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Introduction

0.1 Context and Motivation

This thesis is devoted to the numerical approximation of parameter-dependent functions of
the generic form

u : Ω ×G → R, (1)

where Ω ∈ R
d is the spatial domain (d is the spatial dimension), and G ⊂ R

Np is the parameter
domain, with Np the number of parameters. The function u will always be the solution to a
parameterized Partial Differential Equation (PDE) modeling a physical phenomenon. Let us
denote µ = (µ1, . . . , µNp) ∈ G the varying parameter. For each parameter value µ, we have a
new function u(µ) ∈ V where V is a suitable Banach space and V′ its topological dual solving
a PDE of the form

L(µ)(u(µ)) = F(µ), in Ω,

+ boundary conditions on ∂Ω, (2)

where L(µ) : V → V′ is the PDE operator that depends on µ ∈ G and F(µ) ∈ V′ is the PDE
right-hand side which does not depend on u. For instance, we will often consider elliptic
equations of the form

{ − div(A(µ)∇u) = f (µ) in Ω,

u = 0 on ∂Ω.

This thesis focuses on Reduced Basis Methods (RBM) which are part of the Model Order
Reduction (MOR) family. The purpose of RBM is to very quickly find a good finite dimensional
approximation of any solution to the problem (2). Usually, classical methods such as Finite
Volume schemes (FV) or the Finite Element Method (FEM) are used to provide an accurate
approximation. This consists in solving the problem (2) in a subspace Vh ⊂ V, where h is the
mesh size. The obtained discrete approximations are denoted uh ∈ Vh. RBM are not meant
to replace such methods but are employed in addition to such solvers, in order to reduce the
computational time.

To summarize our contributions:

• We present an overview of the Non-Intrusive Reduced Basis (NIRB) methods studied in
this thesis in the first chapter. We explain what their non-intrusiveness means. Our focus
is on the two-grid method, which has first been developed in the FEM framework.

• Our main contribution is its generalization to FV solvers and its numerical analysis in
this context.
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0.1. CONTEXT AND MOTIVATION

• We generalize and analyze this method to time-dependent equations.

• We study the NIRB capability to recover accurate approximations with singular domains.

• Another important aim of this thesis is concerned with the development of new NIRB
methods. We describe a new promising non-intrusive tool based on domain truncations.
This NIRB method can be applied to a wide variety of problems and allows us to further
reduce their complexity.

• Finally, in the last part, we apply NIRB methods to a highly complex case: the simulation
of offshore wind farms. This study is a collaboration with EDF. We detail how NIRB
approaches may substantially reduce the computational costs.

Let us now introduce the context of the industrial application.

0.1.1 Industrial context

The main context is concerned with developing a new open-source library on non-intrusive
MOR techniques, called MOR_DICUS, with several academic and industrial partners. Another
industrial goal relies on the application of the NIRB methods to wind farm simulations using
this library.

The offshore wind market is growing exponentially all over the world. To achieve carbon
neutrality, the European Union is committed to supporting the development of this sector.
The aim is to increase European offshore wind production capacity from currently 12 GW to
at least 60 GW by 2030 and to 300 GW by 2050. In France, seven offshore wind farm projects
are being developed for a total capacity of around 3 900 MW, and calls for tenders on floating
systems are increasing.

Building a wind farm requires preliminary studies of the wind power yield. Their aim is
to estimate which amount of energy a wind farm can produce taking into account the wind
potential and the wake effects.
Offshore wind turbines work in the same way as onshore wind turbines, with the main dif-
ference that they are located at sea in order to enhance the use of the wind energy moving its
blades. The winds are stronger and more regular than on land. They allow the production
of up to 60% more energy than with onshore wind turbines, in particular thanks to the size
of turbines. Therefore, they are generally preferred to onshore wind turbines since their effi-
ciency is higher [104].
One drawback is that the installation and the maintenance costs of offshore wind turbines are
higher than those of conventional onshore wind turbines. Thus, finely evaluating the local
climatology before installing a wind farm is a key issue when it comes to estimating its energy
production. The choice of turbines and their precise location requires a more precise analysis
of the wind and turbulence conditions taking into account local climatological factors through
several simulations. Therefore, the position of the wind turbines is based on a parameterized
problem, which makes it a very challenging and relevant application of this thesis. This context
is illustrated by Figure 1 and will be detailed later on in subsection 0.3.4.

0.1.2 Motivation

Modeling wind farms can be very expensive in terms of computational costs. The energy
production is calculated as a function of the wind, taking into account the wake effects. One

3



0.2. MATHEMATICAL TOOLS

Offshore wind farm =
High costs of installation

and maintenance

Precise analysis of
the local climatology =

High-Fidelity code

Model Order
Reduction

Figure 1: An offshore wind farm application

essential step before calculating the energy production corresponds to the calculation of the
wind potential. It is performed as to optimize the position of the turbines in one given farm.
This often involves high-fidelity Computational Fluid Dynamics (CFD) codes launched for
several wind parameters [88]. It enables the analysis of a range of wind turbine configurations.

0.2 Mathematical tools

In general, solving a physical problem with a numerical method is costly in time. To simulate
offshore wind farms, an EDF solver, namely Code_Saturne, can be used with the Reynolds
Averaged Navier-Stokes method (RANS) which is a method often used to model turbulence.
The RANS equations are recalled thereafter (41). This kind of simulation (for example, a wind
farm possessing 9 turbines), for one wind setting parameter, can take up to several days.
Thus, reduced order modeling is a major tool to lower the computational time of such problems
while keeping approximations as good as with CFD solvers. It is a very quickly emerging field
in applied mathematics and computational science. MOR techniques are answering a large
demand of efficient computational tools for optimization problems of parameter fitting in the
industry. Such problems are modeled by parameter-dependent PDEs, which must be solved
for several parameter values. The simulation of wind farms, for instance, relies on parameter-
dependent PDEs.

0.2.1 Which tools for the simulation of parameter-dependent PDEs?

To solve a parameterized problem, a natural choice consists in seeking a solution in a Banach
space with FEM for instance [19, 129]. This solution, which is based on the resolution of a
High-Fidelity (HF) code, is costly in time. Thus, for complex applications, it is often more
logical to employ MOR [126, 67, 10, 73]. RBM do not replace HF codes, but can be used in
addition to such codes to reduce runtimes.
With the RBM, we look for a solution on a manifold which implies a reduction of complexity.
This complexity reduction relies on the notion of the Kolmogorov n-width [85]. It is linked to
the concept of solution manifold, which is the set of all solutions, computed with a HF code,
to the parameterized problem (2) under a parameter variation. This manifold is denoted Sh.

Sh = {uh(µ) ∈ Vh| µ ∈ G}. (4)

RBM can be successful if the Kolmogorov n-width is small, which means that the solution
manifold Sh (4) may be approximated by a finite set of well-chosen solutions (it is illustrated

4



0.2. MATHEMATICAL TOOLS

by Figure 2).
We define the Kolmogorov n-width [85] of Sh as follows:

Definition 1. If Sh is a subset of a Banach space V, and Yn a generic n-dimensional subspace of V,
then the deviation between Sh and Yn is

E(Sh; Yn) = sup
x∈Sh

( inf
y∈Yn

∥∥x − y
∥∥

V
). (5)

Then the Kolmogorov n-width of Sh in V is

dn(Sh, V) = inf
Yn

{E(Sh; Yn); Yn is a n-dimensional subspace of V}. (6)

To approximate any solution in Sh, we create a N-dimensional subspace of Vh ⊂ V de-
noted XN

h and a Reduced Basis (RB) of this space, where the basis functions are denoted
(Φh

i )i=1,...,N. RBM aim at approximating any solution belonging to Sh with a small number
of basis functions N. This set of basis functions is derived from HF solutions for several well
chosen parameter values, {uh(µ1), . . . , uh(µN)}, called snapshots.
The small Kolmogorov n-width (6) implies that the manifold Sh can be approximated with
very few RB functions, provided that the parameters are properly chosen for the RB con-
struction [34]. Thanks to that, RBM enable HF real-time simulations and widely reduce the
computational costs, with speedups that can reach several orders of magnitude.

An illustration of the solution manifold. Figure 2 shows an example of a solution manifold
(here denoted Sh (4), the black curve). All the snapshots {uh(µ1), uh(µ2), · · · , uh(µN)}, belong
to a Banach space Vh. All the solutions also belong to that same manifold Sh. The parameters
of the parameterized problem are denoted µ1, µ2, · · · , µN and belong to the set G. The re-
duced basis space corresponds to the yellow hyperplane, and the green curve is the projected
snapshots onto this space. The Kolmogorov N-width represents “the deviation” between that
hyperplane and the manifold.
Imagine we search for an approximation uh(µ), for µ, a new parameter belonging to the range
of the parameters G, then our RB approximation will belong to the space XN

h , generated by the
snapshots, and close to the manifold Sh if the Kolmogorov N-width is small enough.

b

b b

Sh

XN
h

Vh

uh(µ1)

uh(µ2)

Figure 2: Manifold of the snapshots

One way to confirm the small size of the Kolmogorov n-width is to analyze the complexity
of the manifold with a Singular Value Decomposition method (SVD) applied to the correlation
matrix of the snapshots. To do so, one should verify the rapid decay of the SVD eigenvalues.
The reason is detailed in the reminders on the Proper Orthogonal Decomposition (POD) 1.2
and on the SVD 1.2.1.
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An innovative tool. Generally, RB methods are intrusive. It means that the user needs to
enter the HF solver code and modify it. Conversely, methods termed non-intrusive are those
which do not need to modify the solver code. For instance, the Galerkin-Proper Orthogonal
Decomposition (Galerkin-POD) [5, 14, 86, 93] is intrusive and requires to modify the assembly
of the FEM matrices. This can be difficult or even impossible when the code has been bought,
as it is often the case in an industrial context. To alleviate this issue, we use Non-Intrusive
Reduced Basis methods (NIRB). They utilize the HF codes as a black-box solver. Several
approaches already exist in this framework [117, 118, 119, 69, 95, 64, 28]. We will present some
of them, and focus on the two grids method, developed in [96]. This innovative approach
has already been employed with complex problems [30], however, it is only beginning to be
applied to problems with industrial dimensions. We will analyze it in several contexts, and
apply it to the case of an offshore wind farm to highlight the efficiency of this method on
highly complex simulation models. We will also propose other non-intrusive tools, adapted
from the two-grid method, for different situations.

0.2.2 The two-grid method

Let Ω be a bounded domain in Rd, with d ≤ 3. The two-grid method, in the context of a
HF solver of finite element or finite volume type, involves two partitioned meshes, one fine
mesh Mh and one coarse MH , where the respective sizes h and H of the meshes are such that
h << H. The size h (respectively H) is defined as

h = max
K∈Mh

hK (respectively H = max
K∈MH

HK), (7)

where the diameter hK (or HK) of any element K in a mesh is equal to sup
x,y∈K

|x − y|, K ∈ Mh

(or ∈ MH).

One grid is needed for the reduced basis generation, and another one to roughly approxi-
mate the solution. This will be the key ingredient to the reduction of computational costs, as
we will highlight in chapters 1 and 2. The implementation has two main steps:

• First, the RB functions are prepared in an "offline" stage with a fine mesh. It involves a
greedy algorithm (algorithm 2) or a POD procedure (algorithm 1). This part is costly in
time, but only executed once, as for other RBM. At the end of this stage, we obtain N
L2-orthonormalized basis functions (Φh

i )i=1,...,N .

• Then, a coarse approximation of the solution, for the new parameter µ we are interested
in, is computed "online". We denote this coarse solution uH(µ). This rough approxima-
tion is not of sufficient precision but is calculated with a smaller number of degrees of
freedom compared to the fine mesh ones. It is used as a cheap surrogate of the optimal
coefficients

αh
i (µ) =

∫

Ω
uh(µ) · Φh

i dx.

Reduced basis post-processing then makes it possible to notably improve the precision
by projection and rectification on the reduced basis, within a very short runtime. The
classical NIRB approximation is given by

uN
Hh(µ) :=

N

∑
i=1

(uH(µ), Φh
i ) Φh

i ∈ XN
h . (8)

6
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Snapshots:
{uh(µ1), . . . , uh(µN)}

computed on a fine mesh Mh

Offline

Online

External
Solver

Reduced Basis: (Φh
i )i=1,...,N

Coarse solution: uH(µ)
computed on a coarse mesh MH

NIRB approximation: uN
Hh(µ)

Greedy

L2-projection: set uN
Hh(µ) =

N

∑
i=1

(uH(µ), Φh
i )Φ

h
i

Figure 3: The two-grid method

Figure 3 illustrates the two-grid method.
This method, which can be used for several types of PDEs, is easy to implement. Moreover,

its non-intrusive nature makes it applicable to a wide range of problems. A post-treatment,
called the rectification post-processing, which has been introduced in [30] and employed in
[72, 99], may be used to further improve the two-grid approximation accuracy. We now recall
the main steps of this post-processing stage.

The rectification post-treatment

The main idea of its strategy consists in recovering the accuracy of the approximation given by
the optimal coefficients without sacrificing on the computational complexity. As explained in
[30], it may be employed in addition to the NIRB classical algorithm. During the offline stage,
after the fine snapshots generation, for the same parameter values, the corresponding coarse
snapshots are computed in MH . Thus, we introduce the fine and coarse coefficients

αh
i (µ) =

∫

Ω
uh(µ) · Φh

i dx and αH
i (µ) =

∫

Ω
uH(µ) · Φh

i dx. (9)

The purpose is to create a rectification matrix that allows us to pass from the coarse coefficients
to the fine ones. This implies that if the true solution is in the reduced space, then the NIRB
method will give this true solution. Let us discretize G and obtain Ntrain parameters in G,
considered as a training set. Let N be the number of basis functions (N ≤ Ntrain). We define
A ∈ R

Ntrain×N the matrix of the coarse coefficients and B ∈ R
Ntrain×N the one constructed

from the fine coefficients such that

∀i = 1, · · · , N, and ∀µk ∈ G, Ak,i = αH
i (µk), and Bk,i = αh

i (µk). (10)

7



0.3. LAYOUT OF THE THESIS

The approach is based on a regularized least-square method. Without regularization, its pur-
pose is to minimize the error between the projection of the rectified approximation onto the
basis and the optimal approximation as a function of the rectification matrix. Thus, let us
introduce the rectification matrix R = (Ri,j)1≤i,j≤N ∈ RN×N : XN

h → XN
h . The rectification step

aims to find R minimizing
∥∥∥∥∥∥

N

∑
i=1

αh
i (µk)Φ

h
i −

N

∑
i=1

N

∑
j=1

Ri,jα
H
j (µk)Φ

h
i

∥∥∥∥∥∥

2

, ∀k = 1, . . . , Ntrain.

With the L2 orthonormalization of the RB functions, it is equivalent to minimize

|αh
i (µk)−

N

∑
j=1

Ri,j αH
j (µk)|2, ∀k = 1, . . . , Ntrain.

as a function of R. Thus, it consists in looking for R minimizing the cost functions

‖ARi − Bi‖2
2 , i = 1, · · · , N, (11)

where ‖·‖2 stands for the Euclidian l2-norm. Here, Tikhonov regularization consists in pro-
moting solutions of such problems with small norms. Thus equation (11) becomes

‖ARi − Bi‖2
2 + λ‖Ri‖2

2 , i = 1, · · · , N, (12)

where λ is a regularization term. The solution to this problem (12) is the rectification matrix:

Ri = (ATA + λIN)
−1ATBi, i = 1, · · · , N, (13)

Then, the NIRB approximation given by (8) becomes

RuN
Hh(µ) =

N

∑
i,j=1

Rij αH
j (µ) Φh

i . (14)

0.3 Layout of the thesis

This thesis, focusing on the two-grid method, is decomposed in four connected parts, combin-
ing theoretical and applied parts.

0.3.1 Chapter 1: State of the art

The first chapter 1 is dedicated to the state of the art of the RBM. The main idea is to present
a non-exhaustive list of RBM methods, to exhibit the advantages and disadvantages of each
of them. In this chapter, we will consider as a model problem the 2D lid driven cavity with
steady Navier-Stokes 1.1. Let Ω be the unit square with its upper bound denoted Γ3. The 2D
steady Navier-Stokes equation writes:





(u · ∇)u − ν∆u +∇p = 0, on Ω,

∇ · u = 0, on Ω,

u|Γ3
= (1, 0),

u|∂Ω\Γ3
= (0, 0), (15)

8



0.3. LAYOUT OF THE THESIS

where u = (u, v) is the velocity, p is the pressure, ν = 1/Re, and Re is the Reynolds number.

In this chapter, ν =
1

Re
will represent our varying parameter.

Many existing RBM have emerged in recent years and have reached an industrial degree of
maturity:

1. We will first introduce an intrusive method, which is the standard projection-based
model reduction method, known as the Galerkin Proper Orthogonal Decomposition
(Galerkin-POD) [86, 4, 110]. The offline part employs the Snapshot POD. We analyze
the link between the latter and the Singular Value Decomposition (SVD) and the Prin-
cipal Component Analysis (PCA). We will explain what makes the Galerkin-POD in-
trusive. The Snapshots POD is non-intrusive and it may be used for the offline part of
the two-grid NIRB method, even if in general the greedy algorithm is preferred. In the
Galerkin-POD, when dealing with nonlinearities, it may be necessary to employ in addi-
tion the Empirical Interpolation Method (EIM) [64] which is recalled in appendix A.0.1.
This method will not be employed in the other chapters. Indeed, one of the advantage
of the two-grid method is that its algorithm covers a large scope of problems and EIM
method is not required for nonlinearities.

2. In the second section, we will review some Non-Intrusive Reduced Basis methods that
we studied during this thesis. In appendix A, a short presentation on other RB methods
that further reduce the cost of the POD is given.

• One often used non-intrusive approach is the POD-Interpolation (PODI) [15, 57]. It
combines the offline part of the Galerkin-POD and a regression with several possi-
bilities during the online stage.

• We will end this chapter with a detailed presentation of the two-grid method.

For each approach, its advantages and disadvantages will be highlighted. We will also
compare the two-grid numerical results on the model problem (15) to other RB methods.

All RBM are based on a two stage procedure, including an offline and an online stage.
The offline part, executed only once, which consists in building the reduced basis, can be very
costly, even if some methods are emerging to reduce these costs [82]. The online stage, in the
standard RBM, consists of a Galerkin projection with a varying parameter value µ ∈ G, onto
the space spanned by the RB.
The second part of this chapter is directly applied to the project of developing an open-source
shared software library in Python, called MOR_DICUS, on Non-Intrusive Reduced Basis meth-
ods. In this project still in progress, there will be several NIRB methods available, and we im-
plemented the two-grid method and the rectification post-treatment with Python. All “objects”
such as the mesh or the RB are defined with Python and C++ classes. Python classes provide
all the standard features of Object Oriented Programming (OOP). it is a classical approach for
software design. It uses a particular process of defining objects and their interactions when
planning code to develop a computer program. The classes, which can inherit from other
classes, contain attributes that define the data. The goal is to be able to highlight the non-
intrusiveness of all the NIRB methods. The objects are defined very generally with attributes,
and then, for each algorithm, we may define new routines with these objects. The two-grid

9



0.3. LAYOUT OF THE THESIS

method and several routines (such as the greedy algorithm 2, or mesh reading subroutines,
. . . ) have been implemented in order to be able to use FreeFem++ [71], GMSH [24] or VTK
[122] meshes and 2-dimensional or 3-dimensional solutions. These formats are three different
ways of defining the mesh attributes. We also implemented a routine that saves the NIRB
approximation in the VTK format.
The code is still being improved to deal with xml format. Currently, the NIRB codes with VTK
inputs/outputs has been used with the wind farm tests (see chapter 4). Indeed, the black-box
solver used in these tests is code_saturne and it may save solutions with VTK or with Ensight
Gold. Currently, the algorithm for the two-grid method takes in input

• the directories path where the snapshots and the solutions files are located,

• the problem dimension,

• the components number of the solution and its fieldname,

• the chosen method (POD 1, Greedy 2, with or without rectification post-treatment 0.2.2),

• a boolean indicating whether the solution must be saved or not,

• and one boolean for the error computation if one fine solution is provided.

It clearly shows the non-intrusiveness of these algorithms. For one solver solution, its values
are read at the degrees of freedom for FEM (with the function “LoadVtuWithVTK” of the
Python library “Basictools”) and they may also be retrieved from the cells values for FV (func-
tion “vtk.vtkCellDataToPointData()” from VTK module).

The FEM matrices required for the errors and for the RB generation are created with the
library Basictools. The reduced basis is saved with Pickle format. At the end of the online
stage, the NIRB approximation may be saved on the fine mesh in VTK format.

We implemented the Greedy algorithm and subroutines to read the meshes and solutions
and to interpolate them. The code uses several containers such as the mesh definitions or a
collection of problem data. The functions and attributes inheritate from parent classes that we
previously defined, which makes the code more efficient and easier to update. The inheritance
makes it possible to give a class all the characteristics of one or more other classes (for example
we use the class “Solution” to declare the snapshots which saves the degrees of freedom, the
number of components, and its spatial dimension, . . . ).

0.3.2 Chapter 2: Numerical analysis of the two-grid method

This chapter 2 is concerned with the two-grid method “in all its greatness”. To analyze the
method, we will consider the following elliptic model parameterized problem, on a spatial
domain Ω:

{
− div(A(µ)∇u) = f (µ) in Ω, (16a)

u = 0 on ∂Ω, (16b)

where f (µ) ∈ L2(Ω), µ ∈ G is a parameter value, and for any µ ∈ G, A(·; µ) : Ω → Rd×d is
measurable, bounded, uniformly elliptic, and A(x; µ) is symmetric for a.e. x ∈ Ω.

In this chapter, µ ∈ G will represent our varying parameter.

10
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Under the previous hypotheses, it is well known that this problem (16a)-(16b) has a unique
solution in H1

0 . Let k ∈ N , and we consider the Hk Sobolev space and its associated norm
‖·‖Hk(Ω).
The usual weak formulation for the problem (16a)-(16b) reads:
Find u ∈ H1

0(Ω) such that,

∀v ∈ H1
0(Ω), a(u, v; µ) = ( f , v), (17)

where
a(w, v; µ) =

∫

Ω
A(x; µ)∇w(x) · ∇v(x) dx, ∀w, v ∈ H1

0(Ω). (18)

1. In the first section, we will explain the different stages of the NIRB approach. We will
underline its efficiency with a precise numerical analysis in the FEM context. Its nu-
merical analysis relies on two theorems of the FEM theory, which are Cea’s Lemma and
Aubin-Nitsche’s Lemma, recalled below.

Lemma 1. Céa’s Lemma.

Let V = H1
0 be a real Hilbert space with the associated norm‖·‖. Let a : V ×V → R be a bilinear

form with the properties

• |a(v, w)| ≤ γ‖v‖ ‖w‖ for some constant γ > 0 and all v, w in V (continuity).

• a(v, v) ≥ α‖v‖2 for some constant α > 0 and all v ∈ V (coercivity or V-ellipticity).

Let L : V → R be a bounded linear operator. Consider the problem of finding an element u ∈ V
such that

a(u, v) = L(v), for all v ∈ V. (19)

Consider the same problem on a finite-dimensional subspace Vh of V, such that, uh ∈ Vh satisfies

a(uh, v) = L(v) for all v ∈ Vh . (20)

By Lax–Milgram theorem, each of these problems has exactly one solution. Céa’s lemma states
that

‖u − uh‖ ≤ γ

α
‖u − v‖ for all v ∈ Vh. (21)

Lemma 2. Aubin-Nitsche’s Lemma.

Under the previous hypothesis, if Ω is a convex polyhedron, the approximation uh of the problem
19, given by the Galerkin method in the space Vh of the FEM space P1, verifies the estimate

‖u − uh‖L2 ≤ Ch‖u − uh‖H1 . (22)

Let denote Ih the nodal inteprolation operator from C(Ω) into the C0 Lagrange FE space
Vh, we have the following classical theorem (Theorem 4.4.20 [19])

Theorem 3. If u ∈ H2(Ω),
∥∥u − Ih(u)

∥∥
H1(Ω) ≤ Ch‖u‖H2(Ω) . (23)

Thus, Céa’s lemma (equation (1)) and theorem 3 entails:
∥∥u(µ)− uh(µ)

∥∥
H1 ≤ C

∥∥u(µ)− Ih(u(µ))
∥∥

H1 ≤ Ch ‖u‖H2(Ω) (24)

11



0.3. LAYOUT OF THE THESIS

The two-grid method has been developed and analyzed (with Céa’s and Aubin-Nitsche’s
lemmas) in the context of P1 FEM in [96]. The energy-error estimate for an elliptic
problem is given by

∥∥∥u(µ)− uN
Hh(µ)

∥∥∥
H1(Ω)

≤ ε(N) + C1h + C2(N)H2, (25)

with u(µ) the exact solution, for a parameter µ ∈ G, uN
Hh(µ) the corresponding NIRB

approximation (8) (with N RB functions), ε(N) depends on the Kolmogorov N-width, h
is the size of the fine mesh, and H the size of the coarse mesh (7). The constants C1 and
C2 do neither depend on h nor H. The constant C2 depends on N (see remark 4).
In this estimate (25),

• the first term, ε(N), negligible, is linked to the Kolmogorov N-width,

• the second term, C1h, comes from the Céa’s Lemma (1),

• and the last one, C2(N)H2, follows from the Aubin-Nitsche’s Lemma (2).

If the coarse mesh is such that H2 ≃ h, then the error estimate in the H1-norm is in
O(h), which is the classical convergence order with P1 FEM space. This estimate may be
generalized with Pk FEM spaces, k > 1 [96]. Thus, we recover the classical FEM energy
error estimate on the fine mesh while reducing the degrees of freefom, since we are only
using the coarse mesh approximation in the online stage.

Main contributions of this section
Usually the RB is L2-orthonormalized with a Gram-Schmidt procedure. We will demon-
strate that the constants C1 and C2 of the inequality (25) change as a function of the RB
functions chosen, whether or not it is orthogonalized only in L2 or also orthogonalized
in H1. We will also illustrate that fact with numerical results. We also detail the NIRB
numerical analysis with the L2 norm.

Remark 4. The constant C2 depends on the number of reduced basis N, and thus, a trade-off
needs to be done between increasing N to obtain a more accurate manifold, and keeping a constant
C2 as low as possible. We will illustrate this N-dependance with several examples (see for instance
Figure 2.2 in chapter 2 or Figure 4.7 in chapter 4).

2. This section is concerned with two further analyses on the NIRB two-grid method.

(a) The first one 2.2.1 is a study on the NIRB two-grid FEM P1 estimate when several
spatial grids are used, with various connectivities but with the same nodes. It is of
special interest when the solver meshes are not easily recovered and when only the
nodes coordinates can be retrieved.

• In order to create the RB, we use an external solver to obtain our snapshots.
• Now, one may not be able to retrieve all the information on the mesh. Suppose

that this solver only gives the mesh coordinates without the connectivity.
• With such a knowledge, it is possible to generate a Delaunay triangulation (for

instance with FreFem++ or with Paraview). It yields a new approximation

ũN
Hh(µ) = Ĩh(u

N
Hh(µ)). Does one recover the classical error estimate in O(h)

for this new NIRB approximation?

12
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Figure 4 displays an exemple of two simple meshes defined with the same nodes,
but using two different connectivities.

The solution uN
Hh ũh = Ĩh(u

N
Hh)

Figure 4: Two meshes with different connectivities

The result of this study comes from [13]. The fractional Sobolev seminorm [2],
which is denoted | · |Hk+λ(Ω), is recalled in section 2.2.1. We are going to use two
estimates from [13]. The first one is linked to a fractional sobolev interpolation.
We consider the nodal interpolation operator Πh

1 from C(Ω) to C0 Lagrange finite
element Vh space associated to the mesh Mh.

Theorem 5 (Theorem 2.6. [13]). Let λ ∈ (0, 1). Then we have, for d = 1, 2,

|v − Πh
1(v)|H1+λ(Ω) ≤ Chµ−λ|v|H1+µ(Ω), ∀v ∈ H1+µ(Ω), λ ≤ µ ≤ 1. (26)

The second inequality is concerned with inverse estimates.

Theorem 6 (Theorem 2.9. [13]). Let λ ∈ (0, 1
2 ) and θ ∈ [0, λ]. Then the following

estimate holds
|vh|H1+λ(Ω) ≤ Chθ−λ|vh|H1+θ (Ω), ∀vh ∈ Vh. (27)

Our main result is the following theorem.

Theorem 7. We denote u the exact solution to (16a)-(16b). Let Vh be the FE space asso-
ciated with the P1 elements, and uh ∈ Vh solution to (20) on the mesh Mh. Suppose that

another mesh M̃h with the same nodes is used to obtain another approximation ũh. Then,
the following estimate holds

‖u − ũh‖H1 ≤ Ch‖u‖H2 . (28)

Thus, this theorem 7 allows us to retrieve the optimal error estimate with the NIRB
approximation.

(b) The next study 2.2.2 aims to extend the NIRB method to parabolic equations. This
is the object of an upcoming article. To the best of our knowledge, the two-grid
method has not already been studied in the context of time-dependent problems.
We will first demonstrate that the two-grid method can be used on such problems
with a model problem. For the model problem, we consider the following heat
equation with a source term:

ut − µ∆u = f , in Ω×]0, T[,

u(x, 0) = u0(x), in Ω,

u(x, t) = 0, on ∂Ω, (29)

where µ is the parameter. For the spatial discretization, a P1 FEM is employed, and
for time discretization, we will employ two different schemes. Indeed, with the time
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discretization, there is no equivalent to the Aubin-Nitsche’s trick.
With the same scheme, we recover the same order in time for the L2 norm as well
as for the H1 norm. Thus, we will employ two schemes. Their choice is motivated
by the fact that we are looking for a rough solution coarser in space as well as in
time, compared to the fine solution. Therefore, during the NIRB offline stage, on the
fine mesh, we will employ a Backward Euler scheme, and for the rough solution,
we will use a Crank-Nicolson scheme. Numerical results will be presented on the
model problem.
The main result is the following theorem.

Theorem 8. NIRB error estimate for parabolic equations. Let us consider the problem 29

and its solution, which belongs to H2(Ω) ∩ H1
0(Ω). We define two time grids.

• One time grid, denoted F, is employed for the fine solution (and for the snapshots). To
avoid making notations more cumbersome, we will consider a uniform time grid with
∆tF the interval between two time values. The time levels can be written t = tn =
n∆tF, where n ∈ N∗, and we denote un

h ∈ Vh the approximation of uh(t
n) to be

determined.

• Another time grid, denoted G, is used for the coarse solution. By analogy with the fine
grid, we consider a uniform grid with time step ∆tG. This time, the time levels are
written t = tm = m∆G, where m is a nonnegative integer, and we denote um

H ∈ Vh the
approximation of uH(t

m) to be determined.

The NIRB approximation writes

uN,n
Hh (x; µ) =

N

∑
i=1

αH
i (µ, tn) Φh

i (x), n ≥ 0, (30)

where the basis functions (Φh
i )i=1,...,N are not depending on time.

Under some further assumptions that will be detailled in section 2.2.2, the following estimate
holds

∀n,
∥∥∥u(tn)(µ)− uN,n

Hh (µ)
∥∥∥

H1(Ω)
≤ ε + C1h + C2(N)H2 + C3∆tF + C4(N)∆t2

G, (31)

where C1, C2, C3 and C4 are constants independent of h and H, ∆tF and ∆tG. The term ε
depends on the Kolmogorov N-width. If H is such as H2 ∼ h, ∆t2

G ∼ ∆tF, and ε(N) is
small enough, it results in an error estimate in O(h) + ∆tF.

3. This section revolves around domain singularities. This is the object of an upcoming
article. The two-grid method in the FEM context is applied with a new stategy in order
to counterbalance the effects of domain singularities. There are many works in the lit-
terature on re-entrant corners and domain singularities [25, 120, 134, 133, 84, 79]. Most
of the methods are based on adaptive refinements in the vicinity of the singularities to
achieve a better accuracy. While MOR methods have been proposed for various fields
in science and engineering, only few approaches have been developed to treat domain
singularities [60, 31, 1]. In this section, the NIRB algorithm is used to numerically solve
such problems. We take advantage of the fact that the NIRB methods are decomposed
in two stages. All the techniques to retrieve an accurate approximation are employed in
the offline step. Here, we consider refinement methods. A refinement is only operated
during the offline stage. Hence, the computation times linked to such refinement can be
considerably reduced in the online phase. With re-entrant corners, we recover optimal
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errors in the energy norm while using a uniform coarse mesh for the NIRB approxi-
mation during the online stage. The main advantages of the NIRB in this context are
concerned with the size of the rough mesh employed during the online stage, as well as
its uniformity. We summarize the offline/online strategy:

(a) During the “offline” stage, the fine mesh is refined around the re-entrant corners,
in order to obtain optimal results. The fine snapshots are generated on it. Then the
RB is created with the greedy algorithm or the snapshots POD.

(b) Then, in the “online” part, the coarse approximation is computed on a uniform
coarse mesh and it is projected onto the basis space denoted XN

h .

This process allows us to retrieve a very accurate approximation with less degrees of
freedom. We present several numerical results on the model problem (16a)-(16b) on the
classical L-shape domain with one re-entrant corner and on the backward-facing step 3.1.

4. In the next section, the method will be generalized to Finite Volume (FV) solvers and
analysed in this context. This work has been published in the Journal ESAIM: Mathe-
matical Modeling and Numerical Analysis (ESAIM: M2AN) [66]. The main motivation
of this study is that, in many industrial applications, and for several reasons, FV Meth-
ods (FVM) are preferred to FEM. Firstly, it may be easier to implement and the mesh
can be adapted more easily to the domain. Secondly, the problem formulation is direct,
unlike the FEM which consists in writing the problem with a weak formulation. Thus,
it implies a better preservation of certain physical properties (the flux conservation and
the flux balance).

Several papers have underlined the efficiency of the NIRB method in the finite ele-
ment context, illustrated both with numerical results presenting error plots and the
online part computational time [96, 28, 30, 29]. However, to the best of our knowl-
edge, solvers relying on FV schemes have not yet been studied with a non-intrusive ap-
proach [80, 126, 67, 121, 27]. Thanks to recent works on super-convergence [47], and with
some technical subtleties, we generalized the two-grids method to FVM and developed
its numerical analysis. We will demonstrate that optimal approximations are recovered in
this context [66]. Optimal error estimates, similar to those of classical methods, computed
with a HF code are retrieved, and these results are illustrated with numerical simulations.

The main difficulty of this study is that the principal theorem used in the FEM anal-
ysis, namely the Aubin-Nitsche’s lemma 2, does not hold as it is anymore, in the FV
framework. To overcome this issue, we will consider a Finite Volume family, the class of
Hybrid Mimetic Mixed methods (HMM) schemes for elliptic equations. We will utilize
recent works on a super-convergence property of these schemes ( [41, 47, 42]), which
allow us, with several interpolation tricks, to recover the same estimate in the L2-norm
as with the Aubin-Nitsche’s lemma in the FEM context. It results in a better approxima-
tion rate in the L2-norm than in the energy norm. The HMM family [45, 38, 44] is quite
general and involves for instance the Two-Points Flux Approximation (TPFA) which is
widely used and very easy to implement. What follows is the mathematical background
used to obtain the error estimate.
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The Hybrid Mixed Mimetic methods (HMM) family

Describing the HMM family requires to introduce the Gradient Discretization (GD)
method [45], which is a general framework for the definition and the convergence anal-
ysis of many numerical methods (finite element, finite volume, mimetic finite difference
methods, etc). Indeed, in some cases, HMM boil down to GD, and GD are quite pratical
for numerical analysis.
The GD schemes involve a discete space, a reconstruction operator and a gradient op-
erator, which taken together are called a Gradient Discretization. Selecting the gradient
discretization mostly depends on the boundary conditions (BCs). We now introduce the
definition of GD for Dirichlet BCs as in [45] and the GD scheme associated to our model
problem.

Definition 2. (Gradient Discretization). For homogeneous Dirichlet BCs, a gradient discretiza-
tion D is a triplet (XD,0, ΠD,∇D), where the space of degrees of freedom XD,0 is a discrete

version of the continuous space H1
0(Ω).

• ΠD : XD,0 → L2(Ω) is a function reconstruction operator that relates an element of XD,0
to a function in L2(Ω).

• ∇D : XD,0 → L2(Ω)d is a gradient reconstruction in L2(Ω) from the degrees of freedom.
It must be chosen such that‖·‖D =‖∇D ·‖L2(Ω)d is a norm on XD,0.

The definition of these operators will be precisely given in the case of HMM-GD in
section 2.4.

In what follows, we will refer to ΠH
D or Πh

D depending on the mesh considered and for
the gradient reconstruction too (respectively ∇H

D or ∇h
D).

Definition 3. (Gradient discretization scheme). For the variational form (17), the related gradient
discretization scheme with the new operators is defined by:
Find uD ∈ XD,0 such that, ∀vD ∈ XD,0,

∫

Ω
A(µ)∇DuD · ∇DvD dx =

∫

Ω
f ΠDvD dx. (32)

We will use two general polytopal meshes (Definition 7.2 [45]) which are admissible
meshes for the HMM scheme. We recall the definition of a polytopal mesh in 2.4. To
sum up, the mesh must be a partition of connected disjoint polytopes (the cells) where
each cell is star-shaped with respect to one point denoted xK. Such meshes are defined
by quadruplets T = (M,F ,P ,V).
Figure 5 illustrates a cell of a 2D polytopal mesh.

In what follows, we will consider two polytopal meshes. The fine mesh will be denoted
T h = (Mh,F h,Ph,Vh) and T H = (MH,FH,PH ,VH) will be referred to as the coarse
mesh.

All HMM schemes require to choose one point inside each mesh cell xK, and in the
case where the center of mass xK is chosen, then the scheme corresponds to hMFD and
superconvergence is well known [41, 47, 38, 46]. The definition of the hMFD scheme will
be recalled in section 2.4.
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+
xK

K

Figure 5: A cell K of a polytopal 2D mesh

The Hybrid Mimetic Finite Difference (hMFD) method

We now introduce the super-convergence property on hMFD [47], which will be used in
the proof of the theorem 10. But first we need the following H2-regularity assumption
(which holds if A is Lipschitz continuous and Ω is convex):

Assumption 1. Let f ∈ L2(Ω), the solution u(µ) to (17) belongs to H2(Ω), and

∥∥u(µ)
∥∥

H2(Ω)
+
∥∥A(µ)∇u(µ)

∥∥
H1(Ω)d ≤ C

∥∥ f
∥∥

L2(Ω)
, (33)

with C depending only on Ω and A.

We define πMh : L2(Ω) → L2(Ω) as the orthogonal projection on the piecewise constant
functions over Mh that is

∀Ψ ∈ L2(Ω), ∀K ∈ Mh, πMh Ψ =
1
|K|

∫

K
Ψ(x) dx on K.

Theorem 9 (Super-convergence for hMFD schemes [47]). Let d ≤ 3, f ∈ H1(Ω), and u(µ)
be the solution to (17) under assumption (33). Let Th be a polytopal mesh, and D be an HMM
gradient discretization on Th with the unknowns defined on xK, and let uh(µ) be the solution to
the corresponding GD. Recall that xK is the center of mass of K and we place ourselves in the case
where xK = xK. Then, considering uP (µ) as the piecewise constant function on Mh equal to
u(xK; µ) on K ∈ M, there exists C > 0 not depending on h such that

∥∥∥Πh
Duh(µ)− uP (µ)

∥∥∥
L2(Ω)

≤ C (
∥∥ f
∥∥

H1(Ω) +‖u‖H2(Ω)) h2. (34)

To recover (34) in the case xK = xK, we used the Lemma 7.5 of [47] on the approximation
of H2 functions by affine functions to obtain

∥∥πMh u(µ)− uP (µ)
∥∥

L2(Ω) ≤ Ch2‖u‖H2(Ω) .

and Theorem 4.7 [47].
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Main results of this section

First, we will focus on one class of the HMM, which is the hybrid Mixed Finite Difference
method (hMFD). It is a finite volume method despite its name. Indeed hMFD scheme
relies on both a flux balance equation and on a local conservativity of numerical fluxes.
It uses interface values and fluxes as unknowns. The particularity of hMFD is that the
cell unknowns must be located at the center of mass of cells. Then the results will be
generalized to other FV schemes. The main result is theorem 10 below:

Theorem 10 (NIRB error estimate for hMFD solvers). Let uN
Hh(µ) be the NIRB approxima-

tion, computed with FV approximations given with an hMFD solver with the unknowns defined
on the cell centers of mass, and u(µ) be the exact solution to (17) under an H2 regularity assump-
tion (33), then the following estimate holds

∥∥∥u(µ)− uN
Hh(µ)

∥∥∥
D
≤ ε(N) + C1h + C2(N)H2, (35)

where C1 and C2 are constants independent of h and H, C2 depends on N, the number of functions
in the basis, and‖·‖D is the discrete norm which has been introduced in the GD definition 2, and
ε depends of the Kolmogorov N-width. If H is such as H2 ∼ h, and ε(N) small enough, it results
in an error estimate in O(h).

This theorem shows that for a certain class of FV schemes, generalized to other FV set-
tings thereafter, we are able to recover optimal estimates, as in the FEM context (25). The
degrees of freedom in FVM do not have the same status as in FEM and the transfer of
information from one grid to another must be adapted. To recover the estimate (35), we
will employ interpolation lemmas such as Bramble-Hilbert’s Lemma [19], recalled below.

Lemma 11. Bramble-Hilbert’s Lemma

Let Ω be a bounded domain and let B be a ball in Ω such that Ω is star-shaped with respect to B.
Let ρmax = sup {ρ : Ω is star-shaped with respect to a ball of radius ρ}. Let B be such that its
radius ρ > (1/2)ρmax. Let Qmu be the Taylor polynomial of order m and of total degree m − 1
of u averaged over B (as defined in [19]) where u ∈ Wm

p (Ω) and p ≥ 1. Then

|u − Qmu|Wk
p(Ω) ≤ Chm−k|u|Wm

p (Ω), k = 0, 1, · · · , m, (36)

where h =diam(Ω).

Remark 12. We are going to use Bramble-Hilbert’s Lemma for m = 1, p = 2 and k = 0. The
Taylor polynomial Q1u can be written

Q1u =
∫

B
u(y)ζ(y) d(y),

where ζ is a cut-off function supported in B such that

∫

B
ζ(y)dy = 1, and ‖ζ‖L∞(B) ≤ Cρ−d. (37)

Bramble-Hilbert’s Lemma yields

‖u − Q1u‖L2(Ω) ≤ Ch‖u‖H2(Ω) . (38)
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Since we will consider xK as the center of mass of B, lemma 7.5 from [47] on approximation of H2

functions and the equation (38) entail

∥∥u − u(xK)
∥∥

L2(Ω) ≤
∥∥u − Q1(u)

∥∥
L2(Ω) +

∥∥Q1(u)− u(xK)
∥∥

L2(Ω) ,

≤ Ch‖u‖H2(Ω) . (39)

0.3.3 Chapter 3: Development of new non-intrusive tools

In this chapter, two new NIRB tools will be developed. We will apply these methods on the 2D
backward-facing step with steady Navier-Stokes. The flow will be laminar and incompressible.

The varying parameter will be the Reynolds number Re ∈ G = [30, 300].

1. The first tool developed during this thesis is a constrained version of the NIRB method.
We consider an L2 orthonormalized RB. The NIRB approximation corresponds to the L2-
projection of the coarse solution onto the basis. In mathematical terms, this is equivalent
to the following minimization problem

min
α=(α1,...,αN)

∥∥∥∥∥uH(Re)−
N

∑
i=1

αi Φh
i

∥∥∥∥∥
L2

. (40)

as a function of the coefficients. The NIRB coefficients, which correspond to the L2-
inner product between the coarse solution and the fine basis functions, are decreasing in
absolute value. Indeed, they are linked to the POD eigenvalues, which are decreasing
for each basis function (see the section on the POD 1.2.1 for further details). Thus, we
can use a new algorithm to minimize the error between the rough solution and the NIRB
approximation (40) as a function of the coefficients, while decreasing them. Two sorts of
constraints can be applied:

(a) The first idea is to directly impose the coefficients decrease. However, their decline
is not sufficient, thus we will consider other constraints as introduced below.

(b) The second possibility is to use the RB coefficients (10) from the snapshots ones.
We then impose the new coefficients decrease by seeking them in the range of the
snapshots coefficients.

• First we will observe the coefficients decrease on the model problem.

• Then we will recover the classical NIRB error with this new algorithm. The runtimes
are compared to the classical NIRB. This allows us to stabilize the NIRB algorithm.
However, this new algorithm is not accurate enough to recover the same numerical
results as with the rectification post-processing.

2. Another new tool is an adaptation of the NIRB algorithm to improve the accuracy and to
further reduce the computational time of the online part, in particular by using a domain
truncation. To do so, we exploit the fact that the solutions to parameterized problems
behave physically similarly for a suitable range of parameters. The coarse approximation
is reduced twice, using two RB. This new algorithm is applied to a model flow problem
which is the classical descending stair in a 2D channel.
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Main idea. Several methods combine RBM and the domain decomposition framework
[77, 78, 58]. In [58], the autors use a domain decomposition and machine learning tech-
niques in the offline and in the online stages of the RBM algorithm. In this section, we
combine a domain truncation with the NIRB two-grid method.
In order to choose the truncation, a prior knowledge of the whole domain and of the
physical phenomena is required. To the best of our knowledge, this idea has not already
been developed with NIRB methods. We adapt the NIRB two-grid algorithm with two
reduced bases and a deterministic procedure that goes from one to the other. The main
interest of this new online stage is that it greatly reduces its runtime. Indeed, during
the online stage, this process allows us to consider a domain truncation to reduce the
degrees of freedom of the coarse solution, and this subsequently increases the speed-up
of the NIRB method. This new approach can be used with many parameter-dependent
problems, even when the variable parameter depends on the geometry.

Application to the 2D backward facing step. In section 3.3, we will apply this new
NIRB tool to the 2D backward-facing step with steady Navier-Stokes. The channel do-
main is supposed to be infinite, with upper and lower walls. To cope with this infinite
domain in simulations, we use Neumann boundary conditions on the exit border of the
channel, and Dirichlet conditions at the entrance. The length of the channel to simulate
the flow is chosen such that

• we observe a Poiseuille flow and a maximum velocity at the upstream of the chan-
nel,

• a vortex at the concave corner behind the step,

• and a Poiseuille flow at the backstream of the channel.

This new approach allows us to further reduce the length of the channel during the
online stage, and thus to substantially reduce the degrees of freedom. It can also lead
to a reduction of the error between the fine solution and the reduced approximation,
compared to the one obtained with the classical NIRB two-grid method, as shown by
the results obtained with the model problem in section 3.3.2. One ongoing project is
concerned with its numerical analysis.

Description of the Non-Intrusive Reduced Basis tool with domain truncations

Let us consider an infinite domain Ω∞ where we introduce artificial boundaries, in order
to simulate the full problem. Thus, the artificial boundaries must not be too close, so as
to not interfere with the modeling, and not too far, to avoid too expensive calculations.
The conditions on these artificial boundaries result from the modeling phase. Thus, let
Ω ⊂ Ω∞ be a bounded domain in Rd with d ≤ 3, adapted to the parameterized problem.
We then introduce ω ⊂ Ω, a truncation of Ω such that the domain Ω is cut much before
the fictitious boundaries. The NIRB method with the domain truncation, in the context
of a classical HF solver, involves two partitioned meshes:

• one fine mesh Mh on Ω,

• and one coarse mesh MH on ω,

where h and H are the respective sizes of the meshes and h << H. The sizes h and H
are defined as in (7).
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(a) The “offline” part of the algorithm is costly in time. Indeed, the snapshots must be
generated with the HF code on the fine mesh Mh. Then, for the same parameter
values, the corresponding coarse snapshots are computed on MH.
In the standard NIRB method [66, 28], a RB is created with a greedy procedure or
through an SVD approach on the whole domain. Then, the coarse solution in the
online part is L2-projected on the RB. The coefficients are the L2-inner product of
the interpolated coarse solution with the fine reduced basis on Ω. In [68], two POD
RB are used to reduce the condition number of the snapshots rectification matrix. In
our new deterministic process, in addition to the fine RB, we also create one coarse
RB generated on ω. Thus, there are two sorts of coefficients:

• The fine ones, which correspond to the L2-inner product of the fine snapshots
with the fine reduced basis on the whole domain Ω,

• and the coarse coefficients, which are the L2-inner product of the coarse snap-
shots with the coarse reduced basis on the subdomain ω.

Then, we involve a rectification matrix T, which will be generated during the offline
part. This rectification matrix allows us to go from the coarse coefficients to the fine
ones. The coarse solutions are represented by the coarse basis well (respectively the
fine solutions by the fine basis) and that is what makes this method so efficient. The
offline stage is executed only once.

(b) Then, the “online” step is executed on the coarse mesh MH , and is thus much less
expensive than a HF computation. Since the coarse mesh is computed on ω ⊂ Ω

and since no interpolation is needed, the online part is even less computationally
expensive than with the usual NIRB algorithm. The coarse solution coefficient is
then rectified thanks to the matrix T, and then projected onto the fine basis. We also
tested this algorithm with ω = Ω.

The entire algorithm is described in section 3.3.1. We carried out tests on the 2D back-
ward facing step model, which is described in section 3.1. The results are presented in
section 3.3.2.

0.3.4 Chapter 4: An offshore wind farm application

This chapter is related to the wind farm application and is a collaboration with EDF.
To begin with, let us recall technical terminology about wind turbines, illustrated with Figure 6

(picture taken from [36]). A wind turbine contains

• The rotor, which is the rotating part of the wind turbine located at the top in order to
capture the winds. It is made of blades (usually three) which can measure 25 to 60 m in
length.

• The hub which connects the blades.

• The nacelle which contains the alternator.

• The tower, composed of the mast, the electrical control system and the transformer.

The two-grid method has already been tested on fluid flows [30] in complex configurations
but this approach is in its early stages for problems with industrial dimensions [127]. In this
chapter, we will illustrate the two-grid method with a direct application on offshore wind
farms.
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Figure 6: Wind turbine terminology

To simulate the wind farms, EDF uses a solver called Code_Saturne. Code_Saturne is a free
computer simulation software in fluid mechanics developed by EDF, using FVM. The purpose
of this solver is to simulate Computational Fluid Dynamics (CFD) for a large variety of appli-
cations [59, 91, 124]. One of them is concerned with the energy production of offshore wind
farms. Its purpose is to find the best positions of the wind turbines within a wind farm to
optimize its energy production. Indeed, the wind turbines wake is characterized by a velocity
reduction and an increase of the turbulence behind the rotor, which will influence the energy
production of other wind turbines downstream. In order to optimize the turbines positions,
the wind around the turbines is simulated using the Reynolds Averaged Navier-Stokes (RANS)
equations for a large range of given input velocities.

Thus, the varying parameter, denoted ure f , is the magnitude of the input reference velocity .

Before explaining when the two-grid method operates, let us summarize the main steps of the
energy power calculation of an offshore wind farm and the means implemented to maximize
it. For each potential input velocity, the goal is to recover the velocity around the wind turbines
or around some probes located upstream the turbine, after several time steps, to model their
power (see Figure 6). The power is calculated as a function of this velocity for several wind
turbines positions, in order to optimize their placement. Before the power simulation, the wind
must be simulated for several initial parameters:

• First, the velocity at the entrance is obtained as a function of the altitude and the reference
magnitude ure f . Then, this input velocity is lifted to create a complete initial profile. This
profile gives the velocity at the initial time on the whole domain (the wind farm).

• Then, the RANS code of code_saturne is launched for each initial profil. RANS method
separates the velocity in one mean field, denoted u, and one fluctuating field u′. Derived
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from the continuity and the momentum equations, the RANS states:

{
∂ρ
∂t + div(ρu) = 0,
ρ ∂u

∂t +∇u · (ρu) = −∇p + div[µ(∇u +∇uT)− 2
3 tr(∇u)Id] + ρg − div (ρR) + F,

(41)

where ρ is the fluid density, p its averaged pressure, µ the dynamic viscosity, g the
gravity, and F are additional momentum source terms (tr is the trace of a tensor, and Id
the identity). In these equations, only the mean fields of the velocity and the pressure
are computed. An additional term appears, namely R, which is the Reynolds tensor and
is equal to u′ ⊗ u′, which corresponds to the covariance tensor of the fluctuating velocity
field. This Reynolds tensor requires a closure model. For the turbines simulations, we
will use the closure model k − ε [8, 97].

• For each input parameter value, the specific velocity positioned upstream of a wind
turbine can be retrieved and the power extracted by the turbine is calculated as a function
of the thrust force and this velocity. Since we want to maximize the power production,
analyzing the wind inside and upstream the rotors for several turbines is necessary.
Even if the physics is simplified by the use of an actuator disk model [11, 102, 128], these
simulations are still very computationally expensive. To further reduce calculation times,
non-intrusive reduced basis methods are suitable, such as the two-grid method.

Main idea. It is well known that a wind turbine, located behind another one, will be in-
fluenced by the latter due to the wake effects. The same phenomenon will occur for a wind
turbine located just downstream the first two, and, as a result, each turbine of a given line is
significantly influenced by the others located upstream. Thus, we can imagine that a turbine
will be fairly well approached by those located upstream it. Therefore, the purpose of this
chapter is to approximate a wind farm with several wind turbines with only few of them.
Several cases will be presented.

1. To get a first idea of which parameters to use for the snapshots, the first study will
correspond to a simple case in 2 dimensions (thus, the 3D effects of the turbulence will
not be taken into account) and one wind turbine.

2. Then, we will consider several wind turbines in line. To apply the two-grid algorithm,
we focus on the rotors and probes upstream them (see Figure 6). All the areas of interest
are projected on the same reference mesh.

3. The data will be complexified while reaching 3D and 3 wind turbines in line.

4. Finally, we will consider a squared wind farm with 9 wind turbines, and present several
numerical results.

This study is in line with the ThorntonBank offshore wind farm operated by “C-Power”. It is
located at 30 km from the Belgian coast line. It is a 9 × 6 wind turbines rectangle with a total
installed capacity of 325.20 MW. In this work, several simplifications are done. For instance,
since we consider offshore wind farms, we did not use towers (the ground is the sea level).
In the wind turbines simulations, only the rotors are represented, with actuator disks as in
Figure 7.
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Figure 7: Wind farm with actuator disks, image from EDF.

0.3.5 Some conclusions and perspectives

On the NIRB numerical analysis in the FEM context. We detailed in this analysis the N-
dependence of the constants in the NIRB energy-error estimate, where N denotes the number
of modes. We illustrated our contribution with numerical results on the classical Poisson’s
equations. We presented tests on the NIRB two-grid method with and without the rectification
postprocessing stage. Witout the latter, the error increases quickly. On the other side, let us
suppose that we chose a-priori a small tolerance and that the Relative Information Content
(RIC) gave us the number of required modes. It does not mean that if we increase this number,
we will get a worse approximation. However, we numerically observed this fact most of the
times, due to the N-dependence of the constants. Thus, an open question is about a more
precise analysis. It is concerned with the trade-off between increasing N to obtain a more
accurate manifold, and keeping the N-dependent constant as low as possible. The rectification
allows us to significantly increase the accuracy of the NIRB approximations. Its analysis has
been developed in a general context in [99]. An iteresting perspective would be to analyze
more precisely the rectification in the two-grid method framework.

On the a-posteriori error estimates. Let us consider the model problem 16a-16b in 2D. We
will denote

σ := A(µ)∇u (42)

the exact flux. This study, section B in the appendix, is an ongoing project on “a posteri-
ori” estimates. When the exact solution is not known, there are two main ways to study the
convergence of approximations.

• The first one starts by choosing an arbitrary reference mesh size. Then one observes the
convergence while using several other coarser meshes tending towards the reference one.
And finally, one stops when reaching a sufficient rate.

• The second possibility is to employ a-posteriori estimates.

There are different types of a-posteriori error estimates such as residual-based estimates, or
equilibrated fluxes estimates, . . . Several papers present results on RBM errors estimates with
a residual approach [123, 132, 26]. To the best of our knowledge, the two-grid method has not
already been studied with reequilibrated a-posteriori estimators. They give guaranteed upper
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and lower bounds for very general approximations that do not need to be solution of the
discrete problem. We recalled three approaches based on a flux reconstruction [115, 49, 106].
Let us present these three approaches. We consider a flux reconstruction of σ, defined by (42),
denoted σh in H(div, Ω).

• A general approach comes from [115]. It yields a certified bound but rougher than the
other methods.

• The second flux reconstruction estimate is based on an approach derived from mixed
FEM theory and a reequilibration on patchwise Neumann problems, as in [18]. This
work comes from [49]. To obtain this bound, the NIRB approximation needs to fulfill a
Galerkin-orthogonality property, and it is not always the case.

• The last one, which has not yet been tested with the NIRB algorithm comes from a recent
work [106]. With the previous flux reconstitution, an algebraic flux part is added in order
to satisfy the Galerkin-orthogonality for very general approximations.

Several promising results with the two-grid method are presented with the first two in
section B. However, with the second one, the approximations must fulfill a Galerkin orthogo-
nality and it turned out that is was not often the case. Once again, the rectification enhances
the results.
One perspective is to test the two-grid a-posteriori estimator with the additional algebraic flux.
It comes from recent studies allowing a-posteriori estimates on very general approximations
[106]. Thanks to this additional flux, Galerkin orthogonality is always satisfied leading to
highly accurate bounds.
The application possibilities are numerous. For instance, to recover the estimate order in O(h)
with the classical P1 FE, the coarse mesh size must be chosen such that h = H2, or h = CH2,
where C is a constant, not depending on the meshes size. Indeed, this constant can be in-
tegrated into the constant C2 (25). When the exact solution is not known analytically, a way
of optimizing the coarse mesh size is to use a-posteriori estimates to bound the NIRB error.
Then, NIRB a-posteriori bounds may be compared to a-posteriori estimates, derived from the
fine solution.

On the parabolic equations. We extended the two-grid method to time-dependent equations
with its numerical analysis and numerical results on a model problem. This is an innovative
study since the two-grid method has not already been applied to such problems. The first re-
sults are promising and as a perspective, we could apply the method to another more complex
problem in order to be able to notice the computational time reduction.

On the FV analysis. We generalized the NIRB method to FV solvers, and developed its
numerical analysis in this context with Poisson’s equations. We employed recent super-
convergence results on the family of Hybrid Mimetic Mixed Schemes [47]. This family under
some properties contains the Two-Points Flux Approximation Finite Volumes which is often
used in industrial contexts and easy to implement. Thus, we tested the two-grid method on
our model problem with this scheme and we retrieved accurate resuls.
There are several open perspectives to this study. They are concerned with its generalization
to other equations and its extend to other FV schemes. For instance, it could be generalized to
Discontinuous Galerkin Methods thanks to recents papers on super-convergence [94]. We also
want to test the NIRB method with other FV shemes where the theory does not apply.
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On the application with singular domains. This is still an ongoing project and the object of
an upcoming article. We tested this approach on two problems which are the L-shape domain
and the backward-facing step. They both yield good results but not certified. Thus, open
questions raise on the limits of this approach for instance with highly singular domains.

On new NIRB tool with domain truncations. This innovative tool is detailed in the third
chapter and is the object of an upcoming article. Tests have been carried out on the backward-
facing step problem. We also tested this method with the industrial application on the wind
farms simulations. The results are convincing. One ongoing project is concerned with its
theoritical analysis.

On the wind farm applications. We applied NIRB methods on wind farm simulations with
two and three dimensions. The results in two dimensions were expected. They exhibit the fact
that the problem becomes very easy to approach with NIRB methods.
We found a more effective way of applying NIRB methods containing two additional steps. The
first one is the decomposition of the domain on several subdomains around the rotors. This
preprocessing stage allows us to approximate one turbine with a RB generated with snapshots
of other turbines. We tested this approach in three dimensions, first with 3 turbines, then with
9. We observed that on these problems, the NIRB method was very efficient to reduce the
computational costs. One ongoing project using this idea is to approximate a 5 × 5 wind farm
with a smaller farm. The latter will contain 3 × 3 turbines. The purpose is to approximate a
line of turbines of the 5 × 5 farm with lines of turbines of the other farm.
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Chapter 1

A review on Reduced Basis methods
(RB)

This section is dedicated to a state of the art of the RBM studied during this thesis. We focus
on the two-grid method, and this chapter introduces RBM and highlights the purpose of each
RBM method. We apply these methods to a model problem which is the classical 2D lid driven
cavity.
When approximating a solution with a HF code, the number of degrees of freedom can be
huge. Thus, executing the code can be very costly in time. The RBM aims to greatly decrease
the number of degrees of freedom of the problem. RBM are increasingly developed in a non-
intrusive way in order to be usable by any software. We recall that the non-intrusivity means
that the methods do not require any modifications in the source code of the external solver.
There are several degrees of non-intrusivity. We will mainly present non-intrusive methods,
but first, we will introduce RBM with a widely used intrusive method which is the Galerkin-
Proper Orthogonal Decomposition. We emphasize that the two-grid RB can be generated with
the POD offline stage.

1.1 A model problem

We start with a model problem to illustrate projection-based Model Order Reduction (MOR)
methods.
Let us introduce the stationary Navier-Stokes equation in the 2D lid driven cavity problem with
non-homogeneous Dirichlet boundary conditions on the upper side, homogeneous Dirichlet
(no-slip) boundary conditions on the remaining sides, as in the figure 1.1. The 2D steady
Navier-stokes equation writes:





(u · ∇)u − ν∆u +∇p = 0, on Ω,

∇ · u = 0, on Ω,

u|Γ3
= (1, 0),

u|∂Ω\Γ3
= (0, 0), (1.1)

where u = (u, v) is the velocity, p is the pressure, Ω = [0, 1]× [0, 1] is the unit square, and
Γ = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4 its boundary, where Γ3 is the upper border, ν = 1/Re, and Re is the
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Figure 1.1: The 2D lid driven cavity problem

Reynolds number.

In this chapter, ν =
1

Re
will represent our varying parameter.

FE on the model problem. In our model problem,

V = H1
d,0(Ω)2 = {u ∈ H1(Ω)2, γu = 0, γ3u = 1},

where γ stands for the trace operator on ∂Ω\Γ3 and γ3 is the trace operator on Γ3.
We set

M = L2
0(Ω) = {p ∈ L2(Ω),

∫

Ω
p = 0},

to ensure the uniqueness of the pressure. The problem 1.1 can be rewritten into its variational
form:

Find (u, p) ∈ V × M, such that
{

a(u, v; ν) + b(v, p) = 0, ∀v ∈ H1
0(Ω)2,

b(u, q) = 0, ∀q ∈ L2
0(Ω), (1.2)

where
a(u, v; ν) = (u · ∇)u, v) + ν(∇v,∇u), and b(u, q) = −(∇ · u, q).

We assume the problem is well posed and that it satisfies the so-called inf sup condition (or
LBB) [20]

inf
q∈M\{0}

sup
v∈H1

0\{0}

∫
Ω

q∇ · v

‖v‖H1

∥∥q
∥∥

L2

≥ β > 0, (1.3)
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where β is a constant not depending on the mesh. We first create a triangulation Th of Ω. With
FEM, there exist several types of stable elements. A classical one is the Taylor-Hood element,
where basis functions of degree k are used for the pressure and basis functions of degree
k + 1 are employed for the velocities. Thus, we use Taylor-Hood P2 − P1 elements to solve
the problem. The velocity is approximated with P2 FE, whereas the pressure is approximated
with P1 FE, and we set Vh ⊂ V , Vh,0 ⊂ H1

0(Ω)2, Mh ⊂ M, where

Vh = {u ∈ V, ∀K ∈ Th, u|K ∈ P2},

Vh,0 = {u ∈ H1
0(Ω)2, ∀K ∈ Th, u|K ∈ P2} and

Mh = {p ∈ M, ∀K ∈ Th, p|K ∈ P1}.

The discrete associated weak form of (1.2) is:

Find (uh, ph) ∈ Vh × Mh, such that

{
a(uh, vh; ν) + b(vh, ph) = 0, ∀vh ∈ Vh,0,

b(uh, qh) = 0, ∀qh ∈ Mh. (1.4)

To deal with the nonlinearity, a fixed-point iteration scheme is generally used, therefore the
variational form (1.4) becomes:
For each step k, find uk

h ∈ Vh and pk ∈ Mh such that:





((uk
h · ∇)uk−1

h , vh) + ν(∇vh,∇uk
h)− (∇ · vh, pk

h) = 0, ∀vh ∈ Vh,0,

(qh,∇ · uk
h) = 0, ∀qh ∈ Mh, (1.5)

until a tolerance is reached, namely until
∥∥∥uk

h − uk−1
h

∥∥∥ < tol, where tol is a priori chosen.

Reduced Basis Methods (RBM) on the model problem. The set of parameters is still denoted
G. To illustrate the RBM listed in this chapter, we consider the problem 1.1 as a parameterized
problem where the viscosity denoted ν plays the role of the varying parameter and ranges
over G ⊂ R. We will only display results on the velocity, but all the methods we will present
also work on the pressure.
Projection-based methods all proceed in one costly offline stage and one cheap online stage.
The offline stage consists in building the RB. Several types of data can be obtained and anal-
ysed (velocity fields, pressure fields, . . . ), yet we emphasize that we will focus on the velocity
fields. We solve the problem (1.5) for several parameters and employ these snapshots for the
RB construction. The Singular Value Decomposition (SVD) is explained in the next section,
and we underline its link with the Proper Orthogonal Decomposition (POD). We detail this
approach since it is widely used and it can also be employed during the offline part of the
two-grid method. In order to use the Galerkin POD method, in a general context, we need
an affine decomposition with respects to the parameter ν. From the algorithm point of view,
the parameter-independent terms are computed offline, making the online computation faster.
If this assumption is not fulfilled, we resort to EIM presented in section A.0.1. In the model
problem, the quadratic nonlinearity of the convective term does not need EIM to assemble the
corresponding arrays, provided N2 terms are constructed. As we will explain later on, in the
NIRB two-grid method these assumptions do not need to be satisfied (see section 1.4).
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1.2 Proper Orthogonal Decomposition (POD) Galerkin

We begin the review on RBM with the Proper Orthogonal Decomposition (POD) Galerkin
method [37, 126, 14, 4, 93, 5]. The POD has been applied to a wide range of applications
(turbulence, image processing applications, analysis of signal, in data compression, optimal
control, . . . ).
We will detail its offline part, its link with the SVD and the online projection stage. We will
see that the NIRB two-grid RB can be generated with the POD offline part and still be non-
intrusive. There are several forms of POD (classical POD, spectral POD, . . . ), but here we will
mainly consider the Snapshots POD algorithm. To sum up, the algorithm is as follows:

• In the offline part, the RB is built with several approximations (the snapshots) of the
problem 1.1, for several well chosen parameter values. This step consists, first, in forming
the snapshots correlation matrix and in retrieving its eigenvalues and its eigenvectors.
Then, the RB functions are constructed by linear combinations of the first N eigenvectors
with the snapshots, after having sorted the eigenvalues in descending order.

• The online part consists in solving the reduced problem which uses the RB for a new
parameter ν ∈ G. At the end of the algorithm, a reduced solution for ν is created.

The full algorithm is detailed in subsection 1.2.1, following its analysis.

1.2.1 Proper Orthogonal Decomposition: Offline stage

For one parameterized problem, the POD approximation consists in determining a basis of
proper orthogonal modes which represents the best the solutions. The modes are obtained by
solving an eigenvalue problem. To put it in a nutshell, the POD consists in extracting domi-
nants modes from random data in order to be able to approximate a solution of the problem
for a new parameter very quickly. Thus, we seek a function (a mode) the best correlated in av-
erage with the realizations {u(X)}, where X = (x, νi)i=1,...,Ntrain ∈ Ω ×G, Ntrain is the number
of snapshots, x = (x1, x2) ∈ Ω, and ν is the varying parameter in R (which can also be in R

n).
In other words, we should choose a function Φ which maximizes the averaged projection on
the observations (the average is represented by ·), suitably normalized in the sense of least
squares, i.e. which maximizes the quantity |(u, ψ)|2 (as shown after with its discrete counter-
part in the paragraph on PCA (1.27)). So we end up with the following constrained optimiza-
tion problem:
Find Φ such that

max
ψ∈L2(Ω×G)

|(u, ψ)|2
∥∥ψ
∥∥2 =

|(u, Φ)|2
‖Φ‖2 , (1.6)

with‖Φ‖2 = 1 (To simplify the notation,‖·‖L2(Ω×G) is written‖·‖). We can show that equation
(1.6) is equivalent to an eigenvalue problem [74, 101].
Indeed, to find the maximum, we use the Lagrangian J[φ] = |(u, φ)|2 − λ(

∥∥φ
∥∥2 − 1) and a

variation ψ, such that [74]:

d

dδ
J[φ + δψ]|δ=0 = 0. (1.7)
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d

dδ
J[φ + δψ]|δ=0 =

d

dδ
[|(u, φ + δψ)|2 − λ(

∥∥φ + δψ
∥∥2 − 1]|δ=0,

=
d

dδ
[(u, φ + δψ)(φ + δψ, u)− λ(φ + δψ, φ + δψ)]|δ=0,

= (u, φ)(ψ, u) + (u, ψ)(φ, u)− λ((φ, ψ) + (φ, ψ)),

= 2Re[(u, ψ)(φ, u)− λ(φ, ψ)]. (1.8)

Thus, permuting mean operations and integrations in (1.8) entails:

d

dδ
J[φ + δψ]|δ=0 = 2(

∫

X
u(X) · ψ∗(X) dX)(

∫

X
φ(X′) · u∗(X′) dX′)− 2λ

∫

X
φ(X) · ψ∗(X)dX,

= 2
∫

X
[
∫

X
u(X) · u∗(X′)φ(X′)dX′ − λφ(X)] · ψ∗(X)dX. (1.9)

ψ being an arbitrary variation, and because u are not functions here but vectors, the auto-
correlation function is replaced by a tensor product matrix, and we obtain from (1.7) and (1.9)

∫

X
u(X)⊗ u∗(X′)φ(X′)dX′ = λφ(X). (1.10)

Let R : L2(Ω × G) → L2(Ω × G) be the operator defined by RΦ(X) =
∫

X R(X, X′)Φ(X′)dX′,
where

R(X, X′) = u(X)⊗ u∗(X′) (1.11)

is the correlation tensor in two points. We obtain the following eigenvalue problem:

Rφ = λφ. (1.12)

R is a positive linear compact self-adjoint operator on L2(Ω ×G). Indeed,

(RΦ, Φ) =
∫

X

∫

X
R(X, X′)Φ(X′)dX′ · Φ

∗(X)dX,

=
∫

X

∫

X
u(X)⊗ u∗(X′)Φ(X′)dX′ · Φ

∗(X)dX,

=
∫

X
u(X) · Φ

∗(X)dX
∫

X
u∗(X′) · Φ(X′)dX′,

=
∥∥u, Φ)

∥∥2 ≥ 0.

In the same manner, we can show that (RΦ, Ψ) = (Φ,RΨ) for all (Ψ, Φ) ∈ [L2(Ω ×G)]2.

Therefore, the spectral theory can be applied [116] and guarantees that the maximization
problem (1.6) has one unique solution equal to the largest eigenvalue of the problem (1.12)
which can be reformulate as a Fredholm integral equation

∫

X
R(X, X′)Φn(X′)dX′ = λnΦn(X), (1.13)

As a consequence, there exists a countable family of solutions {λn, Φn} to equation (1.13)
which represent the eigenvalues and the POD eigenvectors of order n = 1, . . . ,+∞.
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The Hilbert-Schmidt theory allows us to rewrite R as a convergent series:

R(X, X′) =
+∞

∑
n=1

λnΦn(X)Φ∗
n(X

′). (1.14)

The (Φn)n=1,...,+∞ are orthogonal, and the eigenvalues are all positives.

The POD eigenfunctions define a orthonormal basis of the reduced space. Thus, any real-
ization of u can be expressed as a linear combination of these functions:

u(X) =
+∞

∑
n=1

anΦn(X), (1.15)

where the coefficients an are defined as

an = (u, Φ) =
∫

X
u(X)Φ(X)dX. (1.16)

They are such that
ama∗n = δmnλn, (1.17)

where the λn represent the turbulent kinetic energy in average on each mode Φn. Indeed, from
(1.15),

R(X, X′) = (
+∞

∑
n=1

anΦn(X))(
+∞

∑
m=1

a∗mΦ
∗
m(X

′)),

=
+∞

∑
n,m=1

ana∗mΦn(X)Φ∗
n(X

′). (1.18)

and from (1.14) and the orthonormality of the eigenvalues, it entails (1.17).
Therefore, the maximization problem permits to keep the most turbulent kinetic energy on

average represented by the eigenvalues λn. The number of modes required for the RB can be
given by the Relative Information Content (RIC) [3], denoted I(N). The RIC is defined as the
ratio between the N first eigenvalues and their total sum and must be close to one.

I(N) =

N

∑
k=1

λk

Ntrain

∑
i=1

λi

. (1.19)

We recall in the next section basic notions on the Singular Value Decomposition (SVD)
of a matrix and its link with the Proper Orthogonal Decomposition (POD) and the Principal
Component Analysis (PCA) [109].

Singular Value Decomposition (SVD)

The singular value decomposition (SVD) is widely used in low-rank approximation.
The SVD consists in factorizing a matrix A of size m × n under the form A = UΣVT,where
A ∈ Rm×n is a real matrix, U = [Φ1| . . . |Φm] ∈ Rm×m and V = [Ψ1| . . . |Ψm] ∈ Rn×n are
unitary matrices with Σ = diag(σ1, . . . , σp) ∈ Rm×n, and σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0, with
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p = min(m, n). The (σi)i=1,...,p are called singular values of A, (Φi)i=1,...,m are left singular
vectors of A, whereas (Ψi)i=1,...,n are its right singular vectors, such that:

AΨi = σiΦi, and A
T

Φj = σjΨj, i, j = 1, . . . , n. (1.20)

We also have the following spectral decomposition:

AA
T = UΣΣT

U
T, and A

T
A = VΣTΣV

T , (1.21)

with
ΣΣT = diag(σ2

1 , . . . , σ2
p, 0, . . . , 0︸ ︷︷ ︸

m−p times

),

and
ΣTΣ = diag(σ2

1 , . . . , σ2
p, 0, . . . , 0︸ ︷︷ ︸

n−p times

).

The rank of a diagonal matrix is equal to the number of non zero diagonal terms, and
rank(A)=rank(Σ), such that if A ∈ Rm×n has r positive singular values, then rank(A) = r.
We deduce that A can be written as the following sum:

A =
r

∑
i=1

σiΦiΨ
T
i . (1.22)

If the singular values decrease fast enough, we can expect a good approximation of A with a
smaller rank (see the truncated SVD [135]). The Eckart–Young–Mirsky theorem states that for

a smaller rank N < r, the error between A and AN =
N

∑
i=1

σiΦiΨ
T
i is given by [110]

‖A − AN‖2
F =

r

∑
k=N+1

σ2
k ,

with‖·‖F the Frobenius norm. We denote by λi = σ2
i the POD eigenvalues. Thus, if the POD

eigenvalues are decreasing fast enough, the RB construction is efficient through a SVD process
to recover with few modes any solution of the manifold.

Link with the Proper Orthogonal Decomposition (POD)

In the offline stage, the POD algorithm requires the generation of the eigenvalues and eigen-
vectors of the snapshots correlation matrix. This step corresponds to a SVD (or generally to
a truncated SVD). Indeed, before digging into details of the POD algorithm, let us consider
Ntrain snapshots (u1, . . . , uNtrain), with N degrees of freedom, for Ntrain different parame-
ters. The dataset representation is given by A = [u1| . . . |uNtrain] ∈ RN×Ntrain.
According to equation (1.21),

A
T

AΨi = σ2
i Ψi, i = 1, . . . , r, (1.23)

where σ2
i , i = 1, . . . , r are the nonzero eigenvalues of the correlation matrix C = ATA (Ci,j =

uT
i uj, 1 ≤ i, j ≤ Ntrain). For any N ≤ Ntrain, the N POD eigenfunctions are defined as the set

of the first N left singular vectors (Φ1, . . . , ΦN) of U, and from equation (1.20),

Φi =
1
σi

AΨi, i ≤ N, (1.24)

obtained from the first N eigenvectors (Ψ1, . . . , ΨN) of the correlation matrix C.
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Link with Principal Component Analysis (PCA)

The Principal Component analysis (PCA) is employed for multivariate data in statistical analy-
sis, while the POD has first been introduced for the simulation of turbulent flows [83, 61]. The
PCA, also known as the Karhunen–Loève Transformation (KLT), has first been introduced in
[107], and is now widely used in image processing. Its purpose is to reduce the dimensional-
ity of multivariate data. It uses an orthogonal transformation to convert a set of observations
of possibly correlated variables into a set of values of linearly uncorrelated variables, called
principal components. It can be proven that PCA follows directly from the SVD. Indeed, the
principal components of ATA are the columns of matrix V 1.21.
We recall the main principle:
Let x1, . . . , xm ∈ R

n represents m independent observations of variables X1, . . . , Xn, m > n. We
set

A =




xT
1
...

xT
m


 ∈ R

m×n

the representation of this dataset, and

C = A
T

A ∈ R
n×n

the correlation matrix. To approximate these data using a unit-length vector w1 ∈ Rn, a natural
choice is to minimize the squared approximation error. In mathematical terms, it is equivalent
to the minimization problem:
Find w1 ∈ Rn such that

w1 = arg min
w∈Rn

m

∑
i=1

∥∥∥xi − wwTxi

∥∥∥
2

2
,

= arg min
w∈Rn

m

∑
i=1

∥∥∥xT
i − xT

i wwT
∥∥∥

2

2
, using the transpose, (1.25)

subject to‖w‖2 = 1.
Using the Frobenius norm, this is equivalent to
Find w1 ∈ Rn such that

w1 = arg min
w∈Rn

∥∥∥A − AwwT
∥∥∥

2

F
,

with wTw = 1. Using the trace operator and removing the term that does not depend on w, it
yields

w1 = arg min
w∈Rn

− 2Tr(AT
AwwT) + Tr(wwT

A
T

AwwT), (1.26)

subject to wTw = 1.
Using the constraint, the equation 1.26 becomes:

w1 = arg min
w∈Rn

− Tr(AT
AwwT), subject to wTw = 1,

= arg max
w∈Rn

Tr(wT
A

T
Aw), subject to wTw = 1,

= arg max
w∈Rn

Tr(wT
Cw), subject to wTw = 1, (1.27)
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We consider centered data around 0 so as to not make the notations cumbersome. For any
w ∈ R

n, Aw has wTx as mean (where x is the mean of x), and wT
Cw as variance.

So minimizing the error between the reconstructed and the actual data and maximizing the
variance of the components are equivalent. In order to decorrelate the dimensions, the ideal
covariance matrix for the variance maximization and the covariance minimization is a diagonal
matrix. Thus, the diagonalization of the covariance matrix gives us the optimal solution (as
with the SVD).
The maximum variance corresponds to the largest eigenvalue λ1 of C, and is reached for the
choice w1 = Ψ1, where Ψ1 is the eigenvector of C associated with λ1. So the first principal
component is given by Φ1 = Ψ

T
1 x. The others components are constructed in the same manner,

but such that they are orthogonal to the preceding components. Finally, PCA diagonalizes the
correlation matrix C, and the principal components (Φ1, . . . , Φn) are such that

Var(Φk) = λk, k = 1, . . . , n, and Cov(Φk, Φl) = 0, 1 ≤ k, l ≤ n with k 6= l.

Then, a new data can be expressed in the new coordinate system, whose center is the sample
mean x, and whose axes are given by the eigenvectors of C. From the equation 1.6, it is obvious
that the POD and the PCA are two “twin” methods.

POD reduced basis algorithm: Snapshots method (Offline stage)

At the beginning of section 1.2.1, a general analysis of the offline POD is recalled, although
there exist two main kinds of POD: one is classical, and one is called the snapshots POD ([125]).
The classical method consists in replacing the mean (·) by an average over the parameter
of interest (usually over the time variable, but in our case, we consider a stationary model
problem). On the contrary, the snapshots POD replaces the mean as a space mean over the
spatial domain Ω. The snapshots POD, widely used, is chosen when the number of required
snapshots (N) to construct the basis is much smaller than the degrees of freedom on Ω. In
what follows, we will only employ the Snapshots POD. Let us first detail its implementation.

The snapshots POD is obtained from the equation (1.10) where the average is evaluated as
a spatial average on the domain Ω and the variable X is related to the parameters ν. We denote
Ntrain the number of training snapshots (N <= Ntrain). The reduced space is denoted XN

and can be represented either by the POD eigenvectors or by the snapshots which define two
basis of XN . Thus, the POD eigenfunctions Φ can be written as a linear combinaison of the
dataset:

Φi =
Ntrain

∑
k=1

ai
kuk, i = 1, . . . , N

where (ak)k=1,...,Ntrain remains to be determined. With equation (1.10), we have

1
Ntrain

Ntrain

∑
k=1

(ui, uk) Φk = λΦi, i = 1, . . . , Ntrain. (1.28)

Therefore, replacing Φ by its new expression in equation (1.28) yields

1
Ntrain

Ntrain

∑
k=1

(ui, uk)ak
i = λai

i, ∀i = 1, . . . , Ntrain. (1.29)

Let us now describe the algorithm in detail:
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1. The first step consists in solving numerically the equations of the problem (1.5) for
several training parameters. At the end of this step, we obtain a vector of snapshots
(u1

h, . . . , uNtrain
h ), where h corresponds to the mesh size.

Remark 13. In order to reduce the snapshots covariance, we may decompose the snapshots by
one average over the parameters, denoted uh,m, and by one fluctuation part written uh, f . Then,
the POD modes are estimated with the fluctuations.

uh(x, ν) = uh,m(x) +
N

∑
i=1

ai
h(ν)Φ

i
h(x), (1.30)

which is equivalent to:

N

∑
i=1

ai
h(ν)Φ

i
h(x) = uh, f (x, ν), (1.31)

where uh, f (x, ν) = uh(x, ν)− uh,m(x) is the fluctuation.

2. Then, we calculate the correlation matrix Ci,j =
∫

Ω
ui

h, f · uj
h, f , and we solve the Ntrain ×

Ntrain eigenvalue problem: Cvn
h = λnIdvn

h , for n = 1...Ntrain, where vn
h = (an

h,1, . . . , an
h,Ntrain).

3. Suppose the eigenvalues are well ordered (λ1 > ... > λNtrain > 0), we calculate the N RB
functions normalized, with N ≤ Ntrain, the number of required modes:

Φ
i
h =

Ntrain

∑
j=1

a
j
h,iu

j
h, f , ∀i = 1, ..., N, (1.32)

Φ
i
h =

Φ
i
h∥∥∥Φ
i
h

∥∥∥
, (which is equivalent to dividing by

√
λi). (1.33)

For the eigenvalues that are too small, we can use a further step which consists in a
Gram-Schmidt procedure to ensure the basis orthonormality.

Φ
i
h = Φ

i
h −

i−1

∑
j=1

(Φi
h, Φ

j
h)Φ

j
h. (1.34)

The number N of functions in the POD basis is chosen, such that N is small enough and

I(N) =

N
∑

k=1
λk

Ntrain
∑

k=1
λk

is close to 1. The following algorithm 1 summarizes the offline stage of

the POD algorithm to create the RB.
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input : G = (ν1, . . . , νNtrain) ∈ RNtrain

output: Φ
1
h, . . . , Φ

N
h , where N ≤ Ntrain

1 Initialization: Construct the snapshots (u1
h(x), · · · , u

Ntrain
h (x))

2 if POD on the fluctuations then

3 Set uh,m(x) =
1

Ntrain

Ntrain

∑
i=1

ui
h(x);

4 for i=1:Nt do
5 ui

h, f = ui
h − uh,m;

6 end
7 end
8 Calculate the correlation matrix C:
9 for i=1:Ntrain do
10 for j=1:Ntrain do
11 Ci,j =

∫
Ω

ui
h, f · uj

h, f ;

12 end
13 end
14 Calculate the eigenvalues λ1, ..., λNtrain and eigenvectors v

1
h, ..., v

Ntrain
h :

15 for i=1:Ntrain do
16 Cvi

h = λiIdvi
h

17 end
18 Obtain the POD functions by linear combination of the snapshots and the eigenvectors:
19 for i=1:N do

20 Φ
i
h =

Ntrain

∑
j=1

a
j
iu

j
h, f

21 Normalize:

22 Φ
i
h =

Φ
i
h∥∥∥Φ
i
h

∥∥∥
23 Use a Gram-Schmidt procedure for the small eigenvalues:

24 Φ
i
h = Φ

i
h −

i−1
∑

j=1
(Φi

h, Φ
j
h)Φ

j
h

25 Stop if I(N) ≈ 1 or use of an other error estimate

26 end

Algorithm 1: OFFLINE Snapshots POD algorithm
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1.2. PROPER ORTHOGONAL DECOMPOSITION (POD) GALERKIN

1.2.2 POD-Galerkin Projection on the reduced model (Online stage)

During the last step of the offline stage, the RB (Φi
h)i=1,...,N ∈ VN

h ⊂ Vdiv = {v ∈ Vh : ∇.v = 0}
is generated. To predict the velocity u for a new parameter ν, a standard method consists in
using a Galerkin projection onto this RB.
This stage, which is intrusive, is much faster than HF codes. The assembling reduced order
matrices can be computed offline, and therefore only the new problem with these matrices
needs to be solved in the online phase. In what follows, the Galerkin-projection for the velocity
field does not contain the pressure field. Indeed, in our model problem, we only use the ROM
to derived an approximation on the velocity in the reduced space VN

h , since here, with the
Dirichlet type boundary conditions, the basis functions satisfy both the boundary conditions
and the divergence-free constrain of the continuity equation. Let us consider the equation
(1.5). Using the equation (1.30)

uk
h, f (x) =

N

∑
j=1

a
j
h,kΦ

j
h(x),

and

uk−1
h, f (x) =

N

∑
j=1

a
j
h,k−1Φ

j
h(x),

and Φ
i
h as the test function, we get the following equation on the coefficients:

Ai +
N

∑
j=1

Bija
j
h,k +

N

∑
j=1

N

∑
l=1

Cijla
j
h,kal

h,k−1 = 0, (1.35)

with
Ai = (Φi

h, uh,m · ∇uh,m) + ν(∇Φ
i
h,∇uh,m),

Bij = (Φi
h, uh,m · ∇Φ

j
h) + (Φi

h, Φ
j
h · ∇uh,m) + ν(∇Φ

i
h,∇Φ

j
h),

Cijl = (Φi
h, Φ

j
h · ∇Φ

l
h).

For the online stage, we set the new parameter of interest ν, and with the notations

Mij = Bij +
N

∑
k=1

Cijla
l
h,k−1

and
bi = Ai,

the coefficients (a
j
h,k)j=1,...,N at iteration k are obtained by solving the equation:

ah,k = M−1b, (1.36)

and we iterate on the residual
∥∥ah,k − ah,k−1

∥∥
2 until reaching a small treshold (where ‖·‖2

stands for the Euclidian l2-norm) in order to obtain ah. Finally, the approximation is given by

uh(ν) ≃ uh,m +
N

∑
j=1

a
j
hΦ

j
h. (1.37)

We will present numerical results of this method in Figure 1.2.
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1.3 POD Interpolation (PODI)

This method is a non-intrusive version of the Snapshot POD [113, 57]. The offline part to create
the basis functions remains the same. Then, a further step is added. It consists in computing
the coefficients for all the original snapshots with a projection (defined by (9)). We denote
by αh

i (µk), i = 1, . . . , N, k = 1, . . . , Ntrain these coefficients. We obtain N pairs (µk, αh
i (µk)).

Thanks to a Gaussian process regression, the function that maps the input parameters µk to
the coefficients can be reconstructed. This function is then used during the online stage to
find the interpolated new coefficients for a new given parameter ν ∈ G. Finally, the high-
dimensional solution is computed by projecting the new coefficients to the original space with
the equation (1.15). We present numerical results on the classical method (Figure 1.2) although
several enhancements may be added. For instance, a prior sensitivity analysis of the function
of interest with respect to the parameters can be done. This preprocessing phase corresponds
to the active subspaces property [40, 35].

1.4 The two-grid method

This method will be also detailed in the next chapter along with its numerical analysis. It
has been developed and analyzed (with Céa’s and Aubin-Nitsche’s lemmas) in the context of
FEM in [96]. As explained in the introduction, its name comes from the fact that it uses two
meshes. One fine mesh is employed for the construction of the RB, and an coarse mesh is used
to approximate the solution with a classical solver, for instance with FEM or with FV schemes.
As other RBM, the two-grid method consists in two stages:

• In the first place, the RB functions are prepared in an "offline" stage with the fine mesh,
involving a greedy algorithm 2 or a POD procedure 1.

• Then a coarse approximation of the solution for a new parameter value that is of interest
to us is computed "online". This rough approximation is not of sufficient precision but
can be calculated with a smaller number of degrees of freedom compared to the fine
mesh. This approximation is then L2-projected onto the RB, and other post-processing
steps can be added, such as the rectification method 0.2.2 [30], making it possible to
notably improve precision.

1.4.1 NIRB two-grid algorithm

This section recalls the main steps of the two-grid method algorithm [96, 30].
We emphasize on the fact that only the velocity fields are approximated in what follows even
if the method also works with the pressure. In the Galerkin POD 1.2, the ROM could require
a stabilization term [6, 7]. With the two-grid method, if the FEM solutions satisfy the inf-sup
condition (1.3) which ensures stability, since it consists in projecting such solutions and not
solving a reduced model, there are no need of additional stabilization terms. The variable pa-
rameter is still denoted ν. Let uh(ν) be the solution approximation computed on a fine mesh
Th, with a classical method, and respectively uH(ν) be the solution approximation computed
on the coarse mesh TH .

We briefly recall the NIRB algorithm. Points 1 and 2 are performed in the offline part, and the
others are done online.
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1.4. THE TWO-GRID METHOD

1. Several snapshots {uh(νi)}i∈{1,...Ntrain} are computed with a classical solver for the prob-
lem (1.5), where νi ∈ G ∀i = 1, · · · , Ntrain.

2. We usually generate the basis functions (Φh
i )i=1,··· ,N and the reduced space

XN
h = Span{Φh

i (ν1), . . . , Φh
i (νN)}

with the following steps, with N ≤ Ntrain (Greedy algorithm 2):

• A Gram-Schmidt procedure is used, which involves L2-orthonormalization of the
basis functions.

• This procedure is completed by the following eigenvalue problem:





Find Φh ∈ XN
h , and λ ∈ R such that:

∀v ∈ XN
h ,
∫

Ω
∇Φh · ∇v dx = λ

∫

Ω
Φh · v dx. (1.38)

We get an increasing sequence of eigenvalues λi, and orthogonal eigenfunctions
(Φh

i )i=1,··· ,N , orthonormalized in L2(Ω) and potentially orthogonalized in H1(Ω),
such that (Φh

i )i=1,··· ,N defines a new basis of the space XN
h .

3. We compute the approximation uH of the problem (1.5) on the coarse mesh TH , for a
new parameter ν ∈ G, with the classical solver.

4. We consider the coarse coefficients αH
i (ν) =

∫
Ω

uH(ν) · Φh
i dx. The approximation used

in the two-grid method for the problem (1.1) is

uN
Hh(ν) =

N

∑
i=1

αH
i (ν) Φh

i . (1.39)

For the RB generation, a Greedy algorithm is usually employed in order to correctly choose
the RB parameters 2. By RB parameters, we mean the parameters required for the RB gen-
erations. In general terms, a greedy algorithm is a procedure which aims at approximating
each element of a compact set (here the manifold Sh) in a Hilbert space Vh by a subspace of
properly selected elements of this compact set. The greedy procedure is a fast way to compute
the modes by choosing some suitable parameters with respect to a criterion. An other way to
generate the RB consists in using the Snapshots POD offline (algorithm 1).
At each Greedy iteration, the new RB parameter is chosen such that the corresponding snap-
shot is the worse approached by the previous basis space. In general, this strategy does not
produce an optimal solution.
The rectification post-treatment, which is detailed in the introduction 0.2.2, is more efficient
combined to a greedy algorithm since the basis functions are directly generated with the snap-
shots [96, 99]. A Gram-Schmidt procedure may be involved to obtain an orthonormal basis
[22] and improve the RB space from the one composed of the snapshots (uh(νi))i=1,...,N . More-
over, the eigenproblem (1.38) can be solved in order to orthogonalize the basis functions in H1.
Therefore, in order to obtain an optimal set of parameters {ν1, . . . , νN} from a given sample G,
we resort to the following greedy algorithm 2
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1.4. THE TWO-GRID METHOD

Data: {uh(ν1), · · · , uh(νNtrain
)}

Result: Reduced basis {Φh
1 , · · · , Φh

N}
1 Choose ν1 = arg max

ν∈G

∥∥uh(ν)
∥∥

L2 , Set G1 = ν1 and X1
h = span{uh(ν1)} ;

2 Set Φ1 = uh(ν1)

‖uh(ν1)‖L2
;

3 for n = 2 to N do

4 νn = arg max
ν∈G\Gn−1

‖uh(ν)−Pn−1(uh(ν))‖L2

‖uh(ν)‖L2
;

5 Set Gn = Gn−1 ∪ νn and Xn
h = Xn−1

h + span{uh(νn)} ;

6 Compute Φ̃n = uh(νn)−
n−1
∑

i=1
(uh(νn), Φi)L2Φi and set Φn = Φ̃n∥∥∥Φ̃n

∥∥∥
L2

;

7 Stop when ‖uh(ν)−Pn−1(uh(ν))‖L2

‖uh(ν)‖L2
≤ tol ;

8 end

Algorithm 2: Greedy algorithm used to choose {ν1, · · · , νN}

In the algorithm 2, the NIRB fine projection is defined by

PN(uh(ν)) =
N

∑
i=1

(uh(ν), Φh
i )L2 Φh

i .

and the term ∥∥∥uh(ν)− Pn−1(uh(ν))
∥∥∥

L2
(1.40)

can be calculated either with a set of training snapshots or with an a-posteriori estimate. With
this estimate, N = Ntrain, and the term (1.40) has not be calculated for each parameter. The
number of modes N is determined by the tolerance threshold tol or can be a priori given.
The following codes summarize the offline 3 and online 4 parts of the NIRB method with the
Greedy procedure and an orthogonalization in L2 and H1.

Data: (ν1, . . . , νNtrain) ∈ G
Result: Φ1, . . . , ΦN

1 initialization: Construct the snapshots (u1(x), . . . , uNtrain(x)); Use the greedy algorithm 2 and

set XN
h = Span{Ψ1(x), . . . , ΨN(x)}

2 Solve equation (1.38) in order to obtain (Φ1, . . . , ΦN).
3 Optional: Add the rectification posttreatment 0.2.2.

Algorithm 3: NIRB Offline algorithm

The next section presents numerical results with the NIRB and other RB methods.

Remark 14. In our tests, we observe that the classical NIRB approximation is enhanced when using the
fluctuations as with the Galerkin POD in remark 13. This approximation is thus based on a new greedy
algorithm similar to algorithm 2 although only feasible when the a training set is already computed (see
equation 1.40). The NIRB approximation with fluctuations is given by

u
N
Hh(x; ν) = uh(x) +

N

∑
i=1

αH
i (ν)Φ

h
i (x). (1.41)
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Data: {Φ1, . . . , ΦN}, ν (a new parameter in G)
Result: uN

h (ν)
1 initialization: Solve uH(ν) on the coarse mesh
2 uN

h (ν) = ∑
N
i=1(uH(ν), Φi) Φi

3 or with rectification RuN
h (ν) = ∑

N
i,j=1 Rij(uH(ν), Φj) Φi.

Algorithm 4: NIRB Online algorithm

1.5 Numerical results

We solved the problem (1.5) for Ntrain = 25 snapshots with νi =
1

Rei
with Rei = 1 + 25i, i =

0, . . . , 24 and we tested the RB algorithms on the new parameter nu = 1
110 . The next figure

illustrates the H1
0 and L2 relative errors as a function of the number of modes N for several RB

methods. The errors are given by
∥∥∥uh(ν)− uN(ν)

∥∥∥
H1(Ω)∥∥uh(ν)

∥∥
H1(Ω)

and

∥∥∥uh(ν)− uN(ν)
∥∥∥

L2(Ω)∥∥uh(ν)
∥∥

L2(Ω)

.

Figure 1.2 displays the relative H1
0 and L2 errors for several RB methods:

• the classical NIRB,

• the NIRB with the velocity fluctuations as in (1.41),

• the NIRB with the rectification post-treatment,

• the Galerkin-POD with the velocity fluctuations,

• the PODI.

Time execution (min,sec)
RB Offline RB Online FEM solver

NIRB 01:05 00:02 00:02

NIRB + Rectification 01:31 00:02 00:02

Galerkin POD 01:04 00:02 00:02

PODI 00:55 00:02 00:02

As it was expected, the Galerkin POD yields to optimal results. The NIRB with the rec-
tification post-treatment tends to mimic these results. The NIRB without the rectification is
more efficient with the velocity fluctuations than with the global variables. On the contrary,
the NIRB with the rectification post-treatment is more accurate here with the global variables
than with the fluctuations. We will explain in the following chapter why the NIRB error stops
decreasing after a certain threshold. The PODI gives good but less stable results. With this
example, we cannot observe a reduction of runtime since there are too few degrees of freedom
in FEM. The results on the wind turbines in the last chapter will exhibit the computational
time reduction. To summarize, with the two-grid method, we gain in non-intrusivity in com-
parison with the Galerkin POD but the speedup is lower. Indeed, with the Galerkin POD, the
error only depends on the Kolmogorov N-width whereas with the two-grid method, a term
depending on the coarse size mesh appears, as we will see in the subsequent chapter.
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Figure 1.2: RB errors as a function of the number of modes
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Remark 15. For the two-grid method implementation, the coarse solution needs to be linearly interpo-
lated into the fine mesh to compute the L2 scalar product between this latter and the basis functions.
This can be done with the “interpolate” module in Python or with “Basictools”. The main idea here is
to avoid losing any information about the basis. This method only requires the mesh nodes coordinates.
When dealing with uniform meshes, the mass matrix required for the L2 scalar product may be replaced
by the Identity matrix.
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Chapter 2

A Non-Intrusive Reduced Basis
method: the two-grid method

This chapter is devoted to the numerical analysis of the two grid method. As a model problem,
we will use a classical elliptic equation, namely the Poisson’s equation (16a)-(16b).

In this chapter, µ ∈ G represents our varying parameter.

First, we consider a FEM solver and we will recall its FEM analysis. Usually the RB is L2-
orthonormalized with a Gram-Schmidt procedure. We will demonstrate that the constants C1
and C2 of the inequality (25) change as a function of the RB, whether or not it is orthogonalized
only in L2 or also orthogonalized in H1. We will numerically illustrate this result.
Then, we will propose two further analyses about the NIRB method with FEM solvers. The
first one is concerned with its analysis in the case where different meshes are employed. The
last one is about its analysis with parabolic problems. The subsequent study is about domain
singularities and it is the object of an upcoming article. Its purpose is to use the two grids
method with different mesh properties to counterbalance the effects of the singularities. The
last section has been published in an article [66] and it is concerned with the NIRB analysis
in the context of FV schemes. All these analyses highlight the great number of application
possibilities of the two-grid method.

2.1 NIRB two-grid error estimate with FEM solver

In this section, we develop a precise analysis of the two-grid method with a FEM solver. We
consider as a model problem the Poisson’s equation (16a)-(16b), presented in the introduction.
The bilinear form a(u, v; µ) is symmetric, continuous and coercive, such that Lax-Milgram’
theorem ensures the well-posedness of the solution. The two grids method is recalled in the
last chapter, section 1.4.

Here, we use Delaunay triangulation for the meshes, and thus we have a fine triangular
mesh Th and a coarse triangular mesh TH , where h and H are respectively the size of the
meshes (see (7)). We use a FEM solver to obtain the fine snapshots and the coarse solutions on
these meshes.
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The NIRB approximation is denoted uN
Hh . We recall that the NIRB approximation is the

projection of the coarse solution onto the basis space denoted XN
h and that it writes

uN
Hh(µ) =

N

∑
i=1

αH
i (µ) Φh

i =
N

∑
i=1

(uH(µ), Φh
i ) Φh

i , (2.1)

where (Φh
i )i=1,··· ,N is the RB, generated for instance with the Snapshot POD or with a greedy

algorithm (see algorithms 1 and 2), and uH(µ) is the coarse FEM approximation with a new
parameter µ in G. The RB functions must be orthonormalized in L2 and a further step which
implies an H1 orthogonality may be added (see equation (1.38)).

In [96], the NIRB two-grid method has been analyzed with FEM and the following estimate
is obtained ∥∥∥u(µ)− uN

Hh(µ)
∥∥∥

H1
≤ ε + C1h + C2(N)H2, (2.2)

where C1 and C2 are constants independent of h and H (the mesh sizes), the constant C2 de-
pends on N, the usual norm‖·‖H1 =‖·‖H1(Ω) is the norm associated to the variational problem,
and ε depends on the Kolmogorov N-width. In this section, we develop a further analysis on
the constant C2. We recall that H1 and H1

0 norms are equivalent thanks to Friedrichs’ lemma
[19]. In this FEM context, our main contribution is the following theorem:

Theorem 16. We consider the model problem (16a)-(16b) on a regular spatial domain Ω (typically
C1). Let f ∈ L2(Ω) be the right-hand side function. Let µ be a parameter in G and uN

Hh(µ) be

the NIRB approximation for this parameter defined by (2.1). Suppose that the RB (Φi)i=1,...,N is L2

orthonormalized.

• The following estimate holds

∥∥∥u(µ)− uN
Hh(µ)

∥∥∥
H1

≤ ε + C1h + C2
√

λN

√
NH2, (2.3)

where C1 and C2 are constants independent of h, H, and N, and ε depends on the Kolmogorov
N-width.

• Moreover, if the RB is also orthogonalized in H1, then with the same notations

∥∥∥u(µ)− uN
Hh(µ)

∥∥∥
H1

≤ ε + C1h + C2
√

λN H2. (2.4)

With the L2 norm, we obtain the following theorem.

Theorem 17. With the same assumptions than theorem 16, with the L2 orthonormalized RB, the
following estimate holds ∥∥∥u(µ)− uN

Hh(µ)
∥∥∥

H1
≤ ε′ + C′

1H2, (2.5)

where C′
1 is a constant independent of h, H and N, and ε′ depends on the Kolmogorov N-width.

These estimates show that with elliptic equations, the NIRB method (with a FEM solver)
gives the same order estimate in the energy-norm as with classical HF FEM, provided that
H2 ≃ h. However, with the L2 norm, we cannot reach the super convergence of HF FEM
code. Moreover, with only the L2-orthogonalization of the RB, the constant C2 has a larger
dependence on N which may induce an increase of the error after a threshold. We demonstrate
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that the RB orthogonalization in H1 counterbalances this drawback. From a practical point of
view, orthogonalizing in H1 and L2 will stabilize the error. Finally, in the L2 estimate, the
constants do not depend on N anymore.

We go on with the proof of theorem (16). To lessen the notations, we will denote by C the
constants not dependent of H or h. We consider P1 FE space. We emphasize that this estimate
implies an h convergence for the NIRB approximation if TH has been chosen such that H2 ≃ h.

Proof. The fine and coarse coefficients, recalled in the introduction (9), are denoted αh
i (µ) and

αH
i (µ). With the triangle inequality on

∥∥∥u(µ)− uN
Hh(µ)

∥∥∥
H1

∥∥∥u(µ)− uN
Hh(µ)

∥∥∥
H1

≤
∥∥u(µ)− uh(µ)

∥∥
H1 +

∥∥∥uh(µ)− uN
hh(µ)

∥∥∥
H1

+
∥∥∥uN

hh(µ)− uN
Hh(µ)

∥∥∥
H1

=: T1 + T2 + T3, (2.6)

where

uN
hh(µ) =

N

∑
i=1

αh
i (µ) Φh

i =
N

∑
i=1

(uh(µ), Φh
i ) Φh

i . (2.7)

• The first term T1 can be estimated using a classical FEM result, following from Céa’s
lemma 1. Indeed, since Ω is C1 and since f ∈ L2(Ω), then the elliptic regularity estimate
[19] gives that u ∈ H2(Ω) and

‖u‖H2(Ω) ≤ C
∥∥ f
∥∥

L2(Ω) , (2.8)

where C is a constant independent of h. We denote Ih the nodal interpolation operator
from C(Ω) into the C0 Lagrange finite element Vh space associated to the mesh Th. From
the FEM interpolation theory (inequality (24)), we have

∥∥u(µ)− uh(µ)
∥∥

H1 ≤ Ch ‖u‖H2(Ω) ≤ Ch
∥∥ f
∥∥

L2(Ω) . (2.9)

• The best achievable error in the uniform sense regarding the parameters of a fine solution
projected into XN

h relies on the notion of Kolmogorov n-width ([85], Theorem 20.1 [111]).
The manifold Sh is a compact set in a Banach space Vh, and we refer to the Kolmogorov
n-width of Sh given in definition 1. Here we suppose that the set of all the solutions
Sh = {uh(µ), µ ∈ G} has a low complexity. It means that for an accuracy ε = ε(N)
related to the Kolmogorov n-width of the manifold Sh, for any µ ∈ G [34, 96, 28, 22]

T2 =

∥∥∥∥∥uh(µ)−
N

∑
i=1

αh
i (µ) Φh

i

∥∥∥∥∥
H1

=

∥∥∥∥∥uh(µ)−
N

∑
i=1

(uh(µ), Φh
i ) Φh

i

∥∥∥∥∥
H1

≤ ε(N). (2.10)

• The third term T3 depends on the method used to create the RB. The following develop-
ments correspond to our contribution on the NIRB analysis in the FEM context. Let us
recall that uN

hh is defined by equation (2.7).

– Suppose we use a Greedy algorithm 2 with a Gram-Schmidt procedure in order to
orthonormalize the RB in the L2 norm, and in addition, we solve the eigenvalue
problem (1.38) to orthogonalize it in H1. By H1 orthogonality,
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∥∥∥uN
hh(µ)− uN

Hh(µ)
∥∥∥

2

H1
=

N

∑
i=1

|αh
i (µ)− αH

i (µ)|2
∥∥∥Φh

i

∥∥∥
2

H1
,

=
N

∑
i=1

|(uh(µ)− uH(µ), Φh
i )|2

∥∥∥Φh
i

∥∥∥
2

H1
. (2.11)

From the RB orthonormalization in L2, the equation (1.38) yields

∥∥∥Φh
i

∥∥∥
2

H1
:=
∥∥∥∇Φh

i

∥∥∥
2

L2(Ω)
= λi

∥∥∥Φh
i

∥∥∥
2

L2(Ω)
= λi ≤ max

i=1,··· ,N
λi = λN , (2.12)

such that, from (2.12), the inequality (2.11) becomes

∥∥∥uN
hh(µ)− uN

Hh(µ)
∥∥∥

2

H1
≤ λN

N

∑
i=1

|(uh(µ)− uH(µ), Φh
i )|2 ≤ CλN

∥∥uh(µ)− uH(µ)
∥∥2

L2(Ω) ,

(2.13)
By Aubin-Nitsche’s lemma 2 and the inequality (2.8), we have:

∥∥u(µ)− uH(µ)
∥∥

L2 ≤ C H2∥∥ f
∥∥

L2(Ω) ,
∥∥u(µ)− uh(µ)

∥∥
L2 ≤ C h2∥∥ f

∥∥
L2(Ω)

,

such that, combining these two inequalities, we obtain
∥∥uh(µ)− uH(µ)

∥∥
L2(Ω) ≤ C(h2 + H2), (2.14)

and from (2.13) (majorizing the h2 term), we conclude that

∥∥∥uN
hh(µ)− uN

Hh(µ)
∥∥∥

2

H1
≤ C

√
λN H2, (2.15)

where C does not depend on N, which yields inequality (2.4), using the equations
(2.6) with (2.9), (2.10) and (2.15).

– Consider now an L2-orthonormalized RB (Ψh
i )i=1,...,N (with a Gram-Schmidt algo-

rithm or with the Snapshots POD). The functions (Ψh
i )i=1,...,N and (Φh

i )i=1,...,N are

both generators of XN
h . Thus, there exists (γi)i=1,...,N ∈ RN such that Ψh

i =
N

∑
j=1

γi
jΦ

h
j .

By the H1-orthogonality of the (Φh
j )j=1,...,N, it follows

∥∥∥Ψh
i

∥∥∥
2

H1
=

N

∑
j=1

|γi
j|2
∥∥∥Φh

j

∥∥∥
2

H1
,

≤ λN

N

∑
j=1

|γi
j|2
∥∥∥Φh

j

∥∥∥
2

L2(Ω)
by equation (1.38),

= λN

∥∥∥Ψh
i

∥∥∥
2

L2(Ω)
by the L2-orthogonality of the (Ψh

i )i=1,...,N . (2.16)
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From the estimate (2.16) and the L2-orthonormalization of the RB,

∥∥∥uN
hh(µ)− uN

Hh(µ)
∥∥∥

H1
=

∥∥∥∥∥
N

∑
i=1

αh
i (µ) Ψh

i −
N

∑
i=1

αH
i (µ) Ψh

i

∥∥∥∥∥
H1

,

≤
N

∑
i=1

|αh
i (µ)− αH

i (µ)|
∥∥∥Ψh

i

∥∥∥
H1

,

=
N

∑
i=1

|(uh(µ)− uH(µ), Ψh
i )|
∥∥∥Ψh

i

∥∥∥
H1

,

≤ C
√

λN

N

∑
i=1

|(uh(µ)− uH(µ), Ψh
i )|. (2.17)

From Cauchy-Schwarz inequality, inequality (2.17) leads to

∥∥∥uN
hh(µ)− uN

Hh(µ)
∥∥∥

H1
≤ C

√
λN

√
N

√√√√ N

∑
i=1

|(uh(µ)− uH(µ), Ψh
i )|2,

≤ C
√

λN

√
N
∥∥uh(µ)− uH(µ)

∥∥
L2(Ω) . (2.18)

From the estimate 2.18, we end up with
∥∥∥uN

hh(µ)− uN
Hh(µ)

∥∥∥
H1

≤ C
√

N
√

λN H2, (2.19)

which leads to estimate (2.3) using the equations (2.6) with (2.9), (2.10) and (2.19).

Therefore, with an L2 and H1 orthogonalized RB, the constant C2 in theorem 16 has a
smaller dependence regarding the number of modes N. Thus, the NIRB approximation is
stabilized with the H1 orthogonality, compared with a RB only orthogonalized in L2.

Remark 18. These results are highlighted by Figure 2.2 where both methods are compared.

L2 estimate. We proceed with the proof of theorem 17.

Proof. In analogy with the H1 estimate, we have
∥∥∥u(µ)− uN

Hh(µ)
∥∥∥

L2
≤
∥∥u(µ)− uh(µ)

∥∥
L2 +

∥∥∥uh(µ)− uN
hh(µ)

∥∥∥
L2
+
∥∥∥uN

hh(µ)− uN
Hh(µ)

∥∥∥
L2

=: T1 + T2 + T3. (2.20)

• For the first term T1, it follows from Aubin Nitsche’s lemma 2 that

T1 ≤ Ch2‖u‖2
H . (2.21)

• As with the H1 estimate, T2 can be estimated with the Kolmogorov N-width, and thus,
for an accuracy ε′ = ε′(N) ≤ ε(N),

T2 =
∥∥∥uh(µ)− uN

hh(µ)
∥∥∥

L2
≤ ε′. (2.22)
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• For the last term T3, by L2-orthonormality,

∥∥∥uN
hh(µ)− uN

Hh(µ)
∥∥∥

2

L2(Ω)
=

N

∑
i=1

|(uh(µ)− uH(µ), Ψh
i )|2

∥∥∥Ψh
i

∥∥∥
2

L2(Ω)
,

≤ C
∥∥uh(µ)− uH(µ)

∥∥
L2(Ω)2 . (2.23)

And equation (2.14) yields
∥∥∥uN

hh(µ)− uN
Hh(µ)

∥∥∥
2

L2(Ω)
≤ C H2, (2.24)

where C does not depend on N neither on H. Combining (2.6) with (2.24), and majorizing
the h2 term, we end up with

∥∥∥u(µ)− uN
Hh(µ)

∥∥∥
H1

≤ ε′(N) + C H2 (2.25)

= ε′(N) + C h i f H2 ≃ h.

2.1.1 NIRB results with FEM on the model problem

We compare now the NIRB approximations on the Poisson’s problem (16a)-(16b) with different
RB orthogonalizations. In our example, we consider the diffusion coefficient as the function

A(µ) =

[
a(µ, x) 0

0 a(µ, x)

]
where µ = (µ1, µ2) and a(µ, x) = 2µ1 + µ2sin(x + y)cos(xy),

(µ1, µ2) ∈ (0, 1)2. The function f is equal to (1 − y)y + (1 − x)x.
The solution parameters are µ1 = 0.1 and µ2 = 0.05, and we choose Ntrain = 30 random

parameters for the snapshots. The reference mesh is of size hre f =
√

2
100 (100 × 100 grid in the

unit square [0, 1]2), the fine mesh size is h = 2
√

2
100 (50 × 50), and we tested the NIRB algorithm

with H =
√

2
10 (10 × 10).

We present the NIRB relative errors in H1 and L2 norm with a basis orthogonalized in H1

and L2 or only in L2. We used the greedy algorithm 2 with and without the rectification post-
treatment0.2.2. The POD eigenvalues are decreasing fast enough, as we can see in Figure 2.1a.
Here, the RIC (1.19) gives with one mode I(1)=0.9996 and with two I(2)=0.9999998. We can see
in Figure 2.1b that two modes are sufficient to retrieve the FEM errors with the rectification
post-process.

With the rectification, the NIRB solution corresponds to equation (14), and the relative
errors are ∥∥∥ure f (µ)− RuN

Hh(µ)
∥∥∥

H1(Ω)∥∥∥ure f

∥∥∥
H1(Ω)

and

∥∥∥ure f (µ)− RuN
Hh(µ)

∥∥∥
L2(Ω)∥∥∥ure f

∥∥∥
L2(Ω)

.

In Figure 2.2, we compare the errors without rectification given by
∥∥∥uh(µ)− uN

Hh(µ)
∥∥∥

H1(Ω)

‖uh‖H1(Ω)
and

∥∥∥uh(µ)− uN
Hh(µ)

∥∥∥
L2(Ω)

‖uh‖L2(Ω)
.
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(a) POD eigenvalues

(b) H1 (left) and L2 (right) relative errors with NIRB and rectification

Figure 2.1: NIRB results

Figure 2.2: H1 (left) and L2 (right) relative errors with NIRB
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We can see in Figure 2.2 that the errors with the basis orthogonalized in L2 and in H1

remain more stable than with the L2 orthogonalized basis.

Remark 19. Here we presented results with H2 ≃ h. In practice, the size of the coarse mesh is not
necessarily chosen such that H2 = h since there is one constant upstream this term in (2.25). We will
present later an ongoing project on a posteriori NIRB error in order to choose the correct size of the
meshes B.

Time execution (min,sec)
NIRB Offline NIRB Online FEM solver

01:50 00:01 00:03

Remark 20. Here, the online time is smaller than the FEM HF solver.

2.2 Some complements on the analysis

This section is concerned with two further analyses of the two-grid method in the FEM context.
The first study gives an analysis in the case when the meshes used by the solver and by the
black-box code are different. The second one is a NIRB analysis on parabolic equations. Let
us first recall the definition of fractional semi-norms.

Definition 4. Let k be a nonnegative integer and 0 < λ < 1 (d is the dimension). The seminorm
| · |Hk+λ(Ω) is defined by [2]

|v|Hk+λ(Ω) = ∑
|α|=k

∫

Ω

∫

Ω

[∂αv(x)− ∂αv(y)]2

|x − y|d+2λ
dxdy, (2.26)

where v ∈ Hk+λ(Ω).

Then the norm is defined by

‖v‖2
Hk+λ(Ω) =‖v‖2

Hk(Ω) + |v|2
Hk+λ(Ω)

. (2.27)

2.2.1 Estimate on two different fine meshes

The previous analysis on an elliptic problem gave us an estimate in O(h) for the NIRB approx-
imation. Usually the same mesh is used for the black-box solver and the NIRB algorithm, for
the fine and the coarse meshes. But this may not be the case, and we may have only access to
the mesh coordinates used in the black-box solver. In fact, it is feasible to recover this optimal
estimate while only knowing the nodes coordinates, and not the mesh connectivity. This can be
useful, for instance, if the black-box solver mesh uses cells non recognized by the non-intrusive
code. Thus, a Delaunay triangulation can be generated with the nodes coordinates, and this
will leads to the same estimate.

The solution uh ũh = Ĩh(uh)

Figure 2.3: Two meshes with different connectivities
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2.2. SOME COMPLEMENTS ON THE ANALYSIS

Let Mh be the fine mesh, defined on Ω. Let uh be the P1 FE approximation, i.e. the solution
on the finite space Vh of (17)

a(uh, vh) = ( f , vh). (2.28)

Then, the following estimate follows directly from Céa’s lemma 1 and Aubin-Nitsche’s lemma
2

‖u − uh‖L2 + h‖u − uh‖H1 ≤ Ch2‖u‖H2 . (2.29)

From the nodes of Mh, we define another mesh M̃h, with another cell connectivity, and we
create the interpolate ũh of the FEM solution on this new mesh. In other words uh is defined
as

ũh = Ĩhuh, (2.30)

where Ĩh is the Lagrangian interpolated operator on M̃h. We go on with the proof of the
theorem 7 presented in the introduction.

Proof. With the triangle inequality,

‖u − ũh‖H1 =
∥∥∥u − Ĩhuh

∥∥∥
H1

,

≤
∥∥∥u − Ĩhu

∥∥∥
H1

+
∥∥∥ Ĩhu − Ĩhuh

∥∥∥
H1

. (2.31)

With theorem 3 from the introduction (theorem 4.4.4 [19]), the inequality (2.31) implies

‖u − ũh‖H1 ≤ Ch‖u‖H2 +
∥∥∥ Ĩh(u − uh)

∥∥∥
H1︸ ︷︷ ︸

t1

. (2.32)

With the inequality (2.29) the second term of the right term of (2.32) denoted t1 yields

t1 =
∥∥∥ Ĩh(u − uh)

∥∥∥
H1

≤‖u − uh‖H1 +
∥∥∥(u − uh)− Ĩh(u − uh)

∥∥∥
H1

,

≤ Ch‖u‖H2 +
∥∥∥(u − uh)− Ĩh(u − uh)

∥∥∥
H1

. (2.33)

The second term of the right-hand side of (2.33) can be estimated with the finite elements
theory of fractional order Sobolev norm (see theorem 4.4.20 [19]).We obtain from (2.33)

t1 =
∥∥∥ Ĩh(u − uh)

∥∥∥
H1(Ω)

≤ Ch‖u‖H2(Ω) + Chε‖u − uh‖H1+ε(Ω)︸ ︷︷ ︸
t2

, (2.34)

with ε < 1
2 . With theorem 5 presented in the introduction, with µ = 1 and λ = ε,

‖u − Ihu‖H1+ε(Ω) ≤ Ch1−ε‖u‖H2(Ω) .

Thus, the second term of the right-hand side of the inequality (2.34), denoted t2, becomes

t2 =‖u − uh‖H1+ε(Ω) ≤‖u − Ihu‖H1+ε(Ω) +‖Ihu − uh‖H1+ε(Ω) ,

≤ Ch1−ε‖u‖H2(Ω) +‖Ihu − uh‖H1+ε(Ω)︸ ︷︷ ︸
t3

. (2.35)
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Now, since Ihu − uh ∈ Vh , with theorem 6 (presented in the introduction) on the inverse
estimate [13] (with λ = ε and θ = 0), we get

t3 =‖Ihu − uh‖H1+ε(Ω) ≤ Ch−ε‖Ihu − uh‖H1(Ω) . (2.36)

and using the inequality (2.29) and theorem 3 from the introduction and the triangle in-
equality,

‖Ihu − uh‖H1(Ω) ≤‖Ihu − u‖H1(Ω) +‖u − uh‖H1(Ω) ,

≤ Ch‖u‖H2(Ω) , (2.37)

such that
t3 =‖Ihu − uh‖H1+ε(Ω) ≤ Ch1−ε‖u‖H2(Ω) . (2.38)

Therefore, with (2.38), the inequality (2.35) boils down to

t2 ≤ Ch1−ε‖u‖H2(Ω) , (2.39)

and with the inequality (2.34), we end up with

t1 ≤ Ch‖u‖H2(Ω) . (2.40)

Finally, from the inequality (2.32),

‖u − ũh‖H1(Ω) ≤ Ch‖u‖H2(Ω) , (2.41)

which concludes the proof.

Now, to recover the NIRB estimate, we refer to the following analysis.

• From this estimate (2.41), in the term T1 in the FEM analysis, inequality (2.9) still holds.

• The term T2 remains unchanged.

• The super-convergence in L2, required for the coarse solution in inequality (2.14), follows
from the same developments since, with Aubin-Nitsche’s lemma, the equation (2.34)
becomes

t1 =
∥∥∥ Ĩh(u − uh)

∥∥∥
L2(Ω)

≤‖u − uh‖L2(Ω) +
∥∥∥(u − uh)− Ĩh(u − uh)

∥∥∥
L2(Ω)

,

≤ Ch2‖u‖H2(Ω) + Ch1+ε‖u − uh‖H1+ε(Ω) . (2.42)

and thus, the equation (2.32) becomes

‖u − ũh‖L2(Ω) ≤ Ch2‖u‖H2(Ω) + Ch1+ε‖u − uh‖H1+ε(Ω)︸ ︷︷ ︸
t2

. (2.43)

The rest of the proof of the NIRB estimate remains similar to the previous analysis (see theo-
rems 16 and 17).

All the previous analyses were concerned with elliptic equations. Now, the subsequent
section is about extending NIRB to time-dependent problems, in the setting of parabolic equa-
tions.

54



2.2. SOME COMPLEMENTS ON THE ANALYSIS

2.2.2 Parabolic equations

This part is the object of an upcoming article. The aim of this section is to generalyze to
parabolic equations and to analyze the NIRB method in the context of time-dependent prob-
lems. The NIRB method has not yet been tested with such problems.
For this purpose, we will consider a parabolic equation on a domain Ω in Rd (d ≤ 3), with
smooth boundary ∂Ω and with homogeneous Dirichlet conditions, which takes the form

ut − µ∆u = f , in Ω×]0, T[,

u(x, 0) = u0(x), in Ω,

u(x, t) = 0, on ∂Ω, (2.44)

where ut denotes ∂u
∂t and µ ∈ G is the parameter. In analogy with the previous work on the

NIRB FEM estimate applied to elliptic equations, we consider one fine spatial grid for the
snapshots and one rough grid for the coarse solution, such that the sizes are respectively h
for the fine mesh and H for the coarse mesh (with h << H) (7). Usually, we proceed in two
steps to approximate the problem (2.44) with a HF code. As in the elliptic case just considered,
the spatially discrete problem is based on a weak formulation of (2.44). For convenience, we
will consider a P1 FEM space for the spatial discretization, but the following analysis can be
generalized to Pk FEM space, with k > 1. We then discretize this system in the time variable to
get a fully discrete approximation of the solution of (2.44) by a time stepping method. For this
discretization, we will consider finite difference approximation of the time derivative. Thus
we deal with three kind of notations:

• u(t, x) denotes the true solution at time t ≥ 0 for x ∈ Ω.

• uh(t) is the fine solution of the spatially semidiscrete solution, at time t ≥ 0.

• un
h is the full-discretized solution at time tn = n × ∆t where ∆t is the time step.

To obtain the NIRB estimate (31), we will use two time grids, one rough grid for the coarse
solution and one thiner for the fine solution. The NIRB method allows us to recover the
optimal estimate in space, as in the previous analysis with elliptic equations. To recover the
optimal estimate in time, we consider a higher order time scheme for the coarse solution.

Remark 21. To simplify the notations, we consider that both time discretizations end at time T.

Let us first introduce the Sobolev space for the time dependent functions

Lq(0, T; Wk,p(Ω)) := {u(x, t) | ‖u‖Lq(0,T;Wk,p(Ω)) :=
( ∫ T

0

∥∥u(·, t)
∥∥q

k,p dt

)1/q

< ∞}.

The variational form of (2.44) is given by:
Find u ∈ L2(0, T; H1

0(Ω)) with ut ∈ L2(0, T; H−1(Ω)) such that

{
(ut, v) + a(u, v) = ( f , v), ∀v ∈ H1

0 and t ∈ (0, T),

u(·, 0) = u0, (2.45)

where a is given by (18). We assume that (2.45) is well posed (see [51] for the existence and the
uniqueness of (2.45)) and that f is sufficiently regular for the norms on the right-hand side of
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the inequalities to be finite in what follows). Let Vh consists of piecewise linear finite element
functions. The full discrete form of the variational problem (2.45) writes:

{
(∂un

h , vh) + a(un
h , vh) = ( f (tn), vh), ∀vh ∈ Vh and n ≥ 1,

uh(·, 0) = u0
h, (2.46)

where the time derivative in the variational form of the problem (2.44) has been replaced by a

backward difference quotient, ∂un
h =

un
h−un−1

h
∆tF

.
We will consider the solutions of (2.46), and we seek the NIRB approximation with the

form

uN,n
Hh (x; µ) =

N

∑
i=1

αH
i (µ, tn) Φh

i (x), n ≥ 0, (2.47)

where the basis functions (Φh,i)i=1,...,N do not depend on time, only the coefficients are time-
dependent. This means that during the offline part, the snapshots are stored as a matrix,
whose shape is ( T

∆tF
× Ntrain,N ), where Nh is the number of degrees of freedom on the fine

mesh and Ntrain the number of training parameters in G.

Main result Our main result is concerned with the following theorem.

Theorem 22. NIRB error estimate for parabolic equations. Let us consider the problem 29 and its
solution, which belongs to H2(Ω) ∩ H1

0(Ω). We consider two time grids, ending with at time T.

• One time grid, denoted F, is employed for the fine solution (and for the snapshots). To avoid
making notations more cumbersome, we will consider a uniform time grid with ∆tF the interval
between two time values. The time levels can be written t = tn = n∆tF, where n ∈ N∗, and we
denote un

h ∈ Vh the approximation of uh(t
n) to be determined.

• Another time grid, denoted G, is used for the coarse solution. By analogy with the fine grid, we
consider a uniform grid with time step ∆tG. This time, the time levels are written t = tm = m∆G,
where m is a nonnegative integer, and we denote um

H ∈ Vh the approximation of uH(t
m) to be

determined.

Let (Φh
i )i=1,...,N be the L2-orthonormalized and H1-orthogonalized RB generated with the greedy al-

gorithm 2 from fine solutions of (2.46), on a fine mesh of size h, with a P1 FEM for the spatial dis-
cretization, and a Backward Euler scheme for the time discretization. We consider Vh as the associated
finite-dimensional subspace of H1

0 .

For m = 0, . . . , T
∆tG

, let um
H(µ) be a coarse approximation of (2.46) for µ ∈ G, on a rough mesh of size

H, with a P1 FEM for the spatial discretization, and a Crank-Nicolson scheme for the time discretiza-
tion. We consider VH as the associated finite-dimensional subspace of H1

0 .
Let us consider the NIRB approximation, defined by (2.66) and derived from these solutions. Then, the
following estimate holds

for n = 0, . . . ,
T

∆tF
,
∥∥∥u(tn)(µ)− uN,n

Hh (µ)
∥∥∥

H1(Ω)
≤ ε + C1h + C2(N)H2 + C3∆tF + C4(N)∆t2

G,

(2.48)
where C1, C2, C3 and C4 are constants independent of h and H, ∆tF and ∆tG. The term ε depends on
the Kolmogorov N-width. If H is such as H2 ∼ h, ∆t2

G ∼ ∆tF, and ε(N) is small enough, it results in
an error estimate in O(h) + ∆tF.
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Theorem 22 proves that the NIRB two grids method can be applied to such problems.
We recover optimal estimates in L∞(0, T; H1(Ω)). We emphasize that the choice of the finite
difference scheme is motivated by the fact that we want the rough solution to be coarser in
space as well as in time, compared to the fine solution. Before entering in the proof details
of Theorem 22, we require a few theorems from [129], on the FEM classical estimates and
on both finite difference schemes employed. Before recalling them, we summarize their main
properties that will be used:

• On the fine grid, the Backward Euler scheme exhibits an estimate in h2 and ∆tF for the
L2 norm.

• This scheme ensures an estimate in h and ∆tF in the H1 norm.

• On the coarse grid, the Crank-Nicolson scheme yields an estimate in H2 and ∆t2
G in the

L2 norm.

It is well known that with a FEM semi-discretization in space, the following estimate holds.

Theorem 23 (Theorem 1.2 [129]). Let u and uh be the solutions of (2.44) and the semidiscretized
variational form of (2.45), respectively. Assume u0 = 0 on ∂Ω. Then,

∥∥u(t)− uh(t)
∥∥

L2(Ω) ≤ Ch2
[
‖u0‖H2(Ω) +

∫ t

0
‖ut‖H2(Ω) ds

]
, for t ≥ 0. (2.49)

Once fully discretized on a fine mesh with the backward Euler Galerkin method, the esti-
mate (2.49) yields the following estimate.

Theorem 24 (Theorem 1.5 [129]). With un
h and u be the solutions of (2.46) and (2.44), respectively.

We have, if
∥∥∥uh

0 − u0

∥∥∥ ≤ Ch2‖u0‖H2(Ω) and u0 = 0 on ∂Ω,

∥∥u(tn)− un
h

∥∥
L2(Ω) ≤ Ch2

[
‖u0‖H2(Ω) +

∫ tn

0
‖ut‖H2(Ω) ds

]
+ ∆tF

∫ tn

0
‖utt‖L2(Ω) ds, ∀n ≥ 0.

(2.50)

With the energy semi-norm, we have the following estimate.

Theorem 25 (Theorem 1.4 [129]). Under the assumptions of Theorem 23, we have

∥∥√µ(∇u(t)−∇uh(t))
∥∥

L2(Ω) ≤ Ch

[
‖u0‖H2(Ω)+

∥∥u(t)
∥∥

H2(Ω)+(
∫ t

0
‖ut‖2

H1(Ω) ds)1/2
]

, for t ≥ 0.

(2.51)

The estimate (2.51) with the full discretization leads to the following theorem.

Theorem 26. Under the assumptions of Theorem 24, we have

∥∥√µ(∇un
h −∇u(tn))

∥∥
L2(Ω) ≤Ch

[
‖u0‖H2(Ω) +

∫ tn

0
‖ut‖H2(Ω) ds

]

+ ∆tF(
∫ tn

0
‖∇utt‖2

L2(Ω) ds)1/2 +O(h2), ∀n ≥ 0. (2.52)
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Proof. This may be proved with the same tricks as with the proof on the L2 estimate (Theorem
1.5 [129]), as it is highlighted in [129]. Let us detail. We consider the projection operator P1 on
Vh which is given by

(∇P1u,∇v) = (∇u,∇v), ∀v ∈ Vh . (2.53)

We first decompose the error with two components ρ and θ such that

en :=
√

µ(∇un
h −∇u(tn)) =

√
µ((∇un

h −∇P1u(tn)) + (∇P1u(tn)−∇u(tn)))

=
√

µ(∇θn +∇ρn). (2.54)

• For the estimate on ρ, a classical FEM estimate 2.29 is

‖P1v − v‖L2(Ω) + h
∥∥∇(P1v − v)

∥∥
L2(Ω) ≤ Ch2‖v‖H2(Ω) , v ∈ H2 ∩ H1

0 ,

which leads to ∥∥∇ρn
∥∥ ≤ Ch

∥∥u(tn)
∥∥

H2(Ω)
,

or equivalently ,
∥∥∇ρn

∥∥ ≤ Ch

[
‖u0‖H2(Ω) +

∫ tn

0
‖ut‖H2(Ω) ds

]
. (2.55)

• For the estimate on θ, let us consider v ∈ Vh. Since the operators P1 and ∂ commute, we
write

(∂θn, v) + µ(∇θn,∇v) = (∂un
h , v)− (P1∂u(tn), v) + µ(∇un

h ,∇v)− µ(∇P1u(tn),∇v).
(2.56)

From (2.45) and (2.46), the equation (2.56) implies

(∂θn, v) + µ(∇θn,∇v) = ( f , v)− (P1∂u(tn), v)− µ(∇P1u(tn),∇v),

= ( f , v)− (P1∂u(tn), v)− µ(∇u(tn),∇v), by definition of P1,

= (ut(t
n), v)− (P1∂u(tn), v). (2.57)

Then, with a triangle inequality, the equation (2.57) yields

(∂θn, v) + µ(∇θn,∇v) = −((P1 − I)∂u(tn), v) + ((∂u(tn)− ut(t
n)), v)

:= −(wn
1 + wn

2 , v) = −(wn, v). (2.58)

Instead of replacing v by θn as in the L2 estimate, here we replace v by ∂θn, thus the
equation (2.58) takes the form

(∂θn, ∂θn) + (∇θn, ∂∇θn) = −(wn, ∂θn).

Therefore, by definition of ∂ for the Backward Euler discretization,

(∂θn, ∂θn) +
‖∇θn‖2

L2(Ω)

∆tF
− (∇θn,∇θn−1)

∆tF︸ ︷︷ ︸
Ta

= −(wn, ∂θn).

With Young’s inequality,
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(∇θn,∇θn−1) ≤
‖∇θn‖2

L2(Ω)

2
+

∥∥∥∇θn−1
∥∥∥

2

L2(Ω)

2
.

Thus,

∥∥∥∂θn
∥∥∥

2

L2(Ω)
+
‖∇θn‖2

L2(Ω)

2∆tF
−

∥∥∥∇θn−1
∥∥∥

2

L2(Ω)

2∆tF
≤ Ta ≤

1
2

∥∥wn
∥∥2

L2(Ω) +

∥∥∥∂θn
∥∥∥

2

L2(Ω)

2
, (2.59)

and the equation (2.59) results in

∥∥∥∂θn
∥∥∥

2

L2(Ω)
+
‖∇θn‖2

L2(Ω)

∆tF
≤

∥∥∥∇θn−1
∥∥∥

2

L2(Ω)

∆tF
+
∥∥wn

∥∥2
L2(Ω) . (2.60)

Since
∥∥∥∂θn

∥∥∥
2

L2(Ω)
≥ 0, we rewrite (2.60) as

∥∥∇θn
∥∥2

L2(Ω) ≤
∥∥∥∇θn−1

∥∥∥
2

L2(Ω)
+ ∆tF

∥∥wn
∥∥2

L2(Ω) . (2.61)

We recursively obtain

∥∥∇θn
∥∥2

L2(Ω) ≤
∥∥∥∇θ0

∥∥∥
2

L2(Ω)
+ ∆tF

n

∑
j=1

∥∥∥wj
∥∥∥

2

L2(Ω)
, (2.62)

and by definition of θ (and P1),
∥∥∥∇θ0

∥∥∥
L2(Ω)

=
∥∥∥∇u0

h −∇P1u(t0)
∥∥∥

L2(Ω)
≤
∥∥∥∇u0

h −∇u(t0)
∥∥∥

L2(Ω)
+
∥∥∥∇u(t0)− P1∇u(t0)

∥∥∥
L2(Ω)

≤
∥∥∥∇u0 −∇u(t0)

∥∥∥
L2(Ω)

+ Ch
∥∥∥u(t0)

∥∥∥
H2(Ω)

. (2.63)

It remains to estimate the terms in wj.

–

w
j
1 = (P1 − I)∂u(tj)

=
1

∆tF
(P1 − I)

∫ tj

tj−1
ut ds,

=
1

∆tF

∫ tj

tj−1
(P1 − I)ut ds, since P1 and the time integral commute.

Thus,

∆tF

n

∑
j=1

∥∥∥w
j
1

∥∥∥
2

L2(Ω)
≤

n

∑
j=1

∫ tj

tj−1

∥∥(P1− I)ut

∥∥2
L2(Ω) ds,

≤ Ch4
n

∑
j=1

∫ tj

tj−1
‖ut‖2

H2(Ω) , by the definition of P1,

≤ Ch4
∫ tn

0
‖ut‖2

H2(Ω) ds. (2.64)
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– To estimate w2, we write

w
j
2 =

1
∆tF

(u(tj)− u(tj−1))− ut(t
j),

= − 1
∆tF

∫ tj

tj−1
(s − tj−1)utt(s) ds,

such that we end up with

∆tF

n

∑
j=1

∥∥∥w
j
2

∥∥∥
2

L2(Ω)
≤

n

∑
j=1

∥∥∥∥∥

∫ tj

tj−1
(s − tj−1)utt(s) ds

∥∥∥∥∥

2

L2(Ω)

≤ ∆t2
F

∫ tn

0
‖utt‖2

L2(Ω) ds.

Combining the estimates on ρ and θ concludes the proof.

Finally, in the same manner, we can recover the estimate in H2 and ∆t2
G with the Crank-

Nicolson scheme in the L2 norm (see theorem 1.6 [129]).

Theorem 27 (Theorem 1.6 [129]). Let un
h be the solution associated to Crank-Nicholson discretization,

and u be the solution of (2.44). We have, if
∥∥∥uh

0 − u0

∥∥∥ ≤ Ch2‖u0‖H2(Ω) and u0 = 0 on ∂Ω,

∥∥u(tn)− un
h

∥∥
L2(Ω) ≤ Ch2

[
‖u0‖H2(Ω)+

∫ tn

0
‖ut‖H2(Ω) ds

]
+C∆t2

G

∫ tn

0
(‖uttt‖L2(Ω)+‖∆utt‖L2(Ω)) ds, ∀n ≥ 0.

(2.65)

We now go on with the proof of Theorem 22.

Proof. The NIRB approximation is

uN,n
Hh (x; µ) =

N

∑
i=1

αH
i (µ, tn) Φh

i (x), n ≥ 0. (2.66)

Thus, the triangle inequality gives

∀t = n × ∆tF, (2.67)
∥∥∥u(t)(µ)− uN,n

Hh (µ)
∥∥∥

H1(Ω)
≤
∥∥u(t)(µ)− un

h(µ)
∥∥

H1(Ω)
+
∥∥∥un

h(µ)− uN,n
hh (µ)

∥∥∥
H1(Ω)

+
∥∥∥uN,n

hh (µ)− uN,n
Hh (µ)

∥∥∥
H1(Ω)

=: T1 + T2 + T3, (2.68)

where uN,n
hh (µ) =

N

∑
i=1

(un
h(µ), Φh

i ) Φh
i .

• The first term T1 may be estimated using the inequality (2.52), such that
∥∥u(t)(µ)− un

h(µ)
∥∥

H1(Ω)
≤ C (h + ∆tF), (2.69)

where C does not depend on h.
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• Here we suppose that the set of all the solutions Sh = {uh(µ, t), µ ∈ G, t ∈ [0, T]} has
a low complexity. It means that for an accuracy ε = ε(N) related to the Kolmogorov
n-width of the manifold Sh, for any µ ∈ G, and any n ∈ 0, . . . , T

∆tF
, T2 is bounded by ε

which depends on the Kolmogorov N-width.

T2 =

∥∥∥∥∥un
h(µ)−

N

∑
i=1

(un
H(µ), Φh

i ) Φh
i

∥∥∥∥∥
H1(Ω)

≤ ε(N). (2.70)

• The third term T3 still depends on the method used to create the basis. We consider the
approach with the Gram-Schmidt procedure and the eigenvalue problem (1.38), which
yields to an orthogonalization in L2 and in H1. Therefore,

∥∥∥uN
hh − uN

Hh

∥∥∥
2

H1(Ω)
=

N

∑
i=1

|(un
h(µ)− un

H(µ), Φh
i )|2

∥∥∥Φh
i

∥∥∥
2

H1(Ω)
. (2.71)

and with the normalization of the reduced basis in L2, and its orthogonalization in H1,

∥∥∥uN
hh − uN

Hh

∥∥∥
2

H1(Ω)
≤ CλN

∥∥un
h(µ)− un

H(µ)
∥∥2

L2(Ω)
,

By the equation (2.65) and the triangle inequality, we end up with

∥∥∥uN,n
hh − uN,n

Hh

∥∥∥
2

H1(Ω)
≤ C

√
λN(H2 + ∆t2

G), (2.72)

where C does not depend on N. Combining these estimates (2.69), (2.70) and (2.72)
concludes the proof.

Remark 28. On the stability. Since the NIRB error is estimated for all n, we obtain an estimate
in the maximum-norm in time and with the L2 norm and H1 norm in space, in other words in
L∞(0, T; L2(Ω)) and L∞(0, T; H1(Ω)). This is stronger than with the usual stability study of the
parabolic equation (2.44). For the H1 norm stability, we have an L2 stability in time. Indeed, from
(2.45),

(ut, u) +‖∇u‖2 ≤ |( f , v)|. (2.73)

From the Young and Poincaré inequalities, there exists C > 0 (that will change in the next inequalities)
such that

|( f , v)| ≤ 1
2
(
∥∥ f
∥∥2

+‖u‖2) ≤ 1
2

C(
∥∥ f
∥∥2

+‖∇u‖2).

and since

(ut, u) =
1
2

d

dt
‖u‖2 ,

(2.73) yields
d

dt
‖u‖2 +‖∇u‖2 ≤ C

∥∥ f
∥∥2 ,

and integrating over (0, T) we end up with

∥∥u(t)
∥∥2

+
∫ T

0

∥∥∇u(s)
∥∥2

ds ≤ C(‖u0‖2 +
∫ T

0

∥∥ f (s)
∥∥2

ds), (2.74)
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which gives

‖u‖2
L2(0,T;H1

0(Ω)) ≤ C(‖u0‖2
L2(Ω) +

∥∥ f
∥∥2

L2(0,T;L2(Ω))
). (2.75)

Thus, the stability is recovered in L2 in time and in H1 in space.

Numerical results. With the following notation

F(t) = µ∆u(t) + f (t),

the Backward Euler scheme writes

un+1 − un

∆tF
= Fn+1, (2.76)

which, with a test function v ∈ H1
0(Ω), gives in its weak formulation

(un+1, v) + ∆tF µ(∇un+1,∇v) = ∆tF( f n+1, v) + (un, v), (2.77)

whereas the Crank-Nicholson is defined by

un+1 − un

∆tG
=

1
2
(Fn+1 + Fn), (2.78)

and the corresponding variational formulation reads

(un+1, v) +
1
2

∆tG µ(∇un+1,∇un) =
1
2

∆tG(( f n+1 + f n, v) − µ(∇un,∇v)) + (un, v). (2.79)

We tested the two-grid method with the rectification posst-treatment 0.2.2 on the problem
(29) with G = (0, 10] and the right-hand side function

f (t, x) = 10[x2(x − 1)2y2(y− 1)2 − 2t((6x2 − 6x + 1)(y2(y− 1)2) + (6y2 − 6y+ 1)(x2(x − 1)2))],

where x = (x, y). The rectification post-processing step is done for each time step. Thus the
NIRB with rectification is given by

RuN,n
Hh (µ) =

N

∑
i,j=1

Rn
ij αH

j (µ, tn) Φh
i (x), n ≥ 0, (2.80)

where the rectification matrix R is a 3rd-order tensor time-dependent. We took 13 parameters
in G for the RB construction and thus, we obtain 10 × 13 snapshots with respect to the time
variable. Here follow the results with the NIRB algorithm and the rectification post-treatment
for a new parameter µ = 1. The exact solution is given by

u(t, x; 1) = 10tx2(1 − x)2y2(1 − y)2.

We implemented both schemes on FreeFem ++ and computed the NIRB rectified error in the
maximum-norm. The H1 NIRB rectified error is defined by

max
n=1,...,(T−t0)/∆tF

∥∥∥u(t0 + n∆tF)(µ)− RuN,n
Hh (µ)

∥∥∥
H1

0 (Ω)∥∥u(t0 + n∆tF)(µ)
∥∥

H1
0 (Ω)

, (2.81)
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Figure 2.4: NIRB L∞(0, T; H1(Ω)) (left) and L∞(0, T; L2(Ω)) (right) relative errors with
parabolic equations with a new parameter µ = 1

and this error is compared to the FEM ones defined as

max
n=1,...,(T−t0)/∆tF

∥∥∥u(t0 + n∆tF)(µ)− un
h(µ)

∥∥∥
H1

0 (Ω)∥∥u(t0 + n∆tF)(µ)
∥∥

H1
0 (Ω)

and max
n=1,...,(T−t0)/∆tG

∥∥u(t0 + n∆tG)(µ)− un
H(µ)

∥∥
H1

0 (Ω)∥∥u(t0 + n∆tG)(µ)
∥∥

H1
0 (Ω)

.

(2.82)
Since both schemes are stable, we can take ∆tF ≃ h and ∆tG ≃ H. For the Crank-Nicholson
scheme we fixed ∆tG = 0.2 and H = 0.235702, whereas for the Euler scheme we set ∆tF = 0.1
and h = 0.11785. In Figure 2.4, we plot the errors ((2.81) with the H1

0 -norm) as a function of
the number of modes N between t0 = 1 and T = 2 and we compare these results with the FEM
errors (2.82). The NIRB errors saturate very short of reaching the fine errors. In Figure 2.6, we
display the NIRB approximation at several time steps.

Remark 29. We may also consider NIRB aproximations of (2.46) under the form

uN,n
Hh (x; µ) =

N

∑
i=1

αH
i (µ, tn) Φn

h,i(x), n ≥ 0, (2.83)

with (Φn
h,i)i=1,...,N time-dependent basis functions. This time, the greedy algorithm is executed for each

time step.
With this decomposition, we obtained the following results (see Figure 2.5).

Remark 30. We retrieve the fine and coarse solutions in the VTK format and use Python to execute the
NIRB algorithm. For the interpolation in time and in space, we employed linear interpolations (see for
instance the Python module “interpolate” with the function “griddata” for space and “interp1d” for the
time interpolation).
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Figure 2.5: NIRB L∞(0, T; H1(Ω)) (left) and L∞(0, T; L2(Ω)) (right) relative errors with
parabolic equations with a new parameter µ = 1, another NIRB decomposition

(a) n = 1 (b) n = 4

(c) n = 7 (d) n = 10

Figure 2.6: Evolution of the NIRB approximation for N = 10, at time t = t0 + n∆tF, n = 1, 4, 7 and 10
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2.3 NIRB with domain singularities

This part is the object of an upcoming article.

Main idea. In this section, the NIRB method is exploited on singular domains. The two-
grid method with FE solver is applied with a new stategy in order to overcome the effects
caused by the singularities. There are many studies in the litterature on re-entrant corners
and domain singularities [25, 120, 16, 133, 84, 79]. Most of the developed methods are based
on mesh adaptive refinement in the vicinity of the singularities to achieve accuracy [120, 1].
While MOR methods have been proposed for various fields in science and engineering, only
few approaches have been developed to treat domain singularities [60, 31, 1].
Therefore, the main idea of this section is to employ the NIRB two-grid algorithm with the
rectification post-treatment to approximate such problems. We take advantage of the fact that
the RB methods are decomposed in two stages. All the techniques in retrieving an accurate
approximation are employed in the offline step. Here, we consider refinement methods. Thus,
a refinement is only operated during the offline stage. As a result, the computation times
linked to such refinement are considerably reduced in the online phase. We focus on domain
with re-entrant corners, and apply the NIRB two-grid method on such problems. It allows
us to retrieve optimal errors in the energy norm while using a uniform coarse mesh during
the online stage. We emphasize that the NIRB advantages are concerned with the size of the
coarse mesh employed during the online stage as well as its uniformity. We tested this new
approach on the L-shape domain and on the backward-facing step 3.1, and we present several
numerical results. Let us summarize the offline/online strategy:

1. During the “offline” stage, the fine mesh is refined in the vicinity of the re-entrant cor-
ners, in order to obtain optimal results. This fine mesh is employed to generate the
snapshots. Then the RB is created with the greedy algorithm 2 or the Snapshots POD 1.

2. Then, in the “online” phase, the coarse approximation is computed on a uniform coarse
mesh. Afterwards, the coarse solution is projected onto the basis space XN

h .

This process allows us to retrieve an accurate approximation with less degrees of freedom.
For instance, with the backward-facing step 3.1, the recirculation around the step is very well
captured.

Re-entrant corners. The NIRB two-grid method can be very sucessful to retrieve optimal
error estimates, assuming that the snapshots uh(µi)(i = 1, · · · , N), given by the HF solver
(with FEM or FV solvers [28, 66]) are such that (see section 2.1)

∥∥u(µi)− uh(µi)
∥∥

H1 ≤ Ch, ∀i = 1, . . . , N,

and ∥∥u(µ)− uH(µ)
∥∥

L2 ≤ CH2.

However, difficulties arise if the spatial domain Ω has singularities such as cracks or re-
entrant corners. We will focus on re-entrant corners problem. They generate a local singularity
on the solution and imply that the solution does not globally lie in H2(Ω). To counterbalance
these effects, some particular treatments have to be developed. For instance, we may add
singular functions (xFEM) to the classical FE basis [55, 112]. Another approach is concerned
with the potential function and employs boundary element methods [79]. In this application,
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we will consider adaptative mesh methods, which are widely used [1, 120]. They may be based
on a-posteriori error estimates [23, 114, 131, 39].

Thus, let us consider three meshes:

• a uniform coarse domain, for the coarse FEM approximation,

• a fine mesh, refined around the re-entrant corner, for the snapshots,

• and a highly refined thin mesh for the reference solution.

The fine and reference meshes refinement is done in FreeFem++ with the “adaptmesh”
function. It uses a variable metric/Delaunay automatic meshing algorithm [70] (bamg soft-
ware). Now, the fine mesh size is defined as

h = min
K∈Mh

hK (2.84)

where the diameter hK of any element K in a mesh is equal to sup
x,y∈K

|x − y|, K ∈ Th.

In the domain without refinement, in the presence of a re-entrant corner, it is well known [134,
16] that the solution belongs to H1+2/3−ε. Thus, the standard FEM yields reduced convergence
rates and for the coarse uniform mesh the following estimates hold





∥∥u(µ)− uH(µ)
∥∥

H1(Ω) ≤ CH2/3−ε
∥∥ f
∥∥

L2(Ω) ,∥∥u(µ)− uH(µ)
∥∥

L2(Ω)
≤ CH4/3−ε

∥∥ f
∥∥

L2(Ω)
,

(2.85)

This estimates are recovered with our coarse mesh and displayed in Figure 2.11. Now, if
the mesh is sufficiently refined around the corner, we may retrieve a convergence in h with the
H1 norm, as shown in Figure 2.12. Thus, it motivates two questions with the NIRB application
on such problems:

1. We may wonder if it is possible to eliminate the pollution effects in order to recover clas-
sical errors on a subdomain located far away from the re-entrant angle. In other words,
is there a minimum distance which allows us to eliminate the singularity effects?

2. The next question is about the direct application of the NIRB method on the whole
domain. Does the NIRB method allows us to recover optimal errors on the full domain?

We will present numerical tests highlighting the fact that NIRB applied to such problems
allows us to obtain accurate approximations. With the NIRB approximation, we obtain the
same convergence rate as with the fine solution on the refined mesh.

L-shape domain. We consider Ω, a plane polygonal domain with a re-entrant angle α0 =
3π
2 > π at a vertex v. We introduce β = π

α0
< 1. We consider the Poisson’s equation (16a)-(16b)

on Ω.
For the coarse mesh, we use a uniform triangulation TH of Ω as in Figure 2.15a. Figure 2.7

displays the L-shape domain FEM results.
Figure 2.11 presents the relative H1 error is in β = 2

3 and the error in L2(Ω) is in 2β = 4
3 ,

as it was expected with our re-entrant corner (2.85). We observe in Figure 2.7 that the error
increases when getting closer to the re-entrant corner. Therefore, it brings us to the first raised
question. The idea is to employ a subdomain of the uniform mesh to be able to recover the
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Figure 2.7: Solution on the reference mesh (left) and coarse FEM error (right)

same rate in the L2 norm on this subdomain as with the Aubin-Nitsche’s trick. Therefore
the NIRB analysis would prove that we may recover an optimal error estimate. Thus, we are
interested in retrieving a superconvergence with the L2 norm at a given distance from the
singularity. In fact, for any subdomain away from the singular vertex v, the error in H1 norm
converges in O(H) whereas for the L2 norm, we cannot expect a better rate than 2 β, as we
underline it in the following remark 31.

Remark 31. Expected rate on a subdomain. We summarize the following result with the L2 and H1

norms:
If we consider a subdomain Ω0 ⊂ Ω1 ⊂ Ω, far enough from the boundary, then if u ∈ H2(Ω1),
Theorem 9.1 [134] and Theorem 5.1 [103] give

‖u − uH‖s,Ω0
≤ CH2−s‖u‖H2(Ω1)

+ Ch2β−2ε‖u‖H1+β(Ω) , s = 0, 1.

Thus for any subdomain away from the vertex v, the error in H1 norm converges in H and for L2 we
cannot expect a better rate than 2β.

Therefore, a subdomain of Ω will not yield a L2 super-convergence. However, we may still
apply the NIRB approach to this problem and observe the numerical results.

That brings us to the second question, and therefore, we present numerical results on this
NIRB application. We sought several fine meshes with a correct refinement as in Figure 2.8b
such that the error between the reference mesh and the fine one was in O(h) as we can see in
Figure 2.12. We employ a uniform coarse mesh of size H = 0.16 as in Figure 2.15a.

We test two diffusion coefficients:

• With A(µ) = µ, constant in the domain. In our test, we took µ = 0.8. The results are
presented in Figure 2.9.

• The second test is with A(µ) piecewise-constant on Ω. Therefore, the L-shape domain is
decomposed in three subdomains for the varying parameter where

A(µ) = µ(x) =





µ1 if x ≥ 0.5, y ≥ 0.5

µ2 if x < 0.5, y < 0.5

µ3 if x ≤ 0.5, y ≥ 0.5,

67



2.3. NIRB WITH DOMAIN SINGULARITIES

Coarse mesh

(a) Coarse mesh

Fine mesh

(b) Fine mesh

Figure 2.8: Coarse and fine meshes

Figure 2.9: H1 FEM relative error (left) and NIRB rectified error (right)

µ1

µ2 µ3

Figure 2.10: L-shape parameters domain
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Figure 2.11: Relative errors with the coarse solution H1 (left) and L2 (right) norms, A(µ) = µ
constant

as in Figure 2.10. We tested the problem with µ1 = 0.05, µ2 = 0.033, µ3 = 0.08.

NIRB results are illustrated in Figure 2.12.

The NIRB method allows to recover the fine solutions and thus, it yields optimal results with
an appropriate refinement, as we can see in Figure 2.9 and in Figure 2.12. This optimal bound
is not certified since this optimal rate is not retrieved theoretically. We also test this new
approach on the 2D backward-facing step problem and it yields a good convergence rate as
well.

2D backward-facing step problem. We consider the 2D Backward-Facing Step (BFS) problem
as described in section 3.1.

The refined reference mesh size is equal to 2.54e−5.
In the domain without refinement, the estimates (2.85) hold with a coarse and uniform mesh,
as observed in Figure 2.13 with the H1 semi-norm and the L2 error between the reference and
coarse meshes with Re = 52.

Now, as with the L-shape domain, if the mesh is sufficiently refined around the corner, we
may retrieve a convergence in O(h) with the H1 norm, as shown in Figure 2.14. This figure
displays the H1 semi-norm between the reference mesh and several fine meshes.

We sought with FreeFem++ several fine meshes with a correct refinement as in Figure 2.16a
such that the error between the reference mesh and the fine ones was in O(h), as in Figure 2.14.
We first employed a uniform coarse mesh of size H = 0.32 as in Figure 2.15a. In all our cases
this NIRB approach preserves an optimal convergence, as shown in Figure 2.17.

The same results have been retrieved with a coarse mesh size H = 0.7.

Time execution (min,sec)

We present the FEM and NIRB runtimes with the meshes as in Figure 2.15 for the fine mesh
and Figure 2.16 for the coarse one.
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Figure 2.12: H1 FEM relative error (left) and NIRB rectified error (right), A(µ) piecewise-
constant

Figure 2.13: BFS: Coarse uniform domain, convergence
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Figure 2.14: BFS: Fine domain, relative error between reference and fine meshes with H1 semi-
norm, Re = 52

(a) Coarse uniform mesh (H = 0.1414)
(b) FEM coarse approximation (Magni-
tude)

Figure 2.15: BFS: FEM coarse mesh and solution
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(a) Example of fine refined mesh (h =
0.00010187)

(b) FEM fine approximation (Magnitude)

Figure 2.16: BFS: FEM fine mesh and solution

Figure 2.17: BFS: Relative H1 errors between reference and fine meshes (left) vs NIRB (+
rectification) convergence (right) with Re = 52
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FEM HF solver FEM coarse solution
01:24 00:01

Table 2.1: FEM runtimes

NIRB Offline NIRB online
08:34 00:16

Table 2.2: NIRB runtimes (N = 6)

To conclude, this NIRB approach considerably reduced the runtimes since we employ a
coarse mesh and we avoid the costs of a refinement during the NIRB online stage, as observed
in tables 2.1 and 2.2.

2.4 The two-grid method with FV solvers

This work has been published in the Journal ESAIM: Mathematical Modeling and Numerical
Analysis (ESAIM: M2AN) [66].

The FV setting for the Non-Intrusive Reduced Basis Method

Let Ω be a bounded domain in Rd with d ≤ 3. The NIRB method in the context of a high
fidelity solver of Finite Volume (FV) types involves two partitioned meshes, one fine mesh Mh

and one coarse mesh MH , where h and H are the respective sizes of the meshes and h << H.
The meshes can be more complex than with the FEM solver but we still use the same definition
of the mesh size (7). The meshes are polytopal. We now recall the definition of a polytopal
mesh.

Definition 5. (Polytopal mesh) Let Ω be a bounded polytopal open subset of Rd(d ≥ 1). A polytopal
mesh of Ω is a quadruplet T = (M,F ,P ,V), where:

1. M is a finite family of non-empty connected polytopal open disjoint subsets K (the cells) such
that Ω = ∪

K∈M
K. For any K ∈ M, |K| > 0 is the measure of K and hK denotes the diameter of

K.

2. F = Fint ∪Fext is a finite family of disjoint subsets of Ω (the edges of the mesh in 2D), such that
any σ ∈ Fint is contained in Ω and any σ ∈ Fext is contained in ∂Ω. Each σ ∈ F is assumed
to be a nonempty open subset of a hyperplane of Rd, with a positive (d − 1)-dimensional measure
|σ|. Furthermore, for all K ∈ M, there exists a subset FK of F such that ∂K = ∪

σ∈FK

σ. We

assume that for all σ ∈ F ,Mσ = {K ∈ M : σ ∈ FK} has exactly one element and σ ⊂ ∂Ω or
Mσ has two elements and σ ⊂ Ω. The center of mass is xσ, and, for K ∈ M and σ ∈ FK, nK,σ
is the (constant) unit vector normal to σ outward to K.

3. P is a family of points of Ω indexed by M and F , denoted by P = ((xK)K∈M, (xσ)σ∈F ), such
that for all K ∈ M, xK ∈ K and for all σ ∈ F , xσ ∈ σ. We then denote by dK,σ the signed
orthogonal distance between xK and σ ∈ FK, that is:
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+
xK

σ

K

dK,σ

DK,σ

nK,σ

Figure 2.18: Finite Volume: A cell K of a polytopal 2D mesh

dK,σ = (x− xK) · nK,σ, for all x ∈ σ. We then assume that each cell K ∈ M is strictly star-shaped
with respect to xK, that is dK,σ > 0 for all σ ∈ FK. This implies that for all x ∈ K, the line
segment [xK, x] is included in K. We denote xK the center of mass of K and by xσ the one of σ.
For all K ∈ M and σ ∈ FK, we denote by DK,σ the cone with vertex xK and basis σ, that is
DK,σ = {txK + (1 − t)y, t ∈ (0, 1), y ∈ σ}.

4. V is a set of points (the vertices of the mesh). For K ∈ M, the set of vertices of K, i.e. the vertices
contained in K, is denoted VK. Similarly, the set of vertices of σ ∈ F is Vσ.

The figure 2.18 illustrates a cell of a 2D polytopal mesh.
The regularity factor for polytopal meshes is

θ = max
σ∈Fint,Mσ={K,K′}

dK,σ

dK′,σ
+ max

K∈M
(max

σ∈FK

hK

dK,σ
+ Card(FK)). (2.86)

We introduced the GD setting in the introduction 2 but we now enonce the GD operators
employed for HMM scheme.

Definition 6. (Hybrid Mimetic Mixed gradient discretization (HMM-GD))
For hMFD scheme, we use the following GD (Definition 13.1.1 [45]):

1. Let XD,0 = {v = ((vK)K∈M, (vσ)σ∈F ) : vK ∈ R, vσ ∈ R, vσ = 0 if σ ∈ Fext},

2. ΠD : XD,0 → L2(Ω) is the following piecewise constant reconstruction on the mesh:
∀v ∈ XD,0, ∀K ∈ M,

ΠDv(x) = vK on K. (2.87)

3. ∇D : XD,0 → L2(Ω)d reconstructs piecewise constant gradients on the cones (DK,σ)K∈M,σ∈FK
:

∀v ∈ XD,0, ∀K ∈ M, ∀σ ∈ F ,

∇Dv(x) = ∇Kv +

√
d

dK,σ
[LKRK(v)]σ nK,σ on DK,σ, (2.88)
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where:

• ∇Kv = 1
|K| ∑σ∈FK

|σ|vσnK,σ,

• RK : XD,0 → RFK is given by RK(v) = (RK,σ(v)))σ∈FK
with RK,σ(v) = vσ − vK −∇Kv ·

(xσ − xK),

• LK is an isomorphism of the space Im(RK).

We emphasize that we will refer to ΠH
D on the coarse mesh and to Πh

D on the fine mesh,
likewise for the gradient reconstruction (respectively ∇H

D or ∇h
D). The schemes hMFD [21],

HFV (a hybrid version of the SUSHI scheme) [52] and MFV [43] are three different presenta-
tions of the same method [46]. With the notations above, any HMM method for the weak form
(17) can be written (Equation 2.25 [46]):
Find uT (µ) ∈ XD,0 such that, for all vT ∈ XD,0,

∑
K∈M

|K|AK(µ)∇KuT · ∇KvT + ∑
K∈M

RK(vT )T
BKRK(uT ) = ∑

K∈M
vK

∫

K
f (x) dx,

where µ is our variable parameter, AK(µ) is the L2 projection of A(µ) on K and BK =
((BK)σ,σ′)σ,σ′∈FK

is a symmetric positive definite matrix, resulting from the definition of ∇D .
For a certain choice of isomorphism LK : ℑ(RK) → ℑ(RK), the HMM scheme (2.4) is identical
to GDs (32) (see Theorem 13.7 [45]).
We underline the fact that if xK is chosen such that it is the cell center of mass, then HMM
schemes boil down to hMFD [38]. In the next section, we recall the offline and the online parts
of the two-grid algorithm in a FV setting.

2.4.1 Main steps

This section details the main steps of the two-grid method algorithm in a FV context [66].

Let uh(µ) refer to the hMFD solution on a fine polytopal mesh Th, with cells Mh and respec-
tively uH(µ) the one on a coarse mesh TH , with the cells MH .

We briefly recall the NIRB method. Points 1 and 2 are performed in the offline part, and the
others are done online.

1. Several snapshots {uh(µi)}i∈{1,...N} are computed with the hMFD scheme (32), where
µi ∈ G ∀i = 1, · · · , N.
The space generated by the snapshots is named XN

h = Span{uh(µ1), . . . , uh(µN)}.

2. We generate the RB functions (Φh
i )i=1,··· ,N with the following steps:

• A Gram-Schmidt procedure, which involves L2 orthonormalization of the recon-
struction functions.

• This procedure is also completed by the following eigenvalue problem:




Find Φh ∈ XN
h , and λ ∈ R such that:

∀v ∈ XN
h ,
∫

Ω
∇h

DΦh · ∇h
Dv dx = λ

∫

Ω
Πh

DΦh · Πh
Dv dx, (2.89)
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where ∇h
D and Πh

D are respectively the discrete gradient and the discrete recon-
struction operators as in the definition of the HMM GD ((2.87), (2.88)). We get an in-
creasing sequence of eigenvalues λi, and orthogonal eigenfunctions (Πh

DΦh
i )i=1,··· ,N ,

orthonormalized in L2(Ω) and orthogonalized in H1(Ω), such that (Φh
i )i=1,··· ,N de-

fines a new basis of the space XN
h .

3. We solve the hMFD problem (32) on the coarse mesh TH for a new parameter µ ∈ G. Let
us denote by uH(µ) the solution.

4. We then introduce αH
i (µ) =

∫
Ω

ΠH
DuH(µ) · Πh

DΦh
i dx. The approximation used in the

two-grid method is uN
Hh(µ) =

N

∑
i=1

αH
i (µ) Πh

DΦh
i .

Rectification post-process

We introduce αh
i (µ) =

∫
Ω

Πh
Duh(µ) · Πh

DΦh
i dx. The rectification process, explained in [96,

28, 30], can be employed in addition to the NIRB classical algorithm. This implies that if
the true solution is in the reduced space, then the NIRB method will give this true solu-
tion. We still consider Ntrain as the number of parameters in G. Let A be the matrix
such that Ai,k = αH

i (µk), ∀µk ∈ G, ∀i = 1, · · · , N, and B be the matrix such that Bi,k =

αh
i (µk), ∀µk ∈ G, ∀i = 1, · · · , N. The solution of this problem with a regularization param-

eter is the rectification matrix:

Ri = (ATA + λIN)
−1ATBi, ∀i = 1, · · · , N, (2.90)

where λ is the regularization parameter.
The approximation used with this post-process is

uN
Hh(µ) =

N

∑
i,j=1

Rij αh
j (µ) Πh

DΦh
i . (2.91)

Remark 32. We consider here ‖·‖D as the discrete semi-norm of H1 so as not to make notations too
cumbersome. The usual discrete semi-norm for H1 is defined by

∀v ∈ T , |v|2T ,2 = ∑
K∈M

∑
σ∈FK

|σ|dK,σ

∣∣∣∣∣
vσ − vK

dK,σ

∣∣∣∣∣

2

. (2.92)

Under some conditions on the regularity of the mesh, this norm and‖∇D ·‖L2(Ω)d are equivalent (Lemma

13.11 [45]).

In the next section, we detail how to obtain the classical finite elements estimate in O(h) on
the NIRB algorithm, when the snapshots are computed with the hMFD GD using a polytopal
mesh.

2.4.2 NIRB error estimate

In this section, we consider xK = xK which is the case with the hMFD scheme. Some other
cases will be detailed in section 2.4.3.
We now continue with the proof of theorem 10.

76



2.4. THE TWO-GRID METHOD WITH FV SOLVERS

Proof. In this proof, we will denote A . B for A ≤ CB with C not depending on h or H.

We use the triangle inequality on
∥∥∥u(µ)− uN

Hh(µ)
∥∥∥
D

to get

∥∥∥u(µ)− uN
Hh(µ)

∥∥∥
D
≤
∥∥∥u(µ)− Πh

Duh(µ)
∥∥∥
D
+
∥∥∥Πh

Duh(µ)− uN
hh(µ)

∥∥∥
D
+
∥∥∥uN

hh(µ)− uN
Hh(µ)

∥∥∥
D

=: T1 + T2 + T3, (2.93)

where uN
hh(µ) =

N

∑
i=1

αh
i (µ)Π

h
DΦh

i ,.

• The first term T1 can be estimated using a classical result for finite volume schemes
(Consequence of Proposition 13.16 [45]) such that:

∥∥∥u(µ)− Πh
Duh(µ)

∥∥∥
D
. h‖u‖H2(Ω) . (2.94)

For more details, see in the appendix C.0.2.

• Here the second term T2 is estimated as in the FEM analysis. It relies on the Kol-
mogorov N-width (6). Here we suppose the set of all the reconstructions of the solutions
Sh = {Πh

Duh(µ), µ ∈ G} has a low complexity which means for an accuracy ε = ε(N)
related to the Kolmogorov n-width of the manifold Sh, there exists a set of parameters
{µ1, . . . , µN} ∈ G, such that [34, 96, 28, 22]

T2 =

∥∥∥∥∥Πh
Duh(µ)−

N

∑
i=1

αh
i (µ)Π

h
DΦh

i

∥∥∥∥∥
D
≤ ε(N). (2.95)

• Consider the term T3 now. We will need the following proposition. This proposition
comes from the hMFD super-convergence property (34) and several interpolation tricks.

Proposition 33. Let uH(µ) be the solution of the hMFD on a polytopal mesh TH with the
unknowns on xK = xK. Denote by u(µ) the exact solution of equation (17), and let (Φh

i )i=1,··· ,N
be the basis functions of the NIRB algorithm, then there exists a constant C = C(N) > 0 not
depending on H or h, and depending on N such that

∣∣∣∣
∫

Ω
(u(µ)− ΠH

DuH(µ)) · Πh
DΦh

i dx

∣∣∣∣ . ((‖Φi‖L∞(Ω) + C(N))‖u‖H2(Ω) +
∥∥ f
∥∥

H1(Ω))H2.

(2.96)

Proof. Since MH is a partition of Ω,
∫

Ω
ΠH

DuH(µ) · Πh
DΦh

i dx = ∑
K∈MH

∫

K
ΠH

DuH(µ) · Πh
DΦh

i dx. (2.97)

To begin with, let ΠH
0 : C(Ω) → L∞(Ω) be the piecewise constant projection operator on

MH such that:

ΠH
0 Ψ(x) = Ψ(xK), on K, ∀K ∈ MH , ∀Ψ ∈ C(Ω). (2.98)
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We use the triangle inequality on the left part of the inequality (2.96) and therefore,
∣∣∣∣
∫

Ω
(u(µ)− ΠH

DuH(µ)) · Πh
DΦh

i dx
∣∣∣∣ ≤

∣∣∣∣
∫

Ω
(u(µ)− ΠH

0 u(µ)) · Πh
DΦh

i dx
∣∣∣∣

+

∣∣∣∣
∫

Ω
(ΠH

0 u(µ)− ΠH
DuH(µ)) · Πh

DΦh
i dx

∣∣∣∣ ,

=: T3,1 + T3,2. (2.99)

– We first consider the term T3,1. But first, this requires the use of a further operator
which we now introduce. Each cell K ∈ MH is star-shaped with respect to a ball BK

centered in xK of radius ρ = min
σ∈FK

dK,σ (Lemma B.1 [45]). We then use an averaged

Taylor polynomial as in [19] but simplified. Let us consider the following polyno-
mial of u(µ) averaged over BK:

QKu(x; µ) =
1

|BK|
∫

BK

[u(y; µ) + D1u(y; µ)(x − y)] dy. (2.100)

This polynomial is of degree less or equal to 1 in x .
Let us introduce ΠH

1 : H1(Ω) ∩ C(Ω) → R, the piecewise affine projection operator
on MH such that:

ΠH
1 Ψ = QKΨ(x), on K, ∀K ∈ MH , ∀Ψ ∈ H1(Ω) ∩ C . (2.101)

With the triangle inequality, we obtain

T3,1 ≤
∣∣∣∣
∫

Ω
(u(µ)− ΠH

1 u(µ)) · Πh
DΦh

i dx
∣∣∣∣+

∣∣∣∣
∫

Ω
(ΠH

1 u(µ)− ΠH
0 u(µ)) · Πh

DΦh
i dx

∣∣∣∣ ,

=: T3,1,1 + T3,1,2. (2.102)

* Using the Cauchy-Schwarz inequality,

T3,1,1 ≤
∫

Ω

∣∣∣(u(µ)− ΠH
1 u(µ)) · Πh

DΦh
i

∣∣∣ dx,

≤
∥∥∥u(µ)− ΠH

1 u(µ)
∥∥∥

L2(Ω)

∥∥∥Πh
DΦh

i

∥∥∥
L2(Ω)

,

≤
∥∥∥u(µ)− ΠH

1 u(µ)
∥∥∥

L2(Ω)
, since Πh

DΦh
i ∀i = 1, · · · , N are normalized in L2.

(2.103)

Let K ∈ MH. As in Proposition 4.3.2 [19] (for more details, see the appendix
C.1, equation (C.24)),

sup
x∈K

|u(x; µ)− QKu(x; µ)| . H
2− d

2
K |u(µ)|H2(K). (2.104)

Since K ⊂ B(x, H) for all x ∈ K,

|K| ≤ |B(xK, H)| = |B(0, 1)|Hd
K. (2.105)

Thus, with the inequalities (2.105) and (2.104), we get

sup
x∈K

|u(x; µ)− QKu(x; µ)| . H2
K|K|−

1
2 |u(µ)|H2(K), (2.106)
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taking the square and integrating over K, we obtain
∫

K
|u(µ)− ΠH

1 u(µ)|2 dx . H4
K|u(µ)|2H2(K), (2.107)

and summing over K yields
∥∥∥u(µ)− ΠH

1 u(µ)
∥∥∥

L2(Ω)
. H2|u(µ)|H2(Ω). (2.108)

The inequality (2.108), combined with (2.103), entails that

T3,1,1 . H2|u(µ)|H2(Ω). (2.109)

* The term T3,1,2 can be estimated using a continuous reconstruction of Φh
i , de-

noted by Φi .
With the triangle inequality,
∣∣∣∣
∫

Ω
(ΠH

1 u(µ)− ΠH
0 u(µ)) · Πh

DΦh
i dx

∣∣∣∣ ≤
∣∣∣∣
∫

Ω
(ΠH

1 u(µ)− ΠH
0 u(µ))(Πh

DΦh
i − ΠH

0 Φi) dx
∣∣∣∣

︸ ︷︷ ︸
a

+

∣∣∣∣
∫

Ω
(ΠH

1 u(µ)− ΠH
0 u(µ)) · ΠH

0 Φi) dx
∣∣∣∣

︸ ︷︷ ︸
b

.

(2.110)

Let us begin with b. Since xK is the center of mass,
∫

K x dx = |K|xK. Therefore,
∫

K
QKu(x; µ) dx = |K|QKu(xK; µ). (2.111)

From the inequality (2.104) (case x = xK detailed in the appendix C.1),

|QKu(xK; µ)− u(xK; µ)| . H
2− d

2
K |u(µ)|H2(K). (2.112)

Thus, since ΠH
0 Φi is constant on each cell K ∈ MH , and |K| . Hd

K (2.105),

∣∣∣∣
∫

Ω
(ΠH

1 u(µ)− ΠH
0 u(µ)) · ΠH

0 Φi dx
∣∣∣∣ =

∣∣∣∣∣∣ ∑
K∈MH

∫

K
(QKu(x; µ)− u(xK; µ)) · ΠH

0 Φi dx

∣∣∣∣∣∣
,

≤ ∑
K∈MH

∣∣∣∣Φi(xK)
∫

K
QKu(x; µ)− u(xK; µ) dx

∣∣∣∣ ,

≤ ∑
K∈MH

|K|
∣∣Φi(xK)(QKu(xK; µ)− u(xK; µ))

∣∣ , from (2.111),

≤‖Φi‖L∞(Ω) ∑
K∈MH

|K|
∣∣QKu(xK; µ)− u(xK; µ)

∣∣ ,

.‖Φi‖L∞(Ω) ∑
K∈MH

|K|H2− d
2

K |u(µ)|H2(K) from (2.112),

.‖Φi‖L∞(Ω) ∑
K∈MH

H
2+ d

2
K |u(µ)|H2(K).

(2.113)
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Since Card(MH) ≃ H−d, using the Cauchy-Schwarz inequality, the inequality
(2.113) becomes

∣∣∣∣
∫

Ω
(ΠH

1 u(µ)− ΠH
0 u(µ)) · ΠH

0 Φi dx
∣∣∣∣ .‖Φi‖L∞ H2( ∑

K∈MH

|u(µ)|2
H2(K))

1
2 ,

=‖Φi‖L∞ |u(µ)|H2(Ω)H
2, (2.114)

which implies that there exists a constant C̃1 > 0 not depending on h or H such
that (2.110) becomes

T3,1,2 ≤
∫

Ω

∣∣∣(ΠH
1 u(µ)− ΠH

0 u(µ))(Πh
DΦh

i − ΠH
0 Φi)

∣∣∣ dx
︸ ︷︷ ︸

a

+C̃1‖Φi‖L∞ |u(µ)|H2(Ω)H
2.

(2.115)
Let us continue with the estimate of the term a. From the Cauchy-Schwarz
inequality and the inequality (2.115),

T3,1,2 ≤
∥∥∥ΠH

1 u(µ)− ΠH
0 u(µ)

∥∥∥
L2(Ω)

∥∥∥Πh
DΦh

i − ΠH
0 Φi

∥∥∥
L2(Ω)

+ C̃1‖Φi‖L∞ |u(µ)|H2(Ω)H
2.

(2.116)

From Bramble-Hilbert’s Lemma 11 (Remark 12, equation (39)) [19], we deduce
that ∥∥∥u(µ)− ΠH

0 u(µ)
∥∥∥

L2(Ω)
. H

∥∥u(µ)
∥∥

H2(Ω)
. (2.117)

For the first term in the right-hand side of (2.116), from (2.108)-(2.117) and the
triangle inequality,

∥∥∥ΠH
1 u(µ)− ΠH

0 u(µ)
∥∥∥

L2(Ω)
≤
∥∥∥ΠH

1 u(µ)− u(µ)
∥∥∥

L2(Ω)
+
∥∥∥u(µ)− ΠH

0 u(µ)
∥∥∥

L2(Ω)
,

. H‖u‖H2(Ω) , neglecting the estimate in H2,
(2.118)

and the inequality (2.117) and the classical finite volume estimate as for (2.94)
(Πh

Dφh
i being a linear combination of the family (Πh

Duh
j )

N
j=1, ∀i = 1, · · · , N) im-

plies that there exists C̃2 = C̃2(N) > 0 not depending of H or h but depending
on N such that

∥∥∥Πh
DΦh

i − ΠH
0 Φi

∥∥∥
L2(Ω)

≤
∥∥∥Πh

DΦh
i − Φi

∥∥∥
L2(Ω)

+
∥∥∥Φi − ΠH

0 Φi

∥∥∥
L2(Ω)

,

≤ C̃2(N)H, neglecting the estimate in h. (2.119)

From (2.118)-(2.119), we deduce that each L2 term is in O(H) in the product of
the right-hand side of (2.116). Hence the equation (2.110) yields

T3,1,2 =

∣∣∣∣
∫

Ω
(ΠH

1 u(µ)− ΠH
0 u(µ)) · Πh

DΦh
i dx

∣∣∣∣ . (C̃1‖Φi‖L∞(Ω)+ C̃2(N))‖u‖H2(Ω) H2.

(2.120)
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– We now proceed with the estimate on T3,2 :
With the super-convergence property on the hMFD scheme (34), and with the nor-
malization of Πh

DΦh
i in L2(Ω)

∣∣∣∣
∫

Ω
(ΠH

DuH(µ)− ΠH
0 u(µ)) · Πh

DΦh
i dx

∣∣∣∣ ≤
∫

Ω

∣∣∣(ΠH
DuH(µ)− ΠH

0 u(µ)) · Πh
DΦh

i

∣∣∣ dx,

≤
∥∥∥ΠH

DuH(µ)− ΠH
0 u(µ)

∥∥∥
L2(Ω)

∥∥∥Πh
DΦh

i

∥∥∥
L2(Ω)

,

. (
∥∥ f
∥∥

H1(Ω) +‖u‖H2(Ω))H2. (2.121)

Combining the estimates (2.109)-(2.120)-(2.121) with the inequalities (2.99)-(2.102), this
results in the inequality (2.96).

We are now able to continue with the proof of theorem 10 and we consider the third term

T3 =
∥∥∥uN

hh(µ)− uN
Hh(µ)

∥∥∥
D

.

T3 =

∥∥∥∥∥
N

∑
i=1

αh
i (µ)Π

h
DΦh

i −
N

∑
i=1

αH
i (µ)Πh

DΦh
i

∥∥∥∥∥
D

,

≤
N

∑
i=1

∣∣∣αh
i (µ)− αH

i (µ)
∣∣∣
∥∥∥Πh

DΦh
i

∥∥∥
D

,

=
N

∑
i=1

∣∣∣(Πh
Duh(µ)− ΠH

DuH(µ), Πh
DΦh

i )L2

∣∣∣
∥∥∥Πh

DΦh
i

∥∥∥
D

. (2.122)

From (2.89), we get that
∥∥∥Πh

DΦh
i

∥∥∥
2

D
=
∫

Ω
|∇DΦh

i |2 dx = λi

∥∥∥ΠDΦh
i

∥∥∥
2

L2(Ω)
≤ max

i=1,··· ,N
(λi) = λN . (2.123)

Therefore we obtain from (2.122) and (2.123),

T3 ≤
√

λN

N

∑
i=1

∣∣∣(Πh
Duh(µ)− ΠH

DuH(µ), Πh
DΦh

i )L2

∣∣∣ . (2.124)

Using the triangle inequality in the right-hand side of (2.124),

T3 ≤
√

λN

N

∑
i=1

∣∣∣(Πh
Duh(µ)− u(µ), Πh

DΦh
i )
∣∣∣+
∣∣∣(u(µ)− ΠH

DuH(µ), Πh
DΦh

i )
∣∣∣ . (2.125)

From Proposition 1, with the estimate (2.96) applied to Mh and MH , neglecting the
estimate in O(h2)

T3 .
√

λN N((‖Φi‖L∞(Ω) + C(N))‖u‖H2(Ω) +
∥∥ f
∥∥

H1(Ω))H2. (2.126)

The conclusion follows combining the estimates on T1, T2 and T3 (estimates (2.94),(2.95) and
(2.126)).

∥∥∥u(µ)− uN
Hh(µ)

∥∥∥
D
=

∥∥∥∥∥u(µ)−
N

∑
i=1

αH
i (µ)Πh

DΦh
i

∥∥∥∥∥
D

,

≤ ε(N) + C1h + C2(N)H2 ∼ O(h) if h ∼ H2. (2.127)
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2.4.3 Results on other FV schemes

In this section, we consider the case where xK is not the center of mass, as it is the case for some
FV schemes. Therefore the left hand side of the inequality (2.113) cannot be estimated using
equation (2.111). The unknowns xK are not necessarily the centers of mass of the cells neither
with HMM methods nor with the Two-Point Flux Approximation (TPFA) scheme [17, 42].
Under the following superadmissibility condition

∀K ∈ MH , σ ∈ FK : nK,σ =
xσ − xK

dK,σ
, (2.128)

the TPFA scheme is a member of the the HMM family schemes ( [45] section 13.3 , [46] section
5.3) with the choice LK = Id. This leads to take xK as the circumcenters of the cells with
2D triangular meshes. Theorem 1.1 holds in 2D on uniform rectangles with TPFA since the
superadmissibility condition is satisfied in this case where xK is the centre of mass of the cells.
The TPFA scheme is rather simple to implement, and therefore we will present in the last
section numerical results with a TPFA solver. We will use the definition of a local grouping
of the cells as in [47] (Definition 5.1). We will extend Theorem 1.1 in the case where such
groupings of cells exist.

Definition 7. (Local grouping of the cells). Let TH be a polytopal mesh of Ω. A local grouping of the
cells of TH is a partition G of MH , such that for each G ∈ G, letting UG := ∪

K∈G
K, there exists a ball

BG ⊂ UG such that UG is star-shaped with respect to BG. This implies that for all x ∈ UG and all
y ∈ BG, the line segment [x, y] is included in UG. We then define the regularity factor of G

µG := max
G∈G

Card(G) + max
G∈G

max
K∈G

HK

diam(BG)
, (2.129)

and, with eK = xK − xK, and

eG :=
1

|UG| ∑
K∈G

|K| eK, ∀G ∈ G, (2.130)

eG := max
G∈G

|eG| . (2.131)

Note that we are interested in situations where |eG| =
∣∣∣ 1
|UG | ∑K∈G |K| eK

∣∣∣ is much smaller than

|eK| ∀K ∈ G. The aim of this section is to estimate the left hand side of the inequality (2.113)
in O(H2) using a local grouping of the cells. The rest of the proof remains unchanged.

We will need the following theorem of super-convergence for HMM schemes with local
grouping (Theorem 5.4 [47]).

Theorem 34 (Super-convergence for HMM schemes with local grouping (Theorem 5.4 [47])).
Let f ∈ H1(Ω), and u(µ) be the solution of (17) under assumption (33). Let Th be a polytopal mesh,
and D be an HMM gradient discretization on Th and eG be a local grouping, and let uh(µ) be the
solution of the corresponding GD. Then, considering uP (µ) as the piecewise constant function on Mh

equal to u(xK; µ) on K ∈ M, there exists C not depending on H or h such that

∥∥∥Πh
Duh(µ)− uP (µ)

∥∥∥
L2(Ω)

≤ C
∥∥ f
∥∥

H1(Ω) (h
2 + eG). (2.132)
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Theorem 35 (NIRB error estimate with local grouping.). Let uN
Hh(µ) be the reduced solution pro-

jected on the fine mesh and generated with the hMFD solver with the unknowns defined on xk such that
eG is in O(H2) on the coarse mesh, and u(µ) be the exact solution of (17) under assumption (33), then
the following estimate holds

∥∥∥u(µ)− uN
Hh(µ)

∥∥∥
D
≤ ε(N) + C1h + C2(N)H2, (2.133)

where C1 and C2 are constants independent of h and H,C2 depends on N, the number of functions in the
basis, and‖·‖D is the discrete norm introduced in the introduction 4, and ε depends of the Kolmogorov
n-width. If H is such as H2 ∼ h, and ε(N) small enough, it results in an error estimate in O(h).

Proof. In this proof, we will still denote A . B for A ≤ CB with C not depending on h or
H. The reconstruction Φi of Φh

i must belong to W1,∞. We emphasize on the fact that in what
follows xK 6= xK. We begin by the estimate b in the term T3,1,2 (2.110). The equation (2.111) still
holds and with the triangle inequality,

∣∣∣∣
∫

Ω
(ΠH

1 u(µ)− ΠH
0 u(µ)) · ΠH

0 Φi dx
∣∣∣∣ =

∣∣∣∣∣∣ ∑
K∈MH

∫

K
(QKu(x; µ)− u(xK; µ)) · ΠH

0 Φi dx

∣∣∣∣∣∣
,

=

∣∣∣∣∣∣ ∑
K∈MH

Φi(xK)|K|
[

QKu(xK; µ)− u(xK; µ)

]∣∣∣∣∣∣
,

≤

∣∣∣∣∣∣ ∑
K∈MH

Φi(xK)|K|
[

QKu(xK; µ)− QKu(xK; µ)

]∣∣∣∣∣∣
︸ ︷︷ ︸

c

+‖Φi‖L∞(Ω) ∑
K∈MH

|K|
∣∣QKu(xK; µ)− u(xK; µ)

∣∣

︸ ︷︷ ︸
d

. (2.134)

We begin by the term d. As in the previous section (2.114),

‖Φi‖L∞(Ω) ∑
K∈MH

|K|
∣∣QKu(xK; µ)− u(xK; µ)

∣∣ .‖Φi‖L∞(Ω)‖u‖H2(Ω) H2. (2.135)

Thus, the inequality (2.134) yields

∣∣∣∣
∫

Ω
(ΠH

1 u(µ)− ΠH
0 u(µ)) · ΠH

0 Φi dx
∣∣∣∣ .

∣∣∣∣∣∣ ∑
K∈MH

Φi(xK)|K|
[

QKu(xK; µ)− QKu(xK; µ)

]∣∣∣∣∣∣
︸ ︷︷ ︸

c

+‖Φi‖L∞(Ω)‖u‖H2(Ω) H2. (2.136)

Now, we continue with the first term c in (2.136). With the triangle inequality,
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∣∣∣∣∣∣ ∑
K∈MH

Φi(xK)|K|
[

QKu(xK; µ)− QKu(xK; µ)

]∣∣∣∣∣∣
. | ∑

K∈MH

|K|

×
[

Φi(xG) + (Φi(xK)− Φi(xG))

][
QKu(xK; µ)− QKu(xK; µ)

]
| ,

.

∣∣∣∣∣∣ ∑
K∈MH

Φi(xG)|K|
[

QKu(xK; µ)− QKu(xK; µ)

]∣∣∣∣∣∣
︸ ︷︷ ︸

c1

+‖∇Φi‖L∞(Ω) ∑
K∈MH

HK|K|
∣∣QKu(xK; µ)− QKu(xK; µ)

∣∣

︸ ︷︷ ︸
c2

,

since diam(UG) ≤ µG HK . (2.137)

Using the definition of QK (2.100), the second term, noted c2, in (2.137) yields

‖∇Φi‖L∞(Ω) ∑
K∈MH

HK|K|
∣∣QKu(xK; µ)− QKu(xK; µ)

∣∣ =‖∇Φi‖L∞(Ω) ∑
K∈MH

HK
|K|
|BK|

∣∣∣∣
∫

BK

D1u(y) · eK dy
∣∣∣∣ ,

.‖∇Φi‖L∞(Ω) ∑
K∈MH

H2
K‖∇u‖L1(BK)

,

since |BK| ≥ θ−1
H |K| (2.86),

≤ H2‖∇Φi‖L∞(Ω)‖∇u‖L1(Ω) . (2.138)

Using the decomposition of the mesh in patches UG and with the definition of QK, the first
term of (2.137), denoted c1, gives
∣∣∣∣∣∣ ∑
K∈MH

Φi(xG)|K|
[

QKu(xK; µ)− QKu(xK; µ)

]∣∣∣∣∣∣
≤
∣∣∣∣∣ ∑
G∈G

∑
K∈G

Φi(xG)
|K|
|BK|

∫

BK

D1u(y) · eK dy

∣∣∣∣∣ ,

≤ ∑
G∈G

‖Φi‖L∞(G)

∣∣∣∣∣ ∑
K∈G

(
1

|BK|
∫

BK

D1u(y) dy
)
|K| eK

∣∣∣∣∣ .

(2.139)

Thus (2.137) becomes
∣∣∣∣∣∣ ∑
K∈MH

Φi(xK)|K|
[

QKu(xK; µ)− QKu(xK; µ)

]∣∣∣∣∣∣
. ∑

G∈G
‖Φi‖L∞(G)

∣∣∣∣∣ ∑
K∈G

(
1

|BK|
∫

BK

D1u(y) dy
)
|K| eK

∣∣∣∣∣

+ H2‖∇Φi‖L∞(Ω)‖∇u‖L1(Ω) . (2.140)

Now, Lemma 7.6. in [47] is going to be used three times on the first term the right hand
side of (2.140). This lemma reads:

Lemma 36 (lemma 7.6 [47]). Let U, V and O be open sets of Rd such that, for all (x, y) ∈ U ×
V, [x, y] ⊂ O. There exists C only depending on d such that, for all Φ ∈ W1,1(O),

∣∣∣∣
1
|U|

∫

U
Φ(x) dx − 1

|V|
∫

V
Φ(x) dx

∣∣∣∣ ≤ C
diam(O)d+1

|U||V|
∫

O
|∇Φ(x)| dx. (2.141)
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We will use it successively with

[U, V, O] = [BK, K, UG], [U, V, O] = [K, BG, UG], and [U, V, O] = [BG, UG, UG].

We use the triangle inequality on (2.139),

∑
G∈G

‖Φi‖L∞(G)

∣∣∣∣∣ ∑
K∈G

(
1

|BK|
∫

BK

D1u(y) dy
)
|K| eK

∣∣∣∣∣ ≤ ∑
G∈G

‖Φi‖L∞(G)

∣∣∣∣ ∑
K∈G

(
| 1
|BK|

∫

BK

D1u(y) dy

− 1
|K|

∫

K
D1u(y; µ) dy |

+

∣∣∣∣∣
1
|K|

∫

K
D1u(y; µ) dy − 1

|BG|
∫

BG

D1u(y; µ) dy

∣∣∣∣∣

+

∣∣∣∣∣
1

|BG|
∫

BG

D1u(y; µ) dy − 1
|UG|

∫

UG

D1u(y; µ) dy

∣∣∣∣∣

+
1

|UG|
∫

UG

D1u(y; µ) dy
)

|K| eK

∣∣∣∣. (2.142)

and we obtain

∑
G∈G

‖Φi‖L∞(G)

∣∣∣∣∣ ∑
K∈G

(
1

|BK|
∫

BK

D1u(y) dy
)
|K| eK

∣∣∣∣∣ . ∑
G∈G

‖Φi‖L∞(G)

∣∣∣∣ ∑
K∈G

(
‖u‖W2,1(UG)

diam(UG)
d

×
[

diam(UG)

|BK||K|
+

diam(UG)

|BG||K|
+

diam(UG)

|UG||BG|

]
+

1
|UG|

∫

UG

D1u(y; µ) dy
)

|K| eK

∣∣∣∣. (2.143)

With the regularity factor θH (see the previous definition of a polytopal mesh (2.86)),

|K| ≤ |B(0, 1)|Hd
K . |BK|θd

H .

Since Card(G) is bounded by µG,

diam(UG) ≤ µG HK.

Thus, the following inequalities follow

diam(UG)
d ≤ µd

G Hd
K,

diam(UG)

|BK|
≤ C,

|BG| ≥ µ−d
G diam(UG)

d,

|BG| & µ−d
G Hd

K & µ−d
G |K|,

and |UG| ≥ diam(UG)
d.
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Therefore (2.143) becomes

∑
G∈G

‖Φi‖L∞(G)

∣∣∣∣∣ ∑
K∈G

(
1

|BK|
∫

BK

D1u(y) dy
)
|K|eK

∣∣∣∣∣ . ∑
G∈G

‖Φi‖L∞(G)

∣∣∣∣ ∑
K∈G

(
‖u‖W2,1(UG)

diam(UG)

|K|

+
1

|UG|
∫

UG

D1u(y; µ) dy
)

|K| eK

∣∣∣∣. (2.144)

Since diam(UG) ≤ µG HK and |eK| ≤ HK,

∑
G∈G

‖Φi‖L∞(G)

∣∣∣∣∣ ∑
K∈G

(
1

|BK|
∫

BK

D1u(y) dy
)
|K| eK

∣∣∣∣∣ . ∑
G∈G

‖Φi‖L∞(G)

[
∑

K∈G

H2
K‖u‖W2,1(UG)

+

∣∣∣∣∣
1

|UG| ∑
K∈G

∫

UG

D1u(y; µ) dy|K|eK

∣∣∣∣∣

]
.

(2.145)

Then,

∑
G∈G

‖Φi‖L∞(G)

∣∣∣∣∣ ∑
K∈G

(
1

|BK|
∫

BK

D1u(y) dy
)
|K|eK

∣∣∣∣∣ . ∑
G∈G

‖Φi‖L∞(G) ∑
K∈G

H2
K‖u‖W2,1(UG)

+ ∑
G∈G

‖Φi‖L∞(G)

∣∣∣∣∣
1

|UG| ∑
K∈G

|K| eK

∣∣∣∣∣

∣∣∣∣∣

∫

UG

D1u(y; µ) dy

∣∣∣∣∣ ,

(2.146)

which implies, since Card(G) ≤ µG,

∑
G∈G

‖Φi‖L∞(G)

∣∣∣∣∣ ∑
K∈G

(
1

|BK|
∫

BK

D1u(y) dy
)
|K|eK

∣∣∣∣∣ . ∑
G∈G

‖Φi‖L∞(G) H2‖u‖W2,1(UG)

+ ∑
G∈G

‖Φi‖L∞(G)

∣∣∣∣∣
1

|UG| ∑
K∈G

|K| eK

∣∣∣∣∣‖u‖W1,1(UG)
.

(2.147)

and finally,

∑
G∈G

‖Φi‖L∞(G)

∣∣∣∣∣ ∑
K∈G

1
|BK|

∫

BK

D1u(y) dy|K| eK

∣∣∣∣∣ ≤‖Φi‖L∞(Ω)‖u‖W2,1(Ω) H2

+‖Φi‖L∞(Ω) max
G∈G

‖u‖W1,1(Ω)

∣∣∣∣∣
1

|UG| ∑
K∈G

|K| eK

∣∣∣∣∣ .

(2.148)

This results using (2.134), (2.135), (2.137), (2.138), and (2.148) in
∣∣∣∣
∫

Ω
(ΠH

1 u(µ)− ΠH
0 u(µ)) · ΠH

0 Φi dx
∣∣∣∣ . (‖Φi‖W1,∞(Ω)‖u‖W2,1(Ω) +‖u‖H2(Ω)‖Φi‖L∞(Ω))H2

+ (‖Φi‖L∞(Ω)‖u‖W1,1(Ω))eG. (2.149)
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Figure 2.19: coarse and fine solution with the uniform grid

If eG = max
G∈G

∣∣∣∣∣

(
1

|UG | ∑
K∈G

|K| eK

)∣∣∣∣∣ is in O(H2) then the estimate of

T3,1,2 =

∣∣∣∣
∫

Ω
(ΠH

1 u(µ)− ΠH
0 u(µ)) · ΠH

0 Φi dx
∣∣∣∣

is in O(H2). This concludes the proof since the rest is similar to the one of Theorem 10. Note
that for the estimate of T3,2 (2.121), the equation (2.132) from the theorem of super-convergence
with local grouping is used instead of (34).

2.4.4 Some details on the implementation and numerical results

We consider two simple cases in 2D for the numerical results with the TPFA scheme. Both
results are computed on the unit square. We use an harmonic averaging of the diffusion
coefficient( [46] section 5.3). Our variable parameter is µ ∈ R4 = (µ1, µ2, µ3, µ4). For both
cases, the size of the meshes is defined as the maximum length of the edges. For the diffusion
coefficient, which is isotropic, we consider here is A(µ1, µ2) = (2µ1 + µ2 sin(x + y) cos(xy))
and f (x, y; µ3, µ4) = (µ3y(1 − y) + µ4x(1 − x)). We choose random coefficients in [0, 1] for the
snapshots with N = 5 and our solution is defined with µ1 = 0.99, µ2 = 0.8, µ3 = 0.2, µ4 =
0.78. For the exact solution, we consider the TPFA solution on a finer mesh (Figures 2.19, 2.20).
For the computation of the norm, we use the discrete semi-norm as in the remark 32 (2.92).
NIRB results (with and without the rectification 2.4.1) are compared to the classical FV errors
(Figures 2.21, 2.22). We measure the following relative error

∥∥∥u(µ)− uN
Hh(µ)

∥∥∥
T ,2∥∥u(µ)

∥∥
T ,2

. (2.150)

In practice, one approach, based on the computation times, consists in choosing a precise time
t1 and in finding the associated coarse solution computed within this time. Then, the fine grid
is chosen such that H2 = h. In our tests, we choose several fine mesh sizes to analyze the rate
of the error, and the coarse mesh size H is equal to 0.25. Another approach can be to select a
fine mesh size such that the method works for several coarse mesh sizes.

Uniform grid

The first case presents results on a rectangular uniform grid where xK is the center of mass of
the cell.
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Figure 2.20: coarse and fine solution with the triangular mesh

Triangular mesh

The second case is defined on a triangular mesh where xK are the circumcenter of the cells,
such that eG is in O(H2).

Discussion on the implementation

We implemented the TPFA scheme on Scilab and retrieved several solutions for the NIRB
algorithm on Python to highlight the black box side of the solver. The scilab files consist in
three text files with solution values, the cell center coordinates, and one file with information
on the edges (distance dKL, the area between the cell center and the edge, and the labels).

• Implementation of the TPFA method
We want to solve the linear system AuK = b. The TPFA on Th reads:
Find uh = (uK)K∈M such that

∀K ∈ Mh, ∑
σ∈FK∩Fint

τσ(uK − uL) + ∑
σ∈FK∩Fext

τσuK =
∫

K
f (x)dx, (2.151)

where the harmonic average τσ = |σ| A(xL ;µ)A(xK ;µ)
A(xL ;µ)×dL,σ+A(xK ;µ)×dK,σ

on Fint, and τσ = |σ| A(xK ;µ)
dK,σ

on Fext.

To assemble the matrices A of the TPFA scheme, we iterate on each edge, and we add
the harmonic average τσ on each cell, and for b we add the term |DK,σ| × f (xK).

• Time execution (min,sec)

NIRB Offline NIRB Online FV solver
uniform grid 07:49 00:06 01:48

triangular mesh 06:15 00:05 01:15

Remark 37. In dimension 2, we expect a speedup of 1/h. Indeed, the degrees of freedom Nh

(for the fine mesh) are of order (1/h)2 (resp. NH = (1/H)2 for the coarse mesh), and the costs
of an optimal solver are in O(Nh) (or O(NH) for the coarse mesh). Thus the speedup with
h = H2 is equal to 1/h and differs from other classical reduced-basis methods. In our case, this
is difficult to observe since our model problem is very simple with few degrees of freedom, and
the computational costs take into account other subroutines such as mesh readers which are not
proportional.
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Figure 2.21: Numerical result on the uniform grid

Remark 38. Note that for the discontinuous diffusion coefficient A, with the TPFA scheme, we recov-
ered numerically the same estimate as in the Lipschitz continuous case, when we use the harmonic mean
even if the proof no longer works.
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Figure 2.22: Numerical result on the triangular mesh
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Chapter 3

New NIRB tools

The running example of this section is the 2D backward facing step as the model problem 3.1.
We will present two new NIRB tools developed during this thesis, which can be applied to
very general problems of the form (2).

• The first tool is a minimization problem under constraints. As said in section 1.4, the
NIRB approximation is the L2 projection of the coarse solution onto the basis. Thus, it is
equivalent to a minimization problem. Constraints on the coefficients are added in order
to rectify the approximation. There are two ways of adding these constraints that we will
detail.

• The second one is a new method that uses two RB and which reduces the solution twice.
The main purpose of this tool is to enable domain truncations on the spatial domain for
the coarse solution. Thus, it produces a significant decrease of computational costs.

We will present numerical results on the model problem for both methods.

The varying parameter is the Reynolds number µ = Re ∈ G = [30, 300].

Let us first describe the model problem.

3.1 Description of the model problem

The backward-facing step problem constitutes an important branch of fundamental fluid me-
chanics, and has been widely studied [50, 92, 76, 48, 90, 65]. Let us consider as a model problem
a fluid passing through a 2D channel Ω with a descending stair. The modelized channel, which
is already a truncation of an infinite channel, is described by Ω = (0, L1]× (H1 − H0, H0) ∪
(L1, L)× (0, H0) as shown in Figure 3.1.

The fluid has a parabolic entering flow profile of maximum unit speed, zero speed on the
top and bottom part, and a Neumann type condition at the outlet (i.e. ν∂nu = pn). The flow is
laminar and incompressible.

Therefore, we consider the following parameter-dependent problem as our model problem:
Find the velocity of the incompressible fluid u ∈ H1(Ω)2 and the pressure p ∈ L2(Ω), solutions
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H0Γin

L1

L

H1 Γout

X

Y

Z

Figure 3.1: The flow’s channel

of the steady Navier-Stokes equation




u.∇u − ν∆u +∇p = 0 on Ω,
∇.u = 0 on Ω,

u(x) =




4
H2

0

(
H1 − x2

)(
x2 − H1 + H0

)

0


 on Γint,

ν∂nu|Γ − pn = 0 on Γout,
u(x) = 0, on ∂Ω\(Γout ∪ Γin),

(3.1)

where x = (x1, x2) ∈ Ω, u = (u1, u2), and ν = 1
Re , Re beeing the Reynolds number. The

solution of this problem is uniquely defined by the parameters [ν, H0, L1, H1, L]. We consider
µ := Re ∈ G = [30, 300] as the problem variable parameter. Indeed, for Re > 300, no stable
steady approximation exists with the geometric parameters we are going to consider, since the
solutions are strongly affected by the nonlinearity.

3.2 NIRB constrained version

The first tool developed during this thesis is a constrained version of the NIRB method. We use
a RB , denoted (Φh

i )i=1,...,N, derived from a SVD or from a Gram-Schmidt procedure to ensure
an L2-orthonormalization. The NIRB approximation corresponds to the L2-projection of the
coarse solution onto the basis 1.4. In mathematical terms, this is equivalent to the following
minimization problem

min
α=(α1,...,αN)

∥∥∥∥∥uH −
N

∑
i=1

αi Φh
i

∥∥∥∥∥
L2

. (3.2)

as a function of the coefficients. We recall that the fine and coarse coefficients are denoted αh
i

and αH
i and they reads (9)

αh
i (µ) =

∫

Ω
uh(µ) · Φh

i dx and αH
i (µ) =

∫

Ω
uH(µ) · Φh

i dx. (3.3)

Once squared, and since the minimization does not depend on uH , equation (3.2) yields

min
α=(α1,...,αN)

(uH −
N

∑
i=1

αi Φh
i ,

N

∑
j=1

αj Φh
j ). (3.4)
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Thus, the equation (3.4) entails (see the appendix D for more details)

(uH −
N

∑
i=1

αi Φh
i , Φh

j ) = 0, ∀j = 1, . . . , N. (3.5)

From equation (3.5), we end up with the following linear problem

Aα + b = 0, (3.6)

where Aij = (Φh
i , Φh

j ) = δij, and bi = −(uH , Φh
j ).

Remark 39. In our tests bellow, we used the python function “minimize” from the module “scipy.optimize”
to solve this problem.

We recall that the RB errors (for a parameter involved in the RB) write

∥∥∥uh(µi)− uN
hh(µi)

∥∥∥
H1(Ω)

=

∥∥∥∥∥uh(µi)−
N

∑
i=1

αh
i (µi) Φh

i

∥∥∥∥∥
H1(Ω)

, ∀i = 1, . . . , N. (3.7)

The optimal RB approximation is the L2-projection of the fine solution onto the basis (see
the section on the POD 1.2.1). With the NIRB method, the coefficients (3.3) are obtained with
the coarse approximation in order to reduce the time computation (see section 1.4). Thus, in
order to rectify the NIRB approximation we propose to add constraints on the coefficients.
There are two ways of computing the coefficients:

• The first test on the problem model has been done with decreasing coefficients. Indeed,
it follows from equation (1.17) (see the POD section for further details) that the true co-
efficients are decreasing on average. Thus, we assume that the coefficients of the optimal
NIRB approximation are decreasing in absolute value. Hence, we can use a new algo-
rithm that minimizes the error between the rough solution and the NIRB approximation
(3.2) as a function of the coefficients, while decreasing them. Thus, we seek (αi)i=1,...,N
minimizing the problem (3.2) such that

− |αi| ≤ αi+1 ≤ |αi|, for i = 1, . . . , N − 1. (3.8)

Formulation (3.2) with the constraints (3.8) reads as a constrained programming problem
where the objective function corresponds to the L2-norm of the error between the coarse
FEM solution and the optimal projection, while the constraints impose that each coeffi-
cient of the N-term expansion are decreasing. This algorithm is not efficient enough to
recover the same error as with the classical NIRB approximation as shown in Figure 3.2,
but it may stabilize the method for very large N due to the decrease of the coefficients.
The results are not accurate because of the regularization parameter and the fact that the
decrease of the coefficients is not strong enough. One possible idea which we have not
tested yet to overcome this effect would be to put weights on the coefficients. We also
found another way to constrain the coefficients.

• The RB coefficients are the ones used in (3.7) for each snapshot. They correspond to the
L2-inner product between the fine snapshots and the fine basis functions. We assume that
all the snapshots belong to the same manifold (4). The RB coefficients can be interpreted
as a deterministic sample. Then, for a new parameter, we can imagine than the fine
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Figure 3.2: Relative NIRB H1 errors for the first method

coefficients will belong to the range of the RB coefficients. We emphasize the fact that
the RB coefficients are decreasing (in absolute value) on average. We define two bounds
as in [54]:

mi = min
j=1,...,Ntrain

(uh(µj), Φh
i ), (3.9)

Mi = max
j=1,...,Ntrain

(uh(µj), Φh
i ). (3.10)

Figure 3.3 illustrates the range of the RB coefficients and for a new parameter Re = 52
(with G1) the NIRB coefficients obtained with the minimization problem (3.2) (compared
to the rectification posttreatment and the classical NIRB coefficients). We already now
from several tests in chapter 2 that the rectification post-treatment yields to accurate
results and that the rectified coefficients are very close to the optimal ones. In Figure 3.3,
we observe that this NIRB minization tends to mimic the NIRB coefficients generated by
the rectification postprocessing stage.

Figure 3.4 displays the relative H1 errors. We recover the classical NIRB error with this
new algorithm. Moreover, it stabilizes the NIRB error when N is large but the results are
less accurate than with the rectification post-treatment. Thus, it can be a good alternative
of the NIRB method when the coarse snapshots are not available. The online runtime is
compared to those of the classical NIRB in the table 3.3 (the method employs the same
offline procedure).

FEM high fidelity solver FEM coarse solution
00:43 00:01

Table 3.1: FEM runtimes (min-sec)

NIRB Offline classical NIRB online
14:30 00:26

Table 3.2: NIRB runtimes (N = 18)
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Figure 3.3: NIRB coefficients (absolute value). The vertical lines correspond to the RB bounds.
Three kinds of coefficients: classical NIRB coefficients (blue line), Rectification post-treatment
coefficients (yellow line), and constrainted version (green line). Constrainted coefficients are
much more closer to the rectified ones compared to classical NIRB.

Figure 3.4: NIRB relative H1 errors for Re = 52 (left) and Re = 233 (right): Classical NIRB,
NIRB + rectification post-treatment vs new algorithm with the second method
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new NIRB online
00:35

Table 3.3: online runtime (N = 18)

Remark 40. We also tested this method on the 2D lid driven cavity problem (as in the 1) and on
the wind farms 2D problems 4 and we observed the same results of stabilization.

Here follows the algorithm (offline and online parts) for this constrained version.

Data: (µ1, . . . , µNtrain) ∈ G
Result: Φ1, . . . , ΦN , m1, . . . , mN, M1, . . . , MN

1 initialization: Construct the snapshots (uh(µ1)(x), . . . , uh(µNtrain)(x)); Use the greedy

algorithm 2 and set XN
h = Span{Ψh

1(x), . . . , Ψh
N(x)}

2 Solve equation (1.38) in order to obtain (Φh
1 , . . . , Φh

N).
3 Compute mi = min

j∈G
(uh(µj), Φh

i ) and Mi = max
j∈G

(uh(µj), Φh
i ), i = 1, . . . , N.

Algorithm 5: NIRB Offline algorithm with constraints

Data: {Φh
1 , . . . , Φh

N}, µ (a new parameter in G)
Result: uN

h (µ)
1 initialization: Solve uH(µ) on the coarse mesh
2 Solve (3.6) under the constraints mi ≤ αi ≤ Mi

3 Set uN
Hh(µ) = ∑

N
i=1 αi Φh

i

Algorithm 6: Constrained NIRB online algorithm

3.3 A double reduced basis method based on a domain trun-
cation

This section is part of an upcoming article.

Main idea. As explained in the introduction 2, this method exploits the NIRB benefits and
further enhances this approach by using domain truncations. The truncation is done a-priori,
and for now without analysis. The a-posteriori study B in the annex (still in progress), could
be used for this purpose and should also allows us to enrich the reduced basis, if necessary.
Currently, in order to find an appropriate truncation, a prior knowledge of the whole domain
and of the physical phenomena is required. To the best of our knowledge, this idea has not
already been developed with NIRB methods. We adapt the NIRB two-grid algorithm with two
RB and a deterministic procedure that goes from one to the other. The main interest of this
new online stage is that it greatly reduces its runtime. Indeed, during the online stage, this
process allows us to consider a domain truncation to reduce the degrees of freedom of the
coarse solution, and it subsequently increases the speed-up of the NIRB algorithm. This new
approach can be employed with many parameter-dependent problems, even when the variable
parameter depends on the geometry.

96



3.3. A DOUBLE REDUCED BASIS METHOD BASED ON A DOMAIN TRUNCATION

Application to the model problem. In what follows, we applied this method to the model
problem 3.1. The channel domain is supposed to be infinite, with upper and lower walls. To
cope with this infinite domain, we use particular boundary conditions, as described in 3.1. This
new approach allows us to further reduce the length of the channel during the online stage,
and thus to substantially reduce the degrees of freedom. It may also lead to a reduction of the
error between the fine solution and the reduced approximation, compared to the one obtained
with the classical NIRB two-grid method with the rectification post-treatment, as shown by the
results obtained on the model problem in subsection 3.3.2. As explained in the introduction,
the method is decomposed in two stages. In order to find the number of modes required for
the fine and the coarse basis, we use the definition of the RIC [3] (1.19), denoted I(N), where
N is the number of modes. The number of required basis functions can be a priori given or
chosen such that the RIC is close to one. It represents the fraction of variance of the correlation
matrix that can be recovered using a specific number N of basis functions. In practice, we
choose η a priori and we find N1 for the fine snapshots (resp. N2 for the coarse ones), such
that

I(N1) < 1 − η2. (3.11)

Once these numbers have been fixed, the offline stage is performed only once.

We will truncate the domain Ω according to the parameter L ∈ [1, 5]. We analyzed the ben-
efits and the limits of this new NIRB algorithm by varying the parameter L for two Reynolds
values in G, but first, let us present the full algorithm.

3.3.1 Full algorithm

This section detailes the full algorithm of the NIRB method with domain truncations.

Let uh(µ) be the HF solutions on the fine mesh of Ω, Th and respectively uH(µ) be the rough
solutions on TH , the coarse mesh of ω ⊂ Ω.

The first points belong to the offline part, and the two last ones are done online.

1. Several fine snapshots {uh(µi)}i∈{1,...Ntrain} and the corresponding coarse ones {uH(µi)}i∈{1,...Ntrain}
are computed with the solver.

2. We generate two spaces X
N1
h = span{uh(µ1), . . . , uh(µN1)} and XN2

H = span{uH(µ1), . . . , uH(µN2)}
with the fine and coarse snapshots and we create the basis functions (Φh

i )i=1,··· ,N1 and
(ΦH

i )i=1,··· ,N2 through two SVD approaches or with two greedy procedures (see algo-
rithm 2 in the case of the whole domain). N1 and N2 can be a priori chosen or the
equation (3.11) can be used.

3. To not make the notations too cumbersome, we introduce :

• The vectors Ai ∈ RNtrain for all i = 1, · · · , N2, such that

(Ai)k = (uH(µk), ΦH
i )L2 , ∀k = 1, · · · , Ntrain, (3.12)

• The vectors B j ∈ RNtrain for all j = 1, · · · , N1, such that

(B j)k = (uh(µk), Φh
j )L2 , ∀k = 1, · · · , Ntrain, (3.13)
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• The matrix D =




A1
...

AN


 ∈ RNtrain×N2 ,

The rectification matrix with a regularization parameter [130] is given by

Ri = (DTD + λIN2 )
−1DT

Bi, ∀i = 1, · · · , N1, (3.14)

where λ is the regularization parameter.

4. We solve the parameterized problem (the equation (3.1) for the model problem) with the
solver on the coarse mesh TH for a new parameter µ ∈ S . Let us denote by uH(µ) the
solution.

5. The approximation used in this method is

uN
Hh(µ) =

N1

∑
i=1

N2

∑
j=1

Rij (uH(µ), ΦH
j )L2(ω) Φh

i . (3.15)

3.3.2 Numerical results on the model problem

We now go back to our model problem (3.1). For the fine mesh, we will consider the reference
values H0 = 0.5, H1 = 1, L1 = 1, and L = 5 (In our tests, these values for the fine mesh will
not change. In what follows, we will write L for the length of the subdomain ω). We recall
that Re ∈ G = [30, 300] is the problem variable parameter, and the domain Ω is truncated
according to the parameter L ∈ [1, 5]. The size of the coarse mesh H < 1 is such that H2 ≃ h.
For instance, the figure 3.5 represents the case where L varies (L = 3):

Figure 3.5: Fine mesh on Ω (right) and coarse truncated mesh on ω with L = 3 (left): subdo-
main ω framed in green (left) and the coarse mesh on ω with H = 0.2 (right), not on the same
scale
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The Navier-Stokes equations involved in this problem lead to a vortex at the
bottom to the step for any parameter in G, and the recirculation length increases when the
Reynolds number increases. Thus, we already know the physical phenomena involved here
for a new parameter in G. The domain Ω can be decomposed into three subdomains where
several phenomena take place:

• the entrance, where the flow has a parabolic profile. Therefore, before the step, the
velocity is almost independent of x1 and can be approximated by a Poiseuille’s flow.

• the vicinity of the step where we observe a recirculation.

• the outlet, where the flow can roughly be approximated by a Poiseuille’s flow after the
recirculation.

With a higher Reynolds number, the recirculation after the step is expanded, as we can
see in Figure 3.6. Thus, we will also consider two subgroups of G, G1 = [30, 140] and G2 =
]140, 300]. In what follows, we vary the parameter L, and we apply the new NIRB algorithm
in order to analyze its limits. We will keep the step for each test and observe the effects of the
domain truncations on the phenomena. We compare our results with the errors obtained by the
classical NIRB algorithm with and without the rectification postprocessing step, as illustrated
in Figure 3.7. We consider 19 snapshots with different Reynolds numbers, from 30 to 300 with
a step of 15 for G. We take 8 of them for G1, and 11 for G2 in function of the Reynold value.

G1 = [30, 150[andG2 = [150, 300]. (3.16)

We consider two new solutions in G: Re = 52 and Re = 233. Numerical simulations are car-
ried out in FreeFem++, with the Newton algorithm, and classical Taylor-Hood finite elements
P2 − P1. The fine mesh size is equal to 0.03, and the coarse one to 0.21. We also consider a
finer reference mesh with a size equal to 0.016. The H1 relative errors between the reference
solution and the fine solution (respectively the coarse solution) with a piecewise linear inter-
polator I are given in the following table.

Reynolds 52 233∥∥∥ure f−I(uh)
∥∥∥

H1(Ω)∥∥∥ure f

∥∥∥
H1(Ω)

0.028 0.029

∥∥∥ure f−I(uH)
∥∥∥

H1(Ω)∥∥∥ure f

∥∥∥
H1(Ω)

0.207 0.209

.

Table 3.4: Projection errors

All the following results are concerned with the H1 norm. We proceed with several numer-
ical results on the new NIRB approach. We detail the presented results:

1. First, we compare the H1 relative error between the reference solution and the fine one
(given in table 3.4) to the error between the reference solution and the (classical) NIRB
approximation (with and without the rectification postprocessing phase). We recalled
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Figure 3.6: Velocities (u1 and u2) for Reynolds=52 (left) and Reynolds=233 (right)

that this error is defined by
∥∥∥ure f (µ)− uN

Hh(µ)
∥∥∥

H1(Ω)∥∥∥ure f

∥∥∥
H1(Ω)

. (3.17)

The purpose of the NIRB method is to retrieve the FEM error, with few modes. This
corresponds to Figure 3.7. We observe that the error between ure f (µ) and uh(µ) is re-
covered with the NIRB approximation (with the rectification post-treatment) provided
that the new Reynolds parameter belongs to the parameters group used for the RB gen-
eration. With the group G, 4 modes are required for both Reynolds. Concerning the
parameters subgroups (G1 and G2, see (3.16)), when the new parameter is tested with its
associated subgroup, 3 modes are sufficient. However, in case of extrapolation, then the
NIRB method with post-treatment does not yield optimal results.

2. The results of Figure 3.7 are confronted to those of Figure 3.8 and Figure 3.9. They
present relative errors with the new algorithm with different domain truncations. We
retrieve a good approximation with this new NIRB algorithm in the sense that with few
modes we obtain the same error as the one between ure f and uh.
These results are with N1 = N2 (same number of modes for both bases), using a POD RB
(the orthogonalization in L2 is sufficient here (whereas for the classical NIRB, we use H1

and L2 orthogonalization). We observe that without truncation (Figure 3.8), fewer modes
are required to recover this error rate compared to the classical NIRB with the rectifica-
tion post-treatment. Even when the associated subgroup of the new parameter µ is not
used for the RB construction, which corresponds to the extrapolating of the solution out
of the parameter space, the test with ω = Ω gives more accurate results (with 9 modes,
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the error is almost recovered with Re = 52 and we retrieve the reference’s error with 8

basis functions with Re = 233).

We also present two tests with domain truncation in Figure 3.9, with L = 3 (ω ⊂ Ω), and
L = 1.2 (and no regularization parameter i.e. λ = 0). With the truncation corresponding
to L = 3, only 3 modes with G (N1 = N2 = 3) allow us to obtain the same error than
with uh(µ) with both Reynolds (whereas 4 are required with the classical NIRB and
the rectification post-treatment). Yet, if the new parameter µ does not belong to the
subgroup range (G1 or G2) employed during the offline part, on some tests, the error is
not recovered and there are some instabilities (case Re = 52). The truncation L = 1.2 is
much more complex. The recirculation area behind the step is cut. As a consequence,
the results present more instabilities. However, choosing the associated subgroup for
the new parameter to generate the RB helps us retrieve the optimal error. We present
also results on the same tests (L = 1.2 with POD basis) but with the regularization term
λ = 1e−10 in Figure 3.10 (see equation (3.14)). With this regularization parameter, all the
errors remain stable, showing the capability of this new algorithm to retrieve accurate
approximations even with highly truncated domains.

3. The new NIRB solution is an approximation of the fine solution uh(µ). Thus, it is also in-
teresting to compare the error between uh(µ) and the new NIRB solution, and to confront
these results with the classical NIRB errors. Therefore, we first show the error between
the fine solution and the (classical) rectified NIRB approximation in Figure 3.11). Now,
the error is given by

∥∥∥uh(µ)− uN
Hh(µ)

∥∥∥
H1(Ω)

‖uh‖H1(Ω)
. (3.18)

In this case, the error measures the RB error and must not reach a plateau, unlike the
error (3.17).

4. Finally, we display the errors between the fine solution and the new NIRB approximation
with several truncations to analyze the limits of this new algorithm. These results are pre-
sented using heatmaps since the error depends on N1 and N2 in Figure 3.12, Figure 3.13,
Figure 3.16, Figure 3.17 and Figure 3.18. The runtimes are written in table 3.7.

In what follows, we present results on the error between the fine solution and the new
NIRB approximation with different truncations (3.18). We compare the numerical results with
the classical NIRB errors in Figure 3.11. Figure 3.11 displays the errors between uh and the
classical rectified NIRB approximation for both Reynolds 52 and 233.

Figure 3.12 presents results when ω equals to the whole domain. The relative error in H1

norm is presented through a heatmap regarding the number of modes N1 for the fine RB and
N2 for the coarse one. With the new method, the error reaches a lower threshold than with the
classical rectified NIRB approximation, although there are some instabilities when the matrix
DTD (3.14) is inverted, as we can see with N2 = 18. The condition number of the rectification
matrix increases with the number of modes but the regularization parameter allows us to
reduce it in some cases 3.14. Figure 3.13 illustrates the relative H1 error with ω = Ω and
Re = 52 as in Figure 3.12 but with λ = 1e−10.
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Figure 3.7: classical relative NIRB H1 errors with and without the rectification postprocessing
step with Re=52 (left), Re=233 (right)

Figure 3.8: Relative H1 FEM errors vs NIRB errors: between reference solution and the NIRB
approximations, compared to FEM projection errors (classical algorithm with rectification vs
new NIRB algorithm with ω = Ω), tests with Re = 52 (left) and Re = 233 (right) (λ = 0).
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Figure 3.9: Relative H1 FEM errors vs NIRB errors: between reference solution and the NIRB
approximations, compared to FEM projection errors (classical algorithm with rectification vs
new NIRB process with domain truncations) with Re = 52 and Re = 233, λ = 0. Case L = 3
(left), case L = 1.2 (right)

Figure 3.10: Relative H1 FEM errors vs NIRB errors: between reference solution and the NIRB
approximations, compared to FEM projection errors (classical algorithm with rectification vs
new NIRB process with domain truncations) with Re = 52 and Re = 233. Case L = 1.2,
λ = 1e−10.
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Figure 3.11: H1 relative errors between uh and classical rectified NIRB solution for Re=52 (left)
and Re=233 (right)
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Figure 3.12: relative H1 errors with the new algorithm on ω = Ω, Re=52 (left), Re=233 (right)
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Figure 3.13: NIRB relative H1 errors with the new algorithm on ω = Ω, Re=52 and λ = 1e−10
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Figure 3.15: Eigenvalues of the correlation matrix
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Figure 3.14: Condition number for Re = 52 with ω = Ω and λ = 0, λ = 1e−10

With a SVD approach for the basis generations, the RIC (3.11) gives the smallest numbers of
modes N1 and N2 required with η a-priori chosen. It is related to the fact that the eigenvalues of
the fine and the coarse correlation matrices are decreasing fast enough and converge to zero.
Indeed, it indicates that the reduced approximations for both configurations are consistent
(see equation (3.15)). As a result, this algorithm is very efficient since it recovers the required
number of modes on the coarse mesh as well as on the fine mesh.

The following figures (3.16,3.17, and 3.18) show the results with a truncated domain ω with
different values of L for both Reynolds 52 and 233. The coarse solutions for Re = 52 on the
truncated subdomains with L = 1.2 and L = 3 are presented in Figure 3.19.

We end this section with the NIRB errors (for u1 and u2) and the new NIRB approximation
with L = 3 and Re = 52, N1 = 7, N2 = 8 (Figure 3.20).
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Figure 3.16: H1 relative errors for Re=52 (left) and Re=233 (right) with Greedy algorithm
(λ = 0) on G with L = 3
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Figure 3.17: H1 relative error for Re=52: Greedy algorithm on G1 with L = 3 (left), and with
L = 1.2 (right) (λ = 0)
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Figure 3.18: H1 relative error for Re=233: Greedy algorithm (λ = 0) on G2 with L = 3 (left),
and with L = 1.2 (λ = 1e − 10) (right)
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Figure 3.19: Coarse solution Re=52 on the truncated domain with L = 3 (left), and with L = 1.2
(right)

Figure 3.20: N1 = 7 and N2 = 8, L = 3, Re = 52 error (left) and approximation (right)
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Time execution (min,sec)

FEM high fidelity solver FEM coarse solution
00:43 00:01

Table 3.5: FEM runtimes

NIRB Offline classical NIRB online
14:30 00:26

Table 3.6: NIRB runtimes (N = 18)

new NIRB offline (coarse RB generation) new NIRB online
ω = Ω 00:12 00:10

L = 3 00:12 00:09

L = 1.2 00:10 00:09

Table 3.7: Offline (coarse RB) and online runtimes (N1 = N2 = 18)

3.3.3 Conclusion

All these results show that this new algorithm may enhance the NIRB method both in terms
of runtime and accuracy (section 3.3.2, Figure 3.8, Figure 3.9). The execution time is reduced
thanks to the truncations on the coarse mesh. As shown by our tests, the error between the
reference solution and the fine one is recovered with this approximation by means of several
truncations, sometimes with fewer modes compared to the classical NIRB. Some cases (when
the domain is highly truncated) present instabilities but they are stabilized using the Tikhonov
regularization parameter λ = 1e−10 (see equation (3.14), and Figure 3.10). This regularization
parameter is useful when the condition number of the rectification matrix is too high. The
new approximation may be more accurate than the one obtained from the classical rectified
NIRB two-grid method. Indeed, when considering the whole domain ω = Ω, with the case
Re = 52, the error is of order 1e−6 with N1 = N2 = 12 (Figure 3.12), compared to 1e−2 with
the NIRB classical method and 1e−5 with N = 10 with the rectification posttreatment [30]
(Figure 3.7). For Re = 233, we obtain an error of order 1e−7 with the treshold N1 = N2 = 13
compared to 1e−2 with the NIRB classical method and 1e−5 with N = 7 with the rectification
postprocessing phase. Furthermore, this new algorithm reduces the online computational
costs, as shown in table 3.3.2. We already explained that degrees of freedom were reduced.
With the NIRB method, the coarse solution is interpolated onto the fine mesh and L2-projected
onto the reduced space XN

h . Note that the interpolating matrix can be computed during the
offline stage. Here with this new algorithm, there is no need of interpolation, and in particular,
the L2-inner product between the coarse solution and the coarse basis is performed on the
coarse mesh.

With a truncated domain ω ⊂ Ω, we present results with L = 1.2 and L = 3. With
L = 3, the errors (3.18) remain smaller than with the classical NIRB with rectification, with
both Reynolds (Figure 3.16) and still quite low when L = 1.2 (Figure 3.17 and Figure 3.18).
These results highlight that for a new Reynolds in G, any physically acceptable truncation of
the domain can be used with this new method.

However, this algorithm is not appropriate if the domain is no longer coherent (for instance,
in our model problem, if the step is removed and only a Poiseuille flow remains). Thus, a prior
knowledge of the whole domain is necessary, and the cut must be done properly by the expert
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users. If the truncation is correctly chosen, then we may retrieve the energy-error between
the reference solution and the fine one, and the costs are reduced compared to the NIRB
method. In table 3.3.2, the time reduction is not obvious since the FEM coarse solution on
ω = Ω is already computed in less than one second. Yet, we believe that this new method
can be succesfully applied to a wide variety of problems, with complex domains having large
degrees of freedom, and therefore the computational times will be significantly reduced with
a truncated domain.
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Chapter 4

An industrial application: Offshore
wind farm simulations

4.1 Context

4.1.1 Offshore wind farms

This chapter is a collaboration with EDF (Electricité De France). The purpose of this chapter
is to apply the two-grid method to a computational fluid dynamics (CFD) problem, which is
the simulation of offshore wind farms. Unlike onshore wind farms, offshore wind farms are
located at sea, in order to enhance the wind energy production. As explained in the introduc-
tion 0.3.4, they are more efficient but they imply higher costs of installation and maintenance.
Thus, a precise analysis of the wind turbines position within the wind farm is necessary before
its setup. The position of the wind turbines is determined as a function of the local climatol-
ogy. A great number of wind simulations within a wind farm are required for several turbines
arrangements. In this chapter, we apply the two-grid method on wind farm simulations in
order to reduce their computational cost. The goal is not to find the best turbines position but
to explain and exhibit by means of numerical results how the two-grid method can efficiently
be used on such complex situations.

Remark 41. In this chapter, the figures side by side with similar results will share the same scale, and
thus, the ordinate of the right-hand side figure will not be displayed (see for instance Figure 4.14).

In what follows, the varying parameters are the reference input velocity magnitude, denoted

ure f , and its incidence angle θ.

In an industrial context, these simulations aim at predicting the power generated by the tur-
bines as a function of the wind. The physics is simplified by the use of an actuator disc model
[11, 102, 128], but these simulations are still very costly in time. A squared wind farm with ac-
tuator discs is represented in Figure 4.1. Turbines affect each other by the wake effects. Indeed,
the wake effects of a turbine have two main effects on a backstream turbine:

• a reduction of the wind velocity, which reduces the energy production.

• and an increase of turbulence behind the rotor, which makes the production more un-
predictable.
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Figure 4.1: Wind farm with actuator discs, image from EDF.

This is why the positions of the wind turbines must be thoroughly studied. The wind turbine
power is calculated as a function of a power coefficient CP and an upstream velocity, denoted
u∗ [36, 88], located at some probes (see Figure 6 in the introduction). The turbine power is
defined by

P = cP
1
2

ρAu3
∗, (4.1)

where A is the area of the turbine actuator disc and ρ the wind density. In what follows, the
maximal generated power for one wind turbine corresponds to 6 MW. In what follows, we
study the wind behavior around the turbines, and we effectively apply the two-grid method
to reproduce it with coarser 2D and 3D simulations.

4.1.2 Code_Saturne and RANS equations

The wind simulations of a wind farm employ the Reynolds-Averaged Navier-Stokes (RANS)
equations. The RANS method relies on the decomposition of the variables into their statistical
average and their fluctuations. The time averaging of the mass and momentum equations leads
to a system for which various models provide different levels of closure. We will consider the
closure called k − ε, where k represents the turbulent kinetic energy and ε the dissipation rate
of the turbulent energy. We denote by

• u = (u1, u2, u3) the wind velocity,

• p, the wind pressure,

• ρ its density,

• µ its dynamic viscosity.

The mass and momentum equations write





∂ρ
∂t +

∂(ρui)
∂xi

= 0,
∂ρui

∂t +
∂ρ(uiuj)

∂x j
= − ∂p

∂xi
+ νρ( ∂

∂x j
( ∂ui

∂x j
+

∂uj

∂xi
)) + F,

where F represents the additional momentum source terms which will contain the forces gen-
erated by the wind turbine. Let us consider the following decomposition: u = u + u′, where
u = (u1, u2, u3) is the averaged wind velocity, and u′ is its fluctuation. We make the same
decomposition for its pressure p = p + p′. The kinetic viscosity is denoted ν = µ

ρ . With the
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Einstein convention notation, the RANS equations, derived from (4.2) (see Appendix E.2 for
details), read:





∂ρ
∂t +

∂(ρui)
∂xi

= 0,

ρ ∂ui
∂t + ρuj

∂ui
∂x j

= − ∂p
∂xi

+ ρ ∂
∂x j

(µ( ∂ui
∂x j

+
∂uj

∂xi
)− u′

iu
′
j) + ρF,

(4.2)

which involves the Reynolds tensor u′
iu

′
j, and F represents the additional averaged momentum

source terms which contains the forces generated by the wind turbine.
Only the averaged velocity and the averaged pressure are solved with code_saturne [8].

We recall that code_saturne is a free FV software for fluid mechanics developed by EDF. The
standard k − ε from the Eddy Viscosity Models (EVM) is employed to close the system (4.2)
where the velocity correlations are modeled in 3D with the Boussinesq formulation:

−ρu′
iu

′
j = µt(

∂ui

∂xj
+

∂uj

∂xi
)− 2

3
ρkδij,

where µt is the turbulent viscosity, defined as

µt = ρCµ
k2

ε
,

and Cµ is a constant (see table E.1). Finally, the k − ε closure adds two transport equations to
the system 4.2, which k and ε respectively solve [89, 32]. We recall both equations in appendix
E.2 and the constants used in code_saturne. The other parameters used for the climatological
setup conditions of this study are given in the following table 4.1,

Sea pressure [Pa] Psea 101325
Sea altitude [m] z0 2e−4

Hub height [m] zre f 100

Karman constant K 0.42
Specific heat at constant pressure [J/K/Kg] Cp 1005

Gravity [m/s2] g 9.81
Rayleigh number [J/Kg/K] Ra 287

Reference pressure [J/Kg/K] Pre f 1e5

Initial temperature (°C) T0 20

Table 4.1: Climatological parameters

The fluid parameters (the initial fluid density ρ0 and its viscosity µ) can be changed with
code_saturne GUI. In this study, the wind parameters are summarized in table below 4.2.

ρ0[kg/m3] µ

1.17862 1.83e−5

Table 4.2: Wind parameters

We summarize the main steps of the wind simulations:

1. The first mesh representing the wind farm is created with Salome. The mesh is unstruc-
tured, fixed and adapted to the domain with a refinement around the turbines. The
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rotors are not geometrically modeled but are represented by actuator discs as in Fig-
ure 4.2 (image from the article [102]) and additional source terms (explicit and implicit
formulations) in the RANS equations [98, 128, 102]. There are no fluid structure interac-
tion since the rotors are not represented geometrically. The rotor representes the space
where the source terms take effects.

Figure 4.2: Rotor in the spatial domain

2. Then, climatological conditions are configured (with Python) in order to initialize the
velocities, the temperature and other variables for code_saturne simulations. We use the
parameters summarized in table 4.1. The initial wind profile and the air temperature
are generated as a function of the altitude z and ure f . In other words, u0 = u0(z; ure f ).
The initial velocities are first generated at the boundary and lifted in whole domain.
The magnitude ure f corresponds to the initial velocity magnitude at the hub height. A
reduction of the wind magnitude is observed near the sea surface, as we can see for
instance in Figure 4.3.
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Figure 4.3: magnitude velocity, temperature, initial turbulent kinetic energy k and dissipation
ε as function of the altitude z with ure f = 8.5, θ = 0

3. Finally, for each reference velocity magnitude ure f and each direction θ, the RANS simu-
lations are launched with code_saturne, which employs the SIMPLEC algorithm for the
velocity-pressure coupling [81]. The time discretization is achieved through a fractional
step scheme [20, 33, 8]. The software outputs give information on several variables and
their values on the mass center of cells, but we will focus on the velocity values after
several time step, mainly until reaching a quasi-stationary state.

4.2 The two-grid method applied to the wind farm simulations

As explained in the introduction, the NIRB two-grid method may be very efficient in reducing
the complexity simulations which are very costly in time. In what follows, we present nu-
merical results on several wind farms studies. They are very complex because of their large
number of degrees of freedom. These industrial problems are also very innovative, since they
are no longer based on the theoretical studies of the previous chapters 2 (Theorem 16 does not
hold anymore). All the numerical results, with the NIRB two-grid method (see algorithms 3-4)
and the new NIRB tools explained in chapter 3 show their great potential.
In all the following studies, the velocity values in an area located upstream the turbines (which
correspond to probes) and around the rotors are considered as the quantities of interest and
they are analyzed for several input given velocities (reference magnitude ure f and direction θ).
For these simulations, the NIRB strategy is applied to approximate a quasi-stationary state.
Thus, we retrieve the quasi-stationary solution after several time iterations.

1. We first analyze the wind behavior around a 2D wind turbine. Thus, the 3D turbu-
lence effects are not taken into account. This first step allowed us to analyze u∗ and to
choose the general parameters for the two-grid method (such as the meshes size and the
snapshots parameters).

2. Then, we consider two and three turbines in line, still in two dimensions. The purpose
is to experiment the two-grid method in order to use it in an efficient way. As said in
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the introduction, wind turbines affect each other due to wake effects. Thus, we tested a
way of optimizing the NIRB algorithm by representing one turbine with the others. By
“representing one turbine”, we mean approximating the wind around it. We tested this
new approach with the last turbine represented by the first two. More precisely, we are
looking at zooms around each turbine. Then, we project all of them on a reference mesh
which may be the one of the first turbine. Then, we use a coarse solution around the last
turbine and fine solutions around the first two turbines for the RB generation (projected
on the reference mesh).
With two dimensions, the results show that the turbines are relatively undisturbed by
each other. As a result, the two-grid method can be very efficient in these cases. The
rectification post-treatment (explained in the introduction 0.2.2) enables us to retrieve an
accurate approximation as if we had used a fine FV solution.

3. Since the wake effects of a wind turbine were not sufficient for disturbing other turbines,
we complexified the data with a 3-dimensional case and three in line wind turbines. We
present several numerical results on the two-grid algorithm with the previous approach.

4. Finally, we consider a squared wind farm with nine wind turbines. We present several
numerical results on the area upstream the wind turbines which reprensents the probe
in (4.1) and inside the rotors.

5. One ongoing project is concerned with a 5 × 5 wind farm approximated with a 3 × 3
wind farm. The 5 × 5 farm will be simulated only once with a coarse mesh. Then, we
will generate snapshots for several parameters and we will focus on the velocity around
the rotors. Finally, each line of turbines of the 5 × 5 farm will be approximated with one
or several lines of the 3 × 3 wind farm.

Main idea. The main purpose is to study the two-grid method capacity for representing one
particular turbine with the help of several others. This is a challenging problem since the
degrees of freedom are very large, and the number of time iterations is not always sufficient
for obtaining the coarse solutions convergence.

The following sections present all the 2D and 3D numerical results.

4.2.1 2D wind turbine results

Parameters configuration. We first tested the NIRB two-grid method on a simple problem,
consisting in a single wind turbine in two dimensions. This first case was useful for determin-
ing the quantities of interest and all the general parameters. Since code_saturne only works
with 3D studies, the 2D plane is extrapolated in order to get one cell in the direction of the
third axis. Then, a plane of the solution is retrieved to apply the two-grid method. In two
and three dimensions, the turbines are represented by actuator discs (replaced by rectangles
in 2D), and the wind perturbation around the turbine is modeled by an additional source term
in the movement equation (4.2). It is decomposed in implicit and explicit parts representing
the thrust

T = cT
1
2

ρAu2
∗,

where CT is a thrust coefficient.

• Concerning the mesh parameters, in two dimensions, we employed the following mesh
parameters 4.3
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Area of interest

u0(z)

Wind turbine

0−20 D 30 D

6 D

×

Figure 4.4: Mesh for one wind turbine

Rotor diameter (D) 150m
Hub height 95.6 m

Number of cells 6500

fine mesh size h 5 m
coarse mesh size H 10 m

reference mesh size hre f 2 m

Table 4.3: Mesh parameters

The mesh is unstructured, adapted and finer around the turbine and the probe, as in
Figure 4.4. The borders are far enough to simulate an infinite domain.

• Concerning the time iterations of the RANS equations, 500 iterations were sufficient to
observe that the velocity has reached a quasi-stationary state (This information can be
retrieved in the output file “listing” generated by code_saturne in the section “informa-
tion on convergence”). For instance, the residual norm for the velocity magnitude in
our case was about 1e−9 with this number of time iterations and the mesh parameters
summarized in table 4.3. It is important to fully observe the fine solution convergence
to apply the NIRB method. In the 3-dimensional case, we tested the capacity of the two-
grid method to recover a good approximation even when the coarse solution had not
completely converged.

• In this first 2-dimensional case, the wind direction θ is not changing, and the varying
parameter is the reference velocity magnitude ure f , used in the climatological profile
generation. Our quantities of interest are the wind values after several time iterations at
the probe located upstream the turbine at a distance 2.5D from the hub and the wind
values in the vicinity of the actuator disc. Indeed, to predict the generated power (4.1),
the velocity upstream the wind turbine denoted u∗ is simulated. Moreover, it is also
interesting to compute the wind velocity inside the actuator disc and to observe its effect
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on the wind. For the snapshots, we chose a reference velocity magnitude between 3m.s−1

and 16m.s−1. These values are generally employed in the industrial context. Indeed,
3m.s−1 corresponds to the minimum velocity required by a turbine to produce energy.
From equation (4.1), we can see that a turbine with a wind of magnitude 16m.s−1 in the
probe is 64 times more productive than with a wind of magnitude 4m.s−1.

Before presenting the NIRB results, we summarize the main steps involved in the applica-
tion of the two-grid method:

1. Choose the mesh parameters and the time iterations number that ensure the convergence
of the fine solutions.

2. Select the training set for the snapshots parameters.

3. Carry out a SVD on the snapshots to observe the eigenvalues decay (see section 1.2 for
explanations).

4. If the eigenvalues correctly decrease, identify the coarse mesh size H for applying the
NIRB method. We emphasize the fact that the size H is not necessarily chosen such that
H2 = h.

5. Apply the NIRB method with a new parameter inside the range of the snapshots param-
eters.

6. Save the NIRB approximation on the fine mesh.

Results on one turbine. We first tested the two-grid algorithm with the FreeFem++ solver.
We retrieved code_saturne solutions in the VTK format. We recovered the values on the nodes
and recreated a Delaunay triangulation with Paraview. Thus, as in section 2.2.1, we compute
the NIRB approximation with ĨhuN

Hh , where Ĩh is the Lagrangian interpolated operator on the
new mesh. FreeFem++ can read VTK solutions with the "iovtk" library.

• Our first result is concerned with the single turbine on the whole domain Ω. We used
14 snapshots, and we present the NIRB approximation obtained with one mode in Fig-
ure 4.5b. On the whole domain, the POD eigenvalues are fast decreasing and the RIC
(1.19) is equal to I(1) = 0.99995 with one function in the basis (Figure 4.5a). Thus, we
recover 99.995% of the energy information with one mode. This is coherent since the
wind perturbation created by the turbine is very small in two dimensions compared to
the whole domain. This is another reason why we focus in what follows on subdomains
around the turbines and in the probes. The rest of the domain can easily be approxi-
mated with a coarse solution. The Figure 4.5b displays the NIRB approximation on the
whole domain.

• Figure 4.6a diplays the eigenvalues with 66 snapshots on a zoom in the vicinity of the
turbine (Figure 4.6b). We used a reference mesh in addition to the coarse and fine meshes
to compute the NIRB errors.

Concerning the eigenvalues decay, with the zoom on the turbine, I(1) = 99.86 %, and
I(2) = 99.9998 % (Figure 4.6a). It shows that two modes are sufficient to approximate the
solutions. Figure 4.7 illustrates the NIRB results with a POD basis (L2 orthogonalization).
We compare the error between a solution on the reference mesh denoted ur and the NIRB
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(a) POD Eigenvalues, Ntrain=14, ure f = 3 : 1 :
16

(b) NIRB approximation with ure f = 16 (N = 1) on the whole domain

Figure 4.5: Results on the whole domain
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(a) POD Eigenvalues, Ntrain=14, Ntrain=66,
ure f = 3 : 0.2 : 16

(b) reference mesh with 1250 nodes (left), fine
mesh with 200 nodes (center), coarse mesh
with 50 nodes (right) (FreeFem++)

Figure 4.6: Zoom on the turbine

approximation to the fine and coarse errors (velocities respectively denoted uh and uH).
For a new parameter ure f , the relative error in the H1 norm is defined as

∥∥∥ur(ure f )− uN
Hh(ure f )

∥∥∥
H1∥∥∥ur(ure f )

∥∥∥
H1

. (4.3)

The N-dependence of the NIRB approximation is clearly highlighted by these results, as
explained in the introduction (remark 4) and in the chapter 2 (theorem (16)). For both
tests, two modes are sufficient to recover the fine FV error in L∞ and H1 norms, and with
the H1 norm the error is even smaller.

Two and three wind turbines in line.

• We first observed how turbines were affected by others on 2-dimensional problems. Fig-
ure 4.8 illustrates the tests on two turbines in line. We first separated them with a distance
equal to 7D (where D is the characteristic length corresponding to the rotor diameter),
but they were too distant to affect each other. Therefore, in the case of three turbines in
line, we put them closer at a distance equal to 3D. Still, two modes were still sufficient
to recover optimal results on the probe or in the vicinity of the rotors.

We observed the same results whether for the first turbine or for the second one. In Fig-
ure 4.9, we present the H1 and L2 errors between the fine solution uh(ure f ) and the NIRB
approximation without rectification uN

Hh(ure f ) (left) and the errors of the true projections
(3.7) (right) on the first rotor. The best NIRB approximation without the rectification is
computed with two modes. Then the error increases.

On the probe (which corresponds to the area located forward the second turbine), we can
see in Figure 4.10 that two modes are also sufficient to correctly represent the velocity in
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(a) ure f = 7

(b) ure f = 10.5

Figure 4.7: Relative L∞ and H1 errors between the reference solution ur and the NIRB approx-
imation (without rectification post-treatment) on the zoom with Ntrain=66 as a function of N,
compared to the fine and coarse FV errors, showing the N-dependance of the error (see remark
4).
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Figure 4.8: Visualization of two turbines in line with ure f = 10.5 (fine solution)

Figure 4.9: NIRB errors between the fine solution uh and the NIRB approximation uN
Hh around

the first rotor with ure f = 10.5 and the true projection uN
hh
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Figure 4.10: L∞ relative errors between the reference solution ur and the NIRB approxima-
tion (with and without rectification post-treatment) as a function of the number of modes
N, Ntrain=66, ure f = 10.5, on the probe (which corresponds to the area located forward the
second turbine

this area, thanks to the rectification post-treatment 0.2.2. We computed the relative L∞

error between the reference solution ur and the NIRB approximation (with and without
rectification) with ure f = 10.5, and we compared these errors with the ones given by the
fine and the coarse FV solutions.

• The results on three turbines in line are quite similar. We display errors with the rectifi-
cation post-treatment and with the constrained NIRB, and we present the first results on
approximating with NIRB one turbine with a RB generated by other ones. As already
said, with a 2-dimensional problem, the wake effects are not sufficient to disturbed other
backstream turbines. In other words, the perturbation of the first turbine is similar to
the one of the second turbine, . . . . As a result, with three turbines in line, the wind
around a rotor can be very well approached with the NIRB method by the wind around
a previous turbine. Here, we present results on the wind around the third turbine ap-
proximated with a RB generated by snapshots on the second turbine. We introduce the
following notations

– u2 represents the wind around the second turbine,

– and u3 stands for the wind around the third one.

Since we represent the third turbine with a RB constructed from the second one, we
also need the RB functions generated by the snapshots (u2

i )i=1,...,Ntrain. They are denoted
(Φh,2

i )i=1,...,N .
We observe that

– we easily recover the error of the fine solution around each rotor using the recti-
fication posttreatment (even if there are some instabilities when the regularization
parameter λ = 0 (13)) (Figure 4.11a),
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– and we may compute an accurate approximation of the third rotor area with a RB
generated by the second rotor part as shown in Figure 4.11b which illustrates the
error defined by the NIRB constrained version (see algorithms 5-6)

for ure f ∈ G,

∥∥∥∥∥u3
r (ure f )(x)−

N

∑
i=1

αi(ure f )Φ
h,2
i (x)

∥∥∥∥∥
H1(R)

, (4.4)

where R is a region around the rotor, ure f is the parameter, and u3
r (ure f ) its exact

solution around the third rotor, and Φ
h,2
i the RB generated with snapshots of the

second turbine.

In Figure 4.11a, we compare the results of the classical NIRB, with the NIRB constrained
version 3.2 and the rectification postprocessing phase (with the regularization parameter
λ = 0 or λ = 1e−10). As expected, the NIRB constrained version stabilizes the error
and the rectification allows us to retrieve the fine solution error. Moreover, with the
regularization parameter λ = 1e−10, the NIRB error remains stable. Figure 4.11b shows
that with two modes the constrained NIRB is efficient to retrieve the classical NIRB error
on the third turbine with a RB generated by the second one (The error is defined by (4.4)).

All these results are consistent with what was expected of a 2-dimensional problem regard-
ing the studies of the previous chapters. The wake effects are almost non-existent and two
modes are always sufficient to accurately approximate the solutions. Therefore, it was a quite
natural idea to complexify the data until reaching three dimensions.

4.2.2 3D wind turbine results

With three dimensions, we present two tests. They are quite similar to industrial cases, and as
a consequence, there are so many degrees of freedom that we could not compare the NIRB ap-
proximation to a finer reference solution. Therefore, we present several comparisons between
the NIRB approximation and the fine solution.

• The first study represents three turbines in line.

• The second one is a squared wind farm with 3 × 3 turbines.

• Another ongoing project is a 5 × 5 wind farm.

3 wind turbines in line. The general parameters are almost identical to the 2-dimensional
cases, although now the problem is much more complex in terms of number of cells. Now the
turbines are represented by discs. With this first test, we only change the velocity magnitude
ure f (and not the incidence angle). We consider 27 snapshots with ure f ,i = 3 + 0.5 × i, i =
0, . . . , 26. The following table summarizes the mesh parameters 4.4.

Rotor diameter (D) 150m
Hub height 100 m

Number of cells 4 767 552

fine mesh size h 5 m
coarse mesh size H 10 m

reference mesh size hre f 2 m

Table 4.4: Mesh parameters
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(a) Relative H1 errors between the reference solution ur and the NIRB approximation (with and without
rectification post-treatment λ = 0 and λ = 1e−10 and with the constrained version) on the third rotor
area with Ntrain=66 as a function of N, compared to the fine and coarse FV errors, ure f = 5

(b) Averaged relative H1 errors between the fine solution and the constrained NIRB (left) and between
the fine solution and the true projection uN

hh(right) on the wind around the third turbine, RB generated
with zooms on the second one

Figure 4.11: Relative H1 errors with NIRB as a function of N on the wind around the third
turbine
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u0(z)

Wind turbines

Figure 4.12: 3 wind turbines (u0(z) depends on ure f )
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Figure 4.13: Zoom around one turbine

Remark 42. We obtained these results using the library “Mordicus” in Python (see also the introduc-
tion 0.3).

Now that we deal with three dimensions, the domain goes from −150m to 150m on the
third axis. The whole domain contains a large number nodes (1 924 461 nodes) whereas our
subdomains around the turbines have 451 716 nodes for the fine mesh and 57 676 for the coarse
mesh. Therefore, applying the two-grid method only on these areas significantly reduces the
complexity. Figure 4.12 illustrates a plane of the domain and Figure 4.13 a zoom around the
rotor. The actuator disc is clearly visible.

We present the NIRB errors with and without rectification on the third turbine in Fig-
ure 4.14. We emphasize that the figures side by side with similar results share the same scale
and that the ordinate of the right-hand side figure is not displayed. The same results occur
with the first two, we refer to the appendix for the corresponding Figure E.1.
We compare these results with the truncated NIRB method detailed in section 3.3 in Fig-
ure 4.15. For the coarse solution, the whole domain is truncated just before the first turbine
and after the third one so that the whole domain is not large enough to properly represent the
physics. As a consequence, the simulations do not accurately converge.

We observe in Figure 4.16 that the third turbine is well approximated by the second one
but not by the first one.
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Figure 4.14: Third turbine, averaged relative H1
0 error between the fine solution and the NIRB

approximation (red curve) with (right) and without (left) rectification as a function of N, com-
pared to the true projection uN

hh (green) (vs coarse FV error)

Figure 4.15: Third turbine, averaged relative H1
0 error between the fine solution and the NIRB

approximation (red curve) with (right) and without (left) rectification as a function of N com-
pared to the truncated NIRB (blue) (obtained from a smaller domain) and compared to the
true projection uN

hh (green) (vs coarse FV error)
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(a) Third turbine with RB generated by turbine n°2, averaged relative H1
0 error between the fine solution

and the NIRB approximation as a function of the number of modes

(b) Third turbine with RB generated by turbine n°1, averaged relative H1
0 error between the fine solution

and the NIRB approximation as a function of the number of modes

Figure 4.16: NIRB errors with (right) and without rectification (left)
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Figure 4.17: Zoom on the wind turbines mesh within the wind farm (wind coming from the
bottom and moving to the left). The squares represent the rotors and the rectangles are the
upstream probes.

3 × 3 turbines. Figure Figure 4.17 present a zoom of the offshore wind farm with the 9 tur-
bines. The turbines are located at the squares whereas the probes are located at the rectangles
located upstream the rotors. Figure 4.18 illustrates the wake effects with ure f = 6.

Now the magnitude is changing as well as the incidence angle θ which varies from 0 to 45.
We have 220 snapshots and since we decompose the wind farm in terms of turbines it results
in 9 × 220 = 1980 snapshots. We number the turbines as in the following table 4.5 where the
wind comes from the bottom and shifts to the left (as shown for instance in Figure 4.18).

6 7 8

3 4 5

0 1 2

Table 4.5: Numbering of the wind turbines with the wind coming from the bottom, and moving
on the left

The group that contains all the 1980 snapshots is denoted G. Then, we decompose on
each turbine the snapshots to obtain subgroups denoted G0, . . . , G8 according to the turbine
which is considered. The spatial parameters are summarized in table 4.6.

Spatial domain [−4400, 4400]2 × [0, 1000]
Rotor diameter (D) 150m

Hub height 100 m
Number of nodes (fine mesh) 3 637 438 nodes

Number of nodes (coarse mesh) 686 504 nodes
fine mesh size h 5 m

coarse mesh size H 10 m
reference mesh size hre f 2 m

Table 4.6: Mesh parameters

Let us proceed with the numerical results.
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Figure 4.18: Turbines wake effects with θ = 0 (wind coming from the bottom), ure f = 5.5

Results on the rotors. First, we computed the eigenvalues (Figure 4.19a) and we noticed that
I(1)=0.987 and I(100)=0.99999996. Thus, we present several results as a function of the number
of modes varying from 1 to 100. We present the averaged NIRB error on all the turbines in
Figure 4.19b.

We observed that turbines 2 and 8 were the most present within the RB. Thus, we employed
them in the RB for representing the other turbines. The results are presented in Figure 4.20.

A natural idea is to approximate a turbine with the ones located upstream. This approach
is illustrated in Figure 4.21. One ongoing project is to compare these results with the new
NIRB tools (see chapter 3) and several truncations as in section 3.3.

Results on the probes. We obtained similar results on the probes, represented by the rectan-
gles in Figure 4.17. In Figure 4.22, we display the results on the wind turbine 6.

Sometimes the rectification leads to worse errors for instance when the coarse solution has
not properly converged. A perspective would be to first classify the snapshots with respects
to their coarse discretization error as in [127]. About the runtimes, with 500 iterations, we
launched code_saturne in parallel with 100 processors and the computational times for coarse
and fine FV solutions are summarized in subsequent table 4.7. The NIRB computational times
depend on N but for instance the latter with N = 20 are sumed up in table 4.8

FV averaged time for one parameter on the fine mesh 45:00 min
FV averages time for one parameter on the coarse mesh 02:00 min

Table 4.7: 3D runtimes

NIRB offline 15:10 hours,min
NIRB online 04:00 min

Table 4.8: 3D NIRB runtimes
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(a) Eigenvalues as a function of the number of modes

(b) Averaged relative H1 (left) error and L2 (right) between the fine solution and the NIRB rectified
approximation as a function of the number of modes

Figure 4.19: NIRB results on all the turbines G
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Figure 4.20: Averaged relative H1 (left) and L2 (right) errors between fine and NIRB recti-
fied approximation on G\(G2 + G8), RB generated with rotor 2 and 8 (compared to the error
between uh and uH).

Figure 4.21: Averaged relative H1 (left) and L2 (right) errors between fine and NIRB rectified
approximation with turbine 6, RB generated with different subgroups of rotors (G6 (blue) vs
G\G6 (red) vs G0 + G3 (green, turbines upstream )).
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Figure 4.22: Averaged relative H1 (left) and L2 (right) errors between fine and NIRB rectified
approximation with probes upstream turbine 6, RB generated with different subgroups of
probes of rotors (G6 (blue) vs G\G6 (red)).
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Appendix A

Short review on other NIRB
methods

We present here RB methods that enable further reductions in POD runtimes. These methods
have several degrees of non-intrusivity. We emphasize the fact that the non-intrusivity here
means that the methods do not required any modifications in the source code of the external
solver.

A.0.1 Empirical Interpolation Method (EIM)

If the assumptions (??) and (??) do not hold, a key ingredient to treat the nonlinearity with
the Galerkin POD is the Empirical Interpolation Method (EIM) [10]. The EIM build a linear
combination of fully determined solutions from basis functions (qi)i=1,...,N depending on some
interpolating points (magic points) and some values (αi)i=1,...,N relying on certain instances of
the parameter ν, selected within the algorithm.
Let us introduce the method with the following example:
Consider a function

g(x, ν) =
1√

(x1 − ν1)2 + (y1 − ν2)2
,

with x = (x1, x2), and ν = (ν1, ν2). Then, the first chosen parameter ν1 is the one which
maximizes g on norm L∞, and the associated magic point is the point which gives the most
information on g(., ν1), i.e. which maximizes its modulus. Then the first basis function is

q1(·) = g(.,ν1)
g(x1,ν1)

. To simplify notations, we will denote gi = g(·, νi). The N basis functions are
constructed by recursivity with the following interpolation problem
Find {αM−1

j (g)}1≤M≤N such that

∀ 1 ≤ i ≤ M − 1, IM−1(g)(xi) = g(xi), (A.1)

and the EIM operator is defined by

IM−1[g] =
M−1

∑
j=1

qjα
M−1
j . (A.2)

We detail the algorithm (in the example, n = 2, and we denote Th a triangulation of Ω):
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input : ΓN = (ν1, . . . , νN), where νi ∈ Rn

output: q1, . . . , qN

1 Initialization: ν1 = arg max
ν

∥∥g(., ν)
∥∥
L∞

2 g1(.) = g(., ν1)

3 x1 = arg max
x∈Th

|g1(x)|

4 q1(.) =
g1(.)

g1(x1)

5 for M=2:N do

6 Set IM−1[g(ν)] =
M−1
∑

j=1
αM−1

j (ν)qj, and find αM−1
j (ν) such that

IM−1[g(ν)](x
i) = g(xi, ν), ∀i ∈ {1, . . . , M − 1},

νM = arg max
ν∈ΓN

∥∥g(., ν)− IM−1[g(ν)](.)
∥∥
L∞ ,

7 gM = g(., νM),
8 xM = arg inf

x∈Th

|gM(x)− IM−1[gM](x)|,

9 qM(.) = gM(.)−IM−1[gM ](.)
gM(xM)−IM−1[gM ](xM)

.

10 end
11 Solve the final interpolation problem for a specific value of ν: Find αN

j (ν) such that

IM[g(ν)](xi) = g(xi, ν), ∀i ∈ {1, . . . , N},

For a specific point x, compute IM(g(ν))(x) =
N

∑
j=1

αN
j · qj

Algorithm 7: EIM algorithm
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There exists a generalized form of this method (GEIM). The GEIM replaces the M pointwise
evaluations used by the EIM by general measures [68]. In the presence of measurement noise,
a stabilization of the method can be found in [9]. We implemented the classical EIM algorithm
with FreeFem++.

A.0.2 Proper Generalized Decomposition (PGD)

The POD RB construction requires appropriate snapshots, computed in the offline stage. This
step is very greedy in time. The Proper Generalized Decomposition (PGD) method is a good
way to overcome this issue, if the RB orthogonalization is not required during the online
stage. As a result, the basis is valid for any range parameters. The PGD is used for problems
depending on several parameters. It has first been introduced as the “ radial time-space ap-
proximation“ in [87]. It is based on a variable separation to break down the solution into less
costly pieces. This decomposition can be done on spatial, temporal or any control parameters
(such as the Reynolds number for instance). The RB is generated with an iterative process,
and several approaches exist. An application of the PGD method can be found in [63, 62] in
the field of railway dynamics. This method is rather intrusive, since a prior knowledge of the
model is required. A way to develop the PGD in a non-intrusive way can be found in [53],
using the s-PGD method and in [136]. This approach involves looking for a solution to a PDE
as a product sum of the functions of each space variable. We consider a problem defined in a
space of dimension d with the unknown field u(x1, . . . , xd). The PGD yields an approximation
in the separated form

u(x1, . . . , xd) ≃
N

∑
i=1

F1
i (x1)× · · · × Fd

i (xd), (A.3)

where the functions F
j
i (xj) are unknown a priori and determined through an iterative process.

This is achieved by using the weak form of the problem.

A.0.3 Hyper-reduction

Another way to reduce the space solution is by achieving hyper-reduction techniques [117, 119,
75]. To estimate a new solution for a system with several constitutive equations, the Galerkin
POD procedure does not modify the number of equations that must be solved. An approach
for reducing it is by the creation of a Reduced Integration Domain “RID”. These methods are
useful when the shape functions of the FE model have a bounded support that do not cover all
the spatial domain. After having determinate the integration domain, the equations are solved
for a new parameter on the RID. This is the key ingredient to the reduction of complexity.
Then with the Gappy-POD [100], it is possible to reconstruct the solution on the whole spatial
domain. The method is not fully non-intrusive since the black-box code need to retrieve the
Dirichlet BCs. In [56], this approach is compared to the DEIM method [12].
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Appendix B

On the “a posteriori” study

This section is an ongoing project with Y. Maday and R. Chakir.
Let us consider the model problem 16a-16b in 2D, simulated for several parameters µi ∈ G,
and its NIRB approximation uN

Hh(µ) for a new parameter µ ∈ G. The corresponding exact
solution is denoted u(µ). In order not to make the notations too cumbersome, we will de-
note by uN

Hh and u the NIRB approximation and the exact solution for the new parameter µ.
The main purpose of this study is to give certified a posteriori error estimates for the NIRB
approximation. Such error bounds are useful to find the required coarse mesh size. Usually,
errors estimates on RBM relies on a residual approach [123, 132, 26]. In such case, the approx-
imation needs to be the solution of the reduced problem. To the best of our knowledge, the
two-grid method has not already been studied with equilibrated fluxes a-posteriori estimators.
This very general approach allows us to obtain guaranteed upper and lower bounds for very
general approximations that do not need to be solution of the discrete problem. Thus, they are
very adequate for two-grid approximations.

We will denote by σ := −A(µ)∇u the associated exact flux, such that

− div (σ) = f . (B.1)

In this section, we consider certified a posteriori errors, from several a posteriori studies [115,
49, 106] on flux reconstruction. An indicator error can also be employed. Let us first introduce
the H(div, Ω) = H(div, Ω) space, we recall that the space D(Ω) is the space of functions from
C∞(Ω) with a compact support in Ω.

Definition 8. Weak divergence. Let a vector function v : Ω → Rd be given. We say that v admits a
weak divergence if

1. v ∈ [L2(Ω)]d;

2. there exists a function w : Ω → R such that

• w ∈ L2(Ω);

• (v,∇Φ) = −(w, Φ), ∀Φ ∈ D(Ω).

The function w is called the weak divergence of v. We use the notation ∇ · v = w.

Definition 9. The space H(div, Ω). The space H(div, Ω) is the space of all the functions which admit
the weak divergence.
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If the NIRB solution is non-conform, we need the following definition of the broken H1

space.

Definition 10. The space H1(Th). The so-called broken H1(Th) space is given by

H1(Th) = {vh ∈ L2(Ω), vh|K ∈ H1(K), ∀K ∈ Th}. (B.2)

We can thus write the broken weak gradient ∇hv ∈ [L2(Ω)]d, where

(∇hv)K := ∇(v|K). (B.3)

If v ∈ H1(Ω), then the broken gradient is equal to the usual gradient, so we will consider the
same notation ∇ for both. In the same way, the broken divergence can be defined and denoted
∇ ·h v and we have for functions v ∈ H(div, Ω), ∇ ·h v = ∇ · v.
Since the exact solution is not known, for the NIRB a-posteriori estimate, we consider three
approaches based on a flux reconstruction σh in H(div, Ω). Let u ∈ H1

0(Ω) be the solution
of 16a-16b, and let uh ∈ H1

0(Ω) be an approximate solution in H1(Th). Let us consider the
associated approximate flux −µ∇uN

Hh ∈ H(div, Ω).
In general, uN

Hh /∈ H1
0(Ω), −A(µ)∇uN

Hh /∈ H(div, Ω), ∇ · (−A(µ)∇uN
Hh) 6= f .

1. The first approach comes from an estimator in [115]. It provides a general certified
estimator. However, it is less accurate as an indicator. The positive side is that this
estimator is very general. The idea is the following:
If a flux σh = f can be found, then we may apply the Prager-Synge equality [108] and we
obtain ∥∥∥A(µ)1/2∇(u − uN

Hh)
∥∥∥

L2(Ω)
≤
∥∥∥∥∥A(µ)1/2∇uN

Hh +
σh

A(µ)1/2

∥∥∥∥∥
L2(Ω)

,

but in practice, it is rarely the case. If the flux σ is not in H(div, Ω) (for instance if uN
Hh is

in H1(Th)) then for the following estimator, the flux needs to be reconstructed and thus
it leads the minimization problem

min
σh∈H(div,Ω)

∥∥∥σh − A(µ)∇uN
Hh

∥∥∥
H1

. (B.4)

This global reconstruction can be greedy in time. Thus, for the flux reconstruction in
H(div, Ω), we can use the flux reequilibration as in the subsequent method. The estima-
tor is defined by

|u − uN
Hh|2H1

0
≤ ∑

K∈Th

(∥∥∥∥∥
√

A(µ)∇uN
Hh +

σh√
A(µ)

∥∥∥∥∥
L2(K)︸ ︷︷ ︸

Flux part

+
hΩ

π

∥∥ f −∇ · σh

∥∥
L2(K)︸ ︷︷ ︸

oscillations part

)2

(B.5)

+ ∑
K∈Th

|uN
Hh − sh|2H1

0 (K)
,

The main difference between this estimator and the next one, is that hK is used instead
of hΩ in the estimator defined by (B.7). As a consequence, this approach yields a worse
estimator bound. If the Galerkin orthogonality, introduced in the next approach (see
(B.6)) is fulfilled, then we retrieve the previous estimator, since the term linked to the
oscillations of the function f in (B.5) is very small, as we will observe in the numerical
results.
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Figure B.1: Error indicator with the rectification, range from 0 to 2.15519e−5

Numerical results. We consider two tests. The first one is very simple, with a constant
diffusion coefficient on the whole domain Ω, and the second one is with a piecewise
constant diffusion coefficient on Ω.

(a) A(µ) = µ constant on Ω.
Figure B.1 displays the error indicator with the rectification post-treatment and may
be compared to Figure B.3a (which gives the energy error with the constant diffusion
coefficient).

Energy error 0.000962165

Estimator 0.00101037

effectivity index 1.0501

Table B.1: Energy error and estimator

These results illustrate the fact that this estimator can be efficient if the oscillation
term is very small (table B.3).

(b) A(µ) piecewise-constant on Ω.
Figure B.2 may be compared to Figure B.6a which gives the energy error.

Energy error 0.000104113

Estimator 0.00267907

effectivity index 25.732

Table B.2: Energy error and estimator

2. The second approach uses a local reconstruction with a reequilibrated flux σh in H(div, Ω),
which must fulfill the Galerkin orthogonality condition (B.6) [49]. This condition implies
that the flux gradient reconstruction must be equal to the function f on average on each
cell K.

(∇σh, 1)K = ( f , 1)K. (B.6)

This flux reconstruction is based on an approach derived from mixed FE theory and a
reequilibration on patchwise Neumann problems, as in [18]. It yields a certified estimator
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Figure B.2: Error indicator with the rectification, range from 0 to 5.04209e−5

and a good indicator. The NIRB approximation may satisfy equation (B.6) in particular
when using the rectification postprocessing stage [30]. The estimator gives either a lower
or an upper bound. It is decomposed in one term linked to the flux and one term linked
to the problem residual. The estimator is defined by

|u − uN
Hh |2H1

0
≤ ∑

K∈Th

(∥∥∥∥∥
√

A(µ)∇uN
Hh +

σh√
A(µ)

∥∥∥∥∥
L2(K)︸ ︷︷ ︸

Flux part

+
hK

π

∥∥ f −∇ · σh

∥∥
L2(K)︸ ︷︷ ︸

oscillations part

)2

(B.7)

+ ∑
K∈Th

|uN
Hh − sh|2H1

0 (K)
,

where sh ∈ H1
0(Ω) is a potential reconstruction of the NIRB approximation. This term is

added into the estimator if the NIRB approximation is non-conform and does not belong
to H1

0 but to H1(Th) (as in the definition B.2). The indicator is the same than B.7 without
the sum on each cell. The effectivity index to assess the estimator is given by

Effectivity index :=
Estimator

Energy error
, (B.8)

and it must be close to one.

Numerical results on this first estimator. We consider the same tests as with the pre-
vious approach.

(a) A(µ) = µ constant on Ω.
The domaine Ω is the unit square. The diffusion coefficient is such that

A(µ) = µ ∈ G = [10, 60]. (B.9)
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(a) Energy error with the rectification, range from 0 to
1.99204e−5 (b) NIRB Indicator, range from 0 to 2.15519e−5

Figure B.3: NIRB with rectification post-process

The new parameter is µ = 20 and the function f is defined by

f (x, y) = −2(x2 + y2) + 2(x + y) (B.10)

such that the analytical solution is given by

u(x, y; µ) =
x(x − 1)y(y − 1)

A(µ)
. (B.11)

We compare the energy error between the exact solution and the NIRB approxima-
tion to the a-posteriori error with and without the rectification post-treatment in
Figure B.3.
The results on the estimator and on the energy error are summarized in the follow-
ing table B.3.

Galerkin orthogonality (max) 0.00312521

Energy error 0.000962165

Estimator 0.00100668

Flux part 0.00100653

Oscillation part 1.65786e-07

effectivity index 1.0462

Table B.3: Energy error and estimator

With the rectification post-treatment, the a-posteriori error is very close to the energy
error, as well as for the indicator. Indeed, this postprocess helps us retrieve the
fine FEM approximation which satisties the Galerkin orthogonality B.6 (since the
parameter is constant on the whole domain). Without the rectification, Figure B.5
display less accurate results than with the rectification. It is not surprising since
Galerkin orthogonality is satisfied to a lesser extent without rectification as shown
by Figure B.4a.

(b) A(µ) piecewise constant on Ω.
We proceed with a non-constant diffusion coefficient, and in our tests we decom-
posed the domain Ω in four subdomains. We chose random coefficients for the

142



(a) without the rectification, range from −0.000625118 to
0.00310532

(b) with the rectification, range from −8/68116e−5 to
0.00321202

Figure B.4: Galerkin-Orthogonality

(a) Energy error, range from 0 to 6.4918e−05 (b) Error indicator, range from 0 to 0.000136356

Figure B.5: NIRB without rectification post-process
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(a) Energy error, range from 0 to 1.350866e−05 (b) Error indicator

Figure B.6: NIRB with the rectification post-process, range from 0 to 5.04209−05

snapshots and the new parameter µ is such that

A(µ, x) =





1.5, for x ≤ 0.5, y ≤ 0.5,

3.8, for x ≥ 0.5, y > 0.5,

4.7, for x > 0.5, y ≤ 0.5,

7, for x > 0.5, y > 0.5,

where x = (x, y).
The results with the rectification post-treatment on the estimator and on the energy
error are summarized in the following table B.3.

Energy error 0.000104113

Estimator 0.00177461

Flux part 0.00177446

Oscillation part 1.65786e-07

effectivity index 17.0451

Table B.4: Energy error and estimator

We observe that the estimator is not very accurate. This is justified by the fact that
the rectification post-treatment does not help us in recovering Galerkin orthogonal-
ity property as shown in Table B.4.

3. The results on the non-constant diffusion coefficient exhibit the importance of the Galerkin-
orthogonality property B.6 to obtain a certified and accurate a-posteriori bound. A third
possibility we did not yet test, is to construct an algebraic flux in order to satisfy the
Galerkin orthogonality for any approximation in H1

0 . Thus, we need to construct in
addition to σh an algebraic flux, denoted by σalg ∈ H(div, Ω), such that

(div(σh + σalg), 1)K = ( f , 1)K.

The a-posteriori estimate that follows is very general and thus, it yields an accurate
indicator and good upper and lower bounds [106].
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Appendix C

Reminders on TPFA and HMM
methods

C.0.1 Two-Point Flux Approximation Finite Volumes (TPFA)

The TPFA Finite Volume scheme is a non conforming scheme. Let us consider the case of
Cartesian grids, namely TPFA-CG, which is an easier case to understand how we find the
related gradient discrete scheme.

TPFA-CG

Let M be a rectangular mesh of a rectangle Ω ⊂ R2. Let E be the finite set of edges of the
mesh. For any σ ∈ E , xσ is the center of mass of σ.
For each K ∈ M, xK is the center of mass of K. P is the set of vertices of the mesh and for
K ∈ M, VK is the set of vertices of K. For each K ∈ M and each s ∈ VK,VK,s is the rectangle
defined by xσ, s, xσ′ and xK, where σ and σ′ are the edges of K touching s.
For a FV scheme, we have to solve:

∀K ∈ M, ∑
σ∈E

FK,σ =
∫

Ω
f , (C.1)

where FK,σ is an approximation of the exact fluxes, which in this example is −
∫

σ ∇u.nK,σ. The
TPFA-CG consists in taking

FK,σ = −|σ|uσ − uK

dσ,K
, (C.2)

where dσ,K = |xσ − xK|.
With all these definitions, we get the following scheme, (Part 1, [45]):

∑
K∈M

∑
σ∈EK

|σ|
dσ,K

(vσ − vK)(uσ − uK) = ∑
K∈M

vK

∫

K
f , (C.3)

and this equation can be expressed as a gradient scheme.

• Let XD,0 = {v = ((vK)K∈M, (vσ)σ∈E) : vK ∈ R, vσ ∈ R, vσ = 0 i f σ ∈ Eext}
• ΠD : XD,0 → L2(Ω) is the following piecewise constant reconstruction on the mesh:

∀v ∈ XD,0, ∀K ∈ M, ΠDv = vK on K.
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• If K ∈ M and s ∈ VK is such that σ and σ′ are the edges of K sharing the vertex s, we
reconstruct a gradient by setting:

∇K,suD =
uσ − uK

dσ,K
nK,σ +

uσ′ − uK

dσ′,K
nK,σ′ . (C.4)

Then, ∇DuD is the piecewise constant function equal to ∇K,suD on VK,s.

Thus, the equation C.1 can be written as the following variational problem:
Find uD ∈ XD,0 such that, ∀vD ∈ XD,0,

∫

Ω
∇DuD .∇DvD =

∫

Ω
f ΠDvD . (C.5)

The third item (C.4) is equivalent to the following definition of ∇D :
∀v ∈ XD,0, ∀K ∈ M,

∇Dv = ∇Kv =
1
|K| ∑

σ∈EK

|σ|(vσ − vK)nK,σ, (C.6)

=
1
|K| ∑

σ∈EK

|σ|vσnK,σ. (C.7)

Now, we can define the equivalent norm of H1
0 on XD,0:

‖∇DuD‖2
L2 =‖uD‖2

D = ∑
K∈M

∑
σ∈EK

|σ|dK,σ(
vσ − vK

dK,σ
)2. (C.8)

We notice that these two norms are not always equals but with a general polytopal mesh, we
have (See Lemma B.10 [45] for more precisions):

‖∇DuD‖(L2)d ≤
√

d‖uD‖D , (C.9)

where d is the dimension of Ω.
Let us now consider the case of triangular meshes.

Definition 11 (Classical TPFA triangulation. [47]). Let Ω be a polygonal open set of R2. A classical
TPFA triangulation of Ω is a conforming acute triangulation T of Ω such that, for all K ∈ M, xK is
the circumcenter of K, and that is constructed in one of the following ways:

• Subdivision: an initial triangulation T0 of Ω is chosen, and then subdivided by creating on each
edge an identical number of equally spaced points, by joining the corresponding points on different
edges, and by adding the interior points resulting from intersections of the lines thus created,

• Reproduction by symmetry: an initial triangulation T0 of the unit square is chosen, this unit
square is shrunk by a factor N and reproduced in entire domain by symmetry.

• Reproduction by translation: an initial triangulation T0 of the unit square is chosen, this unit
square is shrunk by a factor N and reproduced in the entire domain by translation.

Definition 12. (TPFA scheme.) Consider a TPFA-admissible mesh T with (xK)K∈M circumcenters in
the cells (acute triangles) such that, denoting by EK the edges of K ∈ M,

1. for any neighbouring cells K and L in M, if σ ∈ EK ∩ EL then (xKxL) ⊥ σ.
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2. for any cell K ∈ M, if σ ⊂ ∂Ω then (xK + R+
nK,σ) ∩ σ 6= ∅, where nK,σ is the normal to σ

pointing outward K.

Let Eint be the set of edges interior to Ω and Eext be the set of edges lying on ∂Ω. If A is an isotropic
tensor, that is, A(x) = a(x)Id for some a(x) ∈ (0, ∞), the TPFA method for problem (16a)-(16b) on T
reads:





Find uh = (uK)K∈M such that: (C.10a)

∀K ∈ M, µ ∑
σ∈EK∩Eint

τσ(uK − uL) + ∑
σ∈EK∩Eext

τσuK = |K| fK,

where fK is the value of f on xK, L is the triangle on the other side of σ if σ ∈ EK ∩ Eint, and with aK

being the average value of a on K,
∀σ ∈ Eint, if K 6= L are the cells on both sides of σ, τσ = |σ| aKaL

aKdL,σ+aLdK,σ
,

∀σ ∈ Eext, if K is the cell such that σ ∈ EK, τσ = |σ| aK
dK,σ

.

We define
‖uh‖2

L2(Ω) = ∑
K∈M

|K|u2
K, (C.11)

and a discrete H1
0 semi-norm

‖uh‖2
1,D = ∑

σ∈Eint

τσ(uK − uL)
2 + ∑

σ∈Eext

τσu2
K =

1
µ

∫

Ω
f (x)uh(x). (C.12)

This semi-norm satisfies the discrete Poincaré’s inequality [42]

‖uh‖L2(Ω) ≤ C‖uh‖1,D (C.13)

C.0.2 HMM convergence

The classical convergence in O(h) with the discrete H1 can be proved with the following
functions. See [45] for more details. The quality of the triplet (M, E ,P) is measure through
the constant CD , and the functions SD : H1

0(Ω) → [0,+∞) and WD : Hdiv(Ω) → [0,+∞)
respectively defined by:

CD = sup
w∈XD,0,w 6=0

‖ΠDw‖L2

‖∇Dw‖(L2)d

, (C.14)

∀ϕ ∈ H1
0 , SD(ϕ) = min

w∈XD,0
(
∥∥ΠDw − ϕ

∥∥
L2 +

∥∥∇Dw −∇ϕ
∥∥
(L2)d), (C.15)

∀ψ ∈ Hdiv, WD(ψ) = max
w∈XD,0,w 6=0

∫
Ω
(ΠDw div(ψ) +∇Dw.ψ)

‖∇Dw‖(L2)d

(C.16)

The constant CD is used to measure the coercivity (it yields a discrete Poincaré inequality). The
function SD is the interpolation error and it measures the consistency of the GD. WD measures
the limit-conformity of the GD. We then get the following estimations (Part 1.2 [45]):

‖ΠDuD − u‖L2 ≤ (CD + 1)SD(u) + CDWD(u), (C.17)

‖∇DuD −∇u‖L2 ≤ 2SD(u) + WD(∇u) (C.18)

If a triplet (Mm, Em,Pm)m∈N is such that:
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C.1. REMINDER ON THE BRAMBLE-HILBERT’S LEMMA

1. (CDm)m is bounded,

2. lim
m→∞

SDm(u) = 0,

3. lim
m→∞

WDm
(∇u) = 0,

then,
∥∥ΠDmuD − um

∥∥
L2 → 0 and

∥∥∇Dm uDm −∇u
∥∥

L2 → 0.

C.1 Reminder on the Bramble-Hilbert’s lemma

The following lines are similar to [19] Proposition (4.3.2) but to lighten the proof with xK the
center of the BK (see [19] for the general case). With the change of variable z = xK + s(y − xK),

ds dz = sdds dy, (C.19)

where d is the dimension. Therefore, by definition of QK (2.100),

|QKu(xK; µ)− u(xK; µ)| = | 1
|BK|

∫

BK

∫ 1

0
1A(z, s)s−d−1D2u(z; µ)(xK − z)2 ds dy|, (C.20)

where A = {(z, s) : s ∈ (0, 1], |(1/s)(z − xK)| < ρ} and 1A is the characteristic function of A.

|
∫ 1

0
1A(z, s)s−d−1ΨK(xK +

z − xK

s
) ds| ≤ 1

|BK|
‖ΨK‖L∞(BK)

∫ 1

t
s−d−1 ds,

where t = |z−xK |
ρ < s. Then,

|
∫ 1

0
1A(z, s)s−d−1ΨK(xK +

z − xK

s
) ds| ≤ 1

|BK|
1
d
(1 − t−d),

≤ 1
|BK|

1
d
(t−d − 1),

≤ 1
|BK|

1
d

t−d,

≤ 1
|BK|

1
d
(ρd|z − xK|−d),

≤ C|z − xK|−d since |BK| is of order ρd. (C.21)

From that equation (C.21) and (C.20), we deduce

|QKu(xK; µ)− u(xK; µ)| ≤ |
∫

BK

D2u(z; µ)|z − xK|2−d dz|. (C.22)

Hence, since BK ⊂ K,

|QKu(xK; µ)− u(xK; µ)| ≤ Cρ2− d
2
∥∥u(µ)

∥∥
H2(K)

. (C.23)

Finally, by definition of H and since ρ ≤ H ≤ θρ we end up with

|QKu(xK; µ)− u(xK; µ)| ≤ CH2− d
2
∥∥u(µ)

∥∥
H2(K)

. (C.24)
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Appendix D

On the minimization problem

We detail here how we end up with the linear problem (3.5) in chapter 3 from the minimization
problem (3.2). This NIRB version (without constraints) is equivalent to the classical NIRB
method 2.

We recall that we want to minimize the following problem

min
α=(α1,...,αN)

∥∥∥∥∥uH −
N

∑
i=1

αi Φh
i

∥∥∥∥∥
L2

. (D.1)

Since the minimization does not depend on uH , it is equivalent to the problem

min
α=(α1,...,αN)

J(α) = −2
N

∑
i=1

αi (uH , Φh
i ) +

N

∑
i,j=1

αiαj (Φ
h
i , Φh

j ), (D.2)

since the bilinear form (·, ·) is symmetric. Then, we use a variation p such that

d

dδ
J[α + δp]|δ=0 = 0. (D.3)

From the definition of J (D.2),

d

dδ
J[α + δp] = −2

N

∑
j=1

(αj + δp)(uH , Φh
j ) +

N

∑
i,j=1

(αi + δp)(αj + δp)(Φh
i , Φh

j ). (D.4)

Thus, from the equation (D.3), the minimization problem (D.2) is equivalent to

2p
N

∑
j=1

[−(uH , Φh
j ) +

N

∑
i=1

αi(Φ
h
i , Φh

j )] = 0. (D.5)

Since the variation is arbitrary, we end up with the following problem (see (3.5))

− (uH , Φh
j ) +

N

∑
i=1

αi(Φ
h
i , Φh

j ) = 0, ∀j = 1, . . . , N. (D.6)
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Appendix E

On the wind farm application

E.1 Mass and momentum equations

Mass equation

Let ΩF be the fluid domain, such that the mass M of the fluid on this region is given by
MΩF

=
∫

ΩF
ρdV where ρ is its density. The principle of mass conservation relates the fact that

the mass of the fluid in a volume V is constant. Therefore, we have:

dMΩF

dt
=

d

dt

∫

ΩF

ρdV = 0. (E.1)

And with Leibnitz Theorem yields

∫

ΩF

∂ρ

∂t
dV +

∫

∂ΩF

n uSρdS = 0. (E.2)

Indeed, Leibnitz theorem states

d

dt

∫

ΩF

f (x, t)dV =
∫

ΩF

∂ f

∂t
dV +

∫

∂ΩF

n uS f dS,

where uS is the velocity at the boundary. Then, the divergence formula gives

∫

ΩF

[
∂ρ

∂t
+∇.(ρu)]dV = 0.

The local form of the mass conservation can be applied on one point M of the volume ΩF,
which implies that:

∂ρ

∂t
+∇.(ρu) = 0, (E.3)

which is the local form of the equation of continuity.
With the notion of particulate derivative, from Dρ

Dt = ∂ρ
∂t + u∇.ρ, we obtain:

Dρ

Dt
+ ρ∇.u = 0.
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E.2. RANS EQUATIONS

Momentum equation

The rate of variation of a dynamic moment of a region is equal to the sum of the forces applied
on this region. We distinguish two types of forces: The ones acting on the mass (F) and the
forces of the surface (R). So the sum of these forces on this region is mathematically written:∫

ΩF
ρF dV +

∫
∂ΩF

R dS. The moment by unity of volume is given by ρu such that

d

dt

∫

ΩF

ρu dV =
∫

ΩF

ρF dV +
∫

∂ΩF

R dS.

By using again the Leibnitz theorem (E.1), we obtain:
∫

ΩF

∂

∂t
(ρu) dV +

∫

∂ΩF

nuρu dS =
∫

ΩF

ρF dV +
∫

∂ΩF

R dS.

And the divergence formula gives
∫

ΩF

∂

∂t
(ρu) dV +

∫

ΩF

∇.(uρu) dV =
∫

ΩF

ρF dV +
∫

∂ΩF

R dS. (E.4)

The term R can be written with a tensor of constraints T, I. e. R = nT (cf chap. 5.3 [105]).
The constraints on the surface R correspond to a force of pressure, and a term of viscosity.

The tensor of constraints T can be written as a sum of the thermodynamic pressure p and the
tensor of viscosity τ, i.e.t T = −pI + τ.
By the moments formula (equation (E.4)), we have:

∫

ΩF

∂

∂t
(ρu) dV +

∫

ΩF

∇.(uρu) dV =
∫

ΩF

ρF dV +
∫

∂ΩF

nT dS. (E.5)

Thus, again with the divergence formula,
∫

ΩF

∂

∂t
(ρu) dV +

∫

ΩF

∇.(uρu) dV =
∫

ΩF

ρF dV +
∫

ΩF

∇.T dV. (E.6)

Because ΩF is an arbitrary region, the local formulation can be applied in one point and we
get:

∂

∂t
(ρu) +∇.(ρuu) = ρF +∇.T.

With the decomposition of T, we end up with

∂

∂t
(ρu) +∇.(ρuu) = ρF −∇p +∇.τ. (E.7)

E.2 RANS equations

Let us enonce some reminds on the statistical Reynolds average for two variables u and v:

u + v = u + v,

uv = uv,

u = u,

∂u

∂xi
=

∂u

∂xi
,

∂u

∂t
=

∂u

∂t
.
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E.2. RANS EQUATIONS

As said in the chapter 4, the RANS equations derived from the instant mass conservation
and momentum equations E.1:

∂ui

∂xi
= 0,

∂ui

∂t
+

∂(uiuj)

∂xj
= −1

ρ

∂p

∂xi
+ ν

∂

∂xj
(

∂ui

∂xj
+

∂uj

∂xi
). (E.8)

By the decomposition ui = ui + u′
i , the equation (E.8) becomes:

∂ui

∂t
+

∂u′
i

∂t
+

∂uiuj

∂xj
+

∂uiu
′
j

∂xj
+

∂u′
iuj

∂xj
+

∂u′
iu

′
j

∂xj
= −1

ρ
(

∂p

∂xi
+

∂p′

∂xi
) + ν

∂

∂xj
(

∂ui

∂xj
+

∂uj

∂xi
) + ν

∂

∂xj
(

∂u′
i

∂xj
+

∂u′
j

∂xi
),

(E.9)

and because u′
i = 0 and p′ = 0, we end up with:

∂ui

∂t
+

∂uiuj

∂xj
+

∂u′
iu

′
j

∂xj
= −1

ρ

∂p

∂xi
+ ν

∂

∂xj
(

∂ui

∂xj
+

∂uj

∂xi
). (E.10)

Here, we considered the averaged movement equation and not the fluctuation movement equa-
tion.

k − ε closure The transport equation of the turbulent kinetic energy can be written

∂

∂t
(ρk) + ρui

∂k

∂xi
+ ρuj

∂k

∂xi
=

∂

∂xi
[
µt

σk

∂k

∂xi
] +

∂

∂xj
[
µt

σk

∂k

∂xj
] + ρ[Pr − ε] + Fk, (E.11)

where Fk are additional forces applying on k, Pr account for the energy production and is
given by

Pr =
µt

ρ
[(

∂ui

xj
+

uj

∂xi
)2 + 2(

∂ui

∂xi

2
+

∂uj

∂xj

2

)]. (E.12)

The tranport equation for the dissipation rate of the turbulent energy can be writte:

∂

∂t
(ρε) + ρui

∂ε

∂xi
+ ρuj

∂ε

∂xj
− ∂

∂xi
[
µt

σε

∂ε

∂xi
]− ∂

∂xj
[
µt

σε

∂ε

∂xj
] = ρ(Cε1Pr

ε

k
− Cε2

ε2

k
+ Cε3

P2
r

k
) + Fε,

(E.13)
where Fε are additional forces applying on ε and the constants Cε1, Cε2, Cε3 are defined from
experimental data. The constants employed in code_saturne are given in the following table
E.1.

Cµ Cε1 Cε2 Cε3 σk σε

0.09 1.44 1.92 1 or 0 1 1.3

Table E.1: k − ε parameters

152



E.3. MORE RESULTS ON THE 3-DIMENSIONAL CASE

E.3 More results on the 3-dimensional case

E.3.1 3 turbines in line

Figure E.1 illustrates the NIRB results with and without rectification on the first and on the
second turbine. We compare these results with the ones obtained on a truncated domain and
with the method of section 3.3 in Figure E.1.
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E.3. MORE RESULTS ON THE 3-DIMENSIONAL CASE

(a) First turbine, averaged relative H1
0 error between the fine solution and the NIRB approximation (red

curve) with (right) and without (left) rectification as a function of N, compared to the true projection uN
hh

(green) (vs coarse FV error)

(b) Second turbine, averaged relative H1
0 error between the fine solution and the NIRB approximation

(red curve) with (right) and without (left) rectification as a function of N, compared to the true projection
uN

hh (green) (vs coarse FV error)

Figure E.1: NIRB errors with (right) and without rectification (left)
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E.3. MORE RESULTS ON THE 3-DIMENSIONAL CASE

(a) First turbine, averaged relative H1
0 error between the fine solution and the NIRB approximation (red

curve) with (right) and without (left) rectification as a function of N compared to the truncated NIRB
(blue) (obtained from a smaller domain) and compared to the true projection uN

hh (green) (vs coarse FV
error)

(b) Second turbine, averaged relative H1
0 error between the fine solution and the NIRB approximation

(red curve) with (right) and without (left) rectification as a function of N compared to the truncated NIRB
(blue) (obtained from a smaller domain) and compared to the true projection uN

hh (green) (vs coarse FV
error)

Figure E.2: NIRB errors with (right) and without rectification (left) compared to truncated
domain results (right)
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Appendix F

GMSH mesh generator

We realized several meshes with GMSH, since Mordicus may read GMSH files (thanks to
“meshio”). CAO OpenCascade allows us to easily mesh on GMSH.
The line DefineConstant is used to modify the graphical interface values (for instance of width
and length). To define a point in GMSH, we write the following syntax
Point(indice) = {x,y,z,h}; It works the same for a line, and after all the lines creation, we can
create a Line Loop whichs corresponds to the border thanks to the line indices (and then a
surface with the Line Loop indices). The physical lines (or surfaces) are the labels that we
want to attribute. For instance, here follows an exemple to construct the mesh domain of the
model problem 3 (with and without OpenCascade).

DefineConstant [
L={5 ,Min 3 , Max 10 , Step 1 ,Name " 00 Length " , V i s i b l e 1 } ,
l ={1 ,Min 1 , Max 2 , Step 0 . 5 ,Name " 00Width " , V i s i b l e 1 }

] ;
h = 0 . 2 ;

Point ( 1 ) = { 0 , 1/2 , 0 ,h } ;
Point ( 2 ) = { l , 1/2 , 0 ,h } ;
Point ( 3 ) = { l , 0 , 0 , h } ;
Point ( 4 ) = { L , 0 , 0 , h } ;
Point ( 5 ) = { L , 1 , 0 , h } ;
Point ( 6 ) = { 0 , 1 , 0 , h } ;

Line ( 1 ) = { 1 , 2 } ;
Line ( 2 ) = { 2 , 3 } ;
Line ( 3 ) = { 3 , 4 } ;
Line ( 4 ) = { 4 , 5 } ;
Line ( 5 ) = { 5 , 6 } ;
Line ( 6 ) = { 6 , 1 } ;

Line Loop ( 1 ) = { 1 , 2 , 3 , 4 , 5 , 6 } ;
Plane Surface ( 1 ) = { 1 } ;
Ph ys ica l Surface ( 0 ) = { 1 } ;
Ph ys ica l Line ( 4 ) = { 6 } ;
Ph ys ica l Line ( 1 ) = { 1 , 2 , 3 } ;
Ph ys ica l Line ( 2 ) = { 4 } ;
Ph ys ica l Line ( 3 ) = { 5 } ;

With OpenCascade (to create a rectangle, we use the syntax Rectangle(indice)={x,y,z,width,height}
where (x,y,z) are the left down point coordinates and BooleanUnion allows us to concatenate
surfaces)
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Set Fact ory ( "OpenCASCADE" ) ; / / OpenCascade

DefineConstant [
L={5 ,Min 3 , Max 10 , Step 1 ,Name " 00 Length " , V i s i b l e 0 } ,
l ={1 ,Min 1 , Max 2 , Step 0 . 5 ,Name " 00Width " , V i s i b l e 0 }

] ;
h = 0 . 2 ;
Mesh . Ch aract er is t i cL engthMin = h ;
Mesh . Characterist icLengthMax = h ;

Rectangle (1 )= { 0 , 0 . 5 , 0 , l , 0 . 5 } ;
Rectangle (2 )= { l , 0 , 0 , L , 1 } ;
BooleanUnion { Surface { 1 } ; Delete ; } { Surface { 2 } ; Delete ; }

Ph ys ica l Surface ( 0 ) = { 1 , 2 } ;
Ph ys ica l Line ( 4 ) = { 2 } ;
Ph ys ica l Line ( 1 ) = { 1 , 6 , 5 } ;
Ph ys ica l Line ( 2 ) = { 7 } ;
Ph ys ica l Line ( 3 ) = { 8 } ;
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Résumé
Le but de cette thèse est l’analyse et le développement d’outils numériques à faible coûts. La première
partie présente les méthodes de Bases Réduites (MBR) étudiée pendant cette thèse. Nous avons contribué
à l’élaboration d’une bibliothèque open-source en Python sur les MBR et nous présentons plusieurs ré-
sultats numériques avec différentes MBR sur un problème modèle en l’utilisant. En particulier, nous
introduisons la méthode deux grilles. Comme son nom l’indique, elle utilise deux maillages: un fin et
un grossier. Le but est de trouver une bonne approximation d’une solution d’un problème paramétrique,
aussi proche de la solution exacte que si nous avions utilisé un code haute-fidélité avec une méthode
classique, par exemple avec la Méthode des Eléments Finis (MEF) tout en réduisant considérablement
les degrés de liberté. Cela induit donc une réduction des temps de calculs. Après son analyse pour les
équations elliptiques dans le contexte MEF, nous présentons plusieurs analyses supplémentaires de la
méthode deux grilles comme par exemple son adaptation aux équations paraboliques. Nous appliquons
ensuite la méthode à des domaines contenant des singularités. Par la suite, nous réalisons une analyse
détaillée de la méthode dans le contexte des volumes finis. La troisième partie de cette thèse porte sur
le développement d’outils non intrusifs. Nous présentons deux nouvelles méthodes et les appliquons
sur un problème 2D classique d’un écoulement de Navier-Stokes stationnaire. Un des outils permet de
considérer des domaines tronqués et ainsi de réduire drastiquement les temps de calculs des simulations.
La dernière partie de cette thèse concerne l’application de la méthode non-intrusive de bases réduites à
la simulation d’un champ d’éoliennes offshores. Cette partie est une collaboration avec EDF et le but est
de tester la méthode deux grilles sur des problèmes paramétriques hautement complexes. Les champs
d’éoliennes sont modélisés à l’aide des équations de Navier-Stokes en moyenne de Reynolds. Pour les
résoudre, nous utilisons un solveur d’EDF appelé code_saturne. Nous présentons plusieurs résultats
numériques en 2D et 3D.
Mots-clés: Méthode de bases réduites, modèle d’ordre réduit, modélisation d’éoliennes offshore, Méth-
ode des volumes finis, méthodes des éléments finis.

Abstract
The purpose of this thesis is the analysis and the development of low-cost numerical tools. The first
chapter is a review on Non-Intrusive Reduced Basis methods (NIRB) studied during this thesis. We
contributed to the elaboration of an open library on NIRB methods in Python. We present numerical
results with several NIRB on a model problem using this library. In particular, we introduce the two-grid
method which is analyzed in the second chapter. As its name indicates, the method uses two grids:
one fine mesh and one coarse mesh. Its aims to recover an accurate approximation of the solution of a
parameterized problem as if we had used a high-fidelity code for instance with the Finite Element Method
(FEM) while significantly reducing the degrees of freedom. Thus, it reduces the complexity. In the second
chapter, in addition to its detailed numerical analysis in the context of FEM with elliptic equations, we
proceed with several further analyses such as its adaptation to parabolic problems. We then apply the
method to domain with singularities. Subsequently, we extend the method to finite volume solvers, and
detail its numerical analysis in this context. The third chapter is concerned with the development of
new NIRB methods. We present two new approaches and we test them on a model problem which is
the classical 2D backward-facing step. One tool allows us to consider truncated domains and to further
reduce the runtimes. The last part of this thesis is about an application of the two-grid method on
offshore wind farm simulations. This part is a collaboration with EDF and the purpose is to test the
two-grid method on highly complex problems. A solver of EDF, named code_saturne, is used to solve
the Reynolds Averaged Navier-Stokes (RANS) equations representing the wind around the turbines. We
present several numerical results in 2D and 3D.
Key Words: reduced basis method, model order reduction, offshore wind farms modeling, finite volume
schemes, finite element method.
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