distance (Lines and
Bagnall, 2015). En particulier, DTW lorsqu’il est utilisé avec un classifieur NN s’est
révélé être une méthode de référence très solide (Bagnall et al., 2017). Lines and
Bagnall, 2015 ont comparé plusieurs mesures de distance - telles que TWE (Marteau,
2009) et MSM (Stefan, Athitsos, and Das, 2013) - montrant qu’il n’y a pas de mesure
de distance unique qui surpasse DTW. Ils ont également montré que l’ensembling
des classifieurs NN individuels (avec différentes mesures de distance) surpasse
toutes les composantes individuelles de l’ensemble. Par conséquent, les contribu-
tions récentes se sont concentrées sur le développement de méthodes d’ensembling
qui supplante considérablement le NN-DTW (Bagnall et al., 2016; Hills et al., 2014;
Bostrom and Bagnall, 2015; Lines, Taylor, and Bagnall, 2016; Schäfer, 2015; Kate,
2016; Deng et al., 2013; Baydogan, Runger, and Tuv, 2013). Ces approches utilisent
soit un ensemble d’arbres de décision (forêt aléatoire) (Baydogan, Runger, and Tuv,
2013; Deng et al., 2013) ou un ensemble de différents types de classifieurs (SVM,
NN avec plusieurs distances) sur une ou plusieurs transformations (Bagnall et al.,
2016; Bostrom and Bagnall, 2015; Schäfer, 2015; Kate, 2016). La plupart de ces ap-
proches obtiennent des résultats significativement meilleurs que NN-DTW (Bagnall
et al., 2017) et partagent une propriété commune, qui est la phase de transforma-
tion des données où les séries temporelles sont transformées en un nouvel espace de
description (par exemple en utilisant des transformations shapelets (Bostrom and
Bagnall, 2015) ou des caractéristiques DTW (Kate, 2016)). Cette notion a motivé
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le développement d’un ensemble de 35 classifieurs nommé COTE (Bagnall et al.,
2016) qui non seulement regroupe différents classifieurs sur la même transformation,
mais regroupe à la place différents classifieurs utilisant plusieurs transformations
latentes de séries temporelles. Lines, Taylor, and Bagnall, 2016; Lines, Taylor, and
Bagnall, 2018 ont étendu COTE avec HIVE-COTE qui permet une amélioration sig-
nificative par rapport à COTE en tirant parti d’une nouvelle structure hiérarchique
avec un vote probabiliste, comprenant deux nouveaux classifieurs et deux domaines
de transformation de représentation supplémentaires. HIVE-COTE est actuellement
considéré comme l’état de l’art pour la classification des séries temporelles (Bagnall
et al., 2017) lorsqu’il est évalué sur les 85 jeux de données de l’archive UCR/UEA.

Pour atteindre sa haute précision, HIVE-COTE devient extrêmement intensif en
calcul et peu pratique pour fonctionner sur un vrai problème d’exploration de don-
nées volumineuses (Bagnall et al., 2017). L’approche nécessite l’entrainement de
37 classifieurs ainsi que la validation croisée de chaque hyperparamètre de ces algo-
rithmes, ce qui rend l’approche impossible à appliquer dans certaines situations (Lu-
cas et al., 2018). Pour souligner cette inaptitude, notons que l’un de ces 37 classifieurs
est le ST (Hills et al., 2014) dont la complexité temporelle est O(n2 · l4) avec n étant
le nombre de séries temporelles dans l’ensemble de données et l étant la longueur
d’une série temporelle. À la complexité du temps d’apprentissage s’ajoute le temps
de classification élevé de l’un des 37 classifieurs: le plus proche voisin qui doit anal-
yser l’ensemble d’apprentissage avant de prendre une décision au moment du test.
Par conséquent, étant donné que le plus proche voisin constitue une composante es-
sentielle de HIVE-COTE, son déploiement dans un environnement en temps réel est
encore limité, voire impossible. Enfin, s’ajoutant à l’énorme temps d’exécution de
HIVE-COTE, la décision prise par 37 classifieurs ne peut pas être interprétée facile-
ment par les experts du domaine, car il est déjà difficile de comprendre les déci-
sions prises par un unique classifieur. Notons que récemment, Bagnall et al., 2020
ont proposé une nouvelle version de HIVE-COTE qui est sensiblement plus rapide,
montrant l’importance de pouvoir faire évoluer les méthodes de CST.

Après avoir établi l’état de l’art actuel des classifieurs non profonds pour la
CST (Bagnall et al., 2017), nous discutons du succès de l’apprentissage profond (Le-
Cun, Bengio, and Hinton, 2015) dans diverses tâches de classification qui ont mo-
tivé l’utilisation récente de l’apprentissage profond pour la CST (Wang, Yan, and
Oates, 2017). Les CNNs profonds ont révolutionné le domaine de la vision par
ordinateur (Krizhevsky, Sutskever, and Hinton, 2012). Par exemple, en 2015, les
CNNs ont été utilisés pour atteindre les performances au niveau humain dans les
tâches de reconnaissance d’image (Szegedy et al., 2015). Suite au succès des DNNs
en vision par ordinateur, de nombreuses recherches ont proposé plusieurs architec-
tures DNN pour résoudre de nombreuses tâches de NLP telles que la traduction
automatique (Sutskever, Vinyals, and Le, 2014; Bahdanau, Cho, and Bengio, 2015),
la représentation vectorielle des mots (Mikolov et al., 2013; Mikolov et al., 2013) et la
classification des documents (Le and Mikolov, 2014; Goldberg, 2016). Les DNNs ont
également eu un impact énorme sur la communauté de reconnaissance vocale (Hin-
ton et al., 2012; Sainath et al., 2013). Il est intéressant de noter que la similitude
intrinsèque entre le NLP et les tâches de reconnaissance vocale est due à l’aspect
séquentiel des données qui est également l’une des principales caractéristiques des
séries temporelles.

Dans ce contexte, ce premier chapitre cible les questions ouvertes suivantes: Quel
est le meilleur DNN actuel pour la CST? Existe-t-il une approche DNN moins complexe
que HIVE-COTE pouvant obtenir des résultats compétitifs avec l’état de l’art ? Quel type
d’architectures DNN fonctionne le mieux pour la tâche de CST? Comment l’initialisation
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aléatoire affecte-t-elle les performances des classifieurs d’apprentissage profond ? Et enfin:
L’effet boîte noire des DNNs pourrait-il être évité pour fournir une interprétabilité des résul-
tats ? Étant donné que ces dernières questions n’ont pas été abordées par la commu-
nauté de CST, il est surprenant de voir que les DNNs n’ont pas été considéré comme
classifieur précis potentiel des séries temporelles (Lines, Taylor, and Bagnall, 2018).
En fait, une étude empirique récente (Bagnall et al., 2017) a évalué 18 algorithmes de
CST sur 85 jeux de données, dont aucun n’était un modèle d’apprentissage profond.
Cela montre à quel point la communauté n’a pas une vue d’ensemble des perfor-
mances actuelles des modèles d’apprentissage profond pour résoudre le problème
de CST (Lines, Taylor, and Bagnall, 2018).

Dans ce chapitre, nous avons effectué une étude comparative empirique des ap-
proches d’apprentissage profond les plus récentes pour la CST. Avec la montée en
puissance des GPUs, nous avons montré comment les architectures profondes peu-
vent être entraînées efficacement pour apprendre de bout en bout des fonctionnalités
discriminantes cachées, à partir de séries temporelles brutes. De manière similaire
à Bagnall et al., 2017, afin d’avoir une comparaison équitable entre les approches
testées, nous avons développé une plateforme en Python, Keras (Chollet, 2015) et
Tensorflow (Abadi et al., 2015) pour entrainer les modèles d’apprentissage profond
sur un cluster de plus de 60 GPUs.

En plus de l’évaluation des ensembles de données univariés, nous avons testé
les approches sur 12 jeux de données MTS (Baydogan, 2015). L’évaluation multivar-
iée montre un autre avantage des modèles d’apprentissage en profondeur, qui est
la capacité de gérer la malédiction de la dimensionnalité (Bellman, 2010; Keogh and
Mueen, 2017) en exploitant différents degrés de fluidité dans la fonction de compo-
sition (Poggio et al., 2017) ainsi que les calculs parallèles des GPUs (Lu et al., 2015).

Quant à la comparaison des classifieurs sur plusieurs ensembles de données,
nous avons suivi les recommandations de Demšar, 2006 et utilisé le test de Fried-
man (Friedman, 1940) pour rejeter l’hypothèse nulle. Une fois que nous avons établi
qu’il existe une différence statistique dans les performances des classifieurs, nous
avons suivi l’analyse post-hoc par paires recommandée par Benavoli, Corani, and
Mangili, 2016 où la comparaison de rang moyen est remplacée par un test de rang
signé Wilcoxon (Wilcoxon, 1945) avec la correction alpha de Holm (Holm, 1979; Gar-
cia and Herrera, 2008).

Dans cette étude, nous avons entrainé environ 1 milliard de paramètres dans
97 jeux de données de séries temporelles univariées et multivariées. Malgré le fait
qu’un grand nombre de paramètres risquent de sur-apprendre (Zhang et al., 2017)
les ensembles d’entrainement relativement petit dans les archives UCR/UEA, nos
expériences ont montré que non seulement les DNNs sont capables de surpasser
considérablement le NN-DTW, mais sont également capables d’obtenir des résultats
qui ne sont pas significativement différents de COTE et HIVE-COTE en utilisant une
architecture de réseau résiduel profond (He et al., 2016; Wang, Yan, and Oates, 2017).
Enfin, nous avons analysé comment de mauvaises initialisations aléatoires peuvent
avoir un effet significatif sur les performances d’un DNN.

En conclusion, avec les problèmes de fouille de données de plus en plus
fréquents, tirant parti d’architectures plus approfondies qui peuvent apprendre
automatiquement de bout en bout des données annotées, l’apprentissage en pro-
fondeur est une approche très attrayante. Dans ce chapitre, nous avons montré le
potentiel des réseaux de neurones profonds pour le problème de CST, néanmoins ces
modèles complexes d’apprentissage automatique peuvent encore bénéficier de nom-
breuses techniques de régularisation, qui est l’objectif principal du chapitre suivant.
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Chapitre 2: Regularisation des réseaux de neurones profonds

Les modèles d’apprentissage profond ont généralement plus de paramètres à en-
trainer qu’il n’y a d’instances d’entrainement. Néanmoins, dans le chapitre précé-
dent, nous avons montré comment ces réseaux de neurones artificiels sont capables
d’atteindre de bonnes capacités de généralisation par rapport aux algorithmes de
CST traditionnels. Pourtant, la plupart de ces modèles nécessitent une sorte de régu-
larisation afin de minimiser l’erreur de généralisation (en d’autres termes minimiser
la différence entre l’erreur d’entrainement et d’erreur de test). Dans ce chapitre, nous
présentons les quatre principales techniques pour régulariser les DNNs pour la CST.

Apprentissage par transfert: Nous avons récemment montré que les CNNs peu-
vent atteindre des performances similaires à celles de l’état de l’art. Cependant,
malgré les performances élevées de ces CNNs, les modèles d’apprentissage profond
sont toujours sujets au sur-apprentissage. Un exemple où ces réseaux de neurones
ne parviennent pas à généraliser est lorsque l’ensemble des données d’apprentissage
est très petit. Nous attribuons cette énorme différence de précision au phénomène
de sur-apprentissage, qui reste un domaine de recherche ouvert dans la commu-
nauté (Zhang et al., 2017). Ce problème est connu pour être atténué à l’aide de
plusieurs techniques de régularisation telles que l’apprentissage par transfert (Yosin-
ski et al., 2014a), où un modèle entraîné sur une première tâche est ensuite affiné sur
un ensemble de données cible. L’apprentissage par transfert est actuellement utilisé
dans presque tous les modèles d’apprentissage en profondeur lorsque l’ensemble
de données cible ne contient pas suffisamment de données étiquetées (Yosinski
et al., 2014a). Malgré son récent succès en vision par ordinateur (Csurka, 2017),
l’apprentissage par transfert a rarement été appliqué aux modèles d’apprentissage
profond dédiés aux séries temporelles. L’une des raisons de cette absence est prob-
ablement le manque d’un grand ensemble de données généralistes similaire à Im-
ageNet (Russakovsky et al., 2015) ou OpenImages(Krasin et al., 2017) mais pour
les séries temporelles. De plus, ce n’est que récemment que l’apprentissage en pro-
fondeur s’est avéré efficace pour la CST (Cui, Chen, and Chen, 2016) et il reste encore
beaucoup à explorer dans la construction de réseaux de neurones profonds pour
l’analyse de séries temporelles (Cristian Borges Gamboa, 2017). Comme le transfert
de modèles d’apprentissage en profondeur, entre les différents jeux de données des
archives UCR/UEA (Dau et al., 2019), n’a pas été étudié de manière approfondie,
nous avons décidé de nous y atteler dans le but ultime de déterminer à l’avance
quels types de jeux de données pourraient bénéficier du transfert de modèles CNNs
et améliorer leur précision.

Ensembling: Une autre façon d’améliorer les classifieurs basés sur les réseaux
de neurones est de construire un ensemble de modèles d’apprentissage profond.
Cette idée semble très intéressante pour les tâches de CST car l’état de l’art évolue
vers des solutions d’ensemble (Lines, Taylor, and Bagnall, 2018; Lines and Bagnall,
2015; Bagnall et al., 2017; Baydogan, Runger, and Tuv, 2013). De plus, les ensem-
bles de réseaux de neurones profonds semblent obtenir des résultats très promet-
teurs dans de nombreux domaines de l’apprentissage automatique supervisé tels
que la détection des lésions cutanées (Goyal and Rajapakse, 2018), la reconnaissance
d’expression faciale (Wen et al., 2017) et le remplissage automatique des seaux (Dad-
hich, Sandin, and Bodin, 2018). Par conséquent, nous proposons de regrouper les
modèles actuels d’apprentissage profond pour la CST développés dans le chapitre
précédent, en construisant un modèle composé de 60 réseaux de neurones profonds
différents: 6 architectures différentes (Wang, Yan, and Oates, 2017; Zheng et al.,
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2014; Zhao et al., 2017; Serrà, Pascual, and Karatzoglou, 2018) chacun avec 10 ini-
tialisations différentes des poids du modèle. En évaluant sur les 85 jeux de don-
nées de l’archive UCR/UEA, nous démontrons une amélioration significative par
rapport aux classifieurs individuels tout en atteignant des performances très sim-
ilaires à HIVE-COTE: méthode ensembliste contenant 37 classifieurs différents et
représentant actuellement l’état de l’art. Enfin, en nous inspirant de nos résultats
sur l’apprentissage par transfert (Ismail Fawaz et al., 2018d), nous remplaçons les
réseaux initialisés de manière aléatoire par un ensemble construit à partir de mod-
èles affinés à partir des 84 autres jeux de données de l’archive, et montrons une
amélioration significative pour la CST.

Augmentation de données: Bien que les CNNs profonds récemment proposés
aient atteint des hautes performances pour la CST sur l’archive UCR/UEA (Wang,
Yan, and Oates, 2017), ils montrent toujours de faibles capacités de généralisation sur
certains petits jeux de données tels que l’ensemble de données CinCECGTorso avec
40 instances d’entraînement. Cela est surprenant car le NN-DTW fonctionne excep-
tionnellement bien sur ce jeu de données, ce qui montre la relative facilité de cette
tâche de classification. Ainsi, les similitudes entre séries temporelles dans ces petits
jeux de données ne peuvent pas être capturées par les CNNs en raison du manque
d’instances étiquetées, ce qui pousse l’algorithme d’optimisation du réseau à être
bloqué dans des minimums locaux (Zhang et al., 2017). Ce phénomène, également
connu sous le nom de sur-apprentissage dans la communauté du machine learning,
peut être résolu en utilisant différentes techniques telles que la régularisation ou
simplement la collecte de données étiquetées supplémentaires (Zhang et al., 2017)
(qui, dans certains domaines, sont difficiles à obtenir). Une autre technique bien
connue est l’augmentation des données, où les données synthétiques sont générées
à l’aide d’une méthode spécifique. Par exemple, les images contenant des numéros
de rue sur des maisons peuvent être légèrement pivotées sans changer leur numéro
réel (Krizhevsky, Sutskever, and Hinton, 2012). Pour les modèles d’apprentissage en
profondeur, ces méthodes sont généralement proposées pour les données d’image et
se généralisent mal aux séries temporelles (Um et al., 2017). Cela est probablement
dû au fait que pour les images, une comparaison visuelle peut confirmer si la trans-
formation (telle que la rotation) n’a pas modifié la classe de l’image, tandis que pour
les séries temporelles, on ne peut pas facilement confirmer l’effet de telles trans-
formations ad hoc sur la nature d’une série. Nous proposons de tirer parti d’une
technique d’augmentation de données basée sur DTW spécifiquement développée
pour les séries temporelles, afin d’améliorer les performances d’un ResNet profond
pour la CST. Nos expériences préliminaires révèlent que l’augmentation des don-
nées peut améliorer considérablement la précision des CNNs sur certains jeux de
données tout en ayant un impact négatif faible sur d’autres jeux de données.

Attaques adversaires: Comme nous l’avons déjà discuté, la CST est utilisée dans
diverses tâches d’exploration de données du monde réel, allant des soins de santé
et de la sécurité (Tan, Webb, and Petitjean, 2017; Tobiyama et al., 2016) à la sécu-
rité alimentaire et surveillance de la consommation d’énergie (Owen and Fore-
man, 2012). Avec des modèles d’apprentissage en profondeur révolutionnant de
nombreux domaines de l’apprentissage automatique tels que la vision par ordi-
nateur (Krizhevsky, Sutskever, and Hinton, 2012) et le traitement du langage na-
turel (Yang et al., 2018; Wang, Li, and Xu, 2018), nous avons montré dans le chapitre
précédent que ces modèles ont commencé à être adopté pour les tâches de CST (Is-
mail Fawaz et al., 2019d). Après l’avènement du deep learning, les chercheurs
ont commencé à étudier la vulnérabilité des réseaux profonds aux attaques adver-
saires (Yuan et al., 2017). Dans le cadre de la reconnaissance d’images, une attaque
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adversaire consiste à modifier une image originale afin que les changements soient
quasiment indétectables par un humain (Yuan et al., 2017). L’image modifiée est ap-
pelée une image adversaire, qui sera mal classée par le réseau de neurone, tandis que
l’image d’origine est correctement classée. L’une des attaques les plus célèbres de la
vie réelle consiste à modifier une image de panneau de signalisation afin qu’elle soit
mal interprétée par un véhicule autonome (Eykholt et al., 2018). Une autre applica-
tion est l’altération du contenu illégal pour le rendre indétectable par les algorithmes
de modération automatique (Yuan et al., 2017). Bien que ces approches aient été
intensivement étudiées dans le contexte de la reconnaissance d’image, elles n’ont
pas été étudiées en profondeur pour la CST. Cela est surprenant car les modèles
d’apprentissage en profondeur deviennent de plus en plus populaires pour classer
les séries temporelles (Ismail Fawaz et al., 2019d). En outre, des attaques adverses
potentielles sont présentes dans de nombreuses applications où l’utilisation de don-
nées de séries temporelles est cruciale. Par exemple, dans ce chapitre on montre
la similitude entre une série temporelle originale et perturbée de spectrographe de
grains de café. Alors qu’un réseau de neurones profond classe correctement la série
d’origine en tant que grains Robusta, l’ajout de petites perturbations le classe comme
Arabica. Par conséquent, étant donné que les grains Arabica ont plus de valeur
que les grains Robusta, cette attaque pourrait être utilisée pour tromper les tests
de contrôle des aliments et, éventuellement, les consommateurs. Nous présentons,
transférons et adaptons les attaques qui se sont avérées efficaces sur les images, aux
données de séries temporelles. Nous présentons également une étude expérimentale
utilisant les 85 jeux de données de l’archive UCR/UEA (Dau et al., 2019) qui révèle
que les réseaux de neurones sont sensibles aux attaques adversaires. Nous mettons
en évidence des cas d’utilisation concrets spécifiques pour souligner l’importance de
ces attaques dans des situations réelles, à savoir la qualité et la sécurité des aliments,
les capteurs des véhicules et la consommation d’électricité. Nos résultats montrent
que les réseaux profonds pour les données de séries temporelles sont vulnérables
aux attaques adverses comme leurs homologues en vision par ordinateur. Par con-
séquent, ce travail met en lumière la nécessité de se protéger contre de telles attaques,
en particulier lorsque l’apprentissage profond est utilisé pour les applications sensi-
bles de CST. Nous montrons également que les séries temporelles adverses apprises
à l’aide d’une architecture de réseau peuvent être transférées à différentes architec-
tures. Nous discutons ensuite de certains mécanismes pour empêcher ces attaques
tout en renforçant la robustesse des modèles aux attaques adversaires. Enfin, dans
un esprit de régularisation des DNNs, nous montrons comment ces séries perturbées
peuvent être exploitées afin d’améliorer la capacité de généralisation d’un modèle
d’apprentissage en profondeur: une technique appelée entraînement adversaire (Xie
et al., 2020).

Chapitre 3: InceptionTime: Recherche d’AlexNet pour la clas-
sification de séries temporelles

Les industries allant des soins de santé (Forestier et al., 2018; Lee et al., 2018; Ismail
Fawaz et al., 2019c) et de la sécurité sociale (Yi et al., 2018) à la reconnaissance de
l’activité humaine (Yuan et al., 2018) et à la télédétection (Pelletier, Webb, and Petit-
jean, 2019), produisent toutes des séries temporelles d’une échelle jamais vue aupar-
avant — à la fois en termes de longueur et de quantité de séries. Cette croissance
signifie également une dépendance accrue à l’égard de la classification automatique
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de ces données séquentielles et, idéalement, des algorithmes capables de le faire à
grande échelle.

Dans les chapitres précédents, nous avons montré en quoi ces problèmes de
CST diffèrent considérablement de l’apprentissage supervisé traditionnel pour les
données structurées, en ce que les algorithmes doivent être capables de gérer
et d’exploiter les informations temporelles présentes dans le signal. Il est facile
d’établir des parallèles entre ce scénario et des problèmes de vision par ordinateur
tels que la classification d’images et la localisation d’objets, où les algorithmes effi-
caces apprennent des informations spatiales contenues dans une image. En termes
simples, le problème de classification des séries temporelles est essentiellement la
même classe de problèmes, juste avec une dimension de moins. Pourtant, malgré
cette similitude, les algorithmes d’état de l’art actuels des deux domaines partagent
peu de ressemblance (Ismail Fawaz et al., 2019d).

Le deep learning a une longue histoire (en termes d’apprentissage automa-
tique) en vision par ordinateur (LeCun et al., 1998) mais sa popularité a explosé
avec AlexNet (Krizhevsky, Sutskever, and Hinton, 2012), après quoi il a été incon-
testablement la classe d’algorithmes avec le plus de réussite (LeCun, Bengio, and
Hinton, 2015). Inversement, l’apprentissage en profondeur n’a commencé à gagner
en popularité que récemment parmi les chercheurs en exploration de données tem-
porelles (Ismail Fawaz et al., 2019d). Ceci est souligné par le fait que ResNet, qui est
actuellement considéré comme l’architecture de réseau neurone d’état de l’art pour
la CST lorsqu’elle est évaluée sur l’archive UCR/UEA (Dau et al., 2019), a été initiale-
ment proposé simplement comme modèle de base pour la tâche sous-jacent (Wang,
Yan, and Oates, 2017). Compte tenu des similitudes dans les données, il est facile de
suggérer qu’il y a beaucoup d’amélioration potentielle pour l’apprentissage profond
dans la CST. Dans le chapitre précédent, nous avons montré comment il est possible
d’améliorer la précision d’une architecture d’apprentissage profond donnée, en util-
isant diverses techniques de régularisation telles que l’ensembling, l’apprentissage
par transfert, l’augmentation des données et l’apprentissage adversaire. Cependant,
nous pensons qu’il y a encore place à l’amélioration en termes d’architecture de
réseau, qui peut être considérée comme une tâche orthogonale aux différentes méth-
odes de régularisation des DNNs.

Dans ce chapitre, nous franchissons une étape importante vers la recherche de
l’équivalent d’AlexNet pour la CST en présentant InceptionTime — un nouvel en-
semble d’apprentissage profond pour la CST. InceptionTime atteint la précision
d’état de l’art lorsqu’il est évalué sur l’archive UCR/UEA (actuellement le plus
grand référentiel publiquement disponible pour la CST (Dau et al., 2019)) et passe
mieux à l’échelle dû à son coût computationnel plus faible.

InceptionTime est un ensemble de cinq modèles d’apprentissage profond pour la
CST, chacun est créé en cascadant plusieurs modules Inception (Szegedy et al., 2015).
Chaque classifieur individuel (modèle) aura exactement la même architecture mais
avec une initialisation des poids différente et aléatoire. L’idée centrale d’un module
Inception est d’appliquer simultanément plusieurs filtres à une série temporelle en
entrée. Le module comprend des filtres de longueurs variables qui, comme nous le
montrerons, permettent au réseau d’extraire automatiquement les caractéristiques
pertinentes des séries temporelles longues et courtes. En fait, InceptionTime suit ici
l’idée d’ensemble présentée dans le chapitre précédent.

Après avoir présenté InceptionTime et ses résultats, nous effectuons une anal-
yse des hyperparamètres architecturaux des réseaux de neurones profonds — pro-
fondeur, longueur du filtre, nombre de filtres — et les caractéristiques du module
Inception — le bottleneck et les connexions résiduelles, afin de mieux comprendre
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pourquoi ce modèle connaît un tel succès. En fait, nous construisons des réseaux
avec des filtres plus grands que ceux utilisés pour les tâches de vision par ordinateur,
profitant directement du fait que les séries temporelles présentent une dimension de
moins que les images.

En conclusion, l’apprentissage profond pour la classification des séries tem-
porelles est toujours en retard par rapport aux réseaux de neurones pour la recon-
naissance d’images en termes d’études expérimentales et de conceptions architec-
turales. Dans ce chapitre, nous comblons cette lacune en introduisant InceptionTime,
inspiré par le récent succès des réseaux basés sur Inception pour diverses tâches de
vision par ordinateur. Nous avons regroupé ces réseaux pour produire de nouveaux
résultats d’état de l’art pour la CST sur les 85 jeux de données du UCR/UEA archive.
Notre approche est hautement évolutive, deux ordres de grandeur plus rapide que
les modèles d’état de l’art actuels tels que HIVE-COTE. L’ampleur de cette accéléra-
tion est intéressante dans un contexte Big Data ainsi que pour des séries temporelles
plus longues avec un taux d’échantillonnage élevé. Nous étudions en outre les ef-
fets sur la précision globale de divers hyperparamètres des architectures CNN. Pour
ceux-ci, nous allons bien au-delà des pratiques standard pour les données d’images
et la conception de réseaux avec de longs filtres. Nous les examinons en utilisant un
ensemble de données simulées et encadrons notre étude en termes de définition du
“receptive field” d’un CNN pour la CST.

Chapitre 4: Analyse de séries temporelles pour la formation
chirurgicale

Au cours des cent dernières années, la méthodologie d’enseignement classique de
“voir un, faire un, enseigner un” a dominé les systèmes d’enseignement chirurgi-
cal dans le monde. Avec l’avènement de salle d’opération 2.0, l’enregistrement des
vidéos, des données cinématiques et de nombreux autres types de données au cours
d’une opération chirurgicale est devenu une tâche facile, permettant ainsi aux sys-
tèmes d’intelligence artificielle d’être déployés et utilisés dans la pratique chirur-
gicale et médicale. Récemment, il a été démontré que les données des capteurs
de mouvement (par exemple cinématique) ainsi que les vidéos chirurgicales four-
nissent une structure de coaching permettant aux stagiaires débutants d’apprendre
des chirurgiens expérimentés en rejouant ces vidéos et/ou trajectoires cinématiques.
Dans ce chapitre, nous abordons deux problèmes présents dans le programme actuel
de formation chirurgicale.

Évaluation des compétences chirurgicales: L’idée principale de la méthodolo-
gie d’enseignement du Dr William Halsted est que l’étudiant pourrait devenir
un chirurgien expérimenté en observant et en participant à des chirurgies en-
cadrées (Polavarapu et al., 2013). Ces techniques de formation, bien que largement
utilisées, sont dépourvues d’une méthode objective d’évaluation des compétences
chirurgicales (Kassahun et al., 2016). L’évaluation standard des compétences chirur-
gicales est actuellement basée sur des listes de contrôle remplies par un expert ob-
servant la tâche chirurgicale (Ahmidi et al., 2017). Afin de prédire le niveau de com-
pétence d’un stagiaire sans utiliser le jugement d’un chirurgien expert, l’OSATS a
été proposé et est actuellement adopté comme pratique clinique standard (Niitsu et
al., 2013). Hélas, ce type de notation observationnelle souffre encore de plusieurs
facteurs externes et subjectifs tels que la fiabilité inter-évaluateurs, le processus de
développement et le biais de la liste de contrôle et de l’évaluateur (Hatala et al.,
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2015). D’autres études ont démontré une corrélation entre les compétences tech-
niques d’un chirurgien et les résultats postopératoires (Bridgewater et al., 2003).

Cette dernière approche souffre du fait que les suites d’une intervention chirur-
gicale dépendent des attributs physiologiques du patient (Kassahun et al., 2016). De
plus, l’obtention de ce type de données est très ardue, ce qui rend ces techniques
d’évaluation des compétences difficiles à mettre en œuvre pour la formation chirur-
gicale. Les progrès récents en robotique chirurgicale tels que le système chirurgical
da Vinci (Intuitive Surgical Sunnyvale, 2018) ont permis l’enregistrement de données
vidéo et cinématiques de diverses tâches chirurgicales. Par conséquent, un substi-
tut des listes de contrôle et des approches basées sur les résultats, est de générer,
à partir de ces cinématiques, des GMFs tels que la vitesse de la tâche chirurgicale,
l’achèvement du temps, la fluidité du mouvement, la courbure et d’autres caractéris-
tiques holistiques (Zia and Essa, 2018; Kassahun et al., 2016). Bien que la plupart de
ces techniques soient efficaces, il n’est pas évident de voir comment elles pourraient
être utilisées pour soutenir le stagiaire avec une rétroaction détaillée et constructive,
afin d’aller au-delà d’une classification naïve dans un niveau de compétence (c.-à-d.
expert, intermédiaire, etc.) . Cela est problématique car le retour d’expérience sur
la pratique médicale permet aux chirurgiens d’atteindre des niveaux de compétence
plus élevés tout en améliorant leurs performances (Islam et al., 2016). Dernièrement,
un domaine intitulé Surgical Data Science (Maier-Hein et al., 2017) est apparu motivé
par l’accès croissant à une énorme quantité de données complexes qui concernent
le personnel, le patient et les capteurs pour capturer la procédure et les données
relatives au patient telles que les variables cinématiques et les images (Gao et al.,
2014). Au lieu d’extraire des GMFs, les enquêtes récentes ont tendance à décomposer
manuellement les tâches chirurgicales en segments plus fins appelés “gestes”, avant
d’entraîner le modèle, et enfin à estimer les performances des stagiaires en fonction
de leur évaluation au cours de ces gestes individuels (Tao et al., 2012). Même si
ces méthodes ont obtenu des résultats prometteurs et précis en termes d’évaluation
des compétences chirurgicales, elles nécessitent d’étiqueter une énorme quantité de
gestes avant de former l’estimateur (Tao et al., 2012). Nous avons souligné deux lim-
ites majeures dans les techniques actuelles existantes qui estiment le niveau de com-
pétence des chirurgiens à partir de leurs variables cinématiques correspondantes:
premièrement, l’absence d’un résultat interprétable de la prédiction de compétence
qui peut être utilisé par les stagiaires pour atteindre des niveaux de compétence
chirurgicale plus élevés; deuxièmement, l’exigence de limites de gestes prédéfinies
par les annotateurs qui est sujette à la fiabilité inter-annotateurs et qui prend du
temps à préparer (Vedula et al., 2016). Dans cette première partie du chapitre, nous
concevons une nouvelle architecture basée sur les FCNs, dédiée à l’évaluation des
compétences chirurgicales. En utilisant des noyaux unidimensionnels sur les séries
temporelles cinématiques, nous évitons d’avoir à extraire de gestes peu fiables et
sensibles. La structure hiérarchique originale de notre modèle nous permet de cap-
turer des informations globales spécifiques au niveau de compétence chirurgicale,
ainsi que de représenter les gestes dans des caractéristiques latentes de bas niveau.
De plus, pour fournir une rétroaction interprétable, au lieu d’utiliser une couche
dense comme la plupart des architectures traditionnelles d’apprentissage profond,
nous plaçons une couche GAP qui nous permet de profiter de la carte d’activation
de classe, proposée à l’origine par Zhou et al., 2016, pour localiser quelle partie de
l’exercice a eu un impact sur la décision du modèle lors de l’évaluation du niveau
de compétence d’un chirurgien. En utilisant une configuration expérimentale stan-
dard sur le plus grand ensemble de données publiques pour l’analyse des données
robotiques chirurgicales: le JHU-ISI Gesture and Skill Assessment Working Set (Gao
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et al., 2014), nous montrons la précision de notre modèle FCN. Notre principale
contribution est de démontrer que l’apprentissage en profondeur peut être mis à
profit pour comprendre les structures complexes et latentes lors de la classification
des compétences chirurgicales et de la prévision du score OSATS d’une chirurgie,
d’autant plus qu’il y a encore beaucoup à apprendre sur ce qui constitue exactement
une compétence chirurgicale (Kassahun et al., 2016).

Alignement des vidéos chirurgicales: Les éducateurs ont toujours cherché des
moyens innovants d’améliorer le taux d’apprentissage des apprenants. Alors que
les cours classiques sont encore les plus utilisés, les ressources multimédias sont de
plus en plus adoptées (Smith and Ransbottom, 2000), en particulier dans les cours
en ligne ouverts et massifs (Means et al., 2009). Dans ce contexte, les vidéos ont
été considérées comme particulièrement intéressantes car elles peuvent combiner
les images, textes, graphiques, audios et animations. Le domaine médical ne fait
pas exception et l’utilisation de ressources vidéo est intensivement adoptée dans le
programme médical (Masic, 2008), en particulier dans le contexte de la formation
chirurgicale (Kneebone et al., 2002). L’avènement de la chirurgie robotique stim-
ule également cette tendance, car les robots chirurgicaux, comme le Da Vinci (Intu-
itive Surgical Sunnyvale, 2018), enregistrent généralement des flux vidéo pendant
l’intervention. Par conséquent, une grande quantité de données vidéo a été enreg-
istrée au cours des dix dernières années (Rapp et al., 2016). Cette nouvelle source
de données représente une opportunité sans précédent pour les jeunes chirurgiens
d’améliorer leurs connaissances et leurs compétences (Gao et al., 2014). En outre, la
vidéo peut également être un outil pour les chirurgiens seniors pendant les périodes
d’enseignement pour évaluer les compétences des stagiaires. En fait, une étude ré-
cente de Mota et al., 2018 a montré que les résidents passent plus de temps à regarder
des vidéos que des spécialistes, soulignant la nécessité pour les jeunes chirurgiens
de profiter pleinement de cet outil. Dans Herrera-Almario et al., 2016, les auteurs
ont montré que les scores obtenus pour la tâche nœuds ainsi que leurs temps de
réalisation des exercices se sont considérablement améliorés pour les sujets qui ont
regardé les vidéos de leur propre performance.

Cependant, lorsque les stagiaires sont prêts à évaluer leurs progrès au cours
de plusieurs essais de la même tâche chirurgicale en revoyant simultanément leurs
vidéos chirurgicales enregistrées, le fait que les vidéos soient désynchronisées rend
la comparaison entre les différents essais très difficile, voire impossible. Ce problème
se rencontre dans de nombreuses études de cas réels, car les experts accomplissent
en moyenne les tâches chirurgicales en moins de temps que les chirurgiens débu-
tants (McNatt and Smith, 2001). Ainsi, lorsque les stagiaires améliorent leurs compé-
tences, leur fournir une rétroaction qui identifie la raison de l’amélioration des com-
pétences chirurgicales devient problématique car les vidéos enregistrées présentent
une durée différente et ne sont pas parfaitement alignées. Bien que la synchronisa-
tion des vidéos ait été le centre d’intérêt de plusieurs sites de recherche en vision par
ordinateur, les contributions se concentrent généralement sur un cas particulier où
plusieurs vidéos enregistrées simultanément (avec des caractéristiques différentes
telles que les angles de vue et les facteurs de zoom) sont traitées (Wolf and Zomet,
2002; Wedge, Kovesi, and Huynh, 2005; Padua et al., 2010). Un autre type de syn-
chronisation de multiples vidéos utilise des fonctionnalités conçues à la main (telles
que des trajectoires de points d’intérêt) à partir des vidéos (Wang et al., 2014; Evan-
gelidis and Bauckhage, 2011), ce qui rend l’approche très sensible à la qualité des
caractéristiques extraites. Ce type de techniques était très efficace car les vidéos
brutes étaient la seule source d’information disponible, alors que dans notre cas,
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l’utilisation de systèmes chirurgicaux robotisés permet de capturer un type de don-
nées supplémentaire: les variables cinématiques telles que les coordonnées cartési-
ennes x, y, z des effecteurs terminaux du Da Vinci (Gao et al., 2014). Dans cette
deuxième partie du chapitre, nous proposons de tirer parti de l’aspect séquentiel
des données cinématiques enregistrées par le système chirurgical Da Vinci, afin de
synchroniser leurs images vidéo correspondantes en alignant les données de séries
temporelles. Lors de l’alignement de deux séries temporelles, l’algorithme standard
est DTW (Sakoe and Chiba, 1978) que nous avons en effet utilisé pour aligner deux
vidéos. Cependant, lors de l’alignement de plusieurs séquences, cette dernière tech-
nique ne se généralise pas de manière simple et réalisable par calcul (Petitjean et
al., 2014). Par conséquent, pour la synchronisation de multiples vidéos, nous pro-
posons d’aligner leurs séries temporelles correspondantes avec une série temporelle
moyenne, calculée en utilisant l’algorithme DBA. Ce processus est appelé NLTS et a
été initialement proposé pour trouver l’alignement multiple d’un ensemble de gestes
chirurgicaux discrétisés (Forestier et al., 2014), que nous étendons dans ce travail à
des données cinématiques numériques continues.

En conclusion, dans ce chapitre, nous avons abordé deux problèmes différents
liés aux compétences chirurgicales. Tout d’abord, en concevant un FCN, nous avons
pu obtenir des résultats d’état de l’art pour l’évaluation des compétences chirurgi-
cales (classification et régression). Ainsi, nous avons pu atténuer l’effet de boîte noire
des DNNs, en utilisant la technique CAM afin de mettre en évidence ce qui permet
d’identifier l’expérience du chirurgien. Le deuxième problème lié aux compétences
chirurgicales était dû au fait que les vidéos de formation chirurgicale n’étaient pas
synchronisées, ce qui rend difficile pour les stagiaires de comprendre et de comparer
les vidéos entre différents chirurgiens avec différents niveaux de compétence. Nous
avons abordé ce dernier problème en proposant l’utilisation de NLTS afin d’aligner
et de synchroniser plusieurs vidéos simultanément. Ces deux projets étaient orthog-
onaux dans le sens où ils pouvaient également se compléter: la synchronisation de la
vidéo et des séries temporelles pourrait être une étape de prétraitement qui amélior-
erait les modèles d’évaluation des compétences chirurgicales.
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Introduction

Time series data are omnipresent in many practical data science applications rang-
ing from health care (Gao et al., 2014) and stock market predictions (Anghinoni et al.,
2018) to social media analysis (Xu, Chen, and Mao, 2018) and human activity recog-
nition (Xi et al., 2018). In fact, any type of numerical acquisition of data with some
notion of ordering will generate time series, making this type of data very common
among data mining problems (Längkvist, Karlsson, and Loutfi, 2014). Compared
to traditional tabular data, each time series can be represented (under the tabular
format) as a row with each attribute corresponding to one time stamp (numerical ac-
quisition). However, analyzing time series data differs significantly from its tabular
counterpart, as harnessing the temporal information is usually very important for
the underlying task we are trying to solve (Bagnall et al., 2017). A concrete example
of time series data in health care would be the acquisition of ECG heart signals (Ra-
jan and Thiagarajan, 2018). In stock market analysis, a time series element would
correspond to the value of a stock at a given time stamp (Anghinoni et al., 2018).
In human activity recognition, the given Cartesian position of a hand in 3D space
would constitute an element of a time series (Ignatov, 2018).

Since 2006, time series analysis has been considered one of the most challeng-
ing problems in data mining (Yang and Wu, 2006), and in a more recent poll it has
been shown that 48% of data expert had analyzed time series data during their ca-
reer, ahead of text and images (Neamtu et al., 2018). Under the time series analysis
umbrella, there exists many orthogonal tasks, that can be grouped into four main
categories:

Forecasting consists of training a model using some historical time series data,
with the goal to predict the future observations of this time series (Hyndman and
Athanasopoulos, 2018). Weather forecasting is one of the most common applica-
tions, where the training data consists of old observations, and the task is to pre-
dict the future weather behavior (Taylor, McSharry, and Buizza, 2009). In finance,
predicting the value of stock using its historical values is one very common applica-
tion (Kim, 2003). Further examples and details of time series forecasting an be found
in Hyndman and Athanasopoulos, 2018.

Anomaly detection is a very special task of time series analysis. Unlike forecast-
ing, the goal is not to predict the future, but rather to determine if a given time series
observation is normal or not (Blázquez-García et al., 2020). This task is also known
as time series outlier detection. One of the most common application is called pre-
dictive maintenance, such as predicting anomalies in advance in order to prevent
potential failures (Rabatel, Bringay, and Poncelet, 2011). The reader is referred to
this excellent review by Blázquez-García et al., 2020 on time series anomaly/outlier
detection.

Clustering is probably one of the most widely studied problems in unsupervised
learning. The problem can be defined as follows: given a set of data points, partition
them into a set of groups which are as similar as possible (Aggarwal, 2014). For time
series data, traditional clustering approaches can provide a baseline, however many
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FIGURE 1: An example illustrating the task of classifying an input
time series from the GunPointAgeSpan dataset (Dau et al., 2019),
where the goal is to classify whether or not a person is holding a gun
(a time series corresponds to the hand’s x coordinate of a person hold-

ing or not a gun)

researchers found that mining the temporal information provided by the time se-
ries data can be crucial for many tasks (Petitjean and Gançarski, 2012). Applications
range from discovering daily patterns of sales in marketing databases (Sanwlani and
Vijayalakshmi, 2013) to finding particular behaviors of solar magnetic wind in sci-
entific databases (Pravilovic et al., 2014). For more details on time series clustering,
we refer the interested reader to this recent survey by Aghabozorgi, Shirkhorshidi,
and Wah, 2015.

Classification consists of predicting the correct class of a given data point using
a labeled training set. For TSC, this data point is by itself a whole time series, and the
task consists of predicting its correct label. This problem is encountered in various
data mining fields such as patient risk identification in health care (Ma, Xiao, and
Wang, 2018), malware detection in cyber security (Tobiyama et al., 2016), food safety
evaluation in agriculture and livestock (Nawrocka and Lamorska, 2013). Similar
to unsupervised learning, traditional classification approaches can provide a basic
baseline for solving this underlying TSC task. However over the past two decades,
research has shown that designing algorithms that can exploit the temporal informa-
tion is a need in order to achieve high classification accuracy (Bagnall et al., 2017).
Figure 1 illustrates an example of the TSC task.

In this thesis, we chose to focus on the latter TSC problem. The reason behind
choosing this field of time series analysis was motivated by our interest in a very
particular problem: surgical skills evaluation from kinematic data. This specific task
can be cast as a TSC problem: given an input time series (kinematic data regis-
tered through time) predict the correct label (skill level of the surgeon performing
the surgery). The reader can find more details on this problem in Chapter 4. For
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solving this surgical skills evaluation problem, we started looking into the state-of-
the-art TSC algorithms of that epoch. At the beginning of this thesis in 2017, we
found that most TSC approaches were inspired by traditional machine learning al-
gorithms such as NN classifiers coupled with a bespoke distance - such as DTW
instead of ED. Some algorithms were inspired by traditional text mining approaches
such as the Time Series Bag-Of-Features developed by Baydogan, Runger, and Tuv,
2013. Other TSC methods were inspired by Fourier analysis from signal process-
ing such as BOSS (proposed by Schäfer, 2015). One type of classifier focused on
extracting discriminative subsequence from the time series called Shapelets, which
are later used for classifying the input time series (Hills et al., 2014). Meanwhile
in 2017, the computer vision community has already achieved tremendous human
level performance with DNNs, followed by the much more recent success of deep
learning for various NLP tasks. However, we have noticed that the TSC community
have not considered DNNs as potential classifiers of time series data, which is evi-
dent in the great TSC bake-off paper (Bagnall et al., 2017). This is very surprising as
given the success of deep learning with image classification problems, coupled with
the intrinsic similarity between 2D patterns in images and 1D patterns in series,
one should consider the potential of deep learning for TSC problems. We therefore
started investigating and benchmarking the recent work proposing the use of DNNs
for classifying time series data, which is the main focus of Chapter 1 (Ismail Fawaz
et al., 2019d).

Following this thorough review of the recent advances in deep learning archi-
tectures for TSC, we started looking into the different techniques to improve the
accuracy of a given neural network model. This type of technique is also known
as regularization, which enables us to improve the generalization capabilities of a
given machine learning model. These methods range from transfer learning (Ismail
Fawaz et al., 2018d) and ensembling (Ismail Fawaz et al., 2019e) to data augmenta-
tion (Ismail Fawaz et al., 2018b) and adversarial training (Ismail Fawaz et al., 2019b).
The latter techniques were the main focus of Chapter 2 of this thesis.

Having identified the current state-of-the-art architectures for TSC in Chapter 1,
followed by the main techniques on how to improve the generalization capability
of a given deep learning model in Chapter 2, we took a further step into designing
a new type of neural network architecture for TSC based on the famous Inception
module proposed by Szegedy et al., 2015. Although we achieved similar results
to other non deep learning based approaches for TSC, the main focus of Chapter 3
was to motivate the use of the Inception module, with a focus on its running time,
a severe bottleneck of the current state-of-the-art algorithm for TSC (Bagnall et al.,
2017).

Finally, with the recent advances in deep learning for TSC being presented in
the first three chapters, we turned our attention in Chapter 4 to our initial motiva-
tion: evaluating surgical skills from kinematic data using DNNs. We also focused on
achieving state-of-the-art results while providing interpretability of our deep learn-
ing model, allowing us to leverage the high accuracy from DNNs while mitigating
their black-box effect.

In order to have a thorough and fair experimental evaluation of all approaches,
we used the whole UCR/UEA archive (Dau et al., 2019) which contained 85 univari-
ate time series datasets at that time. Other than the fact of being publicly available,
the choice of validating on the UCR/UEA archive is motivated by having datasets
from different domains which have been broken down into seven different cate-
gories (Image Outline, Sensor Readings, Motion Capture, Spectrographs, ECG, Elec-
tric Devices and Simulated Data) in Bagnall et al., 2017. In fact, the UCR/UEA
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Paper Method(s) Data (in paper) Data (on GitHub) Chap. GitHub

(Ismail Fawaz et al., 2019d) 9 methods UCR/UEA (85) UCR (128) 1 dl-4-tsc

(Ismail Fawaz et al., 2018d) FCN UCR (85) UCR (85) 2 bigdata18

(Ismail Fawaz et al., 2019e) 6 methods UCR/UEA (85) UCR/UEA (85) 2 ijcnn19ensemble

(Ismail Fawaz et al., 2018b) ResNet UCR (85) UCR (85) 2 aaltd18

(Ismail Fawaz et al., 2019b) ResNet UCR (85) UCR (85) 2 ijcnn19attacks

(Ismail Fawaz et al., 2020) InceptionTime UCR/UEA (85) UCR (128) 3 InceptionTime

(Ismail Fawaz et al., 2018c) FCN JIGSAWS JIGSAWS 4 miccai18

(Ismail Fawaz et al., 2019a) FCN JIGSAWS JIGSAWS 4 ijcars19

(Ismail Fawaz et al., 2019c) NLTS JIGSAWS JIGSAWS 4 aime19

TABLE 1: List of papers with the corresponding public datasets used
as well as the companion GitHub repository.

archive has evolved over the years. In 2015 the benchmark contained 44 datasets,
then in 2017 UCR and UEA collaborated and provided the community with an even
larger archive containing 85 datasets, which represents the version that we have
used in this work. In 2018, Dau et al., 2019 published the most recent version of
the archive containing 128 datasets. We did our best to be consistent in the datasets
used for our experiments to make our results easily comparable to other state-of-
the-art methods. The evolution of the UCR during this thesis can bring some sort
of confusion in the datasets used in our different papers. Therefore Table 1 has the
objective to clarify what has been used when our papers were published and what
is now available on the companion GitHub pages. In any case, the source code for
each paper is available to the community and can be easily reused to follow further
evolution of the archive or other challenges. We are aware of the limitations of us-
ing the UCR/UEA archive as a sole reference to compare methods and we share the
thoughts about this issue discussed by the authors in Dau et al., 2019. However, we
believe that having a way to objectively compare the methods between them is very
important and we are thankful to all the people involved in making the UCR/UEA
archive publicly available. As for the experiments regarding the surgical evaluation
skills, we have used the publicly available JIGSAWS dataset published in Gao et al.,
2014.

http://timeseriesclassification.com
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
https://github.com/hfawaz/dl-4-tsc
https://www.cs.ucr.edu/~eamonn/time_series_data/
https://www.cs.ucr.edu/~eamonn/time_series_data/
https://github.com/hfawaz/bigdata18
http://timeseriesclassification.com
http://timeseriesclassification.com
https://github.com/hfawaz/ijcnn19ensemble
https://www.cs.ucr.edu/~eamonn/time_series_data/
https://www.cs.ucr.edu/~eamonn/time_series_data/
https://github.com/hfawaz/aaltd18
https://www.cs.ucr.edu/~eamonn/time_series_data/
https://www.cs.ucr.edu/~eamonn/time_series_data/
https://github.com/hfawaz/ijcnn19attacks
http://timeseriesclassification.com
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
https://github.com/hfawaz/InceptionTime
https://cirl.lcsr.jhu.edu/research/hmm/datasets/jigsaws_release/
https://cirl.lcsr.jhu.edu/research/hmm/datasets/jigsaws_release/
https://github.com/hfawaz/miccai18
https://cirl.lcsr.jhu.edu/research/hmm/datasets/jigsaws_release/
https://cirl.lcsr.jhu.edu/research/hmm/datasets/jigsaws_release/
https://github.com/hfawaz/ijcars19
https://cirl.lcsr.jhu.edu/research/hmm/datasets/jigsaws_release/
https://cirl.lcsr.jhu.edu/research/hmm/datasets/jigsaws_release/
https://github.com/hfawaz/aime19
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Chapter 1

The state of the art for time series
classification

1.1 Introduction

During the last two decades, TSC has been considered as one of the most challeng-
ing problems in data mining (Yang and Wu, 2006; Esling and Agon, 2012). With the
increase of temporal data availability (Silva et al., 2018), hundreds of TSC algorithms
have been proposed since 2015 (Bagnall et al., 2017). Due to their natural temporal
ordering, time series data are present in almost every task that requires some sort of
human cognitive process (Längkvist, Karlsson, and Loutfi, 2014). In fact, any clas-
sification problem, using data that is registered taking into account some notion of
ordering, can be cast as a TSC problem (Cristian Borges Gamboa, 2017). Time series
are encountered in many real-world applications ranging from health care (Gogolou
et al., 2018) and human activity recognition (Wang et al., 2018; Mathis, Ismail Fawaz,
and Khamis, 2020) to acoustic scene classification (Nwe, Dat, and Ma, 2017) and
cyber security (Susto, Cenedese, and Terzi, 2018). In addition, the diversity of the
datasets’ types in the UCR/UEA archive (Dau et al., 2019; Bagnall et al., 2017) (the
largest repository of time series datasets) shows the different applications of the TSC
problem.

Given the need to accurately classify time series data, researchers have proposed
hundreds of methods to solve this task (Bagnall et al., 2017). One of the most pop-
ular and traditional TSC approaches is the use of an NN classifier coupled with a
distance function (Lines and Bagnall, 2015). Particularly, DTW when used with an
NN classifier has been shown to be a very strong baseline (Bagnall et al., 2017). Lines
and Bagnall, 2015 compared several distance measures - such as TWE (Marteau,
2009) and MSM (Stefan, Athitsos, and Das, 2013) - showing that there is no sin-
gle distance measure that significantly outperforms DTW. They also showed that
ensembling the individual NN classifiers (with different distance measures) out-
performs all of the ensemble’s individual components. Hence, recent contributions
have focused on developing ensembling methods that significantly outperforms the
NN-DTW (Bagnall et al., 2016; Hills et al., 2014; Bostrom and Bagnall, 2015; Lines,
Taylor, and Bagnall, 2016; Schäfer, 2015; Kate, 2016; Deng et al., 2013; Baydogan,
Runger, and Tuv, 2013). These approaches use either an ensemble of decision trees
(random forest) (Baydogan, Runger, and Tuv, 2013; Deng et al., 2013) or an ensem-
ble of different types of discriminant classifiers (SVM, NN with several distances)
on one or several feature spaces (Bagnall et al., 2016; Bostrom and Bagnall, 2015;
Schäfer, 2015; Kate, 2016). Most of these approaches significantly outperform the
NN-DTW (Bagnall et al., 2017) and share one common property, which is the data
transformation phase where time series are transformed into a new feature space
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(for example using shapelets transform (Bostrom and Bagnall, 2015) or DTW fea-
tures (Kate, 2016)). This notion motivated the development of an ensemble of 35
classifiers named COTE (Bagnall et al., 2016) that does not only ensemble different
classifiers over the same transformation, but instead ensembles different classifiers
over different time series representations. Lines, Taylor, and Bagnall, 2016; Lines,
Taylor, and Bagnall, 2018 extended COTE with HIVE-COTE which has been shown
to achieve a significant improvement over COTE by leveraging a new hierarchi-
cal structure with probabilistic voting, including two new classifiers and two addi-
tional representation transformation domains. HIVE-COTE is currently considered
the state-of-the-art algorithm for time series classification (Bagnall et al., 2017) when
evaluated over the 85 datasets from the UCR/UEA archive.

To achieve its high accuracy, HIVE-COTE becomes hugely computationally in-
tensive and impractical to run on a real big data mining problem (Bagnall et al.,
2017). The approach requires training 37 classifiers as well as cross-validating each
hyperparameter of these algorithms, which makes the approach infeasible to train in
some situations (Lucas et al., 2018). To emphasize on this infeasibility, note that one
of these 37 classifiers is the ST (Hills et al., 2014) whose time complexity is O(n2 · l4)
with n being the number of time series in the dataset and l being the length of a
time series. Adding to the training time’s complexity is the high classification time
of one of the 37 classifiers: the nearest neighbor which needs to scan the training
set before taking a decision at test time. Therefore since the nearest neighbor consti-
tutes an essential component of HIVE-COTE, its deployment in a real-time setting is
still limited if not impractical. Finally, adding to the huge runtime of HIVE-COTE,
the decision taken by 37 classifiers cannot be interpreted easily by domain experts,
since researchers already struggle with understanding the decisions taken by an in-
dividual classifier. We should note that recently, Bagnall et al., 2020 proposed a new
version of HIVE-COTE that is substantially faster, showing the importance of having
a scalable TSC algorithm.

After having established the current state-of-the-art of non deep classifiers for
TSC (Bagnall et al., 2017), we discuss the success of deep learning (LeCun, Bengio,
and Hinton, 2015) in various classification tasks which motivated the recent utiliza-
tion of deep learning models for TSC (Wang, Yan, and Oates, 2017). Deep CNNs
have revolutionized the field of computer vision (Krizhevsky, Sutskever, and Hin-
ton, 2012). For example, in 2015, CNNs were used to reach human level performance
in image recognition tasks (Szegedy et al., 2015). Following the success of DNNs in
computer vision, a huge amount of research proposed several DNN architectures to
solve many NLP tasks such as machine translation (Sutskever, Vinyals, and Le, 2014;
Bahdanau, Cho, and Bengio, 2015), learning word embeddings (Mikolov et al., 2013;
Mikolov et al., 2013) and document classification (Le and Mikolov, 2014; Goldberg,
2016). DNNs also had a huge impact on the speech recognition community (Hinton
et al., 2012; Sainath et al., 2013). Interestingly, we should note that the intrinsic simi-
larity between the NLP and speech recognition tasks is due to the sequential aspect
of the data which is also one of the main characteristics of time series data.

In this context, this chapter targets the following open questions: What is the
current state-of-the-art DNN for TSC? Is there a current DNN approach that reaches state-
of-the-art performance for TSC and is less complex than HIVE-COTE? What type of DNN
architectures works best for the TSC task? How does the random initialization affect the
performance of deep learning classifiers? And finally: Could the black-box effect of DNNs
be avoided to provide interpretability? Given that the latter questions have not been
addressed by the TSC community, it is surprising how a small amount of papers
have considered DNNs to be a potential accurate classifier of time series data (Lines,
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Taylor, and Bagnall, 2018). In fact, a recent empirical study (Bagnall et al., 2017)
evaluated 18 TSC algorithms on 85 time series datasets, none of which was a deep
learning model. This shows how much the community lacks of an overview of the
current performance of deep learning models for solving the TSC problem (Lines,
Taylor, and Bagnall, 2018).

In this chapter, we performed an empirical comparative study of the most re-
cent deep learning approaches for TSC. With the rise of GPUs, we show how deep
architectures can be trained efficiently to learn hidden discriminative features from
raw time series in an end-to-end manner. Similarly to Bagnall et al., 2017, in order
to have a fair comparison between the tested approaches, we developed a common
framework in Python, Keras (Chollet, 2015) and Tensorflow (Abadi et al., 2015) to
train the deep learning models on a cluster of more than 60 GPUs.

In addition to the univariate datasets’ evaluation, we tested the approaches on
12 MTS datasets (Baydogan, 2015). The multivariate evaluation shows another ben-
efit of deep learning models, which is the ability to handle the curse of dimension-
ality (Bellman, 2010; Keogh and Mueen, 2017) by leveraging different degrees of
smoothness in compositional function (Poggio et al., 2017) as well as the parallel
computations of the GPUs (Lu et al., 2015).

As for comparing the classifiers over multiple datasets, we followed the recom-
mendations in Demšar, 2006 and used the Friedman test (Friedman, 1940) to re-
ject the null hypothesis. Once we have established that a statistical difference exists
within the classifiers’ performance, we followed the pairwise post-hoc analysis rec-
ommended by Benavoli, Corani, and Mangili, 2016 where the average rank compar-
ison is replaced by a Wilcoxon signed-rank test (Wilcoxon, 1945) with Holm’s alpha
correction (Holm, 1979; Garcia and Herrera, 2008).

In this study, we have trained about 1 billion parameters across 97 univariate
and multivariate time series datasets. Despite the fact that a huge number of pa-
rameters risks overfitting (Zhang et al., 2017) the relatively small train set in the
UCR/UEA archive, our experiments showed that not only DNNs are able to sig-
nificantly outperform the NN-DTW, but are also able to achieve results that are not
significantly different than COTE and HIVE-COTE using a deep residual network
architecture (He et al., 2016; Wang, Yan, and Oates, 2017). Finally, we analyze how
poor random initializations can have a significant effect on a DNN’s performance.

The rest of the chapter is structured as follows. In Section 1.2, we provide some
background materials concerning the main types of architectures that have been pro-
posed for TSC. In Section 1.3, the tested architectures are individually presented in
details. We describe our experimental open source framework in Section 1.4. The
corresponding results and the discussions are presented in Section 1.5. In Section 1.6,
we describe in detail a couple of methods that mitigate the black-box effect of the
deep learning models. Finally, we present a conclusion in Section 1.7 to summarize
our findings and discuss future directions.
The main contributions presented in this chapter can be summarized as follows:

• We explain with practical examples, how deep learning can be adapted to one
dimensional time series data.

• We propose a unified taxonomy that regroups the recent applications of DNNs
for TSC in various domains under two main categories: generative and dis-
criminative models.

• We detail the architecture of nine end-to-end deep learning models designed
specifically for TSC.
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FIGURE 1.1: A unified deep learning framework for time series clas-
sification.

• We evaluate these models on the univariate UCR/UEA archive benchmark
and 12 MTS classification datasets.

• We provide the community with an open source deep learning framework for
TSC in which we have implemented all nine approaches.

• We investigate the use of CAM in order to reduce DNNs’ black-box effect and
explain the different decisions taken by various models.

1.2 Background

In this section, we start by introducing the necessary definitions for ease of under-
standing. We then follow by an extensive theoretical background on training DNNs
for the TSC task. Finally we present our proposed taxonomy of the different DNNs
with examples of their application in various real world data mining problems.

1.2.1 Time series classification

Before introducing the different types of neural networks architectures, we go
through some formal definitions for TSC.

Definition 1. A univariate time series X = [x1, x2, . . . , xT] is an ordered set of real
values. The length of X is equal to the number of real values T.

Definition 2. An M-dimensional MTS, X = [X1, X2, . . . , XM] consists of M different
univariate time series with Xi ∈ RT.

Definition 3. A dataset D = {(X1, Y1), (X2, Y2), . . . , (XN , YN)} is a collection of
pairs (Xi, Yi) where Xi could either be a univariate or multivariate time series with
Yi as its corresponding one-hot label vector. For a dataset containing K classes, the
one-hot label vector Yi is a vector of length K where each element j ∈ [1, K] is equal
to 1 if the class of Xi is j and 0 otherwise.

The task of TSC consists of training a classifier on a dataset D in order to map
from the space of possible inputs to a probability distribution over the class variable
values (labels).

1.2.2 Deep learning approaches for time series classification

In this chapter, we focus on reviewing various approaches tackling the TSC
task (Bagnall et al., 2017) using DNNs, which are considered complex machine learn-
ing models (LeCun, Bengio, and Hinton, 2015). A general deep learning framework
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for TSC is depicted in Figure 1.1. These networks are designed to learn hierarchical
representations of the data. A deep neural network is a composition of L parametric
functions referred to as layers where each layer is considered a representation of the
input domain (Papernot and McDaniel, 2018). One layer li, such as i ∈ 1 . . . L, con-
tains neurons, which are small units that compute one element of the layer’s output.
The layer li takes as input the output of its previous layer li−1 and applies a non-
linearity (such as the sigmoid function) to compute its own output. The behavior
of these non-linear transformations is controlled by a set of parameters θi for each
layer. In the context of DNNs, these parameters are called weights which link the
input of the previous layer to the output of the current layer. Hence, given an input
x, a neural network performs the following computations to predict the class:

fL(θL, x) = fL−1(θL−1, fL−2(θL−2, . . . , f1(θ1, x))) (1.1)

where fi corresponds to the non-linearity applied at layer li. For simplicity, we will
omit the vector of parameters θ and use f (x) instead of f (θ, x). This process is also
referred to as feed-forward propagation in the deep learning literature.

During training, the network is presented with a certain number of known input-
output (for example a dataset D). First, the weights are initialized randomly (LeCun
et al., 1998), although a robust alternative would be to take a pre-trained model on a
source dataset and fine-tune it on the target dataset (Pan and Yang, 2010). This pro-
cess is known as transfer learning which we do not study empirically, rather we dis-
cuss the transferability of each model with respect to the architecture in Section 1.3.
After the weight’s initialization, a forward pass through the model is applied: using
the function f the output of an input x is computed. The output is a vector whose
components are the estimated probabilities of x belonging to each class. The model’s
prediction loss is computed using a cost function, for example the negative log like-
lihood. Then, using gradient descent (LeCun et al., 1998), the weights are updated
in a backward pass to propagate the error. Thus, by iteratively taking a forward
pass followed by backpropagation, the model’s parameters are updated in a way
that minimizes the loss on the training data.

During testing, the probabilistic classifier (the model) is tested on unseen data
which is also referred to as the inference phase: a forward pass on this unseen in-
put followed by a class prediction. The prediction corresponds to the class whose
probability is maximum. To measure the performance of the model on the test data
(generalization), we adopted the accuracy measure (similarly to Bagnall et al., 2017).
One advantage of DNNs over non-probabilistic classifiers (such as NN-DTW) is that
a probabilistic decision is taken by the network (Large, Lines, and Bagnall, 2017),
thus allowing to measure the confidence of a certain prediction given by an algo-
rithm.

Although there exist many types of DNNs, in this review we focus on three main
DNN architectures used for the TSC task: MLP, CNN and ESN. These three types of
architectures were chosen since they are widely adopted for end-to-end deep learn-
ing (LeCun, Bengio, and Hinton, 2015) models for TSC.

Multi Layer Perceptrons

An MLP constitutes the simplest and most traditional architecture for deep learning
models. This form of architecture is also known as an FC network since the neurons
in layer li are connected to every neuron in layer li−1 with i ∈ [1, L]. These connec-
tions are modeled by the weights in a neural network. A general form of applying a
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FIGURE 1.2: Multilayer perceptron for time series classification.

non-linearity to an input time series X can be seen in the following equation:

Ali = f (ωli ∗ X + b) (1.2)

with ωli being the set of weights with length and number of dimensions identical to
X’s, b the bias term and Ali the activation of the neurons in layer li. Note that the
number of neurons in a layer is considered a hyperparameter.

One impediment from adopting MLPs for time series data is that they do not
exhibit any spatial invariance, which can be seen in Figure 1.2. In other words, each
time stamp has its own weight and the temporal information is lost: meaning time
series elements are treated independently from each other. For example the set of
weights wd of neuron d contains T × M values denoting the weight of each time
stamp t for each dimension of the M-dimensional input MTS of length T. Then by
cascading the layers we obtain a computation graph similar to equation 1.1.

For TSC, the final layer is usually a discriminative layer that takes as input the
activation of the previous layer and gives a probability distribution over the class
variables in the dataset. Most deep learning approaches for TSC employ a softmax
layer which corresponds to an FC layer with softmax as activation function f and
a number of neurons equal to the number of classes in the dataset. Three main
useful properties motivate the use of the softmax activation function: the sum of
probabilities is guaranteed to be equal to 1, the function is differentiable and it is
an adaptation of logistic regression to the multinomial case. The result of a softmax
function can be defined as follows:

Ŷj(X) =
eAL−1∗ωj+bj

∑K
k=1 eAL−1∗ωk+bk

(1.3)

with Ŷj denoting the probability of X having the class Y equal to class j out of K
classes in the dataset. The set of weights wj (and the corresponding bias bj) for each
class j are linked to each previous activation in layer lL−1.

The weights in equations (1.2) and (1.3) should be learned automatically using
an optimization algorithm that minimizes an objective cost function. In order to
approximate the error of a certain given value of the weights, a differentiable cost
(or loss) function that quantifies this error should be defined. The most used loss
function in DNNs for the classification task is the categorical cross entropy as defined
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in the following equation:

L(X) = −
K

∑
j=1

Yj log Ŷj (1.4)

with L denoting the loss or cost when classifying the input time series X. Similarly,
the average loss when classifying the whole training set of D can be defined using
the following equation:

J(Ω) =
1
N

N

∑
n=1

L(Xn) (1.5)

with Ω denoting the set of weights to be learned by the network (in this case the
weights w from equations 1.2 and 1.3). The loss function is minimized to learn the
weights in Ω using a gradient descent method which is defined using the following
equation:

ω = ω− α
∂J
∂ω
| ∀ ω ∈ Ω (1.6)

with α denoting the learning rate of the optimization algorithm. By subtracting the
partial derivative, the model is actually auto-tuning the parameters ω in order to
reach a local minimum (or a saddle point) of J in case of a non-linear classifier (which
is almost always the case for a DNN). We should note that when the partial deriva-
tive cannot be directly computed with respect to a certain parameter ω, the chain
rule of derivative is employed which is in fact the main idea behind the backpropa-
gation algorithm (LeCun et al., 1998).

Convolutional Neural Networks

Since AlexNet (Krizhevsky, Sutskever, and Hinton, 2012) won the ImageNet com-
petition in 2012, deep CNNs have seen a lot of successful applications in many dif-
ferent domains (LeCun, Bengio, and Hinton, 2015) such as reaching human level
performance in image recognition problems (Szegedy et al., 2015) as well as differ-
ent natural language processing tasks (Sutskever, Vinyals, and Le, 2014; Bahdanau,
Cho, and Bengio, 2015). Motivated by the success of these CNN architectures in
these various domains, researchers have started adopting them for time series anal-
ysis (Cristian Borges Gamboa, 2017).

A convolution can be seen as applying and sliding a filter over the time series.
Unlike images, the filters exhibit only one dimension (time) instead of two dimen-
sions (width and height). The filter can also be seen as a generic non-linear trans-
formation of a time series. Concretely, if we are convoluting (multiplying) a filter
of length 3 with a univariate time series, by setting the filter values to be equal to
[ 1

3 , 1
3 , 1

3 ], the convolution will result in applying a moving average with a sliding
window of length 3. A general form of applying the convolution for a centered time
stamp t is given in the following equation:

Ct = f (ω ∗ Xt−l/2:t+l/2 + b) | ∀ t ∈ [1, T] (1.7)

where C denotes the result of a convolution (dot product ∗) applied on a univariate
time series X of length T with a filter ω of length l, a bias parameter b and a final
non-linear function f such as the ReLU. The result of a convolution (one filter) on
an input time series X can be considered as another univariate time series C that
underwent a filtering process. Thus, applying several filters on a time series will
result in a multivariate time series whose dimensions are equal to the number of
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FIGURE 1.3: The result of a applying a learned discriminative convo-
lution on the GunPoint dataset.

filters used. An intuition behind applying several filters on an input time series
would be to learn multiple discriminative features useful for the classification task.

Unlike MLPs, the same convolution (the same filter values w and b) will be used
to find the result for all time stamps t ∈ [1, T]. This is a very powerful property
(called weight sharing) of the CNNs which enables them to learn filters that are
invariant across the time dimension.

When considering an MTS as input to a convolutional layer, the filter no longer
has one dimension (time) but also has dimensions that are equal to the number of
dimensions of the input MTS. Thus, the filter can be considered to be multivariate
itself.

Finally, instead of setting manually the values of the filter ω, these values should
be learned automatically since they depend highly on the targeted dataset. For ex-
ample, one dataset would have the optimal filter to be equal to [1, 2, 2] whereas an-
other dataset would have an optimal filter equal to [2, 0,−1]. By optimal we mean a
filter whose application will enable the classifier to easily discriminate between the
dataset classes (see Figure 1.3). In order to learn automatically a discriminative filter,
the convolution should be followed by a discriminative classifier, which is usually
preceded by a pooling operation that can either be local or global.

Local pooling such as average or max pooling takes an input time series and re-
duces its length T by aggregating over a sliding window of the time series. For
example if the sliding window’s length is equal to 3 the resulting pooled time se-
ries will have a length equal to T

3 - this is only true if the stride is equal to the sliding
window’s length. With a global pooling operation, the time series will be aggregated
over the whole time dimension resulting in a single real value. In other words, this
is similar to applying a local pooling with a sliding window’s length equal to the
length of the input time series. Usually a global aggregation is adopted to reduce
drastically the number of parameters in a model thus decreasing the risk of over-
fitting while enabling the use of CAM to explain the model’s decision (Zhou et al.,
2016).

In addition to pooling layers, some deep learning architectures include normal-
ization layers to help the network converge quickly. For time series data, the batch
normalization operation is performed over each channel therefore preventing the in-
ternal covariate shift across one mini-batch training of time series (Ioffe and Szegedy,
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FIGURE 1.4: Fully Convolutional Neural Network architecture.

2015). Another type of normalization was proposed by Ulyanov, Vedaldi, and Lem-
pitsky, 2016 to normalize each instance instead of a per batch basis, thus learning the
mean and standard deviation of each training instance for each layer via gradient
descent. The latter approach is called instance normalization and mimics learning
the z-normalization parameters for the time series training data.

The final discriminative layer takes the representation of the input time series
(the result of the convolutions) and give a probability distribution over the class
variables in the dataset. Usually, this layer is comprised of a softmax operation sim-
ilarly to the MLPs. Note that for some approaches, we would have an additional
non-linear FC layer before the final softmax layer which increases the number of pa-
rameters in a network. Finally in order to train and learn the parameters of a deep
CNN, the process is identical to training an MLP: a feed-forward pass followed by
backpropagation (LeCun et al., 1998). An example of a CNN architecture for TSC
with three convolutional layers is illustrated in Figure 1.4.

Echo State Networks

Another popular type of architectures for deep learning models is the RNN. Apart
from time series forecasting, we found that these neural networks were rarely ap-
plied for time series classification which is mainly due to three factors: (1) the type
of this architecture is designed mainly to predict an output for each element (time
stamp) in the time series (Längkvist, Karlsson, and Loutfi, 2014); (2) RNNs typi-
cally suffer from the vanishing gradient problem due to training on long time se-
ries (Pascanu, Mikolov, and Bengio, 2012); (3) RNNs are considered hard to train
and parallelize which led the researchers to avoid using them for computational
reasons (Pascanu, Mikolov, and Bengio, 2013).

Given the aforementioned limitations, a relatively recent type of recurrent archi-
tecture was proposed for time series: ESNs (Gallicchio and Micheli, 2017). ESNs
were first invented by Jaeger and Haas, 2004 for time series prediction in wireless
communication channels. They were designed to mitigate the challenges of RNNs
by eliminating the need to compute the gradient for the hidden layers which re-
duces the training time of these neural networks thus avoiding the vanishing gradi-
ent problem. These hidden layers are initialized randomly and constitutes the reser-
voir: the core of an ESN which is a sparsely connected random RNN. Each neuron
in the reservoir will create its own nonlinear activation of the incoming signal. The
inter-connected weights inside the reservoir and the input weights are not learned
via gradient descent, only the output weights are tuned using a learning algorithm
such as logistic regression or Ridge classifier (Hoerl and Kennard, 1970).
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FIGURE 1.5: An Echo State Network architecture for time series clas-
sification.

To better understand the mechanism of these networks, consider an ESN with
input dimensionality M, neurons in the reservoir Nr and an output dimensionality
K equal to the number of classes in the dataset. Let X(t) ∈ RM, I(t) ∈ RNr and
Ŷ(t) ∈ RK denote the vectors of the input M-dimensional MTS, the internal (or
hidden) state and the output unit activity for time t respectively. Further let Win ∈
RNr×M and W ∈ RNr×Nr and Wout ∈ RC×Nr denote respectively the weight matrices
for the input time series, the internal connections and the output connections as seen
in Figure 1.5. The internal unit activity I(t) at time t is updated using the internal
state at time step t − 1 and the input time series element at time t. Formally the
hidden state can be computed using the following recurrence:

I(t) = f (WinX(t) + WI(t− 1)) | ∀ t ∈ [1, T] (1.8)

with f denoting an activation function of the neurons, a common choice is tanh(·)
applied element-wise (Tanisaro and Heidemann, 2016). The output can be computed
according to the following equation:

Ŷ(t) = Wout I(t) (1.9)

thus classifying each time series element X(t). Note that ESNs depend highly on the
initial values of the reservoir that should satisfy a pre-determined hyperparameter:
the spectral radius. Figure 1.5 shows an example of an ESN with a univariate input
time series to be classified into K classes.

Finally, we should note that for all types of DNNs, a set of techniques was pro-
posed by the deep learning community to enhance neural networks’ generalization
capabilities. Regularization methods such as l2-norm weight decay (Bishop, 2006)
or Dropout (Srivastava et al., 2014) aim at reducing overfitting by limiting the ac-
tivation of the neurons. Another popular technique is data augmentation, which
tackles the problem of overfitting a small dataset by increasing the number of train-
ing instances (Baird, 1992). This method consists in cropping, rotating and blurring
images which have been shown to improve the DNNs’ performance for computer
vision tasks (Zhang et al., 2017). Although two approaches in this survey include a
data augmentation technique, the study of its impact on TSC is currently limited (Is-
mail Fawaz et al., 2018b). Finally we should note that Chapter 2 of this thesis is
dedicated to study several regularization techniques of DNNs for the underlying
TSC task.
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FIGURE 1.6: An overview of the different deep learning approaches
for time series classification.

1.2.3 Generative or discriminative approaches

Deep learning approaches for TSC can be separated into two main categories: the
generative and the discriminative models (as proposed in Längkvist, Karlsson, and
Loutfi, 2014). We further separate these two groups into sub-groups which are de-
tailed in the following subsections and illustrated in Figure 1.6.

Generative models

Generative models usually exhibit an unsupervised training step that precedes the
learning phase of the classifier (Längkvist, Karlsson, and Loutfi, 2014). This type of
network has been referred to as Model-based classifiers in the TSC community (Bag-
nall et al., 2017). Some of these generative non deep learning approaches include
auto-regressive models (Bagnall and Janacek, 2014), hidden Markov models (Kotsi-
fakos and Papapetrou, 2014) and kernel models (Chen et al., 2013).

For all generative approaches, the goal is to find a good representation of time
series prior to training a classifier (Längkvist, Karlsson, and Loutfi, 2014). Usually,
to model the time series, classifiers are preceded by an unsupervised pre-training
phase such as SDAEs (Bengio et al., 2013; Hu, Zhang, and Zhou, 2016). A generative
CNN-based model was proposed in Wang et al., 2016b; Mittelman, 2015 where the
authors introduced a deconvolutional operation followed by an upsampling tech-
nique that helps in reconstructing a multivariate time series. DBNs were also used
to model the latent features in an unsupervised manner which are then leveraged
to classify univariate and multivariate time series (Wang et al., 2017; Banerjee et al.,
2017). In Mehdiyev et al., 2017; Malhotra et al., 2018; Rajan and Thiagarajan, 2018,
an RNN auto-encoder was designed to first generate the time series then using the
learned latent representation, they trained a classifier (such as SVM or Random For-
est) on top of these representations to predict the class of a given input time series.

Other studies such as in Aswolinskiy, Reinhart, and Steil, 2017; Bianchi et al.,
2018; Chouikhi, Ammar, and Alimi, 2018; Ma et al., 2016 used self-predict modeling



28 Chapter 1. The state of the art for time series classification

for time series classification where ESNs were first used to re-construct the time se-
ries and then the learned representation in the reservoir space was utilized for classi-
fication. We refer to this type of architecture by traditional ESNs in Figure 1.6. Other
ESN-based approaches (Chen et al., 2015; Chen et al., 2013; Che et al., 2017b) define
a kernel over the learned representation followed by an SVM or an MLP classifier.
In Gong et al., 2018; Wang, Wang, and Liu, 2016, a meta-learning evolutionary-based
algorithm was proposed to construct an optimal ESN architecture for univariate and
multivariate time series. For more details concerning generative ESN models for
TSC, we refer the interested reader to a recent empirical study (Aswolinskiy, Rein-
hart, and Steil, 2016) that compared classification in reservoir and model-space for
both multivariate and univariate time series.

Discriminative models

A discriminative deep learning model is a classifier (or regressor) that directly learns
the mapping between the raw input of a time series (or its hand engineered features)
and outputs a probability distribution over the class variables in a dataset. Sev-
eral discriminative deep learning architectures have been proposed to solve the TSC
task, but we found that this type of model could be further sub-divided into two
groups: (1) deep learning models with hand engineered features and (2) end-to-end
deep learning models.

The most frequently encountered and computer vision inspired feature extrac-
tion method for hand engineering approaches is the transformation of time series
into images using specific imaging methods such as Gramian fields (Wang and
Oates, 2015b; Wang and Oates, 2015a), recurrence plots (Hatami, Gavet, and De-
bayle, 2017; Tripathy and Acharya, 2018) and Markov transition fields (Wang and
Oates, 2015). Unlike image transformation, other feature extraction methods are
not domain agnostic. These features are first hand-engineered using some domain
knowledge, then fed to a deep learning discriminative classifier. For example in Ue-
mura et al., 2018, several features (such as the velocity) were extracted from sensor
data placed on a surgeon’s hand in order to determine the skill level during surgical
training. In fact, most of the deep learning approaches for TSC with some hand engi-
neered features are present in human activity recognition tasks (Ignatov, 2018). For
more details on the different applications of deep learning for human motion detec-
tion using mobile and wearable sensor networks, we refer the interested reader to a
recent survey by Nweke et al., 2018 where deep learning approaches (with or with-
out hand engineered features) were thoroughly described specifically for the human
activity recognition task.

In contrast to feature engineering, end-to-end deep learning aims to incorporate
the feature learning process while fine-tuning the discriminative classifier (Nweke
et al., 2018). Since this type of deep learning approach is domain agnostic and does
not include any domain specific pre-processing steps, we decided to further separate
these end-to-end approaches using their neural network architectures.

In Wang, Yan, and Oates, 2017; Geng and Luo, 2018, an MLP was designed to
learn from scratch a discriminative time series classifier. The problem with an MLP
approach is that temporal information is lost and the features learned are no longer
time-invariant. This is where CNNs are most useful, by learning spatially invari-
ant filters (or features) from raw input time series (Wang, Yan, and Oates, 2017).
During our study, we found that CNN is the most widely applied architecture for
the TSC problem, which is probably due to their robustness and the relatively small
amount of training time compared to their counterpart architectures such as RNNs
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or MLPs. Several variants of CNNs have been proposed and validated on a subset of
the UCR/UEA archive (Dau et al., 2019; Bagnall et al., 2017) such as ResNets (Wang,
Yan, and Oates, 2017; Geng and Luo, 2018) which add linear shortcut connections
for the convolutional layers potentially enhancing the model’s accuracy (He et al.,
2016). In Le Guennec, Malinowski, and Tavenard, 2016; Cui, Chen, and Chen, 2016;
Wang, Yan, and Oates, 2017; Zhao et al., 2017, traditional CNNs were also validated
on the UCR/UEA archive. More recently in Wang et al., 2018, the architectures pro-
posed in Wang, Yan, and Oates, 2017 were modified to leverage a filter initializa-
tion technique based on the Daubechies 4 Wavelet values (Rowe and Abbott, 1995).
Outside of the UCR/UEA archive, deep learning has reached state-of-the-art per-
formance on several datasets in different domains (Längkvist, Karlsson, and Loutfi,
2014). For spatio-temporal series forecasting problems, such as meteorology and
oceanography, DNNs were proposed in Ziat et al., 2017. Strodthoff and Strodthoff,
2019 proposed to detect myocardial infractions from electrocardiography data using
deep CNNs. For human activity recognition from wearable sensors, deep learning
is replacing the feature engineering approaches (Nweke et al., 2018) where features
are no longer hand-designed but rather learned by deep learning models trained
through backpropagation. One other type of time series data is present in Electronic
Health Records, where a recent generative adversarial network with a CNN (Che
et al., 2017a) was trained for risk prediction based on patients historical medical
records. In Ismail Fawaz et al., 2018c, CNNs were designed to reach state-of-the-art
performance for surgical skills identification. Liu, Hsaio, and Tu, 2018 leveraged a
CNN model for multivariate and lag-feature characteristics in order to achieve state-
of-the-art accuracy on the Prognostics and Health Management 2015 challenge data.
Finally, a recent review of deep learning for physiological signals classification re-
vealed that CNNs were the most popular architecture (Faust et al., 2018) for the con-
sidered task. We mention one final type of hybrid architectures that showed promis-
ing results for the TSC task on the UCR/UEA archive datasets, where mainly CNNs
were combined with other types of architectures such as Gated Recurrent Units (Lin
and Runger, 2018) and the attention mechanism (Serrà, Pascual, and Karatzoglou,
2018). The reader may have noticed that CNNs appear under Auto Encoders as well
as under End-to-End learning in Figure 1.6. This can be explained by the fact that
CNNs when trained as Auto Encoders have a complete different objective function
than CNNs that are trained in an end-to-end fashion.

Now that we have presented the taxonomy for grouping DNNs for TSC, we in-
troduce in the following section the different approaches that we have included in
our experimental evaluation. We also explain the motivations behind the selection
of these algorithms.

1.3 Benchmarking deep learning for time series classification

In this section, we start by explaining the reasons behind choosing discriminative
end-to-end approaches for this empirical evaluation. We then describe in detail the
nine different deep learning architectures with their corresponding advantages and
drawbacks.

1.3.1 Why discriminative end-to-end approaches ?

As previously mentioned in Section 1.2, the main characteristic of a generative model
is fitting a time series self-predictor whose latent representation is later fed into an
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off-the-shelf classifier such as Random Forest or SVM. Although these models do
sometimes capture the trend of a time series, we decided to leave these generative
approaches out of our experimental evaluation for the following reasons:

• This type of method is mainly proposed for tasks other than classification or
as part of a larger classification scheme (Bagnall et al., 2017);

• The informal consensus in the literature is that generative models are usually
less accurate than direct discriminative models (Bagnall et al., 2017; Nguyen,
Gsponer, and Ifrim, 2017);

• The implementation of these models is usually more complicated than for dis-
criminative models since it introduces an additional step of fitting a time series
generator - this has been considered a barrier with most approaches whose
code was not publicly available such as Gong et al., 2018; Che et al., 2017b;
Chouikhi, Ammar, and Alimi, 2018; Wang et al., 2017;

• The accuracy of these models depends highly on the chosen off-the-shelf clas-
sifier which is sometimes not even a neural network classifier (Rajan and Thi-
agarajan, 2018).

Given the aforementioned limitations for generative models, we decided to limit
our experimental evaluation to discriminative deep learning models for TSC. In ad-
dition to restricting the study to discriminative models, we decided to only consider
end-to-end approaches, thus further leaving classifiers that incorporate feature engi-
neering out of our empirical evaluation. We made this choice because we believe that
the main goal of deep learning approaches is to remove the bias due to manually de-
signed features (Ordón̈ez and Roggen, 2016), thus enabling the network to learn the
most discriminant useful features for the classification task. This has also been the
consensus in the human activity recognition literature, where the accuracy of deep
learning methods depends highly on the quality of the extracted features (Nweke et
al., 2018). Finally, since our goal is to provide an empirical study of domain agnos-
tic deep learning approaches for any TSC task, we found that it is best to compare
models that do not incorporate any domain knowledge into their approach.

As for why we chose the nine approaches (described in the next section), it is first
because among all the discriminative end-to-end deep learning models for TSC, we
wanted to cover a wide range of architectures such as CNNs, Fully CNNs, MLPs,
ResNets, ESNs, etc. Second, since we cannot cover an empirical study of all ap-
proaches validated in all TSC domains, we decided to only include approaches that
were validated on the whole (or a subset of) the univariate time series UCR/UEA
archive (Dau et al., 2019; Bagnall et al., 2017) and/or on the MTS archive (Baydo-
gan, 2015). Finally, we chose to work with approaches that do not try to solve a sub
task of the TSC problem such as in Geng and Luo, 2018 where CNNs were modi-
fied to classify imbalanced time series datasets. To justify this choice, we emphasize
that imbalanced TSC problems can be solved using several techniques such as data
augmentation (Ismail Fawaz et al., 2018b) and modifying the class weights (Geng
and Luo, 2018). However, any deep learning algorithm can benefit from this type of
modification. Therefore if we did include modifications for solving imbalanced TSC
tasks, it would be much harder to determine if it is the choice of the deep learning
classifier or the modification itself that improved the accuracy of the model. Another
sub task that has been at the center of recent studies is early time series classifica-
tion (Wang et al., 2016a) where deep CNNs were modified to include an early clas-
sification of time series. More recently, a deep reinforcement learning approach was
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also proposed for the early TSC task (Martinez et al., 2018). For further details, we
refer the interested reader to a recent survey on deep learning for early time series
classification (Santos and Kern, 2017).

1.3.2 Compared approaches

After having presented an overview over the recent deep learning approaches for
time series classification, we present the nine architectures that we have chosen to
compare in this chapter.

Multi Layer Perceptron

The MLP, which depicted in Figure 1.2, is considered the most traditional form of
DNNs proposed in Wang, Yan, and Oates, 2017 as a baseline architecture for TSC.
The network contains 4 layers in total where each one is fully connected to the output
of its previous layer. The final layer is a softmax classifier, which is fully connected
to its previous layer’s output and contains a number of neurons equal to the number
of classes in a dataset. All three hidden FC layers are composed of 500 neurons with
ReLU as the activation function. Each layer is preceded by a dropout operation (Sri-
vastava et al., 2014) with a rate equal to 0.1, 0.2, 0.2 and 0.3 for respectively the first,
second, third and fourth layer. Dropout is one form of regularization that helps in
preventing overfitting (Srivastava et al., 2014). The dropout rate indicates the per-
centage of neurons that are deactivated (set to zero) in a feed forward pass during
training.

MLP does not have any layer whose number of parameters is invariant across
time series of different lengths (denoted by #invar in Table 1.1) which means that the
transferability of the network is not trivial: the number of parameters (weights) of
the network depends directly on the length of the input time series.

Fully Convolutional Neural Network

FCNs, illustrated in Figure 1.4, were first proposed in Wang, Yan, and Oates, 2017 for
classifying univariate time series and validated on 44 datasets from the UCR/UEA
archive. FCNs are mainly convolutional networks that do not contain any local pool-
ing layers which means that the length of a time series is kept unchanged throughout
the convolutions. In addition, one of the main characteristics of this architecture is
the replacement of the traditional final FC layer with a GAP layer which reduces
drastically the number of parameters in a neural network while enabling the use
of the CAM (Zhou et al., 2016) that highlights which parts of the input time series
contributed the most to a certain classification.

The architecture proposed in Wang, Yan, and Oates, 2017 is first composed of
three convolutional blocks where each block contains three operations: a convolu-
tion followed by a batch normalization (Ioffe and Szegedy, 2015) whose result is fed
to a ReLU activation function. The result of the third convolutional block is aver-
aged over the whole time dimension which corresponds to the GAP layer. Finally, a
traditional softmax classifier is fully connected to the GAP layer’s output.

All convolutions have a stride equal to 1 with a zero padding to preserve the ex-
act length of the time series after the convolution. The first convolution contains 128
filters with a filter length equal to 8, followed by a second convolution of 256 filters
with a filter length equal to 5 which in turn is fed to a third and final convolutional
layer composed of 128 filters, each one with a length equal to 3.
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FIGURE 1.7: The Residual Network’s architecture for time series clas-
sification.

We can see that FCN does not hold any pooling nor a regularization operation.
In addition, one of the advantages of FCNs is the invariance (denoted by #invar in
Table 1.1) in the number of parameters for 4 layers (out of 5) across time series of
different lengths. This invariance (due to using GAP) enables the use of a transfer
learning approach where one can train a model on a certain source dataset and then
fine-tune it on the target dataset (Ismail Fawaz et al., 2018d).

Residual Network

The third and final proposed architecture in Wang, Yan, and Oates, 2017 is a rela-
tively deep ResNet. For TSC, this is the deepest architecture with 11 layers of which
the first 9 layers are convolutional followed by a GAP layer that averages the time
series across the time dimension. The main characteristic of ResNet is the shortcut
residual connection between consecutive convolutional layers. In fact, the difference
with the usual convolutions (such as in FCNs) is that a linear shortcut is added to
link the output of a residual block to its input thus enabling the flow of the gradient
directly through these connections, which makes training a DNN much easier by
reducing the vanishing gradient effect (He et al., 2016).

The network is composed of three residual blocks followed by a GAP layer and a
final softmax classifier whose number of neurons is equal to the number of classes in
a dataset. Each residual block is first composed of three convolutions whose output
is added to the residual block’s input and then fed to the next layer. The number
of filters for all convolutions is fixed to 64, with the ReLU activation function that
is preceded by a batch normalization operation. In each residual block, the filter’s
length is set to 8, 5 and 3 respectively for the first, second and third convolution.

Similarly to the FCN model, the layers (except the final one) in the ResNet archi-
tecture have an invariant number of parameters across different datasets. That being
said, we can easily pre-train a model on a source dataset, then transfer and fine-tune
it on a target dataset without having to modify the hidden layers of the network. As
we have previously mentioned and since this type of transfer learning approach can
give an advantage for certain types of architecture, we leave the exploration of this
area of research for future work. The ResNet architecture proposed by Wang, Yan,
and Oates, 2017 is depicted in Figure 1.7.
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FIGURE 1.8: Encoder’s architecture for time series classification.

Encoder

Originally proposed by Serrà, Pascual, and Karatzoglou, 2018, Encoder is a hybrid
deep CNN whose architecture is inspired by FCN (Wang, Yan, and Oates, 2017)
with a main difference where the GAP layer is replaced with an attention layer.
In Serrà, Pascual, and Karatzoglou, 2018, two variants of Encoder were proposed:
the first approach was to train the model from scratch in an end-to-end fashion on
a target dataset while the second one was to pre-train this same architecture on a
source dataset and then fine-tune it on a target dataset. The latter approach reached
higher accuracy thus benefiting from the transfer learning technique. On the other
hand, since almost all approaches can benefit to certain degree from a transfer learn-
ing method, we decided to implement only the end-to-end approach (training from
scratch) which already showed high performance in the author’s original paper.

Similarly to FCN, the first three layers are convolutional with some relatively
small modifications. The first convolution is composed of 128 filters of length 5; the
second convolution is composed of 256 filters of length 11; the third convolution is
composed of 512 filters of length 21. Each convolution is followed by an instance
normalization operation (Ulyanov, Vedaldi, and Lempitsky, 2016) whose output is
fed to the PReLU (He et al., 2015) activation function. The output of PReLU is fol-
lowed by a dropout operation (with a rate equal to 0.2) and a final max pooling of
length 2. The third convolutional layer is fed to an attention mechanism (Bahdanau,
Cho, and Bengio, 2015) that enables the network to learn which parts of the time
series (in the time domain) are important for a certain classification. More precisely,
to implement this technique, the input MTS is multiplied with a second MTS of the
same length and number of channels, except that the latter has gone through a soft-
max function. Each element in the second MTS will act as a weight for the first MTS,
thus enabling the network to learn the importance of each element (time stamp).
Finally, a traditional softmax classifier is fully connected to the latter layer with a
number of neurons equal to the number of classes in the dataset.

In addition to replacing the GAP layer with the attention layer, Encoder differs
from FCN in three main core changes: (1) the PReLU activation function where an
additional parameter is added for each filter to enable learning the slope of the func-
tion, (2) the dropout regularization technique and (3) the max pooling operation.
One final note is that the careful design of Encoder’s attention mechanism enabled
the invariance across all layers which encouraged the authors to implement a trans-
fer learning approach. Figure 1.8 illustrates Encoder’s architecture for TSC.
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FIGURE 1.9: MCNN’s architecture for time series classification.

Multi-scale Convolutional Neural Network

Originally proposed by Cui, Chen, and Chen, 2016, MCNN is the earliest approach
to validate an end-to-end deep learning architecture on the UCR Archive. MCNN’s
architecture is very similar to a traditional CNN model: with two convolutions (and
max pooling) followed by an FC layer and a final softmax layer. On the other hand,
this approach is very complex with its heavy data pre-processing step. Cui, Chen,
and Chen, 2016 were the first to introduce the WS method as a data augmentation
technique. WS slides a window over the input time series and extract subsequences,
thus training the network on the extracted subsequences instead of the raw input
time series. Following the extraction of a subsequence from an input time series
using the WS method, a transformation stage is used. More precisely, prior to any
training, the subsequence will undergo three transformations: (1) identity mapping;
(2) down-sampling and (3) smoothing; thus, transforming a univariate input time
series into a multivariate input time series. This heavy pre-processing would ques-
tion the end-to-end label of this approach, but since their method is generic enough
we incorporated it into our developed framework.

For the first transformation, the input subsequence is left unchanged and the
raw subsequence will be used as an input for an independent first convolution.
The down-sampling technique (second transformation) will result in shorter sub-
sequences with different lengths which will then undergo another independent con-
volutions in parallel to the first convolution. As for the smoothing technique (third
transformation), the result is a smoothed subsequence whose length is equal to the
input raw subsequence which will also be fed to an independent convolution in par-
allel to the first and the second convolutions.

The output of each convolution in the first convolutional stage is concatenated to
form the input of the subsequent convolutional layer. Following this second layer,
an FC layer is deployed with 256 neurons using the sigmoid activation function.
Finally, the usual softmax classifier is used with a number of neurons equal to the
number of classes in the dataset.

Note that each convolution in this network uses 256 filters with the sigmoid as
an activation function, followed by a max pooling operation. Two architecture hy-
perparameters are cross-validated, using a grid search on an unseen split from the
training set: the filter length and the pooling factor which determines the pooling
size for the max pooling operation. The total number of layers in this network is 4,
out of which only the first two convolutional layers are invariant (transferable). Fi-
nally, since the WS method is also used at test time, the class of an input time series
is determined by a majority vote over the extracted subsequences’ predicted labels.
Figure 1.9 shows the MCNN’s architecture for TSC.
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Time Le-Net

T-LeNet was originally proposed by Le Guennec, Malinowski, and Tavenard, 2016
and inspired by the great performance of LeNet’s architecture for the document
recognition task (LeCun et al., 1998). This model can be considered as a traditional
CNN with two convolutions followed by an FC layer and a final softmax classifier.
There are two main differences with the FCNs: (1) an FC layer and (2) local max-
pooling operations. Unlike GAP, local pooling introduces invariance to small per-
turbations in the activation map (the result of a convolution) by taking the maximum
value in a local pooling window. Therefore for a pool size equal to 2, the pooling op-
eration will halve the length of a time series by taking the maximum value between
each two time steps.

For both convolutions, the ReLU activation function is used with a filter length
equal to 5. For the first convolution, 5 filters are used and followed by a max pool-
ing of length equal to 2. The second convolution uses 20 filters followed by a max
pooling of length equal to 4. Thus, for an input time series of length l, the result-
ing output of these two convolutions will divide the length of the time series by
8 = 4× 2. The convolutional blocks are followed by a non-linear fully connected
layer which is composed of 500 neurons, each one using the ReLU activation func-
tion. Finally, similarly to all previous architectures, the number of neurons in the
final softmax classifier is equal to the number of classes in a dataset.

Unlike ResNet and FCN, this approach does not have much invariant layers (2
out of 4) due to the use of an FC layer instead of a GAP layer, thus increasing dras-
tically the number of parameters needed to be trained which also depends on the
length of the input time series. Thus, the transferability of this network is limited
to the first two convolutions whose number of parameters depends solely on the
number and length of the chosen filters.

We should note that t-LeNet is one of the approaches adopting a data augmen-
tation technique to prevent overfitting especially for the relatively small time series
datasets in the UCR/UEA archive. Their approach uses two data augmentation tech-
niques: WS and WW. The former method is identical to MCNN’s data augmentation
technique originally proposed in Cui, Chen, and Chen, 2016. As for the second data
augmentation technique, WW employs a warping technique that squeezes or di-
lates the time series. In order to deal with multi-length time series the WS method
is adopted to ensure that subsequences of the same length are extracted for train-
ing the network. Therefore, a given input time series of length l is first dilated (×2)
then squeezed (× 1

2 ) resulting in three time series of length l, 2l and 1
2 l that are fed to

WS to extract equal length subsequences for training. Note that in their original pa-
per (Le Guennec, Malinowski, and Tavenard, 2016), WS’ length is set to 0.9l. Finally
similarly to MCNN, since the WS method is also used at test time, a majority vote
over the extracted subsequences’ predicted labels is applied. Figure 1.10 shows the
details of T-LeNet’s architecture.

Multi Channel Deep Convolutional Neural Network

MCDCNN was originally proposed and validated on two multivariate time series
datasets (Zheng et al., 2014; Zheng et al., 2016). The proposed architecture is mainly a
traditional deep CNN with one modification for MTS data: the convolutions are ap-
plied independently (in parallel) on each dimension (or channel) of the input MTS.
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FIGURE 1.11: MCDCNN’s architecture for time series classification.

Each dimension for an input MTS will go through two convolutional stages with
8 filters of length 5 with ReLU as the activation function. Each convolution is fol-
lowed by a max pooling operation of length 2. The output of the second convolu-
tional stage for all dimensions is concatenated over the channels axis and then fed
to an FC layer with 732 neurons with ReLU as the activation function. Finally, the
softmax classifier is used with a number of neurons equal to the number of classes
in the dataset. By using an FC layer before the softmax classifier, the transferability
of this network is limited to the first and second convolutional layers. MCDCNN’s
architecture is depicted in Figure 1.11.

Time Convolutional Neural Network

Time-CNN approach was originally proposed by Zhao et al., 2017 for both univari-
ate and multivariate TSC. There are three main differences compared to the previ-
ously described networks. The first characteristic of Time-CNN is the use of the
MSE instead of the traditional categorical cross-entropy loss function, which has
been used by all the deep learning approaches we have mentioned so far. Hence, in-
stead of a softmax classifier, the final layer is a traditional FC layer with sigmoid as
the activation function, which does not guarantee a sum of probabilities equal to 1.
Another difference to traditional CNNs is the use of a local average pooling operation
instead of local max pooling. In addition, unlike MCDCNN, for MTS data they apply
one convolution for all the dimensions of a multivariate classification task. Another
unique characteristic of this architecture is that the final classifier is fully connected
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FIGURE 1.12: Time-CNN’s architecture for time series classification.

directly to the output of the second convolution, which removes completely the GAP
layer without replacing it with an FC non-linear layer.

The network is composed of two consecutive convolutional layers with respec-
tively 6 and 12 filters followed by a local average pooling operation of length 3. The
convolutions adopt the sigmoid as the activation function. The network’s output
consists of an FC layer with a number of neurons equal to the number of classes in
the dataset. Figure 1.12 shows the relatively shallow architecture of Time-CNN.

Time Warping Invariant Echo State Network

TWIESN (Tanisaro and Heidemann, 2016) is the only non-convolutional recurrent
architecture tested and re-implemented in our study. Although ESNs were origi-
nally proposed for time series forecasting, Tanisaro and Heidemann, 2016 proposed
a variant of ESNs that uses directly the raw input time series and predicts a proba-
bility distribution over the class variables.

In fact, for each element (time stamp) in an input time series, the reservoir space
is used to project this element into a higher dimensional space. Thus, for a univari-
ate time series, the element is projected into a space whose dimensions are inferred
from the size of the reservoir. Then for each element, a Ridge classifier (Hoerl and
Kennard, 1970) is trained to predict the class of each time series element. During
test time, for each element of an input test time series, the already trained Ridge
classifier will output a probability distribution over the classes in a dataset. Then
the a posteriori probability for each class is averaged over all time series elements,
thus assigning for each input test time series the label for which the averaged prob-
ability is maximum. Following the original paper of Tanisaro and Heidemann, 2016,
using a grid-search on an unseen split (20%) from the training set, we optimized
TWIESN’s three hyperparameters: the reservoir’s size, sparsity and spectral radius.
An example of TWIESN’s architecture is depicted in Figure 1.5.

1.3.3 Hyperparameters

Tables 1.1 and 1.2 show respectively the architecture and the optimization hyper-
parameters for all the described approaches except for TWIESN, since its hyperpa-
rameters are not compatible with the eight other algorithms’ hyperparameters. We
should add that for all the other deep learning classifiers (with TWIESN omitted), a
model checkpoint procedure was performed either on the training set or a validation
set (split from the training set). Which means that if the model is trained for 1000
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Methods
Architecture

#layers #conv #invar normalize pooling feature activate regularize

MLP 4 0 0 none none FC ReLU dropout
FCN 5 3 4 batch none GAP ReLU none
ResNet 11 9 10 batch none GAP ReLU none
Encoder 5 3 4 instance max Att PReLU dropout
MCNN 4 2 2 none max FC sigmoid none
t-LeNet 4 2 2 none max FC ReLU none
MCDCNN 4 2 2 none max FC ReLU none
Time-CNN 3 2 2 none avg Conv sigmoid none

TABLE 1.1: Architecture’s hyperparameters for the deep learning ap-
proaches.

Methods
Optimization

algorithm valid loss epochs batch learning rate decay

MLP AdaDelta train entropy 5000 16 1.0 0.0
FCN Adam train entropy 2000 16 0.001 0.0
ResNet Adam train entropy 1500 16 0.001 0.0
Encoder Adam train entropy 100 12 0.00001 0.0
MCNN Adam split20% entropy 200 256 0.1 0.0
t-LeNet Adam train entropy 1000 256 0.01 0.005
MCDCNN SGD split33% entropy 120 16 0.01 0.0005
Time-CNN Adam train mse 2000 16 0.001 0.0

TABLE 1.2: Optimization’s hyperparameters for the deep learning ap-
proaches.

epochs, the best one on the validation set (or the train set) loss will be chosen for
evaluation. This characteristic is included in Table 1.2 under the “valid” column. In
addition to the model checkpoint procedure, we should note that all deep learning
models in Table 1.1 were initialized randomly using Glorot’s uniform initialization
method (Glorot and Bengio, 2010). All models were optimized using a variant of
SGD such as Adam (Kingma and Ba, 2015) and AdaDelta (Zeiler, 2012). We should
add that for FCN, ResNet and MLP proposed in Wang, Yan, and Oates, 2017, the
learning rate was reduced by a factor of 0.5 each time the model’s training loss has
not improved for 50 consecutive epochs (with a minimum value equal to 0.0001).
One final note is that we have no way of controlling the fact that those described
architectures might have been overfitted for the UCR/UEA archive and designed
empirically to achieve a high performance, which is always a risk when comparing
classifiers on a benchmark (Bagnall et al., 2017). We therefore think that challenges
where only the training data is publicly available and the testing data are held by
the challenge organizer for evaluation might help in mitigating this problem.

1.4 Experimental setup

We first start by presenting the datasets’ properties we have adopted in this empiri-
cal study. We then describe in details our developed open-source framework of deep
learning for time series classification.
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1.4.1 Datasets

Univariate archive

In order to have a thorough and fair experimental evaluation of all approaches, we
tested each algorithm on the whole UCR/UEA archive (Dau et al., 2019) which con-
tains 85 univariate time series datasets. The datasets possess different varying char-
acteristics such as the length of the series which has a minimum value of 24 for the
ItalyPowerDemand dataset and a maximum equal to 2,709 for the HandOutLines
dataset. One important characteristic that could impact the DNNs’ accuracy is the
size of the training set which varies between 16 and 8926 for respectively Diatom-
SizeReduction and ElectricDevices datasets. We should note that twenty datasets
contains a relatively small training set (50 or fewer instances) which surprisingly
was not an impediment for obtaining high accuracy when applying a very deep
architecture such as ResNet. Furthermore, the number of classes varies between 2
(for 31 datasets) and 60 (for the ShapesAll dataset). Note that the time series in this
archive are already z-normalized (Bagnall et al., 2017).

Other than the fact of being publicly available, the choice of validating on the
UCR/UEA archive is motivated by having datasets from different domains which
have been broken down into seven different categories (Image Outline, Sensor Read-
ings, Motion Capture, Spectrographs, ECG, Electric Devices and Simulated Data)
in Bagnall et al., 2017. Further statistics, which we do not repeat for brevity, were
conducted on the UCR/UEA archive in Bagnall et al., 2017.

Multivariate archive

We also evaluated all deep learning models on Baydogan’s archive (Baydogan, 2015)
that contains 13 MTS classification datasets. For memory usage limitations over a
single GPU, we left the MTS dataset Performance Measurement System out of our
experimentations. This archive also exhibits datasets with different characteristics
such as the length of the time series which, unlike the UCR/UEA archive, varies
among the same dataset. This is due to the fact that the datasets in the UCR/UEA
archive are already re-scaled to have an equal length among one dataset (Bagnall
et al., 2017).

In order to solve the problem of unequal length time series in the MTS archive
we decided to linearly interpolate the time series of each dimension for every given
MTS, thus each time series will have a length equal to the longest time series’ length.
This form of pre-processing has also been used by Ratanamahatana and Keogh, 2005
to show that the length of a time series is not an issue for TSC problems. This step is
very important for deep learning models whose architecture depends on the length
of the input time series (such as an MLP) and for parallel computation over the
GPUs. We did not z-normalize any time series, but we emphasize that this tradi-
tional pre-processing step (Bagnall et al., 2017) should be further studied for uni-
variate as well as multivariate data, especially since normalization is known to have
a huge effect on DNNs’ learning capabilities (Zhang et al., 2017). Note that this pro-
cess is only true for the MTS datasets whereas for the univariate benchmark, the
time series are already z-normalized. Since the data is pre-processed using the same
technique for all nine classifiers, we can safely say, to some extent, that the accuracy
improvement of certain models can be solely attributed to the model itself. Table 1.3
shows the different characteristics of each MTS dataset used in our experiments.
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Dataset old length new length classes dimensions train test

ArabicDigits 4-93 93 10 13 6600 2200
AUSLAN 45-136 136 95 22 1140 1425
CharacterTrajectories 109-205 205 20 3 300 2558
CMUsubject16 127-580 580 2 62 29 29
ECG 39-152 152 2 2 100 100
JapaneseVowels 7-29 29 9 12 270 370
KickVsPunch 274-841 841 2 62 16 10
Libras 45-45 45 15 2 180 180
Outflow 50-997 997 2 4 803 534
UWave 315-315 315 8 3 200 4278
Wafer 104-198 198 2 6 298 896
WalkVsRun 128-1918 1919 2 62 28 16

TABLE 1.3: The multivariate time series classification archive.

1.4.2 Experiments

For each dataset in both archives (97 datasets in total), we have trained the nine deep
learning models (presented in the previous section) with 10 different runs each. Each
run uses the same original train/test split in the archive but with a different random
weight initialization, which enables us to take the mean accuracy over the 10 runs
in order to reduce the bias due to the weights’ initial values. In total, we have per-
formed 8730 experiments for the 85 univariate and 12 multivariate TSC datasets.
Thus, given the huge number of models that needed to be trained, we ran our ex-
periments on a cluster of 60 GPUs. These GPUs were a mix of four types of Nvidia
graphic cards: GTX 1080 Ti, Tesla K20, K40 and K80. The total sequential running
time was approximately 100 days, that is if the computation has been done on a
single GPU. However, by leveraging the cluster of 60 GPUs, we managed to obtain
the results in less than one month. We implemented our framework using the open
source deep learning library Keras (Chollet, 2015) with the Tensorflow (Abadi et al.,
2015) back-end1.

Following Lucas et al., 2018; Forestier et al., 2017b; Petitjean et al., 2016; Grabocka
et al., 2014 we used the mean accuracy measure averaged over the 10 runs on the
test set. When comparing with the state-of-the-art results published in Bagnall et al.,
2017 we averaged the accuracy using the median test error. Following the recom-
mendation in Demšar, 2006 we used the Friedman test (Friedman, 1940) to reject the
null hypothesis. Then we performed the pairwise post-hoc analysis recommended
by Benavoli, Corani, and Mangili, 2016 where the average rank comparison is re-
placed by a Wilcoxon signed-rank test (Wilcoxon, 1945) with Holm’s alpha (5%) cor-
rection (Holm, 1979; Garcia and Herrera, 2008). To visualize this type of comparison
we used a critical difference diagram proposed by Demšar, 2006, where a thick hor-
izontal line shows a group of classifiers (a clique) that are not-significantly different
in terms of accuracy.

1.5 Results

In this section, we present the accuracies for each one of the nine approaches. All
accuracies are absolute and not relative to each other that is if we claim algorithm A
is 5% better than algorithm B, this means that the average accuracy is 0.05 higher for
algorithm A than B.

1The implementations are available on https://github.com/hfawaz/dl-4-tsc

https://github.com/hfawaz/dl-4-tsc
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FIGURE 1.13: Critical difference diagram showing pairwise statistical
difference comparison of nine deep learning classifiers on the univari-

ate UCR/UEA time series classification archive.

1.5.1 Results for univariate time series

We provide on the companion GitHub repository the raw accuracies over the 10
runs for the nine deep learning models we have tested on the 85 univariate time
series datasets: the UCR/UEA archive (Dau et al., 2019). The corresponding critical
difference diagram is shown in Figure 1.13. The ResNet significantly outperforms
the other approaches with an average rank of almost 2. ResNet wins on 34 problems
out of 85 and significantly outperforms the FCN architecture. This is in contrast to
the original paper’s results where FCN was found to outperform ResNet on 18 out
of 44 datasets, which shows the importance of validating on a larger archive in order
to have a robust statistical significance.

We believe that the success of ResNet is highly due to its deep flexible architec-
ture. First of all, our findings are in agreement with the deep learning for computer
vision literature where deeper neural networks are much more successful than shal-
lower architectures (He et al., 2016). In fact, in a space of 4 years, neural networks
went from 7 layers in AlexNet 2012 (Krizhevsky, Sutskever, and Hinton, 2012) to
1000 layers for ResNet 2016 (He et al., 2016). These types of deep architectures gener-
ally need a huge amount of data in order to generalize well on unseen examples (He
et al., 2016). Although the datasets used in our experiments are relatively small com-
pared to the billions of labeled images (such as ImageNet (Russakovsky et al., 2015)
and OpenImages (Krasin et al., 2017) challenges), the deepest networks did reach
competitive accuracies on the UCR/UEA archive benchmark.

We give two potential reasons for this high generalization capabilities of deep
CNNs on the TSC tasks. First, having seen the success of convolutions in classi-
fication tasks that require learning features that are spatially invariant in a two di-
mensional space (such as width and height in images), it is only natural to think
that discovering patterns in a one dimensional space (time) should be an easier task
for CNNs thus requiring less data to learn from. The other more direct reason be-
hind the high accuracies of deep CNNs on time series data is its success in other
sequential data such as speech recognition (Hinton et al., 2012) and sentence clas-
sification (Kim, 2014) where text and audio, similarly to time series data, exhibit a
natural temporal ordering.

MCNN yielded very low accuracy compared to t-LeNet. The main common idea
between both of these approaches is extracting subsequences to augment the train-
ing data. Therefore the model learns to classify a time series from a shorter sub-
sequence instead of the whole one, then with a majority voting scheme the time
series at test time are assigned a class label. The poor performance of MCNN com-
pared to t-LeNet suggest that the architecture itself is not very well optimized for
the underlying task. In addition to MCNN’s WS technique, t-LeNet uses the WW
data augmentation method. This suggest that t-LeNet benefited even more from the
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warping time series data augmentation that shows significant improvement com-
pared to MCNN’s simple window slicing technique. Nevertheless, more architec-
ture independent experiments are needed to further verify these findings regarding
data augmentation (Ismail Fawaz et al., 2018b).

Although MCDCNN and Time-CNN were originally proposed to classify MTS
datasets, we have evaluated them on the univariate UCR/UEA archive. The MCD-
CNN did not manage to beat any of the cl assifiers except for the ECG5000 dataset
which is already a dataset where almost all approaches reached the highest accu-
racy. This low performance is probably due to the non-linear FC layer that replaces
the GAP pooling of the best performing algorithms (FCN and ResNet). This FC
layer reduces the effect of learning time invariant features which explains why MLP,
Time-CNN and MCDCNN exhibit very similar performance.

One approach that shows relatively high accuracy is Encoder (Serrà, Pascual, and
Karatzoglou, 2018). The statistical test indicates a significant difference between En-
coder, FCN and ResNet. FCN wins on 17 datasets whereases Encoder wins only on
9 which suggests the superiority of the GAP layer compared to Encoder’s attention
mechanism.

1.5.2 Comparing with state-of-the-art approaches

In this subsection, we compared ResNet (the most accurate DNN of our study) with
the current state-of-the-art classifiers evaluated on the UCR/UEA archive in the
great time series classification bake off (Bagnall et al., 2017). Note that our empirical
study strongly suggests to use ResNet instead of any other deep learning algorithm
- it is the most accurate one with similar runtime to FCN (the second most accurate
DNN). Finally, since ResNet’s results were averaged over ten different random ini-
tializations, we chose to take one iteration of ResNet (the median) and compare it to
other state-of-the-art algorithms that were executed once over the original train/test
split provided by the UCR/UEA archive.

Out of the 18 classifiers evaluated by Bagnall et al., 2017, we have chosen the four
best performing algorithms: (1) EE proposed by Lines and Bagnall, 2015 is an ensem-
ble of nearest neighbor classifiers with 11 different time series similarity measures;
(2) BOSS published in Schäfer, 2015 forms a discriminative bag of words by discretiz-
ing the time series using a Discrete Fourier Transform and then building a nearest
neighbor classifier with a bespoke distance measure; (3) ST developed by Hills et al.,
2014 extracts discriminative subsequences (shapelets) and builds a new representa-
tion of the time series that is fed to an ensemble of 8 classifiers; (4) COTE proposed
by Bagnall et al., 2017 is basically a weighted ensemble of 35 TSC algorithms in-
cluding EE and ST. We also include HIVE-COTE (proposed by Lines, Taylor, and
Bagnall, 2018) which improves significantly COTE’s performance by leveraging a
hierarchical voting system as well as adding two new classifiers and two additional
transformation domains. In addition to these five state-of-the-art classifiers, we have
included the classic nearest neighbor coupled with DTW and a warping window set
through cross-validation on the training set (denoted by NN-DTW-WW), since it is
still one of the most popular methods for classifying time series data (Bagnall et
al., 2017). Finally, we added a recent approach named PF which is similar to Ran-
dom Forest but replaces the attribute based splitting criteria by a random similarity
measure chosen out of EE’s elastic distances (Lucas et al., 2018). Note that we did
not implement any of the non-deep TSC algorithms. We used the results provided
by Bagnall et al., 2017 and the other corresponding papers to construct the critical
difference diagram in Figure 1.14.
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FIGURE 1.14: Critical difference diagram showing pairwise statistical
difference comparison of state-of-the-art classifiers on the univariate

UCR/UEA time series classification archive.

Figure 1.14 shows the critical difference diagram over the UEA benchmark with
ResNet added to the pool of six classifiers. As we have previously mentioned, the
state-of-the-art classifiers are compared to ResNet’s median accuracy over the test
set. Nevertheless, we generated the ten different average ranks for each iteration of
ResNet and observed that the ranking of the compared classifiers is stable for the
ten different random initializations of ResNet. The statistical test failed to find any
significant difference between COTE/HIVE-COTE and ResNet which is the only
TSC algorithm that was able to reach similar performance to COTE. Note that for
the ten different random initializations of ResNet, the pairwise statistical test al-
ways failed to find any significance between ResNet and COTE/HIVE-COTE. PF, ST,
BOSS and ResNet showed similar performances according to the Wilcoxon signed-
rank test, but the fact that ResNet is not significantly different than COTE suggests
that more datasets would give a better insight into these performances (Demšar,
2006). NN-DTW-WW and EE showed the lowest average rank suggesting that these
methods are no longer competitive with current state-of-the-art algorithms for TSC.
It is worthwhile noting that cliques formed by the Wilcoxon Signed Rank Test with
Holm’s alpha correction do not necessary reflect the rank order (Lines, Taylor, and
Bagnall, 2018). For example, if we have three classifiers (C1, C2, C3) with average
ranks (C1 > C2 > C3), one can still encounter a case where C1 is not significantly
worse than C2 and C3 with C2 and C3 being significantly different. In our exper-
iments, when comparing to state-of-the-art algorithms, we have encountered this
problem with (ResNet>COTE>HIVE-COTE). Therefore we should emphasize that
HIVE-COTE and COTE are significantly different when performing the pairwise sta-
tistical test.

Although HIVE-COTE is still the most accurate classifier (when evaluated on
the UCR/UEA archive) its use in a real data mining application is limited due to
its huge training time complexity which is O(N2 · T4) corresponding to the train-
ing time of one of its individual classifiers ST. However, we should note that the
recent work of Bostrom and Bagnall, 2015 showed that it is possible to use a random
sampling approach to decrease significantly the running time of ST (HIVE-COTE’s
choke-point) without any loss of accuracy. On the other hand, DNNs offer this type
of scalability evidenced by its revolution in the field of computer vision when ap-
plied to images, which are thousand times larger than time series data (Russakovsky
et al., 2015). In addition to the huge training time, HIVE-COTE’s classification time
is bounded by a linear scan of the training set due to employing a nearest neighbor
classifier, whereas the trivial GPU parallelization of DNNs provides instant classifi-
cation. Finally we should note that unlike HIVE-COTE, ResNet’s hyperparameters
were not tuned for each dataset but rather the same architecture was used for the
whole benchmark suggesting further investigation of these hyperparameters should
improve DNNs’ accuracy for TSC. These results should give an insight of deep learn-
ing for TSC therefore encouraging researchers to consider DNNs as robust real time
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classifiers for time series data.

The need of a fair comparison

In this paragraph, we highlight the fairness of the comparison to other machine
learning TSC algorithms. Since we did not train nor test any of the state-of-the-
art non deep learning algorithms, it is possible that we allowed much more training
time for the described DNNs. For example, for a lazy machine learning algorithm
such as NN-DTW, training time is zero when allowing maximum warping whereas
it has been shown that judicially setting the warping window Dau et al., 2017 can
lead to a significant increase in accuracy. Therefore, we believe that allowing a much
more thorough search of DTW’s warping window would lead to a fairer compari-
son between deep learning approaches and other state-of-the-art TSC algorithms. In
addition to cross-validating NN-DTW’s hyper-parameters, we can imagine spend-
ing more time on data pre-processing and cleansing (e.g. smoothing the input time
series) in order to improve the accuracy of NN-DTW (Höppner, 2016; Dau et al.,
2019). Ultimately, in order to obtain a fair comparison between deep learning and
current state-of-the-art algorithms for TSC, we think that the time spent on opti-
mizing a network’s weights should be also spent on optimizing non deep learning
based classifiers especially lazy learning algorithms such as the K nearest neighbor
coupled with any similarity measure.

1.5.3 Results for multivariate time series

We provide on our companion repository2 the detailed performance of the nine deep
learning classifiers for 10 different random initializations over the 12 MTS classifi-
cation datasets (Baydogan, 2015). Although Time-CNN and MCDCNN are the only
architectures originally proposed for MTS data, they were outperformed by the three
deep CNNs (ResNet, FCN and Encoder), which shows the superiority of these ap-
proaches on the MTS classification task. The corresponding critical difference dia-
gram is depicted in Figure 1.15, where the statistical test failed to find any significant
difference between the nine classifiers which is mainly due to the small number of
datasets compared to their univariate counterpart. Therefore, we illustrated in Fig-
ure 1.16 the critical difference diagram when both archives are combined (evaluation
on 97 datasets in total). At first glance, we can notice that when adding the MTS
datasets to the evaluation, the critical difference diagram in Figure 1.16 is not signif-
icantly different than the one in Figure 1.13 (where only the univariate UCR/UEA
archive was taken into consideration). This is probably due to the fact that the al-
gorithms’ performance over the 12 MTS datasets is negligible to a certain degree
when compared to the performance over the 85 univariate datasets. These obser-
vations reinforces the need to have an equally large MTS classification archive in
order to evaluate hybrid univariate/multivariate time series classifiers. The rest of
the analysis is dedicated to studying the effect of the datasets’ characteristics on the
algorithms’ performance.

1.5.4 What can the dataset’s characteristics tell us about the best architec-
ture?

The first dataset characteristic we have investigated is the problem’s domain.
Table 1.4 shows the algorithms’ performance with respect to the dataset’s theme.

2www.github.com/hfawaz/dl-4-tsc

www.github.com/hfawaz/dl-4-tsc
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FIGURE 1.15: Critical difference diagram showing pairwise statistical
difference comparison of nine deep learning classifiers on the multi-

variate time series classification archive.
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FIGURE 1.16: Critical difference diagram showing pairwise statistical
difference comparison of nine deep learning classifiers on both uni-

variate and multivariate time series classification archives.

These themes were first defined in Bagnall et al., 2017. Again, we can clearly see
the dominance of ResNet as the best performing approach across different domains.
One exception is the ECG datasets (7 in total) where ResNet was drastically beaten
by the FCN model in 71.4% of ECG datasets. However, given the small sample size
(only 7 datasets), we cannot conclude that FCN will almost always outperform the
ResNet model for ECG datasets (Bagnall et al., 2017).

The second characteristic which we have studied is the time series length. Sim-
ilar to the findings for non deep learning models in Bagnall et al., 2017, the time
series length does not give information on deep learning approaches’ performance.
Table 1.5 shows the average rank of each DNN over the univariate datasets grouped
by the datasets’ lengths. One might expect that the relatively short filters (3) might
affect the performance of ResNet and FCN since longer patterns cannot be captured
by short filters. However, since increasing the number of convolutional layers will
increase the path length viewed by the CNN model (Vaswani et al., 2017), ResNet
and FCN managed to outperform other approaches whose filter length is longer (21)
such as Encoder. For the recurrent TWIESN algorithm, we were expecting a poor

Themes (#) MLP FCN ResNet Encoder MCNN t-LeNet MCDCNN Time-CNN TWIESN

DEVICE (6) 0.0 50.0 83.3 0.0 0.0 16.7 0.0 0.0 0.0
ECG (7) 14.3 71.4 28.6 42.9 0.0 0.0 14.3 0.0 0.0
IMAGE (29) 6.9 34.5 48.3 10.3 0.0 10.3 3.4 10.3 0.0
MOTION (14) 0.0 21.4 57.1 0.0 0.0 42.9 0.0 0.0 0.0
SENSOR (16) 6.2 31.2 68.8 31.2 6.2 37.5 6.2 0.0 12.5
SIMULATED (6) 0.0 33.3 83.3 33.3 0.0 33.3 0.0 0.0 0.0
SPECTRO (7) 14.3 14.3 71.4 0.0 0.0 0.0 0.0 28.6 28.6

TABLE 1.4: Deep learning algorithms’ performance grouped by
themes. Each entry is the percentage of dataset themes an algorithm

is most accurate for. Bold indicates the best model.



46 Chapter 1. The state of the art for time series classification

Length MLP FCN ResNet Encoder MCNN t-LeNet MCDCNN Time-CNN TWIESN

<81 5.57 3.5 2.64 2.93 8.93 6.14 3.29 3.86 5.86
81-250 4.53 1.74 1.84 3.74 8.74 5.05 5.74 4.89 5.95
251-450 4.32 3.05 1.86 3.68 8.82 4.73 6.55 5.14 5.41
451-700 5.23 2.92 2.0 4.31 7.77 4.62 6.31 5.38 4.77
701-1000 5.4 2.1 1.7 4.6 8.4 2.9 6.1 6.8 5.5
>1000 3.71 3.0 1.57 4.0 8.29 3.29 5.71 6.43 7.0

TABLE 1.5: Deep learning algorithms’ average ranks grouped by the
datasets’ length. Bold indicates the best model.

Train size MLP FCN ResNet Encoder MCNN t-LeNet MCDCNN Time-CNN TWIESN

<100 4.64 2.21 1.93 4.57 8.5 5.0 6.71 4.39 5.32
100-399 5.21 2.5 1.86 3.64 8.29 4.71 5.93 6.25 4.71
400-799 4.73 3.07 2.33 3.67 8.93 6.0 3.67 4.33 6.0
>799 4.29 3.64 1.86 2.71 8.86 2.57 5.21 5.71 7.79

TABLE 1.6: Deep learning algorithms’ average ranks grouped by the
training sizes. Bold indicates the best model.

accuracy for very long time series since a recurrent model may “forget” a useful in-
formation present in the early elements of a long time series. However, TWIESN did
reach competitive accuracies on several long time series datasets such as reaching a
96.8% accuracy on Meat whose time series length is equal to 448. This would suggest
that ESNs can solve the vanishing gradient problem especially when learning from
long time series.

A third important characteristic is the training size of datasets and how it affects
a DNN’s performance. Table 1.6 shows the average rank for each classifier grouped
by the train set’s size. Again, ResNet and FCN still dominate with not much of a
difference. However we found one very interesting dataset: DiatomSizeReduction.
ResNet and FCN achieved the worst accuracy (30%) on this dataset while Time-
CNN reached the best accuracy (95%). Interestingly, DiatomSizeReduction is the
smallest datasets in the UCR/UEA archive (with 16 training instances), which sug-
gests that ResNet and FCN are easily overfitting this dataset. This suggestion is also
supported by the fact that Time-CNN is the smallest model: it contains a very small
number of parameters by design with only 18 filters compared to the 512 filters of
FCN. This simple architecture of Time-CNN renders overfitting the dataset much
harder. Therefore, we conclude that the small number of filters in Time-CNN is the
main reason behind its success on small datasets, however this shallow architecture
is unable to capture the variability in larger time series datasets which is modeled
efficiently by the FCN and ResNet architectures. One final observation that is in
agreement with the deep learning literature is that in order to achieve high accura-
cies while training a DNN, a large training set is needed. Figure 1.17 shows the effect
of the training size on ResNet’s accuracy for the TwoPatterns dataset: the accuracy
increases significantly when adding more training instances until it reaches 100% for
75% of the training data.

Finally, we should note that the number of classes in a dataset - although it
yielded some variability in the results for the recent TSC experimental study con-
ducted by Bagnall et al., 2017 - did not show any significance when comparing the
classifiers based on this characteristic. In fact, most DNNs architectures, with the
categorical cross-entropy as their cost function, employ mainly the same classifier:
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FIGURE 1.17: ResNet’s accuracy variation with respect to the amount
of training instances in the TwoPatterns dataset.

softmax which is basically designed for multi-class classification.
Overall, our results show that, on average, ResNet is the best architecture with

FCN and Encoder following as second and third respectively. ResNet performed
very well in general except for the ECG datasets where it was outperformed by FCN.
MCNN was significantly worse than all the other approaches, with t-LeNet showing
a superiority with the additional WW technique. We found small variance between
the approaches that replace the GAP layer with an FC dense layer (MCDCNN, CNN)
which also showed similar performance to TWIESN, MLP and t-LeNet.

1.5.5 Effect of random initializations

The initialization of deep neural networks has received a significant amount of in-
terest from many researchers in the field (LeCun, Bengio, and Hinton, 2015). These
advancement have contributed to a better understanding and initialization of deep
learning models in order to maximize the quality of non-optimal solutions found
by the gradient descent algorithm (Glorot and Bengio, 2010). Nevertheless, we ob-
served in our experiments, that DNNs for TSC suffer from a significant decrease
(increase) in accuracy when initialized with bad (good) random weights. Therefore,
we study in this section, how random initializations can affect the performance of
ResNet and FCN on the whole benchmark in a best and worst case scenario.

Figure 1.18 shows the accuracy plot of ResNet versus FCN on the 85 univari-
ate time series datasets when aggregated over the 10 random initializations using
three different functions: the minimum, median and maximum. When first observ-
ing Figure 1.18 one can easily conclude that ResNet has a better performance than
FCN across most of the datasets regardless of the aggregation method. This is in
agreement with the critical difference diagram as well as the analysis conducted in
the previous subsections, where ResNet was shown to achieve higher performance
on most datasets with different characteristics. A deeper look into the minimum ag-
gregation (red points in Figure 1.18) shows that FCN’s performance is less stable
compared to ResNet’s. In other words, the weight’s initial value can easily decrease
the accuracy of FCN whereas ResNet maintained a relatively high accuracy when
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FIGURE 1.18: Accuracy of ResNet versus FCN over the UCR/UEA
archive when three different aggregations are taken: the minimum,

median and maximum.

taking the worst initial weight values. This is also in agreement with the average
standard deviation of ResNet (1.48) which is less than FCN’s (1.70). These observa-
tions would encourage a practitioner to avoid using a complex deep learning model
since its accuracy may be unstable. Nevertheless we think that investigating differ-
ent weight initialization techniques such as leveraging the weights of a pre-trained
neural network would yield better and much more stable results (Ismail Fawaz et
al., 2018d) or even simply leveraging this high variance by ensembling DNNs (Is-
mail Fawaz et al., 2019e).

1.6 Visualization

In this section, we start by investigating the use of Class Activation Map to provide
an interpretable feedback that highlights the reason for a certain decision taken by
the classifier. We then propose another visualization technique which is based on
Multi-Dimensional Scaling (Kruskal and Wish, 1978) to understand the latent repre-
sentation that is learned by the DNNs.

1.6.1 Class Activation Map

We investigate the use of CAM which was first introduced by Zhou et al., 2016 to
highlight the parts of an image that contributed the most for a given class identifica-
tion. Wang, Yan, and Oates, 2017 later introduced a one-dimensional CAM with an
application to TSC. This method explains the classification of a certain deep learn-
ing model by highlighting the subsequences that contributed the most to a certain
classification. Figure 1.19 and 1.20 show the results of applying CAM respectively
on GunPoint and Meat datasets. Note that employing the CAM is only possible for
the approaches with a GAP layer preceding the softmax classifier (Zhou et al., 2016).
Therefore, we only considered in this section the ResNet and FCN models, who also
achieved the best accuracies overall. Note that Wang, Yan, and Oates, 2017 was the



1.6. Visualization 49

only paper to propose an interpretable analysis of TSC with a DNN. We should em-
phasize that this is a very important research area which is usually neglected for the
sake of improving accuracy: only 2 out of the 9 approaches provided a method that
explains the decision taken by a deep learning model. In this section, we start by
presenting the CAM method from a mathematical point of view and follow it with
two interesting case studies on Meat and GunPoint datasets.

By employing a Global Average Pooling layer, ResNet and FCN benefit from the
CAM method (Zhou et al., 2016), which makes it possible to identify which regions
of an input time series constitute the reason for a certain classification. Formally, let
A(t) be the result of the last convolutional layer which is an MTS with M variables.
Am(t) is the univariate time series for the variable m ∈ [1, M], which is in fact the
result of applying the mth filter. Now let wc

m be the weight between the mth filter and
the output neuron of class c. Since a GAP layer is used then the input to the neuron
of class c (zc) can be computed by the following equation:

zc = ∑
m

wc
m ∑

t
Am(t) (1.10)

The second sum constitutes the averaged time series over the whole time dimension
but with the denominator omitted for simplicity. The input zc can be also written by
the following equation:

zc = ∑
t

∑
m

wc
m Am(t) (1.11)

Finally the Class Activation Map (CAMc) that explains the classification as label c is
given in the following equation:

CAMc(t) = ∑
m

wc
m Am(t) (1.12)

CAM is actually a univariate time series where each element (at time stamp t ∈
[1, T]) is equal to the weighted sum of the M data points at t, with the weights being
learned by the neural network.

GunPoint dataset

The GunPoint dataset was first introduced by Ratanamahatana and Keogh, 2005 as a
TSC problem. This dataset involves one male and one female actor performing two
actions (Gun-Draw and Point) which makes it a binary classification problem. For
Gun-Draw (Class-1 in Figure 1.19), the actors have first their hands by their sides,
then draw a replicate gun from hip-mounted holster, point it towards the target for
one second, then finally place the gun in the holster and their hands to their initial
position. Similarly to Gun-Draw, for Point (Class-2 in Figure 1.19) the actors follow
the same steps but instead of pointing a gun they point their index finger. For each
task, the centroid of the actor’s right hands on both X and Y axes were tracked and
seemed to be very correlated, therefore the dataset contains only one univariate time
series: the X-axis.

We chose to start by visualizing the CAM for GunPoint for three main reasons.
First, it is easy to visualize unlike other noisy datasets. Second, both FCN and
ResNet models achieved almost 100% accuracy on this dataset which will help us
to verify if both models are reaching the same decision for the same reasons. Finally,
it contains only two classes which allow us to analyze the data much more easily.

Figure 1.19 shows the CAM’s result when applied on each time series from
both classes in the training set while classifying using the FCN model (Figure 1.19a
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FIGURE 1.19: Highlighting with the Class Activation Map the contri-
bution of each time series region for both classes in GunPoint when
using the FCN and ResNet classifiers. Red corresponds to high con-
tribution and blue to almost no contribution to the correct class iden-

tification (smoothed for visual clarity and best viewed in color).
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and 1.19b) and the ResNet model (Figure 1.19c and 1.19d). At first glance, we can
clearly see how both DNNs are neglecting the plateau non-discriminative regions of
the time series when taking the classification decision. It is depicted by the blue flat
parts of the time series which indicates no contribution to the classifier’s decision.
As for the highly discriminative regions (the red and yellow regions) both models
were able to select the same parts of the time series which correspond to the points
with high derivatives. Actually, the first most distinctive part of class-1 discovered
by both classifiers is almost the same: the little red bump in the bottom left of Fig-
ure 1.19a and 1.19c. Finally, another interesting observation is the ability of CNNs to
localize a given discriminative shape regardless where it appears in the time series,
which is evidence for CNNs’ capability of learning time-invariant warped features.

An interesting observation would be to compare the discriminative regions iden-
tified by a deep learning model with the most discriminative shapelets extracted by
other shapelet-based approaches. This observation would also be backed up by the
mathematical proof provided by Cui, Chen, and Chen, 2016, that showed how the
learned filters in a CNN can be considered a generic form of shapelets extracted by
the learning shapelets algorithm (Grabocka et al., 2014). Ye and Keogh, 2011 identi-
fied that the most important shapelet for the Gun/NoGun classification occurs when
the actor’s arm is lowered (about 120 on the horizontal axis in Figure 1.19). Hills
et al., 2014 introduced a shapelet transformation based approach that discovered
shapelets that are similar to the ones identified by Ye and Keogh, 2011. For ResNet
and FCN, the part where the actor lowers his/her arm (bottom right of Figure 1.19)
seems to be also identified as potential discriminative regions for some time series.
On the other hand, the part where the actor raises his/her arm seems to be also a
discriminative part of the data which suggests that the deep learning algorithms are
identifying more “shapelets”. We should note that this observation cannot confirm
which classifier extracted the most discriminative subsequences especially because
all algorithms achieved similar accuracy on GunPoint dataset. Perhaps a bigger
dataset might provide a deeper insight into the interpretability of these machine
learning models. Finally, we stress that the shapelet transformation classifier (Hills
et al., 2014) is an ensemble approach, which makes unclear how the shapelets af-
fect the decision taken by the individual classifiers whereas for an end-to-end deep
learning model we can directly explain the classification by using the Class Activa-
tion Map.

Meat dataset

Although the previous case study on GunPoint yielded interesting results in terms
of showing that both models are localizing meaningful features, it failed to show
the difference between the two most accurate deep learning classifiers: ResNet and
FCN. Therefore we decided to further analyze the CAM’s result for the two models
on the Meat dataset.

Meat is a food spectrograph dataset which are usually used in chemometrics to
classify food types, a task that has obvious applications in food safety and quality
assurance. There are three classes in this dataset: Chicken, Pork and Turkey corre-
sponding respectively to classes 1, 2 and 3 in Figure 1.20. Al-Jowder, Kemsley, and
Wilson, 1997 described how the data is acquired from 60 independent samples using
Fourier transform infrared spectroscopy with attenuated total reflectance sampling.

Similarly to GunPoint, this dataset is easy to visualize and does not contain very
noisy time series. In addition, with only three classes, the visualization is possi-
ble to understand and analyze. Finally, unlike for the GunPoint dataset, the two
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FIGURE 1.20: Highlighting with the Class Activation Map the contri-
bution of each time series region for the three classes in Meat when
using the FCN and ResNet classifiers. Red corresponds to high con-
tribution and blue to almost no contribution to the correct class iden-

tification (smoothed for visual clarity and best viewed in color).
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approaches ResNet and FCN reached significantly different results on Meat with
respectively 97% and 83% accuracy.

Figure 1.20 enables the comparison between FCN’s CAM (left) and ResNet’s
CAM (right). We first observe that ResNet is much more firm when it comes
to highlighting the regions. In other words, FCN’s CAM contains much more
smoother regions with cyan, green and yellow regions, whereas ResNet’s CAM con-
tains more dark red and blue subsequences showing that ResNet can filter out non-
discriminative and discriminative regions with a higher confidence than FCN, which
probably explains why FCN is less accurate than ResNet on this dataset. Another
interesting observation is related to the red subsequence highlighted by FCN’s CAM
for class 2 and 3 at the bottom right of Figure 1.20c and 1.20e. By visually investi-
gating this part of the time series, we clearly see that it is a non-discriminative part
since the time series of both classes exhibit this bump. This subsequence is therefore
filtered-out by the ResNet model which can be seen by the blue color in the bottom
right of Figure 1.20d and 1.20f. These results suggest that ResNet’s superiority over
FCN is mainly due to the former’s ability to filter-out non-distinctive regions of the
time series. We attribute this ability to the main characteristic of ResNet which is
composed of the residual connections between the convolutional blocks that enable
the model to learn to skip unnecessary convolutions by dint of its shortcut links (He
et al., 2016).

1.6.2 Multi-Dimensional Scaling

We propose the use of MDS (Kruskal and Wish, 1978) with the objective to gain
some insights on the spatial distribution of the input time series belonging to differ-
ent classes in the dataset. MDS uses a pairwise distance matrix as input and aims at
placing each object in a N-dimensional space such as the between-object distances
are preserved as well as possible. Using the ED on a set of input time series belong-
ing to the test set, it is then possible to create a similarity matrix and apply MDS to
display the set into a two dimensional space. This straightforward approach sup-
poses that the ED is able to strongly separate the raw time series, which is usually
not the case evident by the low accuracy of the nearest neighbor when coupled with
ED (Bagnall et al., 2017).

On the other hand, we propose to apply this MDS method to visualize the set
of time series with its latent representation learned by the network. Usually in a
deep neural network, we have several hidden layers and one can find several latent
representation of the dataset. But since we are aiming at visualizing the class specific
latent space, we chose to use the last latent representation of a DNN (the one directly
before the softmax classifier), which is known to be a class specific layer (Yosinski
et al., 2014b). We decided to apply this method only on ResNet and FCN for two
reasons: (1) when evaluated on the UCR/UEA archive they reached the highest
ranks; (2) they both employ a GAP layer before the softmax layer making the number
of latent features invariant to the time series length.

To better explain this process, for each input time series, the last convolution (for
ResNet and FCN) outputs a multivariate time series whose dimensions are equal to
the number of filters (128) in the last convolution, then the GAP layer averages the
latter 128-dimensional multivariate time series over the time dimension resulting in
a vector of 128 real values over which the ED is computed. As we worked with the
ED, we used metric MDS (Kruskal and Wish, 1978) that minimizes a cost function
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called Stress which is a residual sum of squares:

StressD(X1, . . . , XN) =

(
∑i,j
(
dij − ‖xi − xj‖

)2

∑i,j d2
ij

)1/2

(1.13)

where dij is the ED between the GAP vectors of time series Xi and Xj. Obviously,
one has to be careful about the interpretation of MDS output, as the data space is
highly simplified (each time series Xi is represented as a single data point xi).

We should note that there exists many visualization algorithms that would pro-
vide some insights about the data. One of the most popular techniques is called
t-SNE (Maaten and Hinton, 2008). This method projects high-dimensional data by
giving each data point (or in our case a time series or its representation) a location in
a two or three dimensional map. It is an optimized derivative of Stochastic Neigh-
bor Embedding (Hinton and Roweis, 2003). Although t-SNE has been used by many
researchers, we decided to go with the MDS algorithm when analyzing time series
representation. The reason behind this choice is that MDS is based on the pairwise
distance matrix between the time series which is a very common way to cluster
and analyze time series data (Petitjean et al., 2016), whereas t-SNE uses an iterative
stochastic optimization process in order to preserve local structure at the expense of
global structure in which we are interested.

Figure 1.21 shows three MDS plots for the GunPoint dataset using: (1) the raw
input time series (Figure 1.21a); (2) the learned latent features from the GAP layer for
FCN (Figure 1.21b); and (3) the learned latent features from the GAP layer for ResNet
(Figure 1.21c). We can easily observe in Figure 1.21a that when using the raw input
data and projecting it into a 2D space, the two classes are not linearly separable.
On the other hand, in both Figures 1.21b and 1.21c, by applying MDS on the latent
representation learned by the network, one can easily separate the set of time series
belonging to the two classes. We note that both deep learning models (FCN and
ResNet) managed to project the data from GunPoint into a linearly separable space
which explains why both models performed equally very well on this dataset with
almost 100% accuracy.

Although the visualization of MDS on GunPoint yielded some interesting re-
sults, it failed to pinpoint the difference between the two deep learning models FCN
and ResNet. Therefore we decided to analyze another dataset where the accuracy
of both models differed by almost 15%. Figure 1.22 shows three MDS plots for the
Wine dataset using: (1) the raw input time series (Figure 1.22a); (2) the learned latent
features from the GAP layer for FCN (Figure 1.22b); and (3) the learned latent fea-
tures from the GAP layer for ResNet (Figure 1.22c). At first glimpse of Figure 1.22,
the reader can conclude that all projections, even when using the learned represen-
tation, are not linearly separable which is evident by the relatively low accuracy of
both models FCN and ResNet which is equal respectively to 58.7% and 74.4%. A
thorough observation shows us that the learned hidden representation of ResNet
(Figure 1.22c) separates the data from both classes in a much clearer way than the
FCN (Figure 1.22b). In other words, FCN’s learned representation has too many data
points close to the decision boundary whereas ResNet’s hidden features enables pro-
jecting data points further away from the decision boundary. This observation could
explain why ResNet achieves a better performance than FCN on the Wine dataset.
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FIGURE 1.21: Multi-Dimensional Scaling (MDS) applied on GunPoint
for: (top) the raw input time series; (bottom) the learned features from
the Global Average Pooling (GAP) layer for FCN (left) and ResNet
(right) - (best viewed in color). This figure shows how the ResNet
and FCN are projecting the time series from a non-linearly separable
2D space (when using the raw input), into a linearly separable 2D

space (when using the latent representation).
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FIGURE 1.22: Multi-Dimensional Scaling (MDS) applied on Wine for:
(top) the raw input time series; (bottom) the learned features from the
Global Average Pooling (GAP) layer for FCN (left) and ResNet (right)
- (best viewed in color). This figure shows how ResNet, unlike FCN,
is able to project the data into an easily separable space when using

the learned features from the GAP layer (Color figure online).
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1.7 Conclusion

In this chapter, we presented the largest empirical study of DNNs for TSC. We de-
scribed the most recent successful deep learning approaches for TSC in many dif-
ferent domains such as human activity recognition and sleep stage identification.
Under a unified taxonomy, we explained how DNNs are separated into two main
categories of generative and discriminative models. We re-implemented nine re-
cently published end-to-end deep learning classifiers in a unique framework which
we make publicly available to the community. Our results show that end-to-end
deep learning can achieve the current state-of-the-art performance for TSC with ar-
chitectures such as Fully Convolutional Neural Networks and deep Residual Net-
works. Finally, we showed how the black-box effect of deep models which renders
them uninterpretable, can be mitigated with a Class Activation Map visualization
that highlights which parts of the input time series, contributed the most to a certain
class identification.

Although we have conducted an extensive experimental evaluation, deep learn-
ing for time series classification, unlike for computer vision and NLP tasks, still lacks
a thorough study of data augmentation (Ismail Fawaz et al., 2018b; Forestier et al.,
2017b) and transfer learning (Ismail Fawaz et al., 2018d; Serrà, Pascual, and Karat-
zoglou, 2018). In addition, the time series community would benefit from an exten-
sion of this empirical study that compares in addition to accuracy, the training and
testing time of these deep learning models. Furthermore, we think that the effect
of z-normalization (and other normalization methods) on the learning capabilities
of DNNs should also be thoroughly explored. In our future work, we aim to in-
vestigate and answer the aforementioned limitations by conducting more extensive
experiments especially on multivariate time series datasets. In order to achieve all of
these goals, one important challenge for the TSC community is to provide one large
generic labeled dataset similar to the large images database in computer vision such
as ImageNet (Russakovsky et al., 2015) that contains 1000 classes.

In conclusion, with data mining repositories becoming more frequent, leverag-
ing deeper architectures that can learn automatically from annotated data in an
end-to-end fashion, makes deep learning a very enticing approach. In this chap-
ter, we demonstrated the potential of deep neural networks for TSC, nevertheless
these complex machine learning models can still benefit from many regularization
techniques, which is the main focus of the following chapter.
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Chapter 2

Regularizing deep neural networks

2.1 Introduction

Deep learning models usually have significantly more trainable parameters than the
number of training instances. Nevertheless, in the previous chapter, we showed how
these artificial neural networks are able to achieve good generalization capabilities
compared to traditional TSC algorithms. Yet most of these models require some sort
of regularization in order to ensure a small generalization error (i.e. a small differ-
ence between the training and testing error). In this chapter, we present four main
techniques for regularizing DNNs for TSC: (1) transfer learning (Ismail Fawaz et al.,
2018d); (2) ensembling (Ismail Fawaz et al., 2019e); (3) data augmentation (Ismail
Fawaz et al., 2018b); and adversarial training (Ismail Fawaz et al., 2019b); Our work
reveals that these techniques improve the accuracy of the previously described deep
learning models such as FCN and ResNet.

The chapter is divided into four main sections, each one describing in details
the regularization technique. First we start by describing how transfer learning can
further improve the performance of DNNs for the TSC task. We then showcase our
findings regarding how ensembling deep learning models can significantly improve
the performance of these time series classifiers. In the following section, we present
how adopting a data augmentation method can help in improving the performance
of neural networks for TSC. Finally, we define and investigate how DNNs are vul-
nerable to adversarial examples, and explore the possibility of leveraging those ex-
amples to regularize deep learning time series classifiers.

2.2 Transfer learning

CNNs have recently been shown to significantly outperform the nearest neighbor
approach coupled with the DTW algorithm (NN-DTW) on the UCR/UEA archive
benchmark (Dau et al., 2019) for the TSC problem (Wang, Yan, and Oates, 2017).
CNNs were not only able to beat the NN-DTW baseline, but in the previous chap-
ter, we showed how they were also able to reach results that are not significantly
different than COTE (Bagnall et al., 2015) - which is an ensemble of 35 classifiers.
However, despite the high performance of these CNNs, deep learning models are
still prone to overfitting. One example where these neural networks fail to gener-
alize is when the training set of the time series dataset is very small. We attribute
this huge difference in accuracy to the overfitting phenomena, which is still an open
area of research in the deep learning community (Zhang et al., 2017). This problem
is known to be mitigated using several regularization techniques such as transfer
learning (Yosinski et al., 2014a), where a model trained on a source task is then fine-
tuned on a target dataset. For example in Figure 2.1, we trained a model on the
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FIGURE 2.1: Evolution of model’s loss (train and test) with and with-
out the transfer learning method using ElectricDevices as source and

OSULeaf as target datasets. (Best viewed in color).

ElectricDevices dataset (Dau et al., 2019) and then fine-tuned this same model on
the OSULeaf dataset (Dau et al., 2019), which significantly improved the network’s
generalization capability.

Transfer learning is currently used in almost every deep learning model when
the target dataset does not contain enough labeled data (Yosinski et al., 2014a). De-
spite its recent success in computer vision (Csurka, 2017), transfer learning has been
rarely applied to deep learning models for time series data. One of the reasons for
this absence is probably the lack of one big general purpose dataset similar to Im-
ageNet (Russakovsky et al., 2015) or OpenImages (Krasin et al., 2017) but for time
series. Furthermore, it is only recently that deep learning was proven to work well
for TSC (Cui, Chen, and Chen, 2016) and there is still much to be explored in building
deep neural networks for mining time series data (Cristian Borges Gamboa, 2017).

Since transferring deep learning models, between the UCR/UEA archive
datasets (Dau et al., 2019), have not been thoroughly studied, we decided to in-
vestigate this area of research with the ultimate goal to determine in advance which
dataset transfers could benefit the CNNs and improve their TSC accuracy.

The intuition behind the transfer learning approach for time series data is also
partially inspired by the observation of Cui, Chen, and Chen, 2016, where the
authors showed that shapelets (Ye and Keogh, 2009) (or subsequences) learned
by the learning shapelets approach (Grabocka et al., 2014) are related to the fil-
ters (or kernels) learned by the CNNs. We hypothesize that these learned sub-
sequences might not be specific to one dataset and could occur in other unseen
datasets with un/related classification tasks. Another observation for why trans-
fer learning should work for time series data is its recent success in computer vision
tasks (Csurka, 2017). Indeed, since time series data contain one temporal dimension
(time) compared to two dimensions for images (width and height), it is only natu-
ral to think that if filters can successfully be transferred on images (Yosinski et al.,
2014a), they should also be transferable across time series datasets.

To evaluate the potential of transfer learning for TSC, we performed experiments
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FIGURE 2.2: General deep learning training process with transfer
learning for time series classification. In this example, a model is
first pre-trained on Car (source dataset) and then the corresponding

weights are fine-tuned on CBF (target dataset).

where each pair of datasets in the UCR/UEA archive was tested twice: we pre-
trained a model for each dataset, then transferred and fine-tuned it on all the other
datasets (a total of more than 7140 trained models). Figure 2.2 illustrates the archi-
tecture of our proposed framework of transfer learning for TSC on two datasets. The
obtained results show that time series do exhibit some low level features that could
be used in a transfer learning approach. They also show that using transfer learning
reduces the training time by reducing the number of epochs needed for the network
to converge on the train set.

Motivated by the consensus that transferring models between similar datasets
improves the classifier’s accuracy (Weiss, Khoshgoftaar, and Wang, 2016), we used
the DTW algorithm as an inter-datasets similarity measure in order to quantify the
relationship between the source and target datasets in our transfer learning frame-
work. Our experiments show that DTW can be used to predict the best source
dataset for a given target dataset. Our method can thus identify which datasets
should be considered for transfer learning given a new TSC problem.

2.2.1 Background and related work

Before getting into the details of the recent applications for transfer learning, we give
a formal definition of the latter (Weiss, Khoshgoftaar, and Wang, 2016).

Definition 1. Transfer learning for deep neural networks, is the process of first
training a base network on a source dataset and task, and then transfer the learned
features (the network’s weights) to a second network to be trained on a target dataset
and task. Throughout this section, we will refer to source dataset as the dataset we

are transferring the pre-trained model from, and to target dataset as the dataset we
are transferring the pre-trained model to.

Now that we have established the necessary definition, we will dive into the
recent applications of transfer learning for time series data mining tasks. In fact,
transfer learning is sometimes confused with the domain adaptation approach (Pan
and Yang, 2010; Long et al., 2015). The main difference with the latter method is
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that the model is jointly trained on the source and target datasets (Weiss, Khoshgof-
taar, and Wang, 2016). The goal of using the target instances during training, is to
minimize the discrepancy between the source’s and target’s instances. In Arief-Ang,
Salim, and Hamilton, 2017, a domain adaptation approach was proposed to predict
human indoor occupancy based on the carbon dioxide concentration in the room.
In Kasteren, Englebienne, and Kröse, 2008, hidden Markov models’ generative ca-
pabilities were used in a domain adaptation approach to recognize human activities
based on a sensor network.

For time series anomaly detection, a transfer learning approach was used to de-
termine which time series should be transferred from the source to the target dataset
to be used with an NN-DTW classifier (Vercruyssen, Meert, and Davis, 2017). Sim-
ilarly, Spiegel, 2016 developed a method to transfer specific training examples from
the source dataset to the target dataset and hence compute the dissimilarity matrix
using the new training set. As for time series forecasting, a transfer learning ap-
proach for an auto-encoder was employed to predict the wind-speed in a farm (Hu,
Zhang, and Zhou, 2016). The authors proposed first to train a model on the his-
torical wind-speed data of an old farm and fine-tune it using the data of a new
farm. In Banerjee et al., 2017 restricted Boltzmann machines were first pre-trained
for acoustic phoneme recognition and then fine-tuned for post-traumatic stress dis-
order diagnosis.

Perhaps the recent work in Serrà, Pascual, and Karatzoglou, 2018 is the closest
to ours in terms of using transfer learning to improve the accuracy of deep neural
networks for TSC. In this work, the authors designed a CNN with an attention mech-
anism to encode the time series in a supervised manner. Before fine-tuning a model
on a target dataset, the model is first jointly pre-trained on several source datasets
with themes (Bagnall et al., 2017) that are different from the target dataset’s theme
which limits the choice of the source dataset to only one. Additionally, unlike Serrà,
Pascual, and Karatzoglou, 2018, we take a pre-designed deep learning model with-
out modifying it nor adding regularizers. This enabled us to solely attribute the im-
provement in accuracy to the transfer learning feature, which we describe in details
in the following section.

2.2.2 Method

In this subsection, we present our proposed method of transfer learning for TSC. The
adopted neural network architecture was FCN, for the simple reason of being three
times faster than ResNet while being ranked the second most accurate model in the
previous chapter. We then thoroughly explain how we adapted the network for the
transfer learning process. Finally, we present our DTW based method that enabled
us to compute the inter-datasets similarities, which we later use to guide the transfer
learning process.

Network adaptation

After training FCN on the 85 datasets in the archive, we obtain 85 different neural
networks. The only difference between these 85 neural network architectures lies
in the output layer. The rest of the layers have the same number of parameters but
with different values. In fact the last layer, which is a softmax classifier, depends on
the number of classes in the dataset.

Thus, given a source dataset Ds and a target dataset Dt, we first train the network
on Ds. We then remove the last layer and replace it with another softmax layer whose
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number of neurons is equal to the number of classes in the target dataset Dt. The
added softmax layer’s parameters are initialized randomly using Glorot’s uniform
initialization (Glorot and Bengio, 2010). This new network is then re-trained (fine-
tuned) on Dt.

We chose to fine-tune the whole network instead of training only the last newly
added output layer. We tried to limit back-propagating the gradient to the last layer,
but found that the network failed to converge. This is in compliance with the trans-
fer learning literature (Yosinski et al., 2014a), where re-training the whole network
almost always leads to better results.

Finally, we should add that one of the advantages of using a global average pool-
ing layer is that we do not need to re-scale the input time series when transferring
models between time series of different length.

Inter-datasets similarity

One of the main challenges with transfer learning is choosing the source dataset.
In Pan et al., 2011, it was demonstrated that a learning algorithm trained with a
certain source domain will not yield an optimal performance if the marginal distri-
butions of the datasets’ input are different. In our case, the total number of datasets
in the UCR/UEA archive is 85. Therefore for each target dataset in the archive, we
have 84 potential source datasets. This makes the trial and error based approach for
transfer learning very costly in terms of computational resources. Hence, we pro-
pose to use the DTW distance to compute the similarities between the datasets, thus
guiding the choice of a source dataset for a given target dataset.

Note that it is practically impossible to directly estimate the performance of a
model learned on a source dataset by applying it on a target dataset’s train set since
the last layer of the network is specific (Yosinski et al., 2014a) to the classes of the
source dataset.

Before describing in details our method for computing inter-datasets similarity,
we start by explaining the DTW distance.

DTW was first proposed for speech recognition when aligning two audio sig-
nals (Sakoe and Chiba, 1978). Suppose we want to compute the dissimilarity be-
tween two time series, X1 = [x1,1, x1,2, . . . , x1,m] and X2 = [x2,1, x2,2, . . . , x2,n]. The
length of X1 and X2 are denoted respectively by m and n.

Let M(X1, X2) be the m× n point-wise dissimilarity matrix between X1 and X2,
where Mi,j = ||x1,i − x2,j||2. A warping path P = ((c1, d1), (c2, d2), . . . , (cs, ds)) is a
series of points that define a crossing of M. The warping path must satisfy three
conditions: (1) (c1, d1) = (1, 1); (2) (cs, ds) = (m, n); (3) 0 ≤ ci+1 − ci ≤ 1 and
0 ≤ dj+1 − dj ≤ 1 for all i < m and j < n. The DTW measure between two series
corresponds to the path through M that minimizes the total distance. In fact, the
distance for any path P is equal to DP(A, B) = ∑s

i=1 Pi. Hence if P is the space of all
possible paths, the optimal one - whose cost is equal to DTW(A, B) - is denoted by
P∗ and can be computed using: minP∈P DP(A, B). The optimal warping path can be
obtained efficiently by applying a dynamic programming technique to fill the cost
matrix M.

Now that we have explained in details the DTW algorithm, which is usually
used for computing a distance between two time series, we will describe the DBA
algorithm which was first proposed by Petitjean, Ketterlin, and Gançarski, 2011 in
order to average in the DTW induced space (as opposed to the arithmetic mean in
the Euclidean space).
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DBA is an averaging method which consists in iteratively refining an initial se-
ries in order to minimize its squared DTW distance to the set of series we want to
average. Technically for each refinement (or iteration), DBA consists of two main
steps:

1. Computing the DTW between each individual series and the current tempo-
rary average that we want to refine. This is in order to find optimal associations
between the elements of the average series and elements of the set of series to
be averaged.

2. Now that we have these associations, we update each element of the average
series as the barycenter of the elements associated to it during the previous
step.

In order to compute the similarities between the datasets, we first reduce the
number of time series for each dataset to one time series (or prototype) per class.
The per class prototype is computed by averaging the set of time series in the corre-
sponding class, using the previously described DBA algorithm as a data reduction
step. The latter summarizing function was proposed and validated as an averaging
method in the DTW induced space. In addition, DBA has been recently used as a
data reduction technique where it was evaluated in a nearest centroid classification
schema (Petitjean et al., 2014). Therefore, to generate the similarity matrix between
the UCR datasets, we computed a distance between each pair of datasets. Finally, for
simplicity and since the main goal of this project is not the inter-datasets similarity,
we chose the distance between two datasets to be equal to the minimum distance
between the prototypes of their corresponding classes. Note that other averaging
methods such as soft-DTW (Cutur and Blondel, 2017) and TEKA (Marteau, 2019)
could be used instead of DBA in our framework, but we leave such exploration for
our future work.

Algorithm 1 shows the different steps followed to compute the distance matrix
between the UCR datasets. The first part of the algorithm (lines 1 through 7) presents
the data reduction technique similar to Petitjean et al., 2014. For the latter step,
we first go through the classes of each dataset (lines 1, 2 and 3) and then average
the set of time series for each class. Following the recommendations in Petitjean et
al., 2014, the averaging method (DBA) was initialized to be equal to the medoid of
the time series selected set (line 4). We fixed the number of iterations for the DBA
algorithm to be equal to 10, for which the averaging method has been shown to
converge (Petitjean, Ketterlin, and Gançarski, 2011).

After having reduced the different sets for each time series dataset, we proceed
to the actual distance computation step (lines 8 through 22). From line 8 to 10, we
loop through every possible combination of datasets pairs. Lines 13 and 14 show the
loop through each class for each dataset (at this stage each class is represented by one
average time series thanks to the data reduction steps). Finally, lines 15 through 19
set the distance between two datasets to be equal to the minimum DTW distance
between their corresponding classes.

One final note is that when computing the similarity between the datasets, the
only time series data we used came from the training set, thus eliminating any bias
due to having seen the test set’s distribution.
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Algorithm 1 Inter-datasets similarity
Input: N time series datasets in an array D
Output: N × N datasets similarity matrix

1: Initialization : matrix M of size N × N
2: data reduction step
3: for i = 1 to N do
4: C = D[i].classes
5: for c = 1 to length(C) do
6: avg_init = medoid(C[c])
7: C[c] = DBA(C[c], avg_init)
8: end for
9: end for

10: distance calculation step
11: for i = 1 to N do
12: Ci = D[i].classes
13: for j = 1 to N do
14: Cj = D[j].classes
15: dist = ∞
16: for ci = 1 to length(Ci) do
17: for cj = 1 to length(Cj) do
18: cdist = DTW(Ci[ci], Cj[cj])
19: dist = minimum(dist, cdist)
20: end for
21: end for
22: M[i, j] = dist
23: end for
24: end forreturn M
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2.2.3 Experimental setup

Datasets

We evaluate our developed framework thoroughly on the largest publicly available
benchmark for time series analysis: the UCR/UEA archive (Dau et al., 2019), which
consists of 85 datasets selected from various real-world domains. The time series in
the archive are already z-normalized to have a mean equal to zero and a standard
deviation equal to one. During the experiments, we used the default training and
testing set splits provided by UCR. For pre-training a model, we used only the train
set of the source dataset. We also fine-tuned the pre-trained model solely on the
target dataset’s training data. Hence the test sets were only used for evaluation
purposes.

2.2.4 Experiments

For each pair of datasets (D1 and D2) in the UCR/UEA archive we need to perform
two experiments:

• D1 is the source dataset and D2 is the target dataset.

• D1 is the target dataset and D2 is the source dataset.

Which makes it in total 7140 experiments for the 85 dataset in the archive. Hence,
given the huge number of models that need to be trained, we ran our experiments
on a cluster of 60 GPUs. These GPUs were a mix of three types of Nvidia graphic
cards: GTX 1080 Ti, Tesla K20, K40 and K80. The total sequential running time
was approximately 168 days, that is if the computation has been done on a single
GPU. But by leveraging the cluster of 60 GPUs, we managed to obtain the results in
less than one week. We implemented our framework using the open source deep
learning library Keras (Chollet, 2015) with the Tensorflow (Abadi et al., 2016) back-
end. For reproducibility purposes, we provide the 7140 trained Keras models (in a
HDF5 format) on the companion web page of this project1. We have also published
the raw results and the full source code of our method to enable the time series
community to verify and build upon our findings2.

2.2.5 Results

The experiments described in the previous section yielded interesting yet hard-to-
understand results. In this section, we first present the result of the 85× 84 experi-
ments in a form of a matrix (displayed as a heat map in Figure 2.3). We then empir-
ically show how choosing the wrong source dataset for a given target dataset could
decrease the network’s performance. Therefore, we provide a DTW based solution
to choose the best source dataset for a given target dataset. Finally, we detail a few
interesting case studies where the behavior of the proposed method has a significant
impact on the transfered model’s accuracy.

Transfer learning accuracy variation matrix

In order to have a fair comparison across the datasets, we illustrate the variation in
the transferred model’s accuracy based on the percentage of variation compared to

1http://germain-forestier.info/src/bigdata2018/
2https://github.com/hfawaz/bigdata18

http://germain-forestier.info/src/bigdata2018/
https://github.com/hfawaz/bigdata18
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FIGURE 2.3: The variation in percentage over the original accuracy
when fine tuning a pre-trained model. The rows’ indexes correspond
to the source datasets and the columns’ indexes correspond to the tar-
get datasets. The red color shows the extreme case where the chosen
pair of datasets (source and target) deteriorates the network’s perfor-
mance. Where on the other hand, the blue color identifies the im-
provement in accuracy when transferring the model from a certain
source dataset and fine-tuning on another target dataset. The white
color means that no change in accuracy has been identified when us-
ing the transfer learning method for two datasets. The matrix actually
has a size of 85× 85 (instead of 85× 84) for visual clarity with its di-

agonal left out of the analysis. (Best viewed in color).
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the original accuracy (without transfer learning). For example, consider the orig-
inal accuracy (equal to 74.6%) when training the neural network from scratch on
the target dataset HandOutlines. Then instead of training the model from scratch
(with random initializations) we obtain a 86.5% accuracy when initializing the net-
work’s weights to be equal to the weights of a pre-trained network on the source
dataset MedicalImages. Hence, the percentage of accuracy variation with respect to
the original value is equal to 100× (86.5− 74.6)/74.6 ≈ +16%. Thus negative val-
ues (red in Figure 2.3) indicate a decrease in performance when using the transfer
learning approach. Whereas, a positive percentage (blue in Figure 2.3) indicates an
increase in performance when fine-tuning a pre-trained model.

When observing the heat map in Figure 2.3, one can easily see that fine-tuning a
pre-trained model almost never hurts the performance of the CNN. This can be seen
by the dominance of the white color in the heat map, which corresponds to almost
no variation in accuracy.

On the other hand, the results which we found interesting are the two extreme
cases (red and blue) where the use of transfer learning led to high variations in ac-
curacy. Interestingly for a given target dataset, the choice of source dataset could
deteriorate or improve the CNN’s performance as we will see in the following sub-
section.

Naive transfer learning

While observing the heat map in Figure 2.3, we can easily see that certain target
datasets (columns) exhibit a high variance of accuracy improvements when varying
the source datasets. Therefore, to visualize the worst and best case scenarios when
fine-tuning a model against training from scratch, we plotted in Figure 2.4 a pairwise
comparison of three aggregated accuracies {minimum, median, maximum}.

For each target dataset Dt, we took its minimum accuracy among the source
datasets and plot it against the model’s accuracy when trained from scratch. This
corresponds to the red dots in Figure 2.4. By taking the minimum, we illustrate how
one can always find a bad source dataset for a given target dataset and decrease the
model’s original accuracy when fine-tuning a pre-trained network.

On the other hand, the maximum accuracy (blue dots in Figure 2.4) shows that
there is also always a case where a source dataset increases the accuracy when using
the transfer learning approach.

As for the median (yellow dots in Figure 2.4), it shows that on average, pre-
training and then fine-tuning a model on a target dataset improves without signifi-
cantly hurting the model’s performance.

One extreme case, where the choice of the source dataset had a huge impact
on the model’s accuracy, is the OliveOil dataset. Precisely the accuracy decreased
from 93.3% to 16.7% when choosing respectively MALLAT and FaceFour as source
datasets.

This analysis showed us that blindly and naively using the transfer learning ap-
proach could drastically decrease the model’s performance. Actually, this is largely
due to the fact that the initial weights of the network have a significant impact
on the training (Glorot and Bengio, 2010). This problem has been identified as
negative transfer learning in the literature, where there still exists a need to quan-
tify the amount of relatedness between the source and target datasets and whether
an attempt to transfer knowledge from the source to the target domain should be
made (Weiss, Khoshgoftaar, and Wang, 2016). Therefore in the following paragraph,
we show how our similarity based solution can quantify this relatedness between
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FIGURE 2.4: The three aggregated accuracies (minimum, median and
maximum) of the Convolutional Neural Networks with the transfer

learning approach against no transfer learning.

the source and the target, thus enabling us to predict the best source dataset for a
given target dataset.

Smart transfer learning

In order to know in advance which source dataset is suited for which target dataset,
we propose to leverage the similarity between two datasets. Our method is designed
specifically for time series data without any previous domain knowledge about the
datasets. Using the method we described in subsection 2.2.2, we managed to com-
pute a nearest neighbor for a target dataset and set this nearest neighbor to be the
chosen source dataset for the current target dataset in question.

The results showed that this proposed DTW based method will help in achieving
what is called positive transfer (Weiss, Khoshgoftaar, and Wang, 2016). As opposed
to negative transfer, positive transfer learning means that the learning algorithm’s
accuracy increases when fine-tuning a pre-trained model compared to a training
from scratch approach (Weiss, Khoshgoftaar, and Wang, 2016).

Figure 2.5 shows a pairwise accuracy plot for two approaches: a random selec-
tion process of the source dataset against a “smart” selection of the source dataset
using a nearest neighbor algorithm with the distance calculated in algorithm 1. In or-
der to reduce the bias due to the random seed, the accuracy for the random selection
approach was averaged over 1000 iterations. This plot shows that on average, choos-
ing the most similar dataset using our method is significantly better than a random
selection approach (with p < 10−7 for the Wilcoxon signed-rank test). Respectively
our method wins, ties and loses on 71, 0 and 14 datasets against randomly choosing
the source dataset. We should also note that for the two datasets DiatomSizeRe-
duction and Wine, the nearest neighbor is not always the best choice. Actually, we
found that the second nearest neighbor increases drastically the accuracy from 3.3%
to 46.7% for DiatomSizeReduction and from 51.9% to 77.8% for Wine (see the 2nd NN
dots in Figure 2.5). This means that certain improvements could be incorporated to
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our inter-datasets similarity calculation such as adding a warping window (Dau et
al., 2017) or changing the number of prototypes for each class which we aim to study
in our future work.
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FIGURE 2.5: The accuracy of a fine-tuned model for two cases: (x
axis) when the source dataset is selected randomly; (y axis) when the
source dataset is selected using our Dynamic Time Warping based

solution.

Therefore, since in Figure 2.5 the most similar dataset is the only one that is con-
sidered as a potential source for a given target, another interesting study would be
to analyze the accuracy on a given target dataset as a function of how dissimilar the
source dataset is. However due to the huge number of datasets in the UCR/UEA
archive compared to the space limitation, we chose to only study the most interest-
ing cases where the results can be visually interpreted.

Interesting case studies

In this final analysis we chose to work with three interesting target datasets: Shapelet-
Sim, HandOutlines and Meat. These datasets were chosen for different reasons such
as the small size of the training set, the relatedness to shapelets and the transfer
learning’s accuracy variation.

ShapeletSim contains one of the smallest training sets in the UCR/UEA archive
(with 20 training instances). Additionally, this dataset is a simulated dataset de-
signed specifically for shapelets which makes it interesting to see how well CNNs
can fine-tune (pre-learned) shapelets (Cui, Chen, and Chen, 2016) when varying the
source dataset. Figure 2.6 shows how the model’s accuracy decreases as we go fur-
ther from the target dataset. Precisely the average accuracy for the top 3 neighbors
reaches 93% compared to the original accuracy of 76%. Actually, we found that
the closest dataset to ShapeletSim is the RefrigerationDevices dataset which contains
readings from 251 households with the task to identify three classes: Fridge, Refrig-
erator and Upright Freezer. This is very interesting since using other background
knowledge one cannot easily predict that using RefrigerationDevices as a source
for ShapeletSim will lead to better accuracy improvement. To understand better
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this source/target association, we investigated the shapes of the time series of each
dataset and found that both datasets exhibit very similar spiky subsequences which
is likely the cause for the transfer learning to work between these two datasets.
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FIGURE 2.6: The fine-tuned model’s accuracy variation on the target
dataset ShapeletSim with respect to the chosen source dataset neigh-

bor (smoothed for visual clarity - best viewed in color).

HandOutlines is one of the datasets where fine-tuning a pre-trained model al-
most never improves the accuracy. Unlike ShapeletSim, this dataset contains enough
labeled data for the learning algorithm to learn from (with 1000 time series in the
training set). Surprisingly, we found that one could drastically increase the model’s
performance when choosing the best source dataset. Figure 2.7 shows a huge dif-
ference (10%) between the model’s accuracy when fine-tuned using the most similar
source dataset and the accuracy when choosing the most dissimilar source dataset.
HandOutlines is a classification problem that uses the outlines extracted from hand
images. We found that the two most similar datasets (50words and WordsSyn-
onyms) that yielded high accuracy improvements, are also words’ outlines extracted
from images of George Washington’s manuscripts.

Meat is one of the smallest datasets (with 20 training instances) where the transfer
learning approach was almost always beneficial. However, we would like to exam-
ine the possibility of improving the accuracy even for the case where the transfer
learning seems to be positive (Weiss, Khoshgoftaar, and Wang, 2016) for any choice
of source dataset. Figure 2.8 shows that the accuracy reaches almost 95% for the top 3
closest datasets and then decrease the less similar the source and target datasets are.
While investigating these similarities, we found the top 1 and 3 datasets to be respec-
tively Strawberry and Beef which are all considered spectrograph datasets (Bagnall
et al., 2017). As for the second most similar dataset, our method determined it was
50words. Given the huge number of classes (fifty) in 50words our method managed
to find some latent similarity between the two datasets which helped in improving
the accuracy of the transfer learning process.
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2.2.6 Conclusion

In this section, we investigated the transfer learning approach on a state of the art
deep learning model for TSC problems. Our extensive experiments with every pos-
sible combination of source and target datasets in the UCR/UEA archive, were ev-
idence that the choice of the source dataset could have a significant impact on the
model’s generalization capabilities. Precisely when choosing a bad source dataset
for a given target dataset, the optimization algorithm can be stuck in a local op-
timum. This phenomena has been identified in the transfer learning literature by
negative transfer learning which is still an active area of research (Weiss, Khoshgof-
taar, and Wang, 2016). Thus, when deploying a transfer learning approach, the big
data practitioner should give attention to the relationship between the target and the
chosen source domains.

These observations motivated us to examine the use of the well known time se-
ries similarity measure DTW, to predict the choice of the source dataset when fine-
tuning a model on a time series target dataset. After applying this transfer learning
guidance, we concluded that transferring deep CNNs on a target dataset works best
when fine-tuning a network that was pre-trained on a similar source dataset. These
findings are very interesting since no previous observation made the link between
the space induced by the classic DTW and the features learned by the Convolutional
Neural Networks.

Our results should motivate the big data practitioners to no longer train models
from scratch when classifying time series, but instead to fine-tune pre-trained mod-
els. Especially because CNNs, if designed properly, can be adapted across different
time series datasets with varying length.

In our future work, we aim again to reduce the deep neural network’s overfitting
phenomena by generating synthetic data using a Weighted DTW Barycenter Averag-
ing method (Forestier et al., 2017b), since the latter distance gave encouraging results
in guiding a complex deep learning tool such as transfer learning.

Finally, with big data time series repositories becoming more frequent (Zoumpa-
tianos, Idreos, and Palpanas, 2014), leveraging existing source datasets that are sim-
ilar to, but not exactly the same as a target dataset of interest, makes a transfer learn-
ing method an enticing approach.

2.3 Ensembling

TSC tasks differ from traditional classification tasks by the natural temporal order-
ing of their attributes (Bagnall et al., 2017). To tackle this problem, a huge amount
of research was dedicated into coupling and enhancing time series similarity mea-
sures with an NN classifier (Dau et al., 2017; Gharghabi et al., 2018). In Lines and
Bagnall, 2015, ten elastic distances were compared to the traditional DTW algorithm
to find out that no single measure could outperform the classic NN-DTW for TSC.
These findings motivated the authors to construct a single EE classifier that includes
all eleven different similarity measures, and achieve a significant improvement com-
pared to the individual classifiers (Lines and Bagnall, 2015). Hence, recent contribu-
tions were focused on ensembling different discriminant classifiers such as decision
trees (Baydogan, Runger, and Tuv, 2013) and SVMs (Bostrom and Bagnall, 2015)
on different data representation techniques such shapelet transform (Bostrom and
Bagnall, 2015) or DTW features (Kate, 2016). These ideas gave rise to COTE (Bag-
nall et al., 2016) and its extended version HIVE-COTE (Lines, Taylor, and Bagnall,
2018) where 37 different classifiers were ensembled over multiple time series data
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FIGURE 2.9: Ensemble of deep convolutional neural networks for
time series classification.

transformation techniques in order to reach current state-of-the-art performance for
TSC (Bagnall et al., 2017).

With the advent of deep neural networks into industrial and commercial appli-
cations such as self-driving cars (Qiu and Gu, 2018) and speech recognition sys-
tems (Liul et al., 2018), time series data mining practitioners started investigating
the application of deep learning to TSC problems (Wang, Yan, and Oates, 2017). In
the previous chapter, we showed how deep CNNs are able to achieve results that are
not significantly different than current state-of-the-art algorithms for TSC problems
when evaluated over the 85 time series datasets from the UCR/UEA archive (Dau et
al., 2019). These results suggest that building upon deep learning based solutions for
TSC could further improve the current state-of-the-art performance of deep neural
networks.

One way of improving neural network based classifiers is to build an ensemble of
deep learning models. This idea seems very interesting for TSC tasks since the state-
of-the-art is moving towards ensembled solutions (Lines, Taylor, and Bagnall, 2018;
Lines and Bagnall, 2015; Bagnall et al., 2017; Baydogan, Runger, and Tuv, 2013). In
addition, deep neural network ensembles seem to achieve very promising results in
many supervised machine learning domains such as skin lesions detection (Goyal
and Rajapakse, 2018), facial expression recognition (Wen et al., 2017) and automatic
bucket filling (Dadhich, Sandin, and Bodin, 2018).

Therefore, we propose to ensemble the current state-of-the-art deep learning
models for TSC developed in the previous chapter, by constructing one model com-
posed of 60 different deep neural networks: 6 different architectures (Wang, Yan,
and Oates, 2017; Zheng et al., 2014; Zhao et al., 2017; Serrà, Pascual, and Karat-
zoglou, 2018) each one with 10 different initial weight values. By evaluating on
the 85 datasets from the UCR/UEA archive, we demonstrate a significant improve-
ment over the individual classifiers while also reaching very similar performance
to HIVE-COTE: the current state-of-the-art ensemble of 37 non deep learning based
time series classifiers. Finally, inspired by the our finding on transfer learning in
the previous section, we replace ensembling randomly initialized networks with an
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ensemble constructed out of fine-tuned models from 84 different source datasets,
which showed a significant improvement for TSC problems.

2.3.1 Background

In this subsection we present some work related to ensembling neural network clas-
sifiers, with a focus on time series data.

Constructing an ensemble of many deep learning classifiers has been shown to
achieve high performance in many different fields. In Goyal and Rajapakse, 2018, an
ensemble of two neural networks was adopted: (1) Inception-v4 and (2) Inception-
ResNet-v2. Both of these classifiers are learned with a joint meta-learning approach
in an end-to-end manner. A forest CNN was proposed by Lee, Kang, and Kang,
2017 for image classification, where similarly to random forest, the ensemble is con-
structed by replacing the individual nodes with a CNN and finally the classifier’s
decision is taken by performing a majority voting scheme over the different deci-
sions of the individual trees in the forest. Another ensemble of CNNs for facial
expression recognition was proposed in Wen et al., 2017 where each individual clas-
sifier was trained independently to output a probability for each class and then the
network’s final decision was taken using a probability-based fusion method. In Dad-
hich, Sandin, and Bodin, 2018, an ensemble of neural networks was found to outper-
form other hybrid machine learning ensembles when solving an automatic bucket
filling problem. Finally in Ienco and Pensa, 2018, deep auto-encoders were ensem-
bled in order to learn an unsupervised latent representation of the input data over
multiple resolutions, thus improving the quality of the produced clusters.

Although in almost all use cases ensembling deep neural networks almost al-
ways yields to better decisions, we did not find any approach using a neural net-
work ensemble for domain agnostic TSC. Perhaps the work in Jin and Dong, 2016
is the closest to ours where a neural network based ensemble was used to perform
biomedical TSC, where individual architectures were constructed with some domain
knowledge specific to the classification problem at hand such as choosing the filter
length with local and distorted views. Therefore, we decided to further explore en-
sembling deep neural networks for TSC, by combining multiple deep learning mod-
els in different settings.

2.3.2 Methods

In this subsection, we start by presenting the six different architectures composing
our ensembles of neural networks. For completeness, we describe the random ini-
tialization technique adopted for all models. Finally, we present a transfer learning
based alternative to randomly initializing the weights of the networks.

Architectures

The average rank of the six chosen deep learning classifiers, over the 85 datasets from
the UCR/UEA archive (Dau et al., 2019; Bagnall et al., 2017) is listed in Table 2.1. All
of these architectures were implemented in a common framework during our empir-
ical study presented in the previous chapter, containing originally 9 different deep
learning approaches for TSC. However only 6 out of these 9 approaches were prob-
abilistic classifiers whereas the three other classifiers performed a hard prediction:
meaning an input time series is assigned a specific class rather than a probability
distribution over all the classes in a dataset. Therefore, we chose to only ensemble
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Approach Rank Wins

ResNet (Wang, Yan, and Oates, 2017) 1.88 41
FCN (Wang, Yan, and Oates, 2017) 2.49 18

Encoder (Serrà, Pascual, and Karatzoglou, 2018) 3.34 10
MLP (Wang, Yan, and Oates, 2017) 4.08 4

Time-CNN (Zhao et al., 2017) 4.38 4
MCDCNN (Zheng et al., 2014) 4.83 3

TABLE 2.1: Average rank of the six classifiers constituting the Neural
Network Ensemble for time series classification over the 85 datasets

from the UCR/UEA archive.

the 6 probabilistic models, thus allowing us to combine the networks by averaging
the a posteriori probability for each class over the individual classifiers’ output. Fi-
nally, we present a brief description of these 6 different architectures and refer the
interested reader to a more thorough explanation in the corresponding papers. All
hyperparameters can be found in Ismail Fawaz et al., 2019d.

Multi-Layer Perceptron (MLP) is the simplest form of deep neural networks and
was proposed in Wang, Yan, and Oates, 2017 as a baseline architecture for TSC.
The architecture contains three hidden layers, with each one fully connected to the
output of its previous layer. The main characteristic of this architecture is the use of a
Dropout layer (Srivastava et al., 2014) to reduce overfitting. One disadvantage is that
since the input time series is fully connected to the first hidden layer, the temporal
information in a time series is lost (Ismail Fawaz et al., 2019d).

Fully Convolutional Neural Network (FCN), originally proposed in Wang, Yan, and
Oates, 2017, is considered a competitive architecture yielding the second best results
when evaluated on the UCR/UEA archive (see Table 2.1). This network is comprised
of three convolutional layers, each one performing a non-linear transformation of
the input time series. A global average pooling operation is used before the final
softmax classifier, thus reducing drastically the number of parameters in a network
and allowing an architecture that is invariant to the length of the input time series.
The latter characteristic motivated us to perform a transfer learning technique in Is-
mail Fawaz et al., 2018d, and ensembling the resulting neural networks which is
later discussed in this subsection.

Residual Network (ResNet) was originally proposed in Wang, Yan, and Oates, 2017
and showed similar performance to FCN when evaluated on 44 datasets from the
archive. However, when evaluated over the 85 datasets, ResNet significantly out-
performed FCN (see Table 2.1). The main characteristic of ResNet is the addition
of residual connections which enables a direct flow of the gradient (Wang, Yan, and
Oates, 2017).

Encoder was originally proposed in Serrà, Pascual, and Karatzoglou, 2018 as a
hybrid CNN that modifies the FCN architecture (Wang, Yan, and Oates, 2017) by
mainly adding a Dropout layer (Srivastava et al., 2014) and an attention mechanism.
The latter operation enables Encoder to learn to localize which regions of the input
time series are useful for a certain class identification.

Multi-Channels Deep Convolutional Neural Networks (MCDCNN) was originally
proposed in Zheng et al., 2014 for multivariate TSC and adapted to univariate data
by Ismail Fawaz et al., 2019d. It consists of a traditional CNN, where each convo-
lutional layer is followed by a max pooling operation, then a traditional fully con-
nected layer is used before the final softmax classifier.
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Time Convolutional Neural Network (Time-CNN) was originally proposed for uni-
variate as well as multivariate TSC (Zhao et al., 2017). Similarly to MCDCNN, this
network is a traditional CNN with one major exception: the use of the mean squared
error instead of the traditional categorical cross-entropy loss function, which has
been used by all the deep learning approaches we have mentioned so far. There-
fore for Time-CNN, the sum of the output class probabilities is not guaranteed to be
equal to one.

Ensembling models with random initial weights

We have described in the previous subsection, the architecture of six different classi-
fiers. The weights for each network are initialized randomly using Glorot’s uniform
initialization method (Glorot and Bengio, 2010). This technique ensures a uniform
distribution of the initial weight values. However due to non-convexity, networks
with the same architecture but different initial weights could yield different valida-
tion accuracy. In Choromanska et al., 2015, the authors showed that deeper networks
are much more stable with respect to the randomness. This would suggest that en-
sembling relatively non deep architectures would yield to a much better improve-
ment in accuracy than ensembling deeper architectures. Fortunately, for low dimen-
sional time series data, current state-of-the-art architectures are much less deeper
than their counterpart networks for high dimensional images. Therefore, we be-
lieve that we can leverage this instability of neural networks for time series data
by ensembling the decision taken by the same network but with different random
initializations, using the following equation:

ŷi,c =
1
n

n

∑
j=1

σc(xi, θj) | ∀c ∈ [1, C] (2.1)

with ŷi,c denoting the ensemble’s output probability of having the input time series
xi belonging to class c, which is equal to the logistic output σc averaged over the
n randomly initialized models. We should note that training an ensemble of the
same architecture with different initial weight values has been shown to improve
neural network’s performance on many computer vision problems (Wen et al., 2017),
however, we did not encounter any previous work that combines such classifiers for
TSC.

Transfer learning

An alternative to training a deep classifier from scratch is to fine-tune a model that
has been already pre-trained on a un/related task (Ismail Fawaz et al., 2018d), which
was described in the previous section of this current chapter. This process is called
transfer learning, where the network is first trained on a source dataset, then the
final layer is removed and replaced with a new randomly initialized softmax layer
whose number of neurons is equal to the number of classes in the target dataset. The
pre-trained model is then fine-tuned or re-trained on the target dataset’s training
set. With 85 datasets in the archive, each target dataset will have 84 potential source
datasets, which motivated us to ensemble the decision of these 84 FCN models.

2.3.3 Results

In this section we present the results of different ensembling schemes when eval-
uated on the 85 datasets from the UCR/UEA archive (Dau et al., 2019), which is
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FIGURE 2.10: Critical difference diagram showing the pairwise sta-
tistical comparison of ten ResNets with random initializations as well
as one ResNet ensemble composed of these ten individual neural net-

works.

currently the largest publicly available benchmark for time series analysis. In order
to compare multiple classifiers over several datasets, we followed the same proce-
dure described in the previous chapter. All experiments were conducted on a hybrid
cluster of more than 60 NVIDIA GPUs comprised of GTX 1080 Ti, Tesla K20, K40 and
K80. Note that the code and the raw results are publicly available on the project’s
companion repository3.

Ensembling randomly initialized models

By ensembling randomly initialized networks, we are able to achieve a significant
improvement in accuracy. Figure 2.10 shows a critical difference diagram where
ten different random initializations of ResNet did not yield to significantly different
results. However, by ensembling these different networks, we were able to demon-
strate a significant improvement in the average rank over the 85 datasets. We should
note that the latter phenomenon was also observed for the five other neural net-
works described in the previous subsection. Finally, we should emphasize that an
ensembling technique will improve the stability of ResNet in terms of accuracy, in
other words reducing the bias due to the initial weight values as well as the random-
ness induced by gradient descent based optimization.

Ensembling all neural networks

After demonstrating that using an ensemble of neural networks is always better than
a single classifier, we sought to answer the following question: Could an ensemble of
hybrid randomly initialized networks achieve even better performance? Figure 2.11 shows
a critical difference diagram containing six ensembles of homogenized networks as
well as the hybrid ensemble of all available networks. The latter classifier contains
sixty different networks: each architecture (six in total) is initialized with ten differ-
ent random weight values. The results show that ensembling all networks was able
to outperform all classifiers. However the statistical test failed to find any signifi-
cant difference between the full ensemble and individual ResNet/FCN ensembles.
This would suggest that the ensemble is highly affected by the poor performance
of Time-CNN, MLP and MCDCNN. The latter classifiers showed the worst average
rank without any significant difference, thus suggesting that removing them would
yield even better performance.

3https://github.com/hfawaz/ijcnn19ensemble

https://github.com/hfawaz/ijcnn19ensemble


2.3. Ensembling 79

1234567

Time-CNNs
MLPs

MCDCNNs
Encoders

FCNs
ResNets
ALL

FIGURE 2.11: Critical difference diagram showing the pairwise sta-
tistical comparison of six architectures ensembled with ten different
random initializations each, as well as one ensemble containing the

six models.
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Neural Network Ensemble

The results in the previous section, suggest that choosing carefully the classifiers
in the pool would yield to a better ensemble. Therefore, we construct an NNE
comprised solely of ResNet, FCN and Encoder. These three architectures were the
only ones to yield significantly different results when a homogenized ensemble was
adopted (Figure 2.11). Further investigations suggested that FCN performs better
than ResNet on electrocardiography datasets (Ismail Fawaz et al., 2019d), which
would motivate researchers to combine these two classifiers in order to have a robust
algorithm that improves the accuracy over the whole datasets. However, for small
datasets such as CinCECGTorso, both FCN and ResNet overfitted the dataset very
easily with almost 82% test accuracy (Ismail Fawaz et al., 2018b), whereas Encoder
managed to achieve very good performance with a 91% accuracy, therefore imply-
ing a combination of ResNet, FCN and Encoder would yield to better accuracy on a
various range of TSC datasets. Figure 2.12 shows how NNE is able to outperform an
ensemble of pure ResNets with 45 wins and 18 ties on 85 datasets from the archive.
We believe that the combination of an FCN with ResNet and Encoder, enables the
classifier to benefit respectively from the residual linear connections and the atten-
tion mechanism.
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FIGURE 2.13: Critical difference diagram showing the pairwise statis-
tical comparison of current state-of-the-art algorithms with the Neu-

ral Network Ensemble (NNE) added to the pool.

To further understand how NNE is performing with respect to current state-of-
the-art TSC algorithms, we illustrate in Figure 2.13 a critical difference diagram con-
taining NNE and seven other non deep learning based classiifers: (1) NN-DTW cor-
responds to the nearest neighbor coupled with the Dynamic Time Warping distance;
(2) EE is an ensemble of nearest neighbor classifiers with eleven elastic distances; (3)
BOSS corresponds to the ensemble Bag-of-SFA-Symbols; (4) ST is another ensemble
of off-the-shelf classifiers computed over the Shapelet Transform data domain; (5)
PF or Proximity Forest is an ensemble of decision trees coupled with eleven elastic
distances; finally (6) COTE and (7) HIVE-COTE are two ensembles of respectively
35 and 37 classifiers using multiple data transformation techniques. The results for
these classifiers were taken from Bagnall et al., 2017 except for PF whose results
were taken from the original paper (Lucas et al., 2018). Figure 2.13 clearly shows
how our NNE is able to reach state-of-the-art performance for TSC, suggesting that
CNNs are able to extract one dimensional discriminant features useful for classifica-
tion in an end-to-end manner, as opposed to other hand-engineered features used by
HIVE-COTE such as the Discrete Fourier Transform, DTW features and the Shapelet
Transform.

Ensembling fine-tuned models

Figure 2.14 shows that ensembling fine-tuned FCNs is significantly better than en-
sembling randomly initialized FCN models that are trained from scratch. However,
this transfer learning based ensemble did not manage to outperform ResNets’ en-
semble nor NNE. These results show that the choice of architecture is very crucial
and suggest that an ensemble of transferred ResNets would demonstrate even better
performance than an ensemble of pure ResNets or NNE.

2.3.4 Conclusion

In this section, we showed how ensembling deep neural networks can achieve state-
of-the-art performance for time series classification. We showed that it would be al-
most always beneficial to ensemble randomly initialized models rather than choos-
ing one trained neural network out of the ensemble. Finally, we investigated an
ensemble of transferred deep CNNs to demonstrate even better performance than
ensembling randomly initialized networks. In the future, we would like to consider
a meta-ensembling approach where the output logistics of individual deep learn-
ing models are fed to a meta-network that learns to map these inputs to the correct
prediction.
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FIGURE 2.14: Ensembling fine-tuned models is significantly better
than ensembling randomly initialized FCN models that are trained

from scratch.

2.4 Data augmentation

Deep learning usually benefits from large training sets (Zhang et al., 2017). How-
ever, for many applications only relatively small training data exist. In TSC, this
phenomenon can be observed by analyzing the UCR/UEA archive’s datasets (Dau
et al., 2019), where 20 datasets have 50 or fewer training instances. These numbers
are relatively small compared to the billions of labeled images in computer vision,
where deep learning has seen its most successful applications (LeCun, Bengio, and
Hinton, 2015).

Although the recently proposed deep CNNs reached state of the art performance
in TSC on the UCR/UEA archive (Wang, Yan, and Oates, 2017), they still show
low generalization capabilities on some small datasets such as the CinCECGTorso
dataset with 40 training instances. This is surprising since the NN-DTW performs
exceptionally well on this dataset which shows the relative easiness of this classi-
fication task. Thus, inter-time series similarities in such small datasets cannot be
captured by the CNNs due to the lack of labeled instances, which pushes the net-
work’s optimization algorithm to be stuck in local minimums (Zhang et al., 2017).
Figure 2.15 illustrates on an example that the lack of labeled data can sometimes be
compensated by the addition of synthetic data.

This phenomenon, also known as overfitting in the machine learning community,
can be solved using different techniques such as regularization or simply collect-
ing more labeled data (Zhang et al., 2017) (which in some domains are hard to ob-
tain). Another well-known technique is data augmentation, where synthetic data
are generated using a specific method. For example, images containing street num-
bers on houses can be slightly rotated without changing what number they actually
are (Krizhevsky, Sutskever, and Hinton, 2012). For deep learning models, these
methods are usually proposed for image data and do not generalize well to time
series (Um et al., 2017). This is probably due to the fact that for images, a visual
comparison can confirm if the transformation (such as rotation) did not alter the im-
age’s class, while for time series data, one cannot easily confirm the effect of such ad-
hoc transformations on the nature of a time series. This is the main reason why data
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for visual clarity).

augmentation for TSC have been limited to mainly two relatively simple techniques:
slicing and manual warping, which are further discussed in the next subsection.

In this section, we propose to leverage from a DTW based data augmentation
technique specifically developed for time series, in order to boost the performance of
a deep ResNet for TSC. Our preliminary experiments reveal that data augmentation
can drastically increase the accuracy for CNNs on some datasets while having a
small negative impact on other datasets. We finally propose to combine the decision
of the two trained models and show how it can reduce significantly the rare negative
effect of data augmentation while maintaining its high gain in accuracy on other
datasets.

2.4.1 Related work

The most used data augmentation method for TSC is the slicing window technique,
originally introduced for deep CNNs in Cui, Chen, and Chen, 2016. The method
was originally inspired by the image cropping technique for data augmentation in
computer vision tasks (Zhang et al., 2017). This data transformation technique can,
to a certain degree, guarantee that the cropped image still holds the same informa-
tion as the original image. On the other hand, for time series data, one cannot make
sure that the discriminative information has not been lost when a certain region
of the time series is cropped. Nevertheless, this method was used in several TSC
problems, such as in Krell, Seeland, and Kim, 2018 where it improved the SVMs ac-
curacy for classifying electroencephalographic time series. In Kvamme et al., 2018,
this slicing window technique was also adopted to improve the CNNs’ mortgage
delinquency prediction using customers’ historical transactional data. In addition
to the slicing window technique, jittering, scaling, warping and permutation were
proposed in Um et al., 2017 as generic time series data augmentation approaches.
The authors in Um et al., 2017 proposed an additional data augmentation method
specific to wearable sensor time series data that rotates the trajectory of a person’s
arm around an axis (e.g. the x axis).

In Le Guennec, Malinowski, and Tavenard, 2016, the authors proposed to extend
the slicing window technique with a warping window that generates synthetic time
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series by warping the data through time. This method was used to improve the clas-
sification of their deep CNN for TSC, which was also shown to significantly decrease
the accuracy of a NN-DTW classifier when compared to our adopted data augmen-
tation algorithm (Forestier et al., 2017b). We should note that the use of a window
slicing technique means that the model should classify each subsequence alone and
then finally classify the whole time series using a majority voting approach. Al-
ternatively, our method does not crop time series into shorter subsequences which
enables the network to learn discriminative properties from the whole time series in
an end-to-end manner.

2.4.2 Method

Architecture

We have chosen to improve the generalization capability of the deep ResNet pro-
posed in Wang, Yan, and Oates, 2017 for two main reasons, whose corresponding
architecture is illustrated in Figure 1.7. First, by adopting an already validated ar-
chitecture, we can attribute any improvement in the network’s performance solely to
the data augmentation technique. The second reason is that ResNet (Wang, Yan, and
Oates, 2017), to the best of our knowledge, is the deepest neural network validated
on large number of TSC tasks (such as the UCR/UEA archive (Dau et al., 2019)),
which according to the deep learning literature will benefit the most from the data
augmentation techniques as opposed to shallow architectures (Bengio et al., 2011).
Deep ResNets were first proposed by He et al., 2016 for computer vision tasks. They
are mainly composed of convolutions, with one important characteristic: the resid-
ual connections which acts like shortcuts that enable the flow of the gradient directly
through these connections.

The input of this network is a univariate time series with a varying length l. The
output consists of a probability distribution over the C classes in the dataset. The
network’s core contains three residual blocks followed by a Global Average Pooling
layer and a final softmax classifier with C neurons. Each residual block contains
three 1-D convolutions of respectively 8, 5 and 3 filter lengths. Each convolution is
followed by a batch normalization (Ioffe and Szegedy, 2015) and a ReLU as the ac-
tivation function. The residual connection consists in linking the input of a residual
block to the input of its consecutive layer with the simple addition operation. The
number of filters in the first residual blocks is set to 64 filters, while the second and
third blocks contain 128 filters.

All network’s parameters were initialized using Glorot’s Uniform initializa-
tion method (Glorot and Bengio, 2010). These parameters were learned using
Adam (Kingma and Ba, 2015) as the optimization algorithm. Following Wang, Yan,
and Oates, 2017, without any fine-tuning, the learning rate was set to 0.001 and the
exponential decay rates of the first and second moment estimates were set to 0.9 and
0.999 respectively. Finally, the categorical cross-entropy was used as the objective
cost function during the optimization process.

Data augmentation

The data augmentation method we have chosen to test with this deep architecture,
was first proposed in Forestier et al., 2017b to augment the training set for a 1-NN
coupled with the DTW distance in a cold start simulation problem. In addition, the
1-NN was shown to sometimes benefit from augmenting the size of the train set
even when the whole dataset is available for training. Thus, we hypothesize that
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this synthetic time series generation method should improve deep neural network’s
performance, especially that the generated examples in Forestier et al., 2017b were
shown to closely follow the distribution from which the original dataset was sam-
pled. The method is mainly based on a weighted form of DBA technique (Petitjean,
Ketterlin, and Gançarski, 2011; Petitjean et al., 2016; Petitjean et al., 2014). The latter
algorithm averages a set of time series in a DTW induced space and by leveraging
a weighted version of DBA, the method can thus create an infinite number of new
time series from a given set of time series by simply varying these weights. Three
techniques were proposed to select these weights, from which we chose only one in
our approach for the sake of simplicity, although we consider evaluating other tech-
niques in our future work. The weighting method is called Average Selected which
consists of selecting a subset of close time series and fill their bounding boxes.

We start by describing in details how the weights are assigned, which constitutes
the main difference between an original version of DBA and the weighted version
originally proposed in Forestier et al., 2017b. Starting with a random initial time
series chosen from the training set, we assign it a weight equal to 0.5. The latter
randomly selected time series will act as the initialization of DBA. Then, we search
for its 5 nearest neighbors using the DTW distance. We then randomly select 2 out
these 5 neighbors and assign them a weight value equal to 0.15 each, making thus
the total sum of assigned weights till now equal to 0.5 + 2× 0.15 = 0.8. Therefore,
in order to have a normalized sum of weights (equal to 1), the rest of the time series
in the subset will share the rest of the weight 0.2. We should note that the process of
generating synthetic time series leveraged only the training set thus eliminating any
bias due to having seen the test set’s distribution.

As for computing the average sequence, we adopted the DBA algorithm in our
data augmentation framework. Although other time series averaging methods exist
in the literature, we chose the weighted version of DBA since it was already pro-
posed as a data augmentation technique to solve the cold start problem when using
a nearest neighbor classifier (Forestier et al., 2017b). Therefore we emphasize that
other weighted averaging methods such as soft-DTW (Cutur and Blondel, 2017) and
TEKA (Marteau, 2019) could be used instead of DBA in our framework, but we leave
such exploration for our future work.

We did not test the effect of imbalanced classes in the training set and how it
could affect the model’s generalization capabilities. Note that imbalanced time series
classification is a recent active area of research that merits an empirical study of its
own (Geng and Luo, 2018). At last, we should add that the number of generated
time series in our framework was chosen to be equal to double the amount of time
series in the most represented class (which is a hyper-parameter of our approach
that we aim to further investigate in our future work).

2.4.3 Results

We evaluated the data augmentation method for ResNet on the UCR/UEA
archive (Dau et al., 2019), which is the largest publicly available TSC benchmark. The
archive is composed of datasets from different real world applications with varying
characteristics such the number of classes and the size of the training set. Finally, for
training the deep learning models, we leveraged the high computational power of
more than 60 GPUs in one huge cluster4 We should also note that the same parame-
ters’ initial values were used for all compared approaches, thus eliminating any bias
due to the random initialization of the network’s weights.

4Our source code is available on https://github.com/hfawaz/aaltd18

https://github.com/hfawaz/aaltd18
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Our results show that data augmentation can drastically improve the accuracy of
a deep learning model while having a small negative impact on some datasets in the
worst case scenario. Figure 2.16a shows the difference in accuracy between ResNet
with and without data augmentation, it shows that the data augmentation technique
does not lead a significant decrease in accuracy. Additionally, we observe a huge
increase of accuracy for the DiatomSizeReduction dataset (the accuracy increases
from 30% to 96% when using data augmentation).

This result is very interesting for two main reasons. First, DiatomSizeReduction
has the smallest training set in the UCR/UEA archive (Dau et al., 2019) (with 16
training instances), which shows the benefit of increasing the number of training
instances by generating synthetic time series. Secondly, the DiatomSizeReduction
dataset is the one where ResNet yield the worst accuracy without augmentation. On
the other hand, the NN coupled with DTW (or ED) gives an accuracy of 97% which
shows the relative easiness of this dataset where time series exhibit similarities that
can be captured by the simple Euclidean distance, but missed by the deep ResNet
due to the lack of training data (which is compensated by our data augmentation
technique). The results for the Wine dataset (57 training instances) also show an
important improvement when using data augmentation.

While we did show that deep ResNet can benefit from synthetic time series on
some datasets, we did not manage to show any significant improvement over the
whole UCR/UEA archive (p-value > 0.41 for the Wilcoxon signed rank test). There-
fore, we decided to leverage an ensemble technique where we take into considera-
tion the decisions of two ResNets (trained with and without data augmentation). In
fact, we average the a posteriori probability for each class over both classifier out-
puts, then assign for each time series the label for which the averaged probability
is maximum, thus giving a more robust approach to out-of-sample generated time
series. The results in Figure 2.16b show that the datasets which benefited the most
from data augmentation exhibit almost no change to their accuracy improvement.
While on the other hand the number of datasets where data augmentation harmed
the model’s accuracy decreased from 30 to 21. The Wilcoxon signed rank test shows
a significant difference (p-value < 0.0005). The ensemble’s results are in compliance
with the recent consensus in the TSC community, where ensembles tend to improve
the individual classifiers’ accuracy (Bagnall et al., 2017).

2.4.4 Conclusion

In this section, we showed how overfitting small time series datasets can be mit-
igated using a recent data augmentation technique that is based on DTW and a
weighted version of the DBA algorithm. These findings are very interesting since
no previous observation made a link between the space induced by the classic DTW
and the features learned by the CNNs, whereas our experiments showed that by
providing enough time series, CNNs are able to learn time invariant features that
are useful for classification.

In our future work, we aim to further test other variant weighting schemes for the
DTW-based data augmentation technique, while providing a method that predicts
when and for which datasets, data augmentation would be beneficial.
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2.5 Adversarial examples

As we have previously discussed, TSC problems are encountered in various real
world data mining tasks ranging from health care (Abdelfattah, Abdelrahman, and
Wang, 2018; Ma, Xiao, and Wang, 2018; Ismail Fawaz et al., 2018c) and security (Tan,
Webb, and Petitjean, 2017; Tobiyama et al., 2016) to food safety (Briandet, Kemsley,
and Wilson, 1996; Nawrocka and Lamorska, 2013) and power consumption moni-
toring (Owen and Foreman, 2012; Zheng et al., 2018). With deep learning models
revolutionizing many machine learning fields such as computer vision (Krizhevsky,
Sutskever, and Hinton, 2012) and natural language processing (Yang et al., 2018;
Wang, Li, and Xu, 2018), we have shown in the previous chapter how researchers
recently started to adopt these models for TSC tasks (Ismail Fawaz et al., 2019d).

Following the advent of deep learning, researchers started to study the vulner-
ability of deep networks to adversarial attacks (Yuan et al., 2017). In the context of
image recognition, an adversarial attack consists in modifying an original image so
that the changes are almost undetectable by a human (Yuan et al., 2017). The modi-
fied image is called an adversarial image, which will be misclassified by the neural
network, while the original one is correctly classified. One of the most famous real-
life attacks consists in altering a traffic sign image so that it is misinterpreted by an
autonomous vehicle (Eykholt et al., 2018). Another application is the alteration of
illegal content to make it undetectable by automatic moderation algorithms (Yuan et
al., 2017). The most common attacks are gradient-based methods, where the attacker
modifies the image in the direction of the gradient of the loss function with respect to
the input image thus increasing the misclassification rate (Goodfellow, Shlens, and
Szegedy, 2015; Kurakin, Goodfellow, and Bengio, 2017; Yuan et al., 2017).

While these approaches have been intensely studied in the context of image
recognition (e.g. NeurIPS competition on Adversarial Vision Challenge), adversar-
ial attacks haven not been thoroughly explored for TSC. This is surprising as deep
learning models are getting more and more popular to classify time series (Ismail
Fawaz et al., 2019e; Wang, Yan, and Oates, 2017; Ma, Xiao, and Wang, 2018; Zheng et
al., 2018; Ismail Fawaz et al., 2018b; Ismail Fawaz et al., 2018d). Furthermore, poten-
tial adversarial attacks are present in many applications where the use of time series
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FIGURE 2.17: Example of a perturbed time series that is misclassified
by a deep network after applying a small perturbation (time series
from the Coffee dataset (Dau et al., 2019) containing spectrographs of

coffee beans).

data is crucial. For example, Figure 2.17 shows an original and perturbed time series
of coffee beans spectrograph. While a deep neural network correctly classifies the
original time series as Robusta beans, adding small perturbations makes it classify
it as Arabica. Therefore, since Arabica beans are more valuable than Robusta beans,
this attack could be used to deceive food control tests and eventually the consumers.

In this section, we present, transfer and adapt adversarial attacks that have been
shown to work well on images to time series data. We also present an experimen-
tal study using the 85 datasets of the UCR/UEA archive (Dau et al., 2019) which
reveals that neural networks are prone to adversarial attacks. We highlight specific
real-life use cases to stress the importance of such attacks in real-life settings, namely
food quality and safety, vehicle sensors and electricity consumption. Our findings
show that deep networks for time series data are vulnerable to adversarial attacks
like their computer vision counterparts. Therefore, this work sheds the light on the
need to protect against such attacks, especially when deep learning is used for sen-
sitive TSC applications. We also show that adversarial time series learned using one
network architecture can be transferred to different architectures. We then discuss
some mechanisms to prevent these attacks while making the models more robust
to adversarial examples. Finally, in the spirit of regularizing DNNs, we show how
these perturbed time series can be leveraged in order to improve the generalization
capability of a deep learning model: a technique called Adversarial Training (Xie
et al., 2020).

2.5.1 Background

In this subsection, we start with the necessary definitions for ease of understanding.
We then follow by an overview of critical applications based on deep learning ap-
proaches for TSC where adversarial attacks could have serious and dangerous con-
sequences. Finally, we present a brief survey of the current state-of-the-art methods
for adversarial attacks which have been mainly proposed and validated on image
datasets (Yuan et al., 2017).

Definition 1. f (·) ∈ F : RT → Ŷ represents a deep learning model for TSC.

Definition 2. J f (·, ·) denotes the loss function (e.g. cross-entropy) of the model f .

Definition 3. X
′

denotes the adversarial example, a perturbed version of X (the
original instance) such that Ŷ 6= Ŷ

′
and ‖X− X

′‖p ≤ ε.
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In this section, we focus on the application of DNNs in crucial and sensitive
decision making systems, thus motivating the investigation of neural network’s vul-
nerabilities to adversarial examples. In Ma, Xiao, and Wang, 2018, CNNs were used
to mine temporal electronic health data for risk prediction and disease sub-typing.
In situations where algorithms are taking the decision for reimbursement of medi-
cal treatment, tampering medical records in an imperceptible manner could eventu-
ally lead to fraud. Apart from the health care industry, deep CNNs are also being
used when monitoring power consumption from houses or factories. For example
in Zheng et al., 2018, time series data from smart grids were analyzed for electricity
theft detection, where in such use cases perturbed data can help thieves to avoid
being detected. Other crucial decision making systems such as malware detection
in smart-phones, leverage temporal data in order to classify if an Android applica-
tion is malicious or not (Tobiyama et al., 2016). Using adversarial attacks, a hacker
might generate synthetic data from his/her application allowing it to bypass the
security systems and get it installed on the end user’s smart-phone. Finally, when
deep neural networks are deployed for road anomaly detection (Cabral et al., 2018),
perturbing the data recorded by sensors placed on the road could help the entities
responsible for such life threatening anomalies, to avoid being captured. We should
note that this list of potential attacks is not exhaustive.

+ =

imperceptible
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perturbed
time series

class-2
with 99% 

confidence

+

original time 
series

class-1
with 99% 

confidence

FIGURE 2.18: Example of perturbing the classification of an in-
put time series from the TwoLeadECG (Dau et al., 2019) dataset by
adding an imperceptible noise computed using the Fast Gradient Sign

Method.

Adversarial attacks

Szegedy et al., 2014 were the first to introduce adversarial examples against deep
neural networks for image recognition tasks in 2014. Following these intrigu-
ing findings, a huge amount of research has been dedicated to generating, under-
standing and preventing adversarial attacks on deep neural networks (Goodfellow,
Shlens, and Szegedy, 2015; Kurakin, Goodfellow, and Bengio, 2017; Eykholt et al.,
2018).

Most of these methods have been proposed for image recognition tasks (Yuan
et al., 2017). For example, in Goodfellow, Shlens, and Szegedy, 2015, a fast
gradient-based attack was developed as an alternative to expensive optimization
techniques (Szegedy et al., 2014), where the authors explained the presence of such
adversarial examples with the hypothesis of linearity for deep learning models. This
kind of attack was also extended by a more costly iterative procedure (Kurakin,
Goodfellow, and Bengio, 2017), where the authors showed for the first time that
even printed adversarial images (i.e. perceived by a camera) are able to fool a pre-
trained network. More recently, it has been shown that perturbing stop signs can



2.5. Adversarial examples 89

trick autonomous vehicles into misclassifying it as a speed limit sign (Eykholt et al.,
2018).

Other fields such as Natural Language Processing have also been investigated to
create adversarial attacks such as adding distracting phrases at the end of a para-
graph in order to show that deep learning-based reading comprehension systems
were not able to distinguish subtle differences in text (Jia and Liang, 2017). For a
review on the different adversarial attacks for deep learning systems, we refer the
interested readers to a recent survey in Yuan et al., 2017.

For general TSC tasks, it is surprising how adversarial attack approaches have
been ignored by the community. The only previous work mentioning attacks for TSC
is Oregi et al., 2018. By adapting a soft KNN coupled with DTW, the authors showed
that adversarial examples could fool the proposed nearest neighbors classifier on
a single simulated dataset (synthetic_control from the UCR/UEA archive Dau et
al., 2019). However, the fact that the KNN classifier is no longer considered as the
state-of-the-art classifier for time series data (Bagnall et al., 2017), we believe that it
is important to investigate the generation of adversarial time series examples that
deteriorate the accuracy of state-of-the-art classifiers such as ResNet (Ismail Fawaz
et al., 2019d; Wang, Yan, and Oates, 2017) and to validate it on the whole 85 datasets
in the UCR/UEA archive. Finally, we formally define an adversarial attack on deep
neural networks for TSC.

Definition 4. Given a trained deep learning model f and an original input time
series X, generating an adversarial instance X

′
can be described as a box-constrained

optimization problem.

min
Xθ
‖X′ − X‖ s.t.

f (X
′
) = Ŷ′ , f (X) = Ŷ and Ŷ 6= Ŷ′ (2.2)

Let η = X − X
′

be the perturbation added to X, which corresponds to a very low

amplitude signal. Figure 2.18 illustrates this process where the green time series cor-
responds to the added perturbation η. The optimization problem in (2.2) minimizes
the perturbation while misclassifying the input time series.

2.5.2 Adversarial attacks for time series

In this subsection, we present two attack methods that we then use to generate ad-
versarial time series examples for the ResNet model described in Chapter 1. For
testing adversarial examples, we used ResNet, which was originally proposed for
TSC in Wang, Yan, and Oates, 2017, where it was validated on 44 datasets from
the UCR/UEA archive (Dau et al., 2019). In Chapter 1, we identified that ResNet
achieved state-of-the-art performance for TSC, with results that are not significantly
different than the HIVE-COTE, the current state-of-the-art classifier, which is an en-
semble of 37 classifiers (Lines, Taylor, and Bagnall, 2018). Note that our adversar-
ial attack methods are independent of the chosen network architecture, and that we
chose ResNet for its robustness (Ismail Fawaz et al., 2019d) as well as its use in many
critical domains such as malware detection (Cabral et al., 2018). In addition, adver-
sarial examples are known to be transferable across different neural network archi-
tectures which enables the synthetic time series to fool other deep learning models:
a technique known as black-box attack (Yuan et al., 2017). Finally, we describe a very
recent method called AdvProp (Xie et al., 2020) that leverages adversarial training
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in order to improve image recognition systems, which we implement and apply to
our TSC problem.

Fast Gradient Sign Method

FGSM was first proposed in Goodfellow, Shlens, and Szegedy, 2015 to generate
adversarial images that fooled the famous GoogLeNet model. FGSM is consid-
ered “fast” and replaces the expensive linear search method previously proposed
in Szegedy et al., 2014. The attack is based on a one step gradient update along
the direction of the gradient’s sign at each time stamp. The perturbation process
(illustrated in Figure 2.18) can be expressed as:

η = ε · sign(∇x J(X, Ŷ)) (2.3)

where ε denotes the magnitude of the perturbation (a hyperparameter). The adver-
sarial time series X

′
can be easily generated with X

′
= X + η. The gradient can be

efficiently computed using back-propagation.

Basic Iterative Method

BIM extends FGSM by applying it multiple times with a small step size and clip
the obtained time series elements after each step to ensure that they are in an ε-
neighborhood of the original time series (Kurakin, Goodfellow, and Bengio, 2017). In
fact, by adding smaller changes or perturbations in an iterative manner, the method
is able to generate adversarial examples that are closer to the original samples and
have a better chance of fooling the network. Algorithm 2 shows the different steps
of this iterative attack which requires setting three hyperparameters: (1) the num-
ber of iterations I; (2) the amount of maximum perturbation ε and (3) the per step
small perturbation α. In our experiments we have set ε = 0.1 heuristically similarly
to Goodfellow, Shlens, and Szegedy, 2015; Kurakin, Goodfellow, and Bengio, 2017
and the rest of BIM hyperparameters were left at their default value in the Clever-
hans API (Papernot et al., 2018).

Algorithm 2 Iterative Adversarial Attack

Parameter: I, ε, α
Input: original time series X & its label Ŷ Output: perturbed time series X

′

1: X
′ ← X

2: for i = 1 to I do
3: η = α · sign(∇x J(X

′
, Ŷ))

4: X
′
= X

′
+ η

5: X
′
= min{X + ε, max{X− ε, X

′}}
6: end for

Adversarial Training

Adversarial training consists of generating adversarial examples during the training
process of a neural network classifier. These adversarial instances are used as train-
ing examples in order to defend against adversarial attacks (Goodfellow, Shlens, and
Szegedy, 2015). This technique currently constitutes the foundation of state-of-the-
arts for defending against these attacks (Xie et al., 2019). Most previous approaches
have witnessed a decrease in accuracy on clean original instances when the model
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is trained in adversarial setting (Tsipras et al., 2018), showing an inevitable trade-off
between a model’s accuracy and its robustness to adversarial attacks. However, Xie
et al., 2020 were the first to show that one can leverage adversarial training to im-
prove the test time accuracy of a DNN. They managed to achieve this by adding a
using two different batch normalization layers (Ioffe and Szegedy, 2015): one for the
clean original intact training instances and a second one for the perturbed examples.
Xie et al., 2020 argued that the main reason behind the deterioration in accuracy
when using adversarial training was that the perturbed instances come from a dis-
tribution that is significantly different than the clean original ones. Thus having dif-
ferent normalization layers should allow the network to adapt its weights for each
distribution. In our case, we have implemented AdvProp and tested its effect when
training DNNs with adversarial training for TSC.

2.5.3 Results

Experimental setup

To train the deep neural network, we leveraged the parallel computation of a cluster
of more than 60 GPUs (a mix of GTX 1080 Ti, Tesla K20, K40 and K80). All of our ex-
periments were evaluated on the 85 datasets from the publicly available UCR/UEA
archive (Dau et al., 2019). The model was trained/tested using the original train-
ing/testing splits provided in the archive. To perform the attacks, we have adapted
the Cleverhans API (Papernot et al., 2018) by extending the well known attacks for
time series data and perturbed only the test instances without using the test labels,
similarly to the computer vision literature (Yuan et al., 2017).

For reproducibility and to allow the time series community to verify and build
on our findings, the source code for generating adversarial time series is publicly
available on our GitHub repository5. In addition, we provide on our companion
web page6 the raw results, our pre-trained models as well as a set of perturbed time
series for each dataset in the UCR/UEA archive. This would allow time series data
mining practitioners to test the robustness of their machine learning models against
adversarial attacks.

Adversarial attacks on the whole UCR/UEA archive

For all datasets, both attacks managed to reduce ResNet’s accuracy. One exception
is the DiatomSizeReduction dataset which is the smallest one in the archive with an
already low original accuracy equal to 30% due to overfitting (Ismail Fawaz et al.,
2019d). Figure 2.19 shows the accuracy variation for both attacks with respect to
the network’s original accuracy on the UCR/UEA archive. On average, over the 85
datasets, FGSM and BIM managed to reduce the model’s accuracy respectively by
43.2% and 56.89%. The Wilcoxon signed-rank test indicates that BIM is significantly
better than FGSM in decreasing the model’s accuracy, with a p-value≤ 10−15. How-
ever, we should note that FGSM is a fast approach allowing real-time generation of
adversarial time series whereas BIM is time-consuming and requires a certain num-
ber of iterations I.

By analyzing the use-cases where both attacks failed to fool the classifier, we
found out that the corresponding datasets have two interesting characteristics that
could explain the classifier’s robustness to adversarial examples. The first one is

5https://github.com/hfawaz/ijcnn19attacks
6https://germain-forestier.info/src/ijcnn2019/

https://github.com/hfawaz/ijcnn19attacks
https://germain-forestier.info/src/ijcnn2019/
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FIGURE 2.19: Accuracy variation for two attacks (FGSM and BIM)
with respect to ResNet’s original accuracy.

that 50% of the simulated datasets (CBF, Two_patterns and synthetic_control) in the
archive are in the top six hardest datasets to attack. Perhaps since these are syn-
thetic datasets generated by humans to serve some human intuition for TSC, small
perturbations imperceptible by humans, are not enough to alter the classifier’s deci-
sion. The second observation is that a network trained on datasets with time series
of short length is harder to fool. This is rather expected since the less data points we
have, the less amount of perturbation the attacker is allowed to add. For example
ItalyPowerDemand contains the shortest sequences (T = 24) and is the second most
hardest use-case for both attacks.

Multi-Dimensional Scaling

We used Multi-Dimensional Scaling (Kruskal and Wish, 1978; Forestier et al., 2017b)
(explained in Chapter 1) with the objective to gain some insights on the spatial dis-
tribution of the perturbed time series compared to the original ones. Using the ED
on a set of time series (original and perturbed), it is then possible to create a similar-
ity matrix and apply MDS to display the set into a two dimensional space. The latter
straightforward approach supposes that the ED is able to strongly separate the raw
time series, which is usually not the case evident by the low accuracy of the nearest
neighbor when coupled with the ED (Bagnall et al., 2017). Therefore, we decided to
use the linearly separable representation of time series from the output of the GAP
layer, which is used as input to the softmax linear classifier (multinomial logistic re-
gression). More precisely, for each input time series, the last convolution outputs a
multivariate time series whose dimensions are equal to the number of filters (128) in
the last convolution, then the GAP layer averages the latter 128-dimensional multi-
variate time series over the time dimension resulting in a vector of 128 real values
over which the ED is computed. This enables the MDS projection to be as close as
possible to ResNet’s latent representation of the time series. Obviously, one has to be
careful about the interpretation of MDS output, as the data space is highly simplified
(each time series Xi is represented as a single data point in 2D space).
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FIGURE 2.20: Multi-Dimensional Scaling showing the distribution of
perturbed time series on the whole test set of the Ham dataset where
the accuracy decreased from 80% to 21% after performing the BIM

attack.

Attacks on food quality and safety

The determination of food quality, type and authenticity along with the detection of
adulteration are major issues in the food industry (Nawrocka and Lamorska, 2013).
With meat related product, authenticity checking concerns for example the iden-
tification of substitution of high value raw materials with cheaper materials like
less costly cuts, offal, blood, water, eggs or other types of proteins. These substi-
tutions not only decease the consumers but can also cause severe allergic responses
as the substitute materials are hidden. Discriminating meat that has been frozen-
and-thawed from fresh meat is also an important issue, as refreezing food can re-
sult in an increased amount of bacteria. Spectroscopic methods have been histor-
ically very successful at evaluating the quality of agricultural products, especially
food (Nawrocka and Lamorska, 2013). This technique is routinely used as a quality
assurance tool to determine the composition of food ingredients.

In this context, an adversarial attack could be used to modify recorded spectro-
graphs (seen as time series) in order to hide the low qualify of the food. The Beef
dataset (Al-Jowder, Kemsley, and Wilson, 2002) (from the UCR/UEA archive) con-
tains four classes of beef spectrograms, from pure and adulterated beef with varying
degrees of potential adulterants (heart, tripe, kidney, and liver). An adversarial at-
tack could thus consist in modifying an adulterated beef to make a network classify
it as pure beef. For this dataset, FGSM and BIM reduced the model’s accuracy re-
spectively by 56.7% and 66.7%.

The Ham dataset (Olias et al., 2006) contains measurements from 19 Spanish and
18 French dry-cured hams, with the goal to distinguish the provenance of the food.
An adversarial attack could consist in perturbing the spectrograms to hide the real
provenance of the food. Figure 2.20 shows the MDS projection of the original and
perturbed instances for Ham’s test set, where one can see that the adversarial exam-
ples are pushed toward the other class.

The Coffee dataset (Briandet, Kemsley, and Wilson, 1996) is a two class problem
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FIGURE 2.21: Multi-Dimensional Scaling showing the distribution of
perturbed time series on the whole test set of the Coffee dataset where
the accuracy decreased from 100% to 50% after performing the FGSM

attack.

to distinguish between Robusta and Arabica coffee beans. Arabica beans are valued
most highly by the trade, as they are considered to have a finer flavor than Robusta.
An adversarial attack could consist in altering the spectrograms to make Robusta
beans look like Arabica beans. Figure 2.21 shows the MDS representation of the
original and perturbed time series from the test set. We can clearly see how the
instances are pushed toward the class frontiers after performing the FGSM attack.

Attacks on vehicle sensors

The increase in the number of sensors and other electrical devices has drastically
augmented the amount of data produced in the industry. These data are now rou-
tinely used to monitor systems or to perform predictive maintenance and prevent
failures (Susto et al., 2015). The car industry is not an exception with the increas-
ing number of sensors present in modern vehicles, especially for advanced driver
assistance systems and autonomous driving.

Data are also used to perform diagnostic on vehicles in order to detect engine
problems or compliance with environmental regulations. In this context, an ad-
versarial attack could consist in altering sensor readings in order to hide a specific
problem or to pass a CO2 emission test. The famous “dieselgate” (or “emissions-
gate”) (Brand, 2016) made this kind of attack a reality as multiple automakers have
been suspected of using emission control systems during laboratory emissions test-
ing.

To illustrate this use case, we used the FordA datasets (from the UCR/UEA
archive) that was was originally used in a competition in the IEEE World Congress
on Computational Intelligence, 2008. The classification problem is to diagnose
whether a certain symptom exists or not in an automotive subsystem. Each case
consists of 500 measurements of engine noise and a class label. In this context, an
attack could consist in hiding an engine problem. In practice for the FordA dataset,
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FIGURE 2.22: Accuracy variation with respect to the amount of per-
turbation for FGSM and BIM attacks on FordA.

the model’s accuracy decreased by 57.9% and 70.2% when applying respectively the
FGSM and BIM attacks.

Figure 2.22 depicts the variations of ResNet’s accuracy on FordA with respect
to the amount of perturbation ε allowed for the FGSM and BIM attacks. As ex-
pected (Kurakin, Goodfellow, and Bengio, 2017), we found that FGSM fails to gen-
erate adversarial examples that can fool the network for larger values of ε, whereas
the BIM produces perturbed time series that can reduce a model’s accuracy to almost
0.0%. This can be explained by the fact that BIM adds a small amount of perturba-
tion α on each iteration whereas FGSM adds ε amount of noise for each data point
in the series that may not be useful for misclassifying the test sample.

Attacks on electricity consumption

Smart meters are electronic devices that record electric power consumption while
sending information to the electricity supplier for monitoring, billing and data anal-
ysis. These meters typically register energy hourly and report back at least once a
day to the supplier by leveraging a two-way communication channel between the
device and the supplier’s central system. These smart meters have raised a set of
concerns in public opinion especially because they send detailed information about
how much electricity is being used for each time stamp. Precisely, it has been shown
that it is possible to know exactly which type of electric device is or has been used
from simply analyzing the electricity consumption data Owen and Foreman, 2012.
In this context, an attack could consist in modifying the electricity consumption time
series of one device to make it recognized as another in order to hide which devices
are actually used by a specific user.

To illustrate this use case, we used the SmallKitchenAppliances dataset from the
UCR/UEA archive that was recorded as part of government sponsored study called
Powering the Nation (Owen and Foreman, 2012). By collecting and analyzing behav-
ioral data about consumers’ daily use of electricity within their homes, the goal is to
reduce the UK’s carbon footprint. The dataset contains readings from 251 house-
holds recorded over a month. Each univariate time series has a length equal to 720
corresponding to 24 hours of readings taken every two minutes. The three classes
are: Kettle, Microwave and Toaster. For this dataset, FGSM and BIM managed to
reduce the classifier’s accuracy respectively by 38.4% and 57%.
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FIGURE 2.23: Accuracy variation for ItalyPowerDemand with respect
to the perturbation ε where FGSM managed to fool the network with

this example for ε ≥ 0.3.

The ItalyPowerDemand dataset (Keogh et al., 2006), another dataset from the
UCR/UEA archive, contains twelve monthly electrical power demand time series
from Italy. The task is to differentiate between instances that correspond to winter
months (October to March) and summer months (April to September). This dataset
contains the shortest time series in the archive (T = 24), thus requiring a higher
amount of perturbation ε in order to be misclassified. Figure 2.23 shows the vari-
ation of the model’s accuracy as well as the shape of a time series from the Italy-
PowerDemand dataset with respect to the amount of noise that is added. For this
example, both attacks needed higher values of perturbation (ε ≥ 0.3) rather than the
default setting (ε = 0.1).

Are adversarial examples transferable?

To evaluate the transferability of perturbed time series, we used the FCN which was
originally proposed in Wang, Yan, and Oates, 2017 and was shown in Chapter 1
to be the second most accurate deep time series classifier when evaluated on the
UCR/UEA archive (Dau et al., 2019). We used the test sets altered with FGSM and
BIM using ResNet and try to classify it with FCN (both were originally trained on
the same train set). For both FGSM and BIM attacks, FCN’s accuracy decreases re-
spectively by 38.2% and 42.8% which shows that adversarial examples are capable of
generalizing to a different network architecture. The Wilcoxon signed-rank test also
shows that BIM is significantly better than FGSM in reducing FCN’s accuracy, with a
p-value ≤ 10−7. This type of attacks is known as “black box” where the attackers do
not have access to the target model’s internal parameters (FCN) yet they are able to
generate perturbed time series that fool the classifier.
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How can we prevent such attacks?

Countermeasures for adversarial attacks (Yuan et al., 2017) follow two defense
strategies: (1) reactive: identify the perturbed instance; (2) proactive: improve
the network’s robustness without generating adversarial examples. One of the
most straightforward proactive methods is adversarial training, which consists of
(re)training the classifier with adversarial examples. Other reactive techniques con-
sist of detecting the adversarial examples during testing. However, most of these
detectors are still prone to attacks that are designed specifically to fool the detec-
tors (Yuan et al., 2017). Therefore, we think that the time series community would
have much to offer in this area by leveraging the decades of research into non-
probabilistic classifiers such as the nearest neighbor coupled with DTW (Tan et al.,
2018). Running classifiers against the adversarial examples that we provide here, is
a first step toward identifying vulnerable models and making them more robust to
such type of attacks. Finally, a recent approach proposed by Abdu-Aguye et al., 2020
defended against adversarial attacks by framing the problem as an outlier detection
task. By constructing a normalcy model based on information and chaos-theoretic
measures, Abdu-Aguye et al., 2020 were able to determine whether unseen time se-
ries instances are normal or adversarial.

Can we leverage adversarial examples to improve generalization?

As we have previously mentioned, Xie et al., 2020 were among the first to show that
adversarial training can be leveraged to improve the generalization capabilities of
a neural network, by adopting two batch normalization layers: one for the original
images and another for the perturbed ones. When adopting their approach for TSC,
we found similar results: using AdvProp was necessary in order to avoid deterio-
rating the accuracy of our model. Figure 2.24 illustrates the pairwise comparison
between applying adversarial training with or without the AdvProp technique. We
can clearly see how vanilla adversarial training will deteriorate significantly the ac-
curacy compared to using the AdvProp method. These results are in line with the
original AdvProp paper (Xie et al., 2020). However, Figure 2.25 shows that using
adversarial training does not improve significantly the accuracy for TSC, unlike the
observations in Xie et al., 2020 on the ImageNet dataset. We hope that these prelim-
inary results will give some insights to time series data mining researchers looking
to leverage adversarial training as a regularization technique of DNNs for TSC.

2.5.4 Conclusion

In this section, we introduced the concept of adversarial attacks on deep learning
models for time series classification. We defined and adapted two attacks, origi-
nally proposed for image recognition, for the TSC task. We showed how adversarial
perturbations are able to reduce the accuracy for the state-of-the-art deep learning
classifier (ResNet) when evaluated on the UCR/UEA archive benchmark. With deep
neural networks becoming frequently adopted by time series data mining practition-
ers in real-life critical decision making systems, we shed the light on some crucial use
cases where adversarial attacks could have serious and dangerous consequences.
Finally we presented our initial preliminary results and showed that vanilla adver-
sarial training will deteriorate the accuracy, which is why the AdvProp method was
necessary to maintain a high accurate classifier.

In the future, we would like to investigate countermeasures techniques to defend
machine learning models against such attacks while exploring the transferability of
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adversarial examples to other non deep learning state-of-the-art classifiers. Finally,
we would like to further explore the dozens of adversarial attacks that are published
each year in order to identify and protect vulnerable deep learning models for TSC.

2.6 Conclusion

In this chapter, we have presented four main regularization techniques of deep
learning models for TSC. First by implementing a transfer learning approach, cou-
pled with an inter-dataset similarity selection algorithm, we were able to signifi-
cantly improve the accuracy of FCN. We then proposed to leverage the high vari-
ance due to the stochastic nature of the optimization process of neural networks,
by ensembling the decision of more than one network. Unlike transfer learning,
we observed that ensembling will almost always improve the classifier’s accuracy.
We then presented a data augmentation technique based on the famous DTW al-
gorithm, allowing us to increase the number of training samples, thus ameliorating
the model’s accuracy. Finally, we focused on the vulnerabilities of neural networks
to adversarial attacks and gave many use case examples where such attacks might
be catastrophic. Then in the spirit of regularizing DNNs, we showed how we can
leverage these adversarial attacks to improve a network’s generalization capabilities
by leveraging a recent approach called AdvProp.

We believe that this chapter should motivate researchers into further looking
into many types of regularization methods that were mostly applied to images. We
should note that this list of techniques is not exhaustive, many other types of regular-
ization still exist and constitute currently a very hot topic in machine learning such
as self-supervised pre-training (Newell and Deng, 2020). Nevertheless, we believe
that the current state-of-the-art neural networks architectures for TSC are subopti-
mal and still lack behind the current advances of deep learning in computer vision.
Therefore, we present in the following chapter a novel architecture for TSC based on
the famous Inception module proposed by Google for the ImageNet competition.
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Chapter 3

InceptionTime: Finding AlexNet
for Time Series Classification

3.1 Introduction

Recent times have seen an explosion in the magnitude and prevalence of time se-
ries data. Industries varying from health care (Forestier et al., 2018; Lee et al., 2018;
Ismail Fawaz et al., 2019c) and social security (Yi et al., 2018) to human activity recog-
nition (Yuan et al., 2018) and remote sensing (Pelletier, Webb, and Petitjean, 2019),
all now produce time series datasets of previously unseen scale — both in terms of
time series length and quantity. This growth also means an increased dependence on
automatic classification of time series data, and ideally, algorithms with the ability
to do this at scale.

In the previous chapters, we have shown how these TSC problems, differ signif-
icantly to traditional supervised learning for structured data, in that the algorithms
should be able to handle and harness the temporal information present in the signal.
It is easy to draw parallels from this scenario to computer vision problems such as
image classification and object localization, where successful algorithms learn from
the spatial information contained in an image. Put simply, the time series problem
is essentially the same class of problem, just with one less dimension. Yet despite
this similarity, the current state-of-the-art algorithms from the two fields share little
resemblance (Ismail Fawaz et al., 2019d).

Deep learning has a long history (in machine learning terms) in computer vi-
sion (LeCun et al., 1998) but its popularity exploded with AlexNet (Krizhevsky,
Sutskever, and Hinton, 2012), after which it has been unquestionably the most suc-
cessful class of algorithms (LeCun, Bengio, and Hinton, 2015). Conversely, deep
learning has only recently started to gain popularity amongst time series data min-
ing researchers (see Chapter 1). This is emphasized by the fact that ResNet, which is
currently considered the state-of-the-art neural network architecture for TSC when
evaluated on the UCR/UEA archive (Dau et al., 2019), was originally proposed
merely as a baseline model for the underlying task (Wang, Yan, and Oates, 2017).
Given the similarities in the data, it is easy to suggest that there is much potential
improvement for deep learning in TSC. In Chapter 2, we have shown how it is pos-
sible to improve the accuracy of a given deep learning architecture using various
regularization techniques such as ensembling, transfer learning, data augmentation
and adversarial training. However, we believe that there is still room for improve-
ment in terms of network architecture, which can be considered an orthogonal task
to the various DNNs regularization methods.

In this chapter, we take an important step towards finding the equivalent of
‘AlexNet’ for TSC by presenting InceptionTime — a novel deep learning ensem-
ble for TSC. InceptionTime achieves state-of-the-art accuracy when evaluated on the
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UCR/UEA archive (currently the largest publicly available repository for TSC (Dau
et al., 2019)) while also possessing ability to scale to a magnitude far beyond that of
its strongest competitor.

InceptionTime is an ensemble of five deep learning models for TSC, each one
created by cascading multiple Inception modules (Szegedy et al., 2015). Each indi-
vidual classifier (model) will have exactly the same architecture but with different
randomly initialized weight values. The core idea of an Inception module is to apply
multiple filters simultaneously to an input time series. The module includes filters
of varying lengths, which as we will show, allows the network to automatically ex-
tract relevant features from both long and short time series. In fact, the ensemble
here follows the same ensembling idea presented in Chapter 2.

After presenting InceptionTime and its results, we perform an analysis of the
architectural hyperparameters of deep neural networks — depth, filter length, num-
ber of filters — and the characteristics of the Inception module — the bottleneck and
residual connection, in order to provide insight into why this model is so successful.
In fact, we construct networks with filters larger than have ever been explored for
computer vision tasks, taking direct advantage of the fact that time series exhibit one
less dimension than images.

3.2 Related work

In Chapter 1, we have shown that deeper CNN models coupled with residual con-
nections such as ResNet can further improve the classification performance. In
essence, since time series data exhibit only one structuring dimension (i.e. time,
as opposed to two spatial dimensions for images), it is possible to explore more
complex models that are usually computationally infeasible for image recognition
problems: for example removing the pooling layers that throw away valuable infor-
mation in favour of reducing the model’s complexity. We therefore propose an In-
ception based network that applies several convolutions with various filters lengths.
In contrast to networks designed for images, we are able to explore filters 10 times
longer than recent Inception variants for image recognition tasks (Szegedy et al.,
2017).

Inception was first proposed by Szegedy et al., 2015 for end-to-end image classi-
fication. Now the network has evolved to become Inceptionv4, where Inception was
coupled with residual connections to further improve the performance (Szegedy et
al., 2017). As for TSC a relatively competitive Inception-based approach was pro-
posed in Karimi-Bidhendi, Munshi, and Munshi, 2018, where time series where
transformed to images using Gramian Angular Difference Field, and finally fed to
an Inception model that had been pre-trained for (standard) image recognition. Un-
like this feature engineering approach, by adopting an end-to-end learning from
raw time series data, a one-dimensional Inception model was used for Supernovae
classification using the light flux of a region in space as an input MTS for the net-
work (Brunel et al., 2019). However, the authors limited the conception of their
Inception architecture to the one proposed by Google for ImageNet (Szegedy et al.,
2017). In our work, we explore much larger filters than any previously proposed
network for TSC in order to reach state-of-the-art performance on the UCR bench-
mark.
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FIGURE 3.1: Our Inception network for time series classification.

3.3 InceptionTime: an accurate and scalable time series clas-
sifier

In this section, we start by describing the proposed architecture we call Inception-
Time for classifying time series data. Specifically, we detail the main component of
our network: the Inception module. We then present our proposed model Incep-
tionTime which consists of an ensemble of 5 different Inception networks initialized
randomly. Finally, we adapt the concept of Receptive Field for time series data.

3.3.1 Inception Network: a novel architecture for TSC

The composition of an Inception network classifier contains two different residual
blocks, as opposed to ResNet, which is comprised of three. For the Inception net-
work, each block is comprised of three Inception modules rather than traditional
fully convolutional layers. Each residual block’s input is transferred via a shortcut
linear connection to be added to the next block’s input, thus mitigating the van-
ishing gradient problem by allowing a direct flow of the gradient (He et al., 2016).
Following these residual blocks, we employed a GAP layer that averages the output
multivariate time series over the whole time dimension. At last, we used a final tra-
ditional fully-connected softmax layer with a number of neurons equal to the num-
ber of classes in the dataset. Figure 3.1 depicts an Inception network’s architecture
showing 6 different Inception modules stacked one after the other.

As for the Inception module, Figure 3.2 illustrates the inside details of this oper-
ation. Let us consider the input to be an MTS with M dimensions. The first major
component of the Inception module is called the “bottleneck” layer. This layer per-
forms an operation of sliding m filters of length 1 with a stride equal to 1. This will
transform the time series from an MTS with M dimensions to an MTS with m � M
dimensions, thus reducing significantly the dimensionality of the time series as well
as the model’s complexity and mitigating overfitting problems for small datasets.
Note that for visualization purposes, Figure 3.2 illustrates a bottleneck layer with
m = 1. Finally, we should mention that this bottleneck technique allows the In-
ception network to have much longer filters than ResNet (almost ten times) with
roughly the same number of parameters to be learned, since without the bottleneck
layer, the filters will have M dimensions compared to m� M when using the bottle-
neck layer. The second major component of the Inception module is sliding multiple
filters of different lengths simultaneously on the same input time series. For example
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FIGURE 3.2: Inside our Inception module for time series classifica-
tion. For simplicity we illustrate a bottleneck layer of size m = 1.

in Figure 3.2, three different convolutions with length l ∈ {10, 20, 40} are applied to
the input MTS, which is technically the output of the bottleneck layer. Additionally,
in order to make our model invariant to small perturbations, we introduce another
parallel MaxPooling operation, followed by a bottleneck layer to reduce the dimen-
sionality. The output of sliding a MaxPooling window is computed by taking the
maximum value in this given window of time series. Finally, the output of each
independent parallel convolution/MaxPooling is concatenated to form the output
MTS. The latter operations are repeated for each individual Inception module of the
proposed network.

By stacking multiple Inception modules and training the weights (filters’ values)
via backpropagation, the network is able to extract latent hierarchical features of
multiple resolutions thanks to the use of filters with various lengths. For complete-
ness, we specify the exact number of filters for our proposed Inception module: 3
sets of filters each with 32 filters of length l ∈ {10, 20, 40}with MaxPooling added to
the mix, thus making the total number of filters per layer equal to 32× 4 = 128 = M
- the dimensionality of the output MTS. The default bottleneck size value was set to
m = 32.

3.3.2 InceptionTime: a neural network ensemble for TSC

Our proposed state-of-the-art InceptionTime model is an ensemble of 5 Inception
networks, with each prediction given an even weight. In fact, during our experi-
mentation, we have noticed that a single Inception network exhibits high standard
deviation in accuracy, which is very similar to ResNet’s behavior (Ismail Fawaz et
al., 2019e). We believe that this variability comes from both the randomly initialized
weights and the stochastic optimization process itself. This was an important finding
for us, previously observed in Scardapane and Wang, 2017, as rather than training
only one, potentially very good or very poor, instance of the Inception network, we
decided to leverage this instability through ensembling, creating InceptionTime. The
following equation explains the ensembling of predictions made by a network with
different initializations:

ŷi,c =
1
n

n

∑
j=1

σc(xi, θj) | ∀c ∈ [1, C] (3.1)
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FIGURE 3.3: Receptive field illustration for a two layers CNN.

with ŷi,c denoting the ensemble’s output probability of having the input time series
xi belonging to class c, which is equal to the logistic output σc averaged over the n
randomly initialized models. More details on ensembling neural networks for TSC
can be found in Chapter 2. As for our proposed model, we chose the number of in-
dividual classifiers to be equal to 5, which is justified in the next section. We should
note that we have opted to a neural network ensemble given the small training size
of the UCR/UEA archive datasets which are not well suited to deep learning ap-
proaches, thus allowing us to control and leverage the variance of the error, which
is likely to reduce when increasing the training set’s size.

3.3.3 Receptive field

The concept of Receptive Field is an essential tool to the understanding of deep
CNNs (Luo et al., 2016). Unlike FC networks or MLPs, a neuron in a CNN depends
only on a region of the input signal. This region in the input space is called the recep-
tive field of that particular neuron. For computer vision problems this concept was
extensively studied, such as in Liu, Yu, and Han, 2018 where the authors compared
the effective and theoretical receptive fields of a CNN for image segmentation.

For temporal data, the receptive field can be considered as a theoretical value
that measures the maximum field of view of a neural network in a one-dimensional
space: the larger it is, the better the network becomes (in theory) in detecting longer
patterns. We now provide the definition of the RF for time series data, which is later
used in our experiments. Suppose that we are sliding convolutions with a stride
equal to 1. The formula to compute the RF for a network of depth d with each layer
having a filter length equal to ki with i ∈ [1, d] is:

1 +
d

∑
i=1

(ki − 1) (3.2)

By analyzing equation 3.2 we can clearly see that adding two layers to the initial
set of d layers, will increase only slightly the value of RF. In fact in this case, if the
old RF value is equal to RF

′
, the new value RF will be equal to RF

′
+ 2× (k − 1).

Conversely, by increasing the filter length ki, ∀i ∈ [1, d] by 2, the new value RF
will be equal to RF

′
+ 2 × d. This is rather expected since by increasing the filter

length for all layers, we are actually increasing the RF for each layer in the network.
Figure 3.3 illustrates the RF for a two layers CNN.

In this chapter, we chose to focus on the RF concept since it has been known for
computer vision problems, that larger RFs are required to capture more context for
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FIGURE 3.4: Example of a synthetic binary time series classification
problem.

object recognition (Luo et al., 2016). Following the same line of thinking, we hypoth-
esize that detecting larger patterns from very long one-dimensional time series data,
requires larger receptive fields.

3.4 Experimental setup

First, we detail the method to generate our synthetic dataset, which is later used in
our architecture and hyperparameter study. For testing our different deep learning
methods, we created our own synthetic TSC dataset. The goal was to be able to
control the length of the time series data as well as the number of classes and their
distribution in time. To this end, we start by generating a univariate time series
using uniformly distributed noise sampled between 0.0 and 0.1. Then in order to
assign this synthetic random time series to a certain class, we inject a pattern with
an amplitude equal to 1.0 in a pre-defined region of the time series. This region will
be specific to a certain class, therefore by changing the placement of this pattern we
can generate an unlimited amount of classes, whereas the random noise will allow
us to generate an unlimited amount of time series instances per class. One final note
is that we have fixed the length of the pattern to be equal to 10% the length of the
synthetic time series. An example of a synthetic binary TSC problem is depicted in
Figure 3.4.

All DNNs were trained by leveraging the parallel computation of a remote clus-
ter of more than 60 GPUs comprised of GTX 1080 Ti, Tesla K20, K40 and K80. Local
testing and development was performed on an NVIDIA Quadro P6000. The latter
graphics card was also used for computing the training time of a model. When eval-
uating global accuracy and computational complexity, we have used the UCR/UEA
archive (Dau et al., 2019), which is the largest publicly available archive for TSC.
The models were trained/tested using the original training/testing splits provided
in the archive. To study the effect of different hyperparameters and architectural de-
signs, we used in addition to the traditional UCR benchmark for TSC, the synthetic
dataset whose generation is described in details in the previous paragraph. All time
series data were z-normalized (including the synthetic series) to have a mean equal
to zero and a standard deviation equal to one. This is considered a common best-
practice before classifying time series data (Bagnall et al., 2017). Finally, we should
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FIGURE 3.5: Critical difference diagram showing the performance of
InceptionTime compared to the current state-of-the-art classifiers of

time series data.

note that all models are trained using the Adam optimization algorithm (Kingma
and Ba, 2015) and all weights are initialized randomly using Glorot’s uniform tech-
nique (Glorot and Bengio, 2010).

When comparing with the state-of-the-art results published in Bagnall et al.,
2017 we used the deep learning model’s median test accuracy over the different
runs, similarly to what we have done in Chapter 1. Following the recommendations
in Demšar, 2006 we adopted the Friedman test (Friedman, 1940) in order to reject the
null hypothesis. We then performed the pairwise post-hoc analysis recommended
by Benavoli, Corani, and Mangili, 2016 where we replaced the average rank com-
parison by a Wilcoxon signed-rank test with Holm’s alpha (5%) correction (Garcia
and Herrera, 2008). To visualize this type of comparison we used a critical difference
diagram proposed by Demšar, 2006, where a thick horizontal line shows a cluster of
classifiers (a clique) that are not-significantly different in terms of accuracy.

In order to allow for the time series community to build upon and verify our find-
ings, the source code for all these experiments was made publicly available on our
companion repository1. In addition, we are planning on providing the pre-trained
deep learning models, thus allowing data mining practitioners to leverage these net-
works in a transfer learning setting (Ismail Fawaz et al., 2018d).

3.5 Experiments: InceptionTime

In this section, we present the results of our proposed novel classifier called In-
ceptionTime, evaluated on the 85 datasets of the UCR/UEA archive. We note that
throughout this chapter (unless specified otherwise) InceptionTime refers to an en-
semble of 5 Inception networks, while the “InceptionTime(n)” notation is used to
denote an ensemble of n Inception networks.

Figure 3.5 illustrates the critical difference diagram with InceptionTime added to
the mix of the current state-of-the-art classifiers for time series data, whose results
were taken from Bagnall et al., 2017. We can see here that our InceptionTime en-
semble reaches competitive accuracy with the class-leading algorithm HIVE-COTE,
an ensemble of 37 TSC algorithms with a hierarchical voting scheme (Lines, Taylor,
and Bagnall, 2016). While the two algorithms share the same clique on the critical
difference diagram, the trivial GPU parallelization of deep learning models makes
learning our InceptionTime model a substantially easier task than training the 37 dif-
ferent classifiers of HIVE-COTE, whose implementation does not trivially leverage
the GPUs’ computational power.

To further visualize the difference between the InceptionTime and HIVE-COTE,
Figure 3.6 depicts the accuracy plot of InceptionTime against HIVE-COTE for each
of the 85 UCR datasets. The results show a Win/Tie/Loss of 40/6/39 in favor of

1https://github.com/hfawaz/InceptionTime

https://github.com/hfawaz/InceptionTime
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FIGURE 3.6: Accuracy plot showing how our proposed Inception-
Time model is not significantly different than HIVE-COTE.

InceptionTime, however the difference is not statistically significant as previously
discussed. From Figure 3.6, we can also easily spot the two datasets for which In-
ceptionTime noticeably under-performs (in terms of accuracy) with respect to HIVE-
COTE: Wine and Beef. These two datasets contain spectrography data from different
types of beef/wine, with the goal being to determine the correct type of meat/wine
using the recorded time series data. In Chapter 2, we showed that transfer learn-
ing significantly increases the accuracy for these two datasets, especially when fine-
tuning a dataset with similar time series data. Our results suggest that further po-
tential improvements may be available for InceptionTime when applying a transfer
learning approach, as recent discoveries in Kashiparekh et al., 2019 show that the
various filter lengths of the Inception modules have been shown to benefit more
from fine-tuning than networks with a static filter length.

Now that we have demonstrated that our proposed technique is able to reach
the current state-of-the-art accuracy for TSC problems, we will further investigate
the time complexity of our model. Note that during the following experiments, we
ran our ensemble on a single Nvidia Quadro P6000 in a sequential manner, mean-
ing that for InceptionTime, 5 different Inception networks were trained one after the
other. Therefore we did not make use of our remote cluster of GPUs. First we start
by investigating how our algorithm scales with respect to the length of the input
time series. Figure 3.7 shows the training time versus the length of the input time
series. For this experiment, we used the InlineSkate dataset with an exponential
re-sampling. We can clearly see that InceptionTime’s complexity increases almost
linearly with an increase in the time series’ length, unlike HIVE-COTE, whose ex-
ecution is almost two order of magnitudes slower. Having showed that Inception-
Time is significantly faster when dealing with long time series, we now proceed to
evaluating the training time with respect to a number of time series in a dataset. To
this end, we used a Satellite Image Time Series dataset (Tan, Webb, and Petitjean,
2017). The data contain approximately one million time series, each of length 46 and
labeled as one of 24 possible land-use classes (e.g. ‘wheat’, ‘corn’, ‘plantation’, ‘ur-
ban’). From Figure 3.8 we can easily see how our InceptionTime is an order of mag-
nitude faster than HIVE-COTE, and the trend suggests that this difference will only
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continue to grow, rendering InceptionTime a clear favorite classifier in the Big Data
era. Note that HIVE-COTE uses heuristics in its implementation, which explains
why the complexity appears lower in the experiments than the expected O(T4). To
summarize, we believe that InceptionTime should be considered as one of the top
state-of-the-art methods for TSC, given that it demonstrates equal accuracy to that
of HIVE-COTE (see Figure 3.6) while being much faster (see Figure 3.7 and 3.8).

In order to further demonstrate the capability of InceptionTime to handle effi-
ciently a large amount of training samples unlike its counterpart HIVE-COTE, we
show in Figure 3.9 how the accuracy continues to increase with InceptionTime for
larger training set sizes, where HIVE-COTE would take 100 times longer to run.

The pairwise accuracy plot in Figure 3.10 compares InceptionTime to a model we
call ResNet(5), which is an ensemble of 5 different ResNet networks (Ismail Fawaz
et al., 2019e). We found that InceptionTime showed a significant improvement over
its neural network competitor, the previous best deep learning ensemble for TSC.
Specifically, our results show a Win/Tie/Loss of 54/8/23 in favor of InceptionTime
against ResNet(5) with a p-value < 0.01, suggesting the significant gain in perfor-
mance is mainly due to improvements in our proposed Inception network architec-
ture. Additionally, in order to have a fair comparison between ResNet(5) and Incep-
tionTime, we fixed the batch size of ResNet to 64 – equal to the default value used for
InceptionTime. This would further highlight that the improvement is mainly due to
the architectural design of our proposed network, and not due to some other opti-
mization hyperparameter such as the batch size. Finally, we would like to note that
when using the original batch size value proposed by Wang, Yan, and Oates, 2017
for ResNet, we observed similar results: InceptionTime was significantly better than
the original ResNet(5) with a Win/Tie/Loss of 53/7/25.

In order to better understand the effect of the randomness on the accuracy of our
neural networks, we present in Figure 3.11 the critical difference diagram of differ-
ent InceptionTime(x) ensembles with x ∈ {1, 2, 5, 10, 20, 30} denoting the number
of individual networks in the ensemble. Note that InceptionTime(1) is equivalent
to a single Inception network and InceptionTime is equivalent to InceptionTime(5).
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number of individual classifiers in the InceptionTime ensemble.

By observing Figure 3.11 we notice how there is no significant improvement when
x ≥ 5, which is why we chose to use an ensemble of size 5, to minimize the classi-
fiers’ training time.

3.6 Architectural Hyperparameter study

In this section, we will further investigate the hyperparameters of our deep learn-
ing architecture and the characteristics of the Inception module in order to provide
insight for practitioners looking at optimizing neural networks for TSC. First, we
start by investigating the batch size hyperparameter, since this will greatly influence
training time of all of our models. Then we investigate the effectiveness of residual
and bottleneck connections, both of which are present in InceptionTime. After this
we will experiment on model depth, filter length, and number of filters. In all ex-
periments the default values for InceptionTime are: batch size 64; bottleneck size 32;
depth 6; filter length {10,20,40}; and, number of filters 32. Finally, since the train/test
split (provided in the archive) does not help in estimating the generalization ability
of our approach, we have conducted a sensitivity analysis that evaluates the second
best value for each of the network’s hyperparameters.

3.6.1 Batch size

We started by investigating the batch size hyperparameter on the UCR/UEA
archive, since this will greatly influence training time of our models. The critical
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difference diagram in Figure 3.12 shows how the batch size affects the performance
of InceptionTime. The horizontal thick line between the different models shows a
non significant difference between them when evaluated on the 85 datasets, with a
small superiority to InceptionTime (batch size equal to 64). Finally, we should note
that as we did not observe any significant impact on accuracy we did not study the
effect of this hyperparameter on the simulated dataset and we chose to fix the batch
size to 64 (similarly to InceptionTime) when experimenting on the simulated dataset
below.

3.6.2 Bottleneck and residual connections

In Chapter 1, compared to other deep learning classifiers, ResNet achieved the best
classification accuracy when evaluated on the 85 datasets and as a result we chose
to look at the specific characteristic of this architecture — its residual connections.
Additionally, we tested one of the defining characteristics of Inception — the bottle-
neck feature. For the simulated dataset, we did not observe any significant impact of
these two connections, we therefore proceed with experimenting on the 85 datasets
from the UCR/UEA archive.

Figure 3.13 shows the pairwise accuracy plot comparing InceptionTime
with/without the bottleneck. Similar to the experiments on the simulated dataset,
we did not find any significant variation in accuracy when adding or removing the
bottleneck layer.
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FIGURE 3.15: Accuracy plot for InceptionTime with/without the
residual connections.

In fact, using a Wilcoxon Signed-Rank test we found that InceptionTime with
the bottleneck layer is only slightly better than removing the bottleneck layer (p-
value > 0.1). In terms of accuracy, these results all suggest not to use a bottleneck
layer, however we should note that the major benefit of this layer is to significantly
decrease the number of parameters in the network. In this case, InceptionTime with
the bottleneck contains almost half the number of parameters to be learned, and
given that it does not significantly decrease accuracy, we chose to retain its usage.
In a more general sense, these experiments suggest that choosing whether or not to
use a bottleneck layer is actually a matter of finding a balance between a model’s
accuracy and its complexity. The latter observation is evident in Figure 3.14 where
choosing smaller bottleneck size in order to reduce InceptionTime’s runtime will
result in small yet insignificant decrease in accuracy.

To test the residual connections, we simply removed the residual connection
from InceptionTime. Thus, without any shortcut connection, InceptionTime will
simply become a deep convolutional neural network with stacked Inception mod-
ules. Figure 3.15 shows how the residual connections have a minimal effect on ac-
curacy when evaluated over the whole 85 datasets in the UCR/UEA archive with a
p-value > 0.2.

This result was unsurprising given that for computer vision tasks residual con-
nections are known to improve the convergence rate of the network but not alter its
test accuracy (Szegedy et al., 2017). However, for some datasets in the archive, the
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FIGURE 3.16: Inception network’s accuracy over the simulated
dataset, with respect to the network’s depth as well as the length of

the input time series.

residual connections did not show any improvement nor deterioration of the net-
work’s convergence either. This could be linked to other factors that are specific to
these data, such as the complexity of the dataset.

One example of interest that we noticed was a significant decrease in Incep-
tionTime’s accuracy when removing the residual component for the ShapeletSim
dataset. This is a synthetic dataset, designed specifically for shapelets discovery al-
gorithms, with shapelets (discriminative subsequences) of different lengths (Hills et
al., 2014). Further investigations on this dataset indicated that InceptionTime with-
out the residual connections suffered from a severe overfitting.

While not the case here, some research has observed benefits of skip, dense or
residual connections (Huang et al., 2017). Given this, and the small amount of la-
beled data available in TSC compared to computer vision problems, we believe that
each case should be independently study whether to include residual connections.
The latter observation suggests that a large scale general purpose labeled dataset
similar to ImageNet (Russakovsky et al., 2015) is needed for TSC. Finally, we should
note that the residual connection has a minimal impact on the network’s complex-
ity (Szegedy et al., 2017).

3.6.3 Depth

Most of deep learning’s success in image recognition tasks has been attributed to
how ‘deep’ the architectures are (LeCun, Bengio, and Hinton, 2015). Consequently,
we decided to further investigate how the number of layers affects a network’s ac-
curacy. Unlike the previous hyperparameters, we present here the results on the
simulated dataset. Apart from the depth parameter, we used the default values of
InceptionTime. For this dataset we fixed the number of training instances to 256
and the number of classes to 2 (see Figure 3.4 for an example). The only dataset
parameter we varied was the length of the input time series.

Figure 3.16 illustrates how the model’s accuracy varies with respect to the net-
work’s depth when classifying datasets of time series with different lengths. Our
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FIGURE 3.17: Critical difference diagram showing how the network’s
depth affects InceptionTime’ average rank.

initial hypothesis was that as longer time series can potentially contain longer pat-
terns and thus should require longer receptive fields in order for the network to
separate the classes in the dataset. In terms of depth, this means that longer input
time series will garner better results with deeper networks. And indeed, when ob-
serving Figure 3.16, one can easily spot this trend: deeper networks deliver better
results for longer time series.

In order to further see how much effect the depth of a model has on real TSC
datasets, we decided to implement deeper and shallower InceptionTime models, by
varying the depth between 1 layer and 12 layers. In fact, compared with the original
architecture proposed by Wang, Yan, and Oates, 2017, the deeper (shallower) version
of InceptionTime will contain one additional (fewer) residual blocks each one com-
prised of three inception modules. By adding these layers, the deeper (shallower)
InceptionTime model will contain roughly double (half) the number of parameters to
be learned. Figure 3.17 depicts the critical difference diagram comparing the deeper
and shallower InceptionTime models to the original InceptionTime.

Unlike the experiments on the simulated dataset, we did not manage to improve
the network’s performance by simply increasing its depth. This may be due to many
reasons, however it is likely due to the fact that deeper networks need more data
to achieve high generalization capabilities (LeCun, Bengio, and Hinton, 2015), and
since the UCR/UEA archive does not contain datasets with a huge number of train-
ing instances, the deeper version of InceptionTime was overfitting the majority of the
datasets and exhibited a small insignificant decrease in performance. On the other
hand, the shallower version of InceptionTime suffered from a significant decrease in
accuracy (see InceptionTime_3 and InceptionTime_1 in Figure 3.17). This suggests
that a shallower architecture will contain a significantly smaller RF, thus achieving
lower accuracy on the overall UCR/UEA archive.

From these experiments we can conclude that increasing the RF by adding more
layers will not necessarily result in an improvement of the network’s performance,
particularly for datasets with a small training set. However, one benefit that we have
observed from increasing the network’s depth, is to choose an RF that is long enough
to achieve good results without suffering from overfitting.

We therefore proceed by experimenting with varying the RF by changing the
filter length.

3.6.4 Filter length

In order to test the effect of the filter length, we start by analyzing how the length of
a time series influences the accuracy of the model when tuning this hyperparameter.
In these experiments we fixed the number of training time series to 256 and the
number of classes to 2. Figure 3.18 illustrates the results of this experiment.
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FIGURE 3.18: Inception network’s accuracy over the simulated
dataset, with respect to the filter length as well as the input time series

length.

Length InceptionTime.8 InceptionTime.64 InceptionTime

<81 1.71 2.21 1.79
81-250 1.89 2.11 1.42
251-450 2.45 1.32 1.86
451-700 2.08 1.85 1.62
701-1000 1.50 2.60 1.80
>1000 2.14 2.00 1.71

TABLE 3.1: Filter length variants of InceptionTime with their corre-
sponding average ranks grouped by the datasets’ length. Bold indi-

cates the best model.

We can easily see that as the length of the time series increases, a longer filter is
required to produce accurate results. This is explained by the fact that longer kernels
are able to capture longer patterns, with higher probability, than shorter ones can.
Thus, we can safely say that longer kernels almost always improve accuracy.

In addition to having visualized the accuracy as a function of both depth (Fig-
ure 3.16) and filter length (Figure 3.18), we proceed by plotting the accuracy as func-
tion of the RF for the simulated time series dataset with various lengths. By ob-
serving Figure 3.19 we can confirm the previous observations that longer patterns
require longer RFs, with length clearly having a higher impact on accuracy com-
pared to the network’s depth. Moreover, by using a large enough RF to cover the
whole input time series, the usage of a GAP layer won’t affect InceptionTime’s abil-
ity to discriminate between the two patterns, because performing a GAP does not
affect the model’s RF.

There is a downside to longer filters however, in the potential for overfitting
small datasets, as longer filters significantly increase the number of parameters in
the network. To answer this question, we again extend our experiments to the real
data from the UCR/UEA archive, allowing us to verify whether long kernels tend
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to overfit the datasets when a limited amount of training data is available. There-
fore, we decided to train and evaluate InceptionTime versions containing both long
and short filters on the UCR/UEA archive. Where the original InceptionTime con-
tained filters of length {10,20,40}, the five models we are testing here contain filters of
length {2,4,8}; {4,8,16}; {8,16,32}; {16,32,64}; {32,64,128}. Figure 3.20 illustrates a criti-
cal difference diagram showing how InceptionTime with longer filters will slightly
decrease the network’s performance in terms of accurately classifying the time se-
ries datasets. We also investigate the relationship between the length of the time
series and the length of the network’s filter. Table 3.1 depicts the average rank of
each variant of InceptionTime over the UCR/UEA archive grouped by the datasets’
lengths (with about 15 datasets in each group). Similarly to Figure 3.20, we observe
that almost for all time series length, InceptionTime with its default filter length
(32) achieves the best or the second best overall accuracy. We can therefore sum-
marize that the results from the simulated dataset do generalize (to some extent) to
real datasets: longer filters will improve the model’s performance as long as there is
enough training data to mitigate the overfitting phenomena.

In summary, we can confidently state that increasing the receptive field of a
model by adopting longer filters will help the network in learning longer patterns
present in longer time series. However there is an accompanying disclaimer that it
may negatively impact the accuracy for some datasets due to overfitting.

3.6.5 Number of filters

To provide some directions on how the number of filters affects the performance of
the network, we experimented with varying this hyperparameter with respect to the
number of classes in the dataset. To generate new classes in the simulated data, we
varied the position and length of the patterns; for example, to create data with three
classes, we inject patterns of the same length at three different positions. For this
series of experiments, we fixed the length of the time series to 256 and the number
of training examples to 256.
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Figure 3.21 depicts the network’s accuracy with respect to the number of filters
for datasets with a differing number of classes. Our prior intuition was that the more
classes, or variability, present in the training set, the more features are required to be
extracted in order to discriminate the different classes, and this will necessitate a
greater number of filters. This is confirmed by the trend displayed in Figure 3.21,
where the datasets with more classes require more filters to be learned in order to be
able to accurately classify the input time series.

After observing on the synthetic dataset that the number of filters significantly
affects the performance of the network, we asked ourselves if the current imple-
mentation of InceptionTime could benefit/lose from a naive increase/decrease in
the number of filters per layer. Our proposed InceptionTime model contains 32 fil-
ters per Inception module’s component, while for these experiments we tested six
ensembles, by varying the hyperparameter with a power of two. Figure 3.22 illus-
trates a critical difference diagram showing how increasing the number of filters
per layer significantly deteriorated the accuracy of the network, whereas decreasing
the number of filters did not significantly affect the accuracy. It appears that our
InceptionTime model contains enough filters to separate the classes of the 85 UCR
datasets, of which some have up to 60 classes (ShapesAll dataset).

Increasing the number of filters also has another side effect: it causes an explo-
sion in the number of parameters in the network. The wider InceptionTime contains
four times the number of parameters than the original implementation. We therefore
conclude that naively increasing the number of filters is actually detrimental, as it
will drastically increase the network’s complexity and eventually cause overfitting.

3.6.6 Sensitivity analysis

Working with open benchmarks such as the UCR/UEA archive has pushed the com-
munity towards publishing high quality TSC algorithms. The UCR/UEA archive
provides a train/test split for the data, which has allowed researchers to directly
benchmark their works with the ones of others, as well as providing splits that were
potentially more challenging and realistic than assuming that both train and test data
were sampled from the same population. Having the train/test split available has
however also led to the potential issue that the techniques designed on this bench-
mark archive might overfit it. This is especially true of deep learning classifiers that
contain dozens of optimization and architectural hyperparameters.

In an effort to give an idea of the sensitivity of InceptionTime to changes in its
parameters, we have evaluated the performance of having chosen the second-best
value of each of its parameters, that is the second-best value for the depth of the
network (i.e. a value of 9 instead of the best value of 6), for its width (i.e. 16 instead
of 32), for the length of the convolutions (final value of 32 instead of 40), for the batch
size (i.e. 32 instead of 64), and for the bottleneck size (i.e. 64 instead of the default one
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32). This gave us a new architecture — InceptionTime(second best) — which we then
compared with InceptionTime and also other algorithms. Figure 3.23 depicts the
average rank of current state-of-the-art TSC algorithms with both InceptionTime’s
default and second best hyperparameters added to the mix. We can clearly see that
the effect is minimal: the ranking is a tiny bit lower but they are all well within the
critical difference with HIVE-COTE (a post-hoc statistical test fails to reject the null
hypothesis (p-value ≈ 0.71) making the difference between the default and second
best hyperparameters non significant).

3.7 Conclusion

Deep learning for time series classification still lags behind neural networks for im-
age recognition in terms of experimental studies and architectural designs. In this
chapter, we fill this gap by introducing InceptionTime, inspired by the recent suc-
cess of Inception-based networks for various computer vision tasks. We ensemble
these networks to produce new state-of-the-art results for TSC on the 85 datasets of
the UCR/UEA archive. Our approach is highly scalable, two orders of magnitude
faster than current state-of-the-art models such as HIVE-COTE. The magnitude of
this speed up is consistent across both Big Data TSC repositories as well as longer
time series with high sampling rate. We further investigate the effects on overall
accuracy of various hyperparameters of the CNN architecture. For these, we go far
beyond the standard practices for image data, and design networks with long filters.
We look at these by using a simulated dataset and frame our investigation in terms
of the definition of the receptive field for a CNN for TSC. In the future, we would
like to explore how to design DNNs for multivariate TSC while investigating more
recent architectural advancements that are being published each year for computer
vision tasks.
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Chapter 4

Time series analysis for surgical
training

4.1 Introduction

Over the past one hundred years, the classic teaching methodology of “see one, do
one, teach one” has governed the surgical education systems worldwide. With the
advent of Operation Room 2.0, recording video, kinematic and many other types
of data during the surgery became an easy task, thus allowing artificial intelligence
systems to be deployed and used in surgical and medical practice. Recently, motion
sensor data (e.g. kinematics) as well as surgical videos has been shown to provide a
structure for peer coaching enabling novice trainees to learn from experienced sur-
geons by replaying those videos and/or kinematic trajectories. In this chapter, we
tackle two problems present in the current surgical training curriculum:

1. Manual feedback from senior surgeons observing less experienced trainees is
a laborious task that is very expensive, time-consuming and prone to subjec-
tivity.

2. The high inter-operator variability in surgical gesture duration and execution
renders learning from comparing novice to expert surgical videos a very diffi-
cult task.

For the first problem, we designed a CNN (inspired by the FCN architecture ex-
plained in Chapter 1) to predict surgical skills by extracting latent patterns in the
trainees’ motions performed during robotic surgery. As for the second problem,
we propose to align multiple videos based on the alignment of their corresponding
kinematic multivariate time series data, by leveraging the multiple alignment proce-
dure based on DBA (explained in Chapter 2). This chapter is divided into two main
sections, each one tackling the aforementioned problem, before concluding with our
future work.

4.2 Deep learning for surgical skills evaluation

Over the last century, the standard training exercise of Dr. William Halsted has dom-
inated surgical education in various regions of the world (Polavarapu et al., 2013).
His training methodology of “see one, do one, teach one” is still one of the most
adopted approaches to date (Ahmidi et al., 2017). The main idea is that the student
could become an experienced surgeon by observing and participating in mentored
surgeries (Polavarapu et al., 2013). These training techniques, although widely used,
lack of an objective surgical skill evaluation method (Kassahun et al., 2016). Stan-
dard assessment of surgical skills is presently based on checklists that are filled by
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an expert watching the surgical task (Ahmidi et al., 2017). In an attempt to predict
a trainee’s skill level without using on an expert surgeon’s judgement, OSATS was
proposed and is currently adopted for clinical practice (Niitsu et al., 2013). Alas, this
type of observational rating still suffers from several external and subjective factors
such as the inter-rater reliability, the development process and the bias of respec-
tively the checklist and the evaluator (Hatala et al., 2015).

Further studies demonstrated that a vivid relationship occurs between a sur-
geon’s technical skill and the postoperative outcomes (Bridgewater et al., 2003). The
latter approach suffers from the fact that the aftermath of a surgery hinges on the
physiological attributes of the patient (Kassahun et al., 2016). Furthermore, ob-
taining this type of data is very strenuous, which renders these skill evaluation
techniques difficult to carry out for surgical education. Recent progress in sur-
gical robotics such as the da Vinci surgical system (Intuitive Surgical Sunnyvale,
2018) enabled the recording of video and kinematic data from various surgical tasks.
Ergo, a substitute for checklists and outcome-based approaches is to generate, from
these kinematics, GMFs such as the surgical task’s speed, time completion, motion
smoothness, curvature and other holistic characteristics (Zia and Essa, 2018; Kas-
sahun et al., 2016). While most of these techniques are efficacious, it is not perspic-
uous how they could be leveraged to support the trainee with a detailed and con-
structive feedback, in order to go beyond a naive classification into a skill level (i.e.,
expert, intermediate, etc.). This is problematic as feedback on medical practice en-
ables surgeons to reach higher skill levels while improving their performance Islam
et al., 2016.

Lately, a field entitled Surgical Data Science (Maier-Hein et al., 2017) has emerged
by dint of the increasing access to a huge amount of complex data which pertain
to the staff, the patient and sensors for capturing the procedure and patient related
data such as kinematic variables and images (Gao et al., 2014). Instead of extract-
ing GMFs, recent inquiries have a tendency to break down surgical tasks into finer
segments called “gestures”, manually before training the model, and finally esti-
mate the trainees’ performance based on their assessment during these individual
gestures (Tao et al., 2012). Even though these methods achieved promising and ac-
curate results in terms of evaluating surgical skills, they necessitate labeling a huge
amount of gestures before training the estimator (Tao et al., 2012). We pointed out
two major limits in the actual existing techniques that estimate surgeons’ skill level
from their corresponding kinematic variables: firstly, the absence of an interpretable
result of the skill prediction that can be used by the trainees to reach higher surgical
skill levels; secondly, the requirement of gesture boundaries that are pre-defined by
annotators which is prone to inter-annotator reliability and time-consuming (Vedula
et al., 2016).

In this section, we design a novel architecture based on FCNs, dedicated to evalu-
ating surgical skills. By employing one-dimensional kernels over the kinematic time
series, we avoid the need to extract unreliable and sensitive gesture boundaries. The
original hierarchical structure of our model allows us to capture global information
specific to the surgical skill level, as well as to represent the gestures in latent low-
level features. Furthermore, to provide an interpretable feedback, instead of using
a dense layer like most traditional deep learning architectures (Zhou et al., 2016),
we place a GAP layer which allows us to take advantage from the class activation
map, proposed originally by Zhou et al., 2016, to localize which fraction of the trial
impacted the model’s decision when evaluating the skill level of a surgeon. Using
a standard experimental setup on the largest public dataset for robotic surgical data
analysis: the JHU-ISI Gesture and Skill Assessment Working Set (Gao et al., 2014),
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we show the precision of our FCN model. Our main contribution is to demonstrate
that deep learning can be leveraged to understand the complex and latent structures
when classifying surgical skills and predicting the OSATS score of a surgery, espe-
cially since there is still much to be learned on what does exactly constitute a surgical
skill (Kassahun et al., 2016).

4.2.1 Background

Here we turn our attention to the recent advances leveraging the kinematic data for
surgical skills evaluation. The problem we are interested in requires an input that
consists of a set of time series recorded by the da Vinci’s motion sensors representing
the input surgery and the targeted task is to attribute a skill level to the surgeon per-
forming a trial. One of the earliest work focused on extracting GMFs from kinematic
variables and training off-the-shelf classifiers to output the corresponding surgical
skill level (Kassahun et al., 2016). Although these methods yielded impressive re-
sults, their accuracy depends highly on the quality of the extracted features. As an
alternative to GMF-based techniques, recent studies tend to break down surgical
tasks into smaller segments called surgical gestures, manually before the training
phase, and assess the skill level of the surgeons based on their fine-grained per-
formance during the surgical gestures, for example, using sparse hidden Markov
model (Tao et al., 2012). Although the latter technique yields high accuracy, it re-
quires manual segmentation of the surgical trial into fine-grained gestures, which is
considered expensive and time-consuming. Hence, recent surgical skills evaluation
techniques have focused on algorithms that do not require this type of annotation
and are mainly data driven (Ismail Fawaz et al., 2018c; Zia and Essa, 2018; Wang and
Majewicz Fey, 2018; Forestier et al., 2017a). For surgical skill evaluation, we distin-
guish two tasks. The first one is to output the discrete skill level of a surgeon such as
novice (N), intermediate (I) or expert (E). For example, Zia and Essa, 2018 adopted
the approximate entropy algorithm to extract features from each trial which are later
fed to a nearest neighbor classifier. More recently, Wang and Majewicz Fey, 2018 pro-
posed a CNN-based approach to classify sliding windows of time series; therefore,
instead of outputting the class for the whole surgery, the network is trained to output
the class in an online setting for each window. In Forestier et al., 2018, the authors
emphasized the lack of explainability for these latter approaches, by highlighting the
fact that interpretable feedback to the trainees is important for a novice to become
an expert surgeon (Islam et al., 2016). Therefore, the authors proposed an approach
that uses a sliding window technique with a discretization method that transforms
the time series into a bag of words and trains a nearest neighbor classifier coupled
with the cosine similarity. Then, using the weight of each word, the algorithm is
able to provide a degree of contribution for each sliding window and therefore give
some sort of useful feedback to the trainees that explains the decision taken by the
classifier. Although the latter technique showed interesting results, the authors did
sacrifice the accuracy in favor of interpretability. On the other hand, using our fully
convolutional neural network, we provide the trainee with an interpretable yet very
accurate model by leveraging the class activation map algorithm, originally pro-
posed for computer vision tasks by Zhou et al., 2016. The second type of problem
in surgical skill evaluation is to train a model that predicts the OSATS score for a
certain surgical trial. For example, Zia and Essa, 2018 extended their ApEn model to
predict the OSATS score, also known as global rating score. Interestingly, the latter
extension to a regression model instead of a classification one enabled the authors to
propose a technique that provides interpretability of the model’s decision, whereas
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FIGURE 4.1: Fully convolutional network for surgical skill evaluation.

our neural network provides an explanation for both classification and regression
tasks.

We present briefly the dataset used in this project as we rely on the features’
definitions to describe our method. The JIGSAWS dataset, first published by Gao
et al., 2014, has been collected from eight right-handed subjects with three differ-
ent surgical skill levels: novice (N), intermediate (I) and expert (E), with each group
having reported, respectively, less than 10 h, between 10 and 100 h and more than
100 h of training on the Da Vinci. Each subject performed five trials of each one
of the three surgical tasks: suturing, needle passing and knot tying. For each trial,
the video and kinematic variables were registered. In this project, we focused solely
on the kinematics which are numeric variables of four manipulators: right and left
masters (controlled by the subject’s hands) and right and left slaves (controlled indi-
rectly by the subject via the master manipulators). These 76 kinematic variables are
recorded at a frequency of 30 Hz for each surgical trial. Finally, we should mention
that in addition to the three self-proclaimed skill levels (N,I,E), JIGSAWS also con-
tains the modified OSATS score (Gao et al., 2014), which corresponds to an expert
surgeon observing the surgical trial and annotating the performance of the trainee.
The main goal of this work is to evaluate surgical skills by considering either the
self-proclaimed discrete skill level (classification) or the OSATS score (regression) as
our target variable. We conceive each trial as a multivariate time series and designed
a one-dimensional CNN dedicated to learn automatically useful features for surgical
skill evaluation in an end-to-end manner (Ismail Fawaz et al., 2019d).

4.2.2 Method

Our approach takes inspiration of the recent success of CNNs for time series clas-
sification shown in Chapter 1. Figure 4.1 illustrates the fully convolutional neural
network architecture, which we have designed specifically for surgical skill evalua-
tion using temporal kinematic data. The network’s input is an MTS with a variable
length l and 76 channels. For the classification task, the output layer contains a num-
ber of neurons equal to three (N,I,E) with the softmax activation function, whereas
for the regression task (predicting the OSATS score), the number of neurons in the
last layer is equal to six: (1) “Respect for tissue”; (2) “Suture/needle handling”; (3)
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“Time and motion”; (4) “Flow of operation”; (5) “Overall performance”; (6) “Quality
of final product” (Gao et al., 2014), with a linear activation function.

Compared with convolutions for image recognition, where usually the model’s
input exhibits two spatial dimensions (height and width) and three channels (red,
green and blue), the input to our network is a time series with one spatial dimension
(surgical task’s length l) and 76 channels (denoting the 76 kinematics: x, y, z, . . . ).
One of the main challenges we have encountered when designing our architecture
was the large number of channels (76) compared to the traditional red, green and
blue channels (3) for the image recognition problem. Hence, instead of applying
the filters over the whole 76 channels at once, we propose to carry out different
convolutions for each group and subgroup of channels. We used domain knowledge
when grouping the different channels, in order to decide which channels should be
clustered together.

Firstly, we separate the 76 channels into four distinct groups, such as each group
should contain the channels from one of the manipulators: the first, second, third
and fourth groups correspond to the four manipulators (ML: master left, MR: mas-
ter right, SL: slave left and SR: slave right) of the da Vinci surgical system. Thus,
each group assembles 19 of the total kinematic variables. Next, each group of 19
channels is divided into five different subgroups each containing variables that we
believe should be semantically clustered together. For each cluster, the variables are
grouped into the following five sub-clusters:

• First sub-cluster with three variables for the Cartesian coordinates (x, y, z);

• Second sub-cluster with three variables for the linear velocity (x′, y′, z′);

• Third sub-cluster with three variables for the rotational velocity (α′, β′, γ′);

• Fourth sub-cluster with nine variables for the rotation matrix R;

• Fifth sub-cluster with one variable for the gripper angular velocity (θ).

Figure 4.1 illustrates how the convolutions in the first layer are different for each
subgroup of kinematic variables. Following the same line of thinking, the convolu-
tions in the second layer are different for each group of variables (SL, SR, ML and
MR). However, in the third layer, the same filters are applied for all dimensions (or
channels), which corresponds to the traditional CNN.

To take advantage from the CAM method while reducing the number of parame-
ters (weights) in our network, we employed a global average pooling operation after
the last convolutional layer. In other words, the convolution’s output (the MTS) will
shrink from a length l to 1, while maintaining the same number of dimensions in the
third layer. Without any sort of validation, we choose the following default hyper-
parameters. We used 8 kernels for the first convolution, and then we doubled the
number of kernels, thus allowing us to balance the number of parameters for each
layer as a function of its depth. We used ReLU as the nonlinear hidden activation
function for all convolutional layers with a stride of 1 and a kernel length equal to 3.

We fixed our objective loss function to be the categorical cross-entropy to learn
the network’s parameters in an end-to-end manner for the classification task, and the
mean squared error when learning a regressor to predict the OSATS score, which can
be written as:

MSE =
1
n

n

∑
i=1

(Yi − Ŷi)
2. (4.1)
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Method
Suturing Needle passing Knot tying

Micro Macro ρ Micro Macro ρ Micro Macro ρ

S-HMM (Tao et al., 2012) 97.4 n/a n/a 96.2 n/a n/a 94.4 n/a n/a
ApEn (Zia and Essa, 2018) 100 n/a 0.59 100 n/a 0.45 99.9 n/a 0.66
Sax-Vsm (Forestier et al., 2017a) 89.7 86.7 n/a 96.3 95.8 n/a 61.1 53.3 n/a
CNN (Wang and Majewicz Fey, 2018) 93.4 n/a n/a 89.9 n/a n/a 84.9 n/a n/a
FCN (proposed) 100 100 0.60 100 100 0.57 92.1 93.2 0.65

TABLE 4.1: Micro, macro and Spearman’s coefficient ρ for surgical
skill evaluation.

The network’s weights were optimized using the Adam optimization algo-
rithm (Kingma and Ba, 2015). The default value of the learning rate was fixed to
0.001 as well as the first and second moment estimates were set to 0.9 and 0.999
respectively (Chollet, 2015). We initialized the weights using Glorot’s uniform ini-
tialization (Glorot and Bengio, 2010). We randomly shuffled the training set before
each epoch, whose maximum number was set to 1000 epochs. We then saved the
model at each training iteration by choosing the network’s state that minimizes the
loss function on a random (non-seen) split from the training data. This process is
also referred to as “model checkpoint” by the deep learning community (Chollet,
2015), allowing us to choose the best number of epochs based on the validation loss.
Finally, to avoid overfitting, we added an l2 regularization parameter whose default
value was fixed to 10−5. For each surgical task, we have trained a different network,
resulting in three different models.1 We adopted for both classification and regres-
sion tasks a leave-one-super-trial-out scheme (Ahmidi et al., 2017).

The use of a GAP layer allows us to employ the CAM algorithm, which was
originally designed for image classification tasks by Zhou et al., 2016 and later in-
troduced for time series data in Wang, Yan, and Oates, 2017. Using the CAM, we
are able to highlight which fractions of the surgical trial contributed highly to the
classification. This method was discussed in details in Chapter 1. Finally, for the
regression task, the CAM can be extended in a trivial manner: Instead of computing
the contribution to a classification, we are computing the contribution to a certain
score prediction (1 out of 6 in total).

4.2.3 Results

The first task consists in assigning a skill level for an input surgical trial out of the
three possible levels: novice (N), intermediate (I) and expert (E). In order to compare
with current state-of-the-art techniques, we adopted the micro and macro measures
defined in Ahmidi et al., 2017. The micro measure refers simply to the traditional ac-
curacy metric. However, the macro takes into consideration the support of each class
in the dataset, which boils down to computing the precision metric. Table 4.1 reports
the macro and micro metrics of five different models for the surgical skill classifica-
tion of the three tasks: suturing, knot tying and needle passing. For the proposed
FCN model, we average the accuracy over 40 runs to reduce the bias induced by the
randomness of the optimization algorithm. From these results, it appears that FCN
is much more accurate than the other approaches with 100% accuracy for the needle
passing and suturing tasks. As for the knot tying task, we report 92.1% and 93.2%,
respectively, for the micro and macro configurations. When comparing the other four

1Our source code is available at https://github.com/hfawaz/ijcars19

https://github.com/hfawaz/ijcars19
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techniques, for the knot tying surgical task, FCN exhibits relatively lower accuracy,
which can be explained by the minor difference between the experts and interme-
diates for this task: Mean OSATS score is 17.7 and 17.1 for expert and intermediate,
respectively.

An S-HMM was designed to classify surgical skills (Tao et al., 2012). Although
this approach does leverage the gesture boundaries for training purposes, our
method is much more accurate without the need to manually segment each surgical
trial into finer gestures. Zia and Essa, 2018 introduced ApEn to generate character-
istics from each surgical task, which are later given to a classical nearest neighbor
classifier with a cosine similarity metric. Although ApEn and FCN achieved state-
of-the-art results with 100% accuracy for the first two surgical tasks, it is still not
obvious how ApEn could be used to give feedback for the trainee after finishing
his/her training session. Forestier et al., 2017a introduced a sliding window tech-
nique with a discretization method to transform the MTS into bag of words. To
justify their low accuracy, Forestier et al., 2017a insisted on the need to provide ex-
plainable surgical skill evaluation for the trainees. On the other hand, FCN is equally
interpretable yet much more accurate; in other words, we do not sacrifice accuracy
for interpretability. Finally, Wang and Majewicz Fey, 2018 designed a CNN whose
architecture is dependent on the length of the input time series. This technique was
clearly outperformed by our model which reached better accuracy by removing the
need to pre-process time series into equal length thanks to the use of GAP.

We extended the application of our FCN model (Ismail Fawaz et al., 2018c) to
the regression task: predicting the OSATS score for a given input time series. Al-
though the community made a huge effort toward standardizing the comparison
between different surgical skills evaluation techniques (Ahmidi et al., 2017), we did
not find any consensus over which evaluation metric should be adopted when com-
paring different regression models. However, Zia and Essa, 2018 proposed the use
of Spearman’s correlation coefficient (denoted by ρ) to compare their 11 combina-
tion of regression models. The latter is a nonparametric measure of rank correlation
that evaluates how well the relationship between two distributions can be described
by a monotonic function. In fact, the regression task requires predicting six target
variables; therefore, we compute ρ for each target and finally report the correspond-
ing mean over the six predictions. By adopting the same validation methodology
proposed by Zia and Essa, 2018, we are able to compare our proposed FCN model
to their best performing method. Table 4.1 reports also the ρ values for the three
tasks, showing how FCN reaches higher ρ values for two out of three tasks. In other
words, the prediction and the ground truth OSATS score are more correlated when
using FCN than the ApEn-based solution proposed by Zia and Essa, 2018 for the
second task and equally correlated for the other two tasks.

The CAM technique allows us to visualize which parts of the trial contributes
the most to a skill classification. By localizing, for example, discriminative behaviors
specific to a skill level, observers can start to understand motion patterns specific to
certain class of surgeons. To further improve themselves (the novice surgeons), the
model, using the CAM’s result, can pinpoint to the trainees their good/bad motor
behaviors. This would potentially enable novices to achieve greater performance
and eventually become experts.

By generating a heatmap from the CAM, we can see in Figure 4.2 how it is indeed
possible to visualize the feedback for the trainee. In fact, we examine a trial of an
expert and novice surgeon: The expert’s trajectory is illustrated in Figure 4.2a while
the novice’s trajectory is depicted in Figure 4.2b. In this example, we can see how
the model was able to identify which motion (red subsequence) is the main reason
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for identifying a subject as a novice. Concretely, we can easily spot a pattern that
is being recognized by the model when outputting the classification of subject H’s
skill level: The orange and red 3D subsequences correspond to same surgical ges-
ture “pulling suture” and are exhibiting a high influence over the model’s decision.
This feedback could be used to explain to a young surgeon which movements are
classifying him/her as a novice and which ones are classifying another subject as an
expert. Thus ultimately, this sort of feedback could guide the novices into becoming
experts.

After having shown how our classifier can be interpreted to provide feedback to
the trainees, we now present the result of applying the same visualization (based on
the CAM algorithm) in order to explain the OSATS score prediction. Figure 4.3 de-
picts the trajectory with its associated heatmaps for subject E performing the second
trial of the knot-tying task. Figure 4.3a and 4.3b illustrates the trajectory’s heatmap,
respectively, for “suture/needle handling” and “quality of the final product” OS-
ATS score predictions. At first glimpse, one can see how a prediction that requires
focusing on the whole surgical trial leverages more than one region of the input
surgery—this is depicted by the multiple red subsequences in Figure 4.3b. However,
when outputting a rating for a specific task such as “suture/needle handling”—the
model is focusing on less parts of the input trajectory which is shown in Figure 4.3a.

4.2.4 Conclusion

In this project, we proposed a deep learning-based method for surgical skills eval-
uation from kinematic data. We achieved state-of-the-art accuracy by designing a
specific FCN, while providing explainability that justifies a certain skill evaluation,
thus allowing us to mitigate the CNN’s black-box effect. Furthermore, by extend-
ing our architecture we were able to provide new state-of-the-art performance for
predicting the OSATS score from the input kinematic time-series data. In the follow-
ing section, we present a technique for automatic alignment of surgical videos from
kinematic time series (Ismail Fawaz et al., 2019c) for surgical skills evaluation.

4.3 Automatic alignment of surgical videos using kinematic
time series data

Educators have always searched for innovative ways of improving apprentices’
learning rate. While classical lectures are still most commonly used, multimedia
resources are becoming more and more adopted (Smith and Ransbottom, 2000) es-
pecially in Massive Open Online Courses (Means et al., 2009). In this context, videos
have been considered as especially interesting as they can combine images, text,
graphics, audio and animation. The medical field is no exception, and the use of
video-based resources is intensively adopted in medical curriculum (Masic, 2008)
especially in the context of surgical training (Kneebone et al., 2002). The advent of
robotic surgery also simulates this trend as surgical robots, like the Da Vinci (Intu-
itive Surgical Sunnyvale, 2018), generally record video feeds during the interven-
tion. Consequently, a large amount of video data has been recorded in the last ten
years (Rapp et al., 2016). This new source of data represent an unprecedented oppor-
tunity for young surgeons to improve their knowledge and skills (Gao et al., 2014).
Furthermore, video can also be a tool for senior surgeons during teaching periods to
assess the skills of the trainees. In fact, a recent study by Mota et al., 2018 showed that
residents spend more time viewing videos than specialists, highlighting the need for
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(A) Video without
alignment

(B) Video with align-
ment

FIGURE 4.4: Example on how a time series alignment is used to syn-
chronize the videos by duplicating the gray-scale frames. Best viewed

in color.

young surgeons to fully benefit from the procedure. In Herrera-Almario et al., 2016,
the authors showed that knot-tying scores and times for task completion improved
significantly for the subjects that watched the videos of their own performance.

However, when the trainees are willing to asses their progress over several tri-
als of the same surgical task by re-watching their recorded surgical videos simulta-
neously, the problem of videos being out-of-synch makes the comparison between
different trials very difficult if not impossible. This problem is encountered in many
real life case studies, since experts on average complete the surgical tasks in less time
than novice surgeons (McNatt and Smith, 2001). Thus, when trainees do enhance
their skills, providing them with a feedback that pinpoints the reason behind the
surgical skill improvement becomes problematic since the recorded videos exhibit
different duration and are not perfectly aligned.

Although synchronizing videos has been the center of interest for several com-
puter vision research venues, contributions are generally focused on a special case
where multiple simultaneously recorded videos (with different characteristics such
as viewing angles and zoom factors) are being processed (Wolf and Zomet, 2002;
Wedge, Kovesi, and Huynh, 2005; Padua et al., 2010). Another type of multiple
video synchronization uses hand-engineered features (such as points of interest tra-
jectories) from the videos (Wang et al., 2014; Evangelidis and Bauckhage, 2011), mak-
ing the approach highly sensitive to the quality of the extracted features. This type
of techniques was highly effective since the raw videos were the only source of in-
formation available, whereas in our case, the use of robotic surgical systems enables
capturing an additional type of data: the kinematic variables such as the x, y, z Carte-
sian coordinates of the Da Vinci’s end effectors (Gao et al., 2014).

In this section, we propose to leverage the sequential aspect of the recorded kine-
matic data from the Da Vinci surgical system, in order to synchronize their corre-
sponding video frames by aligning the time series data (see Figure 4.4 for an ex-
ample). When aligning two time series, the off-the-shelf algorithm is DTW (Sakoe
and Chiba, 1978) which we indeed used to align two videos. However, when align-
ing multiple sequences, the latter technique does not generalize in a straightforward
and computationally feasible manner (Petitjean et al., 2014). Hence, for multiple
video synchronization, we propose to align their corresponding time series to the
average time series, computed using the DBA algorithm (explained in details in
Chapter 2). This process is called Non-Linear Temporal Scaling and has been orig-
inally proposed to find the multiple alignment of a set of discretized surgical ges-
tures (Forestier et al., 2014), which we extend in this work to continuous numerical
kinematic data. Figure 4.5 depicts an example of stretching three different time series
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FIGURE 4.5: Example of aligning coordinate X’s time series for subject
F, when performing three trials of the suturing surgical task.

using the NLTS algorithm. Examples of the synchronized videos and the associated
code can be found on our GitHub repository2, where we used the JHU-ISI Gesture
and Skill Assessment Working Set (Gao et al., 2014) to validate our work.

4.3.1 Methods

Here, we detail each step of our video synchronization approach. We start by de-
scribing the DTW algorithm which allows us to align two videos. Then, we describe
how NLTS enables us to perform multiple video synchronization with respect to the
reference average time series computed using the DBA algorithm.

Dynamic Time Warping

Dynamic Time Warping was first proposed for speech recognition when aligning
two audio signals (Sakoe and Chiba, 1978). Suppose we want to compute the dis-
similarity between two time series, for example two different trials of the same sur-
gical task, A = (a1, a2, . . . , am) and B = (b1, b2, . . . , bn). The length of A and B are
denoted respectively by m and n, which in our case correspond to the surgical trial’s
duration. Here, ai is a vector that contains six real values, therefore A and B can be
seen as two distinct MTS.

2https://github.com/hfawaz/aime19

https://github.com/hfawaz/aime19
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To compute the DTW dissimilarity between two MTS, several approaches were
proposed by the time series data mining community (Shokoohi-Yekta et al., 2017),
however in order to apply the subsequent algorithm NLTS, we adopted the “de-
pendent” variant of DTW where the Euclidean distance is used to compute the dif-
ference between two instants i and j. Let M(A, B) be the m × n point-wise dis-
similarity matrix between A and B, where Mi,j = ||ai − bj||2. A warping path
P = ((c1, d1), (c2, d2), . . . , (cs, ds)) is a series of points that define a crossing of M. The
warping path must satisfy three conditions: (1) (c1, d1) = (1, 1); (2) (cs, ds) = (m, n);
(3) 0 ≤ ci+1 − ci ≤ 1 and 0 ≤ dj+1 − dj ≤ 1 for all i < m and j < n. The DTW
measure between two series corresponds to the path through M that minimizes the
total distance. In fact, the distance for any path P is equal to DP(A, B) = ∑s

i=1 Pi.
Hence if P is the space of all possible paths, the optimal one - whose cost is equal to
DTW(A, B) - is denoted by P∗ and can be computed using: minP∈P DP(A, B).

The optimal warping path can be obtained efficiently by applying a dynamic
programming technique to fill the cost matrix M. Once we find this optimal warping
path between A and B, we can deduce how each time series element in A is linked
to the elements in B. We propose to exploit this link in order to identify which time
stamp should be duplicated in order to align both time series, and by duplicating
a time stamp, we are also duplicating its corresponding video frame. Concretely, if
elements ai, ai+1 and ai+2 are aligned with the element bj when computing P∗, then
by duplicating twice the video frame in B for the time stamp j, we are dilating the
video of B to have a length that is equal to A’s. Thus, re-aligning the video frames
based on the aligned Cartesian coordinates: if subject S1 completed “inserting the
needle” gesture in 5 seconds, whereas subject S2 performed the same gesture within
10 seconds, our algorithm finds the optimal warping path and duplicates the frames
for subject S1 in order to synchronize with subject S2 the corresponding gesture.
Figure 4.4 illustrates how the alignment computed by DTW for two time series can
be used in order to duplicate the corresponding frames and eventually synchronize
the two videos.

Non-Linear Temporal Scaling

The previous DTW based algorithm works perfectly when synchronizing only two
surgical videos. The problem arises when aligning three or more surgical trials si-
multaneously, which requires a multiple series alignment. The latter problem has
been shown to be NP-Complete (Wang and Jiang, 1994) with the exact solution re-
quiring O(LN) operations for N sequences of length L. This is clearly not feasible
in our case where L varies between 103 and 104 and N ≥ 3, which is why we ought
to leverage an approximation of the multiple sequence alignment solution provided
by the DBA algorithm which we detailed in the Chapter 2.

NLTS was originally proposed for aligning discrete sequences of surgical ges-
tures (Forestier et al., 2014). In this project, we extend the technique for numerical
continuous sequences (time series). The goal of this final step is to compute the ap-
proximated multiple alignment of a set of sequences D which will eventually contain
the precise information on how much a certain frame from a certain series should
be duplicated. We first start by computing the average sequence T (using DBA) for
a set of time series D that we want to align simultaneously. Then, by recomputing
the Compact Multiple Alignment between the refined average T and the set of time
series D, we can extract an alignment between T and each sequence in D. Thus,
for each time series in D we will have the necessary information (extracted from the
multiple alignment) in order to dilate the time series appropriately to have a length
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FIGURE 4.6: Snapshots of the three surgical tasks in the JIGSAWS
dataset (from left to right): suturing, knot-tying, needle-passing (Gao

et al., 2014).

that is equal to T’s, which also corresponds to the length of the longest time series
in D. Figure 4.2, depicts an example of aligning three different time series using the
NLTS algorithm.

4.3.2 Experiments

We start by describing the JIGSAWS dataset we have used for evaluation, before
presenting our experimental study.

Dataset

The JIGSAWS dataset (Gao et al., 2014) includes data for three basic surgical tasks
performed by study subjects (surgeons). The three tasks (or their variants) are usu-
ally part of the surgical skills training program. Figure 4.6 shows a snapshot example
for each one of the three surgical tasks (Suturing, Knot Tying and Needle Passing).
The JIGSAWS dataset contains kinematic and video data from eight different sub-
jects with varying surgical experience: two experts (E), two intermediates (I) and
four novices (N) with each group having reported respectively more than 100 hours,
between 10 and 100 hours and less than 10 hours of training on the Da Vinci. All
subjects were reportedly right-handed.

The subjects repeated each surgical task five times and for each trial the kine-
matic and video data were recorded. When performing the alignment, we used
the kinematic data which are numeric variables of four manipulators: left and right
masters (controlled directly by the subject) and left and right slaves (controlled in-
directly by the subject via the master manipulators). These kinematic variables (76
in total) are captured at a frequency equal to 30 frames per second for each trial.
Out of these 76 variables, we only consider the Cartesian coordinates (x, y, z) of the
left and right slave manipulators, thus each trial will consist of an MTS with 6 tem-
poral variables. We chose to work only with this subset of kinematic variables to
make the alignment coherent with what is visible in the recorded scene: the robots’
end-effectors which can be seen in Figure 4.6. However other choices of kinematic
variables are applicable, which we leave the exploration for our future work. Finally
we should mention that in addition to the three self-proclaimed skill levels (N,I,E)
JIGSAWS contains the modified OSATS score (Gao et al., 2014), which corresponds
to an expert surgeon observing the surgical trial and annotating the performance of
the trainee.
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Trial-1 Trial-2

Trial-4Trial-3

(A) Videos synchronization process

Trial-1 Trial-2

Trial-4Trial-3

(B) Perfectly aligned videos

FIGURE 4.7: Video alignment procedure with duplicated (gray-scale)
frames.

Results

We have created a companion web page3 to our project where several examples of
synchronized videos can be found. Figure 4.7 illustrates the multiple videos align-
ment procedure using our NLTS algorithm, where gray-scale images indicate du-
plicated frames (paused video) and colored images indicate a surgical motion (un-
paused video). In Figure 4.7a we can clearly see how the gray-scale surgical trials
are perfectly aligned. Indeed, the frozen videos show the surgeon ready to perform
“pulling the needle” gesture (Gao et al., 2014). On the other hand, the colored trial
(bottom right of Figure 4.7a) shows a video that is being played, where the surgeon
is performing “inserting the needle” gesture in order to catch up with the other paused
trials in gray-scale. Finally, the result of aligning simultaneously these four surgical
trials is depicted in Figure 4.7b. By observing the four trials, one can clearly see that
the surgeon is now performing the same surgical gesture “pulling the needle” simul-
taneously for the four trials. We believe that this type of observation will enable
a novice surgeon to locate which surgical gestures still need some improvement in
order to eventually become an expert surgeon.

3https://germain-forestier.info/src/aime2019/

https://germain-forestier.info/src/aime2019/
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FIGURE 4.8: A polynomial fit (degree 3) of DTW dissimilarity score
(y-axis) as a function of the OSATS score difference between two sur-

geons (x-axis).

Furthermore, in order to validate our intuition that DTW is able to capture char-
acteristics that are in relationship with the motor skill of a surgeon, we plotted the
DTW distance as a function of the OSATS (Gao et al., 2014) score difference. For
example, if two surgeons have both an OSATS score of 10 and 16 respectively, the
corresponding difference is equal to |10− 16| = 6. In Figure 4.8, we can clearly see
how the DTW score increases whenever the OSATS score difference increases. This
observation suggests that the DTW score is low when both surgeons exhibit similar
dexterity, and high whenever the trainees show different skill levels. Therefore, we
conclude that the DTW score can serve as a heuristic for estimating the quality of
the alignment (whenever annotated skill level is not available) - especially since we
observed low quality alignments for surgeons with very distinct surgical skill levels.

Finally, we should note that this work is suitable for many research fields in-
volving motion kinematic data with their corresponding video frames. Examples
of such medical applications are assessing mental health from videos (Yamada and
Kobayashi, 2017) where wearable sensor data can be seen as time series kinematic
variables and leveraged in order to synchronize a patient’s videos and compare how
well the patient is responding to a certain treatment. Following the same line of
thinking, this idea can be further applied to kinematic data from wearable sensors
coupled with the corresponding video frames when evaluating the Parkinson’s dis-
ease evolution (Criss and McNames, 2011) as well as infant grasp skills (Li et al.,
2019).

4.3.3 Conclusion

In this section, we showed how kinematic time series data recorded from the Da
Vinci’s end effectors can be leveraged in order to synchronize the trainee’s videos
performing a surgical task. With personalized feedback during surgical training be-
coming a necessity (Ismail Fawaz et al., 2018a; Forestier et al., 2018), we believe that
replaying synchronized and well aligned videos would benefit the trainees in under-
standing which surgical gestures did or did not improve after hours of training, thus
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enabling them to further reach higher skills and eventually become experts. We ac-
knowledge that this work needs an experimental study to quantify how beneficial is
replaying synchronized videos for the trainees versus observing non-synchronized
trials. Therefore, we leave such exploration and clinical try outs to our future work.

4.4 Conclusion

In this chapter, we tackled two different surgical skills related problems. First by de-
signing a one dimensional FCN, we were able to reach state-of-the-art results for the
surgical skills evaluation (classification and regression). Doing so, we were able to
mitigate the DNNs’ black-box effect, using the CAM technique in order to highlight
the reason behind a certain surgical skill identification. The second surgical skill re-
lated problem was due to surgical training videos being our-of-synch, thus making
it hard for trainees to understand and compare videos between different surgeons
with various skill levels. We tackled the latter problem by proposing the use of
NLTS in order to align and synchronize multiple videos simultaneously. These two
projects were orthogonal in the sense that they could also complement each other:
perhaps video and time series synchronization could be a pre-processing step that
would enhance the performance surgical skills evaluation models. We leave such
exploration to our future work when extending these two projects.
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Conclusion and future works

Overview of contributions

The work presented in this manuscript first examined the current benchmark ap-
proaches in the area of deep learning for time series classification. Using the knowl-
edge gained from this study, a number of new methods have been proposed to con-
tribute to the deep learning for TSC literature, leading up to the proposal for the final
classifier InceptionTime, which to the best of our knowledge constitutes the first time
series classifier to achieve similar results to the famous HIVE-COTE ensemble, while
outperforming it significantly in terms of running-time. We should emphasize that
in order to foster reproducibility, the corresponding code for each paper is published
on the following GitHub profile: https://github.com/hfawaz.

The main goal of this research was to answer the question outlined in Chapter 1:
Is there a current DNN approach that reaches state-of-the-art performance for TSC
and is less complex than HIVE-COTE? Most previous work on TSC haven’t consid-
ered deep learning models as potential strong classifiers, which led to researchers
proposing neural networks as baselines with little to no competitive performance
in terms of accuracy when compared to other non deep learning based techniques
such as HIVE-COTE. Arriving to our benchmark in 2018, we showed how neural
networks can compete with state-of-the-art TSC algorithms, while providing inter-
pretability using the CAM method.

Furthermore, in a series of research projects around regularizing DNNs for TSC,
we were able to showcase how much more accuracy we can squeeze from a vanilla
neural network architecture designed originally as a baseline. We started by propos-
ing a novel DBA-based method for predicting the best source dataset for a given
target dataset when fine-tuning a neural network classifier in a transfer learning set-
ting. Following the ensembles trend of time series classifiers, we showed how we
can leverage the variance in a DNN due to the stochastic nature of its optimization
process, in order to gain a significant boost in accuracy by ensembling various neu-
ral networks with the same or different architectures. We then proposed to further
build again upon the DBA algorithm to generate synthetic time series, allowing us
to augment the training set and eventually improve the generalization capability of
a deep learning classifier. Finally, we turned our attention to a very hot and trending
topic in machine learning: adversarial attacks. We showed how vulnerable DNNs
are to adversarial examples and highlighted several use case studies where such at-
tacks could be detrimental, while showing how the latter technique can be employed
as part of a regularization method called adversarial training.

Building upon this knowledge gained from studying the field of TSC, we identi-
fied a main bottleneck that hinders the practical usage of many published ensembles
in real life time series data mining problems. This downside stems from focusing on
developing very accurate classifiers, while ignoring the running time of the classi-
fier. We were therefore keen on developing the first neural network ensemble (called

https://github.com/hfawaz
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InceptionTime) that is able to reach similar results to the current state-of-the-art en-
semble HIVE-COTE, while providing scalability in terms of long and large time se-
ries dataset. The magnitude of this speed up is consistent across both Big Data TSC
repositories as well as longer time series with high sampling rate.

Motivated originally by the problem of evaluating surgical skills from kinematic
time series sensor data, we designed a special CNN network by leveraging our un-
derstanding of DNNs gained during the initial study conducted on domain agnostic
TSC problems. For this specific surgical data science project, we encountered many
challenges that were not present in other TSC problems: such as having very high
sampling rates and a huge number of variables to work with. For this task, we pro-
vided an FCN based classifier while focusing on its interpretability in order to help
surgeons using the system to improve their skill set.

Having summarized the aforementioned projects, we will present in the next
section the different limitations of our approaches as well as the potential research
area that could be of interest to many TSC researchers looking deeper into artificial
neural networks.

Discussion of future works

The deep learning benchmark for TSC published during this thesis has taken a
big leap towards introducing time series data mining practitioners to the poten-
tial of neural networks when classifying sequential temporal data. While still be-
ing one of the largest studies of deep learning for TSC to date, our review focused
on a small subset of discriminative end-to-end DNNs. The latter means that we
have excluded many types of approaches based on self-supervised learning such
as training a neural network on a pre-text task with large unlabeled dataset then
using the learned latent representation as input features to an off-the-shelf classi-
fier (Franceschi, Dieuleveut, and Jaggi, 2019). Since self-supervised learning has
allowed computer vision researchers to leverage efficiently the large amount of un-
labeled images and videos on the web (Jing and Tian, 2020), we believe that the TSC
community would benefit from benchmarking this type of approaches, allowing the
exploitation of a large quantity of unlabeled raw time series data.

Following the review in Chapter 1, we have presented various regularization
methods that help in improving the generalization capabilities of a given neural net-
work for TSC. We believe that there exist much more research potential in develop-
ing specific time series data augmentation techniques that make use of the temporal
aspect of the data. For example we could leverage a recent proposed approach that
allows the network to learn the optimal warping by applying continuous piecewise
affine transformations (Weber et al., 2019), and thus generating an infinite number of
warped time series training examples. Furthermore, restricting transfer learning to
a single architecture limits the potential of this famous implicit regularization tech-
nique, therefore it would be interesting to study how various architectures could
benefit / harm the neural network’s accuracy when used in a fine-tuning setting.
In addition, having showed that ensembling DNNs by averaging the output class
provabilities leads to a certain increase in the network’s performance, we believe
that there is still room for improvement, since averaging the a posteriori probability
for each class is a very basic approach and perhaps a more robust meta-ensembling
technique would demonstrate further improvements (Boubrahimi, Ma, and Angryk,
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2018). Finally, with adversarial attacks exposing the vulnerabilities of neural net-
works, we believe that more and more researchers should focus on developing de-
fenses for TSC models. In fact, the work done in this thesis on crafting adversarial
examples has already inspired researchers world wide to propose temporal defense
mechanisms (Abdu-Aguye et al., 2020).

In Chapter 3 we focused on the scalability of current state-of-the-art methods
and proposed an Inception based network for TSC. We were inspired by the recent
neural architecture advances in the field of computer vision. Following the same
line of thinking, researchers would further adapt the current state-of-the-art machine
learning approaches such as designing algorithms that themselves would design a
neural network. Rakhshani et al., 2019 spotted the potential of meta-heuristics -
specifically differential evolution - when building neural networks that are specific
to each TSC problem. We therefore believe that InceptionTime is not the ultimate
solution to all TSC datasets, but rather a strong and robust starting point to any
data mining practitioner that would like to design a DNN for solving their TSC
problem. Furthermore, perhaps DNNs are not the sole answer when choosing the
best TSC algorithm. In fact, when referring to the "no-free-lunch theorem" developed
by Wolpert, Macready, et al., 1995, and based on our results we believe that perhaps
the best approach, is a meta-algorithm that would predict the best classifier based
on characteristics extracted from the data.

Going back to our initial motivation for solving TSC problems in Chapter 4, we
developed an FCN based classifier for MTS classification, allowing us to leverage the
CAM technique to provide a level of model interpretability. We would like to first
highlight the fact that our feedback technique would benefit from an extended real
use-case validation process, for example verifying with expert surgeons if indeed
the model is able to detect the main reason for classifying a surgical skill. How-
ever, this is usually expensive and was not possible during this thesis, but perhaps
a research project in collaboration with expert and novice surgeons would be ex-
tremely interesting to the community. In addition, the fact that we are performing
only a leave-one-super-trial-out setup means that a surgeon should be present in
the training set in order to make a prediction. However, since only two experts ex-
ist in the dataset, this suggests that performing a leave-one-user-out setup would
mean having only one expert in the training set. This constitutes a huge problem
originating from the limited dataset size. Therefore, we believe that our approach
should be validated on a larger dataset. Nevertheless, another potential solution is
to perform adversarial learning in order to force the network to detect patterns that
are discriminative in terms of surgical skills but not invariant in terms of subject ID.
This would be inspired from the recent success of adversarial learning for speaker
invariant speech recognition systems (Adi et al., 2019).

Finally, with deep learning showing successful results in various machine learn-
ing fields such text mining, image segmentation and speech recognition, we believe
that there is still much more to be explored for the TSC research area, especially since
the deep learning discipline is moving very fast. We hope that this thesis, with its
accompanied code and published models, could be a cornerstone for future deep
learning research on time series classification.
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