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ABSTRACT

This work addresses the physical modelling and simulation of the vocal apparatus
with a focus on the articulated vocal tract. The objective is to model both the
propagation of acoustic waves and the fluid flow interacting with the tissues along
the upper airways. Getting back to the basic principles of fluid mechanics and of
thermodynamics, this thesis combines a set of hypotheses, approaches and tools to
produce a nonlinear lumped-parameter model that accounts for acoustic propaga-
tion, but also for side branching (e.g., nasal coupling) and for articulation (with
hard and soft moving tissues). This work is carried out in the time-domain using
the framework of port-Hamiltonian systems (pHs) that ensures the energy consis-
tency and passivity of the models. The lumped-parameter model is built in several
steps: (a) partition of the vocal tract into elementary tracts; (b) for each tract, de-
composition of velocity and density fields on basis functions associated with the
axial flow, transverse expansion flow, and fluid compression; (c) formulation of the
projected mass and momentum conservation equations as a macroscopic pHs; (d)
interconnection of these pHs through ports (possibly with side-branching) to build
the nonlinear pHs model of the full vocal tract. Using electrical equivalent circuits,
we show that this model provides new interpretations on Fluid-Structure Interac-
tions (FSI) while preserving the modularity, physical interpretability and scalability
of classical lumped-parameter models of the state-of-the-art.

To obtain an acoustical formulation an improve the numerical conditioning, we
propose an equivalent (shifted) pHs, which variables are expressed in terms of fluc-
tuations around a state at rest, using a variable change. The full vocal tract is
obtained by interconnecting several tracts (using ports) and mechanical models of
tissues on mobile walls, the latter being used to drive the geometry. This intercon-
nection step involves algebraic relations that we solve with an assembly method
based on directed graphs and differential-algebraic pHs. Power-balanced numerical
simulations for simple co-articulations demonstrate the significant impact of the
energy-consistent modelling of time-varying tracts on audible signals, while repro-
ducing expected properties (power balance, acoustical resonances, transient effects,
mass convection). As a corollary work based on the same hypotheses and approach,
we propose lumped passive models of junction (of various complexity) between three
tracts or pipes, that could be also used in musical acoustics for wind instruments. At
last, we revisit the theoretical framework of the so-called indicator (or color) func-
tions and level set methods for the time-space modelling of pHS with time-varying
domains. This provides new insights on the interconnection and the coupling of
infinite-dimensional FSI systems.

KEYWORDS: fluid-structure interactions, port-Hamiltonian systems vocal tract,
acoustics, lumped-parameter modelling.

iii






RESUME

Cette these traite de la modélisation et de la simulation de 'appareil vocal, et plus
particulierement du conduit vocal articulé. L’objectif principal est de décrire de
maniere concomittante la propagation des ondes acoustiques et I’écoulement de 'air
en interaction avec les tissus et les muscles des voies aériennes. Cette thése combine
des hypotheses, des approches et des outils issus de la mécanique des fluides et de la
thermodynamique pour produire un modele non linéaire a constantes localisées. Ce
modele prend en compte la propagation acoustique, la présence de dérivations (pour
la cavité nasale par exemple) et les mouvements dus aux phénomenes articulatoires.
Ce travail est effectué dans le domaine temporel, dans le cadre du formalisme des
systemes Hamiltoniens a ports (sHp) qui garantit obtention de modeles passifs et
énergétiquement bien posés. La construction du modele a constantes localisées se
déroule suivant plusieurs étapes : (a) partition du conduit vocal en trongon élémen-
taires; (b) pour chaque troncon, décomposition des champs de vitesse et de densité de
masse sur des fonctions de forme associées a 1’écoulement axial, & I’écoulement trans-
verse et a la compression du fluide ; (¢) projection des équations de conservation de la
masse et de la quantité de mouvement, puis formulation Hamiltonienne a ports (Hp)
macroscopique ; (d) interconnexion de ces modeles sHp a ’aide de leurs ports (avec
de possibles dérivations) afin de construire le modele non linéaire complet du conduit
vocal. Nous démontrons, a ’aide de circuits électriques équivalents, que ce modele
apporte de nouvelles nouvelles interprétations sur les interactions fluides-structures
(IF'S) tout en préservant la modularité, 'interprétabilité et I'extensibilité des modeles
de I’état de I’art. Pour obtenir une formulation acoustique et améliorer le condition-
nement numérique, nous proposons un sHp équivalent dit «relevé »dont les variables
sont exprimées, a ’aide d’un changement de variable, comme des fluctuations autour
d’un état au repos. Le modele complet du conduit vocal résulte de 'interconnexion
de plusieurs trongons et de modeles mécaniques des tissus incluant des parois mo-
biles, pilotées pour modifier la géométrie. Ces interconnexions multiples mettent en
lumiére la présence de relations algébriques (contraintes) que nous résolvons a ’aide
d’une méthode basée sur les sHp différentiel-algébriques (sHp-DA) et les graphs
dirigés. Nous démontrons, a I’aide de simulations & passivité garantie pour des coar-
ticulations simples, I'impact de notre modélisation du mouvement des articulateurs
sur le signal de sortie audible, tout en reproduisant les comportements attendus (bi-
lan de puissance, résonances acoustiques, transitoires, convection de masse). Nous
utilisons la méme méthodologie de modélisation pour proposer de nouveaux modeles
de jonction (de complexité différentes) entre trois trongons ou tubes. Ces modeles
peuvent étre appliqués a ’acoustique des instruments a vent. Enfin, nous proposons
une formulation Hamiltonienne & ports de fonctions indicatrices (ou de couleur) et
des méthodes dites level-set pour la modélisation de sHp dont le domaine spatial
dépend du temps. Cette approche nous permet de réinterpréter l'interconnexion et
le couplage de systeme dynamiques dans le cas des interactions fluides-structures.



MOTS-CLES: Interactions fluide-structure, systéemes Hamiltoniens a ports, acous-
tique, modeles a constantes localisées, conduit vocal.
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INTRODUCTION

CONTEXT

This thesis is part of a collaboration between the SSAM! team of the STMS? labora-
tory housed by the IRCAM? in Paris, and the Sounds? team of the LMA® laboratory
in Marseilles. Most of the work was carried out at the STMS laboratory.

THE S3AM TEAM — The physical modelling of audio and acoustic systems is
an essential topic of research for the S3AM team. Some of their recent research
subjects include: the loudspeaker [FH20], the Fender Rhode [FH15], the Ondes
Martenot [Naj+18], brass instruments [LH15], analog audio circuits [Naj+21; MH19;
FH13], the nonlinear string [HR16], the tom-tom drum [Wij+19], and the vocal appa-
ratus [HS17]. The broad range of applications is unified by the increasing usage of the
port-Hamiltonian formalism [Mv92; vMO02], which allows for a systematic representa-
tion and energy consistent approach of physical modelling. It has become a common
language between team members. The growing interest in port-Hamiltonian systems
led to the PhD thesis of Antoine Falaize [Fall6], who created a Python library called
PyPHS [Fal], dedicated to the modelling and simulation of port-Hamiltonian systems.
The S3AM team also works on Volterra Series [Boul8], finite-time control [Wij+18;
Wij+19; WdR21], and differential geometry [BC19] applied to physical modelling
sound synthesis. The S3AM team was recently involved in three collaborative re-
search projects: the two ANR projects Hamecmopsys® and finite4SOS7, and the
European project INFIDHEMS.

THE SOUNDS TEAM — The topics of research of the Sounds team are related to
the audible frequency range: environment and noise pollution, auditory perception,
and musical acoustics. They collaborate with major companies of their respective
domains: EDF, Buffet Crampon, and Yamaha.

COVID-19 — The thesis was carried out from October 2018 to December 2021.
From March 2019 to the handing in of the manuscript, the COVID outbreak im-
pacted our working conditions on several levels. Firstly, over the lockdown periods,
most of the research was carried outside of the laboratory. Secondly, in August 2020,
I caught the COVID-19 virus and was ill for three months, followed by three months
of not being physically able to work full time. I am grateful to Sorbonne-Université

1 Sound Systems and Signals: Audio/Acoustics, InstruMents http://s3am.ircam.fr.

2 Science and Technology of Music and Sound (UMR9912) https://www.stms-lab.fr.

3 Institut de Recherche et Coordination Acoustique et Musique http://www.ircam.fr.

4 http://www.lma.cnrs-mrs.fr/spip/spip.php?page=team&id_mot=15&lang=en

5 Laboratoire de Mécanique et d’Acoustique (UMR 7031): http://wuw.1lma.cnrs-mrs.fr/?lang=en
6 https://hamecmopsys.ens2m.fr

7 https://anr.fr/Projet-ANR-15-CE23-0007.

8 https://websites.isae-supaero.fr/infidhem/.
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for extending my contract by three months, which enabled me to carry my PhD
project to term.

RESEARCH PROJECT

The vocal apparatus is a complex multiphysical system capable of producing a great
number of different sounds. These sounds are the result of complex fluid-structure
interactions and acoustical phenomena. The main objectives of the collaboration
between the S3AM team and the Sounds team, which this thesis is a part of, are:

1) to provide realistic physical models of the multiphysical components that
form the vocal apparatus;

2) to produce power-balanced simulations of the whole system;

3) to recreate and control the known behaviours of both healthy and patho-
logical voices.

The outcomes of this research project are targeted at the medical and artistic do-
mains.

To ensure that the proposed nonlinear physical models guarantee the conserva-
tion of the energy, this research is carried out in the framework of port-Hamiltonian
systems [Mv92; vJ14].

In this thesis, we consider objectives 1 and 2, and focused mainly on the vocal
tract. This PhD project is the continuation of the work of Nicolas Lopes [LH15],
who, amongst other research topics, worked on a fluid-structure interaction model
of the lips of a brass player.

OUTLINE OF THE THESIS
The manuscript is organised as follows.

In chapter 1, we describe the subject of study and the physics involved in speech
production. Then, we give an overview of the literature, describe our approach based
on fluid mechanics and thermodynamics, and list our hypotheses with the associated
starting physical equations.

In chapter 2, we introduce the port-Hamiltonian framework for the finite-dimensional
and infinite-dimensional cases. We adopt a component-driven approach where pas-
sive physical systems are described as the interconnection of energy-storing dynam-
ical components, passive (conservative or dissipative) memoryless components, and
external ports that enable the system to interact with its environment. In a final
section, we remind the reader of an existing port-Hamiltonian-compatible numeri-
cal method, then improve it. To shift from a multiphysical description of the vocal
tract to a (nonlinear) acoustical one, we introduce a method that formulates a port-
Hamiltonian system as fluctuations around a state at rest.



In chapter 3, we propose a new passive model of the vocal tract. To account for
the energetic contribution of the moving walls, driven by the articulators, we adopt
a two-dimensional fluid mechanical setting. To produce a simple model, we consider
the class of lumped-parameter models, a popular approach for the physical modelling
of the vocal tract. In this approach, the vocal tract is modelled as an interconnected
network of elementary tracts of simple geometry. In chapter 4, we perform numerical
experiments to examine the capacities and limitations of the proposed model and
numerical method.

In chapter 5, we use the same hypotheses and modelling methodology as for the
vocal tract to propose a new model of a three-port junction that is compatible with
fluid mechanics and acoustics. This model can be used to describe branchings in the
vocal apparatus (e.g. the nasal branching), but also to describe branchings in wind
musical instruments (e.g. branched resonator, lateral holes).

Finally, in chapter 6, we introduce a new tool for the modelling of infinite-dimensional
fluid-structure interactions problems. Based on the work of Diagne and Maschke
[DM13], we propose a distribution-based formulation of the indicator function (also
called color function). We then include the color functions in an infinite-dimensional
port-Hamiltonian system to account for time-varying domains.






Part I

MODELLING APPROACH AND TOOLS






DESCRIPTION AND PHYSICAL MODELLING OF THE
VOCAL APPARATUS

In this chapter, we describe the research subject and define the scope of this thesis.
In section 1.1, we describe the vocal apparatus and some of the fluid mechanical
phenomena involved in the production of speech. Then, in section 1.2, we propose
an overview of the state of the art in the physical modelling of the vocal apparatus.
Finally, in section 1.3, we determine the scope of this thesis and list our hypotheses
and associated equations.

1.1 THE VOCAL APPARATUS

The term wvocal apparatus denotes the organs involved in the production of vocal
sounds. It is usually separated into three groups, indicated with solid colors on Fig. 1.

Velum Oral cavity

Pharynx

Epiglotis

Figure 1: Front cut of the vocal apparatus. In red, the respiratory group. In blue, the phona-
tory group. In orange, the articulatory group. From the illustrations of Anatomie
pour la voiz by Blandine CALAIS-GERMAIN (©) 2013 - ADVERBUM for the
editor DESIRIS, GAP - FRANCE.

The respiratory group is mainly comprised of the lungs, the diaphragm, and the
trachea. It is the main pressure source of the vocal apparatus. During the inhaling
phase, the diaphragm contracts, expanding the lungs and letting air in. During the




exhaling phase, the diaphragm relaxes, thus compressing the lungs and ejecting air

through the trachea towards the larynx.
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Figure 2: Front cut of the larynx, from the illustrations of Respiration by Blandine CALAIS-
GERMAIN (©) 2005 - ADVERBUM for the editor DESIRIS, GAP - FRANCE.

The phonatory group is mainly composed of the larynx (see Fig. 2), an organ

made of cartilages held together and controlled by muscles. The vocal ligament and
the thyroarytenoid muscle, covered by the lamina propria and the epithelium, form
the vocal folds, the tension and adduction of which are controlled by a set of muscles
(not detailed here). The constriction formed by the two vocal folds, opposing them-
selves to the airflow coming from the lungs, is called the glottis. The term phonation
refers to the emergence of periodic oscillations of the vocal folds interacting with the
glottal flow. This phenomena produces sound waves that propagates along the vocal
tract.

The articulatory group is comprised of the upper airways (e.g. the pharynx, the

oral and nasal cavities), also called the vocal tract, and the articulators (e.g. the
tong, the mandible, the lips, the velum). It is delimited upstream by the larynx, and
downstream by the lips and nose. The geometry of the air cavities vary with time
under the action of the articulators. The interaction between the air cavities and the
airflow, and the walls of the vocal tract can result in the creation of a sound source,
a phenomena at the heart of the production of consonants.

THE PRODUCTION OF CONSONANTS — Consonants are produced by the nar-
rowing (constriction) or the complete closure of the vocal tract. The location of the
constriction is called the place of articulation. A consonant is said to be wvoiced if

phonation occurs during its production. The opposite case is said to be voiceless.
Consonants are classified by voicing, place of articulation and type of constriction
(completely or partially closed). For instance, the [s] consonant, an alveolar fricative,
is produced by forcing air through a narrow opening between the upper and lower
teeth, which creates a noise source. During this process, the vocal folds are held



apart and do not vibrate, making the /s/ a woiceless consonant. [b] is a bilabial
voiced stop consonant, where the lips close completely and the vocal folds vibrate.

Remark 1 (Pinktrombone: an online articulated vocal tract): Pinktrombone
is an online interactive vocal synthesizer where the user can modify the shape
of the wvocal tract by moving the articulators themselves (e.g. tongue, velum,
lips). It was created by Neil Thapen and is available at https: //dood. al/
pinktrombone/ .

THE FLUID MECHANICS BEHIND SPEECH PRODUCTION — The phenomena
at the heart of speech production are well described within the scope of compressible
(and incompressible) fluid mechanics and fluid-structure interactions. In the larynx,
the sustained oscillations of the vocal folds create sound waves that propagate along
the vocal tract. This auto-oscillating phenomena is the consequence of the coupling
between the glottal jet (fluid) and the vocal folds (structure).

In the case of vowels, the vocal tract mostly acts as a resonator, where the acoustic
waves, coming from the larynx, are modified as they propagate through the irregular
geometry of the upper airways.

For partially closed consonants, the constrictions in the vocal tract may generate
aeroacoustical sources. The airflow coming from the lungs separates from the walls
of the vocal tract, thus creating a jet. Downstream of the constriction, the jet pro-
gressively becomes unstable until it becomes fully turbulent [Ste71], dissipating most
of its energy into heat (viscosity effects) and a small fraction of it into sound waves,
that propagate along the vocal tract.

For stop consonants, the complete closure of the vocal tract (e.g. at the lips, the
back of the tongue) obstructs the main airflow. Upstream of the constriction, the
pressure builds up until the air pressure and the force applied by the articulators
balance one another. At the sudden opening of the constriction, a resulting pressure
wave propagates along the vocal tract.

During trills (like the [r] consonant), the tongue (structure) and the main airflow
(fluid) interact to generate low frequency periodic oscillations.

This brief overview of the fluid mechanical phenomena involved in the produc-
tion of speech shows how fluid-structure interactions are a key element of speech
production.

1.2 A SHORT LITERATURE OVERVIEW IN THE PHYSICAL MODELLING OF
THE VOCAL APPARATUS

Measuring the acoustical, fluid mechanical or biomechanical behaviour of vocal ap-
paratus requires invasive captors and costly medical imaging equipement. Therefore,
scientists have relied on physical models to better understand how the voice works.

The existing physical models are devoted to the study of each group of the vocal
apparatus. Here, we focus on the phonatory and articulating groups. For both of
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them, we find low-dimensional models, using simplified geometries and physics to
produce lightweight models, and high-dimensional models, in which the equations
of physics are solved on a dense mesh to accurately reproduce the complex shape
of the airways. The former models are mostly dedicated to the (real-time) synthesis
of speech, as they are relatively easy to compute. The latter are favored for their
realism, which comes at the cost of heavy computations.

1.2.1 Physical Modelling of the Phonatory Group

The phonatory group is classically modelled as an incompressible jet (the glottal
jet) interacting with a deformable structure (the vocal folds). Finite-element-based
models are mostly used to account for the complex geometry and biomechanical be-
haviour of the vocal folds. Ref. [Ali+11] proposes an extensive review of this type of
models. In Ref. [de 03], the use of a three-dimensional setting enables the authors
to account for a complex geometry. Considering a two-dimensional setting makes
it possible to reduce the amount of computations needed [Bal+18]. To further re-
duce the dimensionality, some simple two-mass models of the vocal folds can be
used, which enables a focus on the computations of the dynamics of the fluid [SH21].
High-dimensional approaches allows for the study of energy transfers between the
vocal folds and the flow, crucial to the understanding of the phonation process. For
instance, Thomson, Mongeau, and Frankel [TMFO05] showed that the alternating
diverging-converging shape of the glottis is a key element of the self-oscillating pro-
cess.

Low-dimensional models reduce to a minimum the number of unknown variables
only to capture the most important features. For instance, Ishizaka and Flanagan
[[F'72] synthesised voiced sounds with a model of the larynx containing only two
mass-spring-damper systems, and Titze [Tit73] built a model of the larynx coupling
16 masses. Whereas these models only account for transverse movements (perpendic-
ular to the main flow), Adachi and Yu [AY05] developed a model accounting for an
axial movement. These simple models are still being improved today, like the model
of Elie and Laprie [EL16] which includes the presence of a glottal chink (asymetrical
closure of the vocal folds).

1.2.2  Physical Modelling of the Vocal Tract

In the same fashion as for the phonatory group, two different trends can be iden-
tified. Seeking a high degree of realism, high-dimensional models rely on finite ele-
ment methods (FEMs) to accurately reproduce the acoustical characteristics of the
vocal tract, caused by its geometric intricacies. Applying finite-difference time do-
main to the vocal tract [TMKI10] is fairly uncommon. The geometrical data are
acquired by the means of resonant magnetic imaging [TMK10; Bad+02; Han+07;
Arn+19] that allows, using image processing, for the measurement of the complex
three-dimensional shape of the vocal tract, including the side cavities (e.g. the piri-
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form fossae [Tak+13]) and nasal cavities. The precision of high-dimensional models
allow for the extensive study of acoustical properties for the vocal tract [Han-+07;
VHSO08].

These models may become very costly to compute. To reduce the dimensionality
of the models, Arnela and Guasch [AG14] assumed that the cross sections of the
vocal tract are of elliptical shape, which enabled them to consider a two-dimensional
setting. Neglecting the bend of the vocal tract has a minor impact on the acoustical
resonances (about 5%), as shown by Sondhi [Son86], which allows for further simpli-
fications.

Low-dimensional models rely on stronger geometrical simplifications to produce
simple models compatible with real-time synthesis. A classical approach [KB09] is
to divide the vocal tract into smaller cylindrical cavities (in which plane waves
are assumed to propagate), as depicted on Fig. 3, called tracts. The resulting one-
dimensional models can realistically reproduce the acoustical behaviour of the vocal
tract up to 3 kHz [VHS08]. Two main approaches are distinguishable.

afidc™aa

Figure 3: A vocal tract approximated by concatenated cylinders. In transmission-reflection
models, the pressure field in each tract is decomposed in forward and backward
travelling plane waves. In lumped-parameter models, the physical variables in each
tract are considered to be homogeneous (piecewise constant discretisation).

The transmission-reflection models [KL62; Lil85; Str00] decompose the acoustic
field within a tract as a superposition of forward and backward traveling waves. At
each tract-tract interface, an incident wave is scattered in a reflected and transmitted
wave, the magnitude of which is determined by the physical parameters and geometry
of the junction. These models have been extended to account for conical tracts by
Viliméki and Karjalainen [VK94] and flared tracts by Mignot, Hélie, and Matignon
[MHMT11]. Mullen, Howard, and Murphy [MHMO6] pushed this approach to its limit,
by drastically increasing the number of tracts and considering the two-dimensional
propagation of acoustic waves. These models are inexpensive to compute, which
explaining their popularity in the musical acoustic domain. However, as pointed out
by Kroger and Birkholz [KB09], these models cannot handle the lengthening of the
tracts that occurs in simple coarticulations (e.g. [a]-to-[i], [a]-to-[u]), a major obstacle
for their use for voice synthesis.

The lumped-parameter models [Tit73; FIS75; Mae82; ST95; Sto95] rely on the
same geometric assumptions, but consider that the physical quantities in a tract
are homogeneous. It is then possible to build a low-dimensional physical model, the
dynamics of which is described by a set of ordinary differential equations (ODEs).
To obtain numerical simulations, the equations have to be approximated by a time-
discretising scheme. Maeda [Mae82] proposed such a model paired with a real-time
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implementation. This model was continuously improved, like in 2008 by Mokhtari,
Takemoto, and Kitamura [MTKO08], and in 2016 by Elie and Laprie [EL16]. The pop-
ularity of these models is due to their modularity and scalability which allows for the
addition of: source-noise models [BJK06] based on signal processing research [NA0O];
turbulence loss models [BJKO07]; tongue models [EL17]. Paired with an adequate ar-
ticulatory model, they allow for the realistic synthesis of humain voice.

All the aformentioned models of the vocal tract rely on acoustical descriptions,
therefore neglecting the energy contribution of the moving wall. Therefore, the
power balance of these models are only satisfied for statical configurations, when

the vocal tract is motionless (e.g. sustained vowels). This inspired some research
around the power-balanced modelling of the larynx [HS17; Mor+18], or the use of
a fluid-structure interaction (FSI) framework to account for the movement of the
walls [Gua+16]. However, theses approaches remain quite rare.

1.3 A FLUID MECHANICAL, POWER-BALANCED AND LOW-DIMENSIONAL
PHYSICAL MODELLING APPROACH

In this thesis, we are interested in establishing new FSI lumped-parameter passive
models of the vocal apparatus. We rely on a compressible fluid mechanical description
so as to account for acoustical and fluid mechanical phenomena.

1.3.1  Scope of This Thesis

We are interested in producing new physical models that:
1. are simple and low-dimensional;

2. account for the energetical contribution of the articulation and side
branching;

3. describe the nonlinear fluid mechanical and acoustical phenomena;
4. are passive in the sense that they verify a physical power balance.

To meet these requirements, we make the following choices. We consider the class
of lumped-parameter models. We focus on the study of the simple fluid mechanical
effects, discarding the phenomena associated with the vorticity of the fluid (turbu-
lences, noise sources). Indeed, vorticity and aeroacoustic sources are very complex
topics that are beyond the scope of this thesis.

Even though we consider a fluid mechanical setting, we will be using descriptions

that embed acoustical phenomena. We consider a two-dimensional spatial domain
to account for the transverse motion of the fluid induced by the side branches and
the movement of the articulators.

Finally, to guarantee the passivity of the models, we will be using the port-
Hamiltonian formalism, a modular and multiphysical modelling framework, that
we introduce in chapter 2.
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1.3.2  Considered Hypotheses and Equations

We now state the hypotheses of compressible fluid mechanics (H1-2) and thermody-
namics (H3-5) used in this thesis.

Regarding the flows and fluids, we assume that:

(H1) the fluid is inviscid (no viscosity);
(H2) the flow is irrotational.

These hypotheses enable us to describe the acoustic and mass convection phenom-
ena, and to neglect the presence of vorticity and turbulences.

Regarding the thermodynamical behaviour, we assume that:

(H3) the fluid (air) fullfils the perfect gas assumption;

(H4) the fluid undergoes an adiabatic and isentropic transformation (reversible
process);

(H5) the heat capacity at constant volume Cy is assumed to be constant w.r.t.
the temperature within the considered range of fluctuations.

Under (H4), the heat sources are neglected. Note that this set of hypotheses does
not assume any linearising assumptions so that it deals with nonlinear physics.

These hypotheses are linked to a set of conservation equations and thermodynam-
ical laws. For a concise review on the mechanics of continua, we refer to the first
chapter of Ref. [Fil4-98].

Consider a fluid contained in a virtual control volume (), equipped with a po-
sition vector r = (z,y,2)" € Q. Given our hypotheses and assuming a Eulerian
representation, a fluid is described by:

its velocity field v(r,t);

its volumetric mass density p(r,t), also called mass density;

its static pressure p(r,t);

its specific internal energy ¢, expressed as per unit of mass;

its temperature T';

its initial state characterised by the set of constant physical quantities
{po, To, Po}, where py and Py are the rest value of the mass density and

VVyVYyYVYYVYY

pressure of the atmosphere.

For concision, the space-time dependence of these physical variables is omitted in
the rest of the thesis, except when required to avoid ambiguity.

The dynamics of the mass density (without internal sources) is given by the con-
servation of mass equation [Lea07]

% = — div(pv).
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Under (H1-3), the dynamics of the velocity field is given by the conservation of
momentum equation

65% + div(pv®v) + grad(p) = 0.

The time variation of the energy of the system is given by the conservation of
energy equation

0 1 .
P <e 5V V) = — div(pv),

where € is described by the following laws and relations:

(Joule’s law) de = Cy dT, (H3,5)
(perfect gas law, specific form) T = p/pro, (H3)
(adiabatic law) p= Py (plpo)”, (H4)

where Cy is the heat capacity at constant volume, rq is the specific universal gas
constant, v = Cp/Cy, is the heat capacity ratio (= 1.4 for an ideal gas) with C), the
heat capacity at constant pressure, and pg is the volumetric density at rest.

Finally, under (H3-5), the pressure is linked to the specific internal energy by the
following relation [vMO02]

0e(p)
_ 2

SUMMARY AND PERSPECTIVES

In this chapter, we briefly described the research subject and the physical phenomena
involved in the production of speech. After proposing an overview of the state of the
art, we stated our approach and the fluid mechanical phenomena we are tackling in
this thesis. We ended the chapter by giving a compatible set of hypotheses and their
associated equations and laws.
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PORT-HAMILTONIAN SYSTEMS

The port-Hamiltonian (pH) framework extends the classical Hamiltonian mechanics
to include dissipation phenomena and external interactions. Introduced by Maschke
and van der Schaft [Mv92], port-Hamiltonian sytems (pHs) model physical systems
using energy as a common denominator, which makes them particularily suited for
multi-physical problems.

The pH formalism relies on a systematic geometric structure that guarantees the
passivity of the model. This way of writing dynamical systems also brings physical
insights, allows for comparisons between models, and physical analogies. The growing
interest towards the pH formalism is due to its energetic guarantees, modularity and
relevance in physical modelling and control problems.

This formalism is used in electrical engineering [MSMO04; MH19; Fall6; Naj+18],
fluid mechanics [Car16; Lop16], solid mechanics [Bru+19], thermodynamics [Sch-+20]
acoustics [HR16; Trel7] and chemistry [RMS13]. Applications range from the mod-
elling of old and decaying electroacoustic instruments [Naj+18] and district heating
networks [Hau+19] to the modeling and control of plasma fluxes in fusion-based nu-
clear reactors [VLM12]. For an extensive overview on pH-based modelling, we refer
to Ref. [Ras+20].

In section 2.1, we remind the reader of the pH formalism in the finite dimen-
sional setting. In section 2.2, we introduce the infinite-dimensional pH formalism for
distributed parameter systems. Finally in section 2.3, we consider the time discreti-
sation aspects. We remind the reader of a pH compatible numerical scheme, improve
it, and then introduce a new method to formulate shifted pHs.
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2.1 FINITE-DIMENSIONAL PORT-HAMILTONIAN SYSTEMS

For the need of this thesis, we only introduce pHs as a modelling tool. For an extensive
take on the subject, we refer to Refs. [Sch06; vJ14].

We consider a component-based approach where a physical system is seen as

a collection of basic components interconnected by a conservative interconnection,

analogous to an electrical circuit made of discrete components (resistors, capacitors,
inductors) connected by a printed circuit board (PCB).

2.1.1  Component-Based Modelling

The energy variation of an open physical system satisfies the power balance

dE
E + Pdis.s' + P(i.’L‘t =0 (21)

where
e F is the energy stored by the system;
e .. =0 is the dissipated power;
e P.,; is the power given by the system to the exterior (receiver convention).

Physical systems verifying this equality are called passive [Sch16, Ch. 4]. Each
phenomenon (energy storing, dissipation and sources) is described by its own class

of component.

ENERCGY STORING DYNAMICAL COMPONENTS — They are described by n,
energy variables x,, gathered in the energy variable vector x = [z1, z2, ..., |7

(also called the state vector). The energy stored by the system is given by the Hamil-
tonian H(x) , a storage function bounded from below [vJ14]. Under these definitions
and the chain rule, the first term of Eq. (2.1) now reads

dE  dH(x) ;dx
@ ar - e et

where we introduce the efforts e = ViH(x) and flows f = CC%‘ of the pHs.

MEMORYLESS ALGEBRAIC COMPONENTS — They describe instantaneous trans-
fers of power. The vector of n,, memoryless variables w = [wq, ..., wy,, |7 is paired
with a vector of algebraic laws z(w) = [z1(w), ..., zn, (W)]T so the dissipated power
Pyiss reads

T =0 for conservative memoryless components,
])dvfss = Z(W> w

> (0 for dissipative memoryless components.

Note that this structure allows for the modelling of irreversible processes resulting
in heat transfers [Naj+21].
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Some algebraic laws of variables W (extracted from w) and laws z(w) (extracted
from z(w)) can be written as a matrix times vector operation such as z(w) =
W (x)W where: W(x) = —W (x)T in the case of conservative algebraic components
(transformers, gyrators), or where W (x) is non-negative for linear dissipations (linear
resistor, dashpot).

EXTERNAL PORTS — At last, the system may interact with its environnement
through n, external ports (that can be control ports). The power P.,; given by the
system and received by the exterior to the system (receiver convention) is the product
of the input vector u = [uy, ..., u, |7 and oulput vector y = [y1, ..., yn,]T, that is

P =y'u. (2.2)

Under the above definitions, the full power balance (2.1) reads

dFE dx
Fr Piiss + Pext =0 = | VxH(x)T T z(w)Tw+yTu=0|.
INTERCONNECTING COMPONENTS — Components are connected through a

conservative interconnection, called a Dirac structure®, that guarantees the passiv-

ity of the system. In this thesis, we consider the class of pHs that can be writ-
ten in the following differential-algebraic representation where a skew-symmetric
matrix 5(x) = —S5(x)7 links the flow vector F = [fT,wT,yT|T and effort vector
E = [eT,z(w)T,uT|T such as

f e
w [ =5(x) | z(w) (2.3)
y u
F E

where S is a square matrix of size dim E = dim F. Each non-null (pair of) entry of
S defines a routing of power between two components.

Here, the skew-symmetric property of S ensures the power-balance as 0 = ETS(x)E 23)
ETF. The passivity is guaranteed by the power-balance, by the lower bound on H(x),
and by Py = 0.

The interconnection matrix is divided according to the dimensions of the storage,
algebraic and external port components vectors such as

Joz Gy G,

S=|-GI Juuw Gup (2.4)
-G) -GJ, Jp

The interconnection matrix is said to be canonical if its entries are independent
of the energy variables x and the physical parameters of the pHs. In this thesis,

1 Please refer to section 2.2 in Ref. [vJ14] for further details on Dirac structures in pHs.
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the power exchanges between the components are then encoded by +1 (elementary

connection). For the general case, please refer to Ref. [SM13].

Remark 2 (Classical Differential Form of PHS and Integrability Condition):
When the algebraic part of Eq. (2.3) can be solved with respect to w, the system®
can be written as an input-state-output pHs [Mv92]

& = (J(x) — R(x)) VxH(x) + Gpu (2.5)

-y =Gy(x)Te + Jpp(x)u

where matrices J = =37 and R = RT > 0 are computed from matriz S and
laws z(w). This differential form is associated to a geometric Dirac struc-
ture if J (with its depedency w.r.t. x) satisfies an integrability condition (not
detailed here, see Ref. [vJ14, p. 48]). Otherwise, the system is called a pseudo-
Hamiltonian system [Mor20; vJ1}]. The integrability condition on J involves
the matrices Jpz, Juww, and Gy (see Eq. (2.4)) and the conservative part of
the memoryless laws z(w) in Eq. (2.3).

The output § = —y is used here to obtain a generator convention: $Tu is the power supplied

to the system.

EXAMPLE: THE MASS SPRING DASHPOT
SYSTEM — Consider the linear mass-spring-
dashpot system depicted on Fig. 4, where a mass,
a spring and a damper are rigidly connected. The
linear spring, of stiffness k, is described by its
elongation x; and its stored energy %kx% The
mass m; is described by its velocity v; and ki-
netic energy %mv% The dashpot, of elongation
rate vy (velocity), is connected to the mass and
produces a reaction force equal to av. At the
action point (denoted in red on the figure), the
mass is submitted to the external force Foyy, the

 L'ext
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Figure 4: A linear = mass-spring-
damper (MKA) system.

power-conjugated output of which is the velocity vext of the action point. The rigid
connection is expressed as Ty = Vg = Uext = v1 Where Iy is the elongation rate of
the spring, defined as the difference of velocity between both its extremities. As the
point of action is attached to the mass, the external velocity and the one of the mass

are equal. As the damper and spring are attached to the mass on one side, and to a

rigid frame on the other, their elongation rate are equal to the velocity of the mass.

We now give the port-Hamiltonian (pH) formulation of this simple dynamical

system. First, we model the spring, mass, damper and action points as individual

components. Then, we connect them together.
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We define the state vector x = [m1, xx]T where 7 = mjv; is the momentum of
the mass. The Hamiltonian is the sum of both the kinetic and the potential energies
expressed in terms of the energy variables x, such as

1 1
H(x = [m1, z]7) = Tmlﬁf + 21“52
leading to the efforts
6 — va(X) _ 7T1/m1 = V1
kxy = Fj,

where F} is the reaction force of the spring.

The damper is described by the memoryless component of variable w = vy and
linear algebraic law z(w) = aw regenerating the reaction force of the damper Fy. The
interaction at the action point is described as an external port of input u = —Fey
(reaction force received by the exterior) and output vext.

Finally, the algebraic-differential formulation of the system reads

acceleration of the mass 7:(1 0O —1|-1]-1 7r1/m1 velocity of the mass mj
elongation-rate of the spring T k . 1 0 T kk reaction force of the spring
elongation-rate of the dashpot w 1 0 0 0 aw reaction force of the dashpot
velocity of the action point Vext 1 0 —Fext force received by the exterior
(2.6)

where the first row is the sum of forces acting on the mass, and the first column
encodes the rigid connection between the mass, the damper and the spring. The ma-
trix is divided according to Eq. (2.4). Note that with this choice of energy variables,
the interconnection matrix is canonical.

2.1.2  Interconnecting pHs

The class of pH systems are stable by interconnection, meaning that the conservative
interconnection of two pHs remains a pHs (see Ref. [vJ14, Sec. 6.2, p. 72]).
Consider two pHs of energy variables x; and xo with inputs u; and us, outputs

y1 and y2 and the subsets G;_(12) S W;—(19) and §;—(19) S y;—(1,2) that will be
connected together. We set N = dim u; = dim Uz (= dim y, = dim y5).
There are two ways of interconnecting pHs.

In the port-based connection (compatible connection), the input/ouput relations
can be written as a conservative interconnection

a; _ a(x1,%2) 0 Af|%n
U9 ’ —AT 0 y2 ’

where « is a coupling factor, that may be function of the states and physical param-

eters.
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As the interconnection matrix is skew-symmetric, the interconnection is conserva-
tive. The port-based connection can be used only if the external port configuration
of both pHs is of compatible causality, meaning that the output of system 1 can be
directly connected to the input of system 2, and vice versa. For instance, a mass
and a spring are compatible as their causality are complementary (see the above
linear mass-spring-damper example). Using a compatible connection restores a pis,
the formulation of which is given in Eq. (2.3).

In the interconnection by energy [vJ14] (incompatible connection), the causality
of two pHs is identical leading to the following formulation

0=A IYI] where A is of size N x (2N), (2.7)
y2
defining a set of N constraints, as the dynamics of both systems needs to be aug-

mented by a set of Lagrange multipliers A in order for the constraints to be contin-
uously satisfied.

2.1.3 DA-pHs

A differential-algebraic port-Hamiltonian system (DA-pHs) [van13] is a pHs of form (2.3)
augmented by N Lagrange multipliers, gathered in the vector A, and Ny algebraic
constraint equations expressed as a function of the efforts e, such as

£ J Gy Cy G, e
w _ *GIU wa 0 Gwp Z(W) (28)
0 -CJ 0 0 0 A
Y i -G} -G 0 Ipp | v

where C, is the constraint matrix (of size n, x Ny) encoding Eq. (2.7) and 0 are
matrices, of appropriate size, filled with zero entries.

Note that the descriptor-pHs [Bea+17] framework also accounts for constraints
and use of standard DAE theory [KMO07; KMO06] and is close to the Differential-
algebraic port-Hamiltonian (DA-pH) form used in this thesis.

We now use the mass-spring-damper as an example, connecting a second mass

rigidly.
4
22_*'_
2 my H Mo k——
7 Fext
VWV
Ak

Figure 5: A two-mass-spring-damper system where m; and mg are rigidly connected.
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EXAMPLE: THE TWO-MASS SPRING DAMPER SYSTEM — Consider the pH
formulation comprised of the mass-spring-damper, shown on Eq. (2.6), and a sec-
ond mass mg, of velocity vy and kinetic energy %mgvg (see Fig. 5). Both masses
are rigidly connected, so that v; = wvs. The state vector and Hamiltonian read
H(x = [m1, m2, 2x]T) = 7i/2m1 + 73/2mo + 12kx3, leading to the the effort vector
e = [Ul, V2, Fk]T.

The DA-pHs formulation reads

m [ -1 -1 =1 | T /mi = v
T 1 —1 9 / mo = Vg
T, 1 rpk = Fy,
w a 1 aw = Fy
rigid connection 0 1 =1l A constraint force
Vext | 1 i Fext

where —C; = [1, —1, 0] encodes the constraints e, —ex, = v; —v2 = 0 and where
the dynamics of both m; and ms are altered by the Lagrange multipliers. When the
system is linear, it is usual to compute an equivalent mass in order to eliminate the
constraint and get a classical unconstrained pHs.

To do so, one can use the equivalent component method [Naj+18] or, in case
of multiple constraints, its generalisation that projects the constrained pHs in a
constrained subspace [Mv92; van13; Wu+14; Carl6]. In the nonlinear case, it casts
a fully implicit constrained pHs into a semi-explicit pHs. The latter method is used
in chapter 3.

The pH formalism is a powerful modelling tool that systematically ensures the
passivity of our models. We now introduce the infinite dimensional pHs, an extension
of the pH formalism for distributed parameter system.

2.2 INFINITE-DIMENSIONAL PORT-HAMILTONIAN SYSTEMS

The finite-dimensional pH framework has been extended to the infinite-dimensional
case [vMO02; Vil07; JZ12] to account for physical quantities that depend on space
and time, the dynamics of which is governed by partial differential equation (PDE).
Again, refer to Ref. [vJ14, Ch. 14] for an extensive take on the subject.

In this work, we only consider conservative equations. For the modelling of dis-

sipative phenomena, we refer to [MH13]. For irreversible processes, see Irreversible
port-Hamiltonian systems in Refs. [RMS13; Mor20].

Consider a domain ) with boundary 0() on which we define a state vector
X e L*(Q,R"), which depends on space through the position vector r € Q). The
Hamiltonian function is replaced by a smooth functional on ()

H(X) = L’H(X) av,

where H(X') is an energy density function.
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The Hamiltonian gradient, producing the efforts e, is replaced by the variational
derivative dH(X)/sx of H(X) defined uniquely 2 by

H(X + e5X) = H(X) + ej ‘mé(f)ax dQ+O(é*), VeeR,
Q

with X being a smooth variations of X.

A state X(r,t), with Hamiltonian H(X), has a conservative dynamics governed

by

a&f = j(m(s(/;\)), which also written as f = Je,

where J denotes a skew-adjoint differential operator (called linear Hamiltonian op-

erator) that satisfies the Jacobi identity and skew-symmetry property (see defini-
tion 7.1 in [Olv86, p. 435]) and where f = %—f and e = 61;()?().

At the boundary, the system interacts with the exterior through its boundary
variables f; and ey, respectively defined as the trace of ;X and dxH on 0Q). For
a well-posedness definition regarding the input/output configuration, we refer to
Refs. [LZMO5; JZ12]. The power balance states that the variation of stored energy
equals the power exchanged at the boundary

dH(X)
— =fle,.
dt 950
EXAMPLE: THE WEBSTER HORN EQUATION — As an example, we take the
case of the Webster horn equation, adapted from Ref. [MH13] to obtain a canonical
formulation3.
S(z,t)

Figure 6: A one-dimensional acoustical pipe with rigid and motionless walls.

We consider the case of an axisymmetric acoustic pipe of length L, the cross
section S(x) of which depends on the spatial coordinate x, as depicted on Fig. 6.
The spatial domain is Q) = [0, L]. We assume that the fluid obeys the hypothesis of
linear acoustics, the dynamics of which is governed by the linearised conservation
equations of mass and momentum

o 1 .
E —— grad(p) and — = —7 le(S(J})p()V),

2 See Ref. [vJ14, p. 167] for more details.
3 I would like to thank Denis Matignon for the fruitful exchanges on this example.
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where v = v(x,t) is the acoustic velocity, p = p(x,t) and p = p(x,t) are the acoustic
mass density, pg and Py are the rest state mass density and pressure, and where
div(-) and grad(-) simplify to ‘;—:;: in this one-dimensional case.

The energy E stored by the fluid is

E= L (;pov S0+ pe(ﬂ)) S(x) dz

where €(p) is the specific internal energy of the fluid. The pressure p is defined by
p=—p? 6;(5) ~ c2p with cg = \/7P0/py being the speed of sound for a perfect fluid
for an isentropic process.

We now give the pi formulation. Choosing the linear mass density pu = u(x,t) =
pS(z) and the mean axial velocity of the fluid v as energy variables yields the fol-
lowing Hamiltonian

A ) - [ (G500 + )

leading to the effort variables

oH ( poS(x)v ) B (ev> acoustic momentum linear density
sxX a ’

YPoR/S () p? ey acoustic enthalpy

and canonical pH formulation

Q 0 — grad( - )] (ev>
ot | — 2.9
(‘?f;) [— div( - ) 0 ew 29

L
J

where — div(-) and — grad(-) are formally skew-adjoint according to Ref. [ZK14].
The first line describes the conservation (specific [Dui+09, Sec. 3.4]) momentum,
and the second line describes the conservation of mass.

Finally, the power balance reads

dH(X) :J SH(X)Tox

de a 60X ot

2 ) () e [

= ¢,(0,1)e,(0,t) — ey (L, t)ey,(L,t) = fles

(2.9)

dz "= JeTjedx
Q

where we choose f5 = [—e,(0,1), e,(L,t)]T and e5 = [e,(0,1), e,(L,t)]T as boundary
variables.

Such a system can be spatially discretised using a pH compliant discretisation
scheme, like the recent partitioned finite element method (PFEM) introduced by
Cardoso Ribeiro, Matignon, and Lefevre [CML19], in order to obtain a finite dimen-
sional pHs. To perform numerical simulations of a finite dimensional pis, the set
of ODE then needs to be approximated in the discrete-time domain by numerical
scheme.
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2.3 NUMERICAL METHOD AND CONDITIONING
2.3.1 The Discrete Gradient: A Passive Numerical Method for pHs

To preserve the passivity, ensured by the pI framework, in the discrete-time domain,
we use a tailored numerical method that preserves the passivity of the simulations.
While the main concern of classical time integrators is the time derivative opera-
tor, the discrete gradient (DG) method [IA88; Lopl6] jointly approximates the time
derivative of the state vector and the gradient of the Hamiltonian w.r.t. x. The

vector of energy variable is approximated by

dx _ ox(k)

dt ~— ot

with 0x(k) = x(k+1) —x(k) (2.10)

where 0t is the time step, the index k£ denotes the current sample.
When the Hamiltonian is separable, that is, a sum of mono-variate energy func-
tions (H(x) = X%, hn(xy)), the n-th component of the effort vector is given by

[VXH(X)]n ~ [viH(X, 5X):| = 0y, 1 Tn # )
" R () otherwise,

where V7§1(H is a discrete gradient*. For a non-separable Hamiltonian, we refer to
Ref. [Fall6] or Ref. [HLWO06, Eq. 5.13].

Both objects appear when discretising the power balance, so that

dE dx = ox (k)
= _ T ~ Ve T )
; VxH(x) ; VIH(x(k), 0x(k)) 5

The discrete pHs reads

ox(k) F, VIaH(x(k), ox(k))
w(k) | =S(x(k),ox(k)) z(w(k)) (2.11)
y (k) u(k)

where F, = 6t~! is the sampling frequency.

For linear pHs, equipped with a quadratic Hamiltonian, the system is explicit. The
Hamiltonian is then of form H(x) = (1/2)xTQx and the efforts are e = VxH(x) = Qx.
The corresponding discrete gradient simply reads @H(xk, 0xi) = Q (xk + 9%x/2).

In the nonlinear case, the value of §x, is found by solving the implicit problem with
an iterative solver, such as the Newton-Raphson method [BV04, Sec. 9.5]. However,
the class of quadratic pHs can be manipulated, using a quadratisation method [Lop16,
Sec. 3.3.1, p. 107], to render the problem explicit.

For numerical purposes, the condition dzy, # 0 can be replaced by |0xn| = € where € is the numer-
ical precision of the chosen floating point representation. A possible refinement is proposed in this
chapter.
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Forma [Forl7] showed, through a series of numerical experiments on a simple
model of the larynx [HS17; HSW19], the advantages of a passive numerical method
over classical Runge-Kutta methods (e.g. ode23s, ode15s and ode23tb implemented
in Matlab).

The DG method is implemented in PyPHS, an open-source Python library that we
introduce hereafter.

2.3.2 PyPHS: An Open Source Library for Assembling and Simulating pHs

PyPHS [Fal] is an open-source Python library dedicated to the manipulation and
simulation of pHs. It is build and maintained by Antoine Falaize [Fall6]’.

A pHs is implemented by defining the energy variables and the Hamiltonian as sym-
bolic variables. Then, the user specifies the interconnection matrices, the physical
and numerical parameters from which PyPHS generates a C++ or Python implemen-
tation of the simulation code.

On Fig. 7, we present some numerical results for simple experiment with the MKA
example. The full code is listed in App. A.1.

Time evolution

L 0.1
0 251 Tk
lm /\ Py
g 001 /‘ /\/\/\/\/\/\/\/\N oo =
oD \ \' \/\ A <
D
S— _25 m
S —_—lTr
T T T T T T I _().1
— 0.0 0.2 04Time (3)06 0.8 1.0
\Z_/ 100 4 i ________________ _!
8 I I T Femt
é () - | NI IO R~ I ..................
Phase space Power-balance
r 200 g
l\/\/\l 0 =
—— P+ Pyss L 200 %
T T lent A
| | ] | | . . ] ] = —400
—4 -2 0 2 4 000 025 050 075  1.00

7 (kgms™t) Time (s)

Figure 7: Simple simulation of a MKA system performed with the PyPHS library. Here: m =
0.5 kg, k = 4441 N-m~"! so that f = 15 Hz; a = 5 kg -s~!. On the top, the time
evolution of the energy variables. In the middle the time evolution of the input
Fext- On the bottom left, the phase space, and on the bottom right the power
balance.

5 Available at https://github.com/pyphs/pyphs.
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The power balance is verified as the power supplied to the system equals the sum
of the time variation of stored energy and dissipated power (see the bottom right
plot on Fig. 7).

However, the discrete gradient may be prone to cancelation errors. We demonstrate
this phenomenon with a simple nonlinear Hamiltonian and show how to improve the
numerical conditioning of the method.

2.3.3 Improved Discrete Gradient

Cancelation errors may arise at a given current state x; around which the increments
0xy, are small. In this situation, both the substraction and division operations in the
discrete gradient are very sensible to cancelation errors. We remind the reader of
this discrete operator (for separable Hamiltonian) and highlight both problematic

operations in the following equation
b (zy, + 62p) — hp(xn)
[VAH()L, ~ | VEHx,%)| = Gma

h () otherwise,

if |0zy,| > epa,

where we remind the reader that € is the numerical precision of the chosen floating
point representation.

On Fig. 8, we plot the absolute value of the difference between a given discrete
gradient operator and the value of the continuous gradient at the state xj. When
dx1, < €pa, both the numerator and the ([dénominator go to zero, leading to round
off errors in the substracting and dividing operator resulting in an increasingly large
error as 6x; — 0 (see the blue curve for 6x < /e on Fig. 8a). The desired behaviour
is for the discrete gradient to keep converging to zero as dx; — 0.

To fix this numerical problem, we adapt epc, enabling the discrete gradient to
switch from the finite difference approximation to the alternate expression before the
cancellation errors start increasing. In the case of Fig. 8, setting® epg = /€ enables
the switch to the other approximation to happen sooner, leading to a monotonic
variation of the cancellation errors (see the orange curve on Fig. 8a).

However, the discontinuity that was present for dx; = € now is placed at 0xy = /e,
which can be a problem if a dynamical system exhibits small variations of §x;, of the
same magnitude as epg. This behaviour can be misleading for numerical iterative
solvers, as this discontinuity may be often triggered.

To solve this undesired behaviour, we extend the Taylor developpement of the
continuous approximation, allowing for a smoother transition and a better approx-
imation of the gradient of the Hamiltonian (dotted green curve on Fig. 8b). The
improved discrete gradient (IDC) then reads

[ViH(x)], ~ [ng(x,ax)] _ o
! h;z(ﬂfn)Jth(fUn)csxn otherwise.

if [0xn| > epa,

Where the numerical precision € is e.g. € ~ 2- 10716 for double floats.
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Note that for non-separable Hamiltonians, a similar modification of the discrete
gradient can be proposed in Ref. [Fall6; HLWO06] by using the Hessian of H in place
of h! (diagonal case).

. Discrete gradient, Eq. (1.11)

_____________________ JFa (1.11) and Eq. (1.12) with epg = /€
. 1Cancelation errors; G = Ve DG, Eq. (L.11)
\\ == fpa=¢€ /, -== IDG, Eq. (1.12)
v /|
o ;
. \\ pel.| ,/ 1074 ! //
o \\ LVE // 3—_\__/.:%3 ,,/
= \ / = i /
*ES: 10~ A / %2 /’
NS \ / B 10 /
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% \ / M) /
> \ > /
\ / /
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= 10774 e N —~ 107 i../
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e e /
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(a) Impact of the value of epg on the DG. (b) IDG versus the classical DG method.

Figure 8: Numerical results for different version of the DG method. Here the Hamiltonian is
ksinh(z) with k& = 1.

Remark 3 (Adimensionned models): In the case of an adimensioned nonlinear
pHs (see App. A.2), epg should be mutipled by the inverse of the scaling factor.

2.3.4  Shifting pHs Around a State at Rest

The state at rest x* of a closed dynamical system ‘é—f = f(x(t)) verifies
dx*
=0 = * 2.12
X 0= ) (2.12)

stating that the state x* is stationnary. In this case, defining a shifted system which
dynamics is defined as fluctuations around x* can be beneficial from a physical
and numerical standpoint. This is the case for acoustical systems, exhibiting small
fluctuations of pressure around the atmospheric pressure, or some electrical systems,
like operational amplifiers that are supplied with a constant voltage source.

We now show how to establish a shifted finite dimensional pHs.
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Consider a pHs of state variables x, Hamiltonian H(x) and effort vector e(x) =
VxH(x) of form

f e

(original pHs) w |[=5]z(w) (2.13)
y u
F E

where the interconnection matrix S is constant.

We submit the system to a set of static inputs u = u* under which we assume the
existence of a state at rest x* such that x* = 0. The corresponding pHs at rest reads

0 e

(pHs at rest) w* | =5 | z(w*) (2.14)
y* u*
F* E

with the constant outputs y*, efforts e* = e(x*) and memoryless variables w* asso-
ciated with e*.

We define the shifted pHs by substracting Eq. (2.13) and (2.14) such as

(2.13) — (2.14) <= F-F*=S(E—E")

f & (2.15)
(shifted pHs) w [=5]2z(w)
y u

where we introduced the shifted: algebraic variables W = w — w*; memoryless laws
Z(W) = z(W + w*) —z(w*); outputs § = y —y*; input @ = u— u* and efforts
é = e(x) —e*. Finally, we define the shifted energy variables X = x — x*, with

‘(%‘ = ‘é—’;, and the shifted Hamiltonian

(%) = Hx+x) —[e |- % —[Hpey )| Witk = VaHi),

verifying V(%) = &,

(2.16)

where the [second term/ of the right-hand side is tangent to the Hamiltonian at
x = x* (see dotted red line on Fig. 9) and will serve as the abscissa of the shifted

Hamiltonian (see bottom plot). The [asterm is the energy of the system at rest,
denoted by a red star. The parts of the Hamiltonian that are under the tangent
(colored in yellow) will now be negative values of the shifted Hamiltonian H(x*).

The shifting procedure summarises as follows.
» Step 1: define the set of static inputs u*;

» Step 2: compute the associated state at rest x* that is solution of Eq. (2.14);
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» Step 3: define the shifted quantities in Eq. (2.15);

» Step 4: compute the shifted state vector X, the shifted Hamiltonian and
shifted efforts of Eq. (2.16);

» Step 5: formulate the shifted pHs.

This procedure will be used on a model of the vocal tract (see chapter 3) to
build signals that are fluctuations around a state at rest (as in acoustics) without
neglecting nonlinearities.

Remark 4 (shifted pHs): Only Ref. [Mon+19] proposed a mathematical anal-
ysis of the method, tackling the conditions under which the system remains
passive. To our knowledge, only our work of Refs. [WHS19; WHS20] applied
this procedure to physical systems.

Hamiltonian H(x)

Figure 9: Example of the shift procedure for a one-dimensional Hamiltonian function.

2.4 SUMMARY AND PERSPECTIVES

In this chapter, we introduced the port Hamiltonian framework, a powerful modelling
tool that ensures the power balance through a conservative geometric structure en-
coding the power exchanges between the physical components. In the third section,
we recalled and improved the discrete gradient (DG) numerical method to deal with
cancelation errors that arise in certain situations. Finally, we presented a procedure
to shift a given pHs around its state at rest to improve its physical interpretability
and numerical conditioning.
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The IDG method can be further improved. As of now, the switch between the
finite difference and the alternative approximation of the discrete gradient operator
could be smoothed out by using a linear interpolation between the value of the finite
difference at dx; = epg and the alternate approximation. This could also improve
the convergence of the Newton-Raphson implicit method.

The shifting procedure can be extended for the general case, where the interconnec-
tion matrix is not canonical, and generalised for the infinite dimensional case. This
method can also be useful for the study of bifurcations that occur at a particular
functioning point.
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Part 11

POWER-BALANCED MODELLING OF THE VOCAL
TRACT






POWER-BALANCED LUMPED-PARAMETER MODELLING
OF THE VOCAL TRACT

The vocal tract is comprised of several cavities (see figure 10) surrounded by tissues.
To articulate vowels and consonants, the articulators (the muscles within the face
and tongue) modify the geometry of the cavities (e.g. the oral cavity).

Nasal Cavity

“~-Nose
Oral cavity

::: =-Lips
Pharynx

Tongue

Figure 10: Simplified sagittal cut of the vocal tract with its main cavities (blue: pharynx,
green: nasal cavity, orange: oral cavity); the nasal branching occurs where the
three cavities meet.

Most models describe the vocal tract from an acoustical standpoint, either with
high-dimensional models [VHSO& Kun02] or with simpler approaches, like the lumped-
parameter models [Mae82; ST95] or the digital ladder filters [KL62; VK94]. Re-
cently, high-dimensional models allow for the use of monolithic FSI methods, e.g. in
Refs. [Gua+16; SMM19], but this approach remains rare.

The modularity and scalability of lumped-parameter models have already allowed
for many improvements on the first model of Flanagan [Fla65] such as the addition
of noise sources [BJK06], losses due to turbulences [BJK07], a self-oscillating model
of the tongue [EL16], and lateral channels in the mouth [EL17] (for the synthesis of
liquid consonants, e.g. [¢]).

None of the aforementioned models include guarantees regarding the energetic
consistency of the models or simulations, or investigate the impact of the motion of
the articulators on the flow. Usually, to account for the continuously changing geom-
etry, driven by the articulators, while keeping an acoustical description, a common
simplifying hypothesis is to neglect the energetic impact of the movements of the
tissues (caused by the movement of the articulators) on the fluid, the so-called quasi-
static assumption. Using this hypothesis leads to a paradoxical situation where the
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walls provide energy to the main flow, but the flow is modelled as if the walls were
motionless (breaking the physical power-balance and passivity on the dynamics).

In this chapter, we propose a passive FSI model of the vocal tract that accounts for
the transverse motion of the fluid induced by the displacement of the articulators in
an energetically-consistent way. To do so, we approximate each of the time-varying
waveguides (see solid colors on Fig. 10) by a FSI problem, as the one depicted on
Fig. 11a. To build a simple and lightweight model of this system, we choose a lumped-
parameter approach, in which each cavity is divided into subsystems called “tracts”
(separated by dotted lines on figure 11a).

For each tract, we build a finite dimensional model using a set of geometrical ap-

proximations and physical hypotheses. Finally, we obtain the full vocal tract model
by assembling tracts together (see Fig. 11b). Throughout this approach (modelling
and assembly), the conservation of mass, momentum and energy is guaranteed by
the use of the port-Hamiltonian (pH) framework.

{Solid (muscles, tissues)}

_—
Hypothesis
+
Approximations

(a) Continuous 2D FSI problem and space discretisation into tracts. (b) Macroscopic  component
representation.

Figure 11: Lumped-Parameter approach. At each interface, the connection variables are: the
mass rate ¢ and enthalpy 1 for the open surfaces; velocity v and force F' for the
impervious surface (see Sec. 3.1.1 below).

To connect the tracts, we consider basic junctions relying on the algebraic equa-
tions of mass balance and energy conservation (which together induce the momentum
balance). At a fluid-fluid interface, we consider the mass flow ¢ and its power con-
jugate quantity (the specific total enthalpy, denoted ¢ and defined below) as stated
on Fig. 12. Conversely, for a solid-fluid (or solid-solid) interaction, the connection
variables are the resulting force exerted by the solid on the fluid (or the other solid)
and the normal velocity of the interface.

In this work, we first focus on the modelling of the behaviour of the fluid, then
assemble the full vocal tract. Our modelling approach unfolds in two main steps.

STEP 1: FROM PHYSICS TO THE PHS LUMPED-PARAMETER MODEL OF A
SINGLE TRACT — Assuming a set of geometrical and physical hypotheses, we
build the macroscopic quantities describing the state of a tract. The corresponding
dynamics and inputs-outputs are recast as a pHs, and discussed and interpreted
using an equivalent electrical circuit representation. This first step is described in
section 3.1
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Figure 12: Junction of K tracts interacting through a common interface (K = 2 for e.g.
tracts T1 and T2 on Fig. 11a, K = 3 for e.g. the nasal derivation on Fig. 10).
Note that at the interface, the power balance reads ) ;. gx, = 0; the dual relation
of the mass conservation is the continuity of the specific total enthalpy.

STEP 2: ASSEMBLING THE FULL VOCAL TRACT — The connection of ad-
jacent tracts with identical input-output configurations results in an incompatible
connection setting. Therefore, tracts have to be interconnected through their en-
ergy (see p. 20 in chapter 2). In Sec. 3.2, we solve this problem in a way similar to
Refs. [Mv92; Wu+14; Carl6] by projecting the constrained pHs into a constrained
subspace.

3.1 POWER-BALANCED LUMPED-PARAMETER MODEL OF A SINGLE TRACT

In this section we propose a generic lumped-parameter model of a single tract, with
a focus on the fluid flow.

3.1.1 Hypotheses and Approximations

VW €, F
w Cy W €y
1 U (t) ]
1 1
4L € N N N > y 4R €z
I N N 1
S ' Spty
L.%L B R ¥R
y=20 l !
Tl i iy
0000 0000000000000000000000000000000000000%
0000000 0000000000000050000000000000000%
A ]

T—»ez —E; x=0 E;

Figure 13: 2D cut of a tract; in red, the port variables; the grey arrows denote the main
direction of the flow; St, S are open and motionless surfaces; Sg is impervious
and motionless; Sy is impermeable and move with uniform velocity vyy .

35



—_

GEOMETRY OF A TRACT — Each tract T is approximated by (HO0) the spatial
domain Ot (t) = {(z,y,2) € [—lo, lo] x [0,Rh(t)] x [0, Lo]} depicted on Fig. 13. Its
boundary 0Qr (¢) is split into: the open and motionless surfaces Sy, and Sg! (at x =
—{y and = = £y, respectively); the impervious and uniformly moving top surface Sy
(located at y = h(t), moving with transverse velocity vy ); and the rigid motionless
bottom surface Sp (at y = 0). The volume of the tract V() is given by V(t) =
200 Loh(t).

Remark 5 (bottom surface): For the sake of simplicity, the bottom surface Sp
at y = 0 is assumed to be rigid and motionless. To adapt our work to the case
where Sp is a uniformly moving surface, use the methodology of Ref. [HS17].

PHYSICAL HYPOTHESES — We remind the reader of the physical hypotheses
we consider (see chapter 1):

) the fluid is inviscid (no viscosity);
) the flow is irrotational.
3) the fluid fullfils the perfect gas assumption;

) the fluid undergoes an adiabatic and isentropic transformation (reversible
process);
(H5) the heat capacity at constant volume Cy, is assumed to be constant w.r.t.
the temperature within the considered range of fluctuations;

to which we add the lumped-parameter assumption (H6) and a linearising hypothesis
(H7):

(H6) the volumetric mass density p is homogeneous within Q);
(H7) the fluctuations of the mass density p are small compared to its value at
the state of rest py so that (p—=po)/py >> 1.

The latter only impacts the thermodynamical behaviour of the fluid. (H7) enables
us to consider a quasi-quadratic expression of the thermodynamical energy, better
suited to a numerical context where the acoustical fluctuations of the mass density
p — po are small.

Within Qr (¢), the local dynamics of the flow is governed by the momentum and
mass conservation equations, i.e. :
op . opv .
i div(pv) =0, and STl div(pv®v) + grad(p) =0 (3.1)
where the volumetric mass density p, Eulerian velocity v and pressure? p are physical
fields, function of space and time.

Subscripts L and R stand for the left and right open surfaces, respectively; the W subscript stands
for wall, the top surface.
Also called static pressure or thermodynamic pressure.
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BOUNDARY CONDITIONS — At the moving and impermeable boundary Sy,
the continuity of normal velocity relates the velocity of the fluid to the one of the

boundary v?:

(v-m)|g, =v’-n whichyields Vae[~lo, ], v(z,y=h(t),t)- e, = vw(t),
(3.2)
where n = e, is the unit normal vector of the top surface. The power dual quantity
of the (uniform) normal velocity of the wall vy is the force exerted by the wall
onto the fluid Fyy. The product of both quantities is the power supplied to the flow
through the moving interface FPeyt sy, = Fiwvow.

The interactions at the open and motionless boundaries S; = {S,Sgr} are de-
scribed by the (extensive) mass flow ¢; and its conjugated power variable the (inten-
sive) total specific enthalpy v,

q; = J]pv- e; dS  and @ = ;JJG-I— ;v-v—ki dS Vje{L,R} (3.3)
S, ! S;

where € denotes the specific internal energy, the expression of which is given in the

next section.

The mass flows are oriented according to the following convention: ¢y, is the ingoing
mass rate (in kg-s!); gr is the outgoing mass rate (see the red arrows at the
boundary on Fig. 13). The power flows at Sy, and Si read Pyt s, = —qrir and
Peat,sn = qrYR-

APPROXIMATED VELOCITY FIELD AND LUMPED MASS DENSITY — Here,
we supply approximations for the continuous velocity field v and the volumetric mass
p. We generalise the kinematics proposed in ref [LH15] to account for compressible
phenomena so that, within each tract, we consider that

v(z,y,t) ~ V(z,y,t) = <1> Uma(t)  + (Z/h(t)> vy(t) + (w/z()) ve(t) (3.4)
0 Y/h(t) 0

L
Uniform axial flow incompressible Compressibility

where each term accounts respectively for the uniform axial flow, the incompressible
pumping of the moving wall and the change of velocity due to the compressibility of
the fluid, as illustrated on Fig. 14. The boundary condition at the moving wall (3.2)
now reads vy (t) = vy ().

Regarding the volumetric mass p, we use a (H6) piecewise constant approximation
such as

p(a:,y,t) ~ 1qu(t) ) ﬁ(t), V($7y) € O (t) (35)

Notation 1. For concision, the time dependence of Vmg,vy, Ve, p and V and their
derived quantities is omitted herafter.
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Remark 6 (compression component of the velocity field): Computing the di-
vergence of the volumetric momentum yields
oV

div(po) = 2. (3.6)
Lo

When v. > 0, the tract ejects matter, as the divergence is positive. Conversely,
the tract pumps matter for negative values of v.. Thus, v. is directly related to
the compression state of the fluid contained in the tract.

We now use these hypotheses and approximations to build the macroscopic quan-
tities that describe the model, also called lumped-parameters.

3.1.2  Lumped-Parameter Model

ENERGY OF THE FLOW —  The total energy is the sum of the kinetic energy Eg;;,
and internal energy E.omy. Integrating the kinetic energy density over the domain
with the supplied fields ¥ and p (egs. (3.4) and eq. (3.5)) yields

1 GH1. o 1o 11l 2
Ekin = 2 ' A 9 2\ 7V — Ve . .
i J]J 2pV vy (3.5) 2pV [vmx + 3’Uy + 3 ( h Uy — 0 (3 7)

Or ()

The internal energy Ec.omp, hereafter called “compression energy”, is obtained us-
ing hypotheses (H3-7) and field approximation (3.5) (see App. B.1 for the detailed

computations) so that
v (p—po\’
T(LZPo) _qf, 3.8
2 ( po ) ] 35

where v = Cp/cy, and where P is the pressure of the gas at its rest state (atmospheric

H3-7
Ecomp ( = ) POV

pressure).

DYNAMICS — The tract energy relies on 5 degrees of freedoms (DoFs): vy, v and
vy for the kinematics; p and V for the “compression”. The dynamics of the volume

Uma U Ve
h(t) 1

> ————>—>—>—> “« <« - > >

> —>—>—>—>—>—> —> VAR B SN « <« - > >

Yy > —>—>—>—>—>—>—> AAA AR « <« - > >

> — —> —> —>—> —> —> A A AR « <« - > >

> —>—>—>—>—>—> —> ¥ ¥ ¥ A Y <« <« - > »

0 > —>—>—>—>—>—>—> - vy - ¥ € - <+ < . > >
A 0 6o —lo 0 6o —lo 0 I

T

Figure 14: Velocity field decomposition, from left to right: uniform axial flow; pumping effect
due to the moving wall; compressibility effect. Here, we assume that vy, v, and
v, are positive.
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V is %V(t) = SW%h(t) = Swow. To compute the dynamics of the other DoF, we
consider the weak form of the mass and momentum balances (3.1), i.e., projection
onto a test function ¢(x,y,t) (see App. B.2). First, using ¢ = 1q () on the mass
balance yields

—h=—7-p. (3.9)
We then test the momentum balance against functions 1q, ;) € and y e, so that

dvpme

dt

- % (vr—vr) and - —2 = Fyy + Sw (p) (3.10)
0

where (p) is the volume averaged pressure (see appendix B.3) and Fyy is the force
applied by the wall unto the fluid. These equations simply state that the axial and
transverse accelerations are a consequence of an enthalpy gradient, or a consequence
of the effective wall force, respectively, without contributions related to the change of
mass or geometry that would appear if momentums were considered as DoFs instead
of the velocities (see Ref. [WHS19)).

Finally we consider the test function ¢ = x e,. The resulting dynamics can be
divided into 3 contributions: external compressive efforts (3.11a); the velocity of the
wall modifying the volume, thus compressing the fluid (3.11b); the fluid resisting to
the previous contributions (3.11c). The dynamics of v, is shown as such

gdd? =—S (L +vr) + &’%Fw (3.11a)
+ vy (Swoe/s — vuLotd/n) (3.11b)
—28 B (v2g + v2/3 + v3/3) + (B))p (G/n2 + 1) + E(ﬁ)] (3.11c¢)
where S = hLg.
CAUSALITY OF THE BOUNDARY CONDITIONS — Looking at the equations

of dynamics (3.10) and (3.11) yields the following causality. 1, ¥ r and Fy are the
inputs of the system as they are unknown quantities, appearing as source terms in
the dynamical equations (3.10) and (3.11). It follows that their power dual quantities
qr, qr and vy = vy are the outputs which can be retrieved as

qrL. = IOS [Umz — Ve + Uygo/h] y 4R = ,OS [Umm + Ve — nyo/h] and VW = Uy, (3'12)
using the boundary conditions and proposed field approximations.
3.1.3 Casting the Lumped Model as a pHs
This subsection addresses the macroscopic port Hamiltonian formulation of a tract.

PARAMETRISATION OF THE HAMILTONIAN — To make the interconnection
matrix canonical®, we exhibit extensive energy variables (v, Vg, I1,) ensuring trivial

3 i.e., an interconnection matrix only filled with values 0 and +1.
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relationships between the internal efforts and the physical port variables (qr, ¢r, vw)
of Fig. 11b. The state vector xy (size n, = 5) of a given tract is thus xy =

T
[VL vrp II, m h] with

vr 1= Lo (Vma + vybo/sh —ve/3) , VR 1= Lo (Vma — vyf0/3h + ve/3) (3.13a)
I, := vypV’ m=pyY and h = l, (3.13b)
3 Sw

which can be split into a set of axial kinematic variables v; and vg, a transverse
incompressible component IT,, and a set of compression variables x. = [m, h]T. The
Hamiltonian Hy (xr) is the sum of the kinetic and compression energies expressed
as functions of the energy variables x such as:

Xkin T
HT (XT = [VL VR Hy m h] ) = szn(ka> + Hcomp(xc)
| M—|
e (3.14)

2 - 2
mo 9 2 3L v (P(m,h) —po
=— — — + PhSw || —————— ] -1
%3 (I/L +vp I/LI/R) + o + Fohow 9 p

where p(m, h) = m/(swh) = p is a function that reconstructs the volumetric density.

Notation 2. The function p enables us to keep the energy in an acoustical friendly
form, where p would be a natural choice of energy variable. In the following and for
clarity, we only specify the dependence of p on m and h when needed.

With the given choice of energy variables, the effort vector er reads

e =a | i (2L —vr) ™/265 |
€vp = 4R (2vR —vi) /263
er = er, = Uy = Sy/m (3.15)
| (itvh—vive) 3G | Py, _
em = <¢>Q 202 omz T o2 (p(m,h) — po) Swh
[en == aSw] | PoSw (1 —1) — 2 (%)2 S _

where each effort has a physical meaning: by design, the first three are the mass rates
qr, and gr and the wall velocity; e,, is the volume-averaged specific total enthalpy

()q; and ey, is the reaction to the net pressure force of the fluid on the wall (see
Eq. (B.1.5)).

DYNAMICS — Using Eq. (B.2.9) with ¢ = 1, the dynamics of the mass yields
m = qr —qr = €,, — €., stating that the mass rate m equals the sum of the
incoming mass flows.

The dynamics of the height reads h = oy = vy = ery,-

The dynamics of Il is derived by using Eq. (B.2.10) with ¢ = ¥/a e, which yields

. CII IT
HyZmEy+Fw+<p> Sw = (el,L—eyR)Ey—eh—i-FW. (3.16)
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wT

=YT

The dynamics of v, and vg is obtained by using Eq. (B.2.11) with the test functions
¢ = to/m (1 —z/ty) e, for v, and ¢ = lo/m (1 + /o) e, for vg* which leads to

d 11 d IT
Y Y
vy = — Uy — € and vp = —YR + Uy + €. 3.17
dt L wL m Y m dr R ¢R m Y m ( )
INTERCONNECTION MATRIX — We identified the components of the effort vec-

tor et in the equations of dynamics. However, some of them contain a term modu-
lated by Ily/m, thus requiring the introduction of a gyrator [Lopl6, Def. 8, p. 24] to
make the interconnection matrix canonical. This gyrator is modelled as a conserva-
tive memoryless component converting the mass accumulation m and the transverse
velocity vy into the enthalpy vyIly/m and the force Ilym/m. Let us consider the vectors
w and z(w) (of size n, = 2) so that

o . Iy /m
wr= | TR g(wr) = Hyjot wp = % o (3.18)
vy = e, m | -1 0 —mHy/m

verifying z(wt)Twy = 0.

The input vector ur gathers the inputs ¢ 1,9 and Fyy so that ur = [, ¥r, Fw]|T.

Similarily, the output vector is defined as yt = [qr, —qr, vw]T.

Then, the full interconnection matrix of the pHs reads

2 I -1 -1 e | [ en=a
UR +1 +1 -1 evr = 4R
I1, -1 -1 +1 err, = vy
m "‘717_1 777777777777777777777777777777777777777777777777 em = <¢’>Q
h +1 ep = — (p QSW
- m - +1 -1 Uy%
w | | ] N ERLIH
—dL _71 7777777777777777777777777777777777777777777777777777777 YL
ar | | 1 YR
—UW i —1 ] Fw
L = )

where the matrices J, G,, and G, can be identified according to the structure
presented in Eq. (2.4). As the full interconnection matrix is canonical, S will be
identical for each tract in the vocal tract network.

3.1.4  Electrical Equivalent Circuits

While bond graph would be a possible graphical representation for the interactions
of the components, we here choose the electrical equivalent circuits for their sim-

4 These form functions correspond to the linear functions associated to the left and right surfaces,

respectively, which can be thought as the nodes of a mesh.
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Domains Electronics || Solid mechanics Fluid mechanics Acoustics
Quantities voltage force specific total enthalpy pressure
(effort/flux) current velocity mass rate flow rate
inductor mass fluid mass acoustic mass
Component
capacitor spring compressibility compliance
Conservation|| current law || rigid connection mass balance
1
aws voltage law || Newton’s 2" law momentum balance

Table 1: Correspondence table

plicity and common usage in the voice modelling community. This also allows for
easy comparisons with popular model of the lumped-parameter community [Mae82;
BJKO7; EL16]. It relies on a chosen analogy (see table 1) between mechanical and
electrical quantities [Fir33] and laws from which one can build an equivalent electri-
cal circuit.

This graphical representation highlights the interactions between the different com-
ponents, thus allowing for physical interpretation. From a pHs standpoint, the inter-
connection matrice J acts as the PCB of the circuit as it only encodes the connections
between the components.

In our model, the axial and transverse flows involve different boundary flows and
efforts variables. The simplest electrical equivalent representation is obtained by
using two different analogies (see table 1): the fluid mechanical one for the axial
flow; and the solid mechanical one for the transverse motion of the fluid flow and of
the wall.

The resulting equivalent electrical circuit of the tract model is depicted on Fig. 15.
Note that all elements (gyrator, inductors and capacitors) have a non linear be-
haviour as their attributes (conversion factor, inductance and capacitance) vary with
the state of the system.
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Solid mechanics
Voltage: force
Current: velocity

Transverse flow

"""""""""""""""" — Coupling
Y
1| vylly
"LL7 e _______
AT
Fluid mechanics |
Voltage: enthalpy m ( .
Current: mass rate Axial flow
qr qr
* '
7/}L - - VR
DL DR

Figure 15: Equivalent electrical circuit of tract model with the storing components (blue),
the memoryless components (green) and the external ports (red) displayed with
the same topology as on Fig. 13 (left, right and top surfaces); on the left, analogy
used for each part of the system (see Tab. 1).

The circuit is made of two coupled subsystems: the axial flow, with its two in-
ductors (axial inertia of the fluid masses) and one capacitor (mass accumulation);

the transverse motion, composed of one inductor (transverse inertia) and a capaci-

tor (volume change). The gyrator is the coupling element, converting the velocity v,
into the enthalpy induced by the volume change v,I1,/m (transverse motion to axial
flow) and the total mass rate m into the force induced by the mass change m%
(axial flow to transverse motion). It is also responsible for the change of analogy
between the axial and transverse flows. The subsystem comprised of the gyrator and

both capacitors acts as a gas spring accounting for the compressibility of the fluid
in a time varying volume.

The following degenerated study cases provide further insight on the coupling role
of the gyrator:

» Case 1 (motionless top surface, v, = vy = 0): the top surface is assumed to be

motionless with vy, = v, = 0 so that the voltage drop of the bottom branch of the
gyrator Uymﬂ vanishes, connecting the capacitor m to the ground. Compression then
corresponds to mass change only, without any transverse motion.

» Case 2 (steady mass flow, ¢;, = qr): this implies a null total mass rate m =

0. The voltage across the top branch of the gyrator now reads mTHy = 0 which
directly connects the transverse capacitor to the ground. Compression of the fluid
thus translates into volume change only, with a constant fluid mass in the tract. The
most simple application of this case is to consider ¢;, = qg = 0, meaning that the
tract acts as a piston.
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We briefly compare our model the popular one of Maeda [Mae82], the equivalent
electrical circuit of which is shown on Fig. 16.

7 _ \
! ]
! I
! I
Cu :
| ,
: R Mechanical
Controlled Mass | w lat
] oscillator
wall accumulation || |
[ v T T | Uy |
| ! = |
| : l I |
1 1 ! 1 L |
| ! | (N w
I ! Cfl b :
Us ! I AUe | |
No /l \\__/, N ___
L L
ur, Ry mf Uur mf UR Ry up

Figure 16: Equivalent electrical circuit of the tract model of Maeda [Mae82] under the acous-
tical analogy (see Tab. 1). To be compared to Fig. 15.

In both cases, the circuit has the characteristic T-cell design, with inductors on
the series branch and the capacitor on the parallel branch. The model of Maeda is
linear and does not use any coupling element at the junction. Therefore, the mass
flow induced by the movement of the wall is in parallel with the compression effect.

The upper branch of our model (inductor h and inductor Il,) is not present on
the model of Maeda, meaning that the model does not account for the transverse
motion and volume change. Finally, Maeda added a basic fluid dissipation model® to
enhance the physical realism, especially in the case where the cross section is small.

3.1.5  Shifted Tract Model

The model we established is a fluid mechanical model. To achieve a (nonlinear)
acoustical representation, the physical variables have to be expressed as fluctuations
around a state at rest that usually corresponds to atmospherical conditions. This
procedure also leads to improvements of the numerical performances.

To do so, we use the shift procedure introduced in chapter 2, within Sec. 2.3.4.
We assume that the system (3.19) is under atmospheric conditions, meaning that
the surrounding air is at rest at atmospheric pressure Fy. Thus, the inputs reads

T T

u* = [q/)z vk Fﬁ/] = [0 0 — POSW] under the choices for the compression

energy (see App. B.1). Computing the associated state at rest x} (see App. B.4
T T

for the details) gives x} = [Vz vy Iy m* h*] = [() 0 0 mo ho] . An

alternative and more complex choice would be to shift the system in the vicinity

laminar resistance of a laminar flow within a circular duct [Ste71].
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of the trajectory of h(t) and m(t) but is not addressed here. At the rest state, the
effort vector reads e} = [0, 0, 0, 0, —FPySw/|T and the output vector is y* = [0, 00]T.
The latter corresponds to a uniform atmospheric pressure in the tract exhibiting no
power exchanges with the exterior.

T
The shifted energy variables are gathered in X = [gL DR f[y m h] and the
shifted Hamiltonian H(%T) reads

H(gr) = H(&r +x7) — e ()" - %r — H(xF)

. _ _ o
(Mm+mo) .9 o0 . . BI—IZQ/ v ([, h) -
= — — P L h h
2 (07 + 0% — DLiR) + 20+ ) + OSW2 p (h + ho)

where 5(m, h) = p(m +m*, h + h*) — po is a function that reconstructs the fluctua-
tions of the volumetric mass around its state of rest value py.

The (shifted) efforts ér are

(217L — ﬁR> (mJFmO)/QZg

(20 — 1) (m'f‘mo)/%g

éT — 3ﬁy/(m+m0)

(72 +0%—DL0R) 3112 Py~ =
L R _ Yy Poy=(,~

203 mtme)® T 2 p(im, h)

=\ 2

Y
2 (Po) Sw

Now the coordinates Xt = 0 coincide with the state at rest of the system (un-
der atmospheric conditions). The interconnexion matrix is not altered by the shift
procedure as it canonical (no dependence on the physical parameters and energy
variables® ). The algebraic-differential formulation then reads

OXT ~

ot €T
wr | =51 | zr (W) |
=y ar

where we introduced the (shifted) inputs Gy and outputs yr
. - . N T
ur = ["4/1L =L, Yr=4vYr, Fw=Fw-— POSW] )
. ~ . ~ T
yT = [QL =4qrL, 4qr=4qR, Vw = vw] ,

and shifted variables Wt and algebraic laws Z (W)

W = [m =dL _QR] and  z(wr) = ij [ 0 1] wr.

Uy

Please refer to Ref. [WHS20] for an example that involves a non-canonical interconnexion matrix.
Be aware that this reference provides a particular case and that further computations could be
needed for another pHs.
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Summary

In this section, we derived a two-dimensional power-balanced lumped-parameter
model of a single tract. It accounts for the transverse flow induced by the displace-
ment of the articulators. Using a set of physical and geometrical hypotheses and
approximations, we discretised the associated PDEs and energy function to produce
a macroscopic model. We then cast it as a canonical pHs, which allowed for its physi-
cal interpretation by the means of an equivalent electrical circuit. We highlighted the
presence of a new coupling element, a gyrator, that is responsible for the reciprocal
power transfers between the axial and transverse flows. We briefly compared our
model to the well-know model of Maeda [Mae82]. Finally, we established an equiva-
lent shifted pH formulation of the tract model to achieve an acoustical description.

To build the vocal tract, we now assemble multiple tract models together.
3.2 ASSEMBLY OF THE FULL VOCAL TRACT

The section addresses the assembly of several tracts Ty, n,) through conserva-
tive junctions 7;c(1,. N, @s shown on Fig. 17.

Figure 17: A full vocal tract shown as a network of tracts. The small circles at the ends
of the graph denote the control ports. The junctions are denoted by the circled
variables n; . Here, tract T2 and T3 model the piriform fossae and tracts T1g to
T12 model the nasal cavity. 14 represents the nasal branching.

As stated in the introduction, we assume that at a junction n;

N +1 if g is entering n; (directed
Z djkqr =0 with djp = -1 if qi is leaving n); mass flow (3.1a)
= 0 if g is disconnected from 7, balance)
and Y1 =1y =...=1Yn (enthalpy continuity)  (3.1b)

involving (at the junction) N directed mass flows d; rq; and enthalpies vy, Vk €
{1,...,N}. The coefficients d; , are extracted from the incidence matrix of the graph
composed of the nodes 7; and branches T}, equipped with their mass flow orientation.

Note that connecting tracts together in this manner is strictly equivalent to con-
necting the electrical equivalent circuits (see Fig. 15) by a node, as Eq. (3.1) is the
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fluid mechanical analog of Kirchoff’s current law and continuity of potentials (see
Tab. 1). For instance, consider the junction @ on Fig. 17 where N = 4 so the mass

balance reads qr1 = qr2 + qr.3 + q14.

Considering more complex junction models would introduce additional storage
and/or memoryless components at the interconnection. We propose such a compo-
nent in chapter 5.

3.2.1 Problem Statement and Proposed Solution

At both its open boundaries, a tract is endowed with an input-output configuration
imposed by the physics at hand. At a boundary, the input-ouput configuration is
said to be enthalpy driven if the enthalpy v is the input, while it is said to be mass
flow driven if the mass flow ¢ is the input. The compatible connection of two tracts
is usually ensured by the connection of complementary configurations (e.g. enthalpy
driven configuration connected to a mass flow driven configuration). However, due
to its symetrical form, our tract model only allows for enthalpy driven configurations
at both extremities. This creates an incompatible connection (see chapter 2), as two
contiguous tracts exhibit identical input-output configurations. This is also called a
causality issue, which manifests itself as a constraint.

As a simple example, consider the two-tract example depicted on Fig. 18 where Ty
interacts with Ty through its right interface Sgy (resp. Sr2, see equations below).

Fwo (‘yT TUVVQ ey
FH’"I eyT Tl,‘w’l Cy

1
1

L

1 YR2
1

1

: wl(l{hhmlanyl} : {hZam27Hy2}
— — —
L1 €y qr, L L , UR2 €

T T’

Figure 18: A basic two-tract example.

fr, er, fr, er,
wT, z(wT, ) WT, z(Wr,)
—qrL1 | = S’]rl | Y —qr2 | = STQ VLo
qR1 YR qRr2 YR2
| owr | | Fw | vwe | | Fw
Eq. : pHs of tract T, Eq. : pHs of tract To

At the shared interface, the mass conservation reads gri — qr2 = 0 where each
mass flow results from the internal dynamic of each tract, thus making this rela-
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tion implicit. To connect the two tracts, we introduce the Lagrange multiplier ),
constraining the dynamics of Ty and Ty such as Egs. (3.1) hold:

0 +1 +1 {5
Y | =] -1 tqr1 |. (3.2)
—r2 -1 —qr2

Remark 7 (electrical equivalent of the causality issue): Looking at the connec-
tion of two equivalent electrical circuits of Fig. 15, this correponds to the case
where two inductors are in series and need to be merged into an equivalent
inductors.

In Fig. 17, each junction 7; correponds to a similar constraint. We now show how
to properly formulate and solve this constraint problem.

To include the constraints in a pH formulation, we use the differential-algebraic
port-Hamiltonian system (DA-pHs) formulation, introduced in chapter 2, the algebraic-
differential formulation of which we recall below

£ J G, C, G, e

wo|_ -G, Juw 0 Gup z(w) ' (3.3)
0 CI\ 0 0 0 A

y | -G] -G, 0 Iop |

A DA-pHs accounts for a set of Ny constraints with Ny Lagrange multipliers A and
a set of N algebraic equations relating the internal efforts e through a constraint

matrix Cy (size n, x Ny) such as 0= Cle .

For the two-tract example, the matrix

Cupr Cupr O ©myi Chy Cupy Cupy CIe Cmy Chy

C{:[01000—10000]

selects the relevant quantities (gr; and gr2) from the collected effort variables e =

T
[e{Fl’eTTFQ] , thus encoding the mass balance. The vector of Lagrange multipliers
reads A = [¢a] (see Eq. (3.2)).

As constrained systems might be hard to interpret, analyse and simulate, they
are often recast into a regular ODE. One popular method is the index reduction
by differentiation [KMO0G6], where the constraints equations are derived with respect
to time to transform the algebraic relations into a set of regular ODE. However,
it does not ensure that the system remains physical as “discretisations and round
off errors may lead to numerical results that violate the constraints” [KMO06, p. 273].
Moreover, replacing an algebraic equation by an ODE can be harmful as the problem
can become stiff and require a very robust numerical method.
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In a very similar modelling setting, Mora et al. [Mor20] introduced a purely com-
pressible cavity between tracts that acts as a causality-compatible junction and
solves the causality issue beforehand. However, the physical interpretation of this
junction is hard to make, while its role in numerical simulations is not negligible.

Other methods try to solve constraints by coupling the constrained components
through their energy. We choose this class of methods because they are physically
interpretable and ensure the passivity of the final model.

The equivalent component method [Naj+18] is one of them. In our case, it corre-
sponds to computing the equivalent inductor at a junction, which will be parametrised
by the physical parameters of the contiguous tracts. We applied this method in
Ref. [WHS19], which enables us to connect two tracts together. However, this ap-
proach is not adapted for the connection of more than three tracts, as the nonlinear
nature of the inductors and the propagation of the parameters result in a very com-
plex combinatorics.

Thus, we consider the coordinate change method [Carl6; Mv92; Wu+14; vanl3],
a lesser-known method”, that casts a DA-pHs (3.3) into a semi-explicit DAE of index®

1 of form
% :f(X97 X\ ) (3 4)

0 =9(xg, Xa )

where the constrained states x, are determined by the implicit relation on the in-

stanteneous (algebraic) part (hence the “semi-explicit” name), and act as parameters
for the dynamics of the unconstrained states x.

To address the causality problems of a complete network of tracts, we propose a
systematic procedure that: (i) automatically casts a network of systems like the one
of Fig. 17 into a DA-pH of form (3.3) using the incidence matrix D(G) of a directed
graph G; and (ii) reformulates this fully implict differential-algebraic equation (DAE)
into a semi-explicit system, of form Eq. (3.4), using a coordinate change [Mv92;
vanl3; Wu+14; Carl6].

3.2.2  From Directed Graphs to DA-pHs

This procedure is inspired by Ref. [MH20]. For a more general context, see Ref. ?7.
To formulate the DA-pH of a network of pHs, we use a directed graph composed of
nodes 7); as vertex and systems ¢ as edges endowed with a flow orientation. Under
analogies shown in Tab. 1, the proposed procedure is valid for a class of pHs detailed
hereafter.

Consider Ny pHs of form (2.3) (indexed by the variable &k € {1, ..., Ny} =
[1, Ng]), of energy variable xj, and rearrange their inputs and outputs as

GT
up = ka] and  yi = [y%] = [ A ?k] ep Vke[l, Ni] (3:5)
Qg (2 pk

7 Which can be seen as a generalisation of the equivalent component method.
8 See [Meh12] for an overview of the index concept in the DAE theory
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where yy, (resp. uy;) is a vector gathering two constrained (coupled) outputs (resp.
inputs) and where (§, @) denotes the remaining (unconstrained) external ports”. Both
Gf\k_ and (A};k are obtained by rearranging the lines of Gyy.

3.2.2.1 Graph-based Assembly

Consider a directed acyclic graph G(N, €) (directed graph without self-loops [New18])
with nodes N = {n1, ..., nn,} and edges € = {e1, ..., en,}. As in Ref. [Le 15], the
J-th vertex represents the junction n; and the k-th edge € represents the k-th sys-
tem.

Under the definition of Eq. (3.5), the tail of the k-th edge corresponds to the first
component of the constrained input uy, (resp. output yy;) and the head of the edge
to the second component (see Fig 19).

@ @@ @

T 4
’ T1o

(w) Tw@%ww@m%@%%@
T3

¥

()

Figure 19: Oriented graph of the network in Fig. 17; Ny = 12 and Ny = 13.

As in Eq. (3.1a), the incidence matrix D(G) of G encodes the relations between
the directed edges (systems) and vertex (nodes/junctions)

+1 if € is incident to n;
[D(g)]jk =djk =1 —1 if ¢ leaves node Ul Vke[1,NsJand jeZ (3.6)

0 if € is disconnected from 7;

where Z = {1, ..., Nx} = [1, N ] is the set of the vertex indexes.

At last, we define a subset of control nodes Ng < N (shown in pale red on

Figs. 17 and 19), containing N¢ elements, and introduce N¢o-tuple C containing the
indexes of all control nodes in N¢ such as

C={aeN : n,eNc}. (3.7)
where its i-th element is denoted by C(7). Note that N can be empty.

Then, given a directed graph G, a set of pHs like in Eq. (3.5) and a set of control
nodes N¢, the DA-pH formulation of the constrained network is obtained algorithmi-
cally, as shown hereafter.

They will remain unchanged after the coupling procedure, like the external port (vy, Fyyr) of the
wall in the case of the tract model shown on Eq. (3.19)
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3.2.2.2  From directed graph to the DA-pH formulation

We generate the DA-pHs formulation of the constrained system as follows.

T
» Build the concatenated energy variable vector X = [XI XIT\I ] and the
Hamiltonian
N T
H(X) = EHk(Xk) =k = [e{, ceey e%, ey eTNS] .
k=1
T
» Concatenate the memoryless variables W = [WI WlT\I ] and associated
T
laWS Z(W) = [Z(Wl)T . Z(WNS)T] .

» The equation of dynamics can be formulated as

I J Guw CiA9) G, E
W —G7 7,(W
_ Gl 0 0 0] |zw) 58)
0 C\(G)T 0 0 0 A
Yl | -¢ o 0 o] L U

where F = X, J = diag (J1, ... ,JIn,), Gy = diag (G, ..., Gyn,) and the external
ports vectors U, Y and the matrix G, are

[ UC ] [ Yo |
A A G ]
: : Ldiag (Gp17 7GPNS)J
| aNS B | gNs |

where diag(Aq,...,A,) is the diagonal block-matrix with blocks Aq,...,A,. O
In this DA-pH formulation, some objects are left to be defined: Cx(G) in step 1,

A instep 2, yo and ug instep 3 and Gg(G) in step 4.

» STEP 1: We now define the constraint matrix. Under Eq. (3.5), the constraint
equation (3.1a) at a junction n;, j € N takes the following form

0 = Qin + Zut
0 = Z [0 1:|y)\k + Z [1 O]y,\k
k={1..N,} k={1..N,}
., djr=l dj=—1 (3.10)

g D) Z [O 1] Gl en(xi) + Z [1 O] Glren(xk)

k={1..N4} k={1..NJ}

dj k=1 djp=—1

0 = Cir(G)TE(X)
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where the selection vectors [1 0] and [0 1] extracts the constrained output associ-

ated with Q;, or Qg (sum of incoming/outgoing flow). Note that if the k-th system

is not connected to n; (d;; = 0), then the selection vector is implicitly [0 0]. In
T
the case of the pH tract model given in Sec. 3.1.3, yxp = [qu, qu] , [0 1] Ynk

corresponds to —qrg and [1 0] Yrk 1O QL.

Then, according to Egs. (3.10) and (3.8), the constraint matrix C,(G) (size (Ny —
N¢) x (Ng Y, ngg)) is defined by assembling the matrices Gy, as

0,11 GL, if dj =1,

VieZ\C
[CA@)T]ji =cfi=1[1,0] G, if dj =—1, J eI\

Vk €1, Ng]
0 otherwise,

where only the subset of nodes N\ MV is spanned (not accounting for control nodes).
The number of constraints is now Ny = Ny — N¢. ]

» STEP 2: Associate a Lagrange multiplier A; to each constraint and gather

them in the Lagrange multiplier vector X such as [ A ] =X VjeTI\C. O
J

» STEP 3: According to Eq. (3.9), span the set of control nodes N¢ to define
the vector of N¢ control outputs yo as

lycl, = Z [0 1],%\k+ Z [1 O]yAk
k={1..N,} k={1..N,}
de(ey, k=1 deey=—1

The vector of N¢o control inputs 'uc is defined in the same manner, substituting
Yak by uxg. If No = &, then yo = ug = . O

» STEP 4: The control port interconnection matrix Gg (see Eq. (3.9)) is a
N¢ x Ny block matrix defined similarily as Cy, but on Ng. Its entries gy, of size
1 x ng, are

[07 1] le if dc(é)k =1 / [[1 N ]]
G’ =8 =1[1,0] Gl if 4 -—1 v e
[GE [1,0] G, 1 C(Ok k e[1, Ng]
0,01 G}, if degyr =0

where we are only looking at the nodes that belong to the subset N and the edges
that are connected to these ( deyr # 0). If No = &, then G is empty (zero
rows). O

3.2.3 From DA-pHs to Semi-explicit pHs

We showed how to automatically write the DA-pH formulation of the network of
systems that are coupled by constraints. We now recall the coordinate change used
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to derive the semi-explicit formulation of the above implicit DA-pH. As stated in
Sec. 3.2.2.1, we now cast the DA-pHs into a semi-explicit form like in Eq. (3.15)
below, using the method proposed in Ref. [VM94; van13].

» STEP 1: CONSTRUCTING THE COORDINATE CHANGE — Denote Cy the
left annihilator of Cy a matrix of size (n; — Ny) x n, that verifies CiC y = 0. The
coordinate change matrix P (size n, x n;) is given by

CJ_
o chcj—lc;] o

where the second block of the matrix is the left Moore-Penrose inverse of C), as
proposed in Ref. [Wu+14]. Note that the use of the Moore-Penrose inverse is only
valid if C) does not depend on the physical parameters of the system.

» STEP 2: NEW PARAMETRISATION OF THE HAMILTONIAN — The new
state vector x is divided accordingly to the structure of P such as

X =Px = and f = dx = £y (3.12)
X di f)‘

where we introduced the unconstrained energy variables X, of size ng = n; — Ny,

the constrained energy variables x,, of size Ny, and their corresponding fluxes, fy
and fy. This dichotomy will be applied to other objects throughout the method.

Let us define the corresponding Hamiltonian H'(x) and efforts variables €’ as

H(x)=Hx=P 'x) and & =P Te=V,H(x)= [eel . (3.13)
e
Using these definitions solely, Eq. (3.3) now writes as
X PI(x)PT PG, PC, PG, e
_ T
w | _ |~ (PGu) 0 0 0 | |[z(w) (3.14)
0 —(PCy)T 0 0 0 A
-y —(PGp)T 0 0 0 u
» STEP 3: SIMPLIFYING THE INTERCONNECTION —  Accounting for the def-

inition of P and the resulting split between constrained and unconstrained variables,
T
we simplify Eq. (3.14) by observing that PC) = [O(N/\X(nsz)\)) ][(kaN/\)] .
The term PCyA thus only contributes to £y, which means that the dynamics x,
does not depend on A anymore. Moreover, the constraints read —(PC,)Te’ = 0 trims

down to ex(xg, x») = 0. This last equality enables the implicit evaluation of x, as
a function of x, (instead of integrating the dynamics Xy ).
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11

As a consequence, the Lagrange multipliers A can be removed from the DA-pHs!?
(but may still be recovered from the dynamics Xy ). The splitting and removal of X
and A\ lead to the following semi-explicit form:

£ [Jo(x) G, 0 GY | [eolxs Xa )
-G 0 0 0
V= a(w) (3.15)
0 0 0 Iyxny 0 ex(xa, Xx)
-y |-GIT 0 0 0 | u

with Jg(x), GY and Gz defined after the splitting of the matrices

[4 0
PI(x)PT = [ JeT Jox| - pa, = [G;U] and PG, = [Gil . (3.16)

In this section, we have shown how to formulate the full network of pHs as a
semi-explicit system using directed graphs and a coordinate change. We now apply
this method to the case of the vocal tract.

3.2.4  Application to the Vocal Tract

A blind application of the above assembly method is not optimal, especially when
dealing with large networks of systems. Therefore, we vary the assembly procedure
by reordering variables using a permutation matrix to simplify the computations
and the final system. This enables us to exploit the particular structure of the tract
model.

Notation 3. For legibility, we use the notation for the original tract model, before
the shift (see Sec. 3.1.3). As the interconnection matriz is canonical, the assembly
method applies identically in both cases (shifted and non-shifted).

3.2.4.1 DA-pH formulation of the vocal tract

Consider a set of Ny tracts, the assembly configuration of which is given by the graph
Gr. The full state vector of the vocal tract Xyt is defined by setting!! x; = XT,
(size ng, = 5) and using the permutation matrix By (size Ny - ng x N¢ - ngi) which

gives
_ T
[VLl s VRl, .-+ VLN VRNz] Xox
XT, [H I ] T
. 1y --ey Ny Xtr
XVT = IBX : = T = (317)
[ml, cee mNt:IT Xm
XTNt <
I N LA
As xg “serve as local coordinates for the constrained state space” [VM94, p. 229].

Please refer to the notations of the general assembly procedure shown in Sec. 3.2.2.
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where Xy is split into: the axial flow inertial components x,y, the transverse motion
inertial components xi, and the compression components Xcomp = [Xm, Xn]'-
The Hamiltonian of the full vocal tract is

T
IHVT(XVT = [X;X X;rr X;rn XlTl] ) = Hax (XaX7 Xm) + Htr (Xtru Xm) + Hcomp (Xcomp)

sorted by axial flow, transverse motion and compression energies.
To facilitate the assembly process, we take advantage of the quadratic nature of
the kinetic Hamiltonian w.r.t. the kinetic energy variables v, vr and I1,,.

» For the full axial flow, we get Hax(Xax, Xm) = %xngaX(xm)an with

. mg | 1 —1
Qux () = ding (1, .., py,) and pry = ﬂ[ 1 12]. (3.18)
Ok 5

» The total energy of the transverse motions is

1 . . _
Her (Xtry Xm) = §XtTerr(Xm)Xtr with Q(xm) = 3diag (Xm) L

» The total compression energy reads

T
H, (Xcomp = |:WL1 ... MmN, h1 .. . hNt] ) = Z Hcomp (xck = [mkahk]) .
k=1
Accounting for the permutations, the efforts read
T
€T, [el/m’ Cvrir --- Cupngs eVRNt:|
T
Eyr = ]BX : = [enyl, ey Iy,
T
ey, [eml, ceoy Bmy, 3 €hys oo ehNt]

As a consequence, the efforts e, (resp. ery) related to xax (resp. x;) by

.
[el,] _[an(xm)an] _ (qL1 qr1 qr2 --- 4IN, QRNt>

T (3.19)
€11 Qtr (Xm)xtr (Uyl Vy2 VyNy )

thanks to the permutation matrix By.

We direct each tract Ty so that the direction of the edge coincides with the main
direction of the flow (from left to right, see Fig. 13). Therefore, the head (resp. the
tail) of edge € correponds to the right surface Sgy (resp. the left surface Srj) so
that Gy and ka are

1 0 0 0O

Gy, =
0O -1 0 0 O

]T and ka=[o 010 o]T-
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For the memoryless components, we choose wj, = wt, and z(wy) = z(wT,) (see
Eq. (3.1.5)). The full DA-pH formulation of the constrained vocal tract is

Fyp Jvr Gyvr Ca(Gr) Gpvr Eyr

Wyr | _ | =Glvr 0 0 0 | |Zvr(Wyr) (3.20)
0 Cr(Gr)T 0 0 0 A

—Y | Gl yr 0 0 0 | U

where the interconnexion matrix JyT is obtained by applying the permutation matrix
By to the concatenated interconnexion matrices of each individual tract Jj such as

]IVT = ]Bx diag (Jl, e aJNt)]BI('
Similarily, for the gyrators we have

Guvr = diag (G, - - ., Gun, ) B

EXAMPLE 1: TWO COUPLED TRACTS — The directed graph that corresponds
to the two tract model of Fig. 18 is shown on Fig. 20 where N¢ = {n1, 13} implying

N, =1
@@ @

Figure 20: Directed graph of the two-tract example (equivalent to Fig. 18).

Therefore, the constraint matrix gives C| = [0 1 -1 0 00 00O ()],
and G, v reads

qr1 qrR1 4qrL2 4dRr2 YW1 Vw2 ©m; ©mo ©€hy Chy

(41 0 o0 o0 |
0 0 o @ O2x2) O2x4)
G;,VT:
1 0
O2x4) j; O2x4)

encoding Yyr = GpvrEyT = [_qu Jr2  Uwi 'UW2:|T where the external ports
qr1 and ggro are control ports for the main axial flow (instead of being constrained).
The horizontal lines in the vectors/matrices are related to the notations of Sec. 3.2.2.
Above the matrix, we indicate to which component of the effort vector the columns
of Gp v are linked.
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Fu I I Vw1
'

Y1 ' Vs
\ {h1,m1, I} V12 {ho,mo, My} V23 {hg,ms, I3} V34  {hy,mg Iy} V45 {hs,ms 15} \
—qr1! qr, = 4L, R, = qLs qr; = 4L, 4R, = qLs V4R

Tg ) E 5

Figure 21: Example of a vocal tract with Ny = 5. In green, the assembly constraints at each
junction. For each tract, the energy variables not affected by the assembly are
my, hy, I1 Vk € {1,...,N¢}. The equivalent energy variable at each junction is
Vi k+1 Vizk>=Ng—1

EXAMPLE 2: TUBE WITH VARIABLE CROSS SECTION — We now look at a
tube composed of Ny tracts in series (depicted on Fig. 21 for Ny = 5 tracts), the
directed graph of which is shown on Fig. 22, containing Ny = N; — 1 constraints.

" @@t @
dr, = 4L, qr, ., = 4L, qr,,_, = dL,,

Figure 22: Directed graph of example 2: a tube of variable cross section composed of Ny
tracts.

Setting N = {n1,nn,+1} (with No = 2) gives that Ny = N, —1—Ng = N, — 3
such as C) (of size Ny X n,) reads

qr1  4Rri qr2 qdRr2 qrs .- --- dR(N;—1) dLN; 4RN, e[ €, €
+1 -1
+1.. -1 .
cl = O(Ny\—Nox3Ny)

B |

qr1 —qr2 =0

: qr2 —qr3 =0
encoding )

qr(N,~1) — 4N, =0
The matrices connecting the efforts to the output ports reads

qr1 qri 4r2 -----. dRN: €11 €em €p
1 0
. 0 O2x (2n;-2)) 1 Opxny) | O@xany)
Gp,VT -
B O(NtX2Nt) I[(NtXNt) O(NtX2Nt) ]
so that Yyr = —G] yrEvr = [QLla —qRN, UW1, .-, UWNt]'
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3.2.4.2 Semi-explicit Formulation of the Vocal Tract

We now apply the coordinate change on the DA-pH of the vocal tract. Utilizing
the permutations and the previous matricial definitions of the Hamiltonian yields a
simplified final model, thus indicating that blindly applying the method is not the
most effective way.

Here, only the axial kinematic efforts variables are constrained. Accounting for
this and the permutations, P simplifies as

~ Xax Xtr Xm  Xp
P ®(2Nt7N7/\><3N2) Xv = FvXax
X6
Xtr
O, xany) L3N, x3Ny) so that x = Px = [ Xm = )
Xh
Px O(N7>\><3Nt) X\ = Prxax X\

where P, (of size (2N; — Ny) x 2N;) extracts the unconstrained states, Py (of size

N x 2N;) will give the constrained (algebraic) states, X¢;, Xy and xp, are left un-

changed, x,, denotes the new axial inertial components (vector of size N; — Ny) and
X is the vector of the constrained states (of size Ny).

With this new parametrisation and given the form of the coordinate change, the
Hamiltonian reads

Hl(X) = HaX(Xm X 7Xm) + Her (Xgr, Xm) + Hcomp(xcomp) (3.22)

where Hy, and Heomp remain unchanged and Hgy is

-1
_ P Xy
Hax (X0 Xas Xm) = Hax(Xax = g ; Xm)
P X
T -T —1
_ 1 XV Py Q (X ) Py Xy
= ax\Xm
21 xa P P X
Qx(xm)

where we used the matricial notations of Eq. (3.18) and Eq. (3.21).

Qy (xm) (of size 2N; x 2Ny) is divided according to the size of x4 and x, such as

QX(Xm) =

Qu (Xm) Qua (Xm)]

l)\ (Xm) Q)\/\ (Xm)

where Q,,, (resp. Qay) is a (2N; — Ny) (resp. Ny) square matrix and Q, is of size
(2N; — Ny x Ny).

58

(3.21)



The constraint equation reads

e/\(XwX)\) = QV)\(Xm)XV + Q)\)\(Xm)X)\ =0 == X\~ _Q)_\,\l(xm)Qu)\(XnJXw

(3.23)
if Qaa(xm) is invertible. For the two-tract example, this simplifies to a single equation
which can be solved by hand, thus regenerating the equivalent component method
(as in Ref. [WHS19)]).

Using the matricial formulation and taking advantage of the structure of the coor-
dinate change, the implicit set of constraint equations is simplified to a linear set of
equations with respect to x,. The semi-explicit DA-pH formulation of the full vocal

tract is
I (el 0 Gyl
Fvrg VT w,V'T VT Evrg
6
0 0 0 H(N7>\><N7>\) 0 (SHY
vl |-Gy 0 0 0 | u
where Fyrg = [Xu»Xtr, Xm, %n|". The interconnection matrices J$, GﬁMVT and

Gf,,VT are defined in the same manner as in the third step of Sec. 3.2.3. The third
line is equivalent to Eq. (3.23).

We thus have shown how the use of a permutation matrix simplifies the structure of
the coordinate change structure (Eq. (3.21)), and how the Hamiltonian is changed
by the coupling procedure (Eq. (3.22) and below). This enabled us to reduce the
constraint equation (3.24) to the smallest size possible.

Conclusion

In this section, we assembled a full vocal tract by interconnecting a collection of
tracts, the causality of which led to incompatible connections. To address this issue,
we proposed a general (automated) assembly method. First, a collection of pHs,
the assembly configuration of which is described by a directed graph, has been
formulated as a DA-pH. Then, using a method of the litterature, the (implicit) DA-pH
has been cast as a semi-explicit dynamical system to allow for simulations.

Then, we applied this procedure to the vocal tract, and took advantage of the
particularity of the tract model (namely the canonical form and the matricial ex-
pression of the Hamiltonian) to simplify the procedure and reduce the set of implicit
constraint equations into a simple matrix inversion problem (linear w.r.t. the con-
strained DoF).
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3.3 SUMMARY AND PERSPECTIVES

In this chapter, we proposed a new power-balanced FSI vocal tract model, com-
posed of a collection of elementary tracts interconnected by algebraic equations
(constraints). Built on the principles of fluid mechanics and thermodynamics, the
tract model remains simple and physically interpretable. This was demonstrated
using equivalent electrical circuits, which highlighted the existence of a coupling
component (gyrator) linking the transverse and axial motion of the fluid. To adopt
a nonlinear acoustical description, we proposed an equivalent pHs, the physical vari-
ables of which are written as fluctuations around atmospherical conditions (without
making any additional assumptions such as a linearising hypothesis). The assembly
of the vocal tract model was carried using a new assembly method that relies on
directed graphs and DA-pHs.

The model we established allows for a unified representation of the vocal appa-
ratus, including the larynx. Note that applying an incompressible flow assumption
(common for the modelling of the glottal flow) regenerates the model of Lopes and
Hélie [LH15] and Hélie and Silva [HS17]. Including a passive and simple noise source
model and a simple loss model would improve the behaviour of the flow. The consid-
ered cartesian geometry is the simplest choice, but it lacks physical realism, whereas
building an equivalent tract model in the polar coordinate referential could yield
a more realistic description of the flow, especially when a tract narrows. But, as
demonstrated in Ref. [Arn+16], small discrepancies between both models should
be observed regarding the acoustical behaviour. An alternative is to consider ellip-
tical shaped tracts. Using a more complex mechanical model of the muscles and
tissues surrounding the cavities (see Ref. [Mor20]) would improve the realism of
the vocal tract model, and allow for the use of existing articulatory models (like in
Ref. [BJKO06]).

An interesting approach would be to identify the compatible and incompatible
connections within the directed graph, and to automatically derive the constraint
matrix C, (associated with incompatible connections) and interconnection matrix
S (associated with compatible connections). The proposed assembly method does
not discriminate between the linear and nonlinear constraints. Separating the linear
constraints from the nonlinear constraints would allow for the explicit and automatic
solving of the former, thus reducing the size of the constraint system of equations. For
this last perspective, we point to the work of Beattie et al. [Bea+17] and Gernandst,
Haller, and Reis [GHR21].
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NUMERICAL EXPERIMENTS

In this chapter, we present numerical experiments to examine the capacities and
limitations of the vocal tract model introduced in the previous section. These sim-
ulations are carried out using the improved discrete gradient (IDG) method (see
chapter 2) and implemented using the Python library PyPHS [Fal].

As PyPHS does not currently support the solving of constraints, we modified the
automatically generated C++ simulation code so that, at each time step, the con-
straint equations are solved prior to the dynamics of the system. The numerical
method unfolds as follows:

1. solve Eq. (3.23) for xy;

2. apply the discrete gradient method (see Sec. 2.3.3) on the remaining
ODEs.

This simple two-step method enables us to perform simulations for a full vocal tract.

The chapter is organised as follows. In section 4.1, we introduce a few pIs com-
ponents (structure, fluid losses and radiation condition) to complete the vocal tract,
and to enable us to control the geometry. In section 4.2, we examine at a toy model,
a simple two-tract system and consider a dynamical setting. In section 4.3, we ex-
amine the impact of the number of tracts on the acoustical resonances of a uniform
duct. In section 4.4, we consider a simple coarticulation that leads, in section 4.5, to
the synthesis of a coarticulation, using a excitation signal.

4.1 COMPLETING THE VOCAL TRACT

We introduce a simple mechanical model on the walls, a radiation condition compat-
ible with fluid mechanics, and a fluid loss component. In this chapter, we consider
the shifted version of the tract model introduced in Sec. 3.1.5.

4.1.1  Mechanical Model of the Walls

At the wall, the tract model introduced in chapter 3 is driven by an input force.
Given this input configuration, we are unable to control the height of each tract.
Moreoever, the tract model model does not account for the mechanical behaviour
of the structure (i.e. the tissues surronding the vocal tract). Therefore, we connect
a mechanical component to the tract wall, which also enables us to drive the walls
with an input velocity. We detail this component below.
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We consider the damped elastic behaviour of
the structure under a low frequency assump-
tion, and neglect its inertia. This leads to the

spring-dashpot system depicted on Fig. 23. Fin Vi

The state vector Xpe. is the elongation of

the spring & around its rest state. The Hamil-

tonian is Hypee(§) = %k:fQ where k is the k1 "

stiffness of the spring and its effort reads

ec = k§ = Fj. The dashpot is characterised . .
ext ext

by its velocity f; = £ and the resulting force
is afy where a is a dissipation coefficient. Typ- Figure 23: Spring-Damper system
ical values (for e.g. the relaxed cheecks) are

k=845N-m ! and a = 0.8 kg -s~! [IFF75].

For each tract, a mechanical system is connected: to the fluid by the force Feyt and
velocity vext; and to the muscle (the articulator) by the force F, and the velocity vy,
(see Fig. 23). The velocity of elongation of the spring is f and equals the difference
of velocity between veyt and vy, such as 5 = —Vext — Vm. LThe velocity of the dashpot
equals the one of the spring. The output force at the interface with the fluid reads
Fext = €4 + er. Conversely, for the other interface, we have F,, = eq + e;. The full
port-Hamiltonian formulation reads

1
Xmee = &, Hmec(&) = 5]6‘52, € = k& and

¢ 0 0| =1 —1| fe = ke

w | 0 0 | =1 =1||zw)=aw
Fext +1 +1 0 0 Vext

Fin | +1 +1] 0 0] \Vm

The height of a tract can now be controlled through the velocity vy,.

4.1.2 Radiation Condition

We now add a radiation condition at the end of the vocal tract. As the tract model ac-
counts for fluid mechanical phenomena, we cannot use standard acoustic impedance
types of models. To model the matter exiting the vocal tract, we add a memoryless
component, adapted from Ref. [HS17], that dissipates the kinetic energy of a jet.
This component is described by w1, and the non linear law z(wyyp) such that

~ 1 Wturb 2
= = (| — 4.1
Wturb 4Rk, z<wturb) 2p ((hk; + hok)L0k> ®(wturb) ( )

where ©(+) is the step function, gy the mass flow exiting the vocal tract, and k the
index of the tract, to the right interface of which we connect this lossy component
(lips, nose). Note that the power dissipated by the component is positive or zero as

2
1 Wiur
Pturb = wturbz(wturb) = wturbﬁ (hktLol;)c) ®(w) = 0.
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4.1.3 Losses of a Laminar Flow in a Rectangular Duct

Following the approach of Maeda [Mae82], we add a simple fluid loss component.
Without this component, and under a glottal excitation, the axial velocity in the
vocal tract would eventually reach infinity. As in Ref. [Mae82], we consider the
formula of the laminar resistance in a rectangular duct given in Ref. [Ste71]

v 8uo
Ry (hy) = Se(h) (4.2)

where Ru(ﬁk) is the resistance per unit length, g is the dynamic viscosity of the air,
and S(hy) = (kg + hor) Loy is the cross section of the k-th tract.

We describe this fluid loss formula as a memoryless component of variable

w/(f) = q, and law zu(w/(f)) = Ry, (hy) Loy w,&k), (4.3)

the associated power P, = zu(w,g ))w,(f) = RM(Ek)(w,Sk))Q of which is always positive

or null.

This component is only used in section 4.3, section 4.4 and section 4.5. The equiv-
alent electrical circuit of the shifted tract model, augmented with the resistors cor-
responding to the dissipative component introduced above, is shown on Fig. 24

0; H

Swp <__
- ’r;nl:Iy

|| m*+m
_—

11,
m* + m

_m + m

H Yy

\/‘

A
7 ﬁ = _"Ltot __
. quu(il) qr T 4R Wy Ru(h)
Ut —— -— -~ v\_/ Vr
Zu(wy,) vl Ur Zu(wy)

Figure 24: Equivalent electrical circuit of the shifted tract model augmented with simple
resistors (see the extremities of the series branch). To be compared to Fig. 15.
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Connecting a spring-damper mechanical system the external port of the wall
(Fw,vw) is equivalent to connecting a capacitor and a resistor in series with the

fluid mass 11, (at the top of Fig. 24).
We may now proceed with performing numerical experiments.

4.2 THE TWO-TRACT SYSTEM: A TOY MODEL
To examine the model and its signal in a somewhat exhaustive way, we start by the

most basic configuration: a simple two-tract system of total length 17 cm, as the one
depicted on Fig. 25 (where we omitted the ~ notation for legibility).

F w2 ey Vw2 € y
FVVl eyT T'UVVI €y

: ’E’YLl{hl7m17Hyl} ! {h27m27ny2}

—
'qr1

T 7
Figure 25: Two-tract system (N = 2):

We connect two spring-dashpot mechanical systems to the walls and a radiation
component to the rightmost surface of Ty (S72). We examine the behaviour of the
model for a simple dynamical configuration, where the wall of Ts is driven by an
input velocity, and focus on: the accumulation of mass due to the change of geometry;
the power-balance; and the existence of acoustical resonances.

The simulation is split into three temporal phases:

(1) astatic phaset € [tg,t1 = 1s] where both tracts are identical in geometry
(hl = h2 = 1cm);

(2) a dynamical phase t € [t1,t2 = 1.05 s] where the wall of tract To is
driven to reach a target height ho = 2 cm;

(3) a final static phase t € [ta, tiae = 3 8| similar to phase (1).

To produce frequency representations, an enthaply impulse is fed to the vocal tract
through the leftmost surface of Ty (Sg;) at £ = 0.3 s for phase (1), and at
5" — 2 s for phase (3).

In App. C (see page 131), we plot the velocity input signal used to drive the
wall of Ty (see Fig. 45) and the enthalpy impulse (see Fig. 46). The physical and
numerical parameters are detailed in Tab. 3 and Tab. 4. The physical parameters
of the mechanical systems connected to the walls will remain identical for every
simulation in this chapter. The value of the stiffness of the spring was taken from
Ref. Ishizaka, French, and Flanagan [IFF75] (relaxed cheeks setting).

On all plots, t1 and to are indicated with vertical red dashed lines. On the relevant
figures, the static phases (1) and (3) are denoted with a blue background, and the
dynamical phase (2) is denoted with an orange background.
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We first focus here on the dynamical phase (2) of the simulation. On Fig. 26, we
plot the heights h; (plain green curve) and hy (dashed black curve) of both tracts,
and the total mass mq + mo versus time during the movement.

Height of tracts Total mass  x10-3

2.01 i / .........
z Wi
) i i
::-,/1 = E l'l i — Ml

9] | N —. -
e Vi &
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1.0 r
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Figure 26: Heights of T; and Ty and total mass of air in the vocal tract versus time during
the dynamical phase; ¢; and t2 are shown in red dotted lines

As tract T9 becomes larger, mass is being drawn from the exterior into the system,
thus increasing the total amount of mass in the vocal tract.

Now, we assert the passivity of the simulation. On Fig. 27, we plot the local error
on the power-balance for the full simulation (at the top) and only for the dynamical
phase (2) (at the bottom). The local error on the power balance remains within the
precision of the chosen float-point representation and the numerical conditioning of
computations. The error is maximal during the dynamical phase, where the system
exhibits the most nonlinear behaviour (mass convection).

%1013 Local error on power balance
21 —— dE/dt + P.;s + Pyss
’g 11 Phase (1) Phase (3)
o 0 =
S 0 Phase (2) tmaz = 3.0s
E Xl(lJflS '
ERRE |
S 27 :
— i i
1 Phase (2) i
0 E l A JLJL L JEL
t1 ty
Time (s)

Figure 27: Local error on the powerbalance for the two-tract model. At the top, t € [0, tnaz].
At the bottom, we only show the dynamical phase (2) with ¢ € [t1, t2].

65



We now consider the frequency responses of the static configurations associated
with phases (1) and (3). Here, the frequency response (see remark 8) is the ratio of the
Fourier transforms of the flowrate wyps(f) = 921/p1 and ug(f) = ar2/p, respectively at
the leftmost surface Sz (the glottis) and rightmost surface Sgs (the lips). The peaks
of the frequency response correspond to acoustical resonances, called formants for
time-invariant assumptions. We plot the frequency responses for the static phases (1)
and (3) on Fig. 28.

Frequency response H(f) = uyps/u,

10 log(|H(f)]) (dB)

~10 | | . .
0 200 400 600 800 1000

Frequency (Hz)

Figure 28: Frequency responses of the two-tract model for both static phases: in solid blue,
phase (1); in dashed black, phase (3).

At phase (1), the system shows a main resonance at f; = 130Hz. In phase (3), this
formant shifts to f; = 168 Hz as a consequence of the wall movement in phase (2).
The amplitude of the resonance and the (pseudo) quality factor diminish because of
the height expansion of To, which increases the magnitude of the radiation effect.

For both static configurations, the frequency respresentations show a secondary
resonance, the magnitude of which is small compared to the one of f; ( fo ~ 400 Hz
for phase (1) and f2 ~ 500 Hz for phase (2)).

The presence of two resonances indicate that a given vocal tract, made of N, will
exhibit N; formants. This behaviour is investigated in the next section.

Remark 8 (frequency representation): Both plots on Fig. 28 are not transfer
functions, because the vocal tract model is nonlinear. However, as we are look-
ing at small fluctuations around static configurations (phases (1) and (3)),
the computed frequency responses are close to the transfer functions of the
linearised model.

As expected, the numerical vocal tract model accounts for variations of geometry,
and mass, and exhibits acoustical resonances while preserving the power balance.
However, a straight, uniform, 17-centimeter-long acoustic tube should exhibit a first
resonance at around f = 500 Hz. In our case, in phase (1), where the geometry
of the vocal tract is the one of a uniform tube, the model exhibits a resonance at
f = 130 Hz. This discrepancy is due to the lumped-parameter modelling combined
with the low number of tracts that we used to discretise the whole vocal tract. In
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the next section, we examine the impact of the number of tracts on the acoustical
resonances of the model.

4.3 IMPACT OF THE DISCRETISATION ON THE ACOUSTICAL BEHAVIOR

We now consider the case of a uniform duct of total length L = 17 cm, the
acoustical resonances of which are odd multiples of the fundamental frequency fi =
500 Hz (for an ideal closed-open resonator with an ideal radiation condition, see
Ref. [CK13, 3.5.2, p. 273]). To study the impact of the number of tracts on the
frequency location of the formants, we discretise the vocal tract with a range of
N; € [ 2, 22] identical tracts of equal length, height and width, such that £y = Ltot/2N,
and hg = Lg =1 cm.

To estimate the frequency response for each discretisation setup, we feed an en-
thalpy impulse to the leftmost surface Spq at t = t0,/3 With ¢4, = 0.1 8. The
sampling frequency is identical for each simulation (5 MHz). The remaining physical
and numerical parameters are identical to those of section 4.2.

On Fig. 29, we plot the frequency response for each discretisation setting, from
N; = 2 all the way to Ny = 22. The number of formants that the vocal tract exhibits
increases with the number of tracts, so that each new tract adds a new resonance.
As the total number of tracts increases, the frequency location of each formants
converges to their corresponding theoretical value (vertical orange dashed lines). The
discrepancy between the theoretical values and the numerical results increases with
the frequency. Note that the first formant is always underestimated, whereas the
higher ones are always overestimated. This is most likely caused by the (nonlinear)
lumped radiation condition that we added at the open end of the resonator, acting
as a correction length.

The plot also shows that considering 15 tracts to discretise the vocal tract is
enough to reconstruct the three first resonances of the acoustical system.

4.4 A SIMPLE COARTICULATION

We now consider the case of an articulating vocal tract, the shape of which varies
with time. Reflecting on the previous numerical experiment, we use a total of Ny = 15
tracts to discretise the resonator. This setting allows us to examine some acoustical
and energetical phenomena in a single simulation.

To each tract, we add the simple model of laminar resistance [Ste71] (detailed
in Sec. 4.1 and used in Ref. [Mae82]) to yield a more realistic behaviour and more
stable simulations. Indeed, the resulting 15-tract systems involves 14 constraints
(one per connection), thus increasing the stiffness of the dynamical system. Adding
supplementary losses helps the Newton-Raphson solver to converge. The stiffness of
the numerical problem requires a sampling frequency of 1 MHz. Moreover, solving the
constraints prior to the dynamics, instead of solving the implicit system altogether,
is not ideal. This numerical aspect was not investigated further and will be discussed
in the conclusion as a perspective.
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Similarily as in the first experiment, we consider three temporal phases:

(1) astatic phaset € [top = 0, t; = 0.07 s], where the vocal tract articulates
the vowel [al;

(2) adynamical phase t € [t1, t2 = 0.08 s], where the walls of the vocal tract
are driven to reach the geometry of vowel [i];

(3) a static phase t € [t = 0.08 s, tmax = 0.7 s] where the vocal tract
articulates the vowel [i].

The data for the vocal tract geometries of each vowel have been taken from Ref. [Arn+19].
For each tract, the driving velocity signal at the wall is given by the boxcar
function, the amplitude of which is ratio of the motion distance to the time allotted
for the movement (0.01 s in this simulation). To avoid harsh discontinuities at the
start and at the end of the movement, we smoothed out the extremeties of the
velocity step with sinusoidal ramps (see Fig. 47 and Fig. 48 in App. C).
For both static phases, we plot the simulated geometry on Fig. 30.

Geometry at the start and at the end of the simulation
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Figure 30: Simulated geometry of the vocal tract for Ny = 15. In blue, the geometry of vowel
[a] associated with phase (1). In orange, the geometry of the vowel [i] associated
with phase (3). During the dynamics phase (2), the geometry changes linearily
with time.

To compute the associated frequency responses (see Fig. 31), we feed an entahlpy
impulse at the glottis at ¢;;,p1 = 0.035 s and at ¢;,p2 = 0.62 s.
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Frequency response H (f) = wpps(f)/uq(f)

T e—
= [a]
; [ [l]
=
=
= ] e -
P ~
; ™ ~ -~ L i Se——- ul
~ 101 S
fi = 155H> fa = 2000H =
0 500 1000 1500 2000 2500 3000 3500 4000

Frequency (Hz)
Figure 31: Frequency response of the vocal tract for phases (1) and (3).

In a real life setting, the expected formant locations for a vowel [a] are around
fi ~ 850 Hz and f» ~ 1610 Hz and f; ~ 240 Hz and fo ~ 2400 Hz for vowel [i],
according to Ref. [Cat88]. In our case: for vowel [a], f1 ~ 656 Hz and fo ~ 1580 Hz;
for vowel [i], f1 ~ 155 Hz and fo ~ 2000 Hz. The discrepancies are most likely due
to the simple geometrical hypotheses that come with a lumped-parameter approach.

The magnitude of the resonances are higher in vowel [a] than for vowel [i]. This
is a consequence of the fluid dissipation model we introduced, the dissipation rate
of which increases as the cross section of a tract diminishes. In the vowel [i], toward
the mouth, the cross sections of the tracts are smaller (see Fig. 30). Therefore, the
dissipation rate is higher, leading an output signal with less magnitude than for
vowel [a], where the mouth is wide open. This difference in magnitude has an impact
on voiced signals, that we examine in the next section.

We now compare the magnitude of the power flows induced by the acoustical
impulses, fed to the vocal tract at the static phases (1) and (3), to the power flows
induced by the movement of the wall at phase (2). The former are related to acoustic
effects, whereas the latter are related to fluid mechanical effects.

We thus look at the power flows (time variation of stored energy) of each tract,
the product of the effort and the flux variables. At the top of Fig. 32, we plot the
power flows for phases (1) and (2), omitting phase (3) as it is redundant with phase
(1). Each colored curve denotes a tract, the dark blue curve being Ty, the dark red
curve being T1s.
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Figure 32: Power flows of each tract during step (1) and (2).

During phase (1), the peak value of the power flows is approximately 1078 W.
During the movement, in phase (2), the power flow is of unitary value, several orders
of magnitude above the the acoustical fluctations of step (1).

At the bottom left of the figure, we zoomed in on the instant where the impulse,
of unitary magnitude, is fed to T;. The power flow, induced by this impulse, propa-
gates from T; (dark blue) to Ty5 (dark red). Due to the radiation condition, losses
in the mechanical systems and in the fluid, the variation of stored energy decreases.
Then, the tract exhibits an oscillatory behaviour at its highest resonant frequency
(~ 15.5 kHz, see bottom right plot). This artefact is most likely due to the use of
an inadequate numerical method for the solving of the constraints of a stiff problem.
Again, solving the constraints prior to the dynamics of the system is not ideal and
probably causes this high frequency oscillation.

With this numerical experiment, we have shown that the articulated vocal tract
exhibits acoustical resonances that are realistic. We examined the power flows related
to the acoustical and fluid mechanical phenomena, and found that the latter is a few
orders of magnitude above the former. However, the results have to be confirmed
by new numerical experiments that use an adequate numerical method to properly
handle the constraints.

71



4.5 VOWEL SYNTHESIS

In this section, we excite the vocal tract with a simple source and consider the
coarticulation between vowel [a] and [i]. As in the previous section, we consider
three phases:

(1) a static phase, t € [0,t1 = 0.75 s|, where the vocal tract articulates the
vowel [al;

(2) a dynamical phase, t € [t1,t2 = 1.85 s|, where the walls are driven to

reach the geometry of vowel [i];

(3) a static phase, t € [t2, tmax = 3 s|, where the vocal tract articulates the
vowel [i].

The geometric data for the geometry are extracted from Ref [STH96]. The velocity
signal used to drive the walls is shown in App. C (see Fig 48).

We consider a simple excitation signal constituted of replicated elementary im-
pulses as the one used in the previous section (see Fig. 46 in App. C), so as to
obtain a train of impulsion at base frequency fo = 200 Hz.

We plot the simulated flowrate at the lips and its time-derivative on Fig. 33.

Flow rate at the lips and its time derivative
%1079
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Figure 33: Flow rate at the lips and its time derivative for a simple coarticulation. Looking
at the time derivative makes it possible to account for a simple radiation effect.
Low frequency transients are present at ¢; and to. The spectrogram of the bottom
plot is shown on Fig. 34.

The original flowrate exhibits a prominent low-frequency component (top of Fig. 33),
due to the phenomena of mass convection. To isolate the acoustic components, we
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plot the time derivative of the flow rate (see bottom plot). The amplitude of the
signal is greater for the [a] consonant, as the mouth is open, and smaller for the [i]
consonant. This discrepancy is mainly due to the loss model and to the difference of
surface area of the open mouth.

On the time derivative of the flowrate, the low frequency transients are still present
and can be seen on the spectrogram of the signal, shown on Fig. 34 (see the low fre-
quency range juste after t; and jud after t3). For this figure, we describe each plot
from top to bottom. At the top, we plot the geometry of the vocal tract at the start
and at the end of the simulation. Below, we plot an articulation coefficient, the aver-
age normalised distance! between the starting and ending geometric configurations:
this coefficient is null in phase (1), is equal to one when in phase (3), and the articula-
tion coefficient varies linearily with time in phase (2). Note that it could be possible
to use a more realistic signal, extracted from resonant magnetic imaging for instance.
Below, we plot the total transverse flow energy, the energy-normalised spectrogram
of the output signal (time derivative of the flowrate at the lips), and the energy per
time frame of the original spectrogram (used to normalise the spectrogram).

On the spectrogram, the formants are clearily visible and move with the same
timing as for the articulation coefficient, indicating a correlation between the ar-
ticulation and the frequency shift of the acoustical resonances. The low frequency
transients can be seen at the bottom of the spectrogram, at ¢ = ¢; and t = t».
As mentionned earlier, the magnitude of the signal is smaller for the vowel [i], as
the fluid losses in the mouth are more prominent (see bottom plot of Fig. 34). As
expected, the energy of the transverse flow is maximal during the movement.

1 YN, SN (O =hi o))/l (t0)—hi (tmas)|
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Vocal tract profile at phase (1)

Vocal tract profile at phase (3)
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Figure 34: Numerical results for the coarticulation [a]-to-[i]. From top to bottom: geometry
at phase (1) (left plot) and at phase (3) (right plot); articulation coefficient, where
0 corresponds to phase (1) and 1 corresponds to phase (3); sum of the energy of
the transverse flow of all tracts intensity normalised spectrogram; and energy per
time frame. ¢; and t9 are indicated by the dashed vertical lines.

74



To show the acoustical propagation phenomena, we plot on Fig. 35 the input
enthalpy ¥71 at the glottis and the mass rates §; and g5 at both extremities of the
vocal tract. We zoomed in on two impulses.
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Figure 35: Input enthalpy and output mass rate at both extermities of the vocal tract.

At each impulse, there is a delay between the output mass rate at the glottis and
at the lips. The value of this time delay correspond approximately to the time it
takes for the enthalpy impulse to travel along the vocal tract (~ 5 ms).

4.6 SUMMARY AND PERSPECTIVES

In this section, we completed the vocal tract model with additional components
and performed numerical experiments of increasing complexity. Using a simple two-
tract model, we have shown that the numerical vocal tract model handles mass
accumulation and geometry variations, and exhibits acoustical resonances. Then, we
investigated the impact of the number of tracts on the formants by discretising a
uniform duct with an increasing amount of tracts. The frequency location of each
formant converges to the expected value as the number of tracts increases. We then
studied a practical coarticulation example, and proposed an example of synthesis.

The above numerical experiments are not easy to perform, as the numerical
method is not well suited to handle constraints. To address this issue, the con-
straints and dynamics have to be simultaneously solved by the Newton-Raphson
solver. This would allow for the use of a smaller sampling frequency. We refer to the
work of Miiller [Miil21] for a class of power-balanced numerical methods that would
enable us to use a lower-sampling frequency.

Moreover, the time needed for the computations is too large to consider a real-time
implementation. For a system composed of 15 tracts, a simulation of 3 seconds has

75



to run for an hour. This is most likely due to: the C++ code generated by PyPHS that
is not optimised; and the very high sampling frequency (1 MHz) needed to solve the
stiff problem. However, the tract model may be compatible with a quadratisation
method [Lopl6], which would allow for an explicit formulation of the numerical
problem. The presence of additional constraints has to be adressed by extending
the quadratisation method to the case where the Hamiltonian is parametrised by
instantaneous constrained variables. Finally, the above model can be used with an
articulatory model to perform more complex coarticulation tasks. A more thorough
work has to be conducted to fully understand the capacities of our vocal tract model,
and identify the possible optimisation that can be applied to it.
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A PASSIVE THREE-PORT JUNCTION FOR FLUID
MECHANICS AND ACOUSTICS

In this chapter, we are interested in the
interconnection of three resonators with
a small common volume called a three @
port junction, shown on Fig. 36. At this
intersection, the cavity is submitted to - /

the pressure and flow rates of each res- \ /

onator. This is the case in the vocal \ ' @
tract, where the lower airways split at L

the nasal branching into the mouth and @ i

nasal cavities, and in woodwinds instru-

ments, where lateral holes can be con-

sidered to be short open resonators con-

nected all along the main bore. Several

models exist for such a junction, some Figure 36: A generic three port junction be-

of them are mentioned below. tween 3 systems. The cavity of the
junction is shown in blue and its
three connection boundaries are de-
in chapter 3) assumes the continuity of noted with dashed red lines.

pressure forces and that the sum of in-
coming mass fluxes at the junction van-

The most basic junction model (used

ishes. However, this basic model does not account for any geometrical parameters.
This issue has been adressed in the linear acoustical domain in Refs. [Dub+99] and
[CK13, Sec. 7.7]): a model of a branched resonator is derived using Green functions,
a variational formulation and a modal decomposition for the 2D rectangular geome-
try!, resulting in a purely inertial model. The parameters of the model are function
of the geometry of the junction and the mass of fluid connecting volume. This model
has no guarantee w.r.t. the passivity, due to the presence of negative masses, the
value of each is derived numerically. In the fluid mechanical domain, Mora Araque
[Mor20] proposed a purely compressible node model that connects two incompress-
ible pIs models. This is, to our knowledge, the only model of junction within the
pH framework. The geometrical parameters of the model are small and delicate to
estimate, while their importance in the numerical simulations is significant.

In summary, the first model does not guarantee the passivity, and the second is not
suited for the interconnection of acoustical components and accounts for only two
connections. As there is a growing interest for physical guaranteed-passive modelling
of linear and nonlinear acoustical systems [BH16; TC20; HR16] and fluid mechanical

A first experimental study on the nonlinear behaviour of this model has been conducted in
Ref. [Dal+02]
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systems [CML19; HS17; Hau+19; Mor20], the need for a passive and physically
interpretable junction model that can handle all these different phenomena increases.

To this end, we propose a simple and passive three-port junction model composed
of a 2D parallelepiped volume of homogeneous mass density. It can be connected
to other dynamical systems through three open surfaces. We start by establishing
a macroscopic base model (M1) using a set of geometrical and physical hypotheses.
From this fluid mechanical model, we derive five different pHs that account for (M1a-
b) compressible fluid mechanics, (M1c) fully and (M2) weakly nonlinear acoustics,
and, at last, (M3) linear acoustics (see Fig. 37). (M2) and (M3) incorporate linearis-
ing approximations that neglect, respectively, the nonlinearities of the state law and
of the mass convection.

Figure 37: The five different junction models derived in the chapter. Models (M1la-c) are
identical w.r.t. the hypothesis: only the structure varies. Models (M2) and (M3)
are obtained by applying linearising approximations.

Throughout this iterative process, we give some physical interpretations and analo-
gies with classical approaches through the use of equivalent electrical circuits and
state-space representation. The passivity of every model is ensured by the use of pHs.

We apply the same modelling methodology as in chapter 3, to which we add
elements regarding the generalisation of our approach. This would allow for the use
of more complex approximating basis functions. The chapter is organised as follows.
In section 5.1, we describe the considered geometry and remind the reader of the
physical hypotheses that we consider. In section 5.2, we discretise the model in order
to obtain a finite dimensional model. Then, in section 5.3, we cast the model into the
pHs framework and derive 5 different models ranging from fluid mechanics to linear
acoustics. Finally, in section 5.4, we compare models together and give some physical
interpretations of the linear model by examining its state-space representation.

5.1 HYPOTHESES AND APPROXIMATIONS

The three-port junction of Fig. 36 is modeled as a (HO0) 2D rectangular time-invariant
volume, depicted on Fig. 38, delimited by the spatial domain () = {(m,y,z) €
[—4o, o] x [0, ho] % [O,Lg]} of boundary Q) = Sy, U S, U Sg U S7. The surface S,
(located at y = 0) is an impervious boundary while Sz, Sr and Sr (respectively
located at © = —{y, x = ¢y and y = hg) are open boundaries. The volume V{ of the
junction is given by Vi = 20y Lohyg.
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Figure 38: The considered 2D cartesian geometry. To be compared with general case of
Fig. 36 where: system 1 is connected to Sy, system 2 to Sg and system 3 to St.

We remind the reader of the physical hypotheses we consider (see chapter 1):

H1) the fluid is assumed to be perfect (no viscosity);
H2

(H1)

(H2) the flow is irrotational;

(H3) the process is isentropic and adiabatic;
(H4)

(H5)

H4) the heat capacity at constant volume Cy is constant;

H5) the gas is assumed to satisfy the perfect gas assumption;

to which we add the (H6) lumped-parameter hypothesis:
(H6) the volumetric mass density p is homogeneous within Q).

Hypotheses (H1-5) describe a lossless fluid mechanical system, the dynamics of
which is governed by the conservation of mass and momentum

op . ov
it div(pv) and Pl grad(v)

o¢(p)
o 1S

the latter being shown in its specific form? and where 1 = %v v +e(p) +p3
the specific enthalpy and €(p) is the specific internal energy of the fluid.

We now detail the boundary conditions. For each S;, i € {L, R, T}, we define the
surface averaged enthalpy < 1 >g,, and its power-conjugated quantity, the mass

flow g,

< >g,=1/s JJ (;v -v+e(p) + pa;(pp)) dS and gg, = Jf(pv) -n dS, (5.1)
S

i

where n is the outward unit vector, orthogonal to the associated surface.
The total energy E stored by the fluid in () is the sum of a kinetic and thermo-
dynamic (or compression) term such as

E(v,p) = Hf (;pv v+ PE(P)> dv, (5.2)
Q

2 Quantities are expressed as per unit of mass.
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where, under (H3-5), the internal specific energy €(p) reads (see see Eq. (B.1.2)3
Py

App. B.1)
P\
(v—=1)po <PO> V] ' 3

All the above equations and hypotheses constitutes the physical description of the
junction. We now establish the first macroscopic finite dimensional model.

e(p) =

5.2 SPATIAL DISCRETISATION: DERIVING THE MACROSCOPIC MODEL (m1)

The macroscopic model (M1) is obtained by discretising the system similarily as in
the FEM method [EG10]. We project the velocity v and volumetric mass density p on
a basis function matrix P of size (3 x n) which performs the following approximations

[v <P H [P | Ou)] H
ol 1ol lowan| P e
where ¥ = ¥(t) and p = p(t) are finite dimensional vectors respectively of size n,, and
n, with n = n, +n,. They contain the degrees of freedom used to approximate each

infinite dimensional physical variable. IP is divided accordingly to the dimension of
v, p, ¥ and p so that Py is of size (2 x n,) and IP, is of size (1 x n,). Each component
of IP is a shape function.

Substituing v and p by their discretised counterparts in the energy function of
Eq. (5.2) yields

E(v,p) ~ B(%,p) = H” VTPT)(PV0)+(H’pﬁ)e(I’pi))] V.  (5.4)

The weak form of the conservation of mass and momentum equations is (see
App. B.2 for details)

Uf@f’ dv = ﬂ ¢pv) -n dS + J J J grad(p)Tpv dV, (5.5a)
f f f v dV = fﬂ div(py) AV + Uf div(p) dV, (5.5)

where ¢ : R?2 — R, with o(x,7) € C®, is a smooth function w.r.t.  and y.

As in chapter 3, we make the simplest choice of basis that is compatible with our
hypotheses and boundary conditions.

Definition 1 (Space of polynomials): We denote by P, with k € IN the space
of polynomials of degree less or equal to k.

We choose the space of affine functions P; for the velocity and (H6) piecewise
constant Py for the mass density, and build I as

In this appendix, we give the volumetric internal energy density U(p) = pe(p).
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; (5.6)

where, as in chapter 3, vy, - e, accounts for a uniform axial motion, vez/¢, - e, for a
velocity gradient and vyy/n, - e, for the transverse flow. In the following, we omit the
time dependency of these quantities.

Remark 9 (Transverse velocity): The transverse wvelocity is only discretised
with the single shape function Y/ho as the velocity of the fluid must be zero

at the bottom wall (no uniform transverse motion of the fluid).

Then, the energy is given by

O A RO
B, p) = §VTQ(P)V + pe(p)Vo
where
1 7 0 Vob 0 0
—x {EQ .
Q@) = [[[@eg av=p[[ |z 5 ofav=|0 % o,
2 N
Q 0 0 0 Z—g 0 0 Vgp

and €(p) is given by Eq. (5.3).

Remark 10 (Higher order of discretisation): The above computations can be
performed with higher order of basis function providing a suitable form function
matriz.

We now derive the dynamics equations that governs each component of ¥ and
p. In Eq. (5.5), we replace the variables v and p by their approximation P,¥ and
IP,p = p and replace ¢ by one of the shape function of IP in Eq. (5.6). For instance,
choosing ¢ = 1, the shape function associated with p, in the conservation of mass

;ﬁfffﬁdvszf(ﬁll’v@)-nds (5.7)
(@)

Q)
where 0Q) = Sp, U S, U Sg U ST with n being respectively — e, ,— e,, e, and e,.

yields

Evaluating each integral gives

a’ = he

d;_ Pve_ Py (5.8)

where we see that only the affine component v. and v, account for the compressibility.
AS v accounts for an incompressible axial flow, it does not appear in this equation,
as it is related to the compressible behaviour of the fluid.
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For the components ¥, we now detail the computations for the first component
Uma, associated with the shape function 1 e,. Setting ¢ =1 e, in Eq. (5.5b) gives

jtﬂf]m ep dV = —f Yn dS
Q

Q)

where 1) is the discretised enthalpy obtained by replacing v and p by their approxima-
tion in Eq. (5.1). Computing the volume integral on the left hand-side and expanding
the surface integral on the right hand-side yields

d

E(‘/Ovmx) — _!Lf¢ ds—i_i!@ dS = Lohg (< P >5p — < ) >SL)

where the surface-averaged enthalpies are unknown inputs and S = Lghg denotes
the cross section of the junction.

For v, and v,, we respectively choose the shape functions ¢ = {Z—Oﬂ” er, h% ey}
which gives

d Vi A ) Vo (. 0ep) . . vr . 5 v
—(2y,) = AU )] Zc v
dt(3v) S<p>g, +5 <y >g, 2€0<(p 2 +e(,o))+3+vmx+3
d VW c 2

'3

0c(p) v2 vy
: .

A Vo R
vy) =S < >g, +270 <2(p 2 +e(p))+§+vmz+§

At last, we approximate each output mass flow of Eq. (5.1) according to Eq. (5.6)
such as

qs; ~ qr, = _LOhOﬁ (Uc + 'Um;v) , (4sgp ~ dr = Lohoﬁ (_Uc + Umx)

A (5.9)
and qg, ~ §r = 2Lolypvy.

We can now cast this macroscopic model as a pis.

5.3 PH FORMULATIONS: FROM (mla) COMPRESSIBLE FLUID MECHANICS
TO (m3) LINEAR ACOUSTICS

In this section, we provide five different pIT models of the three-port junction model.
(M1a-c) are equivalent: only their formulation differs. (M2) is equipped with a linear
state law, and (M3) is fully linear.

5.3.1 Model (M1a): Natural Parametrisation

We first choose ¥ and p as energy variables, as they parametrise the chosen kinematic
and thermodynamical spatial approximations (see Eq. (5.6)). Then, the state vector
is X1 = [Uma, Ve, vy, P]T and the associated Hamiltonian is

T AC VR [( 2\ »
Hl(xl=[w ﬁ] )=-T 0 W2 g |v+-—— [() —v] (5.10)
2 3 1
Vop Y £0 P0
0 0o %
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leading to the effort vector ey,

e PVouma
N Vo
e = Vlel(Xl) = o = ﬁ‘/()%
Vy -1
1 2 v2 vy VoPoy e\
©p 2V <Umx T ?y> * 5D [(po -1

Using the equality e; = — {{§ ¥ dV = —Vj < ) >0, we express the outputs and
equations of dynamics in terms of the components of e and the inputs < ¢ >g,, <
0 > sy and < ) > sy (App. D). Then, we identify the following algebraic-differential
formulation by casting the equation in a matrical form such as

dvma

ddt 1/250 - 1/260 Cume
Ve
% dsty 73/&) Vo 3/23() 3/23() (S o

dt 5/ hoVo _3/ ho Svy

% = 3/£0V0 _3/hoV0 €p

Q\L _1/250 _3/280 < 17; >SL
y1 in 1200 —3/2¢ <P>g, | W

. 3/n <>

ar L /o 1 L=<¥>sr]

S1
This choice of energy variables renders the interconnection matrix not canonical
as 51 depends on the physical parameters ¢y, Lo and Vj. In the case of a canonical
matrix, the power flows are encoded only with +1, which simplifies the interpretation
of the interconnection of efforts and flows.
5.3.2 Model (M1b): Canonical Formulation
A canonical formulation of a pHs enables one to write the power exchanges between
the components with +1 in the interconnection matrix S. It encodes an elemen-
tary connection, like the rigid connection between the mass and the spring in the
mass-spring-damper example of chapter 2. This property of canonicity relies mainly
on the choice of state vector and the presence of additional algebraic components
(transformers and gyrators) possibly encoding physical coupling (like in chapter 3).
Here, the canonical formulation is obtained by applying a simple change of coor-
dinates. We define a new state vector x5 such as
—fy —K0/3 0 0 Umz vy, —fg (Umx + V¢ 3)
by /3 0 0 14 — ve/3
xg=Mx; = | ° i e = | "R = 0(Ums ) (5.11)
0 0 hoza 0 Uy vr vyho/3
0 0 0 Vl\p m o
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so the Hamiltonian reads

m 3m VoPo m\" m
Ho(xo) = V4 U3+ UUR) + —— 18 —y—
2(x2) 253( L+ VR +VLVR) o3 T 71 | g ’Ymo
where mg = ppVp. The associated effort vector ey = Vx,Ha(x2) is
m .
2 (v +vr/2) ar,
= (v/2+ j
o — 7 (/2 + vp) _ dr
3mVT/hg qr
1 3 P, -1
%(V% + v} +vivR) + mu% + ooty ((m/mo)v - 1) <9 >q

where < 1) > is the volume averaged enthalpy.

Substituing x; by M ~!x5 in the algebraic formulation of (M1a) yields the following
pH canonical formulation

der 1| -1 ew,
d
B 1 -1 €un
d
% 1 -1 ey
dmf—1-1 -1 -1 em (5.12)
q\L 1 < 1/; >S.
dr 1 <P >g,
qr | 1 | < >s]
So

where the exchange of power are indicated by +1. This simple structure enables us
to build an equivalent electrical circuit, using the fluid mechanical electrical analogy
presented in chapter 3. We show the circuit on Fig. 39, where the topology of Fig. 38
has been kept.

Yr

e,

¢Li qrL

Figure 39: Equivalent electrical electrical circuit of model (M1b). The current is analogous
to the mass flow, and the voltage to the specific enthalpy. Inductors represent

lumped fluid masses and the capacitor represents the compressible behaviour of
the fluid.
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Inductors represent fluid masses and the capacitor represents the compressibility
of the fluid. On the differential algebraic formulation, the dynamics of the kinetic
components (vr, vg and vr) are analogous to the Kirchhoff loop rule and the re-
maining equations are analogous to the Kirchhoff current law [Md 18].

Both left and right branches represent the axial flow (components vy and vg)
and the top branch (component vr) represents the transverse flow. In the solid
mechanical analogy, the mass component m interprets as a “two-dimensional spring”
that is submitted to the velocities of the two axial masses and transverse masses.

This model is conservative (it does not exhibits any resistors). The simplicity of
the structure is a direct consequence of the canonical interconnection matrix. The
dynamics of the system is examined in the last section of the chapter.

For later developpements, we divide the interconnection matrix as

0O 0 0 1 -1 0

Sz = J2 Gp2 with J2 = 0 0 0 1 and Gp2 = -1
~GJ, O3y 0 0 0 1 0 -1
-1 -1 -1 0 0 0 0

Both (M1la) and (M1b) are equivalent fluid mechanical models. We now introduce
the equivalent model (M1c), the formulation of which is closer to acoustics.

5.3.3 Model (M1c): Nonlinear Acoustics

In this section, we assume that the system is submitted to the atmospheric con-
ditions, characterized by a fluid at rest (no velocity) and at atmospheric pressure
p = Pp. From this assumption, we derive a new model (M1c), the quantities of which
(pressure, velocities, volumetric mass density) are expressed as fluctutations around
their atmospherical value.

To this end, we apply the shift procedure introduced in chapter 2. Like models
(M1a-b), (Mlc) is exact, as we do not introduce any linearising approximations.

The set of static inputs that corresponds to the atmospherical conditions is u* =
[<* >5,,<P* >5,,<* >5,]T =[0,0,0]T under which we assume that (M1b)
is stationary. The associated stationary state vector is x5 and verifies x5 = 0. Giving
u* and x5, the dynamics of vy, vg and vy, on Eq. (5.12)), read ep,(x5) = 0, and
the one of m reads e,, (x5) + ey, (X3) + e, (x3) = 0. For this system of equations, a
trivial solution is x5 = [0,0,0,mg]T.
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From there, we define the shifted energy variable vector is x3 = x2 — x5 =
[P, Pr, Up ,m]T and the shifted Hamiltonian

Hs(x3 = [P, PR, 1, m]T) = Ha(x3 + x3) — e2(x3) - x3 — Ha(x3)

m—+mo, o .o . - 3(m +mo) _
= 7(1/% + %+ DLUR) + TV%
" oy Ny (5.14)
ovo [(1 4 m> _ ,yﬂ _ 1:| ’
;7 —1 mo mo :
Ec(m)
leading to the (shifted) effort vector ez = Vy,Hs(x3)
(mtmo) i | 5 A
1K (71, + 77/2) i
(m-;iZmo) (DL/Q + ﬁR) ar
e3 = 0 _ ;
3(ﬁl+m0)l7T/hg ar
~ ~ -~ o~ - P - ~ 1 ~
%( 2+ 0%+ DLig) + %y% + <((m+mo)/(m+m0)0)’7 _ 1) <P >q

the three first components of which are identical to the one of (M1b) and < 9} >q
is the fluctuation of enthalpy around its state at rest value.

The algebraic differential formulation is

dxsz es3
% S e (5.15)
y3 us

with S3 = S9 and where us and ys are the shifted inputs and ouputs with ug = [<
w >G5, < QJZ) >8Spy < ,QD >ST]T and Ys=Y2 = [(:,Z\[n (}]\Rv (,]\T]T'

Remark 11 (benefit of the canonical representation): The canonical represen-
tation of (M1b) simplifies the shifting procedure since only the state vector is
affected which, as a consequence, modifies the Hamiltonian and efforts vari-
ables. Any modification of the component law is similar, for analog electrical
circuits, to swapping components on a PCB, as the connections remain identi-
cal, but the behaviour of the discrete components varies. Later on, the linearisa-
tion procedure also benefits from the canonical property of the interconnection.

We now establish a new model where the thermodynamical behaviour is linearised.

5.3.4 Model (M2): Linearised Thermodynamical Behaviour

Nonlinear acoustics relies mainly on two nonlinearities: the convection of matter,
and the nonlinear state law relating the internal energy to the static pressure.
Some physical systems, like the vocal tract, exhibit (small) acoustical fluctuations
of the volumetric mass density, while their capacity to convect matter remains valid.
In this case, it is safe to assume that the state law can be linearised while preserving
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the nonlinear convection law. This enables one to simplify the model and improve
its numerical conditionning, as the compression part of the system becomes linear.

Here, we assume that the fluctuations of mass 7 in model (Mlc) are small com-
pared to its state at rest value m* = mg such as

m_ P« (5.16)

(App 1):
mo £0

which is equivalent to assuming small fluctuations of g = p — pg, as we are considering
a time-invariant volume Vj (see (HO)).

To linearise the state law, we take the thermodynamical energy E.(m) of (Mlc)
in Eq. (5.14) and perform a series expansion of the second order so that

Eq(m) = Fovo Kl + m)V L 1]

v—1 mo mo
~ B ~ 2 ~ ~ 3
= A0 (Y _1] (1))
’y—l mo 2 mo mo mo

%

PoVoy ((m \?
2 mo

where 7 is the (small) acoustical fluctuation of mass, such as m = m + O(m?).

Notation 4. Here, giving a generic physical variable a, & denotes its discretised coun-
terpart (if needed). a denotes its fluctuation around a state a rest value ag so that
a = a+ag. a denotes the small fluctation so that a = a + ag + O(a?).

We define the state vector x4 = [P, Pr, Uy, m|T where T is the acoustical fluctu-
ation of mass around mg. The new Hamiltonian Hy(x4) is then quadratic w.r.t. m,
such as

L L m+m
Hy(x4 = (71, DR, Dp, m]) = 70
0

(0% 4+ 0% + DLivg) +

3(m +mo) o, RoVoy (0 2
oz T2 \mgy)

The effort vector 4 = Vy,Hy(x4) reads

m—+m, ~ ~
% (PL + 7r/2) ar
m-+m, ~ ~ ~
ey = 4( Z(Q) 0) (VL/Q + VR) _ dr
3(mm+mo) oy /p2 ar
1 (52 1 52 4~ 3 =2, PoVove 7
ﬂ(VL-‘rVR-FZ/LI/R)-FmVT-FOTng <Y >q

where only the term related to the state law %m is linear and differs from the
0

previous effort vector es, showing that only the thermodynamical part of the model

is affected by (App. 1).

Note that under (App. 1), the acoustical pressure inside the junction can now be re-
trieved by the well-known acoustical linear relation [CK13, Eq. (1.97)] m PoVo/p2vy =

C%ﬁ where ¢y = 4/ F07/po.
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Thanks to the canonical property obtained in (M1b) and inherited by (M1c), the
differential algebraic remains similar, such as

d()ict4 e4
= S4 )
Y4 uy

where 54 = S3, uy = u3 and yy is the linearised version of y3 under (App 1).

At last, we now establish a fully linear model where the phenomenon of mass
convection is also neglected.

5.3.5  Model (M3): Linear Acoustics

A key hypothesis of linear acoustics is to neglect the impact of mass convection on
the acoustical behaviour of the system [Fil+98, p. 12]. Some classical models of the
vocal tract [Mae82; EL16] also make this hypothesis, as their physical setting is the
one of linear acoustics.

Here, to neglect this phenomenon, we linearise the kinetic law of (M2) under the
assumption that the fluctuations of the kinetic variables 7; Vi € {L, R, T} are small,
which translates as

(App 2) : U, =v; +O(?) « 1| Vie{L,R,T}. (5.17)

This assumption impacts the kinetic part of the Hamiltonian, that we evaluate at
m =mgy <= m =0, giving the following quadratic Hamiltonian Hs(x5)
— mo 3m0_2 P()Vo’)/ ( m >2

Hs(x5 = [V, VR, v, m]T) = ﬁ(;L + VR +VULUR) + opz VT + .
0 0

that we cast in the following matricial form

mo/g2  mo/2¢2 0 0
1 mof2¢2  mo/p2 0 0 : .
Hs(xs) = =x7 0 0 X5 implyin es = Qx
e I LA P e
0 0 0 PoVoy/m2
Q

where Q is a matrix containing constant physical parameters.

The differential algebraic formulation is

dxs es
) _g (5.18)
Y5 us

where S5 = 54 and

Py, mPovVo/m? ar, ?—g’ (7, + 7r/2)

u5 = '(ZR = mPO'YVO/mg and Y5 = q‘R = % (DL/2 + IJR) (519)
_ o 0
Yr mPorVo/m? ar 3moir/h2
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where g is the acoustical mass rate and ) the acoustical enthalpy.

Again, the acoustical pressure inside the cavity is given by mFPoVo/p2v, = c3p. At a
given boundary S;i € {L, R, T}, the mass rate ¢; and enthalpy v; are linked to the
traditionnal acoustical pressure p; and flowrate U; by

pi\ _ |po O | [t ;
(U)_[O /] (q) Vie (LRT). 6.20)

5.4 COMPARISON OF THE JUNCTION MODELS AND STATE-SPACE REPRE-
SENTATION

In Tab. 2, we summarise the main differences and similarities for each junction model
(M1a) to (M3). All the proposed models are passive and have a pH formulation.

Models (Mla-c) are equivalent: only their representation differ. (M1b-c) are re-
formulations of (M1a), allowing for: a pH canonical representation, in (M1b); and a
nonlinear acoustical representation by defining the system as fluctuation around its
state at rest that coincides with the atmospherical conditions, in (Mlc).

Models (M2) and (M3) incorporate approximations regarding the state law and
the convection of mass. (M2) is equipped with a quadratic state law adapted for
acoustical systems that exhibit mass fluctuations, but small variations of volumet-
ric mass density and, therefore, pressure. (M3) is a fully linear acoustical system,
where the state law and the mass convection phenomena are neglected. We analyse
the state-space representation hereafter, to better understand the dynamics of our
junction models.

Definition 2 (Linear time-invariant state and output equations): The linear
time-invariant state-space representation of a dynamical system of state vector
x reads

d _ Ax(t) + Bu(t)

y(t) = Cx(t)+ Du(t)

(5.21)

where A, B, C and D are constant matrices.

The linear state-space representation of model (M3) is obtained by setting x = x5,
A=JQ B=Gyp, C= —GITD27 D = 0 (see Eq. (5.13)), u(t) = us and y(t) = y5
(see Eq. (5.19)). The inputs and outputs are linked to traditional acoustical quantities
by Eq. (5.20).

To retrieve the acoustical velocities and lumped volumetric mass density of the
junction, one can invert the change of coordinate of Eq. (5.11), which gives M~'x(#).

Remark 12 (Inverting the causality): As (M3) is linear, it is possible to invert

the input/output causality so a given surface can be driven with an input mass
rate (or flowrate) instead of an input enthalpy.
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(M1)

Model (M2) (M3)
(M1a) (M1b) (M1c)
Section 5.3.1 5.3.2 5.3.3 5.3.4 5.3.5
Hyp. (Ho-5)
App. (App. 1) (App. 1 & 2)
Domain Fluid Mechanics Nonlinear acoustics Linear acoustics
Shifted X X v v v
Passive v v v v v
X X1 = [Uma, Ve, Uy, P|T xo = v, VR, vp, m|T x3 = DL, DR, Up, m|T x4 = [P, DR, Uy, m|T x5 = [vp, VR, v, m|T
Energy H(x) = Hi(x) + He(x)
Hy (x) Vobf2 [v2,, + (Wi+vy)/s] m/y [V} +vi+vivr)/e2 + 3vr/p2] | mtmof2 [(9F +0R+0LPR)/02 4 30r/R2] || mtmo/2 [(9F +PR+PLOR)/2 + 307 /R2] || mo/2 [(P} +PR+PLPR)/62 4 307 /A2
He(x) FoVo/(v—1) [(#/po) ™ — 17/po] PoVo/(y—1) [(m/mo) T — ¥mfmo] | PoVo/(y—1) [(mo+m/mo)Y —1m/mo—1] PoVory/2(1/mo )?
Canonical X 4 v v v
0 0 0 =3V 0 0 0 1
J 0 0 0 —3/hoVo 0 0 0 1
0 0 0 0 0 0 0 1
360V 3hoVo O 0 B
[ 120, 3¢y 0 0] 100 0
-GJ oty  —3fty 0 0 01 0 0
0 0 3h 0 00 1 0

Table 2: Summary table for all junction models.



ANALYSIS OF EIGENSPACES We now investigate the dynamics of the model by
looking at its eigenvectors. The characteristic polynomial of A is

O PRI PER
Po G5h ’

with a trivial root of multiplicity two for A}, = 0 and two complex conjugated

solutions
. . 3(6% + hd)
A3q = Eico (KOOhOO )

where ¢y = 4/ % is the speed of sound.

The associated eigenvectors are

~1 —202/p, A ~A

B | o A 1 | -A

Var = ;v = ) yVay = A and  vy» = A
0 1 1

where A = i(co/mo)r/Loho/3(¢2+h32).

The eigenvectors enables us to identify three main power exchange patterns. v
is a combination of 7, and P, which indicates a direct transfer of power from the

left surface to the right surface, an axial incompressible flow. Likewise, v is linked
to an axial to transverse incompressible flow (left to the top surface). The last two
remaining eigenvectors indicate a periodic exchange of power between the three fluid

masses and the capacitor: the system acts as an oscillator where the capacitor acts
as a spring and the fluid masses acts as the main inertia. This analysis is compatible
with the equivalent electrical circuit depicted on Fig. 39.

As a corollary, we show how to compute the transfer matrix of (M3), a generalisa-
tion of the transfer function for multiple inputs multiple outputs (MIMO) systems.

Definition 3 (Transfer matrix [Hin05, p-141]): The transfer matriz G(s) of a
state-space system of form (5.21) is defined as

G(s) =D+ C(s1 - A)"'B. (5.22)
For (M3), the transfer matrix is given by G(s) = —Gyps(s1 — J2Q) ' Gys.
Remark 13 (straight bend geometry): Similary as in Ref. [CK13, Sec. 7.7],
a model of a straight bend (L shaped junction between two resonators) can

be retrieved by setting qg = 0. On the equivalent electrical circuit, this is
analogous to removing the component vg.
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5.5 SUMMARY AND PERSPECTIVES

In this chapter, we established five passive junction models and have shown how the
use of a canonical formulation enables us to physically interpret the model (using
equivalent electrical circuit), and simplifies the modelling process. We then examined
the dynamics of the system by using a state-space representation, allowing for a bet-
ter understanding of the power exchange patterns between the storing components.

The geometry we considered is simple, as well as the basis used for the projection
of the continuous space-time equations. To account for more complex geometries
and phenomena, our modelling methodology has to be generalised to account for
a higher discretisation order. An interesting improvement would be to consider a
geometry so that the side resonator is not orthogonal to the main bore. Finally, the
implementation of this model in a pratical example would enable us to verify the
intepretations we made.
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Part III

TOWARDS A PH MODELLING TOOL FOR FSI
PROBLEMS






MODELLING INFINITE DIMENSIONAL FSI PROBLEMS
WITH COLOR DISTRIBUTIONS IN LIGHT OF THE PH
FRAMEWORK

Fluid-structure interaction (FSI) problems arise when a deformable structure and a
fluid are interacting together: the hemodynamic flow of blood in deformable vessels,
the airflow at great speed around the flexible wing of an aircraft, interactions between
a flag and a fluid, the glottal flow between the vocal folds. In these situations, the
dynamics of the solid and the fluid phases are coupled, resulting in a multiphysical
dynamical system. This coupling relies on three types of conditions [Ricl7]: the
geometric conditions (i), the kinematic conditions (ii) and dynamical conditions

(iii).

The geometric conditions (i) are a set of hypotheses that identify the different solid
and fluid phases, and the volume they each occupy. Each phase is contained in a
domain wj(t), possibly time varying, of boundary dw;. The collection of regions (also
called domains and subdomains) is a partition of the global time-invariant control
volume Q). At all times, the union of all regions w;(t) perfectly covers! the total
region (), and the interior of the subdomains do not overlap.

As an example, we show on Fig. 40 a FSI dynamical system where a fluid phase
(domain wy(t)) is coupled with a solid phase (domain ws(t)). The coupling conditions
at the common interior boundary dwy N dws (see the red line on Fig. 40) are specified
by the kinematic and dynamic conditions.

0

\Z v ws(t)

Owg N a(,Uf

wy(t)

Figure 40: A simple fluid-structure interaction problem.

At an interior interface and given an (H1) inviscid fluid assumption, the kinematic
conditions (ii), i.e. the so-called normal velocity continuity, stipulate that the normal
components of the fluid and solid velocity fields are equal, so that

for all points in Jw; N dws, Vien=vg-n,

This is only valid in the absence of cavitation effects, as there are no holes between the fluid and
solid phases
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where vy is the velocity of the fluid phase, v, is the velocity of the solid phase and
n is the outward-pointing normal vector to the considered interface.

The dynamic conditions (iii) state the balance of forces at the boundary such as

for all points in dwy N ows, g, n = o, n,

f

where ¢, is the Cauchy stress tensor of the fluid phase, g is the stress tensor of the
solid phase.

FSI problems are mostly tackled numerically. On the one hand, partitioned meth-
ods simulate each phase separately, using a Lagrangian approach for the solid, and
a Eulerian approach for the fluid. The solid and fluid phases are then coupled us-
ing coupling algorithms®. Partitioned methods are popular as they allow for the use
of existing tools from structural and fluid mechanics. However, they do not always
provide a satisfactory solution as they do not provide a unified description of the
problem that encompasses the dynamics of each phase and the coupling conditions.

On the other hand, monolithic models aim at providing a unified description
of the fully coupled system, the most successful one being the arbitrary lagragian

eulerian (ALE) framework [Don+04], also used to derive new partitioned methods.

Most of these methods do not guarantee the power balance of the model or the sim-
ulation, thus explaining the growing interest for pHs formulation of FSI problems, like
the work of Cardoso Ribeiro in Refs. [Carl6; CML19] and Mora Araque [Mor20]. The
pH framework is a well-suited formalism for the developement of energy-consistent
models, because its modularity pairs well with the multiphysical nature of FSI prob-
lems. Some recent works aim at formulating the equations of fluid dynamics as a
coordinate-free system [Ras+21], in order to compute the interactions between the
body of a flying bird and the surronding air [Cal+21]. However, these existing pil
approaches are either not scalable [Mor20] or do not account for time varying vol-
umes [CML19].

To address this, Diagne and Maschke [DM13] provided an infinite-dimensional pH
description of two one-dimensional systems coupled by a moving interface, where
the time-varying domains occupied by each dynamical system are tracked by the
use of indicator functions (also called color functions), a tool used in level-set meth-

ods [OF04] for instance. In computational fluid dynamics (CFD), the indicator func-
tions are used to encode the geometric conditions [Ricl7, p. 262].

The modelling methodology proposed by Diagne and Maschke [DM13]? is three-
fold and described below:

Step 1 : the physical hypotheses and the geometric conditions (i) are stated;

Step 2 : the fully uncoupled pIis of the fluid and solid phases, and the associated
time-varying subdomains is formulated;

See the immersed boundary methods [GP20] or the “artificial implicit compressibility added coupling”
method [OD12]. See Ref [Lan+17] for a comparison of coupling methods.
Inspired by Refs. [GTR05; BSW15].
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Step 3 : the kinematic (ii) and dynamic (iii) conditions are specified, leading to
the fully coupled formulation of the FSI problem.

An important feature is that the physical hypotheses and coupling conditions are
treated separately, making this methodology modular. It is easy to differentiate
the coupling hypotheses, acting at the boundaries, and the physical hypotheses,
governing the dynamics of each phase within their subdomain. On top of this feature,
the resulting models are physically interpretable, and can be discretised with a pH-
compatible spatial discretisation method [CML19] to produce power-balanced finite-
dimensional models.

However, this methodology is still limited in its applications, as it only accounts
for one-dimensional problems composed of two phases.

To address these issues, we attempt, in this last chapter, to generalise the work
of Diagne and Maschke [DM13] in the three-dimensional case and for an arbitrary
number of phases. We choose a distribution theory setting, where we consider weak
forms of the physical variables and equations with precise definitions.

In order to make this preliminary work fit in a chapter, we simplify some elements.
In Ref. [DM13], the considered dynamical systems are abstract, as they may be
any one-dimensional system of two conservation equations. This choice enables the
authors to focus on mathematical matters, namely the investigation of the formal
pH structure of the coupled dynamical system. In this preliminary work, we consider
a physical problem with a simple infinite-dimensional description of a perfect fluid,
from which we develop our methodology. This allows for a concise and physical take
on the subject, in view of inspiring forthcoming studies to propose new and more
intuitive formulations.

The chapter is organised as follows. In section 6.1, we describe the principle of level-
set methods, then cast their main tool, the indicator function (or color function), as
a distribution. In section 6.2, we show how to obtain an uncoupled formulation of
the dynamics of the fluid phases, augmented with color distributions. In section 6.3,
we give a few perspectives about a possible port-Hamiltonian formulation of this
preliminary work.

6.1 COLOR DISTRIBUTIONS
6.1.1 Indicator Functions in Level-Set Methods

Level-set methods [MOS92; Set99] are used in image processing, computer vision,
and CFD for FSI problems or multiphase flow (see Ref. [OF04] for more details).
This class of methods relies on the use of an indicator function, also called level-set
function or color function, to enforce the geometric conditions [Ric17] and describe
the moving boundaries enclosing each phase. We use the most basic definition of

color function, detailed hereafter.

Consider the simple case, depicted on Fig. 40 in which a fluid contained in an open
domain wy (non-empty connected open set) interacts with a structure, contained in
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the domain ws. Consider two color functions ¢y and cs, respectively representing
wy(t) and w(t), and defined as

Vies,f ci(r,t) = L ifrew(t) (6.1)

0 ifr ¢ wi(t)

where r € R3 is the position vector (z,, z)T. Now, the domains w #/s can be defined
from the color functions as

wit) = {reR3|cp(r,t) =1} and ws(t) = {re R®|cy(r,t) =1}.  (6.2)

These color functions can vary with time and are associated with a PDE modelling
the time-variation of the domain wj;(t), so that ¢; is convected according to the
following equation [MOS92]

Vie {s, [} %Ctz — — grad(¢;)-v? = v’ -n, (6.3)
where v? is the velocity of the boundary Owy N dws and 0 otherwise, and where

— grad(c) generates the outward-pointing normal vector of the boundary n. When
r € w;, grad(¢) = 0, meaning that only the phenomena at the boundary have an
effect on the dynamics of c¢;.

Remark 14 (inward-poiting normal vector): Due to the color function values,
the gradient grad(c;) is postively oriented from the exterior of w; (where ¢; =
0) towards the interior of w; (where ¢; equals 1), and is orthogonal to ow;.

To make sense of Eq. (6.3), we propose a new formulation based on distributions.

6.1.2 Reminder on Distribution Theory

We start by providing basic definitions and properties from distribution theory
adapted from “Mathematics for the Physical Sciences” by Laurent Schwartz [Sch65]
(see also Ref. [Sch66]).

The common motionless domain () is a non-empty open set, equipped with a
position vector r € (). We call the support of a real-valued function ¢ the smallest
closed set, outside which ¢ = 0.

Definition 4 (Space of functions with bounded support, [Sch65], Def. 1 p. 71):
The space D(Q)) is the space of real-valued functions which are infinitely dif-
ferentiable and have bounded supports on C):

D(Q) =: {p e CO ()} (6.4)

In the following, we sometimes abbreviate the notation D(Q)) by D. Here, we
consider test functions ¢ € D(Q)) which vanish on the boundary of Q.
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Definition 5 (Distribution, [Sch65]|, Def. 2 p. 73): A continuous linear func-
tional on the vector space D is called a distribution T'.

A distribution T' € D’ (dual space of D) assigns a function ¢ € D to a real number
denoted by (T', @) where (-, -) (or (-, -)q) is defined as the scalar product on D
endowed with the following properties.

Property 1 ([Sch65] (I, I; 8 and 9)):

(T o1+ 920 =<T, p1)+ (T, p2), (6.5a)
(T, Apy = XT', o), VAeR. (6.5b)

The distributions themselves form a vector space D' with the sum T\ + Ty and

the product XT' defined by

i+ Te, o) ={T1, ) +{T2, ) (6.6a)
T, oy =XT, p) (6.6b)

so that the scalar product (T , ), for T € D' and ¢ € D so that the scalar
product is a bilinear form.

The support of a distribution T' [Sch65, p. 79] is the smallest closed set outside of
which T is zero.

The following remark highlights a point that will be used later on in this chapter.

Remark 15 (Empty intersection of two supports): If the support of ¢ € D and
the support of T € D' have no points in common, then

(T, ¢y=0.

DIFFERENTIATION OF DISTRIBUTIONS [ScH65, P. 80] — We now define
the spatial derivative of a distribution 7.

We first consider the one-dimensional case where Q) := [a, b]. We pick a function
¢ € D(Q)) that vanishes at the boundary of 0Q). We use the integration by part
procedure such as [Sch65, II, 2, 6, p. 80]

oT B b N op
8x’¢>_|[Ti]a| <T’8a: N <T’8:c'

0

A generalisation of this formula for a n-dimensional open set () < R"™, n > 2 is
given below. Here, ¢ is a test function of vectorial values on (). The derivative of T,
denoted by its gradient grad(T), reads

Cerad(1), o) = [ div(mo) av — <z, aiv(),
Q
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where the first is null by the means of the divergence theorem [LSS09]

|[[ aivtze) = [[76-m -0
Q oQ

as ¢ € D(Q) is zero on 0Q).
Then, the first order derivative of T is given by the following property.

Property 2 (Gradient of a distribution): The gradient of a distribution T €
D'(Q) is defined as

Vo e D(QY), |(grad(T), p) = (T, div(p))|, (6.7)

where ¢ is a vectorial test function in D(Q)).

A similar form is shown Ref. [OF04, Eq. (1.16)]. For higher order derivatives of T,
see theorem 3 in Ref. [Sch65, p. 81].

EXAMPLES OF DISTRIBUTION — [Sch65, p.—77] The identity distribution 1
assigns a function ¢ to its integral on (), that is, (1, ¢) = SQ .

The Dirac distribution & evaluates a function of D at r = 0 € Q), which is denoted
by

(6, ) =(0).

Similarily, é, evaluates ¢ at the point r € (), that is, (dy, ¥) = ¢(r).

We now proceed to the definition of the color distribution, a term that replaces
the term color function to avoid any ambiguity.

6.1.3 Color Distributions

We start by specifying the geometric conditions for the general case of the full

FSI problem. Consider the domain Q) (global time-invariant control volume), a non-
empty connected open set, split into N, time varying open subdomains w;(t) associ-
ated with each fluid and solid phase, as depicted on Fig. 41.

The collection wie[1,x,, ](t) defines a cover of Q) [GGY99, p. 19] the union of which
is the whole region (), such as

Q= wi(t). (68)

@
Il
—_

The intersection of two contiguous regions is the common interface
wimwjzawimawj V{i,je[[l,Nw]]|i¢j}, (6.9)

stating that the fluid and solid phases never overlap, but share common interfaces.
If w; and w; are not contiguous, their intersection is the empty set.
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Figure 41: The control domain Q) paved with subdomains w;, ¢ € [1, Ny, |

Remark 16 (equality of () and the union of its cover): The sets Q) and
U?:l wi(t) are equal in the sense of measure theory, meaning that O\ Ui\i"l wi(t)
s of null measure.

The global domain Q) is equipped with the scalar product (-, -). Moreover, for
each member of the cover and each t, w; is equipped with its own scalar product
(- “Duwy(t) restricted to the domain w;(t) defined as {a, b),, ) = SSSM (1 abdV.

We denote by D(Q) the set of infinitely differentiable functions with a compact
support on () and by D’'(Q)) the vector space of distributions on ().

We can now define the concept of color distribution.

Definition 6 (color distribution): Let t — w;(t) be a continuously time-varying
region in Q). Then, we define the color distribution of w; as ¢;(-,t) € D'(Q))
such that

Vi, Vpe D(Q)7 <Ci('v t) ) 90> = <]lv 90>wi(t)a (6'10)

where 1 is the identity distribution on Q).

Thus, a color distribution assigns a function ¢ to the volume-integral of ¢ on the
domain w;(t). In the following, we omit the variable t.

Property 3 (summing color distributions): Let {¢;}, i € [1, Ny ] be a (static)
cover of Q). The sum of all the color distributions ¢; applied to v € D(Q)) yields

N Ny
2<cia §0> = Z<]l> (P>wi = <]17 90> (611)
=1 =1

A corollary is that this property is also true for any time-varying fonction c(-,t) €
D(Q), in the sense that, for all ¢,

No, N
Z<Ci('7t)7 Py = Z<]1? (10>wi(t) =, ¢, (6.12)
i=1 i=1
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because the difference between () and U?I:wl wi(t) is of null measure (see Rk. 16).

GRADIENT OF A COLOR DISTRIBUTION — We can now define the spatial
derivative of ¢; (see Eq. (6.3)), that is, the distribution grad(c;(-,t)), denoted by
grad(c;) in the following. More generally and for the sake of conciseness, we omit the
space-time dependence in the following when it is not ambiguous. As a consequence
of Property 2, applying grad(c;) to a function ¢ € D(Q)) computes the flux of ¢
through the boundary of w;.

Using property 2 yields

(grad(c;), o) ") ~(ci, div(p)),

which is equivalent, under Def. 6, to the integral on the subdomain w;(t) < Q

_<Ci ) div(¢)> = _<]17 div(90)>wi‘

Finally, using the divergence theorem [L.SS09, Th. 6.1] yields the result

a1, div(g mdw ve-|[[emas.

Ow;

We may now state the full definition.

Definition 7 (Gradient of a color distribution): Let w; be a domain in Q), as-
sociated with a color distribution c¢; € D'(Q)). Then, the distribution grad(c;)
assigns a function @ € D(Q) to the incoming flux of ¢ through the boundary
of wi, denotes by dw;, so that

(grad(c;), jf«p n ds, (6.13)

Ow;

where n is the outward-pointing normal vector of the boundary dw;.

This definition is illustrated on Fig. 42 for a generic subdomain w;. The gradi-
ent of a distribution grad(c;) can be seen as the surface generalisation of the one
dimensional Dirac (or delta) function at the boundary of the associated domain.

&ui

Figure 42: The color function ¢; and its gradient along the associated subdomain w;
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TIME DERIVATIVE OF A COLOR DISTRIBUTION — We now cast the dynam-
ics of a color function distribution, as shown on Eq. (6.3), within the distribution
framework. To this end, we now work with test function in D(Q) x 7). We define
by 7 the arbitrary compact time interval [t1,t2] with ¢; < to. We pick a compact
and infinitely differentiable test function ¢(r,t) in the space-time domain D(Q x T),
which is zero on 0(Q) x T).

The time derivative of ¢;(r,t) reads

oc; op
(e dt = [, 9l — | Lei, =) dt,
f lTT' L’ ot

where the first term vanishes, as ¢ is zero on ¢7. The second term, under Def. 6,

reduces to 5
_ oy
J<,, %oy gt — L (<11, v >wi> dt.

which, using the Leibniz-Reynolds transport theorem [YamO08, p. 26, Eq. (1.5.10)],
gives (detailing the space-time variables)

T U A

w;(t)
L 1

J H “(r,t)-n(r,t)) dS(r,t) | dt,

Ow; (t)

where the first term vanishes as the ¢ is zero on 7. In the above equation, v0 is
the velocity of the boundaries, defined on ﬂi\i"l w;. By definition, v is null on the

boundary of the (motionless) domain Q).

We transform the surface integral in a volume integral on ) by applying the
divergence theorem [YamO8] (in a general form that accounts for a scalar, vectorial,
or tensorial quantity), so that (omittin the space-time variables)

f H n) dS dt = f@ div(pv®)u, dt = f (ci, div(pv®)) di

= L— fff div(cigova) — (grad(c;) 'Va) e dV dt
f ff ci gov 'n dS | dt —f fff grad(c;) )cp dV | dt

where the first term is zero because v¥ is null on dQ (boundary of the motionless
global control volume).
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Finally, we obtain the following definition

L <<aacti, o) +(grad(c;) - v, <p>> dt =0 (6.14)

which states, under Def. 7 and in the sense of distributions, that the time variation
of the domain w; is equal to the normal component of the velocity of its boundary.
This is equivalent to Eq. (3.3) in Ref. [DM13].

Definition 8 (Time derivative of a color distribution): Let t — w;(t) be a con-
tinuously time-varying region in Q of boundary velocity v°. Let ¢; € D'(Q x T)
be the color distribution associated with w;. Then, the distribution % assigns
a function ¢ € D(Q x T) to the flux induced by the motion of the subdomain

w; at its boundary dw;, such as

é’ C;

- = —(grad(¢;) -1’ = o n i
G D = ~(grad(e) o or = | agso( ) ds | dt (6.15)

where (+, yaxT is the natural scalair product on {Q x T}, and where n is the
outward-pointing normal vector to the boundary ow;.

6.1.4 Eztrapolation of Physical Variables on the Common Domain

Consider a generic physical quantity p;(r,t) that is C! regular on the subdomain
w; (pi € CH(A;, R™) with A; = {w;(t) x T,Vt} € Q x T) which can be scalar (e.g.
internal energy, volumetric mass density), vectorial (e.g. velocity) or tensorial (e.g.
stress and strain tensors). We denote P; € Chy (Q x T) (the space of piecewise
smooth function on Q) x 7") the extrapolation of p; over Q x T (P; is equal to p; on
A; and zero elsewhere) so that

(eiPi, praxT = (P, PraxT (6.16)

where we introduced the extrapolated variable p € Chyy, (Q x T,R"). Here, p; takes
the value p; on w;, and 0 outside w; (that is p; = ¢;P).

We generalise this definition to account for a collection of physical variables p;
of the same nature (e.g. mass density, velocity). Consider the sum of each physical
variables p; of the N, subdomains {w;}ic[1,n,, ] so that

Ny, Ny
Y eibis @axt = eibi s ©)axT = P) )axT
=1 =1

using the bilinearity property of the scalar product and remark 15.
Here, the extrapolated variable p € Chy (Q x T, R") takes the value p; when
rew;(t)Vie 1, Ny,].
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Definition 9 (extrapolated variable): Consider a collection of N, physical vari-
ables P; € P, with P = Cpy, (Q x T,R™), of the same nature. We define the
extrapolated variable p(r,t) € P that takes the value p; when r € w;(t) such as

No, No,
Voe DQXT), O ebi, eraxt =B, eaxr, ie formally p=) cip;.
i=1 i=1

Property 4 (Applying a color distribution on an extrapolated variable): Ap-
plying the color distribution c;, associated with the time-varying subdomain
w;i(t), to an extrapolated variable p € IP yields the variable p;, that is

Yo e D(Q)), (&b, vraxT = Pis Y)axT

Corollary 1 (Empty intersection of domains): Under Eq. (6.9) and remark 15,
applying a color distribution ¢; € D'(QQ x T) to a variable p; € IP yields O for
1 # 7, that is,

Viyje [[13 Nw]]a V¢ED(QXT)7 17&]7 S <Cipj7 90>Q><7—:0

because the support of ¢; and p; do not overlap (see Rk. 16).

6.2 COLOR-DISTRIBUTION-AUGMENTED MULTIPHASE PROBLEM

In this section, we introduce the fluid pi model that we consider. Then, we detail
the methodology to derive pHs augmented with color distributions. To generalise the
procedure for a generic infinite-dimensional pHs, see the approach of Ref. [DM13].

We consider Ny fluid phases. Each fluid phase is indexed by ¢ € F, F being a
n-tuplet containing the index of each fluid phase. We first isolate a single fluid phase
contained in the subdomain w; Vi € F.

FLUID MODEL — We assume that the i-th fluid phase verifies the hypotheses
(H1, 3-5). The fluid and flow are described by the velocity v;(r,t), the volumetric
mass p;(r,t) for r € w;, and the system of conservation equations [Lea(07] describing

the time variation of mass

op;
a—’; + div(pivi) = 0 (6.17)
and the time variation of momentum
0pivi .
PatV + div(p;v; ® v;) + grad(p;) = 0. (6.18)

The energy stored by the fluid is the sum of the kinetic and internal energy

£ = [[[ (owivi (o) av (6.19)
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where €;(p;) is the specific internal energy, related to the pressure by [vMO02]

Oe(pi)
2 )
i = P ) 6.20
o (6.20)
PORT-HAMILTONIAN FORM — We consider the model of Ref. [Mor20] under

hypotheses (H1, 3-5). Choosing v; and p; as energy variables gives the following
Hamiltonian

. 1
Hyi(Xpi = [v], pi]") = ff Hyi(Xpi) AV with  Hp (X ) = SPivi Vit pi€(pi)

leading to the efforts

6H(v;
o; = OHrilXpi) _ M| _ pivi _|m (6.21)
R R B B ORSZE i B EY

where 7r; is the volumetric momentum and v; the total specific enthalpy.

The dynamics of the pls is given by

0 (i _ | G —grad(-)| |7
ot <Pz> [— div(-) 0 ] L/h] (0:22)

where div() and grad() are formally skew-adjoint according to Ref. [ZK14] and
where Gy, ;, first introduced in Ref [Carl6, 6.2, p.-73], is a skew-symmetric matrix
called a gyroscopic operator, that is responsible of the power transfers between the
different components of the velocity due to the vorticity of the flow. It is defined as

0 Wz Wy We i
Gui=| w. 0 —Wy with  w; =r0tv; = | w,; |- (6.23)
—Wyi Wrs 0 Wz

The power-balance reads

dH; (X;)
T —ff(ﬂ'ﬂ/)i) -n dS. (6.24)
Ow;
AUGMENTED STATE VECTOR AND HAMILTONIAN — Following the proce-

dure of Ref. [DM13], we define the state vector of all the fluid pHs comprised of
the extrapolated variables ¥ and p, and the associated color distributions such as
Xy = [¥7,p,crqays - -» crnpy]T- The total Hamiltonian is the sum of each energy
density H; accross each fluid phase ¢ € F such as

() = S H(X) = Zf”f Hyo(X) AV (6.25)

eF
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The effort variables are given by the variational derivative of the Hamiltonian
w.r.t. the state vector. We first take the component associated with ¥ as an example,

so that
OH¢(Xy)
\~’ T e~ (] Z X
¢ oV 5v ZGZ]__JJJC Hyi(X)

ov; OH .
Zfﬂ”fz*f yav) o =Z< v )Ci:“
eF —_

eF,~ "7

Z

o
v (on)

™5

using the chain rule for the variational derivative [GR96, p.—37, Eq. 8|. Likewise, we
have e; = .
The effort e, associated with the j-th color distribution is given by

, SH . (Xy)
iy FUSA? 24 A ra(X) d X
VieF, e = 5c; 5cj ;ﬂfc Hyi(Xp) AV | = My j(Xf).

Then, the effort vector e of the fluid phases, gathering every effort variable, reads

OHpi(Xi) _ [0 - :
er = Tfﬂ = [TFT, Y, 'Hf,]:(l)(.)('f), cey 'Hf ]—'(Nf)(Xf)] . (6.26)

We now establish the conservation equation for each component of the state vector,

starting with the volumetric mass density.

CONSERVATION OF MASS — For the dynamics of g, we give the following theo-

rem.
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Theorem 1 (dynamics of j in the sense of distribution): In the sense of distri-
butions in ), we have

op(+,t) + div(#(~ 1)) = Z[DIVCi]ﬁ'(‘at) — Z[Fqﬁ-](-,t) (6.27)

ot 1eF eF
where we define the following distributions.

Under Def. 8 and for c;(r,t), we define the distribution I'c,p that computes the
flux of p € P induced by the motion of the boundary ow;(t), that is

(TeBlt), @) = f j i (1) () - (—n(- 1) dS,  (6.28)
Ow; (t

where the integral over dw;(t), function of ¢;p, must be understood as the
integral of the interior (inside w;) limit of P towards dw;.

For ¢;(r), we define the distribution DIV ,p € D'(Q x T) that computes the
flux of P through dw;,

ONVep, o) = [[(ep)- (-m) as (6.29)

Ow;

where the integral over dw;(t) assumes the same role as for T, .

Proof. The above theorem means that, for a test function ¢ € D(Q)), we have

<aﬁ('v t)

A div(#E (1) - DIDIVe 7 (-, 8) + Y [T, (), ) = 0. (6.30)

iEF ieF

To do so we consider the scalar product {5, ¢) and examine its time derivative

S0, 0 = S ACNa6D, 9 = X LG Da6 9

ieF eF

where we used the linearity property of the distribution. We then write §t<ﬁici , Q)
in an integral form (omitting variable )

d
Z 7<ﬁZC’L s <P> fff Cipip dV = Jff pPip dv.
ieF d eF dt ieF dt @i (D)
Then, applying the Leibniz-Reynolds theorem, it follows that

efdtmwdv meap d”;fﬂ piv’ np dS.

Ow; (¢
] ]

@ ©)
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The partial derivative of j; w.r.t. ¢ is given by Eq. (6.17) on w;, so that term @

becomes @ ;ﬂf 0pi o dV — ;jg_ div(7r;) dV.

We use the vectorial identity ab = a div(b) + grad(a) - b[GR07, p. 1051] to
obtain

(D)= ezfm — div(#;p) + 7t; - grad(yp) dV

—;jff div(F;p) dV+;ffj7rz grad(p) dV.

w; ()
1 1

® @

The term @ is given by

@ Z Jff c;i7; grad(p) dV as grad(y) € D(Q),

ieF

_ f f f EZF(Cm) grad(y) dV "L * f”w grad(yp) dV
ij div(@p) dV — fjf div(7)e dV

® ®

Term @ is null as, under the divergence theorem and because ¢ is zero on Q)

@:gfw-ndszo. (6.31)

Finally, given that %@, Yy = <a% 7, ¢y as Q) is motionless and because ¢ € D(Q)),

we have
), oy = U piv ncpdS—l—ZJfJ div(f;0) dV — f”dw Yo dV
dwi (t) ZE]:
which, under the divergence theorem, gives back the quantity of the theorem. ]

We write the dynamics of g in a local form (omitting the space-time variables)

op . -
% + div(7) Z DIV, & Z re« (6.32)
ieF €eF

@ ©)

where we highlighted:
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» in (blue, on the left-hand side, the terms accounting for the dynamics within
each domain w;, where the distribution DIV, and I';; are null;

» in (orange , on the right-hand side, the terms related to the boundary interac-
tions, on dw; where the distribution DIV, and I';, restore the jump conditions
with the neighbouring phases.

We now examine at the right-hand side of Eq. (6.32). Under theorem 1, it defines
the effective mass-flow at a discontinuity [Fil4-98, Eq. (1.18)] (i.e. the boundaries
ﬁwi):

D-@=-3 [[memass S [[i mas

1eF o z‘e]—'awi
= Z ff(piva — ;) -n dS.
ie]—'a
wi

Both terms combine depending on the nature of the boundary. In the particular

case of an impermeable boundary, the kinematic condition gives v; - n = v?

-n, and
the mass flow is null. As of now, we did not make any assumptions regarding the

nature of the boundaries dw;.

CONSERVATION OF MOMENTUM —  Applying theorem 1 on %@7, vy, velP
and ¢ € D(Q) yields a similar result,

ov . = - -

— d G = DIV, — r.. 6.33

<5t + gra (d’) +Gu—, @) ;}_ e ;}_ ¥ ( )

@ ©)

b1| e

where

» term @ is the input enthalpy at the boundary,

» term @ is the enthalpy induced by the displacement of the interface.

COLOR DISTRIBUTION — The dynamics of the i-th color distribution is given
by Eq. (6.14)
. oc; 0
Vie F, 2 — Y - grad(c) . (6.34)

©)

We gather Egs. (6.32) (6.33) and (6.34) below

N__ grad(§) — Go + Y DIV,§ — Y T d (6.352)
ot P ieF ieF
b __ div(#) + > | DIV & — Y T (6.35b)
ot i€eF ieF
. oc; 0
Vie F, il grad(c;) - v°. (6.35¢)
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which governes the dynamics of the uncoupled multiphase flow dynamical system.
Note that with the port-Hamiltonian notations we provided, it is possible to identify
the components of the effort vector in the dynamics of g and ¥.

In Eqgs. (6.35), we identify connecting ports indicated by the presence of the bound-
ary distributions DIV, and T.,. The velocity of the boundary v? acts on the dynam-
ics of the phases through the distribution I'c,. Depending on the physics at hand,
this velocity may be driven by a neighbouring fluid phase, or by a solid phase (the
formulation of which has not been addressed in this thesis).

6.3 SUMMARY AND PERSPECTIVES: TOWARDS A PORT-HAMILTONIAN FOR-
MULATION

In this chapter, we gave a new definition of color functions within the scope of dis-
tributions. To this end, we developped tools and definitions to finally express the
dynamics of multiple phases of fluid in the sense of distributions. We defined bound-
ary distributions, that map the interaction phenomena at the boundaries to the
dynamics inside the phases (contained in w;). We introduced the port-Hamiltonian
formulation of the fluid phases, in order to inspire forthcoming studies to propose a
full port-Hamiltonian formulation augmented with color distributions.

TOWARDS A PORT-HAMILTONIAN FORMULATION — Inspired by the orig-
inal work of Diagne and Maschke [DM13], we give some elements that could lead
to the formal definition of port-Hamiltonian systems that include color distributions.

Consider the Ny fluid phases, as defined in the previous section. We propose a
possible expression of the dynamics of the fluid phases that includes: a linear Hamil-
tonian operator [J; abstract “boundary operators” B; (gathering terms associated
with DIV, in Egs. (6.35)) and D (gathering the terms associated to I'c,).

On the one hand, B maps the interactions with the neighbouring domains (jumps)
to the internal dynamics of the considered phase. On the other hand, Dy maps the
input velocity of the boundary v° to the effect induced by the displacement of the
boundaries on the dynamic of the system. Thus, it could be possible to express, as
in Ref. [DM13], the dynamics of the multiphase flow in the following manner:

oX
=L = Jrer + Bp(Xp)e] — Dy(Xp)v?
—Gw% —grad(-) 0 (6.36)
where Jy = — div(-) 0 0
0 0 0

where v? and efc = [#T7,4)] appear explicitely as inputs.

Dy corresponds to the mapping introduced in Ref. [DM13, Eq. (3.10)]. A dual
operator ]D} exists, and is associated to output ports.
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We show a possible compact formulation that includes: the internal dynamics
within each subdomain, highlighted in 'blue ; the terms related to the interactions
at the boundaries mapped to the internal dynamics by the means of By and Dy,
highlighted in (orange ; and the power-conjugated ouputs f({ and p?. It is similar to
the algebraic-differential formulation for the finite-dimensional piis, and reads

JH ~
O I 1 A
t SH 7
B 5= =1
otp ! %
oH
atC]:(l) docry Ha
p Iy Drl| sm _ g
tCF(2) O dcF(2) 2
. = (Nle) .
oH
atC]-‘(Nf) m = HNd
S B’ ®)
faa : D* . O(ax3) eg
p B f i
va
where IB} and ]D} denote the dual of By and Dy.
PERSPECTIVES — Establishing the color-distribution-augmented system of the

solid phases will require the use of a more complex mathematical setting. Indeed,
solid mechanics rely on vectorial and tensorial quantities. The investigation of a
possible port-Hamiltonian structure, as in Ref. [DM13], should lead to a well posed
and physically interpretable formulation of FST problems.
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GENERAL CONCLUSION

7.1 CONTRIBUTIONS

In this thesis, we proposed modelling tools and passive physical models of the vocal
apparatus, with a particular focus on the vocal tract. The contributions of the thesis
are listed below, sorted by chapter.

PORT-HAMILTONIAN SYSTEMS —  After introducing this modelling framework,
we proposed, in Sec. 2.3.3 an improved version of the discrete gradient method less
prone to cancelation errors. Then, we introduced a new procedure to formulate a
shifted pHs, the physical quantities of which are written as fluctuations around a
chosen state at rest.

POWER-BALANCED FSI LUMPED-PARAMETER MODELLING OF THE VOCAL
TRACT — A new power-balanced FSI model of the vocal tract has been established.
Starting from a set of geometrical and physical hypotheses, we proposed a pI for-
mulation of a model of a single tract. We interpreted and compared it to an existing
model of the literature using equivalent electrical circuits. To build the full vocal
tract, we proposed, in Sec. 3.2, a general constraint-based assembly method that
accounts for an arbitrary configuration setting (e.g. simple connection, branching of
multiple resonators). Then, in Sec. 3.2.4, we applied this method to the vocal tract,
and showed how taking advantage of the structure of a pHs simplifies the resulting
constrained model.

NUMERICAL EXPERIMENTS — We performed simple numerical experiments
that confirmed the expected capacities of the tract model, namely: its capacity to
convect matter, to account for the movement of the walls, to exhibit acoustical res-
onances, and to be passive. Then, using a very simple glottal source, we simulated
a simple coarticulation.

A PASSIVE THREE-PORT JUNCTION FOR FLUID MECHANICS AND ACOUS-
TiCS — We illustrated our modelling methodology by establishing a passive three-
port junction model, form which we derived five other models. Each model is equipped
with particular hypotheses that are targeted at: modelling fluid mechanics, nonlin-
ear acoustics, semi-nonlinear acoustics and linear acoustics. Tab. 2 recapitulates the
similarities and differences between each junction model. The use of a canonical
interconnection allowed for the physical interpretation of the nonlinear acoustical
model. We linked our work to classical linear acoustical approaches using the state
space representation of the fully linear junction.

113



AN INFINITE DIMENSIONAL PH FORMULATION FOR FSI PROBLEMS USING
COLOR DISTRIBUTIONS — This chapter is a preliminary work on the use of
indicator functions (also called color functions) within the infinite-dimensional pH
framework. We proposed a new definition of color functions that relies on distribu-
tions. We built an uncoupled formulation of a generic multiphase fluid problem. This
formulation accounts for the dynamics of each fluid phase, within their respective
domains, and is well suited to specify the interactions at the boundary between each
phase.

7.2 PERSPECTIVES

PORT-HAMILTONIAN SYSTEMS — The improvements made on the discrete gra-
dient methods were carried out without looking at the overall implicit time-discrete
problem. Taking the rate of convergence of the Newton-Raphson solver into account
could lead to a smarter form of the discrete gradient. Taking constraints into ac-
count would allow for simulation of DA-pHs. At last, generalising the quadratisation
method [Lopl6] to account for constraints could lead to simulations compatible with
real time. Moreover, using the power-balanced time finite element methods of arbi-
trary accuracy order developed by Miiller [Miil21] could be an interesting perspec-
tive, as it would enable us to reduce the sampling frequency since the interpolating
functions are not band-limited.

Regarding the shift method, we only considered pHs equipped with a canonical
interconnexion matrix. An important work is to generalise the method for all pHs
and study its relevance on the numerical conditionning of the discrete-time prob-
lem. Generalising the method to shift a system around a trajectory would allow for
interesting developpements regarding the study of bifurcations.

POWER-BALANCED FSI LUMPED-PARAMETER MODELLING OF THE VOCAL
TRACT — The proposed vocal tract model will be a useful tool to investigate the
interpretation strategies of wind instruments players. Taking the energetic contribu-
tions of the vocal tract into account will help to understand its role in this situation.
The geometry of our tract model is cartesian, and only the cross section varies with
time. Considering cylindrical or elliptical geometries with a variable length would
yield a better modelling of the fluid mechanical phenomena and allow for more realis-
tic synthesis of the vowels, the associated geometry of which requires the vocal tract
to lengthen (e.g. vowel [u]). Adding turbulence losses and noise generation will also
help and improve both the realism and numerical conditioning of the tract model.

NUMERICAL EXPERIMENTS —  Using a numerical method tailored for constrained
systems would allow for more stable and realistic simulations. Adding a switchable
pHs model of a tract will allow for the complete closure of the vocal tract and the
synthesis of stop consonants. Coupling the vocal tract with an articulatory model
will allow for more complex and realistic coarticulation settings.
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A PASSIVE THREE-PORT JUNCTION FOR FLUID MECHANICS AND ACOUS-
TiCS — Using this junction in a real setting (e.g. to model the lateral holes on
wind instruments) would give more information about the realism and relevance of
this passive model. In the thesis, we provided some elements to allow for a higher-
order discretisation, which could lead to accounting for more complex geometries
(e.g. cylindrical or conical geometries) and high frequency phenomena.

AN INFINITE DIMENSIONAL PH FORMULATION FOR FSI PROBLEMS USING
COLOR DISTRIBUTIONS —  This first work should serve as an inspiration to build
a thorough theory, relevant for FSI problems. We considered the particular physical
model of a perfect fluid. Generalising this method to any infinite-dimensional pHs
and including dissipation phenomena could be useful for other applications. As an
example, consider the interaction of a bow with a string, where the contact surface
(i.e. where the hair and string meet) varies with time. The coupling and time-tracking
of the contact surface may be naturally described (in a modular way) using color
distributions.
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APPENDIX OF CHAPTER 2

A.1 NUMERICAL EXAMPLE: THE MKA SYSTEM

In the following code, we implement the mass-spring-dashpot example as a Core
object by specifying the energy variables (lines 47 and 51), the associated Hamilto-
nians (lines 48 and 52), algebraic components (lines 55-56) and external ports (line
59). The full model is then assembled and the interconnexion matrix is specified.

The rest of the code is related to the simulation and the plot of the numerical
results.

import matplotlib.pyplot as plt
import matplotlib as mpl

mpl.rcParams[’agg.path.chunksize’] = 10000
5 |#fmatplotlidb nbagg
#interactive plots

import numpy as np

import pickle

10 | import scipy

from scipy import signal

import sympy as sy

from IPython.display import display

from scipy.io.wavfile import write as wavWrite
15 | import hbpy

import ast

import os

import sys

import shutil

20 | import marshal

import types

sy.init_printing()

from pylatexenc.latexencode import unicode_to_latex

25 | from IPython.core.display import display, HTML

30 | from pyphs import Core

# Instanciating the model
core = Core(label = ’MKA’)

35 | # Mass: defining the energy wartiable, physical parameter and
Hamiltonian

pi, m = core.symbols(’pi, m’)

hm = pi**2/(2.*m)
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55

# Id. for the spring
40 |x, k = core.symbols(’x_k, k’)
hk = k*xx*x*x2/2.

# Damper
v_m, a = core.symbols(’v_m, a’)
45 |z = a*xv_m

# External port
F, v = core.symbols(’F_ext, v_ext’)

50 | # Adding the components to the pHs model
core.add_storages (pi, hm)
core.add_storages (x, hk)
core.add_dissipations(v_m, z)
core.add_ports(F, v)

# Defining the interconnection
core.set_Jxx ([[0, -1],

[+1, 01D
core.set_Jxw ([[-1],[0]])
60 | core.set_Jxy ([[-11,[011)

65 | # Setting the physical parameters

f = 16 # Hz

m_val = 0.5 # kg

k_val = 4 * np.pi**2 * f*x2 x m_val

70 | subs = [(m, m_val), (k, k_val), (a, 3.)]

core.subs.update (subs)

# ________________________________________________________________
75 | # ———mm - T T T T o — e — -
# Inttialising the simulation
inits = {’x’ : [0.0, 0.1]}
config = {’fs’ : 1e3, # sample rate (Hz)
80 ’path’ : os.path.join(os.getcwd (), ’03_data’), # folder
for output results/build
’lang’ : ’c++’, # Python or C++ implementation of the
simulation
’cmake’: r’cmake’, # Compiler
’grad’ : ’discret’, # Numerical method
maxit’: 10, # Mazimum number of iteration for the Newton-
Raphson method
85 ’split’: False,
’epsdg’: np.power (np.finfo(np.float64).eps, 0.5),
’eps’ : np.finfo(np.float64).eps,
}
90 | simu = core.to_simulation/
config,
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95

100

105

110

115

120

125

130

135

140

145

erase
inits

# Length of the stimulation
tmax = 1.
Nit = int(tmax * config[’fs’])

t_vec = np.linspace(0, tmax, Nit)

# Setting the input signal
u = np.zeros (Nit)
ul int(Nit/3): int(2xNit/3)] =

# Starting the simulation
simu.init(

u = u,

nt Nit,

)

simu.process ()

# Options for plotting the results
mpl.rcParams[’figure.dpi’] = 72

FIGSIZE (10,4)
FONTSIZE 28
TICK_FONTSIZE = 20
LEGEND_FONTSIZE = 22
TITLE_FONTSIZE = 24

font = {’family’ : ’serif’,
’weight’ : ’bold’,
’size’ : 18}

plt.rc(’font’, *xfont)

plt.rc(’text’, usetex=True)

LATEX_FIG_PATH "../01_FIGS/"

FIGS_PATH "02_figs/"

PPTY_XVBAR {’c: ’r’,
’linestyle’:’--’,
’linewidth’: 1.5,
’alpha’ : 0.7,

}
PPTY_LEG = { ’fontsize’ : 16,

True,
inits

>loc’ : ’upper left’,

# Accessing data of the simulation

x = simu.data.x()
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Pdiss = simu.data.pd()
Pstored = simu.data.dtE()

150 | Pext = simu.data.ps()
# ________________________________________________________________
# ________________________________________________________________
# Plotting

155 | plt.figure (figsize=(8, 6))
grid = plt.GridSpec (2, 2, wspace = 0.1, hspace = .75)
# - PHASE SPACE ------

ax = plt.subplot(grid([0, 0])

160 | ax.plot(x[:,0], x[:,1])

ax.set_title(’Phase space’)

ax.set_xlabel (’$\pi$ (kg.m.s$ " {-1}$)’)
ax.set_ylabel (" $x_k$ (m)’)

ax.minorticks_on ()

165 | ax.grid (which="minor’, linewidth=0.5, alpha=0.5)
ax.grid(which="major’, linewidth=1.2)

#o—mmmm- PHASE SPACE ------
ax = plt.subplot(grid[0, 1])

170 | ax.plot (t_vec, Pstored, label = ’$P_s + P_{diss}$’)
ax.plot(t_vec, -(Pdiss + Pext),’--’, label = *$-P_{ext}$’)

ax.legend(fontsize=14)

ax.set_title(’Power-balance’)

ax.set_ylabel (’Power (W)’)

175 | ax.set_xlabel (’Time (s)’)

ax.minorticks_on ()

ax.grid(which=’minor’, linewidth=0.5, alpha=0.5)
ax.grid(which=’major’, linewidth=1.2)
ax.yaxis.get_offset_text().set_fontsize (TICK_FONTSIZE)
180 | ax.yaxis.set_label_position("right")
ax.yaxis.tick_right ()

# - Time Evolution ------
ax = plt.subplot(grid[1l, :])
185 | ax.plot(t_vec, x[:,0], label = ’$\pi$’)
ax.plot(t_vec, simu.data.u()[:,0],’r-.’, label = ’*F$_{ext}$’)

ax.set_ylabel (’Force (N)’)
ax.set_xlabel(’Time (s)’)
ax.legend (loc=’lower right’, fontsize=12)
190
ax2 = ax.twinx ()

ax2.plot(t_vec, x[:,1],’--’, c=’orange’, label "$x_k$7)
ax2.set_ylabel (’Elongation (m)’)

ax2.legend (loc=’upper right’, fontsize=12)

195
ax.set_title(’Time evolution’)
ax.minorticks_on ()

ax.grid(which=’minor’, linewidth=0.5, alpha=0.5)
ax.grid(which=’"major’, linewidth=1.2)

200
plt.tight_layout ()

# Saving fig
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title = "MKA_numerical_example"

205 |plt.savefig( title + ’.pdf’, dpi=300, format=’pdf’, bbox_inches=’
tight’)

Listing 1 Implementation example for the MKA using PyPHS

The numerical results are shown below.

Time evolution

0.1
=7 25 s
Im. /\ /g
£ 001 /\ /\ /\/\/\’\\/\\/\/\/—\, | =
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Figure 43: Numerical results for the mass-spring-damper. The Python code is listed above.
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A.2 ADIMENSIONALISING A PHS

Take a pHs of form (2.3) with a state vector x, Hamiltonian H(x), effort variables e,
memoryless variables w and laws z(w), and external ports u and y. The algebraic
formulation reads

f e
w | =5x) [ z(w) (A.2.1)
—y u

where 5(x) is divided as

J G, G,
S) = |-G, Juw Gup (A.2.2)

w

-G] -G, Jp
where we ommit the dependence of the block matrices on x for clarity.

Consider a set of adimensionalising coefficients [Xs1, . .., Xsn, |T and the associated
dimensionalising matrix

X = diag (Xs1, .. .,Xsn,) of size (ng x ng) (A.2.3)
so that the state vector can be written as
x = X, X (A.2.4)

where X is the dimensionless state vector.

Substituing x by its adimensionalised definition in the Hamiltonian gives H(x =
X %) = A(%X) so the efforts now reads

_ OH(X,%)  oH(%X) 0%

= = =Xe. A2,
© o0x & ox e © (A.2.5)
Using Eqs. (A.2.4) and (A.2.5) in Eq. (A.2.1) yields
N XUIXY XJ'G, X('G, .
t é
y ~GIX;! ~-GJ, Jop u

Remark 17 (Fully adimensionalised pHs): This procedure can be generalised
for the rest of the components by introducing the appropriated dimensionalised
matrices.
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EXAMPLE: THE MKA SYSTEM  We choose X = diag (75, zxs), where we choose
s =4.1kg-m-s! and 235 = 0.1 m as the maximum value of both quantities on the
numerical experiment shown on Fig. 7. We apply the adimensionalisation method
and perform the same exact numerical simulations which results are plotted on
Fig. 44.

Time evolution

1 L1
Ty
o \/\/ \/\ \/ \/\ SR 20 i e e N
1 —_ T L,
— 0.0 0.2 0.4Time (5)06 0.8 1.0
\Z_/ 100 +— L i_._-._._._._._-._..! L L
§ | : | Fezt
mo 0. | ISR SRS Y USRS NSO U U~ AN NN S — N A U S S om——
Phase space Power-balance
1-
- 200 g
<§ 01 [\/\/\I r 0 =
™ Ps + Pdiss 900 %
T —leat A
gty — ] ] ] ] . . . . =L 400
~10 -05 0.0 0.5 1.0 0.00 0.25 0.50 0.75 1.00
T Time (s)

Figure 44: Numerical results for the adimensioned mass-spring-damper system. 7 and ¢ are
dimensionless state variables, therefore no unit is indicated.
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APPENDIX OF CHAPTER 3

B.1 COMPRESSION ENERCY

The total internal energy Ecopyp is derived using the hypothesis (H3-5). The change
of internal energy €(7'), function of the temperature 7', is governed by Joule’s law,
the perfect gas law! and the adiabatic process equation

de=CydT ;T =vr/lpry andp= Py(r/p)” (B.1.1)

where Cy is the heat capacity at constant volume, rg the specific universal gas
constant, and pg the volumetric density at rest.

Integrating Joule’s law between Ty and T yields €(T") — €(Tp) = Cy (T — Tp). We
substitute the perfect gas law and the adiabatic process equation in place of T" and
Ty, assuming a rest state Tp, pg and Py. Finally, we choose to set the remaining
constant €(Tp) at —Fo/po?. The volumetric compression energy density U(p) = pe(p)

v - 22 (2) -+ 2] (B.1.2)

y—11\po o
where 7 = ro/cy + 1 is the heat capacity ratio.

The last step is to take (HT7) into account (small fluctuation of p around its
rest state), which mathematically translates to rP—ro/py = #/py << 1. Using this,

then reads

we perform a second order series expansion

Ulp) = Py [; (T)Z - 1] + o((p’;>2). (B.1.3)

Considering that p(x,y,t) = p(t), we obtain Ecymp by multiplying U by the volume

of the cavity
~ 2
J (M)) —1]. (B.1.4)
2\ po
The pressure function now reads

SRHC

Ecomp = RV

)2 — 1) - 1] (B.1.5)

Shown here in its specific form.

2 This constant is usually arbitrarily set to zero. Here, we wish for the energy to be compatible with
linear acoustics. It sets the minimum of the energy at the rest state Tgy, pg, Po rather at the absolute
zero, which is consistent with the assumptions of linear acoustics (H7), as the heat capacific at
constant volume of air is more or less constant around atmospheric conditions (H5).
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B.2 EQUATIONS OF DYNAMICS
B.2.1 Alternate Form of the Conservation of Equation

The classical form of the momentum conservation equation is

v

F div(pv®v) + grad(p) = (B.2.6)

For spatial domains with open boundaries, we use an alternative that includes the
total specific entalpy ¥ defined by

v gvevulp) with ()= £ (pelp) = elp) + 0752 = elp) 4o (B2

2

is the entalpy and where we used the state equation p = p2d,e(p) with €(p) is the
specific internal energy. Using these definitions and the identity v div(v) = div (%)
under the irrotational hypothesis, the conservation of momentum equation is written

such as

% + grad(y) = 0. (B.2.8)

This form can be seen in [vMO02].

B.2.2 Integral Formulation with a Time-Varying Domain

MASS CONSERVATION EQUATION The mass conservation equation reads:

op .
Friaie div(pv).

We consider a smooth function ¢(x,y,t). Integrating over the domain Qr (¢) and
using the Leibniz-Reynolds identity (also called the Reynold transport theorem) and
the vectorial identity div(ab) = grad(b)Ta+ div(a)b yields

mwdv [[ine nds+m ¢ av+ [[[ eraatorpvav
Or ()
(B.2.9)

MOMENTUM CONSERVATION EQUATION This form is used to establish the
dynamics of the transverse flow. We consider a test function with vectorial values.

The integral formulation reads:

JJ ppv AV = ff¢pv v?-n)dS + fff 2 cpv dV — fff div(pv®v)p dV
Or (t)

O (1) | (B.2.10)
_ agm.n ds +(ﬂ(t) div(g)p dV.
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MOMENTUM CONSERVATION EQUATION: ALTERNATE FORM  This particu-
lar form is used to compute the dynamics of the transverse flow, as it directly uses
the enthalpy. Its local formulation gives

a5 A grad(¢y) = 0.

We now consider a smooth function with vectorial values. Using the same proce-

dure than previously, the integral formulation reads:

” ¢v dV = H¢>vv ‘n ds+” ovav - Hf div(¢) dv+”f div(¢)y AV,

Qr(t) Qr (t) Or () Qr(t)
(B.2.11)

B.3 WEAK FORMULATION OF THE PRESSURE

The state equation for pressure gives p = pQ(?pe(p). Averaging p over the domain of

<p>—fffpdV— m p?0,€(p) (B.3.12)

Or (1)

a tract yields

B.4 SHIFTED VERSION OF THE TRACT MODEL

In our case, we assume that the system (3.19) is under atmospheric conditions,
meaning that the surrounding air is at rest at atmospheric pressure Fy. Thus, the

T T
inputs reads y* = [¢z Vv, F‘jv] = [0 0 — POSW] under the choices for the
compression energy (see App. B.1).

T
We assume that a state at rest x} = [Vz vk H; m* h*] exists such as

dx% = 0. Taking the equations of dynamics (3.19) where we substitute each

energy variable by its state at rest value yields the following system of equations:

d I

" 7 =0=—e,—vy m?j (B.4.13a)
%u& =0=ep+vy m% (B.4.13b)
%szozi *)ﬂnﬁjLFv*V_eh:F;V—eh (B.4.13¢)
0, ve (B.4130)
%h* =0=e,. (B.4.13e)

First, Eq. (B.4.13¢) gives that ITj = 0. Then, from Eq. (B.4.13c) we get m* =
Swh*po which also indicates p* = W = po. Then, from Eq. (B.4.13d), one gets
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v} = —vp. Finally, using Eq. (B.4.13a) or Eq. (B.4.13b) yields v; = —vf = 0. The
state at rest energy variables are:

_ . _ L
VR
XT = I =10 (B.4.14)
m* mo
| h* | | ho |

where m[0] and h[0] are the initial values at ¢ = 0 s. The associated outputs are

*

T
y = [0 0 O] .
The shifted Hamiltonian H(%r) reads

~ 2 ~/a T 2
H(xr) = (ngg[o]) (7} + vi — ULVR) +2(ﬁir% +POSW% <p(n;(;h) (h + h[0]).

(B.4.15)
where p(1m, h) is a function that regenerates the fluctuations of the volumetric mass
around its state of rest value po.
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APPENDIX OF CHAPTER 4

c.1

THE TWO-TRACT SYSTEM:

A TOY MODEL

Symbol Value S.I. Unit
Py 101.325 - 103 kg -m~!.s72
0% 1.4
00 1.225 kg -m™3
A 0.0425 m
ly 0.0425 m

biotal 0.175 m
L[1] 0.01 m
L[2] 0.01 m
h[01] 0.01 m
h[02] 0.01 m

m[01] | poV[01] = 0.00001 | m

m[02] | poV[02] = 0.00001 | m
k1 845 N-m™!
71 0.8 kg -s72
ko 845 N-m™!
79 0.8 kg -s72

Table 3: Physical parameters used for the simulations of the two tract model

Parameter

Value

Sampling frequency Fj

Machine’s precision

€DG

1-10°Hz
2.1016
1.5-1078

Table 4: Numerical parameters
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Figure 45: Velocity input signal for the second tract
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Figure 46: Enthalpy impulse used in the simulations

C.2 A SIMPLE COARTICULATION
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Figure 47: A simple coarticulation: velocity signals applied to the walls.
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Cc.3 VOWEL SYNTHESIS
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Figure 48: Vowel synthesis: velocity signals applied to the walls.
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APPENDIX OF CHAPTER 5

In (Jet 1) the equations of dynamics expressed in terms of u; and e; reads

Uz = +(126) < 0 >g, —(1/260) < " >S5,

dt
d R .
&vc = —(32voto)es + (3/200) < >g, +(3/260) <Y >gp,
T +(3/2voho)ep — (3/ho) < U >,
d

a p = +(3/2V0€0)evc — (3/2V0h0)e'Uy.

and the outputs

(.’I\L _(1/2€0)evmz - (3/280)6170
y= QR = +(1/2€0)e71mx - (3/2&))6'0(:
qr +(3/ho)ey,

(D.0.1a)
(D.0.1b)
(D.0.1c)

(D.0.1d)

(D.0.2)
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