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Mots-clés: Crowdsourcing, workflow centrés sur les données, assurance de la qual-
ité

Introduction

Avec la génération exponentielle de nouvelles données, les organisations sont con-
frontées a une surcharge d’informations pour gérer les données, concevoir des al-
gorithmes et extraire des connaissances. La plupart des données produites sont non
structurées et se composent d'images, de vidéos et de textes en langage naturel. Elles
doivent étre intégrées, traitées, stockées, indexées, exploitées, suivies et rapportées
pour répondre aux besoins d’'une organisation sur des marchés concurrentiels con-
scients des données. Bien que I'organisation s’appuie sur des mécanismes automa-
tisés alimentés par des algorithmes de gestion de données et d’intelligence artificielle,
I'automatisation compléte est encore loin d’étre acquise. En outre, certaines taches
sont mieux exécutées par des humains, d’autres sont centrées sur 'lhomme (par ex-
emple, les taches de sondage, la collecte de données, etc.). Dans ces cas, 'homme
peut jouer un réle clé dans I'analyse des données, ce qui nécessite une intelligence
naturelle.

Les humains sont capables de comprendre les données sous toutes leurs formes
- texte, image et vidéo. Lacces généralisé a l'internet a ouvert la voie a l'utilisation de
la sagesse de la foule pour traiter les données. Le crowdsourcing est apparu comme
un nouveau paradigme majeur pour résoudre les taches qui requiérent l'intelligence
humaine et qui sont difficiles a résoudre par des machines. Par exemple, les taches
de résolution d’entités, de reconnaissance d’images, d’analyse des sentiments peuvent
étre mieux exécutées en utilisant des acteurs humains. Des plateformes commerciales
comme Amazon Mechanical Turk (AMT), Crowdflower, Foule Factory, etc. offrent un
moyen facile d’engager des internautes et de les récompenser.

En général, toutes les plates-formes de crowdsourcing suivent le méme workflow
d’exécution. Un client a une tache et est prét a I'exécuter sur une plate-forme de crowd-



sourcing. Le client soumet la tache a la plate-forme. La plate-forme de crowdsourcing
attribue ensuite la tache a plusieurs travailleurs. Les travailleurs exécutent la tache en
utilisant leur expertise et leurs convictions, puis renvoient les résultats a la plate-forme.
La plate-forme regroupe, traite les résultats et, en retour, les travailleurs regoivent une
recompense. Apres le traitement, les résultats sont renvoyés au client par la plate-
forme. Le crowdsourcing est utilisé dans divers domaines comme lintelligence artifi-
cielle pour recueillir des données d’entrainement, le traitement de texte, les enquétes,
le marketing en ligne, etc.

Problemes et objectif de la these

La plupart des plateformes de crowdsourcing actuelles telles que 'AMT permettent
la réalisation d’un large éventail de taches. Les taches considérées sont principale-
ment des micro-taches. Les micro-taches sont des taches de petite taille, rapides et
indépendantes qui nécessitent peu de temps de réalisation (tagger une image, répon-
dre a une simple question booléenne, etc.). Cependant, dans la vie réelle, les taches
sont souvent complexes et nécessitent plusieurs niveaux d’expertise. Considérons
une tache complexe: Acquérir des images d’insectes, juger de la qualité de I'image,
annoter I'image de haute qualité en utilisant une taxonomie prédéfinie, puis rédiger
une breve description pour chaque image. Ces tdches complexes sont un véritable
défi. Tout d’abord, un modeéle permettant de définir une tdche complexe en termes
d’orchestration de taches plus petites est nécessaire. Il demande de spécifier la tache
ainsi que d’orchestrer sa réalisation. Lorchestration n’est pas seulement une ques-
tion d’ordonnancement des micro-taches : Les données doivent étre transmises d’'une
micro-tache aux suivantes. De plus, 'ensemble du processus d’exécution doit se ter-
miner par un ensemble correct de résultats. Les réponses fournies par les foules sont
subjectives et sujettes a erreur. Pour atténuer le probleme et maximiser I'exactitude
des résultats, les taches sont généralement réalisées par plusieurs personnes. C’est
pourquoi les réponses provenant de différentes sources doivent étre agrégées. En
outre, une tache complexe est assortie d’'un budget prédéfini qui permet d’engager
des travailleurs et de les récompenser pour la réalisation de la tache. Certaines taches
peuvent nécessiter quelques réponses pour parvenir a un accord, tandis que d’autres
taches complexes (par exemple, les tdches demandant des opinions ou utilisant les
croyances du travailleur) peuvent nécessiter plus de réponses pour construire un résul-
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tat précis. Il faut un mécanisme permettant de dépenser le budget de maniére optimale
et de trouver un compromis entre le colt et la précision. Par conséquent, la complexité
du déploiement de la tache complexe ainsi que I'optimisation du co(t et de la précision
sont en corrélation de maniere complexe, ce qui rend difficile 'optimisation des com-
promis entre eux lors du traitement des données et de la conception d’'un algorithme.

Lobjectif de la thése est de définir des techniques permettant de déployer des ap-
plications complexes en plus des plateformes de crowdsourcing conventionnelles et
de fournir des algorithmes centrés sur les données optimisant le colt et la précision.
Nous relevons ces défis en définissant d’abord des modeéles formels pour des workflow
complexes et en fournissant ensuite des modeles probabilistes pour gérer le compro-
mis entre le colt et la précision. Nous fournissons également un outil permettant de
vérifier les propriétés de terminaison et d’exactitude des workflow complexes.

Modeéle pour les workflow complexes

Outre les simples taches de renseignement humain telles que l'étiquetage des
images, I'analyse des sentiments, les plateformes de crowdsourcing ont la capacité
de réaliser des taches plus complexes. Létape suivante du crowdsourcing consiste a
concevoir des processus complexes en s’appuyant sur les crowds existants. En effet,
de nombreux projets, et en particulier les workflows scientifiques, prennent la forme
d’orchestrations de taches composites de haut niveau. Chaque tache de haut niveau
peut étre considérée individuellement comme une tache de collecte de données, ou
comme le traitement d’'un grand ensemble de données, construit comme l'union des ré-
sultats de micro-taches faciles indépendantes. Toutefois, la coordination de ces taches
de haut niveau pour atteindre I'objectif final nécessite des processus plus évolués. On
peut facilement rencontrer des situations dans lesquelles le résultat d’'une tache de
haut niveau sert d’entrée pour I'étape suivante du processus global : par exemple, on
peut vouloir retirer d’'un ensemble de données des images de mauvaise qualité avant
de demander aux utilisateurs de les annoter. De méme, certaines situations permet-
tent un traitement paralléle de I'ensemble de données suivi d’'une fusion des résultats
obtenus. Un exemple typique est la validation croisée des réponses renvoyées par
différents travailleurs du crowd.

De nombreux projets ne peuvent étre décrits comme des collections de microtaches
répétitives et indépendantes : ils nécessitent des compétences spécifiques et une col-
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laboration entre les participants. Nous appelons de tels projets “complex tasks”. La
forme typique des taches complexes est une orchestration de phases de haut niveau.
Chacune de ces phases requiert des compétences spécifiques, peut étre considérée a
son niveau comme un nouvel objectif en soi et peut étre décomposée en chorégraphies
plus fines, jusqu’au niveau de I'assemblage de micro-taches. Le déroulement de ces
processus est donc dynamique et doit tenir compte des compétences des travailleurs,
de leur disponibilité et des données de sortie produites, mais aussi de leurs connais-
sances sur les processus eux-mémes. Le premier défi consiste a combler I'écart entre
un processus de haut niveau qu’'un demandeur souhaite réaliser et sa mise en ceuvre
en termes de composition de micro-taches. Passer d’'un niveau de description a I'autre
n’est pas facile, et nous préconisons I'utilisation de I'expertise de la foule pour un tel
raffinement. Cela peut étre réalisé avec des réponses d’ordre supérieur, permettant a
un travailleur bien informé de renvoyer une orchestration de taches plus simples au
lieu d’'une réponse nette a immédiate question.

La premiére contribution de la these est un modéle de workflow centré sur les don-
nées, appelé workflow complexe, pour spécifier, vérifier et déployer des taches com-
plexes sur une plate-forme de crowdsourcing existante. Le modéle fournit des con-
structions de haut niveau qui permettent la conception de taches complexes, décrites
comme une orchestration d’'un ensemble de taches simples, et gere en outre les com-
pétences des travailleurs, la dépendance aux données et les contraintes liées aux
taches. Il permet I'exécution de taches, qui sont soit des taches automatisées qui trans-
forment des ensembles de données, soit des taches réalisées par un travailleur. En
outre, les travailleurs peuvent proposer de raffiner une tache complexe qui semble trop
complexe pour étre réalisée par un seul travailleur de la foule. Ce raffinement est spé-
cifié comme des actions d’ordre supérieur qui permettent de remplacer une tache par
un workflow fini. Nous avons défini la syntaxe et la sémantique du modele. Les taches
sont classées en trois catégories : les taches atomiques (peuvent étre réalisées en une
seule étape par le travailleur), les taches complexes (doivent étre décomposées en une
orchestration de taches plus petites) et les taches automatisées (taches réalisables par
la machine). Un workflow complexe est étiqueté comme un graphe acyclique dirigé ou
chaque nceud est mis en correspondance avec une tache et les bords représentent la
relation de priorité sur I'exécution des taches. Nous fournissons ensuite quatre regles
sémantiques qui servent de principe directeur pour le workflow. Les régles séman-
tiques définissent : l'attribution de taches a des travailleurs libres, I'exécution d’'une
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tache atomique par un travailleur, I'exécution d’'une tache automatisée, et formalise le
raffinement. Le raffinement d’'un nceud marqué a une tache complexe par un travailleur
remplace le nceud par un nouveau workflow qui contient un ensemble de taches rem-
plissant de maniére composite I'objectif du nceud raffiné. Lexécution d’'un workflow
complexe consiste en I'application de taches selon I'ordre prescrit par le workflow. Les
taches prennent en entrée les ensembles de données produits par leur prédécesseur
dans le workflow, et produisent de nouveaux ensembles de données, ou affinent le
workflow actuel.

Décidabilité

Un workflow complexe est défini par un ensemble de regles sémantiques pour ré-
partir les travailleurs, orchestrer et exécuter les taches. Cependant, un workflow peut
ne jamais atteindre une configuration finale. Cela peut étre d0 a la saisie de don-
nées particulieres par les travailleurs qui ne peuvent pas étre traitées correctement
par le workflow, ou a une réécriture infinie apparaissant pendant I'exécution. Dans de
tels cas, le workflow peut se trouver dans une impasse. Cette impasse bloque le flux
d’exécution du workflow et empéche d’atteindre I'objectif final. Méme lorsqu’un work-
flow termine toujours, cette propriété seule ne suffit pas a répondre a I'exigence du
client. Par exemple, un workflow 1 peut se terminer, mais avec un mauvais ensemble
de résultats, c’est-a-dire des résultats qui ne sont pas conformes aux exigences du
client. Dans ce cas, la sortie retournée n’est d’aucune utilité pour le client. Il est donc
important de garantir I'exactitude du workflow en méme temps que sa terminaison.

Nous examinons les propriétés formelles du modele, en commencant par la ques-
tion de la terminaison: Etant donné un workflow complexe, un ensemble de travailleurs
avec leurs profils et les transformations de données sous-jacentes, un workflow se
termine-t-il pour au moins une seule exécution (terminaison existentielle) et pour toutes
les exécutions d’un workflow (terminaison universelle) ? Nous avons établi que la termi-
naison existentielle est en général indécidable en raison de la partie contréle du work-
flow (les workflow complexes peuvent simuler deux contre-machines). D’autre part,
la terminaison universelle est décidable, et nous avons présenté un sous-ensemble
intéressant du modéle pour lequel la terminaison existentielle est décidable. Plus pré-
cisément, nous limitons le nombre de raffinements des taches qui peuvent se produire
pendant I'exécution d’un workflow complexe et supposons que le workflow n’a pas
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de réécriture récursive des taches. Ensuite, la terminaison se résume a la réalisation
de dépendances de données dans un ensemble fini d’exécutions du workflow. Nous
donnons un algorithme pour vérifier la terminaison d’'un workflow complexe avec une
récursion limitée basée sur une dérivation de plus faible précondition. Les plus faibles
préconditions ont été introduites dans [Dij75] et constituent un moyen formel de prou-
ver I'exactitude d’'un programme. Nous montrons que des fragments de FO sont fermés
sous le calcul de précondition. Ensuite, nous examinons la question de la correction
d’'un workflow, qui est satisfaite si un worklow se termine et que le résultat produit
répond aux contraintes des données fournies par le client. Encore une fois, si les con-
traintes de sortie sont exprimées en fragments de FO décidables, correctin d’'un work-
flow complexe est décidable. Nous présentons également I'analyse de la complexité
de la terminaison et de la correction du workflow. Nous constatons que la complex-
ité en (co)-2EXPTIME pour les fragments ayant la complexité la plus faible provient
principalement de la taille exponentielle de la formule décrivant les préconditions qui
doivent étre satisfaites dans la configuration initiale. Cela peut étre considéré comme
une complexité intraitable, mais on peut cependant s’attendre a ce que la récursion
dans les workflows complexes soit bornée (avec une borne assez petite) ce qui devrait
rendre les analyses de terminaison et correction faisables.

Assurance Qualité pour les Taches Atomiques

Le modéle de workflow complexe proposé permet de spécifier des taches com-
plexes avec des workflow et peut vérifier 'exactitude, la terminaison sur un sous-
ensemble raisonnable du modele, principalement des spécifications non récursives.
Un workflow fournit un moyen efficace de synchroniser des taches complexes sous la
forme de différentes phases pour atteindre les objectifs d’'un client. lls définissent la
maniére dont les tadches sont décomposées, ordonnées et exécutées. Cependant, ils
ne fournissent pas de mécanismes pour garantir la qualité des données produites par
le workflow. Le processus de vérification ne permet pas non plus de prendre en compte
le colt d’un workflow. En général, les taches de la plate-forme de crowdsourcing sont
assorties d’un budget fixe fourni par le client. Nous considérons d’abord le co(t et la
qualité des données produites pour une seul tache atomique consistant a analyser des
données dans un dataset, et ou chaque enregistrement peut étre étudié par plusieurs
contributeurs.
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Dans le crowdsourcing, les travailleurs sont trés hétérogenes : ils ont des origines
différentes, un domaine d’expertise. Comme nous ne pouvons pas faire confiance a
un seul contributeur et pour faire face a cette hétérogénéité, les taches sont souvent
reproduites. Un probléme fondamental consiste a déduire une réponse correcte a partir
de I'ensemble des résultats renvoyés. Un autre défi est d’obtenir une réponse fiable
a un colt raisonnable. Un budget illimité permet de disposer d’'un grand nombre de
travailleurs pour chaque tache, mais un budget limité oblige a utiliser au mieux les
ressources.

Nous proposons une technique d’agrégation pour les plateformes de crowdsourc-
ing. Nous considérons les deux facteurs clés que sont la difficulté de la tache et
I'expertise des travailleurs, exprimés en termes de rappel et de spécificité pour mod-
éliser la réponse a une tache produite par un travailleur. Lagrégation est basée sur
I'algorithme d’Expectation Maximization [DLR77] et estime conjointement les réponses,
la difficulté des taches et I'expertise des travailleurs. Parallélement, nous proposons
également CrowdInc, une technique d’étiquetage itérative qui optimise le colt global
de la collecte des réponses et de leur agrégation. Lalgorithme met en ceuvre une poli-
tique de répartition des travailleurs qui prend des décisions a partir d’'un seuil de qualité
dynamique calculé a chaque cycle, ce qui permet d’obtenir un bon compromis entre
le colt et la précision. Nous évaluons l'algorithme sur des ensembles de données
réels pour valider notre approche. Nous montrons sur plusieurs points de référence
que CrowdInc atteint une bonne précision, réduit les colts, et nous comparons ses
performances aux solutions existantes.

Assurance Qualité pour les Workflow Complexes

Aprés avoir défini un algorithmeun algorithme permettant d’optimiser le codt et la
précision pour une seule phase, nous étendons l'algorithme de compromis entre le
co(t et la précision congu au chapitre précédent aux workflows complexes. Une tache
dans un workflow peut étre réalisée de deux maniéres, a savoir I'exécution synchrone
(une tache traite I'intégralité de ses données d’entrée avant d’envoyer le résultat a la
suivante) et asynchrone (une tache envoie a la suivante des données dés qu’elles
sont prétes). Nous ajoutons la notion de phase a notre modele et nous en revoyons
la sémantique pour tenir compte de la réplication des taches et de I'agrégation des
réponses. Nous étudions ensuite les défis posés par ces deux types d’exécution. Nous
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utilisons l'algorithme d’agrégation pour une tache atomique dans le cadre d’'un work-
flow. Nous montrons que différents mécanismes de seuil sont nécessaires pour les
deux types d’exécution. Lexécution synchrone nécessite une politique de seuil locale
qui dérive un seuil par rapport aux taches et au budget alloué a une phase. En re-
vanche, I'exécution asynchrone nécessite une politique de seuil globale qui détermine
le seuil par rapport a toutes les taches des différentes phases et au budget total. En-
fin, nous comparons nos résultats avec les approches classiques de crowdsourcing et
nous constatons que la technique proposée permet d’obtenir au moins la méme préci-
sion qu’une technique utilisant la majorité en mode synchrone avec un budget réduit.
Dans la plupart des contextes, cependant, I'approche proposée permet d’économiser
une partie du budget. Nous présentons I'analyse des colts et de la précision et les
résultats dans différentes configurations.

Platform

La derniére contribution de cette these est un outil appelé Crowdplex qui implé-
mente les algorithmes d’analyse de terminaison et de correction présentés dans les
chapitres précédents
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CHAPTER 1

INTRODUCTION

With the exponential generation of new data, organizations struggle with the in-
formation overload to manage data, design algorithms, and to extract knowledge. Al-
most 90% of the data that are present today are unstructured. It consists of images,
videos, and natural language texts. It needs to be integrated, processed, stored, in-
dexed, mined, tracked, and reported to meet the business needs of an organization
in data-aware competitive markets. While the organizations rely on automated mech-
anisms powered by data management and artificial intelligence algorithms, complete
automation is still decades far away. Also, some tasks are better performed by humans
and are human-centric (for example, polling tasks, data collection, etc.). In these cases,
humans can play a key role to analyze the data which requires natural intelligence.

Humans are good at understanding data in all forms text, image, and video, and can
process, analyze data that are still hard for computers to apprehend. The widespread
availability of the internet has paved the way to use the wisdom of the crowd to process
the data. The term crowdsourcing is made of two words crowd and sourcing and the
idea is to outsource the tasks to the human crowd to obtain data, ideas, and answers.
A definition for crowdsourcing was proposed in [EAGLDG12].

Definition 1 (Crowdsourcing). Crowdsourcing is a type of participative online activity
in which an individual, an institution, a nonprofit organization, or company proposes to
a group of individuals of varying knowledge, heterogeneity, and number, via a flexible
open call, the voluntary undertaking of a task. The undertaking of the task of variable
complexity and modularity and in which the crowd should participate, bringing their
work, money, knowledge **[and/or]** experience, always entails mutual benefit. The
user will receive the satisfaction of a given type of need, be it economic, social recog-
nition, self-esteem, or the development of individual skills, while the crowdsourcer will
obtain and use to their advantage that which the user has brought to the venture, whose
form will depend on the type of activity undertaken.
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Crowdsourcing platforms such as Amazon Mechanical Turk (AMT) [Amta] is one of
the most popular online marketplaces which promises to have millions of workers; other
platforms include wirk [Wir], Figure Eight [Cro], 99designs [99d], Clickworker [Cli], etc.
The workers receive incentives (money, goodies, motivation, ...) to realize the tasks at
crowdsourcing platforms [Kuc+16]. The global crowdsourcing market was valued US $
9, 519.53 million in 2018 and is expected to reach US $ 154, 835.74 million by 2027
and is growing at an average rate of 36.5% [Glo]. The availability of fast internet ser-
vices has pushed the boundaries of these platforms to hire cheap and reliable workers
throughout the world. The rapid growth of crowdsourcing introduces economical, legal,
philosophical, and ethical issues related to the type of services, the nature of the task,
the worker’s activity, working environment, worker pay schemes, etc. [Sch13]. We do
not take a position on ethical aspects. This thesis only concerns the technical aspects
of crowdsourcing.

The crowdsourcing mechanism is simple and is shown in Figure [1.1] A client has a
task and is willing to execute it at a crowdsourcing platform. The client submits the task
to the platform. Then the crowdsourcing platform allocates the task to several workers.
The workers execute the task using their expertise and beliefs and then return the
results to the platform. The platform aggregates, processes the results, and in return
workers receive the incentives. After the processing, the results are returned to the
client by the platform.

Crowdsourcing [ Crowd Workers J
Platform
Submits the task Assigns the task
O ?

JAVA LAAY’ g

‘ Client has a task ‘

Returns the results
to client

-

)
(]
[=]
c
-
o
(7]
=3
=
(]
g
=

| ‘ Returns the results ‘

@

’ Processes the results ‘ ‘ Incentives are paid ‘

Figure 1.1 — Crowdsourcing mechanism.
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Crowdsourcing has been applied in various domains. We list below several applica-
tions:

— Al - Training Data: Crowd workers are asked to tag images, videos with a partic-
ular label. The other tasks include speech recognition, audio tagging, and video
analysis [HZS17; |[Esk+13].

— Text Processing: Humans expertise is used for entity resolution [BT06], senti-
ment analysis [Liu12], spam identification, product description, glossary & dic-
tionaries, company profiles, blog articles and translations [KWD10].

— Surveys: Survey of a particular topic are easier to realize via crowdsourcing plat-
forms which provide a wide variance of crowd workers within a few clicks [Beh+11].

— Search: Most search engine Google [Goo|, Bing [Bin], Yahoo [Yah] require hu-
man workers to validate and improve the search results [Mor19};|LGC15].

— Industry Solutions: The crowdsourcing platforms are used for online marketing,
E-commerce, and advertisements [PCZ15]. For example, crowdsourcing is used
to analyze the reviews which are hard for computers to process [Wu+15].

— Research: Projects such as Foldlt [Fol], a participatory science project where
human workers contribute to solving puzzles of protein unfolding.

— Knowledge platforms: StackExchange [Sta], Quora [Quo] relies on human worker
expertise to build collaborative knowledge intensive platforms.

Most of the current crowdsourcing platforms such as AMT allows the realization of
a large batches of tasks. The task considered are mainly micro-tasks. Micro-tasks are
small, quick, and independent tasks that require a small amount of time to complete
(tagging an image, answering a simple boolean question, etc.). However, in real life,
tasks are often complex and require several different skills of the workers (not only one
as specific to micro-tasks). Consider a complex task: Gather insect images, judge the
image quality, annotate the high-quality image using a pre-defined taxonomy, and then
write a brief description for each image. Such intricate tasks are challenging. First, a
model to define a complex task in terms of orchestrations of smaller tasks is required.
It demands to specify the task as well as to orchestrate its realization. Orchestration is
not only a question of scheduling micro-tasks: The data needs to be forwarded from
one micro-task to the following ones. Also, the whole execution process should termi-
nate with a correct set of outputs. The answers provided by the crowds are subjective
and error-prone. To alleviate the problem and to maximize accuracy, generally, tasks
are realized by several workers. Hence the answers from different sources need to be
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aggregated. Additionally, a complex task comes with a pre-defined budget that allows
hiring workers and rewarding them for the task realization. Some tasks may require
a few answers to reach an agreement, while other intricate tasks (for instance, tasks
calling for opinions or using worker’s beliefs) may require more answers to forge an
accurate result. It demands some mechanism to spend the budget in an optimized
way enabling a trade-off between cost and accuracy. Hence, the complexity of deploy-
ment of the complex tasks along with the optimization of cost and accuracy correlates
in complex ways. It is hence difficult to optimize the trade-offs between cost and ac-
curacy, and at the same time guarantee progress and termination of a complex task
distributed to crowd.

The objective of the thesis is to define techniques to deploy complex applications on
top of conventional crowdsourcing platforms and to provide data centric algorithms
optimizing cost and accuracy. We address these challenges by first defining formal
models for complex workflows and then providing probabilistic models to handle the
trade-off between cost and accuracy. We also provide a tool to check the termination
and correctness properties of complex workflows.

1.1 Thesis Overview and Contribution

The existing crowdsourcing systems come with limited functionalities. The major
limitation for such a system is the only support for micro-tasks execution. Irrespective
of task intricacies, the crowdsourcing platforms call to shape the tasks as a batch
of micro-tasks. The batches are handled independently with a simple pipeline. Each
micro-task is extracted from the batch, affected to a worker in the crowd. The answer of
the worker is added to an output batch. No information exchange between micro-tasks
can occur in such a setting. One can only work with this kind of task deployment if
tasks are independent work units, i.e. they can be realized in any order, and there is
no data dependency between micro-tasks. However, real-world projects are complex
and need several phases to be realized. One can also notice that many contexts (for
instance text writing applications) call for data exchanges to reach the final objective of
the overall process. Our goal is hence to build a human-powered data-driven system
to realize complex tasks on top of a conventional crowdsourcing system.
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The first contribution of the thesis is a model to specify and deploy complex tasks
relying on existing crowdsourcing platforms. Complex tasks with pre-defined final ob-
jectives require step-wise processing of tasks in several phases. Each phase has an
individual goal. As for example, a phase goal is to annotate a set of images as clear
or blur while, the next phase considers only the clear images as input from the prede-
cessor phase and is assigned the goal to categorize the image into particular taxon-
omy. The phases may have different prerequisites: some phases may require a general
worker while others may require an expert one. The phases depend on each other and
exchange data. We model complex tasks as workflow orchestrating sub-tasks. The
orchestration as sub-tasks can be realized by workers, i.e., we consider higher-order
answers in which a crowd worker does not realize a task by returning plain answers,
but rather answer by returning a complex orchestration allowing to obtain the expected
answer. We define a model called complex workflows, which is used to orchestrate
different parts of complex tasks. In addition to workflow-based tasks-coordination, we
allow for the definition of worker’s skills, input data (constraints on possible inputs), and
higher-order answers, addressed as rewriting rules.

Orchestrations of complex tasks and higher-order answers come with challenges.
Higher order allows answers of workers defining how to obtain answers rather than
crisp data. Given input data provided by the client, Complex workflow use the knowl-
edge and skills of crowd workers to complete a complex task i.e. realize successive
phases of a complex process, hire workers, collect answers, process data, and return
the final result to client. However, a workflow may never terminate. It can be due to
particular data input that cannot be processed properly by the workers or to infinite
recursive schemes appearing during the execution, to deadlocked situations due to
missing worker competencies. One challenge is to decide whether a complex orches-
tration of tasks always terminates for a particular input dataset, or for all input datasets
that meet some constraints (such as constraint on domains used). In practice, one does
not want wrong data or wrong choices of workers to block a task realization, but this
can nevertheless occur. First the question is whether the orchestration can terminate:
if this is not the case, then the task definition should be considered ill-formed. Second
challenge is to guarantee that the workflow gives correct output at each of the phases
and at the end produces the desired output data as required by the client. We address
the question of existential termination (at least one execution of the workflow produces
a final result) and of universal termination (all executions of the workflow terminate).
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The second result of this thesis is that existential termination is undecidable in gen-
eral and on the other hand, universal termination is decidable. We then show that, when
restricting the number of refinements of tasks, existential termination becomes decid-
able. Then, termination boils down to the satisfaction of data dependencies between
inputs and outputs of each step in a finite set of runs of the workflow. These dependen-
cies can be expressed in a decidable fragment of first-order (FO) formula. We address
termination as a question of satisfiability of a series of weakest preconditions for a run.
We show that many fragments of FO are closed under the calculus of weakest pre-
condition. This allows for the construction of algorithms to check the realizability of a
particular run from the initial configuration of the workflow to a final successful one. This
algorithm is then used to prove the decidability of universal termination and existential
termination for specifications with bounded recursion. We also consider the question
of correctness that holds if a workflow terminates and the produced output meets con-
straints on data provided by the client. Again, if output constraints are expressed in
decidable fragments FO, correctness is decidable.

Workflow provides an efficient way to synchronize complex tasks in the form of dif-
ferent phases to achieve business goals. Nevertheless, a workflow alone is not enough
to fulfill important non-functional requirements such as the accuracy of the data pro-
duced, and the cost for the realization of the workflow. As a third contribution of the
thesis, we consider a divide and conquer philosophy and focus on a cost and accuracy
trade-off for tasks achieved by replication of a single micro-task. We address trust in
this setting by replicating the considered micro-task as much as needed, i.e. we hire
new workers from the crowd to get new answers, and aggregate the collected answer
as long as a certain confidence level is not reached and as long as the overall bud-
get for this task allows it. To alleviate the problem, we allocate each of the tasks to a
set of workers and the goal is to somehow combine the given answer set to reach a
final consensus. The simplest approach for aggregation is Majority voting. We however
show that majority voting is not a good approach both in terms of cost and accuracy.
Similarly, we show that statically allocating as many workers as allowed by a budget to
tag their subset of record from an input dataset is not a good way to address cost. We
propose an aggregation technique, that considers answers returned by workers, but
also various hidden variables such as task difficulty and workers accuracy. We define
an expectation maximization (EM) based algorithm to derive the value of hidden vari-
ables and compute final aggregated answers with a confidence score. We handle cost
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by a dynamic allocation policy that hires new workers to tag records with a low con-
fidence score. We demonstrate that the EM aggregation combined with the dynamic
worker allocation algorithm outperforms the existing approaches both in terms of cost
and accuracy.

The fourth contribution of the thesis builds on the algorithm to optimize cost and
accuracy for a single-phase and extends the results to complex workflows. Addressing
cost and accuracy for orchestrations of tasks is more complex than for replication of
a single micro-task. First, there exist two possible approaches to execute a complex
workflow, namely a synchronous approach, and an asynchronous one. In synchronous
execution, after completion of tasks tagged with records appearing in a dataset. (e.g.
after tagging all images provided), all records move to the next phase(s). On the other
hand in asynchronous execution of the workflow, records are forwarded to the next
phase(s) of a workflow as soon as they are considered as processed. We show that
modes of execution require different trade-off mechanisms in terms of cost and accu-
racy. We propose dynamic worker hiring policies that build on the EM algorithm shown
before. This allows for the optimization of cost and accuracy in the context of syn-
chronous and asynchronous workflow realization. We show the pertinence of the pro-
posed algorithms on samples composed of different workflows, pools of workers with
different expertise, and different characteristics of data.

The last contribution of this thesis is a tool to verify the specification of the com-
plex workflow. The tools take as input a specification of workflow in terms of nodes,
tasks, workflow, workers, workers skills, task constraints, and data. The tool derives
the minimum condition required to process the input data at each node and check the
satisfiability of the formulas. The tool checks satisfiability of the weakest preconditions
that are necessary to terminate execution, starting from the final nodes of the workflow,
and ending on the initial node. If all weakest preconditions met when moving backward
from a final node are satisfiable, then the followed path witnesses a terminating run.
We use this technique to prove universal termination and existential termination of non-
recursive specifications.
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1.2 Outline

The thesis is organized as follows. The state of the art (Chapter [2) introduces the
models and notations needed in the document and presents the works related to the
contents of the thesis. We do a brief survey on crowdsourcing, marketplaces, and cur-
rent mechanisms followed by industry. We then present a detailed study on different
works on the orchestration of tasks and languages; particularly we address process-
centric approaches, artifact-centric approaches, Petri net-based models, active XML,
and UML-based languages. Data is the core of our model. We present different ways
to handle data in the context of our thesis. We recall the basics of first-order logic, dat-
alog, SQL and weakest preconditions. We then survey the literature on cost and quality
trade-offs in crowdsourcing.

Chapter [3| presents the formal semantics of a model designed to specify complex
tasks. We define components for a workflow: client, tasks, skills, task prerequisite, and
data. We then introduce the formal semantics and rules for the workflow. We also intro-
duce higher-order constructs and show on use cases how these higher-order answers
can be used to capture the knowledge of crowd workers.

Chapter[4]addresses the questions of termination and correctness of complex work-
flows. We show that existential termination is undecidable in general and on the other
hand, universal termination is decidable. We also show that by restricting the number
of refinements of tasks, existential termination becomes decidable. This restricts the
workflow to an orchestration of a bounded number of tasks. We give an algorithm to
check termination of a complex workflow with bounded recursion based on the deriva-
tion of the weakest precondition. Next we consider the question of correctness that
holds if a workflow terminates and the produced output meets constraints on data pro-
vided by the client. Again, if output constraints are expressed in decidable fragments
FO, correctness is decidable. We analyze the complexity of decidable termination and
correctness problems of the workflow. We also show a tool named CrowdPlex, de-
signed to check the termination of a complex workflow. We explain the building blocks
used by the tool to check termination.

In Chapter 5], we introduce our cost and accuracy trade-off model for crowdsourcing
of a single task. We first study the aggregation problem: infer the correct final answer
from a given set of answers provided by workers. We consider the two key factors diffi-
culty of a task, and expertise of workers, expressed in terms of recall and specificity to

9



Chapter 1. Introduction

model the task answer-ability by a worker. Aggregation is based on expectation maxi-
mization algorithm which jointly estimates the answers, the difficulty of tasks, and ex-
pertise of workers. We propose an algorithm called Crowdinc, an incremental labeling
technique that optimizes the overall cost to collect answers and aggregate them. The
algorithm implements a worker allocation policy that takes decisions from a dynamic
threshold computed at each round, which helps to achieve a good trade-off between
cost and accuracy. We evaluate the algorithm on real datasets to validate our approach.
We show that our aggregation approach outperforms the existing state-of-the-art tech-
niques. We also show that the incremental crowdsourcing technique achieves the same
accuracy as EM with the static allocation of workers, better accuracy than majority vot-
ing, and in both cases at considerably lower costs.

Chapter [g] extends the algorithm of Chapter [5 to the complex workflow setting. A
task in a workflow can be realized in two ways, i.e. synchronous and asynchronous
execution. We add the notion of phase to our complex workflow model and revisit
its semantics. We then study dynamic worker allocation for synchronous and asyn-
chronous workflows realization. At last, we compare our results with the conventional
crowdsourcing approaches and find the proposed technique achieves at least same ac-
curacy with a reduced budget. We present the cost and accuracy analysis and results
in different configurations.

Finally, we conclude the thesis in Chapter [7| with a summary of achieved results,
discussion, possible improvements and we define future research directions.

10



CHAPTER 2

STATE OF THE ART

We organize the chapter as follows: we first introduce crowdsourcing marketplaces
and challenges in context to the thesis. We then discuss the orchestration of tasks, lan-
guages, and data aspects. In the end, we brief about the cost and quality assurances
in crowdsourcing.

2.1 Crowdsourcing Marketplaces

With the advent of web 2.0, a large number of platforms have emerged in the last
decade that uses the power of the crowd to solve problems. In this thesis, we particu-
larly focus on the platforms which use human as data processors. For example, data
can be a set of images and the task is to annotate each of the images with a tag cho-
sen from a particular taxonomy. Here, human acts as a data processor that takes some
data as input and return the processed output, i.e. tagged data.

There exists numerous crowdsourcing marketplaces where requesters post their
tasks and workers realize tasks in exchange for some incentives. The major platform in-
cludes Amazon Mechanical Turk [Amtal], wirk [Wir], Figure Eight [Fig], 99designs [99d]
and Clickworker [Cli]. Consider the most well-known platform, AMT. The platform real-
izes almost five million tasks each year with an incentive between one and ten cents
per task [Ipe10]. Amazon borrows its name from a chess-playing machine named Me-
chanical Turk constructed by Wolfgang von Kempelen in the late 18th century that
toured Europe beating both Napoleon Bonaparte and Benjamin Franklin. The machine
was a hoax and a mechanical illusion that allowed human chess masters to hide inside
to operate the machine. Atrtificial intelligence promises to solve problems that require
intelligence and natural understanding. However, in present times, such automation is
not possible for all types of tasks and still requires human intelligence. In a similar vein
and perhaps to banter, amazon coined the platform AMT as artificial artificial intelli-
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__Find HITs Now _ Get Started

or learn more about being a Worker

Figure 2.1 — Screenshot from Amazon Mechanical Turk.

gence as a process to outsource some parts of the program to humans. The online
service uses remote human workers to hide behind the machine to help requesters
to realize tasks that are still hard for computers to solve. Most of the workers at AMT
come from the United States and India [Ros+10].

The blueprint and design of each platform vary, but in general, follow similar steps.
Consider the example of AMT. The platform stakeholders are requesters and crowd
workers, as depicted in Figure[2.1] A requester publishes his tasks on the AMT platform
and decides how much to pay to each worker for each assignment. The tasks at AMT
are called Human Intelligence Tasks (HIT) and generally require a very small amount
of time to realize. The minimum fee is $0.01 per assignment. The MTurk platform takes
20% fee on the total reward [Amtb]. A requester may also grant some bonus after the
realization of the task based on the performance of the worker. The tasks are published
on the platform with descriptions as requester name, expiration date, the time allotted,
and rewards as depicted in Figure For some of the tasks, the requester can also
require a qualification test. The crowd workers visualize the tasks on the platform and
bid for the tasks. In the end, the workers who realize the task in the given time frame
are awarded incentives and extra bonuses.

Figure Eight (formerly known as Dolores Lab, CrowdFlower) [Cro] is another pop-
ular platform. It comes with a more user-friendly interface, its crowd, and its built-in
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MIT User Interface Design Group | |
57 HIT:

amazonmechanical turk

147,50
Your Account HITs Qualifications it bie now
AllHITs | HITs Available To You | HITs Assigned To You
HITs + 0.00 | (co)
All HITs
Sortby: | HITs Available (most first) L G0} s | Hide all details 12345 > Next » Last
(3 questions about vour city UNDER 230,000 population only = $0.17 bonus!*** - qualification instantly aranted (no wait) ~Request Qualification (Why?) | View a HIT in this group
Requester: WSOVC COM HIT Expiration Date: May 31, 2012 (4 weeks) Reward: $0.00
Time Allotted: 2 hours HITs Available: 23327
“Provide the Google Search Ranking for a Specified URL (CA) Not Qualified to work on this HIT (Why?) | View a HIT in this group
Requester: CrowdSource HIT Expiration Date: May 3, 2013 (52 weeks) Reward: $0.05
Time Allotted: 30 minutes HITs Available: 15004

[ Provide the Google Search Ranking for a Specified URL (US)

Requester: CrowdSource HIT Expiration Date: May 3, 2013 (52 weeks) Reward: $0.05
Time Allotted: 30 minutes HITs Available: 15003

[ Give Your Opinion - Simple and Quick! (US View a HIT in this aroup
Requester: CrowdSource HIT Expiration Date: May 3, 2013 (52 weeks) Reward: $0.16
Time Allotted: 32 minutes HITs Available: 15002

" 1 this Twitter account for an Individual?

Requester: CrowdFlower HIT Expiration Date: May 9, 2012 (6 days 8 hours) Reward: $0.06

Time Allotted: 60 minutes HITs Available: 7855

Figure 2.2 — Screenshot from Amazon Mechanical Turk task list. The list presents a set
of tasks, expiration date and intended reward.

features. The platform is more focused to provide large volumes of world-class train-
ing data to Al engines. Wirk [Wir], a subsidiary of Foule factory is a french platform
that provides optimized resources, monitor and steering, service audits, workflow de-
sign along a community of 50,000 freelancers. This thesis is realized in the context
of HEADWORKI[|] ANR project with active participation and support of the wirk plat-
form. Other platforms such as Freelancer [Fre] and Upwork [Upw] provide an expert
workforce that receives higher incentives.

Apart from commercial crowdsourcing platforms, there exist other academic and
community platforms. Foldlt [Fol], is a popular citizen science experimental research
project developed by the University of Washington. It provides an online puzzle video
game about protein unfolding and has around 240000 registered players. The objective
of the game is to fold the structures of selected proteins as perfectly as possible using
the provided tools as depicted in Figure [2.3] The platform gained its popularity when
a non-expert worker discovered a new protein unfolding and led to several scientific
publications. The paper published in nature [Kha+11}; Coo+10] credited FoldIt’s 57000
players that provided useful results that matched or even outperformed algorithmically
computed solutions.

1. This work was supported by the Headwork ANR project (ANR-16-CE23-0015)
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Figure 2.3 — Screenshot from Foldlt interface.

2.2 Crowdsourcing Space

Crowdsourcing has increased the number of problems that are solvable in a semi-
automated way, even if they are still inherently hard to solve for a computer, at least in
a foreseeable future. However, there exist several challenges to give its full potential to
crowdsourcing. A crowdsourcing system builds on many paradigms. Trust and manage-
ment of workers directly impact the execution of tasks in crowdsourcing systems. Sev-
eral workers have considered trust in crowdsourcing [Yu+12]. Crowd trust [YWL15] is
a context-aware trust model for worker selection in crowdsourcing environments. Skills
mapping is another paradigm that is widely studied in crowdsourcing and includes tech-
niques such as hierarchical taxonomy-based skill mapping in form of tree [MGAM16],
self-assessment-based worker allocation [Gad+17]. Task design of the crowdsourc-
ing system is another dimension that directly impacts the understanding and execu-
tion of the task [ZLH11}; [Fin+13; BW18]. Another interesting paradigm is query pro-
cessing. CrowdDB [Fra+11] proposes a query processor which takes human input via
crowdsourcing to process queries that neither search engines nor database system
can answer. A more sophisticated query processer is Deco [Par+12] which proposes
a database system for declarative crowdsourcing. Declarative crowdsourcing hides the
complexities to retrieve the data. The user is only required to submit a SQL-like query
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Partition

Reduce Reduce

Final

Figure 2.4 — Crowdforge Framework: Splitting up and recombining complex human
computation tasks based on map-reduce model, extracted from [Kit+11].

and the platform compiles the query, generates the execution plan, and gets answers
from the crowd. It relieves the user of the burden of dealing with the crowd and re-
turns data as an output of a submitted SQL-like query. Workers contributing to a task
receive incentives [ZLM14; KSK16; Dan+18|]. The more workers contribute to a task,
the more reliable the result. However, as incentives are paid, tasks usually come with a
limited budget, which calls for trade-offs between the cost of a task realization, and the
achieved accuracy [Dan+18]. We discuss in detail the cost-accuracy tradeoff in Sec-
tion 2.5 There exists a large number of comprehensive surveys describing aspects of
crowdsourcing [QB11};|CCAY16; Mao+17;|GM+16;|Li+16a]. In this thesis, we do not ad-
dress all challenges related to crowdsourcing and focus on the execution of a complex
task which is the primary topic of the thesis.

Existing crowdsourcing platforms are mainly systems that distribute collections of
a replicated micro-tasks which are simple and independent. Most of the work in aca-
demics and industry proposes solutions for data acquisition and management mainly
at the level of micro-tasks [GM+16]. The realization of complex tasks on crowdsourcing
platforms is a recent topic. Complex tasks require coordination of various small tasks
and are typically not supported by existing platforms. We present here the studies that
focus on complex tasks.
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Crowdforge [Kit+11] is an interesting work that uses the Map-Reduce technique
to solve complex tasks. The orchestration of the task is depicted in Figure [2.4] It
provides a graphical web interface to decompose complex tasks into sub-tasks, es-
tablish relations, workflows, and dependencies among the sub-tasks. The basic un-
derstanding of a programming language (Python) along with a predefined way to de-
compose the complex task into sub-tasks is the major limitation of the platform. The
prototype was designed for task designers and does not give to crowd workers the
power to decompose a task into sub-tasks. Turkit [Lit+09] is another work that uses
a crash and rerun programming model for crowdsourcing applications. The tool al-
lows to write imperative programs and calls the crowdsourcing platform as a function
in an iterative fashion. The author claims the fault-tolerant model can be widely ap-
plied to various crowdsourcing tasks. Here, the requester must know the way to divide
the tasks into sub-tasks. [KCH12] proposes the Turkomatic tool which works on the
principle of Price, Divide and Solve (PDS). The tool decomposes a complex task with
the help of human workers while the requester can watch the decomposition work-
flow. It also allows the client to intervene during the execution of tasks. In such ap-
proaches, the requester is required to monitor the whole workflow. Such scenarios
are often not suited as workflow monitoring requires a lot of patience and time by the
task requester. A conceptual meta-model based on the combination of PDS and hier-
archical state machines is presented by [Zhe+16]. The tasks are defined with states
S = {Initial, Decomposition, Judge, Solve, etc.}. The paper formalizes complex crowd-
sourcing tasks as sequences of states. The model lacks the means to orchestrate
sub-tasks in parallel. We will show in the next chapters that this can be easily achieved
by introducing concurrency in the workflows. The author does not comment on the for-
mal termination and correctness of the state machines which can lead to undesirable
results. Soylent [Ber+15] embeds the crowd workforce directly into its user interface.
It focuses on complex word processing task which requires multiple levels of concep-
tual and pragmatic activity. The interface enables writers to call crowd workers on the
AMT platform to realize various tasks as shortening, proofreading, etc. The author in-
troduces the concept of Find-Fix-Verify, a crowd programming pattern that splits the
tasks into three steps of identification, generation, and verification. The author [SC+15]
presents a graphical framework named CrowdWON for complex tasks based on an
adaptive workflow net. A graphical net with a deadline mechanism is presented to de-
sign, describe, and visualize the flow of tasks at crowdsourcing platforms. The article
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articulates well the workflow and time constraints in the design of tasks. However, sim-
ilar to former models the study of formal properties as termination and correctness is
not investigated. The work in [Kit+12] proposes the CrowdWeaver toolkit to visually
manage complex crowd work. The tool acts as a mental model designing a task, inte-
grating human and machine, templates, incentive distribution, tracking, and is built on
top of CrowdFlower. The tool architecture is built for the management of micro-tasks
on the crowd platform. Authors in [Tra+15] state composite tasks are poorly supported
by crowdsourcing platforms and propose Crowd Computer that allows one to program
custom logic for individual and structured tasks. The model is based on a business
process model and notation that provides process logic at a level of abstraction mostly
suitable for the specification and coordination of tasks.

Models for complex tasks call for complex mechanisms to orchestrate sub-tasks.
Many models proposed in the literature are not formal enough. This is a clear limitation
to address verification of properties (correctness, termination, ...). Another gap in many
models is the consideration of data as a second-class citizen. Most of the models are
process-driven rather than data driven. In this thesis, we propose high-level coordina-
tion mechanisms for crowdsourced tasks that include data. We also provide means to
verify the termination and correctness of a crowdsourcing system.

2.3 Orchestration of Tasks and Languages

A simple and independent task takes input and generates some output. For exam-
ple, a task can take a sentence as an input, and return an output which is a tag for the
sentence from a predefined category: { Positive, Negative, Neutral }. However, in real
life, we often encounter tasks that are not simple tagging tasks and are rather complex.
Such tasks need to be decomposed in smaller steps, that have to be orchestrated to
produce the desired output. Such orchestrations are called processes. Thomas Dav-
enport defined a business process in his book Process innovation [Dav93| as a struc-
tured, measured set of activities designed to produce a specific output for a particular
customer or market. It implies a strong emphasis on how work is done within an orga-
nization, in contrast to a product focus’s emphasis on what. A process is thus a specific
ordering of work activities across time and space, with a beginning and an end, and
clearly defined inputs and outputs: a structure for action. Taking a process approach
implies adopting the customer’s point of view. Processes are the structure by which an
organization does what is necessary to produce value for its customers.
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Figure 2.5 — BMPN Model: Use case ’Job Posting’, extracted from [All16].

In a similar context, Weske [Wes12] defines a business process as "a set of activi-
ties that are performed in coordination in an organizational and technical environment.
These activities jointly realize a business goal". Usually, a business process is an ex-
plicit graphical representation of activities with dependencies and constraints. Using
these models improve control, and should increase the efficiency of the system both
in terms of cost and quality. Business process modeling helps to represent day-to-day
business activities utilizing a model.

2.3.1 Process Centric Approaches

Several languages exist to represent business process models based on the tradi-
tional process-centric approach. Business Process Modeling Notation (BPMN) is one
of the most popular among them. It is standardized by Object Management Group[]
BPMN is a notation for business process modeling that uses Business Process Dia-
grams (BPD) to graphically represent a business process. BPD uses flowcharts similar
to activity diagrams in the Unified Modeling Language(UML) [WhiO4]. We present an
example from [All16], that showcases the representation of a Job Posting in the BPMN
model. The model is represented in Figure [2.5]

The case study is the following: A company wants to post a job opening based
on some requirements. The process "Post a Job" involves two departments: Business
Department and Human Resources. The business department reports job openings.
The human resource department then writes the job posting. The written document
is then sent for the review to business department. The business department has two
options. If the written document is okay then they send an affirmation to Publish the

2. https://www.omg.org/.
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Job to human resource department. In the second case, if it is not okay, the business
department tells to rework on the draft. The iteration can happen multiple times. In the
end, when the document is ready, it is published by the human resource department.

Web Service Business Process Execution Language (WS-BPEL), also known as
BPEL is a language, tailored for specifying business processes with web services [Jor+07].
It follows XML notation and is standardized by the Organization for the Advancement
of Structured Information Standards (OASIS) [OASO07|. BPEL facilitates sending and
receiving messages along with facilitates some plug-in models that allow writing ex-
pressions and queries. As compared to BPMN, BPEL does not provide the graphical
front end to show the process descriptions. Yet Another Workflow Language (YWL) is
another language based on workflow patterns. YAWL uses XML to define and manipu-
late data, to monitor and control workflow. YAWL and BPEL models are very close and
often considered as an alternative to each other. However, BPEL is more popular due
to standardization, community, and business supports. The advantage of YAWL over
BPEL is that YAWL supports processes that require a human contribution.

Note that the majority of process-based models focus on the orchestration of tasks
and represent this orchestration as a workflow diagram. However, the business process
model often lacks information on the data aspects of a process. Consider the "Job
Posting" case, here we get a basic idea about the control and execution flow of the
overall tasks using the BPMN diagram, but it lacks data details. For example What are
the attributes of the Job posting advertisements? On what basis and features, business
departments decide to rework the project? What are new transformations on the draft
as compared to the previous version? Clearly, business processes manipulate data,
and integrating data to these formalisms is essential. These models hence need to
provide data description, and means to specify how data is manipulated at each task.
These models also lack dynamic orchestrations, i.e. workflows are usually statically
defined and cannot be refined at run-time to improve a process [KCMOGg|.

UML based languages

Unified Modeling Language (UML) [Fow04}; Boo05] is an object-oriented visual lan-
guage that has emerged as an industry standard for the representation of artifacts. It
has wide applications such as design, specification, visualization, documentation for
business modeling, etc. It describes any type of system through an object-oriented ap-
proach and can represent the system with static as well as dynamic behaviors. UML
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includes five categories of maps. Use case diagram displays use case, actors, and their
relationship between them. State diagram includes class diagram, object diagram and
packet diagram. Behavior diagram consists of activity diagrams and models system’s
dynamical aspects. Interactive diagram describes interactive relationship among ob-
jects. Implementation diagram includes component diagrams. Note that UML diagrams
present the basic association of activities but hide data. Class diagrams provide clear
and well-adopted representations of data, but dynamic diagrams such as use cases
usually do not address data manipulation. BPMN, BPEL, activity diagrams all focus
on tasks and dependencies among them. Formally speaking, these features are well
captured by a single formalism, namely Petri nets.

Petri nets based Models

Petri nets [Pet62] are formal language to model and analyze discrete event systems.
Several formal models based on Petri nets are proposed for the orchestration of tasks.
A Petri net is a directed bipartite graph and consists of places, transitions, and arcs.
Places symbolize resources or states and transitions symbolize actions. Places may
hold a discrete number of tokens, symbolizing available resources and the control flow
of a system. Arcs connect places to transitions and transitions to places, and define a
flow of tokens consumed or produced by a transition.

Definition 2 (Petri Nets). A Petrinetis atuple N = (P, T, F, W, m,), where
— P is a finite set of places
— T is a finite set of transitions
— The places P and transitions T are disjoint (P N'T = ()
— F C (P xT)U(T x P) is the flow relation
— my : P — N is the initial marking representing the initial distribution of tokens
— W :((PxT)uU(T x P)) — N an arc weight mapping (whereVf & F,\W(f) =0
andvfe F,W(f)>0)

The places P and transitions T are disjoint (P N'T = ). A place p is called an
input place of transition ¢ if there exists an arc from p to ¢. Place p is called an output
place of transition ¢ if there exists an arc from ¢ to p. Arc F' denotes the flow relation.
A marking is a map m — N that assigns a natural number to each place of the net,
representing the number of tokens held by that place at a given instant. m(p) denotes
the number of tokens that a marking m associates to a place p. At any time a place p
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Figure 2.6 — A classical Dining philosophers problem represened as Petri Net, extracted
from [Nac].

contains zero or more tokens, usually drawn as black dots. The semantics of a Petri
net is defined in terms of transitions firing from markings. Intuitively, a transition can fire
from a marking when a sufficient number of tokens is held at its input places. Firing the
transition consumes (removes) tokens from upstream places and produces (creates)
tokens in its downstream places. W indicates the number of tokens to be consumed
during firing and produced after the firing. When W (p,t) < 1and W(t,p) <1, Vp € P
and t € T, a net is called a basic Petri net.

An example of a Petri net representing classical dining philosophers is shown in
Figure[2.6] Places are represented as circles, transitions by rectangles, arcs by arrows,
and tokens by dots. Places and transitions are labeled to indicate the conditions and
actions. Markings are represented by a number of tokens in the places, for example,
m(thinking) = 1.

Definition 3 (preset and postset). The preset of a given transition t is the set of input
places of t : et = {(p|(p,t) € F} and postset of a transition t is the set of its output
placest : te = {(p|(t,p) € F}.

The notations can be also used for places: for each place, p € P, ep denotes the
set of transitions that may produce tokens in p and pe denotes the set of transitions that
may consume tokens from p.
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Semantics

The semantics of Petri net is defined in terms of transitions firing. Each firing con-
sumes and produces tokens. Firing of a transition models the execution of an event
corresponding to t. Steps in Petri nets semantics are simply moves from one marking
to the next one. The system starts in an initial marking denoted by m,. The semantics
of the Petri nets model is formally defined as follows.

Definition 4 (enabledness). A transitiont is enabled by a marking m iffVp € ot, m(p) >
W(p,1t).

A transition ¢ is enabled if each input place p of ¢ is marked with at least W (p,t)
tokens, where W (p,t) is the weight of the arc from p to ¢. A transition ¢ can fire only
when it is enabled. When a transition is fired, it takes the tokens from the input places
and then distributes the tokens to output places. The firing of an enabled transition is
defined as follows.

Definition 5 (firing). Firing an enabled transition t from a marking m yields a new
marking m’ such that

Vp € P m/(p) = m(p) — W(p,t) + W(t,p)

A firing of an enabled transition ¢t consumes W (p, t) tokens from each input place
p of t and produces W (¢, p) tokens to each output place p of ¢t. Here, W (¢, p) denotes
the weight of the arc from ¢ to p. We write . - m’ that states firing ¢ from a marking
m produces a marking m’. A firing sequence for a Petri net NV with initial marking m, is
a sequence of transitions § = (t;.t5. .. .. t,) such that my S i A Amy, 2 m, or
simply mq 2 my,.

Petri nets have an interesting expressive power. First, they can be used to represent
some classes of concurrent systems. Second, they can represent systems with infinite
state space: indeed, the number of tokens in markings is not a priori bounded, even
for basic Petri nets. Petri nets systems can be used for the analysis of many properties
associated with concurrent systems. We illustrate some of these properties.
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Reachability. The reachability problem for Petri nets consists of deciding, given a Petri
nets N, mg, and a marking m of N, if there exists a firing sequence such that m can
be reached from m,. The set of all possible marking reachable from my in a net N is
denoted as Reach(myg). Reachability problem for Petri nets is decidable [May81] and
was recently shown non-elementary [Cze+19]. Reachability property of Petri net is
used to find the erroneous state in a concurrent systems.

Boundedness. A Petri net is said to be & — bounded or simply bounded if the number
of tokens in each place does not exceed a finite number £ for any marking reachable
from my, i.e. m(p) < k for every place p and every marking m € Reach(my). Karp and
Miller proved that boundedness is decidable [KM69]. The boundedness property can
be used to model systems with limited resources. For example, Petri nets models can
be used to represent buffers in simple production lines [Rec+03]. By verifying the net
is bounded, it is guaranteed that no overflows will take place in buffers, irrespective of
the firing sequence taken.

Liveness. A Petri net is live if every transition can always occur again. Precisely, if
for every reachable marking m and every transition ¢, there exists a firing sequence
m 2 m’ such that m’ enables t. Live Petri net guarantees deadlock free operation
irrespective of the firing sequence chosen. The liveness problem is decidable [Hac76].
Liveness property helps to model concurrent systems where resources are shared.

Petri nets are widely studied and applied in various domains such as modeling com-
munication protocols, manufacturing, hardware design, multiprocessor systems, rail-
way networks, etc. [Mur89]. Many variants of Petri nets have been proposed to model
such systems. A time Petri net is defined as TP = (P, T, F, W, my, I;) where P, T, F, W
and m, are places, transitions, arcs, and an initial marking I, : T — 1" is a function that
associates a static time interval to transitions. This model allows for the specification of
time elapsing between transition firings. Its semantics is hence a timed transition sys-
tem. Such models are interesting to define systems with real-time constraints such as
metros or trains. We do not detail this model here, and refer [Mer74] for more details.
Stochastic Petri nets (SPN) [Mol82] incorporates randomness in Petri nets. Firing times
of transitions i.e. the time a transition has to wait before its firing once enabled, follow
exponential distributions. The stochastic behavior of bounded stochastic nets can be
brought back to that of Markov chains and is analyzed in [BK98]|. Stochastic time Petri
nets [CGV08] extends SPN. They allow for the specification of time Petri nets where
firing times are specified with intervals as in [Mer74] but these intervals are equipped
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with a probability distribution that are not necessarily exponential laws. This model is
very expressive, and cannot be analyzed as a finite Markov chain. However, [Hor+12]
has shown transient analysis techniques for this model.

Petri net model allows multiple tokens in the system and provides richer seman-
tics to model several processes competing for the resources for the performance of
a given task. Tokens in the Petri nets represent objects and resources. However, one
often needs to represent the attributes of these objects. For example, if hardware is
represented as a token in Petri net, then we may want to represent attributes such as
hardware id, manufacture name, manufacture year, etc. These attributes cannot be rep-
resented as a token in classical Petri nets. For modeling such systems, coloured Petri
nets models have been proposed. Coloured Petri nets [Jen89|;, dFM18] allow tokens
to have a data value attached to them and the data value is called the token colour.
Adding colours to tokens and guards to transitions give huge expressive power to nets.
Coloured Petri nets are Turing-powerful. There also exists some other data-aware vari-
ants of Petri nets [Leo+14}; Laz+08; |[FLM19]|, nets are decorated with global variables.
Transitions firings are guarded by formulas on variables, and execution of transitions
updates variables values. Structured Data nets (SDN) [BHM16] is a variant of Petri
nets where tokens are structured documents (XML) and transitions transform data.
SDN considers a token as a piece of information that either belongs to a database
associated with the system or is attached to some ongoing transactions. Transitions
are guarded by boolean queries that evaluate the truth value of some pattern matching
constraint. Their execution results in some rewriting specified again as a query. Unsur-
prisingly, this model is Turing-powerful. Under some restrictions on the allowed shape
of data, properties such as termination, soundness are decidable. These models can
be used to model business processes with data.

Workflow nets

Workflow nets [Aal98] is a subset of Petri nets to model and analyze workflows
such as business processes. They allow parallel, sequential execution of tasks, fork,
and join operations to create or merge a finite number of parallel threads. Tasks are
represented by transitions. Workflow nets mainly deal with the control part of business
processes, and data is not central to this model.
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Figure 2.7 — Example of workflow net for processing complain, extracted
from [VDAVHHO4].

Definition 6 (Workflow Nets [Aal98])). A petri net PN = (P, T, F) is a Workflow net
(WF-net ) if and only if :

— PN has two special places:i € P ando € P

— Place i is a source place: e i = ()

— Place o is a sink place: o0 e = ()

— Every node x € PUT is on a path fromi to o

Places in the set P are called conditions, transitions in the set 7" are called tasks.
The WF-net have one input place and one output place. These places indicate starting
and ending state of the process. The semantic of WF-net follow the standard Petri nets
semantics. A WF-net model for processing complaint is shown in Figure [2.7/[VDAVHH04].
First, a complaint is registered. In parallel, a questionnaire and the complaint is evalu-
ated. If the questionnaire is returned within a fixed delay, it is processed (process_questio
nnaire), else it is discarded (time_out). Now based on the result of the evaluation, the
complaint is processed or not. If processing is required, it is archived (archive). The
task processing is delayed until the questionnaire is processed or a time-out has oc-
curred. The task progress is checked during the task of check_processing. In the end,
the task is archived. Note that WF-net allows sequential, conditional, parallel, and rout-
ing iterations. A large part of the literature on workflow nets has been devoted to check-
ing soundness [VDA+11], which is a set of conditions to guarantee a clean termination
of a process.
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Let m, m’ be two markings. We say that m' is greater than m, and write m’ > m iff
for every place p € P, m/(p) > m(p). We denote by [o] the marking such that m(o) = 1
and m(p) = 0 if p # 0. Soundness is defined as follows.

Definition 7 (Workflow Nets-Soundness [Aal97}; VDA+11]). A workflow net is sound if
and only if following requirements are satisfied

— Termination: Vm, mo > m : 3m’,m > m’ :m/ > [0]

— Clean Termination: mo % m A m > [o] = m =0

— No dead transitions: ¥t € T,3m : my < m andt is enabled in m

The first requirement states that from the initial state (a marking m, with a token
in place 7 and all other places empty), it is always possible to reach a state with one
token in place o. The second requirement states when an execution reaches a marking
where o contains a token, all other places are empty. This is a way to guarantee that
all parallel threads launched during the execution are terminated. The last requirement
states that there are no dead transitions. The property guarantees the absence of
deadlock in workflow nets. To summarize, soundness guarantees that, "every execution
starting from an initial marking and reachable to a marking with & tokens on the initial
place terminates properly, i.e. it can reach a marking with £ tokens on final place,
for an arbitrary natural number £" [VHSVO04]. Generalized and structural soundness is
decidable for WF-nets [VHSV04; TMO5].

WEF-nets extended with time [LS00] integrates time to workflows and allows to con-
sider timed safety. A net is timely safe if a transition cannot produce a token in an
already marked place. In the untimed setting, this is called contact freeness. The timed
variant allows addressing questions of resource usage and performance. Timed safety
shows that the timing constraints set on transitions prevent processes from compet-
ing for shared resources. Nets (in particular workflow nets) can rapidly become long
and unreadable sequences of transitions depicting atomic tasks at a very low level.
As already mentioned, the definition of complex tasks calls for the possibility to re-
fine a task into a complex sub-task, i.e. another layer of orchestration. Some mod-
els of nets and workflows have addressed higher-order and hierarchy [LomO01; LS99].
This allows for hierarchical modeling to build a complex system by composing smaller
sub-systems. Although these higher-order models provide mechanisms to orchestrate
tasks, but rather than data, the process remains central to such systems.

Petri alone is already an interesting model. As mentioned earlier, they are the for-
mal model used to give semantics to several business process notations. BPMN, for
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instance, can be formally defined as a particular class of 1-bounded basic net, called
fork-join net [Aal98]. However, Petri nets are not sufficiently expressive to model crowd-
sourcing systems, as they do not incorporate essential aspects such as data, time, and
randomness.

2.3.2 Artifact Centric Approaches

Process centric based models focus on control flow, and most of the time does
not consider data. To deal with this issue, several models centered on data have been
proposed. Artifact centric models are data-centric models, i.e. focus is on the data, and
how data is transformed by tasks. Artifact-centric business process models consider
data as first-class citizens. The model considers addition, deletion, and manipulation
of data by a set of tasks in the overall process. An artifact is a mechanism to record
a key identifiable piece of information that is concrete, reliable, self-explanatory, and
identifiable to be used and maintained to run the business. A collection of artifacts and
services that modify this collection is called an artifact system. Very often, services
are defined with rules that apply to one or several artifacts that meet given conditions.
Contrarily to workflows, where the control flow of a process is explicitly represented by
a flow relation, the control flow of a business artifact is based on rule realization and is
hence declarative and implicit.

Business artifacts were originally developed by IBM [NCO03] and proposed data-
centric processing of artifact lifecycles. The lifecycle of all the artifacts in the business
and their association describes the operational model of the entire business. An ex-
ample of business artifact model, extracted from [BHS09] is shown in Figure[2.8]repre-
sented in the form Entity-Relationship (ER) diagram. ER diagram provides a framework
to specify the models and to show the relationship among entities. The model is a frag-
ment of process modeling of IT service providers that shows the specification of the
vendor task and consists of the structure of the data, stakeholders, and conditions
under which the tasks can be realized. Here, the Vendor task artifact has a set of at-
tributes as schedule Id, planned start date, planned end date, status, etc. Vendor task
artifact is also related to other sets of artifacts as Vendor, Govt. approval, etc. When
an artifact is created, attribute values can be undefined or null values. As the execu-
tion progresses, the attribute value may be defined or overwritten. The artifacts are
generally stored using relational or XML-based databases. The artifact model is stud-
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task_ID
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Figure 2.8 — Business artifacts represented as ER diagram specifying the vendor tasks,
extracted from [BHSO09].

ied extensively both from practical and theoretical perspectives. [Kum+03|] proposes an
adaptive document artifact system that formalizes collaborative work, in which a group
of people collaborates to reach a business goal. The authors in [WKO05] demonstrate
the feasibility of a framework for document-driven workflow systems based on artifacts
that require no explicit control flow and the execution of the process is driven by in-
put documents. In a similar line, [GMO05] proposes a formal model for document-based
service to meet the business needs considering factors such as information that has
to be exchanged, people, organizations, and the roles involved. [Hul+99] proposes an
attribute centric workflow model called vortex workflow that allows the specifications of
dataset manipulations and provides mechanisms to specify when services are appli-
cable to a given artifact.

2.4 Data

Crowdsourcing provides a way to collect, retrieve, manipulate, and analyze data
provided by human workers. Data is hence central to crowdsourcing systems. For ex-
ample, a client provides an input dataset with a pre-defined objective. Data is manip-
ulated and transformed by the workers and in the end, the final dataset is returned
after completion of the task. In this section, we recall how datasets (also known as
databases) are usually formalized and structured. From the beginning to the end of the
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process, data is used as input, transformed, assembled, before being used as a final
result. Data is not stored in any way. It is usually well structured and its transformation
follows some rules. We also recall the basics of some formal tools used to query data
and reason on the contents of datasets.

We use standard relational model [Cod72] to specify datasets. The relational model
is simple, easy to understand yet possesses enough expressive power to store and
manipulate data. The relational model considers relations as the data structure and
comes with query capabilities, updates features, and supports integrity constraints. A
database organized in terms of relations is known as a relational database. The rela-
tional model is a declarative model that abstracts control flows and does not consider
compilation and optimization complexity needed to store and query data. The model is
used to directly specify the information to be stored.

In the standard relational model [Cod72], data is organized in datasets, that fol-
low relational schemas. In the context of the thesis, we assume finite set of domains
dom = dom,,...,dom,, a finite set of attribute names att and a finite set of relation
names relnames. Each attribute a; € att is associated with a domain dom(a;) € dom.
A relational schema (or table) is a pair rs = (rn, A), where rn is a relation name and
A C att denotes a finite set of attributes. Intuitively, attributes in A are column names
in a table, and rn the table name. The arity of rs is the size of its attributes set. A record
of a relational schema rs = (rn, A) is tuple rn(vy,...v4) where v; € dom(a;) (it is a
row of the table), and a dataset with relational schema rs is a multiset of records of
rs. A database schema DB is a non-empty finite set of tables, and an instance over
a database DB maps each table in DB to a dataset. Database schema specifies the
structure of the database and the database instance specifies its actual content. We
borrow an example from [AHV95] where a database schema CINEMA is defined as
follows.

CINEMA = { Movies, Location, Pariscope} where table Movies, Location, and Pariscope
have the following attributes:

attributes(Movies) = {T'itle, Director, Actor}

attributes(Location) = {Theatre, Address, Phone Number}

attributes(Pariscope) = {T heater, T'itle, Schedule}
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Movies | Title Director Actor
The Trouble with Harry  Hitchcock Gwenn
The Trouble with Harry ~ Hitchcock Forsythe
The Trouble with Harry  Hitchcock MacLaine
The Trouble with Harry  Hitchcock Hitchcock
Cries and Whispers Bergman Andersson
Cries and Whispers Bergman Sylwan
Cries and Whispers Bergman Thulin
Cries and Whispers Bergman Ullman

Location | Theater Address Phone Number
Gaumont Opéra 31 bd. des Italiens 474260 33
Saint André des Arts 30 rue Saint André des Arts 43 2648 18
Le Champo 51 rue des Ecoles 435451 60
Georges V 144 av. des Champs-Elysées 45 62 41 46
Les 7 Montparnassiens 98 bd. du Montparnasse 43203220
Pariscope | Theater Title Schedule

Gaumont Opéra Cries and Whispers 20:30
Saint André des Arts The Trouble with Harry 20:15
Georges V Cries and Whispers 22:15
Les 7 Montparnassiens  Cries and Whispers 20:45

Table 2.1 — An example of CINEMA database, extracted from [AHV95].

The database is shown in Table[2.1] Each of the tables Movies, Location and Pariscope
consists of rows where data is stored considering the domain of the attributes. Here,
the Mowvies table is of arity 3. The domain associated with each attributes of table
Movies is dom(Title) € strings,dom(Director) € strings,dom(Actor) € strings. A
record of table Movies is tuple with values T'he trouble with Harry, Hitchkok, Gwenn
associated with attributes T'itle, Director and Actor.

2.4.1 Reasoning on Data

First-order logic is a set of formal systems allowing reasoning on relations and
hence on data. In the rest of the thesis, we will use sentences built with the follow-
ing symbols :

— Variable. A Variable is a placeholder vy, vy, u1,us, ... 10 assign varying objects.

Every possible value for a variable v; belongs to a particular domain dom(v;).

— Logical Operators. Logical operator is a symbol used to connect two or more

conditions. Logical operators are {—, A, V, —, < }.
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— Logical quantifiers. A logical quantifier specifies the quantity of specimens hav-
ing some property. The quantifiers are existential quantifier "3" (there exists),
universal quantifier "v" (for all).

— Equality symbol. {=} symbolizes the binary equality relation.

— Constant symbol. A constant symbol ¢ denotes a fixed object whose value does
not change over time.

— Function symbol. A function f denotes a n — ary function that associates an
object to a n — tuple of objects.

— Relation and membership symbol. We denote by rn(zy,...,z;) a tuple from a
relational schema rs, and write rn(z1,...,x,) € D to denote the property that
tuple rn(z,...,x,) is a record of dataset D. Here, {€} denotes the membership
symbol.

— Predicates. A predicate is a boolean function P(xy,...,z,) that evaluates to
TRUE or FALSE under a particular interpretation of variables =1, ..., z,.

The formula P(xy,...,z;) means x1, ..., z; satisfy predicate P. Note that the differ-
ence between a function and a predicate is that an application of function returns an
object, while the application of predicate returns a TRUE or FALSE value. Signature
of FO describes the non-logical symbols. The signature consists of a set of constant
symbols, function symbols, relation symbols and predicate symbols.

Atermin FO is a sentence of the form ¢ ::= v|c|f(t1, ..., t,) Where,

— v is a variable name.

— cis a constant.

— f() is a function, and t,...t,, are terms.

Then, FO formula F' are defined as sentences of the form: F =:= T | L | FV F' |
—F | P(ty,...,t,) | ro(xy,...,2,) € D | Yo(F) | Ju(F). Here, t4,...,t, are terms
and zq,...,x, are variables. Formula may also contain the usual boolean connectors
A, —, <+ with the usual meaning.

An atomic formula or atom is simply a predicate applied to a tuple of terms, i.e.
an atomic formula is a formula of the form P(t,,...,t¢,) where P is a predicate, and
t1,...,t, are terms. The formula 3xP(z) is there exists x, P and the formula VzP(x)
is for all z, P. Letting X; = {z1,...2x} C X, we write v?cl instead of Vz;.Vzs ... V.
Similarly, we write 3)?’1 instead of dx.3z, . .. 3x;. We follow this convention through out
the thesis.

31



Chapter 2. State of the Art

An interpretation is a function that attaches the meaning to the constant, function
and relation symbols. Formally, an interpretation is defined as follows.

Definition 8 (Interpretation).
— An interpretation of a constant symbol c is an element of its domain dom.
— An interpretation of a function symbol f with arity n is a function that maps n
elements of dom to another element of dom.
— An interpretation of a predicate symbol P with arity n is the set of n tuples of
elements of dom for which dom is TRUE.

Definition 9 (Assignment). An assignment in FO logic assigns values to variables.
Each variable x in X has its own domain dom(x). A variable assignment (for a fixed set
of variables X ) is a function . that associates a value d, from dom(z) to each variable
x e X.

Given a variable assignment ., we say that ¢ hold under u, and write u = ¢ iff ¢
evaluates to TRUE under assignment . Given a FO formula, we illustrate below when
the formula is TRUE or FALSE.

— An atomic (atom) n — ary predicate P(ti,...,t,) predicate when applied to n
terms, returns TRUE or FLASE. Predicates are used to describe the property of
objects. For example, P(z) can be a predicate that evaluates to TRUE if x is an
even number.

— A universally quantified formula Vz : F' asserts that a certain property holds for
any value v € Dom(zx) assigned to variable x. V(z)P(x) indicates that P holds
for every assignment of a value from dom(zx) to x.

— An existentially quantified formula 3« : F' means that formula F' holds for some
assignment that assigns some value v € Dom/(x) to variable x. 3(x)P(z) indi-
cates P holds for some assignment of a value from dom(x) to .

Consider a FO formula ¢ ::= V(22 # 2). If the domain of z is real number, dom(z) €

R, then the formula ¢ is FALSE because for an assignment . such that u(z) = v/2, we
have 22 = 2. If the domain of z is natural number dom(z) € N, then the formula ¢
evaluates to TRUE as an assignment x = 2 is not the square of any natural number.

Let predicate C'(x) holds if x is a crowd worker and E(z) holds if = is an expert. Let
D;, be an input dataset with relational schema rn(zy,...,z;) and D,,, be an output
dataset with relational schema rn'(xy, ... 2k, y1,...,y,). We show some examples of
FO logic with plain English interpretation as follows.
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— All crowd workers are expert. (Vx)[C(x) — E(x)]

— Some crowd workers are expert. (3z)[C(z) A E(x)]

— For all input record there exists an output record. Vzy,...,x; rn(zq,...,2%) €
Dip = y1, .oy 0/ (21, o Ty Y1y -5 Yn) € Dous

Definition 10 (Free and bound variables). A variable occurrence is free in a formula if
it is not quantified. Variables in the scope of the quantifiers are called bound variables.

Variables in a FO logic formula may occur bound or free. For example, Yy P(z,y),
the occurrence of variable z is free. On the other hand variable y is bound as it is
universally quantified. A quantifier free formula is a formula that contains no quantifiers.

Generally, FO formulas are given in Prenex Normal Form (PNF). A formulais in PNF
if it is written as a string of alternating quantifiers and bound variables called prefix of
the formula and followed by a quantifier-free part called matrix of the formula. Formally,
the Prenex Normal Form of FO is defined as follows.

Definition 11 (First-order in Prenex Normal Form). A first-order formula in Prenex
Normal Form over a set of variables X is a formula of the form ¢ = «a(X).9)(X)
where «(X) is an alternation of quantifiers and variable names in X, i.e. sentences of
the form Vx,3x,, ... called the prefix of ¢ and (X)) is a quantifier free formula called
the matrix of ¢. ¥(X) is a boolean combinations of atoms of the form R;(x1,...xx),
Pj(z1,...x,), where R;(x1, ... xy) are relational statements, and P;(z4, ... x,) are pred-
icates, i.e. boolean function on x+, . .. x,.

For example, a formula ¢ ::= Jz¢3x,Vrs Pi(zo, 21, 22) A Py(xg,x2) is in PNF. In this
formula Jzo3x,Vz, is the prefix of ¢ and Py (xg, z1,x2) N\ Py(x0, x2) is its matrix. Every
formula in FO logic is equivalent to formula in a prenex normal form. For example, a
FO formula in the form of 3x(Jy P (z,y) V (Vz Pa(z) V Ps(x))) is equivalent to a formula
in a PNF form: 3z3yVz(Pi(z,y) V ( Pa(2) V Ps(x)).

Definition 12 (Satisfiability). A variable free formula is satisfiable iff it evaluates to true.
A formula of the form 3z, ¢ is satisfiable iff there exists a value d, € dom(zx) such
that ¢(.,4,) Is satisfiable. A formula of the form Vz, ¢ is satisfiable iff, for every value
d, € dom(x), ¢[5a,) IS satisfiable.

Definition 13 (Equisatisfiability). Two formulas ¢ and ) are equisatisfiable iff ¢ is sat-
isfiable if and only if i is satisfiable. Equisatisfiability of ¢ and ) is denoted as ¢ H .
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One can rewrite a FO formula into an equisatisfiable formula using miniscoping
rules. These rules are syntactic transformations that apply regardless of any interpre-
tation of the formula. They can be applied to move quantifiers as deep as possible
inside a formula (this is interesting for skolemization [BW84], but we will not use it in
this thesis) or conversely to transform a formula into an equivalent one in prenex normal
from.

Definition 14 (Miniscoping [SVW16]). Let ¢, v, X be the first-order formulas, and as-
sume that x does not occur freely in X. Then using miniscoping, quantifiers can be
pushed in FO as follows.

(). 3.0V ¥) H Gr1.0) V (3020)
(i). 3x.(p o X)H (Fr.p) 0o X witho € {V,A}
(iii). Vx.(p A1) H (Vx1.0) A (Vag.a))
(iv). Vx.(p o X) H (Vx.¢) o X witho € {V, A}

T L 1T I

For example, a formula in form JaVy(P;(z) <+ P»(y)) can be transformed using minis-
coping rules as 3z =Py (z) V VyPy(y)

It is well known that the problem of satisfiability of a FO formula is undecidable in
general [Chu+36; Tur37]. This can be proved by reduction from the halting problem for
Turing Machine. A lot of effort has been put to find decidable fragments of FO logic.
There exist several fragments of first-order logic for which satisfiability is decidable.

Monadic FO is a fragment of first-order logic in which all relation symbols in a for-
mula take only one argument. All atoms in formulas are of the form P(z). [Low15]
pioneer work shows that confinement to unary predicate symbols (Monadic FO) leads
to decidability. However, the monadic FO fragment has very low expressive power.
The universal fragment (resp. existential fragment) of FO is the set of formulas of the
form v?go (resp. 3?90) where ¢ is quantifier-free. We denote by VFO the universal
fragment and by JFO the existential fragment. Checking satisfiability of the existen-
tial/universal fragment of FO is decidable and (co)-NP-complete when variables domain
are restricted to real or discrete values [Bou+19]. One needs not restrict to existential
or universal fragments of FO to get decidability of satisfiability. A well-known decidable
fragment is F'O?, which uses only two variables [Mor75]. However, this fragment forbids
atoms of arity greater than 2, which is a severe limitation when addressing properties of
datasets. A recent extension of FO? called FO?BD allows atoms of arbitrary arity, but
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only formulas over sets of variables where at most two variables have an unbounded
domain. Interestingly, FO?BD formulas are closed under the computation of weak-
est preconditions for a set of simple SQL operations [ltz+17]. The Bernays-Schonfinkel
(BS) fragment of FO is the set of formulas of the form 3171.v}2.¢, where v is quantifier-
free, may contain predicates, but no equality. The Bernays-Schonfinkel-Ramsey frag-
ment of 'O [BS28] (BSR-FO for short) extends the BS fragment by allowing equalities
in the matrix ¢. The satisfiability of a formula in the BS or BSR fragment of FO is
NEXPTIME-complete (with respect to the size of the formula) [Lew80]. Algorithms to
check satisfiability for a fragment of FO can be obtained by transforming formulas from
that class into equivalent or equisatisfiable formulas of a decidable subclass. Two FO
formulas ¢ and v are equivalent iff, for every variable assignment u, u = ¢ iff u = 1.
Transformation of a formula from one class to another class is usually expensive and
results in a blowup of the size of considered formulas.

Recent results [SVW16] exhibited a new fragment, called the separated fragment
of FO, defined as follows: Let Vars(A) be the set of variables appearing in an atom
A. We say that two sets of variables Y, Z C X are separated in a quantifier-free for-
mula ¢(X) iff for every atom At of ¢(X), Vars(At)NY = 0 or Vars(At)NZ = . A
formula in the Separated Fragment of FO (SF FO for short) is a formula of the form
VX1 3Y2 VX HYngb where X1 UX and Y1 UY are separated. The SF frag-
ment is powerful and subsumes the Monadic Fragment and the BSR fragment. Every
separated formula can be rewritten into an equivalent BSR formula (which yields de-
cidability of satisfiability for SF formulas) but at the cost of an n-fold exponential blowup
in the size of the original formula. Satisfiability of a separated formula ¢ is hence decid-
able [SVW16], but with a complexity in O(2¢"‘“") where 2+ is a tower 22 of exponential
of size n.

2.4.2 Datalog

Datalog is another declarative programming language to reason on data that is
syntactically based on Prolog. However, datalog is primarily used as a query language
for deductive databases that make deductions based on rules and facts. It was invented
to combine logic programming with relational database to construct formalism along
with dealing with large databases. The most interesting feature of datalog is recursion.
Datalog is defined as follows.
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Definition 15 (Datalog [AHV95]). A datalog rule is an expression of the form :

Ry(uy) < Ro(ug), ..., Ry(uy)

wheren > 1, Ry, ..., R, are relation names and u., . . . u,, are free tuples of appropriate
arities. Each variable occurring in u, must occur in at least one of us, . . ., u,.

A datalog program consists of a finite set of datalog rules. R;(u;) is the head of the
rule and Ry (us), ..., R,(u,) forms the body. A datalog program defines the relations
that occur in heads of rules based on other relations. The defined relations can also
occur in the bodies of the rules and thus is recursive. Also to note that datalog programs
may not use negation in the rule bodies. A simple example of datalog is as follows. We
first define two facts.

— parent(John, James)

— parent(James, Bill)

The facts define, John is the parent of james and james is the parent of bill. We
also define the below rules.

— ancestor(X,Y) < parent(X,Y)

— ancestor(X,Y) < parent(X, Z), ancestor(Z,Y)

The rule states the following.

— X is an ancestor of Y if X is a parent of Y.

— X is ancestor of Y if X is a parent of Z and Z is a ancestor of Y.

Now, on the above defined facts and rules, we fire the following query: ancestor(John, X).
It asks who are the X that are the ancestor of John? The query evaluation returns
James and Bill.

Query evaluation in datalog is based on first-order logic. However, datalog is not Tur-
ing complete and even has efficient algorithms to resolve queries [Ban+85; |(CSW93].
Yet some problems of datalog are undecidable. For instance, the boundedness prob-
lem, which asks whether a datalog program is equivalent to some non-recursive data-
log program is undecidable [Hil+95]. Datalog is of great theoretical importance. Data-
log provides a clean basis to model deductive systems and is used to study recursive
queries. However, due to lack of negation, it is not adequate as practical query lan-
guage [AHV95]. It cannot express even the first-order queries. Also, Datalog is not a
programming language and very few applications have taken full advantage of the ex-
pressiveness of datalog [CGT+89]. However, a recent revival of interest has emerged,
using datalog queries in various applications as data integration, declarative network-
ing, information extraction, and program analysis [HGL11; Mei+20].
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2.4.3 SQL

Structured Query Language (SQL) is the most practiced query language that pro-
vides the basis for the extension of the relational model. It was initially developed at
IBM by Donald D. Chamberlin and Raymond F.Boyce on the foundations of the rela-
tional model by Edgar F.Codd [Cha12]. In 1986, SQL was first formalized by ANSI and
the most recent version of the standard was published in 2019. It is widely used in
mainframe and client-server relational database management systems. SQL is useful
in handling structured data where data contains the relationship between entities and
variables.

SQL is a query and data manipulation language. First, it allows us to define and
create the structure of the database. Using SQL commands as CREATFE, one can
define the organization of the database and the tables. On each defined table, SQL
also allows for data access control. Beyond tables definition and creation, the most
interesting features of SQL is as a query language, that allows to select data from a
table, or even produce new datasets obtained as joins on table contents. We give below
some examples of SQL commands.

SELECT-FROM-WHERE

The basic building block of SQL queries is the SELECT-FROM-WHERE command. It
selects the data from a table based on the filter condition (where clause). Consider a
SQL query on the CINEMA database on table Movies (see Table [2.1).

SELECT Title
FROM Movies
WHERE Actor = ‘Gwenn’

The query selects the Title from the Movies database where the actor name is Gwenn
and returns answer as "The Trouble with Harry".

JOIN

The most interesting command of SQL is JOIN that combines rows of two or more
tables based on a common column between them. Consider a SQL query on the CIN-
EMA database on table Pariscope and Location.
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Address Title Schedule
31 bd.des Italiens Cries and Whispers 20:30
30 rue Saint Andre des Arts The Trouble with Harry 20:15

Table 2.2 — JOIN query result.

SELECT Location.Address, Pariscope.Title , Pariscope.Schedule
FROM Location
JOIN Pariscope

ON Location.Theater=Pariscope.Theater

The JOIN command returns all records with the common values on attribute T'heater
from the tables Location and Pariscope. The above query produces the Table [2.2] We
list some of the SQL commands with descriptions as follows.

— CREATE DATABASE - Creates a new database.

— ALTER DATABASE - Modifies a database.

— CREATE TABLE - Creates a new table.

— ALTER TABLE - Modifies a table structure.

— DROP TABLE - Deletes a table.

— SELECT - Extracts data from a database.

— UPDATE - Updates data in a database.

— DELETE - Deletes data from a database.

— INSERT INTO - Inserts new data into database.

— CREATE INDEX - Creates a search key.

— DROP INDEX - Deletes an index.

— JOINS - Combines rows from two or more tables based on common column

between them.

SQL also supports aggregation queries with commands such as MIN, MAX, COUNT,
AVG, and SUM along with operators as AND, OR, and NOT. The MIN( ) clause returns
the smallest value in a column and MAX( ) clause returns the largest value of the se-
lected column. COUNT( ) returns the number of rows that matches a specific condition.
The AVG( ) clause returns the average value of a column with numerical values and
SUM() returns the sum value of a column value with numerical values. These operators
can be added with AND, OR and NOT clauses.
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COUNT
Consider a below example. The SQL query counts the movie title from the table Movies
where actor name is Gwenn.

SELECT COUNT(Title)
FROM Movies
WHERE Actor = ‘Gwenn’

SQL works on these simple, yet powerful clauses that is easy to understand and
implement. This makes SQL a more expressive language and is running on thousands
of data-driven web applications. The crowdsourcing platforms are data driven and is
composed of task which can be executed by machines using simple SQL queries.
We will use the SQL queries as a building block to execute the tasks which can be
automated in our model.

Remark. Edgar F. Codd first described the relational model for database management
as an approach to manage data using a structure and language consistent with first-
order logic [Cod02]. The query languages in the relational model are based on the
theoretical foundations of relational algebra and relational calculus. Relational calculus
is a formal query language similar to relational algebra. It is a declarative language
that does not specify the order in which operations to be performed. Relational alge-
bra uses algebraic structures based on logical rules for modeling data and defining
queries on them. It defines operators to transform a set of input relations to an out-
put relation. Relational algebra is a procedural language, in which order is specified
to perform the operations. Relational algebra was created to implement the queries
in an efficient way and is simple for machines to evaluate. The notable Codd’s theo-
rem establishes that relational algebra and relational calculus have precisely equiva-
lent expressive power [Cod+72]. Relational algebra provides a basis for the relational
database. The most popular query language SQL is based on the theoretical founda-
tions of relational calculus. Relational calculus is essentially equivalent to first-order
logic. Most of the database query languages in practice are based on the extensions
of first-order logic. First-order logic has long been regarded as a fundamental tool to
investigate and model the properties of data-based systems. In this thesis, we choose
first-order logic to address properties on data and to theoretically investigate the prop-
erties of our crowdsourcing model.
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2.4.4 Data Centric Models

Crowdsourcing systems are data-centric systems that collect, transform, and aggre-
gate data. In such cases, termination of tasks with a proper output is of primary impor-
tance. This means that two things have to be considered. First, a data centric system
terminates when forging its output data from answers collected by the crowd. Second
that the produced data is correct, i.e. satisfies some criteria on expected legal output
value or that confidence in the result is high enough. The correctness of data centric
processes is widely studied and a comprehensive survey is presented in [CDGM13];
DHV14]. We review below several models for which a notion of correctness has been
formalized and studied.

Guarded Active XML [ASV09] (GAXML for short) is a specification paradigm where
services are introduced in structured data. In such models, structured data embeds
references to service calls. Services modify data when the guard is satisfied and re-
places a part of the data with some computed value that may also contain references
to service calls. Though GAXML does not address crowdsourcing nor task refinement,
however, if services are seen as tasks, the replacement mechanism performed dur-
ing calls can be seen as a form of task refinement. This model is very expressive,
but restrictions on recursion allow for verification of Tree-Linear Temporal Logic (LTL).
LTL [Pnu77] is an extension of propositional logic that defines the properties of a sin-
gle execution of the system. An execution is a sequence of states p = {s1,s2,..., 5.}
Each state carries some propositions, and LTL formulas define properties of the future
at some step of a single execution of the system. LTL formula can express properties
such as “proposition p will be eventually true”, “p will be true until q is true”, etc. It is a
widely used tool in the formal verification of programs and systems. Tree LTL replaces
propositions in LTL by properties of structured data seen as labeled trees. LTL is a frag-
ment of first-order logic [Kam68]. LTL with first-order logic (LTL-FO) formulas is of form
Yy, ...,z ¢ Where ¢ is an LTL formula including FO statements. More precisely, LTL
is equivalent to First-order Monadic Logic of Order (FOMLO) - a subset of FO where
formulas are built using atomic propositions of the form P(z), atomic relations between
elements of the form z; = x5, 27 < x5, Boolean connectives and first-order quantifiers
Jz and Vz. [Deu+06] consider verification of LTL-FO for systems composed of partici-
pants that communicate asynchronously over possibly lossy channels and can modify
(append/remove records from local databases). Unsurprisingly, queues make LTL-FO
undecidable, but bounding the queues allows for verification. Verification mechanisms
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for LTL-FO were proposed for subclasses of artifacts with data dependencies and arith-
metic in [DDV12; KV17].

The authors in [DDV12] propose a model called artifact systems. Artifact systems
can simulate a counter machine so even the simplest properties are undecidable for
this model. However, for a syntactic restriction called feedback-free artifact systems,
verification of temporal properties is decidable. The properties can be expressed in
LTL-FO and allow data dependencies and arithmetic that are essential in business
processes. Feedback freedom prevents unbounded updates to a variable’s current
value that depends upon its history. It is designed to limit the data flow between oc-
currences of the same artifact variables at different times in runs of the system. The
restriction results in the decidability of verification for LTL-FO properties of feedback-
free systems. The worst-case hyperexponential complexity comes from the number
of artifact variables. Generally, data centric systems need data transformation from
one form to another. Data exchange is a process that takes the data structure in the
source schema and transforms it into a data structure of the target schema based
on a schema mapping. Schema mapping is a set of constraints or rules that state
how data has to be transformed. Tuple Generating Dependency (TGD) is a widely
used technique to define the constraints in relational database theory. Tuple generat-
ing dependency allows certain kind of constraint on relational database in the form of
Vay, .., e, Pz, ..o xn) = Jyr, o, ymQ(21, - oy 0y U1, - - -, Um)- AlsO, data transforma-
tions with arithmetic operations such as addition, multiplication, etc., called arithmetic
schema mapping, are required by the data centric systems. Authors in [CKO13] study
data exchange with arithmetic schema mapping and queries based on TGD. The author
proposes a polynomial-time algorithm that tests whether, for a given source schema,
there exists a target schema based on the transformation by the schema mapping.
However, the constraints on data used by the authors are only existential and lack uni-
versal quantification on variables. Such restrictions in real crowdsourcing applications
may limit addressing the properties on data. For example, in a crowdsourcing setting,
we want to prove properties in the form: “every record in an output dataset returned
by the crowd satisfies some property P”. Here, the system requires universal quan-
tification of variables in the output dataset. Indeed, business artifacts allow for data
inputs during the lifetime of an artifact and describe legal relations on datasets before
and after the execution of a task. However, it mainly considers static orchestrations of
guarded tasks and does not consider higher-order constructs such as run time tasks
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refinement. Further, LTL-FO verification focuses mainly on the dynamics of systems
(termination, reachability), but does not address correctness.

[Bee+06] proposes a query language for querying business processes. The busi-
ness processes are recursive functions that can call one another, and the verification
that is performed is defined using a query language. This language BP-QL specifies
shapes of workflow executions with a labeled graph and transitive relations among its
nodes. A query @ is satisfied by a workflow W if there is an embedding of () into the
unfolding of . While this model addresses the shape of executions, it is more fo-
cused on the operational semantics of workflows. Contrary, the verification scheme in
a crowdsourcing setting is not centered on the shape of control flow, but rather cen-
tered on the contents of data manipulated by the crowd workers. It is more concerned
by the denotational semantics of the specification, and on the question of termination.
Relational data-centric dynamic systems are the systems where data is represented
in the form of a relational database and the process is described in terms of atomic
actions that evolve the database. In such systems, the execution of the atomic actions
can invoke calls to external services to insert new data into the system. [Har+13] shows
that such systems are undecidable in general and shows decidability in a restricted set-
ting where the new data introduced is bounded along each run, although it needs not
to be bounded in the overall system. More recently, [AV13] has proposed a model for
collaborative workflows where participants have a local view of a global instance and
collaborate via local updates. Overall, we can see that formal verification of a data cen-
tric system is decidable in restricted settings where the use of recursion or quantifiers
is constrained.

2.4.5 Weakest Precondition

Another way to reason about correctness of a program in general, and hence also
of a crowdsourcing system is to use systems of logical inference rules to deduce that
initial conditions of all runs of a system to guarantee termination or correctness of
results at the end of each execution. The seminal work for weakest preconditions is
proposed by Edsger Dijkstra [Dij75]. The principle is to see statements of a language
as a predicate transformer. Weakest precondition calculus allows for the construction
of valid deductions of Hoare logic [Hoa69], i.e. prove the so-called Hoare triples.
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Hoare logic provides formal system with a set of logical rules to reason about the
correctness of computer programs. A Hoare triple is a statement of the form

{P}s{R}

Here, P and R are assertions and S is a command. P is called the precondition and
R the postcondition and S is the command, code or some function. Precondition is a
condition that needs to be true prior to the execution of some code. On the other hand,
postcondition is a condition that should be true after the execution of some code. All
the assertions are expressed in predicates. A Hoare triple { P} S{R} states that when
precondition P holds, then after execution of S, postcondition R holds. For expressive
enough programming languages, proving a Hoare triple is undecidable.

One can interpret properties P and R as a specification of a program. In this context,
we can say that program S is correct with respect to its specification iff it satisfies the
assertions given by the pair (P, R). There are two ways to address correctness. Partial
Correctness states that if an answer is returned, it will be correct. Total correctness
says that returned answers are correct, but also adds the condition that program S
terminates. Hoare triple provides a narrow notion of termination and using the standard
notion of Hoare logic only partial correctness can be proved. To rephrase, Hoare triple
states that if P holds before the execution of command S, then R will hold afterward or
S does not terminate. The Weakest preconditions is a reformulation of Hoare logic that
builds valid deductions of Hoare logic. It is defined as follows.

Definition 16 (Weakest Precondition). For a statement, S and a postcondition R, the
weakest precondition is a predicate ) such that for any precondition P, { P}S{ R} if and
onlyif P — Q.

The weakest precondition @ is the minimum condition on the state of a program
(or in our case an input dataset) so that program S terminates and after execution of
S, the postcondition is satisfied. In some sense, computing a weakest precondition
is a way to synthesize a valid Hoare triple for a program S when the postcondition
R is known. For a given sequence of instructions 5;.5,....S, and a postcondition R
that have to be met once S,.5; ... S is executed, one can inductively build @), as the
weakest precondition for S, and R, then Q;_; as the weakest precondition for S;._;, etc.
Ending with a predicate )y, one then have to check if the initial state of the program
S1.53 ... Sk meets requirements in Q.
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Let us illustrate weakest precondition calculus on an example. Consider an instruc-
tion x := x + 1 and a postcondition = > 0. One valid precondition is x > 0 that is
Hoare triple as {z > 0}z := = + 1{z > 0} is satisfied. While the weakest precondition
wp(r = x+ 1,z > 0)is z > —1. Here wp = = > —1 guarantees that after execu-
tion of function = := = + 1, the postcondition = > 0 will be true. By construction, a
weakest precondition is unique. Finding a weakest precondition for a single instruc-
tion of a conditional statement can usually be automated. However, when programs
involve while statements, computing weakest preconditions require for integration of
loop invariant that usually have to be provided by humans. Hence, in general, weak-
est precondition calculus cannot be fully automated. We will see however that in the
case of non-recursive specifications of crowdsourcing systems, this calculus can be
automated. A recent extension of FO? called FO?BD allows atoms of arbitrary arity,
but only formulas over sets of variables where at most two variables have unbounded
domain. Interestingly, FO*BD formulas are closed under computation of weakest pre-
conditions for a set of simple SQL operations [ltz+17]. We will use it to show that
conditions needed for a non-terminating execution of our model are in VFO, and that
VFO, 3FO, BSR-FO, SF-FO are closed under precondition calculus.

2.5 Quality Assurance

Quality control in crowdsourcing is one of the primary concerns [Lea11]. For in-
stance, consider a simple task: a requester asks to annotate a set of images in a pre-
defined category on a crowdsourcing platform which acts as an input to train machine
learning models. Errors in the annotated data can lead to errors (or quality problems)
of the trained models. Henceforth, quality control is one of the main concerns in crowd-
sourcing systems. In general, quality control has to find a trade-off between two criteria,
namely accuracy, and budget. Accuracy measures how precise or correct is the set of
the answers returned by the crowd. Clients at a crowdsourcing platform usually have
a limited budget to realize their tasks. A very high budget allows hiring a large pool
of workers, but a limited budget forces them to use as many resources efficiently as
possible. The question is hence how to obtain a reliable answer at a reasonable cost.

Difficulty in quality control comes from tasks and workers which correlate in complex
ways to bring uncertainty to the system. First, tasks may be poorly designed, badly
described, unclear, generic, or have specific requirements, subjective, difficult, etc. On
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the other side, workers come with issues such as qualifications, skills set, experience,
biases due to age, gender, sex, demographics, etc. One can also consider malicious
workers, that even return the wrong answer on purpose [XFT15].

Due to these limitations, a single unknown worker cannot be trusted. To deal with
the heterogeneity and uncertainty, tasks are usually replicated: each task is assigned
to a set of workers. Redundancy is also essential to collect worker’s opinions. These
replicated work units are the basic elements of a larger task that can be seen as a
poll. In this setting, one can safely consider that each worker executes his assigned
task independently, and hence returns his own belief about the answer. As workers
can disagree, the role of a platform is then to build a consensual final answer out of
the values returned. Note that for each replication of a task, the accuracy of an answer
is not measured at the level of a single worker, but actually depends on the collective
contributions of all workers.

2.5.1 Aggregation Techniques

A technique that forges this final answer out of the worker’s returned answers is
called aggregation technique. We review some of them in the rest of the section. We
first give the basic notations that we will use in the following sections.

General Setting

We consider a set of tasks T = {t¢4,...,t,} for which answers are unknown and
need to be collected from a set of crowd workers U = {u,...,u;}. For each task t;,
the correct answer is a boolean value a; € {0,1}. This answer is usually called the
ground truth. For a task ¢; € T the answers given by worker u; € U is denoted by [;;.
We let y,; denote the final answer of a task ¢; obtained by aggregating the answers of

all workers. L; = U [;; denotes the set of all answers returned by workers for task ¢;,
i€l..k

L denotes the set of all answers, L = U L;. The goal is to forge the final aggregated
j€l.n

answer Y = {y;,1 < j < n} from the returned set of answers L by the crowd workers
for all tasks.
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Majority Voting

A natural way to derive a final answer from a set of answers is Majority Voting
(MV), i.e. choose as a conclusion the most represented answer [EV11;/Cao+12]. Given
a task and a set of answers for that task, MV selects the final answer as the most voted
answer among the provided solutions. The majority voting aggregation technique, to
derive the final answer y; for each task ¢; is defined as follows.

Definition 17 (Majority Voting).

|Z;]|
Vjen, y;=argmax» Z(l;,a) (2.1)
ac{0,1} ;—1

where 7 is an indicator function, defined as follows

I(z,y) = {1 o=y 2.2)

0 Otherwise

The limitation of MV is that all answers have equal weight, regardless of the exper-
tise of workers. If a crowd is composed of only a few experts, and of a large majority of
novices, MV favors answers from several novice workers. However, in some domains,
an expert worker may give a better answer than a novice and his answer should be
given more weight. One can easily replace MV with a weighted vote. Let ,, denotes
the weight of the worker i. Then weighted majority voting is defined as follows.

IL;]
Vien,VjEn, y;=argmax» p, X Z(lj,a) (2.3)
ae{0,1} ;—1
Higher weight is given to the more expert worker. However, assigning weight to workers
raises the question of a measure for worker’s expertise, especially when ground truth
is not known.

Measuring Expertise: Golden Question

In general, expertise plays a major role to execute a task that may require some
degree of specialization. For example, a Java programmer is required to code Java-
based applications, a manager will be required to manage a project, an entomologist
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is required to study insects, etc. A similar context applies to a crowdsourcing setting.
Better knowledge about the expertise of the crowd workers can avoid uncertainty and
improve the efficiency and accuracy of the answers. However, workers at crowdsourc-
ing platforms are not necessarily known. Most of the crowdsourcing platforms do not
have prior knowledge about the expertise and skills of their worker [Dan+18].

A way to obtain an initial measure of a worker’s expertise is to use Golden Ques-
tions [Le+10; |[How06]. Golden questions are a set of tasks whose actual answers,
known as ground truth are prior known. Several tasks with known ground truth are
used explicitly or hidden to evaluate worker’s expertise. Broadly, the evaluation mech-
anism is of two types, i.e. explicit and implicit. In the explicit approach, workers are
asked to answer a set of test (golden) questions. The workers are then evaluated and
only the qualified workers are allocated a particular “real” task. The qualification crite-
ria is usually chosen by the client. In this setting, as qualifications tasks are unpaid,
workers are often reluctant to realize these tasks. In the second implicit approach, a
set of golden questions 7, (the tasks whose answer is known) is embedded in the ac-
tual set of tasks T, (the tasks with unknown answers) to evaluate worker’'s expertise.
The workers are evaluated and given weight depends on how they answered each task
in T,. The weighted aggregation method based on worker’s expertise is then applied
to derive the final answers for tasks 7. As golden tasks 7, are hidden in standard
crowdsourced tasks (I' = T, U T,,), they have to be paid as other tasks 7,,. The advan-
tage is that workers do not make a difference between qualification tasks and actual
tasks. A drawback is that tasks 7, do not produce useful information as answers are
already known but consume a part of the budget. Note that, explicit mechanism is not
so appealing to workers and implicit way requires additional budget. Hence, both the
mechanisms are not well suited and have a disadvantage on their own.

EM based techniques

Several papers have considered tools such as Expectation Maximization (EM) [DLR77]
based techniques to aggregate answers. Given a statistical model that generates a set
X of observed data, the EM algorithm aims at finding the unobserved data ) (missing
data), and estimates hidden parameters 6. In the crowdsourcing context, the observed
data X is the answers returned by the crowd, unobserved data ) is the final aggregated
answers that need to be derived and ¢ is the hidden parameters such as expertise of
the workers. EM is an iterative approach. Each round of the algorithm consists of two
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Figure 2.9 — Expectation Maximization algorithm general workflow.

phases: Expectation step and Maximization Step. The expectation step estimates the
expected value of missing data given observed data and the current estimate of param-
eters. Then the maximization step aims to find the new value of the parameter based
on the estimated missing data and the observed data. The two steps are repeated until
convergence, i.e. the difference between the parameters at a step i and i + 1 is smaller
than a fixed threshold ¢, i.e. ||¢"*! — #"|| < e. A coarse workflow for the EM algorithm is
shown in Figure [2.9] We discuss in more detail the EM algorithm in Chapter [5]

A large part of the literature considers accuracy as a measure of workers expertise.
We only highlight a few works addressing accuracy and a more complete survey can
be found in [Zhe+17].
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Accuracy: Accuracy is defined as the ratio of correctly answered tasks to the total
number of tasks. Formally in our general setting (see Section [2.5.1)), given n number
of tasks, answer returned by a worker i for each task j be /;; and the final answer
evaluated by an aggregation algorithm (Majority voting, EM based technique) be y;, we
define the accuracy acc; of a worker i as follows.

Definition 18 (Accuracy).

n s = vy
acc; = Z]_l H J y]H (2_4)
n

Zencrowd [DDCM12] considers workers competences in terms of accuracy and
aggregates answers using EM. The authors [Li+14; Ayd+14] model worker expertise as
a single value between [0, +-00]. The higher value implies the higher quality of workers.
The author [Li+14] considers an optimization scheme based on Lagrange multipliers.
Workers accuracy and ground truth are the hidden variables that must be discovered in
order to minimize the deviations between workers answers and aggregated conclusion.

However, accuracy acc; is not always a correct criterion to measure an expertise
of a worker i. Consider a scenario where the task is to tag whether a mail is spam or
not. Most of the mail in this scenario is not spam. In this case, even if a worker always
tags a mail as not spam, his accuracy for the task will be very high. However, it is mis-
leading. To cope with this drawback, some authors have proposed multi-dimensional
evaluations, that consider ground truth in their measure. These measures are called
recall and specificity.

The recall «; of a worker i is the probability that worker i answers a task j as 1
when the ground truth is 1, i.e.

The specificity 5; of a worker i is the probability that worker ¢ answers a task j as
0 when the ground truth is 0, i.e.

Bi = Pr(ly; = 0ly; = 0) (2.6)

Several works have shown that the quality of aggregated answers improves when
expertize is measured in terms of recall and specificity rather than in terms of global
accuracy. D&S [DS79] uses EM to synthesize answers that minimize error rates from
a set of patient records. It considers recall and specificity to measure the worker’s ex-
pertise and to aggregate the answers. The approach in [Ven+14] extends Bayesian
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classifier combination (BCC) [KG12] with communities and is called CBCC. BCC is a
general framework to combine the label in the context of the classification that explicitly
models the relationship between each classifier model’s output and the unknown truth
label. In a crowdsourcing context, each model’s output is replaced with the worker’s
answers and the idea is to use BCC to aggregate the answers. In the CBCC approach,
each worker is supposed to belong to a particular (unknown) community and shares
characteristics of this community (recall and specificity as a measure). The assump-
tion helps to improve the accuracy of classification. [Ray+10] proposes a supervised
learning approach when the ground truth is unknown. The work considers recall and
specificity of workers and proposes a maximum-likelihood estimator that jointly learns
a classifier, discovers the best experts, and estimates ground truth.

Task difficulty measures to which extent realizing a task requires an effort by a
worker. For example, annotating a blurred image is more difficult than annotating a
clear image. Most of the works cited above consider the expertise of workers but do
not address task difficulty. An exception is GLAD (Generative model of Labels, Abilities,
and Difficulties) [Whi+09] that proposes to estimate task difficulty as well as worker’s
accuracy to aggregate final answers. The authors recall that EM is an iterative process
that stops only after convergence, but demonstrate that the approach needs only a few
minutes to tag a database with 1 million images. The authors in [DLW13] consider the
accuracy of workers and error in the execution of the tasks by the worker to aggre-
gate the answers. Recall that considering accuracy as the worker’'s expertise can be
misleading. Notice that in most of the works, task difficulty is not considered and ex-
pertise is solely modeled in terms of accuracy rather than using recall and specificity.
In Chapter 5], we will propose EM-based aggregation mechanisms that consider recall
and specificity of workers, and tasks difficulty as hidden parameters.

2.5.2 Budget optimization

The success of crowdsourcing platforms is based on the availability of human work-
ers, available skills, and active participation and engagement of the crowd in the real-
ization of the task. The human workers at platforms are demographically separated and
it makes it hard for the administrators of the platform to physically track them. To moti-
vate and push the participants, incentives are widely used. They can take the form of
reputation systems, financial rewards, goodies, etc. [KSK16]. Financial rewards are the
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most extrinsic motive which triggers the crowd workers most. The business platforms
as AMT, Wirk, Figure Eight, etc. provide financial rewards as payment upon completion
of a task. Requesters also provide bonuses if they are very happy with the performance
of the crowd workers.

Financial compensation can take two forms: budget and bonus. A budget B, is an
amount that is fixed apriori by a requester for the execution of all tasks and the bonus
Iy is an extra amount distributed by the requester to reward crowd workers after com-
pletion of a task. Note that, B, guarantees a minimum compensation for the realization
of a task. On the other hand, the bonus amount varies as it is given after completion
of a task by the requester and is totally based on the performance of the worker. If
the system has an unlimited budget, it can hire an unlimited amount of workers. But
constrained budget forces the system to use the budget at its best. In Chapter [6], we
propose budget optimization schemes to make a trade-off between budget and accu-
racy.

As mentioned above, a single answer for a particular task is often not sufficient to
obtain a reliable answer, and one has to rely on redundancy, i.e. distribute the same
task to several workers and aggregate results to build a final answer. Standard static
approaches on crowdsourcing platforms fix a prior number of & workers per task. Each
task is published on the platform and waits for bids by k& workers. There is no guideline
to set the value for k, but two standard situations where £ is fixed are frequently met.
The first case is when a client has n tasks to realize with a total budget of B, units.
Each task can be realized by £ = B,/n workers. The second case is when an initial
budget is not known, and the platform fixes an arbitrary redundancy level. In this case,
the number of workers allocated to each task is usually between 3 and 10 [GM+16]. It
is assumed that the distribution of workers is uniform, i.e. that each task is assigned
the same number of workers. An obvious drawback of static allocation of workers is
that all tasks benefit from the same work power, regardless of their complexity.

Generally, the database and machine learning communities focus more on data ag-
gregation techniques and rather leave budget optimization apart. [KOS11] proposes
an algorithm to assign tasks to workers, synthesize answers, and reduce the cost of
crowdsourcing. The author considers a general model of crowdsourcing and provides
an algorithm to decide task assignment to workers and also for inference of correct
answers from the workers. It assumes that all tasks have the same difficulty and that
worker’s reliability is a consistent value in [0, 1]. The author provides an asymptotically
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optimal graph construction in the form of a random regular bipartite graph and an opti-
mal iterative method on the graph to allocate workers. CrowdBudget [T T+13] is an ap-
proach that divides a budget B among n existing tasks to achieve a low error rate and
then uses MV to aggregate answers. Worker’'s answers follow an unknown Bernoulli
distribution. The objective is to affect the most appropriate number of workers to each
task in order to reduce the estimation error. The approach pre-allocates the workers to
each task providing a bound on total estimation error based on budget. Static alloca-
tion needs not to allocate the same number of workers to each task. However, if the
difficulty of a task is not known, it is difficult to choose a prior optimal allocation policy
allowing a consensus for each task. Raykar et.al [RA14] introduce sequential crowd-
sourced labeling: instead of asking for all the labels in one shot, one decides at each
step whether an evaluation of a task shall be stopped, and which worker should be
hired. The model incorporates a Bayesian model for workers (workers are only charac-
terized by their accuracy), and cost. In a similar line, [CLZ13] formalizes the problem as
bayesian Markov Decision Process (MDP) to model workers reliability and incorporates
it into budget allocation policy. In this MDP framework, set of states represent total bud-
get consumed, and actions are the tasks that could be answered next. Transitions and
their probability depend on the probability of answers returned by the workers, and the
reward is defined in terms of the amount of incentive used to move to the next state (i.e.
get more answers). The author [Li+16b] advocates that in some scenarios a requester
might prefer getting fewer answers of the tasks with high quality rather than solving
all the tasks. The proposed framework Requallo allows the requester to set specific
requirements on the answers and then optimize the budget based on a one-step look
ahead MDP framework. Note that computing a MPD out of a crowdsourcing system
description results in a huge model, and that computing strategies to spend budget or
hire workers on such model is not always a tractable approach.

Some works have considered deployment of tasks. CLAMSHELL [Haa+15] consid-
ers latency improvement. It affects workers to batches of tagging tasks and detects
staggers. To speed up tasks completion, some batches are replicated. Pools are as-
sembled and maintained by rewarding workers for waiting. This approach improves
latency, but increases costs. [GP14] uses Markov decision processes to dynamically
adapt a pricing policy so that batches of tasks are completed with the lowest latency
within a fixed budget, or at the lowest price given some time constraint. [GIL16] pro-
poses solution to compute the best static deployment policies in order to achieve an
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optimal utility (i.e. a weighted sum of overall cost and accuracy) using sequencing or
parallelization of tasks. Their exhaustive approach limits the number of workers and
orchestrations that can be considered. [WRA20] is a recommendation technique for
deployments, that allows parallelization of tasks, sequential composition, and use of
machines to solve open tasks such as translation or text writing. Their approach con-
siders fixed competence models, and provides static deployment solutions, building on
optimization techniques. These deployments allow reduction of latency and improve
quality of produced data.

Most of approaches studied consider cost optimization for batches of similar tasks
such as image tagging, and do not consider cost optimization in situations where data
is processed through a complex workflow. The author [Ber+15] proposes Soylent, a
word processor which works in three phases: Find, Fix and Verify (FFV). It aids com-
plex writing tasks by improving the quality of sentences. The workflow follows: In Find
phase, workers detect positions of errors in the sentences, in Fix phase, workers rec-
tify the mistakes, and in the end workers verify the mistakes. Cost is not considered
in this setting. BudgetFix [T T+14] proposes to allocate budget across multi phases of
a workflow. Given a budget of B, BudgetFix species the number of micro-task at each
phase of a workflow along with a budget for each micro-task. The algorithm considers
the Find-Fix-Verify workflow as a use case. However, it assumes prior knowledge of the
difficulty of each of the tasks and considers workflow which works on one sentence at
a time. Budgeteer [TT+15] is an extension of this work which attempts to manage cost
across multiple workflows. The author considers processing multiple sentences using
FFV workflow for each sentence. Note that, these approaches are very case-specific
and do not provide a principled way to guarantee quality assurance in a general crowd-
sourcing workflow setting.
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CHAPTER 3

COMPLEX WORKFLOWS FOR
CROWDSOURCING

Besides the simple human intelligence tasks such as image labeling, sentiment
analysis, we foresee that crowdsourcing platforms have the capability to realize more
intricate tasks. As explained in Chapter [2] the tasks on existing crowdsourcing plat-
forms are simple and usually take a few minutes to an hour to complete. The next
stage of crowdsourcing is to design more involved processes relying on the vast wis-
dom of the crowd. Indeed, many projects, and in particular scientific workflows, take
the form of orchestrations of high-level composite tasks. Each high-level task can be
seen individually as a data collection task, or as a processing of a large dataset, built as
the union of results from independent easy micro-tasks. However, the coordination of
these high-level tasks to achieve the final objective calls for more evolved processes.
One can easily meet situations in which the result of a high-level task serves as an
entry for the next stage of the overall process: for instance, one may want to remove
from a picture dataset images of poor quality before asking workers to annotate them.
Similarly, situations allow parallel processing of dataset followed by a merge of the ob-
tained results. A typical example is the cross-validation of answers returned by different
crowd workers. However, as noted by [Tra+15], composite tasks are not or poorly sup-
ported by existing crowdsourcing platforms. Crowdsourcing markets such as Amazon
Mechanical Turk[] (AMT), Foule Factoryf], CrowdFlowerf] etc. already propose inter-
faces to access crowd, but the formal design and specification of crowd-based complex
processes are still in their infancy.

Many projects cannot be described as collections of repetitive independent micro-
tasks: they require specific skills and collaboration among participants. We call such

1. https://www.mturk.com
2. https://www.foulefactory.com
3. https://www.crowdflower.com
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projects “complex tasks”. The typical shape of complex tasks is an orchestration of
high-level phases. For example - tag a database, then find relevant records, and finally
write a synthesis. Each of these phases requires specific skills, can be seen at its level
as a new objective on its own, and can be decomposed into finer choreographies, up to
the level of assembly of micro-tasks. The workflow of such processes is hence dynamic
and shall consider worker skills, availability of workers, and the produced output data,
but also their knowledge about processes themselves. The first challenge is to fill the
gap between a high-level process that a requester wants to realize and its implementa-
tion in terms of micro-tasks composition. Moving from one description level to the other
is not easy, and we advocate the use of the expertise of the crowd for such refinement.
This can be achieved with higher-order answers, allowing a knowledgeable worker to
return an orchestration of simpler tasks instead of a crisp answer to a question.

In this chapter, we formalize the orchestration of complex tasks into smaller sub-
tasks and define a model for crowd-based projects called “complex workflows”. Here is
the outline of the chapter:

— We start with two higher-order examples of a complex task and its orchestration

into smaller sub-tasks in Section

— We describe the basic preliminaries to lay out the foundation of the chapter in

Section [3.2] The notations are used throughout the thesis.
— We formalize the notion of workflow and the rewriting of tasks in Section [3.3]
— In Section [3.4] we define the operational semantics of complex workflows and
we conclude in Section [3.5]

3.1 Higher Order Example

Our objective is to provide tools to develop applications in which human actors
are involved to resolve tasks or propose solutions to complete a complex task. The
envisioned scenario is the following: a client provides a coarse grain workflow depicting
important phases of a complex task to process data and a description of the expected
output. The tasks can be completed in several ways, but cannot be fully automated. It is
up to a pool of crowd workers to complete them or to refine the tasks up to the fine-grain
level where high-level tasks are expressed as orchestrations of basic simple tasks.
To illustrate the needs for complex workflows, refinement, and human interactions, we
provide two examples. We start with a simple example implementing an actor popularity
pool and then we provide a real field example - the SPIPOLL case that uses higher-
order.
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Figure 3.1 — A simple actor popularity poll.

3.1.1 A simple example: the actor popularity poll

A client (for instance a newspaper) wants to rank the most popular actors of the
moment, in the categories comedy, drama, and action movies. The ranking demand is
sent to a crowdsourcing platform as a high-level process decomposed into three se-
quential phases: first a collection of the most popular actors, then a selection of the 50
most cited names, followed by a classification of these actors in comedy/drama/action
category. The ranking ends with a vote for each category, that asks contributors to
associate a score to each name. The client does not input data to the system, but
has some requirements on the output: the output is an instance of a relational schema
R = (name, cites, category, score), where name is a key, cites is an integer that gives the
number of cites of an actor, category ranges over {drama, comedy, action} and score is
a rational number between 0 and 10. Further, for an output to be consistent, every actor
appearing in the final database should have a score and the number of cites greater
than 0. From this example, one can notice that there are several ways to collect actor’s
names, several ways to associate a category tag, to vote, etc. However, the client’s
needs are defined in terms of high-level tasks, without information on how the crowd
will be used to fulfill the demand. This simple sequential task orchestration is depicted
in Figure [3.1] The workflow starts from an empty input dataset Dy, and should return
the desired actor popularity data in a dataset D,..,xcq-

The model proposed in Section is tailored to realize this type of application
with the help of workers registered on a platform. Workers can either provide their
answers on how to decompose difficult tasks or input their knowledge and opinion on
the platform.
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3.1.2 Areal field example: the SPIPOLL initiative

We provide a real field example, where managing task decomposition, orchestra-
tion, and workers contributions are key issues. We study the SPIPOLL initiativeﬂ a
participatory science project. The project aims at collecting quantitative data on polli-
nation by flowering insects to measure the diversity and network structure of pollination
in France. This task is not trivial for several reasons. First of all, collecting information
on insects requires a huge work power to collect significant samples throughout the
whole country. Second, the project lacks work power to sort, classify, huge datasets,
and then derive conclusions from the observed populations. While volunteers can help
to sort pictures of insects, some rare taxons can only be recognized by experts. The ob-
jective of SPIPOLL is to organize collaborative work involving ordinary people, trained
volunteers, and experts to build significant datasets and extract information on polli-
nating insect populations. We believe that the project can benefit from advances in
data-centric crowdsourcing platforms, in particular for the design and automation of
complex data acquisition procedures.

The high-level description of SPIPOLL tasks is: acquire data (pictures), classify
them, and publish the results. The result of classification should be a set of images
with location and time tags, together with a taxon chosen among a finite set of species.
The data acquisition and classification protocols specified by SPIPOLL fit well with
the core idea of complex tasks. The protocol proposed by SPIPOLL is the following.
Volunteers stand for a certain duration (usually 20 minutes) in a place frequented by
insects (bushes, flower beds,...) and take pictures of insects pollinating on a flower
at that place. Once the phase is completed, the observer uploads his pictures on a
server. This first phase results in huge collections of pictures, but not all of them are
exploitable. The obtained result after the first phase is a dataset which records are of
the form of R = {image, place, time}. Data collected from various sources are used
as inputs for a second phase. The second phase’s objective is to classify pictures ac-
cording to their quality, i.e. identify images that will help to find a correct identification
for the represented insect. As the images are collected from diverse and unknown ob-
servers, there is a need to rank and tag the respective image based on their quality,
i.e. associate with each image a tag quality = {poor,average, good,best}. Generally,
for these tasks, considering the bias among the workers, a typical image is given to

4. http://www.spipoll.org/
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k different workers. The workers give their opinion and tag each of the obtained im-
ages. The third phase aggregates the result obtained in the second phase and gives
a final verdict for each picture. The majority voting technique is widely used to reach
a common consensus among the workers. The fourth phase removes images with
poor quality from the dataset. The fifth phase categorizes the insect images with suffi-
cient quality obtained as input from the fourth phase into different species categories,
category = {categoryo, ..., category,}. Similar to the second phase, an image is dis-
tributed to & unique workers who are asked to tag a category to the insect image. The
output of this phase serves as input for a sixth phase that aggregates the result by
majority voting to obtain the final category for each picture and then passes the re-
sult for the final assessment. The final assessment for each image is performed by the
experts or scientists for validation and then the obtained results are published. These
types of complex tasks can be often found when there is a need for data collection,
data cleaning, and then processing the data based on human intelligence.

The SPIPOLL example raises several observations on the realization of complex
tasks in a crowdsourcing environment. First, one can note that some of the tasks need
to be completed sequentially, and on the other hand some tasks can be executed in
parallel. For example, in the Spipoll case study, images can only be annotated after
they have been collected by observers. As a result, the first phase and the second
phase can only be executed sequentially. However, images can be annotated in parallel
(second, fifth phase) by different sets of workers. Another remark is that some recurrent
orchestration patterns appear, such as dataset distribution, tagging, and aggregation.
These work distribution patterns are typical examples where crowdsourcing platforms
are particularly adapted to improve quality and delays in data analysis. The dataset
obtained from the observers can be large and annotating such big datasets is usually
a task that cannot be performed by a single worker. Most often, volunteer contributors
in crowdsourcing platforms spend little amounts of time on the platform. Hence the
annotation phase needs to be decomposed, for instance by splitting large datasets into
several chunks of reasonable size. These small chunks of data are then distributed and
tagged in parallel by several workers, before aggregation. In this setting, refinement of
heavy tasks into several smaller concurrent easy tasks saves a lot of time.

Another lesson learned from the SPIPOLL case study is that some tasks may re-
quire special skills, such as expertise on insects to be completed. The validation task
in the above example requires specialized people to judge the validity of the proposed
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taxons. Hence, the system should consider the expertise of the worker when allocating
tasks. Another thing to note is that the example depicted here is data-centric, i.e. the
role of each high-level or low-level task is to manipulate and transform data (select,
tag,...). One can also observe that all tasks do not require human intelligence, and
some of them can be easily performed by machines. For example, consensus between
the workers is performed by applying majority voting techniques. Other tasks such as
the selection of best pictures are like SQ L queries and can be automated. Thus, the
system is a mixture of human and machine-powered intelligence. Generally, machine-
powered tasks are deterministic in nature, and tasks devoted to humans come with
uncertainty.

As mentioned above, the output of one task acts as input to another task, which
leads to causal dependencies among tasks. Besides, the execution of one task may
affect the output of another task. An erroneous output of one task can jeopardize the
execution of several successive tasks and in the long run, may also halt the whole
process. Hence, this calls for the use of verification techniques to ensure consistency
and guaranteed output for each of the task execution.

3.2 Preliminaries

A complex workflow is defined as an orchestration of tasks, specified by a client
to process input data and return an output dataset. A client is a person, requester, or
an organization who wants a crowdsourcing platform to realize a service defined as a
complex task. We assume a fixed and finite pool ¢/ of workers, and a prior finite list
of competencies comp. A worker u € U completes or refines some tasks according
to its skills. We hence define a map sk : &Y — comp. Notice that sk(u) is a set, i.e.
a particular competence ¢ € sk(u) needs not be exclusive. We adopt this simplistic
model of worker's competencies for the clarity of the model, but more evolved repre-
sentations of skills exist and could be easily integrated into the model. For instance,
[MGM16] proposes a hierarchy of competencies to reflect a natural ranking of the ex-
pertise. However, this thesis does not consider skills classification nor management of
competencies and just views the skills of a worker as a set of keywords.

A task t is a work unit designed to transform input data into output data. A task can
be of several types: it can be a high-level description of a stage in a complex task, a
very basic atomic task that can be easily accomplished by a single worker (for example,
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tagging images), a task that can be fully automated, or a complex task that requires an
orchestration of sub-tasks to reach its objective. Tasks at crowdsourcing platforms can
be accomplished by either humans, i.e. workers if they require human intelligence, or
by machines, i.e. the tasks that can be automated.

We define a set of tasks 7 = 7,. W T.. W T,.. Where 7T,. is a set of atomic tasks that
can be completed in a single step by a worker, 7., is a set of complex tasks which need
to be decomposed into an orchestration of smaller subtasks to produce an output, and
Twut 1S @ set of automated tasks that are performed by a machine (for instance some
database operation (selection, aggregation, union, projection, etc.)). 7,.: do not require
a contribution of a worker to produce output data from input data, and tasks in 7,. and
Tt cannot be refined. We impose constraints on skills required to execute a task with
amap 7., : T — 2°°™P depicting the fact that a worker « is allowed to realize or
decompose task ¢ if it has the required competences, i.e., if T.s(t) C sk(u). One can,
however, consider that every worker has all competences, and can perform any task
within the system. Within this setting, one needs not define worker's competencies,
nor attach skills constraints to tasks. However, for practical use of a crowdsourcing
platform, one usually wants to obtain the best possible results, which calls for clever
management of skills, incentives, etc. Now we define the task refinement. Let ¢t € 7.,
be a complex task, and let C; = T.(t) be the set of competencies that allows a worker
to realize a task t. We advocate that crowdsourcing platforms should allow higher-order
answers.

For instance, in the Spipoll case (see Section[3.1)), some intricate tagging tasks may
require some special interactions among workers, followed by an expert’s validation.
Such tasks can be orchestrated in a workflow of bounded size assembling nodes which
labels belong to a finite alphabet of tasks. The possibility is already in use in the world
of crypto trading platforms such as Kryll that allows users to define simple trading bots
using a block diagram language [Kry18]. We assume that a competent worker u knows
a set of finite orchestrations depicting appropriate refinements of a task ¢. We denote
by Profile(t,u), this set of finite workflows. Note that a profile in Profile(t,u) needs
not to be a workflow of large size, and may even contain workflow with a single node.
In such cases, the refinement simply replaces ¢ € 7., with a single atomic tagging task
t' € T,., meaning that u thinks that the task is easy, and wants it to be realized by
another worker with specific skills.
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We illustrate the refinement with an example. Assume a task ¢t € 7., with an ob-
jective is to tag a (huge) dataset D;,. Here, Profile(t,u) contains a workflow that first
decomposes D, into K small tables, then inputs these tables to K tagging tasks in
T.. that can be performed by humans in a reasonable amount of time, and finally ag-
gregates the K obtained results. This refinement has many practical applications, for
instance consider the following scenario: a complex task t;;.. asks to rank large col-
lections of images of different animals with a score between 0 and 10. The relational
schema for the dataset D used as input for ¢, is a collection of records of the form
Picdata(nb, name, kind) where nb is a key, name is an identifier for a picture, kind de-
notes the species type obtained from the former annotation of data by crowd workers. A
worker v decides to divide dataset D into three disjoint datasets that consist of pictures
of cats, pictures of dogs, and pictures of other animals respectively. The three datasets
are independent and can be ranked separately by the workers and in the end, results
are aggregated. Figure represents a possible profile to refine task #;.. A task t;xe
is rewritten in a workflow with four nodes. Node n, is an automated task that splits
the original dataset into a dataset containing pictures of dogs, cats, and other animals.
Nodes nq,ny, ng are occurrences of tagging tasks for the respective animal kinds, and
node n; is an automated task that aggregates the results obtained after realization of
preceding tasks.

tdog

tcat

@_,

Llike Espuit

Q@&anked D ll @_@ranked

Zfjoz’n

toth

Figure 3.2 — A profile for refinement of task ;..
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3.3 Workflow Formalization

In this section, we formalize the notion of workflow, and complex workflow. This
model is inspired by artifacts systems [DDV12], but uses higher-order constructs (task
decomposition), and relies on human actors (the crowd workers) to complete tasks.
We assume a client willing to use the power of crowdsourcing to realize a complex task
that needs human contribution to collect, annotate, or organize data. This complex
task is specified as a workflow that orchestrates elementary tasks or other complex
tasks. The client can input data to the system (i.e. enter a dataset D,,) and have prior
knowledge on the relation between the contents of the input and the plausible outputs
returned after completion of the complex workflow. This scenario fits several types of
applications such as opinion polls, citizen science participation, etc. High-level answers
of workers are seen as workflow refinements, and elementary task realizations are
simple operations that transform data. During the execution of a complex workflow, we
consider that each worker is engaged in the execution of at most one task.

Definition 19 (Workflow). A workflow is a labeled acyclic graph W = (N, —, \) where
N is a finite set of nodes, modeling occurrences of tasks, —C N x N is a precedence
relation, and \: N — T associates a task name to each node. A noden € N is a source
iff it has no predecessor and a sink iff it has no successor.

We fix a finite set of tasks 7, and denote by W the set of all possible workflows over
T . Intuitively, if (ny,n2) €—, then an occurrence of task named A(n,) represented
by n; must be completed before an occurrence of task named A(n,) represented by
ns, and that data computed by n, is used as input for n,. We denote min(W) the set
of sources of W, by succ(n;) the set of successors of a node n;, and by pred(n;) its
predecessors. The size of W is the number of nodes in N and is denoted |IW|. We as-
sume that when a task in a workflow has several predecessors, its role is to aggregate
data provided by preceding tasks, and when a task has several successors, its role
is to distribute excerpts from its input dataset to its successors. With this convention,
one can model situations where a large database is to be split into smaller datasets
of reasonable sizes that are then processed independently. We denote by W'\ {n;} the
restriction of W to N\{n;}, i.e. a workflow W from which node n; is removed along with
all edges which origins or goals are node n;.
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We assume some well-formedness properties of workflows:
1. Every workflow has a single source node n;,,;.

2. Every workflow has a single sink node n;. Informally, we can think of n, as the
task that returns the dataset computed during the execution of the workflow.

3. There exists a path from every node n; of W to the sink node n;. The property
prevents from launching tasks which results are never used to build an answer to
a client.

We define a higher-order answer as a refinement of a node n in a workflow by another
workflow. Intuitively, n is simply replaced by W’ in W.

Definition 20 (Refinement). Let W = (N,—, \) be a workflow, W' = (N',—', \)
be a workflow with a unique source node n',, = min(W’) and a unique sink node n’;
such that NN N' = (. The refinement of ne N by W' in W is the workflow W, w =
(Npn/wrys == {n/w)s Apnjw)), Where

— Ny = (N\{n}) UN'

— Apywr)(ns) = A(n) ifn; € N, XN(n;) otherwise

— —pw=—"U{(n1, n2) €= [m#n Ana#n} U{(n1, ng) [ (n1,n) €=} U{(nf,n2)|

(n,ng) €=}

To illustrate the notion of refinement, consider the example of Figure In the
workflow at the left of the figure, node n; is replaced by the profile of Figure [3.2)for task
tire- The result is the workflow on the right of Figure

Based on the definition of workflow and refinement, we now define the complex
workflow as follows.

Definition 21. A Complex Workflow is a tuple CW = (W,,T,U, sk, R) where T is a
set of tasks, U a finite set of workers, R C T x 2"V is a set of rewriting rules, and
sk C (UxR)U (UxT,) defines workers competences. W, is an initial workflow, that
contains a single source node n; and a single sink node n;.

We assume that in every rule (t,W) € R, the labeling A of W is injective. This
results in no loss of generality, as one can create copies of a task for each node in W,
but simplifies proofs and notations afterward. Further, W has a unique source node
src(W). The relation sk specifies which workers have the right to perform or refine
a particular task. This encodes a very simple competence model. The thesis does
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Figure 3.3 — A refinement of node n,, replaced by the profile for task #. in Figure[3.2]

not focus on the skill modeling of workers at crowdsourcing platforms and we refer
to [MGM16] for further studies on competencies and more elaborated competence
models.

Let us consider the example of Figure [3.3}left: a workflow contains a complex task
tiire Whose objective is to rank large collections of images of different animals with a
score between 0 and 10. The relational schema for the dataset D used as input for ¢;;.
is a collection of records of the form Picdata(nb, name, kind) where nb is a key, name is
an identifier for a picture, kind denotes the species obtained from the former annotation
of data by crowd workers. Let us assume that a worker u knows how to handle task ;.
(i.e. (u, tre) € sk), and wants to divide dataset D into three disjoint datasets containing
pictures of cats, dogs, and other animals, rank them separately, and aggregate the
results. This is captured by the rule R = (¢;xe, Wiire) Of Figure b, where node ny is
an occurrence of automated tasks that splits an input dataset into datasets containing
pictures of dogs, cats, and other animals, n/,n}, n; represent tagging tasks for the
respective animal kinds, and node r’; is an automated task that aggregates the results
obtained after realization of preceding tasks. A higher-order answer of worker u is
defined as an application of rule R to refine node n; in the original workflow with ;..
The result is shown in Figure 3.3}right.
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3.4 Operational Semantics

In this section, we define the operational semantics for complex workflows. A com-
plex workflow considers the set of tasks, task constraints, worker skills, and comes with
a set of operational rules. At each node of the workflow, data is transformed using data
operations. Operational rules act as a guiding principle in the execution of a complex
workflow. The semantics is defined with four rules - worker assignment, atomic task
completion, automated task completion, and refinement. We also define configurations
which represent the states of the complex workflow. An execution of an operational rule
simply updates the current configurations of the workflow.

3.4.1 Data operations

We introduced the standard data representation using relational schema in Chap-
ter[g] i.e. a representation of records by tuples of the form rn(as, ..., a,), where rn is
a relation name and attributes ay, . .., a, that fulfill the constraints of the legal domain
of relation rn. The restriction by the client puts restrictions to reduce the range of legal
input data or on the expected output of a complex workflow. Termination of a com-
plex workflow depends upon the properties of a dataset and the transformation of data
contents during configuration changes.

Here we first detail how automated and simple tasks are realized and process the
data input to that task to produce output data. At every node n representing a task ¢ =
A(n), the relational schema of all input (resp. output) datasets are known and denoted
rsi, .. rsit(resp.rstt L. rseet). We denote by D™ = Di", ..., Di" the set of datasets
provided by predecessors of ¢ as an input to task ¢, and by D = D™, ... Do* the set
of output datasets computed by task ¢. During a run of a complex workflow, we allow
tasks executions only for nodes which inputs are not empty. The contents of every D¢
produced during the execution of a task is the result of one of the operations below:
SQL-LIKE OPERATIONS : We allow standard SQL operations:

— Selection: For a given input dataset D! with schema rn(z4,...,z,) and a pred-

icate P(x1,...,z,), compute D¢ = {rn(z1,...2,) | rn(zy,...,2,) € D" A

P(xy,...,z,)}

— Projection: For a given input dataset D:* with schema rn(z1,...,z,) and an in-
dex kel,...,n compute D" = {rn(z1, ..., Tr—1,Trs1, .- Tn) | TR0, ... 20) €
Din}.
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— Insertion/Deletion: For a given input dataset D:" and a fixed tuple rn(a, ..., a,),
compute D" = D;* U {rn(ay,...,a,)} (resp. D = Di" \ {rn(ay, ..., a,)})

— Union: For two input dataset D;", D" with schema rn(z, ..., z,), compute D" =
Diny Dir

— Join: For two input dataset D!", D;" with schema rn;(x1, ... x,) and rng(vy1, . . ., yq),
for a chosen pair of indices ind;, ind;, compute D;“t ={rn'(x1,.. ., Tny Y1, -« Yinde—1,
Yindp+1s - - > Yq) | Tind; = Yina,, N10:(21, ..., 20) € D" Arng(ya, - .. y,) € D"}

— Difference: For two input dataset D", Di" with the same schema rn(z1, ..., z,),
compute D" = Dj* \ Dy

WORKERS OPERATIONS : These are elementary tasks performed by workers to modify
the datasets computed so far. These operations may perform non-deterministic choices
among possible outputs.

— Field addition: Given an input dataset D!" with schema rn(xy,...,z,), a pred-
icate P(.), compute a dataset D" with schema rn/(z, ..., 2,,2,.1) such that
every tuple rn(ay, ..., a,) € D" is extended to a tuple rn(ay, . . ., an, ani1) € Dyt
such that P(ay,...,a,+1) holds. Note that the value of field =, ; can be chosen
non-deterministically for each record.

— Record input: Given an input dataset D" with schema rn(xy,...z,), and a
predicate P, compute a dataset D¢** on the same schema rn(z, ..., x,) with
an additional record rn(yi, ..., y,) such that P(y,...,y,) holds. Note that the
value of y1,...,y,+1 can be non-deterministically chosen. Intuitively, P defines
the set of possible entries in a dataset.

— Field update: For each record rn(ay, . . ., a,) of D*, compute a record rn(by, ..., b,)
in D;“t such that some linear arithmetic predicate P(a4,...,a,,by,...,b,) holds.
Again, any value for by, ..., b, that satisfies P can be chosen.

RECORD TO RECORD ARITHMETIC OPERATIONS (R2R) : For each record rn;(ay, ..., a,)
of D;", compute a record in D?* of the form rn;(by, ..., b,) such that each b, k € 1..q is
a linear combination of as, ..., a,. For example (Figure [3.4), Consider node n; with in-
put dataset with D, with relational schema rn,(id, cy, ..., c,) where id denotes an item
numbers of grocery products and ¢y, ..., ¢, denotes the different cost (raw material
cost, labor cost, shipping cost, storage cost, ...). The n; node executes R2R oper-
ation and returns dataset D, with relational schema rny(id, v, ..., v,) where each v;
denotes different costs beared by the regulators (producer, whole sellers, retailers,...).
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1 10080 . . 1 180 .
2 123124 . . 2 247 .
3 200356 . . 3 556 .
4 90 120 . . 4 210 .

Figure 3.4 — Record to record arithmetic operations.

For example, the field value v; denotes the producer cost and is obtained by the linear
combinations as R2R(v,) = ¢; + ¢ where ¢, is the raw material cost and ¢, denotes
labor cost. Note that here, we consider linear combination of attributes as it gives an
effective algorithm to compute the results in polynomial time. We also restrict ourselves
to arithmetic over real values. The FO formula with real number and arithmetic opera-
tions (Addition, multiplication, ...) with the equality constraints are decidable following
the famous Tarski theorem [Tar98]. While for other cases as function symbols, it can
lead to undecidable cases (see Richardson’s theorem [Ric68]).

These operations can easily define tasks that split a database D{" in two datasets
D¢, D", one containing records that satisfy some predicate P and the other one
records that do not satisfy P. Similarly, one can describe input of record from a worker,
operations that assemble datasets originating from different threads. To summarize,
when a node n with associated task ¢ with I predecessors is executed, we slightly
abuse our notations and write D{“ = f,.,(Di", ..., D) when the task performs a de-
terministic calculus (SQL-based operations or record to record calculus), and D e
Fy.(Di™, ..., D) when the tasks involves non-deterministic choice of a worker and the
records in the output dataset should satisfy some properties relation values of record
fields in Dg*t and values in Di", ..., Di*. An example is shown in Figure [3.5] The node
n, receives input dataset Dy, D, and D3 and produces dataset D$“ using a determin-
istic union operations. We use first-order logic (FO) to address properties on dataset.
Next, we give the operational semantics of complex workflows.
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Figure 3.5 — Union of datasets.

3.4.2 Operational Semantics

An execution starts from the initial workflow 1/, that is the initial high-level de-
scription provided by the client. Without loss of generality, we assume that the client
provides an input dataset D;,, (that can be empty). Executing a complex workflow con-
sists of realizing all its tasks following the order given by the dependency relation —
in the orchestration, possibly after some refinement steps. At each step of execution,
the remaining part of the workflow to execute, the assignments of tasks to workers,
and the data input to tasks are memorized in a configuration. Execution steps con-
sist of updating configurations according to operational rules. They assign a task to a
competent worker, execute an atomic or automated task (i.e. produce output data from
input data), or refine a complex task. Executions end when the remaining workflow to
execute contains only the final node n;.

A worker assignment for a workflow W = (N, —, \) is a partial map wa: N — U
that assigns a worker to a subset of nodes in the workflow. Let wa(n) = w;. If \(n) is a
complex task, then there exists a rule » = (A(n), W) € R such that (w;,r) € sk (worker
w; kKnows how to refine task A\(n)). Similarly, if A(n) is an atomic task, then (w;, A(n)) €
sk (worker w; has the competences needed to realize A\(n)). We furthermore require
map wa to be injective, i.e. a worker is involved in at most one task. We say that w; € U
is free if w; & wa(N). If wa(n) is not defined, and w; is a free worker, wa U {(n,w;)} is
the map that assigns node n to worker w;, and is unchanged for other nodes. Similarly,
wa\ {n} is the restriction of wa to N \ {n}. A data assignment for a workflow W is
a function Dass : N — (DB W {0})*, that maps nodes in W to sequence of input
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datasets. For a node with k& predecessors ny,...n;, we have Dass(n) = Dy ... Dy. A
dataset D; can be empty if n; has not been executed yet, and hence has produced no
data. Dass(n);;/x) is the sequence obtained by replacement of D; by X in Dass(n).

Definition 22 (Configuration). A configuration of a complex workflow is a triple C' =
(W,wa, Dass) where W is a workflow depicting remaining tasks that have to be com-
pleted, wa is a worker assignment, and Dass is a data assignment.

A complex workflow execution starts from initial configuration Cy = (Wy, wag, Dassy),
where waq is the empty map, Dass, associates dataset D;,, provided by client to n;,;
and sequences of empty datasets to all other nodes of Wj. A final configuration is a
configuration C; = (Wy, way, Dassy) such that W, contains only node ny, way is the
empty map, and Dassy(ny) represents the dataset that was assembled during the ex-
ecution of all nodes preceding n; and has to be returned to the client. The intuitive
understanding of this type of configuration is that n; needs not be executed and simply
terminates the workflow by returning final output data. Note that due to data assign-
ment, there can be more than one final configuration, and we denote by C, the set of
all final configurations.

We define the operational semantics of a complex workflow with four rules that
transform a configuration C' = (W, wa, Dass) in a successor configuration ¢’ = (W' wa/,
Dass'). Rule 1 defines task assignments to free workers, Rule 2 defines the execution
of an atomic task by a worker, Rule 3 defines the execution of an automated task, and
Rule 4 formalizes refinement.

Rule 1 (WORKER ASSIGNMENT): A worker u € U is assigned to a node n. The rule
applies if u is free, has the skills required by ¢t = A(n), if ¢ is not an automated task
(t € Twe) and if node n is not already assigned to a worker. Note that a worker can
be assigned to a node even if the node does not have input data yet, and is not yet
executable. This rule only changes the worker assignment part in a configuration.

n & Dom(wa) A u & coDom(wa) A1) & Taut
N (T.s(t) C sk(u))
(W, wa, Dass) — (W,wa U {(n,u)}, Dass)

(3.1)
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Figure 3.6 — Application of semantic rule R;.

Consider for instance the application of rule R; described in Figure [3.6] Configura-
tions are represented by the contents of dashed rectangles. Workflow nodes are rep-
resented by circles, tagged with a task name representing map \. The dependencies
are represented by plain arrows between nodes. Worker assignments are represented
by dashed arrows from a worker name wu; to its assigned task. Data assignment are
represented by double arrows from a dataset to a node. The left part of Figure
represents a configuration C with four nodes n;, n,, n3 and ny. The predecessors of n,
and n, have been executed. Node n; represents occurrence of a task of type ¢; and
is attached dataset D,. Let us assume that D, is a database containing bee pictures,
and that task ¢; cannot be automated (¢; ¢ 7,.:) and consists in tagging these pictures
with bee names, which requires competences on bee species. This is formalized by
T.s(t1) = {Bees}. Let us assume that worker Smith is currently not assigned any task
and has competences on bees, i.e. Bees € sk(Smith). Then rule R; applies. The re-
sulting configuration is C" shown at the right of Figure [3.6], where the occurrence of ¢,
represented by node n, is assigned to worker Smith.

Rule 2 (ATomIC TASK COMPLETION): An atomic task ¢ = A(n) can be executed if
node n is minimal in workflow W, it is assigned to a worker v = wa(n) and its input
data Dass(n) does not contain an empty dataset. Upon completion of task ¢, worker
u publishes the produced data D°“ to the succeeding nodes of n in the workflow and
becomes available. The rule modifies the workflow part (node n is removed), the worker
assignment, and the data assignment (produces new data and is made available to
successors of n).
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n € min(W) AXn) € Toe Nwa(n) =u
A Dass(n) ¢ DB*.().DB*
A IDM = Dy, DR € Fygyu(Dass(n)),
Dass' = Dass \ {(n, Dass(n))}U
{(ng, Dass(ny)jj/pew) | ni € succ(n)
An is the j'" predecessor of n;}
(W, wa, Dass) Al (W\{n}, wa\{(n,u)}, Dass’)
Consider the example of Figure 3.7 We start from a configuration in which worker
Smith has to tag bee images stored in a dataset D;. We assume that the relational
schema for D, is a tuple R(id, pic) where id is a key and pic a picture. We also assume
that tags are species names from a finite set of taxons, e.g. Tax = { Honeybee, Bumblebee,
...,Unknown}. Worker Smith performs the tagging task, which results in a dataset D3
with relational schema R'(id, pic, tx). One can notice that no information is given of the
way worker Smith tags the pictures in D;, the only insurance is that for every tuple
R(id, pic), there exists a tuple R/(id, pic,tz) in D3 where tz € Taz, i.e.

(3.2)

R(id,pic) € Dy = 3R/(id, pic,tz) € D3 Ntx € Tax

Notice that application of this rule may result in several successor configurations, as
a human worker can choose non-deterministically any tag for each picture (including
wrong answers).

———————————————————————————————————————————————————

Figure 3.7 — Application of semantic rule R;.
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Rule 3 (AUTOMATED TASK COMPLETION): An automated task ¢ = A(n) can be exe-
cuted if node n is minimal in the workflow and its input data does not contain an empty
dataset. The difference with atomic task completion is that » is not assigned a worker,
and the produced outputs are a deterministic function of task inputs. This rule modifies
the workflow part (node n is removed), and the data assignment.

nemin(W) A X(n) € Tyu A Dass(n) ¢ DB*.0.DB*
AD" = fymyu(Dass(n)) = DY, ... D,
Dass' = Dass \ {(n, Dass(n))}U

{(nk, Dass(nk)y/pew) | my € suce(n)

An is the j'" predecessor of n;}

(3.3)
(W, wa, Dass) Al (W\n,wa, Dass")

Dy s 3 3
| | | N
IOl B )
IO RO

Figure 3.8 — Application of semantic rule R;.

Consider the example of Figure [3.8] We resume from the situation in Figure[3.7] i.e.
with two nodes n,, n3 remaining to be executed before n;, and with a dataset composed
of tagged images attached to node n3. Let us assume that task ¢; is an automated task
that consists of pruning out images with tag "unknown". This task can be realized as
a projection of D3 on tuples R/'(id, pic,tx) such that tz # “Unknown”. As a result, we
obtain a dataset D,, used as input by node n, such that VR'(id, pic,tz) € Dy, tx #
“unknown”. The projection operation can be realized by simple SQL query as stated
in Section[3.4.1
Rule 4 (COMPLEX TASK REFINEMENT): The refinement of a node n with ¢t = A\(n) € 7.,
by worker © = wa(n) uses a refinement rule r such that » = (¢, 1) exists and is
listed in the competences of u. The condition for the worker assignment guarantees
that refinement is always performed by a competent worker, owning an appropriate
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refinement rule to handle a task. Rule 4 refines node n with workflow W, = (N;, —,
, \s) (see Def.[20). Data originally used as input by n become inputs of the source node
of W,. All other newly inserted nodes have empty input datasets. This rule changes the
workflow part of configurations and data assignment accordingly.

t =Xn) € Tex A Ju,u = wa(n) Ar € Profile(t,u) ANr = (t,Ws)
ADass' (min(Wy)) = Dass(n)

AVz € N, \ min(Wy), Dass'(z) = (IFred@)

Awa' = wa\{(n,wa(n))}

ref(n)

(W, wa, Dass) ———— (Wi, w,}, wa', Dass’)

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 3.9 — Application of semantic rule Rj.

Consider the example of Figure Let us assume that worker Smith is assigned
task t; and that this task is a complex tagging task (for instance workers are asked
to find names of rare species). In such a situation, Smith can decide to replace the
task with a simple single-worker tagging mechanism, or by a more complex workflow,
that asks a competent worker to tag pictures, then separates the obtained datasets
into pictures with/without the tag “Unknown”, and sends the Unknown species to an
expert (for instance an entomologist) before aggregating the union of all responses.
This refinement leads to a configuration C’, shown in the right part of Figure 3.9, where
n} is a tagging task, n), is an automated task to split a dataset, n} is a tagging task that
requires highly competent workers and »), is an aggregation task. Here the conditions
for worker assignment guarantee that refinement is always performed by a competent
worker, owning an appropriate refinement rule to handle a task.
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Note that the definition of a complex task is very subjective and varies from one
worker to another. Classifying tasks as complex or not a priori should not be seen as
a limitation, as refinement is not mandatory: a worker can replace a node n labeled
by task t € 7., by another node labeled by an equivalent task ¢ € T,. U T, if this
possibility is allowed by the rules she can apply. This allows to model situations where
a worker has the choice to realize a task or refine it when she thinks it is too complex
to be handled by a single person. Similarly, the choice of a rewriting rule is a way to
implement a choice of a worker or simulate a random environment. But, rewriting allows
for recursion, i.e. rewriting of a task ¢ can contain a new occurrence of ¢ (either directly
or through successive rewritings).

We say that there exists a move from a configuration C' to a configuration C’, or
equivalently that C" is a successor of configuration C' and write C ~~ C’" whenever there
exists a rule that transforms C' into .

Definition 23 (Run). A run p = Cy.C; ... C} of a complex workflow W is a finite se-
quence of configurations such that C, is the initial configuration of W, and for every
iel...k, Ci_y ~ C;. Arunis maximal if C;, has no successor. A maximal run is
terminated iff Cy, is a final configuration, and it is deadlocked otherwise.

Runs of a complex workflow are successive rewritings of configurations via rules.
Figure gives an example of run. The top-left part of the figure is an initial con-
figuration Cy = (Wy, wag, Dassy) composed of an initial workflow W, an empty map
wag and a map Dass, that associates dataset D;,, to node n;,;. The top-right part of
the figure represents the configuration ¢, = (Wi, waq, Dass;) obtained by assigning
worker u; for execution of task ¢, attached to node n, (Rule 1). The bottom part of the
figure represents the configuration C, obtained from C; when worker u; decides to re-
fine task ¢, according refinement rule (¢5, W;2) (Rule 4). Workflow W,, is the part of the
Figure contained in the Grey square.

We denote by Runs(CW, D;,,) the set of maximal runs originating from initial con-
figuration Cy = (Wy, wag, Dassg), where Dass, associates dataset D;,, to node n;,;.
We denote by Reach(CW, D;,,) the set of configurations that can be reached from C,.
Along a run, the size of the dataset in use can grow unboundedly, and the size of the
workflow can also increase, due to the refinement of tasks. Hence, Reach(CW, D;,,)
and Runs(CW, D;,) need not be finite. Indeed, complex tasks and their refinement can
encode unbounded recursive schemes in which workflow parts or datasets grow up to
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Figure 3.10 — Complex workflow execution. C represents the initial configuration with
data D, allocated to node n,,;. C, is the successor of Cy: worker u; is allocated to
node ny, and t; = A(ns) is a complex task. C5 depicts the configuration after refinement
of node n, by a new workflow W, (shown in the grey rectangle).

arbitrary sizes. Even when Reach(CW, D;,) is finite, a complex workflow may exhibit in-
finite cyclic behaviors. Hence, without restriction, complex workflows define transitions
systems of arbitrary size, with growing data or workflow components.

3.5 Conclusion

In this chapter, we defined complex workflows for crowdsourcing applications that
enable intricate data-centric processes built on higher-order schemes. We presented
the operational semantics in the form of rules and rewriting schemes.

However, an operational semantics alone is not enough to guarantee that a work-
flow provides the desired output required by the client. Complex workflows with rewrit-
ing schemes can encode unbounded recursive schemes. In such cases, it becomes
crucial to check the termination of workflow along with correctness that guarantees
the desired output. In the next chapter, we propose verification schemes for complex
workflow and particularly study the termination and correctness properties.
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CHAPTER 4

DECIDABILITY

In the previous chapter, we proposed a complex workflow that supports higher-order
orchestrations that rewrites a complex task in a new workflow. The complex workflows
are equipped with a set of semantic rules (see Section that describes how to
allocate workers, orchestrate and execute tasks. However, a workflow may never reach
a final configuration. It can be due to particular data input by workers that cannot be
processed properly by the workflow, or to infinite rewriting appearing during the exe-
cution. In the first case, the workflow is deadlocked. In the second case, the workflow
does not terminate either, this situation is a livelock. Both deadlocks and livelocks pre-
vent termination of a process. However, termination is not the only property to meet
the client’s requirement. For example, a workflow W may terminate, but with a wrong
output, i.e. an output dataset that does not comply with the client’s requirement. In such
cases, the returned output is of no use to the client. Hence, along with the termination,
it is important to guarantee the correctness of the workflow. Given a workflow and a set
of workers, we will address the following problems:

— Universal termination: Does the workflow terminate for every possible input to

the system?

— Existential termination: Is there at least one input for which at least one exe-

cution of the workflow terminates?

— Universal correctness: For a given constraint ¢y on the produced results, does

the workflow terminates and satisfies ¢, for every possible input to the system?

— Existential correctness: For a given constraint ¢, on the produced results, Is

there a particular input and at least one run of execution for which the workflow
terminates and satisfies vy?

In this chapter, we study the formal properties of complex workflow: termination and
correctness. Here we give the outline of the chapter.

— We first describe the data aspects using first-order logic in Section |4.1

— We propose solutions to check the existential and universal termination of com-

plex workflows in Section 4.2
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— In Section [4.3] we show how to verify the existential and universal correctness
of a complex workflow. We also provide the complete complexity analysis for the
termination and correctness problem.

— A use case is provided in Section [4.4]

— We show in Section 4.5 the tool CrowdPlex that implements the complex work-
flow model and the algorithms to check correctness and termination properties
and in the end we conclude in Section

4.1 Effective Computation of Weakest Preconditions

Data is central to crowdsourcing systems. Each node of a complex workflow takes
some input data that complies with a relational schema for the node, processes it ac-
cording to the operation attached to this node. More formally, user inputs and auto-
mated tasks transform an input dataset into an output dataset. Data processing oper-
ations must comply with some FO requirements that constrain the legal outputs pro-
duced for some input. This transformation may produce an output in which relational
schema is completely different from the schema on the input (for instance when a new
field (tag) is added by a crowd worker), or conversely, preserve it (for instance when
the operation realized is a selection). The output of a node acts as an input to the
successor node(s). Crowdsourcing is used to process data input by a client. One can
assume:

— the client has some prior knowledge on the data that can be input to the system.

— the client expects some output that meets certain properties, e.g. the range of

answers collected is large enough, the answers are in a particular range, etc.
The most adapted formalism to specify properties of dataset is FO. In the rest of the
thesis, we will assume that the FO formulas used are given in Prenex Normal Form
(PNF) (see Chapter [2). This results in no loss of generality, as a formula that is not
in PNF, can be converted to an equivalent PNF formula. We consider variables that
either have finite domains or real valued domains, and predicates specified by simple
linear inequalities. In particular, we consider equality of variables, i.e. statements of the
form z; = x;. This class of constraints is well known, and deciding whether there exists
an assignment satisfying such predicate can be checked in polynomial time [Kha80].
If we assume that a constraint over n variables is an expression of the form Az; —
z; < c A Az; < cwhere x;, z; are variables, and ¢ a constant, then constraints can be
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encoded as differential bound matrix (DBM), and emptiness of the domain represented
by such a DBM where variables takes a real value can be checked in O(n?). Letting
Xy = {zy,...2x} € X we write V)?l instead of V.V, ... Vz,. Similarly, we write 3)?’1
instead of Jx;.3x5 ... 3x;. Given a FO formula in prenex normal form, without loss of
generality we write formulas of the form V)_>(13)_>(2 (X)) or 3}1v;(2 ... (X), where
Y(X) is quantifier free matrix, and for every i # j, X; N X; = (. Every set of variables
X; is called a block. By allowing blocks of arbitrary size, and in particular empty blocks,
this notation captures all FO formulas in prenex normal form. We denote by ¢y, 1, the
formula obtained by replacing every instance of term t; in ¢ by term t,.

It is well known that the satisfiability of first-order logic is undecidable in general, but
it is decidable for several fragments. Recall that in Chapter 2, we illustrated several de-
cidable FO fragments which include, monadic, BSR, FO2BD, and separated fragments.
In our setting, FO formulas contain only Boolean relational predicates (inherited from
relational schemas of datasets) and boolean predicates defined as combinations of lin-
ear inequalities. The universal fragment of FO is the set of formulas of the form VZ o,
where ¢ is quantifier-free. Similarly, the existential fragment of FO contains only formu-
las of the form Hﬁd). Then checking satisfiability of the existential/universal fragment
of FO can be done non-deterministically in polynomial time.

Proposition 1. Let X be a set of variables of the form X = X, ¥ X, where variables
from X, take values from finite domains and variables from X, take values in R. Then,
—)
satisfiability of formulas of the form ¢ == 3X. \ R,(X)AN A P;(X) is NP-complete.

i€l..I jei.J

Proof. Let us first show that the problem belongs to NP. Let us consider an ex-
istential formula ¢ ::= 3?.1/) where ¢ contains positive relational statements of the
form ¢, == Ri(X),... Rx(X), and negative relational statements of the form ¢z_ ::=
-Ri(X),...~Rp(X), and predicates of the form P, (X), ... P;(X). Foreach R;(z1, ..., z,)
in ¢, with relational schema rn; and legal domain Dom;, we define Ldom, as the con-
straint (z4,...xz,) € Dom,;. One can choose non-deterministically in polynomial time a
value d, for each bounded variable x in Xj,.

Then one can choose non-deterministically which relational statements and pred-
icate hold, by guessing a truth value v; € {true, false} for each relation R, € 1..I
(Resp. predicate P;,j € 1...J). Now, for each pair of choices where rn(zy,...xz,) holds
and rn(z7,... ;) does not, we verify that the designed tuples are disjoint, i.e. that
(v = 2y Ao Ay = xp). We call ér.r the formula that is the conjunction of such
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negations. The size of ¢r.r is in O(r.|¢?|) where r is the maximal arity in a relational
schema of the complex workflow. We can then verify that the guess of truth value for
atoms yields satisfaction of ¢, i.e. check that ¢z, p /i.ue, raise,0,) €ValUAtes to true. In case
of positive answer, it suffices to check that with the truth value choosen for atoms, the
formula ¢r.rN N\ Ldom; N A\ P,A A\ —P;is satisfiable, which can be done in poly-

i€l .k vi=true vi=false

nomial time. Now, for the hardness proof, one can easily encode an SAT problem with
a FO formula over boolean variables. Checking satisfiability of a universally quantified
formula can be done in the same way, as VX ¢ is satisfiable iff 3.X, —¢ is not. [

4.1.1 Closure of FO classes

In the next Section [4.2] we study the termination and correctness properties of
a workflow. We search for a reachable configuration C,,; where the emptiness of a
dataset D could stop an execution. Once such a configuration is met, it remains to
show that the statement D = () is compatible with the data operations as insertion,
projection, union of datasets, etc. performed during the execution before reaching Cy.4.
We compute backward the weakest preconditions (see def. ensuring D = () along
the followed run and check that each condition is satisfiable. In this section, we first
show that some decidable fragments of first-order are closed under the calculus of
weakest precondition. The proofs and definition act as a base to further study the
properties of the workflow. The weakest precondition in a workflow is defined as follows.

Definition 24. Let C — C" be a move from configuration C' to C' of a complex work-
flow. Let m be the nature of this move (an automated task realization, a worker assign-
ment, a refinement,...). We denote by wp|m|i the weakest precondition required for C
such that v holds in C' after move m.

As shown in Chapter 2| weakest precondition were introduced in [Dij75] as a way
to prove the correctness of programs. Calculus of weakest precondition was also pro-
posed to verify web applications with embedded SQL [ltz+17]. Similarly, we can show
an effective procedure to compute the weakest preconditions for each operation in a
complex workflow.

A technical lemma for weakest precondition. Here, we illustrate the derivation of the
weakest precondition for the Selection operation. The selection operation returns a set
of records from a table. We give below the lemma to derive the weakest precondition
for a task that performs a selection of records that satisfy some predicate in a dataset.
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Lemma 1 (Weakest precondition for Selection of records). Let ¢ be a FO formula, and
m be a move that selects records that satisfy a predicate P from datasets. Then one
can effectively compute an FO formula 1) = wp[m|p. Moreover, if ¢ is in YFO (resp.
3FO, BSR, SF) and P is an arithmetic/boolean predicate then v is also in VFO (resp.
3FO, BSR, SF).

Proof. Let D},...D},...D; = ¢, and let D be a dataset with relational schema
rs = (rn, A) obtained by selection of records from an input dataset D; with relational
schema rs(rn, A). One can notice that selection keeps the same relational schema,
and in particular the same set of attributes A = (a4, ...a;). We assume that selected
satisfy some predicate P(v,...v;) that constrain the values of a record (but do not
address properties of two or more records of D;). That is, the records selected from D;
by P are records that satisty vy, = 3vy, ... v, rn(ve,...v,) A P(vy, ..., v;). We want to
compute i = wp[Selection(Vser)] -

Formula ¢ is a formula of the form a(?).gb, where a(?) is a prefix. It contains K,
subformulas of the form rn(w;, ... wix) or =rn(w;, ..., w;1x) and we assume without
loss of generality that these subformulas are over disjoint sets of variables (one can
add new variables and equalities if this is not the case). Let ¢,,1,... ¢ k., e the
subformulas of ¢ addressing tuples with relational schema rs. Fori € 1... K., we let
¢f,; denote the formula rn(w;, ... wiwx) A P(w;, ... wik) if ¢rmy i in positive form and
=(rn(wy, ... witk) A P(w;, ... wy)) otherwise. Let us denote by Plfprni} 0T, M the for-
mula ¢ where every ¢,,; is replaced by ¢~ ,. The weakest precondition on D},... D;,

™m,i"

..., Dy for a selection operation with predicate P is defined as

H
= wp[Selection(se)|p = a(X)‘QS[{%n,i}l{ﬁm}}

Last, one can notice that transforming oz(})).gzﬁ into a(}}).gzﬁ[{%’i}‘{qsfm}] does not
introduce new variables, and preserve the prefix of the formula. As ¢ and v start with
the same prefix a(?), we can claim that ¢ and v are in the same fragment of FO. B

One can notice that the weakest precondition is a rather syntactic transformation,
that replaces atoms of the form rn(zy, ... zx) by rn(xy, ... xx) AP(xq, .. xy). f g, .0 2y,
are all existentially quantified variables (resp. all universally quantified variables) in ¢,
then they remain existentially (resp universally quantified) in . Hence, if ¢ is in 3
FO, VFO, BSR, SF-FO then so is wp[Selection(is)]p. The same remark applies to
all other types of moves except for automated tasks that perform datasets difference,
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which may introduce quantifiers alternations. A complete proof is available in [Bou+19].
In [Bou+19], we also show that the size of a weakest precondition ¢ for a given ¢ and
a maximal arity r in relation is O(r.|¢]).

Proposition [1: Let CW be a complex workflow, r be the maximal arity of relational
schemas in CW and ¢ be a FO formula. Then for any move m of CW, wp[m|y is an
effectively computable FO formula, and is of size in O(r.|1)]).

Proof. The effect of moves on the contents of datasets can be described as a
sequential composition of basic operations that are projection, selection, insertion of
records or fields, difference, union or join. In lemma [} we showed that one can ef-
fectively compute the weakest precondition for selection operation. Now, we first just
sketch the proof for the rest of the data operations and give the syntactic transformation
used to compute the weakest preconditions. Let Dy, ... D, be the datasets that appear
in 4.

If some D, is obtained as a selection of records from a dataset D;, then D, contains
only records of D! satisfying some predicate P. The precondition will hence be obtained
by a simple replacement in ¢ of any statement of the form rn(?) € D; by m(?) €
D, A P(X).

If D; is obtained after insertion of a fresh record in some dataset D, then every
statement rn(?) € D; can be replaced by a subformula (rn(?) e Div Domi(?))
where Domi(?) represents constraints on legal values of inputs in a dataset with
the same relational schema as D;. Note that Domi(})) is a quantifier free boolean
combination of predicates.

Similarly, if some dataset D; is obtained as the union of two datasets D, D,, the
precondition for ¢) should consider that tuples that satisfy rn(?) € D, belong to D,
or Dy. We simply replace atoms of the form Tn(})) € D; by the disjunction rn(?) €
DV rn(?) € D,. We also replace negative statements rn(?) ¢ D; by conjunction
rn(?) Z Dy A rn(?) ¢ D,. The size of the obtained formula is hence in O(2.|¢]).

If some D; is obtained by creation of a new field for each record in dataset D, then
relatlonal statement rn(X) € D;is replaced by another statement rn( Y) € D’/\P’(?)
where Y |s a subset of X and P'(Y ) is a quantifier free predicate indicating con-
straint on Y obtained after variable elimination when ? takes legal values imposed
by relational schema of D; (i.e. it satisfies Ldom; —see proof of Proposition [1}-) and
satisfies the constraints of relational schema of D.. As we assume that arithmetic pred-
icates are simple (two-dimensional) inequalities, the size of P’ is not larger than that of
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Ldom;. The weakest precondition can hence double the number of atoms, but keeps
the same bound on the number of variables used.

For (binary) joins, relation of the form rs(?i) are transformed in statements of the
form rs(?i)/\rs(Z)/\yl = z;, Where y; € ?; and z; € Z As every relational statement
can be replaced and hence create new variables, this calculus of a weakest precondi-
tion gives a formula of size in O(2.|¢]).

If some D; is obtained by difference of two datasets, D, from D;, the precondition
for ¢ should consider that tuples that satisfy rn(?) € D; belong to D; and rn(?) €
D, should not be present in D,. We replace atoms of the form Ts(})) € D; by the
conjunction Tn(}}) €D Arn(?) ¢ D,. We also replace negative statements rn(?) ¢
D, by disjunction rn(?) Z Dy \/rn(?) € D,. The size of the obtained formula is hence
in O(2.|Y]).

Last, if some D, is a projection of some dataset D; on a subset of its field, then the
weakest precondition for ¢» may multiply the number of variables in use by r, hence
gives a formula of size in O(r.|¢]). |

We illustrate a Join operation with an example shown in Figure Let D, be the
dataset produced as output of node n;, with relational schema rs;(x1, x5, x3). Let D, be
the dataset produced as output of node n, with relational schema rsy(yy,y2). Last, let
D5 be the dataset obtained by a join operation identifying x; and y; in record originat-
ing from D; and D,. Assume that formula ¢ is of the form 3zy, 2o, 25, 24, rn(21, 29, 23, 24) €
D3AP(z1, 22, 23, 24). Then the weakest precondition for ¢ is wp[join|¢ ::= 21, 29, 23, 24, Y1,
rny (21, 22, 23) € D1 Arng(yr, 24) € Do A (21 = y1) A P(21, 29, 23, 24).

Next, we show in Section [4.2)that many properties of complex workflows are decid-
able with some restrictions on recursion and when difference is not used in automated
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Figure 4.1 — Join operation Example.
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tasks of the workflow. Prop. [f]does not need such assumption. The weakest precondi-
tions calculus is rather syntactic and is effective for any FO formula and any move. Now,
if automated tasks use difference, universal quantifiers can be introduced in existen-
tial blocks, leading to the weakest preconditions in a FO fragment where satisfiability
is undecidable. Interestingly, if automated tasks do not use difference, the weakest
precondition is mainly obtained by syntactic replacement of relational statements and
changes of variables. It can increase the number of variables, but it does not change
the number of quantifier blocks nor their ordering and does not introduce new quanti-
fiers when replacing an atom. We hence easily obtain:

Corollary 1. The existential, universal, BSR and SF fragments of FO are closed under
calculus of the weakest precondition if tasks do not use difference.

4.2 Termination of Complex Workflows

In this section, we address the questions of existential and universal termination.
Universal termination provides a guarantee that a complex workflow will terminate and
return a result for any input. This can be seen as a termination guarantee. Existential
termination can be considered as a sanity check: a complex workflow that has no valid
execution never terminates, regardless of input data, and should hence be considered
as ill-formed. Universal correctness guarantees that a workflow terminates and that it
computes data that conforms to the client’s requirement. Existential correctness is also
a sanity check, showing that a workflow is able to produce correct data for at least one
of its executions. We first show that existential termination is undecidable, regardless
of the inputs specified for a workflow. We then show that decidability and complexity of
universal termination depend on the power allowed to specify inputs of the workflow.
We first define the termination as follows.

Definition 25 (Termination). Let CW be a complex workflow, D,,, be an initial dataset,
D;, be a set of datasets.
— C'W terminates existentially on input D, iff there exists a run in Runs(CW, D)
that is terminated. Similarly, CW terminates existentially on D;,, iff some run of
CW terminates for an input D;,, € D;,,.
— CW terminates universally on input D,,, iff all runs in Runs(CW, D;,,) are termi-
nated. CW terminates universally on input set D;,, iff CW terminates universally
on every input D;,, € D;,
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When addressing termination for a set of inputs, we describe D;,, symbolically with
a decidable fragment of FO (VFO, 3FO, BSR, or SF-FO). Complex workflows are Tur-
ing powerful. The proof of undecidability comes from a reduction from a two-counters
machine. A complete proof (an encoding of a counter machine) can be found in Ap-

pendix[A.1]
Theorem 1. Existential termination of complex workflows is undecidable.

An interesting point is that undecidability does not rely on arguments based on the
precise contents of datasets (that are ignored by semantic rules). Indeed, the execu-
tion of tasks only requires non-empty input datasets. Undecidability holds as soon as
higher-order operations (semantic rule R4) are used. Universal termination is somehow
an easier problem than existential termination.

We next show that it is decidable for many cases and in particular when the datasets
used as inputs of a complex workflow are explicitly given or are specified in a decidable
fragment of F'O. Precisely, we address operations, constraints and data operations on
D;,, symbolically with a decidable fragment of FO (VFO, 3FO, BSR, or SF-FO). We pro-
ceed in several steps. We first define symbolic configurations, i.e. descriptions of the
workflow part of configurations decorated with relational schemas depicting data avail-
able as an input of tasks. We define a successor relation for symbolic configurations.
We then identify the class of non-recursive complex workflows, in which the length of
executions is bounded by some value K+ . We show that for given finite symbolic exe-
cution p°, and a description of inputs, one can check whether there exists an execution
p that coincides with ps. This proof builds on the effectiveness of the calculus of weak-
est preconditions along a particular run (see Prop. [1). Then, showing that a complex
workflow does not terminate amounts to proving that it is not recursion-free, or that it
has a finite symbolic run which preconditions allow a deadlock. We start by defining
the symbolic configurations.

Definition 26 (Symbolic configuration). Let CW = (W, T,U, sk, R) be a complex
workflow with database schema DB. A symbolic configuration of CW s a triple C° =
(W, wa, Dass®) where W = (N, -, \) is a workflow, wa : N — U assigns workers to
nodes, and Dass® : N — (DB)* associates a list of relational schemas to nodes of the
workflow.

Symbolic configuration describes the status of workflow execution as in standard
configurations (see def. but leaves the data part (the actual contents of dataset)
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unspecified. For every node n that is minimal in W, Dass®(n) = rsy, ... rs; implies that
task attached to node n takes as input dataset D, ... D, where each D; conforms to
relational schema rs;. For a given symbolic configuration, we find all rules that apply
(there is only a finite number of worker assignments or task executions ) and compute
successor symbolic configurations. From a symbolic configuration, that does not de-
scribe the exact contents of datasets in use, we compute the effects of the application
of a particular rule, i.e. compute symbolic descriptions of configurations that appear
after a move. A symbolic configuration C5 = (W}, wa;, Dass?) is the successor of a
symbolic configuration C?¥ = (W;, wa;, Dass?) iff one of the following situation holds:
1. There exists a worker u € U and a node n € W; such that wa; *(u) = 0, wa;(n) =
0, 3(u, A(n)) € sk or (u,r) = (\(n),W,)) € sk, and W; = W;, Dass® = Dass® and
wa; = wa; W {(n,u)}. The situation corresponds to worker assignment to a task

(see Rule[3.1).

2. There exists n € min(W;) such that ¢t = A\(n) is an automated task manipulating
datasets Dy,...D,, n has k successors ny,...ng, W; = W; \ {n}, Dass® assigns
to each successor n;,j € 1...k the relational schema rsgut and wa; = wa,. The
situation corresponds to an application of an automated task completion Rule[3.3]

3. There exists n € min(W;) such that ¢ = A(n) is an atomic task manipulating
datasets Dy, ... D,, with and n has k successors ny,...ng, W; = W, \ {n}, Dass®
assigns to each successor n;,j € 1...k the relational schema rs3*, and wa; =
wa; \ {(n,wa;(n))}. The situation corresponds to an application of Rule 3.2 where
a worker executes an atomic task and returns the data to successor nodes.

4. There exists n € W;, A\(n) is a complex task, and wa(n) = u, W; is the work-
flow obtained by replacement of n in W; by a workflow W such that r =
(A(n),Wrw) € R, and (u,r) € sk. Dass® assigns to the copy of minimal node n;
of Wnev the relational schemas in Dass?(n), and wa; = wa; \ {(n,u)}. It corre-
sponds to the refinement of a node in a workflow and is obtained by application
of Rule 3.4

Now, we define deadlocks and potential deadlock in symbolic workflow executions.

Definition 27 (Deadlocks, Potential deadlocks). A symbolic configuration C*° = (W, wa,
Dass®) isfinal if W consists of a single node n;. It is a deadlock if it has no successor.
It is a potential deadlock iff a task execution can occur from this configuration, i.e. there
exists n, € min(W) such that \(n) is an automated or atomic task.
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A deadlocked symbolic configuration represents a situation where progress is blocked
due to the shortage of competent workers to execute tasks. A potential deadlock is a
symbolic configuration C'* where empty datasets may stop an execution. This deadlock
is potential because Dass® does not indicate whether a particular dataset D; is empty.
Note however as soon as a dataset D; used as input to a task associated with a min-
imal node n € W is empty, deadlock becomes unavoidable. Indeed, as n is minimal,
no new data can appear in D; in the next moves. Hence it is unavoidable to reach a
deadlock node as soon as D; = (). We show that one can decide whether a potential
deadlock situation in C° represents a real and reachable deadlock, by considering how
the contents of dataset D; is forged along the execution leading to C?.

Definition 28 (Symbolic run). A symbolic run is a sequence p° = C; % ¢y %

RN C? where each C? is a symbolic configuration, C;, . is a successor of C;, and
CS§ = (Wo,wag, Dass”) where Wy, wa, have the same meaning as for configurations,
and Dass; associates to the minimal node n in W, the relational schema of Dassg(ny).

k

One can associate to every execution of a complex workflow p = Cy =% C ... 25
Cr a symbolic execution p° = C5 ™% ¢f ™ ... ™ 7 called its signature by
replacing data assignment in each C; = (W;, wa;, Dass;) by a function from each node
n to the relational schemas of the datasets in Dass;(n). Itis not true, however, that every
symbolic execution is the signature of an execution of C'|W, as some moves might not
be allowed when a dataset is empty (this can occur for instance when datasets are
split, or after a selection). A natural question when considering a symbolic execution
p° is whether it is the signature of an actual run of C'W. The proposition below shows
that the decidability of this question depends on assumptions on input datasets.

Proposition 2. Let CW be a complex workflow, D;,, be a dataset, D;, be a FO formula
with n;, variables, and p° = CJ...C? be a symbolic run. If tasks do not use SQL
difference, then deciding if there exists a run p with input dataset D;,, and signature p°
is in 2EX PTIME. Checking if there exists a run p of CW and an input dataset D;,
that satisfies D;,, with signature p° is undecidable in general. If tasks do not use SQL
difference, then it is in

— 2EXPTIME if Dy, is in 3FO.

— 3EXPTIME if Dy, is in VFO or BSR-FO.

— N, — foldEX PTIME where n;, is the size of the formula describing D;,, if D;,

is in SF-FO
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Proof. We check the feasibility of p°, that is that is we check existence of a run
Co,C1,...Ci_1,C;. We start from C? and check backward that the conditions for exis-
tence of a configuration C, are met when it is proved that a configuration Cj.,; exists.
This amounts to computing a sequence of weakest preconditions. First notice that the
actual run with signature p° performs the same sequence of moves as in p° and that
the question of the existence of a run p with signature p° only needs to verify satisfiabil-
ity of constraints on data computed at each step of this run, not the sequence of moves
along p. Second, one can notice that if p° contains a deadlock, it is necessarily the last
symbolic configuration of the run, as for every symbolic configuration from C5 up to
C% , we are able to find a successor configuration. So one needs not to check the exis-
tence of a deadlock separately when checking the feasibility of p°, and we mainly have
to check for the emptiness of datasets for configurations that are potential deadlocks.
A third remark is that semantic rules that affect workers to tasks or perform a refine-
ment do not consider data contents. Hence, if the move from C;_; to C; is a worker
assignment or a refinement, then it is necessarily feasible as long as C;_; is reachable.
The only cases where data can affect the execution of a step along a run is when an
automated task or an atomic task has to process empty data. For each of these steps,
one has to check that the inputs of an executed task ¢ are not empty, i.e. suppose that
Dy # OA---ANDy, # () for some datasets D, ... D, used by ¢. Non-emptiness of a dataset
D, is simply encoded by the 3FO formula 3?, rn(}) € Dy.

Non-emptiness of a dataset D, at some configuration C; is a property that depends
on properties of previous steps in the execution. For instance, if the move from C;_; to
C; realizes the projection of a dataset, i.e. filters records in a dataset D; to keep only
those that satisfy some predicate P, then the precondition that must hold at C;_; is
Yiq = EI?, rn(?)/\P(?). We have seenin Propositionthat , if the move C;_, ™=
C;_1 is a transformation of records, a transformation of some dataset, the formula v;_;
is effectively computable. Further, if tasks do not use SQL difference, the weakest
precondition of an existential FO formula is an existential FO formula. This generalizes
to the whole signature. Let ¢, be a 3FO formula that has to be satisfied by configuration
C;, in a run compatible with signature p°. There exists a sequence of moves C, —%
Cy ... ™ C, iff the sequence Cy =% C ... ™ ¢, ends in a configuration Cj,_,
such that Cy,_1 = wp[mi]yy (by definition of weakest precondition). One can decide
whether wp[my ]y, is satisfiable, as ¢y, is in IFO, and by Prop. [} wp[mx]yy, is effectively
computable and in the 3FO fragment. If wp[ms]yy is not satisfiable, then the move from
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Cr_1 to Cy always ends with datasets that do not fulfill . If wp[my]yy is satisfiable,
then the runs that reach C,_, are realizable only if we assume that several datasets
(used as input of some task realized at step k) are non-empty at stage k£ — 1. We then
have to add statements of the form D; # () to obtain a formula that should hold at
step k — 1, and get a formula of the form ¢ := wp[mg|r A Dy #ON--- A D, #
(. This adds only an existential conjunction, so ;_; is also in 3FO. One can start
from ; ::= true and build inductively all weakest preconditions ;1,1 o, ..., 1, that
have to be satisfied respectively by configurations C;_1, ..., Cy so that an actual run of
the complex workflow with signature C; ... C? exists. If any of these preconditions is
unsatisfiable, then there exists no run with signature C; . . . C} leading to a configuration
C; compatible with C¢, and hence p° is not the signature of an actual run of CW. The
size of v is in O(i.r"). Indeed, we add obligations to prove non-emptiness at each step
k, but proving sﬂsfiaﬂity of Hz, ¢(z) A 3?, qﬁ(?) amounts to checking separately
satisfiability of 3.X ,¢(X )and 3Y , ¢(Y ). According to Prop. , the size of wp[my]yisin
O(r.|¢]), where r is the maximal arity of relational schemas of the complex workflow. So
one can check separately satisfiability of 3}), ¢(?) and D, # (), and maintain a series
of O(i) formulas of total size in O(i.r). Hence, as 1 is still in the existential fragment
of O, and as checking satisfiability of an existential FO formula is in EXPTIME in
the size of the formula (by proposition [1), checking all preconditions for a run of size k
compatible with p° can have a complexity that is in 0(2“).

Assume that 1, U2, ... % are satisfiable. It remains to show that the input(s)
of the complex workflow satisfy the weakest precondition for the execution of p°, i.e.
satisfy ¢». Then, when the input is a single dataset D;,,, it remains to check that D;,, =
1 to guarantee the existence of a run with signature CJ ... C? that starts with input
data D, and leads to a configuration Cj. This is a standard model checking question,
which can be solved in O(|D;,|*!), that is in O(|D;,|™"). As the complexity of checking
satisfiability of weakest preconditions v ... is already in 2EX PTIMFE, the overall
complexity is in 2EX PTIME.

Similarly, if D;,, is a FO formula, the complexity depends on the considered fragment
used to specify D;,,. In general, if D;, is given as a FO formula, it is undecidable if D;,, A
1o is satisfiable. If D, is an existential formula, then the complexity is exponential in
the size of D;,, and also exponential in the size of ). Assuming that |D;,| < 2% we have
a 2EXPTIME complexity. If D;, is in the BSR fragment, then checking satisfiability
of D;, isin NEXPTIME [Lew80], and so the overall complexity needed to check the
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existence of a run with signature p° from a dataset in D, is in 2EXPTIME w.r.t the
size of D;,, A 1y, and hence SEXPTIME. If D,, is a universal formula then we can use
standard mini-scoping rules (see in Chapter 2) to transform D;,, A ¢, in a formula in the
BSR fragment, yielding again a 3EXPTIME complexity. Last if D, is in the separated
fragment of FO, then checking its satisfiability is n;,-fold exponential in the size of the
formula depicting D;,,, so the overall process of checking realizability of p° has an n;,-
fold exponential complexity. [

An execution p = Cj . .. C), of a complex workflow terminates if the reached config-
uration is of the form C;, = (W, way, Dassy) where 1, contains only the final node of
a workflow. Checking termination hence amounts to checking whether one can reach
such a configuration. A run that does not terminate is a run that either ends in a con-
figuration that is not final and from which no rule can be applied, or an infinite run. A
move from C; to C;,; leaves the number of nodes unchanged (application of worker as-
signment rule R,), decreases the number of nodes ( execution of an atomic task (R2),
or an automated task (R3)), or refines a node in WW; (application of rule R;). Only in this
latter case, the number of nodes may increase. The set of possible transformations
of W and wa occurring from C'is bounded. Further, semantic rule R4 is the only rule
that creates new nodes in the workflow part of a configuration. So when the number of
occurrences of rule R4 in a run is bounded, the number of applications of rules R1, R2,
R3 and hence the size of (symbolic) executions is also bounded. Complex workflows
that can exhibit infinite runs are hence specification with recursive rewriting schemes.

Definition 29. Let t be a complex task. We denote by Rep(t) the task names that
can appear when refining task t, i.e. Rep(t) = {t' | Ju, W, (u,t) € sk A (t, W) € R A
t'" € MNw)}. The rewriting graph of a complex workflow CW = (Wy, T, U, sk,R) is
the graph RG(CW) = (7o, —>r) Where (t1,ty) €—g if to € Rep(ty). Then CW is
recursion-free if there is no cycle of RG(CW) that is accessible from a task appearing
in W.

When a complex workflow is not recursion free, then some executions may exhibit
infinite behaviors in which some task ¢; is refined infinitely often. Let us consider an
example. Let us consider a workflow such that ng — n, — ny shown in Figure [4.2].
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Figure 4.2 — A complex workflow.

Consider the rewriting rules t, = {ta — t3}, to = {ts — t5} and t, = {t; — ts}. In
this case the rewriting graph of a complex workflow is shown in Figure [4.3] Such an
infinite rewriting loop can contain a deadlock. In this case, the complex workflow does
not terminate. If this infinite rewriting loop does not contain deadlocks, the complex
workflow execution will never reach a final configuration in which all tasks have been
executed. We claim without proof the following property:

Figure 4.3 — Rewriting graph for the complex workflow shown in Figure

Proposition 3. Complex workflows that are not recursion free have non-terminating
executions.

Proposition 4. Let CW = (W, T,U, sk, R) be a complex workflow. One can decide if
CW is recursion free in O(|T2| + |R]).

Proof. Building RG(CW) can be done in O(|R|). Checking the existence of a cycle
in RG(CW) that is accessible from some task in 1}, can be done in polynomial time in
the size of RG(CW), for instance using a DFS algorithm, that runs in time in O(|7..|?).

|
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In executions of recursion free CWs, a particular task ¢ can be replaced by a work-
flow that contains several tasks ¢4, . . . ¢, that differ from ¢. Then, each ¢; can be replaced
by workflows combining other tasks that are not ¢ nor ¢;, and so on. For simplicity, we
assume that W, and all workflows in rules have nodes labeled by distinct task names.
We can then easily prove the following property:

Proposition 5. Let C = (W, wa, Dass) be a configuration of a recursion free complex
workflow CW . Then there exists a bound K., on the size of W, and the length of a
(symbolic) execution of CW is in O(3.Kt.,)

Proof. [Sketch] We assume, without loss of generality, that all workflows in all rules
have nodes labeled by distinct task names, and the initial workflow has a single node.
Let d be the maximal number of new occurrences of complex tasks that can be rewritten
in one refinement (i.e., the maximal number of complex tasks that appear in a rule).
Each rewriting adds at most d — 1 complex tasks to the current configuration. The
number of rewriting is bounded, as CW is recursion free. For a given node n appearing
in a configuration C}, along a run, one can trace the sequence of rewriting Past(n)
performed to produce n. According to recursion freeness, when a node n is replaced
by a workflow ;, then none of the tasks labeling nodes of W, appears in Past(n).
Hence, the number of nodes in a configuration is at most K+, = d/==I. Now, for a given
configuration, the number of applications of semantic rules R1, R2, and R3 is bounded
and decreases the number of nodes in the workflow part of the configuration. [

Till now, we showed in proposition 4| that recursion-freeness is decidable and in
O(|T2|+|R]). Further, letting d denote the maximal number of complex tasks appearing
in a rule, there exists a bound K, < d/7=! on the size of W in a configuration, and
the length of a (symbolic) execution of CW is in O(3.K7,,) (see Prop. [5). However,
existence of a bound on the size of IV in a configuration does not guarantee universal
termination. There may exist a run with an empty dataset that can lead to the non-
universal termination. We give the following lemma.

Lemma 2. LetC? = (W;, wa;, Dass;]) be a potential deadlock with successors Cy), ... Cp,
corresponding respectively to execution of tasks attached to minimal nodes n,, ..., n,
in the workflow part of node W;. Then a run p with signature p° = C5 ... C? such that
Dy, = () for some Dy, € Dass(n;),j € 1,...,q does not terminate.
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Proof. If a node n; in a configuration C; with signature C? is labeled by a task and
is attached to an empty dataset, then any sequence of worker assignment, refinement,
or task execution occurring from C; will result in a configuration C; where either n; is
still attached an empty dataset, or n,; was replaced, but the refinement produced fresh
nodes with an empty dataset attached to it. Then either n; or one of its refinements will
never be executed, and the workflow cannot reach a final configuration. [

The lemma has useful consequences: it is sufficient to detect a run with signature
Cy...C? as the prefix, where CS = (W, wa;, Dass?), and to prove that a node n; in
W; can have an empty input dataset D,,; to claim that there exists an execution that
deadlocks in CW. Now, based on the above results, we can now prove that a complex
workflow that is not recursion-free does not terminate universally and give the following
proposition.

Proposition 6. A complex workflow terminates universally if and only if:
(i). it is recursion free
(ii). it has no (symbolic) deadlocked execution

(iii). there exists no run with signature C5 ... C¥ where C? is a potential deadlock, with
Dy, = 0 for some Dy, € Dass(n;) and for some minimal node n; of W;.

Proof. Let us first prove that if ) fails, a complex workflow does not terminate
universally. If CW has recursive task rewriting, then there is a cycle in the rewriting
graph RG(CW) that is accessible from a task t, = A(ng) appearing in W,. Hence, there
is an infinite run p> = Cy, 2 C; = C,... of CW which moves are only worker
assignments (¢ moves) to a node of the current workflow at configuration C; followed
by a rewriting (r moves) that creates new instances of tasks, such that the sequence
of rewritten task follows the same order as in the cycle of RG(CW). Similarly, if CW
terminates universally, then all runs are finite, and infinite runs of the form p> cannot
exist, and C'W must be recursion free.

We can now address point i) If CW can reach a deadlocked configuration, then by
definition, it does not terminate. If all runs of CIW terminate, then from any configuration,
there is a way to reach a final configuration, and hence no deadlock is reachable. The
last point iii) is proved in lemma 2| [ |

Now, we have the decidability results for the universal termination for a complex
workflow. Next, we give the complexity analysis. We do not detail the proofs of Theo-
rem 2 and refer to Appendix for detailed proofs.
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Theorem 2. Let CW be a complex workflow, in which tasks do not use SQL difference.
Let D;, be an input dataset, and D;,, be a FO formula. Universal termination of CW on
input D, is in co — 2EX PTIME. Universal termination on inputs that satisfy D;, is
undecidable in general. It is in

— co—2EXPTIME (in K, the length of runs) if D;,, is in VFO

— co— 3EXPTIME if D;, is 3FO or BSR-FO

— co — ny,-fold-EX PTIME, where n;, = |Dy,| + 2X if Dy, is in SF-FO.

4.2.1 Symbolic Execution Tree

One can notice that the algorithm to check universal termination of CWs guesses
a path, and is hence non-deterministic. In the worst case, one may have to explore all
symbolic executions of size at most 3 - K. All these executions can be grouped in a
common structure, i.e. a symbolic execution tree representing possible sequences of
moves starting from the initial configuration.

Definition 30 (Symbolic Execution Tree). The Symbolic execution tree (SET) of a com-
plex workflow CW = (Wy, T,U, sk, R) is apairB = (V,E), where E CV x V is a set of
edges, V is a set of symbolic configurations of the form C* = (W;, wa;, Dass®), where
W; = (N;, —, \;) and wa; : N; — U are the usual workflow and worker assignment
relations, and Dass® associates a sequence of relational schemas to minimal nodes of
W;. (CF,C%) € Eif CF € suce(CY).

Each path of the tree defines a symbolic execution. The symbolic execution tree of a
complex workflow is a priori an infinite structure, but for recursion free CWs, the tree is
of bounded depth, and bounded degree. One can hence perform an exhaustive search
for deadlocks and potential deadlocks in the symbolic execution tree of a recursion
free workflow to exhibit a witness for non-termination. Let C¥ = (W;, wa;, Dass;) be a
symbolic configuration that is a potential deadlock. Let S = {n,...,ni} C min(W;) be
the set of minimal nodes that represent data transformations with rule R2 or R3, i.e.
that is atomic task completion or represents an automated task completion. Realization
of these tasks ask for non-empty inputs. Let I1 = C; ... C¥ be the path from the root of
the tree to a potential deadlock C?. Even if vertex C has a successor C, obtained by
executing a task attached to some node n; € S, it can be the case that Dass; assigns
an empty input to n; in an actual run of CW with signature 1I. Hence, some of the
task execution move depicted in B may not be realizable. If executing task A(n;) is
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the only possible action from C¢ and if a run with signature IT ends in a configuration
where Dass;(n;) is of the form D;....0... D, then the run is deadlocked. However, if
all runs with signature II end with data assignments that affect non-empty sequences
of datasets to all nodes of S, then C? will never cause a real deadlock. Note also that
when C? is a potential deadlock, there exists necessarily a path C2.C5, ... C5, in B
where the only actions allowed from C?_, is the execution of the incriminated minimal
tasks that need non-empty inputs.

4.2.2 Termination with a guaranteed bound

Undecidability of existential termination has several consequences: As complex
workflows are Turing complete, automatic verification of properties such as reacha-
bility, coverability, boundedness of datasets, or more involved properties written in a
dedicated logic such as LTL FO [DDV12] (a logic that addresses both properties of
data and runs) are also undecidable. However, one can notice that in the counter ma-
chine encoding of Theorem 1| requires refinements and recursive schemes. So, infinite
runs of a counter machine can be encoded only if rule 4 can be applied an infinite
number of times. Obviously, recursion-free CWs cannot encode counter machines, and
have a bounded number of signatures, as their runs are of length at most 3.Kr.,. This
immediately gives us the following corollary:

Corollary 2. Let CW be a recursion-free complex workflow that does not use dataset
difference, which runs length is bounded by 3.K1... Let D;, be a dataset, and D;,
a FO formula. One can decide in 2 — EXPTIME (in Kr.,) whether CW terminates
existentially on input D,,. If D;, is in the existential, universal or BSR fragment of FO,
then existential termination of CW is also in2EX PTIME.

Proof. The proof follows the same line as for Theorem 2} one has to find non-
deterministically a signature of size at most 3.K7-_. When such a signature p° is found
it remains to compute |p°| weakest preconditions ¢,,s|, ... 1, imposing at each step
that inputs of automated or split tasks are not empty. After this verification, it remains
to show that inputs satisfy 1. [ |

Existential termination is hence decidable for recursion-free CWs, provided the de-
scription of inputs belongs to a decidable fragment of FO and data transformations do
not use difference, which could introduce quantifiers alteration and hence create weak-
est preconditions that leave this decidable fragment. One can notice that the decision
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procedure is doubly exponential in the length of runs (that is in K+, ). This bound can
itself be exponential (see proof of prop. [2), but in practice, one can expect refinements
to stop only in a few steps, as refinements are supposed to transform a complex task
into an orchestration of simpler subtasks. With this assumption, K., remains a simple
polynomial in the number of complex tasks. Another way to bound recursiveness in a
complex workflow is to limit the number of refinements that can occur during execu-
tion. We can slightly adapt the semantics of Section and in particular rule R,, and
replace it by a restrictive decomposition (RD) rule. Intuitively, the (RD) rule refines a
task as in rule R, but forbids decomposing the same task an unbounded number of
times.

Rule 4’ (RESTRICTED TASK REFINEMENT): Let 7" = {t;,t2, ..., t;} be a set of tasks
of size n. Let KD = (ky, ko, ..., k,) € N be a vector constraining the number of refine-
ments of task ¢; that can occur in a run p. In the context of crowdsourcing, this seems
a reasonable restriction. Restrictive decomposition RD is an adaptation of rule R4 that
fixes an upper bound k; on the number of decomposition operations that can be ap-
plied for each task ¢; in a run. We augment configurations with a vector S € N, such
that S[i] memorizes the number of decomposition of task ¢; that have occurred since
the beginning of the execution. Rules 1-3 leave counter values unchanged, and rule 4
becomes:

t=An) € T ANS[i] < k;

AJu,u = wa(n) A (u,r;) € sk ANr; = (t,Ws)
ADass'(min(Wy)) = Dass(n)

AYx € N, \ min(W,), Dass'(x) = (lPred@)l

Awa' = wa\{(n,wa(n))}

AYje1...|T|,Sj] = S[j] + 1if j =1, S[j] otherwise

(W, wa, Dass) m (W[n/ws],wa’,Dassl)

(4.1)

Following the RD semantics, each task ¢; can be decomposed at most k; times.
To simplify notations, we choose a uniform bound k& € N for all tasks, i.e. Vi € 1..n,
k; = k. However, all results established below extend to a non-uniform setting. We next
show the decidability of existential termination under the RD semantics. First, we give
an upper bound on the length of runs under RD semantics. Let & be a uniform bound
on the number of decompositions, CW = (W,, T, U, sk, R) be a complex workflow with
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a set of tasks of size n, and Cy = (W), wag, Dassy) be its initial configuration. Hence,
RD semantics bounds the number of tasks in the workflow and we get the following
propositions.

Proposition 7. Let p = C,.C;...C, be a run under RD semantics. Then, for every
C; = (Wi, wa;, Dass;), the number of nodes in W; is smaller than NmaxNodes(n, k) =
k:.n2 + |W0‘

Proof. Each decomposition of a task ¢, replaces a single node n by a new workflow
with at most d; = max max{|W;| | W; € Profile(t;,u)} nodes. Recall that decompo-
sition profiles are known and that all nodes of workflows in profiles are attached to
distinct task names. So, we have d; < n. Every run p starting from C, is a sequence
of rule applications. Rule 1 does not affect the size of workflows in configurations, and
rules 2 and 3 remove at most one node from the current workflow when applied. For
each task ¢;, a run p contains at most £ occurrences of rule 4 refining a task of type ¢,.
Application of rule 4 to task ¢; adds at most d; nodes to the current workflow and re-
moves the refined node. All other rules decrease the number of nodes. One can notice
that each task can be decomposed at most % times, rule 4 can be applied at most k.n
times in a run following the RD semantics, even if this run is of length greater than k.n.
Let Sp = [Wy|, S1 =S +n—1,and S;1; = S; + (n — 1). For a fixed n and a fixed &, the
maximal size of the workflow component IW; in every configuration C; of a run under
RD semantics is smaller than Sy, = |Wo| + (k.n)(n — 1) = [Wo| + k- n? — k- n. |

For example, if the number of tasks is n = 4, the size of the initial workflow 2, and the
number of decomposition uniformly bounded by k£ = 3, then NmaxNodes(n, k) = 38.
Now, as the number of tasks is bounded during the realization of a complex workflow,
it gives us the bound on the length of the run.

Proposition 8. Let p = Cy ... C, be a run of a complex workflow under RD semantics
allowing at most k refinements of each task. The length of p is bounded by L(n, k) =
3-k-n?+3- Wy

Proof. Recall that a configuration is a triple C; = (W;, wa;, Dass;). Each configura-
tion is a "global state" of the execution of a complex workflow. IW; represents the work
that needs to be executed, wa the worker’s assignment, and Dass the data assignment.
Recall that a configuration with a single node is necessarily a final configuration with a
node n; which task is to return all computed values during the execution of the complex
workflow.
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The only way to change the data assignment part of configurations is to execute
the task attached to a node (i.e., apply rule R2 or R3) or refine a node (i.e. apply R4).
Starting from a configuration C;, the maximal number of worker assignment that can
be performed is |IV;|, and along the whole run, as each node can be assigned a worker
at most once, the maximal number of applications of rule R1 is NmaxNodes(n, k).

The length of arun pis |p| = |p|1 + |pl2+ |pls + | pl+ Where |p|; denotes the number of
applications of rule R;. Now, |p|; < NmaxNodes(n, k). Similarly, [p|; = |pl2 + |p|4- Last,
rule R3 can be applied only a number of times bounded by the maximum number of
created nodes, i.e, |p|s < NmaxNodes(n, k). So overall, |p| = [pl1 + (|pl2 + |pla) + 9]z <
NmazNodes(n, k) + NmaxNodes(n, k) + NmaxNodes(n, k). Hence, the length of p is
bounded by L(n,k) =3-k-n?+ 3 - |W, |

Note that here, configurations can only grow up to a size smaller than NmaxzNodes(n, k) =
k.n? + |W| (Prop. [7) via rule R4, and rules R1-R3 can be applied only a finite number
of times from each configuration. Under RD semantics, a symbolic execution tree B
is necessarily finite and of bounded depth. A run terminates iff it goes from the initial
configuration to a final one. If such run exists, then there exists a path in B from the
initial vertex to a final vertex with signature IT = V4...V,. Further, if this path visits a
potential deadlock and executes a splitting task A(n) for some split node n;, then every
dataset used as input of n; must be non-empty. To show that this path is realizable, it
suffices to show the existence of a run with signature II that ends in a configuration
C,, satisfying property ¢ ::= true. Proposition |2| shows how to compute backward the
weakest preconditions demonstrating the existence of such run of C'W. An immediate
consequence is that the existential termination of complex workflows is decidable un-
der restricted decomposition semantics, with the same complexity as for recursion-free
specifications.

Theorem 3. Let CW be a complex workflow in which tasks do not use SQL difference,
and which runs are of length < K,,... Let D;,, be a dataset, and D;,, a FO formula. One
can decide in 2 — EXPTIME (in Ky..x) whether CW terminates existentially on input
D;,. If D;, is in AFO, termination of CW is alsoin2— EXPTIME. Itisin3—EXPTIME
when D,,, is inVFO or BSR-FO

Proof. We can reuse the techniques of Theorem [2to find a witness symbolic run
that is the signature of a run that does not terminate, and of corollary [2/to find a witness
symbolic run that is the signature of a run that terminates. [ |
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4.3 Correctness of Complex Workflows

Complex workflows provide a service to a client, that inputs some data (a dataset
D;,) to a complex task, and expects some answer, returned as a dataset D,,;. A pos-
itive answer to a termination question means that the process specified by a complex
workflow does not deadlock in some/all executions. A client sees the crowdsourcing
platform as a black box and simply asks for the realization of a complex task that
needs specific competencies. Even when termination is guaranteed, the returned data
can still be incorrect. In many cases, a client may have requirements on the type of out-
put returned for a particular input. We express this constraint with a FO formula ), ou:
relating inputs and outputs and extend the notions of existential and universal termina-
tion to capture the fact that a complex workflow implements client’s needs if some/all
runs terminate, and in addition fulfill requirements v, ... This is called correctness.

Definition 31. A constraint on inputs and outputs is a FO formula
¢in out = ¢in,outE A wm,outA A win,outAE A win,outEA’ Where

— ymouts s g conjunction of 3FO formulas addressing the contents of the in-
put/output dataset, of the from 3x,y, z,rn(z,y,2) € Dy, A\ P(x,y,z) or Ju,v,w,
rn(u, v,w) € Doy A P(u,v,w), where P(.) is a predicate.

— omeuta js g conjunction of VFO formulas constraining all tuples of the input/output
dataset, of the formVx,y, z,rn(x,y, z) € Dy, = P(z,y, 2).

— omeutar js g conjunction of formulas relating the contents of inputs and outputs,
of the form Vx,y, z,rn(z,y,z) € D; = I(u,v,t), 0(z,y,z,u,v,t), where ¢ is a
predicate.

— omeutea js g conjunction of formulas relating the contents of inputs and outputs,
of the form 3x,y, z,rn(z,y, z) € Di,,¥(u,v,t), p(z,y, z,u, v, t).

The yieutar part of the 1/0 constraint can be used to require that every record in
an input dataset is tagged in the output. An example is shown in Figure [4.4] Consider a
node n, tagged with task A\(ng) = t, and the attached input dataset movie(Id, title, year) €
D;,. The objective of task ¢, is to tag every record in the dataset D;,, such that rating >
4. In this case, y™°utar constraint is

Vid, t,y,r movie(id,t,y,r) € Dy, = Jid, t,y,r movie(id,t,y,r) € Doy A (r > 4)

The ¢ r4 part can be used to specify that the output is a particular record selected
from the input dataset (to require correctness of a workflow that implements a vote).

101



Chapter 4. Decidability
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1d title year Id title year rating
1 . . 1 . . 5
2 . . 2 . . 8
3 . . 3 . . 6
4 4 8

Figure 4.4 — An example showing ¢ 4 constraints.
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1d title year rating

Id title year rating

1 Star Wars . 4 : .

2 Titanic 5 2 T}tan}c ) 5
3 Star Wars . 4 4 T}tan}c ) b
4 Titanic 5 4 Titanic . 5
4 Titanic 5

Figure 4.5 — An example showing 154 constraints.

Figure[4.5/shows an example of ¢4 constraints. Consider a node n, with input dataset
movie(Id, title,year) € D;,. The node n, is tagged with task ¢, with an objective to
select a movie such that each rating of the movie is 5. In this case, ¥ g4 constraint is
given as

Jid, t,y,r movie(id, t,y,r) € Dy,Vr movie'(id, t,y,r) € Dpyy = (r =5)

Definition 32 (Correctness). Let CW be a complex workflow, D;, be a set of input
datasets, and 1, ... be a constraint given by a client. A run in Runs(CW, D,,) is correct

if it ends in a final configuration and returns a dataset D,,.; such that D;,, Dt = Yin out-

CW is existentially correct with inputs D;,, iff there exists a correct run Runs(CW, D;,)

for some D,,, € D;,,. CW is universally correct with inputs D, iff all runs in Runs(CW, D;,,)
are correct for every D, € D;,.

In general, termination does not guarantee correctness. A terminated run starting
from an input dataset D;, may return a dataset D,,; such that pair D;,, D,,; does not
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Id title year scenariol1:D, € D, scenario2:Dy € D,
1 Stgr Wz.irs : Id  title year rating Id title year rating
2 Titanic : 1 Star Wars . 4 2 Titanic . 5
3 Sta.ar Wz%rs : 2 Titanic 5 4 Titanic . 5
4 T}tan}c 4 Titanic . 5 4 Titanic . 5
4 Titanic 4 Titanic 5
Termination v Termination v
Correctness X Correctness v

Figure 4.6 — Different scenario of a terminated run: with and without correct set of
output.

comply with constraint ¢, .., imposed by the client. For instance, a run may terminate
with an empty dataset while the client required at least one answer. Similarly, a client
may ask all records in the input dataset to appear with an additional tag in the output.
If any input record is missing, the output will be considered incorrect. Figure de-
picts two scenarios. Consider the node n, tagged with task ¢, is attached with dataset
movie(Id, title, year) € D;,. Client requirement is to get a dataset D,,; with movie rating
greater than or equal to 5.

Vid, t,y,r movie(id,t,y,r) € Dy, = Jid, t,y,r movie(id,t,y,r) € Doy A (r > 5)

Here in Figure [4.6] we show two scenarios. In the first case, task ¢, terminates, but with
the wrong set of output D; € D,,; which was not desired by the client, i.e. the record
movie(1, Star Wars,.,4) do not meets the client requirement, movie(1, Star Wars,
L 4) ¥ Yinowr- On the other hand, in the second scenario, the task ¢, terminates with
the correct output D, € D,,:, and satisfies client requirement Dy = 1y, 0. Here, we
can observe that termination does not guarantee the correctness and hence requires
mechanisms to guarantee correctness of complex workflow. As for termination, correct-
ness can be handled through symbolic manipulation of datasets but has to consider
constraints that go beyond the emptiness of datasets. Weakest preconditions can be

in,out

effectively computed (Prop. [1): one derives successive formulas ., ... yi"*" be-

in,out

tween D,,, D,,, and datasets in use at step 4,...0 of a run. However, the ¢,/ part
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of formulas is already in an undecidable fragment of FO, so even universal termination
is undecidable in general, and even when a bound on the length of runs is known. It
becomes decidable only with some restrictions on the fragment of FO used to write
1/]in,out_
Theorem 4. Existential and universal correctness of CW are undecidable, even when
runs are of bounded length K. If tasks do not use SQL difference, and 1, ou: IS in @
decidable fragment of FO, then
— existential correctness is decidable for CWs with runs of bounded length. it is in
— 2EXPTIME for the 3FO.
— 3EXPTIME forVFO, BSR.
— 2K-fold-EX PTIME for SF fragments.
— universal correctness is decidable for CWs with runs of bounded length. It is in
— co—2EXPTIME for the 3FOQ.
— co—3EXPTIME forVFO, BSR.
— co-2X-fold-EX PTIME for SF fragments.

Proof. Let us first prove the undecidability part: It is well known that satisfiability of
FO is undecidable in general, and in particular for the AFE fragment with formulas of
the form V)_fﬂl_}, #(X,Y). Hence 1, out ., CaN be a formula in which satisfiability is not
decidable. Consider for example a FO formula .,s.; Which satisfiability is not decid-
able. One can then build a formula v;, that says that the input and output of a workflow
are the same. One can design a workflow CW;,; with a single final node which role is
to return the input data, and set as client constraint ¥, out = Yunsat A Yia. This workflow
has a single run. Then, C'W,;,; terminates properly if there exists a dataset D;,, such that
Din, E Yunsats 1-€. 1f Y0 1S satisfiable. Universal and existential correctness are hence
undecidable problems.

For the decidable cases, one can apply the technique of Theorem 2| One can find
non-deterministically a symbolic run p° that does not terminate and check that it is the
signature of an actual run, or a symbolic run p° that terminates and check whether it
satisfies Vi, out-

Let us first consider universal correctness. Assume that CW terminates universally,
and select a symbolic run p° = C5...C%. We can then compute a chain of weakest
preconditions v,,, ¥, _1, . . . ¢ that have to be enforced to execute successfully CWW and
terminate in node n. In particular, v, ::= true. Similarly, one can compute at each
step, the weakest precondition 1, ..., needed at step i so that v, ., holds. Intuitively,
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Yin.out, describes the constraints between the initial dataset and the output dataset
"consumed" at stage i + 1 in p°. If at one stage, v; A ¢, our, IS NOt satisfiable, then p° is
not the signature of an actual run of C'W that terminate properly, and we have found a
witness of non-correctness. We have assumed that ¢, .. Was specified in a decidable
fragment of F'O. As computing the weakest precondition of a property in the existential,
universal, BSR, SF fragment of FO gives property in the same fragment, all ¢;’'s and
Yinout, S @re in a decidable fragment of FO. Then, the complexity will depend on the
considered fragment, and on the fragment of FO used to specify inputs. As for universal
termination, if inputs and v, ... are specified with the universal fragment of FO, then
universal proper termination is in co — 2EXPTIME, and in co — 3BEX PTIMFE for the
existential fragment (as one may alternate 3 statements on outputs with V statements
inherited from the obligation to prove non-emptiness of a dataset. Similar remark and
complexity hold for the BSR fragment (separation of variables maintains a NEXPTIME
complexity [SVW16]). If ¢, .. is in SF, then checking proper universal termination is
co — K — fold—exponential time, where K = r&7e,

The proof and complexities for existential correctness follow the same lines, yielding
2EXPTIME complexity when 1, ,.: is written with the existential, fragment of FO,
3— EXPTIME complexity for when v, ... is written in the universal or BSR fragments
(as checking satisfiability for a BSR formula is in NEXPTIME [Lew80]) and K — fold—
exponential for SF formulas [SVW16]. [ |

At first sight, restricting to the existential, universal, BSR, or SF fragments of FO can
be seen as a limitation. However, the existential fragment of FO is already a very useful
logic, that can express non-emptiness of outputs: property 3xy, ..., Jzy, rn(xq, ... xx) €
D,.; expresses the fact that the output should contain at least one record. Similarly, one
can express properties to impose that every input has been processed. For instance,
the property

valid
in,out

=V T, (T, o 2k) € Din 3yn - g T(T1, - Tk, Y1 - - Yyg) € Dot
/\P(xh- T, Y1, - - yq)

asks that every input in D;,, appears in the output, and P() describes correct outputs.
Clearly, ¥4 is not in the separated fragment of FO. This formula can be rewritten

in,out

into another formula (BSR form) with a single alternation of quantifiers of the form:

Vay ..ok, 3y . Yy, (T, ... xk) € Dy,
Vorn(Ty ... Tk, Y1 Yq) € Dowt
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Workflow FO Problems Complexity (no SQL diff.)
Type Fragment Existential Universal
(for D;,, or y)™-out) Termination Termination
Static, FO Undecidable Undecidable
Recursive F*(V* if univ. PB) 2EXPT co—2EXPT
Bounded | BSR,v*(3* if univ. PB) 3EXPT co—3EXPT
SF Ni, — foldEX PT | co — ny,-fold-EX PT
FO Undecidable Undecidable
Recursive F*(v* if univ. PB) Undecidable co—2EXPT
Unbounded | BSR,v*(3* if univ. PB) Undecidable co—3EXPT(K)
SF Undecidable co — Ny, — foldEX PT

Table 4.1 — Complexity of Termination (£ X PT stands for EXPTIME).

Workflow FO Problems Complexity (no SQL diff.)
Type Fragment Existential Universal
(for D;,, or ¢pim-out) Correctness Correctness
Static, FO Undecidable Undecidable
Recursive 3*(V* if univ. PB) 2EXPT co—2EXP
Bounded | BSR,v*(3* if univ. PB) 3EXPT co—3EXPT
SF 287 fold-EX PT | co-2K7-fold-EX PT
FO Undecidable Undecidable
Recursive 3*(V* if univ. PB) Undecidable co—2EXPT
Unbounded | BSR,v*(3* if univ. PB) Undecidable co—3EXPT
SF Undecidable co-257e fold-EX PT

Table 4.2 — Complexity of Correctness (F X PT stands for EXPTIME).

Last, one can also consider formulas in which ¢4 js of the form vz, . .
Yy, ¢ as soon as every atom in ¢ that is not separated contains only existential variables
that take values from a finite domain. Then v"°“*z4 can be transformed into an equiv-

alent universal formula which matrix is a boolean expression on separated atoms.

Table [4.Tsummarizes the complexities of termination and Table [4.2] summarized the
complexities of correctness for static complex workflows (without higher-order answer)

or with bounded recursion, and for generic workflows with higher order.
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4.4 Use Case

We illustrate the algorithm to check termination on a simple use case, namely an
image annotation task. The scenario is the following: a client wants to realize a com-
plex task whose global objective is to annotate images. The objective is to tag a huge
dataset of images with a predefined taxonomy. The initial workflow consists of three
nodes n;.,n; and ny and is depicted in Figure [@.7(left). The node n;, is the initial
node and n; is the final node. The objective of node n; is to return the final answer
to the client. Consider the node n, tagged with task ¢, is allocated a worker u, for
the task execution. The node n, receives as input dataset D, with relational schema
picdata(id, image). The dataset D; contains 1000 record with id ranging from 0 to 999
in picdata table. The field image is an image object URL (to retrieve images). The ob-
jective of task ¢, is to tag each of the records from a predefined taxonomy as Bee or
Fly. Considering the huge work that cannot be realized by a single worker, u; decides
to rewrite the task into another workflow W’ by applying the rule R4. The new workflow
W' is represented in Figure [4.7right). The idea used by the worker u; is simple. He
decides to create two subsets of the dataset that consists of 500 images each.

The node n, performs a decomposition of dataset. The input to the node n, is
dataset D, with relational schema picdata(id,image). A selection operation is per-
formed to produce a dataset D5 with relational schema picdata(id, image) with records
id smaller than 500 and another selection operation that selects records from 500 to
999 to produce dataset D, with relational schema picdata(id,image). The dataset D;
and D, acts as an input to the node n3 and n, respectively. The task ¢; € n3 tags each
record from D3 with a tag from the pre-defined set of tazon € {Bee, Fly} and produces
dataset Ds with relational schema picdata(id,image, tazon). Similarly the node n, an-
notates each of the images and inserts a tazon € {Bee, Fly} in the taxon field and
returns picdata(id, image, taxon) € Dg. The outputs of node ns and n, are forwarded
to node ns. The task t5 attached to node n; performs a union operation and produces
dataset D; with relational schema picdata(id, image, taxon). The node ng gets dataset
D- as input and does a projection on the fields id, taxon. It returns a datset Dg with re-
lational schema picdata(id, taxon) which is forwarded to node n;. The node n; simply
returns the output to the client.
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Figure 4.7 — Original workflow 1 (left). The new workflow is represented as W' after
refinement of node n; in worklow W (right).

Now, we illustrate the universal termination problem and the objective is to check
whether the given workflow W universally terminates. Recall that, for each of the rule
execution on a complex workflow we get a run p = {C,.C; ....Cy} where C; denotes
the configuration of the workflow (see def.[22). A complex workflow does not terminate
amounts to proving that it is not recursion-free, or that it has a finite symbolic run which
preconditions allow a deadlock. To check a workflow is not recursion-free, we first build
a rewriting graph RG(C'W) and check the existence of a cycle. In our use case, we can
observe there exists no cycle as there is no task ¢; that is refined infinitely. Here, we do
not explain how to check existense of a cycle in a rewriting graph RG(CW), which can
be done with standard algorihms using DFS. Next, the universal termination builds on
checking all symbolic runs in the workflow.

To consider all runs of the complex workflow, we build its symbolic execution tree
(SET) (see def. which represents all the symbolic runs.

4.4.1 Formulation of Symbolic Execution Tree

Even for a small Complex Workflow, Symbolic Execution Tree can be very large.
Hence, we do not represent the whole SET of the CW of Figure 4.7} but rather concen-
trate on interesting and important parts. The SET is shown in Figure 4.8

C5 denotes the initial symbolic configuration. The n,, is the source node tagged
with task ¢, that forwards the data to the node n,. The execution gives the next symbolic
configuration C7. The node n; attached with dataset D; rewrites the task ¢, (Rule
4) and gives symbolic configuration C3. The configuration C3 is obtained after the
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Figure 4.8 — Symbolic Execution Tree.
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decomposition of dataset D, into dataset D; and D, by the node n,. Next we get two
symbolic configurations due to decomposition of data D,. The symbolic configuration
C7 depicts the execution of an atomic task t; € ns that performs insertion operation
on input dataset D5 and returns dataset Ds. Similarly, The symbolic configuration C
denotes the execution of an atomic task ¢, € n, that performs insertion operation on
input dataset D, and returns dataset Dg. From the C; symbolic configuration, we move
to C; that depicts the execution of task ¢5 € ns and performs union operation on input
dataset D5, D and returns dataset D;. Similarly, we move from C¥ to C5 that depicts
the union operation for node n;. From the symbolic configurations C;', C? we move to
configurations CJ and C; respectively. The symbolic configurations C3 and C denote
the execution of task ¢t € ng that performs projection operation on input dataset D, and
returns output dataset Dg. The symbolic configurations Cjy and C?, depict the execution
of final node n; that returns output dataset D,,;.

4.4.2 Algorithm to check termination

One needs to check all the symbolic runs of the workflow to check universal ter-
mination. To recall, for each of the symbolic runs in the SET, the algorithm checks
the existence of an empty dataset. We derive the weakest precondition inductively for
each of the symbolic configurations and check the satisfiability of the FO formula. If
there exist no runs with an empty dataset, the algorithm returns universal termination.

Note that, in the above section, we build a SET that contains all the symbolic runs
of the workflow. The leaf nodes of the SET are the symbolic configurations C5, and C%,.
Both symbolic configurations represent the execution of the final node n, that returns
the final output dataset, hence does not transform data. Similarly the symbolic config-
urations Cy,C7,C3 does not transform data. For checking universal termination, we
only consider the symbolic configurations that affect data. Hence, we get two symbolic
runs as p; = {C5.C5.C{.C5Y and p5 = {C5.C2.C2.C5Y. Next, to check the workflow
universally terminates, for each of the runs we check the satisfiability of the sequence
of the weakest precondition from the last symbolic configuration to the initial symbolic
configuration in p7 proving the existence of a run leading to a configuration where a
dataset is not empty. Conversely, we check the existence of an empty dataset for each
of the runs i.e. in our case p; and p35. We check the feasibility of p; starting from the
configuration C to check all conditions that met along a run with signature to reach Cy
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at each step that allows the existence of actual configurations. The nodes associated
with the symbolic configurations in the run p; are ng, ns,n3 and n, where operations
transformed the datasets. Similarly, the nodes associated with the symbolic configu-
rations in the run p5 are ng, ns, ny and n, Where operations transformed the datasets.
Next, we show the calculus to derive the weakest precondition at each of the sym-
bolic configurations and then show inductively checking of weakest preconditions in a
symbolic run. We show the steps for the run p?.

We start from the symbolic configuration C; obtained after realization of node ng.
The task ts at node ng takes input dataset D;, performs a projection operation on
the fields id, taxon and returns the dataset Dg. The weakest precondition at node ng is
wpn, = wp[Projection|y, where v is Dy # ¢ which is equivalent to Jid, taxon, picdata(id,
taxon) € Dg. We derive the weakest precondition to check whether the set of operation
can lead to a non empty dataset Dg # ¢. Here wp,,, = wp|Projection]t is a formula

ElUz’da Vtazon piCdata(vida Uimagea Utaxon) € D7

We trace backward in run p? and go to the predecessor symbolic configuration of
C? which is C5. The move from C; to Cy is the realization of node ns. The operation
at node n; is union that gets input from node n; and n,. The input dataset provided
is picdata(id,image,taron) € Ds and picdata(id, image, taxon) € Dg and produces an
output dataset D, with relational schema picdata(id, image,taxon) € D,. Note that,
condition for the produced output data D, # 0, is D5 # 0, Dg # 0. The weakest pre-
condition at node n; is denoted as wp,, = wp[Union|y) where ¢ = (D; # 0) and can
be expressed with a FO formula as Jid, image, taxon, picdata(id, image, taxon) € Ds.
Hence, wp,, is a formula

Eluida uimageu Utazon piCdatG/(uid: uz’mage”ta:pon) S D6 Vv piCdata(uida uimageutaron) S D7

The node associated with symbolic configuration C§' is n3 that performs insertion
operation and inserts taxon € {bee, fly} to the input dataset D3 with relational schema
picdata(id, iamge, tazon) € D3 and produces dataset D5 with relational schema picdata(id,
image, taxon) € Ds. The weakest precondition at symbolic configuration CY is wp,, =
wplInsertion]y, where ¢ is D5 # ¢ which is equivalent to Vid, image, tazon, picdata(id, image,
taxon) € DsAtaxon € {bee, fly}. The weakest precondition for the node n; is a formula
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WpPp, = wp[Insertion]y is
3U'ida uimage PiCd@ta(Uz‘d, uimage) € D3

Similarly, the node associated with symbolic configuration C¥ is node n, that per-
forms an insertion operation and takes input dataset D, with relational schema picdata(v;q,
VimageVtazon) € Dy. It tags each record with a taxon € {bee, fly} and produces dataset
Ds. The weakest precondition at symbolic configuration C¥ is wp,, = wp[Insertion]i,
where ¢ is Dg # ¢ which is equivalent to Vid, image, taxon, picdata(id, image, taxon) €
D¢ A taxon € {bee, fly}. The weakest precondition for the node n, is a formula wp,,, =
wplInsertion]y is

Huida Uimage piCdata(uidu uz’m(zge) € -D4

At last, we derive the weakest precondition for the symbolic configuration C5' which
is associated with task t, that performs the decomposition operation. The decompo-
sition operation is a higher order operation and splits the input dataset D, into a set
of dataset Ds, D,. The dataset D3 and D, is obtained using Selection operation on
the input dataset D, with relational schema picdata(id,image, taxon). Dy is obtained
through selection predicates P, :: (id > 0 Aid < 499) and P, :: (id > 500 A id <
999). The weakest precondition at node n, is wp,, = wp[Decomposition]y), where
Y is D3 # ¢ and Dy # ¢ which is equivalent to 3u;q, Wimage, Uiazon, Vid, Vimages Vtazon
picdata(Uiq, Wimage; Utazon) € D3 A Vid, Vimage, Vtazon € D4. Then weakest precondition for
the decomposition operation wp,,, = wp[Decomposition]y is the formula

E|uid7 uimage piCdam(Uid, uimage) S Dl A (uid Z 0A Uid S 499)
Vpicdata(wig, Wimage) € Da A (g > 500 A u;q < 999)

Here, we derived inductively a sequence wp,,.wp,, wp,,.wp,, of weakest condi-
tions for the symbolic run p; = {C5.C5.C7.C35} which is to be met at each stage such
that condition D; # () at a node n; (hence not leading to an unavoidable deadlock). At
each stage, we check the satisfiability of the derived weakest precondition wp,,, using
a solver, Z3 [DMBO08]. Now, for a derived precondition at a node, if the FO formula is
not satisfiable then we return non-termination, otherwise, we inductively go back from
wp, to wp,_1 and repeat the procedure up to the derivation of the weakest precondi-
tion for the initial symbolic configuration of the symbolic run. Following our use case, if
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the weakest precondition wp,,, is not satisfied, we return non-termination, otherwise we
take one step back and derive the weakest precondition wp,,.. We repeat the procedure
up to wp,,. If a run exists such that we are able to reach from the last symbolic con-
figuration Cg to the initial symbolic configuration C¥ in run p? i.e. all derived weakest
precondition in the path from wp,, to wp,, satisfies, then it proves that there does not
exist a configuration which leads to an empty dataset. Similarly, analogy follows for the
run p5 where the sequence of derived weakest preconditions are wp,,,.wpy, . wWp,, WP, -
Note that, if for all runs, we are able to trace back to the initial symbolic configuration,
the algorithm proves universal termination. In our use case, for each of the symbolic run
p? and p5, we find that all the derived weakest precondition along the path is satisfiable
(using Z3 solver [Pro]) and hence the algorithm returns verdict as universal termina-
tion. The syntactical derivation of the weakest precondition and checking satisfiability
using Z3 allows obtaining the simulation and satisfiability results within a reasonable
time of a few seconds.

4.5 Platform

We implement the proposed complex workflow model of Chapter [3] and algorithms
to check termination and correctness properties. The tool is named CrowdPlex.

The tool is developed in JAVA. We design the CrowdPlex tool as a modular sys-
tem composed of three components: Workflow specification, Operational semantics,
and Property checker. The workflow specification module consists of several sub-
components: coarse description of task in the form of workflow, task mapping, profile,
worker availability, worker skKills, task pre-requisite and data specification. Workflow
specification is provided as text file or can be passed dynamically at run time to the
CrowdPlex tool. Each sub-components of workflow specification follows a predefined
grammar and is parsed using a parser developed with JavaCC (Java Compiler Com-
piler)ﬂ. The operational semantics module gives various rules that are the guiding
principles for the execution of a complex workflow. The operational semantics follows
the four rules as described in Section[3.4] They describe how a configuration is trans-
formed when a particular action takes place (worker assignment, task completion, ...).
The last part of CrowdPlex is a property checker module to verify termination and
correctness properties. The module generate symbolic runs, synthesizes the weakest

1. https://javacc.github.io/javacc/.
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preconditions and relies on the Z3 solver to check the satisfiability of a first-order for-
mula. Z3 is an efficient and well-known Satisfiability Modulo Theories (SMT) solver with
specialized algorithms and is developed by Microsoft [Pro]. SMT generalizes boolean
satisfiability (SAT) problems by adding equality, reasoning, quantifiers, and first-order
theories.

Working of CrowdPlex. The first module of the CrowdPlex tool, workflow specifica-
tion takes the input as crowdsourcing attributes and the coarse description of a com-
plex task. The operational semantics module interacts with the workflow specification
module and applies the various defined rules for the workflow execution. The property
checker module implements the existential and universal termination algorithm.

A crucial point for verification of universal or existential termination is to check
feasibility of a symbolic run. Let us show how the feasibility of a symbolic run p° =
C5.CP. . ... C# is verified. The module checks the feasibility of a run p° ending with an
empty dataset by deriving backward weakest precondition from the deadlocked sym-
bolic configuration to the initial symbolic configuration. At each symbolic configuration,
the module derives the weakest precondition. The derived weakest precondition is then
passed to Z3 solver to check the satisfiability. If the weakest precondition at a symbolic
configuration C? is not satisfiable, then it stops, and concludes that run p® is not feasible
with the condition v, expected in its last configuration C;. If we reach the initial config-
uration (all the derived weakest precondition FO formula along the run are satisfiable),
then it remains to check that the input data verify the last precondition v, generated.
If this is the case, then C¥ can deadlock, and the module witnesses a deadlocked run
resulting into non-termination of the complex workflow.

The property checker then builds on verification of symbolic runs realization to
check existential termination. For universal termination, the verification module first
verifies that rewritings rules do not contain cyclic dependencies. If it is the case the
checker concludes immediately that the complex workflow does not terminate. If the
specification is not recursive, then the checker can build the symbolic execution tree
and verify individually each of its symbolic runs.

4.6 Conclusion

We studied termination and correctness of complex workflows with respect to the
requirement on inputs and output of the overall process. Unsurprisingly, termination
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of a complex workflow is undecidable, already due to the control part of the model.
Now the question of whether all runs terminate can be answered when the initial data
is specified in a fragment of FO for which satisfiability is decidable. Similar remarks
apply to correctness. We consider the complexity of termination and correctness for
different decidable FO fragments. The (co)-2EXPTIME bound for the fragments with
the lowest complexity mainly comes from the exponential size of the formula depicting
preconditions that must hold at initial configuration (the EXPTIME complexity is in the
maximal length of runs). This can be seen as an untractable complexity, but one can
however expect the depth of recursion to be quite low, or even enforce such a depth.

To summarize, complex workflows provide a way to rewrite an intricate task in an
orchestration of smaller tasks and provide termination and correctness guarantees.
However, focusing on the orchestration of complex workflows as coordination of smaller
tasks is not enough. The complex workflow often comes with budget constraints pro-
vided by the client and also requires a guarantee on the data quality. The next two
chapters will discuss the way to get reliable answers from the crowd with budget con-
straints. In particular, we use probabilistic models on top of workflows to obtain a trade-
off between cost and accuracy.
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CHAPTER 5

QUALITY ASSURANCE FOR ATOMIC
TASKS

In the preceding chapters, we have proposed a complex workflow model that al-
lows specifying intricate tasks with workflows. For this model, we can check correct-
ness and termination on a reasonable subset of the language, mainly non-recursive
specifications without dataset difference. Workflows provide an efficient way to execute
intricate tasks to achieve a certain goal. They define the way tasks are decomposed,
ordered, and executed. However, they do not provide mechanisms to guarantee the
quality of data produced by the workflow. The verification process of Chapter {4 does
not allow either to consider the cost of the workflow. Generally, tasks at crowdsourcing
platforms come with a fixed budget provided by the client. In this chapter, we consider
the cost and quality of produced data for a single atomic task. We extend the concept
to workflows in Chapter [6]

The tasks at crowdsourcing platforms need human contribution. The simplest tasks
include image annotation or classification, polling, etc. Employers publish tasks on an
Internet platform, and these tasks are realized by workers in exchange for a small
incentive [Dan+18]. Workers are very heterogeneous: they have different origins, do-
mains of expertise, and expertise levels. For these reasons, workers can disagree and
return very different answers, even for simple tasks. One can even consider malicious
workers, that return wrong answers on purpose. To deal with this heterogeneity, tasks
are usually replicated: each task is assigned to a set of workers. Redundancy is also
essential to collect worker’s opinion: in this setting, work units are the basic elements
of a larger task that can be seen as a poll. One can safely consider that each worker
executes his assigned task independently, and hence returns his own belief about the
answer. As workers can disagree, the role of a platform is then to build a consensual
final answer out of the values returned.
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In Chapter[2], we have recalled a simple and natural way to derive a final answer us-
ing Majority Voting (MV). MV chooses as a conclusion the most represented answer.
A limitation of MV is that all answers have equal weight, regardless of the expertise
of workers. If a crowd is composed of only a few experts, and of a large majority of
novices, MV favors answers from novices. However, in some domains, an expert worker
may give a better answer than a novice and his answer should be given more weight.
One can easily replace MV with a weighted vote. However, this raises the question of
measuring a worker’s expertise, especially when the worker's competencies are not
known a priori. Crowdsourcing platforms such as Amazon Mechanical Turk (AMT) do
not have prior knowledge about the expertise of their worker. A way to obtain an initial
measure of a worker’s expertise is to use Golden Questions [Le+10]. Several tasks
with known ground truth are used explicitly or hidden to evaluate worker’s expertise.

As already mentioned, a single answer for a particular task is often not sufficient to
obtain a reliable answer, and one has to rely on redundancy, i.e. distribute the same
task to several workers and aggregate results to build a final answer. Standard static
approaches on crowdsourcing platforms fix a prior number of & workers per task. Each
task is published on the platform and waits for bids by &£ workers. There is no guideline
to set the value for k, but two standard situations where £ is fixed are frequently met.
The first case is when a client has n tasks to complete with a total budget of B, incentive
units. Each task can be realized by k = B,/n workers. The second case is when an
initial budget is not known, and the platform fixes an arbitrary redundancy level. In
this case, the number of workers allocated to each task is usually between 3 and 10
[GM+16]. It is assumed that the distribution of work is uniform, i.e. that each task is
assigned the same number of workers. An obvious drawback of static allocation of
workers is that all tasks benefit from the same work power, regardless of their difficulty.
Even a simple question where the variance of answers is high calls for a sampling of
larger size. So, one could expect each task t to be realized by k; workers, where k;
is a number that guarantees that the likelihood to change the final answer with the
contribution of one additional worker is low. However, without prior knowledge on the
task’s difficulty and on variance in answers, this number &, cannot be fixed a priori.

In this chapter, we propose an algorithm to address the questions of answers aggre-
gation, task allocation, and costs optimization. We first propose an aggregation tech-
nigue based on Expectation Maximization (EM) algorithm considering factors such as
task difficulty and worker expertise. For simplicity, we consider boolean filtering tasks,
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i.e. tasks with answers in {0, 1}, but the setting can be easily extended to tasks with
any finite set of answers. These tasks are frequent, for instance, to decide whether a
particular image belongs or not to a given category of pictures. We consider that each
binary task has a truth label, i.e. there exists a ground truth for each task. Each worker
is asked to answer 0 or 1 to such a task and returns a so-called observed label, which
may differ from the ground truth. The difficulty of a task is a real value in [0, 1]. A task
with difficulty 0 is a very easy task and a task with difficulty 1 a very complex one.
The expertise of a worker is modeled in terms of recall and specificity. Recall (also
called true positive rate) measures the proportion of correct observed labels given by
a worker when the ground truth is 1. On contrary, specificity (also called true negative
rate) measures the proportion of correct observed labels given by a worker when the
ground truth is 0. In this chapter, we propose a generating function to model the prob-
ability of accuracy for each of the truth labels (0/1) based on the observed label, task
difficulty, and worker expertise. We rely on an Expectation Maximization (EM) based
algorithm to estimate most probable ground truth for each task and jointly estimate the
difficulty of each task as well as the expertise of the workers. The algorithm provides
greater weight to expert workers. In addition, if a worker with high recall makes a mis-
take in the observed label, then it increases the difficulty of the task (correspondingly
for specificity). Similarly, if expert workers fail to return a correct answer, then the task
is considered difficult. The EM algorithm converges with a very low error rate and at the
end returns the task difficulty, worker expertise and the final estimated label for each
task based on observed labels.

We then propose Crowdinc, a dynamic worker allocation algorithm that handles at
the same time aggregation of answers, and optimal allocation of a budget to reach a
consensus among workers. The algorithm works in two phases. For the initial Estima-
tion phase, as we do not have any prior information about the task difficulty and worker
expertise, we allocate one-third of the total budget to inspect the behavior of each task.
Based on the answers provided by human workers for each task, we first derive the
difficulty of tasks, final aggregated answers, and the worker expertise using an EM al-
gorithm. For each task, we estimate the likelihood that the aggregated answer is the
ground truth. Tasks which aggregated answers have been synthesized with sufficient
confidence are not allocated workers in the following rounds. Next phase is called Con-
vergence. The remaining tasks are allocated additional workers for a new round based
on the current estimate of the difficultly of tasks. At each round, we compute the task
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difficulty, worker’s expertise, and the final answer for each task, and then final answers
with enough confidence are considered as the aggregated answer. This iterative pro-
cess stops when all tasks are labeled with sufficient confidence, or when the budget is
exhausted.

We provide the below outline of the chapter.

— We state the preliminaries and the factors affecting the aggregation techniques
in Section .11

— We use an Expectation Maximization based aggregation algorithm which aggre-
gates the answers provided by the crowd workers and returns the most probable
answer as the final answer. (Section[5.2).

— Next, we define a cost model that dynamically allocates workers based on task
difficulty, confidence in the final answer, tasks to be processed, and the available
budget. (Section5.3).

— We evaluate the proposed model by comparing it with the state-of-the-art tech-
niques on real datasets in Section and finally conclude in Section [5.5]

5.1 Basic ingredients of aggregation

In this section, we detail the basic definitions of probability theory, factors influencing
the efficiency of crowdsourcing, and the Expectation Maximization algorithm. We first
introduce the concept of probability, conditional probability, and Bayes’s law. We then
discuss the two factors namely difficulty of the task and worker expertise that influence
the aggregation mechanism. In the end, we present the generalized EM algorithm.

5.1.1 Probability theory

We work with discrete variables and discrete probabilities. A random variable is a
variable whose value depends on random phenomenon called as event E. For a given
variable z, we denote by Dom(z) its domain (Boolean, integer, real, string, ...). For a
particular value v € Dom(z) we denote by = = v, the event "z has value v". A probability
measure Pr(x = v) is a function that defines how likely a particular event is and takes
a real value in [0, 1]. In the rest of the chapter, we mainly consider Boolean events,
i.e. variables with domain {0,1}. A probability of the form Pr(x = v) only considers
occurrence of a single event. When considering several events, we define the joint

121



Chapter 5. Quality Assurance for Atomic Tasks

probability. Joint probability is the occurrence of two events F := (xr = v) and £’ :=
(y = v') simultaneously and is denoted by Pr(z = v,y = v'). The notation extends to
an arbitrary number of variables. If £ and E’ are two independent events, then their
joint probability is Pr(z = v,y = v') = Pr(x = v) - Pr(y = v’). Conditional Probability
is defined as probability of an event when another event is known. More precisely,
conditional probability is of the form Pr(xz = v|y = ') and is defined as the probability
for an event x = v given y = ¢'. The conditional probability is calculated as Pr(z =
vy =) = %ﬁ;f’) assuming that Pr(y = v') > 0. Using all the notations, Bayes’
law tells about the probability of an event based on some prior knowledge of conditions
that might be relevant to the event. Considering A and B are events and Pr(B) # 0,

then Pr(A|B) = LAE A,

5.1.2 Factors influencing efficiency of crowdsourcing

During task labeling, several factors can influence the efficiency of crowdsourcing,
and the accuracy of aggregated answers. The first one is Task difficulty. Tasks sub-
mitted to crowdsourcing platforms by a client address simple questions, but may never-
theless require some expertise. Even within a single application type, the difficulty for
the realization of a particular task may vary from one experiment to another: tagging
an image can be pretty simple if the worker only has to decide whether the picture con-
tains an animal or an object, or conversely very difficult if the boolean question asks
whether a particular insect picture shows a hymenopteran (an order of insects). Simi-
larly, Expertise of workers plays a major role in the accuracy of aggregated answers.
In general, an expert worker performs better on a specialized task than a randomly cho-
sen worker without particular competence in the domain. For example, an entomologist
can annotate an insect image more precisely than any random worker.

The technique used for Amalgamation also plays a major role. Given a set of an-
swers returned for a task ¢, one can aggregate the results using majority voting (MV),
or more interesting, as a weighted average answer where individual answers are pon-
dered by worker’s expertise. However, it is difficult to get a prior measure of worker’s
expertise and of the difficulty of tasks. Many crowdsourcing platforms use MV and ig-
nore the difficulty of tasks and expertise of workers to aggregate answers or assign
tasks to workers. We show in Section[5.4]that MV has low accuracy. We will also show
in this chapter that expertise and difficulty, considered as hidden parameters can be
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evaluated from the sets of answers returned. This allows us to hire new workers with a
priori unknown expertise. One can also start with a priori measure of task difficulty and
of worker’s expertise. Worker’s expertise can be known from former interactions. It is
more difficult to have initial knowledge of task difficulties, but one can start with an a pri-
ori estimation. However, these measures need to be re-evaluated on the fly when new
answers are provided by the crowd. Starting with a priori measures does not change
the algorithms proposed hereafter, but may affect the final aggregated results.

In Section [5.2], we propose a technique to estimate the expertise of workers and
difficulty of tasks on the fly. Intuitively, one wants to consider a task as difficult if even
experts fail to provide a correct answer for this task and consider as it easy if even
workers with low competence level answer correctly. Similarly, a worker is competent
if he answers correctly difficult tasks. Notice however that to measure the difficulty of
tasks and expertise of workers, one needs to have the final answer for each task. Con-
versely, to precisely estimate the final answer one needs to have the worker expertise
and task difficulty. This is a chicken and egg situation, but we show in Section how
to get plausible value for both using EM.

The next issue to consider is the cost of crowdsourcing. Workers receive incentives
for their work, but usually, clients have limited budgets. Some tasks may require a lot
of answers to reach a consensus, while some may require only a few answers. There-
fore, a challenge is to spend efficiently the budget to get the most accurate answers.
In Section we discuss some of the key factors in budget allocation. Many crowd-
sourcing platforms do not consider difficulty, and allocate the same number of workers
to each task. The allocation of many workers to easy tasks is usually not justified and
is a waste of budget that would be useful for difficult tasks. Now, tasks difficulty is not
a priori known. This advocates for on the fly worker allocation once the difficulty of a
task can be estimated. Last, one can stop collecting answers for a task when there is
evidence that enough answers have been collected to reach a consensus on a final
answer. An immediate solution is to measure the confidence of final aggregated an-
swer and take as Stopping Criterion for a task the fact that this confidence exceeds
a chosen threshold. However, this criterion does not work well in practice as clients
usually want high thresholds for all their tasks. This may lead to consuming all avail-
able budget without reaching an optimal accuracy. In Section [5.3] we give a stopping
criterion that balances confidence in the final answers and budget, and optimizes the
overall accuracy of answers for all the tasks.
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5.1.3 Expectation Maximization

Expectation Maximization [DLR77] is an iterative technique to obtain maximum like-
lihood estimation of the parameters of a statistical model when some parameters are
unobserved and /atent, i.e. they are not directly observed but rather inferred from ob-
served variables. In some sense, the EM algorithm is a way to find the best fit between
data samples and parameters. It has many applications in machine learning, data min-
ing and Bayesian statistics.

Let M be a model which generates a set X’ of observed data, has a set of missing
latent data ), and a vector of unknown parameters 6, along with a likelihood function
Lo | X,Y) =p(X,Y | 0). Here, in a crowdsourcing context observed data X" repre-
sents the answers provided by the crowd, ) depicts the final answers which need to be
estimated and are hidden, and parameters in 6 are the difficulty of tasks and the exper-
tise of workers. The maximum likelihood estimate (MLE) of the unknown parameters
is determined by maximizing the marginal likelihood of the observed data. We have
LO|X)=pX|0) = /p()(,y | 8)dY. The EM algorithm computes iteratively MLE,
and proceeds in two steps. At the k" iteration of the algorithm, we let #* denote the
estimate of parameters 6. At the first iteration of the algorithm, 6° is randomly chosen.
Then the algorithm repeats two steps until convergence:

E-Step: In the E step, the missing data are estimated given observed data and the
current estimate of parameters. The E-step computes the expected value of L(0 | X, )
given the observed data X and the current parameter 6*. We define

QO] 0") = Eyapr[L(0]| X, V)] (5.1)

In the crowdsourcing context, we use the E-Step to compute the probability of oc-
currence of Y that is the final answer for each task, given the observed data X and
parameters 6* obtained at £ iteration.

M-Step: The M-step finds parameters 6 that maximize the expectation computed in

equation.5.1]
Okt = arg max Q0 | 6%) (5.2)

Here, with respect to estimated probability for ) for final answers from the last E-Step,
we maximize the joint log-likelihood of the observed data X (answer provided by the
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crowd), hidden data Y (final answers), to estimate the new value of §**! i.e. the difficulty
of tasks and the expertise of workers. The E and M steps are repeated until the value
of 6% converges. We present the algorithm more formally below (Algorithm (1)) .

Algorithm 1: General EM Algorithm

Data: Observed Data X, Pr(X,) | 0)

Result: Parameter values 60, Hidden data )

Initialize parameters in #° to some random values.

while |0 — 6*7!|| > e do
Compute the expected possible value of ), given 6* and observed data X
Use ) to compute the values of ¢ that maximize Q(6 | %).

end

return parameter 6%, Hidden data )/

O G h~ W N =

EM algorithm is widely studied and has diverse applications in estimation of mixed
models [VDO0O; LB88], signal processing [Moo096], image processing [Car+02], machine
learning [AA11}; SDS20; [TAK20], etc. We use EM as a black box algorithm. For a com-
plete desription, we refer to the following references [Blu02; [Mo096].

5.2 The Aggregation model

We address the problem of evaluation of binary properties of samples in a dataset
by aggregation of answers returned by participants in a crowdsourcing system. For
simplicity, we consider boolean tagging tasks, i.e. tasks with answers in {0, 1}, but the
setting can be easily extended to tasks with any finite set of answers. This type of
application is frequently met: one can consider for instance a database of n images,
for which workers have to decide whether each image is clear or blur, whether a cat
appears on the image, etc. The evaluated property is binary, i.e. worker’s answers
can be represented as a label in {0,1}. From now, we will consider that tasks are
elementary work units whose objective is to associate a binary label to a particular
input object. For each task, an actual ground truth exists, but it is not known by the
crowdsourcing platform. We assume a set of £ independent workers, which role is to
realize a task, i.e. return an observed label in {0, 1} according to their perception of a
particular sample. We consider a set of tasks 7' = {¢y, ... ¢, } for which a label must be
evaluated. For atask ¢; € T the observed label given by worker 1 < ¢ < k is denoted by
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l;;. We let y; denote the final label of a task t; obtained by aggregating the answers of

all workers. L; = U [;; denotes the set of all labels returned by workers for task ¢;, L
i€l.k

denotes the set of all observed labels, L = U L;. The goal is to estimate the ground
j€l.n

truth by synthesizing a set of final labels Y = {y;,1 < j < n} from the set of observed
label L for all tasks.

Despite the apparent simplicity of the problem, crowdsourcing binary tagging tasks
hide several difficulties, originating from unknown parameters. These parameters are
the difficulty of each task, and the expertise of each worker. The difficulty of task ¢;
is modeled by a parameter d; € [0,1]. Here value 0 means that the task is very easy,
and can be performed successfully by any worker. On the other hand, d; = 1 means
that task ¢, is very difficult. A standard way to measure expertise is to define workers
accuracy as a pair & = {ay, f;}, where «; is called the recall of worker i and 3; the
specificity of worker i. The recall is the probability that worker ¢ annotates an image j
with label 1 when the ground truth is 1, i.e. a; = Pr(l;; = 1|y; = 1). The specificity of
worker i is the probability that worker i annotates an image j with 0 when the ground
truthis 0, i.e. 8; = Pr(l;; = 0|y; = 0).

In literature, [Zhe+17] the expertise of workers is often quantified in terms of accu-
racy, i.e. Pr(l;; = y;). However, if the data samples are unbalanced, i.e. the number
of samples with actual ground truth 1 (respectively 0) is much larger than the number
of samples with ground truth 0 (respectively 1), defining competencies in terms of ac-
curacy leads to bias. Indeed, a worker who is good at classifying images with ground
truth 1 can obtain bad scores when classifying images with ground truth 0, and yet get
a good accuracy (this can be the case of a worker that always answers 1 when tagging
atask). Recall and Specificity overcomes the problem of bias and separates the worker
expertise, considering their ability to answer correctly when the ground truth is 0 and
when it is 1, and hence give a more precise representation of workers competences.

The exact behavior of workers is not exactly known. However, it is clear that the
probability to answer correctly an easy task is higher than the probability to answer cor-
rectly a difficult one. We can hence build a probabilistic model (a generative model) to
estimate worker’s answers. We assume that workers have constant behaviors and are
faithful, i.e. do not return wrong answers intentionally. We also assume that workers do
not collaborate (their answers are independent variables). Under these assumptions,
knowing the recall «; and specificity g; of a worker i, we build a model that generates
the probability that the worker ¢ returns an answer [;; for a task j with difficulty d;.
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d; d;
(a) Generative function for the probability (b) Generative function for the probability
to get [;; = 1, given y; = 1, for growing val- to get /;; = 0, given y; = 0, for growing val-
ues of task difficulty. The curves represent ues of task difficulty. The curves represent
different values of recall for the considered different values of specificity for the consid-
workers. ered workers.

Figure 5.1 — Generating function.

Pr(lij = yj\dj,ozi,yj = 1) = (53)

14 (1—d.)2=5)
Pr(ly = yldy, By = 0) = - =0 54

This model is defined by equations and [5.4] that characterize respectively the
probability to get a correct answer for a given recall o; when ground truth is 1 and
for a given specificity 5; when ground truth is 0. Figure shows the probability of
associating label 1 to a task for which the ground truth is 1 when the difficulty of the
tagging task varies and for different values of recall. The range of task difficulty is [0, 1].
The vertical axis is the probability of getting /;; = 1. One can notice that this probability
takes values between 0.5 and 1. Indeed, if a task is too difficult, then returning a value
is close to making a random guess of a binary value. Unsurprisingly, as the difficulty of
the task increases, the probability of correctly labeling the task decreases. For a fixed
difficulty of the task, workers with higher recalls have a higher probability to correctly
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label a task. Also, note that when the difficulty of a task approaches 1, the probability
of answering with label /;; = 1 decreases for every value of a;. However, for workers
with high recall, the probability of a correct annotation is always greater than with a
smaller recall. Hence, the probability of a correct answer depends both on the difficulty
of the task and on the expertise of the worker realizing the task. Similarly, Figure
represents the probability of tagging a task to a label 0 for which the ground truth is 0
with varying difficulty of the tagging task and different values of specificity.

5.2.1 Aggregating Answers

For a given task j, with unknown difficulty d;, the answers returned by k& workers
(observed data) is a set L; = {ly;,...,lx;}, where [;; is the answer of worker i to task
j. In addition, the expertise of k workers is defined by the pair of vectors of parameters
a =A{ay,...,ar} and 5 = {f1,..., 5} and are also unknown. The goal of a crowd-
sourcing platform is to infer the final label y;, and to derive the most probable values
for d;, oy, B;, given the observed answers of workers. We use a standard EM approach
to infer the most probable actual answer Y = {y;, ...y, } along with the hidden param-
eters = {d;,c,,p; |j€l---nNi,jel---k}. Letusconsiderthe E and M phases of
the algorithm.

E Step: We assume that all answers in L = |J L, are independently given by
1<j<m
the workers as there is no collaboration between them. So, in every L; = {ly;,..., s},

l;;’'s are independently sampled variables. We compute the posterior probability of y; €
{0, 1} for a given task j given the difficulty of task d;, worker expertise «;, 3;,7 < k and
the worker answers L; = {l;; | i € 1..k}. Using Bayes’ theorem, considering a particular
value A € {0, 1} we have:

Pr(L;lyi=\a,B8,d;) - Pr(y;=\a,8,d;
Pr[yj - )“Lju(%ﬁ’dj] = Dby, pr(ﬁl,jfig’d%j lo0.4;) (5.5)

The value of the final label y; directly depends upon the answers L; provided by the
workers. Therefore, y; and «, 3,d; are independent variables. We assume that prior
probability of y; taking values as 0 or 1 is equiprobable, i.e. the prior probability to
choose between the final answers are Pr(y; = 0) = Pr(y; = 1) = 1. We hence get:

_ _ Pr(Ljlym=\aB,d))-Pr(y=\) _ Pr(Ljly=\a.8.d)) 3
Priyj=ALj, 0. 8.djl = =5 asay = Prllesd) (06
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Similarly, the probability to obtain a particular set of labels is given by:

Pr(Lj | a?ﬁvdj) - % ' Pr(Lj | yj:()?O‘aﬁadj) + % : PT(Lj | yjzlaaaﬁvdj> (57)
Overall we obtain:

_ _ Pr(L;ly=\a.5,d;)
Priy;=AlLj, o, 8,dj] = 5y 5a5d) 1 Pr(L, y=a ) (5.8)

Let us consider one of these terms, and let us assume that every /;; in L, takes a
value )\, .. We have

k
PT(L] | y]:)\’ Ol,ﬁ,dj) = HPT(ZZJ = )\p | azvﬁhd]vyj:)\) (59)

i=1
If A, = 0then Pr(l;; = A\, | as, Bs,d;,y; =0) is the probability to classify correctly
a 0 as 0, as defined in equation 5.4 denoted by ¢;; = %

2. Similarly, if \,, = 1
then Pr(l; = A, | o, Bi,d;,y; = 1) is the probability to classify correctly a 1 as 1,
expressed in equation 5.3 and denoted by ~;; = =4

. 2 Then the probability to
classify y; = 1as \,,, = 0is (1 — v;;) and the probability to classify y; = 1as A, = 0is
(1—4;). We hence have Pr(li; = Ay, | s, Bi,dj, y;=0) = (1 = Ap,) - 055 4+ A, - (1 —735).
Similarly, we can write Pr(l;; = Ay, | i, Bi,dj,y;=1) = Ay, - vij + (1 = Ap;) - (1 = 655).
So equation [5.8|rewrites as :

Dij

K oPr(ly =M | yi=N,), i B, d;
Pl =] = e )
(1= X ) [0 = A )85 4 Aoy (1= 7)) + Aoy Dy vy + (1= Ay ) (1 = 635)] (5.10)
Pr(L;|y;=0,a,p8,d;) + Pr(L; | y;=1,, 8, d;)
(1= X)) [0 = A )85 4 Ao (1= 7)) + Mgy Py v + (1= Ay ) (1 = 655)]
P (1= A )85+ A (1= vi5) + Ty Apyy i + (1= A, ) (1 = 65)

In the E step, as every «;, 3, d; is fixed, one can compute E[y;|L;, o, 5;, d;] and also
choose as final value for y; the value \; € {0,1} such that Prly; = \;|L;, o, 5, d;] >
Prly; = (1 — X\))|L;, a4, Bi,d;]. We can also estimate the likelihood for the values of
variables P(LUY | 0) for parameters 6 = {«, 3,d}, as Pr(y; = \;,L | 0) = Pr(y; =
Ay L).Pr(Lj | y; = A, 0) = Priy; = X;).Pr(L; | y; = A;,0)

M Step: With respect to the estimated posterior probabilities of Y computed during
the E phase of the algorithm, we compute the parameters ¢ that maximize Q(6, 6").
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Let 6' be the value of parameters computed at step ¢ of the algorithm. We use the
observed values of L, and the previous expectation for Y. We maximize Q'(6,6") =
E[logPr(L,Y | 0) | L,0"] (we refer to [Fla12]-Chap. 9 and [DLR77] for explanations
showing why this is equivalent to maximizing Q(6, 6)). We can hence compute the next
value as: 0! = arg max Q'(0,0"). Here in our context the values of 0 are «;, 3;, d;. We
maximize @'(,6") using a bounded optimization technique, namely truncated New-
ton algorithm [Nas84};, NWO06] provided by the standard SciPyﬂ implementation. We
iterate E and M steps, computing at each iteration ¢ the posterior probability and the
parameters ¢' that maximize Q’'(6,6"). The algorithm converges, and stops when the
improvement (difference between two successive joint log-likelihood values) is below a
threshold, fixed in our case to 1e~".

5.3 Cost Model

A drawback of many crowdsourcing approaches is that task distribution is static [GM+16],
i.e. tasks are distributed to a fixed number of workers, without considering their diffi-
culty, nor checking if a consensus can be reached with fewer workers. Consider again
the simple boolean tagging setting, but where each task realization is paid and with a
fixed maximal budget B, provided by the client. For simplicity, we assume that all work-
ers receive 1 unit of credit for each realized task. Hence, to solve n boolean tagging
tasks, one can hire at most B, /n workers per task. In this section, we show a worker al-
location algorithm that builds on collected answers and estimated difficulty to distribute
tasks to workers at run time and show its efficiency with respect to other approaches.

The algorithm works in rounds. At each round, only a subset 7;,,, C T of the initial
tasks remain to be evaluated. We collect labels produced by workers for these tasks.
We aggregate answers using the EM approach described in Section [5.2l We denote
by y; as the final aggregated answer for task j at round ¢, d; is the current difficulty
of task and o/, 5/ denotes the estimated expertise of a worker i at round ¢. We let
D? = {df...d}} denote the set of all difficulties estimated as round ¢. We fix a maximal
step size T > 1, that is the maximal number of workers that can be hired during a round
for a particular task. For every task ¢; € T, with difficulty d; at round ¢, we allocate
aj = [(dj/max D7) x 7] workers for the next round. Once all answers for a task have

J
been received, the EM aggregation can compute final label yf < {0, 1}, difficulty of task

1. docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html
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dj, expertise of all workers of, ..., af,57,..., 3. At the end of each round, for each
task t; one has to decide whether the confidence in answer y; obtained at round ¢ is
sufficient (in which case, we do not allocate workers to this task in the next rounds, i.e.
we remove it from T,,,).

5.3.1 Confidence and Threshold

An important point is to estimate confidence. Another crucial point is to define the
confidence threshold at each round ¢ of the algorithm. Let ] be the number of answers
obtained for task ;j at round ¢. The confidence ¢ in a final label y; is defined as follows:

) K 1+(1_d§)(1—“?> 1+(1—d§)<1—”§’>
R R R e e R R I Y
N ke 14+(1—-d) P 14+(1—d) P
=0 =S {0 1) x P ) x 0 - ML sa2)

Intuitively, each worker adds its probability of doing an error, which depends on the
final label y? estimated at round ¢ and on his competences, i.e. on the probability to
choose /;; = y;. Let us now show when to stop the rounds of our evaluation algorithm.
We start with » tasks, and let 7,,; denote the set of remaining tasks at round ¢. We
define r? € [0, 1] as the ratio of tasks that are still considered at round ¢ compared
to the initial number of task, i.e. 7 = 'TT” We start with an initial budget B,, and
denote by B¢ the total budget consumed at round ¢. We denote by B9 the the fraction
of budget consumed at that current instance, B¢ = %ﬁ. We define the stopping threshold
The € [0.5,1.0] as Thi = =B

The intuition behind this function is simple: when the number of remaining tasks
decreases, one can afford a highest confidence threshold. Similarly, as the budget de-
creases, one shall derive a final answer for tasks faster, possibly with poor confidence,
as the remaining budget does not allow hiring many workers. Figure 5.2]shows how the
threshold evolves for different values of »? when the fraction of the budget consumed
B? evolves. Each line depicts the evolution of the threshold for different values of 1.
Observe that when r? approaches 1, the threshold value falls rapidly, as a large num-
ber of tasks remain without a definite final answer and have to be evaluated within the
remaining budget. On the other hand, when fewer tasks remain, (e.g. when r? = 0.10),
the threshold Th? decreases slowly.
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Figure 5.2 — The threshold values based on current estimate on consumed budget and
fraction of task remaining at the beginning of a round.

5.3.2 CrowdiInc: An algorithm to optimize costs

We now propose a crowdsourcing algorithm called CrowdInc with a dynamic worker
allocation strategy to optimize cost and accuracy. This strategy allocates workers de-
pending on current confidence on final answers, and available resources. CrowdInc is
decomposed in two phases, Estimation and Convergence.

Estimation: As difficulty of tasks is not known a priori, the first need is to estimate it.
To get an initial measure of difficulties, each task needs to be answered by a small
set of workers. Now, as each worker receives an incentive for a task, this preliminary
evaluation has a cost, and finding an optimal number of workers for difficulty estimation
is a fundamental issue. The initial budget B, gives some flexibility in the choice of
an appropriate number of workers for preliminary evaluation of difficulty. Choosing a
random number of workers per task does not seem a wise choice. We choose to devote
a fraction of the initial budget to this estimation phase. We devote one-third of the total
budget (B,/3) to the estimation phase and allocate each task ¢ = (B,/3)/n workers. It
leaves a sufficient budget (2- B, /3) for the convergence phase. Experiments in the next
Section [5.4] show that this seems a sensible choice. After the collection of answers for
each task, we apply the EM-based aggregation technique of Section[5.2]to estimate the
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Algorithm 2: CrowdInc

Data: A set of tasks 7" = {¢4,...,t,}, a budget = B,
Result: Final Answer: Y =y, ..., y,, Difficulty: d;,Expertise: «;, §;
1 Initialization : Set every d;, «;, 5; to a random value in [0, 1].
2 T,y =T;9=0; B=B—(By/3); B. = By/3; ( = (By/3)/n
3 //Initial Estimation:
4 Allocate ¢ workers to each task in T,,;, and get their answers
5 Estimate df, of, 3{,¢],1 < j <n,1 <i < using EM aggregation
6 Compute the stopping threshold T'hq.
7forj=1,...,ndo
8 | ife!>Thithen T,,=T\{j};
9 end
10 //Convergence:
11 while (B > 0) && (T, # 0) do
12 q=q+1;1 = |Tou|
13 Allocate af, ..., aj workers to tasks ¢, . . .t, based on difficulty.
14 Get the corresponding answers by all the newly allocated workers.
15 Estimate df, of, 5/, ¢} using aggregation model.
16 | B=B— > af
i€1.Touil

17 Compute the stopping threshold T'h4
18 for;=1,...,ndo

19 ‘ if é;l- >Thithen T, =T, \ {j};
20 end
21 end

difficulty of each task as well as the expertise of each worker. Considering this as an
initial round ¢ = 0, we let d} denote the initially estimated difficulty of each task j, o7, 57
denote the expertise of each worker and y? denote the aggregated answer at round
g = 0. Note that if the difficulty of some tasks is available a priori and is provided by
the client, we may skip the estimation step. However, in general, clients do not possess
such information and this initial step is crucial in the estimation of parameters. This is
especially true when clients needs are to execute huge batches of tasks: attaching a
prior difficulty with each task would be as costly as executing the tasks. After this initial
estimation, one can already compute 7'h° 