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Chapter 1

Introduction

1.1 Quantum electrodynamic corrections to the Dirac theory
The main goal of this thesis is to translate the Quantum ElectroDynamic (QED) corrections to the
language of relativistic quantum chemistry: to the framework of the finite basis approximation of the
Dirac equation. Unconsciously, our brains are used to assigning large speeds with large distances,
which makes it difficult for us to understand, at first glance, why the atomic theory of electrons
might need to account for special relativity. It can be shown, however, that the average speed of an
electron occupying the ground-state of a hydrogen-like atom is given by:

v = (αZ) c, (1.1.1)

where α = e2/ (4πε0~c) ≈ 1/137 is the fundamental dimensionless fine structure constant, Z is the
atomic number, and c is the speed of light. This simple expression indicates that the relativistic
effects can be neglected for light elements, but should be generally taken into account, especially
for the heavy elements. Example: the ground-state electron of the hydrogen-like radon atom (Z =
86) has an average velocity of v = 0.62 c. In 1928 the British physicist Paul Dirac proposed a
relativistic quantum theory which despite its simple (compact) form, was able to account for a
large part of physics that was missing in the previous quantum theory of Schrödinger. Despite
its superiority (generality) over Schrödinger’s equation, Dirac’s equation failed to predict various
quantum phenomena, and especially the following two:

1. The electron spin magnetic moment, which is experimentally found to be around gexp. ≈
2.0023193 [1], while predicted by the Dirac theory to be gDirac = 2.

2. The Lamb shift [2]: the splitting between 2s 1
2
and 2p 1

2
states of the hydrogen atom (See

fig. 1.1.1), predicted to be degenerate by the Dirac theory.

It turned out that a large part of the reason behind this discrepancy problem lies in the theory
of quantum electrodynamics (QED), which gave numerical results that were marvelously able to fill
an enormous percentage of the gap between the relativistic Dirac theory and the experiment. QED
is the theory that couples the quantized electronic field with the quantized photonic field, through
the QED interaction Hamiltonian density:

HQED (x) = −ecΨ̄ (x) γµΨ (x)Aµ (x) , (1.1.2)

1
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Figure 1.1.1: Pictorial comparison of different spectra.

where Ψ (and Ψ̄) and Aµ are the quantized electron and photon field operators, respectively. Their
job is to annihilate electrons and photons at spacetime point x. The unbold symbol x denotes
spacetime coordinates (ctx,x) (see appendix A for notations). In this context, the non-interacting
Hamiltonian contains the free electronic one (non-interacting bound electrons) in addition to the
free photonic one. In the S-matrix formalism, the above interaction coupling between the two fields
is treated perturbatively (in powers of this interaction), as we shall see in chapter 3. We finally note
that the electron-electron interaction will rise from this last interaction term, where the photon field
operator creates and annihilates virtual photons that are exchanged by electrons: Electrons sense
each other’s existence through the exchange of photons. To give a general idea about the problem,
we shall talk about the lowest-order QED corrections. In its lowest-order (e2 or α), and with no
real-photons, the scattering matrix gives rise to three QED corrections presented in fig. 1.1.2:

1. The single-photon exchange: fig. 1.1.2a

2. The vacuum-polarization: fig. 1.1.2b

3. The self-energy: fig. 1.1.2c

x1 x2

(a) Single-photon exchange

x1 x2

(b) vacuum polarization

x1

x2

(c) Self-energy

Figure 1.1.2: The lowest-order BSQED corrections

A few points to note about these diagrams:
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1. x1 and x2 are spacetime points.

2. The external double (straight) lines represent electrons whose wavefunctions are solutions of
the Dirac equation in the presence of the time-independent classical external potential (the
Furry representation [3] [4, section 15g]): the Coulomb field for example.

3. The double internal electron line (as in figs. 1.1.2b and 1.1.2c) represents the electron propa-
gator (the Dirac Green’s function) which includes the effect of the time-independent external
potential (the Furry representation).

4. The wiggly line represents the propagation of a virtual photon, between two spacetime points:
x1 and x2 in our case.

The first correction concerns the interaction between two-electrons, to its lowest-order, where an
electron feels the existence of (interacts with) the other electron through the exchange of a virtual
photon. This correction only exists if the number of electrons in the studied system is n ≥ 2, and can
be shown to contain two contributions similar to the two-electron terms in the Hartree-Fock theory,
where one is local: as the Hartree (direct) term, and the other is non-local as the Fock (exchange)
term.

The second and third corrections only contain a single (straight) electron line, these corrections
are to be taken into account for all systems, ranging form a simple hydrogen-like (1-electron) atom,
to the complicated many-electron system.

We shall now concentrate on the simple 1-electron atoms, where the last two corrections are to be
taken into account. The second diagram represents the vacuum polarization effect, which describes
the interaction of an electron at x1 with a vacuum bubble at x2. This bubble represents the vacuum
polarization current, generated in space when an inducer (such as an atom) exists, see [5] and [6]. We
shall see that this current reduces to the vacuum polarization density in the case where the inducing
potential is a purely scalar one, i.e. in the case where the time-reversal symmetry is preserved.
Furthermore, in the absence of an inducer, this correction will vanish, and this can be shown using
Furry’s theorem (charge conjugation symmetry) which will be discussed in section 3.11. The vacuum
polarization effect is highly localized, and lives at very small distances close to the nucleus, strongly
within the Compton wavelength: r < ~

mc . More precisely, the potential associated with the lowest-
order (larger contribution) vacuum polarization, i.e. the Uehling potential: of order α (αZ), decays
exponentially when r becomes larger that the Compton wavelength, this is mentioned in the work of
Mohr et al. [7, Page 268] in addition to Greiner and Reinhardt [8, Page 283]. The potential associated
with the higher-order vacuum polarization: The Wichmann-Kroll term of α (αZ)

3, decays slower
than the Uehling potential, and as a consequence, this correction dominates the Uehling one for
atomic states with large quantum numbers n and j (getting far from the nucleus) as shown by Soff
and Mohr [9, Table I], in addition to Huang [10, eqs.(23-25), eqs.(30,33)]. Generally speaking, lower
bound-states will be more affected by the total α (αZ)

n≥1 vacuum polarization effects, than the
higher ones. It should be noted that a process associated with an αm (αZ)

n-order is represented
by a Feynman diagram containing m virtual photons (internal photon lines), while n in (αZ)

n

represents the number of interactions with the external potential. The effective QED potential
associated with such process is usually (in literature) written as Vmn. This notation was used by
Huang [10], Blomqvist [11], and many others.

Contrary to vacuum polarization, the self-energy is a non-local effect, and it is thus (generally
speaking) more complicated to evaluate, in both senses: mathematically (analytically), and nu-
merically. As the diagram of fig. 1.1.2c shows, this effect describes a virtual photon emission and
absorption by an electron. In electronic atoms, the self-energy is the dominant QED correction,
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and this fact can be observed in the work of Soff et al. [12, Figure. 10] where they show different
contributions to the Lamb shift (in hydrogen-like atoms): The Lamb shift is the splitting between
the 2s 1

2
and 2p 1

2
states of the hydrogen-like atoms, which the Dirac equation fails to predict, and is

largely described by these two QED corrections.
This fact of dominance of the self-energy correction in the electronic atoms is reversed once the

muonic atom, instead of the electronic one, is considered. The reason behind this claim, is the very
large muon mass. With a mass of around mµ ≈ 200me, the muon thus orbits two hundred times
closer to the nucleus (than an electron do), and this fact is seen by the change of the Bohr radius:

aµB ≈
aeB
200

, (1.1.3)

as shown in figs. 1.1.3a and 1.1.3b, for the hydrogen Z = 1, and the radon Z = 86 atoms, respectively.
See also [13, Fig. 1]. At these very small distances the vacuum polarization effect lives, and thus
dominates the self-energy, as mentioned by Mohr et al. [7, Page 266] Greiner and Reinhardt [8,
Pages 288-290] (see also the work of Dubler et al. [14]).

10
-6
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10
-4

0.001 0.010 0.100 1

(a) The hydrogen atom case.

10
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-5

10
-4

0.001 0.010 0.100 1

(b) The radon atom case.

Figure 1.1.3: The reduced Compton wavelenght λ̄ = ~
mc , with electronic aeB and muonic aµB Bohr

radii in hydrogen and radon atoms.

Once the perturbation (correction) expansion of the energy (or wavefunction) is performed, one
obtains two kinds of contributions:

• Radiative corrections: in which the representing Feynman diagrams contain electron loops or
electron-photon loops, as the ones shown in figs. 1.1.2b and 1.1.2c.

• Non-radiative corrections: in which electrons only exchange virtual photons. In its lowest-
order, two electrons can exchange a single-photon, giving rise to the electron-electron interac-
tion (including the effect of retardation), which is presented in fig. 1.1.2a. The higher-order
diagrams account for higher-orders of photon exchanges (correlation corrections).

For discussions about this distinction, the reader may consult the book of Lindgren [15], in addition
to the chapter of Indelicato and Mohr [16].
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So far, in quantum chemistry, as well as in molecular physics, electron correlation effects are very
well studied and understood, while radiative corrections are not to the same extent. The inclusion
of these QED corrections in numerical computations is a very challenging task, due to the enormous
complication which arises when a system consists of a relatively big number of electrons orbiting
a molecular (generally non-radial) nuclear potential. The main attempts to take these radiative
corrections into account were made by including some of the low-order corrections in the form of
effective potentials (Hamiltonians), describing the vacuum polarization and the self-energy processes.
These potentials are going to be discussed in section 3.12. The reader should note that the two main
limitations, associated with the inclusion of the QED corrections in numerical calculations are:

1. Although the effective self-energy potentials (discussed in section 3.12.2) have demonstrated
their ability to obtain accurate energy corrections -compared to more sophisticated calculations-
(remember that these potentials are made to do so), their validity for other quantities such as
the wavefunction or the molecular properties is undoubtedly questionable.

2. One can, in principle, proceed in the hard way, using much more accurate methods, without
the need for any kind of energy fitting (as for the effective self-energy potentials), as done in:
[6, 7, 17, 18, 19, 20] and many other related references, to get very good results. Unfortunately,
this track is not very well suited for practical calculations and can only be taken for "simple"
systems, such as one- to few-electron atoms, but not for the many-electron molecules, which
is the obvious reason why we use the effective potentials instead.

Due to these two limitations, we decide to proceed on a completely different path: Computing these
corrections in a quantum-chemistry fashion: in a fast numerical way. In this procedure, the QED
quantities are constructed from the numerical solutions (energies and wavefunctions) of the Dirac
equation. The main advantages of this choice of path are:

1. The obtained quantities are free of energy parametrization (fitting) and as a consequence, the
obtained quantities, such as the wavefunctions and the molecular properties are more valid, at
least in principle.

2. It is not very computer time expensive (numerically speaking), as we expect so far.

Due to the complexity of the non-local self-energy correction, this thesis will focus on the vacuum
polarization correction, since it is relatively easier to handle, both analytically and numerically. The
reader should note that this massaging of the relativistic quantum chemistry to test its capability to
compute the vacuum polarization density, leads to a better understanding of how we can extended
our acquired skills/manipulations to solve the:

1. Self-energy problem in the finite basis set.

2. The Hartree-Fock problem which includes the QED corrections.

3. Extend the QED-effects inclusion to high-level quantum chemistry methods.

Unfortunately, the work for this thesis is limited in time, and these three points will be beyond this
Ph.D. project. Nevertheless, we are going to give our vision on how one can proceed to attack these
problems in section 3.13, and the final section of this thesis will concern our perspectives about the
future steps to be taken.
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1.2 Thesis structure
In chapter 2, we shall discuss the Dirac equation and its associated discrete symmetries, both in
the abstract mathematical form and once this equation is approximated by a finite number of basis
functions, typically by Gaussian functions. The charge conjugation symmetry (C-symmetry) will be
of central importance in this thesis, and the study associated with it has gave birth to our article
titled "Charge Conjugation Symmetry in the Finite Basis Approximation of the Dirac Equation"
[21] where we carefully point out the conditions which make the finite basis set C-symmetric. In the
basis set approximation, a set of basis functions must be carefully designed to avoid the numerical
instabilities and the occurrence of unphysical (spurious) solutions. This chapter shall discuss different
choices of basis set schemes and present their associated pros and cons. At the end of the chapter, we
shall present the results of a few calculations done on the one-electron Dirac problem in the presence
of a Coulombic − Ze2

4πε0r
potential, and discuss the practical realization of the charge conjugation

symmetry, in the finite basis approximation.
In chapter 3, we will derive the S-matrix (scattering matrix) and present the mathematical

machinery associated with it. In addition, we will compute the second-order S(2)-matrices associated
with the three physical QED processes discussed in the previous section. Furthermore, the three
corresponding energy-shifts are going to be derived. Usually, these derivations are very briefly
presented in literature, with missing important derivation steps. We have therefore decided to
provide a detailed derivation that suits (up to some extent) a new learner of Bound State Quantum
Electrodynamics (BSQED), in the context of the S-matrix theory. Furthermore, we will briefly
discuss the effective QED potentials in the last part of this chapter. Finally, this chapter will
end with a general discussion that concerns the foundations for including QED corrections in the
simplest many-electron approximation, i.e., the Hartree-Fock theory, without the need to use effective
potentials. Once this machinery is made working, this will pave the way for the more sophisticated
quantum chemical methods such as coupled-cluster or configuration-interaction methods. It should
be also noted that including these corrections in a self-consistent manner will allow the inclusion of
some higher-order corrections, that can be represented by reducible diagrams. The main challenge is
still to handle divergences that exist, not only on paper but also in numerical computations. These
divergences can be seen in our case by inspecting the non-converging numerical QED quantities once
the basis set size (number of basis functions) is increased.

Chapter 4 will be dedicated to the vacuum polarization problem, already encountered in chapter
chapter 3. We shall first concentrate on deriving the mathematical quantities, and then attack the
numerical evaluation problem. Several vacuum polarization density calculations associated with
different choices of basis sets will be performed, presented, and discussed in detail. On top of that,
we shall use what we have learned in the first chapter about the C-symmetry to design better basis
functions. In addition, the time-reversal symmetry (T -symmetry) is going to be used simplify the
vacuum polarization density expression in the cases where the external vector potential vanishes.

All the equations of this thesis are written in SI units, in order to make it easier for the reader to
convert to his desired system of units. The general notations and definitions of several elementary
quantities are given in appendix A. Finally, the extra information, derivations, and results are placed
in the remaining appendices B to J and referred to from our four chapters.
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1.3 Numerical details
In all our numerical calculations using Mathematica [22], we are going to set the fine structure
constant parameter to be the latest experimental result [23, table XXX]:

α = 7.2973525693 (11)× 10−3. (1.3.1)

This information is needed in case one wants to reproduce our results. In addition, we note that the
performed calculations are of very high precision. The general mathematical expressions are taken
in their exact form, which means that there is no loss of precision at this level. On the other hand,
the evaluation of the eigenvalue problems is (surely) done numerically, with a precision of up to a
hundred significant decimal digits. In our approximations of the radial Dirac equation, we are going
to use the Gaussian basis functions, of the following form:

π`,i (r) = r`+1eζ`,ir
2

, for i = 1, n` (1.3.2)

with n` the number of basis functions associated with the orbital quantum number `. For each
quantum number `, a basis set is constructed with respect to a list of exponents:

ζ` = {ζ`,1, . . . , ζ`,n`} . (1.3.3)

Kenneth Dyall has optimized these exponents for the two-electron noble gases, such that they lead
to the lowest possible energy for the two-electron system in their ground-state [24] (See section E.3).
We are going to use these exponents in our one-electron calculations, which is perfectly safe, as we
shall see in chapter 2. Our calculations will all be on the radon atom (Z = 86), and the motivations
to do so were 1) we have the exponents of Dyall exponents, and 2) this is a heavy element, which
indicates that its QED corrections will be more pronounced. The exponents associated with this
element are presented in tables E.3 to E.5 of the appendix.



Chapter 2

The Dirac equation

It seems that if one is working from the point of view of getting beauty in one’s equations, and
if one has really a sound insight, one is on a sure line of progress.

Paul Adrien Maurice Dirac [25]

In this chapter, we shall discuss the historical roots of the Dirac equation, as well as many of its in-
teresting features, including its associated discrete symmetries, its radial form (the atomic problem),
and its approximation with a finite number of basis functions (the finite basis approximation). We
shall also discuss how these relativistic basis sets must be carefully designed by taking into account
some "proper" requirements in order to maintain numerical stability: prevent numerical failures
such as 1) appearance of spurious solutions 2) converging to an energy that is lower than the exact
one 3) violation of quantum mechanical (discrete) symmetries. Ann additional significant problem
concerns the consideration of the negative-energy solutions. When solving the time-independent
Dirac equation, one obtains a set of positive and negative-energy solutions. Conventionally, in (rel-
ativistic) atomic physics and quantum chemistry, we are interested in the (experimentally observed)
bound-states. This interest bias has led us to pay less attention to (and eventually discard) the
negative-energy solutions, and this is clearly justified. This disregard of the negative-energy solutions
can (and will) be problematic when these solutions are needed to construct some specific physical
quantities, as the quantum electrodynamic ones, for example: vacuum polarization and self-energy
quantities, as we shall see in the following two chapters. We will thus consider some specific basis
functions prescriptions that guarantee 1) a fair description for both positive and negative-energy
solutions and 2) the obedience of the physical symmetry between them: the charge conjugation
symmetry (C-symmetry). Consequently, we shall see in chapter 4 how these two considerations are
going to considerably improve the validity of the numerically calculated quantum electrodynamic
quantities.

8
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2.1 The Klein-Gordon equation:
A first relativistic quantum theory

In his article [26], Gordon proposed replacing the momentum and energy values by their correspond-
ing operator form [26, eq.(1)]:

p→ −i~∇ (2.1.1)

E → +i~
∂

∂t
, (2.1.2)

in the relativistic energy-momentum relation:

E2 = m2c4 + c2p2. (2.1.3)

His attempt was inspired by the (non-relativistic) Schrödinger equation, which can be obtained from
the classical energy expression of a particle of mass m freely traveling with a momentum p:

E =
p2

2m
. (2.1.4)

After substituting energy and momentum as given in eqs.(2.1.1,2.1.2), one obtains the Schrödinger
equation:

i~
∂

∂t
ψ (x) = − ~2

2m
∇2ψ (x) (2.1.5)

that acts on the wavefunction ψ (x). This simple approach leads to the first relativistic (Lorentz-
invariant) quantum mechanical equation of motion:[

� +
(mc

~

)2]
ψ (x) = 0; � =

1

c2
∂2

∂t2
−∇2, (2.1.6)

known as the Klein-Gordon equation. For details about the historical development of this equation,
the reader can consult [27]. The obvious good thing about the Klein-Gordon equation is that it is
a relativistic equation, and as a consequence, it treats time and space derivatives equally and thus
is Lorentz invariant, unlike the Schrödinger equation, where the time- and space-derivatives are not
of the same order. In addition, it can be shown that this equation recovers, in the non-relativistic
limit, the Schrödinger equation. See, for instance, [28, section1.3]. Dirac was not satisfied by the
Klein-Grodon equation, for the reasons discussed in the next section. He has thus decided to give
the problem another try. Here are the words of Dirac about an incident that happened during the
1927 fifth Solvay Conference [29, page 1047]:

During the period before the lecture started on one occasion, Bohr came up to me and
asked me: “What are you working on now?” I said: “I’m trying to get a relativistic theory
of the electron.” Then Bohr said: “But Klein has already solved this problem.” I was a
bit taken aback by this.

Paul Adrien Maurice Dirac

In the next section, we will present the downsides of the Klein-Gordon equation once used to predict
the electron behavior. These downsides induced Paul Dirac to come up with a new elegant quantum
equation, later known as the Dirac equation, that has generalized the Schrödinger equation to the
relativistic domain and predicted various behaviors of the electron (spin 1/2 particles).
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2.2 Problems with the Klein-Gordon theory
The first point that does not fit with our knowledge of the non-relativistic theory, is the existence
of the negative-energy solutions, which cannot be simply discarded, since quantum mechanics (in
contrary to classical mechanics) tells us that a particle can perform transitions from a positive-energy
state to a negative-ones, and emit an amount of energy (as mentioned by Dirac [30, page 612]), which
in our considered case is enormous (at least equal to 2mc2). The second trouble comes from the
probability density that enters the continuity equation (probability conservation) associated with the
Klein-Gordon equation. To see how, we shall start by the Schrödinger equation. After multiplying
the Schrödinger equation with the conjugate of the wave function, one obtains:

i~ψ∗
∂

∂t
ψ = − ~2

2m
ψ∗∇2ψ, (2.2.1)

and by complex conjugating this equation, one would get:

i~ψ
∂

∂t
ψ∗ =

~2

2m
ψ∇2ψ∗. (2.2.2)

Summing up these two equations leads to the continuity equation associated with the conservation
of the probability:

∂

∂t
(ψψ∗) = − ~

2mi

[
ψ∗∇2ψ − ψ∇2ψ∗

]
= −∇ · ~

2mi

[
ψ∗∇ψ − ψ∇ (ψ)

∗]
, (2.2.3)

where one sees that the time-derivative of the modulus square of the wavefunction:

ρ (x) = ψ (x)ψ∗ (x) , (2.2.4)

which is interpreted as a probability density, equals the negative divergence of j:

j (x) =
~

2mi
[ψ∗ (x)∇ψ (x)− ψ (x)∇ψ∗ (x)] , (2.2.5)

which is interpreted as a probability current. The extension of this approach to the Klein-Gordon
equation leads to conceptual problems. This form of continuity equation.(2.2.3) already appears in
different fields of physics and math, such as: fluid dynamics, classical electrodynamics, probability
distributions, and finally, quantum mechanics. We shall briefly present the main concepts of a
general continuity equation. The general continuity equation has the following form:

∂

∂t
ρ (x) +∇ · j (x) = s (x) , (2.2.6)

where one sees:

1. The density ρ of some physical quantity, we shall call q.

2. The current density j of this quantity, related to the density by j = ρv, where v is the velocity
field vector.

3. The source term s which is generally a function of spacetime x. This term can be:

(a) of a positive value: The amount of q increases in the system (source case).

(b) of a negative value: The amount of q decreases in the system (sink case).
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(c) vanishing: The amount of q is conserved.

An important point to note, is that that the continuity equation (current expression) tells us that
the wavefunction must be complex, and that the increase/decrease of the density of q with the
time-flow, competes with the divergence of the current density (flow of ρ). The divergence of some
vector-field measures the outward flux of this vector field throughout the surface that encloses an
infinitesimal volume at the point in question. In the case where the studied quantity is conserved,
the decrease/increase of the density ρ when time passes, is exactly balanced by the positive/negative
flux of the q flow. This concept is extended to quantum mechanics, where the general quantity q
becomes the probability that flows dynamically in space and time, as a fluid.

Following the (almost) identical steps used to obtain the probability current associated with the
Schrödinger equation, one obtains the compact relativistic probability current conservation (conti-
nuity) equation:

∂µj
µ (x) = 0; jµ (x) =

i~
2m

[ψ∗ (x) ∂µψ (x)− ψ (x) ∂µψ∗ (x)] , (2.2.7)

associated with the Klein-Gordon solution. One main problem that arise here, is the probability
density:

ρ (x) = j0 (x) /c =
i~

2mc2
[ψ∗ (x) ∂tψ (x)− ψ (x) ∂tψ

∗ (x)] . (2.2.8)

These expressions for probability density and current have first appeared in the work of Gordon [26,
eq.(21.a)] and Klein [31, eq.(18)]. The problem with the last expression of probability is that it is
not positive definite, and this can be seen by the replacement of i~∂t by the energy E (factorization
of the wavefunction), leading to [32, eq.(2.4.9)] [4, page 55 eq.(7)]:

ρ (x) =
E

mc2
ψ∗ (x)ψ (x) , (2.2.9)

which for negative-energy solutions –allowed by the Klein-Gordon (Energy momentum relation)–
gives a negative probability density, and this is not physically accepted. In addition, in his discussion,
Grant [32, section 2.4] shows that this probability density can be negative also for positive-energy
solutions (see eq.(2.4.16) of the citation), when the electron is allowed to interact with a (time-
independent) scalar external potential. This shows another problematic aspect of the Klein-Gordon
equation, which is also pointed out by Ohlsson in [33, section 2.4], Schweber [4, page 63 eq.(49)] and
Greiner [28, eq.(1.130)]. The interacting Klein-Gordon’s four-current that satisfies the continuity
equation is found to be (see eq.(J.2.2)):

jµ =
i~
2m

(ψ∗∂µψ − ψ∂µψ∗) +
e

m
Aµψ∗ψ, (2.2.10)

where Aµ is the external electromagnetic potential, and ψ (x) is now a solution of the interacting
Klein-Gordon equation: [(

∂µ +
e

i~
Aµ
)(

∂µ +
e

i~
Aµ

)
+
m2c2

~2

]
ψ (x) = 0. (2.2.11)

The Klein-Gordon’s probability density is the zeroth component of eq.(2.2.10):

ρ = j0/c =
E + eϕ

mc2
ψ∗ψ, (2.2.12)
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which for a point nuclear charge, and a positive-energy state, is negative for a radius smaller than:

r <
Ze2

4πε0E
. (2.2.13)

The third problem, is that the Klein-Gordon equation is of second-derivative in time instead first-
(as in the Schrödinger equation case), which means that one needs to know the wavefuction that
one needs to know the wavefuction ψ (t0) and its derivative ∂ψ

∂t |t=t0 at some initial time t = t0, in
order to determine the wavefunction at a later time ψ (t), with t > t0, which added an extra degree
of freedom which was not present in the Schrödinger theory. In addition, this second derivative
in time did not fit with the “transformation theory” developed by Paul Dirac in [34], on which he
commented in 1977 [35, page 89]:

“I think that is the piece of work which has most pleased me of all the works that I’ve
done in my life ... The transformation theory (became) my darling I just couldn’t face
giving up the transformation theory.”

This theory which was based on an equation of motion of the form of:

Hψ = i~
∂

∂t
ψ, (2.2.14)

(as mentioned by Dirac in [30, page 612]) which is sometimes called a Schrödinger-type equation,
and which is clearly not the case of the Klein-Gordon equation. All these arguments motivated
Paul Dirac to seek for an alternative relativistic equation, which should be consistent with the
Klein-Gordon equation, i.e. obey the Einstein energy-momentum relation, but in which the time
derivative is of first-order instead of second.

2.3 Towards the Dirac equation
As pointed out by Schweber in [36, p.57-58], having a Hamiltonian equation with the form of the
last equation will always lead to a positive probability density. We thus consider a Hamiltonian
operator H which can, in general, be a matrix containing linear differential, and multiplicative (as
the potential) operators. This Hamiltonian acts on the wavefunction ψ that satisfies the eq.(2.2.14)
of motion. Notice that this is consistent with the Schrödinger and Pauli equations (as well as
the Dirac one, as we shall shortly see). After the multiplication of this equation by the conjugate
transpose solution from the left side, one obtains:

ψ†Hψ = +i~ψ†
∂

∂t
(ψ) . (2.3.1)

The corresponding conjugate transpose equation is thus:

ψ†
←−
Hψ = −i~ ∂

∂t

(
ψ†
)
ψ, (2.3.2)

where the arrow on the top of the Hamiltonian indicates that it differential operator(s) acts on the
left-side instead of the right one. After taking the difference between these two equations, one gets:

1

i~

{
ψ†Hψ − ψ†

←−
Hψ

}
=

∂

∂t

(
ψ†ψ

)
, (2.3.3)
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where one directly notices the term that is time-differentiated:

ψ†ψ = ρ. (2.3.4)

This term is never negative, and can be interpreted as a probability density. The reader can notice
that the equation of motion we have started with solves two problems that appeared with the
Klein-Gordon theory:

1. The need of the ∂ψ/∂t |t=t0 value to determine the wavefunction at a future time t > t0.

2. The probability density that can be negative.

Finally, the remaining term of the l.h.s. of eq.(2.3.3) which we assume can be written as:

1

i~

{
ψ†Hψ − ψ†

←−
Hψ

}
= −∇ · j, (2.3.5)

where j is the probability current, completes the continuity equation. At this point, Dirac sets
the goal to seek for a new relativistic equation which can be thought as a “square-root” of the
Klein-Gordon one, an equation consistent with the latter one, but this time with a first-order time-
derivative, and therefore, with first-order space derivatives, since relativity, by its essence is a theory
that treats space and time equally, as mentioned by Dirac in [30, page 613].

2.4 The Dirac equation
In his great book [37], Dirac explains in a pedagogical way how he one can proceed to reach the
celebrated final Dirac equation. As a first proposal of what might this equation be, he suggests:[

p̂0 −
√
p̂2 +m2c2

]
ψ (x) = 0; where

{
p̂0 = + i~

c
∂
∂t

p̂ = −i~∇
, (2.4.1)

which after the application of the operator
[
p̂0 +

√
p̂2 +m2c2

]
from the right, leads to the Klein-

Gordon eq.(2.1.6), and thus, such equation describes a particle obeying the energy-momentum re-
lation. Dirac then states that the problem with this proposal is that is does not treat space- and
time-derivatives equitably, and proposes the following equation:

[p̂0 − α1p̂1 − α2p̂2 − α3p̂3 −mcβ]ψ (x) = 0, (2.4.2)

where the three quantities αi and β are constants of unknown nature. After the application of the
operator [p̂0 + α1p̂1 + α2p̂2 + α3p̂3 +mcβ] on the left side of the last equation gives:[

p̂20 −m2c2β2 − p̂21α1α1 − p̂2p̂2α2α2 − p̂3p̂3α3α3

− p̂2p̂1α2α1 − p̂1p̂2α1α2 − p̂3p̂2α3α2 − p̂2p̂3α2α3 − p̂1p̂3α1α3 − p̂3p̂1α3α1

−mcp̂1α1β −mcp̂1βα1 −mcp̂2α2β −mcp̂2βα2 −mcp̂3α3β −mcp̂3βα3

]
ψ (x) = 0. (2.4.3)

In order for this equation to reduce to the Klein-Gordon equation the quantities αi’s and β should
obey the following relations [30, eq.(6)] [28, eq.(2.8)]:

β2 = 14 (2.4.4)
αiαj + αjαi = 2δij14 (2.4.5)
αiβ + βαi = 04, (2.4.6)
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for all i = 1, 2, 3. This means that these quantities cannot be scalar ones, and should be matrices.
In addition, for physical purposes, these matrices should be hermitian. Dirac first tried with the
three Pauli matrices and later commented [29, page 1052]:

“It took me quite a while, studying over this dilemma, before I suddenly realized that
there was no need to stick to the quantities σ, which can be represented by matrices
with just two rows and columns”

In [38, exercice 13.1] of Greiner’s book we see that any 2 × 2 matrix can be written in the basis
of the three Pauli matrices and the unit operator 12, which means that it is only possible to have
three commutation relations associated with the basis elements of a 2 × 2 matrix. In addition, in
his book on relativistic quantum mechanics [28, chapter 2] it is shown that the dimensions of these
matrices should be even, and since the 2× 2 case is discarded, the smallest possible dimensions for
the Dirac matrices are 4×4 (see also Gross [39, section 5.1], Bjorken and Drell [40, section 1.3]) and
all higher dimensional cases can be reduced to four dimensions. The Dirac equation can be written
in a compact covariant form as: [

i~γµ
∂

∂xµ
−mc14

]
ψ (x) = 0, (2.4.7)

where the summation runs over µ = 0, 1, 2, 3, and the gamma matrices are related to the previous
matrices by:

γµ =

{
β for µ = 0

βαµ for µ = 1, 2, 3.
, (2.4.8)

and as a consequence, the anticommutation relations that these gamma matrices should obey are
compactified in:

{γµ, γν} = γµγν + γνγµ = 2gµν14, (2.4.9)

where gµν = diag (+1,−1,−1,−1) is the flat-space Minkowski metric tensor. Any choice of gamma
(related to alpha and beta) matrices that respects the anticommutation relations of eq.(2.4.9) is a
valid choice, and is called a representation of the Dirac matrices. Here are the main representations:

1. The Dirac (standard) representation:

γ0D =

[
+12 0

0 −12

]
, and γiD =

[
0 +σi
−σi 0

]
, (2.4.10)

where subscript “D” stands for Dirac. This is the most popular representation, in which the
Dirac equation spinor is written as:

ψD =

[
ψLD
ψSD

]
, (2.4.11)

where ψLD and ψSD are the large and small two-component wavefunctions, respectively. The
reason behind this naming is that for positive-energy solutions (in which physicists and chemists
are interested) the upper component wavefunction is (on average) larger that the lower one.
To show why this is right, we consider the case of an electron interacting with an external
scalar potential ϕ. The lower component can be written as:

ψSD =
cσ · p

mc2 + E + eϕ
ψLD, (2.4.12)



CHAPTER 2. THE DIRAC EQUATION 15

which “very roughly speaking” behaves as ψSD ≈ v
2cψ

L
D for the minimal positive-energy E =

mc2. It is important to note that this choice of matrices is not unique. Following Pauli
[41, Théorème fondamental], Feynman [42, Equivalence Transformation p.44] and Ohlsson [33,
s.Theorem 3.1], one can consider any invertible constant (variable-independent) 4× 4 matrix,
let us call it S, and act with it on the Dirac equation.(2.4.7), in addition, insert the unit matrix
S−1S, to obtain: [

i~SγµDS
−1 ∂

∂xµ
−mc14

]
SψD (x) = 0. (2.4.13)

If we now call SψD (x) = ψX (x) our new (matrix-transformed) wavefunction in the X rep-
resentation, and SγµDS

−1 = γµX the new gamma matrices, one can show that the new γµX
matrices do obey the defining anticommutation relations of eq.(2.4.9), and thus correspond to
a valid choice of matrices. Next, we present some of the other choices of gamma matrices.

2. The Weyl representation:

γ0W =

[
0 +12

+12 0

]
, and γiW =

[
0 +σi
−σi 0

]
, (2.4.14)

which can be generated from the Dirac representation matrices:

γµW = SγµDS
−1; with S =

1√
2

(
14 − γ5Dγ0D

)
, (2.4.15)

where γ5D is the fifth gamma matrix given in eq.(A.0.11).

3. The Majorana representation:

γ0 =

[
0 +σ2

+σ2 0

]
, γ1 =

[
+iσ3 0

0 +iσ3

]
γ2 =

[
0 −σ2

+σ2 0

]
, γ3 =

[
−iσ1 0

0 −iσ1

], (2.4.16)

where all matrices are imaginary ones. This representation has the advantage of making the
the Dirac equation real, since i~∂µγµ is, as pointed out by [43, footnote page 49]. These
matrices are generated from the Dirac ones by:

γµM = SγµDS
−1; with S =

1√
2
γ0D
(
14 + γ2D

)
. (2.4.17)

For the rest of this thesis, we are only going to consider working with the Dirac-representation choice
of gamma matrices and we shall thus drop the D subscript. In addition, when a matrix quantity is
summed with a scalar one, the reader has to remember that this scalar quantity is always multiplied
by the unit matrix 14.

The great success of the Dirac equation comes from the fact that despite its compact form, it
encodes an enormous amount of physics, which is one way of defining poetry, that (unfortunately)
Dirac did not admire (see [44, page 8]). The Dirac equation was able to account, in a natural way,
for:

• The electron spin. This result was consistent with that of the Pauli equation, which was
invented to describe the spin angular momentum theory (or what Pauli called: “two-valuedness
not describable classically” in his great noble prize lecture [45]), and which was missing in the
Schrödinger theory.
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• The fine structure splitting: the splitting between 2p 1
2
and 2p 3

2
states, which was predicted to

vanish (degeneracy) by the Schrödinger theory, see fig. 1.1.1. This splitting comes after adding
the relativistic corrections to the Schrödinger theory, with the spin-orbit coupling term, which
is thus related to the previous point.

If one performs an expansion of the Dirac equation in the limit of small velocities (non-relativistic
limit), as described for example by Gross [39, section 5.7], Schwabl [46, section 9.1.3 eq.9.1.22] and
Greiner [28, section 11.1], one can see that the Dirac equation contains the following terms:

• The relativistic mass correction to the non-relativistic kinetic energy operator.

• Electron spin magnetic moment g-factor.

• The Zeeman term: the interaction between the external magnetic field, and the total angular
momentum (spin and orbital).

• The spin-orbit interaction.

• The Darwin term, which represents the Zitterbewegung effect: a jittery motion of the electron
around its region. For a point nucleus, the Darwin term only affects wavefunctions that does
not vanish at the origin (` ≥ 1).

• The prediction of antimatter, which manifested by the charge conjugation symmetry of the
Dirac equation.

2.5 A few words on Dirac’s negative-energy states
Despite the greatness of his equation (1928) in predicting the hydrogen spectrum (the positive-energy
eigenvalues), Dirac struggled with giving a physical meaning of the negative-energy solutions, and
this was expressed in Dirac’s words during a conversation with Jagdish Mehra in Miami, Florida,
28 March 1969 [29, page 693]:

“I felt that writing this paper on the electron was not so difficult as writing the paper on
the physical interpretation.”

Two years after publishing his equation, Dirac published an article titled “A theory of electrons and
protons ” in 1930 [47] in which he proposed:

“The most stable states for an electron (the states of lowest energy) are those with
negative energy and very high velocity. All the electrons in the world will tend to fall
into these states with emission of radiation. The Pauli exclusion principle, however, will
come into play and prevent more than one electron going into any one state”

which was later known as the Dirac sea of occupied negative-energy electron states. As the last
article’s title tells, Dirac investigated what might this negative-energy particle be, and pointed out
to what paradoxes arise if one declares this particle to be a proton (see page 362 of the last citation).
Later, in 1931, Dirac said [48, page 61]:

“Subsequent investigations, however, have shown that this particle necessarily has the
same mass as an electron and also that, if it collides with an electron, the two will have
a chance of annihilating one another much too great to be consistent with the known
stability of matter.”
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and cited Weyl’s book, which was hopefully translated to English by Robertson [49, page 225]:

“ ... But this can be done by retaining the same external field with potentials f and
replacing e by −e. We denote such a particle, whose mass is the same as that of the
electron but whose charge is e instead of −e, as a "positive electron"; it is not observed
in Nature !”

Two years after, Anderson [50] detected this positive electron, which was later called positron. See
also [51]. On the other hand, electron and positron wavefunctions are related by the following
formulas:

ψe (x) = ψe (x) e−iEet (2.5.1)

ψp (x) = ψp (x) e−iEpt

= C
{
ψe (x) e−iEet

}
= {Cψe (x)} e+iEet = {Cψe (x)} e−iEe(−t), (2.5.2)

through the charge conjugation operation (C), which will be soon discussed. This fact motivated
Stückelberg (supported by Feynman) to propose that positrons are electrons, propagating backwards
in time. See Feynman [52]. Finally, we should note that these vague metaphoric phrases need to be
understood in a more abstract (poetic) way rather than a religious (strict) one, since the latter way
can lead to problematic conceptual confusions. We thus quote Zee [53, page 113]:

In closing this chapter let me ask you some rhetorical questions. Did I speak of an
electron going backward in time? Did I mumble something about a sea of negative energy
electrons? This metaphorical language, when used by brilliant minds, the likes of Dirac
and Feynman, was evocative and inspirational, but unfortunately confused generations
of physics students and physicists.

For interesting discussions on the history of the relativistic quantum mechanics, the reader may
consult Weinberg [54, section 1.1], Mehra in [35] and [29].

2.6 Time-dependent Dirac equation
The time-dependent Dirac equation is given by:

[i~γµ∂µ −mc]ψ (x) = 0, (2.6.1)

where the elementary terms are:

1. The four-gradient ∂µ = ∂
∂xµ =

(
1
c
∂
∂t ,∇

)
.

2. The four-gamma matrix γµ =
(
γ0,γ

)
. We shall stick with the Dirac representation.

3. The four-component wavefunction (spinor): ψ (x) = [ψ1 (x) , ψ2 (x) , ψ3 (x) , ψ4 (x)]
t.

The Minkowski metric tensor we choose to use during our manipulations is going to be:

gµν = diag (+1,−1,−1,−1) , (2.6.2)

which has different names:

• The east-coast metric.

• The timelike metric.

• The Landau–Lifshitz sign convention.

For extra details about notations and definitions, the reader can check the appendix A.
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2.6.1 The free-particle problem: Dirac plane waves
We start with the following ansatz for the free solutions:

ψ (x) = u (p) e−
i
~p·x = ψ (x) e−

i
~Et; p · x = Et− p · x, (2.6.3)

where u (p) is a function that can only depend on p (energy and momentum) and the spatial de-
pendence is contained in the plane wave exponential. After inserting this ansatz in the free Dirac
equation of eq.(2.6.1), it can be easily seen that:

1. ψ (x) and E satisfy the time-independent Dirac equation:[
cα · [−i~∇] + βmc2

]
ψ (x) = Eψ (x), (2.6.4)

where E represents the eigenvalue of the Hamiltonian operator: the energy level, while ψ (x) =

u (p) e+
i
~p·x represents the stationary-state wavefunction associated with E.

2. p represents the momentum-vector eigenvalue, satisfying the following eigenvalue equation:

− i~∇ψ (x) = pψ (x) . (2.6.5)

It is worth noting that p is sometimes used to represent momentum variable and in other
cases, the quantized momentum (differential) operator p̂ = −i~∇, which can sometimes leads
to confusions. We thus make a clear distinction in our appendix A, between eq.(A.0.3) and
eq.(A.0.4), and in the case where the quantity is a differential operator, we shall write it as p̂
(wearing a hat), or in its explicit form as done here.

3. Finally, the u (p) function should satisfy the following eigenvalue equation:[
cα · p+ βmc2

]
u (p) = Eu (p) , (2.6.6)

which is simply the momentum space Dirac equation:

[γµpµ −mc]u (p) = 0; with p0 =
E

c
, (2.6.7)

and u (p) is the Fourier transform of the coordinate space solution:

u (p) =

ˆ
d4xe+ip·xψ (x) . (2.6.8)

Because of the α matrices structure, it is useful to write our equation in a two two-component form:[
mc2 cσ · p
cσ · p −mc2

]
u (p) = Eu (p) . (2.6.9)

We now use what is sometimes called “the Dirac relation” that first appeared in his own work [30,
eq.(16)] (see appendix D.1):

(σ · a) (σ · b) = a · b+ iσ · (a× b) , (2.6.10)

to obtain the eigenvalue equation, which leads to:

E2 = c2p2 +m2c4, (2.6.11)
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which is the famous relativistic energy-momentum relation. We shall thus replace our dependence
of u on p by p. We end up with two twice-degenerated eigenvalues:

E+ = + |E| = +
√
c2p2 +m2c4 twice

E− = − |E| = −
√
c2p2 +m2c4 twice

. (2.6.12)

We decompose the u (p) solution into two two-component functions:

u (p) =

[
v (p)
w (p)

]
. (2.6.13)

For E = E+ (positive-energy)
one gets the following solution form:

u+ (p) =

[
v (p)

cσ·p
E++mc2 v (p)

]
, (2.6.14)

meaning that two linearly independent solutions can be formed (labeled by 1 and 2):

u+1,2 (p) =

[
χ1,2

cσ·p
E++mc2χ1,2

]
, (2.6.15)

where we choose v (p) = χ1,2, with these vectors given by:

χ1 =

[
1
0

]
; χ2 =

[
0
1

]
, (2.6.16)

which represent the eigenvectors (basis) of the spin operator sz. The + superscript indicates that
these spinors are associated with positive-energy solutions. We then do the same for the two other
negative-energy states.

For E = E− (negative-energy)
The solution can be written as:

u− (p) =

[ cσ·p
E−−mc2w (p)

w (p)

]
, (2.6.17)

and we can construct two linearly independent solutions formed with respect to w (p) = χ1,2 that
was given in eq.(2.6.16):

u−1,2 (p) =

[ cσ·p
E−−mc2χ1,2

χ1,2

]
. (2.6.18)

Again the minus superscript indicates that our solutions are negative-energy solutions.

Results
Finally we collect the findings, and write the four solutions of the Dirac equation as:

ψ+
1 (x,p) = u+1 (p) e−

i
~ [E+t−p·x] •

ψ+
2 (x,p) = u+2 (p) e−

i
~ [E+t−p·x] •

ψ−1 (x,p) = u−1 (p) e−
i
~ [E−t−p·x] •

ψ−2 (x,p) = u−2 (p) e−
i
~ [E−t−p·x] •

. (2.6.19)
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Two things to observe from these results:

1. Same energy solutions are associated with opposite spin projection, and this can be seen by
observing that in the rest frame of the electron (p = 0), we have:

Szψ
+
1 (x, 0) = +

~
2
ψ+
1 (x, 0) ↑

Szψ
+
2 (x, 0) = −~

2
ψ+
2 (x, 0) ↓

Szψ
−
1 (x, 0) = +

~
2
ψ−1 (x, 0) ↑

Szψ
−
2 (x, 0) = −~

2
ψ−2 (x, 0) ↓

(2.6.20)

where Sz is the generalized (to four-components) Pauli spin operator, given by:

Sz :=
~
2

[12 ⊗ σz] =
~
2

[
σz 0
0 σz

]
. (2.6.21)

2. Opposite energy solutions (same dot color) are related by the charge conjugation symmetry
by:

Cψ+
1 (x,p) = +ψ−2 (x,−p)

Cψ+
2 (x,p) = −ψ−1 (x,−p)

, (2.6.22)

where C = iγ2K0 is the charge conjugation operator, which describes the symmetry between
a particle and its anti-particle partner, and between positive and negative-energy solutions in
the free particle case. This symmetry is discussed in section 2.8.1, and will be a very important
tool in our design of numerical basis sets which approximate the Dirac equation.

2.6.2 Dirac particle in an external electromagnetic potential
Once the electron is allowed to interact with an external electromagnetic potential Aµ (x), the four-
momentum operator of the free Dirac equation should be modified with respect to minimal coupling
[55, eq.(3.2)] [30, section 4]:

i~∂µ → i~∂µ − qAµ (x) , with q = −e : The electron charge (2.6.23)

which replaces the canonical momentum operator by the (total) kinetic momentum operator, leading
to the interacting Dirac equation [30, eq.14]:

[γµ (i~∂µ + eAµ (x))−mc]ψ (x) = 0, (2.6.24)

where the external EM potential contains the scalar potential in its time component, and the vector
potential in its remaining spatial components:

Aµ (x) =

(
1

c
ϕ (x) ,A (x)

)
. (2.6.25)
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2.6.3 Dirac particle in a time-independent external electromagnetic po-
tential

In the case of a static electromagnetic potential, i.e. Aµ (x) = Aµ (x), the Dirac equation allows for
the decoupling of the time and space components of the wavefunction, in a given inertial frame, and
eventually to write the wave function as:

ψ (x) = ψ (x) e−
iE
~ t, (2.6.26)

where the space E and ψ (x) form an eigensolution of the time-independent Dirac equation:[
cα · (p̂+ eA (x))− eϕ (x) + βmc2

]
ψ (x) = Eψ (x) , (2.6.27)

where the time-independent four-potential was simply expanded with respect to eq.(2.6.25).

2.7 Radial Dirac equation
In this section, we shall derive the radial Dirac equation where one takes advantage of the spherical
symmetry of the scalar potential that traps the electron, to simplify the general equation. The
equation we are going to study is of the following form:

HDψ (x) = Eψ (x) ; with HD = −i~cα ·∇+ V (r) + βmc2. (2.7.1)

Here V (r) = −eϕ (r) is the radial electric potential energy, ϕ (r) is the electric potential. It can be
easily shown that the orbital angular momentum does not commute with this Dirac equation. After
calculating the commutator of the Dirac Hamiltonian with the i-th component angular momentum
operator one obtains:

[Li, HD] = +c~2εjkiαj∇k + i~eεjkixj∇kϕ (r) , (2.7.2)

where εijk is the cyclic Levi-Civita symbol. Since the scalar potential is radial, the last term vanishes,
because it can be written as Li (purely angular operator) acting on a radial function:

− eLiϕ (|x|) = 0. (2.7.3)

As a conclusion, we find that the orbital angular momentum cannot be taken as a good quantum
number. In addition, the commutator between the i-th 4× 4 spin operator:

Σi =
~
2
12 ⊗ σi =

~
2

[
σi 0
0 σi

]
, (2.7.4)

and our Hamiltonian gives:
[Σi, HD] = −c~2εjkiαj∇k, (2.7.5)

Again, the spin is also not a good quantum number, but if we sum the two commutators of eqs.(2.7.2
and 2.7.5), we obtain:

[Ji, HD] = 0. (2.7.6)

This means that j is a good quantum number, as discussed by Gross in [39, section 6.1]. This result
tells us that the Dirac equation conserves the total angular momentum (it is thus called a “constant
of motion”), and that the angular eigenfunctions of the Hamiltonian can be constructed from those
of the total angular momentum squared (The Casimir invariant) J2 and the projection Jz. In the
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appendix, we present the eigenfunctions of these operators by the following two-component functions
eq.(D.4.42):

Ωκ,mj (x̂) =

sgn (−κ)

√
κ+ 1

2−mj
2κ+1 Y`,mj− 1

2
(x̂)√

κ+ 1
2+mj

2κ+1 Y`,mj+ 1
2

(x̂)

 , (2.7.7)

the origin of κ, will be soon clear. On the other hand, it is useful to write the Dirac equation in its
two two-component form:[

mc2 − eϕ (r) cσ · p̂
cσ · p̂ −mc2 − eϕ (r)

] [
ψL

ψS

]
= E

[
ψL

ψS

]
, (2.7.8)

where ψL and ψS are the large and small component functions, and the reason behind this naming,
will be clarified in the future. We shall now write the kinetic operator α · p̂ operator in a form where
its radial and angular parts are separated, to understand how it is going to transform the angular
parts of ψL and ψS .

2.7.1 The α · p̂ operator
We first would like to write the two-component σ · p̂ operator which appears in the last equation in
a form where the radial and angular parts of the momentum operator are decoupled as done in [32,
section 3.2.3]. To do so, we we first multiply our operator by the unit operator (σ · er) (σ · er), so
we can write it as:

σ · p̂ = σr
1

r
(σ · x) (σ · p̂) . (2.7.9)

Recall that the three-coordinate vector can be written as x = rer. Using Dirac’s relation of eq.(D.1.1)
this operator can be written as [56, page 158]:

σ · p̂ = iσr

[
−~∂r +

1

r
σ · L̂

]
, (2.7.10)

where we used the radial Pauli matrix, which is given by:

σr = er · σ =

(
cos (θ) e−iϕ sin (θ)

eiϕ sin (θ) − cos (θ)

)
. (2.7.11)

We shall now introduce a new angular momentum operator that we shall call κ̂, defined by:

κ̂ = −
(
σ · L̂

)
− ~ (2.7.12)

which will allow us to write our σ · p̂ operator as [32, eq.(3.2.14)]:

σ · p̂ = −iσr
[
~
∂

∂r
+

1

r
(κ̂+ ~)

]
. (2.7.13)

We now would like to guess how this κ̂ operator will act on our spherical spinors. We first note that
the operator σ ·L can be written as:

σ ·L =
1

~
[
J2 −L2 − S2

]
, (2.7.14)
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which will allow us to write our κ̂ as:

κ̂ = −1

~
[
J2 −L2 − S2

]
− ~. (2.7.15)

After acting with this operator on the spherical spinors, we get:

κ̂Ωκ,mj (x̂) =

{
−1

~
[
J2 −L2 − S2

]
− ~
}

Ωκ,mj (x̂) (2.7.16)

= ~
{
−j (j + 1) + ` (`+ 1)− 1

4

}
Ωκ,mj (x̂) , (2.7.17)

which shows that Ωκ,mj is an eigenfunction of the κ̂ operator, associated with the ~κ eigenvalue,
with:

κ = −j (j + 1) + ` (`+ 1)− 1

4
. (2.7.18)

Since for a well defined `, j can be a half-integer number with:∣∣∣∣`− 1

2

∣∣∣∣ ≤ j ≤ ∣∣∣∣`+
1

2

∣∣∣∣ , (2.7.19)

our quantum number κ, will be related to ` by:

κ =

{
+` for j = `− 1

2

−`− 1 for j = `− 1
2

. (2.7.20)

The reader should notice, at this point, that our choice of κ values we have done in the appendix
eq.(D.4.41) is now justified. On the other hand, following the same steps, one can write the four-
component operator α · p̂ as ([57, eq.(8.8)] and [58, eq.(2.9)]):

α · p̂ = −iαr
[
~
∂

∂r
+

1

r

(
−βK̂ + ~

)]
, (2.7.21)

where the corresponding angular momentum operator K̂, is given by:

K̂ = β (Σ ·L+ ~) =

[
σ ·L+ ~ 0

0 −σ ·L− ~

]
=

[
−κ̂ 0
0 +κ̂

]
. (2.7.22)

This K̂ operator commutes with our radial Dirac Hamiltonian, and has an eigenvalue of −~κ, as
stated in the last cited references. Since our spherical spinors are eigenfunctions of the κ̂ operator:

κ̂Ωκ,mj = ~κΩκ,mj , (2.7.23)

which will be used to construct the spherical Dirac spinor, the last matrix in equation.(2.7.22) shows
that the angular parts of the large and small component functions have opposite κ signs, and thus
motivates the following form of the spherical Dirac solution:

ψκ,mj (r, θ, ϕ) =

[
RLκ (r) Ωκ,mj (θ, ϕ)
iRSκ (r) Ω−κ,mj (θ, ϕ)

]
, (2.7.24)

where RLκ (r) and RSκ (r) are purely radial functions. In the lower component an imaginary number
is added in order to make these radial functions real. We shall next derive the radial Dirac equation
that couples these radial functions.
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2.7.2 The radial Dirac equation
From the discussion of the last section, we allow ourselves to write the Dirac equation as:[

−icαr
[
~
∂

∂r
+

1

r

(
−βK̂ + ~

)]
+ βmc2 − eϕ (r)

]
ψκ,mj (r, θ, ϕ) = Eψκ,mj (r, θ, ϕ) . (2.7.25)

We then let the K̂ operator given in eq.(2.7.22) act on the spherical Dirac spinor of eq.(2.7.24), and
obtain: mc2 − eϕ (r) −ic~

[
∂
∂r + (κ+1)

r

]
σr

−ic~
[
∂
∂r + (κ+1)

r

]
σr −mc2 − eϕ (r)

ψκ,mj (r, θ, ϕ) = Eψκ,mj (r, θ, ϕ) . (2.7.26)

The operator σr, acts on the angular functions through the following relation:

σrΩκ,mj = −Ω−κ,mj , (2.7.27)

derived in section D.4.6. Using this relation, the angular parts of our Dirac equation will cancel out,
and we will be left with the well-known radial Dirac equation:[

mc2 − eϕ (r) −c~
[
d
dr + 1−κ

r

]
c~
[
d
dr + 1+κ

r

]
−mc2 − eϕ (r)

] [
RLκ (r)
RSκ (r)

]
= E

[
RLκ (r)
RSκ (r)

]
. (2.7.28)

It will be now convenient to define new radial functions Pκ and Qκ, related to the previous ones by:

Pκ = rRLκ (r) (2.7.29)

Qκ = rRSκ (r) . (2.7.30)

This new choice will lead to the following form of the radial Dirac equation [32, eq.(3.2.16)]:

[
mc2 − eϕ− E

]
Pκ − c~

[
d

dr
− κ

r

]
Qκ = 0

c~
[
d

dr
+
κ

r

]
Pκ −

[
mc2 + eϕ+ E

]
Qκ = 0

. (2.7.31)

Next, we shall discuss the free-particle problem: ϕ = 0 and obtain the analytical solutions of
the last coupled first-order differential equations. Finally, after discussing the discrete symmetries
associated with the Dirac equation, we shall show how to approximate the radial Dirac Hamiltonian
by a matrix representation in a finite set of basis functions. In other words, how large and small
component functions (Pκ and Qκ) are going to be approximated by this set of functions.

2.7.3 Free Dirac equation in spherical coordinates
The free Dirac solution is usually presented as a plane wave, as we have previously done in section
2.6.1. In the current section we are going to solve this problem in spherical coordinates instead.
The reason why we are doing so, is the following. When one would like to solve the Dirac equation
on a computer (numerically discretize it), as we shall see in section 2.9, one sets the origin to be
at the atomic position, and choose between generating: 1) a radial grid on which the wavefunction
is discretized, or 2) a set of basis functions in which the wavefunction is expanded. For atomic
calculations, the first choice is a better one because of the spherical symmetry of the problem. In
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contrast, for molecular calculations (complicated non-radial potentials), one must go for the second
choice, which will be carefully consider in this thesis.

In the current section, we shall provide the derivation of the analytical free particle solutions in
spherical coordinates, and the results are going to help us to 1) understand the charge conjugation
symmetry in the framework of the spherical problem, and will 2) guide us on how to design our
numerical basis functions. Finally, we note that the plane wave solutions and the spherical waves
can be related by the plane wave expansion (see, for instance, [57, section 2.13] and [59, page 29
eq.(1.70) and page 163 eq.(5.15)]).

In the absence of external scalar potential, the radial Dirac eq.(2.7.31) reduces to:[
mc2 − E

]
Pκ − c~

[
d

dr
− κ

r

]
Qκ = 0 (2.7.32)

c~
[
d

dr
+
κ

r

]
Pκ −

[
mc2 + E

]
Qκ = 0. (2.7.33)

From the second line equation, we can write Qκ as a function of Pκ, we plug this result in the first
equation and obtain the following second-order differential equation:[

d2

dr2
− κ (1 + κ)

r2
+ k2

]
Pκ = 0, (2.7.34)

where k2 is the wave vector squared, related to the energy level by:

k2 =
E2 −m2c4

c2~2
. (2.7.35)

Notice that k2 ≥ 0, and the energy is a real number in: E ∈ (−∞,−mc2] ∪ [mc2,+∞). We now
perform a change of variables to x = rk, and get:[

d2

dx2
− κ (1 + κ)

x2
+ 1

]
Pκ (x) = 0. (2.7.36)

This equation is the spherical Bessel equation given in eq.(C.2.3), and has two linearly-independent
solutions:

Pκ (r) = c1rjκ (kr) + c2ryκ (kr) (2.7.37)

known as the spherical Bessel functions of the first- and second-kind, jκ (kr) and yκ (kr) respectively.
With c1 and c2 some arbitrary constants that will be fixed with respect to the physical boundary
conditions of the wavefunction: they must not diverge at the origin, and should vanish at infinity:

lim
r→∞

Pκ (r) = lim
r→+∞

Qκ (r) = 0. (2.7.38)

Recall that our wavefunction should behave properly in order to be physical. This means that
the encountered cases where the wavefunction diverges at the origin or at infinity are simply dis-
carded (unnormalizable wavefunctions). At small distances, the spherical Bessel functions can be
problematic, since they behave as (see eq.(C.3.1) and eq.(C.3.2)):

jκ (kr) ≈ α1 (kr)
κ (2.7.39)

yκ (kr) ≈ α2 (kr)
−κ−1

, (2.7.40)

where α1 and α2 are some constants given previously. We will divide our problem into two parts,
first for positive-integer κ, then for negative-ones.
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Positive integer κ case For positive integer κ, the second kind functions yκ (kr) diverge at the
origin and are therefore omitted, meaning that the large component radial function of eq.(2.7.39),
reduces to:

Pκ = c1rjκ (kr) . (2.7.41)

We now generate the small component function using eq.(2.7.33):

Qκ =
c~

mc2 + E

[
d

dr
+
κ

r

]
Pκ. (2.7.42)

The first derivative of the jκ function is given in eq.(C.5.2). With fκ = jκ, m = 1, and z = kr, the
mentioned equation reduces to:

d

dr
jκ (kr) = kjκ−1 (kr)− 1 + κ

r
jκ (kr) , (2.7.43)

leading to a simplification of the small component radial wavefunction expression of eq.(2.7.42):

Qκ =
c1c~k

mc2 + E
rjκ−1 (kr) . (2.7.44)

Negative integer κ case In this case, the jκ (kr) function is not accepted as a physical solution
because of the divergent behavior when r → 0, as seen in eq.(2.7.39), and thus, the general solution
of eq.(2.7.37) reduces to:

Pκ = c2ryκ (kr) . (2.7.45)

The small component radial function is then generated by means of eq.(2.7.33):

Qκ =
c2c~

mc2 + E

[
d

dr
+
κ

r

]
yκ (kr) . (2.7.46)

We again use eq.(C.5.2), which gives:

d

dr
yκ (kr) = kyκ−1 (kr)− κ+ 1

r
yκ (kr) , (2.7.47)

to get rid of the derivative of yκ (kr), and obtain:

Qκ =
c2c~k

mc2 + E
ryκ−1 (kr) . (2.7.48)

Now, we would like to express all our spherical Bessel functions in terms of the first-kind function,
using [60, eq.(10.1.15)]:

yκ (kr) = (−1)
κ+1

j−κ−1 (kr) ; n = 0,±1,±2, . . . (2.7.49)

leading to the following expressions:

Pκ = (−1)
κ+1

c2rj−κ−1 (kr) (2.7.50)

Qκ = (−1)
κ c2c~k
mc2 + E

rj−κ (kr) . (2.7.51)
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Results For both signs of κ, wavefunctions where chosen such that they do not diverge at the origin
(r = 0). For large radius r, all our radial functions vanish, and the reason is that the argument
of the spherical Bessel function kr is real, thus the exponential term in eq.(C.3.4) vanishes, forcing
the Bessel functions to behave as damped sinusoidal functions. To summarize and compactify our
results, we use ` instead of κ, and obtain one expression valid for both κ signs:

ψκ,mj (x, E) =

[
j` (kr) Ωκ,mj (θ, ϕ)

i c~ksgn(κ)mc2+E j`−sgn(κ) (kr) Ω−κ,mj (θ, ϕ)

]
; sgn (κ) =

κ

|κ|
. (2.7.52)

These solutions will now be normalized to an energy delta function (energy is not quantized for
continuum states) using spherical Bessel functions normalization formula of eq.(C.4.8). The angular
parts are already normalized to angular quantum numbers Kronecker-deltas. These two points
indicates that we are looking for a radial normalization such that:

ˆ
d3xψ†κ,mj (x, E)ψκ′,m′j (x, E′) = δκ,κ′δmj ,m′jδ (E − E′) . (2.7.53)

This relation leads to the following normalized free-particle spherical solution of the Dirac equation:

ψκ,mj (x, E) =

√
1

c3~3π

[
RLκ (r, E) Ωκ,mj (θ, ϕ)
iRSκ (r, E) Ω−κ,mj (θ, ϕ)

]
, (2.7.54)

where large and small component wavefunctions are found to be [21, eq.(10,11)]:

RLκ (r, E) =
∣∣E −mc2∣∣ 1

4
∣∣E +mc2

∣∣ 3
4 j|κ+ 1

2 |− 1
2

(kr) (2.7.55)

RSκ (r, E) = sgn (κ) sgn (E)
∣∣E +mc2

∣∣ 1
4
∣∣E −mc2∣∣ 3

4 j|κ− 1
2 |− 1

2
(kr) , (2.7.56)

where we used the fact that the large and small component Bessel function orders (indices) can be
written as a function of κ:

` =

∣∣∣∣κ+
1

2

∣∣∣∣− 1

2
(2.7.57)

`− sgn (κ) =

∣∣∣∣κ− 1

2

∣∣∣∣− 1

2
. (2.7.58)

References that discusses the free particle problem in spherical coordinates are:

1. Grant [32, section 3.2.6]. In his derivation, the corresponding author misses the sgn (E) sign
factor in his eq.([32, eqs.(3.2.26,28)]), which we have in our small component radial function.

2. Rose [56, eq.(5.12)] and Strange’s [57, section 8.2] (as well as Messiah [61, section 26]) results
coincide with our result (up to a normalization factor), and this is seen after writing the
denominators of their small component wavefunction as:

1

E +mc2
=

sgn
(
E +mc2

)
|E +mc2|

=
sgn (E)

|E +mc2|
. (2.7.59)

In figure 2.7.1, we plot the large and small components of the normalized free particle spinor, that
are given in eqs.(2.7.55 and 2.7.56), in addition to their probability densities:

ρκ (r, E) = 4πr2
([
RLκ (r, E)

]2
+
[
RSκ (r, E)

]2)
. (2.7.60)
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(a) κ = −1 and E = +1.5mc2

R
L(r)

R
S(r)

Probabilitydensity

0.05 0.10 0.15 0.20
r(a.u.)

-10

-5

5

(b) κ = +1 and E = −1.5mc2

Figure 2.7.1: Radial wavefunctions with corresponding scaled radial probability densities
ρκ (r, E) /200.

Notice that the large component function is called large, since in the case where the state in
question is a positive-energy state, the large component wavefunction is “larger” than the small
component, as seen in figure 2.7.1a. For negative-energy solutions, the story gets reversed, since the
large component wavefunction becomes “smaller” than the small one, as seen in figure 2.7.1b. It is
worth noting that upon flipping the sign of 1) the κ-quantum number, and 2) the energy, one goes
from one figure to another (up to a minus sign), and as seen, as a result, the radial functions are
swapped:

RL � −RS . (2.7.61)

This symmetry is known as the charge conjugation symmetry, it is going to be discussed in detail, and
will be a central concept in our design of our relativistic basis functions (for numerical calculations).

2.8 Discrete symmetries of the Dirac equation
In this section, we shall derive the operators associated with the symmetries of the Dirac equation:
the charge conjugation (C), the time-reversal (T ), and the Parity (P) symmetry. These symmetries
will be used as a guiding torch in simplifying the encountered mathematical expressions and pointing
out for physical meaning. As a result, some restrictions will be imposed on the external four-
potential, so the symmetries get obeyed.

2.8.1 Charge conjugation
The charge conjugation symmetry, or the C-symmetry, relates a particle to its corresponding an-
tiparticle: which has the same physical characteristics as the particle, except an opposite charge
sign. To derive the charge conjugation operator, we start with the Dirac equation of an electron in
an arbitrary four-potential Aµ (x) given in eq.(2.6.24):

[γµ (i~∂µ + eAµ (x))−mc]ψ (x) = 0. (2.8.1)

The goal is to figure out what operations should act on the wavefunction, such that the modified
one satisfies the positronic equation (opposite electron charge sign):

[γµ (i~∂µ − eAµ (x))−mc] Cψ (x) = 0. (2.8.2)
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We start by complex conjugating the first equation, so the imaginary number gets a minus sign:[
(γµ)

∗
(−i~∂µ + eAµ (x))−mc

]
ψ∗ (x) = 0. (2.8.3)

It is seen at this point that in order obtain the Dirac equation describing the positron (eq.(2.8.2)), it
is sufficient to apply a matrix operation, which we shall call it Uc, that flips the sign of the complex
conjugated gamma matrices in the last equation, i.e. respecting the following conditions:

Uc (γµ)
∗
U−1c = −γµ, (2.8.4)

and thus, leading to the following charge conjugated equation:[
Uc (γµ)

∗
U−1c (−i~∂µ + eAµ (x))−mc

]
Ucψ

∗ (x) = 0 (2.8.5)
[γµ (i~∂µ − eAµ (x))−mc] Cψ (x) = 0, (2.8.6)

where the charge conjugation operator contains both operations C = UcK0 of matrix the matrix
operator Uc and the complex conjugation K0. In the Dirac representation of the gamma matrices
(eq.(2.4.10)), the matrix Uc respecting the four conditions of eq.(2.8.4) is found to be (up to a phase
factor):

Uc = γ2. (2.8.7)

To summarize, we started by an electron, whose wavefunction ψ (x) satisfies the electron Dirac
equation.(2.8.1) and ended up with a positron, whose wavefunction Cψ (x) satisfies the corresponding
antiparticle equation.(2.8.2). The final form of the C-operation is found to be:

C = γ2K0; K0: Complex conjugation (2.8.8)

The term “charge-conjugation” was coined by Kramers [62]. This symmetry has lead Dirac to
predict the existence of the anti-electron, i.e. the positron. An interesting chapter on antiparticles
was written by Feynman in [63].

2.8.1.1 C-symmetry in the time-independent regime

The time-independent Dirac equation, is of the following form:[
cα · [−i~∇+ eA (x)] + βmc2 − eϕ (x)

]
ψ (x) = +Eψ (x) , (2.8.9)

as given in eq.(2.6.27). The charge-conjugated solution Cψ (x), obeys the same equation but with
an opposite energy and charge signs:[

cα · [−i~∇− eA (x)] + βmc2 + eϕ (x)
]
Cψ (x) = −ECψ (x) . (2.8.10)

This additional negative-energy sign can (in addition) be traced to the fact that the C operator has
a complex conjugation operator in it, and therefore, it flips the energy-time wavefunction part of
eq.(2.6.26):

Cψ (x) = Cψ (x) e−
iE
~ t = γ2ψ∗ (x) e+

iE
~ t. (2.8.11)

In figure 2.8.1, we present the pictorial spectra of the following systems:
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Electron Free Positron

+mc2

mc2

Figure 2.8.1: Dirac spectra for:
1) Electron in an attractive Coulomb field
2) Free electron/positron
3) Positron in an attractive Coulomb field

1. An electron placed in an attractive
Coulomb field (Example: the hydrogen
atom). This is exactly equivalent to hav-
ing a positron placed in a repulsive field,
since the electric potential energy will de-
pend on the sign of the product of both
charges: (+Ze) (−e) = (−Ze) (+e).

2. A free-electron placed in an empty space.
It is worth noting that this could be a
positron instead, since, in the absence
of the external potential, the particle’s
charge does not enter in the Dirac equa-
tion.

3. A positron placed in a attractive Coulomb
field. This case is equivalent to the placing
an electron in a repulsive Coulomb field,
since (+Ze) (+e) = (−Ze) (−e).

In the time-independent regime, the charge con-
jugation symmetry allows the linking between
the wavefunctions of opposite energy and charge
particles, as predicted by eqs.(2.8.9 and 2.8.10)
and presented in the first and last spectra of
figure 2.8.1 (notice the energy-sign flip between
these spectra).

In addition, the reader should note that in
the free-particle case (middle spectrum of fig-
ure 2.8.1), which is a special case of the time-
independent problem, eqs.(2.8.9 and 2.8.10) re-
duce to: [

cα · [−i~∇] + βmc2
]
ψ (x) = +Eψ (x) (2.8.12)[

cα · [−i~∇] + βmc2
]
Cψ (x) = −ECψ (x) , (2.8.13)

and the charge sign and magnitude are meaningless. These equations show that the charge con-
jugated partners belong to the same problem: they solve the same equation but with an opposite
energy sign, concluding that the charge conjugation symmetry links between free solutions of oppo-
site energy signs.

2.8.1.2 C-symmetry in the spherical problem

As discussed before, in section 2.7, the spherical spinor can be written in the following form:

ψn,κ,mj (x) =

[
RLn,κ (r) Ωκ,mj (x̂)
iRSn,κ (r) Ω−κ,mj (x̂)

]
, with r = |x| . (2.8.14)
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The charge conjugated spherical solution reads:

Cψn,κ,mj (x) = γ2ψ∗n,κ,mj (x) = −
[
iRSn,κσ2Ω∗−κ,mj
RLn,κσ2Ω∗κ,mj

]
, (2.8.15)

Using the following relation:

σ2Ω∗κ,mj = isgn (−κ) (−1)
mj− 1

2 Ωκ,−mj , (2.8.16)

which can be easily verified, one can write the charge conjugated solution as ([32, 5.8.5] and [56,
5.6]):

Cψn,κ,mj (x) = sgn (κ) (−1)
mj− 1

2

[
RSn,κΩ−κ,−mj
iRLn,κΩκ,−mj

]
. (2.8.17)

Notice that upon the switch of particle’s charge sign, the radial functions are interchanged, and the
angular quantum numbers flip their signs. This is summarized in table 2.1.

Particle Antiparticle
Charge −e +e
Large component RLn,κ RSn,κ
Small component RSn,κ RLn,κ
Angular quantum num. κ κ −κ
Angular quantum num. mj mj −mj

Table 2.1: What an antiparticle is for a particle, in spherical symmetry?

Using the result we have just derived, we shall show how our free spherical solutions, presented in
eqs.(2.7.54, 2.7.55 and 2.7.56), transform under charge conjugation operation, and hope to link op-
posite energy solutions as done with the trivial plane wave solutions of eq.(2.6.22). Using eq.(2.8.17)
we can write these free spherical solutions as:

Cψκ,mj (x, E) = sgn (κ) (−1)
mj− 1

2

√
1

c3~3π

[
RSκ (r, E) Ω−κ,−mj
iRLκ (r, E) Ωκ,−mj

]
. (2.8.18)

After observing the following relations between large and small component (radial) functions:

RSκ (r, E) = sgn (κ) sgn (E)RL−κ (r,−E)

RLκ (r, E) = sgn (κ) sgn (E)RS−κ (r,−E)
, (2.8.19)

we can write the charge conjugated solution as we have found in our paper [21, eq.(14)]:

Cψκ,mj (x, E) = sgn (E) (−1)
mj− 1

2

√
1

c3~3π

[
RL−κ (r,−E) Ω−κ,−mj
iRS−κ (r,−E) Ωκ,−mj

]
(2.8.20)

= sgn (E) (−1)
mj− 1

2 ψ−κ,−mj (x,−E) , (2.8.21)

which clearly shows that opposite energy (and quantum numbers signs) solutions are related by
charge conjugation symmetry.
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2.8.2 Time-reversal
Now, we would like to discuss the time-reversal (T ) symmetry, where we will derive the equation
that describes an electron that perceives an opposite flow of time. We write the Dirac equation in
a form that is convenient with our derivation:[

γ0
(
i~
c

∂

∂t
+ eA0 (x, t)

)
+ γ · (i~∇− eA (x, t))−mc

]
ψ (x, t) = 0. (2.8.22)

After complex conjugating it, and acting on it with a matrix operation Ut, we get:[
Utγ

0U−1t

(
− i~
c

∂

∂t
+ eA0 (x, t)

)
+ Ut (γ)

∗
U−1t · (−i~∇− eA (x, t))−mc

]
× Utψ∗ (x, t) = 0

. (2.8.23)

Recall that the current goal is to recover the first equation eq.(2.8.22), but with an opposite time
sign, after the application of some operator which will be absorbed by the wavefunction. To do the
job, we would like that the Ut operation:

• keeps the sign of γ0, since it already has a negative time sign (thanks to complex conjugation),

• flips the sign of the gamma matrices vector γ

This means that our matrix operation should respect the following conditions:

Utγ
0U−1t = γ0 (2.8.24)

Ut (γ)
∗
U−1t = −γ (2.8.25)

Following the conditions of eqs.(2.8.24 and 2.8.25), the matrix is found to be [28, eq.(12.60)] (up to
a phase):

Ut = γ1γ3, (2.8.26)

which leaves us with the following equation:[
γ0
(
i~
c

∂

−∂t
+ eA0 (x, t)

)
+ γ · (i~∇+ eA (x, t))−mc

]
Utψ

∗ (x, t) = 0. (2.8.27)

Clearly, we would not recover the opposite time sign of eq.(2.8.22), unless we put more restrictions
on the potentials, particularly:

A0 (x,−t) = A0 (x, t) (2.8.28)
A (x,−t) = −A (x, t) , (2.8.29)

otherwise, the time-reversal symmetry will be violated. In this case, the time-reversal operator that
combines complex conjugation and the matrix operation is found to be:

T1 = UtK0 = γ1γ3K0. (2.8.30)

A similar derivation is provided by Sakurai [64, pages 504-505] where he deals with the free Hamilto-
nian instead of the general interacting one (what we have done here). We have recently found these
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potential restrictions in Greiner [28, eqs.(12.52-53)]. Notice that in the time-independent regime,
our restrictions reduce to:

A0 (x) = A0 (x) (2.8.31)
A (x) = −A (x) , (2.8.32)

meaning that the vector potential A (x) should vanish so the symmetry can get conserved. There
exist another way to derive the time-reversal operator, leading to a different operator form than the
one just discussed, and where slightly different potential restrictions are found, this will be discussed
in the next paragraph.

Another Time-reversal operator (without complex conjugation)
This time, the derivation is done without complex conjugation. The action of the matrix operation

Ut reads: [
Utγ

0U−1t

(
i~
c

∂

∂t
+ eA0 (x, t)

)
(2.8.33)

+UtγU
−1
t · (i~∇− eA (x, t))−mc

]
Utψ (x, t) = 0. (2.8.34)

Notice that we only need to add a minus sign in front of the time derivative, i.e. to flip the γ0 matrix
sign. The conditions are thus:

Utγ
0U−1t = −γ0 (2.8.35)

UtγU
−1
t = γ, (2.8.36)

leading to the following equation:[
γ0
(
i~
c

∂

−∂t
− eA0 (x, t)

)
+ γ · (i~∇− eA (x, t))−mc

]
Utψ (x, t) = 0. (2.8.37)

Again, new restrictions are to be put on the potentials in order to make the last equation time-
reversed (with respect to the main equation.(2.8.22)), in particular, one should have:

A0 (x,−t) = −A0 (x, t) (2.8.38)
A (x,−t) = A (x, t) . (2.8.39)

If these conditions are respected, then there exists a time-reversal symmetry relating between two
particles that experience opposite time-direction flows, represented by the following operator:

T2 = Ut = γ1γ2γ3, (2.8.40)

where this matrix is derived with respect to the conditions eqs.(2.8.35 and 2.8.36). Contrary to
the previous time-reversal symmetry, in a time-independent framework, this symmetry is conserved
when the scalar potential is set to zero, A0 (x) = 0. The problem with this symmetry is that it does
not commute with the free Hamiltonian:

[T2, H] 6= 0, (2.8.41)

which means that for a specific wavefunction/energy of the Hamiltonian, this symmetry cannot be
conserved. We shall thus discard it, and call the time-reversal symmetry:

T = T1, (2.8.42)

which was discussed in the previous subsection.
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2.8.2.1 T -symmetry in the time-independent problem

The time-independent Dirac equation reads:[
cα · [−i~∇+ eA (x)] + βmc2 − eϕ (x)

]
ψ (x) = Eψ (x) . (2.8.43)

We have learned in the last section that in order for the time-reversal symmetry (given in eq.(2.8.30))
to be conserved, we should set A (x) = 0. We thus do so, and get the following equation:[

cα · [−i~∇] + βmc2 − eϕ (x)
]
ψ (x) = Eψ (x) . (2.8.44)

After applying the time-reversal operator, we obtain the following equation:[
cα · [−i~∇] + βmc2 − eϕ (x)

]
T ψ (x) = ET ψ (x) . (2.8.45)

After comparing these two equations, we see that both ψ (x) and T ψ (x) satisfy the same equation,
and have the same energy level E.

2.8.2.2 T -symmetry in the spherical problem

After applying the time-reversal operator to the spherical solutions, one gets:

T ψn,κ,mj (x) = γ1γ3K0

[
RLn,κΩκ,mj
iRSn,κΩ−κ,mj

]
=

[
iRLn,κσ2Ω∗κ,mj
RSn,κσ2Ω∗−κ,mj

]
, (2.8.46)

using the identity of eq.(2.8.16), one finds:

T ψn,κ,mj (x) = sgn (+κ) (−1)
mj− 1

2

[
RLn,κΩκ,−mj
iRSn,κΩ−κ,−mj

]
, (2.8.47)

meaning that the time-reversal symmetry simply switches the sign of the secondary total angular
momentum quantum number mj . This result was not found in literature.

2.8.3 Parity
In order to derive the parity operator that describes the space inversion symmetry, we start by the
Dirac equation: [

γ0 [i~∂0 + eA0 (x, t)] + γ · [i~∇x − eA (x, t)]−mc
]
ψ (x, t) = 0. (2.8.48)

We now apply the matrix operation Up associated with the parity operator P, and get the following
equation:[

Upγ
0U−1p [i~∂0 + eA0 (x, t)] + UpγU

−1
p · [i~∇x − eA (x, t)]−mc

]
Upψ (x, t) = 0, (2.8.49)

and set the following conditions to be respected:

Upγ
0U−1p = γ0 (2.8.50)

UpγU
−1
p = −γ, (2.8.51)

that simply adds a minus factor to the gradient operator ∇x, leading to:[
γ0 [i~∂0 + eA0 (x, t)] + γ · [−i~∇x + eA (x, t)]−mc

]
Upψ (x, t) = 0. (2.8.52)
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One has to keep in mind that the goal is to obtain the following equation:[
γ0 [i~∂0 + eA0 (−x, t)] + γ · [i~∇−x − eA (−x, t)]−mc

]
Upψ (x, t) = 0, (2.8.53)

which has the same form as the main equation, but with a minus sign in front of the space vector
x. Clearly, new restrictions has to be put on the electromagnetic potentials:

A0 (−x, t) = A0 (x, t) (2.8.54)
A (−x, t) = −A (x, t) . (2.8.55)

This result was found in the work of Greiner [28, page 313]. Finally, the matrix operation that
respects both conditions 2.8.50 and 2.8.51 leads to the following form of the Parity operator:

P1 = γ0P, (2.8.56)

where P is the operator that flips the coordinate vector sign x → −x. Similarly to the time-
reversal operator, another parity operator can be derived, where one has slightly modified potential
assumptions. This point will be discussed below.

Another Parity operator (with complex conjugation)
Letting a Up matrix operation act on the complex conjugated Dirac equation will lead to:[
Upγ

0U−1p [−i~∂0 + eA0 (x, t)] + Up (γ)
∗ · U−1p [−i~∇x − eA (x, t)]−mc

]
Upψ

∗ (x, t) = 0. (2.8.57)

After forcing the matrix Up to respect the following conditions:

Upγ
0U−1p = −γ0 (2.8.58)

Up (γ)
∗ · U−1p = γ, (2.8.59)

we can directly see that if, on the other hand,our potentials respect the following potential:

A0 (−x, t) = −A0 (x, t) (2.8.60)
A (−x, t) = A (x, t) , (2.8.61)

then parity symmetry can be obeyed. The second condition simply implies that the vector poten-
tial (instead of the scalar one) should be spherically symmetric. Finally, the corresponding parity
operator is found to be:

P2 = γ0γ2K0. (2.8.62)

As in the time-reversal symmetry, this operator does not commute with the Dirac Hamiltonian,
and should thus be discarded, since P2 and H cannot be simultaneously measured, and thus, the
expectation value of P2 cannot be considered a constant of motion, even if this operator is time-
independent (Ehrenfest Theorem). We shall thus call P as:

P = P1, (2.8.63)

given in the previous section.
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2.8.3.1 P-symmetry in the radial problem

In the radial problem, the parity simply adds a minus sign to the small component function:

Pψn,κ,mj (x) = γ0ψn,κ,mj (−x) =

[
RLn,κ (r) Ωκ,mj (−x̂)
−iRSn,κ (r) Ω−κ,mj (−x̂)

]
. (2.8.64)

We now use the parity relation associated with the spherical spinor Ωκ,mj (−x̂), of eq.(D.4.53), in
addition to the relation between ` and κ quantum numbers, of eq.(2.7.20), one directly gets:

Pψn,κ,mj (x) = (−1)
`

[
RLn,κ (r) Ωκ,mj (x̂)
iRSn,κ (r) Ω−κ,mj (x̂)

]
. (2.8.65)

Notice that this operator gives an overall plus sign for Gerade (even) spinors and a minus sign for
Ungerade (odd) ones.

2.8.4 Discrete symmetries summary
Results of the previous sections about the discrete symmetries of the Dirac equation with their
corresponding operator form, and the associated restrictions that has to be set on the external
potential are given compactly in the following table 2.2.

Symmetry Operator Potential restrictions
Charge-conjugation C = γ2K0 None

Time-reversal T = γ1γ3K0
A0 (x,−t) = A0 (x, t)
A (x,−t) = −A (x, t)

Parity P = γ0
A0 (−x, t) = A0 (x, t)
A (−x, t) = −A (x, t)

Table 2.2: The discrete symmetries of the Dirac equation.

2.9 Finite basis approximation of the Dirac equation

Exact Numerical

+mc2

mc2

Figure 2.9.1: Pictorial comparison between exact
and numerical spectra

In quantum chemistry, as well as in molecular
physics, one uses a set of one-particle basis func-
tions (a basis set), in general, centered at nuclei
positions, to construct (strictly speaking: to ap-
proximate) the molecular/atomic many-electron
wavefunctions. The use of such a scheme allows
the transformation of the differential equation
(the Dirac equation in our case) into a matrix
eigenvalue equation that can be solved on a com-
puter in a very efficient manner.

We shall put dots on our i’s: we are go-
ing to approximate the radial Dirac equation
(in the presence of a radial potential) by a ma-
trix, whose elements are integrals of the Dirac
operator. If one solves the exact problem ana-
lytically, one obtains an infinite set of discrete
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bound-states with 0 < E < +mc2 shown in black in the left spectrum of figure 2.9.1, and two
continua of energy states with |E| > mc2 that are presented in red. Numerically, when using the
finite basis set approximation, one obtains a number of solutions that is equal to the number of basis
functions. In addition, if the basis is carefully constructed: balanced (obeying certain necessary
conditions, that we shall soon discuss), we will have an even number of basis functions n, and the
numerical spectrum will split between n

2 positive and n
2 negative-energy solutions, as presented in

the right spectrum of figure 2.9.1.

2.9.1 The general problem
In the atomic case, one specifies a basis set for each component of the Dirac solution, associated with
one quantum number κ, and thus one approximates the exact radial functions Pκ (r) and Qκ (r) by
expansions over the basis sets elements Pκ (r) ,Qκ (r) as:

Pκ (r) ≈ Pκ (r) =

nLκ∑
i=1

cLκ,iπ
L
κ,i (r)

Qκ (r) ≈ Qκ (r) =

nSκ∑
i=1

cSκ,iπ
S
κ,i (r)

. (2.9.1)

The functions πL/Sκ,i (r) are large and small radial basis functions, associated with the expansion
coefficients cL/Sκ,i , nL/Sκ simply represent the number of basis elements for each of the sets. Strictly
speaking, the α-th (radial) numerical solution of the Dirac equation is given by:

ϕα,κ (r) =

[
Pα,κ (r)
Qα,κ (r)

]
=

nLκ∑
i=1

cLα,κ,i

[
πLκ,i (r)

0

]
+

nSκ∑
i=1

cSα,κ,i

[
0

πSκ,i (r)

]
, (2.9.2)

which leads to the following matrix representation of the Dirac eigenvalue problem:

Hκcα,κ = εα,κSκcα,κ, (2.9.3)

where the elements of this equation are the
(
nLκ + nSκ

)
×
(
nLκ + nSκ

)
Hamiltonian matrix Hκ, the over-

lap matrix Sκ (same dimensions) and the eigensolutions cα,κ of dimensions
(
nLκ + nSκ

)
×1 associated

with the energy eigenvalue εα,κ and the numerical solution ϕα,κ (r). These terms are respectively
given by:

Hκ =

[
mc2SLLκ − eϕLLκ c~Πκ

c~Πt
κ −mc2SSSκ − eϕSSκ

]
(2.9.4)

Sκ =

[
SLLκ 0

0 SSSκ

]
; {εα,κ, cα,κ} =

{
εα,κ,

[
cLα,κ
cSα,κ

]}
. (2.9.5)

The elements of matrices are given by the following radial integrals:[
SXXκ

]
ij

=

ˆ ∞
0

πXκ,iπ
X
κ,jdr (2.9.6)

[
ϕXXκ

]
ij

=

ˆ ∞
0

πXκ,iϕπ
X
κ,jdr (2.9.7)

[Πκ]ij = −
ˆ ∞
0

πLκ,i

[
d

dr
− κ

r

]
πSκ,jdr, (2.9.8)
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where X can be one of the two letters X = L, S (for large and small components). One sees that the
off-diagonal matrices of the Hamiltonian matrix of eq.(2.9.4) are related by a transpose operation,
and this is a consequence of the fact that our wavefunction respects the physical boundary conditions:

πXκ,i (0) = πXκ,i (+∞) = 0. (2.9.9)

More precisely, these functions should respect the following conditions:

πSκ,i
d

dr
πLκ,j

∣∣+∞
0 = πLκ,j

d

dr
πSκ,i

∣∣+∞
0 = 0, ∀ i, j (2.9.10)

so that the two off-diagonal matrices can be related by the transpose operation. Finally, we present
the radial probability density associated with a numerical solution α (eq.(2.9.2)):

ρα,κ (r) = ϕ†α,κ (r)ϕα,κ (r) =

nLκ∑
i,j=1

(
cLα,κ,i

)∗
cLα,κ,jπ

L
κ,iπ

L
κ,j +

nSκ∑
i,j=1

(
cSα,κ,i

)∗
cSα,κ,jπ

S
κ,iπ

S
κ,j , (2.9.11)

which integrates to 1 once the state ϕα,κ (r) is normalized.

2.9.2 Gaussian basis set
We shall concentrate on the Gaussian-type basis functions, since they play a central role in the
relativistic quantum chemistry calculations, and the reason they do so comes from the fact that we
have analytical formulas for the radial integrals that build the Hamiltonian, for both non-relativistic
and relativistic cases. These functions are given by:

πLκ,i = NL
κ,ir

γL(κ)e−ζ
L
κ,ir

2

(2.9.12)

πSκ,i = N S
κ,ir

γS(κ)e−ζ
S
κ,ir

2

, (2.9.13)

For each radial problem of a quantum number κ, we have a set of functions labeled i = 1, . . . nκ,
where basis elements have different constant Gaussian exponents ζL/Sκ,i . For a many-electron atom
(as well as a single-electron one), these exponents are chosen to minimize the ground-state energy
(more precisely: to make it stationary). NL/S

κ,i are some normalization constants, and the powers
of r (γL (κ) and γS (κ)) are chosen such that the basis functions recover the right behavior of the
exact radial wavefunction at small distances (where the exponential term reduces to 1) as given by
[32, eq.(5.4.8,9)]:

lim
r→0

Pκ (r) ∝ rγL with γL =

∣∣∣∣κ+
1

2

∣∣∣∣+
1

2
(2.9.14)

lim
r→0

Qκ (r) ∝ rγS with γS =

∣∣∣∣κ− 1

2

∣∣∣∣+
1

2
, (2.9.15)

for finite nuclear size models, which does not include the Coulomb point charge nuclear model. Using
the limiting form of the spherical Bessel function at small distances eq.(C.3.1), one can see that this
also corresponds to the behavior of the free-particle wavefunctions of eqs.(2.7.56 and 2.7.55) at the
origin.
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2.10 Problems with relativistic basis sets
Early numerical computations of the one-electron radial Dirac equation in the framework of finite
basis sets of the form of eq.(2.9.2) (as well as the many-electron 4-component relativistic Hartree-
Fock method), which were based on our knowledge of non-relativistic calculations, failed badly.
These failures were manifested by three cause-related indications:

1. The obtention of unphysical numerical solutions: known as “spurious” solutions:

These solutions are highly oscillating ones, and their eigenvalues pop up in a region where they
should not:

(a) Energy levels between −mc2 and the ground state (in the Hydrogen problem), as seen in
Goldman’s work [65, Page 3542].

(b) Unphysical energy levels that degenerate with the physical ones:
An energy level of 1p 1

2
(unphysical) degenerated with the real ground-state 1s 1

2
energy.

See, for instance, Tupitsyn and Shabaev [66, Tables 1-3].

2. In one-electron problems:

The fall of a positive bound eigenvalue into the negative-energy continuum, as the basis set
increases or as the basis set parameters are.

3. In many-electron SCF problems:

The convergence to an energy level that is lower than the "correct" one. This point is related
to the previous one.

What is common between all the indication is that they persist even after the increase of the basis
set size. The main reasons behind the encountered failures can be summarized in the following two
causes:

1. The fact that (unlike the Schrödinger case), the Dirac Hamiltonian is unbounded from below.

2. The naive choice of independent large and small radial basis functions: missing the right
coupling between exact components, or at least the approximation of the exact coupling.

We are mainly going to be concerned with the second cause, because it turned out that once the
second problem is solved, the first one is automatically solved. In 1982, Schwarz and Wallmeier [67]
(see also Grant [68] of the same year) pointed out that if large and small component functions (of
some finite basis set), did not respect the right coupling predicted by the radial Dirac equation of
eq.(2.7.31), then numerical instabilities and failures will occur. The argument goes as follows: The
relativistic energy can be written as:

E =

ˆ
d3xψ†

{
HD −mc2

}
ψ, with ψ =

[
ψL

ψS

]
, (2.10.1)

where HD is the Dirac Hamiltonian including the radial scalar potential −eϕ (r). We (on intention)
have shifted this Hamiltonian with −mc2 so we can bring our expression closer to the non-relativistic
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Schrödinger energy expression (removing the rest energy). This energy is then written as:

E =− e
ˆ
d3xψL†ϕ (r)ψL

+ c

ˆ
d3xψL†σ · p̂ψS + c

ˆ
d3xψS†σ · p̂ψL

−
ˆ
d3xψS†

{
2mc2 + eϕ (r)

}
ψS

. (2.10.2)

After playing around with the equation
{
HD −mc2

}
ψ = Eψ, ψS can be written in terms of the

large one as:
ψS =

c

E + 2mc2 + eϕ (r)
σ · p̂ψL, (2.10.3)

which shows the explicit coupling between the spinor components. Since this relation includes the
energy, which is a seeked unknown, one can overcome this problem by realizing that in the non-
relativistic limit (of very large c), we are allowed to write:

ψS ≈ 1

2mc
σ · p̂ψL. (2.10.4)

This approximation assumes that the potential is bounded. If we then plug this last expression of
ψS , in our energy expression of eq.(2.10.2), and use the Dirac relation of eq.(D.1.1), we directly get
the following expression:

E ≈ −e
ˆ
d3xψL†ϕ (r)ψL +

ˆ
d3xψL†

p̂2

2m
ψL

− e

4m2c2

ˆ
d3xψL†σ · p̂ϕ (r)σ · p̂ψL.

(2.10.5)

Since the last term is of order O
(
c−2
)
, it can be neglected, in the non-relativistic limit, and we thus

get:

E ≈− e
ˆ
d3xψL†ϕ (r)ψL +

ˆ
d3xψL†

p̂2

2m
ψL , (2.10.6)

This is the energy expression of a non-relativistic (Schrödinger or Pauli-Schrödinger) particle in
the presence of a scalar potential ϕ (r). We realize at this moment that to smoothly go from the
relativistic energy expression of eq.(2.10.2) to the non-relativistic one of eq.(2.10.6), one must respect
the right coupling between the large and the small components of eq.(2.10.3), and more precisely its
non-relativistic approximation of eq.(2.10.4).

As discussed in section 2.9.1, one generally introduces two radial basis sets (one for each of the
components), and solves the numerical radial eigenproblem. In the language of finite basis set, the
above discussion translates to the following statement:

If the small component basis functions are not dependent on the large ones by means of
eq.(2.10.4), then the non-relativistic kinetic energy operator is poorly represented, and
numerical problems will/can occur: appearance of spurious solutions, and occurrence of
“variational collapse”, and this comes from the fact that the kinetic energy is defectively
represented in such bases. See Kutzelnigg [69]. On the other hand, if one introduces a
set of basis functions that do respect the relation given in eq.(2.10.4), then one is on the
safe track.



CHAPTER 2. THE DIRAC EQUATION 41

Nice explanations of this problem were provided by Stanton and Havriliak in [70] (who termed this
scheme as “kinetic balance”), Kutzelnig [71] and Dyall et al. [72]. We finally would like to note that
the problem of spurious solutions also occurs in other numerical methods such as Finite difference,
finite element, and other methods. See, for instance, the PhD thesis of Almanasreh [73, chapter
3]. In the next sections we are going to expand, and make use of, the above discussion, in the
construction of numerical basis sets for the radial Dirac equation.

2.10.1 Kinetic balance
The radial Dirac equation given in eq.(2.7.31) can be written in a slightly different form:

Qκ =
~
mc

1

1 + eϕ+E
mc2

[
d

dr
+
κ

r

]
Pκ (2.10.7)

Pκ =
~
mc

1

1− eϕ+E
mc2

[
d

dr
− κ

r

]
Qκ. (2.10.8)

For the positive part of the spectrum, the solutions we are interested in (bound ones) live around
E ≈ mc2 (just below it). After assuming that eϕ (the electric potential) is negligible in front of
mc2, and thus, in front of mc2, the coupling between small and large components of eq.(2.10.7) can
be approximated by:

Qκ ≈
~

2mc

[
d

dr
+
κ

r

]
Pκ, (2.10.9)

in the non-relativistic limit, since limc→∞ cQκ = ~
2m

[
d
dr + κ

r

]
Pκ. This is, at the level of individual

basis functions, known as the (restricted) kinetic balance condition (RKB) [70] (see also [74]). Notice
that this condition approximates the following function:

f (r, Z) =

[
1 +

eϕ (r, Z) + E (Z)

mc2

]−1
, (2.10.10)

which appears in eq.(2.10.7), by 1/2. This function is plotted in the following figure 2.10.1 for
different nuclear charges, where we use point nuclear model potential: ϕ (r, Z) = Ze

4πε0r
, and the

corresponding ground state energy level E (Z) = mc2
√

1− α2Z2. In addition, we add the locations
of the Bohr radii, where the ground-state electron is most probably found, associated with each
nuclear charge: aZ = 1

Z (a.u.).
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Figure 2.10.1: f(r, Z) for a bound state electron in different Coulomb field strengths

Clearly, in the region of very small distances r < 0.01 a.u. and for large nuclear charges, the
approximation does not work well: we deviate from the approximation (dashed) line, since the
potential term can no longer be neglected (as assumed). Nevertheless, one should not be worried,
since numerical, our calculation is “flexibility” thanks to the fact that large and small component
functions vary freely, i.e. the coupling is not totally fixed. Numerically, one introduces a large
component basis set for each κ, that we shall call

{
πLκ,i

}nκ
i=1

, where nκ is the number of basis
elements, and generate the small component functions using the previous prescription, i.e. :

πSκ,i =
~

2mc

[
d

dr
+
κ

r

]
πLκ,i. (2.10.11)

The radial Dirac function is then constructed with respect to eq.(2.9.2) by:

ϕα,κ (r) =

[
Pα,κ (r)
Qα,κ (r)

]
=

nκ∑
i=1

cLα,κ,i

[
πLκ,i (r)

0

]
+

nκ∑
i=1

cSα,κ,i

[
0

~
2mc

[
d
dr + κ

r

]
πLκ,i (r)

]
, (2.10.12)

leading to an eigenvalue problem, whose elements are given in an appendix section E.1.1. Stanton
and Havriliak (in [70]) termed this procedure as “kinetic balance” for the following reasons:

1. “Kinetic” to indicate that the kinetic energy is recovered in the non-relativistic limit.

2. “Balance” to remind us that each large component function πLκ,i (r) should be balanced by
small component function generated by: ~

2mc

[
d
dr + κ

r

]
πLκ,i (r), as seen in this section.

After this discussion, we should note that the RKB method is not perfectly safe, since in cases where
a contracted basis set is used, this method can fail (in extreme cases), as shown by Visscher et al.
[75] and references therein. In addition, Lewin and Séré [76, Theorem 3 and Pages 11-12], considered
the problem of the spectral pollution (apparition of spurious modes) in the Dirac spectrum, once the
RKB scheme is considered. Their conclusion is that in the case of a (negative) bounded potential,
the RKB prescription for the Dirac problem is safe from spurious solutions (see also [77, Theorem
3.3 (i)]), while for the unbound (singular) Coulomb potential, this is not guaranteed, and a spurious
solution can appear anywhere in the gap

(
−mc2,mc2

)
. They supported their discussion by a simple
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Coulombic calculation of the s 1
2
states of the Zn+29 atom, using an s 1

2
Gaussian basis set (6-31G

basis) appended with an additional basis element (last term in the curly brackets):

πL = r
(
e−ζir

2

, . . . , e−ζnr
2

,
{
e−br

2

+ δ
1
4 e−bδr

2
})

. (2.10.13)

This additional basis function is constructed with two very localized Gaussians, associated with the
parameters (b, δ) =

(
106α2,∼ 104

)
, which can feel (capture) the singular behavior of the Coulomb

potential at very small distances (in the vicinity of the nucleus). They then generate the small
component basis functions using the kinetic balance condition of eq.(2.10.11) and build the matrix
eigenproblem then diagonalize it. They finally find a spurious solution which appears in the forbidden
region of the

(
−mc2,mc2

)
gap: below the exact ground state energy level. In addition, what is more

critical about the appearance of these solutions, is that they also contaminate the other solutions
(see Page 7 of the same reference).

Before ending this section, we would like to mention a final point, which concerns the coupling
function of eq.(2.10.10) for continuum states in the same Coulomb field. In figures 2.10.2a and
2.10.2b, we plot f (r, Z) for E = mc2 and 1.5mc2. As predicted, the results show that as long as we
are close to E = mc2, our approximation of of f (r, Z) is valid (up to some extent), and the more
we go up in energy, the more we will overestimate this function.
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(a) A continuum state with E = mc2
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(b) A continuum state with E = 1.5mc2

Figure 2.10.2: f(r, Z) of eq.(2.10.10) for continuum states.

Finally, we should note that the kinetic balance method works (in principle) safely, in the presence
of a Coulomb potential (point charge nucleus), if one does not go for extreme applications of heavy
contractions or over-localized contracted basis sets. In the next section, we shall present a few
real numerical calculations on a 1e atom to show what one gets (in practice) when using the RKB
prescription to approximate the Dirac problem.

2.10.2 Numerical tests on restricted kinetic balance
To give the reader a flavor of this method, we performed seven calculations with the RKB scheme,
each one corresponds to a different set of exponents. These exponents are discussed in section E.3
and tabulated in tables E.3-E.5. In tables 2.3 and 2.4, we present the first five eigenvalues (bound-
states) of the 1e radon atom (Z = 86) obtained with different (sizes of) basis sets for κ = ±1 (s 1

2

and p 1
2
solutions), and finally, we compare these numerical results with the ones of the exact energy
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State Exact energy 7z 6z 5z 4z 3z 2z
1s 1

2
14620.4407 14620.8223 14620.8301 14620.8454 14620.8758 14621.0332 14625.9554

2s 1
2

17708.7697 ·17734.6284 17774.2051 17804.1892 17843.9843 17971.0908 18685.3956
3s 1

2
18317.4540 19038.1400 19533.7230 19845.4006 20222.1960 21294.9092 26528.6243

4s 1
2

18525.0944 21471.4203 23096.6926 24112.1801 25341.2250 28887.9678 48016.0298
5s 1

2
18618.9832 25727.2000 29562.9802 32008.3565 35024.9668 44078.4829 104896.7087

Table 2.3: First five s 1
2
energy solutions of the 1e radon atom, in atomic units of energy (a.u.).

State Exact energy 7z 6z 5z 4z 3z 2z
2p 1

2
17708.7697 ·18202.8689 18320.3769 18517.5072 18862.1277 19601.2646 21459.3704

3p 1
2

18317.4540 22507.3672 23260.5908 24451.5497 26697.4458 31214.6471
4p 1

2
18525.0944 31321.1154 33638.0115 37852.5808 45834.3427

5p 1
2

18618.9832 47035.1760 53733.7750 66399.4588
6p 1

2
18669.0892 75045.9625 94535.0943

Table 2.4: First five p 1
2
energy solutions of the 1e radon atom (a.u.).

expression of the bound Dirac-solutions [28, Page 230 eq.(34)]:

En,κ =
mc2√

1 +

(
αZ

n−|κ|+
√
κ2−(αZ)2

)2
. (2.10.14)

This above energy expression (with its associated wavefunction) solves the 1e radial Dirac equation in
the presence of the Coulombic point nucleus, that generates the electric Coulomb-potential: φ (r) =
Ze

4πε0r
, and thus, this potential is chosen for these numerical calculations, and enters in the matrix

elements given in eqs.(E.1.16 and E.1.18). The eigenvalues colored in red correspond to solutions
with E > mc2 (positive continuum), and empty boxes simply indicate that the number of eigenvalues
(dimensions of the Hamiltonian matrix) is less then 5. As the tables show, the exponents associated
with each basis set are optimized to describe the ground-state energy, and not the excited ones.

In addition, we can see that the larger the basis set is, the lower the energies get, and thus, the
closer we come to the exact energy values. We must also note that the wavefunctions of the ground
state highly overlap with the exact hydrogenic wavefunctions, which can, for instance, be found in
Greiner [28, Exercice 9.6]. To show this, we evaluate the integral following integral:

I =

ˆ ∞
0

∣∣ρnum (r)− ρexact (r)
∣∣ dr, (2.10.15)

which measures the deviation of the numerical probability density given in eq.(E.1.6) from the exact
probability density computed “exactly” with Mathematica [22], using the formulas of last citation.
This Mathematica program can be found in our Gitlab directory [78]. The results of this integral
for different basis sets are tabulated in table 2.5.

The reader might ask himself the following question:

The energy expression of eq.(2.10.14) shows that the energy only depends on n and κ
quantum numbers, why are the numerical 2s 1

2
and 2p 1

2
energy values of tables 2.3 and

2.4, different? (See, for instance, the energies with a small dot ·)



CHAPTER 2. THE DIRAC EQUATION 45

Bases I

Exact 0.0000000
7z 0.0001568
6z 0.0001509
5z 0.0001711
4z 0.0002229
3z 0.0006561
2z 0.0077331

Table 2.5: Values of the I integral of eq.(2.10.15) for different bases.

The answer is given by the following argument: Unfortunately, this difference is not due to the QED
corrections, since we did not include them in our calculations. The reason behind this discrepancy
is simply due to the poverty of the basis sets we are using. In general, if we use an infinite basis, and
a computer with an infinite numerical precision (to avoid linear dependencies) the numerical energy
and wavefunctions must coincide with what the exact Dirac solutions provide. Since infinity is not
naturally reachable (see Hilbert’s chapter [79]), we go for a very large basis sets. We specifically
used the following set of exponents:

ζi = (1.93)
i−1 × 0.02, for i = 1, . . . , 50 (2.10.16)

which was made by hand, to construct both Hamiltonians associated with κ = ±1. After diagonal-
ization, we got the following results for the first excited states:

Enum.
2s 1

2

= 17708.769828 (2.10.17)

Enum.
2p 1

2

= 17708.769809, (2.10.18)

where we color in red the non-matching digits (with the exact energy). This result shows that,
generally speaking, the larger the basis set is, the closer we get to degeneracy. In addition, for this
large basis set we find I of eq.(2.10.15) to be I = 2× 10−6. So far this analysis covered the case of
positive-energy solutions and uses the coupling of eq.(2.10.7), but what about the negative-energy
ones? The answer will be given in the next section by focusing on the second equation.(2.10.8)
instead of the first one.

2.10.3 Inverse kinetic balance
Since the Dirac equation is symmetric between positive and negative-energy solutions (C-symmetry
in the time-independent problem), one would directly guess that in order to have a balanced picture,
we should also consider negative-energy solutions. Alternatively to what we have discussed in the
previous section, we can approximate the coupling of eq.(2.10.8) in the non-relativistic limit as:

Pκ ≈
~

2mc

[
d

dr
− κ

r

]
Qκ, (2.10.19)

since limc→∞ cPκ = ~
2m

[
d
dr −

κ
r

]
Qκ. We again assume that eϕ (r, Z) can be neglected in front of

the energy which is around E ≈ −mc2 in eq.(2.10.8). Again, at the level of basis functions, this
condition translates to:

πLκ,i =
~

2mc

[
d

dr
− κ

r

]
πSκ,i, (2.10.20)
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where a set of small radial functions is first introduced, and the large set is then generated with
respect to this relation. This choice of basis functions leads to a matrix representation of the Dirac
problem that is presented in eqs.(E.0.1, E.1.13 and E.1.14) of appendix E. This prescription was
introduced by Sun et al. [80], where they have presented an expanded discussion on the comparison
between different prescriptions for constructing a basis set for the Dirac equation. In addition, they
have performed several calculations (using Gaussian basis sets), one of them was presented in table
3 (of the cited reference) and showed that the IKB prescription did not perform as well as the RKB
prescription, especially for the smallest considered basis. This is mainly due to the fact that the
IKB condition approximates the right coupling between the two components for a negative-energy
solution. We started this section by saying that we should be more balanced between both energy
signs solutions, and to do so, we shall consider the Dual Kinetic Balance prescription.

2.10.4 Dual kinetic balance
The dual kinetic balance (DKB) scheme ensures the proper approximates coupling between large
and small component functions for both positive- and negative-energy solutions at the same time.
This method uses four-component basis functions instead of two-component ones (as in RKB and
IKB), and expands the Dirac solution in the following manner:

ϕα,κ (r) =

n[+]
κ∑
i=1

c
[+]
α,κ,iϕ

[+]
κ,i (r) +

n[−]
κ∑
i=1

c
[−]
α,κ,iϕ

[−]
κ,i (r) ; (2.10.21)

ϕ
[+]
κ,i (r) =

[
π+
κ,i (r)

~
2mc

[
d
dr + κ

r

]
π+
κ,i (r)

]
(2.10.22)

ϕ
[−]
κ,i (r) =

[ ~
2mc

[
d
dr −

κ
r

]
π−κ,i (r)

iπ−κ,i (r)

]
, (2.10.23)

where the positive superscript indicates that the basis elements approximate the right coupling
between large and small components for positive-energy solutions, and the negative-one does the
same for negative-energy solutions. This shows that the DKB scheme “combines” both RKB and
IKB schemes. The Dual Kinetic Balance (DKB) scheme was first introduced by Shabaev et. al [81],
where they used B-spline functions to compute the first-order (single-loop) self-energy correction
for one-electron atoms. The advantage of this scheme is that it is democratic between positive and
negative-energy solutions, i.e. it does not favor one on the other. In addition, as we shall soon
see, this prescription allows the realization of the charge conjugation symmetry without adding a
restriction on the type of functions one must use (unlike in the RKB scheme, as we shall see in
section 2.11.2). The associated eigenvalue equation associated with the DKB scheme, is presented
with its matrices and matrix elements in appendix section E.2. We have constructed this eigenvalue
problem with the exponents of the 7z basis set (used in for the RKB calculations: section 2.10.1)
in Mathematica [22]. In table 2.6, we present the first five eigenvalues of the numerical Dirac
Hamiltonian of κ = −1, built with respect to the DKB scheme, and compare these results with:

1. The previous results we have obtained with RKB 2.3 (using the same basis: 7z).

2. The exact Dirac energies from eq.(2.10.14).

From the first glance, the reader might think that this is not an improvement, but the reader should
also know that the used exponents were originally optimized for RKB. This means that DKB is
performing well.
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State Exact DKB - 7z RKB - 7z
1s 1

2
14620.4407 14620.7605 14620.8223

2s 1
2

17708.7697 17734.9031 17734.6284
3s 1

2
18317.4540 19045.5995 19038.1400

4s 1
2

18525.0944 21516.09305 21471.4203
5s 1

2
18618.9832 25906.58707 25727.2000

Table 2.6: First five s 1
2
energy solutions of the 1e radon atom, in atomic units of energy (a.u.).

2.10.5 Atomic balance
In section 2.10.1, we mentioned the fact that the Kinetic Balance method can fail under extreme
conditions. A solution to this failure is the use the Atomic Balance (AB) prescription (see [77]). In
this new prescription, the coupling between large and small component functions is approximated,
by setting E = mc2 (as in the RKB case), but without neglecting the scalar potential (as done in
the RKB). Contrary to RKB, AB can capture the possible singular behavior of the external scalar
potential as mentioned by Lewin and Séré in the cited reference. To show how this is true, we define
the following three small component radial function as:

Qexact
n,κ =

~
mc

1

1 +
eϕ+En,κ
mc2

[
d

dr
+
κ

r

]
P exact
n,κ (2.10.24)

QAB
n,κ =

c~
2mc2 + eϕ

[
d

dr
+
κ

r

]
P exact
n,κ (2.10.25)

QRKB
n,κ =

~
2mc

[
d

dr
+
κ

r

]
P exact
n,κ , (2.10.26)

where the first one is simply the exact small component function, generated from the exact large
component radial function (using the exact coupling), the second function is the Atomic Balance
small component, which is constructed from the approximated coupling (by setting E = mc2), and
finally, the third one is the RKB approximation, which we have already discussed in a previous
section.

In the next figure 2.10.3 we plot these three functions associated with the ground-state: (n, κ) =
(1,−1) of the one-electron radon atom (Z = 86), and observe together. The graph shows the
RKB coupling fails to correctly describe the small component wavefunction at very small distances,
while the atomic balance coupling successes in capturing this behavior. At large distances, both
prescriptions provide a fair description of the small radial function.

We should, in addition, note that we have observed this divergent behavior of the RKB approx-
imation only for states associated with κ = ±1, and not for other values of κ (see, for instance,
figure 2.10.4), which is probably related to the fact that Visscher et al. [75] observed failures of the
RKB prescription for heavily contracted s 1

2
- and p 1

2
-type basis functions. This point is to be further

investigated.
We must also note that the “atomic balance” discussed here, as in the work of Lewin and Séré is

not to be confused with the “atomic balance” usually discussed in quantum chemistry literature, that
simply designates the exact coupling between radial components, seen for instance in eq.(2.10.24),
and which comes from the work of Visscher et al. [75].

The atomic balance prescription tells us that at the level of basis functions, the numerical wave-
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Figure 2.10.3: Approximations of the small component function of the radon atom ground state.
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Figure 2.10.4: Approximations of the small component function Qn,κ (r), with (n, κ) = (5,−2).
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function should be expanded as:

ϕα,κ (r) =

[
Pα,κ (r)
Qα,κ (r)

]
=

nκ∑
i=1

cLα,κ,i

[
πLκ,i (r)

0

]
+

~c
2mc2 + eϕ (r)

nκ∑
i=1

cSα,κ,i

[
0[

d
dr + κ

r

]
πLκ,i (r)

]
. (2.10.27)

The main disadvantage of this prescription is its advantage, i.e., the existence of the eϕ (r) term in
the denominator. Although this term provides a better description of the small component function,
it complicates the integrals associated with the matrix representation of the Dirac problem. As far
as we know, this method has never been employed in practical calculations.

Finally, we would like to note that, as in the Kinetic Balance context, we had IKB and DKB,
one can imagine two alternative basis set prescriptions associated with the Atomic Balance, which
we shall call:

1. The Inverse Atomic Balance (IAB) where the numerical functions are expanded as:

ϕα,κ (r) =
~c

2mc2 − eϕ (r)

nκ∑
i=1

cLα,κ,i

[[
d
dr −

κ
r

]
πSκ,i (r)

0

]
+

nκ∑
i=1

cSα,κ,i

[
0

πSκ,i (r)

]
. (2.10.28)

2. The Dual Atomic Balance (DAB), where this expansion becomes:

ϕα,κ (r) =

nLκ∑
i=1

c
[+]
α,κ,iϕ

[+]
κ,i (r) +

nSκ∑
i=1

c
[−]
α,κ,iϕ

[−]
κ,i (r) ; (2.10.29)

ϕ
[+]
κ,i (r) =

1

r

[
πLκ,i (r)

i~c
2mc2+eϕ

[
d
dr + κ

r

]
πLκ,i (r)

]
(2.10.30)

ϕ
[−]
κ,i (r) =

1

r

[ ~c
2mc2−eϕ

[
d
dr −

κ
r

]
πSκ,i (r)

iπSκ,i (r)

]
. (2.10.31)

These two prescriptions were never discussed in the literature and need to be further examined. The
second scheme is of importance since:

1. It can sense the Coulomb potential singularity (point nucleus), which is an excellent property,
especially for calculating extremely localized quantities (example: The vacuum polarization
density).

2. It is balanced between positive and negative-energy solutions, as the dual kinetic balance
prescription.

3. It can be made symmetric under charge conjugation.

2.10.6 A short summary on relativistic basis functions
So far, the most widespread prescription is the restricted kinetic balance. This method has proved its
efficiency since its early proposition and showed that it only fails in very specific (extreme) regions.
Although the atomic balance can feel the singularity of the Coulomb potential, the computational
cost that this method demand does not make it a viable option. The inverse kinetic balance method,
which is the negative-energy version of the restricted kinetic balance, does not give better results for
the positive-energy solutions (mainly: bound-states), as we expect (by pure intuition), and as Sun et
al. have shown. Finally, the Dual kinetic balance method provides a more symmetric description of



CHAPTER 2. THE DIRAC EQUATION 50

the Dirac equation, since it treats both positive and negative-energy solutions democratically. This
last prescription shares with restricted kinetic balance the difficulty of feeling/catching the Coulomb
singularity (as mentioned by Lewin and Séré in the next references). For a rigorous investigation
on the possibility of spurious states occurrence, in the finite basis Dirac equation, the reader may
consult the works of Lewin and Séré [76, 77].

We are next going to investigate the obedience of the C-symmetry in the framework of rela-
tivistic finite basis sets. This investigation will fructify additional new results and will guide us in
constructing basis sets that can be used in computing QED quantities, as we shall see in the next
chapter.

2.11 C-symmetry in the finite basis set
We say that a basis set is symmetric under C-symmetry if the charge conjugation of any element of
the basis set is an element of the basis set itself:

Cϕi ∈ {ϕi}ni=1 , ∀i. (2.11.1)

More specifically, in two-component basis sets, the numerical solutions are expanded in large and
small component spherical basis functions as:

ϕκ,mj (x) =

nLκ∑
i=1

cLκ,iϕ
L
κ,i,mj (x) +

nSκ∑
i=1

cSκ,iϕ
S
κ,i,mj (x) ; (2.11.2)

with ϕLκ,i,mj =

[
πLκ,iΩκ,mj

0

]
; ϕSκ,i,mj =

[
0

iπSκ,iΩ−κ,mj

]
. (2.11.3)

After the application of the C-operation of eq.(2.8.17) on the large and small basis elements, one
gets:

CϕLκ,i,mj = sgn (κ) (−1)
mj− 1

2

[
0

iπLκ,iΩκ,−mj

]
(2.11.4)

CϕSκ,i,mj = sgn (κ) (−1)
mj− 1

2

[
πSi,κΩ−κ,−mj

0

]
. (2.11.5)

The phase constants can be neglected. Large and small basis elements associated with opposite sign
quantum numbers −κ,−mj are given by:

ϕL−κ,i,−mj =

[
πL−κ,iΩ−κ,−mj

0

]
(2.11.6)

ϕS−κ,i,−mj =

[
0

iπS−κ,iΩκ,−mj

]
. (2.11.7)

By comparison of the charge conjugated basis elements of eqs.(2.11.4 and 2.11.5) with the negative
sign quantum numbers basis elements of eqs.(2.11.6 and 2.11.6), one directly notices that in order to
force the charge conjugated basis elements to be (themselves) basis elements (as stated in eq.(2.11.1)),
restrictions has to be added on the basis functions, that is:

πL−κ,i = πSκ,i and πS−κ,i = πLκ,i, (2.11.8)



CHAPTER 2. THE DIRAC EQUATION 51

Coefficients
κ α Eigenvalues cLα,κ,1 cLα,κ,2 cSα,κ,1 cSα,κ,2

−1

1 +18784.7467 4.9279 −10.2191 4.9272 −10.2175
2 +18780.0698 3.8892 −2.6523 3.8890 −2.6522
3 −18780.0698 0.0220 −0.0150 −686.6667 468.2902
4 −18784.7467 0.0616 −0.1279 −393.7591 816.5381

+1

1 +18786.6788 −4.0603 13.2692 −4.0594 13.2665
2 +18780.9834 −4.1081 3.5555 −4.1079 3.5553
3 −18780.9834 0.0309 −0.0267 −546.9943 473.4147
4 −18786.6788 0.0586 −0.1914 −281.4727 919.8613

Table 2.7: Results of the free particle RKB calculation.
Note: Energy eigenvalues are in Hartree atomic units.

which are equivalent. Notice that this is trivially consistent with what we got when considering the
charge conjugation symmetry in the spherical problem (see section 2.8.1.2).

We note that if the chosen basis functions are spherical Gaussian functions, which were given
in eqs.(2.9.12 and 2.9.13), then the last restriction translates into a restriction on the Gaussian
exponents, given by:

ζS±κ,i = ζL∓κ,i. (2.11.9)

Even though this basis is now C-symmetric, we should warn the reader that this is not a good
choice of basis functions. The reason for this claim is that this basis does not respect the proper
coupling between its large and small components, and it will thus lead to numerical instabilities (as
previously discussed in section 2.10). It is, therefore, necessary to note that the reasoning made
in this paragraph is made, not to be used literally, but rather to go further in the analysis (next
section).

2.11.1 An unexpected symmetry in the free-particle problem of RKB
In our earlier attempts to understand how the C-symmetry is manifested in the RKB scheme, which
is the main scheme used in relativistic calculations, we performed a free calculation, i.e. by simply
setting the nuclear charge parameter Z to zero. The reason we did so, is because we know that in
the free particle problem, the C-symmetry exists between opposite energy solutions, as seen in the
plane wave problem of section 2.6.1, the general time-independent problem of section 2.8.1.1 and
the specific spherical problem of section 2.8.1.2. Being inspired our previous results, we set the same
exponent list for both κ = ±1:

ζLκ=±1 = {1, 2} , (2.11.10)

for the large component Gaussian basis functions of eq.(2.9.12), since we expect the C-symmetry to
exist between opposite κ-sign problems. We then construct the two RKB matrix problems (each
associated with a κ), and diagonalize them. The obtained results of eigenvalues and normalized
coefficients (of the corresponding eigenvectors) are presented in table 2.7. At the first glance, we
saw that the eigenvalues were exactly symmetric but within each of the κ problems separately
(which is not expected), and by “exactly”, we note that the matching digits are up to a hundred (our
numerical precision). Unfortunately, after comparing the coefficients we see no apparent symmetry:
matching coefficients between opposite energy solutions.
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We then take a pencil and a paper, and write the free RKB equation.(E.0.1) using eqs.(E.1.9
and E.1.10): [

mc2S T
T − 1

2T

] [
cL

cS

]
α

= εα

[
S 0
0 1

2mc2T

] [
cL

cS

]
α

, (2.11.11)

where we have dropped all indices on matrices. This matrix equation can be expanded into two
coupled matrix equations:

TcSα =
[
εα −mc2

]
ScLα (2.11.12)

TcLα =

[
εα +mc2

2mc2

]
TcSα. (2.11.13)

We then replace TcSα in the second equation by its value from the first one to get:

TcLα = λαSc
L
α, with λα =

ε2α −m2c4

2mc2
. (2.11.14)

This is the eigenvalue equation of the kinetic energy operator, of a free particle (notice the relativistic
energy-momentum relation), which again indicates that once the RKB is used, one recovers the non-
relativistic kinetic energy operator. Notice that the existence of ε2α term, in the last formula, indicates
that a single value of λα, corresponds to two values of εα:

εα = ±
√

2mc2λα +m2c4, (2.11.15)

which is consistent with what we got in our numerical calculation, and leads to the following opposite
energy eigenvector pair:

N+
α

[
cLα

2mc2

|εα|+mc2 c
L
α

]
, and N−α

[
cLα

2mc2

−|εα|+mc2 c
L
α

]
, (2.11.16)

where N+
α and N−α are normalization constants. The numerical evaluation of these expressions gave

matching results with what we have encountered in our calculation presented in the previous table.
We should also note that we have recently found this analysis in Quiney’s chapter [82, Section 2.4].

The free RKB problem displays a symmetric energy spectrum, which we, at first, naively associ-
ated with the C-symmetry. After further study, we have found a different algebraic symmetry, which
cannot, in any way, be related to the C-symmetry. In our publication [21] we have discussed this
point, and pointed out that the RKB and IKB schemes are related by charge conjugation symmetry.
To show how, we write the matrix equations of RKB and IKB as:

HRKB
−e,κ c

RKB
−e,α,κ = εRKB

−e,α,κS
RKB
κ cRKB

−e,α,κ (2.11.17)

HIKB
−e,κc

IKB
−e,α,κ = εIKB

−e,α,κS
IKB
κ cIKB

−e,α,κ, (2.11.18)

where we added a subscript of −e to indicate that this is an electronic problem. The positronic one
will thus have a +e subscript instead. Recall that the RKB problem is written in terms of πLi,κ while
the IKB problem is written in terms of πSi,κ. Being inspired by the results on the charge conjugation
symmetry in the spherical problem (see table 2.1), we write IKB problem associated with −κ and
+e as:

HIKB
+e,−κc

IKB
+e,α,−κ = εIKB

+e,α,−κS
IKB
−κ c

IKB
+e,α,−κ, (2.11.19)

for a postironic problem, and set its (small) basis functions equal to the large basis functions of the
RKB problem of +κ, i.e. : πSi,−κ = πLi,+κ. After setting this restriction on basis functions, it can be
then shown that the Hamiltonians, and the overlap matrices of these two problems:
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Coefficients
κ q α Eigenvalue cLα,κ,1 cLα,κ,2 cSα,κ,1 cSα,κ,2

RKB −1 −e

1 +18771.6260 5.8812 −7.5685 5.8807 −7.5672
2 +18757.5795 2.1957 −7.3609 2.1956 −7.3615
3 −18787.9710 −0.0249 0.0210 704.5024 −506.3431
∗4 −18801.4342 0.0606 −0.1270 −360.8792 +793.5029

IKB +1 +e

∗1 +18801.4342 −360.8792 793.5029 0.0606 −0.1270
2 +18787.9710 704.5024 −506.3431 −0.0249 0.0210
3 −18757.5795 2.1956 −7.3615 2.1957 −7.3609
4 −18771.6260 5.8807 −7.5672 5.8812 −7.5685

Table 2.8: The C-symmetry between RKB and IKB problems.

1. Electronic RKB problem with +κ,−e.

2. Positronic IKB problem with −κ,+e.

are connected by the following relations:

σ1S
RKB
κ σ1 = SIKB

−κ (2.11.20)

σ1H
RKB
−e,κ σ1 = −HIKB

+e,−κ, (2.11.21)

where σ1 is the first Pauli matrix. These two relations lead to the following eigen-equation:

HIKB
+e,−κ

{
σ1c

RKB
−e,α,κ

}
= −εRKB

−e,α,κS
IKB
−κ

{
σ1c

RKB
−e,α,κ

}
. (2.11.22)

This obtained equation clearly indicates a symmetry between eigensolutions:

cIKB
+e,α,−κ = σ1c

RKB
−e,α,κ

εIKB
+e,α,−κ = −εRKB

−e,α,κ
, (2.11.23)

which shows that opposite energy-, charge- and κ-sign equations of both problems are related by
the C-symmetry. This result is consistent with what was mentioned by Sun et al. [80, Section 2.2].
To show how this symmetry manifests itself in practice, we perform two small calculations:

1. RKB with κ = −1, and an electron: charge q = −e.

2. IKB with κ = +1, and a positron: charge q = +e.

We in addition set the exponent list ζ = (1, 2) for both large and small component functions, that
enters in RKB and IKB, respectively. The results are then presented in table 2.8, and one must
keep in mind that α is simply a labeling of the obtained eigen-solutions. These numerical results
clearly show that our analytical result of eq.(2.11.23) is a correct one. Take for instance the fourth
and the first solutions of the RKB and IKB problems, respectively (asterisked solutions): these two
solutions correspond to opposite energy-, charge- and κ-signs. In addition, we see that the large
component coefficients of one solution are the small ones of the other, as predicted by the first line
of eq.(2.11.23).

At this point, a question directly popped up in our mind:

Can we make RKB (by itself) symmetric by C-conjugation?

This question will be answered in the next section.
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2.11.2 Can we make RKB symmetric by C-conjugation?
The RKB small radial function generator is given by eq.(2.10.11):

πSκ,i = η

[
d

dr
+
κ

r

]
πLκ,i with η =

2mc

~
. (2.11.24)

After the imposition of the radial functions restrictions of eq.(2.11.8), one obtains the following large
component function equation: (

d2

dr2
− κ (1 + κ)

r2
− η2

)
πLκ,i = 0. (2.11.25)

This equation looks very similar to eq.(C.2.3), and, using the following change of variable: x = iηr,
our equation becomes: (

d2

dx2
− κ (1 + κ)

x2
+ 1

)
πLκ,i = 0. (2.11.26)

Following what we have done in the case of the free radial Dirac equation, of section 2.7.3, the
solution of the last equation can be written as a linear combination of the spherical Bessel functions:

πLκ,i (r) = c1rjκ (iηr) + c2ryκ (iηr) . (2.11.27)

We then discard solutions that diverge at the origin (r = 0), and obtain the following radial solutions:

For positive κ :

{
πLκ,i = c1rjκ (iηr)

πSκ,i = ic1~η
2mc rjκ−1 (iηr)

(2.11.28)

For negative κ :

{
πLκ,i = c2 (−1)

κ+1
rj−κ−1 (iηr)

πSκ,i = ic2~η
2mc (−1)

κ
rj−κ (iηr)

, (2.11.29)

where the wave vector k (in the cited section) is replaced by iη, and the free-electron energy E is
replaced by mc2. These two cases can be combined into one:

πLκ,i = rj` (iηr)

πSκ,i =
~iηsgn (κ)

2mc
rj`−sgn(κ) (iηr)

. (2.11.30)

One has to notice that the constant η in πSκ,i = η
[
d
dr + κ

r

]
πLκ,i, can be anything, since at the end, the

expansion of eq.(2.9.2) can absorb any multiplicative constant (for large and small radial functions).
We further examine what should the constant η be, in order for the radial functions to behave well
at large distances. We start by writing η as a general complex number:

η = a+ ib, with a, b ∈ R. (2.11.31)

We know that at large distances, the spherical Bessel functions jn behave as:

jn (iηr) ∼ + (iηr)
−1

sin
(
iηr − nπ

2

)
+ e|=(iηr)|O

(
(iηr)

−2
)
, (2.11.32)

as given in eq.(C.3.4). The first term is clearly safe since the inverse term (iηr)
−1 will damp the

sinusoidal function, while the second one can cause problems due to the existence of the exponential
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factor that can grow faster than than (z)
−2 and can thus lead to a divergent behavior of the function

in the limit r → +∞. This apparent problem can only be solved by setting η to be purely imaginary,
and this sets this problematic exponential to e|=(iηr)| = 1. For simplicity reasons, we set:

η = −ib, (2.11.33)

which will reduce our radial functions of eq.(2.11.30) to:

πLκ,i = rj` (br)

πSκ,i =
~bsgn (κ)

2mc
rj`−sgn(κ) (br)

. (2.11.34)

Numerically speaking, one can consider specifying a vector of scaling constants {bκ,i}nκi=1, and expand
the α (label) wavefunction in the following basis:

ϕα,κ,mj (x) =

nκ∑
i=1

cLα,κ,i

[
rj` (bκ,ir) Ωκ,mj

0

]
+

nκ∑
i=1

cSα,κ,i

[
0

irj`−sgn(κ) (bκ,ir) Ω−κ,mj

]
. (2.11.35)

In figures 2.11.1a and 2.11.1b we plot the large and small basis functions πLκ,i/r and πSκ,i/r for the
s 1

2
-type functions (κ = −1), and we randomly choose the bκ,i vector to be:

bκ,i = i, for i = 1, . . . , 5. (2.11.36)

and normalize our functions over the radial region, extending from the origin to r = 10. In figures
2.11.1c and 2.11.1d we do the same for the p 3

2
-type functions (κ = −2).
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(a) Large basis functions κ = −1
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(b) Small basis functions κ = −1
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(d) Small basis functions κ = −2

Figure 2.11.1: Normalized Bessel basis functions built out of the bκ,i vector of eq.(2.11.36).
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2.11.3 A new basis for confined systems
The problem with the previous functions is that they cannot be normalized to 1 (over the infinite
space), but inside a spherical box (of finite radius) one can surely do so. In addition, an important
feature of this basis can be exposed when special scaling factors bκ,i are chosen. This feature concerns
the problem of the relativistic-electron confined within a sphere of some large radius R, where if one
chooses the scaling factors bκ,i to be:

bκ,i =
γκ,i
R
, (2.11.37)

where γκ,i is the i-th zero of the first-kind spherical Bessel function of order κ, jκ (r), then one
guaranties that all basis functions will vanish at r = R, and can verify that all these basis elements
are automatically orthogonal, within the confinement radius. A set of the γκ,i coefficients for the
first eight values of κ were computed using Mathematica [22] and are presented in the appendix
table C.1. Coefficients γκ,i with positive κ can be collected from Abramowitz and Stegun [60, Table
10.6]. Choosing the coefficients bκ,i with respect to eq.(2.11.37), forces the radial functions to vanish
at r = R, and insures the orthogonality of these functions within the sphere:

ˆ R

0

dr r2jκ

(
γκ,i

r

R

)
jκ

(
γκ,j

r

R

)
=
R3

2
(jκ+1 (γκ,i))

2
δij . (2.11.38)

See the appendix equation.(C.6.1). This last relation diverges for R→ +∞, as expected with respect
to eq.(C.4.8). Clearly one can normalize these functions, and get eq.(C.6.2):

j̃κ

(
γκ,i

r

R

)
=

1

|jκ+1 (γκ,i)|

√
2

R3
jκ

(
γκ,i

r

R

)
(2.11.39)

We shall call these functions: the confined Bessel basis functions. In figure 2.11.2 we plot the four
confined basis elements corresponding to the first four zeros of the spherical Bessel functions bκ,i of
eq.(2.11.37) (taken from table C.1).
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(a) Large basis functions κ = −1
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(b) Small basis functions κ = −1
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(c) Large basis functions κ = −2
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(d) Small basis functions κ = −2

Figure 2.11.2: Orthonormalized confined Bessel basis functions of eq.(2.11.39): using bκ,i =
γκ,i
R .

Conclusion

We conclude that the RKB prescription can be made symmetric under charge conjugation if one
uses the spherical Bessel basis functions as in eq.(2.11.30). In addition, in order to ensure vanishing
functions at large radii, one must set the constant η of eq.(2.11.30) to be a purely imaginary one,
as done in eq.(2.11.33). Furthermore, if one chooses the scaling constants bκ,i to be: bκ,i =

γκ,i
R

where γκ,i is the i-th zero location of the spherical Bessel function of order κ, one can construct an
orthogonal (and normalizable) set of basis functions, in the region that extends from r = 0 to r = R,
and let both components vanish at r = R (confining radius). As far as we know, this choice of basis
was not used nor discussed in literature.

2.11.4 The basis of free solutions
These basis functions we have just proposed are (almost) identical to the free-particle solutions,
which lets the reader ask the following question:

Why do we not construct a basis set out of the free-particle solutions?

One can imagine having a four-component basis set whose element are given by eq.(2.7.52):

ψFree
κ,mj (x, Eκ,i) =

[
j|κ+ 1

2 |− 1
2

(kκ,ir) Ωκ,mj

i
c~kκ,isgn(κ)
mc2+Eκ,i

j|κ− 1
2 |− 1

2
(kκ,ir) Ω−κ,mj

]

or ψFree
κ (r, Eκ,i) =

[
j|κ+ 1

2 |− 1
2

(kκ,ir)
c~kκ,isgn(κ)
mc2+Ei

j|κ− 1
2 |− 1

2
(kκ,ir)

]
,

(2.11.40)
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where each basis element is associated with a special kκ,i (or Eκ,i) value: a re-scaling of the Bessel
functions. The radial wavefunction which solves the numerical Dirac equation:[

mc2 − eϕ (r) −c~
[
d
dr −

κ
r

]
c~
[
d
dr + κ

r

]
Pκ −mc2 − eϕ (r)

]
ψnum
κ (r) = Eψnum

κ (r) , (2.11.41)

is expanded in the radial basis set of the free particle solutions given eq.(2.11.40):

ψnum
κ (r) =

n∑
i=1

cκi ψ
Free
κ (r, Eκ,i) . (2.11.42)

The matrix problem will thus become Hκ
ijc

κ
j = Eκj Sκijcκj , where the Hamiltonian and the overlap

matrices are respectively given by:

Hκ
ij =

ˆ ∞
0

drψFree†
κ (r, Eκ,i)

[
mc2 − eϕ (r) −c~

[
d
dr −

κ
r

]
c~
[
d
dr + κ

r

]
Pκ −mc2 − eϕ (r)

]
ψFree
κ (r, Eκ,j) (2.11.43)

Sκij =

ˆ ∞
0

drψFree†
κ,mj (r, Eκ,i)ψ

Free
κ,mj (r, Eκ,j) . (2.11.44)

From a mathematical point of view, we note that this choice of scheme has a very nice property: it
does not allow for the emergence of spurious solutions within the

(
−mc2,+mc2

)
energy gap, when

using any kind of potentials: positive or negative bounded potentials, in addition to the singular
(problematic) Coulomb potential, which makes it the best choice when comparing the following
options of basis functions:

1. Uncoupled large and small component function

2. Restricted kinetic balance

3. Atomic balance

4. Dual kinetic balance

5. Free-particle solution basis

This was pointed out by Lewin and Séré in [76, Pages 14-15] and [77, Theorems 2.10-11]. See, in
particular, table 2 of the latter reference. On the other hand, what can problematic about these
four-component functions is that they cannot be normalized over the whole space, which is consistent
with what we know about the nature of the plane-waves (continuum). To see more, we hold the torch
and proceed. The scalar product of two basis elements associated with (Ei, κ,mj) and

(
Ej , κ

′,m′j
)

is: ˆ
d3xψFree†

κ,mj (x, Eκ,i)ψ
Free
κ′,m′j

(x, Eκ,j) (2.11.45)

= δκ,κ′δmj ,m′j

ˆ ∞
0

r2dr
[
j|κ+ 1

2 |− 1
2

(kκ,ir) j|κ+ 1
2 |− 1

2
(kκ,jr)

]
+

δκ,κ′δmj ,m′jc
2~2kκ,ikκ,j

(mc2 + Eκ,i) (mc2 + Eκ,j)

ˆ ∞
0

r2dr
[
j|κ− 1

2 |− 1
2

(kκ,ir) j|κ′− 1
2 |− 1

2
(kκ,jr)

]
. (2.11.46)
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After making use of eq.(C.4.1), this expression reduces to:
ˆ
d3xψFree†

κ,mj (x, Eκ,i)ψ
Free
κ′,m′j

(x, Eκ,j)

= δκ,κ′δmj ,m′j
π

2k2κ,i
δ (kκ,i − kκ,j)

[
1 +

c2~2k2κ,i
(mc2 + Eκ,i)

2

]
,

(2.11.47)

which diverges once we try to normalize it by setting
(
Eκ,j , κ

′,m′j
)

= (Eκ,i, κ,mj), and vanishes if at
least one of these parameters of the left state is different from the one associated with the right state
(orthogonality). But, one can always normalize these oscillating basis functions on some finite radial
region, as we usually do in such cases. In addition, it is impossible to orthogonalize these functions
within the region r ∈ (0, R) and let both large and small component functions vanish simultaneously
at the walls of the sphere of radius R (as we have done for the confined basis of section 2.11.3). The
reason behind this claim is the following: if one sets the scaling functions kκ,i and kκ,j to be:

kκ,i/j =
γ|κ+ 1

2 |− 1
2 ,i/j

R
, (2.11.48)

then the first line of eq.(2.11.46) gets an orthogonalization relation, while the second does not, since
it needs:

kκ,i/j =
γ|κ− 1

2 |− 1
2 ,i/j

R
, (2.11.49)

instead of the previous relation, and since the kκ,i/j factors should be unique, orthogonalization of
the free basis is not possible, and as a conclusion:

1. Large and small basis functions cannot be made vanishing at the wall of the sphere, where
r = R, simultaneously.

2. Theses basis functions cannot be normalized (over the whole radial region r ∈ (0,+∞)).

We can therefore choose:

kLκ,i/j =
γ|κ+ 1

2 |− 1
2 ,i/j

R
, kSκ,i/j =

γ|κ− 1
2 |− 1

2 ,i/j

R
, (2.11.50)

for large and small component basis functions, but this would no longer be the basis of the free
solutions. The second point means that this choice of basis functions is not the best one for computing
bound-solutions, which should be represented by a normalized state, but as mentioned before, one
can consider a system confined in a radius R, and normalize his free basis functions with respect to
his region (not integrate over whole space). Two questions directly rose:

How to let both component vanish at the walls?

How to have a normalizable basis?

The answer to both questions is the following:

By decoupling large and small components of the free-basis, as what we have done for
RKB (and IKB), and pick up the right scaling factors of the spherical Bessel functions.

In the next section, we expand this answer.
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2.11.5 A Solution to the normalizability problem of the free basis
Recall that in the RKB problem we did not fix the coupling between large and small basis functions
(see 2.10.12), and by doing so with these free particle solutions, the radial wavefunction shall be
expanded in two sets of basis functions:

ψn,κ (r) =

n∑
i=1

aκi ψ
Free-L
κ

(
r, ELκ,i

)
+

n∑
i=1

bκi ψ
Free-S
κ

(
r, ESκ,i

)
, (2.11.51)

where ψFree-L
κ (r, Ei) and ψFree-S

κ (r, Ei) are the large and small basis elements, given by:

ψFree-L
κ (r, Eκ,i) =

[
j|κ+ 1

2 |− 1
2

(
kLκ,ir

)
0

]
; ψFree-S

κ (r, Ei) =

[
0

j|κ− 1
2 |− 1

2

(
kSκ,ir

)] . (2.11.52)

There are three important points to note here:

1. The factor in front of the small component function was removed, since it will be absorbed by
the final orthonormalization of the numerical solutions.

2. This basis is the same as the one obtained when trying to make RKB symmetric by charge
conjugation.

3. This basis (or two bases) are now orthogonalizable.

Concerning the third point, using the box orthogonality relation of eq.(C.6.1), the large component
overlap integral can be made equal to:

ˆ R

0

r2drψFree-L†
κ

(
r, ELκ,i

)
ψFree-L
κ

(
r, ELκ,j

)
=
R3

2

(
j|κ+ 1

2 |+ 1
2

(
γ|κ+ 1

2 |− 1
2 ,i

))2
δij , (2.11.53)

after setting the large component scaling factors kLκ,i/j to:

kLκ,i/j =
γ|κ+ 1

2 |− 1
2 ,i/j

R
. (2.11.54)

Similarly for the small component basis functions, we have:
ˆ R

0

r2drψFree-S†
κ (r, Ei)ψ

Free-S
κ (r, Ej) =

R3

2

(
j|κ− 1

2 |+ 1
2

(
γ|κ− 1

2 |− 1
2 ,i

))2
δij , (2.11.55)

after setting the small component scaling factors kSκ,i/j to be:

kLκ,i/j =
γ|κ− 1

2 |− 1
2 ,i/j

R
. (2.11.56)

As a conclusion, we say that to make the RKB method symmetric by charge conjugation, one
has to use decoupled free-particle solutions as basis functions for one’s calculations. In addition, if
the scaling constants kκ,i’s (or the previous ones: bκ,i’s) are chosen with respect to eqs.(2.11.54 and
2.11.56), one will get:

1. Othonormalizable basis functions.

2. Vanishing large and small components at the spherical wall of the cavity (at r = R).

In the next section, we are going to see that the realization of the C-symmetry can be nicely realized
in the dual kinetic balance scheme, under certain general conditions, without being forced to use
special kind of functions.
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2.11.6 C- symmetry in DKB
We now seek to find the circumstances under which the DKB method can be C-symmetric, i.e., its
basis elements satisfy the condition of eq.(2.11.1). We first proceed by applying the spherical C-
operation of eq.(2.8.17) on the [+] and [−] basis elements of the DKB method, given in eqs.(2.10.22
and 2.10.23), to get:

Cϕ[+]
i,κ,mj

(x) = sgn (κ) (−1)
mj− 1

2
1

r

[ ~
2mc

[
d
dr + κ

r

]
π+
κ,i (r) Ω−κ,−mj

iπ+
κ,i (r) Ω+κ,−mj

]
(2.11.57)

Cϕ[−]
i,κ,mj

(x) = sgn (κ) (−1)
mj− 1

2
1

r

[
π−κ,i (r) Ω−κ,−mj

i ~
2mc

[
d
dr −

κ
r

]
π−κ,i (r) Ωκ,−mj

]
. (2.11.58)

After looking at the basis functions associated with opposite κ and mj signs (see also table 2.1):

ϕ
[+]
i,−κ,−mj (x) =

1

r

[
π+
−κ,i (r) Ω−κ,−mj

i ~
2mc

[
d
dr −

κ
r

]
π+
−κ,i (r) Ω+κ,−mj

]
(2.11.59)

ϕ
[−]
i,−κ,−mj (x) =

1

r

[ ~
2mc

[
d
dr + κ

r

]
π−−κ,i (r) Ω−κ,−mj

iπ−−κ,i (r) Ω+κ,−mj

]
, (2.11.60)

we clearly see that the charge conjugated basis elements Cϕ[+]
i,κ,mj

and Cϕ[−]
i,κ,mj

become proportional

–up to an insignificant phase factor of sgn (κ) (−1)
mj− 1

2 – to ϕ[−]
i,κ,mj

and ϕ[+]
i,κ,mj

respectively, if one
sets:

π−−κ,i (r) = π+
κ,i (r)

π+
−κ,i (r) = π−κ,i (r)

, (2.11.61)

which are the same conditions obtained when we tried to make two-component basis functions C-
symmetric (see eq.(2.11.8)). We thus conclude that in order to make the DKB basis, C-symmetric, for
each κ basis set one must introduce a −κ basis, where the the basis functions of the latter set should
be related to the one associated with the former one by the last relations. For spherical Gaussian-
type functions of eqs.(2.9.12 and 2.9.13), these last conditions lead to the following restriction on
the Gaussian exponents:

ζL±κ,i = ζS∓κ,i. (2.11.62)

This relation means that one has to provide the same set of basis functions for opposite κ, opposite
L/S functions, as presented in table 2.9, where the set of exponents for table boxes containing same
color bullets are equal. This shows that the large and small component exponents for the same κ do
not have to be the same, and this gives a numerical flexibility by approximating different components
with different sets of exponents.

κ ζLκ ζSκ
−1 • •
+1 • •
−2 • •
+2 • •

Table 2.9: Exponents of the C-symmetric DKB problem.
Same color dots exponents indicates same sets of exponents.
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In addition, less generally, if the Gaussian exponents are set to be the same for large and small
component functions, the last restriction reduces to:

ζ±κ,i = ζ∓κ,i, (2.11.63)

meaning that the same exponent list should be set for opposite κ-sign problems (large and small),
as presented in table 2.10. This second restriction leads to what is known as the j-basis, which we

κ ζLκ ζSκ
−1 • •
+1 • •
−2 • •
+2 • •

Table 2.10: The j-basis DKB exponents.
Notice that this is a special case of the previous table.

Same color dots exponents indicates same sets of exponents.

mention in our appendix section E.3. It was in addition mentioned by Dyall [83, Page 38] that this
choice of exponents conserves the charge conjugation symmetry in the DKB scheme.

In order to see how the charge conjugation partners can be related within the DKB scheme, we
consider the two following DKB matrix equations:

H−e,κc−e,α,+κ = ε−e,α,+κS+κc−e,α,+κ

H+e,−κc+e,α,−κ = ε+e,α,−κS−κc+e,α,−κ
, (2.11.64)

associated with (−e,+κ) (electronic problem) and (+e,−κ) (positronic problem), respectively. After
playing around with these Hamiltonians and overlap matrices, given in eqs.(E.2.4 and E.2.5), one
can show that the following relations:

σ1H−e,+κσ1 = −H+e,−κ

σ1S+κσ1 = +S−κ
, (2.11.65)

hold, and this translates into the charge conjugation symmetry between between eigensolutions of
these equations:

ε+e,α,−κ = −ε−e,α,+κ (2.11.66)
c−e,α,−κ = σ1c−e,α,+κ. (2.11.67)

To underline this result, we have performed two simple DKB calculations:

• Electronic calculation (q = −e) with κ = −1.

• Positronic calculation (q = +e) with κ = +1.

in the presence of a Coulomb potential with Z = 50, and using ζ±1 = {10, 20}. The results of these
two calculations are presented in table 2.11. The results show a clear symmetry between eigenvalues
of both problems, as predicted by eq.(2.11.66), in addition to the symmetry between components of
these opposite energy- (κ- and charge-)solutions, as predicted by eq.(2.11.67), and seen in table 2.1.
See, for instance, the two solutions whose eigenvalues are marked with a small red dot, and notice
the swapping between larger and small component functions coefficients.
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Coefficients
κ q α Eigenvalue (a.u.) c

[+]
α,κ,1 c

[+]
α,−1,2 c

[−]
α,−1,1 c

[−]
α,−1,2

−1 −e

1 +18650.67234 −32.38429 40.36185 −0.00043 0.00699
2 +18414.94674 −14.01065 43.48589 0.00939 −0.03560
3 −18929.12245 −0.00085 0.00132 −87.93880 116.82878
4 ·−19117.00120 0.00081 −0.00519 52.95793 −214.29435

+1 +e

1 ·+19117.00120 −52.95793 214.29435 −0.00081 0.00519
2 +18929.12245 −87.93880 116.82878 −0.00085 0.00132
3 −18414.94674 −0.00939 0.03560 14.01065 −43.48589
4 −18650.67234 −0.00043 0.00699 −32.38429 40.36185

Table 2.11: Two small DKB calculations using a C-symmetric basis set.

It should be finally noted that in the case where the radial basis functions are κ-independent
(example: B-splines bases), then the charge conjugation conjugation symmetry is automatically
conserved within the DKB scheme. As a conclusion, we find that, in contrary to the RKB problem,
the charge conjugation symmetry can be obeyed in the DKB scheme, “without” restriction on the
choice of basis functions. We shall come back to the results obtained in this chapter, once we attack
the vacuum polarization problem in the finite basis approximation. We shall now show, step by step,
how the quantum electrodynamic corrections (example: the vacuum polarization) can be derived
within the S-matrix formalism.



Chapter 3

Quantum electrodynamics

There is a most profound and beautiful question associated with the observed coupling constant
e the amplitude for a real electron to emit or absorb a real photon. It is a simple number that
has been experimentally determined to be close to 0.08542455. (My physicist friends won’t
recognize this number, because they like to remember it as the inverse of its square: about
137.03597 with an uncertainty of about 2 in the last decimal place). It has been a mystery ever
since it was discovered more than fifty years ago, and all good theoretical physicists put this
number upon their wall and worry about it. Immediately you would like to know where this
number for a coupling comes from: is it related to pi, or perhaps to the base of natural
logarithms? Nobody knows. It’s one of the greatest damn mysteries of physics: a magic number
that comes to us with no understanding by man. You might say the "hand of God" wrote that
number, and "we don’t know how He pushed His pencil." We know what kind of a dance to do
experimentally to measure this number very accurately, but we don’t know what kind of a dance
to do on a computer to make this number come out without putting it in secretly!

Richard P. Feynman - QED: The Strange Theory of Light and Matter [84]

Our ultimate goal in this chapter is to show how one can derive bound state QED corrections,
starting from the non-interacting electron and photon field operators and propagators, passing by
the S-matrix formalism, and ending by the QED energy-shift expressions associated with different
orders of the S-matrix. We will derive in detail the second-order S-matrix energy-shifts, which
will be then ready (at least in principle) to get employed in practical numerical calculations. The
derivation of these energy-shifts can be found, in separate parts, in the literature. We have thus
decided to consider a “full” derivation in this chapter, which will be very useful for new learners of the
field. Furthermore, in the last sections of this chapter we will consider the effective QED potentials,
i.e. the position-space Hamiltonian representation of the some of the lowest-order QED processes,
in addition to a general discussion on how one can include QED effects in the Hartree-Fock theory.
It should be finally noted that the self-consistent inclusion of a low order correction, will allow the
account for some of the higher-order corrections, more specifically, the ones that can be represented
by reducible Feynman diagrams.

64
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3.1 Quantum mechanical pictures
In quantum mechanics there exist three dynamical pictures, in which one can formulate the mathe-
matics of a quantum problem. In principle, these pictures are equivalent, since the measured physical
quantity (nature) should be picture-independent of human made quantities. In the next subsections
we shall present these representations and discuss their important distinct features.

3.1.1 Schrödinger picture
The Schrödinger picture considers the case where observables that are represented by Hermitian
operators are fixed (time-independent) while the quantum states evolve in time, and do solve an
equation of motion. The Schrödinger state |ψS (t)〉 , satisfies the Schrödinger equation:

i~
d

dt
|ψS (t)〉 = ĤS |ψS (t)〉 , (3.1.1)

where ĤS is some time-independent Hamiltonian. In this picture, the state evolves from t0 to some
time t, with the help of the time-evolution operator:

|ψS (t)〉 = U (t, t0) |ψS (t0)〉 . (3.1.2)

Since ĤS is time-independent, the time-evolution operator is found to be:

U (t, t0) = e−iĤS(t−t0)/~, (3.1.3)

as will be seen in section 3.2.1. The expectation value of some observable associated with the
operator ÔS (t), is given by: 〈

Ô
〉

= 〈ψS (t)| ÔS (t) |ψS (t)〉 . (3.1.4)

3.1.2 Heisenberg picture
In this picture, operators evolve in time, while wavefunctions do not. The Heisenberg state is
obtained from the Schrödinger one by:

|ψH〉 = eiĤS(t−t0)/~ |ψS (t)〉 = |ψS (t0)〉 , (3.1.5)

where one sees that this state is defined to be the Schrödinger state at t = t0 (fixed in time), while
the time evolution is manifested by the observable operator. Again, one has to keep in mind that
the Hamiltonian is time-independent. Using this last equation, we can write our expectation value
of eq.(3.1.4) as: 〈

Ô
〉

= 〈ψH | eiĤS(t−t0)/~ÔS (t) e−iĤS(t−t0)/~ |ψH〉 , (3.1.6)

where the operator sandwiched between Heisenberg states, defines the Heisenberg operator:

ÔH (t) = eiĤS(t−t0)/~ÔS (t) e−iĤS(t−t0)/~. (3.1.7)

Notice that even if ÔS (t) is time-independent, in the Heisenberg picture this operator gains (in
general) a time-dependence. After differentiation the Heisenberg observable operator with respect
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to time, one obtains the Heisenberg equation of motion associated with the operator (instead of the
wavefunction as in Schrödinger’s picture):

i~
d

dt
ÔH (t) =

[
ÔH (t) , ĤH

]
+ i~

{
d

dt
ÔS (t)

}
H

, (3.1.8)

where
{
d
dt ÔS

}
H

= eiĤSt/~ d
dt ÔSe

−iĤSt/~. It is worth noting that the Hamiltonian operator is
unchanged:

ĤH (t) = eiĤS(t−t0)/~ĤSe
−iĤS(t−t0)/~ = ĤS = ĤH , (3.1.9)

where we used the trivial fact that ĤS commutes with itself. In addition, we recall that observables
are time-independent in the Schrödinger picture, which leads to a vanishing of the curly bracket term
of eq.(3.1.3), but time-dependence is assumed for future purposes (to allow comparison between
different pictures). It should be now clear why the Schrödinger’s quantum mechanics was called
wave-mechanics: since the equation of motion describes the evolution of the wavefunction, while
Heisenberg’s one is referred to as matrix-mechanics: since its associated equation of motion describes
the evolution of the operator instead. Dirac proposed a third picture, called the interaction picture,
which “combines” both pictures, and is more suitable for perturbation problems. This picture shall
be discussed in the next section.

3.1.3 Interaction (intermediate) picture
This picture is actually a hybrid of the last two. The Hamiltonian here is written as a sum of
a time-independent free Hamiltonian Ĥ0

S , and an interaction HamiltonianĤ1
S (t) which might be

time-dependent:
ĤS (t) = Ĥ0

S + Ĥ1
S (t) . (3.1.10)

The fact that the interaction term has a time dependence might be confusing for the reader, since two
section ago, we stated that the Hamiltonian in the Schrödinger picture is strictly time-independent.
This should cause no problem since this term only exists to link between the two pictures, and
the subscript S is there (on Ĥ1

S (t)) to remind us that when changing pictures this term should be
treated as (and is) a Schrödinger operator. Notice at this point that the Schrödinger-state evolution
operator can no longer be written as an exponential, as in eq.(3.1.3), since the Hamiltonian is
now time-dependent. As in the Heisenberg picture, the interaction picture state vector is defined
as a transformed Schrödinger state, but this time the exponential only includes the free (time-
independent) Hamiltonian:

|ψI (t)〉 = eiĤ
0
St/~ |ψS (t)〉 . (3.1.11)

As a result the observable operator in this picture becomes related to the Schrödinger one by:

ÔI (t) = eiĤ
0
St/~ÔS (t) e−iĤ

0
St/~. (3.1.12)

We first plug |ψS (t)〉 of eq.(3.1.11) in the Schrödinger equation of eq.(3.1.1), and obtain the first
equation of motion associated with the interaction state:

i~
d

dt
|ψI (t)〉 = Ĥ1

I (t) |ψI (t)〉 ; with Ĥ1
I (t) = e+iĤ

0
St/~Ĥ1

S (t) e−iĤ
0
St/~, (3.1.13)

where only the interaction Hamiltonian Ĥ1
I (t) (in the interaction picture) appears. After differen-

tiating the observable operator of eq.(3.1.12) with respect to time, one obtains the second equation
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Schrödinger Interaction Heisenberg

State |ψX (t)〉 e−iĤ
0
S(t−t0)/~ |ψS (t0)〉 eiĤ

0
St/~ |ψS (t)〉 e

− 1
i~
´ t
t0
dt1ĤS(t1) |ψS (t)〉 = |ψS (t0)〉

Observable ÔX ÔS (t) eiĤ
0
St/~ÔS (t) e−iĤ

0
St/~ e

− 1
i~
´ t
t0
dt1ĤS(t1)ÔS (t) e

1
i~
´ t
t0
dt1ĤS(t1)

Table 3.1: Comparison between quantum mechanical pictures. X = S, I,H.

of motion, associated with the observable operator:

i~
d

dt
ÔI (t) =

[
ÔI (t) , Ĥ0

S

]
+ i~

{
d

dt
ÔS (t)

}
I

. (3.1.14)

It is clearly seen at this point that this picture combines both pictures, by having a state equation of
motion (EOM) as in the Schrödinger picture, and an observable EOM as in the Heisenberg picture,
meaning that time evolution is manifested in both quantities. As claimed, the observable expectation
value (measurement), is, as it should be, picture independent:〈

Ô
〉

= 〈ψS (t)| ÔS (t) |ψS (t)〉 (3.1.15)

= 〈ψH | ÔH (t) |ψH〉 (3.1.16)

= 〈ψI (t)| ÔI (t) |ψI (t)〉 . (3.1.17)

We present a summary of the quantum mechanical pictures in table 3.1. For detailed discussions
about quantum mechanical pictures, the reader might consult [85, 86, 64].

3.2 Time-evolution operator
In this section, we shall derive the time-evolution operator that takes a state from some time t1 to
another time t2 for both Schrödinger and Dirac (interaction) pictures of quantum mechanics.

3.2.1 Time-evolution operator for the Schrödinger picture
In the Schrödinger picture the state satisfies the state equation of motion:

i~
d

dt
|ψS (t)〉 = Ĥ0

S |ψS (t)〉 , (3.2.1)

where Ĥ0
S is a time-independent Hamiltonian. We first define the time-evolution operator, as the

operation which evolves the state from a time t0 to some time t, i.e. :

|ψS (t)〉 = Û (t, t0) |ψS (t0)〉 . (3.2.2)

For logical consistency, this operator has to have the following properties:

Û (t, t) = 1 (3.2.3)

Û (t1, t2) Û (t2, t1) = 1 (3.2.4)

Û (t2, t1) Û (t1, t0) = Û (t2, t0) . (3.2.5)

These properties are explained below:



CHAPTER 3. QUANTUM ELECTRODYNAMICS 68

• If one does not evolve the state, it should be left unchanged, i.e. the time-evolution reduces
to the identity operation.

• Evolving the state from some time t1 to t2, then going back, should also leave the state
unchanged, which means that the operator with exchanged times is the inverse of the original
operator:

Û (t2, t1) =
(
Û (t1, t2)

)−1
. (3.2.6)

• Finally, two consecutive time-evolutions are equivalent to a single evolution.

In addition, to ensure state normalization at all times, this time-evolution operator must unitary.
Assuming that the initial state is normalized:

〈ψS (t0)| ψS (t0)〉 = 1. (3.2.7)

If Û is a unitary operator, then the evolved state will also be normalized:

〈ψS (t)| ψS (t)〉 = 〈ψS (t0)|
(
Û (t, t0)

)†
Û (t, t0) |ψS (t0)〉 (3.2.8)

= 〈ψS (t0)| ψS (t0)〉 = 1. (3.2.9)

After plugging the evolved state of eq.(3.2.2) in the Schrödinger equation of eq.(3.2.1), one obtains
the following equation for the time-evolution operator:

i~
d

dt
Û (t, t0) = Ĥ0

SÛ (t, t0) , (3.2.10)

where its solution is easily found to be:

Û (t, t0) = e+
1
i~ Ĥ

0
S(t−t0). (3.2.11)

3.2.2 Time-evolution operator for the Interaction picture
Again, we define the time evolution operator as the application that takes the interaction state from
t0 to t:

|ψI (t)〉 = Û (t, t0) |ψI (t0)〉 . (3.2.12)

We plug this expression in the associated equation of motion of eq.(3.1.13), and obtain the equation
for the time-evolution operator:

i~
d

dt
Û (t, t0) = Ĥ1

I (t) Û (t, t0) . (3.2.13)

Notice that the interaction operator is time-dependent, unlike the previous case of eq.(3.2.10) where
Ĥ0
S was time-independent, and this complicates the problem. We shall next show how to untie this

knot.
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First attempt: After being inspired by the time-evolution operator for the Schrödinger picture
states, one can imagine a solution of the following form:

Û (t, t0) = e
1
i~
´ t
t0
Ĥ1
I (t
′)dt′ , (3.2.14)

which clearly satisfies the time-evolution equation.(3.2.13) (one may check using Leibniz integral
rule). This solution is discarded because it sets a commutation restriction on the interaction Hamil-
tonian, which is not guaranteed. This can be seen from the third property of the Û operator given
in eq.(3.2.5), which (in this case) becomes:

e
1
i~
´ t2
t1
Ĥ1
I (t
′)dt′e

1
i~
´ t1
t0
Ĥ1
I (t
′′)dt′′ = e

1
i~
´ t2
t0
Ĥ1
I (t
′)dt′ , (3.2.15)

and this is problematic, since we know that:

eÂeB̂ 6= eÂ+B̂ , if
[
Â, B̂

]
6= 0, (3.2.16)

which means that the third property is respected only in the case where the interaction Hamiltonian
commutes with itself: [

Ĥ1
I (t1) , Ĥ1

I (t2)
]

= 0, (3.2.17)

for all times t1, and t2, which is not generally the case. Notice that when Ĥ1
I (t) is replaced by the

time-independent ĤS , this solution works and gives eq.(3.2.11), since the last commutation condition
holds in that case.

Second attempt: Another way to attack the equation, is to integrate it with respect to time:

i~
ˆ t′

t0

dt
d

dt
Û (t, t0) =

ˆ t′

t0

dtĤ1
I (t) Û (t, t0) , (3.2.18)

which after forcing the first property of eq.(3.2.3) to be obeyed (boundary-condition), leads to:

Û (t, t0) = 1 +
1

i~

ˆ t

t0

dt′Ĥ1
I (t′) Û (t′, t0) . (3.2.19)

Using Leibniz integral rule, this solution can be verified to satisfy eq.(3.2.13). Since this last equation
shows the solution as an integral function of the solution itself, one gets rid of this dependence by
iteratively replacing Û (t′, t0) on the right side of the last equation by its value, for infinitely many
times, and this leads to:

Û (t, t0) = 1 +
1

i~

ˆ t

t0

dt′Ĥ1
I (t′)

(
1 +

1

i~

ˆ t′

t0

dt′′Ĥ1
I (t′′)

(
1 +

1

i~

ˆ t′′

t0

dt′′′Ĥ1
I (t′′′) (. . .)

))
, (3.2.20)

which can be rearranged as a sum of integrals over powers of the interaction Hamiltonian, as follows:

Û (t, t0) = 1 Û0

+
1

i~

ˆ t

t0

dt1Ĥ
1
I (t1) Û1

+
1

(i~)
2

ˆ t

t0

dt1

ˆ t1

t0

dt2Ĥ
1
I (t1) Ĥ1

I (t2) Û2

+
1

(i~)
3

ˆ t

t0

dt1

ˆ t1

t0

dt2

ˆ t2

t0

dt3Ĥ
1
I (t1) Ĥ1

I (t2) Ĥ1
I (t3) Û3

+ . . .

(3.2.21)
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Notice that while the lower integration limits are all t0, the upper ones are different from each others.
This mismatch can be overcomed using the time-ordering operator. To see how this is done, we focus
on the two-interaction Û2-term, and follow what was done by Fetter in [87, section 6] and Schweber
in [4, section 11f], where this integral is written as half the sum of two equivalent integrations:

Û2 (t, t0) =

ˆ t

t0

dt1

ˆ t1

t0

dt2Ĥ
1
I (t1) Ĥ1

I (t2)

=
1

2

(ˆ t

t0

dt1

ˆ t1

t0

dt2Ĥ
1
I (t1) Ĥ1

I (t2) +

ˆ t

t0

dt2

ˆ t

t2

dt1Ĥ
1
I (t1) Ĥ1

I (t2)

). (3.2.22)

To help visualize the integrations, we plot the integration regions in figure 3.2.1. The first integral in
the last equation is performed along the blue region that scans the lower triangle, while the second
integral scans this triangle along the red region, these integrations are thus equivalent. Notice that
these integrations lie in the region where t1 > t2. We then exchange the integration variables t1 � t2
in the second integral and obtain:

Û2 (t, t0) =
1

2

(ˆ t

t0

dt1

ˆ t1

t0

dt2Ĥ
1
I (t1) Ĥ1

I (t2) +

ˆ t

t0

dt1

ˆ t

t1

dt2Ĥ
1
I (t2) Ĥ1

I (t1)

)
, (3.2.23)

where the second integral now scans the upper triangle region, as pictured in figure 3.2.2. We can
now extend these integrations to cover both triangles, i.e. the whole square, if we multiply each
integrand by a Heaviside function that vanishes in the unwanted region, we therefore write:

Û2 (t, t0) =
1

2

(ˆ t

t0

dt1

ˆ t

t0

dt2Ĥ
1
I (t1) Ĥ1

I (t2) Θ (t1 − t2) +

ˆ t

t0

dt1

ˆ t

t0

dt2Ĥ
1
I (t2) Ĥ1

I (t1) Θ (t2 − t1)

)
.

(3.2.24)
Now, these two integrals are combined into a single one, where the integration limits more elegant,
by being decoupled:

Û2 (t, t0) =
1

2

ˆ t

t0

dt1

ˆ t

t0

dt2T
[
Ĥ1
I (t1) Ĥ1

I (t2)
]
, (3.2.25)

where we introduced the time-ordering operator T, which orders a string of time-dependent operators
with respect to their time, such that later-time operators act after early ones:

T
[
Ĥ1
I (t1) Ĥ1

I (t2)
]

=

{
Ĥ1
I (t1) Ĥ1

I (t2) if t1 > t2

Ĥ1
I (t2) Ĥ1

I (t1) if t2 > t1
. (3.2.26)

So far we have discussed the two-interaction Hamiltonian term, this approach can be generalized
to an n-interaction Hamiltonian term:

Ûn (t, t0) =
1

(i~)
n

ˆ t

t0

dt1

ˆ t1

t0

dt2 . . .

ˆ tn−1

t0

dtnĤ
1
I (t1) Ĥ1

I (t2) . . . Ĥ1
I (tn) , (3.2.27)

which, using the same previous approach, can be written as:

Ûn (t, t0) =
1

n!

1

(i~)
n

ˆ t

t0

dt1

ˆ t

t0

dt2 . . .

ˆ t

t0

dtnT
[
Ĥ1
I (t1) Ĥ1

I (t2) . . . Ĥ1
I (tn)

]
, (3.2.28)

where the 1
n! term appears because one can permute the time string (t1, . . . tn) and obtain n! permu-

tations, following the same trick discussed above for n = 2. Finally, since the time-ordering operator
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Figure 3.2.1: Integrations of eq.(3.2.22) Figure 3.2.2: Integrations of eq.(3.2.23)

can be taken out of the integration sign, the full time-evolution operator can be written as:

Û (t, t0) =

∞∑
n=1

Ûn (t, t0) = T
[
e

1
i~
´ t
t0
dt1Ĥ

1
I (t1)

]
, (3.2.29)

which is known as the Dyson series of the time-evolution operator [88]. The exponential of the last
expression is to be understood as:

e
1
i~
´ t
t0
dt1Ĥ

1
I (t1) = 1 +

1

i~

ˆ t

t0

dt1Ĥ
1
I (t1) +

1

2!

1

(i~)
2

ˆ t

t0

dt1

ˆ t

t0

dt2Ĥ
1
I (t1) Ĥ1

I (t2) + . . . . (3.2.30)

For further discussions on the time-evolution operator of the interaction picture, the reader may
consult Greiner and Reinhardt [89, section 8.3], in addition to Tannoudji et al. [90, chapter XX
section A].

3.3 The scattering matrix
The scattering matrix is defined as the time-evolution operator that evolves the state from the very
past to the very future. In other words, it relates the initial state of system (before any interaction)
at t = −∞, represented by |ψI (−∞)〉, to the corresponding final state at t = +∞, |ψI (+∞)〉, after
all sorts of interactions, that are manifested by the interaction Hamiltonian term Ĥ1

I (t). In the
next section we shall see that this can be made if this interaction Hamiltonian contains a damping
factor of the form of e−

ε
~ |t| which turns off the interaction at large times. This exponential factor

is not present in the conventional QED theory that treats free-electrons, but is needed in our case:
in Bound State Quantum Electrodynamics, where electrons are represented by wavefunctions that
do solve the bound Dirac equation instead of the free-one. See, for instance, Labzowsky et al. [91,
section 1.3]. The action of the Ŝ-matrix on the state vector is mathematically represented by the
following equation:

|ψI (t = +∞)〉 = Ŝ |ψI (t = −∞)〉 ; Ŝ = Û (+∞,−∞) , (3.3.1)
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where the scattering matrix operator Ŝ becomes, using eq.(3.2.29):

Ŝ = T
[
e

1
i~
´+∞
−∞ dtĤ1

I (t)
]
. (3.3.2)

Contrary to the time-evolution operator, the scattering matrix is Lorentz invariant, if the interaction
Hamiltonian is. See Weinberg [92, section 3.3] for instance. The interaction Hamiltonian can be
written as a spatial integral of the interaction Hamiltonian density ĤI (x):

Ĥ1
I (t) =

ˆ
d3xĤI (x) . (3.3.3)

This form of the interaction Hamiltonian leads to an S-matrix form where the integrations scans
the whole spacetime:

Ŝ = T
[
e

1
ic~
´
d4xĤI(x)

]
, (3.3.4)

where the speed of light is added to keep the right dimensions, since x0 = ct. This Ŝ-matrix can be
expanded with respect to eq.(3.2.30):

Ŝ =

∞∑
n=0

Ŝ(n), (3.3.5)

where the n-th Ŝ-matrix is given by [93, (6. 23)]:

Ŝ(n) =
1

n! (ic~)
n

ˆ
d4x1 . . .

ˆ
d4xnT

[
ĤI (x1) . . . ĤI (xn)

]
. (3.3.6)

3.4 Solving the perturbed problem
We should now focus on solving the perturbed problem, and show how one can write the perturbed
states and energies, as a function of the unperturbed ones. We first consider a total Hamiltonian of
the following form:

ĤS = Ĥ0
S + λĤ1

S , (3.4.1)

which contains the following two terms:

1. A simple free Hamiltonian, which describes the mechanics of the non-interacting particles, and
whose eigensolutions are assumed to be solved in an exact manner (analytically).

2. A perturbation Hamiltonian λĤ1
S that complicates the problem, and prevent us from treating

the whole problem exactly. Here, λ represents the dimensionless perturbation parameter, that
can be varied between 0 (perturbation set off), to 1 (full perturbation), this parameter will
help us keep track of the perturbation order.

The free time-independent Hamiltonian equation whose solutions are in our hands, is given by:

Ĥ0
S |Φα0 〉S = Eα0 |Φα0 〉S ; |Φα0 (t)〉S = e−iE

α
0 t/~ |Φα0 〉S , (3.4.2)

where the α superscript labels solutions (states and associated energy levels) and 0 indicates that
these eigensolutions solve the non-perturbed problem. The ultimate goal, is to find the solutions of
the total problem:

ĤS |Φα〉S = Eα |Φα〉S ; |Φα (t)〉S = e−iE
αt/~ |Φα〉S , (3.4.3)
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in which the perturbation is taken into account. The first step towards solving this problem starts
by the following replacement of the perturbation Hamiltonian:

Ĥ1
S → Ĥ1

S (t; ε) = e−
ε
~ |t|Ĥ1

S , (3.4.4)

which consists of multiplying it by an exponential factor e−
ε
~ |t| known as the adiabatic switching

term. This term was invented/used by Lippmann and Schwinger in [94, page 437]. See also Lab-
zowsky et al. [91, section 1.3]. For future purposes, the reduced Planck constant ~ is added to the
denominator of the exponent so that the variable ε gets the units of energy. The total Hamiltonian
is now:

ĤS (t; ε) = Ĥ0
S + λĤ1

S (t; ε) , (3.4.5)

which clearly bridges the gap (interpolates) between the total Hamiltonian that we seek to solve,
and the unperturbed one:

ĤS (0; ε) = ĤS (3.4.6)

ĤS (±∞; ε) = Ĥ0
S . (3.4.7)

The Schrödinger equation becomes:

i~
∂

∂t
|Φα (t; ε)〉S = ĤS (t; ε) |Φα (t; ε)〉S . (3.4.8)

After switching to the interaction picture, the state becomes:

|Φα (t; ε)〉I = eiĤ
0
St/~ |Φα (t; ε)〉S , (3.4.9)

and satisfies the following equation:

i~
∂

∂t
|Φα (t; ε)〉I = λĤ1

I (t; ε) |Φα (t; ε)〉I . (3.4.10)

The perturbation Hamiltonian in the interaction picture is:

Ĥ1
I (t; ε) = e+iĤ

0
St/~Ĥ1

S (t; ε) e−iĤ
0
St/~. (3.4.11)

Following what was done in section 3.1, the interaction picture state at time t, |Φα (t; ε)〉I can be
written as a time-evolution of a different state:

|Φα (t; ε)〉I = Û (t, t0; ε, λ) |Φα (t0; ε)〉I , (3.4.12)

where the time-evolution operator satisfies the equation:

i~
∂

∂t
Û (t, t0; ε, λ) = λĤ1

I (t; ε) Û (t, t0; ε, λ) , (3.4.13)

and similarly to the previous discussion of section 3.2.2, the solution of this equation is written as:

Û (t, t0; ε, λ) = T
[
e
λ
i~
´ t
t0
dt1e

− ε~ |t1|Ĥ1
I (t1)

]
; with Ĥ1

I (t) = e+iĤ
0
St/~Ĥ1

Se
−iĤ0

St/~. (3.4.14)

In accordance with this expression of the time-evolution operator, the Ŝ-matrix becomes:

Ŝ (ε, λ) = Û (+∞,−∞; ε, λ) = T
[
e
λ
i~c
´
d4x1e

− ε~ |t1|ĤI(x1)
]
, (3.4.15)
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and will thus expand as:

Ŝ (ε, λ) =

∞∑
i=0

Ŝ(i) (ε, λ)

= 1 +
1

1!

λ

i~c

ˆ
d4x1e

− ε
~ |t1|T

[
ĤI (x1)

]
+

1

2!

(
λ

i~c

)2 ˆ
d4x1

ˆ
d4x2e

− ε
~ (|t1|+|t2|)T

[
ĤI (x1) ĤI (x2)

]
+O

(
λ3
)
. (3.4.16)

We shall indicate what we are going to do next, so we can set the compass in the right direction. In
the next sections, we shall:

1. Present the Gell-Mann and Low theorem which expresses the corrected (perturbed) states of
eq.(3.4.3) in terms of the last time-evolution operator given in eq.(3.4.14), and the unperturbed
states of eq.(3.4.2).

2. Show how the corrected energy levels Eα of eq.(3.4.3) are related to the corrected one, given in
eq.(3.4.2), using the Sucher’s formula, that corresponds to a symmetrization of the Gell-Mann
and Low formula.

3. Specify the interaction density Hamiltonian ĤI (x1) associated with the QED interaction: the
coupling between the quantized photon and electron field operators.

4. Introduce the Wick’s theorem [95] which will allow us to write the time-ordered products that
appear in the last S-matrix expansion of eq.(3.4.16) in terms of normal ordered products,
which are ultimately represented by Feynman diagrams.

3.4.1 Corrected wavefunctions
Gell-Mann and Low first derived the relation between both states: the solutions of eqs.(3.4.2 and
3.4.3), and obtained the following result [96, eq.(10)]:

|Φα〉 = lim
ε→0
λ→1

 Û (0,−∞; ε, λ) |Φα0 〉〈
Φα0

∣∣∣Û (0,−∞; ε, λ)
∣∣∣Φα0〉

 , (3.4.17)

in which the perturbed state is written as a function of the unperturbed one and the time-evolution
operator which includes the interactions. This was later known as the Gell-Mann and Low theorem,
which claims that if the limε→0 in the previous equation exists, then |Φα〉 is an eigenvector of the
perturbed Hamiltonian. See Greiner and Reinhardt [89, Example 8.1].

3.4.2 Corrected energies
The associated energy-shift, experienced by the system of particles in the |Φα〉 state, is given by [97,
eq.(6.24)]:

∆Eα = Eα − Eα0 = lim
ε→0
λ→1

[
iελ

∂

∂λ
ln
〈

Φα0

∣∣∣Û (0,−∞; ε, λ)
∣∣∣Φα0〉] . (3.4.18)



CHAPTER 3. QUANTUM ELECTRODYNAMICS 75

Discussions and proofs of the Gell-Mann and Low theorem can be found in [87, pages 61-64] [89,
Chapter 8] and [4, Section 11.f]. Six years later, Sucher provided a more time-symmetric formula
for the energy-shift, in which the Ŝ-matrix appears [98, eqs.(4,15)]:

∆Eα = lim
ε→0
λ→1

[
iελ

2

∂

∂λ
ln
〈

Φα0

∣∣∣Ŝ (ε, λ)
∣∣∣Φα0〉] ; with Ŝ (ε, λ) = Û (+∞,−∞; ε, λ) . (3.4.19)

instead of the time-evolution operator. At this point it is worth noting that the natural logarithm
is dimensionless, and thus the last expressions has units of ε, i.e. the units of energy. See eq.(3.4.4)
and the paragraph below.

3.5 The electron-photon field interaction: QED theory
In this section, we shall present the specific form of the QED interaction Hamiltonian that enters in
our scattering matrix. We shall first introduce our electron and photon field operators, then discuss
how these fields do interact, treat this interaction perturbatively (as done in previous sections), and
finally discuss the lowest-order interaction corrections: the Quantum ElectroDynamic corrections.

3.5.1 Photon field operator
The quantized photon-field operator can be written a sum of two sub-sums:

Aµ (x) = A+
µ (x) +A−µ (x) , (3.5.1)

which runs over positive and negative-energy modes respectively. See Mandl and Shaw [93, eqs.(1.15,1.38)].
The individual sums are given by the following formulas:

A+
µ (x) =

3∑
r=0

∑
k

√
~

2ε0ωkV
εµ (k, r) a (k, r) e−ik·x (3.5.2)

A−µ (x) =

3∑
r=0

∑
k

√
~

2ε0ωkV
εµ (k, r) a† (k, r) e+ik·x, (3.5.3)

where the zeroth component of the four-wavevector is simply the absolute value of the wave vector,
k0 = |k| = ωk/c. The multiplicative constant

√
~/ (2ε0ωkV ) gives the quantized photon field

operator the units of the classical external potential: mc/e, and leads to a normalization of the
photon energy ~ωk within a box of volume V . Each electromagnetic mode is represented by a
quantum harmonic oscillator, whose creation and annihilation operators obey the bosonic algebra
[89, eqs.(7.32a,b)]: [

a (k, r) , a†
(
k′, s

)]
= δrsζrδk,k′ (3.5.4)[

a (k, r) , a
(
k′, s

)]
=
[
a† (k, r) , a†

(
k′, s

)]
= 0, (3.5.5)

where δrs is the Kronecker delta, and ζr is a scalar quantity which is defined by:

ζr =

{
+1 r = 0

−1 r = 1, 2, 3
. (3.5.6)



CHAPTER 3. QUANTUM ELECTRODYNAMICS 76

a (k, r) is the annihilation operator that destroys a photon with wave vector k and polarization state
r. The photonic vacuum state, denoted |0p〉 where “p” stands for photonic, is defined through the
following relation:

a (k, r) |0p〉 = 0, ∀ k, r → Aµ (x) |0p〉 = 0 ∀ µ, x. (3.5.7)

The final term is the polarization four-vector εµ (k, r) that forms a basis of four linearly-independent
vectors, for r = 0, 1, 2, 3. In the Feynman Gauge, these polarization vectors obey the following
relation [93, eq.(5.39)]: ∑

r

ζrε
µ (k, r) εν (k, r) = −gµν . (3.5.8)

3.5.2 Electron field operator
Similarly to the photon field operator, the electron field operator is expanded, in the basis of the
Dirac solutions:

Ψ (x) =
∑
i:∀Ei

ciψi (x) =
∑
i:Ei>0

aiψi (x) +
∑
i:Ei<0

b†iψi (x) . (3.5.9)

Here, ci is a general annihilator, associated with the wavefunction ψi that can be a positive or
negative-energy solution. These annihilation (and creation) operators obey the fermionic anticom-
mutation relations:

{c†i , c
†
j} = {ci, cj} = 0 (3.5.10)

{ci, c†j} = δij . (3.5.11)

On the other hand ai annihilates a positive-energy electron, while b†i creates a positive-energy
positron because in the context of the hole theory, annihilating a negative-energy electron is equiv-
alent to creating a positive-energy positron. These operators again obey the last relations. With
these definitions, the vacuum state is defined to be:

ci |0e〉 = ai |0e〉 = b†i |0e〉 = 0, ∀ i → Ψ (x) |0p〉 = 0 ∀ x. (3.5.12)

This state does not contain any positive-energy electron, and has no free seat for a new negative-
energy electron: The Dirac sea is fully occupied. In different regions of this thesis we shall use the
quantity Ψα (x), that represents the α-component of the electron field operator, which is expanded
in the basis of the α-component Dirac solutions ψi,α (x) and the associated annihilation operators
ci as:

Ψα (x) =
∑
i:∀Ei

ciψi,α (x) (3.5.13)

The reader should note that these expansions are valid only if the external potential is time-
independent, and the wavefunctions are solutions of the time-independent Dirac equation, i.e. the
wavefunction can be written as ψi (x) = ψi (x) e−

i
~Eit, where the eigensolutions solve:[

cα · (−i~∇+ eA (x))− eϕ (x) + βmc2
]
ψi (x) = Eiψi (x) . (3.5.14)

in the presence of a time-independent external potential Aµ (x) = (ϕ (x) /c,A (x)). This approach
where the field operator is expanded in the basis of wavefunctions that solve the Dirac equation in
the presence of an external potential is known as the Furry picture [3], and leads to what is known
as the bound state QED (BSQED). Alternatively, one can set the external four-potential to zero,
so the wavefunctions describe the free-particle behavior, which will allow the study of scattering
problems and their radiative corrections, as conventionally done in QED.
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3.5.3 Adding the QED interaction to the non-interacting problem
Recall that the Hamiltonian we deal with has the following form of eq.(3.4.5):

ĤS (t; ε) = Ĥ0
S + λĤ1

S (t; ε) , (3.5.15)

where Ĥ0
S is the free-Hamiltonian that is assumed to be solvable in an exact manner, and Ĥ1

S (t; ε) is
the perturbation Hamiltonian that needs to be taken into account. The non-interacting Hamiltonian
Ĥ0
S contains both free electronic and photonic Hamiltonians, in their normal ordered form:

Ĥ0
S = Ĥ0

electron + Ĥ0
photon (3.5.16)

Ĥ0
electron =

ˆ
d3x : Ψ† (x)HDΨ (x) :

=
∑
Ei>0

Eia
†
iai −

∑
Ei<0

Eib
†
i bi (3.5.17)

Ĥ0
photon =

ˆ
d3x :

[
− 1

µ0

(
∂0Aµ (x)

)
(∂0Aµ (x)) +

1

2µ0
(∂νAµ (x)) (∂νAµ (x))

]
:

=
∑
k

3∑
r=0

~ωkζra† (k, r) a (k, r) (3.5.18)

Where the positive-energy electron annihilator ai is not to be confused with the photon annihilator
a (k, r). Definitions of these operators and the corresponding field operators are presented in the
last two sections: 3.5.1 and 3.5.2. Details about the free photon Hamiltonian can be found in [89,
chapter 7] and [93, chapter 5]. In the interaction representation, this full Hamiltonian becomes:

ĤI (ε, t) = Ĥ0
S + λĤ1

I (t; ε) ; with ÔI = e+iĤ
0
St/~ÔSe

−iĤ0
St/~. (3.5.19)

This interaction Hamiltonian can be written as an integral over all space, of some interaction Hamil-
tonian density ĤI (x) as:

Ĥ1
I (t; ε) =

ˆ
d3xĤI (x; ε) , (3.5.20)

cf. eq.(3.3.3). The QED Hamiltonian density is given by the following expression:

ĤI (x; ε) = jµ (x)Aµ (x) e−
ε
~ |t|, with ε > 0, (3.5.21)

which couples the quantized electronic current density operator jµ (x), with the quantized photonic
field Aµ (x). The electron current is a function of the field operators, given by:

jµ (x) = −ecΨ̄ (x) γµΨ (x) . (3.5.22)

This QED interaction term is obtained by performing a minimal substitution to the Dirac operator
in the Dirac Lagrangian density. See, for instance, [4, chapter 10], Peskin and Schroeder [99, chapter
4] and Greiner and Reinhardt [89, section 8.6].

We are next going to discuss Wick’s theorem: a strong tool that will let us write/expand a time-
ordered product of operators in terms of normal ordered ones. This discussion will ultimately let us
expand our S-matrix, and we shall afterwards represent each of the obtained terms by a Feynman
diagram.
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3.6 Time-independent Wick’s theorem
In order to motivate the reader, we shall start by the simple case where we consider the product
(string) of time-independent creation and annihilation operators. In this case, Wick’s theorem [95]
simplifies to a very special case, and we shall call it: The time-independent Wick’s theorem, as done
in [100, section 5.3.1].

3.6.1 Creation and annihilation operators
The creation and annihilation operators in a multi-particle system do satisfy:

1. The following commutation relations for a bosonic system:

[ai, aj ] = 0 (3.6.1)

[a†i , a
†
j ] = 0 (3.6.2)

[ai, a
†
j ] = δij , (3.6.3)

that encode the symmetric nature of bosons.

2. And the following anticommutation relations for fermionic system:

{ai, aj} = 0 (3.6.4)

{a†i , a
†
j} = 0 (3.6.5)

{ai, a†j} = δij , (3.6.6)

that encode the antisymmetric nature of fermions.

In addition, the vacuum state, we shall denote it by: |0〉, is defined to be state which vanishes once
an annihilation operator acts on it:

ai |0〉 = 0, (3.6.7)

we shall also define it to be normalized: 〈0|0〉 = 1.

3.6.2 Normal ordering
The normal ordering operation arranges a string of creation and annihilation operators by moving
all the former to the left, and as a consequence, all the latter to the right. It should be seen, at
this point, that the vacuum expectation value of any normal ordered string of operators, vanishes.
Under this normal ordering, the previous commutation and anticommutation relations behave has
if we had the following relations instead:

[ai, a
†
j ] = 0 (3.6.8)

{ai, a†j} = 0, (3.6.9)

for bosons and fermions respectively. We shall use the : xy : notation, which indicates that the xy
product is normal ordered. For a product of two general operators a and b, where both a and b are
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assumed to be either fermionic or bosonic, the four possible normal orderings are:

: aibj : = aibj (3.6.10)

: a†i b
†
j : = a†i b

†
j (3.6.11)

: a†i bj : = a†i bj (3.6.12)

: aib
†
j : = ∓b†jai. (3.6.13)

The first three products are unchanged, since they are already ordered, while the last one do change.
The minus sign in the last ordered product is present in the case where the two operators ai and bj
are both of fermionic nature, if not, then a plus sign should be there instead (these ± signs come
from eqs.(3.6.8 and 3.6.9)). In addition, we should note that the vacuum expectation value of any
normal ordered product will always vanish, since the annihilation operator which acts on the right
will destroy the right vacuum state, and the creation operators on the left (annihilations), will do
the same.

3.6.3 Contraction
The contraction, denoted by a line above the product which links the two contracted operators is
defined to be the difference between the product itself, and its normal ordered form:

xy ≡ xy− : xy : (3.6.14)

Using this definition, we evaluate the possible contractions of a product of two operators, and obtain
the following results:

aibj = aibj− : aibj : = aibj − aibj = 0 (3.6.15)

a†i b
†
j = a†i b

†
j− : a†i b

†
j : = a†i b

†
j − a

†
i b
†
j = 0 (3.6.16)

a†i bj = a†i bj− : a†i bj : = a†i bj − a
†
i bj = 0 (3.6.17)

aib
†
j = aib

†
j− : aib

†
j : = aib

†
j ± b

†
jai = δij . (3.6.18)

In the last relation, the plus sign exists if both operators are fermionic, and a minus sign otherwise.
In both possible cases, one will get a Kronecker delta between the two indices, coming from the
commutation and anticommutation relations introduced just above. If at this point we take the
vacuum expectation value of the contraction in eq.(3.6.14), using the fact that the normal ordered
product will always vanish under vacuum expectation value (previous section), the contraction of a
product of two operators, can be written as a vacuum expectation value of this product:

xy = 〈0 |xy| 0〉 . (3.6.19)

3.6.4 Products of n-operators
These previous manipulations can be generalized to a product of n-operators. This product can be
written as a sum of normal ordered contractions, which runs from zero contraction (main product),
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a sum over all possible single contractions, a sum over double contractions, and so on:

X1X2X3X4 . . . Xn = : X1X2X3X4 . . . Xn :

+
∑
single

: X1X2X3X4 . . . Xn :

+
∑

double

: X1X2X3X4 . . . Xn :

+
∑
triple

+ . . .

(3.6.20)

To give a flavor of how this machinery works, we apply the Wick’s theorem on the product cicjc
†
kc
†
l ,

and write it as:

cicjc
†
kc
†
l = : cicjc

†
kc
†
l :

+ : cicjc
†
kc
†
l : + : cicjc

†
kc
†
l : + : cicjc

†
kc
†
l : + : cicjc

†
kc
†
l : (3.6.21)

+ cicjc
†
kc
†
l + cicjc

†
kc
†
l (3.6.22)

where we only evaluate the non-vanishing contractions, of the form of cic
†
j , as seen in eq.(3.6.18). We

then use the fact that a minus sign should appear whenever an odd number of fermionic operators
exchanges are made, this allows us to obtain:

cicjc
†
kc
†
l =: cicjc

†
kc
†
l :

∓ cic†k : cjc
†
l : +cic

†
l : cjc

†
k : +cjc

†
k : cic

†
l : ∓cjc†l : cic

†
k : (3.6.23)

∓ cic†kcjc
†
l + cic

†
l cjc

†
k (3.6.24)

Then, we use eq.(3.6.18) and the normal ordering relations, to obtain:

cicjc
†
kc
†
l = c†kc

†
l cicj

+ δikc
†
l cj ∓ δilc

†
kcj ∓ δjkc

†
l ci + δjlc

†
kci (3.6.25)

∓ δikδjl + δilδjk. (3.6.26)

Alternatively, one can obtain the result in the most primitive way, using the commutation and
anticommutation relations of fermionic and bosonic systems:

cicjc
†
kc
†
l = ci

(
δkj ∓ c†kcj

)
c†l (3.6.27)

= δkjcic
†
l ∓ cic

†
kcjc

†
l (3.6.28)

= δkjδil ∓ δkjc†l ci ∓
(
δik ∓ c†kci

)
cjc
†
l (3.6.29)

= δkjδil ∓ δkjc†l ci ∓ δikcjc
†
l + c†kcicjc

†
l (3.6.30)

= δkjδil ∓ δkjc†l ci ∓ δikδjl + δikc
†
l cj +

(
δjlc
†
kci ∓ c

†
kcic

†
l cj

)
(3.6.31)

= δkjδil ∓ δkjc†l ci ∓ δikδjl + δikc
†
l cj + δjlc

†
kci ∓ δilc

†
kcj + c†kc

†
l cicj (3.6.32)

= δkjδil ∓ δkjc†l ci ∓ δikδjl + δikc
†
l cj + δjlc

†
kci ∓ δilc

†
kcj + c†kc

†
l cicj . (3.6.33)
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At this point, the reader can start to see the importance of Wick’s theorem, which gets more
important when evaluating the vacuum expectation values of a string of creation and annihilation
operators, since only the fully contracted terms will survive. So far this is an introduction, the real
problem we shall attack is the expansion of the time-ordered products of time-dependent operators.

3.7 Wick’s theorem
For two operators A (x1) and B (x2), depending on times t1 and t2, it can be shown that their normal
order product can be written as:

: A (x1)B (x2) : = T [A (x1)B (x2)]−
〈
0
∣∣T[A (x1)B (x2)

]∣∣ 0〉 , (3.7.1)

the difference between the time-ordered product, and vacuum expectation of this latter. In addition,
if the time-dependence is eliminated, this equation directly reduces to the analysis of the previous
section. The contraction of these operators is equal (by definition) to the vacuum expectation value
of the time-ordered product of these two operators:

A (x1)B (x2) ≡
〈
0
∣∣T[A (x1)B (x2)

]∣∣ 0〉 . (3.7.2)

See eq.(3.6.19). Wick’s theorem, which was introduced in 1950 [95], tells us that the time-ordered
product of a string of n operators can be written as the normal ordering of all the terms, including
the zero-contraction, all possible single-contractions, and so on:

T [A1 (x1)A2 (x2)A3 (x3)A4 (x4) . . . An (xn)]

= : A1 (x1)A2 (x2)A3 (x3)A4 (x4) . . . An (xn) :

+
∑
single

: A1 (x1)A2 (x2)A3 (x3)A4 (x4) . . . An (xn) :

+
∑

double

: A1 (x1)A2 (x2)A3 (x3)A4 (x4) . . . An (xn) : + . . .

(3.7.3)

Using the contraction definition of eq.(3.7.2), the Wick’s result can be written as:

T [A1 (x1)A2 (x2)A3 (x3)A4 (x4) . . . An (xn)]

= : A1 (x1)A2 (x2)A3 (x3)A4 (x4) . . . An (xn) :

+
∑
single

〈
0
∣∣T[A1 (x1)A2 (x2)

]∣∣ 0〉 : A3 (x3)A4 (x4) . . . An (xn) :

+
∑

double

〈
0
∣∣T[A1 (x1)A4 (x4)

]∣∣ 0〉 〈0 ∣∣T[A2 (x2)A3 (x3)
]∣∣ 0〉 : . . . An (xn) : + . . .

(3.7.4)

This theorem is going to be used when expanding the S-matrix perturbatively. Recall that our S-
matrix contained electron and photon field operators (see eq.(3.5.21)). We shall thus now show how
the vacuum expectation values of the time-ordered products of two photon/electron field operator
(the contractions), can be written in terms of the Feynman photon and electron propagators that do
solve the Dirac and Maxwell Green’s functions equations. Interesting discussions on Wick’s theorem
can be found in Fetter [87], Greiner and Reinhardt [89, section 8.5], Schwartz [101, section 7.A],
Drake [100, section 5.3] and Schweber [4, section 13c].
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3.8 Photon propagator
The existence of a four-current Jν in spacetime, describing a charge distribution moving through
space, generates electromagnetic fields, that satisfy the (inhomogeneous) Maxwell equation:

∂µF
µν = µ0J

ν , (3.8.1)

where µ0 is the magnetic constant (vacuum permeability), related to the electric one by ε0µ0 = c−2.
The electromagnetic field components are matrix elements of the electromagnetic tensor, given by:

Fµν =

[
0 −Ec

+E
c −εijkBk

]
=


0 −E1

c −E2

c −E3

c

+E1

c 0 −B3 +B2

+E2

c +B3 0 −B1

+E3

c −B2 +B1 0

 , (3.8.2)

and related to four-potential which is generated by this current by the following relation:

Fµν = ∂µAν − ∂νAµ. (3.8.3)

After inserting the last equation.(3.8.3) in the first one eq.(3.8.1), one gets the following differential
equation: [

gνµ∂σ∂
σ − ∂µ∂ν

]
Aµ = µ0J

ν . (3.8.4)

This homogeneous differential equation can be solved by the introduction of the Green’s function of
the homogeneous problem, i.e. that satisfies the following following Green’s equation:

[
gνµ∂σ∂

σ − ∂µ∂ν
]
Dµθ (x, y) =

gνθ

ε0c
δ (x− y) , (3.8.5)

The Green’s function Dµσ (x, y), known as the photon propagator, which measures the probability
amplitude that a photon travels from a spacetime point y to x. The seeked solution Aµ can be thus
written as:

Aµ (x) = φµ (x) +
√
ε0µ0

ˆ
d4yDµσ (x, y) Jσ (y) , (3.8.6)

where φµ (x) is simply a solution of the homogeneous equation:[
gνµ∂σ∂

σ − ∂µ∂ν
]
φµ (x) = 0, (3.8.7)

which represents the free potential, i.e. in the absence of an external source Jν = 0. Our next goal
is to determine the photon propagator Dµθ (x, y). We first define the Fourier transformed photon
propagator Dµθ (p) as:

Dµθ (x, y) =

ˆ
d4p

(2π~)
4 e
− i

~p·(x−y)Gµθ (p) , (3.8.8)

and plug this expression in equation.(3.8.5):
ˆ

d4p

(2π~)
4

[
−gνµp2 + pµp

ν
]
Gµθ (p) e−

i
~p·(x−y) =

~2gνθ

ε0c
δ (x− y) , (3.8.9)
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where we used techniques that are given in appendix appendix H. By comparing with eq.(H.2.2),
one sees that the following equation must hold:

[
−gνµp2 + pµp

ν
]
Gµθ (p) =

~2gνθ

ε0c
. (3.8.10)

This equation means that the photon propagator is defined as the inverse of the 4 × 4 matrix M ,
whose matrix elements are Mν

µ = pµp
ν − p2gνµ. Unfortunately, this matrix is not invertible, as

mentioned by Bogoliubov and Shirkov [102, Section 4.3] and Peskin and Schroeder [99, section 9.4],
since its determinant vanishes. This can be seen by the fact that pν is an eigenvector of Mν

µ , with
a zero eigenvector:

pνM
ν
µ = 0. (3.8.11)

See, for instance, Schwartz [101, page 267]. One can overcome this problem by imposing the Lorentz-
gauge condition, and take into account the fact that the physics (nature) is invariant under gauge
transformations, as will be discussed in the next section.

Gauge transformation
One can observe that under a gauge transformation:

Aµ → Aµ = Aµ + ∂µχ, (3.8.12)

where the four-potential Aµ is replaced by Aµ that contains an additional gradient of some arbitrary
function χ, the electromagnetic fields:

Fµν → ∂µAν − ∂νAµ = ∂µAν − ∂νAµ = Fµν , (3.8.13)

as well as the four-current, are invariant. This shows that the four-potential is not an observable,
and one can always perform a gauge transformation as in eq.(3.8.12), and still obtain the same
electromagnetic fields, and currents. Restrictions can be thus imposed on the new four-potential
Aµ, and absorbed by the arbitrary function χ. Different gauge choices can lead to simplifications in
the calculations derived for different problems. The Lorenz-gauge condition implies a divergenceless
four-potential:

∂µAµ = 0, (3.8.14)

which imposes the following relation:

∂µ∂µχ = −∂µAµ, (3.8.15)

between the old potential Aµ and the introduced function χ. This condition reduces the potential
equation to:

∂σ∂
σAν = µ0J

ν , (3.8.16)

where one can check that the electromagnetic current is invariant under gauge transformation. As
a consequence, the photon propagator equation becomes:

∂σ∂
σDνθ (x, y) =

gνθ

ε0c
δ (x− y) , (3.8.17)
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which is fortunately invertible! since the problematic second term of eq.(3.8.5), is no longer present
in our new equation, and the metric tensor is invertible. We now plug the Fourier form of the photon
propagator of eq.(3.8.8), in the previous equation, and obtain:

ˆ
d4p

(2π~)
4D

νθ (p)

[
−pσp

σ

~2

]
e−

i
~p·(x−y) =

gνθ

ε0c
δ (x− y) . (3.8.18)

pσp
σ is simply p2 (a scalar quantity), thus the photon propagator is written as:

Dνθ (p) = − ~2

cε0

gνθ

p2
. (3.8.19)

This is known as the photon propagator in the Feynman gauge. We then go back to real-space using
eq.(3.8.8):

Dµν (x, y) = − ~2

cε0
gµν
ˆ

d4p

(2π~)
4

e−
i
~p·(x−y)

p2
. (3.8.20)

After separating scalar and vector integration component, one gets:

Dµν (x, y) = − ~2

cε0
gµν
ˆ

d3p

(2π~)
3 e

+ i
~p·(x−y)

ˆ +∞

−∞

dp0
2π~

e−
i
~p0(x0−y0)

p20 − p2
. (3.8.21)

At this point one notices that once the p0 integration hits the points p0 = ± |p| the integral di-
verges. This problem is treated by what is known as the “Feynman prescription”, which shifts poles
above/below the real axis with a small imaginary number, so the integration can be taken along the
real axis, then the limit of the small number is taken to zero. Different choices of pole shifting lead
to different propagators: advanced and retarded, and eventually the Feynman (time-ordered) prop-
agator, which we shall discuss in the next section. We should also note that since the exponential
inside the Fourier integral depends on the difference x− y, we shall allow ourselves to write:

Dµν (x, y) = Dµν (x− y) (3.8.22)

Finally, our four-potential, can be written as:

Aν (x) = φν (x)− ~2µ0

ˆ
d4y

ˆ
d4p

(2π~)
4

e−
i
~p·(x−y)

p2
Jν (y) . (3.8.23)

Discussions about the photon propagator can be found in [103, section 7.1] and [102, section 4].

3.8.1 Time-ordered photon propagator
The time-ordered propagator is called the Feynman propagator. The justification of the first name
shall be clear in section 3.8.3, and for the second name, it is because the timelike momentum integral
is to be taken along the Feynman path, which is equivalent as shifting the positive-energy pole below
the real axis, and the negative-energy pole above it, as seen in fig. 3.8.1c. This photon propagator
is defined by the following formula:

Dµν (x− y) = − ~2

cε0
gµν lim

ε→0

ˆ
d4p

(2π~)
4

e−
i
~p·(x−y)

p20 − |p|
2

+ iε
, (3.8.24)
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where positive and negative-energy poles are shifted below and above the real axis respectively:

p0 = +

√
|p|2 − iε (3.8.25)

p0 = −
√
|p|2 − iε, (3.8.26)

as seen in figure fig. 3.8.1c, which follows the Feynman choice of contour integration. There are two
ways to evaluate this integral:

1. One can first evaluate the spatial momentum-component integral:

Dµν
F (x− y) = − ~2

cε0
gµν lim

ε→0

ˆ
dp0
2π~

e−
i
~p0(x0−y0)

ˆ
d3p

(2π~)
3

e+
i
~p·(x−y)

p20 − |p|
2

+ iε
, (3.8.27)

using eq.(I.3.5), one one obtains:

Dµν
F (x− y) =

1

cε0~8π2 |x− y|
gµν lim

ε→0

ˆ +∞

−∞
dp0e

− i
~p0(x0−y0)e+

i
~

√
p2

0+iε|x−y|. (3.8.28)

At
√
p20 + iε = 0, this integral has two branch points, meaning that one should specify the

branch cut to avoid letting the integrand being multivalued. This form is usually used by
Mohr, Soff and Indelicato [104, eqs.(29,30)] [5, eq.(4)].

2. One can first evaluate the timelike momentum integral, which we shall call:

I
(
x0 − y0, |p|

)
=

1

2 |p|

ˆ +∞

−∞
dp0e

− i
~p0(x0−y0)

[
1

p0 − |p|+ iε
− 1

p0 + |p| − iε

]
. (3.8.29)

Again, using Jordan’s lemma, two cases are to be considered:

• For y0 > x0, only the upper pole will contribute, and we thus have:

I
(
x0 − y0, |p|

)
= − πi
|p|
e+

i
~ |p|(x

0−y0). (3.8.30)

• For x0 > y0, only the lower pole will contribute, and we thus have:

I
(
x0 − y0, |p|

)
= − πi
|p|
e−

i
~ |p|(x

0−y0). (3.8.31)

These two cases allow us to write our integral as:

I
(
x0 − y0, |p|

)
= − πi
|p|

[
e+

i
~ |p|(x

0−y0)Θ
(
y0 − x0

)
+ e−

i
~ |p|(x

0−y0)Θ
(
x0 − y0

)]
. (3.8.32)

Now this integral is purely radial, i.e. it only depends on |p|. We shall next evaluate the
angular integration of the remaining spatial one. We first call |p| = rp, and use the result of
eq.(I.2.5), to write the photon propagator as:

Dµν
F (x− y) =

i

4π2~cε0rx−y
gµν
ˆ ∞
0

drpe
− i

~ rp|y0−x0| sin
(rprx−y

~

)
, (3.8.33)

which can be related to the work of Lindgren [15, section 4.3.1].

It is worth noting that the photon propagator equation.(3.8.17) can be related to the Klein-
Gordon propagator equation, by taking the mass limit m → 0, in the latter equation. See Ohlsson
[33, eq.(5.14)] and Ryder [103, eq.(7.7)]. As we know, the physics is unchanged under gauge trans-
formations. This fact leads a to freedom in choosing the propagator, and we shall discuss this in the
next section.
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(a) Retarded propagator poles

(b) Advanced propagator poles

(c) Feynman propagator poles

Figure 3.8.1: The possible boundary conditions (choices) of the photon propagator.
The reader should keep in mind the fact that pole shifting is equivalent to placing poles at the real
line and deforming the contours (red lines).

3.8.2 Different gauges for the photon propagator
So far, the momentum space photon propagator we worked with is Feynman one of eq.(3.8.19):

Dµν
F (q) = −~2gµν

cε0q2
, (3.8.34)

where the F subscript is added to indicate that this is the Feynman propagator, where the pole at
q2 = 0 can be shifted in three different ways, giving three different propagators in real-space. We shall
see that this momentum-space form is only one way to define this propagator. The photon propagator
is always sandwiched between two electron vertices (when evaluating probability amplitudes or
bound-electron level-shifts), which when combined with spinors gives two four-current densities, and
one has a term of the following form:

ˆ
d4xd4x′jµ (x)Dµν (x− x′) j′ν (x′) . (3.8.35)
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Gauge fµ (q) = gµ (q) Dµν
X (q)

Feynman 0 Dµν
F (q) = −~2gµν

cε0q2

Landau 1
2cε0

~2qµ
q4 Dµν

L (q) = − ~2

cε0q2

(
gµν − qµqν

q2

)
Coulomb 1

2cε0
~2

q2
1
q2 (q0,−qi) Dµν

C (q) = ~2

cε0

[ 1
q2 0

0
~2δij
q2

(
1− qjqi

q2

)]

Table 3.2: Momentum space photon propagator in different gauges.

In Fourier-space, using eq.(H.5.1), the last non-local integral can be written as a local-one:
ˆ

d4q

(2π~)
4 jµ (q)Dµν (q) j′ν (q) . (3.8.36)

The continuity equation that the four-current has to obey, in order for the charge current to stay
conserved is given by:

∂µj
µ (x) = ∂0j

0 (x) +∇ · j (x) = 0, (3.8.37)

where we used eqs.(A.0.2 and A.0.6). In Fourier-space, this equation becomes:
ˆ
d4xe+

i
~ q·x

{
∂

∂xµ
jµ (x)

}
= − i

~
qµj

µ (q) = 0 → qµjµ (q) = 0. (3.8.38)

At this point, one has to notice that if we add any term that proportional to qµ or qν to the photon
propagator:

Dµν (q)→ Dµν (q) + fν (q) qµ + gµ (q) qν , (3.8.39)

where fν (q) and gν (q) are some arbitrary functions, eq.(3.8.36) and thus eq.(3.8.35) in unchanged,
i.e. the physics is unchanged, as mentioned by Berestetskii et al. [105, page 301] and Greiner and
Reinhardt [89, pages 185-187]. This freedom shows that the propagator is not uniquely defined.
In table 3.2, we present three different gauges associated with three different choices of fν (q) and
gν (q) functions, found in [8, pages 249-250].

3.8.3 Feynman photon propagator as a time-ordered vacuum expectation
value

In this section we will show that the photon propagator can be written as a vacuum expectation
value of time-ordered product of two photon-field operators:

DF
µν (x, y) =

1

i~
〈0p |T [Aµ (x)Aν (y)]| 0p〉 . (3.8.40)

In eq.(3.5.1) of section 3.5.1, we present the photon field operator as a sum of two sum:

Aµ (x) = A+
µ (x) +A−µ (x) , (3.8.41)

given in eqs.(3.5.2 and 3.5.3). Since A+
µ and A−µ contain annihilation and creation operators respec-

tively, one can directly see that the only non-vanishing terms under the vacuum expectation value
of eq.(3.8.40) are:

〈0p |T [Aµ (x)Aν (y)]| 0p〉
= Θ

(
x0 − y0

) 〈
0p
∣∣A+

µ (x)A−ν (y)
∣∣ 0p
〉

+ Θ
(
y0 − x0

) 〈
0p
∣∣A+

ν (y)A−µ (x)
∣∣ 0p
〉 (3.8.42)
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The other contributions simply vanish because they either contain two creation or annihilation
operators, or contain a creation operator acting to the left with an annihilation operator acting to
the right. These two terms are then found to be:〈

0p
∣∣A+

µ (x)A−ν (y)
∣∣ 0p
〉

=
∑
k

~
2ε0V

1

ωk
e−ik·(x−y) (−gµν)

〈
0p
∣∣A+

ν (y)A−µ (x)
∣∣ 0p
〉

=
∑
k

~
2ε0V

1

ωk
e−ik·(y−x) (−gνµ)

. (3.8.43)

We then perform the usual replacement:∑
k

f (k)→ V

ˆ
d3k

(2π)
3 f (k) , (3.8.44)

which transforms the sum over a continuous three-variable to an integral, and write the time-ordered
product as:

〈0p |T [Aµ (x)Aν (y)]| 0p〉

= −gµν~
2ε0

ˆ
d3k

(2π)
3
ωk
e+ik·(x−y)

[
Θ
(
x0 − y0

)
e−i|k|·(x

0−y0) + Θ
(
y0 − x0

)
e−i|k|·(y

0−x0)
]. (3.8.45)

Using Jordan’s lemma, one can show that the terms inside the square brackets, can be written as
the following integral [103, pages 193,194,244] and [101, eq.(6.28)]:

e−i|k|(x
0−y0)θ

(
x0 − y0

)
+ e−i|k|(y

0−x0)θ
(
y0 − x0

)
=
i |k|
π

ˆ +∞

−∞
dk0

e−ik0·(x0−y0)

k20 − |k|
2

+ iη
, (3.8.46)

with η a small positive real, which shifts the integrand poles above and below the real-line. Notice
that this pole shifting corresponds to the Feynman choice of contour integration. This integral can
be written as:

i |k|
π

ˆ +∞

−∞
dk0

e−ik0·(x0−y0)

k20 − |k|
2

+ iη
=
i |k|
π

ˆ
CF

dk0
e−ik0·(x0−y0)

k20 − |k|
2 (3.8.47)

where CF indicates that the chosen path is the Feynman one. This shows that vacuum expectation
value of the photon operators corresponds to the propagator whose energy (zeroth component mo-
mentum) integral is taken along the Feynman path, and justifies why we put an “F” superscript on
the propagator in eq.(3.8.40). Our vacuum expectation value then becomes:

〈0p |T [Aµ (x)Aν (y)]| 0p〉 = i~

[
−gµν
cε0

ˆ
d4k

(2π)
4

e−ik·(x−y)

k2 + iη

]
, (3.8.48)

which finally allows us to write the photon propagator as a vacuum expectation value:

DF
µν (x, y) =

1

i~
〈0p |T [Aµ (x)Aν (y)]| 0p〉 . (3.8.49)

For discussions on the photon field operator, the reader may consult Greiner and Reinhardt [89,
chapter 7], Mandl and Shaw [93, chapter 5] and Ohlsson [33, section 8.4]. Recall that the goal was
to show that vacuum expectation values of the time-ordered products are related to propagators.
So far we have discussed the photon propagator, and it is thus now the time for the electron one.
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3.9 Electron propagator

3.9.1 Free Dirac propagator
The free Dirac propagator satisfies the following free Dirac equation:[

i~γµ
∂

∂yµ
−mc

]
S0 (y, x) = 14δ (y − x) , (3.9.1)

which is a Green’s function type equation. The Green’s function here is the Dirac propagator
S0 (y, x). The zero subscript is there just to remind us that the S propagator is a free (absence of
any external potential). We shall now show to use Fourier transforms to derive this propagator. We
start by the following expression:

S0 (y, x) =

ˆ
d4p

(2π~)
4 e
− i

~p·(y−x)S0 (p) , (3.9.2)

which assumes that our propagator can be written as an inverse Fourier transform of the Fourier-
space propagator S0 (p). After plugging this expression in the first equation, one gets:

ˆ
d4p

(2π~)
4 e
− i

~p·(y−x) {[γµpµ −mc]S0 (p)} = 14δ (y − x) , (3.9.3)

meaning that the term that is inverse transformed (within the curly brackets) is just the unit matrix
14. This means that if we set the Fourier space propagator to be:

S0 (p) =
1

γµpµ −mc
=
γµpµ +mc

p2 −m2c2
. (3.9.4)

Then the propagator of the form of eq.(3.9.2):

S0 (y, x) =

ˆ
d4p

(2π~)
4

e−
i
~p·(y−x)

γµpµ −mc
=

ˆ
d4p

(2π~)
4 e
− i

~p·(y−x)
γµpµ +mc

p2 −m2c2
, (3.9.5)

is the propagator we are looking for, i.e., that satisfies the propagator equation.(3.9.1). The de-
nominator again diverges, this time at the massive particle energy-momentum relation p2 = m2c2,
instead of the massless one (as the photon propagator case) p2 = 0. In the last step we have just
multiplied the integral by the unit matrix:

14 =
γµpµ +mc

γµpµ +mc
. (3.9.6)

Notice that this free propagator only depends on the difference of spacetime points. Greiner and
Reinhardt commented on this point by saying: “This property is a manifestation of the homogeneity
of space and time and in general would not be valid for the interacting propagator” [8, Page 42]
(See also in Itzykson and Zuber [43, Page 90]). We shall thus allow ourselves to write S0 (y − x)
instead of S0 (y, x). Finally, as in the photon propagator case, different choices of poles shifting can
be taken, which eventually lead to different definitions of the propagator: Retarted, Advanced, or
Feynman (time-ordered) propagator, which we shall discuss in the next section.
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3.9.2 Time-ordered free Dirac propagator
The time-ordered free Dirac propagator is defined with respect to the eq.(3.9.5) by:

SF0 (y, x) = lim
ε→0

ˆ
d4p

(2π~)
4 e
− i

~p·(y−x)
γµpµ +mc

p2 −m2c2 + iε
, (3.9.7)

where ε is a small positive number. Note that we added the superscript F to indicate that this is the
Dirac-Feynman-propagator, i.e. it corresponds to the Feynman choice of the p0 contour integration
that goes above the positive-energy pole and below the negative-energy one. It is worth noting that
since the Dirac and Klein-Gordon equations are related, the propagator are too. The free Dirac
equation is written as: [

i~γµ
∂

∂xµ
−mc

]
ψi (x) = 0. (3.9.8)

After the application of the
[
i~γν ∂

∂xν +mc
]
operator on the last equation, one obtains:[

i~γν
∂

∂xν
+mc

] [
i~γµ

∂

∂xµ
−mc

]
ψi (x) =

[
� +

(mc
~

)2]
ψi (x) = 0, (3.9.9)

which shows that each of the four components of the Dirac spinor satisfy the Klein-Gordon equation,
that is given at the very beginning of this thesis, in eq.(2.1.6). See, for instance, Schwartz [101, page
172]. Following the same procedure of the photon-propagator section, the time-ordered (Feynman)
Klein-Gordon propagator, which we shall call KF

0 (y, x), can be written as:

KF
0 (y, x) = lim

ε→0

ˆ
d4p

(2π~)
4

e−
i
~p·(y−x)

p2 −m2c2 + iε
, (3.9.10)

and it satisfies the following Green’s function equation:[
�y +

(mc
~

)2]
KF

0 (y, x) = δ (x− y) . (3.9.11)

This last equation can be written as:[
i~γµ

∂

∂yµ
−mc

] [
i~γν

∂

∂yν
+mc

]
KF

0 (y, x) = δ (x− y) . (3.9.12)

If one compares this last equation with eq.(3.9.1), one can directly deduce that the Dirac propagator
in the referred equation can be written as [33, eq.(7.73)]:

SF0 (y, x) =

[
i~γν

∂

∂yν
+mc

]
KF

0 (y, x) . (3.9.13)

The reason we have done so, is that the Klein-Gordon propagator is relatively easier to evaluate
since its is radial (a function of p2) in Fourier-space, and the Dirac propagator can be obtained by
means of the last expression. The Klein-Gordon propagator was discussed in [89, section 4.5], [53,
pages 23-24] and many other books on relativistic quantum mechanics and quantum field theory.
Finally, we should note that the closed form of our Dirac propagator was provided by Ohlsson [33,
eq.(7.83)]:

SF0 (y, x) =

[
1

mc

(xµ − yµ) γµ

|x− y|5
+

1

~ |x− y|3

]
J1

(mc
~
|x− y|

)
. (3.9.14)
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So far we have discussed the free-electron propagator associated with the Dirac equation, with the
contour boundary condition set by the choice of Feynman, that corresponds to time-ordered products
of field operators, as we shall soon see why. In the next section we will discuss the propagator of an
electron in the presence of an arbitrary external electromagnetic potential Aµ (x).

3.9.3 Propagator for time-dependent external potential
The Dirac equation of an electron that interacts with a time-dependent electromagnetic potential is
given by:

[γµ (i~∂µ + eAµ (x))−mc]ψi (x) = 0, (3.9.15)

where i is a labeling of the Dirac solutions. The Feynman propagator associated with this Dirac
equation satisfies the following Green’s equation:[

γµ
(
i~

∂

∂yµ
+ eAµ (y)

)
−mc

]
SA (y, x) = δ (y − x) . (3.9.16)

Notice that we have replace the 0 subscript by A, to indicate that this propagator includes the
external four-potential (not the free-propagator case). As mentioned by Itzykson and Zuber [43,
Pages 93-94], there exists no compact expression of the propagator SA, and it is usually written as a
perturbation expansion in powers of external four-potential Aµ (x). The reason behind this limitation
originates from the fact that the local potential Aµ (y) becomes a non-local one in Fourier-space, as
seen in eq.(H.6.3), and will thus complicate the evaluation of the solution. The last equation can be
written as: [

i~γµ
∂

∂yµ
−mc

]
SA (y, x) = δ (y − x)− eγµAµ (y)SA (y, x) . (3.9.17)

Notice that last term is the function that makes the equation non-homogeneous, and thus, SA (y, x)
can be written as (see [8, eq.(2.35)] and [40, eq.(6.51)]):

SA (y, x) = S0 (y, x)− e
ˆ
dzS0 (y, z) γµAµ (z)SA (z, x) , (3.9.18)

which can be verified by simply plugging it in the defining equation.(3.9.16) and using the free
propagator equation.(3.9.1). A derivation is found in the book of Itzykson and Zuber, but we note
that his corresponding result [43, eq.(2-118)] misses the second free propagator (S0 (y, z) of our last
equation). If one iteratively replaces SA at the very right of the last equation by its value (the two
terms on the right side of the equal sign), one obtains a perturbative expansion of the propagator:

SA (y, x) = S0 (y, x)− e
ˆ
dzS0 (y, z) γµAµ (z)S0 (z, x)

+ e2
ˆ
dz

ˆ
dwS0 (y, z) γµAµ (z)S0 (z, w) γµAµ (w)S0 (w, x) +O (eAµ)

3
, (3.9.19)

in powers of eAµ, and written in terms of the free Dirac propagators only. This expansion is
sometimes known as the Lippmann-Schwinger integral equation. We shall now restrict ourselves to
the time-independent external potential case, and see how we can simplify our last expression.
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3.9.4 Propagator for time-independent external potential
The Dirac propagator gets simplified once the external potential is time-independent, i.e., once we
have Aµ (y) = Aµ (y). In this case, the Dirac propagator of eq.(3.9.16) becomes:[

γµ
(
i~

∂

∂yµ
+ eAµ (y)

)
−mc

]
SA (y, x) = δ (x− y) . (3.9.20)

In this case, the perturbative expansion of the propagator SA (y, x) of eq.(3.9.19) can be simplified
to a Green’s function expansion, as we shall see in two sections.

3.9.5 Feynman electron propagator as a time-ordered vacuum expecta-
tion value

The Feynman propagator of a Dirac particle in the presence of a time-independent external potential
can be written as a vacuum expectation value of the time-ordered product of two electronic field
operators: [

SFA (x, y)
]
αβ

=
1

i~
〈
0e
∣∣T [Ψα (x) Ψ̄β (y)

]∣∣ 0e
〉
, (3.9.21)

where the subscript αβ on the square brackets indicate that this term is the matrix element of the
4 × 4 propagator matrix. The superscript F in eq.(3.9.21) indicates that the zeroth component of
the momentum integral (energy integral) should be evaluated along the Feynman contour. We shall
next see how the time-ordered product in the right side of the last equation leads to the Feynman
choice of contour integration. The time-ordered product of the two electron field operators expands
as:

T
[
Ψα (x) Ψ̄β (y)

]
=
∑
Ei>0

∑
Ej>0

ψi,α (x) ψ̄j,β (y)
[
Θ
(
x0 − y0

)
aia
†
j −Θ

(
y0 − x0

)
a†jai

]
+
∑
Ei>0

∑
Ej<0

ψi,α (x) ψ̄j,β (x)
[
Θ
(
x0 − y0

)
aibj −Θ

(
y0 − x0

)
bjai

]
+
∑
Ei<0

∑
Ej>0

ψi,α (x) ψ̄j,β (y)
[
Θ
(
x0 − y0

)
b†ia
†
j −Θ

(
y0 − x0

)
a†jb
†
i

]
+
∑
Ei<0

∑
Ej<0

ψi,α (x) ψ̄j,β (y)
[
Θ
(
x0 − y0

)
b†i bj −Θ

(
y0 − x0

)
bjb
†
i

]
, (3.9.22)

where we have use the electron field operator expression of eq.(3.5.9). The vacuum expectation value
of this time-ordered product gives two non-vanishing contributions, from the first and last terms of
this last equation, and one gets the following vacuum expectation expression:〈

0e
∣∣T [Ψα (x) Ψ̄β (x)

]∣∣ 0e
〉

=
∑
i

e−
i
~Ei(tx−ty)

[
Θ (+Ei) Θ

(
x0 − y0

)
−Θ (−Ei) Θ

(
y0 − x0

)]
ψi,α (x) ψ̄i,β (y) . (3.9.23)

One can now use Jordan’s lemma of appendix F.4 (see also [106, eq.(15.6)]) to write:

e+
i
~Ei(ty−tx) [Θ (+Ei) Θ (tx − ty)−Θ (−Ei) Θ (ty − tx)] =

1

2πi

ˆ
CF

dz
e−

i
~ z(tx−ty)

Ei − z
, (3.9.24)
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and the vacuum expectation value becomes:

〈
0e
∣∣T [Ψα (x) Ψ̄β (x)

]∣∣ 0e
〉

=
1

2πi

ˆ
CF

dz
∑
i

ψi,α (x)ψ†i,θ (y)

Ei − z
[
γ0
]
θ,β

e−
i
~ z(tx−ty). (3.9.25)

The fraction present in the last integral is the Dirac Green’s function Gαθ (x,y; z), in its spectral
form. Notice that the time ordered product has lead to an expression where the energy contour
integral is evaluated along the Feynman path, and this is the reason why this propagator obtained
from a time ordered product of electron field operators is called a Feynman propagator. We should
also note that different products of field operators will lead to the retarded and advanced propagators,
as presented in figure 3.8.1 for the photon propagator case. We now make the assumption that the
electron propagator can be written as [52, eq.(17)]:[

SFA (x, y)
]
αβ

=
1

i~
∑
i

e−
i
~Ei(tx−ty)

[
Θ (+Ei) Θ

(
x0 − y0

)
−Θ (−Ei) Θ

(
y0 − x0

)]
ψi,α (x) ψ̄i,β (y) .

=
1

i~
1

2πi

ˆ
CF

dz
ψi,α (x)ψ†i,θ (y)

Ei − z
[
γ0
]
θ,β

e−
i
~ z(tx−ty).

(3.9.26)

To verify that this is indeed a propagator, we plug it in the Dirac equation. When the four-gradient
operator ∂µ acts on the (time) Heaviside functions, it gives a Kronecker delta that gives non-vanishing
contribution for the time-derivative (µ = 0), and a Dirac delta in time:

∂

∂xµ
Θ
(
x0 − y0

)
= +δ0µδ

(
x0 − y0

)
(3.9.27)

∂

∂xµ
Θ
(
y0 − x0

)
= −δ0µδ

(
x0 − y0

)
. (3.9.28)

We now plug these relations in our Dirac equation that acts on the propagator and get:

[γµ (i~∂µ + eAµ (x))−mcδ]θα
[
SFA (x, y)

]
αβ

=
∑
Ei>0

[
+γµδ0µδ

(
x0 − y0

)
+

1

i~
Θ
(
x0 − y0

)
[γµ (i~∂µ + eAµ (x))−mc]

]
θα

ψi,α (x) ψ̄i,β (y)

−
∑
Ei<0

[
−γµδ0µδ

(
x0 − y0

)
+

1

i~
Θ
(
y0 − x0

)
[γµ (i~∂µ + eAµ (x))−mc]

]
θα

ψi,α (x) ψ̄i,β (y) ,

(3.9.29)
and since ψi,α (x) satisfies the α-component Dirac equation:

[γµ (i~∂µ + eAµ (x))−mc]βα ψi,α (x) = 0, (3.9.30)

the second and forth terms of the previous equation vanish. In addition, the Dirac delta in time
does not allow x0 − y0 6= 0, meaning that it is permitted to set x0 = y0 in the remaining terms of
the expression, we can thus write:

δ
(
x0 − y0

)
ψi,α (x) ψ̄i,β (y) e−

i
~Ei(tx−ty) = δ

(
x0 − y0

)
ψi,α (x) ψ̄i,β (y) , (3.9.31)

the expression simplifies to:

[γµ (i~∂µ + eAµ (x))−mcδ]θα
[
SFA (x, y)

]
αβ

=
[
γ0
]
θα
δ
(
x0 − y0

)∑
i

ψi,α (x)ψ†i,σ (y)
[
γ0
]
σβ
.

(3.9.32)
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The final step is to notice that the sum over i reduces to a spatial Dirac delta function (completeness
relation). The Hamiltonian is self-adjoint, and this means that its eigenvectors are orthogonal. We
assume that they are normalized and get:

ˆ
d3xψ†i (x)ψj (x) = δij . (3.9.33)

We multiply the sum in question by ψ†j (x) from right, and integrate over the x volume, so we can
make use of the orthogonality relation, we therefore get:

ˆ
d3xψ†j (x)

∑
i

ψi (x)ψ†i (y) =
∑
i

δijψ
†
i (y) = ψ†j (y) , (3.9.34)

which shows that: ∑
i

ψi (x)ψ†i (y) = 14δ (x− y) , (3.9.35)

and using
[
γ0
]
θα

[14]ασ
[
γ0
]
σβ

= [14]θβ as seen in the anticommutation relation of the gamma
matrices, we finally get our wanted result:[

γµ
(
i~

∂

∂xµ
+ eAµ (x)

)
−mc14

]
θα

[
SFA (x, y)

]
αβ

= [14]θβ δ (x− y) . (3.9.36)

In addition, we should note that the retarded and advanced propagators also do satisfy the same
(last) propagator/Green’s function equation, and that they only differ by the contour integration or
the different poles shiftings (boundary conditions).

3.9.6 Electron propagator and Green’s function
The Feynman propagator which is written as a vacuum expectation value of the time-ordered product
of two electron (Dirac) field operator given in eqs.(3.9.21,3.9.26) and can be written as [7, eq.(32)]:

[
SFA (x, y)

]
αβ

=
1

i~
1

2πi

ˆ
CF

dz
∑
i

ψi,α (x)ψ†i,β (y)

Ei − z
γ0e−

i
~ z(tx−ty), (3.9.37)

Eq.(3.9.37) contains the α, β matrix element of the 4× 4 Dirac Green’s function:

GA (x,y; z) =
∑
i

ψi (x)ψ†i (y)

Ei − z
. (3.9.38)

The reader must note that the sum runs over the outer products of the four-component Dirac spinors,
and thus, this Green’s function is a 4 × 4 matrix. As for the electron propagator formulas, coming
from the electron field operator, these summations are very formal, and for unbound solutions these
summations should be understood as integrals instead (continua of energy values). Using the fact
that ψi (x) satisfies the Dirac equation of time-independent potentials, and the closure relation
eq.(3.9.35) associated with the time-independent wavefunction, this formula clearly satisfies the
Green’s function equation:[

cα · (−i~∇x + eA (x))− eϕ (x) + βmc2 − z
]
GA (x,y; z) = 14δ (x− y) . (3.9.39)



CHAPTER 3. QUANTUM ELECTRODYNAMICS 95

As for the propagator in the presence of an external potential: the SA case, the Green’s function
can now be expanded in powers of the time-independent external potential. This can be done by
plugging the electron propagator formula in which the Green’s function appears (eq.(3.9.37)) in
the propagator expansion expression of eq.(3.9.19). After integrating over all time-components, one
obtains:

GA (x,y; z) = G0 (x,y; z) + ec

ˆ
dwG0 (x,w; z)αµAµ (w)G0 (w,y; z)

+ (ec)
2
ˆ
dw

ˆ
dvG0 (x,w; z)αµAµ (w)G0 (w,v; z)ανAν (v)G0 (v,y; z) +O (eAµ)

3
.

(3.9.40)

Another way to obtain this relation would be to play with the Dirac operators (the two ways are
related). The two (bound and free) Green’s functions we are planning to relate satisfy the following
equations:[

cα · (−i~∇x + eA (x))− eϕ (x) + βmc2 − z
]
GA (x,y; z) = 14δ (x− y) (3.9.41)[

−i~cα ·∇x + βmc2 − z
]
G0 (x,y; z) = 14δ (x− y) , (3.9.42)

respectively. Following the notation of Economou [107, Chapter 1] these equations are written in
operator notation as:

[H − z]G0 (z) = 14 (3.9.43)
[H − ceαµAµ − z]GA (z) = 14, (3.9.44)

where G0,A (z) are kernels, corresponding to the Green’s functions G0,A (x,y; z) (see, for instance,
[7, Section 5.2]). In the last two equations, H = cα · p̂ + βmc2 is the free Dirac Hamiltonian.
Both notations, real-space and operator are related by the following rules associated with the Dirac
bracket notation (continuous position variable algebra) [107, eqs.(1.6-9)]:

ˆ
dx |x〉 〈x| = 1 (3.9.45)

〈x|y〉 = δ (x− y) (3.9.46)
〈x |G0,A (z)|y〉 = G0,A (x,y; z) (3.9.47)

〈x |H|y〉 = δ (x− y)H (x) . (3.9.48)

Using the well known operator identity:

1

A−B
=

1

A
+

1

A
B

1

A
+

1

A
B

1

A
B

1

A
+ . . . , (3.9.49)

which can be verified by simply multiplying the last equation by A − B (from any side), we can
write GA (z) which is given in eq.(3.9.44), as [108, eq.(11)]:

GA (z) =
1

H − z − ceαµAµ

=
1

H − z
+

1

H − z
ceαµAµ

1

H − z
+

1

H − z
ceαµAµ

1

H − z
ceανAν

1

H − z
+ . . .

= G0 (z) + (ce)G0 (z)αµAµG0 (z) + (ce)
2
G0 (z)αµAµG0 (z)ανAνG0 (z) + . . .

. (3.9.50)
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One can then use rules just presented, by sandwiching the last equation between the bra 〈x| and
the ket |y〉, thus using eq.(3.9.47), and inserting the closure relation of eq.(3.9.45) in between every
two operators, one directly obtains the wanted integral equation:

GA (x,y; z) = G0 (x,y; z) + ce

ˆ
dwG0 (x,w; z)αµAµ (w)G0 (w,y; z)

+ (ec)
2
ˆ
dw

ˆ
dvG0 (x,w; z) γµAµ (w)G0 (w,v; z) γνAν (v)G0 (v,y; z) +O (eAµ)

3
.

(3.9.51)
This expansion of the Green’s function has probably originated from Feynman’s work [52, eqs. 11-16].
In the case where the external four-potential contains only a scalar potential, Aµ (x) = (φ (x) /c, 0),
the last expression reduces to:

Gφ (x,y; z) = G0 (x,y; z) + e

ˆ
dwG0 (x,w; z)φ (w)G0 (w,y; z)

+ e2
ˆ
dw

ˆ
dvG0 (x,w; z)φ (w)G0 (w,v; z)φ (v)G0 (v,y; z) +O (eφ)

3
.

(3.9.52)

Next goals
After our discussions on Wick’s theorem, the electron and photon propagators, and their vacuum
expectation value forms (contractions), we shall turn back to our problem:

1. Expand the S-matrix in powers of the QED interaction Hamiltonian density.

2. Evaluate the time-ordered products involved in the Ŝ-matrix expansion using Wick’s theorem.

3. Calculate the energy-shift associated with each of the normal ordered terms which arise from
Wick’s theorem, and present its associated Feynman diagram.

3.10 S-matrix expansion and Feynman diagrams

3.10.1 Wick’s theorem for the S-matrix in QED
The expansion of the S-matrix in QED, leads to time-ordered products of the form of:

T
[
ĤI (x1, ε) . . . ĤI (xn, ε)

]
, (3.10.1)

where ĤI is given in eq.(3.5.21) by:

ĤI (x; ε) = −ecΨ̄ (x) γµΨ (x)Aµ (x) e−
ε
~ |t|. (3.10.2)

We now take away the constants and the exponential term, and focus on:

T
[
Ψ̄ (x1) γµ1Aµ1 (x1) Ψ (x1) . . . Ψ̄ (xn) γµnAµn (xn) Ψ (xn)

]
. (3.10.3)

Wick’s theorem, discussed in section 3.7, tells us that this time-ordered product can be written as
normal ordered products of: zero- one- two-contractions, and so on. The contraction of two operators
was given in eq.(3.7.2):

A (x1)B (x2) ≡
〈
0
∣∣T[A (x1)B (x2)

]∣∣ 0〉 . (3.10.4)

In evaluating the time-ordered product of eq.(3.10.3) two kinds of non-vanishing contractions will
be encountered:
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1. The contraction of two electron field operators:

Ψα (x) Ψ̄β (y) =
〈
0e
∣∣T[Ψα (x) Ψ̄β (y)

]∣∣ 0e
〉
. (3.10.5)

In section 3.9.5 we showed that this vacuum expectation value is related to the electron prop-
agator by eq.(3.9.21), which means that the contraction of two electronic operators is now:

Ψα (x) Ψ̄β (y) = i~
[
SF (x, y)

]
αβ
. (3.10.6)

2. Similarly, the contraction of two photon field operators is given by:

Aα (x)Aβ (y) ≡
〈
0p
∣∣T[Aα (x)Aβ (y)

]∣∣ 0p
〉
. (3.10.7)

In section 3.8.3, we showed that this expectation value can be written in terms of the photon
propagator using eq.(3.8.49). This relation leads to the following definition of the contraction:

Aα (x)Aβ (y) = i~DF
αβ (x, y) . (3.10.8)

In addition, one can easily show that the following relations do hold:

Ψ̄α (x) Ψβ (y) = −Ψβ (y) Ψ̄α (x) (3.10.9)

Ψα (x) Ψβ (y) = 0α,β (3.10.10)

Ψ̄α (x) Ψ̄β (y) = 0α,β . (3.10.11)

As a conclusion, when contracting a normal ordered product through Wick’s theorem, one should
only evaluate the non-vanishing contractions of the form of: Ψ̄α (x) Ψβ (y) and Ψα (x) Ψ̄β (y). In the
appendix G, we derive the first few time-ordered products of electronic and photon field operators.
We are now going to use the results we have got, in our expansion of the S-matrix.

3.10.2 S-matrix expansion for the no-photon BSQED
We shall now focus on the S-matrix expression of eq.(3.4.16):

Ŝ (ε, λ) = 1 +
1

1!

λ

i~c

ˆ
d4x1T

[
ĤI (x1, ε)

]
+

1

2!

(
λ

i~c

)2 ˆ
d4x1

ˆ
d4x2T

[
ĤI (x1, ε) ĤI (x2, ε)

]
+O

(
λ3
)
,

(3.10.12)

and examine the following expectation value:〈
Φα0

∣∣∣Ŝ (ε, λ)
∣∣∣Φα0〉 , (3.10.13)

which enters in Sucher’s energy expression.(3.4.19). In addition, we should be clear by stressing out
that we are going to consider the no-photon case, and write our perturbed (corrected) state as:

|Φα0 〉 =
∣∣Nα

e , 0
α
p
〉
. (3.10.14)
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This last notation indicates that we have N positive-energy real-electrons (first slot) and zero real-
photons (second slot) in this state (as done by Indelicato in [16, page 151]). This state does not
contain any occupied negative-energy solutions: the Dirac sea is empty. The reason why we say “real”,
is that we are not considering physical (real) photons, we shall only deal with (virtual) photons
that are generated by the photonic operator (in the S-matrix expansion): emitted and absorbed
by the creation and annihilation operators from the photonic vacuum state

∣∣0αp〉. A discussion
about the difference between real and virtual particles can be found in [109, section 5.2]. Our
last assumption, means that all S-matrices –popping up when expanding the main S-matrix of
eq.(3.10.12)– associated with an odd number of ĤI (x1), will vanish under expectation value of
eq.(3.10.13), because the S-matrix is sandwiched between two photon vacuum states. To get a
non-vanishing expectation value, all virtual photon creations need to be balanced by annihilations,
and this is only possible when we have an even number of photonic operators, which after being
contracted, will represent the propagation of a virtual photon between two spacetime points, as we
shall soon see. By eliminating the odd terms of eq.(3.10.13) we get:〈

Φα0

∣∣∣Ŝ (ε, λ)
∣∣∣Φα0〉

= 1 +
1

2!

(
λ

i~c

)2 ˆ
d4x1

ˆ
d4x2

〈
Φα0

∣∣∣T [ĤI (x1, ε) ĤI (x2, ε)
]∣∣∣Φα0〉+O

(
λ4
)
.

(3.10.15)

The number 1 simply indicates that to the zeroth-order, no-interaction has occurred. We shall now
analyze the second-order term: 〈

Φα0

∣∣∣T [ĤI (x1, ε) ĤI (x2, ε)
]∣∣∣Φα0〉 . (3.10.16)

Using Wick’s theorem, discussed in section 3.7 and the time-ordered products derived in the appendix
chapter G we can write:

T
[
ĤI (x1, ε) ĤI (x2, ε)

]
= e2c2e−

ε
~ (|t1|+|t2|)T

[
Ψ̄ (x1) γµ1Ψ (x1) Ψ̄ (x2) γµ2Ψ (x2)

]
T [Aµ1 (x1)Aµ2 (x2)] ,

(3.10.17)
where this step is justified by the fact that fermionic and photonic operators act on different spaces.
We also note that we choose to label the gamma matrices indices with respect to the spacetime point
of the associated current: µ1 with x1, and so on. The above fermionic product is computed in the
appendix eq.(G.1.11), and is found to be:

T
[
Ψ̄ (x1) γµ1Ψ (x1) Ψ̄ (x2) γµ2Ψ (x2)

]
= : Ψ̄ (x1) γµ1Ψ (x1) Ψ̄ (x2) γµ2Ψ (x2) : t1

− i~Tr
[
SF (x1, x1) γµ1

]
: Ψ̄ (x2) γµ2Ψ (x2) : t2

− i~Tr
[
SF (x2, x2) γµ2

]
: Ψ̄ (x1) γµ1Ψ (x1) : t3

+ i~ : Ψ̄ (x2) γµ2SF (x2, x1) γµ1Ψ (x1) : t4

+ i~ : Ψ̄ (x1) γµ1SF (x1, x2) γµ2Ψ (x2) : t5

− ~2Tr
[
SF (x1, x1) γµ1

]
Tr
[
SF (x2, x2) γµ2

]
t6

+ ~2Tr
[
SF (x2, x1) γµ1SF (x1, x2) γµ2

]
t7

(3.10.18)

In addition, the photonic product is evaluated in the appendix eq.(G.2.3), where using Wick’s
theorem, one obtains:

T [Aµ1
(x1)Aµ2

(x2)] = : Aµ1
(x1)Aµ2

(x2) : +i~DF
µ1µ2

(x1, x2) . (3.10.19)
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Recall that we are studying the no-(real)photon case, as seen in eq.(3.10.14). This means that the
first term of the last equation (normal-ordered) will vanish under the photonic vacuum expectation
value: 〈

0αp
∣∣ : Aµ1

(x1)Aµ2
(x2) :

∣∣0αp〉 = 0. (3.10.20)

The second term contains no creation or annihilation operator, and will thus survive the vacuum
expectation. This term represents the virtual photon propagation between x2 and x1. Generally
speaking, in the no-photon case, only fully contracted photon operator products can survive from
the vacuum expectation value and contribute. This means that all the terms of eq.(3.10.18) will be
multiplied by i~DF

µ1µ2
(x1, x2) in the vacuum expectation value of eq.(3.10.16). Terms t2 and t3,

as well as t4 and t5, of eq.(3.10.18) lead to equal overall expressions each, and this can be seen by
swapping the integration variables x1 ↔ x2 as well as the indices µ1 ↔ µ2, and using the following
symmetry properties of the photon propagator:

Dµν
F (x− y) = Dνµ

F (x− y) (3.10.21)
Dµν
F (x− y) = Dµν

F (y − x) , (3.10.22)

where the first line comes from the fact the metric tensor is symmetric under indices swapping,
while the second line can be obtained after performing a change of variables q → −q in the inverse
Fourier transform integral of the momentum-space photon propagator given in eq.(3.8.24). These
two relations allow us to reduce our time-ordered product to the following expressions:

1

e2c2e−
ε
~ (|t1|+|t2|)

〈
Φα0

∣∣∣T [ĤI (x1, ε) ĤI (x2, ε)
]∣∣∣Φα0〉

= i~DF
µ1µ2

(x1, x2)
〈
Φα0
∣∣: Ψ̄ (x1) γµ1Ψ (x1) Ψ̄ (x2) γµ2Ψ (x2) :

∣∣Φα0 〉 SP

+ 2~2DF
µ1µ2

(x1, x2)Tr
[
SF (x1, x1) γµ1

] 〈
Φα0
∣∣: Ψ̄ (x2) γµ2Ψ (x2) :

∣∣Φα0 〉 VP

− 2~2DF
µ1µ2

(x1, x2)
〈
Φα0
∣∣: Ψ̄ (x2) γµ2SF (x2, x1) γµ1Ψ (x1) :

∣∣Φα0 〉 SE

− i~3DF
µ1µ2

(x1, x2)Tr
[
SF (x1, x1) γµ1

]
Tr
[
SF (x2, x2) γµ2

]
V1

+ i~3DF
µ1µ2

(x1, x2)Tr
[
SF (x2, x1) γµ1SF (x1, x2) γµ2

]
V2

(3.10.23)

The first three terms can be found in the work of Indelicato and Mohr [16, eqs.(181-183)] and
correspond to the physical process, while the last two terms (fully contracted) correspond to vac-
uum process, and are not state dependent. These five contributions are presented in the following
figs. 3.10.1a to 3.10.1e. We shall now give a few words on these diagrams:

1. Virtual photons (internal photon lines) are graphically represented by wiggly lines, that connect
two vertices, at spacetime points x1 and x2, in this case. Mathematically, these internal propa-
gations represent a contraction of two photon field operators: Aµ (x1)Aν (x2) = i~DF

µν (x1, x2).

2. External straight double electron lines represent bound-electrons, whose wavefunctions are
solutions of the Dirac equation in the presence of an external potential.

3. Internal double electron lines, as in the bubbles of figs. 3.10.1b, 3.10.1d and 3.10.1e or the
straight line of the self-energy diagram in fig. 3.10.1c, represent the propagation of virtual
electrons (in the presence of external electromagnetic potential) between the spacetime points.
Mathematically, this corresponds to a contraction of two fermion field operators: Ψµ (x1) Ψ̄ν (x2) =
i~
[
SF (x1, x2)

]
µν
.

Description of each of the presented diagrams:
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1. The single-photon exchange (SP) of fig. 3.10.1a describes the retarded electron-electron inter-
action to its lowest-order, by the exchange of a virtual photon.

2. The vacuum polarization (VP) of fig. 3.10.1b describes the interaction between a bound elec-
tron and the vacuum polarization bubble at x2. This vacuum polarization bubble will be rep-
resented by a vacuum polarization current density which interacts with the electron through
an instantaneous Coulombic interaction. In addition, the vacuum polarization density will be
related to the trace in this VP term, of eq.(3.10.23).

3. The self-energy (SE) of fig. 3.10.1c represents the process of emission and absorption of a
virtual photon by the bound electron. This diagram is very essential in QED. In 1947 Hans
Bethe [110] removed the divergence of the energy-shift associated with this process in a fully
non-relativistic framework and got an estimate for the Lamb-shift which agreed up to 96%
with the experimental value. His contribution gave hope in the early troublesome (divergent)
QED. A short interview with Bethe (on this subject) is found in [111].

4. Finally, the vacuum diagrams of figs. 3.10.1d and 3.10.1e. Notice that contrary to the first
three diagrams, these two diagrams have no external legs (no bound-electron lines here), and
this is mathematically identified by the absence of normal ordered products in their associated
expressions in eq.(3.10.23), since they are full contracted. These two diagrams are sometimes
called bubble, or disconnected diagrams, and can be understood to represent the interaction
of the vacuum with itself.
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x1 x2

(a) Single-photon exchange
(SP)

x1 x2

(b) Vacuum polarization (VP)

x1

x2

(c) Self-energy (SE)

x1 x2

(d) Vacuum diagram (V1)

x1 x2

(e) Vacuum diagram (V2)

Figure 3.10.1: The lowest-order QED corrections: of order e2 (two vertices).

We shall next discuss the distinction between the physical diagrams (first three), and the vacuum
ones (last two), and see how the latter do not affect the level-shift of our studied bound-electron
system. This distinction is defined by the following two points:

1. The physical diagrams: the ones having external electron lines, as the ones presented in
figs. 3.10.1a to 3.10.1c: corresponding to terms which are not fully contracted.

2. The vacuum diagrams: diagrams having no external electron lines as the ones of figs. 3.10.1d
and 3.10.1e: the full contracted terms.

In the next section, we shall see how the contributions from the latter terms can be discarded.

3.10.3 Physical and vacuum diagrams
We start by stating that the expectation value of the S-matrix can be written as:〈

Φα0

∣∣∣Ŝ (ε, λ)
∣∣∣Φα0〉 =

〈
Φα0

∣∣∣Ŝ (ε, λ)
∣∣∣Φα0〉

ph

〈
0e, 0p

∣∣∣Ŝ (ε, λ)
∣∣∣ 0e, 0p

〉
, (3.10.24)

where
〈

Φα0

∣∣∣Ŝ (ε, λ)
∣∣∣Φα0〉

ph
contains all physical (ph) contributions of

〈
Φα0

∣∣∣Ŝ (ε, λ)
∣∣∣Φα0〉, i.e. it

excludes the vacuum contributions of figs. 3.10.1d and 3.10.1e (with the higher-order ones). The
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second term is
〈

0e, 0p

∣∣∣Ŝ (ε, λ)
∣∣∣ 0e, 0p

〉
, which is simply the vacuum expectation value of the S-

matrix (0 photons and 0 electrons). At first order the S-matrix reduces to the unit operator, and
our vacuum expectation value becomes:〈

0e, 0p

∣∣∣Ŝ (ε, λ)
∣∣∣ 0e, 0p

〉
= 1 +O

(
e2
)
. (3.10.25)

We write O
(
e2
)
, since the first order contribution will vanish under the vacuum expectation value,

because it only contains one photon operator (as discussed previously). This is true for any odd
number of photon field operators, or ĤI (x). We now turn to the second-order contribution, which
is written as:

1

2!

(
λ

i~c

)2 ˆ
d4x1

ˆ
d4x2

〈
0e, 0p

∣∣∣T [ĤI (x1, ε) ĤI (x2, ε)
]∣∣∣ 0e, 0p

〉
. (3.10.26)

The reader should notice that any non-fully-contracted terms popping out of the Wick expansion will
die under the vacuum expectation value, this means that only fully contracted terms will survive.
Using the results of eq.(G.1.11) and eq.(G.2.3), we find:〈

0e, 0p

∣∣∣T [ĤI (x1) ĤI (x2)
]∣∣∣ 0e, 0p

〉
= i~3e2c2e−

ε
~ (|t1|+|t2|)Tr

[
SF (x2, x1) γµ1SF (x1, x2) γµ2

]
DF
µ1µ2

(x1, x2)

− i~3e2c2e− ε
~ (|t1|+|t2|)Tr

[
SF (x1, x1) γµ1

]
Tr
[
SF (x2, x2) γµ2

]
DF
µ1µ2

(x1, x2) .

(3.10.27)

These terms are obviously the V1 and V2 we had in eq.(3.10.23). One should notice that the vacuum
expectation value of the S-matrix collects all fully-contracted terms, while the

〈
Φα0

∣∣∣Ŝ (ε, λ)
∣∣∣Φα0〉

ph
expectation value collects the all the remaining partially-contracted terms. This analysis justifies
our separation in eq.(3.10.24) between physical and vacuum contributions/diagrams, and which we
graphically represent in fig. 3.10.2. The reader should finally note (for clarification purposes) that the
diagrammatic product (SP×V2), for instance, will be of e4-order, and will appear in the expansion
of the forth-order S(4)-matrix, which contains the following time-ordered product:

T
[
ĤI (x1, ε) ĤI (x2, ε) ĤI (x3, ε) ĤI (x4, ε)

]
. (3.10.28)

See the fig. 3.10.2. Mathematically, this product of diagrams will be written as a product of two
independent expressions, and it will be graphically represented by a diagram containing two discon-
nected sub-diagrams (SP and V2). This separation of contributions is the reason why the vacuum
diagrams are called disconnected diagrams, while the physical-ones are called connected.
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[ 1 + + + + (e4)]
ph

× [1 + + + (e4)]
vac

SP VP SE

V1 V2

Figure 3.10.2: Distinction between physical and vacuum diagrams

This analysis is inspired by discussions made by Berestetskii et al. [105, section §103] and Fetter
and Walecka [87, section 9] on the expansion of the exact (dressed) photon and electron propagator
in terms of the free (bare) propagators. The form we are using in eq.(3.10.24) can be found, in the
context of BSQED in the works of Mohr et al. [7, eq.(25)] and [104, eq.(19)], where the authors
distinguish between connected and disconnected diagrams (in our language: physical and vacuum
diagrams), as we have done. We shall now follow their analysis, by plugging eq.(3.10.24) in Sucher’s
energy formula of eq.(3.4.19), leading to [7, eq.(21)]:

∆Eα = lim
ε→0
λ→1

iελ

2

[
∂

∂λ
ln
〈

Φα0

∣∣∣Ŝ (ε, λ)
∣∣∣Φα0〉

ph
+

∂

∂λ
ln
〈

0e, 0p

∣∣∣Ŝ (ε, λ)
∣∣∣ 0e, 0p

〉]
. (3.10.29)

Notice that the last term contributes with the same energy-shift to all energy solutions Eα, since
it does not depend on the state |Φα0 〉 in question. This means that the last term does not affect
transition energies (what the experiment measures), as pointed out by Mohr [112, page 117], and
thus it is discarded. The derivative of the logarithmic function in the last equation is given by:

λ
∂

∂λ
ln
〈

Φα0

∣∣∣Ŝ (ε, λ)
∣∣∣Φα0〉

ph
=

〈
Φα0

∣∣∣λ ∂
∂λ Ŝ (ε, λ)

∣∣∣Φα0〉
ph〈

Φα0

∣∣∣Ŝ (ε, λ)
∣∣∣Φα0〉ph

, (3.10.30)

where the derivative of the scattering matrix with respect to λ reads:

λ
∂

∂λ
Ŝ (ε, λ) = λT

[
1

i~c

ˆ
d4xe−

ε
~ |t|ĤI (x) e

λ
i~c
´
d4x1e

− ε~ |t1|ĤI(x1)

]
, (3.10.31)

which directly leads to the following expansion of the S-matrix in powers of λ for both its numerator
and denominator:

λ
∂

∂λ
ln
〈

Φα0

∣∣∣Ŝ (ε, λ)
∣∣∣Φα0〉

ph
=

〈
Ŝ(1)

〉
ph

+ 2
〈
Ŝ(2)

〉
ph

+ 3
〈
Ŝ(3)

〉
ph

+ . . .

1 +
〈
Ŝ(1)

〉
ph

+
〈
Ŝ(2)

〉
ph

+
〈
Ŝ(3)

〉
ph

+ . . .
. (3.10.32)

In the last expression we used
〈
Ŝ(i)

〉
ph

=
〈

Φα0

∣∣∣Ŝ(i) (ε, λ)
∣∣∣Φα0〉

ph
. Recall that Ŝ(i) (ε, λ) is given in

eq.(3.4.16). This fraction expansion can be expanded in powers of interaction Hamiltonian density,
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and can be therefore written as:

λ
∂

∂λ
ln
〈

Φα0

∣∣∣Ŝ (ε, λ)
∣∣∣Φα0〉

ph

=
〈
Ŝ(1)

〉
ph

1st

+ 2
〈
Ŝ(2)

〉
ph
−
〈
Ŝ(1)

〉2
ph

2nd

+ 3
〈
Ŝ(3)

〉
ph
− 3

〈
Ŝ(1)

〉
ph

〈
Ŝ(2)

〉
ph

+
〈
Ŝ(1)

〉3
ph

3rd

+ 4
〈
Ŝ(4)

〉
ph
− 4

〈
Ŝ(1)

〉
ph

〈
Ŝ(3)

〉
ph
− 2

〈
Ŝ(2)

〉2
ph

+ 4
〈
Ŝ(1)

〉2
ph

〈
Ŝ(2)

〉
ph
−
〈
Ŝ(1)

〉4
ph

4th

+ 5
〈
Ŝ(5)

〉
ph
− 5

〈
Ŝ(1)

〉
ph

〈
Ŝ(4)

〉
ph
− 5

〈
Ŝ(2)

〉
ph

〈
Ŝ(3)

〉
ph

+ 5
〈
Ŝ(1)

〉2
ph

〈
Ŝ(3)

〉
ph

5th

+ 5
〈
Ŝ(1)

〉
ph

〈
Ŝ(2)

〉2
ph
− 5

〈
Ŝ(1)

〉3
ph

〈
Ŝ(2)

〉
ph

+
〈
Ŝ(5)

〉
ph

5th

+ 6
〈
Ŝ(6)

〉
ph
− 6

〈
Ŝ(1)

〉
ph

〈
Ŝ(5)

〉
ph
− 6

〈
Ŝ(2)

〉
ph

〈
Ŝ(4)

〉
ph

+ 6
〈
Ŝ(1)

〉2
ph

〈
Ŝ(4)

〉
ph
− 3

〈
Ŝ(3)

〉2
ph

6th

+ 12
〈
Ŝ(1)

〉
ph

〈
Ŝ(2)

〉
ph

〈
Ŝ(3)

〉
ph
− 6

〈
Ŝ(1)

〉3
ph

〈
Ŝ(3)

〉
ph

+ 2
〈
Ŝ(2)

〉3
ph
− 9

〈
Ŝ(1)

〉2
ph

〈
Ŝ(2)

〉2
ph

6th

+ 6
〈
Ŝ(1)

〉4
ph

〈
Ŝ(2)

〉
ph
−
〈
Ŝ(1)

〉6
ph

6th

+ . . .
(3.10.33)

In the last equation, the i-th labelings on the right side indicates that the corresponding lines are of
i-order in the interaction Hamiltonian density ĤI (x1). Expressions up to the fourth order are given
in literature, see, for instance, [7, eq.(42)].

3.10.4 The BSQED corrections of the second-order e2

Our focus is on the physical contributions of the second-order e2 processes. Using the result of the
last equation.(3.10.33) we can use Sucher’s energy expression of eq.(3.10.29) to write our second-order
energy-shift as:

∆Eα = lim
ε→0

iε
〈

Φα0

∣∣∣Ŝ(2) (ε, 1)
∣∣∣Φα0〉

ph
. (3.10.34)

In the next subsections, we shall evaluate the energy-shifts associated with each of the three physical
processes in eq.(3.10.29) which are presented in figs. 3.10.1a to 3.10.1c. We now write the second-
order Ŝ(2)-matrix as a sum of the three physical processes sub matrices of eq.(3.10.23):

Ŝ(2) (ε, 1) = Ŝ(2)SP (ε, 1) + Ŝ(2)VP (ε, 1) + Ŝ(2)SE (ε, 1) . (3.10.35)
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The individual terms are thus given by:

Ŝ(2)SP (ε, 1) = +
e2

2i~

ˆ
d4x1

ˆ
d4x2e

− ε
~ (|t1|+|t2|)DF

µ1µ2
(x1, x2)

× : Ψ̄ (x1) γµ1Ψ (x1) Ψ̄ (x2) γµ2Ψ (x2) : (3.10.36)

Ŝ(2)VP (ε, 1) = −e2
ˆ
d4x1

ˆ
d4x2Tr

[
γµ2SF (x2, x2)

]
e−

ε
~ (|t1|+|t2|)DF

µ1µ2
(x1, x2)

× : Ψ̄ (x1) γµ1Ψ (x1) : (3.10.37)

Ŝ(2)SE (ε, 1) = +e2
ˆ
d4x1

ˆ
d4x2S

F
β2α1

(x2, x1) γµ1

α1β1
γµ2

α2β2
e−

ε
~ (|t1|+|t2|)DF

µ1µ2
(x1, x2)

× : Ψ̄α2
(x2) Ψβ1

(x1) : (3.10.38)

In the following sections, we shall evaluate the three energy-shifts:

∆EαX = lim
ε→0

iε
〈

Φα0

∣∣∣Ŝ(2)X (ε, 1)
∣∣∣Φα0〉

ph
, X = SP,VP, SE (3.10.39)

which correct the total energy Eα of a system consisting of N non-interacting bound-electrons
described by the multi-electronic state |Φα0 〉.

3.10.5 Single-photon exchange
The energy-shift associated with the single-photon exchange process is given by:

∆EαSP =
e2

2~
lim
ε→0

ε

ˆ
d4x1

ˆ
d4x2e

− ε
~ (|t1|+|t2|)DF

µ1µ2
(x1, x2)

×
〈
Φα0
∣∣: Ψ̄ (x1) γµ1Ψ (x1) Ψ̄ (x2) γµ2Ψ (x2) :

∣∣Φα0 〉 . (3.10.40)

We now use the photon propagator expression of eq.(3.8.24) nad expand the field operators as done
in eq.(3.5.13) to obtain the following expression:

∆EαSP = −~e2c
2ε0

lim
ε→0

ε

ˆ
d3x1

ˆ
d3x2 lim

δ→0

ˆ
d4p

(2π~)
4

e+
i
~p·(x1−x2)

p20 − |p|
2

+ iδ

×
〈

Φα0

∣∣∣: c†i cjc†kcl :
∣∣∣Φα0〉 ψ̄i (x1) γµψj (x1) ψ̄k (x2) γµψl (x2)

×
ˆ
dt1

ˆ
dt2e

− ε
~ |t1|−

i
~ (Ej−Ei+cp0)t1e−

ε
~ |t2|−

i
~ (El−Ek−cp0)t2 ,

(3.10.41)

where we isolate the time-integrals at the end line. This time-integral can be then written as:ˆ
dt1

ˆ
dt2e

− ε
~ |t1|−

i
~ (Ej−Ei+cp0)t1e−

ε
~ |t2|−

i
~ (El−Ek−cp0)t2

= (2π~)
2

∆ε (Ei − Ej − cp0) ∆ε (El − Ek − cp0) ,

(3.10.42)

using the function ∆ε (a), given in eq.(I.1.9) of the appendix. We shall now evaluate the energy-
component momentum integral, which acts on the photon propagator denominator and the delta
functions ∆ε, using eq.(I.1.14):

c

ˆ
dp0

1

p20 − |p|
2

+ iδ
∆ε (Ei − Ej − cp0) ∆ε (El − Ek − cp0)

=
∆2ε (Ei − Ej − El + Ek)(

Ei−Ej
c

)2
− |p|2 + iε

,
(3.10.43)
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which holds in the limit ε→ 0, the function ∆ε (x) behaves like a Dirac delta:

lim
ε→0

∆ε (x) = δ (x) (3.10.44)

Next, we shall evaluate the action of the space-component momentum integral which will act on the
last denominator. Using eq.(I.3.5), this radial integral is found to be:

ˆ
d3p

(2π~)
3

e+
i
~p·(x1−x2)

p20 − p2 + iε
= −e

+ i
~

√
p2

0+iε|x1−x2|

4π~2 |x1 − x2|
, (3.10.45)

with p0 = (Ei − Ej) /c. Finally, we have the expectation value of the creation and annihilation
operators string in eq.(3.10.41), which reduces to the following product of Kronecker deltas:〈

Φα0

∣∣∣: c†i cjc†kcl :
∣∣∣Φα0〉 = −

〈
Φα0

∣∣∣c†i c†kcjcl∣∣∣Φα0〉 = δijδkl − δilδjk. (3.10.46)

The reader should note that in the last expression, we assumed that the single-electron states j
and l of the N -electron state |Φα0 〉 where already occupied. Finally, the limit of vanishing ε → 0
is evaluated with respect to eq.(I.1.13), which leads to a Kronecker delta term which manifests the
energy conservation at the vertices. See, for instance, [15]. After collecting all the above results, our
energy expression simplifies to the following one:

∆EαSP =
e2

2

ˆ
d3x1

ˆ
d3x2ψ̄i (x1) γµψj (x1)

e+
i
c~ |Ei−Ej ||x1−x2|

4πε0 |x1 − x2|
ψ̄k (x2) γµψl (x2)

× δEi+Ek,Ej−El {δijδkl − δilδjk} .
(3.10.47)

The term in the curly brackets leads to the distinction between a direct and an exchange term:

∆EαSP

=
e2

2

ˆ
d3x1

ˆ
d3x2ψ̄i (x1) γµψi (x1)

1

4πε0 |x1 − x2|
ψ̄j (x2) γµψj (x2) Direct

− e2

2

ˆ
d3x1

ˆ
d3x2ψ̄i (x1) γµψj (x1)

e+
i
c~ |Ei−Ej ||x1−x2|

4πε0 |x1 − x2|
ψ̄j (x2) γµψi (x2) Exchange

(3.10.48)

as found in the work of Mohr [19, eq.(54)]. We shall now discuss these two terms:

1. The direct term is equivalent to the Hartree one (in the Hartree-Fock theory), and de-
scribes the instantaneous interaction between two electron charge (four-)currents: Jµ (i,x1)
and Jµ (j,x2), associated with the i-th and j-th electrons, with:

Jµ (i,x) = −ceψ̄i (x) γµψi (x) . (3.10.49)

In addition, we note that the effective interaction Hamiltonian associated with this direct
contribution is given by:

HDirect =
e2

4πε0 |x1 − x2|
[αµ (1)αµ (2)] =

e2

4πε0 |x1 − x2|
[1 +α (1) ·α (2)] , (3.10.50)

where the αµ matrices are given in eq.(A.0.13). The numbers inside the round brackets: (1)
and (2), are there to indicate that the associated matrices act on the current associated with
x1 and x2, respectively. Finally, we should note that this term accounts for the Coulomb
(charge-charge) and Gaunt (current-current) interactions.



CHAPTER 3. QUANTUM ELECTRODYNAMICS 107

2. The exchange term is equivalent to the Fock term in the Hartree-Fock theory, and the
associated exchange effective Hamiltonian is written as:

HExchange =
e2

4πε0 |x1 − x2|
[1 +α (1) ·α (2)] e+

i
c~ |Ei−Ej ||x1−x2|. (3.10.51)

See [7, eq.(461)] and [15, eq.(F.67)] and the corresponding discussions. In contrary to the
previous term, this one describes the retarded exchange interaction between two currents, and
the effect of retardation is captured in the exponential term. Notice that in the non-relativistic
limit c → ∞ (or zero-frequency limit), this exponential reduces to 1. In addition, while the
direct energy-shift is a real quantity, the exchange energy-shift is a complex number, its real
part corresponds to the physical energy-shift, and its imaginary component contains a QED
corrections to the partial resonance width of excited-state that describes the inverse of its
decay mean lifetime. See, for instance, [19, Page 1954].

It is thus more convenient to write the energy-shift associated with the single-photon exchange
process as the real part of the last formula:

∆EαSP =

+
e2

2

ˆ
d3x1

ˆ
d3x2ψ̄i (x1) γµψi (x1)

1

4πε0 |x1 − x2|
ψ̄j (x2) γµψj (x2) Direct

− e2

2

ˆ
d3x1

ˆ
d3x2ψ̄i (x1) γµψj (x1)

cos
(

1
c~ |Ei − Ej | |x1 − x2|

)
4πε0 |x1 − x2|

ψ̄j (x2) γµψi (x2) Exchange

(3.10.52)
In the next section, we shall investigate the two remaining processes: the vacuum polarization and
the self-energy, and we will see that the former contribution will be of direct instantaneous nature,
as the direct term in this last expression, while the latter one will be of a retarded and exchange
nature, as the exchange term we have just encountered.

3.10.6 Vacuum polarization
We shall now attack the vacuum polarization term, which will be of a central importance in this
thesis. The corresponding energy-shift is given, with respect to eqs.(3.10.34 and 3.10.37) by:

∆EαVP = −e2i lim
ε→0

ε

ˆ
d4x1

ˆ
d4x2Tr

[
γµ2SF (x2, x2)

]
e−

ε
~ (|t1|+|t2|)DF

µ1µ2
(x1, x2)

×
〈
Φα0
∣∣: Ψ̄ (x1) γµ2Ψ (x1) :

∣∣Φα0 〉 . (3.10.53)

We first note that the trace Tr
[
γµ1SF (x2, x2)

]
is time-independent, as seen from eq.(3.9.37), at

equal spacetime points. We now use the photon propagator expression.(3.8.24), expand the field
operators, and isolate the time integrals to obtain the following expression:

∆EαVP =
c~2e2i
ε0

lim
ε→0

ε

ˆ
d3x1

ˆ
d3x2Tr

[
γµSF (x2, x2)

]
lim
δ→0

ˆ
d4p

(2π~)
4

e+
i
~p·(x1−x2)

p20 − |p|
2

+ iδ

× ψ̄i (x1) γµψj (x1)
〈

Φα0

∣∣∣: c†i cj :
∣∣∣Φα0〉 ˆ dt1

ˆ
dt2e

− ε
~ |t1|+

i
~ (Ei−Ej+cp0)t1e−

ε
~ |t2|−

i
~ cp0t2 .

(3.10.54)
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The time integral is evaluated using eq.(I.1.9):
ˆ
dt1

ˆ
dt2e

− ε
~ |t1|+

i
~ (Ei−Ej+cp0)t1e−

ε
~ |t2|−

i
~ cp0t2

= (2π~)
2

∆ε (Ei − Ej + cp0) ∆ε (cp0) .

(3.10.55)

We now focus on the p0 integral, and use the previous result of eq.(3.10.43) to write it as:

c

ˆ
dp0

1

p20 − |p|
2

+ iδ
∆ε (Ei − Ej − cp0) ∆ε (cp0)

=
∆2ε (Ei − Ej)(

Ei−Ej
c

)2
− |p|2 + iε

.
(3.10.56)

Using eq.(3.10.45) we can write our three-momentum integral as:

ˆ
d3p

(2π~)
3

e+
i
~p·(x1−x2)

(Ei − Ej)2 /c2 − |p|2 + iε
= −e

+ i
c~ |Ei−Ej ||x1−x2|

4π~2 |x1 − x2|
. (3.10.57)

We are left with the expectation value in eq.(3.10.54) that reduces to:〈
Φα0

∣∣∣: c†i ci :
∣∣∣Φα0〉 =

〈
Φα0

∣∣∣c†i cj∣∣∣Φα0〉 = δij . (3.10.58)

where, again, we assume that the single-electron state j, in the N -particle state|Φα0 〉, is already
occupied. Finally, we use the result of eq.(I.1.13) which adds a Kronecker delta δEi,Ej , showing
energy conservation at the vertex, as expected. After collecting all the above findings, we can write:

∆EαVP = −e2i~
ˆ
d3x1

ˆ
d3x2ψ̄i (x1) γµψj (x1)

e+
i
c~ |Ei−Ej ||x1−x2|

4πε0 |x1 − x2|
Tr
[
γµS

F (x2, x2)
]
δijδEi,Ej .

(3.10.59)
Notice that this point, that the last Kronecker delta will reduce the exponential to 1, and we thus
find the energy-shift associated with the vacuum polarization to be:

∆EαVP = −e2i~
ˆ
d3x1

ˆ
d3x2ψ̄i (x1) γµψi (x1)

1

4πε0 |x1 − x2|
Tr
[
γµS

F (x2, x2)
]
. (3.10.60)

This expression is found in the work of Schweber [4, eq.(205) 2nd line], Indelicato et al. [5, eq.(5)]
as well as in the work of Mohr et al. [7, eq.(221)]. This energy-shift represents a process in which
an electron current:

− ecψ̄i (x1) γµψi (x1) , (3.10.61)

associated with the i-th electron at x1, instantaneously interacts with the vacuum polarization
charge current, given by:

JVP
µ (x2) = eci~Tr

[
γµS

F (x2, x2)
]
. (3.10.62)

This time-independent term is going to be discussed in detail in the next chapter, where we shall
see that it can be written as:

JVP
µ (x) =

ec

2

[∑
Ei>0

ψ̄i (x) γµψi (x)−
∑
Ei<0

ψ̄i (x) γµψi (x)

]
, (3.10.63)
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which is the average of the difference between positive and negative-energy Dirac currents. Further-
more, we shall see that if the time-independent external potential is purely scalar, then only the
time-component of the last expression, known as the vacuum polarization density, will survive:

JVP
0 (x) =

ec

2

[∑
Ei>0

ψ†i (x)ψi (x)−
∑
Ei<0

ψ†i (x)ψi (x)

]
= cρVP (x) , (3.10.64)

and as a consequence, the vacuum polarization energy-shift will reduce to:

∆EαVP = −e2i~
ˆ
d3x1

ˆ
d3x2ψ

†
i (x1)ψi (x1)

1

4πε0 |x1 − x2|
Tr
[
γ0S

F (x2, x2)
]
. (3.10.65)

This expression can be found in the work of Soff and Mohr [6, eqs.(6,8,9,10)]. We are now going to
calculate the last energy-shift, associated with the (more) complicated non-local self-energy process.

3.10.7 Self-energy
Using Sucher’s energy-shift formula of eq.(3.10.34), associated with second-order processes, and the
self-energy S-matrix expression from eq.(3.10.37), our energy-shift is written as:

∆EαSE = +ie2 lim
ε→0

ε

ˆ
d4x1

ˆ
d4x2S

F
β2α1

(x2, x1) γµ1

α1β1
γµ2

α2β2

× e− ε
~ (|t1|+|t2|)DF

µ1µ2
(x1, x2)

〈
Φα0
∣∣: Ψ̄α2 (x2) Ψβ1 (x1) :

∣∣Φα0 〉 . (3.10.66)

The main complication associated with self-energy energy-shift comes from the time dependence of
the electron propagator SFβ2α1

(x2, x1). This was not the case for two previous processes, where:

• The single-photon exchange term in eq.(3.10.36) does not contain an electron propagator.

• The vacuum polarization term in eq.(3.10.37) contains SF (x2, x2), which is time-independent.

We first plug the photon and electron propagator expressions of eqs.(3.8.24 and 3.9.37) in our current
expression of eq.(3.10.66), and follow the steps done in the previous processes, to obtain the following
expression:

∆EαSE =
e2

2πi

ˆ
d3x1

ˆ
d3x2

ˆ
CF

dzGβ2ζ1 (x2,x1; z) γ0ζ1α1

× γµ1

α1β1
γµ2

α2β2
gµ1µ2

ψ̄i,α2
(x2)ψj,β1

(x1)

× δijδEi,Ej
e
+ i

~

√
(z−Ei)

2

c2
+iε|x1−x2|

4πε0 |x1 − x2|
.

(3.10.67)

The Kronecker delta δij coming from the expectation value forces both states to be identical, in
addition, δEi,Ej that comes from the limit of small ε indicates energy conservation. We shall now
move our terms around to simplify our equation and obtain:

∆EαSE =
e2

2πi

ˆ
d3x1

ˆ
d3x2

ˆ
CF

dzψ†i (x2)αµG (x2,x1; z)αµψi (x1)

× e
+ i

~

√
(z−Ei)

2

c2
+iε|x1−x2|

4πε0 |x1 − x2|
.

(3.10.68)
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This expression originates from the work of Baranger et al. [108, section II. first eq.], and can
be found in Schweber [4, eq.(205)]. The identical form we are giving has first appeared in the work
of Mohr [113, eq.(2.6)]. In this latter work, the author regularizes the self-energy expression (last
equation) using the Pauli-Villars regularization, where the photon propagator term (the last fraction)
is regularized by a counter-term designed to eliminate high momentum photon contributions (See
propagator subtraction of [113, eq.(2.3)]). This regularized expression needs to be balanced with
the relativistic self-energy mass-shift (first calculated by Feynman [114, eq.(9)]) that depends on the
same momentum cutoff that was introduced for the photon propagator integral.

3.11 Furry’s theorem
When evaluating the contribution of closed free-electron loops, one should note that loops with an
odd number of vertices will yield a vanishing contribution. This theorem is known as the Furry’s
theorem, named after the work of Wendell H. Furry [115] where he showed that using the charge
conjugation symmetry one can prove that the probability amplitude associated with a process con-
taining a closed electron loop with an odd number of vertices, vanishes. Following [8, exercice 4.1],
we define the matrix operator O, which is related to the charge conjugation matrix operation of
eq.(2.8.7) by:

O = Ucγ
0 = γ2γ0. (3.11.1)

Once we apply this operator on the gamma matrices, one obtains [28, eq.(12.18)]:

OγµO−1 = − [γµ]
t
. (3.11.2)

In addition, we need to know how the free electron propagator S associated with the Dirac equation:

S (x2, x1) =

ˆ
d4p

(2π~)
4

e−
i
~p·(x2−x1)

p2 −mc
[γµpµ +mc14] , (3.11.3)

behaves under this operation. Using eq.(3.11.2), we can write:

OS (x2, x1)O−1 =

ˆ
d4p

(2π~)
4 e
− i

~p·(x2−x1)
− [γµ]

t
pµ +mc14

p2 −mc
, (3.11.4)

and after a change of variable p → −p, which removes the negative sign in front of the transposed
gamma matrices, the negative sign can be absorbed by the spacetime difference, and one obtains [4,
Chapter 14 eq.(51)]:

OS (x2, x1)O−1 =

ˆ
d4p

(2π~)
4 e
− i

~p·(x1−x2)
[γµ]

t
pµ +mc14
p2 −mc

= [S (x1, x2)]
t
. (3.11.5)

A free-electron loop with a single vertex contains the following term:

Tr
[
SF (x0, x0) γµ

]
. (3.11.6)

This term is drawn in figure 3.11.1a. Following Furry’s theorem, one can insert the unit matrix
O−1O = 14 in the trace:

Tr
[
SF (x0, x0) γµ

]
= Tr

[
OSF (x0, x0)O−1OγµO−1

]
,
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x0

(a) Single vertex loop

x1

x2 x3

xn 1
x0

(b) n-vertex loop

x1

x2 x3

xn 1
x0

(c) The twin of (b)

Figure 3.11.1: Free electron loops (free propagations).

and make use of eqs.(3.11.2 and 3.11.5) to get:

Tr
[
SF (x0, x0) γµ

]
= −Tr

[[
SF (x0, x0)

]t
[γµ]

t
]

= −Tr
[
SF (x0, x0) γµ

]
,

which allows us to write:
Tr
[
SF (x0, x0) γµ

]
= 0. (3.11.7)

Alternatively, one can prove that this trace vanishes using a much simpler argument: We first write
the trace as:

Tr
[
SF (x2, x1) γµ

]
=

ˆ
d4p

(2π~)
4

e−
i
~p·(x2−x1)

p2 −mc
Tr [γνγµpν +mcγµ] , (3.11.8)

and using the results on gamma matrices traces eq.(B.1.17) and eq.(B.1.20), this expression simplifies
to:

Tr
[
SF (x0, x0) γµ

]
= 4

ˆ
d4p

(2π~)
4

e−
i
~p·(x2−x1)

p2 −mc
Tr [pµ] , (3.11.9)

which clearly vanishes since the integrand is odd in the four-momentum p.
When dealing with more than a single vertex, the last argument cannot be used, and here

is where Furry’s theorem which generalizes the previous analysis to an arbitrary odd-number of
vertices, applies. For a general n number of vertices of a free closed electron loop, one has the
following term:

T1 = Tr
[
SF (x0, x1) γµ1SF (x1, x2) γµ2SF (x2, x3) γµ3 . . . SF (xn−2, xn−1) γµn−1SF (xn−1, x0) γµ0

]
,

(3.11.10)

which we represent in figure 3.11.1b, where each vertex is mathematically represented by a gamma
matrix, we choose γµi to represent the vertex at the xi spacetime point. This diagram, as the
associated equation, describes n free-electron propagations between the spacetime points:

x0 → xn−1 → xn−2 . . .→ x2 → x1 → x0. (3.11.11)

When expanding the S-matrix, one sees that with each term T1 represented in figure 3.11.1b there
exist a twin term, we shall call T2, that should be summed with T1. This second term is represented
in figure 3.11.1c and corresponds to an opposite direction of electron propagations:

x0 → x1 → x2 . . .→ xn−2 → xn−1 → x0, (3.11.12)
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cf. eq.(3.11.11), given by:

T2 = Tr
[
SF (x1, x0) γµ0SF (x0, xn−1) γµn−1SF (xn−1, xn−2) . . . SF (x3, x2) γµ2SF (x2, x1) γµ1

]
.

(3.11.13)

Using the same previous steps, we insert the unit operator O−1O = 14, where O is given in eq.
(3.11.1), in the expression of T1, and use the results of eqs.(3.11.2,3.11.5), to write this expression
as:

T1 = (−1)
n Tr

[ [
SF (x1, x0)

]t
[γµ1 ]

t [
SF (x2, x1)

]t
[γµ2 ]

t

× . . .
[
SF (xn−1, xn−2)

]t
[γµn−1 ]

t [
SF (x0, xn−1)

]t
[γµ0 ]

t
, (3.11.14)

which can be rewritten as:

T1 = (−1)
n Tr

[
γµ0SF (x0, xn−1) γµn−1SF (xn−1, xn−2) γµ2SF (x2, x1) γµ1SF (x1, x0)

]
= (−1)

n
T2.

(3.11.15)

This result leads to the final conclusion that free electron loops with odd number give vanishing
contributions:

T = T1 + T2 = (1 + (−1)
n
)T1 =

{
2T1 for even n
0 for odd n

. (3.11.16)

This result is used in two related contexts:

1. In conventional QED, where the electron field operator is expanded in the basis of the free
Dirac-solutions: to study the scattering problem and its radiative corrections. In this case, the
expansion of the S-matrix will give some terms with closed free-electron loops.

2. In BSQED, where the electron field operator is expanded in the basis of the bound Dirac-
solutions: to study the radiative corrections in the atomic/molecular problems. In this case,
one expands the closed-loop of the bound electron propagator (the Furry picture) in powers of
the external time-independent potential, as done for the vacuum polarization loop for instance.

3.12 Effective QED potentials
In this section we shall present the main effective potentials (to be added to the Dirac/Schrödinger
Hamiltonian) used in numerical calculations to account for the lowest order vacuum polarization
and self-energy QED corrections.

3.12.1 Vacuum polarization effective potentials
The existence of a charged particle (the polarizer), in space, polarizes the surrounding vacuum in
which virtual electron-positron pairs are simultaneously generated (quantum electrodynamics). In
turn, this cloud of electron-positron pairs affects back the polarizer, who initially created the cloud,
in some sort of a self-interaction. This is known as the vacuum polarization effect. In order to
include this effect in relativistic (and non-relativistic) calculations, one can use some already derived
effective potentials, corresponding to some of the low-order vacuum polarization processes. This
inclusion can be done by evaluating the following expectation value:

∆EVP = −e
ˆ
d3xψ† (x)V VP (x)ψ (x) , (3.12.1)
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Figure 3.12.1: Uehling diagram:
Lowest-order VP process: α (αZ)

1
Figure 3.12.2: Wichmann-Kroll diagram:

Higher-order VP process: α (αZ)
3

of some vacuum polarization potential V VP, with respect to the four-component Dirac spinors, which
shifts the Dirac energy E by an amount ∆EVP. The vacuum polarization effect, as presented in the
last equation, is a local effect. We shall now list the main effective potentials which can be included
in V VP:

• α (αZ)-order: The Uehling potential [116, eq.(25)], presented in figure 3.12.1. Uehling orig-
inally considered the point nuclear charge distribution model: ρnuc (x) = Zeδ (x), in his
derivation of this vacuum polarization potential. The corresponding expression for a general
nuclear charge model ρnuc (x) was provided by Wayne Fullerton and Rinker in [117, eqs.(3,4)].

• α (αZ)
3-order: The Wichmann-Kroll [118] potential, presented in figure 3.12.2. In the cited

work, Wichmann and Kroll calculated this potential associated with the α (αZ)
3-order correc-

tion in Laplace-space, and have only evaluate the behavior of this potential, and its associated
charge density at large distances (in real-space). Blomqvist [11, section 4], on the other hand,
has evaluated the inverse Laplace transform, and obtained the real-space potential expression,
for a point-charge nuclear model.

• α2 (αZ)-order: The Källén-Sabry potential, whose processes are presented in figure 3.12.3.
In their work, Källén and Sabry considered the problem in momentum-space, and computed
the associated corrected polarization function [119], which can be related to the momentum-
space potential. The real-space potential corresponding to this contribution was derived by
Blomqvist [11, section 3], and the generalization to a general nuclear distribution was made
by Wayne Fullerton and Rinker [117, eqs.(9-11)].

The expressions for the last two potentials are very complicated (see the cited references), and
this does not only make the analytical evaluation impossible but also makes it very hard to employ
these potentials in practical calculations. For this reason, Wayne Fullerton and Rinker [117] provided
good approximating formulas for the first two potentials, which can be numerically evaluated in an
efficient way. At the same time, Huang [10] proposed a fitting for the above potentials, but claimed
that the approach of Wayne Fullerton and Rinker is more accurate. In addition, Fainshtein et al.
provided an approximation for the Wichmann-Kroll potentials [120, section 4], and the higher-order
α (αZ)

5,7 terms, and compared their results with the ones that are in principle, exact: Soff and
Mohr [6], in addition to Gyulassy [121]. Finally, we note that Dzuba et al. have proposed an
approximate form of the Wichmann-Kroll potential, which recovers the exact behavior at small and



CHAPTER 3. QUANTUM ELECTRODYNAMICS 114

Figure 3.12.3: Källén-Sabry processes diagrams
Higher-order VP processes: α2 (αZ)

large distances [122, eq.(34)]. For extra details and general discussions, the reader may consult the
report prepared by Mohr et al. [7].

3.12.2 Self-energy effective potentials
The self-energy process describes an electron which emits and absorbs a virtual photon. Contrary
to the vacuum polarization effect, the self-energy is non-local, which is the origin of its complexity.
If we thus imagine a potential V SE associated with the self-energy effect, acting on a Dirac electron
with energy E and time-independent spinor ψ, the energy-shift this electron will feel is given by the
following non-local integral:

∆E = −e
ˆ
d3x

ˆ
d3yψ† (y)V SE (y,x)ψ (x) . (3.12.2)

A detailed derivation of this “exact” energy-shift was first provided by Mohr [113], and later in a
work of Indelicato and Mohr [123]. Due to the great complication that arise when attempting to
obtain the effective potentials V SE (y,x), several works proposed to use simple potentials forms that
are parameterized to fit the exact energy-shifts that are obtained by expensive computations using
complicated formulas. We shall now list these main effective potentials.

3.12.2.1 Pyykkö and Zhao potentials

In [124], Pyykkö and Zhao provide a review of the earlier attempts to construct effective potentials
associated with the self-energy process, and propose a simple local effective-potential, of the following
form:

V SE (r) = Be−βr
2

, (3.12.3)

for numerical practicality. The parameters B and β are functions of the nuclear charge Z, and are
chosen to reproduce the “exact”:

• self-energy-shift for the 2s states of the hydrogen-like systems, taken from [125, 126].

• M1 hyperfine splitting for hydrogen-like [127] and lithium-like systems [128].
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They then test their potential by calculating the two above quantities for some ns shell electrons
with n > 1.

3.12.2.2 Flambaum and Ginges potentials

Flambaum and Ginges in [129] potentials. These authors consider the two potentials associated
with the vertex correction process, of order α (αZ)

1, related to the (total) bound state self-energy
of order α (αZ)

n≥1 by [130, eq.(9)]. This self-energy potential has two contributions:

• A magnetic term:

V SE
mag (r) =

α~
4πmc

iγ ·∇
[
φnuc (r)

(ˆ ∞
1

dt
e−

2mc
~ tr

t2
√
t2 − 1

− 1

)]
, (3.12.4)

which gives the first order correction to the magnetic moment: the anomalous magnetic mo-
ment of the electron, first calculated by Schwinger. See, for instance, Mandl and Shaw [93,
section 10.5]. φnuc (r) is the Coulombic nuclear potential.

• An electric term:

V SE
HF (r) = −α

π
φnuc (r)

ˆ ∞
1

× 1√
t2 − 1

[(
1− 1

2t2

)[
ln
(
t2 − 1

)
+ ln

(
4
m2c2

λ2

)]
− 3

2
+

1

t2

]
e−

2mc
~ tr,

(3.12.5)

This term is called the high frequency term, because it contains a parameter λ which appears
in the expression of Berestetskii et al. [105, eq.(117.10)]. See also Greiner and Reinhardt [8,
eq.(5.91)], Itzykson and Zuber [43, eq.(7.45)], and Peskin and Schroeder [99, pages 195,196].
This parameter can be understood as a small fictitious photon mass, which needs to be plugged
in the photon propagator denominator in order to make the divergent momentum-space integral
(infrared divergence), associated with the vertex correction, convergent. Since Nature should
be (is) independent of the man-made parameters, this photon mass should be ultimately taken
to λ→ 0. Clearly, in this limit, the second logarithmic term of the last expression diverges, and
we thus loose the low frequency contributions, from very small λ. To overcome this problem,
Flambaum and Gignes introduced a low frequency fitting-potential:

V SE
LF (r) = −B (Z)

ep
Z4α5mc2e−Zr/aB , (3.12.6)

where aB is the Bohr radius, and ep is the proton charge, and B (Z) is a fitting function,
optimized to reproduce the high p states self-energy-shifts (low frequencies = large distances
= large quantum number, roughly speaking), which is missed by the HF term. In addition,
for very small r, the integral of the HF term diverges (the exponential damper of the integral
eq.(3.12.5) vanishes), and this motivated Flambaum and Ginges to modify the HF potential
to:

V SE
HF (r) = −A (Z, r)

α

π
φnuc (r)

×
ˆ ∞
1

1√
t2 − 1

[(
1− 1

2t2

)[
ln
(
t2 − 1

)
+ 4 ln

(
1

αZ
+ 0.5

)]
− 3

2
+

1

t2

]
e−

2mc
~ tr,

(3.12.7)
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where A (Z, r) is a fitting function, introduced in order reproduce the radiative shifts associ-
ated with the high s states. Later, Thierfelder and Schwerdtfeger modified this function to
An (Z, r) [131, eq.(13)]: a principal quantum number n dependent fitting. These potentials
with An (Z, r) instead of A (Z, r) were used by Pašteka et al. to calculate the self-energy
corrections to the electron affinity and ionization potential of Gold [132]. We should finally
note that this problematic infrared divergence disappears once the zero-potential self-energy
contribution: of order α (αZ)

0 is added, as indicated by Snyderman [133, page 59].

3.12.2.3 Shabaev, Tupitsyn, and Yerokhin potentials

In [134], Shabaev et al. give the exact self-energy potential in their eq.(8):

V SE (r, r′, x̂, x̂′) , (3.12.8)

which is complicated to include in practical calculations. To overcome this difficulty, they split the
self-energy potential into a local and a non-local part:

V SE (r, r′, x̂, x̂′) = V SE
local

(
r, r, x̂, x̂′

)
+
{
V SE − V SE

local
}

non-local . (3.12.9)

• The local term V SE
local is simply chosen to be “local”, within a Compton wavelength λ̄c:

V SE
local =

∑
κ

V SE
local,κ (r)Pκ

(
x̂, x̂′

)
V SE

local,κ (r) = Aκe
− r
λ̄c , (3.12.10)

where Pκ is given by:

Pκ =

[
Gκ 0
0 G−κ

]
, Gκ =

∑
mj

Ωκ,mj (x̂) Ω†κ,mj
(
x̂′
)
. (3.12.11)

The angular localization is to be compared with the relation [135, eq.(A.6)]. They then choose
the coefficients Aκ associated with certain κ, such that the corresponding expectation value:

− e
ˆ
d3x

ˆ
d3x′ψ†κ,lowest (x)V SE

local,κ
(
r, r, x̂, x̂′

)
ψκ,lowest (x′) = ∆ESE

κ,lowest, (3.12.12)

with respect to the lowest energy hydrogen-like state ψκ,lowest of the radial Dirac κ-problem,
reproduces the exact self-energy energy-shift ∆ESE

κ,lowest associated with this state. They justify
this step by the fact that in the non-relativistic self-energy is a local effect, as seen in the work
of Bethe [110, eq.(9)].

• The remaining non-local
{
V SE − V SE

local
}

non-local term of eq.(3.12.9), is represented by the fol-
lowing finite-dimensional matrix operator:

n∑
j,k

|φj〉Bjk 〈φk| , (3.12.13)

where φj are hydrogen wavefunctions multiplied by a localization faction. Finally, the Bjk
matrix elements should be related to the ones of the exact self-energy operator V SE by:

n∑
j,k

〈ψi| |φj〉Bjk 〈φk| |ψl〉 = 〈ψi|
{
V SE − V SE

local
}

non-local |ψl〉 , (3.12.14)

which, under some restrictions, is more practical to evaluate (see the corresponding reference).
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Our collaborator, Ayaki Sunaga has coded the Pyykkö and Zhao potential, the Flambaum and
Ginges electric and magnetic potentials, in addition to the Uehling potential in the DIRAC code
[136]. Implementation details and numerical computations associated with these self-energy effective
potentials are presented in [137]. My contribution to this project was to provide the key steps in
deriving of these effective potentials, starting from the S-matrix formalism.

For a general view on the electron structure theory with quantum electrodynamic effects, in
quantum chemistry, the reader may consult the work of Schwerdtfeger et al. [138], Pyykko [139],
Kutzelnigg [140] Dyall et al. [141] and many chapters of the book edited by Liu [142].

3.13 Hartree-Fock with QED
At the end of this chapter, I would like to present the main ideas on a project I have worked on
during this thesis. This project concerns the inclusion of the QED corrections in the 4-component
relativistic Hartree-Fock theory. We shall first start with a brief description on the Hartree-Fock
theory before turning to the real problem.

3.13.1 A Hartree-Fock warm-up
Hartree-Fock theory is the simplest approximation of the many-particle (electrons in our case) prob-
lem, where the total wavefunction is written as a Slater-determinant, which in turn is composed of
single-particle wavefunctions:

Φα1,...,αn (x1, . . . ,xn) =
1√
n

∣∣∣∣∣∣∣
ψα1

(x1) . . . ψα1
(xn)

...
. . .

...
ψαn (x1) . . . ψαn (xn)

∣∣∣∣∣∣∣ . (3.13.1)

This is the exact wavefunction for a system containing n non-interacting particles, and is here (in
the Hartree-Fock theory) used as a trial function for the interacting problem. In addition, the
exchange of any two coordinates xi ↔ xj or state labels αi ↔ αj leads to an overall minus sign
(spin–statistics theorem), which indicates that this determinant is consistent with the Pauli exclusion
principle (which follows from the spin–statistics theorem). The total Hamiltonian we are going to
consider is given by the following expression:

H (x1, . . . ,xn) =

n∑
i=1

hD (xi) +
1

2

n∑
i6=j

g (xi,xj) . (3.13.2)

The first sum runs over the one-particle Dirac operators (each associated with one particle) given
by:

hD (x) =
[
cα · p̂x + βmc2 − eϕ (x)

]
, (3.13.3)

and the second one contains the two-particle interaction Hamiltonians, given by:

g (xi,xj) =
e2

4πε0rij
αλ (i)αλ (j) =

e2

4πε0rij
− e2α (i) ·α (j)

4πε0rij
, with rij = |xi − xj | , (3.13.4)

and accounts for the Coulomb (charge-charge) and Gaunt (current-current) interactions. The
Hartree-Fock energy expression is the expectation value of the total Hamiltonian with respect to the
Slater-determinant, and can be written as:

EHF = hDii +
1

2
[gij,ij − gij,ji] . (3.13.5)
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We should note that we are using i, j, k and l for indices that run over positive-energy occupied
single-particle states. In the last expression, hii is the one-particle energy, given by the following
integral:

hDij =

ˆ
dxψ†i (x)hD (x)ψj (x) , (3.13.6)

and the remaining two terms: gij,ij and gij,ji are the direct (Hartree) and exchange (Fock) two-
electron integrals, respectively. This two-electron integral is given by:

gij,kl = e2
ˆ
dx1

ˆ
dx2ψ

†
i (x1)ψ†j (x2)

αλ (1)αλ (2)

4πε0r12
ψk (x1)ψl (x2)

= e2
ˆ
dx1

ˆ
dx2ψ

†
i (x1)αλψk (x1)

1

4πε0r12
ψ†j (x2)αλψl (x2) .

(3.13.7)

We now expand the Dirac solutions in a finite basis set:

ψi (x) = cµ,iχµ (x) , (3.13.8)

where {χµ}mµ=1 is the full set of basis functions and cµ,i are the corresponding coefficients. We note
that Greek indices are used for basis set expansion. Using the last formula, the Hartree-Fock energy
expression of eq.(3.13.5) becomes:

EHF = DHF
νµ h

D
µν HF1

+
1

2
DHF
νµ D

HF
θσ gµσ,νθ HF2-Direct

− 1

2
DHF
νµ D

HF
θσ gµσ,θν HF2-Exchange

(3.13.9)

where DHF
νµ is the Hartree-Fock (atomic orbital) density-matrix matrix element:

DHF
νµ = cν,ic

∗
µ,i, (3.13.10)

which runs over all positive-energy occupied solutions.

3.13.2 Hartree-Fock with QED: The approach of Saue
The theory behind this problem is provided in a chapter written by Saue and Visscher in [143,
section 2.2]. In his derivation, Saue arrives to a conclusion that in order to include QED effects in
the Hartree-Fock theory one must perform the following replacement of the atomic-orbital (positive-
energy occupied single-particle states) density matrix:

DHF
νµ → DHF

νµ +DQED
νµ , (3.13.11)

where DQED
νµ can be written as:

DQED
νµ =

1

2

[ ∑
Ep>0

cν,pc
∗
µ,p −

∑
Ep<0

cν,pc
∗
µ,p

]
. (3.13.12)

The first sum runs over all positive-energy solutions, both occupied and non-occupied ones, while the
second runs over the negative-energy ones. This density matrix modification leads to a modification
of the Hartree-Fock energy:

EHF → EHF + EQED, (3.13.13)



CHAPTER 3. QUANTUM ELECTRODYNAMICS 119

where the additional term EQED was found to be:

EQED = DQED
νµ hDµν 1e

+DHF
νµ D

QED
θσ gµσ,νθ VP

−DHF
νµ D

QED
θσ gµσ,θν SE

+
1

2
DQED
νµ DQED

θσ gµσ,νθ V2

− 1

2
DQED
νµ DQED

θσ gµσ,θν V1

(3.13.14)

The first term represents the one-particle energy of the vacuum electrons. The remaining four
terms can be shown to be attributed to the four diagrams presented in figs. 3.10.1b to 3.10.1e,
with a small difference we shall discuss. The reader should note that the second and third terms,
with DHF

νµ D
QED
θσ , describe the interaction between the Hartree-Fock atomic electrons and the QED

vacuum. Furthermore, the direct-term DHF
νµ D

QED
θσ gµσ,νθ represents the vacuum polarization energy-

shift of fig. 3.10.1b, while the exchange-term −DHF
νµ D

QED
θσ gµσ,θν is associated with the self-energy

process, of fig. 3.10.1c. Finally, we have found last the last two-terms: DQED
νµ DQED

θσ [gµσ,νθ − gµσ,θν ]
are the contributions attributed to the disconnected vacuum diagrams, presented in fig. 3.10.1d.

This machinery was coded by Saue in the relativistic DIRAC code [136]. We have performed
multiple calculations using this code and observed that the QED energy given in the last expression
does not converge with an increasing Gaussian basis set size. We have thus decided to address the
problem from a different angle, through the following steps:

1. Deriving the S(2) energy-shifts, as we have done in this thesis.

2. Combining all contributions in a single energy expression and compare the two approaches.

These two points are the topic of the next last section of this chapter.

3.13.3 Hartree-Fock with QED: The new approach
In this section, we are going to make use of the QED energy-shifts associated with the three physical
processes of the second-order S(2)-matrix, which we have derived in the current chapter section
3.10. These energy-shifts are given in eqs.(3.10.52,3.10.60 and 3.10.68). If we now combine these
three-terms with the one-particle energy, we get the following expression:

Terms

E =

ˆ
dxψ†i (x)hD (x)ψi (x) a

+
e2

2

ˆ
dx1

ˆ
dx2ψ

†
i (x1)αλψi (x1)

1

4πε0r12
ψ†j (x2)αλψj (x2) b

− e2

2

ˆ
dx1

ˆ
dx2ψ

†
i (x1)αλψj (x1)

1

4πε0r12
cos

(
1

c~
|Ei − Ej | r12

)
ψ†j (x2)αλψi (x2) c

− i~e2
ˆ
dx1

ˆ
dx2ψ

†
i (x1)αλψi (x1)

1

4πε0r12
Tr
[
γ0S

F (x2, x2)
]

d

+ e2<

[ˆ
dx1

ˆ
dx2

1

2πi

ˆ
CF

dzψ†i (x2)αλG (x2,x1; z)αλψi (x1)
e+

i
c~ r12

√
(z−Ei)2+iε

4πε0r12

]
e

(3.13.15)
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The labeled terms are described in the following list, in addition to a comparison with the associated
terms obtained by Saue:

a The one-electron part: summed of all individual one-electron energies.

b The direct Hartree term: found in the usual 4-component Hartree-Fock theory: the HF2-Direct
term given in eq.(3.13.9).

c The exchange Fock term: found in the usual 4-component Hartree-Fock theory. Notice that
this term contains a retardation function: cos

(
1
c~ |Ei − Ej | r12

)
, which vanishes in the non-

relativistic limit c→ +∞. This cosine term is missing in the HF2-Exchange term of eq.(3.13.9),
since in the referring derivation, the two-particle Hamiltonian does not contain the retardation
exponent. This exponent comes from the Feynman gauge photon propagator, as noted in [7,
eq.(461)], [15, eq.(F.67)], and seen in the current chapter.

d The vacuum-polarization energy-shift: This is a real valued expression, and it coincides with the
VP term obtained by Saue in eq.(3.13.14): DHF

νµ D
QED
θσ gµσ,νθ. This can be seen after writing

the propagator in terms of the Dirac Green’s function, and then writing the latter quantity in
its spectral form, and evaluate the energy integral.

e The self-energy energy-shift: This expression becomes the term−DHF
νµ D

QED
θσ gµσ,θν of eq.(3.13.14)

once we:

1) Eliminate the exponential function (non-relativistic limit).

2) Use the spectral decomposition of the Green’s function (eq.(3.9.38)).

3) Evaluate the energy contour integration using the result of eq.(F.6.18).

Finally, we note that the only difference between our S-matrix approach and the previous results
of Saue is the absence of the retardation effect in all exchange terms: the exchange part of the
electron-electron interaction term, the self-energy term, and the exchange vacuum diagram (that
was already discarded from consideration).

A similar expression is found in the work of Greiner et al. [106, eq.(16.19)]. The self-consistent
(Hartree-Fock) equation containing the single-photon exchange contribution can be found in the work
of Plunien and Soff [144, eq.(18)], Rafelski et al. [145, eq.(26)] as well as Reinhardt [146, eqs.(4,6)] et
al. in [147, eq.(4)]. An important reference to consider, in this context, is Gomberoff and Tolmachev
[148], where different manipulations of different electron propagators are made, with connections to
the Hartree-Fock theory. See, for instance, the self-consistent equation of [148, eq.(3.11)], which is
contains both vacuum-polarization and self-energy effects.

Our discussion will end here, but this problem merits a detailed investigation. One must keep in
mind that the vacuum polarization and the self-energy terms are both divergent, in the 1-potential
term [7, 5], and 0-&1-potential terms [149, 133], respectively. In momentum-space, these divergences
come from integrating over infinite momenta, while in the real-space, in comes from integration points
where space-time integration points coincide. The expansion of the Bound Green’s function in terms
of the free ones adds more denominators to the integrand, and will as a result, reduce the superficial
degree of divergence of the initially divergent integral. This is the reason why higher-order terms do
not diverge.

The problem of divergences was solved a long time ago, using regularization and renormalization
manipulations with pen an paper, and sometimes through some computational tricks. The real chal-
lenge now is to translate this machinery to our context, i.e., to be able to cure the QED divergences
encountered in the finite basis set context. As far as we know, this problem has not yet been solved.
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At the very last chapter of this thesis, we shall give few words on how we shall proceed. The next
chapter is going to concern the vacuum polarization process only. We shall discuss it in great details
and show how to numerically evaluate it in the finite basis context. Furthermore, we shall use our
previous results on the discrete symmetries of the Dirac equation to simplify exact and numerical
encountered expressions.



Chapter 4

Vacuum polarization

When you look at a vacuum in a quantum theory of fields, it isn’t exactly nothing.

Peter Higgs

This chapter will discuss the vacuum polarization density in great detail. The first part will
concern the mathematical quantities and manipulations associated with the different definitions of
this density. Furthermore, the results on the discrete symmetries of the Dirac equation, which we
have derived and discussed in chapter 2, are going to be used here to prove that:

1. The vacuum polarization density vanishes in the free particle problem (by C-symmetry).

2. The vacuum polarization current (vector-components) vanishes in the purely scalar external
potential case (by T -symmetry).

In addition, we shall focus on the radial (atomic) problem and carefully present how one can construct
this density in the framework of finite basis approximation (of the radial Dirac equation).

Next, we shall use the results of the first (theoretical) part of the chapter in attacking the
numerical problem and present different numerical results with a detailed discussion. The most
important result of this chapter will be to show how the consideration of the C-symmetry (in the
finite basis set) will significantly improve the quality of our numerical vacuum polarization densities.
This consideration will eventually lead to physically accepted solutions: consistent with what we
know from the exact theory. On the other hand, we shall see that ignoring this C-symmetry, which
unfortunately do happen in most of the conventional relativistic basis set calculations, will lead to
problematic non-physical results that diverge from the physical problem.

4.1 Introduction
Hopefully, the vacuum polarization effect has (contrary to the self-energy), an intuitive physical
picture that can be expressed as follows:

The presence of a charged particle in space polarizes (interacts through a photon with)
the boiling vacuum soup, in which electron-positron pair bubbles are spontaneously gen-
erated from vacuum. This process gives rise to a vacuum charge density that eventually
integrates to zero in the weak-field case [106, section 1.1]. Furthermore, the motion of
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the polarizing charge will generate a corresponding vacuum polarization current density.
This outside cloud will eventually affect its creator, by a self-interaction process, known
as the vacuum polarization.

This process is sometimes referred to as the “photon self-energy” since a photon that describes the
interaction between two charges creates the electron-positron bubble for a short time, then this pair
will annihilate, and recreate a photon. Clearly, the absence of any inducer will not generate any
polarization effects, since all individual polarizations will cancel each-others (on average), resulting
in a zero vacuum polarization density everywhere.

Strictly speaking the vacuum polarization current JVP
µ is given by the vacuum expectation value

of the current operator ĵµ:

JVP
µ (x) =

ce

2

〈
0e

∣∣∣ĵµ (x)
∣∣∣ 0e

〉
(4.1.1)

ĵµ (x) =
ec

2

[
Ψα (x) , Ψ̄β (SeeSchwingerx)

]
(γµ)βα . (4.1.2)

See Schwinger [150, eq.(1.69)]. We first expand the field operators (in the context of hole theory) in
the basis of Dirac’s solutions:

Ψα (x) =
∑
i

ciψi,α (x) , (4.1.3)

where the annihilation operator ci runs over all solutions. In the context of the Dirac hole theory,
this summation can be split into two energy-signs sums:

Ψα (x) =
∑
Ei>0

aiψi,α (x) +
∑
Ei<0

b†iψi,α (x) , (4.1.4)

where ai annihilates positive-energy electrons, bi creates a positive-energy positron (as done by Mohr
et al. [7, eq.(3)]), and the quantity ψi,α, stands for the α-th component of the i’th Dirac solution.
Note: the electron field operator was already introduced in section 3.5.2. Eight terms will appear in
our current expression, where using eq.(3.5.12), one can see that only two of them will survive the
vacuum expectation value:

+
ec

2

∑
Ei,Ej>0

[ψi]α (γµ)βα
[
ψ̄j
]
β
aia
†
j and − ec

2

∑
Ei,Ej<0

[
ψ̄i
]
β

(γµ)βα [ψj ]α bib
†
j , (4.1.5)

and lead to the following vacuum polarization current expression:

JVP
µ (x) =

ec

2

[∑
Ei>0

ψ̄i (x) γµψi (x)−
∑
Ei<0

ψ̄i (x) γµψi (x)

]
, (4.1.6)

as a difference between positive- and negative-energy charge currents. This expression can be linked
to the Feynman propagator by:

JVP
µ (x) = i~ecTr

[
γµS

F
A (x, y)

]
y→x (4.1.7)

once the expansion expression of the propagator in eq.(3.9.26) is used, in addition to the fact that
the Heaviside function has a value of one half for zero argument. We shall next show that in the
case where our Dirac Hamiltonian is invariant under time-reversal symmetry, then this expression
can be further simplified.
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4.2 Vacuum polarization current in the time-reversible prob-
lem

When evaluating the energy-shift associated with the vacuum polarization process, Indelicato et al.
[5, eq.(9) and appendix A] have claimed that the spatial components of the vacuum polarization four-
current vanish for a spherically symmetric potential. Other references who noted the vanishing of
these components are [118, Section II] and [6, Page 5067]. We shall show, with more straightforward
arguments, that this is true for the more general case of a time-independent scalar potential. In
the case where the external four-potential is time-independent, the vacuum polarization current also
becomes time-independent, and reads:

JVP
µ (x) =

ec

2

(∑
Ei>0

ψ†i (x)αµψi (x)−
∑
Ei<0

ψ†i (x)αµψi (x)

)
. (4.2.1)

The reason behind this claim is the following: In the time-independent case, the Dirac solutions can
be written as ψi (x) = ψi (x) e−

iEi
~ t (see section 2.6.3), where the single-particle wavefunction ψi (x)

and the corresponding energy eigenvalue Ei form a solution of the time-independent Dirac equation:[
−i~cα ·∇+ βmc2 − eϕ (x)

]
ψi (x) = Eiψi (x) . (4.2.2)

As seen in section 2.8.2.1, for the case of the time-independent potential, the time-reversal symmetry
gets violated if the vector potential A (x) does not vanish, which is why we have set it to zero (in
the last equation). Furthermore, it can be easily shown that the time-reversed solution, i.e. T ψi
satisfies the same equation:[

−i~cα ·∇+ βmc2 − eϕ (x)
]
T ψi (x) = EiT ψi (x) , (4.2.3)

with same energy Ei. T = UK0 was given in eq.(2.8.30). The conclusion is that for every solution
ψi (x) there exist a solution T ψi (x), and these solutions are time-reversal partners. For every
four-current density Jµ,i associated with a solution ψi (x):

Jµ,i (x) = −ecψ†i (x)αµψi (x) , (4.2.4)

there exist another one associated with the time-reversed wavefunction T ψi, describing a state with
the same energy level Ei:

JTµ,i (x) = −ec [T ψi]† (x)αµ [T ψi] (x) = −ecψ†i (x)U tαtµUψi (x) . (4.2.5)

Using the following relation:

U tαtµU =

{
αµ if µ = 0

−αµ if µ = 1, 2, 3
, (4.2.6)

one comes to a conclusion that the sum of both currents (4.2.4 and 4.2.5), Jµ,i + JTµ,i vanishes for
vector components µ = 1, 2, 3, leading to a simplified expression of the vacuum polarization current:

JVP
0 (x) =

ec

2

(∑
Ei>0

ψ†i (x)ψi (x)−
∑
Ei<0

ψ†i (x)ψi (x)

)
JVP
µ (x) = 0 for µ = 1, 2, 3.

(4.2.7)
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where only the time component survives. The zeroth component current can be written as JVP
0 (x) =

cρVP (x) (first equation), where ρVP (x) is the vacuum polarization charge density:

ρVP (x) =
e

2

(∑
Ei>0

ψ†i (x)ψi (x)−
∑
Ei<0

ψ†i (x)ψi (x)

)
. (4.2.8)

The roots of this expression of difference between opposite energy solutions dates back to the work
of Dirac where he introduced the density matrix ρ1, whose trace gives the last difference. See Dirac
[151, Page 152]. In addition, this definition of the vacuum polarization charge density seems to
originate from the work of Wichmann and Kroll [118, eq.(2)], and is now be found everywhere.

4.3 Vacuum polarization density in the free-problem
In the absence of an external inducer, the vacuum polarization density must vanish:

ρVP (x) =
e

2

[ ∑
Ei>0

ψ†i (x)ψi (x)−
∑
Ej<0

ψ†j (x)ψj (x)
]

= 0. (4.3.1)

This can be shown using the charge conjugation symmetry. In a previous section 2.8.1.1, we have
studied the charge conjugation symmetry in the time-independent problem and came to a con-
clusion that in the free particle case (absence of an external potential) a spinor and its charge
conjugation partner, are solutions of the same free Dirac equation with opposite energy signs, as
seen in eqs.(2.8.12 and 2.8.13). Recall that ψi (x) and Ei solve the free time-independent Dirac
equation: [

cα · p̂+ βmc2
]
ψi (x) = Eiψi (x) . (4.3.2)

Using the equations we have just referred to, we can write the negative-energy product of solutions
in the second sum of eq.(4.3.1) as charge conjugated positive-energy product of solutions:∑

Ej<0

ψ†j (x)ψj (x) =
∑
Ej>0

[Cψj (x)]
† Cψj (x) . (4.3.3)

In addition, using the charge conjugation operation (given in eq.(2.8.8)), we can write the last
product as:

[Cψj (x)]
† Cψj (x) =

[
γ2ψ∗j (x)

]†
γ2ψ∗j (x) = ψtj (x)ψ∗j (x) = ψ†j (x)ψj (x) , (4.3.4)

which shows that the the probability density of a free-particle solution is unchanged under charge
conjugation (energy-sign flipping). Using this last result, our vacuum polarization density reduces
to:

ρVP (x) =
e

2

∑
Ei>0

ψ†i (x)ψi (x)−
∑
Ej>0

ψ†j (x)ψj (x)

 = 0, (4.3.5)

since every element of one sum, will be canceled by a same term coming from the second sum, but
with a minus sign.
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4.4 Vacuum polarization density in the atomic problem
We now restrict ourselves to the radial scalar potential, i.e. φ (x) = φ (r) (with r = |x|). We have
seen in section 2.7 that the Dirac solutions can, in this case, be written as:

ψn,κ,mj (x) =

[
RLn,κ (r) Ωκ,mj (x̂)
iRSn,κ (r) Ω−κ,mj (x̂)

]
. (4.4.1)

Since the Hamiltonian is now time-reversible, we are allowed to use the result of the previous section
(eq.(4.2.7)), and write the vacuum polarization density as [118, eq.(2)]:

ρVP (x) =
e

2

∑
n,κ,mj

sgn (En,κ)ψ†n,κ,mj (x)ψn,κ,mj (x) ; sgn (En,κ) =
En,κ
|En,κ|

. (4.4.2)

In this expression, the sum runs over quantum numbers instead of the previous “vague” index i. The
reader should also note that this sum is justified when running over bound-state (discrete) solutions.
For continuum states, energy is no longer quantized (the spectrum is no longer discrete), and thus,
the sum over n is to be replaced by an integral (for each continuum) over the continuous energy
variable. The individual terms of the previous summation read:

ψ†n,κ,mj (x)ψn,κ,mj (x) = RLn,κR
L
n,κΩ†κ,mjΩκ,mj +RSn,κR

S
n,κΩ†−κ,mjΩ−κ,mj . (4.4.3)

The summation over outer-products of spherical spinors is given in eq.(D.4.88):∑
mj

Ωκ,mj (x̂) Ω†κ,mj (ŷ) =
|κ|
4π
P` (x̂ · ŷ) 12 + sgn (κ)

i

4π
P ′` (x̂ · ŷ) (x̂× ŷ) · σ, (4.4.4)

where ` is the orbital (azimuthal) quantum number, related to κ by: ` =
∣∣κ+ 1

2

∣∣− 1
2 . In the vacuum

polarization density expression we have ŷ = x̂, and the second term of the last expression will
thus vanishes. In addition, using P` (1) = 1, as seen in eq.(D.4.84). As a result, the last equation
simplifies to: ∑

mj

Ωκ,mj (x̂) Ω†κ,mj (x̂) =
|κ|
4π

12, (4.4.5)

which simplifies the radial vacuum polarization density of eq.(4.4.2) to:

ρVP (x) =
e

4π

∑
n,κ

|κ| sgn (En,κ)
[(
RLn,κ (r)

)2
+
(
RSn,κ (r)

)2]
. (4.4.6)

This formula can be found in the work of Wichmann and Kroll [118, eqs.(6-8)]. Other slightly
different formulas are found in Soff and Mohr [6, eq.(20)], Gyulassy [152, eq.(19)] and Mohr et al.
[7, eq.(232)], where one only needs to evaluate the integral along the Feynman path, which acts on
the Green’s function denominator (see, for instance, eq.(3.9.38)):

ˆ
CF

dz

Ei − z
= iπsgn (Ei) . (4.4.7)

The evaluation of this integral is presented in section F.6.1. Finally, this density can be written as
a sum over κ-component vacuum polarization densities:

ρVP (x) =
∑

κ=±1,±2,...
ρVP
κ (x) , (4.4.8)



CHAPTER 4. VACUUM POLARIZATION 127

where ρVP
κ (x) is given by the following sum:

ρVP
κ (x) =

e |κ|
4π

∑
n

sgn (En,κ)
[(
RLn,κ (r)

)2
+
(
RSn,κ (r)

)2]
. (4.4.9)

This formula is going to be used in the numerical evaluation of the vacuum polarization density (in
a finite basis), where the sum n will run over all the numerical solutions.

4.4.1 The free spherical vacuum polarization density
In a previous section 4.3, we used the charge conjugation symmetry to show that the vacuum polar-
ization density should vanish in the free-particle problem (in the absence of an external potential).
Furthermore, in section 2.8.1.2, we studied this symmetry in the spherical free problem. After
combining these results, we shall show that in the free spherical problem, the vacuum polarization
density vanishes due to the cancellation between opposite energy- and κ-sign contributions. We
define the individual vacuum polarization density, associated with a solution of some specific κ and
En as:

ρVP
κ (x, En) =

e |κ|
4π

sgn (En)
[(
RLκ (r, En)

)2
+
(
RSκ (r, En)

)2]
, (4.4.10)

whereRLκ (r, En) andRSκ (r, En) are the radial solutions of the free Dirac equation, given in eqs.(2.7.55
and 2.7.56). To this density we add the one associated with the opposite energy- and κ-sign:

ρκ (x, En) + ρ−κ (x,−En)

=
e |κ|
4π

sgn (En)
[(
RLκ (r, En)

)2
+
(
RSκ (r, En)

)2 − (RL−κ (r,−En)
)2 − (RSκ (r,−E−n)

)2]
.

(4.4.11)

Using the relations of eq.(2.8.19), we find that the third and the fourth terms are equal to the first
and second one, respectively, and thus:

ρκ (x, En) + ρ−κ (x,−En) = 0. (4.4.12)

This result leads to the conclusion that the total vacuum polarization density vanishes in the radial
problem due to the cancellation between opposite energy and κ sign contributions. We shall come
back to this result once we numerically evaluate the free particle problem.

4.4.2 Expansion of the vacuum polarization density
In this section, we shall only consider the case where the electron orbits in the field of a time-
independent scalar potential φ (x). In this case the vacuum polarization density induced by this
potential can be written as eq.(4.2.8):

ρVP (x) =
e

2

(∑
Ei>0

ψ†i (x)ψi (x)−
∑
Ei<0

ψ†i (x)ψi (x)

)
. (4.4.13)

This expression can be written in a slightly different way:

ρVP (x) =
e

2πi

ˆ
CF

dz
∑
i

ψ†i (x)ψi (x)

Ei − z
, (4.4.14)
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where the contour integral is made along the Feynman path CF , which goes below the negative-
energy poles, and above the positive-energy ones. The reader may check section F.6.1 for this
integral. The integrand of the last equation is simply the trace of the Green’s function Gφ, given in
eq.(3.9.38), which satisfies the following eq.(3.9.39):[

−i~cα ·∇x − eφ (x) + βmc2 − z
]
Gφ (x,y; z) = 14δ (x− y) . (4.4.15)

Using the expansion of eq.(3.9.52), this Green’s function can be written as:

Gφ (x,y; z) = G0 (x,y; z) + e

ˆ
dwG0 (x,w; z)φ (w)G0 (w,y; z)

+ e2
ˆ
dw

ˆ
dvG0 (x,w; z)φ (w)G0 (w,v; z)φ (v)G0 (v,y; z) +O (eφ)

3
.

(4.4.16)

Our vacuum polarization density can be thus expanded in powers of the external scalar potential as:

ρVP (x) = ρ0 (x) + ρ1 (x) + ρ2 (x) +O (eφ)
3
. (4.4.17)

This last expression contains:

1. The zero-potential density:

ρ0 (x) =
e

2πi

ˆ
CF

dzTr [G0 (x,x, z)] . (4.4.18)

2. The one-potential density:

ρ1 (x) =
e2

2πi

ˆ
CF

dz

ˆ
dwG0 (x,w; z)φ (w)G0 (w,x; z) . (4.4.19)

This term can be called the Uehling density, but the reader should note that this term is
divergent, and needs to be regularized and renormalized, so it can become well-defined. See,
for instance, [5, section IV.B.].

3. The many-potential density:

ρn≥2 (x) = e2
ˆ
dw

ˆ
dvTr [G0 (x,w; z)φ (w)Gφ (w,v; z)φ (v)G0 (v,x; z)] , (4.4.20)

which accounts for all higher-order powers in the external potential

It should be noted that all terms of even powers of the external potential should vanish. This claim
can be proved using charge conjugation symmetry: Furry’s theorem, discussed in section 3.11. We
shall now impose a further restriction, by consider the radial potential φ (x) = φ (|x|), and we shall
thus discuss the radial Green’s function, in the next section, and then come back to the radial
vacuum polarization density.

4.4.3 Radial Green’s function
In the presence of a radial scalar potential the Dirac spinors can be written as:

ψn,κ,mj (x) =

[
RLn,κ (rx) Ωκ,mj (x̂)
iRSn,κ (rx) Ω−κ,mj (x̂)

]
. (4.4.21)
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The Green’s function of eq.(3.9.38) which is built out of the solutions of the Dirac equation, can be
now written as:

Gφ (x,y; z) =
∑

n,κ,mj

1

En,κ − z

×

[
GLLn,κ (rx, ry) Ωκ,mj (x̂) Ω†κ,mj (ŷ) −iGLSn,κ (rx, ry) Ωκ,mj (x̂) Ω†−κ,mj (ŷ)

iGSLn,κ (rx, ry) Ω−κ,mj (x̂) Ω†κ,mj (ŷ) GSSn,κ (rx, ry) Ω−κ,mj (x̂) Ω†−κ,mj (ŷ)

], (4.4.22)

where four radial elements of the form of Gαβn,κ (rx, ry) are simply a product of two radial functions:

Gαβn,κ (rx, ry) = Rαn,κ (rx)Rβn,κ (ry) , α, β = L, S. (4.4.23)

Using the result of eq.(2.7.21), in which the angular and radial parts of the α · p̂ operator are
decoupled, the Dirac operator that acts of the Green’s function of equation.(3.9.39) (with A (x) = 0)
becomes:

[cα · p̂x − eϕ (rx)− z] =

[
+mc2 − eϕ (rx)− z −icσr

[
~ ∂
∂r + 1

r (~ + κ̂x̂)
]

−icσr
[
~ ∂
∂r + 1

r (~ + κ̂x̂)
]

−mc2 − eϕ (rx)− z

]
. (4.4.24)

The operator κ̂x̂ simply means that this operator will act on angular functions (spherical spinors)
associated with the angular unit vector x̂, and not ŷ of eq.(4.4.22). The right hand side of eq.(3.9.39)
is 12δ (x− y), which can be written in spherical coordinates, in terms of spherical spinors as we shall
show. In spherical coordinates, the three-Dirac-delta can be written as [153, eq.(6.65)]:

δ (x− y) =
δ (rx − ry)

rxry
δ (x̂− ŷ) with δ (x̂− ŷ) =

δ (θx − θy) δ (ϕx − ϕy)

sin (θx)
. (4.4.25)

In addition, the two-component spherical spinors form a complete angular basis set [135, eq.(A.6)]:

∑
κ=±1,±2,...

|κ|− 1
2∑

mj=−|κ|+ 1
2

Ωκ,mj (x̂) Ω†κ,mj (ŷ) = δ (x̂− ŷ) 12. (4.4.26)

These two equations lead to the following relation [154, eq.(3.6)]:

12δ (x− y) =
δ (rx − ry)

rxry

∑
κ=±1,±2,...

|κ|− 1
2∑

mj=−|κ|+ 1
2

Ωκ,mj (x̂) Ω†κ,mj (ŷ) . (4.4.27)

Using this last result, the action of the operator of eq.(4.4.24) on the Green’s function of eq.(4.4.22)
in which radial and angular parts are separated, leads to four differential equations:∑

n,κ

1

En,κ − z

{[
mc2 − eϕ (rx)− z

]
GLLn,κ (rx, ry)− ~c

[
∂

∂rx
+

1− κ
rx

]
GSLn,κ (rx, ry)

}
=
δ (rx − ry)

rxry∑
n,κ

1

En,κ − z

{[
mc2 − eϕ (rx)− z

]
GLSn,κ (rx, ry)− ~c

[
∂

∂rx
+

1− κ
rx

]
GSSκ (rx, ry)

}
= 0

∑
n,κ

1

En,κ − z

{
~c
[
∂

∂rx
+

1 + κ

rx

]
GLLn,κ (rx, ry) +

[
−mc2 − eϕ (rx)− z

]
GSLn,κ (rx, ry)

}
= 0

∑
n,κ

1

En,κ − z

{
~c
[
∂

∂rx
+

1 + κ

rx

]
GLSn,κ (rx, ry) +

[
−mc2 − eϕ (rx)− z

]
GSSκ (rx, ry)

}
=
δ (rx − ry)

rxry

(4.4.28)
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that couple the four radial components of the Green’s function. These equations can be combined
into a single one (see [154, eq.(3.7)] and [7, eq.(98)]):

∑
κ

+mc2 − eϕ (rx)− z −~c
[
∂
∂rx

+ 1−κ
rx

]
~c
[
∂
∂rx

+ 1+κ
rx

]
−mc2 − eϕ (rx)− z

Gκ (rx, ry; z) =
δ (rx − ry)

rxry
12, (4.4.29)

in which the radial Green’s function associated with the κ-quantum number appears:

Gκ (rx, ry; z) =
∑
n

1

En,κ − z

[
GLLn,κ (rx, ry) GLSn,κ (rx, ry)
GSLn,κ (rx, ry) GSSκ (rx, ry)

]
, (4.4.30)

and which includes a sum over all principal quantum numbers n while fixing κ. In should be finally
noted that only bound-states have their energy quantized with respect to the principal quantum
number n. This means that in all this section, when calculating the contributions of the continua,
the sums over n should be replaced by two continuous sums (integrals) that scan the positive and
negative-energy continua.

4.4.4 Radial vacuum polarization density and Green’s function expansion
Following what we have done in section 4.4.2, and using the result of eq.(F.6.18):ˆ

CF

dz

En,κ − z
= iπsgn (En,κ) , (4.4.31)

the vacuum polarization density given in eq.(4.4.6) can be related to the radial Green’s function,
given in eq.(4.4.30) as [7, eq.(232)]:

ρVP (x) =
e

4π2i

∑
κ

|κ|
ˆ
CF

dzTr [Gκ (rx, rx; z)] , (4.4.32)

and the density associated with an individual κ, given in eq.(4.4.9), can be thus written as:

ρVP
κ (x) =

e |κ|
4π2i

ˆ
CF

dzTr [Gκ (rx, rx; z)] . (4.4.33)

Similarly to what we have done to the general Green’s function (and electron propagator), this
Green’s function will be further expanded as:

Gκ (rx, ry; z) = G0
κ (rx, ry; z) + e

ˆ ∞
0

r2udruGκ (rx, ru; z)φ (ru)G0
κ (ru, ry; z) , (4.4.34)

in terms of the free Green’s function. The validity of this equation can be checked by applying the
Dirac operator

[
hDx − eφ (rx)− z

]
on the left side of the last equation, and using eq.(4.4.29) with

the fact that G0
κ (rx, ry; z) obeys the same equation, but with φ (rx) = 0. An expansion of the bound

Green’s function in terms of the free one, can be obtained by iteratively including the bound Green’s
function of the left side of the last equation, which ultimately leads to:

Gκ (rx, ry; z)

= G0
κ (rx, ry; z) + e

ˆ ∞
0

r2udruG
0
κ (rx, ru; z)φ (ru)G0

κ (ru, ry; z)

+ e2
ˆ ∞
0

r2udru

ˆ ∞
0

r2vdrvG
0
κ (rx, rv; z)φ (rv)G

0
κ (rv, ru; z)φ (ru)G0

κ (ru, ry; z) +O
(
e3
)
.

(4.4.35)
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This relation will allow us to write the vacuum polarization density of eq.(4.4.33) as:

ρVP
κ (x) = ρ0κ (x) + ρ1κ (x) + ρ2κ (x) +O

(
e4
)
, (4.4.36)

where the first three individual densities are given by:

ρ0κ (x) =
e |κ|
4π2i

ˆ
CF

dzTr
[
G0
κ (rx, rx; z)

]
(4.4.37)

ρ1κ (x) =
e2 |κ|
4π2i

ˆ ∞
0

r2udruφ (ru)

ˆ
CF

dzTr
[
G0
κ (rx, ru; z)G0

κ (ru, rx; z)
]

(4.4.38)

ρ2κ (x) =
e3 |κ|
4π2i

ˆ ∞
0

r2udru

ˆ ∞
0

r2vdrvφ (rv)φ (ru)

×
ˆ
CF

dzTr
[
G0
κ (rx, rv; z)G

0
κ (rv, ru; z)G0

κ (ru, rx; z)
]

(4.4.39)

We shall come back to this result at the end of the chapter. Using Furry’s theorem [115] (discussed
in section 3.11), which is based on a charge conjugation symmetry argument, one can show that all
even orders of vacuum polarization densities in the external scalar potential φ, vanish. In addition,
we should note that ρ1κ (x) contains the Uehling potential, and a divergent contribution. The nu-
merical computation of this term is thus problematic, but, this problem can be overcome by simply
calculating the difference between the total vacuum polarization density and the one-potential term:

ρVP
κ (x)− ρ1κ (x) . (4.4.40)

This expression is in principle finite, since the divergence in ρVP
κ (x) is only present in its ρ1κ (x).

This trick was used by different authors:

1. By Rinker and Wilets [155, page 753]. These authors calculated the following difference:

ρVP (x;Z)− lim
δ→0

Z

δ
ρVP (x; δ) , (4.4.41)

which removes all contributions linear in Z (physical and unphysical/divergent). To see how
this works, we expand the vacuum polarization density in powers of Z:

ρVP (x;Z) =
Z

1!

∂

∂Z
ρVP (x;Z) |Z=0 +

Z3

3!

∂3

∂Z3
ρVP (x;Z) |Z=0 +O

(
Z5
)
. (4.4.42)

The first-order derivative can be written as:

∂

∂Z
ρVP (x;Z) = lim

δ→0

ρVP (x, Z + δ)− ρVP (x, Z)

δ
, (4.4.43)

which leads to the fact that the difference indeed removes the linear powers in Z:

ρVP (x;Z)− lim
δ→0

Z

δ
ρVP (x, δ) = +

Z3

6

∂3

∂Z3
ρVP (x;Z) |Z=0 +O

(
Z5
)
. (4.4.44)

This means that one has to do a calculation with the real atomic charge Z, and another one
with a very small atomic charge δ, and take the difference, as seen in the last expression.
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2. Mohr et al. [7, pages 275-279]. These authors do a very similar trick, by taking the difference
between the total and the one-potential vacuum polarization density of eqs.(4.4.36 and 4.4.38):

ρVP
κ (x)− ρ1κ (x)

=
e |κ|
4π2i

ˆ
CF

dz

{
Tr [Gκ (rx, rx; z)]−

ˆ ∞
0

r2udruφ (ru)Tr
[
G0
κ (rx, ru; z)G0

κ (ru, rx; z)
]}

.

(4.4.45)
They then use the analytical expressions of these Green’s functions to evaluate the correspond-
ing difference.

One has to remember that by removing the divergence present in the term linear in Z, one also
removes the physical contribution of this term: known as the Uehling contribution. This point
should cause no problem since we know the exact form of the Uehling potential (See [117]), and it
can easily be employed in the calculation to account for the missing physics, as done in the cited
references. Next, we will see how one can calculate the total vacuum polarization density ρVP

κ (x)
in the framework of the finite basis approximation.

4.5 Vacuum polarization in a finite basis set
In this section, we shall discuss how the vacuum polarization density can be constructed in a finite
basis set. In a spherical basis set, the radial functions are expanded as in eqs.(2.9.1 and 2.9.2) and
the vacuum polarization density of eq.(4.4.9) becomes a sum that runs over all numerical solutions:

ρVP
κ (x) =

e |κ|
4πr2

∑
α

sgn (Eα,κ) ρκ,α (r) , (4.5.1)

where ρκ,α (r) = [Pα,κ (r)]
2

+ [Qα,κ (r)]
2 is the probability density associated with the numerical

solution α. We should also note that in earlier calculations to numerically evaluate this vacuum
polarization density, the integral of the vacuum polarization density:

ˆ
d3xρVP

κ (x) = 0, (4.5.2)

which should vanish, was calculated to present a precision indication of the done calculation. This
was done by Rinker and Wilets [155, Pages 753,757] in addition to Soff and Mohr [6, Page 5074
eq.(70)]. In a finite basis calculation, this is not a problem of precision, since this integral will
always vanish: ˆ

d3xρVP (x) = e
∑
κ

|κ|
ˆ ∞
0

dr

 n∑
α+=1

1−
n∑

α−=1

1

 = 0. (4.5.3)

In the last expression, α± indicates that the index runs over the n positive and negative-energy
solutions, respectively. The fact that both sums go from 1 to n (number of basis functions), is
related to the fact that the numerical basis sets are (and should be) kinetically balanced. See, for
instance, the work of Stanton and Havriliak [70].
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4.5.1 VP density in restricted kinetic balance
In the RKB problem, the vacuum polarization density associated with the κ-Dirac problem of
eq.(4.5.1) reduces to:

ρVP
κ (x) =

e

4πr2

2nκ∑
α=1

|κ| sgn (Eα,κ)

nκ∑
i,j

{(
cLα,κ,i

)∗
cLα,κ,jπ

L
κ,iπ

L
κ,j

+
~2

4m2c2
(
cSα,κ,i

)∗
cSα,κ,j

[
d

dr
πLκ,i +

κ

r
πLκ,i

] [
d

dr
πLκ,j +

κ

r
πLκ,j

]}
,

(4.5.4)

where the sum runs over all solutions α = 1, . . . , 2nκ of the numerical radial Dirac equation. The
numerical density associated with a solution α is given in eq.(E.1.6).

We shall now present several calculations of this vacuum polarization density (in RKB) done on
the Coulombic (point nucleus) hydrogen-like radon (Z = 86) atom: Rn85+, using the last equation.
We construct the four RKB matrix equations (see section E.1.1) corresponding to κ = ±1,±2
quantum numbers, and use the 7z (largest available) basis exponents, given in section E.3. The
results of the vacuum polarization density calculations are presents in figures (4.5.1,4.5.2,4.5.3 and
4.5.4), for κ = −1,+1,−2, and +2, respectively.
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Figure 4.5.1: RKB VP density for Rn85+ and κ = −1.
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Figure 4.5.2: RKB VP density for Rn85+ and κ = +1.
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Figure 4.5.3: RKB VP density for Rn85+ and
κ = −2.
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Figure 4.5.4: RKB VP density for Rn85+ and
κ = +2.

We first analyze the first result of the κ = −1 calculation, which shows that the vacuum po-
larization density is a very local quantity, since its maximum magnitudes are reached within the
Compton wavelength λ̄ ≈ 0.0073 a.u. , as seen in figure 4.5.1a, but still have a wavy behavior which
goes beyond the (radon atom) Bohr radius aB = 0.0116 a.u. (where the ground-state electron is most
probably found), as one notices in figure 4.5.1b. The second result is clearly unphysical, and shall
be solved by the end of this chapter. The three remaining results, are less local, and the reason
is because the set of s-exponents has higher exponent values (more localized), as one can see by
comparing the first column of the three exponents tables E.3-E.5.

In order to see if the vacuum polarization density is well described by our basis sets, we perform
three additional calculations on the κ = −1 problem (s 1

2
), and present the obtained results in figure

4.5.5. In the first, second and third calculation, we simply augment the largest 7z s-basis (First
column of table E.3) by one, two and three large tight exponents, and label the curves with 7z + i
where i = 1, 2, 3, respectively. These additional exponents are generated using the even-tempering
scheme, discussed in section E.3.1.
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(b) At relatively large distances

Figure 4.5.5: s 1
2
-problem vacuum polarization density in RKB using 7z Gaussian exponents.

7z+i indicates that the basis set is augmented with additional i tight Gaussian exponents.

As predicted, since we have introduced very tight Gaussians, the calculation can only differ in
the vicinity of the nucleus, as seen in figure 4.5.5a, contrary to the relatively larger radii where the
four curves rapidly overlap, as noticed in figure 4.5.5b.

What is problematic about the first figure is that it tells us that our density is very sensitive
to the addition of tight exponents, and the vacuum polarization density does not converge in the
vicinity of the nucleus. This density is always ready to absorb larger exponents, without converging.
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This result clearly makes the physical validity of the results, questionable. The reader should note
that divergent behavior is expected, since the calculated quantity is not regularized. We shall now
focus on the qualitative improvement of our results. The solution to obtain quantitative vacuum
densities will be suggested at the end of this thesis. In reality, we know that the dominant vacuum
polarization effects (first-order: Uehling) should decay exponentially for r > λ̄ ≈ 0.0073 a.u. [8,
page 283], and this is not the case here. The vacuum polarization density we are calculating is (in
principle) complete, i.e. it contains the full expansion in powers of interaction with the external
nuclear potential (αZ)

n≥1. One can thus propose to calculate the dominant (αZ)
n=1 density, what

we call “the Uehling density” which generates the Uehling potential Uuehling (x) (known analytically),
using the Poisson equation from electrostatics:

∆Uuehling = −ρuehling (x)

ε0
, (4.5.5)

and compare this density ρuehling (x) with what we have found here. Unfortunately, this is not
possible, since the vacuum polarization density coming from a point-nuclear charge is divergent.
See, for instance, Greiner and Reinhardt [8, Pages 284-287]. In addition, Plunien et al. have
considered the Uehling effect for a uniform sphere model, and showed that the associated density
diverges logarithmically [156, eq.(28) and figure 5]. The calculation of ρuehling (x) can be only done
with a smooth nuclear charge model, as Gaussian- or Fermi-nuclei. This point is to be further
investigated.

A part of the problem comes from the fact that RKB is designed for positive-energy solutions,
and not the negative-energy ones (see section 2.10.1), and the vacuum polarization equation.(4.5.4)
do need these negative-energy solutions. We will thus go to the evaluation of this density in the dual
kinetic balance scheme, in the next section.

4.5.2 VP density in dual kinetic balance
In the dual kinetic balance scheme, the vacuum polarization density of eq.(4.5.1):

ρVP
κ (x) =

e |κ|
4πr2

∑
α

sgn (Eα,κ) ρκ,α (r) , (4.5.6)

where the numerical density ρκ,α (r) associated with the α solution, is now given in eq.(E.2.12).
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(b) At relatively large distances: r ≥ λ̄

Figure 4.5.6: DKB VP density for Rn85+ and κ = −1.
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Figure 4.5.7: DKB VP density for Rn85+ and κ = +1.
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Figure 4.5.8: DKB VP density: Rn85+,
κ = −2.

0.02 0.04 0.06 0.08 0.10

-6

-4

-2

2

4

6

Figure 4.5.9: DKB VP density: Rn85+,
κ = +2.

In this section, we repeat the same calculations we have done in the previous section, by building
the four matrix equations with the four quantum numbers κ = ±1,±2, but this time using the
DKB prescription, whose elements are given in section E.2. The only difference we get is that the
vacuum polarization density of ρVP

−1 in figure 4.5.6a of DKB is more localized than the one previously
obtained for RKB (using the same basis), which was presented in figure 4.5.1a. The second point to
notice is that the two curves associated with κ = ±2, are very similar, and the reason behind this
evidence is that the exponents used for these two problems are similar to each other (See tables E.4
and E.5). So a question that can come to mind is the following:

What could happen if we set the basis of the last two DKB matrix problems (κ = ±2)
to be equal?

As seen in section 2.11.6, our basis will make the DKB method symmetric under charge conjugation.
We shall thus perform a calculation in which we set the exponents associated with the opposite κ-sign
problems to be equal.

4.5.3 C-symmetric Dual Kinetic Balance
In this section, we shall perform a calculation in which we set exponents of the κ = ±1 and κ = ±2
problems to be separately equal. These bases are known as j-bases (see section E.3), and lead to a
conservation of the C-symmetry in the DKB problem as noted in our section 2.11.6 and by Dyall on
[83, Page 38]. We therefore choose to set our exponents to be:

ζ−1 = ζ+1 = ζs

ζ−2 = ζ+2 = ζp
, (4.5.7)
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where ζs and ζp are set to be the first column (7z-basis) exponents of tables E.3 and E.4.
We start with the densities associated with the κ = ±1 problems, presented in figure 4.5.10.

The individual densities are very localized within the Compton wavelength r � λ̄. To have a
closer look, we plot these densities at very small distances, within r < λ̄/7 (within the seventh of
the Compton length) in figure 4.5.11. The upper figure 4.5.11a which contains individual density
contributions, shows that the densities “interfere” constructively (match) at r < 0.0002 a.u., they
then rapidly start to mismatch and a cancellation between the two contributions begins to take place.
Furthermore, to observe how this cancellation evolves with larger distances, we plot these densities
for distances starting from the Compton wavelength (the first plotted points on the left), and ending
at approximately 18 × aB, see figure 4.5.12. The two sub-figures show a very large cancellation
between opposite κ-sign contributions at distances larger than the Compton wavelength.

The obtained results are quite promising, since our vacuum polarization density is now very much
localized within the Compton wavelength, and vanishes outside it, as it should behave.

In addition, we present the same plots for the vacuum polarization density associated with the
κ = ±2 problems in figs. 4.5.13 to 4.5.15. These figures show very similar results:

1. Fast decay of the vacuum polarization density at distances larger than the reduced Compton
wavelength (and the Bohr radius).

2. Significant cancellation between different vacuum polarization density components.

The only difference between the two problems (κ = ±1 and κ = ±2) is that ρVP
±2 is not as singular

as ρVP
±1 at the significantly small distances. That is justified because the basis functions used here

are (very) small and not as localized as the ones used for κ = ±1. To prove our claim, we do an
extra calculation where we set the same larger exponent used for κ = ±1, for the κ = ±2 problem,
meaning that all exponents are now equal, and the corresponding results are finally shown in the
extra calculations section 4.5.4 figs. 4.5.16 to 4.5.18.

The reader should constantly be reminded that most of these tests are qualitative rather than
quantitative since we are not using the best basis sets but rather trying to discover how one can
construct a more physical vacuum polarization density.
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Figure 4.5.10: r2ρVP
±1 for Rn85+ using C-DKB : The whole view.
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(b) Summation of both contributions

Figure 4.5.11: r2ρVP
±1 for Rn85+ using C-DKB : At small distances: r < λ̄/7.
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Figure 4.5.12: r2ρVP
±1 for Rn85+ using C-DKB : At larger distances

Note: curves are starting from r = λ̄.
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Figure 4.5.13: r2ρVP
±2 for Rn85+ using C-DKB : The whole view.
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(b) Summation of both contributions

Figure 4.5.14: r2ρVP
±2 for Rn85+ using C-DKB : At small distances: r < λ̄/7.
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Figure 4.5.15: r2ρVP
±2 for Rn85+ using C-DKB : At larger distances

Note: curves are starting from r = λ̄.
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4.5.4 Extra calculations: same exponents
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Figure 4.5.16: r2ρVP
±2 for Rn85+ using C-DKB : The whole view.
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Figure 4.5.17: r2ρVP
±2 for Rn85+ using C-DKB : At small distances: r < λ̄/7.
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Figure 4.5.18: r2ρVP
±2 for Rn85+ using C-DKB : At larger distances

Note: curves are starting from r = λ̄.

4.5.5 A closer look on numerical solutions of C-DKB
In this section, we shall take a closer look at the individual numerical (probability) densities that
contribute to the vacuum polarization density of the κ = ±1 problems, given in eq.(4.5.6). Recall
that the basis used in these calculations contains 16 exponents (7z), given in table E.3, which means
that the number of eigensolutions (dimensions of the Hamiltonian and overlap matrices) is 32. The
reader should remember that this basis is symmetric under charge conjugation symmetry, and hence,
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we shall call this problem: C-DKB. The first and last five eigenvalues of both κ = ±1 problems are
presented in the following table 4.1.

κ
α −1 +1

1 +1.831E + 06 +1.830E + 06
2 +1.066E + 05 +1.067E + 06
3 +6.461E + 05 +6.470E + 05
4 +4.159E + 05 +4.171E + 05
5 +2.740E + 05 +2.752E + 05

...
...

...
28 −4.493E + 05 −4.503E + 05
29 −6.943E + 05 −6.954E + 05
30 −1.117E + 06 −1.118E + 06
31 −1.895E + 06 −1.896E + 06
32 −3.780E + 06 −3.781E + 06

Table 4.1: First and last five eigenvalues of the κ = ±1 problems of Rn85+ using j-basis DKB.

These two columns show that solutions of the associated κ = ±1 problems, which are very high
in energy (|E| > 15mc2) are very close. We have thus moved on to plot the energy signed probability
densities:

sgn (Eα,κ) r2ρα,κ (r) , (4.5.8)

associated with the tabulated energy solutions and present them in fig. 4.5.19. In the total vacuum
polarization density of eq.(4.5.1), all these probability densities are multiplied by the same factor
e|±1|
4π , which means that scales can be directly compared. We also note that for clarity purposes, we

have presented the four figures in the same way the table is constructed, and multiply the negative-
energy probability densities with a minus factor of 1 (as done in the last equation), to remind the
reader that these lower plots will oppose the upper ones, due to the minus sign which is present for
negative-energy solutions: see the last cited equation. By observation, one can see that:

1. The resemblance between eigenvalues, is accompanied by a clear resemblance between proba-
bility densities for both κ = ±1 problems.

2. After summing positive and negative contributions (figs. 4.5.19a and 4.5.19c and figs. 4.5.19b
and 4.5.19d), a large cancellation between these opposite energy sign contributions will occur.

3. A numerical solution with large energy (absolute value) has a probability density closer to the
nucleus compared to lower energy solutions.
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Figure 4.5.19: Probability densities associated with the highest- and lowest-five energy solutions.

4.5.6 Comparison between RKB and C-DKB
At this point, the reader might realize that it would be a good idea to compare the conventional
RKB problem to the C-symmetric DKB problem. To make these problems more comparable, we
use the same basis set for both. We shall concentrate on the κ = ±1 problems and use the largest
7z j-basis, more precisely, this means that we shall use the s-exponents given in the first column of
E.3. We present the results in which we compare both problems, in figs. 4.5.20 and 4.5.21. These
figures show that:

1. At small distances, the DKB curves start with a nice matching between the components of the
vacuum polarization density, while the RKB results show no such behavior.

2. More importantly, at relatively large distances, the DKB curves show a very nice destructive
interference between both components, contrary to the RKB ones.
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Figure 4.5.20: ρVP
±1 for Rn85+ at very small distances: r < λ̄/7.
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Figure 4.5.21: ρVP
±1 for Rn85+ at relatively large distances: r ≥ λ̄.

In the end, what matters, is the summation of the two vacuum polarization components, which
will give the resultant effect, and take cancellations into account. We shall thus sum both density
components for each of the last four figures, and present the results in figs. 4.5.22 and 4.5.23.
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Figure 4.5.22: r2(ρVP
−1 + ρVP

+1 ) for Rn85+ at very small distances: r < λ̄/7.
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Figure 4.5.23: r2(ρVP
−1 + ρVP

+1 ) at relatively large distances: r ≥ λ̄.

Clearly, the C-DKB gets the credit. We shall next show that the RKB method gives rise to
a non-vanishing vacuum polarization density in the free electron problem, which is a non-physical
result, and is thus problematic.
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4.5.7 Non-vanishing vacuum polarization density in RKB
As a consequence of the C-symmetry violation in the RKB method, the free-particle vacuum polar-
ization density (when we set Z = 0), does not vanish. We thus plot the vacuum polarization density
components and their sum (using the 7z j-basis) in figs. 4.5.24a and 4.5.24b. This non-vanishing
vacuum polarization density vanishes in DKB since j-basis obeys the vacuum polarization density,
and this is shown in figs. 4.5.25a and 4.5.25b. We should note that the vacuum polarization density
of fig. 4.5.25b, vanishes within our large numerical precision: up to 100 significant digits.
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Figure 4.5.24: A non-vanishing free-particle VP density in RKB.
This is a non-physical result indicating C-symmetry violation.
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Figure 4.5.25: A vanishinng free-particle VP density in C-DKB.
This is a physical result indicating C-symmetry obedience.

4.5.8 Conclusions
So far, the best results we got were the ones obtained when using the j-basis (discussed in E.3), which
preserves the C-symmetry in the framework of the DKB prescription. Furthermore, the conventional
RKB (most popular) scheme, has the following weak points:

1. It fails in approximating the right coupling between large and small components of the negative-
energy solutions.

2. It cannot preserve the C-symmetry, (unless one uses the decoupled free basis: see section
2.11.2).

3. And most severely, it produces a non-vanishing vacuum polarization effect in the free-particle
problem, as seen in the previous section.
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We also note that the j-basis choice of exponents is a special case in which the C-symmetry can be
conserved, as discussed in section 2.11.6, where we mention that it should be better to work with
exponents optimized for opposite κ, and opposite L/S problems. Nevertheless, we are going to use
what we have in hands, the j-basis.

Finally, we would like to note that the non-vanishing vacuum polarization density which was
found in the free-electron RKB method Z = 0 and shown in fig. 4.5.24b, looks very similar to the
non-vanishing vacuum polarization density we have found for RKB where the nuclear charge was
Z = 86 seen in fig. 4.5.23a at these large distances. This indication suggests that one can take the
difference between these two results:

ρVP
κ (Z, r)− ρVP

κ (0, r) , (4.5.9)

in order to remove this spurious behavior, and obtain a better physical result. This point is to be
further investigated.

4.6 Vacuum polarization expansion in the finite basis set
So far we have discussed how to evaluate the total vacuum polarization density associated with a
certain κ, in a finite basis set, using the simple general expression of eq.(4.5.1). We have also learned
how to expand the vacuum polarization density in powers of external scalar potential, and presented
the results in eqs.(4.4.36, 4.4.37-4.4.39). We shall now see how one can build these individual terms
of the expansion, in a finite basis set. The starting point is to realize that the exact Green’s function
of eq.(4.4.30):

Gκ (rx, ry; z) =
∑
n

1

En,κ − z

[
RLn,κ (rx)RLn,κ (ry) RLn,κ (rx)RSn,κ (ry)
RSn,κ (rx)RLn,κ (ry) RSn,κ (rx)RSn,κ (ry)

]
, (4.6.1)

can be constructed in a basis set using numerical solutions, given in eq.(2.9.1). We shall call this
numerical Green’s function: Gκ, and it is given (in analogy to the last equation) by:

Gκ (rx, ry; z) =
1

rxry

∑
α

ϕα,κ (rx)ϕ†α,κ (ry)

Eα,κ − z

=
1

rxry

∑
α

1

Eα,κ − z

[
Pα,κ (rx)Pα,κ (ry) Pα,κ (rx)Qα,κ (ry)
Qα,κ (rx)Pα,κ (ry) Qα,κ (rx)Qα,κ (ry)

]
,

(4.6.2)

where the sum runs over the numerical solutions α, of the radial κ Dirac problem. Similarly, we
shall call the free (numerical) radial Dirac Green’s function, G0κ, which can be obtained from Gκ in
the limit Z → 0. In addition, we should note that the free numerical radial solutions, entering G0κ,
are going to be called:

ϕ0
α,κ (r) =

[
P0
α,κ (r)
Q0
α,κ (r)

]
, (4.6.3)

and shall be associated with E0
α,κ instead of Eα,κ, which appears in the denominator of the Green’s

function. We shall now evaluate the first few terms of the vacuum polarization density expansion.
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4.6.1 The zero-potential vacuum polarization density
Using the previous discussion, and definitions, the numerical zero-potential vacuum polarization
density becomes:

ρ0κ (x) =
e |κ|
4π2i

ˆ
CF

dzTr
[
G0κ (r, r; z)

]
=
e |κ|
4π2i

1

r2

∑
α

Mα
κ (r)

ˆ
CF

dz
1

E0
α,κ − z

, (4.6.4)

in the finite basis approximation. The function Mα
κ (r) is given by:

Mα
κ (r) =

[
ϕ0
α,κ (r)

]†
ϕ0
α,κ (r) = ρFree

α,κ (r) , (4.6.5)

is the probability density associated with the free solution α. The contour integral is evaluated in
section F.6.18, and using the result of eq.(F.6.18), we can write:

ˆ
CF

dz
1

E0
α,κ − z

= iπsgn
(
E0
α,κ

)
, (4.6.6)

which reduces our density to:

ρ0κ (x) =
e |κ|
4π

1

r2

∑
α

sgn
(
E0
α,κ

)
ρFree
α,κ (r) , (4.6.7)

which is identical to the vacuum polarization we had in eq.(4.5.1), but this time containing the free
probability densities instead.

4.6.2 The one-potential vacuum polarization density
The numerical one-potential vacuum polarization was found to be:

ρ1κ (x) =
e2 |κ|
4π2i

ˆ ∞
0

r2ydryφ (ry)

ˆ
CF

dzTr
[
G0κ (rx, ry; z)G0κ (ry, rx; z)

]
. (4.6.8)

See eq.(4.4.38). This formula contains the trace of a product of two free Green’s functions, which is
found to be:

Tr
[
G0κ (rx, ry; z)G0κ (ry, rx; z)

]
=

1

r2xr
2
y

∑
α,β

1

E0
α,κ − z

1

E0
β,κ − z

Mα,β
κ (rx, ry) .

(4.6.9)

with the function Mα,β
κ (rx, ry), given by the following formula:

Mα,β
κ (rx, ry) = Tr

[
ϕ0
α,κ (rx)ϕ0†

α,κ (ry)ϕ0
β,κ (ry)ϕ0†

β,κ (rx)
]

=
[
ϕ†β,κ (rx)ϕα,κ (rx)ϕ†α,κ (ry)ϕβ,κ (ry)

]
0
.

(4.6.10)

The subscript added to the last square brackets is a reminder that the inside solutions are free-ones.
The complex integral whose terms come from denominators of the Green’s functions is given by the
following: ˆ

CF

dz
1

E0
α,κ − z

1

E0
β,κ − z

= πi
1− sgn

(
E0
α,κE

0
β,κ

)∣∣E0
α,κ

∣∣+
∣∣∣E0

β,κ

∣∣∣ , (4.6.11)
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and was evaluated using the appendix result of eq.(F.6.30). Combining these findings, we can write
the one-potential vacuum polarization density as:

ρ1κ (x) =
e2 |κ|
4πr2x

∑
α,β

1− sgn
(
E0
α,κE

0
β,κ

)∣∣E0
α,κ

∣∣+
∣∣∣E0

β,κ

∣∣∣
[
ϕ0
β,κ (rx)

]†
ϕ0
α,κ (rx)

ˆ ∞
0

dryφ (ry)
[
ϕ0
α,κ (ry)

]†
ϕ0
β,κ (ry) .

(4.6.12)

Finally, the integral we are left with is the α, β matrix-element of the potential (expectation-value)
matrix:

V κα,β =

ˆ ∞
0

dryφ (ry)
[
ϕ0
α,κ (ry)

]†
ϕ0
β,κ (ry) . (4.6.13)

In addition, we shall call sκβ,α (rx) the remaining rx dependent terms:

sκβ,α (rx) =
[
ϕ0
β,κ (rx)

]†
ϕ0
α,κ (rx) . (4.6.14)

We also note that the integral of this last quantity, gives the β, α element of the overlap matrix.
Finally, using our new definitions, our one-potential vacuum polarization density becomes:

ρ1κ (x) =
e2 |κ|
4πr2x

∑
α,β

1− sgn
(
E0
α,κE

0
β,κ

)∣∣E0
α,κ

∣∣+
∣∣∣E0

β,κ

∣∣∣ sκβ,α (rx)V κα,β . (4.6.15)

We shall next generalize the steps we have followed in this section to derive the vacuum polarization
density of an arbitrary order n. Afterwards, we shall show that once the used basis is C-symmetric,
then the numerical vacuum polarization density associated with an even order n should vanish.

4.6.3 The n-potential vacuum polarization density
In this final section, we would like to evaluate the general n-potential vacuum polarization density
expression. This function is found to be:

ρnκ (x) =
en+1 |κ|

4π2i

ˆ ∞
0

r21dr1 . . .

ˆ ∞
0

r2ndrnφ (r1) . . . φ (rn)

×
ˆ
CF

dzTr
[
G0κ (r, r1; z)G0κ (r1, r2; z) . . .G0κ (rn−1, rn; z)G0κ (rn, r; z)

]
.

(4.6.16)

Compare with eqs.(4.4.37,4.4.38 and 4.4.39). The trace of the products of n Green’s functions is
given by:

Tr
[
G0κ (r, r1; z)G0κ (r1, r2; z) . . .G0κ (rn−1, rn; z)G0κ (rn, r; z)

]
=

1

(r1 . . . rn)
2

∑
α1,α2...αn,αn+1

sκαn+1,α1
(r)

×
[
ϕ†α1,κ (r1)ϕα2,κ (r1)ϕ†α1,κ (r2) . . . ϕαn,κ (rn−1)ϕ†αn,κ (rn)ϕαn+1,κ (rn)

]
0

× J
(
z, E0

α1,κ, E
0
α2,κ, . . . , E

0
αn,κ, E

0
αn+1,κ

)
,

(4.6.17)

where we have used the function sκα,β given in eq.(4.6.14), and J is the fraction given in eq.(F.6.33):

J
(
z, E0

α1,κ, E
0
α2,κ, . . . , E

0
αn,κ, E

0
αn+1,κ

)
=

1(
E0
α1,κ − z

)(
E0
α2,κ − z

)
. . .
(
E0
αn,κ − z

)(
E0
αn+1,κ − z

) . (4.6.18)
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The contour integration of the last term along the Feynman path CF gives I
(
E0
α1,κ, . . . , E

0
αn+1,κ

)
.

This integral is introduced in the appendix eq.(F.6.1), its final solution is provided at the end of the
referred appendix in eq.(F.6.52). Using our previous definition of the potential matrix element in
eq.(4.6.13), our vacuum density reduces to:

ρnκ (x) =
en+1 |κ|
4π2r2i

∑
α1,α2...αn,αn+1

sκαn+1,α1
(r)× V κα1α2

V κα2α3
. . . V καn−1αnV

κ
αnαn+1

× I
(
E0
α1,κ, E

0
α2,κ, . . . , E

0
αn,κ, E

0
αn+1,κ

)
,

(4.6.19)

in which sums run over all labels of the numerical free-particle solutions, with energy E0
αi,κ, and

wavefunction ϕ0
αi,κ of the κ-problem. Finally, we should note that in a practical numerical calcula-

tion, one might not need to go to very high orders of n, since, generally speaking, the larger n is,
the smaller the density ρnκ (x) in, and thus the energy-shift will be negligible. This rule of thumb
stays valid until one goes for large quantum numbers n and j, as indicated by Mohr et al. in [9] and
[7, section 4.2. pages 270-274], where ρ3κ (x) dominates ρ1κ (x) at large distances. A method to deal
with the divergent one-potential term ρ1κ (x), is to totally remove it, as done in eq.(4.4.45). In our
numerical expressions, this subtraction becomes:

ρVP
κ (x)− ρ1κ (x)

=
e |κ|
4πr2

∑
α

{
sgn (Eα,κ) ρα,κ (r)− e

∑
β

1− sgn
(
E0
α,κE

0
β,κ

)∣∣E0
α,κ

∣∣+
∣∣∣E0

β,κ

∣∣∣ sκβ,α (r)V κα,β

}
.

(4.6.20)

We remind the reader that ρα,κ (r) is the probability density associated with the α numerical solu-
tion in the presence of an external scalar potential. While the second term contains free-solutions
and energies only. This last expression removes the one-potential contributions (containing the di-
vergence) from the total vacuum polarization density, which means that this difference only contains
the remaining terms ρ0κ (x) + ρ2κ (x) + ρ3κ (x) + . . . . This subtraction was done by Mohr et al. in
[7, section 4.2, eq.(237)], Gyulassy [152, eq.(21)], Greiner et al. [106, section 15.2 eq.(15.34)], and
finally, Rinker and Wilets [155, page 753] (see 4.4.4). One possible problem which may be faced
when evaluating this formula is the fact that it contains free energies and density in the right term,
and bound ones, in the left one. It would be thus necessary to use the same set of basis functions
for both free and bound problems, in order to render the combination meaningful.

We have stated in multiple locations of the thesis that the vacuum polarization density ρnκ (x)
with even n, vanishes. In the next section, we shall show that if the basis we are using obeys
the charge conjugation symmetry, then all vacuum polarization densities with even orders n should
vanish.

4.6.4 Furry’s theorem in the finite basis set
We start by the opposite κ-sign vacuum polarization density, of order n (cf. eq.(4.6.19)):

ρn−κ (x) =
en+1 |−κ|

4π2r2i

∑
α1,α2...αn,αn+1

s−καn+1,α1
(r)× V −κα1α2

V −κα2α3
. . . V −καn−1αnV

−κ
αnαn+1

× I
(
E0
α1,−κ, E

0
α2,−κ, . . . , E

0
αn,−κ, E

0
αn+1,−κ

)
.

(4.6.21)

If our basis is symmetric under charge conjugation, then it should satisfy the condition of eq.(2.11.1)
discussed in section 2.11. Furthermore, since the numerical wavefunctions and energies entering in
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eqs.(4.6.19 and 4.6.21) are solutions of the free-particle Dirac equation, then by charge conjugation
symmetry we can relate between:

1. a solution ϕ0
+κ,i (r) associated with an energy level E0

+κ,i of the +κ problem,

2. a solution ϕ0
−κ,i (r) associated with an energy level E0

−κ,i of the −κ problem,

by the following equations (cf. eqs.(2.1 and 2.11.67)):

ϕ0
−κ,i (r) = σ1ϕ

0
+κ,i (r) (4.6.22)

E0
−κ,i = −E0

+κ,i. (4.6.23)

The first line directly allows us to write the following relations:

sκα,β (r) = s−κα,β (r) (4.6.24)

V −καβ = V +κ
αβ . (4.6.25)

We are now left with the integral I in eq.(4.6.21), and we shall now show how one can relate it to
the previous opposite sign κ density of eq.(4.6.19). This integral can be written as:

I
(
E0
α1,−κ, E

0
α2,−κ, . . . , E

0
αn,−κ, E

0
αn+1,−κ

)
(4.6.26)

= I
(
− E0

α1,κ,−E
0
α2,κ, . . . ,−E

0
αn,κ,−E

0
αn+1,κ

)
(4.6.27)

=

ˆ
CF

dz
1(

− ε0α1,κ − z
)
. . .
(
− ε0αn+1,κ − z

) . (4.6.28)

We now perform the usual trick of shifting the positive poles below the real axis and the negative-
ones above it, so we can take the integral along the real axis. This can be done by the following
energy replacement:

E0
i → ε0i = E0

i − iδsgn
(
E0
i

)
, (4.6.29)

with δ a small positive real number. Our integral now becomes:

(−1)
n+1
ˆ +∞

−∞
dx

1(
ε0α1,κ + x

)
. . .
(
ε0αn+1,κ + x

) , (4.6.30)

where in the last step we extract all minus signs from the denominator factors. Using the change of
variables x→ −x, our integral can be finally written as:

I
(
E0
α1,−κ, E

0
α2,−κ, . . . , E

0
αn,−κ, E

0
αn+1,−κ

)
= (−1)

n+1
ˆ +∞

−∞
dx
[(
ε0α1,κ − x

)
. . .
(
ε0αn+1,κ − x

)]−1
= (−1)

n+1
I
(
E0
α1,κ, E

0
α2,κ, . . . , E

0
αn,κ, E

0
αn+1,κ

)
,

(4.6.31)

which relates to the opposite κ-sign contour integrations, by a factor of (−1)
n+1. All this discussion

guides us to the conclusion that:

ρn−κ (x) = (−1)
n+1

ρn+κ (x) . (4.6.32)

From this equation, we can understand two points:
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1. The vacuum polarization density which sums both κ-signs vacuum polarization components:

ρn|κ| (x) = ρn+κ (x) + ρn−κ (x) =
[
1 + (−1)

n+1
]
ρn+κ (x) , (4.6.33)

vanishes in the C-symmetric basis set, for any even order of interactions (n) with the external
potential: α (αZ)

n.

2. For odd n orders, one needs only to calculate the vacuum polarization density of one of the
two ±κ problems.

These two cases are summarized in the following equation:

ρn|κ| (x) = ρn+κ (x) + ρn−κ (x) =

{
2ρn+κ (x) = 2ρn−κ (x) for odd n
0 for even n

. (4.6.34)

This result is to be compared with the result of Furry’s theorem, previously given in eq.(3.11.16).
This final result was found in the PhD thesis of Gyulassy [157, eq.(2.19)], and similar expressions
were derived by Greiner et al. in [106, eq.(15.25) and section 15.3], in which the vacuum polarization
density is given by a formula which is explicitly odd in the number of time-independent external
potential in which the electron lives. These latter results need extra few manipulations to arrive at
ours.



Chapter 5

Conclusions and perspectives

After these long discussions, we will let the dust settle down and present the main conclusions we
have reached, in addition to our view on how we can proceed beyond the results obtained during
the three years work on this thesis project.

5.1 Conclusions

5.1.1 Charge conjugation symmetry in a finite basis
Charge conjugation symmetry in RKB

We first note that the C-symmetry is realizable within the finite basis approximation, using the
conventional restricted kinetic balance scheme. This realization occurs after choosing the basis
functions to be the decoupled large and small components of the free radial Dirac solutions, that are
written in terms of the spherical Bessel functions (as discussed in sections 2.11.2, 2.11.4 and 2.11.5).
In addition, we have found that one can select a particular scaling of these basis functions, related to
the zeros of the spherical Bessel functions (of the first kind), and obtain an orthogonal set of functions
(within a confinement sphere) that vanish at the walls of the confinement sphere (as seen in sections
2.11.3 and 2.11.5). This result can be employed in the simulation of the relativistic confinement
problem, and is important to consider for the calculations of the vacuum polarization density. This
density, which (analytically speaking), contains a sum over bound-solutions and integrals over the
continuum ones, reduces to two sums in the confinement problem as noted by Schlemmer and Zahn
in [158, page 33].

Charge conjugation symmetry in DKB

We also note that the C-symmetry can be smoothly realized in the dual kinetic balance scheme, as
we have seen in section 2.11.6. This goal can be attained by setting the large and small components
of some κ-basis, equal to the small and large component basis functions of the opposite κ-sign basis,
respectively (see eq.(2.11.61)). The reader should notice that if the chosen basis set is κ-independent
then this means that to realize the charge conjugation symmetry, one must, for each set of basis
functions associated with some κ, introduce the same basis for the opposite sign κ problem, as (for
instance) done by Shabaev et al. in [81, eqs.(10,11)].

151
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5.1.2 Vacuum polarization density derivations and calculations
Concerning the vacuum polarization density calculations, we have provided a closed expressions of
the expanded density in powers of the external scalar potential. These expressions can be directly
employed in numerical codes. We have in addition shown that if a chosen set of basis functions
does not respect the charge conjugation symmetry, one will obtain unphysical results, such as non-
vanishing vacuum polarization density in the free particle problem, as seen in section 4.5.7 when
using the RKB method. Generally speaking, in this case, one will obtain non-vanishing vacuum
polarization densities for even powers in the external potential:

ρn|κ| (x) = ρnκ (x) + ρn−κ (x) 6= 0, for even n (5.1.1)

which is certainly unphysical. We finally note that the best vacuum polarization density results
were obtained once the C-symmetric dual kinetic balance basis was used, where we have observed
the following physical features of the numerically obtained vacuum polarization density:

1. All densities associated with even powers of interaction with the external potentials do vanish:

ρn|κ| (x) = ρnκ (x) + ρn−κ (x) = 0, for even n (5.1.2)

which is inline with Furry’s theorem. The reader can check fig. 4.5.25 and eq.(4.6.34).

2. The total vacuum polarization densities cancel very nicely for distances exceeding the Compton
wavelength, as seen in figs. 4.5.21b and 4.5.23b. This point is consistent with what we know
about the behavior of the (exact) vacuum polarization density, at relatively large distances.

3. One must only calculate the vacuum polarization density associated with one κ-sign, since we
have shown that opposite κ-sign densities of an odd n-order density are equal (eq.(4.6.34)):

ρnκ = ρn−κ, (5.1.3)

in the C-symmetric bases.

4. In a finite basis calculation, one can remove the divergent behavior of the vacuum polarization
density by eliminating the one-potential term, as done in eq.(4.6.20):

ρn≥2κ (x) = ρVP
κ (x)− ρ1κ (x)

=
e |κ|
4πr2

∑
α

sgn (Eα,κ) ρα,κ (r)− e
∑
β

1− sgn
(
E0
α,κE

0
β,κ

)
∣∣E0

α,κ

∣∣+
∣∣∣E0

β,κ

∣∣∣ sκβ,α (r)V κα,β

 (5.1.4)

This subtraction also removes the physical (Uehling) part of ρ1κ (x), which can be easily added
afterwards, since the Uehling potential has relatively simple expression.
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5.2 Perspectives

All animals are equal but some animals are more equal than others.

George Orwell

All infinities are infinite but some infinities are more infinite than others.

Maen Salman

The first problem we are currently working on concerns translating the regularization / renor-
malization machinery of the vacuum polarization density (which is usually done analytically) into
the language of the finite basis approximation. In order to express our words clearly, we shall give
few words on regularization and renormalization.

5.2.1 Regularization and renormalization
Regularization is a mathematical trick in which one modifies a divergent integral by introducing some
fictitious (auxiliary) parameters, such that the modified integral becomes convergent (but parameter
dependent). The main regularization techniques that are used in the QED context are:

1. The Pauli-Villars regularization [159], where one modifies the propagator that lives un-
der the divergent integral. For the vacuum polarization problem, one modifies the electron
propagator and adds to it some auxiliary mass propagators designed to cancel the existing
divergence(s). This can be done in momentum-space as done by Greiner and Reinhardt in
[8, eq.(5.20)], or in real-space, as done by Indelicato et al. in [5, section III]. On the other
hand, for the self-energy integral, one can modify the photon propagator using a propagator
associated with a fictitious photon mass (momentum cutoff Λ). See, for instance, Peskin and
Schroeder [99, eq.(7.17) and below].

2. The dimensional regularization introduced by ’t Hooft and Veltman in [160], where one
replaces the spacetime dimensions: d = 4, of the divergent integral, by d = 4− ε, where ε is a
small positive number. Fortunately, integrals that were divergent for d = 4 are convergent for
d = 4− ε. For further details about this regularization scheme, the reader can consult Ohlsson
[33, section 13.3], Peskin and Schroeder [99, pages 249-251], and Mandl and Shaw [93, section
10.3].

The reader should remember that for any regularization choice, the obtained expressions are parameters-
dependent: on the auxiliary masses, the large momentum cutoff Λ, or the dimensional parameter
ε. The next trick is to evaluate the parameters-dependent integrals first, (note that the integrals
are now convergent) and then absorb the obtained parameter-dependent divergent terms in the bare
charge and mass. This absorption of divergences by the bare physical quantities is known as the
renormalization technique, and consists of a redefinition of these quantities. The main idea here, is
that one must distinguish between:

• The bare electron mass and charge: The ones we can obtain from the experiment if Nature’s
QED button is switched off. This is surely impossible to achieve.

• The experimental electron mass and charge: The numbers we get from the experiment. These
numbers already account for the QED corrections, since Nature’s QED button is always
switched on.
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This renormalization technique is justified after realizing that our equations contain the bare electron
mass and charge instead of the experimental ones. Afterward, when we add the QED corrections to
these equations, we obtain diverging quantities. In addition, since:

1. We do not know what the bare quantities are.

2. We know that the QED corrections should be finite and infinity is just a concept that cannot
be physically measured, as mentionned by Hilbert in [79, page 201].

This leads to a conclusion that one can absorb the parameter-dependent divergences by the bare
quantities, such that the final (overall) mass and charge are fixed (chosen) to be the experimental
ones. This fact tells us that the QED theory needs the experimental values of the electron mass and
charge, as expressed by Feynman’s words in [84]:

We know what kind of a dance to do experimentally to measure this number very ac-
curately, but we don’t know what kind of a dance to do on a computer to make this
number come out without putting it in secretly!

For further detailed discussions about the regularization and renormalization techniques, the reader
may consult Huang [161], Zeidler [162, section 2.2], Mandl and Shaw [93, chapter 10], Ohlsson [33,
chapter 13], Bethe and Salpeter [163, section 19], and Lindgren [15, chapter 12].

5.2.2 Regularization and renormalization in a finite basis
Being inspired by the regularization and renormalization techniques (briefly discussed in the previous
section) we attacked this problem in the finite basis context, from two independent angles that are
represented by the following two projects:

1. The momentum cutoff project
This project concerns eliminating the large-momentum contributions from the vacuum polar-
ization density calculations by introducing a numerical momentum cutoff. This is usually done
analytically (in literature) using the Pauli-Villars regularization, and we have tried to adapt it
to the numerical problem. We have recently finished writing the associated simulation code,
and tests will be soon running.

2. The variation of physical constants project
This project concerns varying the physical constants numerically, which we can thus call a
“numerical renormalization” project. We have already run several calculations where we vary
(tweak) the mass and the charge of the electron, and study how the numerically calculated
QED quantities evolve with respect to these variations. The results of this project have not
been thoroughly analyzed and deserve further investigation.

5.2.3 Hartree-Fock with QED
This part of the conclusions section concerns section 3.13 of this thesis, where we have discussed
the inclusion of the QED corrections in the Hartree-Fock theory. Although not presented in the
thesis, several numerical tests were carried out using the theoretical results of Saue [143] (see section
3.13.2), which was coded by Saue in the DIRAC code [136]. These results showed that the QED
energy correction to the Hartree-Fock energy (given in eq.(3.13.14)) does not converge with an
increasing size of the basis set. The reason behind these diverging results can be traced to the
following two problematic points:
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1. The utilized code uses the RKB prescription, which does not properly describe the negative-
energy solutions, whereas the QED quantities are constructed from both positive and negative-
energy solutions. As a consequence, the charge conjugation symmetry is violated in these
calculations, and this is problematic.

2. The divergent nature of the QED quantities, as we have numerically seen in fig. 4.5.5.

The first point can be solved by working with the DKB prescription, or C-DKB (symmetric under
charge conjugation), while the second point is the more problematic one, and calls for a radical
solution. In addition, in section 3.13.3, we have provided the results of our QED energy correction
derivation, which includes the corrections of the second-order S(2)-matrix and compared our result
with the one previously obtained by Saue in [143]. The conclusion was that the results of Saue
contained all these corrections, but missed the retardation effects in the exchange terms. These
results are to be further analyzed and massaged such that they can be employed in practical Hartree-
Fock calculations.

Final words
The divergences faced when numerically calculating the QED quantities call for an urgent need for
a numerical regularization/renormalization procedure, which should eventually lead to converging
numerical QED quantities (with increasing size of the finite basis set). This is not a simple task
since the numerical translation of such exceptional and delicate mathematical manipulations (reg-
ularization of divergent integrals) is an extremely tricky task. The reader should finally note that
the error associated with the Hartree-Fock method is high, and is (generally speaking) beyond the
corrections provided by the QED theory. However, what is important is the success of this ma-
chinery, which will open the road for more sophisticated methods that include higher-order electron
correlation effects, such as coupled-cluster and configuration interaction methods, and will thus (at
least in principle) provide extremely accurate numerical results that are exceptionally well matching
with the experimental values.



Chapter 6

French résumé

L’objectif principal de cette thèse est de traduire les corrections de l’électrodynamique quantique
(QED) au langage de la chimie quantique relativiste: dans le cadre de l’approximation de l’équation
de Dirac en base finie. Inconsciemment, notre cerveau est habitué à associer de grandes vitesses
à de grandes distances, ce qui fait qu’il nous est difficile de comprendre, à première vue, pourquoi
la théorie atomique des électrons pourrait devoir tenir compte de la relativité restreinte. On peut
cependant montrer que la vitesse moyenne d’un électron occupant l’état fondamental d’un atome
hydrogénoïde est donnée par v = (αZ) c, où α = e2/ (4πε0~c) ≈ 1/137 est la constante de structure
fine fondamentale (adimensionnelle), Z est le numéro atomique, et c est la vitesse de la lumière. Cette
expression simple indique que les effets relativistes peuvent être négligés pour les éléments légers,
mais qu’ils doivent être généralement prises en compte, en particulier pour les éléments lourds.
En 1928, Paul Dirac a proposé une théorie (équation) quantique relativiste qui, malgré sa forme
simple (mathématiquement compacte), était capable de rendre compte d’une grande partie de la
physique, qui manquait dans la théorie originale de Schrödinger. Malgré sa supériorité (généralité)
par rapport à l’équation de Schrödinger, l’équation de Dirac n’a pas réussi à prédire des divers
phénomènes quantiques, et notamment les deux suivants :

1. Le moment magnétique de spin de l’électron, dont on a constaté expérimentalement qu’il
est d’environ gexp. ≈ 2.0023193 [1], et qui a été prédit par la théorie de Dirac comme étant
gDirac = 2.

2. Le décalage de Lamb (Lamb shift) [2]: la séparation entre les niveaux d’énergie 2s 1
2
and 2p 1

2

de l’atome d’hydrogène, dont la dégénérescence est prévue par la théorie de Dirac.

Il s’est avéré qu’une grande partie de la raison de cet écart réside dans la théorie de l’électrodynamique
quantique (QED), qui a donné des résultats numériques capables de combler merveilleusement un
pourcentage énorme de l’écart entre la théorie Dirac et l’expérience. La QED est la théorie qui
couple le champ électronique quantifié avec le champ photonique quantifié, par la densité hamiltoni-
enne d’interaction: HQED (x) = −ecΨ̄ (x) γµΨ (x)Aµ (x) , où Ψ (et Ψ̄) et Aµ sont les opérateurs de
champ de l’électron (et du positron) et du photon, respectivement. Dans ce contexte, l’Hamiltonien
total contient l’Hamiltonien électronique libre (électrons sans interaction) en plus de l’Hamiltonien
photonique libre (en l’absence de toute source électromagnétique). Dans le formalisme de la matrice
S, l’Hamiltonien (densité) de couplage ci-dessus entre les deux champs (électronique et photonique)
est traité d’une manière perturbative (en puissances de cette interaction), comme nous le verrons
dans le chapitre 3.

156
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Pour donner une idée générale du problème, nous parlerons des corrections QED d’ordre le plus
bas. Dans son ordre le plus bas e2, et sans photons réels, la matrice de diffusion (scattering matrix)
donne lieu à trois corrections QED:

1. L’échange d’un seul photon (single-photon exchange) entre deux électrons.

2. La polarization du vide (vacuum-polarization).

3. La auto-énergie (self-energy).

La première correction concerne l’interaction entre deux électrons, à son ordre le plus bas, où un
électron ressent l’existence de l’autre électron par l’échange d’un photon virtuel. Cette correction
n’existe que si le nombre d’électrons dans notre système est d’au moins 2, et nous montrerons qu’elle
contient deux contributions, dont l’une est locale : comme le terme directe de Hartree, et l’autre est
non-locale : comme le terme d’échange, dans la théorie de Hartree-Fock.

Les deuxième et troisième corrections ne contiennent qu’un seul électron réel, ces corrections
doivent donc être prises en compte pour tous les systèmes, partant du simple atome d’hydrogène (1
électron) jusqu’aux molécules compliquées à plusieurs électrons.

Nous allons maintenant nous concentrer sur les atomes simples à 1 électron, où les deux dernières
corrections peuvent être prises en compte. La deuxième correction représente l’effet de polarisation
du vide, qui décrit l’interaction d’un électron avec une bulle de vide (qui représente la production
d’une paire électron-positron). Cette bulle représente le courant de densité de polarisation du vide,
générée dans l’espace lorsqu’un inducteur (tel qu’un atome) existe, voir [5] et [6].

De plus, en l’absence d’inducteur, cette correction s’annule, ce qui peut être démontré à l’aide du
théorème de Furry qui est basé sur un argument de symétrie de conjugaison de charge. Ce théorème
sera discuté dans la section 3.11. L’effet de polarisation du vide est très localisé, et vit à de très
petites distances près du noyau, fortement a des distances plus petites que la longueur d’onde de
Compton (réduite): r < ~

mc . Plus précisément, le potentiel associé à la polarisation du vide d’ordre
le plus bas (la contribution la plus importante), c’est-à-dire le potentiel de Uehling : d’ordre α (αZ),
décroît exponentiellement lorsque r (distance nucléaire) devient plus grand que la longueur d’onde
de Compton, ce qui a été mentionné dans les travaux de Mohr et al. dans [7, Page 268] et Greiner
et Reinhardt dans [8, Page 283]. Le potentiel associé à la polarisation du vide d’ordre supérieur (en
puissance du potentiel externe) : Le terme de Wichmann-Kroll de α (αZ)

3, décroît plus lentement
que le potentiel de Uehling, et par conséquent, cette correction de Wichmann-Kroll domine celle de
Uehling pour les états atomiques avec de grands nombres quantiques n et j (s’éloignant du noyau)
comme le montrent les travaux de Soff et Mohr [9, Table I] et Huang [10, eqs.(23-25), eqs.(30,33)].
D’une manière générale, les états liés inférieurs seront plus affectés par les effets de polarisation
du vide, que les plus élevés (en énergies). Il convient de noter qu’un processus associé à un ordre
αm (αZ)

n est représenté par un diagramme de Feynman contenant m photons virtuels (lignes de
photons internes), tandis que n dans (αZ)

n représente le nombre d’interactions avec le potentiel
nucléaire classique. Le potentiel effectif (de QED) associé à un tel processus est généralement (dans
la littérature) écrit comme Vmn. Cette notation a été utilisée par Huang [10] and Blomqvist [11], et
autres.

Contrairement à la polarisation du vide, l’auto-énergie est un effet non-local, et il est donc
(généralement) plus compliqué à évaluer, dans les deux sens : mathématiquement (analytiquement),
et numériquement. Cet effet décrit l’émission d’un photon et son absorption par un photon virtuel,
et les deux ordres chronologiques de l’absorption et l’émission sont autorisés. Dans les atomes
électroniques, l’auto-énergie est la correction QED dominante, et ce fait peut être observé dans le
travail de Soff et al. [12, Figure. 10] où ils montrent différentes contributions au décalage de Lamb
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(dans les atomes hydrogénoïde) : Le décalage de Lamb est la séparation entre les états 2s 1
2
et 2p 1

2

dans les atomes hydrogénoïde, que l’équation de Dirac ne parvient pas à prédire, et qui est largement
décrit par ces deux corrections QED.

Ce fait de la dominance de la correction de l’auto-énergie dans les atomes électroniques est
inversé dès que l’on considère l’atome muonique, au lieu de l’atome électronique. La raison de cette
affirmation est due à la très grande masse du muon. Avec une masse d’environ mµ ≈ 200me, le
muon orbite donc deux cents fois plus près du noyau (par rapport à l’électron), ce qui se traduit par
une modification du rayon de Bohr: aµB ≈

aeB
200 . À ces très petites distances, l’effet de polarisation

du vide vit, et domine donc la self énergie, comme le mentionnent Mohr et al. [7, Page 266] Greiner
et Reinhardt [8, Pages 288-290] (voir également les travaux de Dubler et al. [14]).

Une fois que le développement de perturbation (correction) de l’énergie (ou de la fonction d’onde)
est effectuée, on obtient deux types de contributions :

• Les corrections radiatives : dans lesquelles les diagrammes de Feynman représentatifs contien-
nent des boucles électroniques ou des boucles électron-photon.

• Les corrections non radiatives : dans lesquelles les électrons n’échangent que des photons
virtuels. Dans son ordre le plus bas, deux électrons peuvent échanger un photon unique,
ce qui donne lieu à l’interaction électron-électron (y compris l’effet de retardement dans le
terme d’échange). Les diagrammes d’ordre supérieur tiennent compte des échanges de photons
d’ordre supérieur (corrections de corrélation).

Pour des discussions sur cette distinction, le lecteur peut consulter le livre de Lindgren [15], ainsi
que le chapitre d’Indelicato et Mohr [16].

Jusqu’à présent, en chimie quantique, les effets de corrélation sont très bien étudiés et compris,
alors que les corrections radiatives ne le sont pas. L’inclusion de ces corrections QED dans les calculs
numériques est une tâche très difficile, en raison de l’énorme complication qui apparaît lorsqu’un
système est constitué d’un nombre relativement important d’électrons en orbite autour d’un potentiel
nucléaire moléculaire (généralement non radial). Les principales tentatives pour prendre en compte
ces corrections radiatives ont été faites en incluant certaines des corrections d’ordre inférieur sous
la forme de potentiels effectifs, décrivant la polarisation du vide et les processus d’auto-énergie.
Ces potentiels seront discutés dans la section 3.12. Le lecteur doit noter que les deux principales
limitations, associées à l’inclusion des corrections QED dans les calculs numériques sont:

1. Bien que les potentiels effectifs d’auto-énergie (discutés dans la section 3.12.2) aient démon-
tré leur capacité à obtenir des corrections d’énergie précises -par rapport à des calculs plus
sophistiqués- (rappelons que ces potentiels sont faits pour cela), leur validité pour d’autres
quantités telles que la fonction d’onde ou les propriétés moléculaires (liées aux énergies cor-
rigées par ces potentiels) est sans doute discutable. Cette faiblesse vient simplement du fait
que ces potentiels sont ajustés/paramétrés pour reproduire les bons décalages d’énergie.

2. On peut, en principe, procéder de la manière rigoureuse, en utilisant des méthodes beaucoup
plus précises, sans avoir besoin d’aucun type d’ajustement (fitting) énergétique (comme pour
les potentiels d’auto-énergie effectifs), comme cela a été fait dans : [6, 7, 17, 18, 19, 20] et de
nombreuses autres références connexes, pour obtenir de très bons résultats. Malheureusement,
cette voie n’est pas très bien adaptée aux calculs pratiques et ne peut être empruntée que
pour des systèmes "simples", comme les atomes à un ou quelques électrons, mais pas pour les
molécules à plusieurs électrons, ce qui est la raison évidente pour laquelle nous utilisons plutôt
les potentiels effectifs.
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En raison de ces deux limitations, nous décidons de suivre une voie complètement différente : Calculer
ces corrections à la manière de la chimie quantique : d’une manière numérique rapide. Dans cette
procédure, les quantités QED sont construites à partir des solutions numériques (énergies et fonctions
d’onde) de l’équation de Dirac. Les principaux avantages de ce choix de voie sont les suivants :

1. Les quantités résultantes sont (en principe) exemptes de paramétrage (ajustement) énergé-
tique, et les quantités résultantes, telles que les fonctions d’onde et les propriétés moléculaires,
sont donc plus valides, en principe du moins.

2. Les calculs numériques ne sont pas très coûteux (numériquement parlant), comme nous nous
y attendions jusqu’à présent.

En raison de la complexité de la correction de l’auto-énergie non-locale, cette thèse se concentrera sur
la correction de la polarisation du vide, car elle est relativement plus facile à manipuler, tant analy-
tiquement que numériquement. Le lecteur doit noter que cette manipulation (massage) de la chimie
quantique relativiste pour tester sa capacité à calculer la densité de polarisation du vide, conduit à
une meilleure compréhension de la façon dont nous pouvons étendre nos compétences/manipulations
acquises, pour résoudre le problème de la polarisation du vide, au:

1. Problème de self énergie (dans l’ensemble de base fini).

2. Le problème Hartree-Fock qui inclut les corrections QED.

3. L’inclusion des corrections de QED dans les méthodes de chimie quantique de haut niveau.

Malheureusement, la thèse est limitée dans le temps, et ces trois points seront au-delà de ce projet
de doctorat. Néanmoins, nous allons donner notre vision sur la façon dont on peut s’attaquer à ces
problèmes dans la section 3.13 et la section finale de cette thèse, qui concerne nos perspectives sur
les futures étapes à suivre.

Chapitre 3 : L’équation de Dirac
Dans le chaptire 2, nous discuterons de l’équation de Dirac et de ses symétries discrètes associées,
à la fois sous la forme mathématique abstraite et une fois que cette équation est approximée par
un nombre fini de fonctions de base, typiquement par des fonctions gaussiennes. La symétrie de
conjugaison de charge (symétrie C) sera d’une importance centrale dans cette thèse, et l’étude qui
lui est associée a donné naissance à notre article intitulé "Charge Conjugation Symmetry in the Finite
Basis Approximation of the Dirac Equation" [21] où nous indiquons soigneusement les conditions
qui rendent l’ensemble de base fini C-symétrique. Dans l’approximation par ensemble de bases, un
ensemble de fonctions de base doit être soigneusement conçu pour éviter les instabilités numériques
et l’apparition de solutions non physiques (fallacieuses: spurious). Ce chapitre aborde les différents
choix de schémas de base et présente leurs avantages et inconvénients. À la fin du chapitre, nous
présenterons les résultats de quelques calculs effectués sur le problème de Dirac à un électron en
présence d’un potentiel coulombien: − Ze2

4πε0r
, et nous discuterons la réalisation pratique de la symétrie

de conjugaison de charge, dans l’approximation des bases finies. À la fin de ce chapitre, le lecteur
devrait avoir une idée générale de la manière dont l’équation de Dirac est approximée dans une base
finie.
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Conjugaison de charge
La symétrie de conjugaison des charges, ou symétrie C, relie une particule à son antiparticule cor-
respondante : celle-ci possède les mêmes caractéristiques physiques que la particule, à l’exception
d’une charge de signe opposé. Pour dériver l’opérateur de conjugaison de charge, nous commençons
par l’équation de Dirac d’un électron dans un quadri-potentiel arbitraire Aµ (x):

[γµ (i~∂µ + eAµ (x))−mc]ψ (x) = 0. (6.0.1)

Ce quadri-potential est une fonction des potentiels scalaire et vecteur: Aµ (x) = (ϕ (x) /c,A (x)).
L’objectif est de déterminer quelles opérations doivent être effectuées sur la fonction d’onde pour
que la fonction modifiée satisfasse à l’équation positronique:

[γµ (i~∂µ − eAµ (x))−mc] Cψ (x) = 0, (6.0.2)

qui décrit le comportement d’un positron: une particule ayant la même masse que l’électron, mais
ayant un signe de charge opposé. Nous commençons par conjuguer (complexe) la première équation,
de façon à ce que le nombre imaginaire ait un signe moins:[

(γµ)
∗

(−i~∂µ + eAµ (x))−mc
]
ψ∗ (x) = 0. (6.0.3)

On voit à ce point que pour obtenir l’équation de Dirac décrivant le positron (eq.(6.0.2)), il suffit
d’appliquer une opération matricielle, que nous appellerons Uc, qui inverse le signe des matrices
gamma complexes conjuguées dans la dernière équation, c’est-à-dire en respectant les conditions
suivantes:

Uc (γµ)
∗
U−1c = −γµ, (6.0.4)

et donc, conduisant à l’équation conjuguée de charge suivante:[
Uc (γµ)

∗
U−1c (−i~∂µ + eAµ (x))−mc

]
Ucψ

∗ (x) = 0 (6.0.5)
[γµ (i~∂µ − eAµ (x))−mc] Cψ (x) = 0, (6.0.6)

où l’opérateur de conjugaison de charge C = UcK0 contient les deux opérations: l’opérateur matriciel
Uc et la conjugaison complexe K0. Dans la représentation de Dirac des matrices gamma (eq.(2.4.10)),
la matrice Uc respectant les quatre conditions de l’eq.(6.0.4) se trouve être (jusqu’à un facteur de
phase):

Uc = γ2. (6.0.7)

En résumé, nous avons commencé par un électron, dont la fonction d’onde ψ (x) satisfait l’équation
de Dirac de l’électron.(6.0.1) et nous avons fini par un positron, dont la fonction d’onde Cψ (x) sat-
isfait l’équation d’antiparticule correspondante: eq.(6.0.2). La forme finale de l’opération C est
donc:

C = γ2K0; K0: Complex conjugation (6.0.8)

Le terme "conjugaison de charge" a été inventé (coined) par Kramers [62]. Cette symétrie a
conduit Dirac à prédire l’existence de l’anti-électron, c’est-à-dire du positron. En présence d’un
potentiel indépendant du temps Aµ (x) = Aµ (x), l’équation de Dirac indépendante du temps peut
être écrite comme: [

cα · [−i~∇+ eA (x)] + βmc2 − eϕ (x)
]
ψ (x) = +Eψ (x) , (6.0.9)
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où la précédente fonction d’onde dépendante du temps est liée à la dernière par: ψ (x) = e−
i
~Etψ (x).

La solution à charge conjuguée Cψ (x), obéit à la même équation mais avec une énergie et une charge
élémentaire de signes opposés:[

cα · [−i~∇− eA (x)] + βmc2 + eϕ (x)
]
Cψ (x) = −ECψ (x) . (6.0.10)

Ce signe d’énergie négatif supplémentaire peut (en outre) être attribué au fait que l’opérateur
C contient un opérateur de conjugaison complexe, qui inverse le signe de l’exposant e+

iE
~ t de la

fonction d’onde de l’éq.(2.6.26):

Cψ (x) = Cψ (x) e−
iE
~ t = γ2ψ∗ (x) e+

iE
~ t. (6.0.11)

Dans le régime indépendant du temps, la symétrie de conjugaison des charges permet donc de relier
les fonctions d’onde des particules d’énergie et de charge opposés, comme le prédisent les éqs.(6.0.9
et 6.0.10). En outre, le lecteur doit noter que dans le cas d’un electron libre, qui est un cas particulier
du problème indépendant du temps, les éqs.(6.0.9 and 6.0.10) se réduisent à :[

cα · [−i~∇] + βmc2
]
ψ (x) = +Eψ (x) (6.0.12)[

cα · [−i~∇] + βmc2
]
Cψ (x) = −ECψ (x) , (6.0.13)

Ces équations montrent que les partenaires à charge conjuguée appartiennent au même problème:
ils résolvent la même équation mais avec un signe d’énergie opposé, ce qui permet de conclure que
la symétrie de conjugaison des charges lie les solutions libres à énergie opposée.

L’équation de Dirac radiale et son approximation en base finie
En présence d’un potentiel radial purement scalaire ϕ (r), on peut montrer que l’opérateur de moment
angulaire total J = L+ Σ, où Σ est la matrice de spin 4× 4, commute avec l’opérateur de Dirac:

[Ji, HD] = 0, with HD = cα · p̂+ βmc2 − eϕ (r) (6.0.14)

En conséquence, on peut, après une analyse plus poussée, montrer que le spinor de Dirac à quatre
composantes peut être écrit comme:

ψκ,mj (x) =
1

r

[
Pκ (r) Ωκ,mj (θ, ϕ)
iQκ (r) Ω−κ,mj (θ, ϕ)

]
, (6.0.15)

où Ωκ,mj (θ, ϕ) sont les spinors sphériques à deux composantes. Les fonctions radiales Pκ et Qκ
résolvent l’équation de Dirac radiale :[

mc2 − eϕ (r)− E −c~
[
d
dr −

κ
r

]
c~
[
d
dr + κ

r

]
−mc2 − eϕ (r)− E

] [
Pκ (r)
Qκ (r)

]
= 0 (6.0.16)

L’objectif est maintenant d’effectuer des calculs numériques dans lesquels ces fonctions radiales sont
approximées par un nombre fini de fonctions de base radiales. Pour effectuer ces calculs, on spécifie
un ensemble des fonctions de base pour chaque composant de la solution de Dirac, associé à un
nombre quantique κ, et ainsi on approche les fonctions radiales exactes Pκ (r) et Qκ (r) par des
développements sur les éléments des ensembles de base, comme suit:

Pκ (r) ≈ Pκ (r) =

nLκ∑
i=1

cLκ,iπ
L
κ,i (r)

Qκ (r) ≈ Qκ (r) =

nSκ∑
i=1

cSκ,iπ
S
κ,i (r)

(6.0.17)
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Les fonctions πL/Sκ,i (r) sont de grandes et petites fonctions de base radiales, associées aux coeffi-
cients d’expansion c

L/S
κ,i , et nL/Sκ est le nombre d’éléments de base pour chacun des ensembles. À

proprement parler, la α-ième solution numérique (radiale) de l’équation de Dirac est approximée
par:

ϕα,κ (r) =

[
Pα,κ (r)
Qα,κ (r)

]
=

nLκ∑
i=1

cLα,κ,i

[
πLκ,i (r)

0

]
+

nSκ∑
i=1

cSα,κ,i

[
0

πSκ,i (r)

]
, (6.0.18)

ce qui conduit à la représentation matricielle suivante du problème des valeurs propres de Dirac:

Hκcα,κ = εα,κSκcα,κ, (6.0.19)

où les éléments de cette équation sont la matrice hamiltonienne Hκ de dimensions
(
nLκ + nSκ

)
×(

nLκ + nSκ
)
, la matrice de recouvrement Sκ (mêmes dimensions) et les solutions propres cα,κ de

dimensions
(
nLκ + nSκ

)
× 1 associées à la valeur propre d’énergie εα,κ et à la solution numérique

ϕα,κ (r). Ces termes sont respectivement donnés par:

Hκ =

[
mc2SLLκ − eϕLLκ c~Πκ

c~Πt
κ −mc2SSSκ − eϕSSκ

]
(6.0.20)

Sκ =

[
SLLκ 0

0 SSSκ

]
; {εα,κ, cα,κ} =

{
εα,κ,

[
cLα,κ
cSα,κ

]}
. (6.0.21)

Les éléments des matrices sont donnés par les intégrales radiales suivantes:[
SXXκ

]
ij

=

ˆ ∞
0

πXκ,iπ
X
κ,jdr (6.0.22)

[
ϕXXκ

]
ij

=

ˆ ∞
0

πXκ,iϕπ
X
κ,jdr (6.0.23)

[Πκ]ij = −
ˆ ∞
0

πLκ,i

[
d

dr
− κ

r

]
πSκ,jdr, (6.0.24)

où X peut être l’une des deux lettres X = L, S (grandes et petites composantes). Les premiers
calculs numériques de l’équation de Dirac radiale à un électron dans le cadre des ensembles de base
finis (ainsi que la méthode Hartree-Fock relativiste à quatre composantes pour plusieurs électrons),
qui reposaient sur notre connaissance des calculs non relativistes, ont échoué. La raison principale
de ces échecs est due au fait que les fonctions de base à grande et petite composantes πLκ et πSκ ne
respectaient pas le bon couplage qui est vu dans l’équation de Dirac radiale dans eq.(6.0.16). Ce
point va être discuté dans la prochaine section et la solution s’est avérée être d’utiliser ce que l’on
appelle: l’équilibre cinétique (kinetic balance), que nous allons discuter dans la prochaine section.

Balances cinétiques
L’équation de Dirac radiale donnée dans eq.(6.0.16) peut être écrite sous une forme légèrement
différente:

Qκ =
~
mc

1

1 + eϕ+E
mc2

[
d

dr
+
κ

r

]
Pκ (6.0.25)

Pκ =
~
mc

1

1− eϕ+E
mc2

[
d

dr
− κ

r

]
Qκ. (6.0.26)
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Pour la partie positive du spectre, les solutions qui nous intéressent (les solutions liées) se situent
autour de E ≈ mc2 (juste en dessous). Après avoir supposé que eϕ (le potentiel électrique) est
négligeable devant mc2, et donc, devant E, le couplage entre la petite et la grande composante
(première équation) peut être approximé par:

Qκ ≈
~

2mc

[
d

dr
+
κ

r

]
Pκ, (6.0.27)

qui est connue sous le nom de condition d’équilibre cinétique restreint (the restricted kinetic balance
condition). Dans le langage des ensembles de bases finies (discuté dans la section précédente), cette
approximation se traduit par le développement numérique suivant:[

Pα,κ (r)
Qα,κ (r)

]
=

nκ∑
i=1

cLα,κ,i

[
πLκ,i (r)

0

]
+

nκ∑
i=1

cSα,κ,i

[
0

~
2mc

[
d
dr + κ

r

]
πLκ,i (r)

]
. (6.0.28)

De même, on peut faire la même chose avec les solutions d’énergie négative qui sont proches de
−mc2, et obtenir une approximation de la fonction radiale de la grande composante en fonction de
la petite:

Pκ ≈
~

2mc

[
d

dr
− κ

r

]
Qκ. (6.0.29)

Cette condition est connue comme la condition d’équilibre cinétique inverse (the inverse kinetic
balance condition) [80], et conduit au développement suivant des solutions numériques:

ϕα,κ (r) =

[
Pα,κ (r)
Qα,κ (r)

]
=

nκ∑
i=1

cLα,κ,i

[ ~
2mc

[
d
dr −

κ
r

]
πSκ,i (r)

0

]
+

nκ∑
i=1

cSα,κ,i

[
0

πSκ,i (r)

]
. (6.0.30)

Une prescription plus intéressante (jusqu’à un certain point), est connue sous le nom de condition
d’équilibre cinétique double (dual kinetic balance condition) [81], qui combine les deux prescriptions
précédentes, où le développement numérique se fait de la manière suivante:

ϕα,κ (r) =

[
Pα,κ (r)
Qα,κ (r)

]
=

nLκ∑
i=1

c−α,κ,i

[
π+
κ,i (r)

~
2mc

[
d
dr + κ

r

]
π+
κ,i (r)

]
+

nSκ∑
i=1

c−α,κ,i

[ ~
2mc

[
d
dr −

κ
r

]
π−κ,i (r)

π−κ,i (r)

]
,

(6.0.31)
Cette prescription est plus démocratique entre les solutions d’énergie positive et négative, et montrera
des résultats importants pour le calcul de la densité de polarisation du vide.

La symétrie C dans l’ensemble de base fini
Nous disons qu’un ensemble de base est symétrique sous la symétrie C, si la conjugaison de charge
de tout élément de l’ensemble de base est un élément de l’ensemble de base lui-même :

Cϕi ∈ {ϕi}ni=1 , ∀i. (6.0.32)

Nous allons ensuite voir comment cette condition peut être remplie dans un calcul relativiste pra-
tique, plus spécifiquement, dans le contexte de l’équilibre cinétique restreint et double. Dans la
première prescription, l’analyse nous guidera dans la découverte d’un nouveau choix de fonctions de
base qui a une application très importante : simuler le problème de l’électron relativiste confiné.
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La symétrie C avec la condition d’équilibre cinétique
Après avoir forcé cette dernière condition à être remplie (satisfaite) dans le problème de l’équilibre
cinétique (restricted kinetic balance), nous constatons que les fonctions de base doivent être limitées
aux formes suivantes:

πLκ,i = j` (bκ,ir)

πSκ,i =
~bκ,isgn (κ)

2mc
j`−sgn(κ) (bκ,ir)

, (6.0.33)

où bκ,i sont des nombres constants réels : des “scalings” des fonctions de Bessel sphériques. Dans la
figure 6.0.1 nous traçons ces fonctions à grande et petite composantes pour κ = −1,−2 : fonctions
de type s 1

2
et p 3

2
, avec un ensemble de constantes choisies au hasard:

bκ,i = i, for i = 1, . . . , 5. (6.0.34)

Ces fonctions sont normalisées dans la boîte sphérique de rayon r = 10.
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(a) Grandes fonctions avec κ = −1.

i

1 2 3 4 5

2 4 6 8 10

x

-0.4

-0.2

0.2

0.4

0.6

0.8

1.0

(b) Petites fonctions avec κ = −1.
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(c) Grandes fonctions avec κ = −2.
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(d) Petites fonctions avec κ = −2.

Figure 6.0.1: La base RKB symmetrique sous C, avec bκ,i = i× 10, for i = 1, . . . , 5. .

Le problème de ces fonctions est qu’elles ne s’annulent pas aux parois de la boîte sphérique, et
la solution de ce problème sera discutée dans la section suivante.

Une nouvelle base pour simuler les électrons relativistes confinés
On peut imaginer un système où l’électron est confiné sphériquement dans une sphère de grand
rayon R et choisir les facteurs d’échelle bκ,i comme étant:

bκ,i =
γκ,i
R
, (6.0.35)
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où γκ,i est le i-ième zéro de la fonction de Bessel sphérique de première espèce (first-kind) d’ordre κ:
jκ (r). Ce choix des coefficients bκ,i par rapport à cette dernière équation force les fonctions radiales
à s’annuler à r = R, et assure l’orthogonalité de ces fonctions dans la sphère:

ˆ R

0

dr r2jκ

(
γκ,i

r

R

)
jκ

(
γκ,i

r

R

)
=
R3

2
(jκ+1 (γκ,i))

2
δij . (6.0.36)

On peut donc normaliser ces fonctions, et introduire:

j̃κ

(
γκ,i

r

R

)
=

1

|jn+1 (bκi )|

√
2

R3
jκ

(
γκ,i

r

R

)
. (6.0.37)

Nous appellerons ces fonctions : les fonctions de base de Bessel confinées. Dans la figure 6.0.2,
nous traçons les quatre éléments de base confinés correspondant aux quatre premiers zéros des
fonctions de Bessel sphériques bκ,i.
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(a) Grandes fonctions avec κ = −1.
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(b) Petites fonctions avec κ = −1.
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(d) Petites fonctions avec κ = −2.

Figure 6.0.2: La base de Bessel confinée: avec bκ,i =
γκ,i
R .

La symétrie C avec la condition d’équilibre cinétique double
En suivant les mêmes précédentes, nous avons trouvé que dans le problème d’équilibre cinétique
dual, il suffit de poser les conditions suivantes :

π−−κ,i (r) = π+
κ,i (r)

π+
−κ,i (r) = π−κ,i (r)

, (6.0.38)

pour que la symétrie C soit satisfaite (sans aucune restriction sur le type de fonctions de base).
Ce choix spécial de fonctions de base conduira aux résultats les plus physiques de la densité de
polarisation du vide, par rapport à toutes les autres bases considérées.
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Chapitre 4 : Électrodynamique quantique
Dans ce chapitre 3, nous déduirons la matrice S (matrice de diffusion) et présenterons la machinerie
mathématique qui lui est associée. De plus, nous calculerons les matrices S(2); du second ordre
associées aux trois processus physiques de la QED discutés dans la section précédente. De plus,
les trois décalages d’énergie correspondants vont être dérivés. Habituellement, ces dérivations sont
présentées très brièvement dans la littérature, avec beaucoup d’étapes sautées. Nous avons donc dé-
cidé de fournir une dérivation détaillée qui convient (jusqu’à un certain point) à un nouvel approche
de l’électrodynamique quantique de l’état lié (BSQED), dans le contexte de la théorie de la matrice
S. En outre, nous discuterons brièvement des potentiels effectifs de la QED dans la dernière partie
de ce chapitre. Enfin, ce chapitre se terminera par une discussion générale sur les fondements de
l’inclusion des corrections QED dans l’approximation multi-électronique la plus simple, c’est-à-dire
la théorie de Hartree-Fock, sans avoir besoin d’utiliser les potentiels effectifs. Une fois que ce mécan-
isme sera opérationnel, cela ouvrira la voie à des méthodes de chimie quantique plus sophistiquées,
telles que “Coupled-cluster” ou à interaction de configuration (configuration interaction). Il convient
également de noter que l’inclusion de ces corrections de manière autoconsistante permettra d’inclure
des corrections d’ordre supérieur. Le principal défi reste la gestion des divergences qui existent, non
seulement sur le papier mais aussi dans les calculs numériques. Ces divergences peuvent être ob-
servées en inspectant les quantités QED numériques non convergentes lorsque la taille de l’ensemble
de base (nombre de fonctions de base) est augmentée.

Corrections QED de second ordre
Dans ce chapitre, nous dérivons entièrement les décalages d’énergie électrodynamique quantique des
électrons liés. Le premier est le déplacement de l’énergie d’échange d’un seul photon qui est donné
par :

∆EαSP

=
e2

2

ˆ
d3x1

ˆ
d3x2ψ̄i (x1) γµψi (x1)

1

4πε0 |x1 − x2|
ψ̄j (x2) γµψj (x2) Direct

− e2

2

ˆ
d3x1

ˆ
d3x2ψ̄i (x1) γµψj (x1)

e+
i
c~ |Ei−Ej ||x1−x2|

4πε0 |x1 − x2|
ψ̄j (x2) γµψi (x2) Exchange

(6.0.39)

contenant un terme direct et un terme d’échange, similaires à ceux obtenus dans la théorie Hartree-
Fock à 4 composantes. Cette correction tient également compte de l’effet de retardement (à son
ordre le plus bas). La seconde est le décalage de l’énergie de polarisation du vide :

∆EαVP = −e2i~
ˆ
d3x1

ˆ
d3x2ψ

†
i (x1)ψi (x1)

1

4πε0 |x1 − x2|
Tr
[
γ0S

F (x2, x2)
]
. (6.0.40)

Ce terme décrit l’interaction d’un électron lié avec la bulle de polarisation du vide représentée par
la trace dans la dernière équation. Enfin, nous obtenons le décalage d’énergie propre (self-energy):

∆EαSE =
e2

2πi

ˆ
d3x1

ˆ
d3x2

ˆ
CF

dzψ†i (x2)αµG (x2,x1; z)αµψi (x1)

× e
+ i

~

√
(z−Ei)

2

c2
+iε|x1−x2|

4πε0 |x1 − x2|
.

(6.0.41)

Ce terme décrit un processus dans lequel un électron lié émet un photon (virtuel), puis le réabsorbe.
Cela entraîne une modification de la masse de l’électron.
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Hartree-Fock avec QED : L’approche de Saue
La théorie derrière ce problème est fournie dans un chapitre écrit par Saue et Visscher dans [143,
section 2.2]. Dans sa dérivation, Saue arrive à la conclusion que pour inclure les effets QED dans la
théorie Hartree-Fock, il faut effectuer le remplacement suivant de la matrice de densité atomique-
orbitale (états de particules uniques occupées à énergie positive):

DHF
νµ → DHF

νµ +DQED
νµ , (6.0.42)

où DQED
νµ peut être écrit comme:

DQED
νµ =

1

2

[ ∑
Ep>0

cν,pc
∗
µ,p −

∑
Ep<0

cν,pc
∗
µ,p

]
. (6.0.43)

La trace de cette dernière quantité donne la densité de polarisation du vide. La première somme
porte sur toutes les solutions à énergie positive, qu’elles soient occupées ou non, tandis que la seconde
porte sur les solutions à énergie négative. Cette modification de la matrice de densité entraîne une
modification de l’énergie:

EHF → EHF + EQED, (6.0.44)

où le terme additionnel EQED est trouvé comme étant :

EQED = DQED
νµ hDµν

+DHF
νµ D

QED
θσ [gµσ,νθ − gµσ,θν ]

+
1

2
DQED
νµ DQED

θσ [gµσ,νθ − gµσ,θν ] .

(6.0.45)

Le premier terme représente l’énergie unipolaire des électrons du vide. Nous devons maintenant
nous concentrer sur la deuxième ligne de la dernière équation. Le lecteur doit noter que ces termes
avec DHF

νµ D
QED
θσ décrivent l’interaction entre les solutions de Hartree-Fock et le vide de la QED. De

plus, le terme direct DHF
νµ D

QED
θσ gµσ,νθ représente le décalage d’énergie de polarisation du vide, tandis

que le terme d’échange −DHF
νµ D

QED
θσ gµσ,θν est associé au processus d’auto-énergie. Enfin, nous avons

trouvé les deux derniers termes : DQED
νµ DQED

θσ [gµσ,νθ − gµσ,θν ] sont les contributions attribuées aux
diagrammes de vide non physiques.

Cette machinerie a été codée par Saue dans le code DIRAC relativiste [136]. Nous avons effectué
de nombreux calculs à l’aide de ce code et avons observé que l’énergie QED donnée dans la dernière
expression ne converge pas avec une taille croissante de l’ensemble de base gaussien. Nous avons
donc décidé d’attaquer le problème sous un angle différent, en suivant les étapes suivantes :

1. Dérivation des décalages d’énergie de S(2), comme nous l’avons fait dans ce chapitre.

2. Combinaison de toutes les contributions en une seule expression énergétique. Voir la section
suivante.

Hartree-Fock avec QED : La nouvelle approche
Dans cette section, nous allons utiliser les décalages d’énergie associés aux trois processus physiques
de la matrice d’ordre 2 : S(2), que nous avons obtenue dans ce chapitre. Si nous combinons main-
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tenant tous les trois termes, avec l’énergie d’une particule, on obtient l’expression suivante :

Termes

E =

ˆ
dxψ†i (x) ĥD (x)ψi (x) a

+
e2

2

ˆ
dx1

ˆ
dx2ψ

†
i (x1)αλψi (x1)

1

4πε0r12
ψ†j (x2)αλψj (x2) b

− e2

2

ˆ
dx1

ˆ
dx2ψ

†
i (x1)αλψj (x1)

1

4πε0r12
cos

(
1

c~
|Ei − Ej | r12

)
ψ†j (x2)αλψi (x2) c

− e2i~
ˆ
dx1

ˆ
dx2ψ

†
i (x1)αλψi (x1)

1

4πε0r12
Tr
[
γ0S

F (x2, x2)
]

d

+ e2<

[
1

2πi

ˆ
dx1

ˆ
dx2

ˆ
CF

dzψ†i (x2)αλG (x2,x1; z)αλψi (x1)
e+

i
c~ r12

√
(z−Ei)2+iε

4πε0r12

]
e

(6.0.46)
Les termes étiquetés sont indiqués dans la liste suivante :

a L’énergie d’un électron : somme de toutes les énergies individuelles des particules uniques qui
n’interagissent pas.

b Le terme Hartree direct, trouvé dans la théorie Hartree-Fock habituelle à 4 composants.

c Le terme d’échange de Fock, que l’on trouve dans la théorie Hartree-Fock habituelle à 4 com-
posants. Remarquez que ce terme contient une fonction de retardement : cos

(
1
c~ |Ei − Ej | r12

)
,

qui disparaît dans la limite non relativiste c→ +∞. Ce terme cosinus est absent de l’approche
précédente de Saue, puisque dans la dérivation de référence, l’hamiltonien à deux particules
ne contient pas l’exposant de retardement. Cet exposant provient du propagateur de photons
de la jauge de Feynman, comme indiqué dans [7, eq.(461)] et [15, eq.(F.67)].

d Le décalage énergétique de la polarisation du vide. Ce terme est le même que celui obtenu par
Saue : DHF

νµ D
QED
θσ gµσ,νθ.

e Le décalage de l’énergie propre. Cette expression devient le terme −DHF
νµ D

QED
θσ gµσ,θν une fois que

nous avons éliminé la fonction exponentielle, et évalué l’intégration du contour.

Une expression similaire se trouve dans les travaux de Greiner et al [106, eq.(16.19)]. L’équation
autoconsistante (Hartree-Fock) contenant la contribution d’échange de photons uniques se trouve
dans les travaux de Plunien et Soff [144, eq.(18)], Rafelski et al [145, eq.(26)] ainsi que Reinhard
[146, eqs.(4,6)] et al dans [147, eq.(4)]. Une référence importante à considérer, dans ce contexte, est
Gomberoff et Tolmachev [148], où différentes manipulations de différents propagateurs d’électrons
sont effectuées, avec des connexions à la théorie Hartree-Fock. Voir par exemple l’équation autocon-
sistante de [148, eq.(3.11)], qui contient à la fois les effets de polarisation du vide et d’auto-énergie.

Notre discussion s’arrête ici, mais ce problème mérite une étude détaillée. Il faut garder à l’esprit
que la polarisation du vide et les termes d’auto-énergie sont tous deux divergents, dans le terme
de potentiel 1 [7, 5], et les termes de potentiel 0-&1 [149, 133], respectivement. Le problème des
divergences demande un effort exceptionnel, et il n’est pas évident de trouver comment remédier à
ces divergences dans le contexte des ensembles finis. Pour autant que nous le sachions, ce problème
n’a jamais été résolu.
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Chapitre 5 : Polarisation du vide
Le chapitre 4 sera consacré au problème de la polarisation dans le vide, déjà rencontré dans le
chapitre 3. Nous nous concentrerons d’abord sur la dérivation des quantités mathématiques, puis
nous attaquerons au problème de l’évaluation numérique. Plusieurs calculs de densité de polarisation
dans le vide associés à différents choix d’ensembles de base seront effectués, présentés et discutés en
détail. De plus, nous utiliserons ce que nous avons appris dans le premier chapitre sur la symétrie
C pour concevoir de meilleures fonctions de base. De plus, la symétrie de renversement du temps
(symétrie T ) sera utilisée pour simplifier l’expression de la densité de polarisation du vide dans les
cas où les potentiels vectoriels externes disparaissent. La première partie concernera les quantités
et manipulations mathématiques associées aux différentes définitions de cette densité. De plus, les
résultats sur les symétries discrètes de l’équation de Dirac, que nous avons dérivés et discutés dans
le chapitre 2, vont être utilisés pour simplifier certains des calculs de la densité de polarisation du
vide.

En outre, nous nous concentrerons sur le problème radial (atomique) et présenterons soigneuse-
ment comment on peut construire cette densité dans le cadre de l’approximation en base finie (de
l’équation de Dirac radiale).

Ensuite, nous utiliserons les résultats de la première partie (théorique) du chapitre pour attaquer
le problème numérique et présenterons différents résultats numériques avec une discussion détaillée.
Le résultat le plus important de ce chapitre sera de montrer comment la prise en compte de la
symétrie C (dans l’ensemble de base fini) améliorera significativement la qualité de nos densités
numériques de polarisation dans le vide. Cette prise en compte conduira finalement à des solutions
physiquement acceptées : cohérentes avec ce que nous savons de la théorie exacte. D’autre part, nous
verrons que le non-respect de cette symétrie C, qui se produit malheureusement dans les ensembles de
base relativistes conventionnels, conduira à des résultats non physiques problématiques qui divergent
du problème physique.

On peut montrer que le courant de polarisation du vide s’écrit comme suit :

JVP
µ (x) =

ec

2

[∑
Ei>0

ψ̄iγµψi −
∑
Ei<0

ψ̄iγµψi

]
. (6.0.47)

Dans le cas où le quadri-potentiel externe est indépendant du temps, le courant de polarisation du
vide devient également indépendant du temps et se lit comme suit :

JVP
µ (x) =

ec

2

(∑
Ei>0

ψ†i (x)αµψi (x)−
∑
Ei<0

ψ†i (x)αµψi (x)

)
. (6.0.48)

En utilisant la symétrie de renversement du temps, le courant de polarisation du vide :

JVP
0 (x) =

ec

2

(∑
Ei>0

ψ†i (x)ψi (x)−
∑
Ei<0

ψ†i (x)ψi (x)

)
JVP
µ (x) = 0 for µ = 1, 2, 3.

(6.0.49)

où seule la composante temporelle survit. Le courant de composante nulle peut être écrit sous la
forme JVP

0 (x) = cρVP (x) (première équation), où ρVP (x) est la densité de charge de polarisation
du vide :

ρVP (x) =
e

2

(∑
Ei>0

ψ†i (x)ψi (x)−
∑
Ei<0

ψ†i (x)ψi (x)

)
. (6.0.50)
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Les racines de cette différence entre les solutions d’énergie opposées remontent aux travaux de
Dirac où il a introduit la matrice densité ρ1, dont la trace donne la dernière différence. Voir [151,
Page 152]. De plus, cette définition de la densité de charge de polarisation du vide semble provenir
des travaux de Wichmann et Kroll [118, eq.(2)].

Densité de polarisation du vide dans le problème libre
En l’absence d’un inducteur externe, la densité de polarisation du vide devrait (en principe) dis-
paraître :

ρVP (x) =
e

2

∑
Ei>0

ψ†i (x)ψi (x)−
∑
Ej<0

ψ†j (x)ψj (x)

 = 0. (6.0.51)

Ceci sera démontré en utilisant la symétrie de conjugaison des charges. Rappelons que ψi (x)et Ei
résolvent l’équation de Dirac libre indépendante du temps :[

cα · p̂+ βmc2
]
ψi (x) = Eiψi (x) . (6.0.52)

En utilisant les équations auxquelles nous venons de nous référer, nous pouvons écrire les solutions
d’énergie négative de la deuxième somme de l’éq.(6.0.51) comme des solutions d’énergie positive
conjuguées par la symetrie C:∑

Ej<0

ψ†j (x)ψj (x) =
∑
Ej>0

[Cψj (x)]
† Cψj (x) . (6.0.53)

De plus, en utilisant l’opération de conjugaison de charge, nous pouvons écrire le dernier produit
comme :

[Cψj (x)]
† Cψj (x) =

[
γ2ψ∗j (x)

]†
γ2ψ∗j (x) = ψtj (x)ψ∗j (x) = ψ†j (x)ψj (x) , (6.0.54)

ce qui montre que la densité de probabilité est inchangée sous conjugaison de charge. En utilisant
ce dernier résultat, notre densité de polarisation du vide se réduit à :

ρVP (x) =
e

2

∑
Ei>0

ψ†i (x)ψi (x)−
∑
Ej>0

ψ†j (x)ψj (x)

 = 0, (6.0.55)

qui disparaît clairement, puisque chaque élément d’une somme, sera annulé par un même terme
provenant de la seconde somme, main ayant un signe moins.

Densité de polarisation du vide dans le problème atomique
Nous nous limitons maintenant au potentiel scalaire radial. Dans ce cas, les solutions de Dirac
peuvent être écrites comme :

ψn,κ,mj (x) =
1

r

[
Pn,κ (r) Ωκ,mj (x̂)
iQn,κ (r) Ω−κ,mj (x̂)

]
. (6.0.56)

En utilisant cette dernière forme de solution, et quelques propriétés des spinors sphériques, on peut
écrire la densité de polarisation du vide comme :

ρVP (x) =
e

4πr2

∑
n,κ

|κ| sgn (En,κ)
[
P 2
n,κ (r) +Q2

n,κ (r)
]
. (6.0.57)
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Cette formule se trouve dans [118, eqs.(6-8)]. D’autres formules légèrement différentes se trouvent
dans [6, eq.(20)], [152, eq.(19)] et [7, eq.(232)]. Enfin, cette densité peut être écrite comme une
somme sur les densités de polarisation du vide à composante κ :

ρVP (x) =
∑

κ=±1,±2,...
ρVP
κ (x) , (6.0.58)

où ρVP
κ (x) est donné par la somme suivante:

ρVP
κ (x) =

e |κ|
4πr2

∑
n

sgn (En,κ)
[
P 2
n,κ (r) +Q2

n,κ (r)
]
. (6.0.59)

Cette formule sera utilisée dans l’évaluation numérique de la densité de polarisation du vide (dans
une base finie), où la somme n sera calculée sur toutes les solutions numériques.

Polarisation du vide dans un ensemble de base fini
Une fois que nous nous limitons au problème de la base finie, où les fonctions radiales sont approx-
imées par : [

Pα,κ (r)
Qα,κ (r)

]
≈
[
Pα,κ (r)
Qα,κ (r)

]
=
∑
i

cLα,κ,i

[
πLi,κ (r)

0

]
+
∑
i

cSα,κ,i

[
0

πLi,κ (r)

]
(6.0.60)

La densité de polarisation numérique du vide peut être écrite comme :

ρVP
κ (x) =

e |κ|
4πr2

∑
α

sgn (Eα,κ) ρκ,α (r) , (6.0.61)

où ρκ,α (r) = [Pα,κ (r)]
2

+ [Qα,κ (r)]
2 est la densité de probabilité associée à la solution numérique

α. Nous devons également noter que dans les calculs précédents pour évaluer cette densité de
polarisation du vide, (numériquement), l’intégrale de la densité de polarisation du vide :

ˆ
d3xρVP

κ (x) = 0, (6.0.62)

qui devrait disparaître, a été calculé pour présenter une indication précise du calcul effectué. Cela a
été fait par Rinker et Wilets [155, Pages 753,757] ainsi que par Soff et Mohr [6, Page 5074 eq.(70)].
Dans un calcul en base finie, ce n’est pas un problème de précision, puisque cette intégrale s’évanouira
toujours : ˆ

d3xρVP (x) = e
∑
κ

|κ|
ˆ ∞
0

dr

 n∑
α+=1

1−
n∑

α−=1

1

 = 0. (6.0.63)

Dans la dernière expression, α± indique que l’indice passe sur les n solutions d’énergie positive et
négative, respectivement.

Densité de polarisation du vide dans RKB et C-DKB
Nous présentons les résultats dans lesquels nous comparons les deux problèmes, en figs. 6.0.3
and 6.0.4. Ces figures montrent que:
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1. Aux petites distances, les courbes DKB commencent par une belle correspondance entre les
composantes de la densité de polarisation du vide, alors que les résultats RKB ne montrent
pas un tel comportement.

2. Plus important encore, à des distances relativement grandes, les courbes DKB montrent une
très belle interférence destructive entre les deux composantes, contrairement aux courbes RKB.
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(a) RKB
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Figure 6.0.3: Densités de polarisation de vide de κ = ±1 à très petites distances : r < λ̄/7.
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Figure 6.0.4: Densités de polarisation du vide de κ = ±1 à des distances relativement grandes.

Au final, ce qui compte, c’est la sommation des deux composantes de la polarisation du vide,
qui donnera l’effet résultant, et tiendra compte des annulations. Nous présentons donc les résultats
comparables des sommations de ces composantes pour chacune des quatre dernières figures, en
figs. 6.0.5 and 6.0.6.
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Figure 6.0.5: r2(ρVP
−1 + ρVP

+1 ) à de très petites distances : r < λ̄/7.
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Figure 6.0.6: r2(ρVP
−1 + ρVP

+1 ) à des distances relativement grandes.

Il est clair que c’est la DKB-C qui a le mérite. Nous montrerons ensuite que la méthode RKB
donne lieu à une densité de polarisation du vide qui ne s’annule pas dans le problème de l’électron
libre, ce qui est un résultat non-physique, et donc problématique.

Conclusions et perspectives
Après les longues discussions, nous laisserons retomber la poussière et présenterons les principales
conclusions auxquelles nous sommes parvenus, ainsi que notre point de vue sur la façon dont nous
pouvons aller au-delà des résultats obtenus dans ce projet de thèse.

Conclusions

Symétrie de conjugaison de charge dans une base finie
Symétrie de conjugaison de charge dans RKB

Nous notons d’abord que la symétrie C est réalisable dans l’approximation de base finie, en utilisant
le schéma conventionnel d’équilibre cinétique restreint. Cette réalisation se produit après avoir
choisi les fonctions de base comme étant les composantes petites et grandes découplées des solutions
radiales libres de Dirac, qui sont écrites en termes de fonctions de Bessel sphériques (comme discuté
dans les sections 2.11.2, 2.11.4 et 2.11.5). De plus, nous avons découvert que l’on peut sélectionner
une échelle particulière de ces fonctions de base, liée aux zéros des fonctions de Bessel sphériques
(première espèce), et obtenir un ensemble orthogonal de fonctions (dans une sphère de confinement)
qui disparaissent aux parois de la sphère de confinement (comme on le voit dans les sections 2.11.3
et 2.11.5). Ce résultat peut être utilisé dans la simulation du problème de confinement relativiste, et
il est important de le prendre en compte pour les calculs de la densité de polarisation du vide. Cette
densité, qui (analytiquement parlant), contient une somme sur les solutions limites et des intégrales
sur les solutions continues, se réduit à deux sommes dans le problème de confinement comme l’ont
noté Schlemmer et Zahn dans [158, page 33].

Symétrie de la conjugaison des charges dans DKB

Nous notons également que la symétrie C peut être réalisée sans problème dans le schéma d’équilibre
cinétique double, comme nous l’avons vu dans la section 2.11.6. Ce but peut être atteint en fixant
les grandes et petites composantes d’une base κ, égales aux fonctions de base des petites et grandes
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composantes de la base κ de signe opposé, respectivement (voir eq.(2.11.61). Le lecteur doit remar-
quer que si l’ensemble de base choisi est indépendant du κ, cela signifie que pour réaliser la symétrie
de conjugaison de charge, il faut, pour chaque ensemble de fonctions de base associé à un certain
κ, introduire la même base pour le problème du κ de signe opposé, comme (par exemple) l’ont fait
Shabaev et al. dans [81, eqs.(10,11)].

Calculs de la densité de polarisation dans le vide
En ce qui concerne les calculs de la densité de polarisation du vide, nous notons que si un ensemble
choisi de fonctions de base ne respecte pas la symétrie de conjugaison de charge, on obtiendra des
résultats non physiques, tels que la densité de polarisation du vide non nulle dans le problème des
particules libres, comme on l’a vu dans la section 4.5.7 lorsqu’on utilise la méthode RKB. D’une
manière générale, on obtiendra des densités de polarisation du vide non nulles pour des puissances
paires en potentiel externe:

ρn|κ| (x) = ρnκ (x) + ρn−κ (x) 6= 0, for even n (6.0.64)

ce qui n’est certainement pas physique. Nous notons enfin que les meilleurs résultats de densité de
polarisation dans le vide ont été obtenus une fois que la base d’équilibre cinétique double symétrique
C a été utilisée, où nous avons observé les caractéristiques physiques suivantes de la densité de
polarisation dans le vide obtenue numériquement :

1. Toutes les densités associées aux puissances paires d’interaction avec le potentiel externe dis-
paraissent:

ρn|κ| (x) = ρnκ (x) + ρn−κ (x) = 0, for even n (6.0.65)

ce qui est en accord avec le théorème de Furry. Le lecteur peut vérifier fig. 4.5.25 et eq.(4.6.34).

2. Les densités de polarisation totales du vide s’annulent très bien pour les distances dépassant la
longueur d’onde de Compton, comme on peut le voir dans figs. 4.5.21b and 4.5.23b. Ce point
est cohérent avec ce que nous savons du comportement de la densité de polarisation du vide
(exacte), à des distances relativement grandes.

3. Il suffit de calculer la densité de polarisation du vide associée à un κ, puisque nous avons montré
que les densités de signes κ opposés d’une densité d’ordre n impair sont égales (eq.(4.6.34)):

ρnκ = ρn−κ, (6.0.66)

dans ces bases symétriques (sous symétrie C).

4. Dans un calcul en base finie, on peut supprimer le comportement divergent de la densité
de polarisation du vide en éliminant le terme de potentiel unique, comme cela est fait dans
l’éq.(4.6.20):

ρn≥2κ (x) = ρVP
κ (x)− ρ1κ (x)

=
e |κ|
4πr2

∑
α

sgn (Eα,κ) ρα,κ (r)− e
∑
β

1− sgn
(
E0
α,κE

0
β,κ

)
∣∣E0

α,κ

∣∣+
∣∣∣E0

β,κ

∣∣∣ sκβ,α (r)V κα,β

 .

(6.0.67)

Cette soustraction supprime également la partie physique (Uehling) de ρ1κ (x), qui peut facile-
ment être ajoutée par la suite.
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Perspectives
Le premier problème sur lequel nous travaillons actuellement concerne la traduction de la machinerie
de régularisation/renormalisation de la densité de polarisation du vide (qui se fait habituellement
de manière analytique) dans le langage de l’approximation en base finie. Afin d’exprimer clairement
nos propos, nous donnerons quelques mots sur la régularisation et la renormalisation.

Régularisation et renormalisation
La régularisation est une astuce mathématique qui permet de modifier une intégrale divergente
en y introduisant des paramètres fictifs (auxiliaires), de sorte que l’intégrale modifiée devienne
convergente (mais dépendante des paramètres). Les principales techniques de régularisation utilisées
dans le contexte de la QED sont les suivantes :

1. La régularisation de Pauli-Villars [159], où l’on modifie le propagateur qui vit sous
l’intégrale divergente. Pour le problème de la polarisation du vide, on modifie le propaga-
teur de l’électron et on lui ajoute des propagateurs de masse auxiliaires destinés à annuler la
ou les divergences existantes (voir par exemple Greiner et Reinhardt [8, eq.(5.20)]). D’autre
part, pour l’intégrale d’auto-énergie, on peut modifier le propagateur du photon en utilisant un
propagateur associé à une masse fictive du photon (coupure d’impulsion Λ). Voir par exemple,
Peskin et Schroeder [99, eq.(7.17) et en dessous].

2. La régularisation dimensionnelle introduite par ’t Hooft et Veltman [160], où l’on remplace
les dimensions de l’espace-temps : 4, de l’intégrale divergente, par 4−ε, où ε est un petit nombre
positif. Pour plus de détails sur ce schéma de régularisation, le lecteur peut consulter Ohlsson
[33, section 13.3], Peskin et Schroeder [99, pages 249-251] et Mandl et Shaw [93, section 10.3].

Le lecteur doit se rappeler que pour tout choix de régularisation, les expressions obtenues dépendent
des paramètres : des masses auxiliaires, de la coupure des grands impulsions Λ, ou du paramètre di-
mensionnel ε. L’astuce suivante consiste à évaluer d’abord les intégrales dépendantes des paramètres,
puis à absorber les termes divergents dépendants des paramètres obtenus dans la charge et la masse
nues. Cette absorption des divergences par les quantités physiques nues est connue sous le nom de
technique de renormalisation, et consiste en une redéfinition de ces quantités. L’idée principale ici,
est que l’on doit distinguer entre :

• La masse et la charge de l’électron nu : Celles que nous pouvons obtenir de l’expérience si le
bouton QED de la nature est désactivé. C’est impossible à réaliser.

• La masse et la charge expérimentales de l’électron : Les chiffres que nous obtenons de l’expérience.
Ces chiffres tiennent déjà compte des corrections QED, puisque le bouton QED de la nature
est toujours activé.

Cette technique de renormalisation est justifiée après avoir réalisé que nos équations contiennent la
masse et la charge de l’électron nu au lieu des valeurs expérimentales. Par la suite, lorsque nous
ajoutons les corrections QED à ces équations, nous obtenons des quantités divergentes. De plus,
puisque :

1. Nous ne savons pas quelles sont les quantités nues

2. et nous savons que les corrections de la QED devraient être finies (et l’infini n’est qu’un
concept),
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Ceci mène à la conclusion que l’on peut absorber les divergences dépendant des paramètres par les
quantités nues, de sorte que la masse et la charge finales (globales) sont fixées (choisies) pour être les
valeurs expérimentales. Ce fait nous indique que la théorie QED a besoin des valeurs expérimentales
de la masse et de la charge de l’électron, comme exprimé par les mots de Feynman dans [84]:

We know what kind of a dance to do experimentally to measure this number very ac-
curately, but we don’t know what kind of a dance to do on a computer to make this
number come out without putting it in secretly!

Pour des discussions plus détaillées sur les techniques de régularisation et de renormalisation, le
lecteur peut consulter Huang [161], Zeidler [162, section 2.2], Mandl et Shaw [93, chapter 10],
Ohlsson [33, chapter 13], Bethe et Salpeter [163, section 19], et Lindgren [15, chapter 12].

Régularisation et renormalisation dans une base finie
En nous inspirant des techniques de régularisation et de renormalisation (brièvement abordées dans
la section précédente), nous avons attaqué ce problème dans le contexte des bases finies, sous deux
angles indépendants qui sont présentés par les deux projets suivants :

1. Le projet de coupure d’impulsions
Ce projet vise à éliminer les contributions des grandes impulsions des calculs de densité de
polarisation du vide en introduisant une sorte de coupure numérique de momentum. Ceci est
généralement fait analytiquement (dans la littérature) en utilisant la régularisation de Pauli-
Villars, et nous avons essayé de l’adapter au problème numérique. Nous avons récemment
terminé l’écriture du code de simulation associé, et des tests seront bientôt effectués.

2. Le projet de variation des constantes physiques
Ce projet concerne la variation numérique des constantes physiques, que nous pouvons donc
appeler une "renormalisation numérique". Nous avons déjà effectué plusieurs calculs où nous
faisons varier (tweak) la masse et la charge de l’électron, et étudions comment les quantités
QED calculées numériquement évoluent par rapport à ces variations. Ce projet n’a pas été
achevé et mérite d’être approfondi.

Hartree-Fock avec QED
Cette partie des conclusions concerne la section 3.13 de cette thèse, où nous avons discuté de
l’inclusion des corrections QED dans la théorie Hartree-Fock. Bien que non présentés dans la thèse,
plusieurs tests numériques ont été effectués en utilisant les résultats théoriques de Saue [143] (voir
section 3.13.2), qui ont été codés par Saue dans le logiciel DIRAC [136]. Ces résultats ont montré que
la correction d’énergie QED ne converge pas avec l’augmentation de la taille de l’ensemble de base.
La raison de ces résultats divergents peut être attribuée aux deux points problématiques suivants :

1. Le code utilisé utilise la prescription RKB, qui ne décrit pas correctement les solutions d’énergie
négative, alors que les quantités QED sont construites à partir de solutions d’énergie positive
et négative.

2. La nature divergente des quantités de la QED, comme nous l’avons vu par exemple en fig. 4.5.5.

Le premier point peut être résolu en travaillant avec la prescription DKB, ou C-DKB (symétrique
sous conjugaison de charges), tandis que le second point est plus problématique, et appelle une
solution radicale.
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De plus, dans la section 3.13.3, nous avons fourni les résultats de notre dérivation de la correction
d’énergie QED, qui inclut les corrections de la matrice d’ordre 2: S(2) et comparé notre résultat
avec celui obtenu précédemment par Saue dans [143]. Ces résultats doivent être analysés plus avant
et massés de manière à pouvoir être utilisés dans des calculs Hartree-Fock pratiques.

Dernières paroles
Les divergences rencontrées lors du calcul numérique des quantités de la QED nécessitent un besoin
urgent d’une procédure de régularisation/renormalisation numérique dans le contexte numérique, qui
devrait finalement conduire à la convergence des quantités numériques de la QED (avec une taille
croissante de l’ensemble de base fini). Ce n’est pas une tâche simple car la traduction numérique
de traitements mathématiques aussi exceptionnels (régularisation d’intégrales divergentes) peut être
un objectif très délicat à atteindre. Le lecteur doit enfin noter que l’erreur associée à la méthode
Hartree-Fock est élevée, et se situe généralement au-delà des corrections fournies par la théorie
QED. Cependant, ce qui est important, c’est le succès de cette machinerie, qui ouvrira la voie à des
méthodes plus sophistiquées incluant des effets de corrélation électronique d’ordre supérieur, telles
que la méthode d’interaction de configuration (configuration interaction) et “coupled-cluster”, et
fournira ainsi (au moins en principe) des résultats numériques extrêmement précis qui correspondent
exceptionnellement aux résultats expérimentaux.
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Notations and definitions

The four-quantities are defined as:

xµ =
(
x0, x1, x2, x3

)
= (ct,x) Position (A.0.1)

∂µ =
∂

∂xµ
=

(
1

c

∂

∂t
,
∂

∂x1
,
∂

∂x2
,
∂

∂x3

)
=

(
1

c

∂

∂t
,∇
)

Gradient (A.0.2)

p̂µ = i~∂µ =

(
i~
c

∂

∂t
,−i~∇

)
Momentum operator (A.0.3)

pµ =

(
E

c
,p

)
Momentum variable (A.0.4)

Aµ =
(
A0, A1, A2, A3

)
=
(ϕ
c
,A
)

Potential (A.0.5)

jµ = −ceψ̄γµψ =

{
c
[
−eψ†ψ

]
= cρ if µ = 0

−eψ†cαψ = j otherwise
Probability current (A.0.6)

Notice that bold quantities are three-quantities (vectors), while unbold ones are four-quantities.
We choose to work with the following Minkowski metric tensor:

gµν = gµν = diag (+1,−1,−1,−1) . (A.0.7)

The gamma matrices, given by the following four-vector:

γµ =
(
γ0, γ1, γ2, γ3

)
=
(
γ0,γ

)
, (A.0.8)

are chosen to be the ones associated with the Dirac representation:

γµ =

([
12 0
0 −12

]
,

[
0 σ
−σ 0

])
, (A.0.9)

where one sees the Pauli spin matrices σ. These gamma matrices obey specific anticommutation
relations (generating a Clifford algebra):

{γµ, γν} = γµγν + γνγµ = 2gµν14. (A.0.10)

We are also going to use the fifth gamma matrix, defined as:

γ5 :=
iεµνσθ

4!
γµγνγσγθ = iγ0γ1γ2γ3, (A.0.11)

178



APPENDIX A. NOTATIONS AND DEFINITIONS 179

and which satisfies the following relations:{
γµ, γ5

}
= 0, for µ = 1, . . . 4. (A.0.12)

In the Dirac representation γ5 is γ5 =

[
0 12
12 0

]
. In addition, we are going to use the αµ matrix

vector, given by:

αµ = γ0γµ = (I4,α) ; → α =

[
0 σ
σ 0

]
. (A.0.13)

The Dirac spinor ψ, satisfies the Dirac equation:

[i~γµ∂µ −mc]ψ = 0, (A.0.14)

while the associated Dirac adjoint ψ̄, is given by:

ψ̄ = ψ†γ0, (A.0.15)

and satisfies the adjoint Dirac equation:

ψ̄
[
−i~γµ

←−
∂ µ −mc

]
= 0, (A.0.16)

where the arrow pointing to the left indicates that the four-gradient acts to the left. Quantities with
one upper index are called contravariant vectors, while others with lower index are covariant vectors.
One can transform form contravariant to covariant four-vector by applying the metric tensor:

aµ = gµνaν (A.0.17)
aµ = gµνa

ν , (A.0.18)

which directly leads to the fact that:
gµνgσν = δµν . (A.0.19)

In addition, this can be generalized a rank-n tensor, where one needs to multiply the expression n
metric tensors in order to change the n indices between covariant and contravariant. Finally, we
note that we shall use (as done here), the Einstein summation convention, where the presence of an
index twice in the same formula, indicates that a sum is implicitly taken.
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Identities

B.1 Gamma matrices

B.1.1 Products
The gamma matrix products we shall encounter are the following ones:

γµγµ = 414 (B.1.1)
γµγνγµ = −2γν (B.1.2)

γµγνγσγµ = 4gνσ14 (B.1.3)

γµγνγσγθγµ = −2γθγσγν (B.1.4)

Proof of B.1.1

We first write the anticommutation relations of eq.(A.0.10) as:

γµγν + γνγ
µ = 2δµν 14. (B.1.5)

After setting µ = ν, we directly obtain:

γµγ
µ = 414, (B.1.6)

where we used δµµ = 4.

Proof of B.1.2

Using the anticommutation relations of eq.(A.0.10), the left hand side of our equation can be written
as:

γµγνγµ = 2γµgνµ − γµγµγν . (B.1.7)

We now use the previous result to write:

γµγνγµ = −2γν . (B.1.8)
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Proof of B.1.3

In the associated equation, we need to pull γµ and γµ closer to each other, so we can make use of
the previous results, we start by writing:

γµγνγσγµ = 2γµγνgσµ − γµγνγµγσ, (B.1.9)

using the previous result, we obtain:

γµγνγσγµ = 4gσν14. (B.1.10)

Proof of B.1.4

Following the same previous steps, one can show that:

γµγνγσγθγµ = 2γµγνγσgθµ − γµγνγσγµγθ (B.1.11)

= 2γθγνγσ − 4gσνγθ (B.1.12)

= −2γθγσγν . (B.1.13)

B.1.2 Traces of gamma matrices
B.1.2.1 Tr [γµ] = 0

Since the square of the fifth gamma matrix of eq.(A.0.11) is the identity operator, we are allowed to
write the trace of a single gamma matrix as:

Tr [γµ] = Tr
[
γ5γ5γµ

]
, (B.1.14)

and since this matrix anticommutes with all the gamma matrices, we can move the middle matrix
to the right and get a minus sign:

Tr [γµ] = −Tr
[
γ5γµγ5

]
. (B.1.15)

One can now use the cyclic property of the trace, and γ5γ5 = 1 again, to show that:

Tr [γµ] = −Tr [γµ] , (B.1.16)

which indicates that the gamma matrices are traceless:

Tr [γµ] = 0. (B.1.17)

B.1.2.2 Tr [γµγν ] = 4gµν

The trace of the product of two gamma matrices is:

Tr [γµγν ] = 4gµν . (B.1.18)

Using the cyclic property of the trace operator, this trace can be written as the sum of two traces:

Tr [γµγν ] =
1

2
(Tr [γµγν ] + Tr [γνγµ]) , (B.1.19)

which can now be combined into one trace, using the anticommutation realtion. One directly gets:

Tr [γµγν ] = gµνTr [14] = 4gµν . (B.1.20)
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B.1.2.3 Tr [γµ1 . . . γµn ] = 0 for odd n

The vanishing trace of an odd number of gamma matrices was clearly satisfied for n = 1. For n = 3
we follow the same procedure, and write:

Tr [γµγνγσ] = Tr
[
γ5γ5γµγνγσ

]
(B.1.21)

= −Tr
[
γ5γµγ5γνγσ

]
(B.1.22)

= +Tr
[
γ5γµγνγ5γσ

]
(B.1.23)

= −Tr
[
γ5γµγνγσγ5

]
(B.1.24)

= −Tr [γµγνγσ] , (B.1.25)

which shows that the trace of three gamma matrices vanishes. The reader should start to see the
general pattern. The moving of the right fifth gamma matrix to the very right gives an overall minus
sign for each exchange of matrices, and this allows us to write:

Tr [γµ1 . . . γµn ]

= Tr
[
γ5γ5γµ1 . . . γµn

]
= (−1)

n Tr
[
γ5γµ1 . . . γµnγ5

]
= (−1)

n Tr [γµ1 . . . γµn ] ,

(B.1.26)

leading to the conclusion that the trace of any odd number of gamma matrices vanishes.

B.1.2.4 Tr [γµγνγργσ]

Using the anticommutation relation of the gamma matrices of eq.(A.0.10), we can write this trace
as:

Tr [γµγνγργσ] = Tr [(2gµν − γνγµ) γργσ] (B.1.27)
= 8gµνgρσ − Tr [γνγµγργσ] , (B.1.28)

where we obtained the first term using the previous result of eq.(B.1.20). We next focus on the
remaining term that can be similarly written as:

Tr [γνγµγργσ] = Tr [γν (2gµρ − γργµ) γσ] (B.1.29)
= 8gµρgνσ − Tr [γνγργµγσ] . (B.1.30)

We are left with the last term that can be also written as:

Tr [γνγργµγσ] = Tr [γνγρ (2gµσ − γσγµ)] (B.1.31)
= 8gµσgνσ − Tr [γνγργσγµ] . (B.1.32)

Notice that the last trace (in the last line) is identical to the parent trace we started with. We can
thus combine the three results and obtain our seeked trace:

Tr [γµγνγργσ] = 4gµνgρσ − 4gρµgνσ + 4gµσgνρ. (B.1.33)
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B.1.2.5 Tr [γµ1 . . . γµn ] for even n

Following the same arguments, and using previous results, one can generate the trace of any even
number of gamma matrices, which becomes a tedious work for large number of gamma matrices.
This kind of traces can be calculated using “DiracTrace” command (see second link) of the “Feyncalc”
Mathematica package [164]. If one favors pen and paper, we have found a nice technique that can be
used to facilitate this calculation. This technique was inspired by our study and manipulations done
with Wick’s theorem. The trace is found, without providing its proof, to be equal to 4 multiplied
by the sum of all possible fully contracted gamma matrix product:

Tr [γµ1γµ2γµ3γµ4 . . . γµn ] = 4
∑

full cont.

(γµ1γµ2γµ3γµ4 . . . γµn) . (B.1.34)

The contraction of two gamma matrices, lets say γµ1 and γµ2 is represented by a line that joins
these two operators, and is defined to be the metric tensor gµ1µ2 :

γµ1γµ2 = gµ1µ2 . (B.1.35)

In addition, a minus sign should be added at each time two matrices are swapped in order to bring
the contracted matrices next to each others. Here are two examples, where one needs to perform
one and two swappings of gamma matrices respectively:

γµγνγργσ = −γµγργνγσ (B.1.36)

γµγνγργσ = γµγσγνγρ (B.1.37)

in order to get contracted partners together. An easier way to get the right signs, is to realize that
the minimum number of swappings one needs to perform, to get contracted terms together is equal
to the number of intersections of the contraction lines (above). As a consequence, one gets an overall
minus sign if the contraction lines intersect for odd times (as in the first equation), and a plus sign
for even intersections (as in the second equation).

• For n = 2, we clearly have the right result of eq.(B.1.20):

1

4
Tr [γµγν ] = γµγν = gµν . (B.1.38)

• For n = 4, we obtain the result eq.(B.1.33) in a much faster way:

1

4
Tr [γµγνγργσ] = γµγνγργσ + γµγνγργσ + γµγνγργσ (B.1.39)

= gµνgρσ − gµρgνσ + gµσgνρ. (B.1.40)
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• For n = 6, we get:

1

4
Tr
[
γµγνγργσγτγθ

]
= γµγνγργσγτγθ + γµγνγργσγτγθ + γµγνγργσγτγθ

+ γµγνγργσγτγθ + γµγνγργσγτγθ + γµγνγργσγτγθ

+ γµγνγργσγτγθ + γµγνγργσγτγθ + γµγνγργσγτγθ

+ γµγνγργσγτγθ + γµγνγργσγτγθ + γµγνγργσγτγθ

+ γµγνγργσγτγθ + γµγνγργσγτγθ + γµγνγργσγτγθ (B.1.41)

= gµν
(
+gρσgτθ − gρτgσθ + gρθgστ

)
+ gµρ

(
−gνσgτθ + gντgσθ − gνθgστ

)
+ gµσ

(
+gνρgτθ − gντgρθ + gνθgρτ

)
+ gµτ

(
−gνρgσθ + gνσgρθ − gνθgρσ

)
+ gµθ (+gνρgστ − gνσgρτ + gντgρσ) . (B.1.42)
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Spherical Bessel functions

C.1 The Bessel equation and its solutions
The Bessel equation is of the following form:

z2
d2ω

dz2
+ z

dω

dz
+
(
z2 − ν2

)
ω = 0, (C.1.1)

and its solution can be written as a linear combination of two linearly independent solutions:

ων (z) = c1Jν (z) + c2Yν (z) , (C.1.2)

known as the Bessel functions of the first and second kind respectively. These functions can be
written as [60, eqs.(9.1.2 and 9.1.10)]:

Jν (z) =
(z

2

)ν ∞∑
k=0

(−1)
k

(
z2/4

)k
k!Γ (ν + k + 1)

(C.1.3)

Yν (z) =
Jν (z) cos (νπ)− J−ν (z)

sin (νπ)
, (C.1.4)

where these formulas are valid for integer values of ν, including zero. After calling ανi the position
of the i-th positive zero of the Jν (z) Bessel function, the orthogonality of the Bessel function can
be expressed as [165, eq.(10.22.37)] [166, eqs.(14.44 and 14.46)]:

ˆ 1

0

dt tJν (ανit) Jν (ανjt) =
1

2
(Jν+1 (ανi))

2
δij , (C.1.5)

using the change of variables t = r
R , this integral becomes:

ˆ R

0

dr rJν

(
ανi

r

R

)
Jν

(
ανj

r

R

)
=
R2

2
(Jν+1 (ανi))

2
δij . (C.1.6)

C.2 Spherical Bessel equation and solutions
The solution of following differential equation [60, section 10.1.1] [165, eq.(10.47.1)]:

z2
d2u

dz2
+ 2z

du

dz
+
(
z2 − n (1 + n)

)
u = 0; n = 0,±1,±2, . . . (C.2.1)
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can be written as a linear combination:

u (z) = c1jn (z) + c2yn (z) , (C.2.2)

of two linearly independent functions jn (z) and yn (z) called the spherical Bessel functions of the
first and second kind, respectively. Here z = x + iy represents the complex variable. We then
introduce a function U = zu, which thus satisfies the following equation:[

d2

dz2
− n (1 + n)

z2
+ 1

]
U = 0; U = zu. (C.2.3)

The spherical Bessel functions are related to the ordinary Bessel functions (of the first and second
kind) by the following formulas [165, eqs. 10.47.3-4]:

jn (z) =

√
π

2z
Jn+ 1

2
(z) (C.2.4)

yn (z) =

√
π

2z
Yn+ 1

2
(z) , (C.2.5)

and can be written using Rayleigh’s formula in terms of derivatives of some trigonometric functions
as [60, eqs.(10.1.25-26)]:

jn (z) = +zn
(
−1

z

d

dz

)n
sin z

z
(C.2.6)

yn (z) = −zn
(
−1

z

d

dz

)n
cos z

z
. (C.2.7)

In figures C.2.1a and C.2.1b we plot the seven spherical Bessel functions of the first and second
kind, corresponding to integer orders: n = 0,±1,±2,±3.

C.3 Limiting forms
For small z approaching zero, the spherical Bessel functions behave as [165, 10.52.1-2]:

jn (z) ∼ zn

(2n+ 1)!!
(C.3.1)

yn (z) ∼ − (2n− 1)!!

zn+1
, (C.3.2)

where the double factorial !! gives different outputs for different integer parities:

n!! =

{
n (n− 2) (n− 4) . . . 4 · 2 for n even
n (n− 1) (n− 3) . . . 3 · 1 for n odd

(C.3.3)

For large z, these functions behave as [165, 10.52.3]:

jn (z) ∼ +z−1 sin
(
z − nπ

2

)
+ e|=(z)|O

(
z−2
)

(C.3.4)

yn (z) ∼ −z−1 cos
(
z − nπ

2

)
+ e|=(z)|O

(
z−2
)
. (C.3.5)

These limiting forms indicate that for large and purely real z, these functions vanish, since the
trigonometric functions are damped by the z−1 term, and lower orders vanish. If z has an imaginary
component then these functions will diverge for large z, because of the exponential e|=(z)|.
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Figure C.2.1: Few spherical Bessel functions of integer order.

C.4 Normalization to Dirac-delta
The spherical Bessel functions of the first-kind respects the following normalization:

ˆ ∞
0

drr2j` (kr) j` (k′r) =
π

2k2
δ (k − k′) . (C.4.1)

This identity can be shown as follows: We start with the well-known integral:
ˆ
d3xei(k1−k2)·x = (2π)

3
δ (k1 − k2) , (C.4.2)

and using the plane wave expansion [56, eq.(5.23)], the exponential can be expanded in the basis of
the spherical Bessel functions and the spherical harmonics:

eik·x = 4π

∞∑
`=0

i`j` (kr)
∑̀
m=−`

Y ∗`,m

(
k̂
)
Y`,m (x̂) . (C.4.3)
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This relation allows us to write the previous one as:
ˆ
d3xei(k1−k2)·x =

∞∑
`=0

∞∑
`′=0

∑̀
m=−`

`′∑
m′=−`′

(4π)
2
i`+`

′
Y ∗`,m

(
k̂1

)
Y`′,m′

(
−k̂2

)
×
ˆ ∞
0

r2drj` (k1r) j`′ (k2r)

ˆ π

0

sin θxdθx

ˆ 2π

0

dϕxY`,m (x̂)Y ∗`′,m′ (x̂) . (C.4.4)

We now use the orthonormalization condition of eq.(D.3.8), and the parity identity of eq.(D.3.18) of
the spherical harmonics, to simplify our previous equation to:

ˆ
d3xei(k1−k2)·x = (4π)

2
∞∑
`=0

∑̀
m=−`

Y ∗`,m

(
k̂1

)
Y`,m

(
k̂2

)
×
ˆ ∞
0

r2drj` (k1r) j`′ (k2r) . (C.4.5)

We then use the completeness relation of spherical harmonics [167, eq.(3.56)]:
∞∑
`=0

∑̀
m=−`

Y ∗`,m

(
k̂1

)
Y`,m

(
k̂2

)
= δ (cos θ1 − cos θ2) δ (ϕ1 − ϕ2) =

1

sin θ1
δ (θ1 − θ2) δ (ϕ1 − ϕ2) ,

(C.4.6)
and write the three- Dirac-delta in spherical coordinates [107, eq.(A.8)]:

δ (k1 − k2) =
1

k21
δ (k1 − k2) δ (cos θ1 − cos θ2) δ (ϕ1 − ϕ2) , (C.4.7)

to obtain our wanted orthogonality relation [167, eq.(3.112)]:ˆ ∞
0

r2drj` (k1r) j` (k2r) =
π

2k21
δ (k1 − k2) . (C.4.8)

C.5 Derivatives
Using [60, eq.(10.1.23)] that is valid for fκ (z) = jκ (z) , yκ (z):(

1

z

d

dz

)m [
zκ+1fκ (z)

]
= zκ−m+1fκ−m (z) ;

{
κ = 0,±1,±2, . . .

m = 1, 2, 3, 4, . . .
(C.5.1)

For m = 1, 2, 3, one obtains:

d

dz
fκ (z) +

κ+ 1

z
fκ (z) = fκ−1 (z)

(C.5.2)

d2

dz2
fκ (z) +

2κ+ 1

z

d

dz
fκ (z) +

κ2 − 1

z2
fκ (z) = fκ−2 (z)

(C.5.3)

d3

dz3
fκ (z) +

3κ

z

d2

dz2
fκ (z) +

3 ((κ− 1)κ− 1)

z2
d

dz
fκ (z) +

(κ− 3) (κ− 1) (κ+ 1)

z3
fκ (z) = fκ−3 (z)

(C.5.4)

then one can replace in the m-th order equation, the expressions of lower order derivatives from
previous equations.
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Figure C.6.1: First five second-order spherical Bessel basis elements with j̃2 (i) = j̃2
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)
C.6 Orthogonality within a spherical box
Using the ordinary Bessel function orthogonality relation of eq.(C.1.6), and the fact that the that
these can be written in terms of the spherical Bessel functions eq.(C.2.5), one obtains:

ˆ R

0

dr r2jn

(
γni

r

R

)
jn

(
γnj

r

R

)
=
R3

2
(jn+1 (γni))

2
δij , (C.6.1)

where γni = αn+ 1
2 ,i

, representing the i-th zero of the n-th order spherical Bessel functions, which
coincides with the i-th zero of the n+ 1

2 -th order ordinary Bessel function (of the first kind), clearly
seen in eq.(C.2.4). This means that in a spherical box of radius a, one is able to construct an
orthonormal spherical Bessel basis set, whose elements are characterized by different positive integer
numbers i of the αn+ 1

2 ,i
number. Orthonormal functions clearly become:

j̃n

(
γni

r

R

)
=

1

|jn+1 (γni)|

√
2

R3
jn

(
γni

r

R

)
. (C.6.2)

In figure C.6.1 we plot the first five basis element of the (orthonormal) spherical Bessel basis
associated with the second-order n = 2 function. The numerical values of the first ten factors (zeros
locations) γni are computed using Mathematica [22] for n = ±1,±2,±3 and ±4, and are tabulated
in table C.1. Zeros of the positive orders can be found in [60, Table 10.6]



APPENDIX C. SPHERICAL BESSEL FUNCTIONS 190

i
n −1 +1

1 1.5707963267948966192 4.4934094579090641753
2 4.7123889803846898577 7.7252518369377071642
3 7.8539816339744830962 10.904121659428899827
4 10.995574287564276335 14.066193912831473480
5 14.137166941154069573 17.220755271930768740
6 17.278759594743862812 20.371302959287562845
7 20.420352248333656050 23.519452498689006546
8 23.561944901923449288 26.666054258812673528
9 26.703537555513242527 29.811598790892958837
10 29.845130209103035765 32.956389039822476725

i
n −2 +2

1 2.7983860457838871367 5.7634591968945497914
2 6.1212504668980683013 9.0950113304763551561
3 9.3178664617910653789 12.322940970566582052
4 12.486454395223781428 15.514603010886748230
5 15.644128370333027630 18.689036355362822202
6 18.796404366210157169 21.853874222709765792
7 21.945612879981044573 25.012803202289612466
8 25.092910412112097360 28.167829707993623875
9 28.238936575260272929 31.320141707447174536
10 31.384074017889858488 34.470488331284988666

i
n −3 +3

1 3.9595279165010953532 6.9879320005005199591
2 7.4516100642145034005 10.417118547379364764
3 10.715647375791512567 13.698023153249248999
4 13.921686012308781694 16.923621285213839579
5 17.103359117208740899 20.121806174453818286
6 20.272369140216529383 23.304246988939651352
7 23.433926142067802430 26.476763664539128150
8 26.590716631086271085 29.642604540315809172
9 29.744270680556556397 32.803732385196107943
10 32.895525188224304150 35.961405804709033069

i
n −4 +4

1 5.0884980139408550205 8.1825614525712427017
2 8.7337103225929058514 11.704907154570390558
3 12.067543686098046067 15.039664707616520808
4 15.315389681151238085 18.301255959541990220
5 18.525210372145093296 21.525417733399945437
6 21.714547286348721223 24.727565547835033371
7 24.891502692735838467 27.915576199421360642
8 28.060374592908179463 31.093933214079307175
9 31.223666727770478198 34.265390086101585783
10 34.382940654644671865 37.431736768201494726

Table C.1: γn,i: First ten zeros of the spherical Bessel functions jn (x) of orders n = ±1, . . . ,±4.
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Identities

D.1 Dirac relation
The Dirac relation that first appeared in [30, eq.(16)], is given by:

(σ · a) (σ · b) = a · b+ iσ · (a× b) , (D.1.1)

which can be proved as follows:

(σ · a) (σ · b) = σjσkajbk. (D.1.2)

The product of Pauli matrices can be written as:

σjσk = δjk12 + iεjklσl, (D.1.3)

where εjkl is the cyclic Levi-Civita symbol. When this relation is inserted in the previous equation,
it leads to the wanted result:

(σ · a) (σ · b) = [δjk12 + iεjklσl] ajbk (D.1.4)
= ajbj + iεjklσlajbk (D.1.5)
= a · b+ iσ · (a× b) . (D.1.6)

D.2 Spin angular momentum
The spin angular momentum operator is given by:

S =
~
2
σ, (D.2.1)

where σ are Pauli spin matrices. The spin states are defined as the eigenvectors of the S2 = ~2

4 σ
2

operator: [
1
0

]
and

[
0
1

]
. (D.2.2)

The four-component spin angular momentum operator will be called Σ, and is given by:

Σ = 12 ⊗ S =

[
S 0
0 S

]
. (D.2.3)

191
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D.3 Spherical Harmonics
The spherical harmonics Y`,m (x̂) are given by [61, eq.(B.93)]:

Y`,m (x̂) = (−1)
m

√
(2`+ 1)

4π

(`−m)!

(`+m)!
Pm` (cos θ) eimϕ, (D.3.1)

where x̂ = (θ, ϕ) represent the spherical angles associated with the unit vector x
|x| that points in the

position direction. The spherical harmonic satisfies both equations:[
L2 − ~2` (`+ 1)

]
Y`,m (θ, ϕ) = 0 (D.3.2)[

L2
z − ~m

]
Y`,m (θ, ϕ) = 0, (D.3.3)

where the orbital angular momentum (azimuthal) quantum number, and the associated magnetic
quantum number are restricted to the following integer values:

` = 0, 1, 2, . . . (D.3.4)
m = −`,−`+ 1, . . . , `− 1, ` (D.3.5)

where the squared L and Lz operators are given by:

L2 = L2
x + L2

y + L2
z = −~2

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂ϕ2

]
(D.3.6)

L2
z = −~2 ∂

2

∂ϕ2
. (D.3.7)

The above expression is normalized, meaning that functions satisfy the following orthonormalization
condition: ˆ π

0

sin θdθ

ˆ 2π

0

dϕY`,m (x̂)Y ∗`′,m′ (x̂) = δ``′δmm′ . (D.3.8)

Pm` (x) are the associated Legendre polynomials [61, eq.(B.72)], and are related to the Legendre
polynomials P` (x) [61, eq.(B.71)] by the Rodrigues’ formula:

Pm` (x) =
(
1− x2

)m/2 dm

dxm
P` (x) with P` (x) =

1

2``!

d`

dx`
(
x2 − 1

)`
;

=
1

2``!

(
1− x2

)m/2 d`+m

dx`+m
(
x2 − 1

)`
. (D.3.9)

For negative integer m, the first formula does not work, and the differential operator becomes
an integral as seen in [165, section 14.6(ii)]. The last formula is not problematic, and is valid
for −1 ≤ x ≤ 1, for a zero or positive integer `, for integer values of m, with |m| ≤ `. An
associated Legendre polynomial with −m can be related to the corresponding +m polynomial by
[166, eq.(15.81)]:

P−m` (x) = (−1)
m (`−m)!

(`+m)!
Pm` (x) . (D.3.10)
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D.3.1 Complex conjugation
The complex conjugation of the spherical harmonic function of eq.(D.3.1), flips the sign of the
exponential phase factor. We start by complex conjugating the expression, and obtain:

Y ∗`,m (x̂) = (−1)
m

√
(2`+ 1)

4π

(`−m)!

(`+m)!
Pm` (cos θ) e−imϕ, (D.3.11)

using eq.(D.3.10) and the following equation:√
(`−m)!

(`+m)!
=

√
(`+m)!

(`−m)!

(`−m)!

(`+m)!
, (D.3.12)

we obtain the complex conjugated spherical harmonic:

Y ∗`,m (x̂) = (−1)
m
Y`,−m (x̂) . (D.3.13)

D.3.2 Parity
Under parity transformation (space inversion) x̂ → −x̂, the spherical coordinates angles transform
as:

θ → π − θ (D.3.14)
ϕ→ π + ϕ, (D.3.15)

leading to the following spherical harmonic function:

Y`,m (−x̂) = (−1)
m

√
(2`+ 1)

4π

(`−m)!

(`+m)!
Pm` (− cos θ) eimϕeimπ. (D.3.16)

Clearly, from eq.(D.3.9), one can conclude that the associated Legendre polynomial is of (−1)
`+m

parity:
Pm` (−x) = (−1)

m+`
Pm` (x) . (D.3.17)

This leads to (−1)
` parity transformation for spherical harmonics:

Y`,m (−x̂) = (−1)
`
Y`,m (x̂) . (D.3.18)

D.4 Spherical spinors

D.4.1 Clebsch-Gordan coefficients: Angular momenta coupling
The Clebsch-Gordan coefficients arise from the expansion of the total angular momentum state that
couples two single angular momenta states, in a basis formed out of the uncoupled state vectors.
Assuming one has two angular momenta states |j1,m1〉 and |j2,m2〉, being the eigenvectors of
some squared- and z-component angular momenta operators, meaning that these states satisfy the
following equations:

J2
1 |j1,m1〉 = ~j1 (j1 + 1) |j1,m1〉 (D.4.1)

J1z |j1,m1〉 = ~m1 |j1,m1〉 , (D.4.2)
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for angular momentum 1, and:

J2
2 |j2,m2〉 = ~j2 (j2 + 1) |j2,m2〉 (D.4.3)

J2z |j2,m2〉 = ~m2 |j2,m2〉 , (D.4.4)

for angular momentum 2. Where the squared operators are given by J2
1,2 = J2

1,2x + J2
1,2y + J2

1,2z,
summing over individual squared operator vector components. The angular momentum operators
act on vector spaces of dimensions 2j1 + 1 and 2j2 + 1 spanned by the basis vectors (eigenvectors):

|j1,m1〉 ; with m1 ∈ {−j1,−j1 + 1, . . . ,+j1 − 1,+j1} (D.4.5)
|j2,m2〉 ; with m2 ∈ {−j2,−j2 + 1, . . . ,+j2 − 1,+j2} . (D.4.6)

In addition, these operators obey the angular momentum algebra, i.e. satisfy the following commu-
tation relations:

[Ji, Jj ] = i~εijkJk; i, k, k ∈ {x, y, z} (D.4.7)[
J2, Jj

]
= 0. (D.4.8)

The total angular momentum operator that couples both angular momenta operators, has the fol-
lowing form:

J = J1 ⊗ 1 + 1⊗ J2, (D.4.9)

acts on a space of dimensions (2j1 + 1) (2j2 + 1) whose basis elements (we shall call uncoupled) are
formed by the tensor product of both basis elements:

|j1,m1, j2,m2〉 = |j1,m1〉 ⊗ |j2,m2〉 , (D.4.10)

in the following manner:

J |j1,m1, j2,m2〉 = J1 |j1,m1〉 ⊗ |j2,m2〉+ |j1,m1〉 ⊗ J2 |j2,m2〉 . (D.4.11)

In addition, it can be shown that the total angular momentum is an angular momentum itself, that
satisfies its own commutation relations:

[Ji, Jj ] = [J1i, J1j ]⊗ 1 + 1⊗ [J2i, J2j ] = iεijkJk (D.4.12)[
J2, Ji

]
= 0 (D.4.13)

with

J2 = J2
1 ⊗ 1 + 2J1 ⊗ J2 + 1⊗ J2

2 (D.4.14)
Ji = J1i ⊗ 1 + 1⊗ J2i, (D.4.15)

using the following property of tensor products:

(a⊗ b) (c⊗ d) = u⊗ v; with

{
u = ac

v = bd
(D.4.16)

which indicates that the product of two tensor products is a tensor product itself. The coupled total
angular momentum states are defined as the set of vector that satisfies the following total angular
momentum commutation relations:

J2 |j,mj〉 = ~2j (j + 1) |j,mj〉 (D.4.17)
Jz |j,mj〉 = ~mj |j,mj〉 . (D.4.18)
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After the insertion of the unity operator associated with the uncoupled basis (closure relation):

j1∑
m1=−j1

j2∑
m2=−j2

|j1,m1, j2,m2〉 〈j1,m1, j2,m2| = 1, (D.4.19)

the coupled vector can be written as:

|j,mj〉 =

j1∑
m1=−j1

j2∑
m2=−j2

C (j1, j2, j;m1,m2,mj) |j1,m1, j2,m2〉 , (D.4.20)

where C (j1, j2, j;m1,m2,mj) = 〈j1,m1, j2,m2| j,mj〉 are the Clebsch-Gordon coefficients which
correspond to the expansion of the coupled angular momenta states in the basis of the uncoupled
ones, and are constructed with the the account for the coupled states to be orthonormalized:

〈j′,mj′ | j,mj〉 = δj,j′δmj ,mj′ , (D.4.21)

An exact expression of these coefficients was derived by Wigner in 1931 [168, pages 205-206]:

C (j1, j2, j;m1,m2,mj) = δmj ,m1+m2

√
(2j + 1)

(j + j1 − j2)! (j − j1 + j2)! (j1 + j2 − j)! (j +mj)! (j −mj)!

(j + j1 + j2 + 1)! (j1 −m1)! (j1 +m1)! (j2 −m2)! (j2 +m2)!

×
∑
ν

(−1)
ν+j2+m2

ν!

(j2 + j +m1 − ν)! (j1 −m1 + ν)!

(j − j1 + j2 − ν)! (j +mj − ν)! (ν + j1 − j2 −mj)!
,

(D.4.22)

and later on by Racah in 1942 [169, eq.(15-16)], here the sum over ν runs over all integer values
such that none of the factorials have negative arguments. After a lengthy derivation based on the
angular momentum algebra, one arrives to a conclusion that theses coefficients are non-zero only in
the case of:

mj = m1 +m2 (D.4.23)
|j1 − j2| ≤ j ≤ j1 + j2. (D.4.24)

The first condition, seen also in the Kronecker delta of eq.(D.4.22), indicates that the two sums over
magnetic numbers in eq.(D.4.20) reduce to one sum (over one of the two quantum numbers). As a
result, we write the total angular momentum state of eq.(D.4.20) as:

|j,mj〉 =

j2∑
m2=−j2

C (j1, j2, j;mj −m2,m2,mj) |j1,mj −m2, j2,m2〉 . (D.4.25)

For a full derivation of the Clebsch-Gordan coefficients, the reader may consult [56, chapter III],
[170, section 2.3] and [171, Complement BX].

D.4.1.1 Spin-orbit coupling

In the following we will restrict ourselves to the case where the first angular momentum is the orbital
one, while the second is the spin one:

J1 = L (D.4.26)
J2 = S, (D.4.27)
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j
m2 + 1

2 − 1
2

`+ 1
2 +

√
`+mj+

1
2

2`+1 +

√
`−mj+ 1

2

2`+1

`− 1
2 −

√
`−mj+ 1

2

2`+1 +

√
`+mj+

1
2

2`+1

Table D.1: The four possible Clebsch-Gordan coefficients for J = L⊗ 1 + 1⊗ S.

and the total angular momentum is thus the one that combines both angular momenta:

J = L⊗ 1 + 1⊗ S. (D.4.28)

These angular momenta have the following quantum numbers with their associated magnetic num-
bers:

j1 = ` m1 = m` = −`, . . . ,+` Orbit (D.4.29)

j2 = s =
1

2
m2 = ms = ±1

2
Spin (D.4.30)

which gives four cases for the total angular momentum quantum number of eqs.(D.4.23 and D.4.24):

j = `±′ 1

2
(D.4.31)

mj = m` ±
1

2
, (D.4.32)

where the primed ±′ sign is set to distinguish between both quantum numbers once plugged into
one expression. In this case, the Clebsch-Gordan coefficients of eq.(D.4.22) reduce to:

C

(
`,

1

2
, `±′ 1

2
;M ∓ 1

2
,±1

2
,M

)
= ∓

√
(2`±′ 1 + 1)

(
`±′ 12 +M

)
!
(
`±′ 12 −M

)
!(

2`±′ 12 + 3
2

) (
2`±′ 12 + 1

2

) (
`−M ± 1

2

)
!
(
`+M ∓ 1

2

)
!

×
∑
ν

(−1)
ν

ν!

(
`±′ 12 +M ∓ 1

2 − ν + 1
2

)
!
(
`−M ± 1

2 + ν
)
!(

1
2 ±′

1
2 − ν

)
!
(
`±′ 12 +M − ν

)
!
(
ν + `− 1

2 −M
)
!
,

(D.4.33)

giving the four possible coefficients shown in table D.1, and the total angular momentum state
becomes:

|j,mj〉 =

1
2∑

m2=− 1
2

C

(
`,

1

2
, `±′ 1

2
;mj −m2,m2,mj

) ∣∣∣∣`,mj −m2,
1

2
,m2

〉
. (D.4.34)

D.4.2 Spherical spinors
For the two possible j’s , we have the two following spin-orbit coupling states:∣∣∣∣`+

1

2
,mj

〉
= +

√
`−mj + 1

2

2`+ 1

∣∣∣∣`,mj +
1

2
,

1

2
,−1

2

〉
+

√
`+mj + 1

2

2`+ 1

∣∣∣∣`,mj −
1

2
,

1

2
,+

1

2

〉
(D.4.35)

∣∣∣∣`− 1

2
,mj

〉
= +

√
`+mj + 1

2

2`+ 1

∣∣∣∣`,mj +
1

2
,

1

2
,−1

2

〉
−

√
`−mj + 1

2

2`+ 1

∣∣∣∣`,mj −
1

2
,

1

2
,+

1

2

〉
, (D.4.36)



APPENDIX D. IDENTITIES 197

which after projection on the spherical angles give the following spatial (continuous) eigenfunctions:

〈θ, ϕ
∣∣∣∣`+

1

2
,mj

〉
=

√
`−mj + 1

2

2`+ 1
〈θ, ϕ

∣∣∣∣`,mj +
1

2
,

1

2
,−1

2

〉
+

√
`+mj + 1

2

2`+ 1
〈θ, ϕ

∣∣∣∣`,mj −
1

2
,

1

2
,+

1

2

〉
(D.4.37)

〈θ, ϕ
∣∣∣∣`− 1

2
,mj

〉
= +

√
`+mj + 1

2

2`+ 1
〈θ, ϕ

∣∣∣∣`,mj +
1

2
,

1

2
,−1

2

〉
−

√
`−mj + 1

2

2`+ 1
〈θ, ϕ

∣∣∣∣`,mj −
1

2
,

1

2
,+

1

2

〉
.

(D.4.38)

These eigenfunctions can be written as (see Johnson [172, eq.(1.115)] and Rose [56, page 152]):

Ω`+ 1
2 ,mj

(θ, ϕ) =

+

√
`+mj+

1
2

2`+1 Y`,mj− 1
2√

`−mj+ 1
2

2`+1 Y`,mj+ 1
2

 ; Ω`− 1
2 ,mj

(θ, ϕ) =

−√ `−mj+ 1
2

2`+1 Y`,mj− 1
2√

`+mj+
1
2

2`+1 Y`,mj+ 1
2

 , (D.4.39)

and are known as the spherical spinors (two component spherical harmonics), and are the coordinate-
space representation of the total angular momentum state:

Ωj,mj (θ, ϕ) ≡ 〈θ, ϕ |j,mj〉 , (D.4.40)

that couple spin and orbital angular momenta. In addition, by introducing a quantum number (we
shall call) κ, that is defined as:

κ =

{
j + 1

2 = ` for j = `− 1
2

−j − 1
2 = − (`+ 1) for j = `+ 1

2

, (D.4.41)

our two spherical spinors can be written in a compact one function, as [173, eq.(2.1.7)]:

Ωκ,mj (x̂) =

sgn (−κ)

√
κ+ 1

2−mj
2κ+1 Y`,mj− 1

2
(x̂)√

κ+ 1
2+mj

2κ+1 Y`,mj+ 1
2

(x̂)

 . (D.4.42)

D.4.3 Orthonormalization
The completeness relation associated with the spherical-angles states (continuous variable) is given
by: ˆ

sin θdθdϕ |θ, ϕ〉 〈θ, ϕ| = 11. (D.4.43)

The Clebsh-Gordan coefficients are constructed with the account of the orthonormalization of the
coupled states as seen in eq.(D.4.21). After the insertion of the previous relation in the orthonor-
malization condition, one obtains:

ˆ
sin θdθdϕ 〈j′,mj′ | θ, ϕ〉 〈θ, ϕ | j,mj〉 = δj,j′δmj ,mj′ . (D.4.44)

The reader should notice that these scalar products are by definition, the spherical spinors of
eq.(D.4.40), which directly tells us that the spherical spinors are orthonormalized, i.e. :

ˆ
sin θdθdϕΩ†j′,mj′ (θ, ϕ) Ωj,mj (θ, ϕ) = δj,j′δmj ,mj′ . (D.4.45)
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To make sure that this is the case, evaluate this last equation. The scalar product of two spherical
spinors, and obtain:

Iκ,κ′,mj ,m′j =

¨
sin θdθdϕΩ†κ,mj (x̂) Ωκ′,m′j (x̂) (D.4.46)

=

sgn (κ′κ)

√
κ+ 1

2 −mj

2κ+ 1

κ′ + 1
2 −mj

2κ′ + 1
+

√
κ+ 1

2 +mj

2κ+ 1

κ′ + 1
2 +mj

2κ′ + 1

 δ`,`′δmj ,m′j ,

(D.4.47)

where ` and `′ are associated with κ and κ′ respectively. The second Kronecker delta in the last
equation simply forces m′j to be equation to mj , while the second one forces `′ = `, i.e. for two cases
of κ’s : {

κ′ = κ for sgn (κ′κ) = +1

κ′ = −κ− 1 for sgn (κ′κ) = −1
. (D.4.48)

1. for κ′ = κ, the integral simplifies to 1:

Iκ,κ′,mj ,m′j =

(
κ+ 1

2 +mj

2κ+ 1
+
κ+ 1

2 +mj

2κ+ 1

)
δmj ,m′j = δmj ,m′j . (D.4.49)

2. for κ′ = −κ− 1, it simplifies to 0:

Iκ,κ′,mj ,m′j =

−
√
κ+ 1

2 −mj

2κ+ 1

κ+ 1
2 +mj

2κ+ 1
+

√
κ+ 1

2 +mj

2κ+ 1

κ+ 1
2 −mj

2κ+ 1

 δ`,`′δmj ,m′j = 0.

(D.4.50)

As a conclusion, the two cases lead to the fact that the spherical spinors are normalized:

Iκ,κ′,mj ,m′j =

¨
sin θdθdϕΩ†κ,mj (x̂) Ωκ′,m′j (x̂) (D.4.51)

= δκ,κ′δmj ,m′j . (D.4.52)

D.4.4 Parity
Using eq.(D.3.18), one can obtain the parity transformed spherical spinor:

Ωκ,mj (−x̂) = (−1)
`
Ωκ,mj (x̂) . (D.4.53)

D.4.5 Complex conjugation
The complex conjugated spherical spinor is:

Ω∗κ,mj (x̂) =

sgn (−κ)

√
κ+ 1

2−mj
2κ+1 Y ∗

`,mj− 1
2

(x̂)√
κ+ 1

2+mj
2κ+1 Y ∗

`,mj+
1
2

(x̂)

 , (D.4.54)



APPENDIX D. IDENTITIES 199

using eq.(D.3.13), the complex conjugated spinor can be written as:

Ω∗κ,mj (x̂) =

sgn (−κ)

√
κ+ 1

2−mj
2κ+1 (−1)

mj− 1
2 Y`,−mj+ 1

2
(x̂)√

κ+ 1
2+mj

2κ+1 (−1)
mj+

1
2 Y`,−mj− 1

2
(x̂)

 (D.4.55)

= (−1)
mj− 1

2 isgn (−κ)σ2Ωκ,−mj , (D.4.56)

D.4.6 σrΩκ,mj

The radial Pauli matrix is given by the scalar product of the Pauli spin vector σ = σiei with the
radial unit vector n (θ, ϕ) = x

|x| , and it is thus a function of polar and azimuthal spherical coordinate
angles:

σr = σ · er = σr (θ, ϕ) =

[
cos θ e−iϕ sin θ

eiϕ sin θ − cos θ

]
. (D.4.57)

We would first like to show that the total angular momentum operator:

J = L+ S, (D.4.58)

that is a sum of the orbital and spin angular momentum operator, commutes with the radial Pauli
matrix given in eq.(D.4.57) as mentioned in [32, section 3.2.2]:

[J , σr] = 0, (D.4.59)

component-wise, this equation is equivalent to writing:

[Ji,σ · er] =
1

r
[Li + Si,σ · x] ; i = 1, 2, 3 (D.4.60)

we then use the expressions of the spin and orbital angular momentum operators:

Si =
~
2
σi (D.4.61)

Li = −i~εijkxj∂k, (D.4.62)

where the position vector x = rn = xiei, with component xi and Cartesian basis vector ei, and the
gradient operator ∂i = ∂

∂xi
. The radial spin-matrix can be written as:

σr = σ · er =
1

r
σ · x =

1

r
σjxj . (D.4.63)

The commutator of eq.(D.3.13) becomes:

[Ji, σr] =
1

r

(
−i~εijkxjσl [∂k, xl] +

~
2

[σi, σj ]xj

)
, (D.4.64)

we then use the anticommutation relation:

[∂i, xj ] = ∂i (xj) + xj∂i − xj∂i = δij (D.4.65)
[σi, σj ] = 2iεijkσk, (D.4.66)
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to finally get the desired result [39, eq.(6.4)]:

[Ji, σr] =
1

r
(−i~εijkxjσk + i~εijkxjσk) = 0, (D.4.67)

meaning that the total angular momentum operator commutes with σr, leading to:

J2σrΩκ,mj = J · σrJΩκ,mj = σrJ
2Ωκ,mj = ~2j (j + 1)σrΩκ,mj (D.4.68)

JzσrΩκ,mj = σrJzΩκ,mj = ~mjσrΩκ,mj , (D.4.69)

which means that σrΩκ,mj is an eigenvector of J2 and Jz operators, with the eigenvalues ~2j (j + 1)
and ~mj respectively. This shows that the σrΩκ,mj vector is associated with (j,mj) quantum
numbers, which leaves us with two choices of κ (two parities) corresponding to the same total
quantum number j:

κ = ±
(
j +

1

2

)
. (D.4.70)

This leads us to the conclusion that this eigenvector can be written as a linear combination of these
two spinors:

σrΩκ,mj = αΩκ,mj + βΩ−κ,mj , (D.4.71)

where α and β are pure constants. Being guided by the torch of parity operation, the guessed ansatz
can be simplified, as done in [32, section 3.2.2], [56, section 31], [28, page 272] and [172, section
1.5.1]. Using spherical coordinate parity operation (space inversion) as done in x̂→ −x̂, manifested
in eqs.(D.3.14 and D.3.15), that transforms the radial Pauli matrix as:

σr (θ, ϕ)→ σr (π − θ, π + ϕ) = −σr (θ, ϕ) , (D.4.72)

and the parity transformed spherical spinor of eq.(D.4.53):

Ωκ,mj (−x̂) = (−1)
`
Ωκ,mj (x̂) , (D.4.73)

we can simplify our ansatz:

σrΩκ,mj (−1)
`+1

= α (−1)
`
Ωκ,mj + β (−1)

`′
Ω−κ,mj ; with

{
` =

∣∣κ+ 1
2

∣∣− 1
2

`′ =
∣∣κ− 1

2

∣∣− 1
2

(D.4.74)

which can be rewritten as:

σrΩκ,mj = α (−1)
`+`+1

Ωκ,mj + β (−1)
`′+`+1

Ω−κ,mj , (D.4.75)

using the following expression:

`′ + `+ 1 =

∣∣∣∣κ+
1

2

∣∣∣∣+

∣∣∣∣κ− 1

2

∣∣∣∣ = 2 |κ| , (D.4.76)

our expression becomes:
σrΩκ,mj = −αΩκ,mj + βΩ−κ,mj , (D.4.77)

which (cf. eq.(D.4.71)) directly indicates that α should vanish, leading to the following expression:

σrΩκ,mj = βΩ−κ,mj . (D.4.78)
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The final task is to determine the value of the β constant, this is done by evaluating both sides of
the last equation, the simplest choice would be to evaluate the expression at vanishing polar angle
θ = 0 (North pole). From eqs.(D.4.57 and D.4.42), we get:

σr (0, ϕ) =

[
1 0
0 −1

]
(D.4.79)

Ωκ,mj (0, ϕ) =

sgn (−κ)

√
κ+ 1

2−mj
2κ+1 Y`,mj− 1

2
(0, ϕ)√

κ+ 1
2+mj

2κ+1 Y`,mj+ 1
2

(0, ϕ)

 , (D.4.80)

where the spherical harmonic at the north pole becomes:

Y`,m (0, ϕ) = (−1)
m

√
(2`+ 1)

4π

(`−m)!

(`+m)!
Pm` (1) eimϕ, (D.4.81)

we still need to evaluate Pm` (1). Eq.(D.3.9) shows that the factor of
(
1− x2

)m/2 will cause the
associated Legendre polynomial to vanish at x = ±1 in the case of m 6= 0, meaning that Pm` (1) can
be written as:

Pm` (1) = δm,0P` (1) . (D.4.82)

The Legendre polynomial can be written as [174, eq.(1)]:

P` (x) =

n∑
k=0

(
n
k

)(
−n− 1
k

)(
1− x

2

)k
, (D.4.83)

showing that at x = 1, all the summation terms will vanish except the one associated with k = 0:

P` (1) =

(
n
0

)(
−n− 1

0

)
= 1, (D.4.84)

which leads to the following reduced expression for the spherical harmonic function [165, eq.(14.30.4)]:

Y`,m (0, ϕ) =

√
2`+ 1

4π
δm,0. (D.4.85)

Collecting all the findings, one reaches the conclusion that β = 1, i.e. :

σrΩκ,mj = −Ω−κ,mj . (D.4.86)

D.4.7
∑

mj
Ωκ,mj

(x̂) Ω†κ,mj
(ŷ)

The summation over outer product of spherical spinors with same quantum numbers gives [175,
eqs.(9a,b)]:∑

mj

Ωκ,mj (x̂) Ω†κ,mj (ŷ) =

{
`
4πP` (x̂ · ŷ) I2 + i

4πP
′
` (x̂ · ŷ) (x̂× ŷ) · σ κ > 0

`+1
4π P` (x̂ · ŷ) I2 − i

4πP
′
` (x̂ · ŷ) (x̂× ŷ) · σ κ < 0

, (D.4.87)

where P ′` is simply a derivative of the associated Legendre polynomial P`, and ` =
∣∣κ+ 1

2

∣∣− 1
2 is the

famous azimuthal quantum number. The last two equations can be combined into a single general
one (for both positive and negative κ values) [135, eq.(3.12)]:∑
mj

Ωκ,mj (x̂) Ω†κ,mj (ŷ) =
|κ|
4π
P|κ+ 1

2 |− 1
2

(x̂ · ŷ) I2 + sgn (κ)
i

4π
P ′|κ+ 1

2 |− 1
2

(x̂ · ŷ) (x̂× ŷ) ·σ. (D.4.88)
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D.4.8
∑

mj
Ω−κ,mj

(x̂) Ω†κ,mj
(ŷ)

For the summation over outer product of spherical spinors with opposite κ sign, we have [175,
eqs.(10a,b)]:

∑
mj

Ω−κ,mj (x̂) Ω†κ,mj (ŷ) =

{
+ 1

4πP
′
`+1 (x̂ · ŷ) x̂ · σ − 1

4πP
′
` (x̂ · ŷ) ŷ · σ κ > 0

− 1
4πP

′
`+1 (x̂ · ŷ) x̂ · σ + 1

4πP
′
` (x̂ · ŷ) ŷ · σ κ < 0

. (D.4.89)

Again, these two formulas can be combined into one [135, eq.(3.14)]:∑
mj

Ω−κ,mj (x̂) Ω†κ,mj (ŷ) =
sgn (κ)

4π

[
P ′`+1 (x̂ · ŷ) x̂ · σ − P ′` (x̂ · ŷ) ŷ · σ

]
, (D.4.90)

which can be obtained from the previous sum by applying the σ · x̂ operator which flips the sign of
κ and adds an overall minus sign once applied on a spherical spinor. (See, for instance, eq.(D.4.86)
and [135, eq.(A.8)]).



Appendix E

Matrix equations and integrals for
kinetic balances

The general eigenvalue equation associated with different considered schemes is of the following form:

Hκcα,κ = εα,κSκcα,κ, (E.0.1)

where Hκ and Sκ are the matrix representations of the Dirac Hamiltonian and the overlap matrix,
respectively. The vector cα,κ and the corresponding scalar quantity εα,κ are solutions of this nu-
merical equation: eigenvector and the associated eigenvalue, respectively. Finally, the index α is
added to differentiate between solutions of the same equation, and can thus run from 1 to n, which
represents the dimensions of the Hamiltonian matrix, i.e., the number of basis functions. In the
following sections, we are going to present the structure of the elements of this equation, as well as
there matrix-elements which are radial integrals.

E.1 Restricted and Inverse Kinetic Balances (RKB and IKB)
For restricted and inverse kinetic balances, the numerical Dirac solutions are expanded in some large
and small basis set as follows:

ϕα,κ (r) =

nLκ∑
i=1

cLα,κ,i

[
ϕLκ,i (r)

0

]
+

nSκ∑
i=1

cLα,κ,i

[
0

ϕSκ,i (r)

]
, (E.1.1)

where ϕLκ,i (r) and ϕLκ,i (r) are large and small radial basis functions, and are specified for each
scheme as the following:

1. In RKB, one sets:

ϕLκ,i (r) = πLκ,i (r) (E.1.2)

ϕSκ,i (r) =
~

2mc

[
d

dr
+
κ

r

]
πLκ,i (r) . (E.1.3)

203
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2. In IKB, one sets:

ϕLκ,i (r) =
~

2mc

[
d

dr
− κ

r

]
πSκ,i (r) (E.1.4)

ϕSκ,i (r) = πSκ,i (r) . (E.1.5)

The radial probability densities associated with a ϕα,κ solution are found to be:

1. For RKB:
ρα,κ (r) = ϕ†α,κ (r)ϕα,κ (r)

=

nκ∑
i=1

nκ∑
j=1

[ (
cLα,κ,i

)∗
cLα,κ,jπ

L
κ,iπ

L
κ,j

+
(
cSα,κ,i

)∗
cSα,κ,j

~2

4m2c2

[
d

dr
πLκ,i (r) +

κ

r
πLκ,i

] [
d

dr
πLκ,j +

κ

r
πLκ,j

] ]
.

(E.1.6)

2. For IKB:
ρα,κ (r) = ϕ†α,κ (r)ϕα,κ (r)

=

nκ∑
i=1

nκ∑
j=1

[ (
cSα,κ,i

)∗
cSα,κ,jπ

S
κ,iπ

S
κ,j

+
(
cSα,κ,i

)∗
cSα,κ,j

~2

4m2c2

[
d

dr
πSκ,i (r)− κ

r
πSκ,i

] [
d

dr
πSκ,j −

κ

r
πSκ,j

] ]
.

(E.1.7)

In order to be consistent with a crucial property of the probability density that it should integrate
to 1, the coefficients cLα,κ and cSα,κ are chosen such that this condition is fulfilled. Finally, we shall
note that the Hamiltonian, the overlap matrix (associated with each of these two schemes), and the
corresponding matrix elements, are given in the next sections.

E.1.1 RKB matrices
In the RKB scheme, the large component radial functions are first introduced, then the small
component functions are generated with respect to the kinetic balance condition:

πSκ,i (r) =
~

2mc

[
d

dr
+
κ

r

]
πLκ,i (r) ; i = 1, . . . , nLκ , (E.1.8)

meaning that the number basis functions for both components is equal nSκ = nLκ , and we shall call
it nκ. The elements of the matrix equation of eq.(E.0.1) in RKB are found to be:

Hκ =

[
mc2SLκLκ − eφLκLκ TLκLκκ

TLκLκκ − 1
2T

LκLκ
κ − e~2

4m2c2W
LκLκ
κ

]
(E.1.9)

Sκ =

[
SLκLκ 0

0 1
2mc2T

LκLκ
κ

]
, cα,κ =

[
cL

cS

]
α,κ

. (E.1.10)

The matrices Hκ and Sκ have the dimensions of (2nκ × 2nκ), and the eigenvectors have the
following structure:

cα,κ =
[
cL cS

]t
α,κ

=
[
cLα,κ,1 . . . cLα,κ,nκ cSα,κ,1 . . . cSα,κ,nκ

]t
, (E.1.11)

where the superscript t stands for transpose, to simply indicate that this is a row vector. The matrix
elements of the sub-matrices of Hκ and Sκ are given in eqs.(E.1.15-E.1.18) below.
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E.1.2 IKB matrices
As we have seen before, the inverse kinetic balance scheme is the negative-energy version of the
restricted kinetic balance, where -contrary to the latter- the small component radial functions are
first introduced, then the large ones are generated using the IKB condition:

πLκ,i (r) =
~

2mc

[
d

dr
− κ

r

]
πSκ,i (r) ; i = 1, . . . , nSκ (E.1.12)

This choice of basis functions lead to the following expressions of the Hamiltonian and the overlap
matrices:

Hκ =

[
1
2T

SκSκ
−κ − e~2

4m2c2W
SκSκ
−κ −TSκSκ−κ

−TSκSκ−κ −mc2SSκSκ − eφSκSκ

]
(E.1.13)

Sκ =

[
1

2mc2T
SκSκ
−κ 0

0 SSκSκ

]
, cα,κ =

[
cL

cS

]
α,κ

. (E.1.14)

Again, the matrix elements of the sub-matrices of Hκ and Sκ are given in eqs.(E.1.15-E.1.18) below.

E.1.3 Integrals
The matrix elements of the sub-matrices for both (RKB and IKB) schemes are given by:

[
SXκXκ

]
ij

=

ˆ ∞
0

πXκi πXκj dr (E.1.15)

[
φXκXκ

]
ij

=

ˆ ∞
0

πXκi φ (r)πXκj dr (E.1.16)[
TXκXκκ′

]
ij

=
−~2

2m

ˆ ∞
0

πXκi

[
d2

dr2
πXκj − κ′(1 + κ′)

r2
πXκj

]
dr (E.1.17)[

WXκXκ
κ′

]
ij

=

ˆ ∞
0

[
d

dr
πXκi +

κ′

r
πXκi

]
φ (r)

[
d

dr
πXκj +

κ′

r
πXκj

]
dr. (E.1.18)

To eliminate any possible suspicions that the reader might have, we note that κ′, which appears
in the last two integrals, does not indicate that we have two different κ’s for the same problem.
This additional κ was introduced for simplicity purposes, to be able to write a general form of the
integrals for both schemes. Making this decision has facilitated the linking between the two schemes
by the charge conjugation symmetry.
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E.2 Dual Kinetic Balance (DKB)
The dual kinetic balance scheme “combines” the two previous schemes, and expands the radial Dirac
solutions in the following basis:

ϕα,κ (r) =

n[+]
κ∑
i=1

c
[+]
α,κ,iϕ

[+]
κ,i (r) +

n[−]
κ∑
i=1

c
[−]
α,κ,iϕ

[−]
κ,i (r) ; (E.2.1)

ϕ
[+]
κ,i (r) =

[
π
[+]
κ,i (r)

i~
2mc

[
d
dr + κ

r

]
π
[+]
κ,i (r)

]
(E.2.2)

ϕ
[−]
κ,i (r) =

[
~

2mc

[
d
dr −

κ
r

]
π
[−]
κ,i (r)

iπ
[−]
κ,i (r)

]
. (E.2.3)

The use of these basis functions will lead to the following matrices of Hκ and Sκ which enters in the
eigenvalue equation of eq.(E.0.1):

Hκ =

[
mec

2S++ + 3
2T

++ − eφ++ − e~2

4m2
ec

2W
++ ~

2mec
[−eA+− +B+−]

~
2mec

[−eA−+ −B−+] −mec
2S−− − 3

2T
−− − eφ−− − e~2

4m2
ec

2W
−−

]
(E.2.4)

Sκ =

[
S++ + 1

2mec2
T++ 0

0 SSS + 1
2mec2

T−−

]
, cα,κ =

[
c[+]

c[−]

]
α,κ

. (E.2.5)

The matrix elements of the sub-matrices are given by the following radial integrals:

S±±ij =

ˆ ∞
0

π±κ,iπ
±
κ,jdr (E.2.6)

φ±±ij =

ˆ ∞
0

π±κ,iφ (r)π±κ,jdr (E.2.7)

T±±ij =
−~2

2me

ˆ ∞
0

π±κ,i

[
d2

dr2
π±κ,j ∓

κ (1± κ)

r2
π±κ,j

]
dr (E.2.8)

W±±ij =

ˆ ∞
0

[
d

dr
π±κ,i ±

κ

r
π±κ,i

]
φ (r)

[
d

dr
π±κ,j ±

κ

r
π±κ,j

]
dr (E.2.9)

A±∓ij =

ˆ ∞
0

π±κ,iφ (r)

[
d

dr
π∓κ,j ∓

κ

r
π∓κ,j

]
dr +

ˆ ∞
0

[
d

dr
π±κ,i ±

κ

r
π±κ,i

]
φ (r)π∓κ,jdr (E.2.10)

B±∓ij =
~2

2m

ˆ ∞
0

[
d

dr
π±κ,i ±

κ

r
π±κ,i

] [
d2

dr2
π∓κ,j ±

κ′ (1∓ κ′)
r2

π∓κ,j

]
dr. (E.2.11)
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Finally, for some solution α of the DKB problem, the radial probability density is found to be:

ρκ,α (r) =

n[+]
κ∑
i=1

n[+]
κ∑
j=1

(
c
[+]
α,κ,i

)∗
c
[+]
α,κ,j

{
πLκ,iπ

L
κ,j +

~2

4m2c2

[
d

dr
πLκ,i +

κ

r
πLκ,i

] [
d

dr
πLκ,j +

κ

r
πLκ,j

]}

+

n[−]
κ∑
i=1

n[−]
κ∑
j=1

(
c
[−]
α,κ,i

)∗
c
[−]
α,κ,j

{
πSκ,iπ

S
κ,j +

~2

4m2c2

[
d

dr
πSκ,i −

κ

r
πSκ,i

] [
d

dr
πSκ,j −

κ

r
πSκ,j

]}

+
~

2mc

n[+]
κ∑
i=1

n[−]
κ∑
j=1

(
c
[+]
α,κ,i

)∗
c
[−]
α,κ,j

{
πLκκ,i

[
d

dr
πSκ,j −

κ

r
πSκ,j

]
+

[
d

dr
πLκ,i +

κ

r
πLκ,i

]
πSκ,j

}

+
~

2mc

n[+]
κ∑
i=1

n[−]
κ∑
j=1

(
c
[−]
α,κ,i

)∗
c
[+]
α,κ,j

{[
d

dr
πSκ,i −

κ

r
πSκ,i

]
πLκ,j + πSκκ,i

[
d

dr
πLκ,j +

κ

r
πLκ,j

]}
.

(E.2.12)
where the vectors cα,κ associated with the α-solution are chosen such than this density should
integrate to one, i.e.

´∞
0
drρκ,α = 1 for all α = 1, . . . , n

[+]
κ + n

[−]
κ .

E.3 Exponents for Gaussian function
In this section we shall present the sets of exponents which we have used in our numerical calculations.
These exponents were discussed in the work of Almoukhalalati et al. [24], recently published online
[176], and are used in the DIRAC program [136]. A few points to note about these exponents:

1. They are associated with the following large component radial Gaussian-type functions:

πLκ,i = r|κ+
1
2 |+ 1

2 e−ζκ,ir
2

, (E.3.1)

(see section 2.9.2) and are optimized within the machinery of restricted kinetic balance (see
section 2.10.1), such that they lead to the lowest possible numerical energy value for some
two-electron atoms, in the presence of a Gaussian nuclear charge distribution.

2. Although they were optimized for two-electron noble gases (last column of the periodic table),
we have tested them for one-electron systems (hydrogen-like atoms), and they gave a very
good agreement with the exact hydrogen-like atom solutions, as seen in section 2.10.2.

3. They were optimized with respect to the quantum number `, and not κ, and this means that
basis functions with same `, have the same set of exponents:

(a) For κ = −1 (s 1
2
-problem), one has to use the s-type functions given in table E.3.

(b) For κ = +1,−2 (p 1
2
- and p 3

2
-problems), one must use the p-type functions exponents,

given in table E.4.

(c) For κ = +2,−3 (d 3
2
- and d 5

2
-problems), one must use the d-type functions exponents,

given in table E.5, and so on.

This choice of exponents is presented in table E.1, where sets whose boxes have same dot color,
have the same set of exponents. ζκ is the set of exponents associated with the κ-type functions.



APPENDIX E. MATRIX EQUATIONS AND INTEGRALS FOR KINETIC BALANCES 208

state κ ` j ζκ

s 1
2

−1 0 1
2 •

p 1
2

+1 1 1
2 •

p 3
2

−2 1 3
2 •

d 3
2

+2 2 3
2 •

d 5
2

−3 2 5
2 •

Table E.1: `-basis exponents
Note: Same color dots indicates same exponents lists.

Another choice would be to use the j- instead of `-basis, where the exponents are optimized
for the same total angular-momentum number j basis functions, as seen in figure E.2. Finally, the
reader should guess that the best would be to lift any restriction on these sets of exponents, and
optimized every set independently, and this corresponds to κ-basis. These different choices of bases
where discussed and carefully analyzed and compared by Dyall and Fægri in [177].

state κ ` j ζκ

s 1
2

−1 0 1
2 •

p 1
2

+1 1 1
2 •

p 3
2

−2 1 3
2 •

d 3
2

+2 2 3
2 •

d 5
2

−3 2 5
2 •

Table E.2: j-basis exponents
Note: Same color dots indicates same exponents lists.

For general discussions on the Gaussian basis sets, the reader may consult: Helgaker et al. [178,
chapter 8] and Dyall and Fægri in [179, section 11.9] and [177].

E.3.1 Even-tempered Gaussians
In addition, the sets of exponents we have just presented, we are going to use the even-tempering
scheme to generate additional Gaussian exponents. This scheme was introduced by Feller and Klaus
in [180] (See [181] and [178, Section 8.2.3]) to generate Gaussian exponents for non-relativistic
calculations, where for each ` (a good quantum number in the radial Schrödinger equation) one
specifies two parameters, ζ1,` (the first exponent) and β` (the scaling constant) to generate the next
exponents, with respect to the following formula:

ζ`,i = ζ`,1β
i−1
` , with i = 1, 2, . . . . (E.3.2)

Instead of optimized and one optimizes the two parameters ζ`,1 and β` instead of the whole set
of exponents, which enormously reduces the computational cost. Helgaker et al. [178, Figure 8.4]
pointed out that the fully optimized set of exponents, which minimizes the energy, followed (very
closely) the prediction of the last formula. This is seen in the cited figure, where the authors have
plotted log (ζ`,i), and found that they almost line up.

The largest basis set we have in our hands is the 7z. In the vacuum polarization density cal-
culation, we needed to introduce very localized Gaussians (higher exponents), following the even-
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7z 6z 5z 4z 3z 2z
5.8413458E+07 5.6910312E+07 5.4043845E+07 4.8993564E+07 3.3526742E+07 3.4484684E+06
1.5531813E+07 1.4713079E+07 1.3275931E+07 1.1067847E+07 5.9306744E+06 3.6923025E+05
5.3033082E+06 4.7693949E+06 4.0265471E+06 3.0808231E+06 1.3524801E+06 6.1605336E+04
2.0092707E+06 1.6787224E+06 1.3234208E+06 9.3885611E+05 3.5289156E+05 1.3185882E+04
8.3035089E+05 6.3067462E+05 4.6528771E+05 3.0895847E+05 1.0250448E+05 3.3404023E+03
3.6124592E+05 2.4732853E+05 1.7202273E+05 1.0803130E+05 3.2447091E+04 9.3911904E+02
1.6395640E+05 1.0086548E+05 6.6577154E+04 3.9869685E+04 1.1044445E+04
7.6632011E+04 4.2543096E+04 2.6826170E+04 1.5428093E+04 3.9952910E+03
3.6732324E+04 1.8514164E+04 1.1213551E+04 6.2270005E+03 1.5167049E+03
1.7978788E+04 8.2895199E+03 4.8439940E+03 2.6065438E+03 5.8681930E+02
8.9693806E+03 3.8086902E+03 2.1532081E+03 1.1219542E+03
4.5521983E+03 1.7894327E+03 9.7737077E+02 4.8350360E+02
2.3464240E+03 8.5356835E+02 4.4132872E+02
1.2249044E+03 4.0285078E+02
6.4315186E+02
3.3118848E+02

Table E.3: Radon s-type Gaussian functions (` = 0) exponents.

7z 6z 5z 4z 3z 2z
3.3436172E+05 1.6092405E+05 7.7792547E+04 3.5857677E+04 1.5093991E+04 5.3548941E+03
7.3358674E+04 3.7874384E+04 1.8377697E+04 8.1101373E+03 3.0468887E+03
2.5301044E+04 1.2582090E+04 5.6451169E+03 2.1888393E+03
9.8395322E+03 4.4359439E+03 1.7585052E+03
3.7497293E+03 1.5092686E+03
1.3518228E+03

Table E.4: Radon p-type Gaussian functions (` = 1) exponents.

7z 6z 5z 4z 3z 2z
1.1320821E+05 7.0005907E+04 3.9272318E+04 1.9426551E+04 7.9563465E+03
3.8026495E+04 2.2122068E+04 1.1213149E+04 4.6751886E+03
1.5750652E+04 8.0351979E+03 3.3892042E+03
6.3759559E+03 2.7176536E+03
2.3124403E+03

Table E.5: Radon d-type Gaussian functions (` = 2) exponents.
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tempering scheme, to question our ability to describe this density. The last formula tells us that
if we have a basis set containing n exponents (ordered by increasing order), the additional tight
exponent ζn+1 is obtained, by recurrence, from the last two exponents by:

ζ`,n+1 =
ζ2`,n
ζ`,n−1

. (E.3.3)

Taking for example the 7z s-basis which contains 16-exponents, the additional exponent will be:

ζ0,17 =
ζ20,16
ζ0,15

= 2.1968665E + 08. (E.3.4)



Appendix F

Complex integrations

F.1 Cauchy’s integral theorem
Cauchy’s integral theorem states that if f (z) is an analytic function in a simply connected region of
the complex plane, then the closed integral along any closed contour γ, within that region, vanishes:˛

γ

f (z) dz = 0. (F.1.1)

A region is said to be simply connected if any closed loops within it, can be shrunk and eventually
form a point.

Proof
Conventionally, this theorem is proved as follows: A complex function f (z) can be written as:

f (z) = u (z) + iv (z) , (F.1.2)

where u (z) and v (z) its real and imaginary components. In addition, an infinitesimal displacement
in the complex plane, can also be decomposed into real and complex components:

dz = dx+ idy. (F.1.3)

After substituting these formulas in the contour integral of eq.(F.1.1), we get:˛
γ

f (z) dz =

˛
γ

(udx− vdy) + i

˛
γ

(udy + vdx) . (F.1.4)

At this point, we are left with two real integrals. Using Stokes’ theorem, a closed line integral of
some vector field F along some curve γ, can be written as an integral of the associated curl field
∇× F , along a surface σ that is bounded by that closed curve γ:˛

γ

F · dx =

¨
σ

(∇× F ) · dσ. (F.1.5)

This last equation will allow us to write the previous equation as:˛
γ

f (z) dz =

¨
σ

(
−∂v
∂x
− ∂u

∂y

)
dxdy + i

¨
σ

(
∂u

∂x
− ∂v

∂y

)
dxdy. (F.1.6)

211
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Since f (z) is assumed to be analytic, then u and v must satisfy the Cauchy-Riemann equations:

∂u

∂x
= +

∂v

∂y

∂u

∂y
= −∂v

∂x
,

(F.1.7)

and the last contour integral must thus vanish:˛
γ

f (z) dz = 0. (F.1.8)

F.2 Cauchy’s integral formula
The Cauchy’s integral formula states that if f (z) satisfies the same requirements satisfied in the
previous section, then the following integral enclosing the pole z = a can be written as:

f (a) =
1

2πi

˛
γ

dz
f (z)

z − a
. (F.2.1)

The proof of this theorem can be found in all elementary complex analysis textbooks, we cite [182,
section 3.8] and [183, section 54].

F.3 Cauchy’s differential formula
Cauchy’s integral formula concerns closed integrals that surrounds simple poles. This formalism can
be extended to any higher-order poles. Let, for instance f (z) be an analytic function in the region
enclosed by some closed contour γ, then one can write:

f (n−1) (a) =
(n− 1)!

2πi

˛
dz

f (z)

(z − a)
n . (F.3.1)

The proof of this theorem can be found in [183, section 55].

F.4 Jordan’s lemma
In our derivations we are going to use an important result provided by Jordan’s lemma. This lemma
tells us that if we have a function f (z), which satisfies the following condition:

lim
z→∞

sup
z∈γ+(r)

|f (z)| = 0, for = [z] > 0, (F.4.1)

the following integral along the upper-half plane semi-circle contour γ+ (r) of radius r:

lim
r→+∞

ˆ
γ+(r)

dz f (z) eia+z = 0, (F.4.2)

vanishes, for a+ a positive real constant. The corresponding contour is presented in figure F.4.1a.
Similarly, if the following condition:

lim
z→∞

sup
z∈γ−(r)

|f (z)| = 0, for = [z] < 0, (F.4.3)
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holds, then the following integral along the lower semi-circle contour of radius r:

lim
r→+∞

ˆ
γ−(r)

dz f (z) eia−z = 0, (F.4.4)

vanishes, for a negative real constant a−. This contour, γ− (r) is presented in figure F.4.1b.

γ+(r)

r

Re(z)

Im(z)

(a) Contour for positive real a+

γ-(r)

r
Re(z)

Im(z)

(b) Contour for negative real a−

Figure F.4.1: Contours for Jordna’s lemma.

In the following sections we are going to prove this lemma for both signs of the exponent factor
a±, and reach conclusions which will help us evaluate Fourier transform integrals. This section is
inspired by [183, section 88], [182, Chapter 5] and [166, section 11.8].

F.4.1 Upper half-plane
Let r0 > 0 and r ≥ r0, and γ+ (r) be the semicircle contour of radius r, cantered at the origin, that
scans the region of the θ = [0, π] in a counterclockwise direction, as seen in figure F.4.2. Supposing
that f (z) is analytic in the upper half plane outside the semi-circle of radius |z| = r0, and that this
function vanishes for large upper plane z points, i.e. :

lim
z→∞

sup
z∈γ+(r)

|f (z)| = 0, for = [z] > 0, (F.4.5)

Figure F.4.2: Integration contours

where supz∈γ+(r) |f (z)| represent the supremum
of the |f (z)| function for z being at the upper
semicircle γ+ (r). In the large radius limit, the
integral along the upper semicircle contour γ+,
vanishes:

lim
r→∞

ˆ
γ+(r)

f (z) eia+zdz = 0, (F.4.6)

for positive real constant a+.

Proof
For the upper plane, we would like to evaluate:

lim
r→∞

ˆ
γ+

f (z) eia+zdz. (F.4.7)
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Notice that we can take the absolute value of
the integral [184, page 104]:∣∣∣∣ˆ

γ+

f (z) eia+zdz

∣∣∣∣ =

∣∣∣∣ˆ π

0

f
(
reiθ

)
eia+re

iθ

reiθidθ

∣∣∣∣ (F.4.8)

≤ r
ˆ π

0

∣∣f (reiθ)∣∣ e−a+r sin θdθ, (F.4.9)

this last quantity is smaller or equal to the supremum of f (z), for z on the γ+ contour:∣∣∣∣ˆ
γ+

f (z) eia+zdz

∣∣∣∣ ≤ r sup
z∈γ+

|f (z)|
ˆ π

0

e−a+r sin θdθ (F.4.10)

= 2r sup
z∈γ+

|f (z)|
ˆ π

2

0

e−a+r sin θdθ, (F.4.11)

to simplify our expression, we would like to replace the exponential integrand by a simpler one (that
can be solved analytically) which has higher value on the interval θ ∈

[
0, π2

]
. One option is to replace

sin (θ) by 2θ
π , since as seen in figure F.4.3, we have:

sin (θ) ≥ 2θ

π
, for 0 ≤ θ ≤ π

2
, (F.4.12)

and continue to write: ∣∣∣∣ˆ
γ+

f (z) eia+zdz

∣∣∣∣ ≤ 2r sup
z∈γ+

|f (z)|
ˆ π

2

0

e−
a+r2

π θdθ (F.4.13)

=
π

a+

[
1− e−a+r

]
sup
z∈γ+

|f (z)| (F.4.14)

<
π

a+
sup
z∈γ+

|f (z)| . (F.4.15)

sin(θ)

2θ

π

π

2

π

θ

-1

-0.5

0.5

1

Figure F.4.3: A simple plot.

We clearly see that if f (z) vanishes for large
z with = [z] > 0 (upper half-plane), then the
main integral will vanish:

lim
r→∞

ˆ
γ+

f (z) eia+zdz = 0. (F.4.16)

F.4.2 Lower half-plane
For lower half-plane, we would expect the fol-
lowing limit of integral to vanish:

lim
r→∞

ˆ
γ−(r)

f (z) eia−zdz = 0, (F.4.17)

in the case where f (z) is an analytic function in the lower half-plane for |z| = r larger of some
radius r0 (outside the semicircle), and a− is some negative real constant. The contour γ− is the
lower half-plane semicircle, presented in figure F.4.2 in blue.
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Proof
Following the previous derivation, we write:∣∣∣∣ˆ

γ−
f (z) eia−zdz

∣∣∣∣ ≤ r ˆ 2π

π

∣∣f (reiθ)∣∣ e−a−r sin θdθ (F.4.18)

≤ r sup
z∈γ−

|f (z)|
ˆ 2π

π

e−a−r sin θdθ, (F.4.19)

where supz∈γ− |f (z)| is the supremum of the |f (z)| for z being on γ−. Notice that for the lower
half-plane, sin θ is negative, meaning that the overall exponential sign is negative. The last inequality
can be written as: ∣∣∣∣ˆ

γ−
f (z) eia−zdz

∣∣∣∣ ≤ 2r sup
z∈γ−

|f (z)|
ˆ π

2

0

e+a−r sin θdθ, (F.4.20)

we then use the condition of eq.(F.4.12), to write:∣∣∣∣ˆ
γ−
f (z) eia−zdz

∣∣∣∣ ≤ π

a−
sup
z∈γ−

|f (z)|
ˆ a−r

0

eudu (F.4.21)

=
π

a−
[ea−r − 1] sup

z∈γ−
|f (z)| (F.4.22)

< − π

a−
sup
z∈γ−

|f (z)| , (F.4.23)

which clearly vanishes in the limit r →∞, provided that:

lim
z→∞

sup
z∈γ−(r)

|f (z)| = 0, with = [z] < 0. (F.4.24)

F.5 Conclusion
• For positive real constant a+, we had:

lim
r→∞

ˆ
γ+(r)

f (z) eia+zdz = 0, (F.5.1)

provided that:
lim
z→∞

sup
z∈γ+(r)

|f (z)| = 0, for = [z] > 0, (F.5.2)

This result means that if we would like to evaluate the integral along the real axis, we can
write: ˆ +∞

−∞
f (x) eia+xdx = lim

r→∞

˛ +

(r)

f (z) eia+zdz, (F.5.3)

where
¸ +
(r)

is the upper half-plane closed contour integral that combines γ+ (r) and the integral
along the real axis presented by the black contour γ (r) of figure F.4.2.

• For negative real constant a−, we had:

lim
r→∞

ˆ
γ−(r)

f (z) eia−zdz = 0, (F.5.4)



APPENDIX F. COMPLEX INTEGRATIONS 216

provided that:
lim
z→∞

sup
z∈γ−(r)

|f (z)| = 0, for = [z] < 0. (F.5.5)

This result means that if we would like to evaluate the integral along the real axis, we can
write: ˆ +∞

−∞
f (x) eia−xdx = lim

r→∞

˛ −
(r)

f (z) eia−zdz, (F.5.6)

where
¸ −
(r)

is the lower half-plane closed contour integral that combines γ− (r) and the integral
along the real axis presented by the γ (r) contour.

• The advantage of expressing these integrals in terms of closed contour integrations, is that it
allows the use of the Cauchy integral formula, which can in many cases reduce the computation
effort, or provide solution for integrals that seemed not to be resolvable.

F.6 α (Zα)n: n-potential interactions complex integral
In the derivation of the vacuum polarization expansion, one encounters an integral of the following
form:

I
(
Ei1 , . . . , Ein+1

)
=

ˆ
CF

dz

(Ei1 − z) . . .
(
Ein+1 − z

) , (F.6.1)

associated with the n-potential interaction with the external potential, or what is known as (αZ)
n

expansion. The integrand denominators come from the eigen-decomponsition of the Green’s func-
tions (see eq.(3.9.38)), Ei. The CF subscript indicates that this integral is to be evaluated along the
Feynman contour: diving below negative-energy solutions, and flying above the positive-energy so-
lutions and continuum as seen in figure F.6.1a. This integral can be slightly modified by introducing
what is sometimes called “Feynman prescription”, where energy poles are shifted with respect to:

Eiα → εiα = Eiα − iδsgn (Eiα) ; 0 < δ << 1, and α = 1, . . . , n, (F.6.2)

and the contour integral can now be evaluated along the real x-axis, as seen in figure F.6.1b. At the
end of the calculation, the limit δ → 0 has to be evaluated. The integral becomes:

I
(
Ei1 , . . . , Ein+1

)
=

ˆ +∞

−∞

dx

(εi1 − x) . . .
(
εin+1

− x
) , (F.6.3)

which we seek to solve and provide a compact analytical expression of it. The general attack strategy
is going to be the following:

1. The previous integral can be written as:

I
(
Ei1 , . . . , Ein+1

)
= lim
r→∞

Iγ (r) ; (F.6.4)

with Iγ (r) =

ˆ +r

−r

dx

(εi1 − x) . . .
(
εin+1

− x
) . (F.6.5)

2. Poles are going to be enclosed by closed contours, which we shall call I◦ (r):

I◦ (r) =

˛
dz

(εi1 − x) . . .
(
εin+1

− x
) = Iγ (r) + Iγ± (r) , (F.6.6)
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(a) Contour integral of eq. F.6.1 along the Feynman path CF .

(b) Modification of the Feynman contour and poles shifting with respect to eq. (F.6.2).

Figure F.6.1: The contour is modified such that the integral can be evaluated along the real axis.
Black dots represent the bound Green’s function poles: eigenvalues of the Dirac equation in the
presence of the nuclear potential. Positive- and negative-energy poles are thus shifted below and
above the real axis, respectively, and the integral is now evaluated along the real axis.

so we can take advantage of Cauchy’s integral formula. This closed integral combines the
previous contour integral (along the real axis) with Iγ± (r) that correspond to contours along
upper- and lower-plane semi-circles (of radius r) γ± respectively. These arc integrations vanish
for large radii in most of the encountered cases.

3. Finally, our integral of eq.(F.6.3) can be written as a limit for large radius r of the contours
difference:

I
(
Ei1 , . . . , Ein+1

)
= lim
r→∞

(
I◦ (r)− Iγ± (r)

)
. (F.6.7)

In the next subsections we shall evaluate this integral associated with zero- and one-potential inter-
actions, known as α (αZ)

n=1,2 terms by hand, and write a general formula of the result for arbitrary
n.

F.6.1 Zero-potential integral: One pole
What we call the zero potential term is the one associated with n = 0, meaning that the integral of
eq.(F.6.3) reduces to:

I (Ei) =

ˆ +∞

−∞

dx

εi − x
= lim
r→∞

Iγ (r) , (F.6.8)
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where Iγr corresponds to the integral along the real axis, that goes from −r to +r:

Iγ (r) =

ˆ +r

−r

dx

εi − x
. (F.6.9)

In order to take make use of the Cauchy integral formula, the pole is besieged by a closed loop. Two
cases are to be taken into account:

negative-energy pole Ei < 0

In this case, εi lies in the upper complex half-plane, and one can write:

I◦ (r) = Iγ (r) + Iγ− (r) . (F.6.10)

The first integral (on the l.h.s.) represents the closed integral of figure F.6.2a enclosing the pole,
which can be written as a sum over the two contour integrals: The one along the real axis curve γr
that is shown in red, and the arc integral along the γ− curve shown in blue.

1. The arc integral can be evaluated as follows:

Iγ− (r) =

ˆ
γ−

dz

εi − z
= i

ˆ π

0

reiθdθ

εi − reiθ
, (F.6.11)

for very large r this integral reduces to −iπ.

2. The closed integral is then evaluated using Cauchy’s integral formula (discussed in section
F.2), and one obtains:

I◦ (r) =

˛
dz

εi − z
= −2iπ. (F.6.12)

3. Finally, we obtain:
I (Ei) = lim

r→∞

(
I◦ (r)− Iγ− (r)

)
= −iπ. (F.6.13)

positive-energy pole Ei > 0

In this case, the energy pole lies in the lower complex half-plane, and we write:

I◦ (r) = Iγ (r) + Iγ+ (r) , (F.6.14)

where the closed contour integral is shown in figure F.6.2b as the combination of the integral along
the real axis (red contour) and the integral along the semicircle that goes from polar angle θ = 2π
to π (blue one).

1. The arc integral can be evaluated as follows:

Iγ+ (r) =

ˆ
γ+

dz

εi − z
= i

ˆ π

2π

reiθdθ

εi − reiθ
, (F.6.15)

which for large radius, reduces to +iπ.

2. The closed integral is evaluated using Cauchy’s integral formula (discussed in section F.2), and
one obtains:

I◦ (r) = +2iπ. (F.6.16)
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(a) First case: Ei<0 (b) Second case: Ei>0

Figure F.6.2: The two possible pole scenarios for the zero-potential (one-pole) complex integration.

3. Finally, we obtain:
I (Ei) = lim

r→∞

(
I◦ (r)− Iγ+ (r)

)
= +iπ. (F.6.17)

Combining the findings of eqs.(F.6.13 and F.6.17) that corresponds to the two possible scenarios
(positive and negative-energy poles) we obtain the following result:

I (Ei) =

ˆ +∞

−∞

dx

εi − x
= iπsgn (Ei) . (F.6.18)

F.6.2 One-potential integral: Two poles
In the one-potential integral, two Green’s functions are involved, meaning that two denominators
will appear in eq.(F.6.3). We thus have:

I (Ei, Ej) =

ˆ +∞

−∞

dx

(εi − x) (εj − x)
= lim
r→∞

Iγ (r) , (F.6.19)

where Iγ (r) is given by:

Iγ (r) =

ˆ +r

−r

dx

(εi − x) (εj − x)
. (F.6.20)

Figure F.6.3: sgn (Ei, Ej) = (−1,−1)

Figure F.6.4: sgn (Ei, Ej) = (+1,+1)

Figure F.6.5: sgn (Ei, Ej) = (−1,+1)

Figure F.6.6: sgn (Ei, Ej) = (+1,−1)

Again, this integral is going to be written as
the following difference:

Iγ (r) = I◦ (r)− Iγ± (r) . (F.6.21)

In this case, four possible scenarios can occur
(different combinations of energies’ signs):
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First case Ei, Ej > 0

As presented in figure F.6.4, both poles corre-
spond to positive-energy levels. The closed in-
tegral is found to vanish:

I◦ (r) =
1

εj − εi

˛
dz

z − εj
+

1

εi − εj

˛
dz

z − εi
= 0.

(F.6.22)

The contour integration along the γ+ arc path
reads:

Iγ+ (r) =

ˆ π

2π

ireiθdθ

(εi − reiθ) (εj − reiθ)
. (F.6.23)

Notice that for large radius this integral van-
ishes since there are more r powers in the de-
nominator. We thus reach the conclusion that
in the case where both poles are positive, our
integral vanishes:

I (Ei, Ej) = 0. (F.6.24)

Second case Ei, Ej < 0

This case is presented in figure F.6.3, the closed
contour integration as well as the integral along
the γ+ curve vanish as in the previous case:

I (Ei, Ej) = 0. (F.6.25)

So far, we conclude that in the case where both
poles have same energy sign, the integral in
question will vanish. Next we attack the op-
posite energy sign poles.

Third case Ei > 0, Ej < 0

In this case the lower half-plane closed integral
only encloses the εj pole, as presented in figure
F.6.6, meaning that the closed integral will give
a non-vanishing contribution:

I◦ (r) =
1

εi − εj

˛
dz

z − εi
=
−2πi

εi − εj
. (F.6.26)

The arc integral will clearly vanish in the limit
of large r:

Iγ+ (r) =

ˆ π

2π

ireiθdθ

(εi − reiθ) (εj − reiθ)
, (F.6.27)
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leading to the following integral result:

I (Ei, Ej) =
2πi

εj − εi
=

2πi

− |εj | − |εi|
. (F.6.28)

Fourth case Ei < 0, Ej > 0

This case is trivial, because it is the same as the previous case, with labels i � j exchanged, the
integral is thus:

I (Ei, Ej) =
2πi

εi − εj
. (F.6.29)

Final expression
As a conclusion, we combine the four results (of the four possible scenarios), and write:

I (Ei, Ej) =

ˆ +∞

−∞

dx

(εi − x) (εj − x)
= πi

1− sgn (EiEj)

|Ei|+ |Ej |
, (F.6.30)

which vanishes if both energy poles are of the same sign.

F.6.3 n-potential integral: n+ 1 poles
At this point, the reader can start guessing that if all poles have the same sign, then the integral we
are calculating will vanish (as seen in the case of n = 1). This can be easily seen by the following
reasoning: Assuming that the poles are all positive-energy ones (laying in the lower complex half
plane), then one can choose the closed loop to be along the upper half-plane. The closed integral will
obviously vanish (no poles inside), in addition to the integral along the arc will have the following
form:

Iγ+ (r) =

ˆ π

2π

ireiθdθ

(ε1 − reiθ) . . . (εn+1 − reiθ)
, (F.6.31)

which obviously vanish for large r, for n ≥ 1. This holds similarly in the other case where all poles
negative-energy ones, and one can integrate along the lower complex plane closed contour.

The general n-potential integral includes the following integral:

I (E1, . . . , En+1) =

ˆ +∞

−∞
J (x,E1, . . . , En+1) dx; (F.6.32)

J (x,E1, . . . , En+1) =
1

(ε1 − x) . . . (εn+1 − x)
, (F.6.33)

this integrand can be written as:

J (z, E1, . . . , En+1) = (−1)
n+1 1

(z − ε1) . . . (z − εn+1)
. (F.6.34)

• In the case where all poles are distinct Ei 6= Ej , ∀i, j, it can be shown that the integrand
can be written as:

1

(z − ε1) . . . (z − εn+1)
=

n+1∑
i=1

1

Πj 6=i (εi − εj)
1

(z − εi)
, (F.6.35)

and the integral is evaluated using Cauchy’s integral theorem.
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• In general, poles may coincide and things become a bit more complicated.

We then reorder poles such that the first m are positive, stored in g (z), and f (z) collects the
remaining (n+ 1−m) negative-poles:

J (z, E1, . . . , En+1) = (−1)
n+1

g (z) f (z) (F.6.36)

g (z) =
1

(z − ε1) . . . (z − εm)
m positive poles (F.6.37)

f (z) =
1

(z − εm+1) . . . (z − εn+1)
(n+ 1−m) negative poles (F.6.38)

We then choose to integrate along the lower semi-circle, thus only g (z) will contribute to the Cauchy’s
theorem. Coinciding poles of g (z) are collected together, we write it as:

g (z) =
1

(z − ε1)
α1 . . . (z − εk)

αk , (F.6.39)

saying that we have k distinct (z − εi) poles, each is associated with a multiplicity of αi. k can
only be smaller or equal to m (equal, in the case where all poles are distinct), and the sum of all
exponents should be equal to m:

k∑
i=1

αi = m (F.6.40)

and using partial fraction decomposition, g (z) can be written as:

g (z) =

k∑
i=1

αi∑
j=1

Ai,j

(z − εi)j
, (F.6.41)

which can be seen as a Laurent series. The task now is to determine the coefficients Ai,j . One way
to do so, is by introducing a function ga (z), given by:

ga (z) = (z − εa)
αa g (z) , (F.6.42)

which expands as:

ga (z) =
(z − εa)

αa A1,1

(z − ε1)
1 + . . .+

(z − εa)
αa A1,α1

(z − ε1)
α1

+ . . .

+ (z − εa)
αa−1Aa,1 + . . .+ (z − εa)

2
Aa,αa−2 + (z − εa)Aa,αa−1 +Aa,αa

+ . . .

+ . . .+
(z − εa)

αa Ak,αk
(z − εk)

αk .

(F.6.43)

From the third line of the last equation, one directly observes the following equations:

Aa,αa = ga |z=εa (F.6.44)

Aa,αa−1 =
d

dz
ga |z=εa (F.6.45)

Aa,αa−2 =
1

2!

d2

dz2
ga |z=εa (F.6.46)

...
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These equation lead to the final expression of the coefficients Ai,j , that is:

Ai,αi−k =
1

k!

dk

dzk
gi |z=εi , (F.6.47)

which can be rewritten as:

Ai,j =
1

(αi − j)!
dαi−j

dzαi−j
gi |z=εi . (F.6.48)

We now collect the findings, and write the closed integral as:

I◦ = (−1)
n+1

k∑
i=1

αi∑
j=1

1

(αi − j)!
dαi−j

dzαi−j
gi |z=εi

˛
f (z)

(z − εi)j
dz. (F.6.49)

Clearly, we can employ the Cauchy differential formula (see section F.3), and get:

I◦ = 2πi (−1)
n

k∑
i=1

αi∑
j=1

g
(αi−j)
i (εi) f

(j−1) (εi)

(j − 1)! (αi − j)!
. (F.6.50)

The integration along the lower semi-circle vanishes for n ≥ 1, as discussed at the beginning of this
section. Only for n = 0, we get a non-vanishing contribution, which in the limit of large radius
reduces to:

lim
r→∞

Iγ+ (r) = iπ, (F.6.51)

as seen in section F.6.1. We finally write the ultimate result of our derivation, to be:

I
(
Ei1 , . . . , Ein+1

)
=

ˆ
CF

dz

(εi1 − z) . . .
(
εin+1

− z
)

= 2πi (−1)
n

k∑
i=1

αi∑
j=1

g
(αi−j)
i (εi) f

(j−1) (εi)

(j − 1)! (αi − j)!
− iπδn,0.

(F.6.52)

We built a MATHEMATICA program that computes this integral, using the above derivation results,
and compared it with the slow numerical complex integration done by Mathematica. This code was
uploaded to [185].



Appendix G

Time-ordered products

When expanding the Ŝ-matrix in powers of interaction Hamiltonian density H (x) = jµ (x)Aµ (x),
one uses Wick’s theorem, discussed in section 3.7 to write time-ordered products of electronic and
photonic field operators in terms of normal ordered contractions. In this appendix, we present the
first few orders of time-ordered products that appear in the S-matrix expansion.

G.1 Electronic field currents
Using Wick’s theorem of section 3.7, we expand the time-ordered product of the first few products
of electron field operators. We then use the fact that the contraction of two electron operators gives
an electron propagator:

Ψµ (x1) Ψ̄ν (x2) =
〈
0
∣∣Ψµ (x1) Ψ̄ν (x2)

∣∣ 0〉 = i~SFµν (x1, x2) . (G.1.1)

This relation is discussed in section 3.9.5. A single current: Ψ̄ (x1) γµΨ (x1) is a scalar function,
and we shall write it as Ψ̄α1

(x1) γµα1β1
Ψβ1

(x1) (α and β are matrix element indices). This notation
will allow us to clearly detect the existence of traces. An example is the second-order BSQED
corrections, where we shall encounter the following traces:

γµα1β1
SFβ1α1

(x1, x1) = Tr
[
γµSF (x1, x1)

]
(G.1.2)

γνα2β2
SFβ2α1

(x2, x1) γµα1β1
SFβ1α2

(x1, x2) = Tr
[
γνSF (x2, x1) γµSF (x1, x2)

]
. (G.1.3)

G.1.1 First-order
In matrix notation, the single current is written as:

T
[
Ψ̄ (x) γµΨ (x)

]
= γµαβT

[
Ψ̄α (x) Ψβ (x)

]
, (G.1.4)

where the time-ordered term can be written (using Wick’s theorem) as:

T
[
Ψ̄α (x) Ψβ (x)

]
= : Ψ̄α (x) Ψβ (x) : +Ψ̄α (x) Ψβ (x) (G.1.5)

= : Ψ̄α (x) Ψβ (x) : −i~SFβα (x, x) , (G.1.6)

which finally leads to the following expression:

T
[
Ψ̄ (x) γµΨ (x)

]
= : Ψ̄ (x) γµΨ (x) : −i~Tr

[
γµSF (x, x)

]
. (G.1.7)

224
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G.1.2 Second-order
In the second-order scattering matrix, appears a two-current product, which can be written in terms
of matrix elements as:

T
[
Ψ̄ (x1) γµ1Ψ (x1) Ψ̄ (x2) γµ2Ψ (x2)

]
= γµ1

α1β1
γµ2

α2β2
T
[
Ψ̄α1 (x1) Ψβ1 (x1) Ψ̄α2 (x2) Ψβ2 (x2)

]
.

(G.1.8)

Using Wick’s theorem, the time-ordered product can be written as a normal ordering of all possible
contractions (zero, ones, and twos):

T
[
Ψ̄α1

(x1) Ψβ1
(x1) Ψ̄α2

(x2) Ψβ2
(x2)

]
= : Ψ̄α1

(x1) Ψβ1
(x1) Ψ̄α2

(x2) Ψβ2
(x2) :

+ : Ψ̄α1
(x1) Ψβ1

(x1) Ψ̄α2
(x2) Ψβ2

(x2) :

+ : Ψ̄α1
(x1) Ψβ1

(x1) Ψ̄α2
(x2) Ψβ2

(x2) :

+ : Ψ̄α1 (x1) Ψβ1 (x1) Ψ̄α2 (x2) Ψβ2 (x2) :

+ : Ψ̄α1 (x1) Ψβ1 (x1) Ψ̄α2 (x2) Ψβ2 (x2) :

+ : Ψ̄α1 (x1) Ψβ1 (x1) Ψ̄α2 (x2) Ψβ2 (x2) :

+ : Ψ̄α1 (x1) Ψβ1 (x1) Ψ̄α2 (x2) Ψβ2 (x2) :

+ : Ψ̄α1
(x1) Ψβ1

(x1) Ψ̄α2
(x2) Ψβ2

(x2) :

+ : Ψ̄α1
(x1) Ψβ1

(x1) Ψ̄α2
(x2) Ψβ2

(x2) :

+ : Ψ̄α1
(x1) Ψβ1

(x1) Ψ̄α2
(x2) Ψβ2

(x2) :

(G.1.9)

In the previous equation, we only included non-vanishing contractions which are of the form of

Ψ̄α (x) Ψβ (y) and Ψα (x) Ψ̄β (y). After evaluating contractions, the last expression simplifies to:

T
[
Ψ̄α1 (x1) Ψβ1 (x1) Ψ̄α2 (x2) Ψβ2 (x2)

]
= : Ψ̄α1 (x1) Ψβ1 (x1) Ψ̄α2 (x2) Ψβ2 (x2) :

+ i~SFβ1α1
(x1, x1) : Ψβ2

(x2) Ψ̄α2
(x2) :

− i~SFβ2α1
(x2, x1) : Ψβ1

(x1) Ψ̄α2
(x2) :

+ i~SFβ1α2
(x1, x2) : Ψ̄α1

(x1) Ψβ2
(x2) :

− i~SFβ2α2
(x2, x2) : Ψ̄α1

(x1) Ψβ1
(x1) :

− ~2SFβ1α1
(x1, x1)SFβ2α2

(x2, x2)

+ ~2SFβ2α1
(x2, x1)SFβ1α2

(x1, x2) .

(G.1.10)
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After the plugging of the gamma matrices, γµ1

α1β1
γµ2

α2β2
as seen in eq.(G.1.8), the time-ordered product

becomes:
T
[
Ψ̄ (x1) γµΨ (x1) Ψ̄ (x2) γνΨ (x2)

]
= : Ψ̄ (x1) γµΨ (x1) Ψ̄ (x2) γνΨ (x2) :

− i~Tr
[
γµSF (x1, x1)

]
: Ψ̄ (x2) γνΨ (x2) :

− i~SFβ2α1
(x2, x1) [γµ]α1β1

[γν ]α2β2
: Ψβ1 (x1) Ψ̄α2 (x2) :

− i~SFβ1α2
(x1, x2) [γν ]α2β2

[γµ]α1β1
: Ψβ2 (x2) Ψ̄α1 (x1) :

− i~Tr
[
γνSF (x2, x2)

]
: Ψ̄ (x1) γµΨ (x1) :

− ~2Tr
[
SF (x1, x1) γµ

]
Tr
[
SF (x2, x2) γν

]
+ ~2Tr

[
SF (x2, x1) γµSF (x1, x2) γν

]
.

(G.1.11)

G.1.3 Third-order
The time-ordered three currents term reads:

T
[
Ψ̄ (x1) γµ1Ψ (x1) Ψ̄ (x2) γµ2Ψ (x2) Ψ̄ (x3) γµ3Ψ (x3)

]
= γµ1

α1β1
γµ2

α2β2
γµ3

α3β3
T
[
Ψ̄α1

(x1) Ψβ1
(x1) Ψ̄α2

(x2) Ψβ2
(x2) Ψ̄α3

(x3) Ψβ3
(x3)

]
.

(G.1.12)

The possible contractions for the time-ordered term in the square brackets, are presented in table
G.1, where same color dots represent a single contraction between the associated terms. Using
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Wick’s theorem, one can write:

T
[
Ψ̄α1 (x1) Ψβ1 (x1) Ψ̄α2 (x2) Ψβ2 (x2) Ψ̄α3 (x3) Ψβ3 (x3)

]
= : Ψ̄α1 (x1) Ψβ1 (x1) Ψ̄α2 (x2) Ψβ2 (x2) Ψ̄α3 (x3) Ψβ3 (x3) :

− i~SFβ1α1
(x1, x1) : Ψ̄α2

(x2) Ψβ2
(x2) Ψ̄α3

(x3) Ψβ3
(x3) : −i~SFβ2α1

(x2, x1) : Ψβ1
(x1) Ψ̄α2

(x2) Ψ̄α3
(x3) Ψβ3

(x3) :

− i~SFβ3α1
(x3, x1) : Ψβ1

(x1) Ψ̄α2
(x2) Ψβ2

(x2) Ψ̄α3
(x3) : +i~SFβ1α2

(x1, x2) : Ψ̄α1
(x1) Ψβ2

(x2) Ψ̄α3
(x3) Ψβ3

(x3) :

+ i~SFβ1α3
(x1, x3) : Ψ̄α1

(x1) Ψ̄α2
(x2) Ψβ2

(x2) Ψβ3
(x3) : −i~SFβ2α2

(x2, x2) : Ψ̄α1
(x1) Ψβ1

(x1) Ψ̄α3
(x3) Ψβ3

(x3) :

− i~SFβ3α2
(x3, x2) : Ψ̄α1

(x1) Ψβ1
(x1) Ψβ2

(x2) Ψ̄α3
(x3) : +i~SFβ2α3

(x2, x3) : Ψ̄α1
(x1) Ψβ1

(x1) Ψ̄α2
(x2) Ψβ3

(x3) :

− i~SFβ3α3
(x3, x3) : Ψ̄α1

(x1) Ψβ1
(x1) Ψ̄α2

(x2) Ψβ2
(x2) :

− ~2SFβ1α1
(x1, x1)SFβ2α2

(x2, x2) : Ψ̄α3
(x3) Ψβ3

(x3) : −~2SFβ1α1
(x1, x1)SFβ3α2

(x3, x2) : Ψβ2
(x2) Ψ̄α3

(x3) :

+ ~2SFβ1α1
(x1, x1)SFβ2α3

(x2, x3) : Ψ̄α2
(x2) Ψβ3

(x3) : −~2SFβ1α1
(x1, x1)SFβ3α3

(x3, x3) : Ψ̄α2
(x2) Ψβ2

(x2) :

+ ~2SFβ2α1
(x2, x1)SFβ1α2

(x1, x2) : Ψ̄α3
(x3) Ψβ3

(x3) : −~2SFβ2α1
(x2, x1)SFβ1α3

(x1, x3) : Ψ̄α2
(x2) Ψβ3

(x3) :

+ ~2Sβ2α1
(x2, x1)Sβ3α2

(x3, x2) : Ψβ1
(x1) Ψ̄α3

(x3) : −~2SFβ2α1
(x2, x1)SFβ3α3

(x3, x3) : Ψβ1
(x1) Ψ̄α2

(x2) :

+ ~2SFβ3α1
(x3, x1)SFβ1α2

(x1, x2) : Ψβ2
(x2) Ψ̄α3

(x3) : +~2SFβ3α1
(x3, x1)SFβ1α3

(x1, x3) : Ψ̄α2
(x2) Ψβ2

(x2) :

− ~2SFβ3α1
(x3, x1)SFβ2α2

(x2, x2) : Ψβ1
(x1) Ψ̄α3

(x3) : +~2SFβ3α1
(x3, x1)SFβ2α3

(x2, x3) : Ψβ1
(x1) Ψ̄α2

(x2) :

− ~2SFβ1α2
(x1, x2)SFβ2α3

(x2, x3) : Ψ̄α1
(x1) Ψβ3

(x3) : +~2SFβ1α2
(x1, x2)SFβ3α3

(x3, x3) : Ψ̄α1
(x1) Ψβ2

(x2) :

+ ~2SFβ1α3
(x1, x3)SFβ2α2

(x2, x2) : Ψ̄α1
(x1) Ψβ3

(x3) : −~2SFβ1α3
(x1, x3)SFβ3α2

(x3, x2) : Ψ̄α1
(x1) Ψβ2

(x2) :

− ~2SFβ2α2
(x2, x2)SFβ3α3

(x3, x3) : Ψ̄α1
(x1) Ψβ1

(x1) : +~2SFβ3α2
(x3, x2)SFβ2α3

(x2, x3) : Ψ̄α1
(x1) Ψβ1

(x1) :

+ i~3SFβ1α1
(x1, x1)SFβ2α2

(x2, x2)SFβ3α3
(x3, x3)− i~3SFβ1α1

(x1, x1)SFβ3α2
(x3, x2)SFβ2α3

(x2, x3)

− i~3SFβ2α1
(x2, x1)SFβ1α2

(x1, x2)SFβ3α3
(x3, x3) + i~3SFβ2α1

(x2, x1)SFβ1α3
(x1, x3)SFβ3α2

(x3, x2)

+ i~3SFβ3α1
(x3, x1)SFβ1α2

(x1, x2)SFβ2α3
(x2, x3)− i~3SFβ3α1

(x3, x1)SFβ1α3
(x1, x3)SFβ2α2

(x2, x2) .
(G.1.13)
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Ψ̄α1
(x1) Ψβ1 (x1) Ψ̄α2

(x2) Ψβ2 (x2) Ψ̄α3
(x3) Ψβ3 (x3)

• •
• •
• •

• •
• •

• •
• •

• •
• •

• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •

• • • •
• • • •
• • • •
• • • •

• • • •
• • • •

• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •

Table G.1: All non-vanishing contractions of the three field-currents.
Note: Same color dots represent a contraction between the associated electron field operators.
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G.2 Photon field products
Using Wick’s theorem, we expand the time-ordered product of the first few products of photon
field operators. We then use the fact that the contraction of two field operators gives a photon
propagator:

Aµ (x1)Aν (x2) = 〈0 |Aµ (x1)Aν (x2)| 0〉 = i~DF
µν (x1, x2) . (G.2.1)

This relation is discussed in section 3.8.3.

G.2.1 First-order

T [Aµ (x)] = : Aµ (x) : = Aµ (x) . (G.2.2)

G.2.2 Second-order

T [Aµ (x1)Aν (x2)] = : Aµ (x1)Aν (x2) : +Aµ (x1)Aν (x2)

= : Aµ (x1)Aν (x2) : +i~DF
µν (x1, x2) .

(G.2.3)

G.2.3 Third-order

T [Aµ (x1)Aν (x2)Aσ (x3)] = : Aµ (x1)Aν (x2)Aσ (x3) : + : Aµ (x1)Aν (x2)Aσ (x3) :

: Aµ (x1)Aν (x2)Aσ (x3) : + : Aµ (x1)Aν (x2)Aσ (x3) : (G.2.4)

= : Aµ (x1)Aν (x2)Aσ (x3) : +i~DF
µν (x1, x2) : Aσ (x3) :

+ i~DF
µσ (x1, x3) : Aν (x2) : +i~DF

νσ (x2, x3) : Aµ (x1) : (G.2.5)

G.2.4 Fourth-order
T [Aµ (x1)Aν (x2)Aσ (x3)Aθ (x4)] = : T [Aµ (x1)Aν (x2)Aσ (x3)Aθ (x4)] :

+ : Aµ (x1)Aν (x2)Aσ (x3)Aθ (x4) :

+ : Aµ (x1)Aν (x2)Aσ (x3)Aθ (x4) :

+ : Aµ (x1)Aν (x2)Aσ (x3)Aθ (x4) :

+ : Aµ (x1)Aν (x2)Aσ (x3)Aθ (x4)

+ : Aµ (x1)Aν (x2)Aσ (x3)Aθ (x4)

+ : Aµ (x1)Aν (x2)Aσ (x3)Aθ (x4)

+ : Aµ (x1)Aν (x2)Aσ (x3)Aθ (x4)

+ : Aµ (x1)Aν (x2)Aσ (x3)Aθ (x4)

+ : Aµ (x1)Aν (x2)Aσ (x3)Aθ (x4)

(G.2.6)
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The final result is found to be:

T [Aµ (x1)Aν (x2)Aσ (x3)Aθ (x4)] = : T [Aµ (x1)Aν (x2)Aσ (x3)Aθ (x4)] :

+ i~DF
µν (x1, x2) : Aσ (x3)Aθ (x4) :

+ i~DF
µν (x1, x3) : Aν (x2)Aθ (x4) :

+ i~DF
µθ (x1, x4) : Aν (x2)Aσ (x3) :

+ i~DF
νσ (x2, x3) : Aµ (x1)Aθ (x4) :

+ i~DF
νθ (x2, x4) : Aµ (x1)Aσ (x3) :

+ i~DF
σθ (x3, x4) : Aµ (x1)Aν (x2) :

− ~2DF
µν (x1, x2)DF

σθ (x3, x4)

− ~2DF
µσ (x1, x3)DF

νθ (x2, x4)

− ~2DF
µθ (x1, x4)DF

νσ (x2, x3) .

(G.2.7)

G.2.5 Fifth-order
In the case of five photon field operators, the possible contractions are presented in table G.2, and
Wick’s theorem allows us to write:

T [Aµ (x1)Aν (x2)Aσ (x3)Aθ (x4)Aγ (x5)]

= : Aµ (x1)Aν (x2)Aσ (x3)Aθ (x4)Aγ (x5) :

+ i~DF
µν (x1, x2) : Aσ (x3)Aθ (x4)Aγ (x5) : +i~DF

µσ (x1, x3) : Aν (x2)Aθ (x4)Aγ (x5) :

+ i~DF
µθ (x1, x4) : Aν (x2)Aσ (x3)Aγ (x5) : +i~DF

µγ (x1, x5) : Aν (x2)Aσ (x3)Aθ (x4) :

+ i~DF
νσ (x2, x3) : Aµ (x1)Aθ (x4)Aγ (x5) : +i~DF

νθ (x2, x4) : Aµ (x1)Aσ (x3)Aγ (x5) :

+ i~DF
νγ (x2, x5) : Aµ (x1)Aσ (x3)Aθ (x4) : +i~DF

σθ (x3, x4) : Aµ (x1)Aν (x2)Aγ (x5) :

+ i~DF
σγ (x3, x5) : Aµ (x1)Aν (x2)Aθ (x4) : +i~DF

θγ (x4, x5) : Aµ (x1)Aν (x2)Aσ (x3) :

− ~2DF
µν (x1, x2)DF

σθ (x3, x4) : Aγ (x5) : −~2DF
µν (x1, x2)DF

σγ (x3, x5) : Aθ (x4) :

− ~2DF
µν (x1, x2)DF

θγ (x4, x5) : Aσ (x3) : −~2DF
µσ (x1, x3)DF

νθ (x2, x4) : Aγ (x5) :

− ~2DF
µσ (x1, x3)DF

νγ (x2, x5) : Aθ (x4) : −~2DF
µσ (x1, x3)DF

θγ (x4, x5) : Aν (x2) :

− ~2DF
µθ (x1, x4)DF

νσ (x2, x3) : Aγ (x5) : −~2DF
µθ (x1, x4)DF

νγ (x2, x5) : Aσ (x3) :

− ~2DF
µθ (x1, x4)DF

σγ (x3, x5) : Aν (x2) : −~2DF
µγ (x1, x5)DF

νσ (x2, x3) : Aθ (x4) :

− ~2DF
µγ (x1, x5)DF

νθ (x2, x4) : Aσ (x3) : −~2DF
µγ (x1, x5)DF

σθ (x3, x4) : Aν (x2) :

(G.2.8)
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Aµ (x1) Aν (x2) Aσ (x3) Aθ (x4) Aγ (x5)

• •
• •
• •
• •

• •
• •
• •

• •
• •

• •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •

Table G.2: All non-vanishing contractions of the five photon field operators.
Note: Same color dots represent a contraction between the associated photon field operators.



Appendix H

Fourier transforms

H.1 Definitions
The four-dimensional Fourier-transform of a function F (x) and its inverse are given by:

F (p) =

ˆ
d4xe+

i
~p·xF (x) (H.1.1)

F (x) =

ˆ
d4p

(2π~)
4 e
− i

~p·xF (p) . (H.1.2)

One can easily check whether the constant factors are right or not by simply going in and out the
Fourier space, i.e. by writing:

F (p) =

ˆ
d4xe+

i
~p·xF (x) =

ˆ
d4q

(2π~)
4F (q)

ˆ
d4xe+

i
~ (p−q)·x (H.1.3)

=

ˆ
d4qF (q) δ (p− q) = F (p) . (H.1.4)

When the functions that need the be manipulated with these transforms are three-dimensional, i.e.
dependent on the bold x instead of x, one has:

F (p) =

ˆ
d3xe−

i
~p·xF (x) (H.1.5)

F (x) =

ˆ
d3p

(2π~)
3 e

+ i
~p·xF (p) . (H.1.6)

We shall see that for a time-independent function F (x) = F (x), a Dirac function appears for the
time-component momentum (in momentum space). Equation.(H.1.1) becomes in this case:

F (p) =

ˆ
d4xe+

i
~p·xF (x) =

ˆ
d3xe+

i
~p·xF (x)

ˆ
dx0e

+ i
~p0x

0

, (H.1.7)

using the result of eq.(H.2.2) and eq.(H.1.5):

F (p) = 2π~δ (p0)F (p) . (H.1.8)

232
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H.2 Dirac δ distribution
The inverse Fourier transform of the Dirac δ function is given by:ˆ

d4xe+
i
~p·xδ (x) = e0 = 1, (H.2.1)

and thus one can write the Dirac function as given by the inverse Fourier of eq.(H.1.2):

δ (x) =

ˆ
d4p

(2π~)
4 e
− i

~p·x1. (H.2.2)

H.3 Derivative transformation
The inverse Fourier transform of the four-gradient function, is given by:ˆ

d4xe+
i
~p·x

{
∂

∂xµ
ψn (x)

}
= − i

~
pµψn (p) . (H.3.1)

This can be seen by writing ψn (x) as an inverse Fourier-transform eq.(H.1.2), and letting the gradient
act on the Fourier exponent:

ˆ
d4xe+

i
~p·x

∂

∂xµ
ψn (x) =

ˆ
d4xe+

i
~p·x

∂

∂xµ

{ˆ
d4q

(2π~)
4 e
− i

~ q·xψn (q)

}
(H.3.2)

= − i
~

ˆ
d4q

(2π~)
4 qµψn (q)

ˆ
d4xe+

i
~ (p−q)·x. (H.3.3)

The x integral is first evaluated using eq.(H.2.2):ˆ
d4xe+

i
~p·x

∂

∂xµ
ψn (x) = − i

~

ˆ
d4qqµψn (q) δ (p− q) (H.3.4)

= − i
~
pµψn (p) . (H.3.5)

Alternatively, one can chose to work in momentum space, and then get:
ˆ

d4p

(2π~)
4 e
− i

~p·x
{

∂

∂pµ
ψn (p)

}
= +

i

~
xµψn (x) . (H.3.6)

H.4 Product transformation
Having a product of functions ψn (x) and ψm (x), it transforms as:

ˆ
d4xe+

i
~p·x {ψn (x)ψm (x)} =

ˆ
d4q

(2π~)
4ψn (q)ψm (p− q) , (H.4.1)

known as the convolution theorem, stating that a product in real space, is a convolution of the
transformed functions in momentum space. Alternatively, in momentum-space, we have:

ˆ
d4p

(2π~)
4 e
− i

~p·x {ψn (p)ψm (p)} =

ˆ
d4yψm (y)ψn (x− y) , (H.4.2)

where the product of functions in momentum space, is a convolution of the real-space functions.
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H.5 Locality in real- and momentum-space

A local operator Ĥ in real-space, becomes a non-local operator in momentum-space, and vice versa.
This can be clearly seen by evaluating the Fourier transforms of the terms inside the expectation
values of a:

1. Local potential:
ˆ
d3xϕ†n (x) Ĥ (x)ϕn (x) =

ˆ
d3q

(2π~)
3

ˆ
d3p

(2π~)
3ϕ
†
n (q) Ĥ (q − p)ϕn (p) . (H.5.1)

2. Non-local potential:
ˆ
d3x

ˆ
d3yϕ†n (y) Ĥ (y − x)ϕn (x) =

ˆ
d3p

(2π~)
3ϕ
†
n (p) Ĥ (p)ϕn (p) . (H.5.2)

H.6 Dirac equation in Fourier-space
In the presence of an external electromagnetic potential, the Dirac equation reads eq.(2.6.24):

[γµ (i~∂µ + eAµ (x))−mc]ψn (x) = 0. (H.6.1)

After Fourier-transforming it, one obtains:
ˆ
d4xe+

i
~p·x [γµ (i~∂µ + eAµ (x))−mc]ψn (x) = 0, (H.6.2)

We now use the derivative transformation of eq.(H.3.1) with the convolution eq.(H.4.1) to obtain:

γµ
[
pµψn (p) + e

ˆ
d4q

(2π~)
4Aµ (p− q)ψn (q)

]
−mcψn (p) = 0. (H.6.3)

Notice that the local external potential Aµ (x), becomes (in Fourier-space) non-local, as seen in
section H.5. In the absence of this potential, the equation simplifies to:

(γµpµ −mc)ψn (p) = 0. (H.6.4)



Appendix I

Integrals

I.1 Time-integral and ∆ε (a)

The goal of this section is to evaluate the integral:

I (ε, a) =

ˆ +∞

−∞
dxe−ε|x|+iax, (I.1.1)

where ε is a positive real number, while a is simply a real number. First we split the integral into
two parts:

I (ε, a) =

ˆ 0

−∞
dx e+εx+iax +

ˆ +∞

0

dx e−εx+iax. (I.1.2)

After performing the change of variables x→ −x for the first integral, and swapping the integration
direction, the two integrals can be combined into a single one:

I (ε, a) = 2

ˆ +∞

0

dx e−εx cos ax. (I.1.3)

We then use integration by parts:

I (ε, a) = 2e−εx
sin (ax)

a

∣∣+∞
0 + 2

ε

a

ˆ +∞

0

dxe−εx sin (ax) (I.1.4)

=
2ε

a

ˆ +∞

0

dxe−εx sin (ax) . (I.1.5)

Again, we perform a second integration by parts:

I (ε, a) = − 2ε

a2
cos (ax) e−εx

∣∣+∞
0 − 2

ε2

a2

ˆ +∞

0

dx cos (ax) e−εx (I.1.6)

= − 2ε

a2
− 2ε2

a2

ˆ +∞

0

dx cos (ax) e−εx. (I.1.7)

Notice that the last integral is the one we already started with. This allows us to write:

I (ε, a) =
2ε

a2 + ε2
. (I.1.8)
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Following [15, section A.3], we define the function ∆ε (a) as:

∆ε (a) =
I (ε, a)

2π
=

1

π

ε

a2 + ε2
. (I.1.9)

In the limit ε→ 0, this function becomes a Dirac delta function. To see how this is true, we observe
that in this limit, we have:

lim
ε→0

∆ε (a) =

{
0 for a 6= 0

diverges for a = 0
(I.1.10)

In addition, this function integrates to one:
ˆ +∞

−∞
dx∆ε (x) =

1

π

ˆ +∞

−∞
du

1

u2 + 1
=

1

π
arctan (u)

∣∣+∞
−∞ = 1, (I.1.11)

where we used the change of variables u = x
ε . This allows us to write:

lim
ε→0

∆ε (a) = δ (a) . (I.1.12)

This delta function can also be related to the Kronecker delta function:

lim
ε→0

πε∆ε (a) = lim
ε→0

ε2

a2 + ε2
=

{
1 if a = 0

0 if a 6= 0
= δa,0, (I.1.13)

which is going to be used while evaluating the QED energy-shifts using Sucher’s formula. In addition,
we are going to use the following relation:

ˆ
dx

1

x2 − c2 + iη
∆ε (a− x) ∆ε (b− x) ≈ 1

a2 − c2 + iε
∆2ε (a− b) , (I.1.14)

given by Lindgren [15, eq.(A.32)], when evaluating the timelike component momentum integral of the
photon propagator. In this expression, η and ε are small positive numbers, and the approximation
symbol is there to indicate that this relation holds for small ε. This should cause no problem, since
at the end we shall evaluate energy-shifts which includes a limit ε→ 0.

I.2 Angular Fourier integral
When evaluating the inverse Fourier transform of a radial function (in momentum space), an angular
integral appears after separation of variables:

ˆ
d3q

(2π)
3 e

+iq·xf (|q|) =

ˆ ∞
0

r2qdrq

(2π)
3 f (rq)

ˆ
dΩe+irqrx cos θ, (I.2.1)

where we use spherical coordinates by writing the Jacobian (determinant) as:

d3q = r2qdrq sin θdθdϕ, (I.2.2)

where we use rz = |z| as a radial distance associated with some three-vector z, and assume (without
any loss of generality) that the “z-axis” of this spherical coordinate system points in the direction
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of the position vector x in order to simplify our exponent. Our focus is going to be on the angular
integral, we shall call I (rq, rq):

I (rx, rq) =

ˆ
dΩe+irqrx cos θ = 2π

ˆ π

0

sin θdθe+irqrx cos θ. (I.2.3)

Using the change of variables u = irqrx cos θ, we can write it as:

I (rx, rq) =
2πi

rqrx

ˆ −irqrx
+irqrx

dueu =
4π

rqrx
sin (rqrx) . (I.2.4)

This finally allows us to write the inverse Fourier transform of a radial function (Fourier space) as
a radial function (real space):

ˆ
d3q

(2π)
3 e

+iq·xf (rq) =
1

2π2rx

ˆ ∞
0

rqdrqf (rq) sin (rqrx) . (I.2.5)

I.3 Radial photon function
When evaluating the The inverse Fourier transform of the photon propagator, the spatial integral
we shall call I (q0,x), reads:

I (q0,x) =

ˆ
d3q

(2π)
3

e+iq·x

q20 − q2 + iε
. (I.3.1)

Using the result of the previous section, we can write this integral as:

I (q0,x) =
1

4π2irx

ˆ ∞
0

rqdrq
e+irqrx − e−irqrx
q20 − r2q + iε

. (I.3.2)

We now extend the integration limits to span the whole real line (as done in [105, page 303].), so we
can use Jordan’s lemma result. In order to do so, we perform a change of variables in the second
integral: rq → −rq which allows us to write:

I (q0,x) =
1

4π2irx

ˆ +∞

−∞
rqdrq

e+irqrx

q20 − r2q + iε
, (I.3.3)

since rx is always positive, we can use Jordan’s lemma, for positive exponential factor, given in
F.5.3, and write:

I (q0,x) =
1

4π2irx

˛ +

rqdrq
e+irqrx

q20 − r2q + iε
, (I.3.4)

where
¸ + indicates that the contour integral encloses poles in the upper half-plane, which in this

case, is the single pole at rq =
√
q20 + iε, using Cauchy’s integral formula, we directly obtain the

following result:
ˆ

d3q

(2π)
3

e+iq·x

q20 − q2 + iε
= −e

+i
√
q2
0+iε|x|

4π |x|
. (I.3.5)

Note that for real q0, this result reduces to:ˆ
d3q

(2π)
3

e+iq·x

q20 − q2 + iε
= −e

+i|q0||x|

4π |x|
. (I.3.6)
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For general complex number q0, the square root gives:√
q20 = ±q0, (I.3.7)

which comes from the fact that for fractional powers, complex numbers become multi-valued, and
a full circular rotation about the associated branch point (q0 = 0 in this case) leads to different
complex number, which shows the presence of a discontinuity.



Appendix J

Quantum mechanical equations and
currents

J.1 Free and interacting equations
In their free forms, the quantum mechanical equations are given by:

i~
∂

∂t
ψ = − ~2

2m
∇2ψ Schrödinger (1925)

i~
∂

∂t
ψ = − ~2

2m
(σ ·∇) (σ ·∇)ψ Pauli (1927)

0 =

[
∂µ∂µ +

m2c2

~2

]
ψ Klein-Gordon (1925− 1926)

0 = [i~γµ∂µ −mc]ψ Dirac-equation (1928)

(J.1.1)

Using the Dirac relation of eq.(D.1.1) for Pauli matrices, one can clearly see that the free Pauli
equation coincides with the free Schrödinger one, once some external electromagnetic potentials are
turned on, this will no longer be the case. To obtain the interacting equations, we use the minimal
coupling condition eq.(2.6.23):

i~∂µ → i~∂µ + eAµ (x) , (J.1.2)

which splits into the following two substitutions (using eq.(A.0.5)):

i~
∂

∂t
→ i~

∂

∂t
+ eϕ (x) (J.1.3)

−i~∇→ −i~∇+ eA (x) , (J.1.4)
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which, in turn, leads to the following interacting equations:

i~
∂

∂t
ψ =

[
(−i~∇+ eA)

2

2m
− eϕ

]
ψ SE

i~
∂

∂t
ψ =

[
(−i~∇+ eA)

2

2m
− eϕ+

e~
2m
σ ·B

]
ψ PE

0 =

[(
∂µ +

e

i~
Aµ (x)

)(
∂µ +

e

i~
Aµ (x)

)
+
m2c2

~2

]
ψ KGE

0 = [γµ [i~∂µ + eAµ]−mc]ψ DE

(J.1.5)

where we use SE, PE, KGE, and DE for Schrödinger, Pauli, Klein-Gordon and Dirac equation. Few
points to note about these equations:

1. An important thing to keep in mind is that the DE is a 4× 4 equation, the Pauli one is a 2× 2
equation, while SE and KGE are scalar equations, the corresponding solutions are therefore of
four, two and one component functions, respectively.

2. The PE can be obtained from the SE by simply replacing the momentum operator [42, page
37 eqs.(9-4)]:

p2 = −~2∇2 → (i~∇ · σ) (i~∇ · σ) , (J.1.6)

and as mentioned before, this replacement makes a difference only in the case where EM
potentials enters the equation, since in the absence of these potentials, the PE reduces to the
SE, using the Dirac relation of eq.(D.1.1).

3. The difference between the Pauli and the Schrödinger equations is the presence of the term:

e~
2m
σ ·B = gµBs ·B, (J.1.7)

in the former equation. The corresponding elements of his last term are:

B =∇×A magnetic field

s =
σ

2
spin operator

µB =
e~
2m

Bohr magneton

g = 2 electron g-factor

(J.1.8)

This extra term represents the interaction between the electron spin and the external magnetic
field, and thus accounts for spin, which was missing in Schrödinger’s theory. The motivation
of Pauli in inventing his equation was to account for spin in the quantum theory by inventing
the necessary algebra that can describe the electron’s spin, or what he calls: “two-valuedness
not describable classically” in his prominent Nobel prize lecture [45].

4. The DE is the most compact equation which accounts (naturally) for spin, and the fact that
it is a matrix equation comes from the need for the gamma matrices to be matrices, so they
can obey the anticommutation relations associated with their Clifford algebra, in order for
the equation to be consistent with the relativistic KG equation, and thus obey the energy
momentum relation.
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5. In the non-relativistic limit:

(a) PE reduces to the SE since without relativity the magnetic field vanishes.

(b) The KGE reduces to the SE.

(c) The large component (two-component) DE spinor reduces to the PE solution.

6. Concerning the Dirac equation properties, the reader can consult chapters 1 and 2.

J.2 Probability currents
The probability currents associated with these quantum mechanical equations, i.e. that satisfy the
continuity equation:

∂µj
µ = 0; or

∂

∂t
ρ+∇ · j = 0, (J.2.1)

are presented by the following equations:

ρ = ψ∗ψ

j =
−i~
2m

(ψ∗∇ψ − ψ∇ψ∗) +
e

m
Aψ∗ψ Schrödinger

ρ = ψ†ψ

j =
−i~
2m

(
ψ†∇ψ −∇

(
ψ†
)
ψ
)

+
e

m
Aψ†ψ Pauli

jµ =
i~
2m

(ψ∗∂µψ − ψ∂µψ∗) +
e

m
Aµψ∗ψ Klein-Gordon

jµ =
i~
2m

[
ψ̄∂µ (ψ)− ∂µ

(
ψ̄
)
ψ
]

+
e

m
Aµψ̄ψ +

~
2m

∂ν
[
ψ̄σµνψ

]
Dirac

(J.2.2)

For interesting discussions about these quantum currents (mainly Pauli and Dirac ones), and
how they relate to electron spin and thus its magnetic moment, the reader may consult [186] and
[187] and their corresponding cited references.



Bibliography

[1] D. Hanneke, S. Fogwell Hoogerheide, and G. Gabrielse. Cavity control of a single-electron
quantum cyclotron: Measuring the electron magnetic moment. Phys. Rev. A, 83:052122, May
2011. doi:10.1103/PhysRevA.83.052122.

[2] Willis E. Lamb and Robert C. Retherford. Fine structure of the hydrogen atom by a microwave
method. Phys. Rev., 72:241–243, Aug 1947. URL: https://link.aps.org/doi/10.1103/
PhysRev.72.241, doi:10.1103/PhysRev.72.241.

[3] W. H. Furry. On bound states and scattering in positron theory. Phys. Rev., 81:115–
124, Jan 1951. URL: https://link.aps.org/doi/10.1103/PhysRev.81.115, doi:10.1103/
PhysRev.81.115.

[4] Silvan Samuel Schweber. An Introduction to Relativistic Quantum Field Theory. Dover Pub-
lications, 2011.

[5] Paul Indelicato, Peter J. Mohr, and J. Sapirstein. Coordinate-space approach to vacuum
polarization. Phys. Rev. A, 89:042121, Apr 2014. doi:10.1103/PhysRevA.89.042121.

[6] Gerhard Soff and Peter J. Mohr. Vacuum polarization in a strong external field. Phys. Rev.
A, 38:5066–5075, Nov 1988. doi:10.1103/PhysRevA.38.5066.

[7] Peter J Mohr, Günter Plunien, and Gerhard Soff. QED corrections in heavy atoms. Physics
Reports, 293(5-6):227–369, 1998. doi:10.1016/S0370-1573(97)00046-X.

[8] Walter Greiner and Joachim Reinhardt. Quantum Electrodynamics. Springer-Verlag Berlin
Heidelberg, 4th edition, 2009. doi:10.1007/978-3-540-87561-1.

[9] Gerhard Soff and Peter J. Mohr. Influence of vacuum-polarization corrections of order α(Zα)
and α(Zα)

3 in hydrogenlike uranium. Phys. Rev. A, 40:2174–2175, Aug 1989. doi:10.1103/
PhysRevA.40.2174.

[10] K.-N. Huang. Calculation of the vacuum-polarization potential. Phys. Rev. A, 14:1311–1318,
Oct 1976. doi:10.1103/PhysRevA.14.1311.

[11] J. Blomqvist. Vacuum polarization in exotic atoms. Nuclear Physics, 48:95–103, 1972. doi:
10.1016/0550-3213(72)90051-X.

[12] G. Soff, C. R. Hofmann, G. Plunien, and S. M. Schneider. Quantum Electrodynami-
cal Corrections in Highly Charged Ions, pages 19–35. Springer US, Boston, MA, 1997.
doi:10.1007/978-1-4899-0081-4_2.

242

https://doi.org/10.1103/PhysRevA.83.052122
https://link.aps.org/doi/10.1103/PhysRev.72.241
https://link.aps.org/doi/10.1103/PhysRev.72.241
https://doi.org/10.1103/PhysRev.72.241
https://link.aps.org/doi/10.1103/PhysRev.81.115
https://doi.org/10.1103/PhysRev.81.115
https://doi.org/10.1103/PhysRev.81.115
https://doi.org/10.1103/PhysRevA.89.042121
https://doi.org/10.1103/PhysRevA.38.5066
https://doi.org/10.1016/S0370-1573(97)00046-X
https://doi.org/10.1007/978-3-540-87561-1
https://doi.org/10.1103/PhysRevA.40.2174
https://doi.org/10.1103/PhysRevA.40.2174
https://doi.org/10.1103/PhysRevA.14.1311
https://doi.org/10.1016/0550-3213(72)90051-X
https://doi.org/10.1016/0550-3213(72)90051-X
https://doi.org/10.1007/978-1-4899-0081-4_2


BIBLIOGRAPHY 243

[13] E. Borie and G. A. Rinker. The energy levels of muonic atoms. Rev. Mod. Phys., 54:67–118,
Jan 1982. doi:10.1103/RevModPhys.54.67.

[14] T. Dubler, K. Kaeser, B. Robert-Tissot, L.A. Schaller, L. Schellenberg, and H. Schneuwly.
Precision test of vacuum polarization in heavy muonic atoms. Nuclear Physics A, 294(3):397–
416, 1978. doi:10.1016/0375-9474(78)90227-0.

[15] Ingvar Lindgren. Relativistic many-body theory: a new field-theoretical approach, volume 63.
Springer, 2nd edition, 2016. doi:10.1007/978-3-319-15386-5.

[16] Paul Indelicato and Peter J. Mohr. Introduction to Bound-State Quantum Electrodynamics,
pages 1–110. Springer, Berlin, Heidelberg, 2016. doi:10.1007/978-3-642-41611-8_36-1.

[17] Peter J Mohr. Quantum electrodynamics calculations in few-electron systems. Physica Scripta,
T46:44–51, jan 1993. doi:10.1088/0031-8949/1993/t46/005.

[18] S. A. Blundell. Accurate screened QED calculations in high-Z many-electron ions. Phys. Rev.
A, 46:3762–3775, Oct 1992. doi:10.1103/PhysRevA.46.3762.

[19] Peter J. Mohr. Quantum electrodynamics of high-Z few-electron atoms. Phys. Rev. A, 32:1949–
1957, Oct 1985. doi:10.1103/PhysRevA.32.1949.

[20] Peter J. Mohr. Status of Precision QED in Light and Heavy Atoms, pages 17–41. Springer
US, Boston, MA, 1987. doi:10.1007/978-1-4613-1889-7_2.

[21] Maen Salman and Trond Saue. Charge Conjugation Symmetry in the Finite Basis Approxi-
mation of the Dirac Equation. Symmetry, 12, 2020. doi:10.3390/sym12071121.

[22] Wolfram Research, Inc. Mathematica, Version 12.2. Champaign, IL, 2020.

[23] Eite Tiesinga, Peter J Mohr, David B Newell, and Barry N Taylor. CODATA recommended
values of the fundamental physical constants: 2018. Journal of Physical and Chemical Refer-
ence Data, 50(3):033105, 2021. doi:10.1063/5.0064853.

[24] Adel Almoukhalalati, Stefan Knecht, Hans Jørgen Aa Jensen, Kenneth G Dyall, and Trond
Saue. Electron correlation within the relativistic no-pair approximation. The Journal of
chemical physics, 145(7):074104, 2016. doi:10.1063/1.4959452.

[25] P. A. M. Dirac. The Evolution of the Physicist’s Picture of Nature. Scientific American,
208(5):45–53, 1963. URL: http://www.jstor.org/stable/24936146.

[26] Walter Gordon. Der Comptoneffekt nach der Schrödingerschen theorie. Zeitschrift für Physik,
40(1-2):117–133, 1926. doi:10.1007/BF01390840.

[27] Helge Kragh. Equation with the many fathers. The Klein–Gordon equation in 1926. American
Journal of Physics, 52(11):1024–1033, 1984. doi:10.1119/1.13782.

[28] Walter Greiner. Relativistic quantum mechanics. Springer, Berlin, Heidelberg, 3rd edition,
2000. doi:10.1007/978-3-662-04275-5.

[29] Jagdish Mehra. The golden age of theoretical physics, volume 2. World Scientific, 2001.

[30] Paul Adrien Maurice Dirac. The quantum theory of the electron. Proceedings of the Royal
Society of London. Series A, 117(778):610–624, 1928. doi:10.1098/rspa.1928.0023.

https://doi.org/10.1103/RevModPhys.54.67
https://doi.org/10.1016/0375-9474(78)90227-0
https://doi.org/10.1007/978-3-319-15386-5
https://doi.org/10.1007/978-3-642-41611-8_36-1
https://doi.org/10.1088/0031-8949/1993/t46/005
https://doi.org/10.1103/PhysRevA.46.3762
https://doi.org/10.1103/PhysRevA.32.1949
https://doi.org/10.1007/978-1-4613-1889-7_2
https://doi.org/10.3390/sym12071121
https://doi.org/10.1063/5.0064853
https://doi.org/10.1063/1.4959452
http://www.jstor.org/stable/24936146
https://doi.org/10.1007/BF01390840
https://doi.org/10.1119/1.13782
https://doi.org/10.1007/978-3-662-04275-5
https://doi.org/10.1098/rspa.1928.0023


BIBLIOGRAPHY 244

[31] O. Klein. Elektrodynamik und Wellenmechanik vom Standpunkt des Korrespondenzprinzips.
Zeitschrift für Physik A Hadrons and nuclei, 41(6):407–442, Oct 1927. doi:10.1007/
BF01400205.

[32] Ian P. Grant. Relativistic Quantum Theory of Atoms and Molecules. Springer-Verlag New
York, New York, 2007. doi:10.1007/978-0-387-35069-1.

[33] Tommy Ohlsson. Relativistic Quantum Physics: From Advanced Quantum Mechanics to
Introductory Quantum Field Theory. Cambridge University Press, 2011. doi:10.1017/
CBO9781139032681.

[34] Paul Adrien Maurice Dirac. The physical interpretation of the quantum dynamics. Proceedings
of the Royal Society of London. Series A, 113(765):621–641, 1927. doi:10.1098/rspa.1927.
0012.

[35] J. Mehra and H. Rechenberg. The Historical Development of Quantum Theory, volume 6.
Springer-Verlag New York Berlin Heidelberg, 2000. URL: https://link.springer.com/
book/9780387952628.

[36] Silvan S Schweber. QED and the men who made it: Dyson, Feynman, Schwinger, and
Tomonaga. Princeton University Press, 1994. URL: https://press.princeton.edu/books/
paperback/9780691033273/qed-and-the-men-who-made-it.

[37] Paul Adrien Maurice Dirac. The principles of quantum mechanics. Oxford uni-
versity press, 4th edition, 1958. URL: https://global.oup.com/academic/product/
the-principles-of-quantum-mechanics-9780198520115?cc=fr&lang=en&.

[38] W. Greiner. Quantum Mechanics: An Introduction. Physics and Astronomy. Springer-Verlag
Berlin Heidelberg, 4th edition, 2001. doi:10.1007/978-3-642-56826-8.

[39] Franz Gross. Relativistic quantum mechanics and field theory. John Wiley & Sons, 2004.
doi:10.1002/9783527617333.

[40] James D. Bjorken and Sidney D. Drell. Relativistic quantum mechanics. Mcgraw-Hill, 1964.

[41] W. Pauli. Contributions mathématiques à la théorie des matrices de Dirac. Annales de l’institut
Henri Poincaré, 6(2):109–136, 1936. URL: http://eudml.org/doc/78999.

[42] Richard P Feynman. Quantum electrodynamics. CRC Press, 1st edition, 1998. URL: https:
//www.routledge.com/Quantum-Electrodynamics/Feynman/p/book/9780201360752.

[43] C. Itzykson and J.B. Zuber. Quantum Field Theory. Dover Books on Physics. Dover Publica-
tions, 1980. URL: https://store.doverpublications.com/0486445682.html.

[44] Abraham Pais, Maurice Jacob, David I Olive, and Michael F Atiyah. Paul Dirac: the man
and his work. Cambridge University Press, 2005/2003. URL: https://www.cambridge.
org/fr/academic/subjects/physics/history-philosophy-and-foundations-physics/
paul-dirac-man-and-his-work?format=HB&isbn=9780521583824.

[45] Wolfgang Pauli. Exclusion Principle and Quantum Mechanics, 1946. URL: https://www.
nobelprize.org/prizes/physics/1945/pauli/lecture/.

[46] Franz Schwabl. Advanced quantum mechanics. Springer-Verlag Berlin Heidelberg, 4th edition,
2008. doi:10.1007/978-3-540-85062-5.

https://doi.org/10.1007/BF01400205
https://doi.org/10.1007/BF01400205
https://doi.org/10.1007/978-0-387-35069-1
https://doi.org/10.1017/CBO9781139032681
https://doi.org/10.1017/CBO9781139032681
https://doi.org/10.1098/rspa.1927.0012
https://doi.org/10.1098/rspa.1927.0012
https://link.springer.com/book/9780387952628
https://link.springer.com/book/9780387952628
https://press.princeton.edu/books/paperback/9780691033273/qed-and-the-men-who-made-it
https://press.princeton.edu/books/paperback/9780691033273/qed-and-the-men-who-made-it
https://global.oup.com/academic/product/the-principles-of-quantum-mechanics-9780198520115?cc=fr&lang=en&
https://global.oup.com/academic/product/the-principles-of-quantum-mechanics-9780198520115?cc=fr&lang=en&
https://doi.org/10.1007/978-3-642-56826-8
https://doi.org/10.1002/9783527617333
http://eudml.org/doc/78999
https://www.routledge.com/Quantum-Electrodynamics/Feynman/p/book/9780201360752
https://www.routledge.com/Quantum-Electrodynamics/Feynman/p/book/9780201360752
https://store.doverpublications.com/0486445682.html
https://www.cambridge.org/fr/academic/subjects/physics/history-philosophy-and-foundations-physics/paul-dirac-man-and-his-work?format=HB&isbn=9780521583824
https://www.cambridge.org/fr/academic/subjects/physics/history-philosophy-and-foundations-physics/paul-dirac-man-and-his-work?format=HB&isbn=9780521583824
https://www.cambridge.org/fr/academic/subjects/physics/history-philosophy-and-foundations-physics/paul-dirac-man-and-his-work?format=HB&isbn=9780521583824
https://www.nobelprize.org/prizes/physics/1945/pauli/lecture/
https://www.nobelprize.org/prizes/physics/1945/pauli/lecture/
https://doi.org/10.1007/978-3-540-85062-5


BIBLIOGRAPHY 245

[47] Paul Adrien Maurice Dirac. A theory of electrons and protons. Proceedings of the Royal
Society of London. Series A, 126(801):360–365, 1930. doi:/10.1098/rspa.1930.0013.

[48] Paul Adrien Maurice Dirac. Quantised singularities in the electromagnetic field. Proceedings of
the Royal Society of London. Series A, 133(821):60–72, 1931. doi:10.1098/rspa.1931.0130.

[49] H. Weyl. The Theory of Groups and Quantum Mechanics. Dover Books on Mathematics.
Dover Publications, 1950. Translated from the second (revised) German edition of 1931 by H.
P. Robertson. URL: https://store.doverpublications.com/0486602699.html.

[50] Carl D. Anderson. The Positive Electron. Phys. Rev., 43:491–494, Mar 1933. doi:10.1103/
PhysRev.43.491.

[51] Carl Anderson. The Production and Properties of Positrons. PA Norstedt & söner, 1936. Nobel
lecture. URL: https://www.nobelprize.org/prizes/physics/1936/anderson/lecture.

[52] R. P. Feynman. The Theory of Positrons. Phys. Rev., 76:749–759, Sep 1949. doi:10.1103/
PhysRev.76.749.

[53] Anthony Zee. Quantum field theory in a nutshell. Princeton university press, 2 edition, 2010.

[54] S. Weinberg. The Quantum Theory of Fields, volume 2 of The Quantum Theory of Fields 3
Volume Hardback Set. Cambridge University Press, 1995. URL: https://www.cambridge.
org/core/books/quantum-theory-of-fields/22986119910BF6A2EFE42684801A3BDF.

[55] Murray Gell-Mann. The interpretation of the new particles as displaced charge multiplets. Il
Nuovo Cimento (1955-1965), 4(2):848–866, 1956. doi:10.1007/BF02748000.

[56] M.E. Rose. Elementary Theory of Angular Momentum. Dover books on physics and chemistry.
Dover, 1995. URL: https://books.google.fr/books?id=Fvf2KgcuzTkC.

[57] Paul Strange. Relativistic Quantum Mechanics: With Applications in Condensed Matter and
Atomic Physics. Cambridge University Press, 1998. doi:10.1017/CBO9780511622755.

[58] R A Swainson and G W F Drake. A unified treatment of the non-relativistic and relativis-
tic hydrogen atom I: The wavefunctions. Journal of Physics A: Mathematical and General,
24(1):79–94, jan 1991. doi:10.1088/0305-4470/24/1/019.

[59] M.E. Rose. Relativistic Electron Theory. Wiley, 1961. URL: https://books.google.fr/
books?id=gh5RAAAAMAAJ.

[60] Milton Abramowitz and Irene A. Stegun, editors. Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Tables. National Bureau of Standards (became: National
Institute of Standards and Technology), 10th printing edition, 1972.

[61] Albert Messiah. Quantum Mechanics: Two Volumes Bound as One. Dover books on physics.
Dover Publications, 1999.

[62] Hendrik A. Kramers. The use of charge-conjugated wave-functions in the hole-theory of the
electron. In Proceedings of the Royal Academy of Amsterdam, volume 40, pages 814–823, 1937.
Available at https://www.dwc.knaw.nl/DL/publications/PU00017118.pdf.

[63] Richard P Feynman. The reason for antiparticles. Elementary particles and the laws of physics,
pages 1–59, 1986.

https://doi.org//10.1098/rspa.1930.0013
https://doi.org/10.1098/rspa.1931.0130
https://store.doverpublications.com/0486602699.html
https://doi.org/10.1103/PhysRev.43.491
https://doi.org/10.1103/PhysRev.43.491
https://www.nobelprize.org/prizes/physics/1936/anderson/lecture
https://doi.org/10.1103/PhysRev.76.749
https://doi.org/10.1103/PhysRev.76.749
https://www.cambridge.org/core/books/quantum-theory-of-fields/22986119910BF6A2EFE42684801A3BDF
https://www.cambridge.org/core/books/quantum-theory-of-fields/22986119910BF6A2EFE42684801A3BDF
https://doi.org/10.1007/BF02748000
https://books.google.fr/books?id=Fvf2KgcuzTkC
https://doi.org/10.1017/CBO9780511622755
https://doi.org/10.1088/0305-4470/24/1/019
https://books.google.fr/books?id=gh5RAAAAMAAJ
https://books.google.fr/books?id=gh5RAAAAMAAJ
https://www.dwc.knaw.nl/DL/publications/PU00017118.pdf


BIBLIOGRAPHY 246

[64] J. J. Sakurai and Jim Napolitano. Modern Quantum Mechanics. Cambridge University Press,
2nd edition, 2017. doi:10.1017/9781108499996.

[65] S. P. Goldman. Variational representation of the Dirac-Coulomb Hamiltonian with no spurious
roots. Phys. Rev. A, 31:3541–3549, Jun 1985. doi:10.1103/PhysRevA.31.3541.

[66] II Tupitsyn and VM Shabaev. Spurious states of the Dirac equation in a finite basis set. Optics
and Spectroscopy, 105(2):183–188, 2008. doi:10.1134/S0030400X08080043.

[67] W.H.E. Schwarz and H. Wallmeier. Basis set expansions of relativistic molecular wave equa-
tions. Molecular Physics, 46(5):1045–1061, 1982. doi:10.1080/00268978200101771.

[68] Ian P. Grant. Conditions for convergence of variational solutions of Dirac’s equation in a finite
basis. Phys. Rev. A, 25:1230–1232, Feb 1982. doi:10.1103/PhysRevA.25.1230.

[69] Werner Kutzelnigg. Completeness of a kinetically balanced Gaussian basis. The Journal of
chemical physics, 126(20):201103, 2007. doi:10.1063/1.2744018.

[70] Richard E Stanton and Stephen Havriliak. Kinetic balance: A partial solution to the problem
of variational safety in Dirac calculations. The Journal of chemical physics, 81(4):1910–1918,
1984. doi:10.1063/1.447865.

[71] Werner Kutzelnigg. Basis set expansion of the Dirac operator without variational col-
lapse. International Journal of Quantum Chemistry, 25(1):107–129, 1984. doi:10.1002/
QUA.560250112.

[72] K G Dyall, I P Grant, and S Wilson. Matrix representation of operator products. Journal of
Physics B: Atomic and Molecular Physics, 17(4):493–503, feb 1984. doi:10.1088/0022-3700/
17/4/006.

[73] Hasan Almanasreh. The Dirac Equation: Numerical and Asymptotic Analysis. PhD thesis,
University of Gothenburg, 2012.

[74] Pekka Pyykkö. Relativistic effects in structural chemistry. Chemical Reviews, 88(3):563–594,
May 1988. doi:10.1021/cr00085a006.

[75] L Visscher, PJC Aerts, O Visser, and WC Nieuwpoort. Kinetic balance in contracted basis sets
for relativistic calculations. International Journal of Quantum Chemistry, 40(S25):131–139,
1991. doi:10.1002/qua.560400816.

[76] Mathieu Lewin and Éric Séré. Spurious modes in Dirac calculations and how to avoid them.
In Many-electron approaches in physics, chemistry and mathematics, pages 31–52. Springer,
2014. doi:10.1007/978-3-319-06379-9_2.

[77] Mathieu Lewin and Éric Séré. Spectral pollution and how to avoid it. Proceedings of the
London Mathematical Society, 100(3):864–900, 12 2009. doi:10.1112/plms/pdp046.

[78] Maen Salman. Radial Dirac wavefunctions in the Coulombic hydrogen atom.
https://gitlab.com/maen.salman/radial-dirac-wavefunctions-in-the-coulombic-hydrogen-atom,
2021.

[79] David Hilbert. On the infinite, pages 183–201. Cambridge University Press, 2 edition, 1984.
doi:10.1017/CBO9781139171519.010.

https://doi.org/10.1017/9781108499996
https://doi.org/10.1103/PhysRevA.31.3541
https://doi.org/10.1134/S0030400X08080043
https://doi.org/10.1080/00268978200101771
https://doi.org/10.1103/PhysRevA.25.1230
https://doi.org/10.1063/1.2744018
https://doi.org/10.1063/1.447865
https://doi.org/10.1002/QUA.560250112
https://doi.org/10.1002/QUA.560250112
https://doi.org/10.1088/0022-3700/17/4/006
https://doi.org/10.1088/0022-3700/17/4/006
https://doi.org/10.1021/cr00085a006
https://doi.org/10.1002/qua.560400816
https://doi.org/10.1007/978-3-319-06379-9_2
https://doi.org/10.1112/plms/pdp046
https://gitlab.com/maen.salman/radial-dirac-wavefunctions-in-the-coulombic-hydrogen-atom
https://doi.org/10.1017/CBO9781139171519.010


BIBLIOGRAPHY 247

[80] Qiming Sun, Wenjian Liu, and Werner Kutzelnigg. Comparison of restricted, unrestricted,
inverse, and dual kinetic balances for four-component relativistic calculations. Theoretical
Chemistry Accounts, 129(3):423–436, 2011. doi:10.1007/s00214-010-0876-6.

[81] Vladimir M. Shabaev, Ilya I. Tupitsyn, Vladimir A. Yerokhin, Günter Plunien, and G. Soff.
Dual Kinetic Balance Approach to Basis-Set Expansions for the Dirac Equation. Phys. Rev.
Lett., 93:130405, Sep 2004. doi:10.1103/PhysRevLett.93.130405.

[82] H.M. Quiney. The Dirac Equation in the Algebraic Approximation. In Stephen Wilson,
editor, Handbook of Molecular Physics and Quantum Chemistry, chapter 22, pages 423–443.
John Wiley & Sons, 2003.

[83] Kenneth G. Dyall. A question of balance: Kinetic balance for electrons and positrons. Chem-
ical Physics, 395:35–43, 2012. Recent Advances and Applications of Relativistic Quantum
Chemistry. doi:10.1016/j.chemphys.2011.07.009.

[84] R.P. Feynman. QED: The Strange Theory of Light and Matter. Princeton University Press,
2014. URL: https://press.princeton.edu/books/paperback/9780691164090/qed.

[85] L.I. Schiff. Quantum Mechanics. McGraw-Hill Education, 3th edition, 1968.

[86] Claude Cohen-Tannoudji, Bernard Diu, and Franck Laloe. Quantum Mechanics: Vol-
ume I: Basic Concepts, Tools, and Applications, volume 1. Wiley-VCH, 2nd edition,
2020. Translated from French by Susan Reid Hemley, Nicole Ostrowsky, and Dan
Ostrowsky. URL: https://www.wiley.com/en-us/Quantum+Mechanics%2C+Volume+1%3A+
Basic+Concepts%2C+Tools%2C+and+Applications%2C+2nd+Edition-p-9783527822713.

[87] A.L. Fetter and J.D. Walecka. Quantum Theory of Many-Particle Systems. Dover Books
on Physics. Dover Publications, 2012. URL: https://store.doverpublications.com/
0486428273.html.

[88] F. J. Dyson. The Radiation Theories of Tomonaga, Schwinger, and Feynman. Phys. Rev.,
75:486–502, Feb 1949. doi:10.1103/PhysRev.75.486.

[89] Walter Greiner and Joachim Reinhardt. Field Quantization. Springer-Verlag Berlin Heidelberg,
1996. doi:10.1007/978-3-642-61485-9.

[90] Claude Cohen-Tannoudji, Bernard Diu, and Franck Laloë. Quantum Mechanics, Vol-
ume III: Fermions, Bosons, Photons, Correlations, and Entanglement, volume 3.
Wiley-VCH, 2nd edition, 2020. URL: https://www.wiley.com/en-aw/Quantum+
Mechanics%2C+Volume+3%3A+Fermions%2C+Bosons%2C+Photons%2C+Correlations%2C+
and+Entanglement-p-9783527822751.

[91] Leonti N. Labzowsky, Galina L. Klimchitskaya, and Yu. Yu. Dmitriev. Relativistic effects in
the spectra of atomic systems. IOP Publishing Press, 1993.

[92] Steven Weinberg. The Quantum Theory of Fields, volume 1. Cambridge University Press,
1995. doi:10.1017/CBO9781139644167.

[93] Franz Mandl and Graham Shaw. Quantum field theory. John Wiley & Sons, 2010.

[94] B. A. Lippmann and Julian Schwinger. Variational Principles for Scattering Processes. I. Phys.
Rev., 79:469–480, Aug 1950. doi:10.1103/PhysRev.79.469.

https://doi.org/10.1007/s00214-010-0876-6
https://doi.org/10.1103/PhysRevLett.93.130405
https://doi.org/10.1016/j.chemphys.2011.07.009
https://press.princeton.edu/books/paperback/9780691164090/qed
https://www.wiley.com/en-us/Quantum+Mechanics%2C+Volume+1%3A+Basic+Concepts%2C+Tools%2C+and+Applications%2C+2nd+Edition-p-9783527822713
https://www.wiley.com/en-us/Quantum+Mechanics%2C+Volume+1%3A+Basic+Concepts%2C+Tools%2C+and+Applications%2C+2nd+Edition-p-9783527822713
https://store.doverpublications.com/0486428273.html
https://store.doverpublications.com/0486428273.html
https://doi.org/10.1103/PhysRev.75.486
https://doi.org/10.1007/978-3-642-61485-9
https://www.wiley.com/en-aw/Quantum+Mechanics%2C+Volume+3%3A+Fermions%2C+Bosons%2C+Photons%2C+Correlations%2C+and+Entanglement-p-9783527822751
https://www.wiley.com/en-aw/Quantum+Mechanics%2C+Volume+3%3A+Fermions%2C+Bosons%2C+Photons%2C+Correlations%2C+and+Entanglement-p-9783527822751
https://www.wiley.com/en-aw/Quantum+Mechanics%2C+Volume+3%3A+Fermions%2C+Bosons%2C+Photons%2C+Correlations%2C+and+Entanglement-p-9783527822751
https://doi.org/10.1017/CBO9781139644167
https://doi.org/10.1103/PhysRev.79.469


BIBLIOGRAPHY 248

[95] G. C. Wick. The evaluation of the collision matrix. Phys. Rev., 80:268–272, Oct 1950. doi:
10.1103/PhysRev.80.268.

[96] Murray Gell-Mann and Francis Low. Bound States in Quantum Field Theory. Phys. Rev.,
84:350–354, Oct 1951. doi:10.1103/PhysRev.84.350.

[97] Bryce S DeWitt. The operator formalism in quantum perturbation theory. 1955. URL:
https://escholarship.org/uc/item/39n7g9tp.

[98] J. Sucher. S-Matrix Formalism for Level-Shift Calculations. Phys. Rev., 107:1448–1449, Sep
1957. doi:10.1103/PhysRev.107.1448.

[99] M.E. Peskin and D.V. Schroeder. An Introduction To Quantum Field Theory. Frontiers in
Physics. Avalon Publishing, 1995.

[100] Gordon WF Drake. Springer handbook of atomic, molecular, and optical physics. Springer
Science & Business Media, 2006. doi:/10.1007/978-0-387-26308-3.

[101] M.D. Schwartz. Quantum Field Theory and the Standard Model. Cambridge University Press,
2013. URL: https://books.google.fr/books?id=2RgXEAAAQBAJ.

[102] N.N. Bogoliubov and D.V. Shirkov. Quantum Fields. Advanced book program. Ben-
jamin/Cummings Publishing Company, 1982. Tranlated by Kvantovye polia. URL: https:
//books.google.fr/books?id=wczvAAAAMAAJ.

[103] Lewis H. Ryder. Quantum Field Theory. Cambridge University Press, 2 edition, 1996. doi:
10.1017/CBO9780511813900.

[104] Peter J. Mohr. Quantum electrodynamics perturbation theory. AIP Conference Proceedings,
189(1):47–62, 1989. doi:10.1063/1.38441.

[105] V.B. Berestetskii, E.M. Lifshitz, and L.P. Pitaevskii. Quantum Electrodynamics: Volume 4.
Course of theoretical physics. Elsevier Science, 1982.

[106] Walter Greiner, Berndt Müller, and Johann Rafelski. Quantum Electrodynamics of Strong
Fields. Springer Berlin Heidelberg, 1985. doi:10.1007/978-3-642-82272-8.

[107] Eleftherios N Economou. Green’s functions in quantum physics. Springer Series in Solid-State
Sciences. Springer, Berlin, Heidelberg, 3rd edition, 2006. doi:10.1007/3-540-28841-4.

[108] M. Baranger, H. A. Bethe, and R. P. Feynman. Relativistic Correction to the Lamb Shift.
Phys. Rev., 92:482–501, Oct 1953. doi:10.1103/PhysRev.92.482.

[109] Mark Thomson. Modern Particle Physics. Cambridge University Press, 2013. doi:10.1017/
CBO9781139525367.

[110] H. A. Bethe. The Electromagnetic Shift of Energy Levels. Phys. Rev., 72:339–341, Aug 1947.
doi:10.1103/PhysRev.72.339.

[111] Hans Bethe. Calculating the Lamb shift. https://www.webofstories.com/play/hans.
bethe/104. Accessed: 2021-11-30.

[112] Peter J. Mohr. QUANTUM ELECTRODYNAMICS OF HIGH-Z FEW-ELECTRON ATOMS,
pages 111–141. Springer, Boston, MA, 1989. doi:0.1007/978-1-4613-0833-1_3.

https://doi.org/10.1103/PhysRev.80.268
https://doi.org/10.1103/PhysRev.80.268
https://doi.org/10.1103/PhysRev.84.350
https://escholarship.org/uc/item/39n7g9tp
https://doi.org/10.1103/PhysRev.107.1448
https://doi.org//10.1007/978-0-387-26308-3
https://books.google.fr/books?id=2RgXEAAAQBAJ
https://books.google.fr/books?id=wczvAAAAMAAJ
https://books.google.fr/books?id=wczvAAAAMAAJ
https://doi.org/10.1017/CBO9780511813900
https://doi.org/10.1017/CBO9780511813900
https://doi.org/10.1063/1.38441
https://doi.org/10.1007/978-3-642-82272-8
https://doi.org/10.1007/3-540-28841-4
https://doi.org/10.1103/PhysRev.92.482
https://doi.org/10.1017/CBO9781139525367
https://doi.org/10.1017/CBO9781139525367
https://doi.org/10.1103/PhysRev.72.339
https://www.webofstories.com/play/hans.bethe/104
https://www.webofstories.com/play/hans.bethe/104
https://doi.org/0.1007/978-1-4613-0833-1_3


BIBLIOGRAPHY 249

[113] Peter J. Mohr. Self-energy radiative corrections in hydrogen-like systems. Annals of Physics,
88:26–51, Nov 1974. doi:10.1016/0003-4916(74)90398-4.

[114] Richard P. Feynman. Relativistic Cut-Off for Quantum Electrodynamics. Phys. Rev., 74:1430–
1438, Nov 1948. doi:10.1103/PhysRev.74.1430.

[115] Wendell H. Furry. A Symmetry Theorem in the Positron Theory. Phys. Rev., 51:125–129, Jan
1937. doi:10.1103/PhysRev.51.125.

[116] E. A. Uehling. Polarization Effects in the Positron Theory. Phys. Rev., 48:55–63, Jul 1935.
doi:10.1103/PhysRev.48.55.

[117] L. Wayne Fullerton and G. A. Rinker. Accurate and efficient methods for the evaluation of
vacuum-polarization potentials of order Zα and Zα2. Phys. Rev. A, 13:1283–1287, Mar 1976.
doi:10.1103/PhysRevA.13.1283.

[118] Eyvind H. Wichmann and Norman M. Kroll. Vacuum Polarization in a Strong Coulomb Field.
Phys. Rev., 101:843–859, Jan 1956. doi:10.1103/PhysRev.101.843.

[119] G Källén and A Sabry. Fourth Order Vacuum Polarization. Selsk. Mat. Fys. Medd, 29(17),
1955. URL: https://cds.cern.ch/record/212315?ln=bg.

[120] A G Fainshtein, N L Manakov, and A A Nekipelov. Vacuum polarization by a Coulomb
field. Analytical approximation of the polarization potential. Journal of Physics B: Atomic,
Molecular and Optical Physics, 24(3):559–569, feb 1991. doi:10.1088/0953-4075/24/3/012.

[121] Miklos Gyulassy. Higher order vacuum polarization for finite radius nuclei. Nuclear Physics
A, 244:497–525, June 1975. doi:10.1016/0375-9474(75)90554-0.

[122] V. A. Dzuba, V. V. Flambaum, and J. S. M. Ginges. High-precision calculation of parity
nonconservation in cesium and test of the standard model. Phys. Rev. D, 66:076013, Oct 2002.
doi:10.1103/PhysRevD.66.076013.

[123] Paul Indelicato and Peter J Mohr. Coordinate-space approach to the bound-electron self-
energy. Physical Review A, 46(1):172, 1992.

[124] Pekka Pyykkö and Li-Bo Zhao. Search for effective local model potentials for simulation of
quantum electrodynamic effects in relativistic calculations. Journal of Physics B: Atomic,
Molecular and Optical Physics, 36:1469, 03 2003. doi:10.1088/0953-4075/36/8/302.

[125] T. Beier, P. J. Mohr, H. Persson, and G. Soff. Influence of nuclear size on QED corrections in
hydrogenlike heavy ions. Phys. Rev. A, 58:954–963, Aug 1998. doi:10.1103/PhysRevA.58.
954.

[126] P. Indelicato and Peter J. Mohr. Coordinate-space approach to the bound-electron self-energy:
Coulomb field calculation. Phys. Rev. A, 58:165–179, Jul 1998. doi:10.1103/PhysRevA.58.
165.

[127] V. A. Yerokhin and V. M. Shabaev. One-loop self-energy correction to the 1s and 2s hyperfine
splitting in H-like systems. Phys. Rev. A, 64:012506, Jun 2001. doi:10.1103/PhysRevA.64.
012506.

https://doi.org/10.1016/0003-4916(74)90398-4
https://doi.org/10.1103/PhysRev.74.1430
https://doi.org/10.1103/PhysRev.51.125
https://doi.org/10.1103/PhysRev.48.55
https://doi.org/10.1103/PhysRevA.13.1283
https://doi.org/10.1103/PhysRev.101.843
https://cds.cern.ch/record/212315?ln=bg
https://doi.org/10.1088/0953-4075/24/3/012
https://doi.org/10.1016/0375-9474(75)90554-0
https://doi.org/10.1103/PhysRevD.66.076013
https://doi.org/10.1088/0953-4075/36/8/302
https://doi.org/10.1103/PhysRevA.58.954
https://doi.org/10.1103/PhysRevA.58.954
https://doi.org/10.1103/PhysRevA.58.165
https://doi.org/10.1103/PhysRevA.58.165
https://doi.org/10.1103/PhysRevA.64.012506
https://doi.org/10.1103/PhysRevA.64.012506


BIBLIOGRAPHY 250

[128] P. Boucard, S.and Indelicato. Relativistic many-body and QED effects on the hyperfine
structure of lithium-like ions. The European Physical Journal D, 8(1):59–73, Jan 2000.
doi:10.1007/s100530050009.

[129] V. V. Flambaum and J. S. M. Ginges. Radiative potential and calculations of QED radiative
corrections to energy levels and electromagnetic amplitudes in many-electron atoms. Phys.
Rev. A, 72:052115, Nov 2005. doi:10.1103/PhysRevA.72.052115.

[130] Vladimir A. Yerokhin, Krzysztof Pachucki, and Vladimir M. Shabaev. One-loop self-energy cor-
rection in a strong binding field. Phys. Rev. A, 72:042502, Oct 2005. doi:10.1103/PhysRevA.
72.042502.

[131] C. Thierfelder and P. Schwerdtfeger. Quantum electrodynamic corrections for the valence shell
in heavy many-electron atoms. Phys. Rev. A, 82:062503, Dec 2010. doi:10.1103/PhysRevA.
82.062503.

[132] LF Pašteka, E Eliav, A Borschevsky, U Kaldor, and P Schwerdtfeger. Relativistic coupled
cluster calculations with variational quantum electrodynamics resolve the discrepancy between
experiment and theory concerning the electron affinity and ionization potential of gold. Physical
review letters, 118(2):023002, 2017. doi:10.1103/PhysRevLett.118.023002.

[133] Neal J Snyderman. Electron radiative self-energy of highly stripped heavy atoms. Annals of
Physics, 211(1):43–86, 1991. doi:10.1016/0003-4916(91)90192-B.

[134] V. M. Shabaev, I. I. Tupitsyn, and V. A. Yerokhin. Model operator approach to the Lamb
shift calculations in relativistic many-electron atoms. Phys. Rev. A, 88:012513, Jul 2013.
doi:10.1103/PhysRevA.88.012513.

[135] Radosław Szmytkowski. Some summation formulae for spherical spinors. Journal of Physics A:
Mathematical and General, 38(41):8993–9005, sep 2005. doi:10.1088/0305-4470/38/41/011.

[136] DIRAC, a relativistic ab initio electronic structure program, Release DIRAC21 (2021), writ-
ten by R. Bast, A. S. P. Gomes, T. Saue, L. Visscher, and H. J. Aa. Jensen, with con-
tributions from I. A. Aucar, V. Bakken, K. G. Dyall, S. Dubillard, U. Ekström, E. Eliav,
T. Enevoldsen, E. Faßhauer, T. Fleig, O. Fossgaard, L. Halbert, E. D. Hedegård, T. Helgaker,
B. Helmich–Paris, J. Henriksson, M. Iliaš, Ch. R. Jacob, S. Knecht, S. Komorovský, O. Kullie,
J. K. Lærdahl, C. V. Larsen, Y. S. Lee, N. H. List, H. S. Nataraj, M. K. Nayak, P. Nor-
man, G. Olejniczak, J. Olsen, J. M. H. Olsen, A. Papadopoulos, Y. C. Park, J. K. Pedersen,
M. Pernpointner, J. V. Pototschnig, R. di Remigio, M. Repisky, K. Ruud, P. Sałek, B. Schim-
melpfennig, B. Senjean, A. Shee, J. Sikkema, A. Sunaga, A. J. Thorvaldsen, J. Thyssen,
J. van Stralen, M. L. Vidal, S. Villaume, O. Visser, T. Winther, and S. Yamamoto (available at
http://dx.doi.org/10.5281/zenodo.4836496, see also http://www.diracprogram.org).

[137] Ayaki Sunaga, Maen Salman, and Trond Saue. 4-component relativistic Hamiltonian with
effective QED Potentials for molecular calculations. To be submitted.

[138] Peter Schwerdtfeger, Lukáš F Pašteka, Andrew Punnett, and Patrick O Bowman. Relativistic
and quantum electrodynamic effects in superheavy elements. Nuclear Physics A, 944:551–577,
2015. Special Issue on Superheavy Elements. doi:https://doi.org/10.1016/j.nuclphysa.
2015.02.005.

https://doi.org/10.1007/s100530050009
https://doi.org/10.1103/PhysRevA.72.052115
https://doi.org/10.1103/PhysRevA.72.042502
https://doi.org/10.1103/PhysRevA.72.042502
https://doi.org/10.1103/PhysRevA.82.062503
https://doi.org/10.1103/PhysRevA.82.062503
https://doi.org/10.1103/PhysRevLett.118.023002
https://doi.org/10.1016/0003-4916(91)90192-B
https://doi.org/10.1103/PhysRevA.88.012513
https://doi.org/10.1088/0305-4470/38/41/011
http://dx.doi.org/10.5281/zenodo.4836496
http://www.diracprogram.org
https://doi.org/https://doi.org/10.1016/j.nuclphysa.2015.02.005
https://doi.org/https://doi.org/10.1016/j.nuclphysa.2015.02.005


BIBLIOGRAPHY 251

[139] Pekka Pyykkö. The Physics behind Chemistry and the Periodic Table. Chemical Reviews,
112(1):371–384, 2012. PMID: 21774555. doi:10.1021/cr200042e.

[140] Werner Kutzelnigg. Solved and unsolved problems in relativistic quantum chemistry. Chem-
ical Physics, 395:16–34, 2012. Recent Advances and Applications of Relativistic Quantum
Chemistry. doi:https://doi.org/10.1016/j.chemphys.2011.06.001.

[141] Kenneth G Dyall, Charles W Bauschlicher Jr, David W Schwenke, and Pekka Pyykkö. Is
the Lamb shift chemically significant? Chemical Physics Letters, 348(5):497–500, 2001. doi:
https://doi.org/10.1016/S0009-2614(01)01162-9.

[142] Wenjian Liu. Handbook of relativistic quantum chemistry. Springer Berlin Heidelberg Berlin,
Heidelberg, 2017. doi:10.1007/978-3-642-40766-6.

[143] Trond Saue and Lucas Visscher. Four-component electronic structure methods for molecules.
In Uzi Kaldor and Stephen Wilson, editors, Theoretical chemistry and physics of heavy and
superheavy elements, pages 211–267. Springer Netherlands, Dordrecht, 2003. doi:10.1007/
978-94-017-0105-1_6.

[144] Günter Plunien and Gerhard Soff. Quantum Electrodynamics of Highly Charged Ions, pages 63–
91. Springer Berlin Heidelberg, Berlin, Heidelberg, 1999. doi:10.1007/978-3-642-58580-7_
3.

[145] J. Rafelski, B. Müller, and W. Greiner. The charged vacuum in over-critical fields. Nuclear
Physics B, 68(2):585–604, 1974. doi:10.1016/0550-3213(74)90333-2.

[146] P. G. Reinhard. Quantum electrodynamics for strong fields and superheavy nuclei. Lettere al
Nuovo Cimento (1969-1970), 3(10):313–318, Mar 1970. doi:10.1007/BF02755762.

[147] P-G Reinhard, W Greiner, and H Arenhövel. Electrons in strong external fields. Nuclear
Physics A, 166(2):173–197, 1971. doi:10.1016/0375-9474(71)90421-0.

[148] L. Gomberoff and V. Tolmachev. Hartree-Fock Approximation in Quantum Electrodynam-
ics. Phys. Rev. D, 3:1796–1804, Apr 1971. URL: https://link.aps.org/doi/10.1103/
PhysRevD.3.1796, doi:10.1103/PhysRevD.3.1796.

[149] VA Yerokhin and VM Shabaev. First-order self-energy correction in hydrogenlike systems.
Physical Review A, 60(2):800, 1999. doi:10.1103/PhysRevA.60.800.

[150] Julian Schwinger. Quantum Electrodynamics. II. Vacuum Polarization and Self-Energy. Phys.
Rev., 75:651–679, Feb 1949. doi:10.1103/PhysRev.75.651.

[151] P. A. M. Dirac. Discussion of the infinite distribution of electrons in the theory of the positron.
Mathematical Proceedings of the Cambridge Philosophical Society, 30:150–163, 1934. doi:
10.1017/S030500410001656X.

[152] M Gyulassy. Non-linear vacuum polarization in strong fields. In Quantum Electrodynamics of
Strong Fields, pages 685–700. Springer, 1983.

[153] F.E. Harris. Mathematics for Physical Science and Engineering: Symbolic Computing Appli-
cations in Maple and Mathematica. Elsevier Science, 2014. doi:10.1016/C2013-0-18495-4.

https://doi.org/10.1021/cr200042e
https://doi.org/https://doi.org/10.1016/j.chemphys.2011.06.001
https://doi.org/https://doi.org/10.1016/S0009-2614(01)01162-9
https://doi.org/https://doi.org/10.1016/S0009-2614(01)01162-9
https://doi.org/10.1007/978-3-642-40766-6
https://doi.org/10.1007/978-94-017-0105-1_6
https://doi.org/10.1007/978-94-017-0105-1_6
https://doi.org/10.1007/978-3-642-58580-7_3
https://doi.org/10.1007/978-3-642-58580-7_3
https://doi.org/10.1016/0550-3213(74)90333-2
https://doi.org/10.1007/BF02755762
https://doi.org/10.1016/0375-9474(71)90421-0
https://link.aps.org/doi/10.1103/PhysRevD.3.1796
https://link.aps.org/doi/10.1103/PhysRevD.3.1796
https://doi.org/10.1103/PhysRevD.3.1796
https://doi.org/10.1103/PhysRevA.60.800
https://doi.org/10.1103/PhysRev.75.651
https://doi.org/10.1017/S030500410001656X
https://doi.org/10.1017/S030500410001656X
https://doi.org/10.1016/C2013-0-18495-4


BIBLIOGRAPHY 252

[154] Robin A Swainson and Gordon WF Drake. A unified treatment of the non-relativistic and
relativistic hydrogen atom II: the Green functions. Journal of Physics A: Mathematical and
General, 24(1):95, 1991. doi:10.1088/0305-4470/24/1/020.

[155] G. A. Rinker and L. Wilets. Vacuum polarization in strong, realistic electric fields. Phys. Rev.
A, 12:748–762, Sep 1975. doi:10.1103/PhysRevA.12.748.

[156] G. Plunien, T. Beier, Gerhard Soff, and H. Persson. Exact two-loop vacuum polariza-
tion correction to the Lamb shift in hydrogenlike ions. The European Physical Journal D
- Atomic, Molecular, Optical and Plasma Physics, 1(2):177–185, Feb 1998. doi:10.1007/
s100530050078.

[157] Miklos Gyulassy. Higher Order Vacuum Polarization for Finite Radius Nuclei: Application to
Muonic Lead and Heavy Ion Collisions. PhD thesis, University of California, Berkeley., jan
1974.

[158] Jan Schlemmer and Jochen Zahn. The current density in quantum electrodynamics in external
potentials. Annals of Physics, 359:31–45, 2015. doi:10.1016/j.aop.2015.04.006.

[159] W. Pauli and F. Villars. On the Invariant Regularization in Relativistic Quantum Theory.
Rev. Mod. Phys., 21:434–444, Jul 1949. doi:10.1103/RevModPhys.21.434.

[160] G. ’t Hooft and M. Veltman. Regularization and renormalization of gauge fields. Nuclear
Physics B, 44(1):189–213, 1972. doi:https://doi.org/10.1016/0550-3213(72)90279-9.

[161] Kerson Huang. A critical history of renormalization. International Journal of Modern Physics
A, 28(29):1330050, 2013. doi:10.1142/S0217751X13300500.

[162] Eberhard Zeidler. Quantum field theory II: Quantum electrodynamics: A bridge between math-
ematicians and physicists, volume 2. Springer, 2009. doi:10.1007/978-3-540-85377-0.

[163] Hans A. Bethe and Edwin E. Salpeter. Quantum Mechanics of One- and Two-Electron Atoms.
Springer Berlin Heidelberg, 1957. doi:10.1007/978-3-662-12869-5.

[164] Rolf Mertig, Manfred Böhm, and Ansgar Denner. Feyn Calc-Computer-algebraic cal-
culation of Feynman amplitudes. Computer Physics Communications, 64(3):345–359,
1991. https://feyncalc.github.io/ and https://feyncalc.github.io/FeynCalcBook/
ref/DiracTrace.html. doi:10.1016/0010-4655(91)90130-D.

[165] Frank WJ Olver, Daniel W Lozier, Ronald F Boisvert, and Charles W Clark. NIST
handbook of mathematical functions. National Institute of Standards and Technology
and Cambridge university press, 2010. URL: https://www.nist.gov/publications/
nist-handbook-mathematical-functions.

[166] George Arfken, Hans J Weber, and F Harris. Mathematical Methods for Physicists. A Com-
prehensive Guide, 2013. doi:10.1016/C2009-0-30629-7.

[167] John David Jackson. Classical electrodynamics. John Wiley & Sons, 3rd edition, 1999.

[168] Eugene Paul Wigner. Gruppentheorie und ihre Anwendung auf die Quantenmechanik
der Atomspektren. Springer Fachmedien Wiesbaden GmbH, 1931. doi:10.1007/
978-3-663-02555-9.

https://doi.org/10.1088/0305-4470/24/1/020
https://doi.org/10.1103/PhysRevA.12.748
https://doi.org/10.1007/s100530050078
https://doi.org/10.1007/s100530050078
https://doi.org/10.1016/j.aop.2015.04.006
https://doi.org/10.1103/RevModPhys.21.434
https://doi.org/https://doi.org/10.1016/0550-3213(72)90279-9
https://doi.org/10.1142/S0217751X13300500
https://doi.org/10.1007/978-3-540-85377-0
https://doi.org/10.1007/978-3-662-12869-5
https://feyncalc.github.io/
https://feyncalc.github.io/FeynCalcBook/ref/DiracTrace.html
https://feyncalc.github.io/FeynCalcBook/ref/DiracTrace.html
https://doi.org/10.1016/0010-4655(91)90130-D
https://www.nist.gov/publications/nist-handbook-mathematical-functions
https://www.nist.gov/publications/nist-handbook-mathematical-functions
https://doi.org/10.1016/C2009-0-30629-7
https://doi.org/10.1007/978-3-663-02555-9
https://doi.org/10.1007/978-3-663-02555-9


BIBLIOGRAPHY 253

[169] Giulio Racah. Theory of Complex Spectra. II. Phys. Rev., 62:438–462, Nov 1942. doi:
10.1103/PhysRev.62.438.

[170] Walter Greiner and Berndt Müller. Quantum mechanics: symmetries. Springer Science &
Business Media, 2nd edition, 2012. doi:10.1007/978-3-642-57976-9.

[171] Claude Cohen-Tannoudji, Bernard Diu, and Frank Laloe. Quantum mechanics, volume
ii: Angular momentum, spin, and approximation methods. Quantum Mechanics, 2, 2020.
Translated from French by Susan Reid Hemley, Nicole Ostrowsky, and Dan Ostrowsky.
URL: https://www.wiley.com/en-us/Quantum+Mechanics%2C+Volume+2%3A+Angular+
Momentum%2C+Spin%2C+and+Approximation+Methods%2C+2nd+Edition-p-9783527345540.

[172] Walter R Johnson. Atomic structure theory. Springer-Verlag Berlin Heidelberg, 2007. doi:
10.1007/978-3-540-68013-0.

[173] Radosław Szmytkowski. Recurrence and differential relations for spherical spinors. Journal of
mathematical chemistry, 42(3):397–413, 2007. doi:10.1007/2Fs10910-006-9110-0.

[174] Wolfram Koepf. Hypergeometric Summation. Springer-Verlag London, 2nd edition, 2014.
doi:10.1007/978-1-4471-6464-7.

[175] A Bechler. Summation formulae for spherical spinors. Journal of Physics A: Mathematical
and General, 26(21):6039–6042, nov 1993. doi:10.1088/0305-4470/26/21/041.

[176] Kenneth G Dyall. Basis sets for the 1s2 ground states of two- electron rare gas ions, December
2015. doi:10.5281/zenodo.5773023.

[177] Kenneth G. Dyall and Knut Fægri. Optimization of Gaussian basis sets for Dirac-Hartree-Fock
calculations. Theoretica chimica acta, 94(1):39–51, 1996. doi:10.1007/BF00190154.

[178] Trygve Helgaker, Poul Jorgensen, and Jeppe Olsen. Molecular electronic-structure theory.
John Wiley & Sons, 2000. doi:10.1002/9781119019572.

[179] Kenneth G. Dyall and Knut Fægri. Introduction to Relativistic Quantum Chemistry. Oxford
University Press, July 2007. doi:10.1093/oso/9780195140866.001.0001.

[180] David F. Feller and Klaus Ruedenberg. Systematic approach to extended even-tempered
orbital bases for atomic and molecular calculations. Theoretica chimica acta, 52(3):231–251,
Sep 1979. doi:10.1007/BF00547681.

[181] Ernest R. Davidson and David Feller. Basis set selection for molecular calculations. Chemical
Reviews, 86(4):681–696, Aug 1986. doi:10.1021/cr00074a002.

[182] Nakhlé H. Asmar and Loukas Grafakos. Complex Analysis with Applications. Springer Inter-
national Publishing, 2018. doi:10.1007/978-3-319-94063-2.

[183] James Ward Brown and Ruel V Churchill. Complex variables and applications. McGraw-
Hill Education, 9th edition, 2009. URL: https://www.mheducation.com/highered/product/
complex-variables-applications-brown-churchill/M9780073383170.html.

[184] L.V. Ahlfors. Complex Analysis . International series in pure and applied mathematics.
McGraw-Hill Education, 3rd edition, 1979. URL: https://books.google.fr/books?id=
2MRuus-5GGoC.

https://doi.org/10.1103/PhysRev.62.438
https://doi.org/10.1103/PhysRev.62.438
https://doi.org/10.1007/978-3-642-57976-9
https://www.wiley.com/en-us/Quantum+Mechanics%2C+Volume+2%3A+Angular+Momentum%2C+Spin%2C+and+Approximation+Methods%2C+2nd+Edition-p-9783527345540
https://www.wiley.com/en-us/Quantum+Mechanics%2C+Volume+2%3A+Angular+Momentum%2C+Spin%2C+and+Approximation+Methods%2C+2nd+Edition-p-9783527345540
https://doi.org/10.1007/978-3-540-68013-0
https://doi.org/10.1007/978-3-540-68013-0
https://doi.org/10.1007/2Fs10910-006-9110-0
https://doi.org/10.1007/978-1-4471-6464-7
https://doi.org/10.1088/0305-4470/26/21/041
https://doi.org/10.5281/zenodo.5773023
https://doi.org/10.1007/BF00190154
https://doi.org/10.1002/9781119019572
https://doi.org/10.1093/oso/9780195140866.001.0001
https://doi.org/10.1007/BF00547681
https://doi.org/10.1021/cr00074a002
https://doi.org/10.1007/978-3-319-94063-2
https://www.mheducation.com/highered/product/complex-variables-applications-brown-churchill/M9780073383170.html
https://www.mheducation.com/highered/product/complex-variables-applications-brown-churchill/M9780073383170.html
https://books.google.fr/books?id=2MRuus-5GGoC
https://books.google.fr/books?id=2MRuus-5GGoC


BIBLIOGRAPHY 254

[185] Maen Salman. Vaccum polarization integral program.
https://gitlab.com/maen.salman/vacuum-polarization-integral.git, 2021.

[186] Marek Nowakowski. The quantum mechanical current of the Pauli equation. American Journal
of Physics, 67(10):916–919, 1999. doi:10.1119/1.19149.

[187] James M Wilkes. The Pauli and Lévy-Leblond equations, and the spin current density. Eur.
J. Phys., 41(3):035402, apr 2020. doi:10.1088/1361-6404/ab7495.

https://gitlab.com/maen.salman/vacuum-polarization-integral.git
https://doi.org/10.1119/1.19149
https://doi.org/10.1088/1361-6404/ab7495

