
HAL Id: tel-03715686
https://theses.hal.science/tel-03715686v2

Submitted on 6 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Data centric workflows for crowdsourcing application
Rituraj Singh

To cite this version:
Rituraj Singh. Data centric workflows for crowdsourcing application. Formal Languages and Au-
tomata Theory [cs.FL]. Université Rennes 1, 2021. English. �NNT : 2021REN1S042�. �tel-03715686v2�

https://theses.hal.science/tel-03715686v2
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE

L’UNIVERSITE DE RENNES 1

Ecole Doctorale N°601
Mathèmatique et Sciences et Technologies
de l’Information et de la Communication
Spécialité : Informatique

Par

« Rituraj SINGH »
« Data Centric Workflows for Crowdsourcing Application »

Thèse présentée et soutenue à RENNES, le 07-05-2021
Unité de recherche : INRIA, IRISA (UMR 6074), Rennes – Bretagne Atlantique

Rapporteurs avant soutenance :
Salima BENBERNOU Professeur, HdR Université Paris Descartes
Farouk TOUMANI Professeur, HdR Blaise Pascale University

Composition du jury :

Président : Stefan HAAR Directeur de recherche INRIA Paris – Saclay
Examinateurs : Albert BENVENISTE Directeur de recherche INRIA Rennes – Bretagne Atlantique

Marco MONTALI Associate professor Free University of BozenBolzano

Dir. de thèse : Loïc HÉLOUËT Chargé de recherche INRIA Rennes – Bretagne Atlantique

Co-encadrant : Zoltán MIKLÓS Maître de conférences l’Université de Rennes

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my supervisors Loïc Hélouët and Zoltán
Miklós for being the ideal supervisor a doctoral student can hope for. Loïc is absolutely
brilliant with his astute logical thinking with precise insights and Zoltán’s ability to give
crisp feedback with his razor-sharp intellect is unmatched. They allowed me absolute
freedom and encouraged me to explore new ideas, provided tools and methodologies
to perform research and actively sought out to listen to my half baked rumbling ideas.
I remember my first day when Loïc told me whenever I want, I can come and knock
on his office and shamelessly I knocked on his office so many times that I even cannot
keep track of it. It was very kind of Loïc to keep the doors always open and available.
Thank you, Zoltán for bearing me in your office for three years- from asking lame ques-
tions anytime to whiteboard discussions. I will miss sharing the office with you. Apart
from being academic sound, they are very nice human being. From my initial days in
France, they helped in every possible way, ranging from my residence permit to univer-
sity forms, reviewing and teaching, all the way to taking care of defence. I am indebted
for the kind advice forever that I received in the last three and half years and I’m sure I
have yet to learn so much more from them.

Next, my thanks go to the members of the defense jury for the thesis who did me
the honour of agreeing to review it: Salima Benbernou and Farouk Toumani for their
reports and relevant feedback, Stefan Haar, Albert Benveniste and Marco Montali for
kindly evaluating this work along with their support during the last few months. I would
also like to thank my CSID members Emmanuelle Anceaume and Matthias Weidlich
for yearly progress review and evaluations.

I would like to express my sincere gratitude to David Gross-Amblard for his kind
support and help. David is quite instrumental in the implementation and coordination
of the HEADWORK project. Apart from that from the beginning, David helped me a lot
to integrate me with the DRUID team - Thank you! I will always remember and cherish
the time spent with David - from project to development meetings, from lunch talks to
movies. I would also like to express my sincere thanks to Pierre Bourhis for his help in
proofs and collaboration.

i

I was fortunate enough that during my PhD days, I was part of the DRUID and
SUMO team, with such a nice bunch of friendly researchers. Both team members are
very friendly and cooperative. I will forever cosset the moments from team lunch to the
green seminar. To single out, I will miss talking with Tristan Allard, Mickaël Foursov,
Arnaud Martin, Nathalie Bertrand, Ocan Sankur, Hervé Marchand, Thierry Jéron, Abd-
El-Karim Kecir, Adrian Aubel, Ian Jeantet, Joris Duguépéroux and Tompoarinaina An-
driamilanto (Napoun). Especially, I will miss coffee breaks with Ian and our long talks
on several contemporary topics.

This academic pursuit will be incomplete without taking the names of friends who
were always there in my ups and downs. I would like to thank my buddies- Arif, Jayabrata,
Suman, Neetu, Anirban, Arun, Soumen, Arpan, Ayan, Subhodeep, Subarna, Shabina
and Pooja that I met in Rennes and in a short time they became an indispensable part
of my life. Thank you for making it happening in Rennes. I would like to thank my close-
knit group of IIT Patna friends- Subho, Debapriya, Ritesh, Nilesh, and Sudipta. I would
also like to thank my amazing friend- Pratyusha, Chetanya, Ved Prakash, Vikas - many
thanks, guys! I would also like to thank my bunch of school friends- Himanshu, Anirudh,
Jainath, Nitesh, Parimal and Ved who always made me feel at home even when I was
thousands of miles away. You all are amazing guys and much love to you all.

Finally and most importantly, my heartfelt gratitude to my parents- Ranjit and Rani
who is the sole source of energy behind everything in my life. My father, himself an
academician is my inspiration for pursuing my doctoral studies. My mother unbounded
love and sacrifice cannot be described in words. I would also like to thank my brother
Keertiraj and cousins Abhishek, Anamika and Poornima for their boundless support
and care.

I would like to close this section by thanking all the institutions and agencies that
made the realization of this work, namely: Agence nationale de la recherche (ANR),
HEADWORK project (ANR-16-CE23-0015) 1, Wirk 2, Muséum national d’Histoire naturelle-
participatory science project SPIPOLL 3, the University of Rennes I (UR1), Institut na-
tional de recherche en sciences et technologies du numérique (INRIA) and Institut de
recherche en informatique et systèmes aléatoires (IRISA).

1. http://headwork.gforge.inria.fr/
2. https://www.wirk.io/
3. https://www.spipoll.org/

ii

RÉSUMÉ

Mots-clés: Crowdsourcing, workflow centrés sur les données, assurance de la qual-
ité

Introduction

Avec la génération exponentielle de nouvelles données, les organisations sont con-
frontées à une surcharge d’informations pour gérer les données, concevoir des al-
gorithmes et extraire des connaissances. La plupart des données produites sont non
structurées et se composent d’images, de vidéos et de textes en langage naturel. Elles
doivent être intégrées, traitées, stockées, indexées, exploitées, suivies et rapportées
pour répondre aux besoins d’une organisation sur des marchés concurrentiels con-
scients des données. Bien que l’organisation s’appuie sur des mécanismes automa-
tisés alimentés par des algorithmes de gestion de données et d’intelligence artificielle,
l’automatisation complète est encore loin d’être acquise. En outre, certaines tâches
sont mieux exécutées par des humains, d’autres sont centrées sur l’homme (par ex-
emple, les tâches de sondage, la collecte de données, etc.). Dans ces cas, l’homme
peut jouer un rôle clé dans l’analyse des données, ce qui nécessite une intelligence
naturelle.

Les humains sont capables de comprendre les données sous toutes leurs formes
- texte, image et vidéo. L’accès généralisé à l’internet a ouvert la voie à l’utilisation de
la sagesse de la foule pour traiter les données. Le crowdsourcing est apparu comme
un nouveau paradigme majeur pour résoudre les tâches qui requièrent l’intelligence
humaine et qui sont difficiles à résoudre par des machines. Par exemple, les tâches
de résolution d’entités, de reconnaissance d’images, d’analyse des sentiments peuvent
être mieux exécutées en utilisant des acteurs humains. Des plateformes commerciales
comme Amazon Mechanical Turk (AMT), Crowdflower, Foule Factory, etc. offrent un
moyen facile d’engager des internautes et de les récompenser.

En général, toutes les plates-formes de crowdsourcing suivent le même workflow
d’exécution. Un client a une tâche et est prêt à l’exécuter sur une plate-forme de crowd-

iii

sourcing. Le client soumet la tâche à la plate-forme. La plate-forme de crowdsourcing
attribue ensuite la tâche à plusieurs travailleurs. Les travailleurs exécutent la tâche en
utilisant leur expertise et leurs convictions, puis renvoient les résultats à la plate-forme.
La plate-forme regroupe, traite les résultats et, en retour, les travailleurs reçoivent unè
rècompense. Après le traitement, les résultats sont renvoyés au client par la plate-
forme. Le crowdsourcing est utilisé dans divers domaines comme l’intelligence artifi-
cielle pour recueillir des données d’entrainement, le traitement de texte, les enquêtes,
le marketing en ligne, etc.

Problèmes et objectif de la thèse

La plupart des plateformes de crowdsourcing actuelles telles que l’AMT permettent
la réalisation d’un large éventail de tâches. Les tâches considérées sont principale-
ment des micro-tâches. Les micro-tâches sont des tâches de petite taille, rapides et
indépendantes qui nécessitent peu de temps de réalisation (tagger une image, répon-
dre à une simple question booléenne, etc.). Cependant, dans la vie réelle, les tâches
sont souvent complexes et nécessitent plusieurs niveaux d’expertise. Considérons
une tâche complexe: Acquérir des images d’insectes, juger de la qualité de l’image,
annoter l’image de haute qualité en utilisant une taxonomie prédéfinie, puis rédiger
une brève description pour chaque image. Ces tâches complexes sont un véritable
défi. Tout d’abord, un modèle permettant de définir une tâche complexe en termes
d’orchestration de tâches plus petites est nécessaire. Il demande de spécifier la tâche
ainsi que d’orchestrer sa réalisation. L’orchestration n’est pas seulement une ques-
tion d’ordonnancement des micro-tâches : Les données doivent être transmises d’une
micro-tâche aux suivantes. De plus, l’ensemble du processus d’exécution doit se ter-
miner par un ensemble correct de résultats. Les réponses fournies par les foules sont
subjectives et sujettes à erreur. Pour atténuer le problème et maximiser l’exactitude
des résultats, les tâches sont généralement réalisées par plusieurs personnes. C’est
pourquoi les réponses provenant de différentes sources doivent être agrégées. En
outre, une tâche complexe est assortie d’un budget prédéfini qui permet d’engager
des travailleurs et de les récompenser pour la réalisation de la tâche. Certaines tâches
peuvent nécessiter quelques réponses pour parvenir à un accord, tandis que d’autres
tâches complexes (par exemple, les tâches demandant des opinions ou utilisant les
croyances du travailleur) peuvent nécessiter plus de réponses pour construire un résul-

iv

tat précis. Il faut un mécanisme permettant de dépenser le budget de manière optimale
et de trouver un compromis entre le coût et la précision. Par conséquent, la complexité
du déploiement de la tâche complexe ainsi que l’optimisation du coût et de la précision
sont en corrélation de manière complexe, ce qui rend difficile l’optimisation des com-
promis entre eux lors du traitement des données et de la conception d’un algorithme.

L’objectif de la thèse est de définir des techniques permettant de déployer des ap-
plications complexes en plus des plateformes de crowdsourcing conventionnelles et
de fournir des algorithmes centrés sur les données optimisant le coût et la précision.
Nous relevons ces défis en définissant d’abord des modèles formels pour des workflow
complexes et en fournissant ensuite des modèles probabilistes pour gérer le compro-
mis entre le coût et la précision. Nous fournissons également un outil permettant de
vérifier les propriétés de terminaison et d’exactitude des workflow complexes.

Modèle pour les workflow complexes

Outre les simples tâches de renseignement humain telles que l’étiquetage des
images, l’analyse des sentiments, les plateformes de crowdsourcing ont la capacité
de réaliser des tâches plus complexes. L’étape suivante du crowdsourcing consiste à
concevoir des processus complexes en s’appuyant sur les crowds existants. En effet,
de nombreux projets, et en particulier les workflows scientifiques, prennent la forme
d’orchestrations de tâches composites de haut niveau. Chaque tâche de haut niveau
peut être considérée individuellement comme une tâche de collecte de données, ou
comme le traitement d’un grand ensemble de données, construit comme l’union des ré-
sultats de micro-tâches faciles indépendantes. Toutefois, la coordination de ces tâches
de haut niveau pour atteindre l’objectif final nécessite des processus plus évolués. On
peut facilement rencontrer des situations dans lesquelles le résultat d’une tâche de
haut niveau sert d’entrée pour l’étape suivante du processus global : par exemple, on
peut vouloir retirer d’un ensemble de données des images de mauvaise qualité avant
de demander aux utilisateurs de les annoter. De même, certaines situations permet-
tent un traitement parallèle de l’ensemble de données suivi d’une fusion des résultats
obtenus. Un exemple typique est la validation croisée des réponses renvoyées par
différents travailleurs du crowd.

De nombreux projets ne peuvent être décrits comme des collections de microtâches
répétitives et indépendantes : ils nécessitent des compétences spécifiques et une col-

v

laboration entre les participants. Nous appelons de tels projets “complex tasks”. La
forme typique des tâches complexes est une orchestration de phases de haut niveau.
Chacune de ces phases requiert des compétences spécifiques, peut être considérée à
son niveau comme un nouvel objectif en soi et peut être décomposée en chorégraphies
plus fines, jusqu’au niveau de l’assemblage de micro-tâches. Le déroulement de ces
processus est donc dynamique et doit tenir compte des compétences des travailleurs,
de leur disponibilité et des données de sortie produites, mais aussi de leurs connais-
sances sur les processus eux-mêmes. Le premier défi consiste à combler l’écart entre
un processus de haut niveau qu’un demandeur souhaite réaliser et sa mise en œuvre
en termes de composition de micro-tâches. Passer d’un niveau de description à l’autre
n’est pas facile, et nous préconisons l’utilisation de l’expertise de la foule pour un tel
raffinement. Cela peut être réalisé avec des réponses d’ordre supérieur, permettant à
un travailleur bien informé de renvoyer une orchestration de tâches plus simples au
lieu d’une réponse nette à immédiate question.

La première contribution de la thèse est un modèle de workflow centré sur les don-
nées, appelé workflow complexe, pour spécifier, vérifier et déployer des tâches com-
plexes sur une plate-forme de crowdsourcing existante. Le modèle fournit des con-
structions de haut niveau qui permettent la conception de tâches complexes, décrites
comme une orchestration d’un ensemble de tâches simples, et gère en outre les com-
pétences des travailleurs, la dépendance aux données et les contraintes liées aux
tâches. Il permet l’exécution de tâches, qui sont soit des tâches automatisées qui trans-
forment des ensembles de données, soit des tâches réalisées par un travailleur. En
outre, les travailleurs peuvent proposer de raffiner une tâche complexe qui semble trop
complexe pour être réalisée par un seul travailleur de la foule. Ce raffinement est spé-
cifié comme des actions d’ordre supérieur qui permettent de remplacer une tâche par
un workflow fini. Nous avons défini la syntaxe et la sémantique du modèle. Les tâches
sont classées en trois catégories : les tâches atomiques (peuvent être réalisées en une
seule étape par le travailleur), les tâches complexes (doivent être décomposées en une
orchestration de tâches plus petites) et les tâches automatisées (tâches réalisables par
la machine). Un workflow complexe est étiqueté comme un graphe acyclique dirigé où
chaque nœud est mis en correspondance avec une tâche et les bords représentent la
relation de priorité sur l’exécution des tâches. Nous fournissons ensuite quatre règles
sémantiques qui servent de principe directeur pour le workflow. Les règles séman-
tiques définissent : l’attribution de tâches à des travailleurs libres, l’exécution d’une

vi

tâche atomique par un travailleur, l’exécution d’une tâche automatisée, et formalise le
raffinement. Le raffinement d’un nœud marqué à une tâche complexe par un travailleur
remplace le nœud par un nouveau workflow qui contient un ensemble de tâches rem-
plissant de manière composite l’objectif du nœud raffiné. L’exécution d’un workflow
complexe consiste en l’application de tâches selon l’ordre prescrit par le workflow. Les
tâches prennent en entrée les ensembles de données produits par leur prédécesseur
dans le workflow, et produisent de nouveaux ensembles de données, ou affinent le
workflow actuel.

Décidabilité

Un workflow complexe est défini par un ensemble de règles sémantiques pour ré-
partir les travailleurs, orchestrer et exécuter les tâches. Cependant, un workflow peut
ne jamais atteindre une configuration finale. Cela peut être dû à la saisie de don-
nées particulières par les travailleurs qui ne peuvent pas être traitées correctement
par le workflow, ou à une réécriture infinie apparaissant pendant l’exécution. Dans de
tels cas, le workflow peut se trouver dans une impasse. Cette impasse bloque le flux
d’exécution du workflow et empêche d’atteindre l’objectif final. Même lorsqu’un work-
flow termine toujours, cette propriété seule ne suffit pas à répondre à l’exigence du
client. Par exemple, un workflow W peut se terminer, mais avec un mauvais ensemble
de résultats, c’est-à-dire des résultats qui ne sont pas conformes aux exigences du
client. Dans ce cas, la sortie retournée n’est d’aucune utilité pour le client. Il est donc
important de garantir l’exactitude du workflow en même temps que sa terminaison.

Nous examinons les propriétés formelles du modèle, en commençant par la ques-
tion de la terminaison: Étant donné un workflow complexe, un ensemble de travailleurs
avec leurs profils et les transformations de données sous-jacentes, un workflow se
termine-t-il pour au moins une seule exécution (terminaison existentielle) et pour toutes
les exécutions d’un workflow (terminaison universelle) ? Nous avons établi que la termi-
naison existentielle est en général indécidable en raison de la partie contrôle du work-
flow (les workflow complexes peuvent simuler deux contre-machines). D’autre part,
la terminaison universelle est décidable, et nous avons présenté un sous-ensemble
intéressant du modèle pour lequel la terminaison existentielle est décidable. Plus pré-
cisément, nous limitons le nombre de raffinements des tâches qui peuvent se produire
pendant l’exécution d’un workflow complexe et supposons que le workflow n’a pas

vii

de réécriture récursive des tâches. Ensuite, la terminaison se résume à la réalisation
de dépendances de données dans un ensemble fini d’exécutions du workflow. Nous
donnons un algorithme pour vérifier la terminaison d’un workflow complexe avec une
récursion limitée basée sur une dérivation de plus faible précondition. Les plus faibles
préconditions ont été introduites dans [Dij75] et constituent un moyen formel de prou-
ver l’exactitude d’un programme. Nous montrons que des fragments de FO sont fermés
sous le calcul de précondition. Ensuite, nous examinons la question de la correction
d’un workflow, qui est satisfaite si un worklow se termine et que le résultat produit
répond aux contraintes des données fournies par le client. Encore une fois, si les con-
traintes de sortie sont exprimées en fragments de FO décidables, correctin d’un work-
flow complexe est décidable. Nous présentons également l’analyse de la complexité
de la terminaison et de la correction du workflow. Nous constatons que la complex-
ité en (co)-2EXPTIME pour les fragments ayant la complexité la plus faible provient
principalement de la taille exponentielle de la formule décrivant les préconditions qui
doivent être satisfaites dans la configuration initiale. Cela peut être considéré comme
une complexité intraitable, mais on peut cependant s’attendre à ce que la récursion
dans les workflows complexes soit bornée (avec une borne assez petite) ce qui devrait
rendre les analyses de terminaison et correction faisables.

Assurance Qualité pour les Tâches Atomiques

Le modèle de workflow complexe proposé permet de spécifier des tâches com-
plexes avec des workflow et peut vérifier l’exactitude, la terminaison sur un sous-
ensemble raisonnable du modèle, principalement des spécifications non récursives.
Un workflow fournit un moyen efficace de synchroniser des tâches complexes sous la
forme de différentes phases pour atteindre les objectifs d’un client. Ils définissent la
manière dont les tâches sont décomposées, ordonnées et exécutées. Cependant, ils
ne fournissent pas de mécanismes pour garantir la qualité des données produites par
le workflow. Le processus de vérification ne permet pas non plus de prendre en compte
le coût d’un workflow. En général, les tâches de la plate-forme de crowdsourcing sont
assorties d’un budget fixe fourni par le client. Nous considérons d’abord le coût et la
qualité des données produites pour une seul tache atomique consistant à analyser des
données dans un dataset, et où chaque enregistrement peut être étudié par plusieurs
contributeurs.

viii

Dans le crowdsourcing, les travailleurs sont très hétérogènes : ils ont des origines
différentes, un domaine d’expertise. Comme nous ne pouvons pas faire confiance à
un seul contributeur et pour faire face à cette hétérogénéité, les tâches sont souvent
reproduites. Un problème fondamental consiste à déduire une réponse correcte à partir
de l’ensemble des résultats renvoyés. Un autre défi est d’obtenir une réponse fiable
à un coût raisonnable. Un budget illimité permet de disposer d’un grand nombre de
travailleurs pour chaque tâche, mais un budget limité oblige à utiliser au mieux les
ressources.

Nous proposons une technique d’agrégation pour les plateformes de crowdsourc-
ing. Nous considérons les deux facteurs clés que sont la difficulté de la tâche et
l’expertise des travailleurs, exprimés en termes de rappel et de spécificité pour mod-
éliser la réponse à une tâche produite par un travailleur. L’agrégation est basée sur
l’algorithme d’Expectation Maximization [DLR77] et estime conjointement les réponses,
la difficulté des tâches et l’expertise des travailleurs. Parallèlement, nous proposons
également CrowdInc, une technique d’étiquetage itérative qui optimise le coût global
de la collecte des réponses et de leur agrégation. L’algorithme met en œuvre une poli-
tique de répartition des travailleurs qui prend des décisions à partir d’un seuil de qualité
dynamique calculé à chaque cycle, ce qui permet d’obtenir un bon compromis entre
le coût et la précision. Nous évaluons l’algorithme sur des ensembles de données
réels pour valider notre approche. Nous montrons sur plusieurs points de référence
que CrowdInc atteint une bonne précision, réduit les coûts, et nous comparons ses
performances aux solutions existantes.

Assurance Qualité pour les Workflow Complexes

Après avoir défini un algorithmeun algorithme permettant d’optimiser le coût et la
précision pour une seule phase, nous étendons l’algorithme de compromis entre le
coût et la précision conçu au chapitre précédent aux workflows complexes. Une tâche
dans un workflow peut être réalisée de deux manières, à savoir l’exécution synchrone
(une tâche traite l’intégralité de ses données d’entrée avant d’envoyer le résultat à la
suivante) et asynchrone (une tâche envoie à la suivante des données dès qu’elles
sont prêtes). Nous ajoutons la notion de phase à notre modèle et nous en revoyons
la sémantique pour tenir compte de la réplication des tâches et de l’agrégation des
réponses. Nous étudions ensuite les défis posés par ces deux types d’exécution. Nous

ix

utilisons l’algorithme d’agrégation pour une tâche atomique dans le cadre d’un work-
flow. Nous montrons que différents mécanismes de seuil sont nécessaires pour les
deux types d’exécution. L’exécution synchrone nécessite une politique de seuil locale
qui dérive un seuil par rapport aux tâches et au budget alloué à une phase. En re-
vanche, l’exécution asynchrone nécessite une politique de seuil globale qui détermine
le seuil par rapport à toutes les tâches des différentes phases et au budget total. En-
fin, nous comparons nos résultats avec les approches classiques de crowdsourcing et
nous constatons que la technique proposée permet d’obtenir au moins la même préci-
sion qu’une technique utilisant la majorité en mode synchrone avec un budget réduit.
Dans la plupart des contextes, cependant, l’approche proposée permet d’économiser
une partie du budget. Nous présentons l’analyse des coûts et de la précision et les
résultats dans différentes configurations.

Platform

La dernière contribution de cette thèse est un outil appelé Crowdplex qui implé-
mente les algorithmes d’analyse de terminaison et de correction présentés dans les
chapitres précédents

x

TABLE OF CONTENTS

Acknowledgements i

Résumé iii

I Prologue 1

1 Introduction 2
1.1 Thesis Overview and Contribution . 5
1.2 Outline . 9

2 State of the Art 11
2.1 Crowdsourcing Marketplaces . 11
2.2 Crowdsourcing Space . 14
2.3 Orchestration of Tasks and Languages 17

2.3.1 Process Centric Approaches . 18
2.3.2 Artifact Centric Approaches . 27

2.4 Data . 28
2.4.1 Reasoning on Data . 30
2.4.2 Datalog . 35
2.4.3 SQL . 37
2.4.4 Data Centric Models . 40
2.4.5 Weakest Precondition . 42

2.5 Quality Assurance . 44
2.5.1 Aggregation Techniques . 45
2.5.2 Budget optimization . 50

II Data Centric Workflows for Crowdsourcing 55

3 Complex Workflows for Crowdsourcing 56

xi

TABLE OF CONTENTS

3.1 Higher Order Example . 57
3.1.1 A simple example: the actor popularity poll 58
3.1.2 A real field example: the SPIPOLL initiative 59

3.2 Preliminaries . 61
3.3 Workflow Formalization . 64
3.4 Operational Semantics . 67

3.4.1 Data operations . 67
3.4.2 Operational Semantics . 70

3.5 Conclusion . 77

4 Decidability 79
4.1 Effective Computation of Weakest Preconditions 80

4.1.1 Closure of FO classes . 82
4.2 Termination of Complex Workflows . 86

4.2.1 Symbolic Execution Tree . 96
4.2.2 Termination with a guaranteed bound 97

4.3 Correctness of Complex Workflows . 101
4.4 Use Case . 107

4.4.1 Formulation of Symbolic Execution Tree 108
4.4.2 Algorithm to check termination 110

4.5 Platform . 113
4.6 Conclusion . 114

III Quality Assurance 117

5 Quality Assurance for Atomic Tasks 118
5.1 Basic ingredients of aggregation . 121

5.1.1 Probability theory . 121
5.1.2 Factors influencing efficiency of crowdsourcing 122
5.1.3 Expectation Maximization . 124

5.2 The Aggregation model . 125
5.2.1 Aggregating Answers . 128

5.3 Cost Model . 130
5.3.1 Confidence and Threshold . 131

xii

TABLE OF CONTENTS

5.3.2 CrowdInc: An algorithm to optimize costs 132
5.4 Experiments . 135
5.5 Conclusion . 139

6 Quality Assurance for Complex Workflows 141
6.1 Introduction . 141
6.2 Complex workflow with aggregation . 143
6.3 Aggregation Model . 153
6.4 Cost Model for Workflow . 153
6.5 Experiments and results . 163
6.6 Conclusion . 171

IV Closure 173

7 Conclusion 174
7.1 Contribution Summary . 174
7.2 Perspectives . 175

7.2.1 Short Term Perspectives . 176
7.2.2 Long Term Perspectives . 178

Bibliography 183

Appendix 202
A.1 Proof of Theorem 1 . 202
A.2 Proof of Theorem 2 . 206

xiii

LIST OF FIGURES

1.1 Crowdsourcing mechanism. 3

2.1 Screenshot from Amazon Mechanical Turk. 12

2.2 Screenshot from Amazon Mechanical Turk task list. The list presents a
set of tasks, expiration date and intended reward. 13

2.3 Screenshot from FoldIt interface. 14

2.4 Crowdforge Framework: Splitting up and recombining complex human
computation tasks based on map-reduce model, extracted from [Kit+11]. 15

2.5 BMPN Model: Use case ’Job Posting’, extracted from [All16]. 18

2.6 A classical Dining philosophers problem represened as Petri Net, ex-
tracted from [Nac]. 21

2.7 Example of workflow net for processing complain, extracted from [VDAVHH04]. 25

2.8 Business artifacts represented as ER diagram specifying the vendor
tasks, extracted from [BHS09]. 28

2.9 Expectation Maximization algorithm general workflow. 48

3.1 A simple actor popularity poll. 58

3.2 A profile for refinement of task tlike. 63

3.3 A refinement of node n1, replaced by the profile for task tlike in Figure 3.2. 66

3.4 Record to record arithmetic operations. 69

3.5 Union of datasets. 70

3.6 Application of semantic rule R1. 72

3.7 Application of semantic rule R2. 73

3.8 Application of semantic rule R3. 74

3.9 Application of semantic rule R4. 75

xiv

LIST OF FIGURES

3.10 Complex workflow execution. C0 represents the initial configuration with
data Din allocated to node nint. C1 is the successor of C0: worker u1 is
allocated to node n2, and t2 = λ(n2) is a complex task. C3 depicts the
configuration after refinement of node n2 by a new workflow Wt2 (shown
in the grey rectangle). 77

4.1 Join operation Example. 85

4.2 A complex workflow. 93

4.3 Rewriting graph for the complex workflow shown in Figure 4.2. 93

4.4 An example showing ψAE constraints. 102

4.5 An example showing ψEA constraints. 102

4.6 Different scenario of a terminated run: with and without correct set of
output. 103

4.7 Original workflow W (left). The new workflow is represented as W ′ after
refinement of node n1 in worklow W (right). 108

4.8 Symbolic Execution Tree. 109

5.1 Generating function. 127

5.2 The threshold values based on current estimate on consumed budget
and fraction of task remaining at the beginning of a round. 132

5.3 A possible state for algorithm 2. 134

5.4 Comparison of cost vs. Accuracy. 138

6.1 A workflow in a smart city. 144

6.2 Exclusive fork. 146

6.3 Non-exclusive fork. 147

6.4 Synchronous execution. 147

6.5 Asynchronous example. 148

6.6 Join example. 148

6.7 Union example. 149

6.8 Corresponding phase example. 156

6.9 Workflow W with non-exclusive fork phase. 158

6.10 Workflow W ′ with a new phase p′x replacing the phases p2, p3 of the
workflow W . 158

6.11 Workflows with different orchestrations. 164

xv

LIST OF FIGURES

6.12 Distributions of workers accuracy(Pool of 50 workers). 165
6.13 Accuracy and cost comparison on low expertise. 167
6.14 Accuracy and cost comparison on Workflow 1. 168
6.15 Accuracy and cost comparison on Workflow 2. 168
6.16 Accuracy and cost comparison on Workflow 3. 169
6.17 Accuracy and cost comparison on Workflow 4. 169
6.18 Accuracy and cost comparison on Workflow 5. 170

A.1 Encoding of inc(q, cx, q′) instruction. 203
A.2 Encoding of dec(q, cx, q′, q′′) instruction. 203
A.3 Encoding of Non-zero test followed by decrement. 204
A.4 Encoding of Zero test followed by state change. 205

xvi

LIST OF TABLES

2.1 An example of CINEMA database, extracted from [AHV95]. 30
2.2 JOIN query result. 38

4.1 Complexity of Termination (EXPT stands for EXPTIME). 106
4.2 Complexity of Correctness (EXPT stands for EXPTIME). 106

5.1 Datasets description. 135
5.2 Comparison of EM+aggregation (with Recall, specificity & task difficulty)

w.r.t MV, D&S, GLAD, PMCRH, LFC, ZenCrowd on Duck Identification
dataset . 136

5.3 Comparison of EM+aggregation (with Recall, specificity & task difficulty)
w.r.t MV, D&S, GLAD, PMCRH, LFC, ZenCrowd on Product Identification
dataset . 136

5.4 Comparison of EM+aggregation (with Recall, specificity & task difficulty)
w.r.t MV, D&S, GLAD, PMCRH, LFC, ZenCrowd on Sentiment Popularity
dataset . 137

5.5 Running time(in seconds) of CrowdInc, MV and Static EM. 137

6.1 Evaluation Parameters. 166

xvii

PART I

Prologue

1

CHAPTER 1

INTRODUCTION

With the exponential generation of new data, organizations struggle with the in-
formation overload to manage data, design algorithms, and to extract knowledge. Al-
most 90% of the data that are present today are unstructured. It consists of images,
videos, and natural language texts. It needs to be integrated, processed, stored, in-
dexed, mined, tracked, and reported to meet the business needs of an organization
in data-aware competitive markets. While the organizations rely on automated mech-
anisms powered by data management and artificial intelligence algorithms, complete
automation is still decades far away. Also, some tasks are better performed by humans
and are human-centric (for example, polling tasks, data collection, etc.). In these cases,
humans can play a key role to analyze the data which requires natural intelligence.

Humans are good at understanding data in all forms text, image, and video, and can
process, analyze data that are still hard for computers to apprehend. The widespread
availability of the internet has paved the way to use the wisdom of the crowd to process
the data. The term crowdsourcing is made of two words crowd and sourcing and the
idea is to outsource the tasks to the human crowd to obtain data, ideas, and answers.
A definition for crowdsourcing was proposed in [EAGLDG12].

Definition 1 (Crowdsourcing). Crowdsourcing is a type of participative online activity
in which an individual, an institution, a nonprofit organization, or company proposes to
a group of individuals of varying knowledge, heterogeneity, and number, via a flexible
open call, the voluntary undertaking of a task. The undertaking of the task of variable
complexity and modularity and in which the crowd should participate, bringing their
work, money, knowledge **[and/or]** experience, always entails mutual benefit. The
user will receive the satisfaction of a given type of need, be it economic, social recog-
nition, self-esteem, or the development of individual skills, while the crowdsourcer will
obtain and use to their advantage that which the user has brought to the venture, whose
form will depend on the type of activity undertaken.

2

Chapter 1. Introduction

Crowdsourcing platforms such as Amazon Mechanical Turk (AMT) [Amta] is one of
the most popular online marketplaces which promises to have millions of workers; other
platforms include wirk [Wir], Figure Eight [Cro], 99designs [99d], Clickworker [Cli], etc.
The workers receive incentives (money, goodies, motivation, ...) to realize the tasks at
crowdsourcing platforms [Kuc+16]. The global crowdsourcing market was valued US $
9, 519.53 million in 2018 and is expected to reach US $ 154, 835.74 million by 2027
and is growing at an average rate of 36.5% [Glo]. The availability of fast internet ser-
vices has pushed the boundaries of these platforms to hire cheap and reliable workers
throughout the world. The rapid growth of crowdsourcing introduces economical, legal,
philosophical, and ethical issues related to the type of services, the nature of the task,
the worker’s activity, working environment, worker pay schemes, etc. [Sch13]. We do
not take a position on ethical aspects. This thesis only concerns the technical aspects
of crowdsourcing.

The crowdsourcing mechanism is simple and is shown in Figure 1.1. A client has a
task and is willing to execute it at a crowdsourcing platform. The client submits the task
to the platform. Then the crowdsourcing platform allocates the task to several workers.
The workers execute the task using their expertise and beliefs and then return the
results to the platform. The platform aggregates, processes the results, and in return
workers receive the incentives. After the processing, the results are returned to the
client by the platform.

Figure 1.1 – Crowdsourcing mechanism.

3

Chapter 1. Introduction

Crowdsourcing has been applied in various domains. We list below several applica-
tions:

— AI - Training Data: Crowd workers are asked to tag images, videos with a partic-
ular label. The other tasks include speech recognition, audio tagging, and video
analysis [HZS17; Esk+13].

— Text Processing: Humans expertise is used for entity resolution [BT06], senti-
ment analysis [Liu12], spam identification, product description, glossary & dic-
tionaries, company profiles, blog articles and translations [KWD10].

— Surveys: Survey of a particular topic are easier to realize via crowdsourcing plat-
forms which provide a wide variance of crowd workers within a few clicks [Beh+11].

— Search: Most search engine Google [Goo], Bing [Bin], Yahoo [Yah] require hu-
man workers to validate and improve the search results [Mor19; LGC15].

— Industry Solutions: The crowdsourcing platforms are used for online marketing,
E-commerce, and advertisements [PCZ15]. For example, crowdsourcing is used
to analyze the reviews which are hard for computers to process [Wu+15].

— Research: Projects such as FoldIt [Fol], a participatory science project where
human workers contribute to solving puzzles of protein unfolding.

— Knowledge platforms: StackExchange [Sta], Quora [Quo] relies on human worker
expertise to build collaborative knowledge intensive platforms.

Most of the current crowdsourcing platforms such as AMT allows the realization of
a large batches of tasks. The task considered are mainly micro-tasks. Micro-tasks are
small, quick, and independent tasks that require a small amount of time to complete
(tagging an image, answering a simple boolean question, etc.). However, in real life,
tasks are often complex and require several different skills of the workers (not only one
as specific to micro-tasks). Consider a complex task: Gather insect images, judge the
image quality, annotate the high-quality image using a pre-defined taxonomy, and then
write a brief description for each image. Such intricate tasks are challenging. First, a
model to define a complex task in terms of orchestrations of smaller tasks is required.
It demands to specify the task as well as to orchestrate its realization. Orchestration is
not only a question of scheduling micro-tasks: The data needs to be forwarded from
one micro-task to the following ones. Also, the whole execution process should termi-
nate with a correct set of outputs. The answers provided by the crowds are subjective
and error-prone. To alleviate the problem and to maximize accuracy, generally, tasks
are realized by several workers. Hence the answers from different sources need to be

4

Chapter 1. Introduction

aggregated. Additionally, a complex task comes with a pre-defined budget that allows
hiring workers and rewarding them for the task realization. Some tasks may require
a few answers to reach an agreement, while other intricate tasks (for instance, tasks
calling for opinions or using worker’s beliefs) may require more answers to forge an
accurate result. It demands some mechanism to spend the budget in an optimized
way enabling a trade-off between cost and accuracy. Hence, the complexity of deploy-
ment of the complex tasks along with the optimization of cost and accuracy correlates
in complex ways. It is hence difficult to optimize the trade-offs between cost and ac-
curacy, and at the same time guarantee progress and termination of a complex task
distributed to crowd.

The objective of the thesis is to define techniques to deploy complex applications on
top of conventional crowdsourcing platforms and to provide data centric algorithms
optimizing cost and accuracy. We address these challenges by first defining formal
models for complex workflows and then providing probabilistic models to handle the
trade-off between cost and accuracy. We also provide a tool to check the termination
and correctness properties of complex workflows.

1.1 Thesis Overview and Contribution

The existing crowdsourcing systems come with limited functionalities. The major
limitation for such a system is the only support for micro-tasks execution. Irrespective
of task intricacies, the crowdsourcing platforms call to shape the tasks as a batch
of micro-tasks. The batches are handled independently with a simple pipeline. Each
micro-task is extracted from the batch, affected to a worker in the crowd. The answer of
the worker is added to an output batch. No information exchange between micro-tasks
can occur in such a setting. One can only work with this kind of task deployment if
tasks are independent work units, i.e. they can be realized in any order, and there is
no data dependency between micro-tasks. However, real-world projects are complex
and need several phases to be realized. One can also notice that many contexts (for
instance text writing applications) call for data exchanges to reach the final objective of
the overall process. Our goal is hence to build a human-powered data-driven system
to realize complex tasks on top of a conventional crowdsourcing system.

5

Chapter 1. Introduction

The first contribution of the thesis is a model to specify and deploy complex tasks
relying on existing crowdsourcing platforms. Complex tasks with pre-defined final ob-
jectives require step-wise processing of tasks in several phases. Each phase has an
individual goal. As for example, a phase goal is to annotate a set of images as clear
or blur while, the next phase considers only the clear images as input from the prede-
cessor phase and is assigned the goal to categorize the image into particular taxon-
omy. The phases may have different prerequisites: some phases may require a general
worker while others may require an expert one. The phases depend on each other and
exchange data. We model complex tasks as workflow orchestrating sub-tasks. The
orchestration as sub-tasks can be realized by workers, i.e., we consider higher-order
answers in which a crowd worker does not realize a task by returning plain answers,
but rather answer by returning a complex orchestration allowing to obtain the expected
answer. We define a model called complex workflows, which is used to orchestrate
different parts of complex tasks. In addition to workflow-based tasks-coordination, we
allow for the definition of worker’s skills, input data (constraints on possible inputs), and
higher-order answers, addressed as rewriting rules.

Orchestrations of complex tasks and higher-order answers come with challenges.
Higher order allows answers of workers defining how to obtain answers rather than
crisp data. Given input data provided by the client, Complex workflow use the knowl-
edge and skills of crowd workers to complete a complex task i.e. realize successive
phases of a complex process, hire workers, collect answers, process data, and return
the final result to client. However, a workflow may never terminate. It can be due to
particular data input that cannot be processed properly by the workers or to infinite
recursive schemes appearing during the execution, to deadlocked situations due to
missing worker competencies. One challenge is to decide whether a complex orches-
tration of tasks always terminates for a particular input dataset, or for all input datasets
that meet some constraints (such as constraint on domains used). In practice, one does
not want wrong data or wrong choices of workers to block a task realization, but this
can nevertheless occur. First the question is whether the orchestration can terminate:
if this is not the case, then the task definition should be considered ill-formed. Second
challenge is to guarantee that the workflow gives correct output at each of the phases
and at the end produces the desired output data as required by the client. We address
the question of existential termination (at least one execution of the workflow produces
a final result) and of universal termination (all executions of the workflow terminate).

6

Chapter 1. Introduction

The second result of this thesis is that existential termination is undecidable in gen-
eral and on the other hand, universal termination is decidable. We then show that, when
restricting the number of refinements of tasks, existential termination becomes decid-
able. Then, termination boils down to the satisfaction of data dependencies between
inputs and outputs of each step in a finite set of runs of the workflow. These dependen-
cies can be expressed in a decidable fragment of first-order (FO) formula. We address
termination as a question of satisfiability of a series of weakest preconditions for a run.
We show that many fragments of FO are closed under the calculus of weakest pre-
condition. This allows for the construction of algorithms to check the realizability of a
particular run from the initial configuration of the workflow to a final successful one. This
algorithm is then used to prove the decidability of universal termination and existential
termination for specifications with bounded recursion. We also consider the question
of correctness that holds if a workflow terminates and the produced output meets con-
straints on data provided by the client. Again, if output constraints are expressed in
decidable fragments FO, correctness is decidable.

Workflow provides an efficient way to synchronize complex tasks in the form of dif-
ferent phases to achieve business goals. Nevertheless, a workflow alone is not enough
to fulfill important non-functional requirements such as the accuracy of the data pro-
duced, and the cost for the realization of the workflow. As a third contribution of the
thesis, we consider a divide and conquer philosophy and focus on a cost and accuracy
trade-off for tasks achieved by replication of a single micro-task. We address trust in
this setting by replicating the considered micro-task as much as needed, i.e. we hire
new workers from the crowd to get new answers, and aggregate the collected answer
as long as a certain confidence level is not reached and as long as the overall bud-
get for this task allows it. To alleviate the problem, we allocate each of the tasks to a
set of workers and the goal is to somehow combine the given answer set to reach a
final consensus. The simplest approach for aggregation is Majority voting. We however
show that majority voting is not a good approach both in terms of cost and accuracy.
Similarly, we show that statically allocating as many workers as allowed by a budget to
tag their subset of record from an input dataset is not a good way to address cost. We
propose an aggregation technique, that considers answers returned by workers, but
also various hidden variables such as task difficulty and workers accuracy. We define
an expectation maximization (EM) based algorithm to derive the value of hidden vari-
ables and compute final aggregated answers with a confidence score. We handle cost

7

Chapter 1. Introduction

by a dynamic allocation policy that hires new workers to tag records with a low con-
fidence score. We demonstrate that the EM aggregation combined with the dynamic
worker allocation algorithm outperforms the existing approaches both in terms of cost
and accuracy.

The fourth contribution of the thesis builds on the algorithm to optimize cost and
accuracy for a single-phase and extends the results to complex workflows. Addressing
cost and accuracy for orchestrations of tasks is more complex than for replication of
a single micro-task. First, there exist two possible approaches to execute a complex
workflow, namely a synchronous approach, and an asynchronous one. In synchronous
execution, after completion of tasks tagged with records appearing in a dataset. (e.g.
after tagging all images provided), all records move to the next phase(s). On the other
hand in asynchronous execution of the workflow, records are forwarded to the next
phase(s) of a workflow as soon as they are considered as processed. We show that
modes of execution require different trade-off mechanisms in terms of cost and accu-
racy. We propose dynamic worker hiring policies that build on the EM algorithm shown
before. This allows for the optimization of cost and accuracy in the context of syn-
chronous and asynchronous workflow realization. We show the pertinence of the pro-
posed algorithms on samples composed of different workflows, pools of workers with
different expertise, and different characteristics of data.

The last contribution of this thesis is a tool to verify the specification of the com-
plex workflow. The tools take as input a specification of workflow in terms of nodes,
tasks, workflow, workers, workers skills, task constraints, and data. The tool derives
the minimum condition required to process the input data at each node and check the
satisfiability of the formulas. The tool checks satisfiability of the weakest preconditions
that are necessary to terminate execution, starting from the final nodes of the workflow,
and ending on the initial node. If all weakest preconditions met when moving backward
from a final node are satisfiable, then the followed path witnesses a terminating run.
We use this technique to prove universal termination and existential termination of non-
recursive specifications.

8

Chapter 1. Introduction

1.2 Outline

The thesis is organized as follows. The state of the art (Chapter 2) introduces the
models and notations needed in the document and presents the works related to the
contents of the thesis. We do a brief survey on crowdsourcing, marketplaces, and cur-
rent mechanisms followed by industry. We then present a detailed study on different
works on the orchestration of tasks and languages; particularly we address process-
centric approaches, artifact-centric approaches, Petri net-based models, active XML,
and UML-based languages. Data is the core of our model. We present different ways
to handle data in the context of our thesis. We recall the basics of first-order logic, dat-
alog, SQL and weakest preconditions. We then survey the literature on cost and quality
trade-offs in crowdsourcing.

Chapter 3 presents the formal semantics of a model designed to specify complex
tasks. We define components for a workflow: client, tasks, skills, task prerequisite, and
data. We then introduce the formal semantics and rules for the workflow. We also intro-
duce higher-order constructs and show on use cases how these higher-order answers
can be used to capture the knowledge of crowd workers.

Chapter 4 addresses the questions of termination and correctness of complex work-
flows. We show that existential termination is undecidable in general and on the other
hand, universal termination is decidable. We also show that by restricting the number
of refinements of tasks, existential termination becomes decidable. This restricts the
workflow to an orchestration of a bounded number of tasks. We give an algorithm to
check termination of a complex workflow with bounded recursion based on the deriva-
tion of the weakest precondition. Next we consider the question of correctness that
holds if a workflow terminates and the produced output meets constraints on data pro-
vided by the client. Again, if output constraints are expressed in decidable fragments
FO, correctness is decidable. We analyze the complexity of decidable termination and
correctness problems of the workflow. We also show a tool named CrowdPlex, de-
signed to check the termination of a complex workflow. We explain the building blocks
used by the tool to check termination.

In Chapter 5, we introduce our cost and accuracy trade-off model for crowdsourcing
of a single task. We first study the aggregation problem: infer the correct final answer
from a given set of answers provided by workers. We consider the two key factors diffi-
culty of a task, and expertise of workers, expressed in terms of recall and specificity to

9

Chapter 1. Introduction

model the task answer-ability by a worker. Aggregation is based on expectation maxi-
mization algorithm which jointly estimates the answers, the difficulty of tasks, and ex-
pertise of workers. We propose an algorithm called CrowdInc, an incremental labeling
technique that optimizes the overall cost to collect answers and aggregate them. The
algorithm implements a worker allocation policy that takes decisions from a dynamic
threshold computed at each round, which helps to achieve a good trade-off between
cost and accuracy. We evaluate the algorithm on real datasets to validate our approach.
We show that our aggregation approach outperforms the existing state-of-the-art tech-
niques. We also show that the incremental crowdsourcing technique achieves the same
accuracy as EM with the static allocation of workers, better accuracy than majority vot-
ing, and in both cases at considerably lower costs.

Chapter 6 extends the algorithm of Chapter 5 to the complex workflow setting. A
task in a workflow can be realized in two ways, i.e. synchronous and asynchronous
execution. We add the notion of phase to our complex workflow model and revisit
its semantics. We then study dynamic worker allocation for synchronous and asyn-
chronous workflows realization. At last, we compare our results with the conventional
crowdsourcing approaches and find the proposed technique achieves at least same ac-
curacy with a reduced budget. We present the cost and accuracy analysis and results
in different configurations.

Finally, we conclude the thesis in Chapter 7 with a summary of achieved results,
discussion, possible improvements and we define future research directions.

10

CHAPTER 2

STATE OF THE ART

We organize the chapter as follows: we first introduce crowdsourcing marketplaces
and challenges in context to the thesis. We then discuss the orchestration of tasks, lan-
guages, and data aspects. In the end, we brief about the cost and quality assurances
in crowdsourcing.

2.1 Crowdsourcing Marketplaces

With the advent of web 2.0, a large number of platforms have emerged in the last
decade that uses the power of the crowd to solve problems. In this thesis, we particu-
larly focus on the platforms which use human as data processors. For example, data
can be a set of images and the task is to annotate each of the images with a tag cho-
sen from a particular taxonomy. Here, human acts as a data processor that takes some
data as input and return the processed output, i.e. tagged data.

There exists numerous crowdsourcing marketplaces where requesters post their
tasks and workers realize tasks in exchange for some incentives. The major platform in-
cludes Amazon Mechanical Turk [Amta], wirk [Wir], Figure Eight [Fig], 99designs [99d]
and Clickworker [Cli]. Consider the most well-known platform, AMT. The platform real-
izes almost five million tasks each year with an incentive between one and ten cents
per task [Ipe10]. Amazon borrows its name from a chess-playing machine named Me-
chanical Turk constructed by Wolfgang von Kempelen in the late 18th century that
toured Europe beating both Napoleon Bonaparte and Benjamin Franklin. The machine
was a hoax and a mechanical illusion that allowed human chess masters to hide inside
to operate the machine. Artificial intelligence promises to solve problems that require
intelligence and natural understanding. However, in present times, such automation is
not possible for all types of tasks and still requires human intelligence. In a similar vein
and perhaps to banter, amazon coined the platform AMT as artificial artificial intelli-

11

Chapter 2. State of the Art

Figure 2.1 – Screenshot from Amazon Mechanical Turk.

gence as a process to outsource some parts of the program to humans. The online
service uses remote human workers to hide behind the machine to help requesters
to realize tasks that are still hard for computers to solve. Most of the workers at AMT
come from the United States and India [Ros+10].

The blueprint and design of each platform vary, but in general, follow similar steps.
Consider the example of AMT. The platform stakeholders are requesters and crowd
workers, as depicted in Figure 2.1. A requester publishes his tasks on the AMT platform
and decides how much to pay to each worker for each assignment. The tasks at AMT
are called Human Intelligence Tasks (HIT) and generally require a very small amount
of time to realize. The minimum fee is $0.01 per assignment. The MTurk platform takes
20% fee on the total reward [Amtb]. A requester may also grant some bonus after the
realization of the task based on the performance of the worker. The tasks are published
on the platform with descriptions as requester name, expiration date, the time allotted,
and rewards as depicted in Figure 2.2. For some of the tasks, the requester can also
require a qualification test. The crowd workers visualize the tasks on the platform and
bid for the tasks. In the end, the workers who realize the task in the given time frame
are awarded incentives and extra bonuses.

Figure Eight (formerly known as Dolores Lab, CrowdFlower) [Cro] is another pop-
ular platform. It comes with a more user-friendly interface, its crowd, and its built-in

12

Chapter 2. State of the Art

Figure 2.2 – Screenshot from Amazon Mechanical Turk task list. The list presents a set
of tasks, expiration date and intended reward.

features. The platform is more focused to provide large volumes of world-class train-
ing data to AI engines. Wirk [Wir], a subsidiary of Foule factory is a french platform
that provides optimized resources, monitor and steering, service audits, workflow de-
sign along a community of 50,000 freelancers. This thesis is realized in the context
of HEADWORK 1 ANR project with active participation and support of the wirk plat-
form. Other platforms such as Freelancer [Fre] and Upwork [Upw] provide an expert
workforce that receives higher incentives.

Apart from commercial crowdsourcing platforms, there exist other academic and
community platforms. FoldIt [Fol], is a popular citizen science experimental research
project developed by the University of Washington. It provides an online puzzle video
game about protein unfolding and has around 240000 registered players. The objective
of the game is to fold the structures of selected proteins as perfectly as possible using
the provided tools as depicted in Figure 2.3. The platform gained its popularity when
a non-expert worker discovered a new protein unfolding and led to several scientific
publications. The paper published in nature [Kha+11; Coo+10] credited FoldIt’s 57000
players that provided useful results that matched or even outperformed algorithmically
computed solutions.

1. This work was supported by the Headwork ANR project (ANR-16-CE23-0015)

13

Chapter 2. State of the Art

Figure 2.3 – Screenshot from FoldIt interface.

2.2 Crowdsourcing Space

Crowdsourcing has increased the number of problems that are solvable in a semi-
automated way, even if they are still inherently hard to solve for a computer, at least in
a foreseeable future. However, there exist several challenges to give its full potential to
crowdsourcing. A crowdsourcing system builds on many paradigms. Trust and manage-
ment of workers directly impact the execution of tasks in crowdsourcing systems. Sev-
eral workers have considered trust in crowdsourcing [Yu+12]. Crowd trust [YWL15] is
a context-aware trust model for worker selection in crowdsourcing environments. Skills
mapping is another paradigm that is widely studied in crowdsourcing and includes tech-
niques such as hierarchical taxonomy-based skill mapping in form of tree [MGAM16],
self-assessment-based worker allocation [Gad+17]. Task design of the crowdsourc-
ing system is another dimension that directly impacts the understanding and execu-
tion of the task [ZLH11; Fin+13; BW18]. Another interesting paradigm is query pro-
cessing. CrowdDB [Fra+11] proposes a query processor which takes human input via
crowdsourcing to process queries that neither search engines nor database system
can answer. A more sophisticated query processer is Deco [Par+12] which proposes
a database system for declarative crowdsourcing. Declarative crowdsourcing hides the
complexities to retrieve the data. The user is only required to submit a SQL-like query

14

Chapter 2. State of the Art

Figure 2.4 – Crowdforge Framework: Splitting up and recombining complex human
computation tasks based on map-reduce model, extracted from [Kit+11].

and the platform compiles the query, generates the execution plan, and gets answers
from the crowd. It relieves the user of the burden of dealing with the crowd and re-
turns data as an output of a submitted SQL-like query. Workers contributing to a task
receive incentives [ZLM14; KSK16; Dan+18]. The more workers contribute to a task,
the more reliable the result. However, as incentives are paid, tasks usually come with a
limited budget, which calls for trade-offs between the cost of a task realization, and the
achieved accuracy [Dan+18]. We discuss in detail the cost-accuracy tradeoff in Sec-
tion 2.5. There exists a large number of comprehensive surveys describing aspects of
crowdsourcing [QB11; CCAY16; Mao+17; GM+16; Li+16a]. In this thesis, we do not ad-
dress all challenges related to crowdsourcing and focus on the execution of a complex
task which is the primary topic of the thesis.

Existing crowdsourcing platforms are mainly systems that distribute collections of
a replicated micro-tasks which are simple and independent. Most of the work in aca-
demics and industry proposes solutions for data acquisition and management mainly
at the level of micro-tasks [GM+16]. The realization of complex tasks on crowdsourcing
platforms is a recent topic. Complex tasks require coordination of various small tasks
and are typically not supported by existing platforms. We present here the studies that
focus on complex tasks.

15

Chapter 2. State of the Art

Crowdforge [Kit+11] is an interesting work that uses the Map-Reduce technique
to solve complex tasks. The orchestration of the task is depicted in Figure 2.4. It
provides a graphical web interface to decompose complex tasks into sub-tasks, es-
tablish relations, workflows, and dependencies among the sub-tasks. The basic un-
derstanding of a programming language (Python) along with a predefined way to de-
compose the complex task into sub-tasks is the major limitation of the platform. The
prototype was designed for task designers and does not give to crowd workers the
power to decompose a task into sub-tasks. Turkit [Lit+09] is another work that uses
a crash and rerun programming model for crowdsourcing applications. The tool al-
lows to write imperative programs and calls the crowdsourcing platform as a function
in an iterative fashion. The author claims the fault-tolerant model can be widely ap-
plied to various crowdsourcing tasks. Here, the requester must know the way to divide
the tasks into sub-tasks. [KCH12] proposes the Turkomatic tool which works on the
principle of Price, Divide and Solve (PDS). The tool decomposes a complex task with
the help of human workers while the requester can watch the decomposition work-
flow. It also allows the client to intervene during the execution of tasks. In such ap-
proaches, the requester is required to monitor the whole workflow. Such scenarios
are often not suited as workflow monitoring requires a lot of patience and time by the
task requester. A conceptual meta-model based on the combination of PDS and hier-
archical state machines is presented by [Zhe+16]. The tasks are defined with states
S = {Initial,Decomposition, Judge, Solve, etc.}. The paper formalizes complex crowd-
sourcing tasks as sequences of states. The model lacks the means to orchestrate
sub-tasks in parallel. We will show in the next chapters that this can be easily achieved
by introducing concurrency in the workflows. The author does not comment on the for-
mal termination and correctness of the state machines which can lead to undesirable
results. Soylent [Ber+15] embeds the crowd workforce directly into its user interface.
It focuses on complex word processing task which requires multiple levels of concep-
tual and pragmatic activity. The interface enables writers to call crowd workers on the
AMT platform to realize various tasks as shortening, proofreading, etc. The author in-
troduces the concept of Find-Fix-Verify, a crowd programming pattern that splits the
tasks into three steps of identification, generation, and verification. The author [SC+15]
presents a graphical framework named CrowdWON for complex tasks based on an
adaptive workflow net. A graphical net with a deadline mechanism is presented to de-
sign, describe, and visualize the flow of tasks at crowdsourcing platforms. The article

16

Chapter 2. State of the Art

articulates well the workflow and time constraints in the design of tasks. However, sim-
ilar to former models the study of formal properties as termination and correctness is
not investigated. The work in [Kit+12] proposes the CrowdWeaver toolkit to visually
manage complex crowd work. The tool acts as a mental model designing a task, inte-
grating human and machine, templates, incentive distribution, tracking, and is built on
top of CrowdFlower. The tool architecture is built for the management of micro-tasks
on the crowd platform. Authors in [Tra+15] state composite tasks are poorly supported
by crowdsourcing platforms and propose Crowd Computer that allows one to program
custom logic for individual and structured tasks. The model is based on a business
process model and notation that provides process logic at a level of abstraction mostly
suitable for the specification and coordination of tasks.

Models for complex tasks call for complex mechanisms to orchestrate sub-tasks.
Many models proposed in the literature are not formal enough. This is a clear limitation
to address verification of properties (correctness, termination, ...). Another gap in many
models is the consideration of data as a second-class citizen. Most of the models are
process-driven rather than data driven. In this thesis, we propose high-level coordina-
tion mechanisms for crowdsourced tasks that include data. We also provide means to
verify the termination and correctness of a crowdsourcing system.

2.3 Orchestration of Tasks and Languages

A simple and independent task takes input and generates some output. For exam-
ple, a task can take a sentence as an input, and return an output which is a tag for the
sentence from a predefined category: { Positive, Negative, Neutral }. However, in real
life, we often encounter tasks that are not simple tagging tasks and are rather complex.
Such tasks need to be decomposed in smaller steps, that have to be orchestrated to
produce the desired output. Such orchestrations are called processes. Thomas Dav-
enport defined a business process in his book Process innovation [Dav93] as a struc-
tured, measured set of activities designed to produce a specific output for a particular
customer or market. It implies a strong emphasis on how work is done within an orga-
nization, in contrast to a product focus’s emphasis on what. A process is thus a specific
ordering of work activities across time and space, with a beginning and an end, and
clearly defined inputs and outputs: a structure for action. Taking a process approach
implies adopting the customer’s point of view. Processes are the structure by which an
organization does what is necessary to produce value for its customers.

17

Chapter 2. State of the Art

Figure 2.5 – BMPN Model: Use case ’Job Posting’, extracted from [All16].

In a similar context, Weske [Wes12] defines a business process as "a set of activi-
ties that are performed in coordination in an organizational and technical environment.
These activities jointly realize a business goal". Usually, a business process is an ex-
plicit graphical representation of activities with dependencies and constraints. Using
these models improve control, and should increase the efficiency of the system both
in terms of cost and quality. Business process modeling helps to represent day-to-day
business activities utilizing a model.

2.3.1 Process Centric Approaches

Several languages exist to represent business process models based on the tradi-
tional process-centric approach. Business Process Modeling Notation (BPMN) is one
of the most popular among them. It is standardized by Object Management Group 2.
BPMN is a notation for business process modeling that uses Business Process Dia-
grams (BPD) to graphically represent a business process. BPD uses flowcharts similar
to activity diagrams in the Unified Modeling Language(UML) [Whi04]. We present an
example from [All16], that showcases the representation of a Job Posting in the BPMN
model. The model is represented in Figure 2.5.

The case study is the following: A company wants to post a job opening based
on some requirements. The process "Post a Job" involves two departments: Business
Department and Human Resources. The business department reports job openings.
The human resource department then writes the job posting. The written document
is then sent for the review to business department. The business department has two
options. If the written document is okay then they send an affirmation to Publish the

2. https://www.omg.org/.

18

Chapter 2. State of the Art

Job to human resource department. In the second case, if it is not okay, the business
department tells to rework on the draft. The iteration can happen multiple times. In the
end, when the document is ready, it is published by the human resource department.

Web Service Business Process Execution Language (WS-BPEL), also known as
BPEL is a language, tailored for specifying business processes with web services [Jor+07].
It follows XML notation and is standardized by the Organization for the Advancement
of Structured Information Standards (OASIS) [OAS07]. BPEL facilitates sending and
receiving messages along with facilitates some plug-in models that allow writing ex-
pressions and queries. As compared to BPMN, BPEL does not provide the graphical
front end to show the process descriptions. Yet Another Workflow Language (YWL) is
another language based on workflow patterns. YAWL uses XML to define and manipu-
late data, to monitor and control workflow. YAWL and BPEL models are very close and
often considered as an alternative to each other. However, BPEL is more popular due
to standardization, community, and business supports. The advantage of YAWL over
BPEL is that YAWL supports processes that require a human contribution.

Note that the majority of process-based models focus on the orchestration of tasks
and represent this orchestration as a workflow diagram. However, the business process
model often lacks information on the data aspects of a process. Consider the "Job
Posting" case, here we get a basic idea about the control and execution flow of the
overall tasks using the BPMN diagram, but it lacks data details. For example What are
the attributes of the Job posting advertisements? On what basis and features, business
departments decide to rework the project? What are new transformations on the draft
as compared to the previous version? Clearly, business processes manipulate data,
and integrating data to these formalisms is essential. These models hence need to
provide data description, and means to specify how data is manipulated at each task.
These models also lack dynamic orchestrations, i.e. workflows are usually statically
defined and cannot be refined at run-time to improve a process [KCM06].

UML based languages

Unified Modeling Language (UML) [Fow04; Boo05] is an object-oriented visual lan-
guage that has emerged as an industry standard for the representation of artifacts. It
has wide applications such as design, specification, visualization, documentation for
business modeling, etc. It describes any type of system through an object-oriented ap-
proach and can represent the system with static as well as dynamic behaviors. UML

19

Chapter 2. State of the Art

includes five categories of maps. Use case diagram displays use case, actors, and their
relationship between them. State diagram includes class diagram, object diagram and
packet diagram. Behavior diagram consists of activity diagrams and models system’s
dynamical aspects. Interactive diagram describes interactive relationship among ob-
jects. Implementation diagram includes component diagrams. Note that UML diagrams
present the basic association of activities but hide data. Class diagrams provide clear
and well-adopted representations of data, but dynamic diagrams such as use cases
usually do not address data manipulation. BPMN, BPEL, activity diagrams all focus
on tasks and dependencies among them. Formally speaking, these features are well
captured by a single formalism, namely Petri nets.

Petri nets based Models

Petri nets [Pet62] are formal language to model and analyze discrete event systems.
Several formal models based on Petri nets are proposed for the orchestration of tasks.
A Petri net is a directed bipartite graph and consists of places, transitions, and arcs.
Places symbolize resources or states and transitions symbolize actions. Places may
hold a discrete number of tokens, symbolizing available resources and the control flow
of a system. Arcs connect places to transitions and transitions to places, and define a
flow of tokens consumed or produced by a transition.

Definition 2 (Petri Nets). A Petri net is a tuple N = 〈P, T, F,W,m0〉, where
— P is a finite set of places
— T is a finite set of transitions
— The places P and transitions T are disjoint (P ∩ T = ∅)
— F ⊂ (P × T) ∪ (T × P) is the flow relation
— m0 : P → N is the initial marking representing the initial distribution of tokens
— W : ((P × T) ∪ (T × P)) → N an arc weight mapping (where ∀f 6∈ F,W (f) = 0

and ∀f ∈ F,W (f) > 0)

The places P and transitions T are disjoint (P ∩ T = ∅). A place p is called an
input place of transition t if there exists an arc from p to t. Place p is called an output
place of transition t if there exists an arc from t to p. Arc F denotes the flow relation.
A marking is a map m → N that assigns a natural number to each place of the net,
representing the number of tokens held by that place at a given instant. m(p) denotes
the number of tokens that a marking m associates to a place p. At any time a place p

20

Chapter 2. State of the Art

Figure 2.6 – A classical Dining philosophers problem represened as Petri Net, extracted
from [Nac].

contains zero or more tokens, usually drawn as black dots. The semantics of a Petri
net is defined in terms of transitions firing from markings. Intuitively, a transition can fire
from a marking when a sufficient number of tokens is held at its input places. Firing the
transition consumes (removes) tokens from upstream places and produces (creates)
tokens in its downstream places. W indicates the number of tokens to be consumed
during firing and produced after the firing. When W (p, t) ≤ 1 and W (t, p) ≤ 1, ∀p ∈ P
and t ∈ T , a net is called a basic Petri net.

An example of a Petri net representing classical dining philosophers is shown in
Figure 2.6. Places are represented as circles, transitions by rectangles, arcs by arrows,
and tokens by dots. Places and transitions are labeled to indicate the conditions and
actions. Markings are represented by a number of tokens in the places, for example,
m(thinking) = 1.

Definition 3 (preset and postset). The preset of a given transition t is the set of input
places of t : •t , {(p|〈p, t〉 ∈ F} and postset of a transition t is the set of its output
places t : t• , {(p|〈t, p〉 ∈ F}.

The notations can be also used for places: for each place, p ∈ P , •p denotes the
set of transitions that may produce tokens in p and p• denotes the set of transitions that
may consume tokens from p.

21

Chapter 2. State of the Art

Semantics

The semantics of Petri net is defined in terms of transitions firing. Each firing con-
sumes and produces tokens. Firing of a transition models the execution of an event
corresponding to t. Steps in Petri nets semantics are simply moves from one marking
to the next one. The system starts in an initial marking denoted by m0. The semantics
of the Petri nets model is formally defined as follows.

Definition 4 (enabledness). A transition t is enabled by a marking m iff ∀p ∈ •t,m(p) ≥
W (p, t).

A transition t is enabled if each input place p of t is marked with at least W (p, t)
tokens, where W (p, t) is the weight of the arc from p to t. A transition t can fire only
when it is enabled. When a transition is fired, it takes the tokens from the input places
and then distributes the tokens to output places. The firing of an enabled transition is
defined as follows.

Definition 5 (firing). Firing an enabled transition t from a marking m yields a new
marking m′ such that

∀p ∈ P m′(p) = m(p)−W (p, t) +W (t, p)

A firing of an enabled transition t consumes W (p, t) tokens from each input place
p of t and produces W (t, p) tokens to each output place p of t. Here, W (t, p) denotes
the weight of the arc from t to p. We write m

t−→ m′ that states firing t from a marking
m produces a marking m′. A firing sequence for a Petri net N with initial marking m0 is
a sequence of transitions δ = 〈t1.t2.tn〉 such that m0

t1−→ m1 ∧ · · · ∧mn−1
tn−→ mn or

simply m0
δ−→ mn.

Petri nets have an interesting expressive power. First, they can be used to represent
some classes of concurrent systems. Second, they can represent systems with infinite
state space: indeed, the number of tokens in markings is not a priori bounded, even
for basic Petri nets. Petri nets systems can be used for the analysis of many properties
associated with concurrent systems. We illustrate some of these properties.

22

Chapter 2. State of the Art

Reachability. The reachability problem for Petri nets consists of deciding, given a Petri
nets N,m0, and a marking m of N , if there exists a firing sequence such that m can
be reached from mo. The set of all possible marking reachable from m0 in a net N is
denoted as Reach(m0). Reachability problem for Petri nets is decidable [May81] and
was recently shown non-elementary [Cze+19]. Reachability property of Petri net is
used to find the erroneous state in a concurrent systems.

Boundedness. A Petri net is said to be k − bounded or simply bounded if the number
of tokens in each place does not exceed a finite number k for any marking reachable
from m0, i.e. m(p) ≤ k for every place p and every marking m ∈ Reach(m0). Karp and
Miller proved that boundedness is decidable [KM69]. The boundedness property can
be used to model systems with limited resources. For example, Petri nets models can
be used to represent buffers in simple production lines [Rec+03]. By verifying the net
is bounded, it is guaranteed that no overflows will take place in buffers, irrespective of
the firing sequence taken.

Liveness. A Petri net is live if every transition can always occur again. Precisely, if
for every reachable marking m and every transition t, there exists a firing sequence
m

δ−→ m′ such that m′ enables t. Live Petri net guarantees deadlock free operation
irrespective of the firing sequence chosen. The liveness problem is decidable [Hac76].
Liveness property helps to model concurrent systems where resources are shared.

Petri nets are widely studied and applied in various domains such as modeling com-
munication protocols, manufacturing, hardware design, multiprocessor systems, rail-
way networks, etc. [Mur89]. Many variants of Petri nets have been proposed to model
such systems. A time Petri net is defined as TP = 〈P, T, F,W,m0, Is〉 where P, T, F,W
and m0 are places, transitions, arcs, and an initial marking Is : T → I+ is a function that
associates a static time interval to transitions. This model allows for the specification of
time elapsing between transition firings. Its semantics is hence a timed transition sys-
tem. Such models are interesting to define systems with real-time constraints such as
metros or trains. We do not detail this model here, and refer [Mer74] for more details.
Stochastic Petri nets (SPN) [Mol82] incorporates randomness in Petri nets. Firing times
of transitions i.e. the time a transition has to wait before its firing once enabled, follow
exponential distributions. The stochastic behavior of bounded stochastic nets can be
brought back to that of Markov chains and is analyzed in [BK98]. Stochastic time Petri
nets [CGV08] extends SPN. They allow for the specification of time Petri nets where
firing times are specified with intervals as in [Mer74] but these intervals are equipped

23

Chapter 2. State of the Art

with a probability distribution that are not necessarily exponential laws. This model is
very expressive, and cannot be analyzed as a finite Markov chain. However, [Hor+12]
has shown transient analysis techniques for this model.

Petri net model allows multiple tokens in the system and provides richer seman-
tics to model several processes competing for the resources for the performance of
a given task. Tokens in the Petri nets represent objects and resources. However, one
often needs to represent the attributes of these objects. For example, if hardware is
represented as a token in Petri net, then we may want to represent attributes such as
hardware id, manufacture name, manufacture year, etc. These attributes cannot be rep-
resented as a token in classical Petri nets. For modeling such systems, coloured Petri
nets models have been proposed. Coloured Petri nets [Jen89; dFM18] allow tokens
to have a data value attached to them and the data value is called the token colour.
Adding colours to tokens and guards to transitions give huge expressive power to nets.
Coloured Petri nets are Turing-powerful. There also exists some other data-aware vari-
ants of Petri nets [Leo+14; Laz+08; FLM19], nets are decorated with global variables.
Transitions firings are guarded by formulas on variables, and execution of transitions
updates variables values. Structured Data nets (SDN) [BHM16] is a variant of Petri
nets where tokens are structured documents (XML) and transitions transform data.
SDN considers a token as a piece of information that either belongs to a database
associated with the system or is attached to some ongoing transactions. Transitions
are guarded by boolean queries that evaluate the truth value of some pattern matching
constraint. Their execution results in some rewriting specified again as a query. Unsur-
prisingly, this model is Turing-powerful. Under some restrictions on the allowed shape
of data, properties such as termination, soundness are decidable. These models can
be used to model business processes with data.

Workflow nets

Workflow nets [Aal98] is a subset of Petri nets to model and analyze workflows
such as business processes. They allow parallel, sequential execution of tasks, fork,
and join operations to create or merge a finite number of parallel threads. Tasks are
represented by transitions. Workflow nets mainly deal with the control part of business
processes, and data is not central to this model.

24

Chapter 2. State of the Art

Figure 2.7 – Example of workflow net for processing complain, extracted
from [VDAVHH04].

Definition 6 (Workflow Nets [Aal98]). A petri net PN = 〈P, T, F 〉 is a Workflow net
(WF-net) if and only if :

— PN has two special places: i ∈ P and o ∈ P
— Place i is a source place: • i = ∅
— Place o is a sink place: o • = ∅
— Every node x ∈ P ∪ T is on a path from i to o

Places in the set P are called conditions, transitions in the set T are called tasks.
The WF-net have one input place and one output place. These places indicate starting
and ending state of the process. The semantic of WF-net follow the standard Petri nets
semantics. A WF-net model for processing complaint is shown in Figure 2.7 [VDAVHH04].
First, a complaint is registered. In parallel, a questionnaire and the complaint is evalu-
ated. If the questionnaire is returned within a fixed delay, it is processed (process_questio
nnaire), else it is discarded (time_out). Now based on the result of the evaluation, the
complaint is processed or not. If processing is required, it is archived (archive). The
task processing is delayed until the questionnaire is processed or a time-out has oc-
curred. The task progress is checked during the task of check_processing. In the end,
the task is archived. Note that WF-net allows sequential, conditional, parallel, and rout-
ing iterations. A large part of the literature on workflow nets has been devoted to check-
ing soundness [VDA+11], which is a set of conditions to guarantee a clean termination
of a process.

25

Chapter 2. State of the Art

Let m,m′ be two markings. We say that m′ is greater than m, and write m′ ≥ m iff
for every place p ∈ P , m′(p) ≥ m(p). We denote by [o] the marking such that m(o) = 1
and m(p) = 0 if p 6= o. Soundness is defined as follows.

Definition 7 (Workflow Nets-Soundness [Aal97; VDA+11]). A workflow net is sound if
and only if following requirements are satisfied

— Termination: ∀m,m0
δ−→ m : ∃m′,m δ−→ m′ : m′ ≥ [o]

— Clean Termination: m0
δ−→ m ∧m ≥ [o] =⇒ m = [o]

— No dead transitions: ∀t ∈ T,∃m : m0
δ−→ m and t is enabled in m

The first requirement states that from the initial state (a marking m0 with a token
in place i and all other places empty), it is always possible to reach a state with one
token in place o. The second requirement states when an execution reaches a marking
where o contains a token, all other places are empty. This is a way to guarantee that
all parallel threads launched during the execution are terminated. The last requirement
states that there are no dead transitions. The property guarantees the absence of
deadlock in workflow nets. To summarize, soundness guarantees that, "every execution
starting from an initial marking and reachable to a marking with k tokens on the initial
place terminates properly, i.e. it can reach a marking with k tokens on final place,
for an arbitrary natural number k" [VHSV04]. Generalized and structural soundness is
decidable for WF-nets [VHSV04; ŢM05].

WF-nets extended with time [LS00] integrates time to workflows and allows to con-
sider timed safety. A net is timely safe if a transition cannot produce a token in an
already marked place. In the untimed setting, this is called contact freeness. The timed
variant allows addressing questions of resource usage and performance. Timed safety
shows that the timing constraints set on transitions prevent processes from compet-
ing for shared resources. Nets (in particular workflow nets) can rapidly become long
and unreadable sequences of transitions depicting atomic tasks at a very low level.
As already mentioned, the definition of complex tasks calls for the possibility to re-
fine a task into a complex sub-task, i.e. another layer of orchestration. Some mod-
els of nets and workflows have addressed higher-order and hierarchy [Lom01; LS99].
This allows for hierarchical modeling to build a complex system by composing smaller
sub-systems. Although these higher-order models provide mechanisms to orchestrate
tasks, but rather than data, the process remains central to such systems.

Petri alone is already an interesting model. As mentioned earlier, they are the for-
mal model used to give semantics to several business process notations. BPMN, for

26

Chapter 2. State of the Art

instance, can be formally defined as a particular class of 1-bounded basic net, called
fork-join net [Aal98]. However, Petri nets are not sufficiently expressive to model crowd-
sourcing systems, as they do not incorporate essential aspects such as data, time, and
randomness.

2.3.2 Artifact Centric Approaches

Process centric based models focus on control flow, and most of the time does
not consider data. To deal with this issue, several models centered on data have been
proposed. Artifact centric models are data-centric models, i.e. focus is on the data, and
how data is transformed by tasks. Artifact-centric business process models consider
data as first-class citizens. The model considers addition, deletion, and manipulation
of data by a set of tasks in the overall process. An artifact is a mechanism to record
a key identifiable piece of information that is concrete, reliable, self-explanatory, and
identifiable to be used and maintained to run the business. A collection of artifacts and
services that modify this collection is called an artifact system. Very often, services
are defined with rules that apply to one or several artifacts that meet given conditions.
Contrarily to workflows, where the control flow of a process is explicitly represented by
a flow relation, the control flow of a business artifact is based on rule realization and is
hence declarative and implicit.

Business artifacts were originally developed by IBM [NC03] and proposed data-
centric processing of artifact lifecycles. The lifecycle of all the artifacts in the business
and their association describes the operational model of the entire business. An ex-
ample of business artifact model, extracted from [BHS09] is shown in Figure 2.8 repre-
sented in the form Entity-Relationship (ER) diagram. ER diagram provides a framework
to specify the models and to show the relationship among entities. The model is a frag-
ment of process modeling of IT service providers that shows the specification of the
vendor task and consists of the structure of the data, stakeholders, and conditions
under which the tasks can be realized. Here, the Vendor task artifact has a set of at-
tributes as schedule Id, planned start date, planned end date, status, etc. Vendor task
artifact is also related to other sets of artifacts as Vendor, Govt. approval, etc. When
an artifact is created, attribute values can be undefined or null values. As the execu-
tion progresses, the attribute value may be defined or overwritten. The artifacts are
generally stored using relational or XML-based databases. The artifact model is stud-

27

Chapter 2. State of the Art

Figure 2.8 – Business artifacts represented as ER diagram specifying the vendor tasks,
extracted from [BHS09].

ied extensively both from practical and theoretical perspectives. [Kum+03] proposes an
adaptive document artifact system that formalizes collaborative work, in which a group
of people collaborates to reach a business goal. The authors in [WK05] demonstrate
the feasibility of a framework for document-driven workflow systems based on artifacts
that require no explicit control flow and the execution of the process is driven by in-
put documents. In a similar line, [GM05] proposes a formal model for document-based
service to meet the business needs considering factors such as information that has
to be exchanged, people, organizations, and the roles involved. [Hul+99] proposes an
attribute centric workflow model called vortex workflow that allows the specifications of
dataset manipulations and provides mechanisms to specify when services are appli-
cable to a given artifact.

2.4 Data

Crowdsourcing provides a way to collect, retrieve, manipulate, and analyze data
provided by human workers. Data is hence central to crowdsourcing systems. For ex-
ample, a client provides an input dataset with a pre-defined objective. Data is manip-
ulated and transformed by the workers and in the end, the final dataset is returned
after completion of the task. In this section, we recall how datasets (also known as
databases) are usually formalized and structured. From the beginning to the end of the

28

Chapter 2. State of the Art

process, data is used as input, transformed, assembled, before being used as a final
result. Data is not stored in any way. It is usually well structured and its transformation
follows some rules. We also recall the basics of some formal tools used to query data
and reason on the contents of datasets.

We use standard relational model [Cod72] to specify datasets. The relational model
is simple, easy to understand yet possesses enough expressive power to store and
manipulate data. The relational model considers relations as the data structure and
comes with query capabilities, updates features, and supports integrity constraints. A
database organized in terms of relations is known as a relational database. The rela-
tional model is a declarative model that abstracts control flows and does not consider
compilation and optimization complexity needed to store and query data. The model is
used to directly specify the information to be stored.

In the standard relational model [Cod72], data is organized in datasets, that fol-
low relational schemas. In the context of the thesis, we assume finite set of domains
dom = dom1, . . . , doms, a finite set of attribute names att and a finite set of relation
names relnames. Each attribute ai ∈ att is associated with a domain dom(ai) ∈ dom.
A relational schema (or table) is a pair rs = (rn,A), where rn is a relation name and
A ⊆ att denotes a finite set of attributes. Intuitively, attributes in A are column names
in a table, and rn the table name. The arity of rs is the size of its attributes set. A record
of a relational schema rs = (rn,A) is tuple rn(v1, . . . v|A|) where vi ∈ dom(ai) (it is a
row of the table), and a dataset with relational schema rs is a multiset of records of
rs. A database schema DB is a non-empty finite set of tables, and an instance over
a database DB maps each table in DB to a dataset. Database schema specifies the
structure of the database and the database instance specifies its actual content. We
borrow an example from [AHV95] where a database schema CINEMA is defined as
follows.
CINEMA = {Movies, Location, Pariscope}where tableMovies, Location, and Pariscope
have the following attributes:
attributes(Movies) = {Title,Director, Actor}
attributes(Location) = {Theatre, Address, Phone Number}
attributes(Pariscope) = {Theater, T itle, Schedule}

29

Chapter 2. State of the Art

Table 2.1 – An example of CINEMA database, extracted from [AHV95].

The database is shown in Table 2.1. Each of the tablesMovies, Location and Pariscope
consists of rows where data is stored considering the domain of the attributes. Here,
the Movies table is of arity 3. The domain associated with each attributes of table
Movies is dom(Title) ∈ strings, dom(Director) ∈ strings, dom(Actor) ∈ strings. A
record of table Movies is tuple with values The trouble with Harry, Hitchkok, Gwenn
associated with attributes Title,Director and Actor.

2.4.1 Reasoning on Data

First-order logic is a set of formal systems allowing reasoning on relations and
hence on data. In the rest of the thesis, we will use sentences built with the follow-
ing symbols :

— Variable. A Variable is a placeholder v1, v2, u1, u2, ... to assign varying objects.
Every possible value for a variable vi belongs to a particular domain dom(vi).

— Logical Operators. Logical operator is a symbol used to connect two or more
conditions. Logical operators are {¬,∧,∨,→,↔}.

30

Chapter 2. State of the Art

— Logical quantifiers. A logical quantifier specifies the quantity of specimens hav-
ing some property. The quantifiers are existential quantifier "∃" (there exists),
universal quantifier "∀" (for all).

— Equality symbol. {=} symbolizes the binary equality relation.
— Constant symbol. A constant symbol c denotes a fixed object whose value does

not change over time.
— Function symbol. A function f denotes a n − ary function that associates an

object to a n− tuple of objects.
— Relation and membership symbol. We denote by rn(x1, . . . , xk) a tuple from a

relational schema rs, and write rn(x1, . . . , xn) ∈ D to denote the property that
tuple rn(x1, . . . , xn) is a record of dataset D. Here, {∈} denotes the membership
symbol.

— Predicates. A predicate is a boolean function P (x1, . . . , xn) that evaluates to
TRUE or FALSE under a particular interpretation of variables x1, . . . , xn.

The formula P (x1, . . . , xk) means x1, . . . , xk satisfy predicate P . Note that the differ-
ence between a function and a predicate is that an application of function returns an
object, while the application of predicate returns a TRUE or FALSE value. Signature
of FO describes the non-logical symbols. The signature consists of a set of constant
symbols, function symbols, relation symbols and predicate symbols.

A term in FO is a sentence of the form t ::= v|c|f(t1, . . . , tn) where,
— v is a variable name.
— c is a constant.
— f() is a function, and t1...tn are terms.
Then, FO formula F are defined as sentences of the form: F ::= > | ⊥ | F ∨ F |

¬F | P (t1, . . . , tn) | rn(x1, . . . , xn) ∈ D | ∀v(F) | ∃v(F). Here, t1, . . . , tn are terms
and x1, . . . , xn are variables. Formula may also contain the usual boolean connectors
∧,→,↔ with the usual meaning.

An atomic formula or atom is simply a predicate applied to a tuple of terms, i.e.
an atomic formula is a formula of the form P (t1, . . . , tn) where P is a predicate, and
t1, . . . , tn are terms. The formula ∃xP (x) is there exists x, P and the formula ∀xP (x)
is for all x, P . Letting X1 = {x1, . . . xk} ⊆ X, we write ∀

→
X1 instead of ∀x1.∀x2 . . . ∀xk.

Similarly, we write ∃
→
X1 instead of ∃x1.∃x2 . . . ∃xk. We follow this convention through out

the thesis.

31

Chapter 2. State of the Art

An interpretation is a function that attaches the meaning to the constant, function
and relation symbols. Formally, an interpretation is defined as follows.

Definition 8 (Interpretation).
— An interpretation of a constant symbol c is an element of its domain dom.
— An interpretation of a function symbol f with arity n is a function that maps n

elements of dom to another element of dom.
— An interpretation of a predicate symbol P with arity n is the set of n tuples of

elements of dom for which dom is TRUE.

Definition 9 (Assignment). An assignment in FO logic assigns values to variables.
Each variable x in X has its own domain dom(x). A variable assignment (for a fixed set
of variables X) is a function µ that associates a value dx from dom(x) to each variable
x ∈ X.

Given a variable assignment µ, we say that φ hold under µ, and write µ |= φ iff φ
evaluates to TRUE under assignment µ. Given a FO formula, we illustrate below when
the formula is TRUE or FALSE.

— An atomic (atom) n − ary predicate P (t1, . . . , tn) predicate when applied to n

terms, returns TRUE or FLASE. Predicates are used to describe the property of
objects. For example, P (x) can be a predicate that evaluates to TRUE if x is an
even number.

— A universally quantified formula ∀x : F asserts that a certain property holds for
any value v ∈ Dom(x) assigned to variable x. ∀(x)P (x) indicates that P holds
for every assignment of a value from dom(x) to x.

— An existentially quantified formula ∃x : F means that formula F holds for some
assignment that assigns some value v ∈ Dom(x) to variable x. ∃(x)P (x) indi-
cates P holds for some assignment of a value from dom(x) to x.

Consider a FO formula ϕ ::= ∀x(x2 6= 2). If the domain of x is real number, dom(x) ∈
R, then the formula ϕ is FALSE because for an assignment µ such that µ(x) =

√
2, we

have x2 = 2. If the domain of x is natural number dom(x) ∈ N, then the formula ϕ

evaluates to TRUE as an assignment x = 2 is not the square of any natural number.
Let predicate C(x) holds if x is a crowd worker and E(x) holds if x is an expert. Let

Din be an input dataset with relational schema rn(x1, . . . , xk) and Dout be an output
dataset with relational schema rn′(x1, . . . xk, y1, . . . , yn). We show some examples of
FO logic with plain English interpretation as follows.

32

Chapter 2. State of the Art

— All crowd workers are expert. (∀x)[C(x)→ E(x)]
— Some crowd workers are expert. (∃x)[C(x) ∧ E(x)]
— For all input record there exists an output record. ∀x1, . . . , xk rn(x1, . . . , xk) ∈

Din → ∃y1, . . . yn rn
′(x1, . . . , xk, y1, . . . , yn) ∈ Dout

Definition 10 (Free and bound variables). A variable occurrence is free in a formula if
it is not quantified. Variables in the scope of the quantifiers are called bound variables.

Variables in a FO logic formula may occur bound or free. For example, ∀yP (x, y),
the occurrence of variable x is free. On the other hand variable y is bound as it is
universally quantified. A quantifier free formula is a formula that contains no quantifiers.

Generally, FO formulas are given in Prenex Normal Form (PNF). A formula is in PNF
if it is written as a string of alternating quantifiers and bound variables called prefix of
the formula and followed by a quantifier-free part called matrix of the formula. Formally,
the Prenex Normal Form of FO is defined as follows.

Definition 11 (First-order in Prenex Normal Form). A first-order formula in Prenex
Normal Form over a set of variables X is a formula of the form ϕ ::= α(X).ψ(X)
where α(X) is an alternation of quantifiers and variable names in X, i.e. sentences of
the form ∀x1∃x2, ... called the prefix of ϕ and ψ(X) is a quantifier free formula called
the matrix of ϕ. ψ(X) is a boolean combinations of atoms of the form Ri(x1, . . . xk),
Pj(x1, . . . xn), where Ri(x1, . . . xk) are relational statements, and Pj(x1, . . . xn) are pred-
icates, i.e. boolean function on x1, . . . xn.

For example, a formula ϕ ::= ∃x0∃x1∀x2 P1(x0, x1, x2) ∧ P2(x0, x2) is in PNF. In this
formula ∃x0∃x1∀x2 is the prefix of ϕ and P1(x0, x1, x2) ∧ P2(x0, x2) is its matrix. Every
formula in FO logic is equivalent to formula in a prenex normal form. For example, a
FO formula in the form of ∃x(∃yP1(x, y) ∨ (∀z P2(z) ∨ P3(x))) is equivalent to a formula
in a PNF form: ∃x∃y∀z(P1(x, y) ∨ (P2(z) ∨ P3(x)).

Definition 12 (Satisfiability). A variable free formula is satisfiable iff it evaluates to true.
A formula of the form ∃x, φ is satisfiable iff there exists a value dx ∈ dom(x) such
that φ[x/dx] is satisfiable. A formula of the form ∀x, φ is satisfiable iff, for every value
dx ∈ dom(x), φ[x/dx] is satisfiable.

Definition 13 (Equisatisfiability). Two formulas φ and ψ are equisatisfiable iff φ is sat-
isfiable if and only if ψ is satisfiable. Equisatisfiability of φ and ψ is denoted as φ |=| ψ.

33

Chapter 2. State of the Art

One can rewrite a FO formula into an equisatisfiable formula using miniscoping
rules. These rules are syntactic transformations that apply regardless of any interpre-
tation of the formula. They can be applied to move quantifiers as deep as possible
inside a formula (this is interesting for skolemization [BW84], but we will not use it in
this thesis) or conversely to transform a formula into an equivalent one in prenex normal
from.

Definition 14 (Miniscoping [SVW16]). Let ϕ, ψ,X be the first-order formulas, and as-
sume that x does not occur freely in X. Then using miniscoping, quantifiers can be
pushed in FO as follows.

(i). ∃x.(ϕ ∨ ψ) |=| (∃x1.ϕ) ∨ (∃x2.ψ)

(ii). ∃x.(ϕ o X) |=| (∃x.ϕ) o X with o ∈ {∨,∧}

(iii). ∀x.(ϕ ∧ ψ) |=| (∀x1.ϕ) ∧ (∀x2.ψ)

(iv). ∀x.(ϕ o X) |=| (∀x.ϕ) o X with o ∈ {∨,∧}

For example, a formula in form ∃x∀y(P1(x) ↔ P2(y)) can be transformed using minis-
coping rules as ∃x ¬P1(x) ∨ ∀yP2(y)

It is well known that the problem of satisfiability of a FO formula is undecidable in
general [Chu+36; Tur37]. This can be proved by reduction from the halting problem for
Turing Machine. A lot of effort has been put to find decidable fragments of FO logic.
There exist several fragments of first-order logic for which satisfiability is decidable.

Monadic FO is a fragment of first-order logic in which all relation symbols in a for-
mula take only one argument. All atoms in formulas are of the form P (x). [Löw15]
pioneer work shows that confinement to unary predicate symbols (Monadic FO) leads
to decidability. However, the monadic FO fragment has very low expressive power.
The universal fragment (resp. existential fragment) of FO is the set of formulas of the
form ∀

−→
Xϕ (resp. ∃

−→
Y ϕ) where ϕ is quantifier-free. We denote by ∀FO the universal

fragment and by ∃FO the existential fragment. Checking satisfiability of the existen-
tial/universal fragment of FO is decidable and (co)-NP-complete when variables domain
are restricted to real or discrete values [Bou+19]. One needs not restrict to existential
or universal fragments of FO to get decidability of satisfiability. A well-known decidable
fragment is FO2, which uses only two variables [Mor75]. However, this fragment forbids
atoms of arity greater than 2, which is a severe limitation when addressing properties of
datasets. A recent extension of FO2 called FO2BD allows atoms of arbitrary arity, but

34

Chapter 2. State of the Art

only formulas over sets of variables where at most two variables have an unbounded
domain. Interestingly, FO2BD formulas are closed under the computation of weak-
est preconditions for a set of simple SQL operations [Itz+17]. The Bernays-Schonfinkel
(BS) fragment of FO is the set of formulas of the form ∃

→
Y 1.∀

→
X2.ψ, where ψ is quantifier-

free, may contain predicates, but no equality. The Bernays-Schonfinkel-Ramsey frag-
ment of FO [BS28] (BSR-FO for short) extends the BS fragment by allowing equalities
in the matrix ψ. The satisfiability of a formula in the BS or BSR fragment of FO is
NEXPTIME-complete (with respect to the size of the formula) [Lew80]. Algorithms to
check satisfiability for a fragment of FO can be obtained by transforming formulas from
that class into equivalent or equisatisfiable formulas of a decidable subclass. Two FO
formulas φ and ψ are equivalent iff, for every variable assignment µ, µ |= φ iff µ |= ψ.
Transformation of a formula from one class to another class is usually expensive and
results in a blowup of the size of considered formulas.

Recent results [SVW16] exhibited a new fragment, called the separated fragment
of FO, defined as follows: Let V ars(A) be the set of variables appearing in an atom
A. We say that two sets of variables Y, Z ⊆ X are separated in a quantifier-free for-
mula φ(X) iff for every atom At of φ(X), V ars(At) ∩ Y = ∅ or V ars(At) ∩ Z = ∅. A
formula in the Separated Fragment of FO (SF -FO for short) is a formula of the form
∀
→
X1.∃

→
Y 2. . . .∀

→
Xn.∃

→
Y nφ, where

→
X1 · · ·∪

→
Xn and

→
Y 1 · · ·∪

→
Y n are separated. The SF frag-

ment is powerful and subsumes the Monadic Fragment and the BSR fragment. Every
separated formula can be rewritten into an equivalent BSR formula (which yields de-
cidability of satisfiability for SF formulas) but at the cost of an n-fold exponential blowup
in the size of the original formula. Satisfiability of a separated formula ϕ is hence decid-
able [SVW16], but with a complexity inO(2↓n|ϕ|) where 2↓n is a tower 22...n of exponential
of size n.

2.4.2 Datalog

Datalog is another declarative programming language to reason on data that is
syntactically based on Prolog. However, datalog is primarily used as a query language
for deductive databases that make deductions based on rules and facts. It was invented
to combine logic programming with relational database to construct formalism along
with dealing with large databases. The most interesting feature of datalog is recursion.
Datalog is defined as follows.

35

Chapter 2. State of the Art

Definition 15 (Datalog [AHV95]). A datalog rule is an expression of the form :
R1(u1)← R2(u2), . . . , Rn(un)
where n ≥ 1, R1, . . . , Rn are relation names and u1, . . . un are free tuples of appropriate
arities. Each variable occurring in u1 must occur in at least one of u2, . . . , un.

A datalog program consists of a finite set of datalog rules. R1(u1) is the head of the
rule and R2(u2), . . . , Rn(un) forms the body. A datalog program defines the relations
that occur in heads of rules based on other relations. The defined relations can also
occur in the bodies of the rules and thus is recursive. Also to note that datalog programs
may not use negation in the rule bodies. A simple example of datalog is as follows. We
first define two facts.

— parent(John, James)
— parent(James,Bill)
The facts define, John is the parent of james and james is the parent of bill. We

also define the below rules.

— ancestor(X, Y)← parent(X, Y)
— ancestor(X, Y)← parent(X,Z), ancestor(Z, Y)

The rule states the following.

— X is an ancestor of Y if X is a parent of Y .
— X is ancestor of Y if X is a parent of Z and Z is a ancestor of Y .

Now, on the above defined facts and rules, we fire the following query: ancestor(John,X).
It asks who are the X that are the ancestor of John? The query evaluation returns
James and Bill.

Query evaluation in datalog is based on first-order logic. However, datalog is not Tur-
ing complete and even has efficient algorithms to resolve queries [Ban+85; CSW95].
Yet some problems of datalog are undecidable. For instance, the boundedness prob-
lem, which asks whether a datalog program is equivalent to some non-recursive data-
log program is undecidable [Hil+95]. Datalog is of great theoretical importance. Data-
log provides a clean basis to model deductive systems and is used to study recursive
queries. However, due to lack of negation, it is not adequate as practical query lan-
guage [AHV95]. It cannot express even the first-order queries. Also, Datalog is not a
programming language and very few applications have taken full advantage of the ex-
pressiveness of datalog [CGT+89]. However, a recent revival of interest has emerged,
using datalog queries in various applications as data integration, declarative network-
ing, information extraction, and program analysis [HGL11; Mei+20].

36

Chapter 2. State of the Art

2.4.3 SQL

Structured Query Language (SQL) is the most practiced query language that pro-
vides the basis for the extension of the relational model. It was initially developed at
IBM by Donald D. Chamberlin and Raymond F.Boyce on the foundations of the rela-
tional model by Edgar F.Codd [Cha12]. In 1986, SQL was first formalized by ANSI and
the most recent version of the standard was published in 2019. It is widely used in
mainframe and client-server relational database management systems. SQL is useful
in handling structured data where data contains the relationship between entities and
variables.

SQL is a query and data manipulation language. First, it allows us to define and
create the structure of the database. Using SQL commands as CREATE, one can
define the organization of the database and the tables. On each defined table, SQL
also allows for data access control. Beyond tables definition and creation, the most
interesting features of SQL is as a query language, that allows to select data from a
table, or even produce new datasets obtained as joins on table contents. We give below
some examples of SQL commands.
SELECT-FROM-WHERE
The basic building block of SQL queries is the SELECT-FROM-WHERE command. It
selects the data from a table based on the filter condition (where clause). Consider a
SQL query on the CINEMA database on table Movies (see Table 2.1).

SELECT Title
FROM Movies
WHERE Actor = ‘Gwenn’

The query selects the Title from the Movies database where the actor name is Gwenn
and returns answer as "The Trouble with Harry".
JOIN
The most interesting command of SQL is JOIN that combines rows of two or more
tables based on a common column between them. Consider a SQL query on the CIN-
EMA database on table Pariscope and Location.

37

Chapter 2. State of the Art

Address T itle Schedule
31 bd.des Italiens Cries and Whispers 20:30

30 rue Saint Andre des Arts The Trouble with Harry 20:15
. . .
. . .

Table 2.2 – JOIN query result.

SELECT Location.Address, Pariscope.Title , Pariscope.Schedule
FROM Location
JOIN Pariscope
ON Location.Theater=Pariscope.Theater

The JOIN command returns all records with the common values on attribute Theater
from the tables Location and Pariscope. The above query produces the Table 2.2. We
list some of the SQL commands with descriptions as follows.

— CREATE DATABASE - Creates a new database.
— ALTER DATABASE - Modifies a database.
— CREATE TABLE - Creates a new table.
— ALTER TABLE - Modifies a table structure.
— DROP TABLE - Deletes a table.
— SELECT - Extracts data from a database.
— UPDATE - Updates data in a database.
— DELETE - Deletes data from a database.
— INSERT INTO - Inserts new data into database.
— CREATE INDEX - Creates a search key.
— DROP INDEX - Deletes an index.
— JOINS - Combines rows from two or more tables based on common column

between them.
SQL also supports aggregation queries with commands such as MIN, MAX, COUNT,

AVG, and SUM along with operators as AND, OR, and NOT. The MIN() clause returns
the smallest value in a column and MAX() clause returns the largest value of the se-
lected column. COUNT() returns the number of rows that matches a specific condition.
The AVG() clause returns the average value of a column with numerical values and
SUM() returns the sum value of a column value with numerical values. These operators
can be added with AND, OR and NOT clauses.

38

Chapter 2. State of the Art

COUNT
Consider a below example. The SQL query counts the movie title from the tableMovies

where actor name is Gwenn.

SELECT COUNT(Title)
FROM Movies
WHERE Actor = ‘Gwenn’

SQL works on these simple, yet powerful clauses that is easy to understand and
implement. This makes SQL a more expressive language and is running on thousands
of data-driven web applications. The crowdsourcing platforms are data driven and is
composed of task which can be executed by machines using simple SQL queries.
We will use the SQL queries as a building block to execute the tasks which can be
automated in our model.

Remark. Edgar F. Codd first described the relational model for database management
as an approach to manage data using a structure and language consistent with first-
order logic [Cod02]. The query languages in the relational model are based on the
theoretical foundations of relational algebra and relational calculus. Relational calculus
is a formal query language similar to relational algebra. It is a declarative language
that does not specify the order in which operations to be performed. Relational alge-
bra uses algebraic structures based on logical rules for modeling data and defining
queries on them. It defines operators to transform a set of input relations to an out-
put relation. Relational algebra is a procedural language, in which order is specified
to perform the operations. Relational algebra was created to implement the queries
in an efficient way and is simple for machines to evaluate. The notable Codd’s theo-
rem establishes that relational algebra and relational calculus have precisely equiva-
lent expressive power [Cod+72]. Relational algebra provides a basis for the relational
database. The most popular query language SQL is based on the theoretical founda-
tions of relational calculus. Relational calculus is essentially equivalent to first-order
logic. Most of the database query languages in practice are based on the extensions
of first-order logic. First-order logic has long been regarded as a fundamental tool to
investigate and model the properties of data-based systems. In this thesis, we choose
first-order logic to address properties on data and to theoretically investigate the prop-
erties of our crowdsourcing model.

39

Chapter 2. State of the Art

2.4.4 Data Centric Models

Crowdsourcing systems are data-centric systems that collect, transform, and aggre-
gate data. In such cases, termination of tasks with a proper output is of primary impor-
tance. This means that two things have to be considered. First, a data centric system
terminates when forging its output data from answers collected by the crowd. Second
that the produced data is correct, i.e. satisfies some criteria on expected legal output
value or that confidence in the result is high enough. The correctness of data centric
processes is widely studied and a comprehensive survey is presented in [CDGM13;
DHV14]. We review below several models for which a notion of correctness has been
formalized and studied.

Guarded Active XML [ASV09] (GAXML for short) is a specification paradigm where
services are introduced in structured data. In such models, structured data embeds
references to service calls. Services modify data when the guard is satisfied and re-
places a part of the data with some computed value that may also contain references
to service calls. Though GAXML does not address crowdsourcing nor task refinement,
however, if services are seen as tasks, the replacement mechanism performed dur-
ing calls can be seen as a form of task refinement. This model is very expressive,
but restrictions on recursion allow for verification of Tree-Linear Temporal Logic (LTL).
LTL [Pnu77] is an extension of propositional logic that defines the properties of a sin-
gle execution of the system. An execution is a sequence of states ρ = {s1, s2, . . . , sn}.
Each state carries some propositions, and LTL formulas define properties of the future
at some step of a single execution of the system. LTL formula can express properties
such as “proposition p will be eventually true”, “p will be true until q is true”, etc. It is a
widely used tool in the formal verification of programs and systems. Tree LTL replaces
propositions in LTL by properties of structured data seen as labeled trees. LTL is a frag-
ment of first-order logic [Kam68]. LTL with first-order logic (LTL-FO) formulas is of form
∀x1, . . . , xk, φ where φ is an LTL formula including FO statements. More precisely, LTL
is equivalent to First-order Monadic Logic of Order (FOMLO) - a subset of FO where
formulas are built using atomic propositions of the form P (x), atomic relations between
elements of the form x1 = x2, x1 < x2, Boolean connectives and first-order quantifiers
∃x and ∀x. [Deu+06] consider verification of LTL-FO for systems composed of partici-
pants that communicate asynchronously over possibly lossy channels and can modify
(append/remove records from local databases). Unsurprisingly, queues make LTL-FO
undecidable, but bounding the queues allows for verification. Verification mechanisms

40

Chapter 2. State of the Art

for LTL-FO were proposed for subclasses of artifacts with data dependencies and arith-
metic in [DDV12; KV17].

The authors in [DDV12] propose a model called artifact systems. Artifact systems
can simulate a counter machine so even the simplest properties are undecidable for
this model. However, for a syntactic restriction called feedback-free artifact systems,
verification of temporal properties is decidable. The properties can be expressed in
LTL-FO and allow data dependencies and arithmetic that are essential in business
processes. Feedback freedom prevents unbounded updates to a variable’s current
value that depends upon its history. It is designed to limit the data flow between oc-
currences of the same artifact variables at different times in runs of the system. The
restriction results in the decidability of verification for LTL-FO properties of feedback-
free systems. The worst-case hyperexponential complexity comes from the number
of artifact variables. Generally, data centric systems need data transformation from
one form to another. Data exchange is a process that takes the data structure in the
source schema and transforms it into a data structure of the target schema based
on a schema mapping. Schema mapping is a set of constraints or rules that state
how data has to be transformed. Tuple Generating Dependency (TGD) is a widely
used technique to define the constraints in relational database theory. Tuple generat-
ing dependency allows certain kind of constraint on relational database in the form of
∀x1, . . . , xnP (x1, . . . , xn) → ∃y1, . . . , ymQ(x1, . . . , xn, y1, . . . , ym). Also, data transforma-
tions with arithmetic operations such as addition, multiplication, etc., called arithmetic
schema mapping, are required by the data centric systems. Authors in [CKO13] study
data exchange with arithmetic schema mapping and queries based on TGD. The author
proposes a polynomial-time algorithm that tests whether, for a given source schema,
there exists a target schema based on the transformation by the schema mapping.
However, the constraints on data used by the authors are only existential and lack uni-
versal quantification on variables. Such restrictions in real crowdsourcing applications
may limit addressing the properties on data. For example, in a crowdsourcing setting,
we want to prove properties in the form: “every record in an output dataset returned
by the crowd satisfies some property P ”. Here, the system requires universal quan-
tification of variables in the output dataset. Indeed, business artifacts allow for data
inputs during the lifetime of an artifact and describe legal relations on datasets before
and after the execution of a task. However, it mainly considers static orchestrations of
guarded tasks and does not consider higher-order constructs such as run time tasks

41

Chapter 2. State of the Art

refinement. Further, LTL-FO verification focuses mainly on the dynamics of systems
(termination, reachability), but does not address correctness.

[Bee+06] proposes a query language for querying business processes. The busi-
ness processes are recursive functions that can call one another, and the verification
that is performed is defined using a query language. This language BP-QL specifies
shapes of workflow executions with a labeled graph and transitive relations among its
nodes. A query Q is satisfied by a workflow W if there is an embedding of Q into the
unfolding of W . While this model addresses the shape of executions, it is more fo-
cused on the operational semantics of workflows. Contrary, the verification scheme in
a crowdsourcing setting is not centered on the shape of control flow, but rather cen-
tered on the contents of data manipulated by the crowd workers. It is more concerned
by the denotational semantics of the specification, and on the question of termination.
Relational data-centric dynamic systems are the systems where data is represented
in the form of a relational database and the process is described in terms of atomic
actions that evolve the database. In such systems, the execution of the atomic actions
can invoke calls to external services to insert new data into the system. [Har+13] shows
that such systems are undecidable in general and shows decidability in a restricted set-
ting where the new data introduced is bounded along each run, although it needs not
to be bounded in the overall system. More recently, [AV13] has proposed a model for
collaborative workflows where participants have a local view of a global instance and
collaborate via local updates. Overall, we can see that formal verification of a data cen-
tric system is decidable in restricted settings where the use of recursion or quantifiers
is constrained.

2.4.5 Weakest Precondition

Another way to reason about correctness of a program in general, and hence also
of a crowdsourcing system is to use systems of logical inference rules to deduce that
initial conditions of all runs of a system to guarantee termination or correctness of
results at the end of each execution. The seminal work for weakest preconditions is
proposed by Edsger Dijkstra [Dij75]. The principle is to see statements of a language
as a predicate transformer. Weakest precondition calculus allows for the construction
of valid deductions of Hoare logic [Hoa69], i.e. prove the so-called Hoare triples.

42

Chapter 2. State of the Art

Hoare logic provides formal system with a set of logical rules to reason about the
correctness of computer programs. A Hoare triple is a statement of the form

{P}S{R}

Here, P and R are assertions and S is a command. P is called the precondition and
R the postcondition and S is the command, code or some function. Precondition is a
condition that needs to be true prior to the execution of some code. On the other hand,
postcondition is a condition that should be true after the execution of some code. All
the assertions are expressed in predicates. A Hoare triple {P}S{R} states that when
precondition P holds, then after execution of S, postcondition R holds. For expressive
enough programming languages, proving a Hoare triple is undecidable.

One can interpret properties P andR as a specification of a program. In this context,
we can say that program S is correct with respect to its specification iff it satisfies the
assertions given by the pair (P,R). There are two ways to address correctness. Partial
Correctness states that if an answer is returned, it will be correct. Total correctness
says that returned answers are correct, but also adds the condition that program S

terminates. Hoare triple provides a narrow notion of termination and using the standard
notion of Hoare logic only partial correctness can be proved. To rephrase, Hoare triple
states that if P holds before the execution of command S, then R will hold afterward or
S does not terminate. The Weakest preconditions is a reformulation of Hoare logic that
builds valid deductions of Hoare logic. It is defined as follows.

Definition 16 (Weakest Precondition). For a statement, S and a postcondition R, the
weakest precondition is a predicate Q such that for any precondition P , {P}S{R} if and
only if P → Q.

The weakest precondition Q is the minimum condition on the state of a program
(or in our case an input dataset) so that program S terminates and after execution of
S, the postcondition is satisfied. In some sense, computing a weakest precondition
is a way to synthesize a valid Hoare triple for a program S when the postcondition
R is known. For a given sequence of instructions S1.S2 . . . Sk and a postcondition R

that have to be met once S1.S2 . . . Sk is executed, one can inductively build Qk as the
weakest precondition for Sk and R, then Qk−1 as the weakest precondition for Sk−1, etc.
Ending with a predicate Q0, one then have to check if the initial state of the program
S1.S2 . . . Sk meets requirements in Q0.

43

Chapter 2. State of the Art

Let us illustrate weakest precondition calculus on an example. Consider an instruc-
tion x := x + 1 and a postcondition x > 0. One valid precondition is x > 0 that is
Hoare triple as {x > 0}x := x + 1{x > 0} is satisfied. While the weakest precondition
wp(x := x + 1, x > 0) is x > −1. Here wp = x > −1 guarantees that after execu-
tion of function x := x + 1, the postcondition x > 0 will be true. By construction, a
weakest precondition is unique. Finding a weakest precondition for a single instruc-
tion of a conditional statement can usually be automated. However, when programs
involve while statements, computing weakest preconditions require for integration of
loop invariant that usually have to be provided by humans. Hence, in general, weak-
est precondition calculus cannot be fully automated. We will see however that in the
case of non-recursive specifications of crowdsourcing systems, this calculus can be
automated. A recent extension of FO2 called FO2BD allows atoms of arbitrary arity,
but only formulas over sets of variables where at most two variables have unbounded
domain. Interestingly, FO2BD formulas are closed under computation of weakest pre-
conditions for a set of simple SQL operations [Itz+17]. We will use it to show that
conditions needed for a non-terminating execution of our model are in ∀FO, and that
∀FO, ∃FO, BSR-FO, SF-FO are closed under precondition calculus.

2.5 Quality Assurance

Quality control in crowdsourcing is one of the primary concerns [Lea11]. For in-
stance, consider a simple task: a requester asks to annotate a set of images in a pre-
defined category on a crowdsourcing platform which acts as an input to train machine
learning models. Errors in the annotated data can lead to errors (or quality problems)
of the trained models. Henceforth, quality control is one of the main concerns in crowd-
sourcing systems. In general, quality control has to find a trade-off between two criteria,
namely accuracy, and budget. Accuracy measures how precise or correct is the set of
the answers returned by the crowd. Clients at a crowdsourcing platform usually have
a limited budget to realize their tasks. A very high budget allows hiring a large pool
of workers, but a limited budget forces them to use as many resources efficiently as
possible. The question is hence how to obtain a reliable answer at a reasonable cost.

Difficulty in quality control comes from tasks and workers which correlate in complex
ways to bring uncertainty to the system. First, tasks may be poorly designed, badly
described, unclear, generic, or have specific requirements, subjective, difficult, etc. On

44

Chapter 2. State of the Art

the other side, workers come with issues such as qualifications, skills set, experience,
biases due to age, gender, sex, demographics, etc. One can also consider malicious
workers, that even return the wrong answer on purpose [XFT15].

Due to these limitations, a single unknown worker cannot be trusted. To deal with
the heterogeneity and uncertainty, tasks are usually replicated: each task is assigned
to a set of workers. Redundancy is also essential to collect worker’s opinions. These
replicated work units are the basic elements of a larger task that can be seen as a
poll. In this setting, one can safely consider that each worker executes his assigned
task independently, and hence returns his own belief about the answer. As workers
can disagree, the role of a platform is then to build a consensual final answer out of
the values returned. Note that for each replication of a task, the accuracy of an answer
is not measured at the level of a single worker, but actually depends on the collective
contributions of all workers.

2.5.1 Aggregation Techniques

A technique that forges this final answer out of the worker’s returned answers is
called aggregation technique. We review some of them in the rest of the section. We
first give the basic notations that we will use in the following sections.

General Setting

We consider a set of tasks T = {t1, . . . , tn} for which answers are unknown and
need to be collected from a set of crowd workers U = {u1, . . . , uk}. For each task tj,
the correct answer is a boolean value aj ∈ {0, 1}. This answer is usually called the
ground truth. For a task tj ∈ T the answers given by worker ui ∈ U is denoted by lij.
We let yj denote the final answer of a task tj obtained by aggregating the answers of
all workers. Lj = ⋃

i∈1..k
lij denotes the set of all answers returned by workers for task tj,

L denotes the set of all answers, L = ⋃
j∈1..n

Lj. The goal is to forge the final aggregated

answer Y = {yj, 1 ≤ j ≤ n} from the returned set of answers L by the crowd workers
for all tasks.

45

Chapter 2. State of the Art

Majority Voting

A natural way to derive a final answer from a set of answers is Majority Voting
(MV), i.e. choose as a conclusion the most represented answer [EV11; Cao+12]. Given
a task and a set of answers for that task, MV selects the final answer as the most voted
answer among the provided solutions. The majority voting aggregation technique, to
derive the final answer yj for each task tj is defined as follows.

Definition 17 (Majority Voting).

∀ j ∈ n, yj = argmax
a∈{0,1}

|Lj |∑
i=1
I(lij, a) (2.1)

where I is an indicator function, defined as follows

I(x, y) =

1 if x = y

0 Otherwise
(2.2)

The limitation of MV is that all answers have equal weight, regardless of the exper-
tise of workers. If a crowd is composed of only a few experts, and of a large majority of
novices, MV favors answers from several novice workers. However, in some domains,
an expert worker may give a better answer than a novice and his answer should be
given more weight. One can easily replace MV with a weighted vote. Let µui denotes
the weight of the worker i. Then weighted majority voting is defined as follows.

∀ i ∈ n,∀j ∈ n, yj = argmax
a∈{0,1}

|Lj |∑
i=1

µui × I(lij, a) (2.3)

Higher weight is given to the more expert worker. However, assigning weight to workers
raises the question of a measure for worker’s expertise, especially when ground truth
is not known.

Measuring Expertise: Golden Question

In general, expertise plays a major role to execute a task that may require some
degree of specialization. For example, a Java programmer is required to code Java-
based applications, a manager will be required to manage a project, an entomologist

46

Chapter 2. State of the Art

is required to study insects, etc. A similar context applies to a crowdsourcing setting.
Better knowledge about the expertise of the crowd workers can avoid uncertainty and
improve the efficiency and accuracy of the answers. However, workers at crowdsourc-
ing platforms are not necessarily known. Most of the crowdsourcing platforms do not
have prior knowledge about the expertise and skills of their worker [Dan+18].

A way to obtain an initial measure of a worker’s expertise is to use Golden Ques-
tions [Le+10; How06]. Golden questions are a set of tasks whose actual answers,
known as ground truth are prior known. Several tasks with known ground truth are
used explicitly or hidden to evaluate worker’s expertise. Broadly, the evaluation mech-
anism is of two types, i.e. explicit and implicit. In the explicit approach, workers are
asked to answer a set of test (golden) questions. The workers are then evaluated and
only the qualified workers are allocated a particular “real” task. The qualification crite-
ria is usually chosen by the client. In this setting, as qualifications tasks are unpaid,
workers are often reluctant to realize these tasks. In the second implicit approach, a
set of golden questions Tg (the tasks whose answer is known) is embedded in the ac-
tual set of tasks Tu (the tasks with unknown answers) to evaluate worker’s expertise.
The workers are evaluated and given weight depends on how they answered each task
in Tg. The weighted aggregation method based on worker’s expertise is then applied
to derive the final answers for tasks Tu. As golden tasks Tg are hidden in standard
crowdsourced tasks (T = Tg ∪ Tu), they have to be paid as other tasks Tu. The advan-
tage is that workers do not make a difference between qualification tasks and actual
tasks. A drawback is that tasks Tg do not produce useful information as answers are
already known but consume a part of the budget. Note that, explicit mechanism is not
so appealing to workers and implicit way requires additional budget. Hence, both the
mechanisms are not well suited and have a disadvantage on their own.

EM based techniques

Several papers have considered tools such as Expectation Maximization (EM) [DLR77]
based techniques to aggregate answers. Given a statistical model that generates a set
X of observed data, the EM algorithm aims at finding the unobserved data Y (missing
data), and estimates hidden parameters θ. In the crowdsourcing context, the observed
data X is the answers returned by the crowd, unobserved data Y is the final aggregated
answers that need to be derived and θ is the hidden parameters such as expertise of
the workers. EM is an iterative approach. Each round of the algorithm consists of two

47

Chapter 2. State of the Art

Figure 2.9 – Expectation Maximization algorithm general workflow.

phases: Expectation step and Maximization Step. The expectation step estimates the
expected value of missing data given observed data and the current estimate of param-
eters. Then the maximization step aims to find the new value of the parameter based
on the estimated missing data and the observed data. The two steps are repeated until
convergence, i.e. the difference between the parameters at a step i and i+ 1 is smaller
than a fixed threshold ε, i.e. ||θi+1 − θi|| ≤ ε. A coarse workflow for the EM algorithm is
shown in Figure 2.9. We discuss in more detail the EM algorithm in Chapter 5.

A large part of the literature considers accuracy as a measure of workers expertise.
We only highlight a few works addressing accuracy and a more complete survey can
be found in [Zhe+17].

48

Chapter 2. State of the Art

Accuracy: Accuracy is defined as the ratio of correctly answered tasks to the total
number of tasks. Formally in our general setting (see Section 2.5.1), given n number
of tasks, answer returned by a worker i for each task j be lij and the final answer
evaluated by an aggregation algorithm (Majority voting, EM based technique) be yj, we
define the accuracy acci of a worker i as follows.

Definition 18 (Accuracy).

acci =
∑n
j=1 ||lij = yj||

n
(2.4)

Zencrowd [DDCM12] considers workers competences in terms of accuracy and
aggregates answers using EM. The authors [Li+14; Ayd+14] model worker expertise as
a single value between [0,+∞]. The higher value implies the higher quality of workers.
The author [Li+14] considers an optimization scheme based on Lagrange multipliers.
Workers accuracy and ground truth are the hidden variables that must be discovered in
order to minimize the deviations between workers answers and aggregated conclusion.

However, accuracy acci is not always a correct criterion to measure an expertise
of a worker i. Consider a scenario where the task is to tag whether a mail is spam or
not. Most of the mail in this scenario is not spam. In this case, even if a worker always
tags a mail as not spam, his accuracy for the task will be very high. However, it is mis-
leading. To cope with this drawback, some authors have proposed multi-dimensional
evaluations, that consider ground truth in their measure. These measures are called
recall and specificity.

The recall αi of a worker i is the probability that worker i answers a task j as 1
when the ground truth is 1, i.e.

αi = Pr(lij = 1|yj = 1) (2.5)

The specificity βi of a worker i is the probability that worker i answers a task j as
0 when the ground truth is 0, i.e.

βi = Pr(lij = 0|yj = 0) (2.6)

Several works have shown that the quality of aggregated answers improves when
expertize is measured in terms of recall and specificity rather than in terms of global
accuracy. D&S [DS79] uses EM to synthesize answers that minimize error rates from
a set of patient records. It considers recall and specificity to measure the worker’s ex-
pertise and to aggregate the answers. The approach in [Ven+14] extends Bayesian

49

Chapter 2. State of the Art

classifier combination (BCC) [KG12] with communities and is called CBCC. BCC is a
general framework to combine the label in the context of the classification that explicitly
models the relationship between each classifier model’s output and the unknown truth
label. In a crowdsourcing context, each model’s output is replaced with the worker’s
answers and the idea is to use BCC to aggregate the answers. In the CBCC approach,
each worker is supposed to belong to a particular (unknown) community and shares
characteristics of this community (recall and specificity as a measure). The assump-
tion helps to improve the accuracy of classification. [Ray+10] proposes a supervised
learning approach when the ground truth is unknown. The work considers recall and
specificity of workers and proposes a maximum-likelihood estimator that jointly learns
a classifier, discovers the best experts, and estimates ground truth.

Task difficulty measures to which extent realizing a task requires an effort by a
worker. For example, annotating a blurred image is more difficult than annotating a
clear image. Most of the works cited above consider the expertise of workers but do
not address task difficulty. An exception is GLAD (Generative model of Labels, Abilities,
and Difficulties) [Whi+09] that proposes to estimate task difficulty as well as worker’s
accuracy to aggregate final answers. The authors recall that EM is an iterative process
that stops only after convergence, but demonstrate that the approach needs only a few
minutes to tag a database with 1 million images. The authors in [DLW13] consider the
accuracy of workers and error in the execution of the tasks by the worker to aggre-
gate the answers. Recall that considering accuracy as the worker’s expertise can be
misleading. Notice that in most of the works, task difficulty is not considered and ex-
pertise is solely modeled in terms of accuracy rather than using recall and specificity.
In Chapter 5, we will propose EM-based aggregation mechanisms that consider recall
and specificity of workers, and tasks difficulty as hidden parameters.

2.5.2 Budget optimization

The success of crowdsourcing platforms is based on the availability of human work-
ers, available skills, and active participation and engagement of the crowd in the real-
ization of the task. The human workers at platforms are demographically separated and
it makes it hard for the administrators of the platform to physically track them. To moti-
vate and push the participants, incentives are widely used. They can take the form of
reputation systems, financial rewards, goodies, etc. [KSK16]. Financial rewards are the

50

Chapter 2. State of the Art

most extrinsic motive which triggers the crowd workers most. The business platforms
as AMT, Wirk, Figure Eight, etc. provide financial rewards as payment upon completion
of a task. Requesters also provide bonuses if they are very happy with the performance
of the crowd workers.

Financial compensation can take two forms: budget and bonus. A budget B0 is an
amount that is fixed apriori by a requester for the execution of all tasks and the bonus
I0 is an extra amount distributed by the requester to reward crowd workers after com-
pletion of a task. Note that, B0 guarantees a minimum compensation for the realization
of a task. On the other hand, the bonus amount varies as it is given after completion
of a task by the requester and is totally based on the performance of the worker. If
the system has an unlimited budget, it can hire an unlimited amount of workers. But
constrained budget forces the system to use the budget at its best. In Chapter 6, we
propose budget optimization schemes to make a trade-off between budget and accu-
racy.

As mentioned above, a single answer for a particular task is often not sufficient to
obtain a reliable answer, and one has to rely on redundancy, i.e. distribute the same
task to several workers and aggregate results to build a final answer. Standard static
approaches on crowdsourcing platforms fix a prior number of k workers per task. Each
task is published on the platform and waits for bids by k workers. There is no guideline
to set the value for k, but two standard situations where k is fixed are frequently met.
The first case is when a client has n tasks to realize with a total budget of B0 units.
Each task can be realized by k = B0/n workers. The second case is when an initial
budget is not known, and the platform fixes an arbitrary redundancy level. In this case,
the number of workers allocated to each task is usually between 3 and 10 [GM+16]. It
is assumed that the distribution of workers is uniform, i.e. that each task is assigned
the same number of workers. An obvious drawback of static allocation of workers is
that all tasks benefit from the same work power, regardless of their complexity.

Generally, the database and machine learning communities focus more on data ag-
gregation techniques and rather leave budget optimization apart. [KOS11] proposes
an algorithm to assign tasks to workers, synthesize answers, and reduce the cost of
crowdsourcing. The author considers a general model of crowdsourcing and provides
an algorithm to decide task assignment to workers and also for inference of correct
answers from the workers. It assumes that all tasks have the same difficulty and that
worker’s reliability is a consistent value in [0, 1]. The author provides an asymptotically

51

Chapter 2. State of the Art

optimal graph construction in the form of a random regular bipartite graph and an opti-
mal iterative method on the graph to allocate workers. CrowdBudget [TT+13] is an ap-
proach that divides a budget B among n existing tasks to achieve a low error rate and
then uses MV to aggregate answers. Worker’s answers follow an unknown Bernoulli
distribution. The objective is to affect the most appropriate number of workers to each
task in order to reduce the estimation error. The approach pre-allocates the workers to
each task providing a bound on total estimation error based on budget. Static alloca-
tion needs not to allocate the same number of workers to each task. However, if the
difficulty of a task is not known, it is difficult to choose a prior optimal allocation policy
allowing a consensus for each task. Raykar et.al [RA14] introduce sequential crowd-
sourced labeling: instead of asking for all the labels in one shot, one decides at each
step whether an evaluation of a task shall be stopped, and which worker should be
hired. The model incorporates a Bayesian model for workers (workers are only charac-
terized by their accuracy), and cost. In a similar line, [CLZ13] formalizes the problem as
bayesian Markov Decision Process (MDP) to model workers reliability and incorporates
it into budget allocation policy. In this MDP framework, set of states represent total bud-
get consumed, and actions are the tasks that could be answered next. Transitions and
their probability depend on the probability of answers returned by the workers, and the
reward is defined in terms of the amount of incentive used to move to the next state (i.e.
get more answers). The author [Li+16b] advocates that in some scenarios a requester
might prefer getting fewer answers of the tasks with high quality rather than solving
all the tasks. The proposed framework Requallo allows the requester to set specific
requirements on the answers and then optimize the budget based on a one-step look
ahead MDP framework. Note that computing a MPD out of a crowdsourcing system
description results in a huge model, and that computing strategies to spend budget or
hire workers on such model is not always a tractable approach.

Some works have considered deployment of tasks. CLAMSHELL [Haa+15] consid-
ers latency improvement. It affects workers to batches of tagging tasks and detects
staggers. To speed up tasks completion, some batches are replicated. Pools are as-
sembled and maintained by rewarding workers for waiting. This approach improves
latency, but increases costs. [GP14] uses Markov decision processes to dynamically
adapt a pricing policy so that batches of tasks are completed with the lowest latency
within a fixed budget, or at the lowest price given some time constraint. [GIL16] pro-
poses solution to compute the best static deployment policies in order to achieve an

52

Chapter 2. State of the Art

optimal utility (i.e. a weighted sum of overall cost and accuracy) using sequencing or
parallelization of tasks. Their exhaustive approach limits the number of workers and
orchestrations that can be considered. [WRA20] is a recommendation technique for
deployments, that allows parallelization of tasks, sequential composition, and use of
machines to solve open tasks such as translation or text writing. Their approach con-
siders fixed competence models, and provides static deployment solutions, building on
optimization techniques. These deployments allow reduction of latency and improve
quality of produced data.

Most of approaches studied consider cost optimization for batches of similar tasks
such as image tagging, and do not consider cost optimization in situations where data
is processed through a complex workflow. The author [Ber+15] proposes Soylent, a
word processor which works in three phases: Find, Fix and Verify (FFV). It aids com-
plex writing tasks by improving the quality of sentences. The workflow follows: In Find
phase, workers detect positions of errors in the sentences, in Fix phase, workers rec-
tify the mistakes, and in the end workers verify the mistakes. Cost is not considered
in this setting. BudgetFix [TT+14] proposes to allocate budget across multi phases of
a workflow. Given a budget of B, BudgetFix species the number of micro-task at each
phase of a workflow along with a budget for each micro-task. The algorithm considers
the Find-Fix-Verify workflow as a use case. However, it assumes prior knowledge of the
difficulty of each of the tasks and considers workflow which works on one sentence at
a time. Budgeteer [TT+15] is an extension of this work which attempts to manage cost
across multiple workflows. The author considers processing multiple sentences using
FFV workflow for each sentence. Note that, these approaches are very case-specific
and do not provide a principled way to guarantee quality assurance in a general crowd-
sourcing workflow setting.

53

PART II

Data Centric Workflows for
Crowdsourcing

55

CHAPTER 3

COMPLEX WORKFLOWS FOR

CROWDSOURCING

Besides the simple human intelligence tasks such as image labeling, sentiment
analysis, we foresee that crowdsourcing platforms have the capability to realize more
intricate tasks. As explained in Chapter 2, the tasks on existing crowdsourcing plat-
forms are simple and usually take a few minutes to an hour to complete. The next
stage of crowdsourcing is to design more involved processes relying on the vast wis-
dom of the crowd. Indeed, many projects, and in particular scientific workflows, take
the form of orchestrations of high-level composite tasks. Each high-level task can be
seen individually as a data collection task, or as a processing of a large dataset, built as
the union of results from independent easy micro-tasks. However, the coordination of
these high-level tasks to achieve the final objective calls for more evolved processes.
One can easily meet situations in which the result of a high-level task serves as an
entry for the next stage of the overall process: for instance, one may want to remove
from a picture dataset images of poor quality before asking workers to annotate them.
Similarly, situations allow parallel processing of dataset followed by a merge of the ob-
tained results. A typical example is the cross-validation of answers returned by different
crowd workers. However, as noted by [Tra+15], composite tasks are not or poorly sup-
ported by existing crowdsourcing platforms. Crowdsourcing markets such as Amazon
Mechanical Turk 1 (AMT), Foule Factory 2, CrowdFlower 3, etc. already propose inter-
faces to access crowd, but the formal design and specification of crowd-based complex
processes are still in their infancy.

Many projects cannot be described as collections of repetitive independent micro-
tasks: they require specific skills and collaboration among participants. We call such

1. https://www.mturk.com
2. https://www.foulefactory.com
3. https://www.crowdflower.com

56

Chapter 3. Complex Workflows for Crowdsourcing

projects “complex tasks”. The typical shape of complex tasks is an orchestration of
high-level phases. For example - tag a database, then find relevant records, and finally
write a synthesis. Each of these phases requires specific skills, can be seen at its level
as a new objective on its own, and can be decomposed into finer choreographies, up to
the level of assembly of micro-tasks. The workflow of such processes is hence dynamic
and shall consider worker skills, availability of workers, and the produced output data,
but also their knowledge about processes themselves. The first challenge is to fill the
gap between a high-level process that a requester wants to realize and its implementa-
tion in terms of micro-tasks composition. Moving from one description level to the other
is not easy, and we advocate the use of the expertise of the crowd for such refinement.
This can be achieved with higher-order answers, allowing a knowledgeable worker to
return an orchestration of simpler tasks instead of a crisp answer to a question.

In this chapter, we formalize the orchestration of complex tasks into smaller sub-
tasks and define a model for crowd-based projects called “complex workflows”. Here is
the outline of the chapter:

— We start with two higher-order examples of a complex task and its orchestration
into smaller sub-tasks in Section 3.1.

— We describe the basic preliminaries to lay out the foundation of the chapter in
Section 3.2. The notations are used throughout the thesis.

— We formalize the notion of workflow and the rewriting of tasks in Section 3.3.
— In Section 3.4, we define the operational semantics of complex workflows and

we conclude in Section 3.5.

3.1 Higher Order Example
Our objective is to provide tools to develop applications in which human actors

are involved to resolve tasks or propose solutions to complete a complex task. The
envisioned scenario is the following: a client provides a coarse grain workflow depicting
important phases of a complex task to process data and a description of the expected
output. The tasks can be completed in several ways, but cannot be fully automated. It is
up to a pool of crowd workers to complete them or to refine the tasks up to the fine-grain
level where high-level tasks are expressed as orchestrations of basic simple tasks.
To illustrate the needs for complex workflows, refinement, and human interactions, we
provide two examples. We start with a simple example implementing an actor popularity
pool and then we provide a real field example - the SPIPOLL case that uses higher-
order.

57

Chapter 3. Complex Workflows for Crowdsourcing

n0

Collect

n1

Select

n2

Classify

nf

V ote
D∅ Dranked

Figure 3.1 – A simple actor popularity poll.

3.1.1 A simple example: the actor popularity poll

A client (for instance a newspaper) wants to rank the most popular actors of the
moment, in the categories comedy, drama, and action movies. The ranking demand is
sent to a crowdsourcing platform as a high-level process decomposed into three se-
quential phases: first a collection of the most popular actors, then a selection of the 50
most cited names, followed by a classification of these actors in comedy/drama/action
category. The ranking ends with a vote for each category, that asks contributors to
associate a score to each name. The client does not input data to the system, but
has some requirements on the output: the output is an instance of a relational schema
R = (name, cites, category, score), where name is a key, cites is an integer that gives the
number of cites of an actor, category ranges over {drama, comedy, action} and score is
a rational number between 0 and 10. Further, for an output to be consistent, every actor
appearing in the final database should have a score and the number of cites greater
than 0. From this example, one can notice that there are several ways to collect actor’s
names, several ways to associate a category tag, to vote, etc. However, the client’s
needs are defined in terms of high-level tasks, without information on how the crowd
will be used to fulfill the demand. This simple sequential task orchestration is depicted
in Figure 3.1. The workflow starts from an empty input dataset D∅, and should return
the desired actor popularity data in a dataset Dranked.

The model proposed in Section 3.4 is tailored to realize this type of application
with the help of workers registered on a platform. Workers can either provide their
answers on how to decompose difficult tasks or input their knowledge and opinion on
the platform.

58

Chapter 3. Complex Workflows for Crowdsourcing

3.1.2 A real field example: the SPIPOLL initiative

We provide a real field example, where managing task decomposition, orchestra-
tion, and workers contributions are key issues. We study the SPIPOLL initiative 4, a
participatory science project. The project aims at collecting quantitative data on polli-
nation by flowering insects to measure the diversity and network structure of pollination
in France. This task is not trivial for several reasons. First of all, collecting information
on insects requires a huge work power to collect significant samples throughout the
whole country. Second, the project lacks work power to sort, classify, huge datasets,
and then derive conclusions from the observed populations. While volunteers can help
to sort pictures of insects, some rare taxons can only be recognized by experts. The ob-
jective of SPIPOLL is to organize collaborative work involving ordinary people, trained
volunteers, and experts to build significant datasets and extract information on polli-
nating insect populations. We believe that the project can benefit from advances in
data-centric crowdsourcing platforms, in particular for the design and automation of
complex data acquisition procedures.

The high-level description of SPIPOLL tasks is: acquire data (pictures), classify
them, and publish the results. The result of classification should be a set of images
with location and time tags, together with a taxon chosen among a finite set of species.
The data acquisition and classification protocols specified by SPIPOLL fit well with
the core idea of complex tasks. The protocol proposed by SPIPOLL is the following.
Volunteers stand for a certain duration (usually 20 minutes) in a place frequented by
insects (bushes, flower beds,...) and take pictures of insects pollinating on a flower
at that place. Once the phase is completed, the observer uploads his pictures on a
server. This first phase results in huge collections of pictures, but not all of them are
exploitable. The obtained result after the first phase is a dataset which records are of
the form of R = {image, place, time}. Data collected from various sources are used
as inputs for a second phase. The second phase’s objective is to classify pictures ac-
cording to their quality, i.e. identify images that will help to find a correct identification
for the represented insect. As the images are collected from diverse and unknown ob-
servers, there is a need to rank and tag the respective image based on their quality,
i.e. associate with each image a tag quality = {poor, average, good, best}. Generally,
for these tasks, considering the bias among the workers, a typical image is given to

4. http://www.spipoll.org/

59

Chapter 3. Complex Workflows for Crowdsourcing

k different workers. The workers give their opinion and tag each of the obtained im-
ages. The third phase aggregates the result obtained in the second phase and gives
a final verdict for each picture. The majority voting technique is widely used to reach
a common consensus among the workers. The fourth phase removes images with
poor quality from the dataset. The fifth phase categorizes the insect images with suffi-
cient quality obtained as input from the fourth phase into different species categories,
category = {category0, . . . , categoryl}. Similar to the second phase, an image is dis-
tributed to k unique workers who are asked to tag a category to the insect image. The
output of this phase serves as input for a sixth phase that aggregates the result by
majority voting to obtain the final category for each picture and then passes the re-
sult for the final assessment. The final assessment for each image is performed by the
experts or scientists for validation and then the obtained results are published. These
types of complex tasks can be often found when there is a need for data collection,
data cleaning, and then processing the data based on human intelligence.

The SPIPOLL example raises several observations on the realization of complex
tasks in a crowdsourcing environment. First, one can note that some of the tasks need
to be completed sequentially, and on the other hand some tasks can be executed in
parallel. For example, in the Spipoll case study, images can only be annotated after
they have been collected by observers. As a result, the first phase and the second
phase can only be executed sequentially. However, images can be annotated in parallel
(second, fifth phase) by different sets of workers. Another remark is that some recurrent
orchestration patterns appear, such as dataset distribution, tagging, and aggregation.
These work distribution patterns are typical examples where crowdsourcing platforms
are particularly adapted to improve quality and delays in data analysis. The dataset
obtained from the observers can be large and annotating such big datasets is usually
a task that cannot be performed by a single worker. Most often, volunteer contributors
in crowdsourcing platforms spend little amounts of time on the platform. Hence the
annotation phase needs to be decomposed, for instance by splitting large datasets into
several chunks of reasonable size. These small chunks of data are then distributed and
tagged in parallel by several workers, before aggregation. In this setting, refinement of
heavy tasks into several smaller concurrent easy tasks saves a lot of time.

Another lesson learned from the SPIPOLL case study is that some tasks may re-
quire special skills, such as expertise on insects to be completed. The validation task
in the above example requires specialized people to judge the validity of the proposed

60

Chapter 3. Complex Workflows for Crowdsourcing

taxons. Hence, the system should consider the expertise of the worker when allocating
tasks. Another thing to note is that the example depicted here is data-centric, i.e. the
role of each high-level or low-level task is to manipulate and transform data (select,
tag,...). One can also observe that all tasks do not require human intelligence, and
some of them can be easily performed by machines. For example, consensus between
the workers is performed by applying majority voting techniques. Other tasks such as
the selection of best pictures are like SQL queries and can be automated. Thus, the
system is a mixture of human and machine-powered intelligence. Generally, machine-
powered tasks are deterministic in nature, and tasks devoted to humans come with
uncertainty.

As mentioned above, the output of one task acts as input to another task, which
leads to causal dependencies among tasks. Besides, the execution of one task may
affect the output of another task. An erroneous output of one task can jeopardize the
execution of several successive tasks and in the long run, may also halt the whole
process. Hence, this calls for the use of verification techniques to ensure consistency
and guaranteed output for each of the task execution.

3.2 Preliminaries

A complex workflow is defined as an orchestration of tasks, specified by a client
to process input data and return an output dataset. A client is a person, requester, or
an organization who wants a crowdsourcing platform to realize a service defined as a
complex task. We assume a fixed and finite pool U of workers, and a prior finite list
of competencies comp. A worker u ∈ U completes or refines some tasks according
to its skills. We hence define a map sk : U → comp. Notice that sk(u) is a set, i.e.
a particular competence c ∈ sk(u) needs not be exclusive. We adopt this simplistic
model of worker’s competencies for the clarity of the model, but more evolved repre-
sentations of skills exist and could be easily integrated into the model. For instance,
[MGM16] proposes a hierarchy of competencies to reflect a natural ranking of the ex-
pertise. However, this thesis does not consider skills classification nor management of
competencies and just views the skills of a worker as a set of keywords.

A task t is a work unit designed to transform input data into output data. A task can
be of several types: it can be a high-level description of a stage in a complex task, a
very basic atomic task that can be easily accomplished by a single worker (for example,

61

Chapter 3. Complex Workflows for Crowdsourcing

tagging images), a task that can be fully automated, or a complex task that requires an
orchestration of sub-tasks to reach its objective. Tasks at crowdsourcing platforms can
be accomplished by either humans, i.e. workers if they require human intelligence, or
by machines, i.e. the tasks that can be automated.

We define a set of tasks T = Tac] Tcx] Taut where Tac is a set of atomic tasks that
can be completed in a single step by a worker, Tcx is a set of complex tasks which need
to be decomposed into an orchestration of smaller subtasks to produce an output, and
Taut is a set of automated tasks that are performed by a machine (for instance some
database operation (selection, aggregation, union, projection, etc.)). Taut do not require
a contribution of a worker to produce output data from input data, and tasks in Tac and
Taut cannot be refined. We impose constraints on skills required to execute a task with
a map Tcs : T → 2comp, depicting the fact that a worker u is allowed to realize or
decompose task t if it has the required competences, i.e., if Tcs(t) ⊆ sk(u). One can,
however, consider that every worker has all competences, and can perform any task
within the system. Within this setting, one needs not define worker’s competencies,
nor attach skills constraints to tasks. However, for practical use of a crowdsourcing
platform, one usually wants to obtain the best possible results, which calls for clever
management of skills, incentives, etc. Now we define the task refinement. Let t ∈ Tcx
be a complex task, and let Ct = Tcs(t) be the set of competencies that allows a worker
to realize a task t. We advocate that crowdsourcing platforms should allow higher-order
answers.

For instance, in the Spipoll case (see Section 3.1), some intricate tagging tasks may
require some special interactions among workers, followed by an expert’s validation.
Such tasks can be orchestrated in a workflow of bounded size assembling nodes which
labels belong to a finite alphabet of tasks. The possibility is already in use in the world
of crypto trading platforms such as Kryll that allows users to define simple trading bots
using a block diagram language [Kry18]. We assume that a competent worker u knows
a set of finite orchestrations depicting appropriate refinements of a task t. We denote
by Profile(t, u), this set of finite workflows. Note that a profile in Profile(t, u) needs
not to be a workflow of large size, and may even contain workflow with a single node.
In such cases, the refinement simply replaces t ∈ Tcx with a single atomic tagging task
t′ ∈ Tac, meaning that u thinks that the task is easy, and wants it to be realized by
another worker with specific skills.

62

Chapter 3. Complex Workflows for Crowdsourcing

We illustrate the refinement with an example. Assume a task t ∈ Tcx with an ob-
jective is to tag a (huge) dataset Din. Here, Profile(t, u) contains a workflow that first
decomposes Din into K small tables, then inputs these tables to K tagging tasks in
Tac that can be performed by humans in a reasonable amount of time, and finally ag-
gregates the K obtained results. This refinement has many practical applications, for
instance consider the following scenario: a complex task tlike asks to rank large col-
lections of images of different animals with a score between 0 and 10. The relational
schema for the dataset D used as input for tlike is a collection of records of the form
Picdata(nb, name, kind) where nb is a key, name is an identifier for a picture, kind de-
notes the species type obtained from the former annotation of data by crowd workers. A
worker u decides to divide dataset D into three disjoint datasets that consist of pictures
of cats, pictures of dogs, and pictures of other animals respectively. The three datasets
are independent and can be ranked separately by the workers and in the end, results
are aggregated. Figure 3.2 represents a possible profile to refine task tlike. A task tlike
is rewritten in a workflow with four nodes. Node n0 is an automated task that splits
the original dataset into a dataset containing pictures of dogs, cats, and other animals.
Nodes n1, n2, n3 are occurrences of tagging tasks for the respective animal kinds, and
node nf is an automated task that aggregates the results obtained after realization of
preceding tasks.

n

tlike
D Dranked n0

tsplit

n1

tdog

n2

tcat

n3

toth

nf

tjoin

D Dranked

Figure 3.2 – A profile for refinement of task tlike.

63

Chapter 3. Complex Workflows for Crowdsourcing

3.3 Workflow Formalization

In this section, we formalize the notion of workflow, and complex workflow. This
model is inspired by artifacts systems [DDV12], but uses higher-order constructs (task
decomposition), and relies on human actors (the crowd workers) to complete tasks.
We assume a client willing to use the power of crowdsourcing to realize a complex task
that needs human contribution to collect, annotate, or organize data. This complex
task is specified as a workflow that orchestrates elementary tasks or other complex
tasks. The client can input data to the system (i.e. enter a dataset Din) and have prior
knowledge on the relation between the contents of the input and the plausible outputs
returned after completion of the complex workflow. This scenario fits several types of
applications such as opinion polls, citizen science participation, etc. High-level answers
of workers are seen as workflow refinements, and elementary task realizations are
simple operations that transform data. During the execution of a complex workflow, we
consider that each worker is engaged in the execution of at most one task.

Definition 19 (Workflow). A workflow is a labeled acyclic graph W = (N,→, λ) where
N is a finite set of nodes, modeling occurrences of tasks, →⊆ N×N is a precedence
relation, and λ : N→T associates a task name to each node. A node n ∈ N is a source
iff it has no predecessor and a sink iff it has no successor.

We fix a finite set of tasks T , and denote byW the set of all possible workflows over
T . Intuitively, if (n1, n2) ∈−→, then an occurrence of task named λ(n1) represented
by n1 must be completed before an occurrence of task named λ(n2) represented by
n2, and that data computed by n1 is used as input for n2. We denote min(W) the set
of sources of W , by succ(ni) the set of successors of a node ni, and by pred(ni) its
predecessors. The size of W is the number of nodes in N and is denoted |W |. We as-
sume that when a task in a workflow has several predecessors, its role is to aggregate
data provided by preceding tasks, and when a task has several successors, its role
is to distribute excerpts from its input dataset to its successors. With this convention,
one can model situations where a large database is to be split into smaller datasets
of reasonable sizes that are then processed independently. We denote by W \{ni} the
restriction of W to N\{ni}, i.e. a workflow W from which node ni is removed along with
all edges which origins or goals are node ni.

64

Chapter 3. Complex Workflows for Crowdsourcing

We assume some well-formedness properties of workflows:

1. Every workflow has a single source node nint.

2. Every workflow has a single sink node nf . Informally, we can think of nf as the
task that returns the dataset computed during the execution of the workflow.

3. There exists a path from every node ni of W to the sink node nf . The property
prevents from launching tasks which results are never used to build an answer to
a client.

We define a higher-order answer as a refinement of a node n in a workflow by another
workflow. Intuitively, n is simply replaced by W ′ in W .

Definition 20 (Refinement). Let W = (N,−→, λ) be a workflow, W ′ = (N ′,−→′, λ′)
be a workflow with a unique source node n′src = min(W ′) and a unique sink node n′f

such that N∩N ′ = ∅. The refinement of n ∈N by W ′ in W is the workflow W[n/W ′] =
(N[n/W ′],−→[n/W ′], λ[n/W ′]), where

— N[n/W ′] = (N \ {n}) ∪N ′

— λ[n/W ′](ni) = λ(n) if ni ∈ N, λ′(ni) otherwise
— →[n/W ′]=→′ ∪{(n1, n2)∈→|n1 6=n ∧ n2 6=n} ∪ {(n1, n

′
src) |(n1, n) ∈→} ∪ {(n′f , n2) |

(n, n2) ∈→}

To illustrate the notion of refinement, consider the example of Figure 3.3. In the
workflow at the left of the figure, node n1 is replaced by the profile of Figure 3.2 for task
tlike. The result is the workflow on the right of Figure 3.3.

Based on the definition of workflow and refinement, we now define the complex
workflow as follows.

Definition 21. A Complex Workflow is a tuple CW = (W0, T ,U , sk,R) where T is a
set of tasks, U a finite set of workers, R ⊆ T × 2W is a set of rewriting rules, and
sk ⊆ (U×R) ∪ (U×Tac) defines workers competences. W0 is an initial workflow, that
contains a single source node ni and a single sink node nf .

We assume that in every rule (t,W) ∈ R, the labeling λ of W is injective. This
results in no loss of generality, as one can create copies of a task for each node in W ,
but simplifies proofs and notations afterward. Further, W has a unique source node
src(W). The relation sk specifies which workers have the right to perform or refine
a particular task. This encodes a very simple competence model. The thesis does

65

Chapter 3. Complex Workflows for Crowdsourcing

n0

t1
n1

tlike

n2

t2
n3

t3

D D′ n0

t1

n2

t2

n3

t3

n′0

tsplit

n′1

tdog

n′2

tcat

n′3

toth

n′f

tjoin

D D′

Figure 3.3 – A refinement of node n1, replaced by the profile for task tlike in Figure 3.2.

not focus on the skill modeling of workers at crowdsourcing platforms and we refer
to [MGM16] for further studies on competencies and more elaborated competence
models.

Let us consider the example of Figure 3.3-left: a workflow contains a complex task
tlike whose objective is to rank large collections of images of different animals with a
score between 0 and 10. The relational schema for the dataset D used as input for tlike
is a collection of records of the form Picdata(nb, name, kind) where nb is a key, name is
an identifier for a picture, kind denotes the species obtained from the former annotation
of data by crowd workers. Let us assume that a worker u knows how to handle task tlike
(i.e. (u, tlike) ∈ sk), and wants to divide dataset D into three disjoint datasets containing
pictures of cats, dogs, and other animals, rank them separately, and aggregate the
results. This is captured by the rule R = (tlike,Wlike) of Figure 3.1-b, where node n0 is
an occurrence of automated tasks that splits an input dataset into datasets containing
pictures of dogs, cats, and other animals, n′1, n′2, n′3 represent tagging tasks for the
respective animal kinds, and node n′f is an automated task that aggregates the results
obtained after realization of preceding tasks. A higher-order answer of worker u is
defined as an application of rule R to refine node n1 in the original workflow with Wlike.
The result is shown in Figure 3.3-right.

66

Chapter 3. Complex Workflows for Crowdsourcing

3.4 Operational Semantics

In this section, we define the operational semantics for complex workflows. A com-
plex workflow considers the set of tasks, task constraints, worker skills, and comes with
a set of operational rules. At each node of the workflow, data is transformed using data
operations. Operational rules act as a guiding principle in the execution of a complex
workflow. The semantics is defined with four rules - worker assignment, atomic task
completion, automated task completion, and refinement. We also define configurations
which represent the states of the complex workflow. An execution of an operational rule
simply updates the current configurations of the workflow.

3.4.1 Data operations

We introduced the standard data representation using relational schema in Chap-
ter 2, i.e. a representation of records by tuples of the form rn(a1, . . . , an), where rn is
a relation name and attributes a1, . . . , an that fulfill the constraints of the legal domain
of relation rn. The restriction by the client puts restrictions to reduce the range of legal
input data or on the expected output of a complex workflow. Termination of a com-
plex workflow depends upon the properties of a dataset and the transformation of data
contents during configuration changes.

Here we first detail how automated and simple tasks are realized and process the
data input to that task to produce output data. At every node n representing a task t =
λ(n), the relational schema of all input (resp. output) datasets are known and denoted
rsin1 , . . . , rs

in
k (resp. rsout1 , . . . , rsoutk). We denote byDin = Din

1 , . . . , D
in
k the set of datasets

provided by predecessors of t as an input to task t, and by Dout = Dout
1 , . . . , Dout

q the set
of output datasets computed by task t. During a run of a complex workflow, we allow
tasks executions only for nodes which inputs are not empty. The contents of every Dout

i

produced during the execution of a task is the result of one of the operations below:

SQL-LIKE OPERATIONS : We allow standard SQL operations:

— Selection: For a given input dataset Din
i with schema rn(x1, . . . , xn) and a pred-

icate P (x1, . . . , xn), compute Dout
j = {rn(x1, . . . xn) | rn(x1, . . . , xn) ∈ Din

i ∧
P (x1, . . . , xn)}.

— Projection: For a given input dataset Din
i with schema rn(x1, . . . , xn) and an in-

dex k∈1, . . . , n compute Dout
j = {rn(x1, . . . , xk−1, xk+1, . . . , xn) | rn(x1, . . . , xn) ∈

Din
i }.

67

Chapter 3. Complex Workflows for Crowdsourcing

— Insertion/Deletion: For a given input datasetDin
i and a fixed tuple rn(a1, . . . , an),

compute Dout
j = Din

i ∪ {rn(a1, . . . , an)} (resp. Dout
j = Din

i \ {rn(a1, . . . , an)})
— Union: For two input datasetDin

i , D
in
k with schema rn(x1, . . . , xn), computeDout

j =
Din
i ∪Din

k

— Join: For two input datasetDin
i , D

in
k with schema rni(x1, . . . xn) and rnk(y1, . . . , yq),

for a chosen pair of indices indi, indk computeDout
j = {rn′(x1, . . . , xn, y1, . . . , yindk−1,

yindk+1, . . . , yq) | xindi = yindk ∧ rni(x1, . . . , xn) ∈ Din
i ∧ rnk(y1, . . . yq) ∈ Din

k }
— Difference: For two input dataset Din

i , D
in
k with the same schema rn(x1, . . . , xn),

compute Dout
j = Din

i \Din
k

WORKERS OPERATIONS : These are elementary tasks performed by workers to modify
the datasets computed so far. These operations may perform non-deterministic choices
among possible outputs.

— Field addition: Given an input dataset Din
i with schema rn(x1, . . . , xn), a pred-

icate P (.), compute a dataset Dout
j with schema rn′(x1, . . . , xn, xn+1) such that

every tuple rn(a1, . . . , an) ∈ Din
i is extended to a tuple rn(a1, . . . , an, an+1) ∈ Dout

j

such that P (a1, . . . , an+1) holds. Note that the value of field xn+1 can be chosen
non-deterministically for each record.

— Record input: Given an input dataset Din
i with schema rn(x1, . . . xn), and a

predicate P , compute a dataset Dout
j on the same schema rn(x1, . . . , xn) with

an additional record rn(y1, . . . , yn) such that P (y1, . . . , yn) holds. Note that the
value of y1, . . . , yn+1 can be non-deterministically chosen. Intuitively, P defines
the set of possible entries in a dataset.

— Field update: For each record rn(a1, . . . , an) ofDin
i , compute a record rn(b1, . . . , bn)

in Dout
j such that some linear arithmetic predicate P (a1, . . . , an, b1, . . . , bn) holds.

Again, any value for b1, . . . , bn that satisfies P can be chosen.

RECORD TO RECORD ARITHMETIC OPERATIONS (R2R) : For each record rni(a1, . . . , an)
of Din

i , compute a record in Dout
j of the form rnj(b1, . . . , bq) such that each bk, k ∈ 1..q is

a linear combination of a1, . . . , an. For example (Figure 3.4), Consider node n1 with in-
put dataset with D1 with relational schema rn1(id, c1, . . . , cn) where id denotes an item
numbers of grocery products and c1, . . . , cn denotes the different cost (raw material
cost, labor cost, shipping cost, storage cost, ...). The n1 node executes R2R oper-
ation and returns dataset D2 with relational schema rn2(id, v1 . . . , vn) where each vi

denotes different costs beared by the regulators (producer, whole sellers, retailers,...).

68

Chapter 3. Complex Workflows for Crowdsourcing

n1

t1

D1 D2

u1

Id c1 c2 c3 c4
1 100 80 . .
2 123124 . .
3 200356 . .
4 90 120 . .

Id v1 v2 v3
1 180 . .
2 247 . .
3 556 . .
4 210 . .

Figure 3.4 – Record to record arithmetic operations.

For example, the field value v1 denotes the producer cost and is obtained by the linear
combinations as R2R(v1) = c1 + c2 where c1 is the raw material cost and c2 denotes
labor cost. Note that here, we consider linear combination of attributes as it gives an
effective algorithm to compute the results in polynomial time. We also restrict ourselves
to arithmetic over real values. The FO formula with real number and arithmetic opera-
tions (Addition, multiplication, ...) with the equality constraints are decidable following
the famous Tarski theorem [Tar98]. While for other cases as function symbols, it can
lead to undecidable cases (see Richardson’s theorem [Ric68]).

These operations can easily define tasks that split a database Din
1 in two datasets

Dout
1 , Dout

2 , one containing records that satisfy some predicate P and the other one
records that do not satisfy P . Similarly, one can describe input of record from a worker,
operations that assemble datasets originating from different threads. To summarize,
when a node n with associated task t with I predecessors is executed, we slightly
abuse our notations and write Dout

k = fk,t(Din
1 , . . . , D

in
I) when the task performs a de-

terministic calculus (SQL-based operations or record to record calculus), and Dout
k ∈

Fk,t(Din
1 , . . . , D

in
I) when the tasks involves non-deterministic choice of a worker and the

records in the output dataset should satisfy some properties relation values of record
fields in Dout

k and values in Din
1 , . . . , D

in
I . An example is shown in Figure 3.5. The node

n4 receives input dataset D1, D2 and D3 and produces dataset Dout
4 using a determin-

istic union operations. We use first-order logic (FO) to address properties on dataset.
Next, we give the operational semantics of complex workflows.

69

Chapter 3. Complex Workflows for Crowdsourcing

n1

t1

n2

t2

n3

t3

n4

t4

D1

D2

D3

Dout
4

Figure 3.5 – Union of datasets.

3.4.2 Operational Semantics

An execution starts from the initial workflow W0 that is the initial high-level de-
scription provided by the client. Without loss of generality, we assume that the client
provides an input dataset Din (that can be empty). Executing a complex workflow con-
sists of realizing all its tasks following the order given by the dependency relation −→
in the orchestration, possibly after some refinement steps. At each step of execution,
the remaining part of the workflow to execute, the assignments of tasks to workers,
and the data input to tasks are memorized in a configuration. Execution steps con-
sist of updating configurations according to operational rules. They assign a task to a
competent worker, execute an atomic or automated task (i.e. produce output data from
input data), or refine a complex task. Executions end when the remaining workflow to
execute contains only the final node nf .

A worker assignment for a workflow W = (N,−→, λ) is a partial map wa :N → U
that assigns a worker to a subset of nodes in the workflow. Let wa(n) = wi. If λ(n) is a
complex task, then there exists a rule r = (λ(n),W) ∈ R such that (wi, r) ∈ sk (worker
wi knows how to refine task λ(n)). Similarly, if λ(n) is an atomic task, then (wi, λ(n)) ∈
sk (worker wi has the competences needed to realize λ(n)). We furthermore require
map wa to be injective, i.e. a worker is involved in at most one task. We say that wi ∈ U
is free if wi 6∈ wa(N). If wa(n) is not defined, and wi is a free worker, wa ∪ {(n,wi)} is
the map that assigns node n to worker wi, and is unchanged for other nodes. Similarly,
wa\{n} is the restriction of wa to N \ {n}. A data assignment for a workflow W is
a function Dass : N → (DB] {∅})∗, that maps nodes in W to sequence of input

70

Chapter 3. Complex Workflows for Crowdsourcing

datasets. For a node with k predecessors n1, . . . nk, we have Dass(n) = D1 . . . Dk. A
dataset Di can be empty if ni has not been executed yet, and hence has produced no
data. Dass(n)[i/X] is the sequence obtained by replacement of Di by X in Dass(n).

Definition 22 (Configuration). A configuration of a complex workflow is a triple C =
(W,wa,Dass) where W is a workflow depicting remaining tasks that have to be com-
pleted, wa is a worker assignment, and Dass is a data assignment.

A complex workflow execution starts from initial configuration C0 = (W0, wa0, Dass0),
where wa0 is the empty map, Dass0 associates dataset Din provided by client to nint

and sequences of empty datasets to all other nodes of W0. A final configuration is a
configuration Cf = (Wf , waf , Dassf) such that Wf contains only node nf , waf is the
empty map, and Dassf (nf) represents the dataset that was assembled during the ex-
ecution of all nodes preceding nf and has to be returned to the client. The intuitive
understanding of this type of configuration is that nf needs not be executed and simply
terminates the workflow by returning final output data. Note that due to data assign-
ment, there can be more than one final configuration, and we denote by Cf the set of
all final configurations.

We define the operational semantics of a complex workflow with four rules that
transform a configuration C = (W,wa,Dass) in a successor configuration C ′ = (W ′, wa′,

Dass′). Rule 1 defines task assignments to free workers, Rule 2 defines the execution
of an atomic task by a worker, Rule 3 defines the execution of an automated task, and
Rule 4 formalizes refinement.

Rule 1 (WORKER ASSIGNMENT): A worker u ∈ U is assigned to a node n. The rule
applies if u is free, has the skills required by t = λ(n), if t is not an automated task
(t 6∈ Taut) and if node n is not already assigned to a worker. Note that a worker can
be assigned to a node even if the node does not have input data yet, and is not yet
executable. This rule only changes the worker assignment part in a configuration.

n 6∈ Dom(wa) ∧ u 6∈ coDom(wa) ∧ λ(n) 6∈ Taut
∧ (Tcs(t) ⊆ sk(u))

(W,wa,Dass)→ (W,wa ∪ {(n, u)}, Dass) (3.1)

71

Chapter 3. Complex Workflows for Crowdsourcing

n1

t1

n2t2

n3

t3

nf

C

D1

D2

R1

n1

t1

n2t2

n3

t3

nf

C ′

D1

D2

Smith

Figure 3.6 – Application of semantic rule R1.

Consider for instance the application of rule R1 described in Figure 3.6. Configura-
tions are represented by the contents of dashed rectangles. Workflow nodes are rep-
resented by circles, tagged with a task name representing map λ. The dependencies
are represented by plain arrows between nodes. Worker assignments are represented
by dashed arrows from a worker name ui to its assigned task. Data assignment are
represented by double arrows from a dataset to a node. The left part of Figure 3.6
represents a configuration C with four nodes n1, n2, n3 and nf . The predecessors of n1

and n2 have been executed. Node n1 represents occurrence of a task of type t1 and
is attached dataset D1. Let us assume that D1 is a database containing bee pictures,
and that task t1 cannot be automated (t1 6∈ Taut) and consists in tagging these pictures
with bee names, which requires competences on bee species. This is formalized by
Tcs(t1) = {Bees}. Let us assume that worker Smith is currently not assigned any task
and has competences on bees, i.e. Bees ∈ sk(Smith). Then rule R1 applies. The re-
sulting configuration is C ′ shown at the right of Figure 3.6, where the occurrence of t1
represented by node n1 is assigned to worker Smith.

Rule 2 (ATOMIC TASK COMPLETION): An atomic task t = λ(n) can be executed if
node n is minimal in workflow W , it is assigned to a worker u = wa(n) and its input
data Dass(n) does not contain an empty dataset. Upon completion of task t, worker
u publishes the produced data Dout to the succeeding nodes of n in the workflow and
becomes available. The rule modifies the workflow part (node n is removed), the worker
assignment, and the data assignment (produces new data and is made available to
successors of n).

72

Chapter 3. Complex Workflows for Crowdsourcing

n ∈ min(W) ∧ λ(n) ∈ Tac ∧ wa(n) = u

∧Dass(n) 6∈ DB∗.∅.DB∗

∧ ∃Dout = Dout
1 , . . . , Dout

k ∈ Fλ(n),u(Dass(n)),
Dass′ = Dass \ {(n,Dass(n))}∪

{(nk, Dass(nk)[j/Dout
k

]) | nk ∈ succ(n)
∧n is the jth predecessor of nk}

(W,wa,Dass) λ(n)−−→ (W \{n}, wa\{(n, u)}, Dass′)
(3.2)

Consider the example of Figure 3.7. We start from a configuration in which worker
Smith has to tag bee images stored in a dataset D1. We assume that the relational
schema for D1 is a tuple R(id, pic) where id is a key and pic a picture. We also assume
that tags are species names from a finite set of taxons, e.g. Tax = {Honeybee, Bumblebee,
..., Unknown}. Worker Smith performs the tagging task, which results in a dataset D3

with relational schema R′(id, pic, tx). One can notice that no information is given of the
way worker Smith tags the pictures in D1, the only insurance is that for every tuple
R(id, pic), there exists a tuple R′(id, pic, tx) in D3 where tx ∈ Tax, i.e.

R(id, pic) ∈ D1 =⇒ ∃R′(id, pic, tx) ∈ D3 ∧ tx ∈ Tax

Notice that application of this rule may result in several successor configurations, as
a human worker can choose non-deterministically any tag for each picture (including
wrong answers).

n1

t1

n2

t2

n3

t3

nf

C

D1

D2

Smith

R2

n2

t2

n3

t3

nf

C ′ D3

D2

Figure 3.7 – Application of semantic rule R2.

73

Chapter 3. Complex Workflows for Crowdsourcing

Rule 3 (AUTOMATED TASK COMPLETION): An automated task t = λ(n) can be exe-
cuted if node n is minimal in the workflow and its input data does not contain an empty
dataset. The difference with atomic task completion is that n is not assigned a worker,
and the produced outputs are a deterministic function of task inputs. This rule modifies
the workflow part (node n is removed), and the data assignment.

n∈min(W) ∧ λ(n) ∈ Taut ∧Dass(n) 6∈ DB∗.∅.DB∗

∧Dout = fλ(n),u(Dass(n)) = Dout
1 , . . . , Dout

k ,

Dass′ = Dass \ {(n,Dass(n))}∪
{(nk, Dass(nk)[j/Dout

k
]) | nk ∈ succ(n)

∧n is the jth predecessor of nk}

(W,wa,Dass) λ(n)−−→ (W \n,wa,Dass′)
(3.3)

n2

t2

n3

t3

nf

C

D3

D2

R3

n2

t2 nf

C ′

D4

D2

Figure 3.8 – Application of semantic rule R3.

Consider the example of Figure 3.8. We resume from the situation in Figure 3.7, i.e.
with two nodes n2, n3 remaining to be executed before nf , and with a dataset composed
of tagged images attached to node n3. Let us assume that task t3 is an automated task
that consists of pruning out images with tag "unknown". This task can be realized as
a projection of D3 on tuples R′(id, pic, tx) such that tx 6= “Unknown′′. As a result, we
obtain a dataset D4, used as input by node nf such that ∀R′(id, pic, tx) ∈ D4, tx 6=
“unknown′′. The projection operation can be realized by simple SQL query as stated
in Section 3.4.1.
Rule 4 (COMPLEX TASK REFINEMENT): The refinement of a node n with t = λ(n) ∈ Tcx
by worker u = wa(n) uses a refinement rule r such that r = (t,Ws) exists and is
listed in the competences of u. The condition for the worker assignment guarantees
that refinement is always performed by a competent worker, owning an appropriate

74

Chapter 3. Complex Workflows for Crowdsourcing

refinement rule to handle a task. Rule 4 refines node n with workflow Ws = (Ns,−→s

, λs) (see Def. 20). Data originally used as input by n become inputs of the source node
of Ws. All other newly inserted nodes have empty input datasets. This rule changes the
workflow part of configurations and data assignment accordingly.

t = λ(n) ∈ Tcx ∧ ∃u, u = wa(n) ∧ r ∈ Profile(t, u) ∧ r = (t,WS)
∧Dass′(min(Ws)) = Dass(n)
∧∀x ∈ Ns \min(Ws), Dass′(x) = ∅|Pred(x)|

∧wa′ = wa\{(n,wa(n))}

(W, wa, Dass)
ref(n)−−−→ (W[n/Ws], wa′, Dass′)

(3.4)

n1

t1

n2t2

n3

t3

nf

C

D1

D2

Smith

R4

n′1

t5

n′2

t6
n′3

t7

n′4

t8

n2t2

n3

t3

nf

C ′

D1

D2

Figure 3.9 – Application of semantic rule R4.

Consider the example of Figure 3.9. Let us assume that worker Smith is assigned
task t1 and that this task is a complex tagging task (for instance workers are asked
to find names of rare species). In such a situation, Smith can decide to replace the
task with a simple single-worker tagging mechanism, or by a more complex workflow,
that asks a competent worker to tag pictures, then separates the obtained datasets
into pictures with/without the tag “Unknown”, and sends the Unknown species to an
expert (for instance an entomologist) before aggregating the union of all responses.
This refinement leads to a configuration C ′, shown in the right part of Figure 3.9, where
n′1 is a tagging task, n′2 is an automated task to split a dataset, n′3 is a tagging task that
requires highly competent workers and n′4 is an aggregation task. Here the conditions
for worker assignment guarantee that refinement is always performed by a competent
worker, owning an appropriate refinement rule to handle a task.

75

Chapter 3. Complex Workflows for Crowdsourcing

Note that the definition of a complex task is very subjective and varies from one
worker to another. Classifying tasks as complex or not a priori should not be seen as
a limitation, as refinement is not mandatory: a worker can replace a node n labeled
by task t ∈ Tcx by another node labeled by an equivalent task t′ ∈ Tac ∪ Taut if this
possibility is allowed by the rules she can apply. This allows to model situations where
a worker has the choice to realize a task or refine it when she thinks it is too complex
to be handled by a single person. Similarly, the choice of a rewriting rule is a way to
implement a choice of a worker or simulate a random environment. But, rewriting allows
for recursion, i.e. rewriting of a task t can contain a new occurrence of t (either directly
or through successive rewritings).

We say that there exists a move from a configuration C to a configuration C ′, or
equivalently that C ′ is a successor of configuration C and write C C ′ whenever there
exists a rule that transforms C into C ′.

Definition 23 (Run). A run ρ = C0.C1 . . . Ck of a complex workflow W is a finite se-
quence of configurations such that C0 is the initial configuration of W , and for every
i ∈ 1 . . . k, Ci−1 Ci. A run is maximal if Ck has no successor. A maximal run is
terminated iff Ck is a final configuration, and it is deadlocked otherwise.

Runs of a complex workflow are successive rewritings of configurations via rules.
Figure 3.10 gives an example of run. The top-left part of the figure is an initial con-
figuration C0 = (W0, wa0, Dass0) composed of an initial workflow W0, an empty map
wa0 and a map Dass0 that associates dataset Din to node nint. The top-right part of
the figure represents the configuration C1 = (W1, wa1, Dass1) obtained by assigning
worker u1 for execution of task t2 attached to node n2 (Rule 1). The bottom part of the
figure represents the configuration C2 obtained from C1 when worker u1 decides to re-
fine task t2 according refinement rule (t2,Wt2) (Rule 4). Workflow Wt2 is the part of the
Figure 3.10 contained in the Grey square.

We denote by Runs(CW,Din) the set of maximal runs originating from initial con-
figuration C0 = (W0, wa0, Dass0), where Dass0 associates dataset Din to node ninit.
We denote by Reach(CW,Din) the set of configurations that can be reached from C0.
Along a run, the size of the dataset in use can grow unboundedly, and the size of the
workflow can also increase, due to the refinement of tasks. Hence, Reach(CW,Din)
andRuns(CW,Din) need not be finite. Indeed, complex tasks and their refinement can
encode unbounded recursive schemes in which workflow parts or datasets grow up to

76

Chapter 3. Complex Workflows for Crowdsourcing

ninttin

n1

t1

n2t2

n3

t3

nf

C0

Din

ninttin

n1

t1

n2t2

n3

t3

nf

C1

Din

u1

ninttin

n1t1 n3

t3

n4

ta

n5tb

n6tc

n7td

n8

te

n9tf

n10tg

n11 th

n12ti

n13 tj

n14

tk
n15 tl

n16

tm

nf

Wt2
Din

C2

R1

R4

Figure 3.10 – Complex workflow execution. C0 represents the initial configuration with
data Din allocated to node nint. C1 is the successor of C0: worker u1 is allocated to
node n2, and t2 = λ(n2) is a complex task. C3 depicts the configuration after refinement
of node n2 by a new workflow Wt2 (shown in the grey rectangle).

arbitrary sizes. Even whenReach(CW,Din) is finite, a complex workflow may exhibit in-
finite cyclic behaviors. Hence, without restriction, complex workflows define transitions
systems of arbitrary size, with growing data or workflow components.

3.5 Conclusion
In this chapter, we defined complex workflows for crowdsourcing applications that

enable intricate data-centric processes built on higher-order schemes. We presented
the operational semantics in the form of rules and rewriting schemes.

However, an operational semantics alone is not enough to guarantee that a work-
flow provides the desired output required by the client. Complex workflows with rewrit-
ing schemes can encode unbounded recursive schemes. In such cases, it becomes
crucial to check the termination of workflow along with correctness that guarantees
the desired output. In the next chapter, we propose verification schemes for complex
workflow and particularly study the termination and correctness properties.

77

CHAPTER 4

DECIDABILITY

In the previous chapter, we proposed a complex workflow that supports higher-order
orchestrations that rewrites a complex task in a new workflow. The complex workflows
are equipped with a set of semantic rules (see Section 3.4.2) that describes how to
allocate workers, orchestrate and execute tasks. However, a workflow may never reach
a final configuration. It can be due to particular data input by workers that cannot be
processed properly by the workflow, or to infinite rewriting appearing during the exe-
cution. In the first case, the workflow is deadlocked. In the second case, the workflow
does not terminate either, this situation is a livelock. Both deadlocks and livelocks pre-
vent termination of a process. However, termination is not the only property to meet
the client’s requirement. For example, a workflow W may terminate, but with a wrong
output, i.e. an output dataset that does not comply with the client’s requirement. In such
cases, the returned output is of no use to the client. Hence, along with the termination,
it is important to guarantee the correctness of the workflow. Given a workflow and a set
of workers, we will address the following problems:

— Universal termination: Does the workflow terminate for every possible input to
the system?

— Existential termination: Is there at least one input for which at least one exe-
cution of the workflow terminates?

— Universal correctness: For a given constraint ψ0 on the produced results, does
the workflow terminates and satisfies ψ0 for every possible input to the system?

— Existential correctness: For a given constraint ψ0 on the produced results, Is
there a particular input and at least one run of execution for which the workflow
terminates and satisfies ψ0?

In this chapter, we study the formal properties of complex workflow: termination and
correctness. Here we give the outline of the chapter.

— We first describe the data aspects using first-order logic in Section 4.1.
— We propose solutions to check the existential and universal termination of com-

plex workflows in Section 4.2.

79

Chapter 4. Decidability

— In Section 4.3, we show how to verify the existential and universal correctness
of a complex workflow. We also provide the complete complexity analysis for the
termination and correctness problem.

— A use case is provided in Section 4.4.
— We show in Section 4.5, the tool CrowdPlex that implements the complex work-

flow model and the algorithms to check correctness and termination properties
and in the end we conclude in Section 4.6.

4.1 Effective Computation of Weakest Preconditions

Data is central to crowdsourcing systems. Each node of a complex workflow takes
some input data that complies with a relational schema for the node, processes it ac-
cording to the operation attached to this node. More formally, user inputs and auto-
mated tasks transform an input dataset into an output dataset. Data processing oper-
ations must comply with some FO requirements that constrain the legal outputs pro-
duced for some input. This transformation may produce an output in which relational
schema is completely different from the schema on the input (for instance when a new
field (tag) is added by a crowd worker), or conversely, preserve it (for instance when
the operation realized is a selection). The output of a node acts as an input to the
successor node(s). Crowdsourcing is used to process data input by a client. One can
assume:

— the client has some prior knowledge on the data that can be input to the system.
— the client expects some output that meets certain properties, e.g. the range of

answers collected is large enough, the answers are in a particular range, etc.

The most adapted formalism to specify properties of dataset is FO. In the rest of the
thesis, we will assume that the FO formulas used are given in Prenex Normal Form
(PNF) (see Chapter 2). This results in no loss of generality, as a formula that is not
in PNF, can be converted to an equivalent PNF formula. We consider variables that
either have finite domains or real valued domains, and predicates specified by simple
linear inequalities. In particular, we consider equality of variables, i.e. statements of the
form xi = xj. This class of constraints is well known, and deciding whether there exists
an assignment satisfying such predicate can be checked in polynomial time [Kha80].
If we assume that a constraint over n variables is an expression of the form

∧
xi −

xj ≤ c ∧ ∧
xi ≤ c where xi, xj are variables, and c a constant, then constraints can be

80

Chapter 4. Decidability

encoded as differential bound matrix (DBM), and emptiness of the domain represented
by such a DBM where variables takes a real value can be checked in O(n3). Letting
X1 = {x1, . . . xk} ⊆ X we write ∀

→
X1 instead of ∀x1.∀x2 . . . ∀xk. Similarly, we write ∃

→
X1

instead of ∃x1.∃x2 . . . ∃xk. Given a FO formula in prenex normal form, without loss of
generality we write formulas of the form ∀

→
X1∃

→
X2 . . . ψ(X) or ∃

→
X1∀

→
X2 . . . ψ(X), where

ψ(X) is quantifier free matrix, and for every i 6= j, Xi ∩Xj = ∅. Every set of variables
Xi is called a block. By allowing blocks of arbitrary size, and in particular empty blocks,
this notation captures all FO formulas in prenex normal form. We denote by φ[t1/t2] the
formula obtained by replacing every instance of term t1 in φ by term t2.

It is well known that the satisfiability of first-order logic is undecidable in general, but
it is decidable for several fragments. Recall that in Chapter 2, we illustrated several de-
cidable FO fragments which include, monadic, BSR, FO2BD, and separated fragments.
In our setting, FO formulas contain only Boolean relational predicates (inherited from
relational schemas of datasets) and boolean predicates defined as combinations of lin-
ear inequalities. The universal fragment of FO is the set of formulas of the form ∀

−→
X1 φ,

where φ is quantifier-free. Similarly, the existential fragment of FO contains only formu-
las of the form ∃

−→
Y1φ. Then checking satisfiability of the existential/universal fragment

of FO can be done non-deterministically in polynomial time.

Proposition 1. Let X be a set of variables of the form X = Xb] Xr where variables
from Xb take values from finite domains and variables from Xr take values in R. Then,
satisfiability of formulas of the form φ ::= ∃

−→
X .

∧
i∈1..I

Ri(X) ∧ ∧
j∈1..J

Pj(X) is NP-complete.

Proof. Let us first show that the problem belongs to NP. Let us consider an ex-
istential formula φ ::= ∃

−→
X .ψ where ψ contains positive relational statements of the

form φR+ ::= R1(X), . . . Rk(X), and negative relational statements of the form φR− ::=
¬R1(X), . . .¬Rk′(X), and predicates of the form P1(X), . . . PJ(X). For eachRi(x1, . . . , xq)
in φR+, with relational schema rni and legal domain Domi, we define Ldomi as the con-
straint (x1, . . . xq) ∈ Domi. One can choose non-deterministically in polynomial time a
value dx for each bounded variable x in Xb.

Then one can choose non-deterministically which relational statements and pred-
icate hold, by guessing a truth value vj ∈ {true, false} for each relation Ri ∈ 1..I
(Resp. predicate Pj, j ∈ 1..J). Now, for each pair of choices where rn(x1, . . . xq) holds
and rn(x′1, . . . x′q) does not, we verify that the designed tuples are disjoint, i.e. that
¬(x1 = x′1 ∧ · · · ∧ xq = x′q). We call φRxR the formula that is the conjunction of such

81

Chapter 4. Decidability

negations. The size of φRxR is in O(r.|φ2|) where r is the maximal arity in a relational
schema of the complex workflow. We can then verify that the guess of truth value for
atoms yields satisfaction of φ, i.e. check that φ′[Ri,Pj/true,false,vj] evaluates to true. In case
of positive answer, it suffices to check that with the truth value choosen for atoms, the
formula φRxR∧

∧
i∈1..k

Ldomi∧
∧

vi=true
Pi∧

∧
vi=false

¬Pi is satisfiable, which can be done in poly-

nomial time. Now, for the hardness proof, one can easily encode an SAT problem with
a FO formula over boolean variables. Checking satisfiability of a universally quantified
formula can be done in the same way, as ∀Xφ is satisfiable iff ∃X,¬φ is not. �

4.1.1 Closure of FO classes

In the next Section 4.2, we study the termination and correctness properties of
a workflow. We search for a reachable configuration Cbad where the emptiness of a
dataset D could stop an execution. Once such a configuration is met, it remains to
show that the statement D = ∅ is compatible with the data operations as insertion,
projection, union of datasets, etc. performed during the execution before reaching Cbad.
We compute backward the weakest preconditions (see def. 16) ensuring D = ∅ along
the followed run and check that each condition is satisfiable. In this section, we first
show that some decidable fragments of first-order are closed under the calculus of
weakest precondition. The proofs and definition act as a base to further study the
properties of the workflow. The weakest precondition in a workflow is defined as follows.

Definition 24. Let C −→ C ′ be a move from configuration C to C ′ of a complex work-
flow. Let m be the nature of this move (an automated task realization, a worker assign-
ment, a refinement,...). We denote by wp[m]ψ the weakest precondition required for C
such that ψ holds in C ′ after move m.

As shown in Chapter 2, weakest precondition were introduced in [Dij75] as a way
to prove the correctness of programs. Calculus of weakest precondition was also pro-
posed to verify web applications with embedded SQL [Itz+17]. Similarly, we can show
an effective procedure to compute the weakest preconditions for each operation in a
complex workflow.
A technical lemma for weakest precondition. Here, we illustrate the derivation of the
weakest precondition for the Selection operation. The selection operation returns a set
of records from a table. We give below the lemma to derive the weakest precondition
for a task that performs a selection of records that satisfy some predicate in a dataset.

82

Chapter 4. Decidability

Lemma 1 (Weakest precondition for Selection of records). Let ϕ be a FO formula, and
m be a move that selects records that satisfy a predicate P from datasets. Then one
can effectively compute an FO formula ψ = wp[m]ϕ. Moreover, if ϕ is in ∀FO (resp.
∃FO, BSR, SF) and P is an arithmetic/boolean predicate then ψ is also in ∀FO (resp.
∃FO, BSR, SF).

Proof. Let D′1, . . . D′j, . . . D′k |= ϕ, and let D′j be a dataset with relational schema
rs = (rn,A) obtained by selection of records from an input dataset Di with relational
schema rs(rn,A). One can notice that selection keeps the same relational schema,
and in particular the same set of attributes A = (a1, . . . ak). We assume that selected
satisfy some predicate P (v1, . . . vk) that constrain the values of a record (but do not
address properties of two or more records of Di). That is, the records selected from Di

by P are records that satisfy ψsel = ∃v1, . . . vk, rn(v1, . . . vp) ∧ P (v1, . . . , vk). We want to
compute ψ = wp[Selection(ψsel)] ϕ.

Formula ϕ is a formula of the form α(
−→
X).φ, where α(

−→
X) is a prefix. It contains Krn

subformulas of the form rn(wi, . . . wi+k) or ¬rn(wi, . . . , wi+k) and we assume without
loss of generality that these subformulas are over disjoint sets of variables (one can
add new variables and equalities if this is not the case). Let φrn,1, . . . φrn,Krn be the
subformulas of φ addressing tuples with relational schema rs. For i ∈ 1 . . . Krn, we let
φPrn,i denote the formula rn(wi, . . . wi+k) ∧ P (wi, . . . wi+k) if φrn,i is in positive form and
¬(rn(wi, . . . wi+k) ∧ P (wi, . . . wi+k)) otherwise. Let us denote by φ[{ϕrn,i}|{ϕPrn,i}]

the for-
mula φ where every φrn,i is replaced by φPrn,i. The weakest precondition on D′1, . . . Di,

. . . , D′k for a selection operation with predicate P is defined as

ψ = wp[Selection(ψsel)]ϕ = α(
−→
X).φ[{φrn,i}|{φPrn,i}]

Last, one can notice that transforming α(
−→
X).φ into α(

−→
X).φ[{φrn,i}|{φPrn,i}]

does not
introduce new variables, and preserve the prefix of the formula. As ϕ and ψ start with
the same prefix α(

−→
X), we can claim that ϕ and ψ are in the same fragment of FO. �

One can notice that the weakest precondition is a rather syntactic transformation,
that replaces atoms of the form rn(x1, . . . xk) by rn(x1, . . . xk)∧P (x1, . . . xk). If x1, . . . , xk

are all existentially quantified variables (resp. all universally quantified variables) in ϕ,
then they remain existentially (resp universally quantified) in ψ. Hence, if ϕ is in ∃
FO, ∀FO, BSR, SF-FO then so is wp[Selection(ψsel)]ϕ. The same remark applies to
all other types of moves except for automated tasks that perform datasets difference,

83

Chapter 4. Decidability

which may introduce quantifiers alternations. A complete proof is available in [Bou+19].
In [Bou+19], we also show that the size of a weakest precondition ψ for a given ϕ and
a maximal arity r in relation is O(r.|ψ|).
Proposition 1: Let CW be a complex workflow, r be the maximal arity of relational
schemas in CW and ϕ be a FO formula. Then for any move m of CW , wp[m]ϕ is an
effectively computable FO formula, and is of size in O(r.|ψ|).

Proof. The effect of moves on the contents of datasets can be described as a
sequential composition of basic operations that are projection, selection, insertion of
records or fields, difference, union or join. In lemma 1, we showed that one can ef-
fectively compute the weakest precondition for selection operation. Now, we first just
sketch the proof for the rest of the data operations and give the syntactic transformation
used to compute the weakest preconditions. Let D1, . . . Dk be the datasets that appear
in ψ.

If some Di is obtained as a selection of records from a dataset D′i, then Di contains
only records ofD′i satisfying some predicate P . The precondition will hence be obtained
by a simple replacement in ψ of any statement of the form rn(

−→
X) ∈ Di by rn(

−→
X) ∈

Di ∧ P (
−→
X).

If Di is obtained after insertion of a fresh record in some dataset D′i then every
statement rn(

−→
X) ∈ Di can be replaced by a subformula (rn(

−→
X) ∈ D′i ∨ Domi(

−→
X))

where Domi(
−→
X) represents constraints on legal values of inputs in a dataset with

the same relational schema as Di. Note that Domi(
−→
X) is a quantifier free boolean

combination of predicates.

Similarly, if some dataset Di is obtained as the union of two datasets D1, D2, the
precondition for ψ should consider that tuples that satisfy rn(

−→
X) ∈ Di belong to D1

or D2. We simply replace atoms of the form rn(
−→
X) ∈ Di by the disjunction rn(

−→
X) ∈

D1 ∨ rn(
−→
X) ∈ D2. We also replace negative statements rn(

−→
X) 6∈ Di by conjunction

rn(
−→
X) 6∈ D1 ∧ rn(

−→
X) 6∈ D2. The size of the obtained formula is hence in O(2.|ψ|).

If some Di is obtained by creation of a new field for each record in dataset D′i, then
relational statement rn(

−→
X) ∈ Di is replaced by another statement rn(

−→
Y) ∈ D′i∧P ′(

−→
Y)

where
−→
Y is a subset of

−→
X , and P ′(

−→
Y) is a quantifier free predicate indicating con-

straint on
−→
Y obtained after variable elimination when

−→
X takes legal values imposed

by relational schema of Di (i.e. it satisfies Ldomi –see proof of Proposition 1–) and
satisfies the constraints of relational schema of D′i. As we assume that arithmetic pred-
icates are simple (two-dimensional) inequalities, the size of P ′ is not larger than that of

84

Chapter 4. Decidability

Ldomi. The weakest precondition can hence double the number of atoms, but keeps
the same bound on the number of variables used.

For (binary) joins, relation of the form rs(
−→
X i) are transformed in statements of the

form rs(
−→
Yi)∧rs(

−→
Zi)∧y1 = z1, where y1 ∈

−→
Yi and z1 ∈

−→
Zi . As every relational statement

can be replaced and hence create new variables, this calculus of a weakest precondi-
tion gives a formula of size in O(2.|ψ|).

If some Di is obtained by difference of two datasets, D2 from D1, the precondition
for ψ should consider that tuples that satisfy rn(

−→
X) ∈ Di belong to D1 and rn(

−→
X) ∈

Di should not be present in D2. We replace atoms of the form rs(
−→
X) ∈ Di by the

conjunction rn(
−→
X) ∈ D1∧ rn(

−→
X) 6∈ D2. We also replace negative statements rn(

−→
X) 6∈

Di by disjunction rn(
−→
X) 6∈ D1∨ rn(

−→
X) ∈ D2. The size of the obtained formula is hence

in O(2.|ψ|).
Last, if some Di is a projection of some dataset D′i on a subset of its field, then the

weakest precondition for ψ may multiply the number of variables in use by r, hence
gives a formula of size in O(r.|ψ|). �

We illustrate a Join operation with an example shown in Figure 4.1. Let D1 be the
dataset produced as output of node n1, with relational schema rs1(x1, x2, x3). Let D2 be
the dataset produced as output of node n2 with relational schema rs2(y1, y2). Last, let
D3 be the dataset obtained by a join operation identifying x1 and y1 in record originat-
ing fromD1 andD2. Assume that formula φ is of the form ∃z1, z2, z3, z4, rn(z1, z2, z3, z4) ∈
D3∧P (z1, z2, z3, z4). Then the weakest precondition for φ is wp[join]φ ::= ∃z1, z2, z3, z4, y1,

rn1(z1, z2, z3) ∈ D1 ∧ rn2(y1, z4) ∈ D2 ∧ (z1 = y1) ∧ P (z1, z2, z3, z4).
Next, we show in Section 4.2 that many properties of complex workflows are decid-

able with some restrictions on recursion and when difference is not used in automated

n1

t1

n2

t2 n3

t3

C

D1

D2
D3 = D1

⊗
D2

Figure 4.1 – Join operation Example.

85

Chapter 4. Decidability

tasks of the workflow. Prop. 1 does not need such assumption. The weakest precondi-
tions calculus is rather syntactic and is effective for any FO formula and any move. Now,
if automated tasks use difference, universal quantifiers can be introduced in existen-
tial blocks, leading to the weakest preconditions in a FO fragment where satisfiability
is undecidable. Interestingly, if automated tasks do not use difference, the weakest
precondition is mainly obtained by syntactic replacement of relational statements and
changes of variables. It can increase the number of variables, but it does not change
the number of quantifier blocks nor their ordering and does not introduce new quanti-
fiers when replacing an atom. We hence easily obtain:

Corollary 1. The existential, universal, BSR and SF fragments of FO are closed under
calculus of the weakest precondition if tasks do not use difference.

4.2 Termination of Complex Workflows

In this section, we address the questions of existential and universal termination.
Universal termination provides a guarantee that a complex workflow will terminate and
return a result for any input. This can be seen as a termination guarantee. Existential
termination can be considered as a sanity check: a complex workflow that has no valid
execution never terminates, regardless of input data, and should hence be considered
as ill-formed. Universal correctness guarantees that a workflow terminates and that it
computes data that conforms to the client’s requirement. Existential correctness is also
a sanity check, showing that a workflow is able to produce correct data for at least one
of its executions. We first show that existential termination is undecidable, regardless
of the inputs specified for a workflow. We then show that decidability and complexity of
universal termination depend on the power allowed to specify inputs of the workflow.
We first define the termination as follows.

Definition 25 (Termination). Let CW be a complex workflow, Din be an initial dataset,
Din be a set of datasets.

— CW terminates existentially on input Din iff there exists a run in Runs(CW,Din)
that is terminated. Similarly, CW terminates existentially on Din iff some run of
CW terminates for an input Din ∈ Din.

— CW terminates universally on input Din iff all runs in Runs(CW,Din) are termi-
nated. CW terminates universally on input set Din iff CW terminates universally
on every input Din ∈ Din

86

Chapter 4. Decidability

When addressing termination for a set of inputs, we describe Din symbolically with
a decidable fragment of FO (∀FO, ∃FO, BSR, or SF-FO). Complex workflows are Tur-
ing powerful. The proof of undecidability comes from a reduction from a two-counters
machine. A complete proof (an encoding of a counter machine) can be found in Ap-
pendix A.1.

Theorem 1. Existential termination of complex workflows is undecidable.

An interesting point is that undecidability does not rely on arguments based on the
precise contents of datasets (that are ignored by semantic rules). Indeed, the execu-
tion of tasks only requires non-empty input datasets. Undecidability holds as soon as
higher-order operations (semantic rule R4) are used. Universal termination is somehow
an easier problem than existential termination.

We next show that it is decidable for many cases and in particular when the datasets
used as inputs of a complex workflow are explicitly given or are specified in a decidable
fragment of FO. Precisely, we address operations, constraints and data operations on
Din symbolically with a decidable fragment of FO (∀FO, ∃FO, BSR, or SF-FO). We pro-
ceed in several steps. We first define symbolic configurations, i.e. descriptions of the
workflow part of configurations decorated with relational schemas depicting data avail-
able as an input of tasks. We define a successor relation for symbolic configurations.
We then identify the class of non-recursive complex workflows, in which the length of
executions is bounded by some value KTcx . We show that for given finite symbolic exe-
cution ρS, and a description of inputs, one can check whether there exists an execution
ρ that coincides with ρS. This proof builds on the effectiveness of the calculus of weak-
est preconditions along a particular run (see Prop. 1). Then, showing that a complex
workflow does not terminate amounts to proving that it is not recursion-free, or that it
has a finite symbolic run which preconditions allow a deadlock. We start by defining
the symbolic configurations.

Definition 26 (Symbolic configuration). Let CW = (W0, T ,U , sk,R) be a complex
workflow with database schema DB. A symbolic configuration of CW is a triple CS =
(W,wa,DassS) where W = (N,→, λ) is a workflow, wa : N → U assigns workers to
nodes, and DassS : N → (DB)∗ associates a list of relational schemas to nodes of the
workflow.

Symbolic configuration describes the status of workflow execution as in standard
configurations (see def. 22) but leaves the data part (the actual contents of dataset)

87

Chapter 4. Decidability

unspecified. For every node n that is minimal in W , DassS(n) = rs1, . . . rsk implies that
task attached to node n takes as input dataset D1 . . . Dk where each Di conforms to
relational schema rsi. For a given symbolic configuration, we find all rules that apply
(there is only a finite number of worker assignments or task executions) and compute
successor symbolic configurations. From a symbolic configuration, that does not de-
scribe the exact contents of datasets in use, we compute the effects of the application
of a particular rule, i.e. compute symbolic descriptions of configurations that appear
after a move. A symbolic configuration CS

j = (Wj, waj, Dass
S
j) is the successor of a

symbolic configuration CS
i = (Wi, wai, Dass

S
i) iff one of the following situation holds:

1. There exists a worker u ∈ U and a node n ∈ Wi such that wa−1
i (u) = ∅, wai(n) =

∅, ∃(u, λ(n)) ∈ sk or (u, r) = (λ(n),Wt)) ∈ sk, and Wj = Wi, DassS = DassS and
waj = wai] {(n, u)}. The situation corresponds to worker assignment to a task
(see Rule 3.1).

2. There exists n ∈ min(Wi) such that t = λ(n) is an automated task manipulating
datasets D1, . . . Dq, n has k successors n1, . . . nk, Wj = Wi \ {n}, DassS assigns
to each successor nj, j ∈ 1 . . . k the relational schema rsoutj and waj = wai. The
situation corresponds to an application of an automated task completion Rule 3.3.

3. There exists n ∈ min(Wi) such that t = λ(n) is an atomic task manipulating
datasets D1, . . . Dq, with and n has k successors n1, . . . nk, Wj = Wi \ {n}, DassS

assigns to each successor nj, j ∈ 1 . . . k the relational schema rsoutj , and waj =
wai \{(n,wai(n))}. The situation corresponds to an application of Rule 3.2 where
a worker executes an atomic task and returns the data to successor nodes.

4. There exists n ∈ Wi, λ(n) is a complex task, and wa(n) = u, Wj is the work-
flow obtained by replacement of n in Wi by a workflow W new such that r =
(λ(n),W new) ∈ R , and (u, r) ∈ sk. DassS assigns to the copy of minimal node nj
of W new the relational schemas in DassSi (n), and waj = wai \ {(n, u)}. It corre-
sponds to the refinement of a node in a workflow and is obtained by application
of Rule 3.4.

Now, we define deadlocks and potential deadlock in symbolic workflow executions.

Definition 27 (Deadlocks, Potential deadlocks). A symbolic configuration CS = (W,wa,
DassS) is final if W consists of a single node nf . It is a deadlock if it has no successor.
It is a potential deadlock iff a task execution can occur from this configuration, i.e. there
exists n,∈ min(W) such that λ(n) is an automated or atomic task.

88

Chapter 4. Decidability

A deadlocked symbolic configuration represents a situation where progress is blocked
due to the shortage of competent workers to execute tasks. A potential deadlock is a
symbolic configuration CS where empty datasets may stop an execution. This deadlock
is potential because DassS does not indicate whether a particular dataset Di is empty.
Note however as soon as a dataset Di used as input to a task associated with a min-
imal node n ∈ W is empty, deadlock becomes unavoidable. Indeed, as n is minimal,
no new data can appear in Di in the next moves. Hence it is unavoidable to reach a
deadlock node as soon as Di = ∅. We show that one can decide whether a potential
deadlock situation in CS represents a real and reachable deadlock, by considering how
the contents of dataset Di is forged along the execution leading to CS.

Definition 28 (Symbolic run). A symbolic run is a sequence ρS = CS
0

m1−→ CS
1

m2−→
. . .

mk−→ CS
k where each CS

i is a symbolic configuration, Ci+1 is a successor of Ci, and
CS

0 = (W0, wa0, Dass
S) where W0, wa0 have the same meaning as for configurations,

and DassS0 associates to the minimal node n0 in W0 the relational schema of Dass0(n0).

One can associate to every execution of a complex workflow ρ = C0
m1−→ C1 . . .

mk−→
Ck a symbolic execution ρS = CS

0
m1−→ CS

1
m2−→ . . .

mk−→ CS
k called its signature by

replacing data assignment in each Ci = (Wi, wai, Dassi) by a function from each node
n to the relational schemas of the datasets inDassi(n). It is not true, however, that every
symbolic execution is the signature of an execution of CW , as some moves might not
be allowed when a dataset is empty (this can occur for instance when datasets are
split, or after a selection). A natural question when considering a symbolic execution
ρS is whether it is the signature of an actual run of CW . The proposition below shows
that the decidability of this question depends on assumptions on input datasets.

Proposition 2. Let CW be a complex workflow, Din be a dataset, Din be a FO formula
with nin variables, and ρS = CS

0 . . . C
S
i be a symbolic run. If tasks do not use SQL

difference, then deciding if there exists a run ρ with input dataset Din and signature ρS

is in 2EXPTIME. Checking if there exists a run ρ of CW and an input dataset Din

that satisfies Din with signature ρS is undecidable in general. If tasks do not use SQL
difference, then it is in

— 2EXPTIME if Din is in ∃FO.
— 3EXPTIME if Din is in ∀FO or BSR-FO.
— nin−foldEXPTIME where nin is the size of the formula describing Din if Din

is in SF-FO

89

Chapter 4. Decidability

Proof. We check the feasibility of ρS, that is that is we check existence of a run
C0, C1, . . . Ci−1, Ci. We start from CS

i and check backward that the conditions for exis-
tence of a configuration Ck are met when it is proved that a configuration Ck+1 exists.
This amounts to computing a sequence of weakest preconditions. First notice that the
actual run with signature ρS performs the same sequence of moves as in ρS and that
the question of the existence of a run ρ with signature ρS only needs to verify satisfiabil-
ity of constraints on data computed at each step of this run, not the sequence of moves
along ρ. Second, one can notice that if ρS contains a deadlock, it is necessarily the last
symbolic configuration of the run, as for every symbolic configuration from CS

0 up to
CS
i−1 we are able to find a successor configuration. So one needs not to check the exis-

tence of a deadlock separately when checking the feasibility of ρS, and we mainly have
to check for the emptiness of datasets for configurations that are potential deadlocks.
A third remark is that semantic rules that affect workers to tasks or perform a refine-
ment do not consider data contents. Hence, if the move from Ci−1 to Ci is a worker
assignment or a refinement, then it is necessarily feasible as long as Ci−1 is reachable.
The only cases where data can affect the execution of a step along a run is when an
automated task or an atomic task has to process empty data. For each of these steps,
one has to check that the inputs of an executed task t are not empty, i.e. suppose that
D1 6= ∅∧· · ·∧Dk 6= ∅ for some datasets D1 . . . Dk used by t. Non-emptiness of a dataset
Dk is simply encoded by the ∃FO formula ∃

−→
X , rn(

−→
X) ∈ Dk.

Non-emptiness of a dataset Dk at some configuration Cj is a property that depends
on properties of previous steps in the execution. For instance, if the move from Cj−1 to
Cj realizes the projection of a dataset, i.e. filters records in a dataset D′k to keep only
those that satisfy some predicate P , then the precondition that must hold at Cj−1 is
ψj−1 ::= ∃

−→
X , rn(

−→
X)∧P (

−→
X). We have seen in Proposition 1 that , if the move Cj−1

mi−1−→
Ci−1 is a transformation of records, a transformation of some dataset, the formula ψj−1

is effectively computable. Further, if tasks do not use SQL difference, the weakest
precondition of an existential FO formula is an existential FO formula. This generalizes
to the whole signature. Let ψk be a ∃FO formula that has to be satisfied by configuration
Ck in a run compatible with signature ρS. There exists a sequence of moves C0

m1−→
C1 . . .

mk−→ Ck iff the sequence C0
m1−→ C1 . . .

mk−1−→ Ck−1 ends in a configuration Ck−1

such that Ck−1 |= wp[mk]ψk (by definition of weakest precondition). One can decide
whether wp[mk]ψk is satisfiable, as ψk is in ∃FO, and by Prop. 1, wp[mk]ψk is effectively
computable and in the ∃FO fragment. If wp[mk]ψk is not satisfiable, then the move from

90

Chapter 4. Decidability

Ck−1 to Ck always ends with datasets that do not fulfill ψk. If wp[mk]ψk is satisfiable,
then the runs that reach Ck−1 are realizable only if we assume that several datasets
(used as input of some task realized at step k) are non-empty at stage k − 1. We then
have to add statements of the form Di 6= ∅ to obtain a formula that should hold at
step k − 1, and get a formula of the form ψk−1 ::= wp[mk]ψk ∧ D1 6= ∅ ∧ · · · ∧ Dm 6=
∅. This adds only an existential conjunction, so ψk−1 is also in ∃FO. One can start
from ψi ::= true and build inductively all weakest preconditions ψi−1, ψi−2, . . . , ψ0 that
have to be satisfied respectively by configurations Ci−1, . . . , C0 so that an actual run of
the complex workflow with signature CS

0 . . . C
S
i exists. If any of these preconditions is

unsatisfiable, then there exists no run with signature CS
0 . . . C

S
k leading to a configuration

Ci compatible with CS
i , and hence ρS is not the signature of an actual run of CW . The

size of ψ0 is in O(i.ri). Indeed, we add obligations to prove non-emptiness at each step
k, but proving satisfiability of ∃

−→
X ,φ(

−→
X) ∧ ∃

−→
X ,φ(

−→
X) amounts to checking separately

satisfiability of ∃
−→
X ,φ(

−→
X) and ∃

−→
Y , φ(

−→
Y). According to Prop. 1, the size of wp[mk]ψ is in

O(r.|ψ|), where r is the maximal arity of relational schemas of the complex workflow. So
one can check separately satisfiability of ∃

−→
X ,φ(

−→
X) and Dx 6= ∅, and maintain a series

of O(i) formulas of total size in O(i.ri). Hence, as ψ0 is still in the existential fragment
of FO, and as checking satisfiability of an existential FO formula is in EXPTIME in
the size of the formula (by proposition 1), checking all preconditions for a run of size k
compatible with ρS can have a complexity that is in O(2ri).

Assume that ψk−1, ψk−2, . . . ψ0 are satisfiable. It remains to show that the input(s)
of the complex workflow satisfy the weakest precondition for the execution of ρS, i.e.
satisfy ψ0. Then, when the input is a single dataset Din, it remains to check that Din |=
ψ0 to guarantee the existence of a run with signature CS

0 . . . C
S
i that starts with input

data Din and leads to a configuration Ck. This is a standard model checking question,
which can be solved in O(|Din||ψ0|), that is in O(|Din|r

k). As the complexity of checking
satisfiability of weakest preconditions ψk . . . ψ0 is already in 2EXPTIME, the overall
complexity is in 2EXPTIME.

Similarly, ifDin is a FO formula, the complexity depends on the considered fragment
used to specify Din. In general, if Din is given as a FO formula, it is undecidable if Din∧
ψ0 is satisfiable. If Din is an existential formula, then the complexity is exponential in
the size of Din and also exponential in the size of ψ0. Assuming that |Din| ≤ 2k we have
a 2EXPTIME complexity. If Din is in the BSR fragment, then checking satisfiability
of Din is in NEXPTIME [Lew80], and so the overall complexity needed to check the

91

Chapter 4. Decidability

existence of a run with signature ρS from a dataset in Din is in 2EXPTIME w.r.t the
size of Din ∧ ψ0, and hence 3EXPTIME. If Din is a universal formula then we can use
standard mini-scoping rules (see in Chapter 2) to transform Din ∧ψ0 in a formula in the
BSR fragment, yielding again a 3EXPTIME complexity. Last if Din is in the separated
fragment of FO, then checking its satisfiability is nin-fold exponential in the size of the
formula depicting Din, so the overall process of checking realizability of ρS has an nin-
fold exponential complexity. �

An execution ρ = C0 . . . Ck of a complex workflow terminates if the reached config-
uration is of the form Ck = (Wf , waf , Dassf) where Wf contains only the final node of
a workflow. Checking termination hence amounts to checking whether one can reach
such a configuration. A run that does not terminate is a run that either ends in a con-
figuration that is not final and from which no rule can be applied, or an infinite run. A
move from Ci to Ci+1 leaves the number of nodes unchanged (application of worker as-
signment rule R1), decreases the number of nodes (execution of an atomic task (R2),
or an automated task (R3)), or refines a node in Wi (application of rule R4). Only in this
latter case, the number of nodes may increase. The set of possible transformations
of W and wa occurring from C is bounded. Further, semantic rule R4 is the only rule
that creates new nodes in the workflow part of a configuration. So when the number of
occurrences of rule R4 in a run is bounded, the number of applications of rules R1, R2,
R3 and hence the size of (symbolic) executions is also bounded. Complex workflows
that can exhibit infinite runs are hence specification with recursive rewriting schemes.

Definition 29. Let t be a complex task. We denote by Rep(t) the task names that
can appear when refining task t, i.e. Rep(t) = {t′ | ∃u,W, (u, t) ∈ sk ∧ (t,W) ∈ R ∧
t′ ∈ λ(NW)}. The rewriting graph of a complex workflow CW = (W0, T ,U , sk,R) is
the graph RG(CW) = (Tcx,−→R) where (t1, t2) ∈−→R if t2 ∈ Rep(t1). Then CW is
recursion-free if there is no cycle of RG(CW) that is accessible from a task appearing
in W0.

When a complex workflow is not recursion free, then some executions may exhibit
infinite behaviors in which some task ti is refined infinitely often. Let us consider an
example. Let us consider a workflow such that n0 → n1 → nf shown in Figure 4.2 .

92

Chapter 4. Decidability

n0

t0

n1

t1

nf

tf

Figure 4.2 – A complex workflow.

Consider the rewriting rules t1 = {t2 → t3}, t2 = {t4 → t5} and t4 = {t1 → t6}. In
this case the rewriting graph of a complex workflow is shown in Figure 4.3. Such an
infinite rewriting loop can contain a deadlock. In this case, the complex workflow does
not terminate. If this infinite rewriting loop does not contain deadlocks, the complex
workflow execution will never reach a final configuration in which all tasks have been
executed. We claim without proof the following property:

t1

t2 t3

t4 t5

t6

Figure 4.3 – Rewriting graph for the complex workflow shown in Figure 4.2.

Proposition 3. Complex workflows that are not recursion free have non-terminating
executions.

Proposition 4. Let CW = (W0, T ,U , sk,R) be a complex workflow. One can decide if
CW is recursion free in O(|T 2

cx|+ |R|).

Proof. Building RG(CW) can be done in O(|R|). Checking the existence of a cycle
in RG(CW) that is accessible from some task in W0 can be done in polynomial time in
the size of RG(CW), for instance using a DFS algorithm, that runs in time in O(|Tcx|2).

�

93

Chapter 4. Decidability

In executions of recursion free CWs, a particular task t can be replaced by a work-
flow that contains several tasks t1, . . . tk that differ from t. Then, each ti can be replaced
by workflows combining other tasks that are not t nor ti, and so on. For simplicity, we
assume that W0 and all workflows in rules have nodes labeled by distinct task names.
We can then easily prove the following property:

Proposition 5. Let C = (W,wa,Dass) be a configuration of a recursion free complex
workflow CW . Then there exists a bound KTcx on the size of W , and the length of a
(symbolic) execution of CW is in O(3.KTcx)

Proof. [Sketch] We assume, without loss of generality, that all workflows in all rules
have nodes labeled by distinct task names, and the initial workflow has a single node.
Let d be the maximal number of new occurrences of complex tasks that can be rewritten
in one refinement (i.e., the maximal number of complex tasks that appear in a rule).
Each rewriting adds at most d − 1 complex tasks to the current configuration. The
number of rewriting is bounded, as CW is recursion free. For a given node n appearing
in a configuration Ck along a run, one can trace the sequence of rewriting Past(n)
performed to produce n. According to recursion freeness, when a node n is replaced
by a workflow Wt, then none of the tasks labeling nodes of Wt appears in Past(n).
Hence, the number of nodes in a configuration is at most KTcx = d|Tcx|. Now, for a given
configuration, the number of applications of semantic rules R1, R2, and R3 is bounded
and decreases the number of nodes in the workflow part of the configuration. �

Till now, we showed in proposition 4 that recursion-freeness is decidable and in
O(|T 2

cx|+|R|). Further, letting d denote the maximal number of complex tasks appearing
in a rule, there exists a bound KTcx ≤ d|Tcx| on the size of W in a configuration, and
the length of a (symbolic) execution of CW is in O(3.KTcx) (see Prop. 5). However,
existence of a bound on the size of W in a configuration does not guarantee universal
termination. There may exist a run with an empty dataset that can lead to the non-
universal termination. We give the following lemma.

Lemma 2. Let CS
i = (Wi, wai, Dass

S
i) be a potential deadlock with successors CS

i,1, . . . C
S
i,k

corresponding respectively to execution of tasks attached to minimal nodes n1, . . . , nq

in the workflow part of node Wi. Then a run ρ with signature ρS = CS
0 . . . C

S
i such that

Dk = ∅ for some Dk ∈ Dass(nj), j ∈ 1, . . . , q does not terminate.

94

Chapter 4. Decidability

Proof. If a node nj in a configuration Ci with signature CS
i is labeled by a task and

is attached to an empty dataset, then any sequence of worker assignment, refinement,
or task execution occurring from Ci will result in a configuration C ′i where either nj is
still attached an empty dataset, or nj was replaced, but the refinement produced fresh
nodes with an empty dataset attached to it. Then either nj or one of its refinements will
never be executed, and the workflow cannot reach a final configuration. �

The lemma has useful consequences: it is sufficient to detect a run with signature
CS

0 . . . C
S
i as the prefix, where CS

i = (Wi, wai, Dass
S
i), and to prove that a node nj in

Wi can have an empty input dataset Dnj to claim that there exists an execution that
deadlocks in CW. Now, based on the above results, we can now prove that a complex
workflow that is not recursion-free does not terminate universally and give the following
proposition.

Proposition 6. A complex workflow terminates universally if and only if:

(i). it is recursion free

(ii). it has no (symbolic) deadlocked execution

(iii). there exists no run with signature CS
0 . . . C

S
i where CS

i is a potential deadlock, with
Dk = ∅ for some Dk ∈ Dass(nj) and for some minimal node nj of Wi.

Proof. Let us first prove that if i) fails, a complex workflow does not terminate
universally. If CW has recursive task rewriting, then there is a cycle in the rewriting
graph RG(CW) that is accessible from a task t0 = λ(n0) appearing in W0. Hence, there
is an infinite run ρ∞ = C0

a1−→ C1
r1−→ C2 . . . of CW which moves are only worker

assignments (a moves) to a node of the current workflow at configuration Ci followed
by a rewriting (r moves) that creates new instances of tasks, such that the sequence
of rewritten task follows the same order as in the cycle of RG(CW). Similarly, if CW
terminates universally, then all runs are finite, and infinite runs of the form ρ∞ cannot
exist, and CW must be recursion free.

We can now address point ii) If CW can reach a deadlocked configuration, then by
definition, it does not terminate. If all runs of CW terminate, then from any configuration,
there is a way to reach a final configuration, and hence no deadlock is reachable. The
last point iii) is proved in lemma 2. �

Now, we have the decidability results for the universal termination for a complex
workflow. Next, we give the complexity analysis. We do not detail the proofs of Theo-
rem 2 and refer to Appendix A.2 for detailed proofs.

95

Chapter 4. Decidability

Theorem 2. Let CW be a complex workflow, in which tasks do not use SQL difference.
Let Din be an input dataset, and Din be a FO formula. Universal termination of CW on
input Din is in co − 2EXPTIME. Universal termination on inputs that satisfy Din is
undecidable in general. It is in

— co− 2EXPTIME (in K, the length of runs) if Din is in ∀FO
— co− 3EXPTIME if Din is ∃FO or BSR-FO
— co− nin-fold-EXPTIME, where nin = |Din|+ 2K if Din is in SF-FO.

4.2.1 Symbolic Execution Tree

One can notice that the algorithm to check universal termination of CWs guesses
a path, and is hence non-deterministic. In the worst case, one may have to explore all
symbolic executions of size at most 3 ·KTcx . All these executions can be grouped in a
common structure, i.e. a symbolic execution tree representing possible sequences of
moves starting from the initial configuration.

Definition 30 (Symbolic Execution Tree). The Symbolic execution tree (SET) of a com-
plex workflow CW = (W0, T ,U , sk,R) is a pair B = (V,E), where E ⊆ V ×V is a set of
edges, V is a set of symbolic configurations of the form CS

i = (Wi, wai, Dass
S), where

Wi = (Ni,−→i, λi) and wai : Ni → U are the usual workflow and worker assignment
relations, and DassS associates a sequence of relational schemas to minimal nodes of
Wi. (CS

i , C
S
j) ∈ E if CS

j ∈ succ(CS
i).

Each path of the tree defines a symbolic execution. The symbolic execution tree of a
complex workflow is a priori an infinite structure, but for recursion free CWs, the tree is
of bounded depth, and bounded degree. One can hence perform an exhaustive search
for deadlocks and potential deadlocks in the symbolic execution tree of a recursion
free workflow to exhibit a witness for non-termination. Let CS

i = (Wi, wai, Dassi) be a
symbolic configuration that is a potential deadlock. Let S = {n1, . . . , nk} ⊆ min(Wi) be
the set of minimal nodes that represent data transformations with rule R2 or R3, i.e.
that is atomic task completion or represents an automated task completion. Realization
of these tasks ask for non-empty inputs. Let Π = CS

0 . . . C
S
i be the path from the root of

the tree to a potential deadlock CS
i . Even if vertex CS

i has a successor CS
k , obtained by

executing a task attached to some node nj ∈ S, it can be the case that Dassi assigns
an empty input to nj in an actual run of CW with signature Π. Hence, some of the
task execution move depicted in B may not be realizable. If executing task λ(nj) is

96

Chapter 4. Decidability

the only possible action from CS
i and if a run with signature Π ends in a configuration

where Dassi(nj) is of the form D1. . . . ∅ . . . Dq then the run is deadlocked. However, if
all runs with signature Π end with data assignments that affect non-empty sequences
of datasets to all nodes of S, then CS

i will never cause a real deadlock. Note also that
when CS

i is a potential deadlock, there exists necessarily a path CS
i .C

S
i+1 . . . C

S
i+h in B

where the only actions allowed from CS
i+h is the execution of the incriminated minimal

tasks that need non-empty inputs.

4.2.2 Termination with a guaranteed bound

Undecidability of existential termination has several consequences: As complex
workflows are Turing complete, automatic verification of properties such as reacha-
bility, coverability, boundedness of datasets, or more involved properties written in a
dedicated logic such as LTL FO [DDV12] (a logic that addresses both properties of
data and runs) are also undecidable. However, one can notice that in the counter ma-
chine encoding of Theorem 1 requires refinements and recursive schemes. So, infinite
runs of a counter machine can be encoded only if rule 4 can be applied an infinite
number of times. Obviously, recursion-free CWs cannot encode counter machines, and
have a bounded number of signatures, as their runs are of length at most 3.KTcx . This
immediately gives us the following corollary:

Corollary 2. Let CW be a recursion-free complex workflow that does not use dataset
difference, which runs length is bounded by 3.KTcx. Let Din be a dataset, and Din
a FO formula. One can decide in 2 − EXPTIME (in KTcx) whether CW terminates
existentially on input Din. If Din is in the existential, universal or BSR fragment of FO,
then existential termination of CW is also in 2EXPTIME.

Proof. The proof follows the same line as for Theorem 2: one has to find non-
deterministically a signature of size at most 3.KTcx . When such a signature ρS is found
it remains to compute |ρS| weakest preconditions ψ|ρS |, . . . ψ0, imposing at each step
that inputs of automated or split tasks are not empty. After this verification, it remains
to show that inputs satisfy ψ0. �

Existential termination is hence decidable for recursion-free CWs, provided the de-
scription of inputs belongs to a decidable fragment of FO and data transformations do
not use difference, which could introduce quantifiers alteration and hence create weak-
est preconditions that leave this decidable fragment. One can notice that the decision

97

Chapter 4. Decidability

procedure is doubly exponential in the length of runs (that is in KTcx). This bound can
itself be exponential (see proof of prop. 2), but in practice, one can expect refinements
to stop only in a few steps, as refinements are supposed to transform a complex task
into an orchestration of simpler subtasks. With this assumption, KTcx remains a simple
polynomial in the number of complex tasks. Another way to bound recursiveness in a
complex workflow is to limit the number of refinements that can occur during execu-
tion. We can slightly adapt the semantics of Section 3.4, and in particular rule R4, and
replace it by a restrictive decomposition (RD) rule. Intuitively, the (RD) rule refines a
task as in rule R4 but forbids decomposing the same task an unbounded number of
times.

Rule 4’ (RESTRICTED TASK REFINEMENT): Let T = {tint, t2, ..., tf} be a set of tasks
of size n. Let KD = (k1, k2, ..., kn) ∈ Nn be a vector constraining the number of refine-
ments of task ti that can occur in a run ρ. In the context of crowdsourcing, this seems
a reasonable restriction. Restrictive decomposition RD is an adaptation of rule R4 that
fixes an upper bound ki on the number of decomposition operations that can be ap-
plied for each task ti in a run. We augment configurations with a vector S ∈ Nn, such
that S[i] memorizes the number of decomposition of task ti that have occurred since
the beginning of the execution. Rules 1-3 leave counter values unchanged, and rule 4
becomes:

t = λ(n) ∈ Tcx ∧ S[i] ≤ ki

∧∃u, u = wa(n) ∧ (u, ri) ∈ sk ∧ ri = (t,WS)
∧Dass′(min(Ws)) = Dass(n)
∧∀x ∈ Ns \min(Ws), Dass′(x) = ∅|Pred(x)|

∧wa′ = wa\{(n,wa(n))}
∧∀j ∈ 1 . . . |T |, S ′[j] = S[j] + 1 if j = i, S[j] otherwise

(W, wa, Dass)
ref(n)−−−→ (W[n/Ws], wa′, Dass′)

(4.1)

Following the RD semantics, each task ti can be decomposed at most ki times.
To simplify notations, we choose a uniform bound k ∈ N for all tasks, i.e. ∀i ∈ 1..n,
ki = k. However, all results established below extend to a non-uniform setting. We next
show the decidability of existential termination under the RD semantics. First, we give
an upper bound on the length of runs under RD semantics. Let k be a uniform bound
on the number of decompositions, CW = (W0, T ,U , sk,R) be a complex workflow with

98

Chapter 4. Decidability

a set of tasks of size n, and C0 = (W0, wa0, Dass0) be its initial configuration. Hence,
RD semantics bounds the number of tasks in the workflow and we get the following
propositions.

Proposition 7. Let ρ = C0.C1 . . . Cq be a run under RD semantics. Then, for every
Ci = (Wi, wai, Dassi), the number of nodes in Wi is smaller than NmaxNodes(n, k) =
k.n2 + |W0|.

Proof. Each decomposition of a task ti replaces a single node n by a new workflow
with at most di = max

u∈U
max{|Wj| | Wj ∈ Profile(ti, u)} nodes. Recall that decompo-

sition profiles are known and that all nodes of workflows in profiles are attached to
distinct task names. So, we have di < n. Every run ρ starting from C0 is a sequence
of rule applications. Rule 1 does not affect the size of workflows in configurations, and
rules 2 and 3 remove at most one node from the current workflow when applied. For
each task ti, a run ρ contains at most k occurrences of rule 4 refining a task of type ti.
Application of rule 4 to task ti adds at most di nodes to the current workflow and re-
moves the refined node. All other rules decrease the number of nodes. One can notice
that each task can be decomposed at most k times, rule 4 can be applied at most k.n
times in a run following the RD semantics, even if this run is of length greater than k.n.
Let S0 = |W0|, S1 = S0 + n− 1, and Si+1 = Si + (n− 1). For a fixed n and a fixed k, the
maximal size of the workflow component Wi in every configuration Ci of a run under
RD semantics is smaller than Sk.n = |W0|+ (k.n)(n− 1) = |W0|+ k · n2 − k · n. �

For example, if the number of tasks is n = 4, the size of the initial workflow 2, and the
number of decomposition uniformly bounded by k = 3, then NmaxNodes(n, k) = 38.
Now, as the number of tasks is bounded during the realization of a complex workflow,
it gives us the bound on the length of the run.

Proposition 8. Let ρ = C0 . . . Cq be a run of a complex workflow under RD semantics
allowing at most k refinements of each task. The length of ρ is bounded by L(n, k) =
3 · k · n2 + 3 · |W0|

Proof. Recall that a configuration is a triple Ci = (Wi, wai, Dassi). Each configura-
tion is a "global state" of the execution of a complex workflow. Wi represents the work
that needs to be executed, wa the worker’s assignment, andDass the data assignment.
Recall that a configuration with a single node is necessarily a final configuration with a
node nf which task is to return all computed values during the execution of the complex
workflow.

99

Chapter 4. Decidability

The only way to change the data assignment part of configurations is to execute
the task attached to a node (i.e., apply rule R2 or R3) or refine a node (i.e. apply R4).
Starting from a configuration Ci, the maximal number of worker assignment that can
be performed is |Wi|, and along the whole run, as each node can be assigned a worker
at most once, the maximal number of applications of rule R1 is NmaxNodes(n, k).

The length of a run ρ is |ρ| = |ρ|1 + |ρ|2 + |ρ|3 + |ρ|4 where |ρ|i denotes the number of
applications of rule Ri. Now, |ρ|1 ≤ NmaxNodes(n, k). Similarly, |ρ|1 = |ρ|2 + |ρ|4. Last,
rule R3 can be applied only a number of times bounded by the maximum number of
created nodes, i.e, |ρ|3 ≤ NmaxNodes(n, k). So overall, |ρ| = |ρ|1 + (|ρ|2 + |ρ|4) + |ρ|3 ≤
NmaxNodes(n, k) + NmaxNodes(n, k) + NmaxNodes(n, k). Hence, the length of ρ is
bounded by L(n, k) = 3 · k · n2 + 3 · |W0| �

Note that here, configurations can only grow up to a size smaller thanNmaxNodes(n, k) =
k.n2 + |W0| (Prop. 7) via rule R4, and rules R1-R3 can be applied only a finite number
of times from each configuration. Under RD semantics, a symbolic execution tree B
is necessarily finite and of bounded depth. A run terminates iff it goes from the initial
configuration to a final one. If such run exists, then there exists a path in B from the
initial vertex to a final vertex with signature Π = V0 . . . Vn. Further, if this path visits a
potential deadlock and executes a splitting task λ(n) for some split node nj, then every
dataset used as input of nj must be non-empty. To show that this path is realizable, it
suffices to show the existence of a run with signature Π that ends in a configuration
Cn satisfying property φ ::= true. Proposition 2 shows how to compute backward the
weakest preconditions demonstrating the existence of such run of CW . An immediate
consequence is that the existential termination of complex workflows is decidable un-
der restricted decomposition semantics, with the same complexity as for recursion-free
specifications.

Theorem 3. Let CW be a complex workflow in which tasks do not use SQL difference,
and which runs are of length ≤ Kmax. Let Din be a dataset, and Din a FO formula. One
can decide in 2 − EXPTIME (in Kmax) whether CW terminates existentially on input
Din. IfDin is in ∃FO, termination of CW is also in 2−EXPTIME. It is in 3−EXPTIME

when Din is in ∀FO or BSR-FO

Proof. We can reuse the techniques of Theorem 2 to find a witness symbolic run
that is the signature of a run that does not terminate, and of corollary 2 to find a witness
symbolic run that is the signature of a run that terminates. �

100

Chapter 4. Decidability

4.3 Correctness of Complex Workflows

Complex workflows provide a service to a client, that inputs some data (a dataset
Din) to a complex task, and expects some answer, returned as a dataset Dout. A pos-
itive answer to a termination question means that the process specified by a complex
workflow does not deadlock in some/all executions. A client sees the crowdsourcing
platform as a black box and simply asks for the realization of a complex task that
needs specific competencies. Even when termination is guaranteed, the returned data
can still be incorrect. In many cases, a client may have requirements on the type of out-
put returned for a particular input. We express this constraint with a FO formula ψin,out
relating inputs and outputs and extend the notions of existential and universal termina-
tion to capture the fact that a complex workflow implements client’s needs if some/all
runs terminate, and in addition fulfill requirements ψin,out. This is called correctness.

Definition 31. A constraint on inputs and outputs is a FO formula
ψin,out ::= ψin,outE ∧ ψin,outA ∧ ψin,outAE ∧ ψin,outEA, where

— ψin,outE is a conjunction of ∃FO formulas addressing the contents of the in-
put/output dataset, of the from ∃x, y, z, rn(x, y, z) ∈ Din ∧ P (x, y, z) or ∃u, v, w,
rn(u, v, w) ∈ Dout ∧ P (u, v, w), where P (.) is a predicate.

— ψin,outA is a conjunction of ∀FO formulas constraining all tuples of the input/output
dataset, of the form ∀x, y, z, rn(x, y, z) ∈ Din ⇒ P (x, y, z).

— ψin,outAE is a conjunction of formulas relating the contents of inputs and outputs,
of the form ∀x, y, z, rn(x, y, z) ∈ Din ⇒ ∃(u, v, t), ϕ(x, y, z, u, v, t), where ϕ is a
predicate.

— ψin,outEA is a conjunction of formulas relating the contents of inputs and outputs,
of the form ∃x, y, z, rn(x, y, z) ∈ Din,∀(u, v, t), ϕ(x, y, z, u, v, t).

The ψin,outAE part of the I/O constraint can be used to require that every record in
an input dataset is tagged in the output. An example is shown in Figure 4.4. Consider a
node n0 tagged with task λ(n0) = t0 and the attached input datasetmovie(Id, title, year) ∈
Din. The objective of task t0 is to tag every record in the dataset Din such that rating ≥
4. In this case, ψin,outAE constraint is

∀id, t, y, r movie(id, t, y, r) ∈ Din =⇒ ∃id, t, y, r movie(id, t, y, r) ∈ Dout ∧ (r ≥ 4)
The ψEA part can be used to specify that the output is a particular record selected

from the input dataset (to require correctness of a workflow that implements a vote).

101

Chapter 4. Decidability

n0

t0

Din Dout

u1

Id title year
1 . .
2 . .
3 . .
4 . .

Id title year rating
1 . . 5
2 . . 8
3 . . 6
4 . . 8

Figure 4.4 – An example showing ψAE constraints.

n0

t0

Din Dout

u1

Id title year rating
1 Star Wars . 4
2 Titanic . 5
3 Star Wars . 4
4 Titanic . 5
4 Titanic . 5

Id title year rating
2 Titanic . 5
4 Titanic . 5
4 Titanic . 5

Figure 4.5 – An example showing ψEA constraints.

Figure 4.5 shows an example of ψEA constraints. Consider a node n0 with input dataset
movie(Id, title, year) ∈ Din. The node n0 is tagged with task t0 with an objective to
select a movie such that each rating of the movie is 5. In this case, ψEA constraint is
given as

∃id, t, y, r movie(id, t, y, r) ∈ Din∀r movie′(id, t, y, r) ∈ Dout =⇒ (r = 5)

Definition 32 (Correctness). Let CW be a complex workflow, Din be a set of input
datasets, and ψin,out be a constraint given by a client. A run inRuns(CW,Din) is correct
if it ends in a final configuration and returns a dataset Dout such that Din, Dout |= ψin,out.
CW is existentially correct with inputs Din iff there exists a correct run Runs(CW,Din)
for someDin∈Din. CW is universally correct with inputsDin iff all runs inRuns(CW,Din)
are correct for every Din∈Din.

In general, termination does not guarantee correctness. A terminated run starting
from an input dataset Din may return a dataset Dout such that pair Din, Dout does not

102

Chapter 4. Decidability

n0

t0

Din Dout

scenario 1 : D1 ∈ Dout scenario 2 : D2 ∈ Dout

Termination TerminationX X
Correctness Correctness× X

u1

Id title year
1 Star Wars .
2 Titanic .
3 Star Wars .
4 Titanic .
4 Titanic .

Id title year rating
1 Star Wars . 4
2 Titanic . 5
4 Titanic . 5
4 Titanic . 5

Id title year rating
2 Titanic . 5
4 Titanic . 5
4 Titanic . 5

Figure 4.6 – Different scenario of a terminated run: with and without correct set of
output.

comply with constraint ψin,out imposed by the client. For instance, a run may terminate
with an empty dataset while the client required at least one answer. Similarly, a client
may ask all records in the input dataset to appear with an additional tag in the output.
If any input record is missing, the output will be considered incorrect. Figure 4.6 de-
picts two scenarios. Consider the node n0 tagged with task t0 is attached with dataset
movie(Id, title, year) ∈ Din. Client requirement is to get a datasetDout with movie rating
greater than or equal to 5.

∀id, t, y, r movie(id, t, y, r) ∈ Din =⇒ ∃id, t, y, r movie(id, t, y, r) ∈ Dout ∧ (r ≥ 5)

Here in Figure 4.6, we show two scenarios. In the first case, task t0 terminates, but with
the wrong set of output D1 ∈ Dout which was not desired by the client, i.e. the record
movie(1, Star Wars, ., 4) do not meets the client requirement, movie(1, Star Wars,

., 4) 6|= ψin,out. On the other hand, in the second scenario, the task t0 terminates with
the correct output D2 ∈ Dout, and satisfies client requirement D2 |= ψin,out. Here, we
can observe that termination does not guarantee the correctness and hence requires
mechanisms to guarantee correctness of complex workflow. As for termination, correct-
ness can be handled through symbolic manipulation of datasets but has to consider
constraints that go beyond the emptiness of datasets. Weakest preconditions can be
effectively computed (Prop. 1): one derives successive formulas ψin,outi , . . . ψin,out0 be-
tween Din, Dout and datasets in use at step i, . . . 0 of a run. However, the ψin,outAE part

103

Chapter 4. Decidability

of formulas is already in an undecidable fragment of FO, so even universal termination
is undecidable in general, and even when a bound on the length of runs is known. It
becomes decidable only with some restrictions on the fragment of FO used to write
ψin,out.

Theorem 4. Existential and universal correctness of CW are undecidable, even when
runs are of bounded length K. If tasks do not use SQL difference, and ψin,out is in a
decidable fragment of FO, then

— existential correctness is decidable for CWs with runs of bounded length. it is in
— 2EXPTIME for the ∃FO.
— 3EXPTIME for ∀FO, BSR.
— 2K-fold-EXPTIME for SF fragments.

— universal correctness is decidable for CWs with runs of bounded length. It is in
— co− 2EXPTIME for the ∃FO.
— co− 3EXPTIME for ∀FO, BSR.
— co-2K-fold-EXPTIME for SF fragments.

Proof. Let us first prove the undecidability part: It is well known that satisfiability of
FO is undecidable in general, and in particular for the AE fragment with formulas of
the form ∀

→
X∃

→
Y , φ(X, Y). Hence ψin,outAE can be a formula in which satisfiability is not

decidable. Consider for example a FO formula ψunsat which satisfiability is not decid-
able. One can then build a formula ψid that says that the input and output of a workflow
are the same. One can design a workflow CWid with a single final node which role is
to return the input data, and set as client constraint ψin,out = ψunsat ∧ ψid. This workflow
has a single run. Then, CWid terminates properly if there exists a dataset Din such that
Din |= ψunsat, i.e. if ψunsat is satisfiable. Universal and existential correctness are hence
undecidable problems.

For the decidable cases, one can apply the technique of Theorem 2. One can find
non-deterministically a symbolic run ρS that does not terminate and check that it is the
signature of an actual run, or a symbolic run ρS that terminates and check whether it
satisfies ψin,out.

Let us first consider universal correctness. Assume that CW terminates universally,
and select a symbolic run ρS = CS

0 . . . C
S
n . We can then compute a chain of weakest

preconditions ψn, ψn−1, . . . ψ0 that have to be enforced to execute successfully CW and
terminate in node n. In particular, ψn ::= true. Similarly, one can compute at each
step, the weakest precondition ψin,outi needed at step i so that ψin,out holds. Intuitively,

104

Chapter 4. Decidability

ψin,outi describes the constraints between the initial dataset and the output dataset
"consumed" at stage i+ 1 in ρS. If at one stage, ψi ∧ψin,outi is not satisfiable, then ρS is
not the signature of an actual run of CW that terminate properly, and we have found a
witness of non-correctness. We have assumed that ψin,out was specified in a decidable
fragment of FO. As computing the weakest precondition of a property in the existential,
universal, BSR, SF fragment of FO gives property in the same fragment, all ψi’s and
ψin,outi ’s are in a decidable fragment of FO. Then, the complexity will depend on the
considered fragment, and on the fragment of FO used to specify inputs. As for universal
termination, if inputs and ψin,out are specified with the universal fragment of FO, then
universal proper termination is in co − 2EXPTIME, and in co − 3EXPTIME for the
existential fragment (as one may alternate ∃ statements on outputs with ∀ statements
inherited from the obligation to prove non-emptiness of a dataset. Similar remark and
complexity hold for the BSR fragment (separation of variables maintains a NEXPTIME
complexity [SVW16]). If ψin,out is in SF, then checking proper universal termination is
co−K − fold−exponential time, where K = rKTcx .

The proof and complexities for existential correctness follow the same lines, yielding
2EXPTIME complexity when ψin,out is written with the existential, fragment of FO,
3−EXPTIME complexity for when ψin,out is written in the universal or BSR fragments
(as checking satisfiability for a BSR formula is in NEXPTIME [Lew80]) and K − fold−
exponential for SF formulas [SVW16]. �

At first sight, restricting to the existential, universal, BSR, or SF fragments of FO can
be seen as a limitation. However, the existential fragment of FO is already a very useful
logic, that can express non-emptiness of outputs: property ∃x1, . . . ,∃xk, rn(x1, . . . xk) ∈
Dout expresses the fact that the output should contain at least one record. Similarly, one
can express properties to impose that every input has been processed. For instance,
the property

ψvalidin,out ::= ∀x1 . . . xk, rn(x1, . . . xk) ∈ Din ∃y1 . . . yq, rn(x1, . . . xk, y1, . . . yq) ∈ Dout

∧P (x1, . . . xk, y1, . . . yq)

asks that every input in Din appears in the output, and P () describes correct outputs.
Clearly, ψvalidin,out is not in the separated fragment of FO. This formula can be rewritten
into another formula (BSR form) with a single alternation of quantifiers of the form:

∀x1 . . . xk, ∃y1 . . . yq,¬rn(x1, . . . xk) ∈ Din

∨ rn(x1 . . . xk, y1 . . . yq) ∈ Dout

105

Chapter 4. Decidability

Workflow
Type

FO
Fragment

(for Din or ψin,out)

Problems Complexity (no SQL diff.)
Existential
Termination

Universal
Termination

Static,
Recursive
Bounded

FO Undecidable Undecidable
∃∗(∀∗ if univ. PB) 2EXPT co− 2EXPT

BSR,∀∗(∃∗ if univ. PB) 3EXPT co− 3EXPT
SF nin−foldEXPT co− nin-fold-EXPT

Recursive
Unbounded

FO Undecidable Undecidable
∃∗(∀∗ if univ. PB) Undecidable co− 2EXPT

BSR,∀∗(∃∗ if univ. PB) Undecidable co− 3EXPT (K)
SF Undecidable co− nin−foldEXPT

Table 4.1 – Complexity of Termination (EXPT stands for EXPTIME).

Workflow
Type

FO
Fragment

(for Din or ψin,out)

Problems Complexity (no SQL diff.)
Existential
Correctness

Universal
Correctness

Static,
Recursive
Bounded

FO Undecidable Undecidable
∃∗(∀∗ if univ. PB) 2EXPT co− 2EXP

BSR,∀∗(∃∗ if univ. PB) 3EXPT co− 3EXPT
SF 2KTcx -fold-EXPT co-2KTcx -fold-EXPT

Recursive
Unbounded

FO Undecidable Undecidable
∃∗(∀∗ if univ. PB) Undecidable co− 2EXPT

BSR,∀∗(∃∗ if univ. PB) Undecidable co− 3EXPT
SF Undecidable co-2KTcx -fold-EXPT

Table 4.2 – Complexity of Correctness (EXPT stands for EXPTIME).

Last, one can also consider formulas in which ψin,outEA is of the form ∀x1, . . . xk∃y1, . . . ,

yq φ as soon as every atom in φ that is not separated contains only existential variables
that take values from a finite domain. Then ψin,outEA can be transformed into an equiv-
alent universal formula which matrix is a boolean expression on separated atoms.

Table 4.1summarizes the complexities of termination and Table 4.2 summarized the
complexities of correctness for static complex workflows (without higher-order answer)
or with bounded recursion, and for generic workflows with higher order.

106

Chapter 4. Decidability

4.4 Use Case

We illustrate the algorithm to check termination on a simple use case, namely an
image annotation task. The scenario is the following: a client wants to realize a com-
plex task whose global objective is to annotate images. The objective is to tag a huge
dataset of images with a predefined taxonomy. The initial workflow consists of three
nodes nint, n1 and nf and is depicted in Figure 4.7(left). The node nint is the initial
node and nf is the final node. The objective of node nf is to return the final answer
to the client. Consider the node n1 tagged with task t1 is allocated a worker u1 for
the task execution. The node n1 receives as input dataset D1 with relational schema
picdata(id, image). The dataset D1 contains 1000 record with id ranging from 0 to 999
in picdata table. The field image is an image object URL (to retrieve images). The ob-
jective of task t1 is to tag each of the records from a predefined taxonomy as Bee or
Fly. Considering the huge work that cannot be realized by a single worker, u1 decides
to rewrite the task into another workflow W ′ by applying the rule R4. The new workflow
W ′ is represented in Figure 4.7(right). The idea used by the worker u1 is simple. He
decides to create two subsets of the dataset that consists of 500 images each.

The node n2 performs a decomposition of dataset. The input to the node n2 is
dataset D2 with relational schema picdata(id, image). A selection operation is per-
formed to produce a dataset D3 with relational schema picdata(id, image) with records
id smaller than 500 and another selection operation that selects records from 500 to
999 to produce dataset D4 with relational schema picdata(id, image). The dataset D3

and D4 acts as an input to the node n3 and n4 respectively. The task t3 ∈ n3 tags each
record from D3 with a tag from the pre-defined set of taxon ∈ {Bee, F ly} and produces
dataset D5 with relational schema picdata(id, image, taxon). Similarly the node n4 an-
notates each of the images and inserts a taxon ∈ {Bee, F ly} in the taxon field and
returns picdata(id, image, taxon) ∈ D6. The outputs of node n3 and n4 are forwarded
to node n5. The task t5 attached to node n5 performs a union operation and produces
dataset D7 with relational schema picdata(id, image, taxon). The node n6 gets dataset
D7 as input and does a projection on the fields id, taxon. It returns a datset D8 with re-
lational schema picdata(id, taxon) which is forwarded to node nf . The node nf simply
returns the output to the client.

107

Chapter 4. Decidability

W

nint

t1

n1

tannotate

nf

tf
D1 Dout

W ′

nint

tint

n2

t2

n3

t3

n4

t4

n5

t5

n6

t6

nf

tf
D1 D2

D3

D4

D5

D6

D7 D8 Dout

Figure 4.7 – Original workflow W (left). The new workflow is represented as W ′ after
refinement of node n1 in worklow W (right).

Now, we illustrate the universal termination problem and the objective is to check
whether the given workflow W universally terminates. Recall that, for each of the rule
execution on a complex workflow we get a run ρ = {C0.C1Ck} where Ci denotes
the configuration of the workflow (see def. 22). A complex workflow does not terminate
amounts to proving that it is not recursion-free, or that it has a finite symbolic run which
preconditions allow a deadlock. To check a workflow is not recursion-free, we first build
a rewriting graph RG(CW) and check the existence of a cycle. In our use case, we can
observe there exists no cycle as there is no task ti that is refined infinitely. Here, we do
not explain how to check existense of a cycle in a rewriting graph RG(CW), which can
be done with standard algorihms using DFS. Next, the universal termination builds on
checking all symbolic runs in the workflow.

To consider all runs of the complex workflow, we build its symbolic execution tree
(SET) (see def. 30) which represents all the symbolic runs.

4.4.1 Formulation of Symbolic Execution Tree

Even for a small Complex Workflow, Symbolic Execution Tree can be very large.
Hence, we do not represent the whole SET of the CW of Figure 4.7, but rather concen-
trate on interesting and important parts. The SET is shown in Figure 4.8.

CS
0 denotes the initial symbolic configuration. The nint is the source node tagged

with task t1 that forwards the data to the node n1. The execution gives the next symbolic
configuration CS

1 . The node n1 attached with dataset D1 rewrites the task t1 (Rule
4) and gives symbolic configuration CS

2 . The configuration CS
3 is obtained after the

108

Chapter 4. Decidability

CS
0 v0

nint

CS
1 v1

Ref(n1)
CS

2 v2

n2

CS
3 v3

n3 n4

CS
4 v4

n5

CS
5 v5

n5

CS
6 v6

n6

CS
7

v7

n6

CS
8 v8

nf

CS
9 v9

nf

CS
10 v10 CS

11 v11

W

nint

t1

n1

tannotate

nf

tf
D1

n1

tannotate

nf

tf
D1

W ′

n2

t2

n3

t3

n4

t4

n5

t5

n6

t6

nf

tf
D2

n3

t3

n4

t4

n5

t5

n6

t6

nf

tf

D3

D4

n3

t3

n5

t5

n6

t6

nf

tf
D5

n4

t4

n5

t5

n6

t6

nf

tf

D6

n5

t5

n6

t6

nf

tf
D7

n5

t5

n6

t6

nf

tf
D7

n6

t6

nf

tf
D8

n6

t6

nf

tf
D8

nf

tf
Dout

nf

tf
Dout

Figure 4.8 – Symbolic Execution Tree.

109

Chapter 4. Decidability

decomposition of dataset D2 into dataset D3 and D4 by the node n2. Next we get two
symbolic configurations due to decomposition of data D2. The symbolic configuration
CS

4 depicts the execution of an atomic task t3 ∈ n3 that performs insertion operation
on input dataset D3 and returns dataset D5. Similarly, The symbolic configuration CS

5

denotes the execution of an atomic task t4 ∈ n4 that performs insertion operation on
input dataset D4 and returns dataset D6. From the CS

4 symbolic configuration, we move
to CS

6 that depicts the execution of task t5 ∈ n5 and performs union operation on input
dataset D5, D6 and returns dataset D7. Similarly, we move from CS

5 to CS
7 that depicts

the union operation for node n5. From the symbolic configurations CS
6 , C

S
7 we move to

configurations CS
8 and CS

9 respectively. The symbolic configurations CS
8 and CS

9 denote
the execution of task t6 ∈ n6 that performs projection operation on input dataset D7 and
returns output dataset D8. The symbolic configurations CS

9 and CS
11 depict the execution

of final node nf that returns output dataset Dout.

4.4.2 Algorithm to check termination

One needs to check all the symbolic runs of the workflow to check universal ter-
mination. To recall, for each of the symbolic runs in the SET, the algorithm checks
the existence of an empty dataset. We derive the weakest precondition inductively for
each of the symbolic configurations and check the satisfiability of the FO formula. If
there exist no runs with an empty dataset, the algorithm returns universal termination.

Note that, in the above section, we build a SET that contains all the symbolic runs
of the workflow. The leaf nodes of the SET are the symbolic configurations CS

10 and CS
11.

Both symbolic configurations represent the execution of the final node nf that returns
the final output dataset, hence does not transform data. Similarly the symbolic config-
urations CS

0 , C
S
1 , C

S
2 does not transform data. For checking universal termination, we

only consider the symbolic configurations that affect data. Hence, we get two symbolic
runs as ρS1 = {CS

8 .C
S
6 .C

S
4 .C

S
3 } and ρS2 = {CS

9 .C
S
7 .C

S
5 .C

S
3 }. Next, to check the workflow

universally terminates, for each of the runs we check the satisfiability of the sequence
of the weakest precondition from the last symbolic configuration to the initial symbolic
configuration in ρSi proving the existence of a run leading to a configuration where a
dataset is not empty. Conversely, we check the existence of an empty dataset for each
of the runs i.e. in our case ρS1 and ρS2 . We check the feasibility of ρS1 starting from the
configuration CS

8 to check all conditions that met along a run with signature to reach CS
3

110

Chapter 4. Decidability

at each step that allows the existence of actual configurations. The nodes associated
with the symbolic configurations in the run ρS1 are n6, n5, n3 and n2 where operations
transformed the datasets. Similarly, the nodes associated with the symbolic configu-
rations in the run ρS2 are n6, n5, n4 and n2 where operations transformed the datasets.
Next, we show the calculus to derive the weakest precondition at each of the sym-
bolic configurations and then show inductively checking of weakest preconditions in a
symbolic run. We show the steps for the run ρS1 .

We start from the symbolic configuration CS
8 obtained after realization of node n6.

The task t6 at node n6 takes input dataset D7, performs a projection operation on
the fields id, taxon and returns the dataset D8. The weakest precondition at node n6 is
wpn6 = wp[Projection]ψ, where ψ isD8 6= φwhich is equivalent to ∃id, taxon, picdata(id,
taxon) ∈ D8. We derive the weakest precondition to check whether the set of operation
can lead to a non empty dataset D8 6= φ. Here wpn6 = wp[Projection]ψ is a formula

∃vid, vtaxon picdata(vid, vimage, vtaxon) ∈ D7

We trace backward in run ρS1 and go to the predecessor symbolic configuration of
CS

8 which is CS
6 . The move from CS

6 to CS
8 is the realization of node n5. The operation

at node n5 is union that gets input from node n3 and n4. The input dataset provided
is picdata(id, image, taxon) ∈ D5 and picdata(id, image, taxon) ∈ D6 and produces an
output dataset D7 with relational schema picdata(id, image, taxon) ∈ D7. Note that,
condition for the produced output data D7 6= 0, is D5 6= 0, D6 6= 0. The weakest pre-
condition at node n5 is denoted as wpn5 = wp[Union]ψ where ψ = (D7 6= 0) and can
be expressed with a FO formula as ∃id, image, taxon, picdata(id, image, taxon) ∈ D7.
Hence, wpn5 is a formula

∃uid, uimage, utaxon picdata(uid, uimageutaxon) ∈ D6 ∨ picdata(uid, uimageutaxon) ∈ D7

The node associated with symbolic configuration CS
4 is n3 that performs insertion

operation and inserts taxon ∈ {bee, fly} to the input dataset D3 with relational schema
picdata(id, iamge, taxon) ∈ D3 and produces datasetD5 with relational schema picdata(id,
image, taxon) ∈ D5. The weakest precondition at symbolic configuration CS

4 is wpn3 =
wp[Insertion]ψ, where ψ isD5 6= φwhich is equivalent to ∀id, image, taxon, picdata(id, image,
taxon) ∈ D5∧ taxon ∈ {bee, fly}. The weakest precondition for the node n3 is a formula

111

Chapter 4. Decidability

wpn3 = wp[Insertion]ψ is

∃uid, uimage picdata(uid, uimage) ∈ D3

Similarly, the node associated with symbolic configuration CS
5 is node n4 that per-

forms an insertion operation and takes input datasetD4 with relational schema picdata(vid,
vimagevtaxon) ∈ D4. It tags each record with a taxon ∈ {bee, fly} and produces dataset
D6. The weakest precondition at symbolic configuration CS

5 is wpn4 = wp[Insertion]ψ,
where ψ is D6 6= φ which is equivalent to ∀id, image, taxon, picdata(id, image, taxon) ∈
D6 ∧ taxon ∈ {bee, fly}. The weakest precondition for the node n4 is a formula wpn4 =
wp[Insertion]ψ is

∃uid, uimage picdata(uid, uimage) ∈ D4

At last, we derive the weakest precondition for the symbolic configuration CS
3 which

is associated with task t2 that performs the decomposition operation. The decompo-
sition operation is a higher order operation and splits the input dataset D2 into a set
of dataset D3, D4. The dataset D3 and D4 is obtained using Selection operation on
the input dataset D2 with relational schema picdata(id, image, taxon). D2 is obtained
through selection predicates P1 :: (id ≥ 0 ∧ id ≤ 499) and P2 :: (id ≥ 500 ∧ id ≤
999). The weakest precondition at node n2 is wpn2 = wp[Decomposition]ψ, where
ψ is D3 6= φ and D4 6= φ which is equivalent to ∃uid, uimage, utaxon, vid, vimage, vtaxon
picdata(uid, uimage, utaxon) ∈ D3 ∧ vid, vimage, vtaxon ∈ D4. Then weakest precondition for
the decomposition operation wpn2 = wp[Decomposition]ψ is the formula

∃uid, uimage picdata(uid, uimage) ∈ D1 ∧ (uid ≥ 0 ∧ uid ≤ 499)
∨picdata(uid, uimage) ∈ D2 ∧ (uid ≥ 500 ∧ uid ≤ 999)

Here, we derived inductively a sequence wpn6 .wpn5 .wpn3 .wpn2 of weakest condi-
tions for the symbolic run ρS1 = {CS

8 .C
S
6 .C

S
4 .C

S
3 } which is to be met at each stage such

that condition Di 6= ∅ at a node ni (hence not leading to an unavoidable deadlock). At
each stage, we check the satisfiability of the derived weakest precondition wpni using
a solver, Z3 [DMB08]. Now, for a derived precondition at a node, if the FO formula is
not satisfiable then we return non-termination, otherwise, we inductively go back from
wpn to wpn−1 and repeat the procedure up to the derivation of the weakest precondi-
tion for the initial symbolic configuration of the symbolic run. Following our use case, if

112

Chapter 4. Decidability

the weakest precondition wpn6 is not satisfied, we return non-termination, otherwise we
take one step back and derive the weakest precondition wpn5. We repeat the procedure
up to wpn2. If a run exists such that we are able to reach from the last symbolic con-
figuration CS

8 to the initial symbolic configuration CS
3 in run ρS1 i.e. all derived weakest

precondition in the path from wpn6 to wpn2 satisfies, then it proves that there does not
exist a configuration which leads to an empty dataset. Similarly, analogy follows for the
run ρS2 where the sequence of derived weakest preconditions are wpn6 .wpn5 .wpn4 .wpn2.
Note that, if for all runs, we are able to trace back to the initial symbolic configuration,
the algorithm proves universal termination. In our use case, for each of the symbolic run
ρS1 and ρS2 , we find that all the derived weakest precondition along the path is satisfiable
(using Z3 solver [Pro]) and hence the algorithm returns verdict as universal termina-
tion. The syntactical derivation of the weakest precondition and checking satisfiability
using Z3 allows obtaining the simulation and satisfiability results within a reasonable
time of a few seconds.

4.5 Platform

We implement the proposed complex workflow model of Chapter 3 and algorithms
to check termination and correctness properties. The tool is named CrowdPlex.

The tool is developed in JAVA. We design the CrowdPlex tool as a modular sys-
tem composed of three components: Workflow specification, Operational semantics,
and Property checker. The workflow specification module consists of several sub-
components: coarse description of task in the form of workflow, task mapping, profile,
worker availability, worker skills, task pre-requisite and data specification. Workflow
specification is provided as text file or can be passed dynamically at run time to the
CrowdPlex tool. Each sub-components of workflow specification follows a predefined
grammar and is parsed using a parser developed with JavaCC (Java Compiler Com-
piler) 1. The operational semantics module gives various rules that are the guiding
principles for the execution of a complex workflow. The operational semantics follows
the four rules as described in Section 3.4. They describe how a configuration is trans-
formed when a particular action takes place (worker assignment, task completion, ...).
The last part of CrowdPlex is a property checker module to verify termination and
correctness properties. The module generate symbolic runs, synthesizes the weakest

1. https://javacc.github.io/javacc/.

113

Chapter 4. Decidability

preconditions and relies on the Z3 solver to check the satisfiability of a first-order for-
mula. Z3 is an efficient and well-known Satisfiability Modulo Theories (SMT) solver with
specialized algorithms and is developed by Microsoft [Pro]. SMT generalizes boolean
satisfiability (SAT) problems by adding equality, reasoning, quantifiers, and first-order
theories.
Working of CrowdPlex. The first module of the CrowdPlex tool, workflow specifica-
tion takes the input as crowdsourcing attributes and the coarse description of a com-
plex task. The operational semantics module interacts with the workflow specification
module and applies the various defined rules for the workflow execution. The property
checker module implements the existential and universal termination algorithm.

A crucial point for verification of universal or existential termination is to check
feasibility of a symbolic run. Let us show how the feasibility of a symbolic run ρS =
CS

0 .C
S
1C

S
k is verified. The module checks the feasibility of a run ρS ending with an

empty dataset by deriving backward weakest precondition from the deadlocked sym-
bolic configuration to the initial symbolic configuration. At each symbolic configuration,
the module derives the weakest precondition. The derived weakest precondition is then
passed to Z3 solver to check the satisfiability. If the weakest precondition at a symbolic
configuration CS

i is not satisfiable, then it stops, and concludes that run ρS is not feasible
with the condition ψk expected in its last configuration CS

k . If we reach the initial config-
uration (all the derived weakest precondition FO formula along the run are satisfiable),
then it remains to check that the input data verify the last precondition ψ0 generated.
If this is the case, then CS

i can deadlock, and the module witnesses a deadlocked run
resulting into non-termination of the complex workflow.

The property checker then builds on verification of symbolic runs realization to
check existential termination. For universal termination, the verification module first
verifies that rewritings rules do not contain cyclic dependencies. If it is the case the
checker concludes immediately that the complex workflow does not terminate. If the
specification is not recursive, then the checker can build the symbolic execution tree
and verify individually each of its symbolic runs.

4.6 Conclusion

We studied termination and correctness of complex workflows with respect to the
requirement on inputs and output of the overall process. Unsurprisingly, termination

114

Chapter 4. Decidability

of a complex workflow is undecidable, already due to the control part of the model.
Now the question of whether all runs terminate can be answered when the initial data
is specified in a fragment of FO for which satisfiability is decidable. Similar remarks
apply to correctness. We consider the complexity of termination and correctness for
different decidable FO fragments. The (co)-2EXPTIME bound for the fragments with
the lowest complexity mainly comes from the exponential size of the formula depicting
preconditions that must hold at initial configuration (the EXPTIME complexity is in the
maximal length of runs). This can be seen as an untractable complexity, but one can
however expect the depth of recursion to be quite low, or even enforce such a depth.

To summarize, complex workflows provide a way to rewrite an intricate task in an
orchestration of smaller tasks and provide termination and correctness guarantees.
However, focusing on the orchestration of complex workflows as coordination of smaller
tasks is not enough. The complex workflow often comes with budget constraints pro-
vided by the client and also requires a guarantee on the data quality. The next two
chapters will discuss the way to get reliable answers from the crowd with budget con-
straints. In particular, we use probabilistic models on top of workflows to obtain a trade-
off between cost and accuracy.

115

PART III

Quality Assurance

117

CHAPTER 5

QUALITY ASSURANCE FOR ATOMIC

TASKS

In the preceding chapters, we have proposed a complex workflow model that al-
lows specifying intricate tasks with workflows. For this model, we can check correct-
ness and termination on a reasonable subset of the language, mainly non-recursive
specifications without dataset difference. Workflows provide an efficient way to execute
intricate tasks to achieve a certain goal. They define the way tasks are decomposed,
ordered, and executed. However, they do not provide mechanisms to guarantee the
quality of data produced by the workflow. The verification process of Chapter 4 does
not allow either to consider the cost of the workflow. Generally, tasks at crowdsourcing
platforms come with a fixed budget provided by the client. In this chapter, we consider
the cost and quality of produced data for a single atomic task. We extend the concept
to workflows in Chapter 6.

The tasks at crowdsourcing platforms need human contribution. The simplest tasks
include image annotation or classification, polling, etc. Employers publish tasks on an
Internet platform, and these tasks are realized by workers in exchange for a small
incentive [Dan+18]. Workers are very heterogeneous: they have different origins, do-
mains of expertise, and expertise levels. For these reasons, workers can disagree and
return very different answers, even for simple tasks. One can even consider malicious
workers, that return wrong answers on purpose. To deal with this heterogeneity, tasks
are usually replicated: each task is assigned to a set of workers. Redundancy is also
essential to collect worker’s opinion: in this setting, work units are the basic elements
of a larger task that can be seen as a poll. One can safely consider that each worker
executes his assigned task independently, and hence returns his own belief about the
answer. As workers can disagree, the role of a platform is then to build a consensual
final answer out of the values returned.

118

Chapter 5. Quality Assurance for Atomic Tasks

In Chapter 2, we have recalled a simple and natural way to derive a final answer us-
ing Majority Voting (MV). MV chooses as a conclusion the most represented answer.
A limitation of MV is that all answers have equal weight, regardless of the expertise
of workers. If a crowd is composed of only a few experts, and of a large majority of
novices, MV favors answers from novices. However, in some domains, an expert worker
may give a better answer than a novice and his answer should be given more weight.
One can easily replace MV with a weighted vote. However, this raises the question of
measuring a worker’s expertise, especially when the worker’s competencies are not
known a priori. Crowdsourcing platforms such as Amazon Mechanical Turk (AMT) do
not have prior knowledge about the expertise of their worker. A way to obtain an initial
measure of a worker’s expertise is to use Golden Questions [Le+10]. Several tasks
with known ground truth are used explicitly or hidden to evaluate worker’s expertise.

As already mentioned, a single answer for a particular task is often not sufficient to
obtain a reliable answer, and one has to rely on redundancy, i.e. distribute the same
task to several workers and aggregate results to build a final answer. Standard static
approaches on crowdsourcing platforms fix a prior number of k workers per task. Each
task is published on the platform and waits for bids by k workers. There is no guideline
to set the value for k, but two standard situations where k is fixed are frequently met.
The first case is when a client has n tasks to complete with a total budget ofB0 incentive
units. Each task can be realized by k = B0/n workers. The second case is when an
initial budget is not known, and the platform fixes an arbitrary redundancy level. In
this case, the number of workers allocated to each task is usually between 3 and 10
[GM+16]. It is assumed that the distribution of work is uniform, i.e. that each task is
assigned the same number of workers. An obvious drawback of static allocation of
workers is that all tasks benefit from the same work power, regardless of their difficulty.
Even a simple question where the variance of answers is high calls for a sampling of
larger size. So, one could expect each task t to be realized by kt workers, where kt

is a number that guarantees that the likelihood to change the final answer with the
contribution of one additional worker is low. However, without prior knowledge on the
task’s difficulty and on variance in answers, this number kt cannot be fixed a priori.

In this chapter, we propose an algorithm to address the questions of answers aggre-
gation, task allocation, and costs optimization. We first propose an aggregation tech-
nique based on Expectation Maximization (EM) algorithm considering factors such as
task difficulty and worker expertise. For simplicity, we consider boolean filtering tasks,

119

Chapter 5. Quality Assurance for Atomic Tasks

i.e. tasks with answers in {0, 1}, but the setting can be easily extended to tasks with
any finite set of answers. These tasks are frequent, for instance, to decide whether a
particular image belongs or not to a given category of pictures. We consider that each
binary task has a truth label, i.e. there exists a ground truth for each task. Each worker
is asked to answer 0 or 1 to such a task and returns a so-called observed label, which
may differ from the ground truth. The difficulty of a task is a real value in [0, 1]. A task
with difficulty 0 is a very easy task and a task with difficulty 1 a very complex one.
The expertise of a worker is modeled in terms of recall and specificity. Recall (also
called true positive rate) measures the proportion of correct observed labels given by
a worker when the ground truth is 1. On contrary, specificity (also called true negative
rate) measures the proportion of correct observed labels given by a worker when the
ground truth is 0. In this chapter, we propose a generating function to model the prob-
ability of accuracy for each of the truth labels (0/1) based on the observed label, task
difficulty, and worker expertise. We rely on an Expectation Maximization (EM) based
algorithm to estimate most probable ground truth for each task and jointly estimate the
difficulty of each task as well as the expertise of the workers. The algorithm provides
greater weight to expert workers. In addition, if a worker with high recall makes a mis-
take in the observed label, then it increases the difficulty of the task (correspondingly
for specificity). Similarly, if expert workers fail to return a correct answer, then the task
is considered difficult. The EM algorithm converges with a very low error rate and at the
end returns the task difficulty, worker expertise and the final estimated label for each
task based on observed labels.

We then propose CrowdInc, a dynamic worker allocation algorithm that handles at
the same time aggregation of answers, and optimal allocation of a budget to reach a
consensus among workers. The algorithm works in two phases. For the initial Estima-
tion phase, as we do not have any prior information about the task difficulty and worker
expertise, we allocate one-third of the total budget to inspect the behavior of each task.
Based on the answers provided by human workers for each task, we first derive the
difficulty of tasks, final aggregated answers, and the worker expertise using an EM al-
gorithm. For each task, we estimate the likelihood that the aggregated answer is the
ground truth. Tasks which aggregated answers have been synthesized with sufficient
confidence are not allocated workers in the following rounds. Next phase is called Con-
vergence. The remaining tasks are allocated additional workers for a new round based
on the current estimate of the difficultly of tasks. At each round, we compute the task

120

Chapter 5. Quality Assurance for Atomic Tasks

difficulty, worker’s expertise, and the final answer for each task, and then final answers
with enough confidence are considered as the aggregated answer. This iterative pro-
cess stops when all tasks are labeled with sufficient confidence, or when the budget is
exhausted.

We provide the below outline of the chapter.
— We state the preliminaries and the factors affecting the aggregation techniques

in Section 5.1.
— We use an Expectation Maximization based aggregation algorithm which aggre-

gates the answers provided by the crowd workers and returns the most probable
answer as the final answer. (Section 5.2).

— Next, we define a cost model that dynamically allocates workers based on task
difficulty, confidence in the final answer, tasks to be processed, and the available
budget. (Section 5.3).

— We evaluate the proposed model by comparing it with the state-of-the-art tech-
niques on real datasets in Section 5.4 and finally conclude in Section 5.5.

5.1 Basic ingredients of aggregation

In this section, we detail the basic definitions of probability theory, factors influencing
the efficiency of crowdsourcing, and the Expectation Maximization algorithm. We first
introduce the concept of probability, conditional probability, and Bayes’s law. We then
discuss the two factors namely difficulty of the task and worker expertise that influence
the aggregation mechanism. In the end, we present the generalized EM algorithm.

5.1.1 Probability theory

We work with discrete variables and discrete probabilities. A random variable is a
variable whose value depends on random phenomenon called as event E. For a given
variable x, we denote by Dom(x) its domain (Boolean, integer, real, string, ...). For a
particular value v ∈ Dom(x) we denote by x = v, the event "x has value v". A probability
measure Pr(x = v) is a function that defines how likely a particular event is and takes
a real value in [0, 1]. In the rest of the chapter, we mainly consider Boolean events,
i.e. variables with domain {0, 1}. A probability of the form Pr(x = v) only considers
occurrence of a single event. When considering several events, we define the joint

121

Chapter 5. Quality Assurance for Atomic Tasks

probability. Joint probability is the occurrence of two events E := (x = v) and E ′ :=
(y = v′) simultaneously and is denoted by Pr(x = v, y = v′). The notation extends to
an arbitrary number of variables. If E and E ′ are two independent events, then their
joint probability is Pr(x = v, y = v′) = Pr(x = v) · Pr(y = v′). Conditional Probability
is defined as probability of an event when another event is known. More precisely,
conditional probability is of the form Pr(x = v|y = v′) and is defined as the probability
for an event x = v given y = v′. The conditional probability is calculated as Pr(x =
v|y = v′) = Pr(x=v,y=v′)

Pr(y=v′) assuming that Pr(y = v′) > 0. Using all the notations, Bayes’
law tells about the probability of an event based on some prior knowledge of conditions
that might be relevant to the event. Considering A and B are events and Pr(B) 6= 0,
then Pr(A|B) = Pr(B|A)×Pr(A)

Pr(B) .

5.1.2 Factors influencing efficiency of crowdsourcing

During task labeling, several factors can influence the efficiency of crowdsourcing,
and the accuracy of aggregated answers. The first one is Task difficulty. Tasks sub-
mitted to crowdsourcing platforms by a client address simple questions, but may never-
theless require some expertise. Even within a single application type, the difficulty for
the realization of a particular task may vary from one experiment to another: tagging
an image can be pretty simple if the worker only has to decide whether the picture con-
tains an animal or an object, or conversely very difficult if the boolean question asks
whether a particular insect picture shows a hymenopteran (an order of insects). Simi-
larly, Expertise of workers plays a major role in the accuracy of aggregated answers.
In general, an expert worker performs better on a specialized task than a randomly cho-
sen worker without particular competence in the domain. For example, an entomologist
can annotate an insect image more precisely than any random worker.

The technique used for Amalgamation also plays a major role. Given a set of an-
swers returned for a task t, one can aggregate the results using majority voting (MV),
or more interesting, as a weighted average answer where individual answers are pon-
dered by worker’s expertise. However, it is difficult to get a prior measure of worker’s
expertise and of the difficulty of tasks. Many crowdsourcing platforms use MV and ig-
nore the difficulty of tasks and expertise of workers to aggregate answers or assign
tasks to workers. We show in Section 5.4 that MV has low accuracy. We will also show
in this chapter that expertise and difficulty, considered as hidden parameters can be

122

Chapter 5. Quality Assurance for Atomic Tasks

evaluated from the sets of answers returned. This allows us to hire new workers with a
priori unknown expertise. One can also start with a priori measure of task difficulty and
of worker’s expertise. Worker’s expertise can be known from former interactions. It is
more difficult to have initial knowledge of task difficulties, but one can start with an a pri-
ori estimation. However, these measures need to be re-evaluated on the fly when new
answers are provided by the crowd. Starting with a priori measures does not change
the algorithms proposed hereafter, but may affect the final aggregated results.

In Section 5.2, we propose a technique to estimate the expertise of workers and
difficulty of tasks on the fly. Intuitively, one wants to consider a task as difficult if even
experts fail to provide a correct answer for this task and consider as it easy if even
workers with low competence level answer correctly. Similarly, a worker is competent
if he answers correctly difficult tasks. Notice however that to measure the difficulty of
tasks and expertise of workers, one needs to have the final answer for each task. Con-
versely, to precisely estimate the final answer one needs to have the worker expertise
and task difficulty. This is a chicken and egg situation, but we show in Section 5.2 how
to get plausible value for both using EM.

The next issue to consider is the cost of crowdsourcing. Workers receive incentives
for their work, but usually, clients have limited budgets. Some tasks may require a lot
of answers to reach a consensus, while some may require only a few answers. There-
fore, a challenge is to spend efficiently the budget to get the most accurate answers.
In Section 5.3, we discuss some of the key factors in budget allocation. Many crowd-
sourcing platforms do not consider difficulty, and allocate the same number of workers
to each task. The allocation of many workers to easy tasks is usually not justified and
is a waste of budget that would be useful for difficult tasks. Now, tasks difficulty is not
a priori known. This advocates for on the fly worker allocation once the difficulty of a
task can be estimated. Last, one can stop collecting answers for a task when there is
evidence that enough answers have been collected to reach a consensus on a final
answer. An immediate solution is to measure the confidence of final aggregated an-
swer and take as Stopping Criterion for a task the fact that this confidence exceeds
a chosen threshold. However, this criterion does not work well in practice as clients
usually want high thresholds for all their tasks. This may lead to consuming all avail-
able budget without reaching an optimal accuracy. In Section 5.3, we give a stopping
criterion that balances confidence in the final answers and budget, and optimizes the
overall accuracy of answers for all the tasks.

123

Chapter 5. Quality Assurance for Atomic Tasks

5.1.3 Expectation Maximization

Expectation Maximization [DLR77] is an iterative technique to obtain maximum like-
lihood estimation of the parameters of a statistical model when some parameters are
unobserved and latent, i.e. they are not directly observed but rather inferred from ob-
served variables. In some sense, the EM algorithm is a way to find the best fit between
data samples and parameters. It has many applications in machine learning, data min-
ing and Bayesian statistics.

LetM be a model which generates a set X of observed data, has a set of missing
latent data Y, and a vector of unknown parameters θ, along with a likelihood function
L(θ | X ,Y) = p(X ,Y | θ). Here, in a crowdsourcing context observed data X repre-
sents the answers provided by the crowd, Y depicts the final answers which need to be
estimated and are hidden, and parameters in θ are the difficulty of tasks and the exper-
tise of workers. The maximum likelihood estimate (MLE) of the unknown parameters
is determined by maximizing the marginal likelihood of the observed data. We have
L(θ | X) = p(X | θ) =

∫
p(X ,Y | θ)dY. The EM algorithm computes iteratively MLE,

and proceeds in two steps. At the kth iteration of the algorithm, we let θk denote the
estimate of parameters θ. At the first iteration of the algorithm, θ0 is randomly chosen.
Then the algorithm repeats two steps until convergence:

E-Step: In the E step, the missing data are estimated given observed data and the
current estimate of parameters. The E-step computes the expected value of L(θ | X ,Y)
given the observed data X and the current parameter θk. We define

Q(θ | θk) = EY|X ,θk [L(θ | X ,Y)] (5.1)

In the crowdsourcing context, we use the E-Step to compute the probability of oc-
currence of Y that is the final answer for each task, given the observed data X and
parameters θk obtained at kth iteration.

M-Step: The M-step finds parameters θ that maximize the expectation computed in
equation. 5.1.

θk+1 = arg max
θ

Q(θ | θk) (5.2)

Here, with respect to estimated probability for Y for final answers from the last E-Step,
we maximize the joint log-likelihood of the observed data X (answer provided by the

124

Chapter 5. Quality Assurance for Atomic Tasks

crowd), hidden data Y (final answers), to estimate the new value of θk+1 i.e. the difficulty
of tasks and the expertise of workers. The E and M steps are repeated until the value
of θk converges. We present the algorithm more formally below (Algorithm 1) .

Algorithm 1: General EM Algorithm
Data: Observed Data X , Pr(X ,Y | θ)
Result: Parameter values θ, Hidden data Y

1 Initialize parameters in θ0 to some random values.
2 while ||θk − θk−1|| > ε do
3 Compute the expected possible value of Y, given θk and observed data X
4 Use Y to compute the values of θ that maximize Q(θ | θk).
5 end
6 return parameter θk, Hidden data Y

EM algorithm is widely studied and has diverse applications in estimation of mixed
models [VD00; LB88], signal processing [Moo96], image processing [Car+02], machine
learning [AA11; SDS20; TAK20], etc. We use EM as a black box algorithm. For a com-
plete desription, we refer to the following references [Blu02; Moo96].

5.2 The Aggregation model

We address the problem of evaluation of binary properties of samples in a dataset
by aggregation of answers returned by participants in a crowdsourcing system. For
simplicity, we consider boolean tagging tasks, i.e. tasks with answers in {0, 1}, but the
setting can be easily extended to tasks with any finite set of answers. This type of
application is frequently met: one can consider for instance a database of n images,
for which workers have to decide whether each image is clear or blur, whether a cat
appears on the image, etc. The evaluated property is binary, i.e. worker’s answers
can be represented as a label in {0, 1}. From now, we will consider that tasks are
elementary work units whose objective is to associate a binary label to a particular
input object. For each task, an actual ground truth exists, but it is not known by the
crowdsourcing platform. We assume a set of k independent workers, which role is to
realize a task, i.e. return an observed label in {0, 1} according to their perception of a
particular sample. We consider a set of tasks T = {t1, . . . tn} for which a label must be
evaluated. For a task tj ∈ T the observed label given by worker 1 ≤ i ≤ k is denoted by

125

Chapter 5. Quality Assurance for Atomic Tasks

lij. We let yj denote the final label of a task tj obtained by aggregating the answers of
all workers. Lj = ⋃

i∈1..k
lij denotes the set of all labels returned by workers for task tj, L

denotes the set of all observed labels, L = ⋃
j∈1..n

Lj. The goal is to estimate the ground

truth by synthesizing a set of final labels Y = {yj, 1 ≤ j ≤ n} from the set of observed
label L for all tasks.

Despite the apparent simplicity of the problem, crowdsourcing binary tagging tasks
hide several difficulties, originating from unknown parameters. These parameters are
the difficulty of each task, and the expertise of each worker. The difficulty of task tj

is modeled by a parameter dj ∈ [0, 1]. Here value 0 means that the task is very easy,
and can be performed successfully by any worker. On the other hand, dj = 1 means
that task tj is very difficult. A standard way to measure expertise is to define workers
accuracy as a pair ξi = {αi, βi}, where αi is called the recall of worker i and βi the
specificity of worker i. The recall is the probability that worker i annotates an image j
with label 1 when the ground truth is 1, i.e. αi = Pr(lij = 1|yj = 1). The specificity of
worker i is the probability that worker i annotates an image j with 0 when the ground
truth is 0, i.e. βi = Pr(lij = 0|yj = 0).

In literature, [Zhe+17] the expertise of workers is often quantified in terms of accu-
racy, i.e. Pr(lij = yj). However, if the data samples are unbalanced, i.e. the number
of samples with actual ground truth 1 (respectively 0) is much larger than the number
of samples with ground truth 0 (respectively 1), defining competencies in terms of ac-
curacy leads to bias. Indeed, a worker who is good at classifying images with ground
truth 1 can obtain bad scores when classifying images with ground truth 0, and yet get
a good accuracy (this can be the case of a worker that always answers 1 when tagging
a task). Recall and Specificity overcomes the problem of bias and separates the worker
expertise, considering their ability to answer correctly when the ground truth is 0 and
when it is 1, and hence give a more precise representation of workers competences.

The exact behavior of workers is not exactly known. However, it is clear that the
probability to answer correctly an easy task is higher than the probability to answer cor-
rectly a difficult one. We can hence build a probabilistic model (a generative model) to
estimate worker’s answers. We assume that workers have constant behaviors and are
faithful, i.e. do not return wrong answers intentionally. We also assume that workers do
not collaborate (their answers are independent variables). Under these assumptions,
knowing the recall αi and specificity βi of a worker i, we build a model that generates
the probability that the worker i returns an answer lij for a task j with difficulty dj.

126

Chapter 5. Quality Assurance for Atomic Tasks

(a) Generative function for the probability
to get lij = 1, given yj = 1, for growing val-
ues of task difficulty. The curves represent
different values of recall for the considered
workers.

(b) Generative function for the probability
to get lij = 0, given yj = 0, for growing val-
ues of task difficulty. The curves represent
different values of specificity for the consid-
ered workers.

Figure 5.1 – Generating function.

Pr(lij = yj|dj, αi, yj = 1) = 1 + (1− dj)(1−αi)

2 (5.3)

Pr(lij = yj|dj, βi, yj = 0) = 1 + (1− dj)(1−βi)

2 (5.4)

This model is defined by equations 5.3 and 5.4, that characterize respectively the
probability to get a correct answer for a given recall αi when ground truth is 1 and
for a given specificity βi when ground truth is 0. Figure 5.1a shows the probability of
associating label 1 to a task for which the ground truth is 1 when the difficulty of the
tagging task varies and for different values of recall. The range of task difficulty is [0, 1].
The vertical axis is the probability of getting lij = 1. One can notice that this probability
takes values between 0.5 and 1. Indeed, if a task is too difficult, then returning a value
is close to making a random guess of a binary value. Unsurprisingly, as the difficulty of
the task increases, the probability of correctly labeling the task decreases. For a fixed
difficulty of the task, workers with higher recalls have a higher probability to correctly

127

Chapter 5. Quality Assurance for Atomic Tasks

label a task. Also, note that when the difficulty of a task approaches 1, the probability
of answering with label lij = 1 decreases for every value of αj. However, for workers
with high recall, the probability of a correct annotation is always greater than with a
smaller recall. Hence, the probability of a correct answer depends both on the difficulty
of the task and on the expertise of the worker realizing the task. Similarly, Figure 5.1b
represents the probability of tagging a task to a label 0 for which the ground truth is 0
with varying difficulty of the tagging task and different values of specificity.

5.2.1 Aggregating Answers

For a given task j, with unknown difficulty dj, the answers returned by k workers
(observed data) is a set Lj = {l1j, . . . , lkj}, where lij is the answer of worker i to task
j. In addition, the expertise of k workers is defined by the pair of vectors of parameters
α = {α1, . . . , αk} and β = {β1, . . . , βk} and are also unknown. The goal of a crowd-
sourcing platform is to infer the final label yj, and to derive the most probable values
for dj, αi, βi, given the observed answers of workers. We use a standard EM approach
to infer the most probable actual answer Y = {y1, . . . yn} along with the hidden param-
eters θ = {dj, αi, βi | j ∈ 1 · · ·n ∧ i, j ∈ 1 · · · k}. Let us consider the E and M phases of
the algorithm.

E Step: We assume that all answers in L = ⋃
1≤j≤m

Lj are independently given by

the workers as there is no collaboration between them. So, in every Lj = {l1j, . . . , lkj},
lij ’s are independently sampled variables. We compute the posterior probability of yj ∈
{0, 1} for a given task j given the difficulty of task dj, worker expertise αi, βi, i ≤ k and
the worker answers Lj = {lij | i ∈ 1..k}. Using Bayes’ theorem, considering a particular
value λ ∈ {0, 1} we have:

Pr[yj = λ|Lj, α, β, dj] = Pr(Lj |yj=λ,α,β,dj)·Pr(yj=λ|α,β,dj)
Pr(Lj |α,β,dj) (5.5)

The value of the final label yj directly depends upon the answers Lj provided by the
workers. Therefore, yj and α, β, dj are independent variables. We assume that prior
probability of yj taking values as 0 or 1 is equiprobable, i.e. the prior probability to
choose between the final answers are Pr(yj = 0) = Pr(yj = 1) = 1

2 . We hence get:

Pr[yj =λ|Lj, α, β, dj] = Pr(Lj |yj=λ,α,β,dj)·Pr(yj=λ)
Pr(Lj |α,β,dj) = Pr(Lj |yj=λ,α,β,dj)· 12

Pr(Lj |α,β,dj) (5.6)

128

Chapter 5. Quality Assurance for Atomic Tasks

Similarly, the probability to obtain a particular set of labels is given by:

Pr(Lj | α, β, dj) = 1
2 · Pr(Lj | yj =0, α, β, dj) + 1

2 · Pr(Lj | yj =1, α, β, dj) (5.7)

Overall we obtain:

Pr[yj =λ|Lj, α, β, dj] = Pr(Lj |yj=λ,α,β,dj)
Pr(Lj |yj=0,α,β,dj)+Pr(Lj |yj=1α,β,dj) (5.8)

Let us consider one of these terms, and let us assume that every lij in Lj takes a
value λpij . We have

Pr(Lj | yj =λ, α, β, dj) =
k∏
i=1

Pr(lij = λp | αi, βi, dj, yj =λ) (5.9)

If λpij = 0 then Pr(lij = λpij | αi, βi, dj, yj = 0) is the probability to classify correctly
a 0 as 0, as defined in equation 5.4 denoted by δij = 1+(1−dj)(1−βi)

2 . Similarly, if λpij = 1
then Pr(lij = λpij | αi, βi, dj, yj = 1) is the probability to classify correctly a 1 as 1,
expressed in equation 5.3 and denoted by γij = 1+(1−dj)(1−αi)

2 . Then the probability to
classify yj = 1 as λpij = 0 is (1− γij) and the probability to classify yj = 1 as λpij = 0 is
(1− δij). We hence have Pr(lij = λpij | αi, βi, dj, yj =0) = (1− λpij) · δij + λpij · (1− γij).
Similarly, we can write Pr(lij = λpij | αi, βi, dj, yj = 1) = λpij · γij + (1 − λpij) · (1 − δij).
So equation 5.8 rewrites as :

Pr[yj =λ|Lj, α, β, dj] =
∏k
i=1 Pr(lij = λpij | yj =λpij), αi, βi, dj

Pr(Lj | yj =0, α, β, dj) + Pr(Lj | yj =1, α, β, dj)

=
∏k
i=1(1− λpij).[(1− λpij)δij + λpij(1− γij)] + λpij [λpij .γij + (1− λpij)(1− δij)]

Pr(Lj | yj =0, α, β, dj) + Pr(Lj | yj =1, α, β, dj)

=
∏k
i=1(1− λpij).[(1− λpij)δij + λpij(1− γij)] + λpij .[λpij .γij + (1− λpij)(1− δij)]∏k

i=1(1− λpij)δij + λpij(1− γij) + ∏k
i=1 λpij .γij + (1− λpij)(1− δij)

(5.10)

In the E step, as every αi, βi, dj is fixed, one can compute E[yj|Lj, αi, βi, dj] and also
choose as final value for yj the value λj ∈ {0, 1} such that Pr[yj = λj|Lj, αi, βi, dj] ≥
Pr[yj = (1 − λj)|Lj, αi, βi, dj]. We can also estimate the likelihood for the values of
variables P (L ∪ Y | θ) for parameters θ = {α, β, d}, as Pr(yj = λj, L | θ) = Pr(yj =
λj, L).P r(Lj | yj = λj, θ) = Pr(yj = λj).P r(Lj | yj = λj, θ)

M Step: With respect to the estimated posterior probabilities of Y computed during
the E phase of the algorithm, we compute the parameters θ that maximize Q(θ, θt).

129

Chapter 5. Quality Assurance for Atomic Tasks

Let θt be the value of parameters computed at step t of the algorithm. We use the
observed values of L, and the previous expectation for Y . We maximize Q′(θ, θt) =
E[logPr(L, Y | θ) | L, θt] (we refer to [Fla12]-Chap. 9 and [DLR77] for explanations
showing why this is equivalent to maximizing Q(θ, θt)). We can hence compute the next
value as: θt+1 = arg max

θ
Q′(θ, θt). Here in our context the values of θ are αi, βi, dj. We

maximize Q′(θ, θt) using a bounded optimization technique, namely truncated New-
ton algorithm [Nas84; NW06] provided by the standard SciPy 1 implementation. We
iterate E and M steps, computing at each iteration t the posterior probability and the
parameters θt that maximize Q′(θ, θt). The algorithm converges, and stops when the
improvement (difference between two successive joint log-likelihood values) is below a
threshold, fixed in our case to 1e−7.

5.3 Cost Model

A drawback of many crowdsourcing approaches is that task distribution is static [GM+16],
i.e. tasks are distributed to a fixed number of workers, without considering their diffi-
culty, nor checking if a consensus can be reached with fewer workers. Consider again
the simple boolean tagging setting, but where each task realization is paid and with a
fixed maximal budget B0 provided by the client. For simplicity, we assume that all work-
ers receive 1 unit of credit for each realized task. Hence, to solve n boolean tagging
tasks, one can hire at most B0/n workers per task. In this section, we show a worker al-
location algorithm that builds on collected answers and estimated difficulty to distribute
tasks to workers at run time and show its efficiency with respect to other approaches.

The algorithm works in rounds. At each round, only a subset Tavl ⊆ T of the initial
tasks remain to be evaluated. We collect labels produced by workers for these tasks.
We aggregate answers using the EM approach described in Section 5.2. We denote
by yqj as the final aggregated answer for task j at round q, dqj is the current difficulty
of task and αqi , β

q
i denotes the estimated expertise of a worker i at round q. We let

Dq = {dq1 . . . dqj} denote the set of all difficulties estimated as round q. We fix a maximal
step size τ ≥ 1, that is the maximal number of workers that can be hired during a round
for a particular task. For every task tj ∈ Tavl with difficulty dqj at round q, we allocate
aqj = d(dqj/maxDq) × τe workers for the next round. Once all answers for a task have
been received, the EM aggregation can compute final label yqj ∈ {0, 1}, difficulty of task

1. docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html

130

Chapter 5. Quality Assurance for Atomic Tasks

dqj , expertise of all workers αq1, . . . , α
q
k, β

q
1 , . . . , β

q
k. At the end of each round, for each

task tj one has to decide whether the confidence in answer yqj obtained at round q is
sufficient (in which case, we do not allocate workers to this task in the next rounds, i.e.
we remove it from Tavl).

5.3.1 Confidence and Threshold
An important point is to estimate confidence. Another crucial point is to define the

confidence threshold at each round q of the algorithm. Let kqj be the number of answers
obtained for task j at round q. The confidence ĉqj in a final label yqj is defined as follows:

ĉqj(y
q
j = 1) = 1

kqj
·∑kqj

i=1

{
lij × (1+(1−dqj)

(1−αq
i
)

2) + (1− lij)× (1− 1+(1−dqj)
(1−αq

i
)

2)
}

(5.11)

ĉqj(y
q
j = 0) = 1

kqj
·∑kqj

i=1

{
(1− lij)× (1+(1−dqj)

(1−βq
i

)

2) + (lij)× (1− 1+(1−dqj)
(1−βq

i
)

2)
}

(5.12)

Intuitively, each worker adds its probability of doing an error, which depends on the
final label yqj estimated at round q and on his competences, i.e. on the probability to
choose lij = yqj . Let us now show when to stop the rounds of our evaluation algorithm.
We start with n tasks, and let Tavl denote the set of remaining tasks at round q. We
define rq ∈ [0, 1] as the ratio of tasks that are still considered at round q compared
to the initial number of task, i.e. rq = |Tavl|

n
. We start with an initial budget B0, and

denote by Bq
c the total budget consumed at round q. We denote by Bq the the fraction

of budget consumed at that current instance, Bq = Bqc
B0

. We define the stopping threshold

Thq ∈ [0.5, 1.0] as Thq = 1+(1−Bq)rq

2 .
The intuition behind this function is simple: when the number of remaining tasks

decreases, one can afford a highest confidence threshold. Similarly, as the budget de-
creases, one shall derive a final answer for tasks faster, possibly with poor confidence,
as the remaining budget does not allow hiring many workers. Figure 5.2 shows how the
threshold evolves for different values of rq when the fraction of the budget consumed
Bq evolves. Each line depicts the evolution of the threshold for different values of rq.
Observe that when rq approaches 1, the threshold value falls rapidly, as a large num-
ber of tasks remain without a definite final answer and have to be evaluated within the
remaining budget. On the other hand, when fewer tasks remain, (e.g. when rq = 0.10),
the threshold Thq decreases slowly.

131

Chapter 5. Quality Assurance for Atomic Tasks

Figure 5.2 – The threshold values based on current estimate on consumed budget and
fraction of task remaining at the beginning of a round.

5.3.2 CrowdInc: An algorithm to optimize costs

We now propose a crowdsourcing algorithm called CrowdInc with a dynamic worker
allocation strategy to optimize cost and accuracy. This strategy allocates workers de-
pending on current confidence on final answers, and available resources. CrowdInc is
decomposed in two phases, Estimation and Convergence.

Estimation: As difficulty of tasks is not known a priori, the first need is to estimate it.
To get an initial measure of difficulties, each task needs to be answered by a small
set of workers. Now, as each worker receives an incentive for a task, this preliminary
evaluation has a cost, and finding an optimal number of workers for difficulty estimation
is a fundamental issue. The initial budget B0 gives some flexibility in the choice of
an appropriate number of workers for preliminary evaluation of difficulty. Choosing a
random number of workers per task does not seem a wise choice. We choose to devote
a fraction of the initial budget to this estimation phase. We devote one-third of the total
budget (B0/3) to the estimation phase and allocate each task ζ = (B0/3)/n workers. It
leaves a sufficient budget (2 ·B0/3) for the convergence phase. Experiments in the next
Section 5.4 show that this seems a sensible choice. After the collection of answers for
each task, we apply the EM-based aggregation technique of Section 5.2 to estimate the

132

Chapter 5. Quality Assurance for Atomic Tasks

Algorithm 2: CrowdInc
Data: A set of tasks T = {t1, . . . , tn}, a budget = B0
Result: Final Answer: Y = y1, . . . , yn, Difficulty: dj,Expertise: αi, βi

1 Initialization : Set every dj, αi, βi to a random value in [0, 1].
2 Tavl = T ; q = 0; B = B − (B0/3); Bc = B0/3; ζ = (B0/3)/n
3 //Initial Estimation:
4 Allocate ζ workers to each task in Tavl and get their answers
5 Estimate dqj , α

q
i , β

q
i , ĉ

q
j , 1 ≤ j ≤ n, 1 ≤ i ≤ ζ using EM aggregation

6 Compute the stopping threshold Thq.
7 for j = 1, . . . , n do
8 if ĉqj > Thq then Tavl = T \ {j};
9 end

10 //Convergence:
11 while (B > 0) && (Tavl 6= ∅) do
12 q = q + 1; l = |Tavl|
13 Allocate aq1, . . . , a

q
l workers to tasks t1, . . . tl based on difficulty.

14 Get the corresponding answers by all the newly allocated workers.
15 Estimate dqj , α

q
i , β

q
i , ĉ

q
j using aggregation model.

16 B = B − ∑
i∈1..|Tavl|

aqi

17 Compute the stopping threshold Thq

18 for j = 1, . . . , n do
19 if ĉqj > Thq then Tavl = Tavl \ {j};
20 end
21 end

difficulty of each task as well as the expertise of each worker. Considering this as an
initial round q = 0, we let d0

j denote the initially estimated difficulty of each task j, α0
i , β

0
i

denote the expertise of each worker and y0
j denote the aggregated answer at round

q = 0. Note that if the difficulty of some tasks is available a priori and is provided by
the client, we may skip the estimation step. However, in general, clients do not possess
such information and this initial step is crucial in the estimation of parameters. This is
especially true when clients needs are to execute huge batches of tasks: attaching a
prior difficulty with each task would be as costly as executing the tasks. After this initial
estimation, one can already compute Th0 as shown in Section 5.3.1 and decide to stop
the evaluation of tasks with a sufficient confidence level.

133

Chapter 5. Quality Assurance for Atomic Tasks

Convergence: The difficulty of task dqj and the set of remaining tasks Tavl are used to
start the convergence phase. Now as the difficulty of each task is estimated, we can
use the estimated difficulty of dqj to allocate the workers dynamically. The number of
workers allocated at round q > 0 follows a difficulty-aware worker allocation policy. We
fix a parameter to allocate workers for the realization of tagging tasks at each round
that allocates aqj = d(dqj/maxDq) × τe workers to each remaining task tj ∈ Tavl. This
allocation policy guarantees that each remaining task is allocated at least one worker,
at most τ workers, and that the more difficult tasks (i.e. have the more disagreement)
are allocated more workers than easier tasks. Algorithm 2 gives a full description of
CrowdInc.

t1
t2
t3
.
.
tn

Bq = 0 Bq = 1.0Bq = Bqc
B0/3

q = 0 k = B0/3
n

w1 w2 . . wk

1
0
1
.
.

0

1
1
0
.
.

1

.

.

.

.

.

0

.

.

.

.

.

1

1
1
0
.
.

0

y0
1
y0

2
y0

3
.
.

y0
n

d0
1
d0

2
d0

3
.
.

d0
n

ĉ0
1
ĉ0

2
ĉq3
.
.

ĉ0
n

α0
1
β0

1

α0
2
β0

2

α0
k

β0
k

ĉqj ≥
Thq

X

aqj
wx ..

1
0
.
.

1

1

1 1

α0
k

β0
k

..

..

y1
2
y1

3
.

y1
n

d1
2
d1

3
.
.

d1
n

ĉ1
2
ĉ1

3
.
.

ĉ1
n

...

...

...

...

...

Figure 5.3 – A possible state for algorithm 2.

Example: We show an example depicting the information memorized at each step
of the algorithm in Figure 5.3. Consider a set of n tasks that to be annotated with a
boolean tag in {0, 1}. CrowdInc starts with the Estimation phase and allocates k work-
ers for an initial evaluation round (q = 0). After collection of answers, at each round
q > 0, we first apply EM based aggregation to estimate the difficulty dqj of each task
tj ∈ Tavl, the confidence ĉqj in aggregated answer yqj synthesized at round q, and the ex-
pertise αqi , β

q
i of the workers. Then, we use the stopping threshold to decide whether we

need more answers for each task. If ĉqj is greater than Thq, the task tj is removed from
Tavl. This stopping criterion hence takes a decision based on the confidence in the final
answers for a task and on the remaining budget. Consider, in the example of Figure 5.3
that the aggregated answer for task t1 has high confidence, and that ĉq1 ≥ Thq. Then,
t1 does not need further evaluation, and is removed from Tavl. Once solved tasks have
been removed, we allocate aqj workers to each remaining task tj in Tavl following our

134

Chapter 5. Quality Assurance for Atomic Tasks

Dataset Number of Tasks Number of tasks
with ground truth

Total Number of answers
provided by crowd

Average number of answers
for each task

Number of unique
crowd workers

Product
Identification 8315 8315 24945 3 176

Duck
Identification 108 108 4212 39 39

Sentiment
Popularity 500 500 10000 20 143

Table 5.1 – Datasets description.

difficulty aware policy. Note that, each task gets a different number of workers based
on its difficulty. The algorithm stops when either all budget is exhausted or there is no
additional task left. It returns the aggregated answers for all tasks along with difficulty
of task and the expertise of the workers. Notice that termination is guaranteed, as all n
tasks receive at least (B0/3)/n answers and as the budget necessarily decreases.

5.4 Experiments

We evaluated the algorithm on three datasets, namely the product identification [Wan+12],
duck identification [Wel+10] and Sentiment Analysis [PL04] benchmarks. We briefly de-
tail each dataset and the corresponding tagging tasks. All tags appearing in the bench-
marks were collected via Amazon Mechanical Turk.
In the Product Identification use case, workers were asked to decide whether a
product-name and a description refer to the same product. The answer returned is
True or False. There are 8315 samples and each of them was evaluated by 3 workers.
The total number of unique workers is 176 and the total number of answers available is
24945. In the Duck Identification use case, workers had to decide if sample images
contain a duck. The total number of tasks is 108 and each task was allocated to 39
workers. The total number of unique workers is 39 and the total number of answers is
4212. In the Sentiment Popularity use case, workers had to annotate movie reviews
as Positive or Negative opinions. The total number of tasks was 500. Each task was
given to 20 unique workers and a total number of 143 workers were involved, resulting
in a total number of 10000 answers. All this information are summarized in Table 5.1.
Evaluation of aggregation: We first compared our aggregation technique to sev-
eral methods: Majority Voting (MV), D&S [DS79], GLAD [Whi+09], PMCRH [Li+14],
LFC [Ray+10], and ZenCrowd [DDCM12]. We ran the experiment 30 times with dif-
ferent initial values for tasks difficulty and workers expertise. The standard deviation

135

Chapter 5. Quality Assurance for Atomic Tasks

Methods Recall Specificity Balanced
Accuracy

MV 0.56 0.91 0.73
D&S [DS79] 0.81 0.93 0.87

GLAD [Whi+09] 0.47 0.98 0.73
PMCRH [Li+14] 0.58 0.95 0.76
LFC [Ray+10] 0.87 0.91 0.89

ZenCrowd [DDCM12] 0.39 0.98 0.68
EM+recall,
specificity
&difficulty

0.89 0.91 0.90

Table 5.2 – Comparison of EM + aggregation (with Recall, specificity & task difficulty)
w.r.t MV, D&S, GLAD, PMCRH, LFC, ZenCrowd on Duck Identification dataset

Methods Recall Specificity Balanced
Accuracy

MV 0.61 0.93 0.77
D&S [DS79] 0.65 0.97 0.81

GLAD [Whi+09] 0.48 0.98 0.73
PMCRH [Li+14] 0.61 0.93 0.77
LFC [Ray+10] 0.64 0.97 0.81

ZenCrowd [DDCM12] 0.51 0.98 0.75
EM+recall,
specificity
&difficulty

0.77 0.90 0.83

Table 5.3 – Comparison of EM + aggregation (with Recall, specificity & task difficulty)
w.r.t MV, D&S, GLAD, PMCRH, LFC, ZenCrowd on Product Identification dataset

136

Chapter 5. Quality Assurance for Atomic Tasks

Methods Recall Specificity Balanced
Accuracy

MV 0.93 0.94 0.94
D&S [DS79] 0.94 0.94 0.94

GLAD [Whi+09] 0.94 0.94 0.94
PMCRH [Li+14] 0.93 0.95 0.94
LFC [Ray+10] 0.94 0.94 0.94

ZenCrowd [DDCM12] 0.94 0.94 0.94
EM+recall,
specificity
&difficulty

0.94 0.95 0.94

Table 5.4 – Comparison of EM + aggregation (with Recall, specificity & task difficulty)
w.r.t MV, D&S, GLAD, PMCRH, LFC, ZenCrowd on Sentiment Popularity dataset

Dataset/Methods CrowdInc Static(EM) Static(MV)
Duck Identification 843.26 106.81 0.073

Sentiment Popularity 1323.35 137.79 0.102

Table 5.5 – Running time(in seconds) of CrowdInc, MV and Static EM.

over all the iteration was less than 0.05%. Hence our aggregation is insensitive to ini-
tial prior values. We now compare Recall, Specificity and Balanced Accuracy of all
methods. Balanced accuracy (interchangeably we use accuracy) is the average of re-
call and specificity. Our method outperforms other techniques as shown in table 5.2 for
Duck Identification and in table 5.3 for Product Identification dataset and is comparable
for Sentiment Popularity dataset shown in table 5.4.

Evaluation of CrowdInc: The goal of the next experiment was to verify that the cost
model proposed in CrowdInc achieves at least the same accuracy but with a smaller
budget. We have used Duck identification and Sentiment popularity for this test. We did
not consider the Product Identification benchmark: indeed, as shown in table 5.1, the
Product Identification associates only 3 answers to each task. This does not allow for
a significant experiment with CrowdInc. We compared the performance of CrowdInc to
other approaches in terms of cost and accuracy. The results are given in Figure 5.4.
Static(MV) denotes the traditional crowdsourcing platforms with majority voting as the
aggregation technique and Static(EM) shows more advanced aggregation technique
with EM based aggregation technique. Both algorithms allocate all the workers (and
hence use all their budget) at the beginning of the crowdsourcing process.

137

Chapter 5. Quality Assurance for Atomic Tasks

Figure 5.4 – Comparison of cost vs. Accuracy.

The following observation can be made from Figure 5.4. First, CrowdInc achieves
better accuracy than a static(MV) approach. This is not a real surprise, as MV already
showed bad accuracy (refer table 5.2, 5.3, 5.4). Then, CrowdInc achieves almost the
same accuracy as a Static(EM) based approach in Duck identification, and the same
accuracy in Sentiment Popularity. Last, CrowdInc uses a smaller budget than static
approaches in all cases.

Table 5.5 shows the time (in seconds) needed by each algorithm to aggregate an-
swers. Static(MV) is the fastest solution: it is not surprising, as the complexity is linear
in the number of answers. We recall however that MV has the worst accuracy of all
tested aggregation techniques. We have tested aggregation with EM when the number
of workers is fixed a priori and is the same for all tasks (Static(EM)). CrowdInc uses
EM, but on a dynamic set of workers and tasks, stopping the easiest tasks first. This
results in a longer calculus, as EM is used several times on sets of answers of growing
sizes. The accuracy of static(EM) and CrowdInc are almost the same. Aggregation with
CrowdInc takes approximately 11% longer than static(EM) but for a smaller budget, as
shown in Figure 5.4. To summarize the CrowdInc aggregation needs more time but a

138

Chapter 5. Quality Assurance for Atomic Tasks

smaller budget to aggregate answers with comparable accuracy. In general, clients us-
ing crowdsourcing services can wait several days to see their task completed. Hence,
when time is not a major concern, CrowdInc can reduce the cost of crowdsourcing.

5.5 Conclusion

In this chapter, we introduced an aggregation technique for crowdsourcing plat-
forms. Aggregation is based on expectation maximization algorithm that jointly esti-
mates the answers, the difficulty of tasks, and the expertise of workers. Introducing new
variables such as difficulty, and expertise of workers improve the accuracy of aggrega-
tion in terms of recall and specificity. We also proposed CrowdInc an incremental label-
ing technique that optimizes the cost of answers collection. The algorithm implements
a worker allocation policy that takes decisions from a dynamic threshold computed at
each round, which helps to achieve a trade-off between cost and accuracy. We showed
in experiments that CrowdInc outperforms the existing state-of-the-art techniques. We
also showed that the incremental crowdsourcing approach achieves the same accu-
racy as EM with the static allocation of workers, better accuracy than majority voting,
and in both cases at lower costs.

The ideas proposed in this chapter can lead to several improvements that can be
considered in future work. We addressed binary tasks for simplicity, but the approach
can be easily extended to tasks with a finite number of m of answers. The difficulty of
each task tj remains a parameter dj ∈ [0, 1]. Expertise becomes the ability to classify
a task as m when its ground truth is m. An EM algorithm just has to consider proba-
bilities of the form Pr(Lij = m|yj = m) to derive hidden parameters and final labels
for each task. An easy improvement is to consider incentives that depend on worker’s
characteristics. This can be done with a slight adaptation of costs in the CrowdInc al-
gorithm. Another possible improvement is to try to hire experts when the synthesized
difficulty of a task is high, to avoid hiring numerous workers or increase the number of
rounds. Another interesting topic to consider is the impact of answers introduced by a
malevolent worker on the final aggregated results. Last, we think that the complexity of
CrowdInc can be improved. The complexity of each E-step of the aggregation is linear
in the number of answers. The M-step maximizes the log-likelihood with an iterative
process. However, the E and M steps have to be repeated many times. The cost of

139

Chapter 5. Quality Assurance for Atomic Tasks

this iteration can be seen in table 5.5, where one clearly sees the difference between
an approach with linear time complexity such as Majority Voting (third column), a single
round of EM (second column), and CrowdInc. Using CrowdInc to reduce costs results
in an increased duration to compute final answers. Indeed, the calculus performed at
round i to compute hidden variables for a task t is lost at step i + 1 if t is not stopped.
An interesting idea is to consider how a part of computations can be reused from a
round to the next one to speed up convergence.

Till now, we have aggregation and a trade-off technique for a given single task. In the
next chapter, we extend it to a complex workflow setting. We will see that several factors
influence the realization of workflow and its cost: the number of tagging tasks that
have to be realized, the available budget, the confidence in produced results, workers
expertise, data, the difficulty of tagging, and the policies chosen to realize a workflow
and to hire workers.

140

CHAPTER 6

QUALITY ASSURANCE FOR COMPLEX

WORKFLOWS

6.1 Introduction

In the preceding chapters, we observed that most of the existing platforms support
simple, repetitive, and independent tasks known as micro-tasks. They require a few
minutes to an hour to complete and can be grouped into batches. However, many real-
world problems are not simple micro-tasks, but rather complex orchestrations of de-
pendent tasks, which aim are to process input data and worker’s answers. The existing
crowdsourcing platforms provide interfaces to execute micro tasks and access crowds
but lack ways to specify and execute complex tasks. We proposed complex workflows
(Chapter 3) which supports higher-order answers and orchestration of tasks.

Complex workflows answer the coordination of tasks but are not adapted in many
crowdsourcing scenarios, especially when workers are hired to realize batches of tasks,
and when redundancy is needed to guarantee data quality. Many data-centric applica-
tions come with a budget and quality constraints: as human workers are prone to errors,
one has to hire several workers to aggregate a final answer with sufficient confidence.
An unlimited budget would allow hiring large pools of human workers to assemble re-
liable answers for each micro-task, but in general, a client for a complex task imposes
a limited budget B0 that must not be exceeded. A limited budget forces us to replicate
micro-tasks in an optimal way to achieve the best possible quality. The objective is then
to obtain a reliable result, forged through a complex orchestration, and at a reasonable
cost. In the preceding Chapter 5, we proposed the CrowdInc mechanism to obtain a
trade-off between the quality of aggregated data and the cost to obtain an answer for
a fixed batch of micro-tasks. In this chapter, we extend this technique to the complex
workflow setting.

141

Chapter 6. Quality Assurance for Complex Workflows

We propose a solution to address quality and cost during realization of complex
tasks. We define a dataset aggregation model on top of complex workflows, which
orchestrates tasks and distributes work according to a dynamic policy that considers
confidence in aggregated data and the cost to increase this confidence. A workflow
can be seen as an orchestration of phases, where the goal of each phase is to tag
records from the dataset input to the phase. A complex task terminates when the last
of its phases has completed its tagging. The output of one phase acts as an input to the
next ones in the workflow. We follow the notation defined in chapter 5. For simplicity,
we still consider simple Boolean tagging tasks that associate a tag in {0, 1} to every
record in a dataset. We also assume that workers are uniformly paid. We have already
defined a model for compelx workflows, and a difficulty-aware adaptive aggregation
mechanism. The challenge is now to execute workflows with replication of tasks, and
to provide orchestration tool to realize a workflow. The overall challenge is hence to
realize a workflow within budget B0, while guaranteeing that the final dataset forged
during the last phase of the workflow has a high probability to be the ground truth.

This general orchestration schema leaves several design choices open. First, the
aggregation technique used influences the quality of the final results. Furthermore, the
mechanisms used to decide if more workers should be hired to improve quality have
an impact on costs and on the overall accuracy of answers. In the previous chapter,
we saw that the simplest way to replicate micro-tasks is static execution, i.e. affect
an identical fixed number of workers to each micro-task in the orchestration without
exceeding budgetB0. On the other hand, one can allocate workers to tasks dynamically
and save a large part of a budget without impacting the quality of aggregated data. This
mechanism is described for a single task in Chapter 5. The principle is rather simple:
hire workers for tasks with insufficient confidence if the remaining budget allows it.
Improving quality and cost dynamically for workflows is more difficult and is non-trivial.
Indeed, if one replicates a task in one step of a workflow, and waits for a dataset to be
tagged with a sufficient confidence, he takes the risk of exhausting his budget before
completion of the workflow. On the other hand, limiting the budget expenditure at each
stage of a workflow amounts to static allocation of resources. We add the concept
of phase in which workers transforms a set of records. In such cases, one can wait
in each phase to achieve sufficient reliability of answers for each record of the input
before forwarding data to the next phase of the workflow. This is called a synchronous
execution of a workflow. On the other hand, one can eagerly forward records with

142

Chapter 6. Quality Assurance for Complex Workflows

reliable tags to the next phases without waiting for the total completion of a phase. This
is called an asynchronous execution.

In this work, we study execution strategies for complex workflows with different de-
sign choices. We consider several types of workflow, aggregation mechanisms (namely
Majority Voting (MV) and Expectation Maximization (EM) based techniques [GC11]),
several distributions of data, difficulty of tasks, workers expertise, and study the cost
and accuracy of workflows on various execution strategies (static, synchronous and
asynchronous execution). Unsurprisingly, the dynamic distribution of workers allow
saving costs in all cases. A more surprising result is that synchronous realization of
complex tasks is in general more efficient than asynchronous realization.

The rest of the chapter is organized as follows.
— Section 6.2 describes the complex workflow model with aggregation.
— Section 6.3 presents the aggregation technique used to forge final answers from

the answers returned by the crowd workers. The aggregation mechanism follows
from the previous chapter.

— In Section 6.4, we propose algorithms to realize complex workflows while main-
taining a trade-off between cost and quality.

— We report the results of experiments on a benchmark in Section 6.5 before the
conclusion.

6.2 Complex workflow with aggregation

In Chapter 3, we proposed a complex workflow model that provides a way to rewrite
a complex task into a set of sub-tasks. The model provides answers for the coordination
of tasks. From this model, one can check if termination and correctness are guaran-
teed. However, complex workflows, as introduced in Chapter 3 do not allow to consider
budget and quality constraints, which are essential needs for crowdsourcing markets.
The proposed complex workflow model is powerful, but yet we need an extension of
this model that considers the aggregation technique, cost optimization, and synchronic-
ity mechanisms. Synchronicity mechanism defines the way the task to be forwarded in
the workflow. In this section, we formalize a model for complex workflow with aggrega-
tion (CWA). The CWA model borrows most of its ingredients from complex workflows
(refer Chapter 3) but adds tasks replication, and considers aggregation and budget
management in its semantics.

143

Chapter 6. Quality Assurance for Complex Workflows

p0

City?
p1

Category
p2 Urgency

pf DoutDin

Figure 6.1 – A workflow in a smart city.

Use Case: Consider for instance online request services frequently proposed by smart
cities (Figure 6.1). These systems receive a huge number of requests that must be
filtered, classified, and then sent to the appropriate bureau of the city. This requires
a lot of work power, but it follows a workflow made of several phases. A first step
p0 sorts a load of demands D according to the address of the client (demands from
residents of the city will not be processed like external demands). The demands from
city inhabitants are validated and sent to the next phase p1. The goal of p1 is to decide
in which category (Health, Roads, ...) the request falls. After classification, phase p2

decides whether the demand is Urgent or not, if some demands from that category call
for rapid response. For categories that are not urgent, demands are forwarded directly
to pf . The final phase pf gathers all annotated demands in an annotated dataset Dout.

Here, we can observe that the request processing is divided into several dependent
phases. Each phase processes records from an input dataset or merges different in-
puts to a single one, and forwards the result to its successor. The CWA models follow
the convention presented in Chapter 3 for data representations. We denote by FOR

the FO formulas for records, and by FOD the FO formulas for datasets. Each phase
of a CWA model consists of a tagging phase: the records input to a phase are tagged
by workers and forwarded. In other words, a phase is a batch of micro-tagging tasks.
For simplicity, we assume that processing a record is a micro-task that simply con-
sists in adding a new Boolean field (called a tag) to this record. Hence a micro-task
can be seen as an operation that transforms a record r(v1, . . . , vk) into a new record
r′(v1, . . . , vk, vk+1) where vk+1 is a Boolean value. The setting can be easily adapted to
let vk+1 take values from a discrete domain. In the previous Chapter 5, we saw that hu-
mans are prone to errors, micro-tasks are replicated and allocated to several workers.
CWA keeps this philosophy: the tagging operation in each phase might be incorrectly
performed by a single worker, so each micro-task associated with a given phase needs
to be replicated. Then, it requires an aggregation mechanism to combine answers be-

144

Chapter 6. Quality Assurance for Complex Workflows

fore proceeding to the next phases. We showed a simple data forwarding mechanism
in the Complex Workflow model, where the only requirement to start a task is that
none of its input is empty. For CWAs, we implement a more complex flow for data: we
allow to distinguish paths followed by records from a dataset depending on the values
attached to their fields. The result of each phase must be forwarded to its successors.
As shown by the example in Figure 6.1, the contents of records must be used to decide
whether a record in a dataset has to be forwarded to a successor phase or not. Hence,
phases are used to tag records, aggregate answers, but also play the role of filters.
When a phase has several successors, the contents of records are used to decide to
which successor(s) it should be forwarded to. This allows to split datasets according to
the value of a particular data field, process different records depending on their con-
tents, create concurrent threads, etc. We define Complex Workflow with Aggregation
as follows.

Definition 33 (Complex Workflow with Aggregation). A complex workflow with Aggre-
gation is a tuple CWA = (P ,−→, Ag,G,⊗, p0, pf) where P is a finite set of phases,
p0 is a particular phase without predecessor, pf a phase without successor, −→⊆
P × FOR × P is a flow relation and G = P → FOD associates a guard to every
phase, and for every px ∈ P,

⊗(px) is an operator used to merge input datasets.

Intuitively, a phase associates a tagging task to each record in its input dataset,
replicates and distributes it to several workers. The answers returned by all the workers
are then aggregated to get a final trusted answer. As in Chapter 5, we assume that
worker’s answers are independent. For a triple (px, gx,y, py) in −→, we will say that px is
a predecessor of py and py is a successor of px. We denote by Succ(px) = {py | px −→∗

py} the set of phases that must occur after px and by Pred(px) = {py | py −→∗ px} the
set of phases that must occur before px. The meaning of guard gx,y is that every record
produced by phase px that satisfies guard gx,y is forwarded to py. We will see in the
rest of this section that "producing a record" is not done in a single shot, and requires
duplicating a tagging micro-task, aggregate answers, and decide if the confidence in
the aggregated answer is sufficient.

145

Chapter 6. Quality Assurance for Complex Workflows

p0D0

D1

D2

p1

pf

gp0,p1 ∈ EF

gp0,pf ∈ EFId a1 a2 city
1 . . 0
2 . . 1
3 . . 0
4 . . 1

X
X
X
X

Id a1 a2 city category
2 . . 1 ?
4 . . 1 ?

Id a1 a2 city
1 . . 0
3 . . 0

Figure 6.2 – Exclusive fork.

When a phase px has several successors p1
y, . . . p

k
y and the guards g1

x,y, . . . g
k
x,y are

exclusive, each record processed by px is sent to at most one successor. We will say
that px is an exclusive fork (EF) phase.

Example (Exclusive Fork). Consider the example of the exclusive fork in Figure 6.2(a
snippet of the smart city workflow). The phase p0 is attached with datasetD0 = rn(Id, a1,

a2, city) and has successor phases p1 and pf . The checkmark X indicates that worker
has processed the record and ? indicates that workers are still executing and working
on the record. We follow this convention throughout the chapter. Here, all records in
dataset D0 have been tagged by workers and the aggregated answer has a sufficient
confidence. The tagging task of phase p0 is hence finished. Let gp0,p1 and gp0,pf be ex-
clusive guards of the form gp0,p1 = (”city = 1”) and gp0,pf = (”city = 0”). This allows
to forward the records from the phase p0 to at most one phase. Guard gp0,p1 states that
all records tagged with city value 1 is to be forwarded to phase p1 and the records with
city value 0 is to be sent to phase pf . Hence, on the example dataset D0 of Figure 6.4,
the records with id value equals 2 and 4 are forwarded to the phase p1 as dataset D1,
whereas the records with id value 1 and 3 are forwarded to phase pf in dataset D2.

On the contrary, when guards are not exclusive, a copy of each record processed
in px can be sent to each successor (hence increasing the size of data processed in
the workflow), and px is called a non-exclusive fork (NEF) phase.

Example (Non-exclusive Fork). We give an example in Figure 6.3 to illustrate the
non-exclusive forks. Similar to the above example, the phase p0 is tagged with dataset
D0 = rn(Id, a1, a2, city) and has successor phases as p1 and pf . Let gp0,p1 and gp0,pf

be non-exclusive guard. With these non exclusive guards, a copy of record can be

146

Chapter 6. Quality Assurance for Complex Workflows

p0D0

D1

D2

p1

pf

gp0,p1 ∈ NEF

gp0,pf ∈ NEFId a1 a2 city
1 . . 0
2 . . 1
3 . . 0
4 . . 1

X
X
X
X

Id a1 a2 city category
1 . . 0 ?
2 . . 1 ?
3 . . 0 ?
4 . . 1 ?

Id a1 a2 city
1 . . 0
2 . . 1
3 . . 0
4 . . 1

Figure 6.3 – Non-exclusive fork.

p0D0

D1

D2

p1

pf

gp0,p1 ∈ EF

gp0,pf ∈ EF

Gsync
0 ∈ Synchronous

Id a1 a2 city
1 . . 0
2 . . ?
3 . . ?
4 . . 1

X

X

Figure 6.4 – Synchronous execution.

forwarded both to p1 and to pf . In our example, the non exclusive fork replicates all
records in dataset D1 (used as an input for p1) and D2 used as an input for pf .

For a given phase px ∈ P, we denote by Gx ∈ FOD the guard attached to phase
px. Gx addresses properties of the dataset input to px by its predecessors. This allows,
in particular, to require that all records in preceding phases have been processed (we
will then say that phase px is synchronous), that at least one record exists in some
predecessor (the task is then fully asynchronous), or any FO expressible property on
datasets produced by predecessors of px.

Example (Synchronous and Asynchronous execution). One can easily define guards
for phases that force synchronous and asynchronous execution of phases. Consider for
instance the fragment of the smart city example in Figure 6.1. LetD0 denote the dataset
produced by phases p0. The guard Gsync

0 := ∀rn(id, a1, a2, city) ∈ D0, city 6=? imposes
that phase p1 starts only when all records have been processed by p0. On the exam-
ple of Figure 6.4, the blue checkmark indicates that records 1, 4 have been processed.
However, records 2 and 3 are still being processed by workers. In a similar way, one can

147

Chapter 6. Quality Assurance for Complex Workflows

p0D0

D1

D2

p1

pf

gp0,p1 ∈ EF

gp0,pf ∈ EF

Gasync
0 ∈ Asynchronous

Id a1 a2 City
1 . . 0
2 . . ?
3 . . ?
4 . . 1

X

X

Id a1 a2 City
4 . . 1

Id a1 a2 City
1 . . 0

Figure 6.5 – Asynchronous example.

p0

p2

pf

D3 ∈ φ

D1

D2

Gsync
f ∈ Synchronous⊗(pf) ∈ Join

X
Id a1 a2 city
1 . . 0
4 . . ?

Id a1 a2 city urgency
1 . . 0 ?
4 . . 1 ?

Figure 6.6 – Join example.

define an asynchronous guards of the form Gasync
0 := ∃rn(id, a1, a2, city) ∈ D0, city 6=?

that indicates processing of start in p1 can start as soon as record have been processed
by p0 and is shown in Figure 6.5.

One can notice that a phase px (e.g. pf in the example of Figure 6.1) may have sev-
eral processors. In this case, we consider that the input of px is obtained by merging all
datasets produced by its predecessors. We denote by

⊗
x = ⊗(px) the operator used

to merge all inputs entering phase px. This operator can be either a simple union of
datasets, or a more complex join operation. If

⊗
x is a join operation, we impose that px

is synchronous. This is mandatory, as one cannot start processing data produced by a
join operation when the final set of records is not known.

Example (Join operation). We show the Join operation in Figure 6.6 from our previous
smart city example. Phase pf takes the input from the predecessor phases p0, p2 and
performs join operation. Note that, phase pf with guard Gsync

f ∈ Synchronous, waits for
all the records from the predecessor phase to get processed. Here in the Figure 6.6,

148

Chapter 6. Quality Assurance for Complex Workflows

p0

p2

pf

D3

D1

D2

Gasync
f ∈ Asynchronous⊗(pf) ∈ Union

Id a1 a2 city
1 . . 0
2 . . 1

X

X

Id a1 a2 city
1 . . 0
4 . . ?

Id a1 a2 city
2 . . 1
3 . . ?

Figure 6.7 – Union example.

records with id value 1 in phase p0 has been processed and the rest of the records are
still being executed by workers in phase p0 as well as in p2. Consequently, phase pf is
waiting for all the data and hence D3 is empty.

When
⊗
x is a simple union of datasets, as tasks are individual tagging of records,

any record processed on a predecessor of px can be processed individually without
waiting for other results to be available. This allows asynchronous executions in which
two phases px, py can be concurrently active (i.e. have started processing records),
even if px precedes py.

Example (Union operation). An example of union operation is shown in Figure 6.7.
Here a phase pf is attached with a union operation with inputs as dataset D1, D2 and
the guard Gasync

f ∈ Asynchronous. Union operation simply stacks up the records and
the records can be processed individually. Hence, the processed record with id value
1 from dataset D1 and the record with id value 2 attached to dataset D2 is forwarded
to phase pf which performs the union operation and we get the dataset D3. Notice
however that due to asynchronous realization of pf , D3 will be processed as soon as a
record arrives at phase pf .

The semantics of CWA is defined in terms of moves from a configuration to the
next one, organized in rounds. Configurations memorize the data received by phases,
a remaining budget, the answers of workers, and quality measures on answers and
workers competences.

149

Chapter 6. Quality Assurance for Complex Workflows

Definition 34. A configuration of a CWA is a tuple C = (Din,Win,Wout, conf,Br) where
— Din : P → Dsets associates a dataset to every phase px ∈ P (this dataset can

be empty).
— Win : P × N× → 2W associates a set of workers to each record rj in Din(px).
— Wout : P × N ×W → {0, 1} ∪ ∅ associates a tag or the empty set to a worker,

a phase and a record number that was formerly affected to the worker. We will
write lxi,j to denote the answer returned by worker wi when tagging record rj

during phase px.
— conf : P × N → [0, 1] is a map that associates to each record rj in Din(px) a

confidence score in [0, 1] computed from Wout

— Br ∈ N is the remaining budget.

Wout(px, j, i) = ∅ indicates that a worker wi in a phase px has not yet processed
record rj. We say that phase px is completed for a record rj from Din(px) if there is
no worker wi such that Wout(px, j, i) = ∅ and w ∈ Win(px, rj). As soon as phase px is
completed for rj, we can derive an aggregated answer r′j(v1, . . . , vn, y

x
j) for each record

rj(v1, . . . vn) from the set of all answers returned by the workers in Win(px, j). Similarly,
we can compute a confidence score conf(px, j) on the value yxj and update the exper-
tise of each worker (we will see how these values are evaluated in Section 6.4). In a
configuration, phases and records can be in three states: inactive, active and closed.
We say that a phase px is inactive if it has no copies of record assigned and a record
rj is inactive in a phase px if no workers is assigned to it till now. A phase px is active if
some record rj is being processed and a record rj is active in a phase px if it is being
processed by some workers. Given a threshold value Th, we will say that px is closed
for a record rj from Din(px) if conf(px, j) ≥ Th. Record r′j(v1, . . . , vn, y

x
j) will then be

part of the input of phase py if (px, gx,y, py) ∈−→ and r′j(v1, . . . , vn, y
x
j) satisfies guard

gx,y. We will say that phase px is closed if all its predecessors are closed, and for every
j, rj ∈ Din(px), conf(px, j) ≥ Th. A closed phase has no records left to process and all
the records in the preceding phases are also closed.

We can now detail how rounds change the configuration of a workflow. The key
idea is that each round aggregates available answers, and then decides whether the
confidence in aggregated results is sufficient. If confidence in a record is high enough,
this record is forwarded to the successor phases, if not new workers are hired for the
next round, which decreases the remaining budget. The threshold for the confidence
decreases accordingly. Then new workers are hired for freshly forwarded data, leaving

150

Chapter 6. Quality Assurance for Complex Workflows

the system ready for the next round. From a configuration C=(Din,Win,Wout, conf,B),
a round produces a new configuration C ′ = (Din,Win,Wout, conf,B) as follows:

— Answers: Workers that were hired in preceding round produce new data. For
every phase px every record rj ∈ Din(px) and every worker wi such that wi ∈
Win(px, j) and Wout(px, j, i) = ∅, workers wi produce a new output lxi,j ∈ {0, 1}
and we hence set Wout(px, j, i) = lxi,j

1.
— Aggregation: The system evaluates aggregated answers in every active phase

px. For every record rj in Din(px), we compute an aggregated answer yxj from
the set of answers Aj = {lxi,j | wi ∈ Win(px, j)}. We derive tasks difficulty and
workers expertise and also compute a new confidence score conf ′(px, j) for
the aggregated answer (this confidence depends on the aggregation technique
shown in Section 5.2).

— Data forwarding : We distinguish asynchronous and synchronous phases. Let
py be an asynchronous phase (

⊗
y can only be a union of records). Then py ac-

cept every new record r′(v1, . . . vn, y
x
j) that was not yet among its inputs from a

predecessor px provided r′ satisfies guard gx,y, and the confidence in the aggre-
gated answer yxj is high enough. Formally, D′in(py) = Din(py) ∪ {r′(v1, . . . vn, y

x
j)}

if (px, gx,y, py) ∈−→, conf ′(px, j) ≥ Th and r′(v1, . . . vn, y
x
j) |= gx,y.

Let py be a phase such that
⊗
y is synchronous. If there exists a predecessor

px of py that is not closed, then D′in(py) = ∅ (shown in Figure 6.6). Otherwise
we can compute an input for phase py as a join over datasets computed by all
preceding phases. Formally,

D′in(py) =
⊗
y

px−→py

Dx

where px ranges over the set of predecessors of py, and

Dx = { r(v1, . . . vn, y
x
j) | r(v1, . . . vn) ∈ Din(px) ∧ r(v1, . . . vn, y

x
j) |= gx,y}

Hence, for synchronous a phase py, the input dataset is a join operation com-
puted over datasets filtered by guards and realized only once predecessor tasks
have produced all their results with a high enough confidence score. Both in

1. The value will be sampled according to worker’s expertise and ground truth during our experiments
in Section 6.5. In a real non-simulated crowdsourcing setting, answers are the tag obtained by assigning
task to workers registered on the platform.

151

Chapter 6. Quality Assurance for Complex Workflows

synchronous and asynchronous settings, phase py becomes active if D′in(py) |=
G(py), and we set conf ′(py, j) = 0 for every new record in D′in(py)

— Worker allocation : For every px that is active and every record rj = r(v1, . . . vn) ∈
D′in(px) such that conf ′(px, j) < Th, we allocate k new workers w1, . . . wk to
record rj for phase px, i.e. W ′

in(px, j) = Win(px, j) ∪ {w1, . . . , wk}. The number of
workers depend on the chosen policy (see details in Section 6.4). Accordingly,
for every new worker wi affected to a tagging task for a record rj in phase px, we
set W ′

out(px, i, j) = ∅
— Budget update. We then update the budget. The overall number of workers

hired is
jw =

∑
px∈P

∑
rj∈D′in(px)

|W ′
in(px, j) \Win(px, j)|

We consider, for simplicity, that all workers and tasks have identical costs, we
hence set B′r = Br − jw.

An execution begins from an initial configuration C0 in which only p0 is active, with
an input dataset affected to p0, and starts with workers allocation. Executions end in a
configuration Cf where all records in Din(pf) are tagged with a sufficient threshold, or
in a configuration where the remaining budget is 0. Notice that several factors influence
the overall execution of a workflow. First of all, the way workers answers are aggregated
influences the number of workers that must be hired to achieve decent confidence
in the synthesized answer. We propose to consider two main aggregation policies.
The first one is majority voting (MV), where a fixed static number of workers is hired
for each record in each phase. A second policy is the expectation maximization (EM)
based technique already used in Chapter 5, in which workers are hired on-demand to
increase confidence in the aggregated answer. With this policy, the confidence level
is computed taking into account the estimated expertise of workers, and the difficulty
of records tagging. The number of workers hired per record in a phase is not fixed but
rather computed considering the difficulty of tagging records and the remaining budget.

For a given workflow, asynchrony is another key factor that may influence the ac-
curacy and budget spent to realize a complex task. Recall that for a phase px which
input dataset is built as a union of sets of records, asynchronous guards allow to start
processing records as soon as Din(px) 6= ∅. Synchronous guards force px to wait for the
termination of its predecessors. In Section 6.5, we study the impact of synchronous/
asynchronous execution policy on the overall cost and accuracy of a workflow.

152

Chapter 6. Quality Assurance for Complex Workflows

6.3 Aggregation Model

We use the aggregation mechanisms for boolean tasks shown in Chapter 5. As
mentioned earlier, crowdsourcing requires replication of micro-tasks, and aggregation
mechanisms for the answers returned by the crowd.

Consider a phase px which input is a set of records Dx = {r1, r2, . . . , rn}, and which
goal is to associate a Boolean tag to each record of Dx. We assume a set of k inde-
pendent and faithful workers that return Boolean answers. We denote by lij the answer
returned by worker j for a record ri. Li = ⋃

j∈1...k
lij denotes the set of answers returned

by k workers for a record ri and L = ⋃
j∈1..n

Lj denotes the set of all answers and the the

objective of aggregation is to derive a set of final answers Y = {yj, 1 ≤ j ≤ n} from
the set of answers L. Once a final answer yj is computed, it can be appended as a
new field to record rj. As explained in Section 6.2, the produced results can be used to
launch new phases and to forward records to successor phases of px.

We recall the notation used in Chapter 5: dj ∈ [0, 1] denotes the difficulty to tag
a record rj. The expertise of a worker is denoted as a pair ξi = {αi, βi}, where αi

is the recall and βi the specificity of worker i. We use the same generative model
as in Chapter 5, i.e. Pr(lij = yj|dj, αi, yj = 1) = (1 + (1 − dj)(1−αi))/2 and Pr(lij =
yj|dj, βi, yj = 0) = (1 + (1 − dj)(1−βi))/2 to model how the worker answers. We use
both majority voting to aggregate answers or as in Chapter 5, a more clever EM based
algorithm that estimates difficulty of task dj and expertise of workers αi, βi and returns
the final aggregated answer yj for each of the record.

6.4 Cost Model for Workflow

The objective of a complex workflow W over a set of phases P = {p0, . . . , pf} is
to transform a dataset input to the initial phase p0 and eventually produce an output
dataset. The final answer is the result of the last processed phase pf . The simplest
scenario is a workflow that adds several binary tags to input records. The realization of
a micro-task by a worker is paid, and workflows come with a fixed maximal budget B0

provided by the client. For simplicity, we consider that each worker receives one unit
of credit per realized task. As explained in Section 6.2, each phase receives records
and each record is tagged by one or several workers. Answers are then aggregated,

153

Chapter 6. Quality Assurance for Complex Workflows

and the records produced by a phase px are distributed to its successors if they meet
some conditions on the data. A consequence of this filtering done by conditions is
that records have different lifetimes and follow different paths in the workflow. Further,
one can hire more workers to increase confidence in an aggregated result if needed
and if a sufficient budget remains available. Several factors influence the realization
of a workflow and its cost: the number of tagging tasks that have to be realized, the
available initial budget, the confidence in produced results, workers expertise, the size
and nature of input data, the difficulty of tagging, and the policies chosen to realize a
workflow and to hire workers. As for the single task case considered in Chapter 5, static
allocation of workers to tag each record in each phase is not optimal, as the same effort
is spent to solve easy and difficult tasks. Further, if the workflow execution spends most
of the budget on easy records or on the short branches of the workflow it may reduce
the accuracy of the workflow. The static allocation of workers also does not allow to
save budget on easy tasks and reuse these resources to improve the accuracy of the
results.

In Section 6.2, we defined synchronous and asynchronous schemes to allocate
workers on-the-fly to tasks. The decision to hire more workers for a particular record rj
processed in a phase depends on the confidence in the aggregated result, and on the
threshold. In this section, we define the cost model associated with these schemes,
and in particular, the threshold measure used to decide whether more workers should
be hired. We show in Section 6.5 that the algorithm achieves a good trade-off between
cost and accuracy. Recall that at each round, we allocate new micro-tagging tasks to
workers, to obtain answers for records that are still open. EM aggregation is used to
obtain a plausible aggregated tag yxj for each record rj from the set of answers Lxj

obtained in each active phase px. The algorithm also estimates difficulty dxj of tagging
record rj ∈ px, and evaluates the expertise level of every worker wi, i.e. its recall αi
and its specificity βi. These values are used to compute a confidence score ĉxj for the
aggregated answer. This score is used to decide whether more answers are required or
yxj can be considered as a definitive result. Let kxj = |Lxj | denote the number of answers
for record rj ∈ px. The confidence ĉxj in the aggregated answer yxj is defined as:

154

Chapter 6. Quality Assurance for Complex Workflows

ĉxj (yxj=1) = 1
kxj
·∑kxj

i=1

{
lxij × (1+(1−dxj)(1−αi)

2) + (1− lxij)× (1− 1+(1−dxj)(1−αi)

2)
}

ĉxj (yxj=0) = 1
kxj
·∑kxj

i=1

{
(1− lxij)× (1+(1−dxj)(1−βi)

2) + (lxij)× (1− 1+(1−dxj)(1−βi)

2)
}

One can notice that we reuse the confidence scores proposed in Chapter 5. Confi-
dence ĉxj depends on the recall and specificity of workers providing an answer to tag
record rj. This value is then compared to threshold Th. If ĉxj is greater than a current
threshold Th, then answer yxj is considered as definitive and the record rj is closed.
Otherwise, the record remains active. We fix a maximal number τ ≥ 1 of workers that
can be hired during a round for a particular record. Let Tar denote the set of active
records after aggregation and Dx

max the maximal difficulty for a record of phase px in
Tar. For every record rxj ∈ Tar with difficulty dxj , we allocate axj = d(dxj /Dx

max) × τe new
workers for the next round. Intuitively, we allocate more workers to more difficult tasks.
Now, Tar and hence axj depend on the threshold computed at each round. An appro-
priate threshold must consider the remaining budget, the remaining work to do, that
depends on the number of records that still need to be processed, on the structure of
the workflow, and the chosen policy to orchestrate the workflow and transfer data from
phase to phase. A first parameter to fix for the realization of a workflow is the initial bud-
get of B0. Ideally, a minimal budget B0 should allow the realization of a workflow, i.e.
provide sufficient resources to hire workers at each phase for each record. Henceforth,
the budget must consider the structure of the workflow.

Definition 35 (Height, width). The height of phase px ∈ P is the length of the longest
path from px to the final aggregation phase pf and is denoted by hx. The height a
workflow W is the height of its initial phase p0 and is denoted by h0. The width of
W is the size of the largest clique in W (i.e. the largest subset X ⊆ P such that
∀x, y ∈ X, x 6→ y).

The notions of height and width are interesting to evaluate the required budget to
terminate execution of a workflow, and hence fix an appropriate threshold for confi-
dence. The height of a workflow represents the maximal number of data transmission

155

Chapter 6. Quality Assurance for Complex Workflows

p0 p1

p2 p3

p4

p5
Corresponding
phase of p1

Figure 6.8 – Corresponding phase example.

from one phase to the next one needed to move a record from px to pf . The width of a
workflow is bound on a maximal number of active copies or a record at a given instant.
Before considering how the threshold is computed, we need to verify that a workflow
has a sufficient budget for its execution. In each phase, a record is allocated at least
ζ ≥ 1 workers. So, if n is the total number of records to process in a workflow W , the
budget spent during the realization of W will lay between ζ.n.h0 and B0. Similarly, some
records are sent to more than one successor, so in a workflow of width w, we may have
to fund up to ζ.n.h0.w micro-tasks to terminate. However, this is a very coarse approxi-
mation of the minimal resources needed to terminate a workflow, and a micro-task may
stay for more than one record in a phase.

To obtain sharper evaluations, we first compute a bound on the number of remaining
phases that records have to go through when they are currently processed in a phase
px before completion of the workflow. We call this number the foreseeable work at
phase px and denote it by fw(px). For readability, we assume simple non-hierarchical
structures, i.e. without nesting of exclusive and non-exclusive forks. For these struc-
tures, this bound can be computed iteratively according to the structure of the workflow.
A similar bound can be computed inductively for more complex workflows with nested
exclusive/non-exclusive forks.

Let px be a phase with several successors. If px is a non-exclusive fork phase,
then there is no other fork along a branch before a merge phase. A phase py that is
a merge phase immediately after px is called the corresponding phase of px. As for
example, in the Figure 6.8 p1 is a non-exclusive fork and the corresponding phase of p1

is p5. Intuitively, in a realization of W , all phases on a path between px and py can only
process records that went through px. Hence, the workload to process a record from px

to py is exactly the size of Succ(px) ∩ Pred(py).
Let px be an exclusive fork phase. Then, the corresponding union node of px is a

node py such that all path originating from px visit py, and no predecessor of py satisfy

156

Chapter 6. Quality Assurance for Complex Workflows

this property. To decide whether py is the corresponding node of px one can compute
the set of nodes that are both successors of px and predecessor of py, and decide
for each of them whether they have a successor that is not a predecessor of py. This
can be done in polynomial time. Then, the maximal number of phases that have to be
realized between px and its corresponding node py is the length of the maximal path
from px to py (which can also be computed in PTIME [Kha11]).

The algorithm to compute the foreseeable workload in a phase px consists in com-
puting the most expensive path in a workflow once the cost of parallel processes con-
tained between a non-exclusive fork node and its corresponding phase is evaluated
and this set of nodes is replaced by a single phase of the corresponding cost. This is
described more precisely in Algorithm 3.

Algorithm 3: FW (pn)
Data: Workflow W , phase pn
Result: fw(pn)

1 for each node px in Succ(pn) do
2 Cost(px) := 1;
3 end
4 for each non-exclusive fork node px in Succ(pn) do
5 Find py the corresponding node of px ;
6 Z = Succ(px) ∩ pre(py) ;
7 Replace Z by a fresh node p′x ;
8 Cost(p′x) = |Z| ;
9 end

10 Compute the most expensive path pn.pi1 pik .pf from pn to pf ;
11 fw := 1 + ∑

Cost(pik) ;
12 return fw;

Definition 36 (Foreseeable workload). Let nx denote the total number of active records
at phase px in a configuration C. The foreseeable task number from px in configuration
C is denoted ftC(px) and is defined as ftC(px) = nx × FW (px). The foreseeable task
number in configuration C is the sum FTN(C) = ∑

px∈P ftC(px)

Example: We illustrate the calculus of foreseeable workload with an example. Con-
sider the workflow W with finite set of phases P = {p0, p1, p2, p3, p4, p5, pf} shown
in Figure 6.9. The flow relation is defined as p0 −→ p1, p0 −→ pf , p1 −→ p2, p1 −→
p3, p2 −→ p4, p3 −→ p4, p4 −→ p5, p4 −→ p6, p5 −→ pf , p6 −→ pf . Consider the phase

157

Chapter 6. Quality Assurance for Complex Workflows

p1 is a non-exclusive fork and the rest of them are exclusive ones. Note that, when a
phase pi is non-exclusive fork, each record processed in pi can be forwarded to each
successor and hence increases the size of data processed in the workflow. Let us com-
pute the foreseeable workload for phase p0. We first set the cost of each phase px to 1,
Cost(px) := 1. Then for the non-exclusive fork p1, we find the corresponding phase of p1

which is p4. The phases between the non-exclusive fork in the dashed area in Figure 6.9
and corresponding phase, p2 and p4 are replaced by phase p′1 to obtain a workflow W ′

in Figure 6.10. The cost of the phase p′1 is |{p2, p3}| and hence Cost(p′1) = 2. Now, let us
compute the foreseeable workload for phase p0 in W ′. The most expensive path from p0

is p0.p1.p
′
1.p4.p5. Hence fw(p0) = Cost(p0)+Cost(p1)+Cost(p′1)+Cost(p4)+Cost(p5) =

6. The same algorithm can be used to derive the foreseeable workload for the rest of
the phases in W .

p0

W

p1

p2

p3

p4

p5

p6

pf

Non-exclusive fork

Figure 6.9 – Workflow W with non-exclusive fork phase.

p0

W ′

p1 p′1 p4

p5

p5

pf

Figure 6.10 – Workflow W ′ with a new phase p′x replacing the phases p2, p3 of the
workflow W .

158

Chapter 6. Quality Assurance for Complex Workflows

We are now ready to define a threshold function based on the current configuration
of the workflow. This function must consider all records that still need processing, the
remaining budget, and an upper bound on the number of tagging tasks that will have
to be realized to complete the workflow. Further, the execution policy will influence
the way workers are hired, and hence the budget spent. In a synchronous execution,
records in a phase px can be processed only when all records in preceding phases
have been processed. On the contrary, in asynchronous execution mode, processing
of records input to a phase px can start without waiting for the closure of all records
input to preceding phases. A consequence is that in synchronous modes, decisions
can be taken locally to each phase, while in an asynchronous mode, the way to tune
threshold must be taken according to a global view of the remaining work in the work-
flow. Hence, for an asynchronous execution policy, we will consider a global threshold
function, computed for the whole workflow. On the contrary, for a synchronous execu-
tion policy, we will define a more local threshold function computed for each phase.

Asynchronous execution. We define the global ratio Γ ∈ [0, 1] of executed work in a
workflow. The execution of a workflow starts from a configuration C0 with an expected
workload of FTN(C0). It is an upper bound, as all records do not necessarily visit the
maximal number of phases. Indeed, the phases visited by a record may depend on the
answers returned by the workers. We define a ratio depicting the proportion of already
executed or avoided work in a configuration C as Γ = (FTN(C0)−FTN(C))

FTN(C0) . Note that at
the beginning of execution, Γ = 0 as no record is processed yet. When records are
processed and moved to successor phases, Γ increases, and we necessarily have
Γ = 1.0 when no record remains to process. Now, the threshold value has to account
for the remaining budget to force the progress of records processing. Let B0 denote the
budget at the beginning of execution that is provided by the client, and Bc be the budget
consumed. We denote by δ the fraction of budget consumed at a given execution time,
i.e. δ = Bc

B0
. Note that, at the beginning of an execution, Bc = 0 and hence δ = 0.

δ increases at every round of the execution, and takes value δ = 1 when the whole
budget is spent. We now define a global threshold value Th ∈ [0.5, 1.0] that accounts
for the remaining work and budget.

Th = 1 + (1− δ)Γ

2 (6.1)

159

Chapter 6. Quality Assurance for Complex Workflows

We remind that in a phase px, a record which aggregated answer yxj has a con-
fidence level ĉj ≥ Th is considered as processed for phase px. In an asynchronous
execution policy, the threshold is a global value and applies to all records in the work-
flow at a given instant. The intuition for Th is simple: when only a few records remain
to be processed, and the remaining budget is sufficiently high, then one can afford hir-
ing more answers to get final answers with a high confidence threshold. This means
that many records will obtain new answers and probably increase their current con-
fidence level. Conversely, if the number of records to be processed is high and the
remaining budget is low, then the threshold decreases, and even records which current
answer have a low confidence level are considered as processed and moved to the
next phase(s).

Synchronous execution. In asynchronous execution, records are processed individ-
ually, and a phase does not wait for the completion of its predecessors to start. As a
consequence, all phases of the workflow can be active at the same time. As in each
round, records can be processed in all phases, we consider a global threshold, and
hence a global budget allocation policy. However, in synchronous executions, records
are processed phase by phase, i.e. a phase does not start processing its input dataset
until all records in the preceding phases have been processed. Here, the global thresh-
old used in asynchronous executions is not appropriate for synchronous executions.
As tasks are realized phase by phase, in the early phases of workflows execution, the
threshold will be high. One may face situations where at the end of an execution, the
number of records to process is still high, but a significant part of the budget has al-
ready been used. Within this setting, at the end of the execution the confidence and
threshold is low. It forces to accept final answers with low confidence and hence possi-
bly wrong answers. This may affect the overall quality of the final output of the workflow.
To avoid this problem, we propose to allocate the budget phase by phase. The idea is
to divide the budget among phases based on the number of records processed using
the threshold per active phase.

In synchronous executions, phases start processing all their records once preced-
ing phases have completed their work (i.e. all records are processed and for each of
them, a final answer with a sufficient confidence score has been aggregated). A task
becomes active when it starts processing records. We denote by Init(px) the number
of records input to px when the phase becomes active.

160

Chapter 6. Quality Assurance for Complex Workflows

As for an asynchronous execution, a synchronous execution starts with an initial
budget of B0. The algorithm works in rounds and at each round, a part of the remaining
budget is spent to hire the workers. As for asynchronous executions, we denote by Bc

the consumed budget in a given configuration and the remaining budget ∆ = B0 − Bc.
The key idea in synchronous execution is to compute resources needed for each active
phase, a ratio of input records that still need additional answers to forge a trusted
answer, and a local threshold.

The initial budget allocated to a phase px when it becomes active to execute Init(px) =
nx number of records in a configuration C is

Bin
x = ∆∑

pi∈ Active Phases FTN(pi)
× nx

Intuitively, one shares the remaining budget among active phases to allow termi-
nation of the workflow from each phase. Then for each active phase px, we maintain
the consumed budget Bc

x, and δx = Bcx
Binx

denotes the ratio of the consumed budget in
phase px with respect to initial allocated budget Bin

x . Now, for each active phase, we
compute the ratio Γx depicting the proportion of already closed records in comparison
to the total initial records attached to the phase px as

Γx = |{rj | ĉj ≥ Thx}|
Init(px)

(6.2)

where Thx is the threshold computed for the previous round. A local threshold for
the realization of the next round of an active phase can then be computed as in asyn-
chronous execution, using the formula

Thx = 1 + (1− δx)Γx

2 (6.3)

With the convention that the initial threshold Thx for a starting active phase, as no
record is processed yet is Thx = 1+(1−δx)

2 . At the end of each round, every record rj of
an active phase px is considered as processed if ĉj ≤ Thx and the processed records
are removed from Tavl.

Realization of Workflows. Regardless of the chosen policy, the execution of a work-
flow always follows the same principles. The structure of workflow W is static and
does not change with time. It describes a set of phases P = {p0, . . . , pf}, their depen-

161

Chapter 6. Quality Assurance for Complex Workflows

dencies, and guarded data flows from phases to their successors. A set of n records
R = {r1, . . . , rn} is used as input to W , i.e., is passed to initial phase p0, and must
be processed with a budget smaller than a given initial budget B0. As no information
about the difficulty of a task dxj is available at the beginning of phase p0, ζ workers are
allocated to each record for an initial estimation round. The same principle is followed
for each record when it enters a new phase px ∈ W . After collection of ζ answers, at
each round we first apply EM aggregation to estimate the difficulty dxj of active records
rj ∈ px, ĉxj the confidence in the final aggregated answer yxj and the recall αi and speci-
ficity βi of each worker wi. Then we use a stopping threshold to decide whether we
need more answers for each of the records in a phase. In asynchronous execution, the
threshold Th is a global threshold, and in synchronous mode, the confidence of each
record rj in a phase px is compared to the local threshold Thx. Records with sufficient
confidence are passed to the next phase(s), for other records we hire new workers to
obtain more answers. The decision to start processing records in a phase is immedi-
ate in case of asynchronous policy, and delayed until completion of predecessors in
the synchronous case. This can increase the confidence level, but also decrease the
threshold, as a part of the remaining budget is consumed. The execution stops when
the whole budget B0 is exhausted or when there is no additional record left to process.
In the end, the final phase pf returns the aggregated answer for each of the record.

Termination: One can easily see that as the remaining available budget decreases,
the threshold used to decide whether the aggregated answer for a record is final,
decreases too. However, there are situations where the confidence in each answer
remains low, and the remaining budget reaches 0 before the threshold attains the
lower bound 0.5 (that forces moving any record to the next phase(s)) 2. Similarly, when
records do not progress in the workflow, the ratio of remaining work Γx remains un-
changed for many rounds. As a consequence, the realization of a workflow with our
synchronous and asynchronous realization policies may not terminate. We will see in
the experimental results section that even with a poor accuracy of workers, this situation
was never met. Non-termination corresponds to situations where the weighted answers
of workers remain balanced for a long time. The threshold decreases slowly, and the
confidence of the aggregated answers remains lower. In that case, when threshold and
confidence values eventually coincide (in the worst case at a value of 0.5), the remain-

2. Recall that accepting a confidence threshold of 0.5 amounts to accepting a random guess from
workers

162

Chapter 6. Quality Assurance for Complex Workflows

ing budget is too low to realize the remaining work. Solutions to solve this issue and
guarantee termination is to bound the sojourn time of a record in a phase, or to keep
at every step of execution a sufficient budget to terminate the workflow with a static
worker allocation policy hiring only a small number of workers per record. Another way
to guarantee termination is to complete the remaining tags with a random guess, which
is almost similar to accepting answers with a confidence threshold of 0.5.

6.5 Experiments and results

In this section, we evaluate our execution policies on several typical workflows. We
consider a standard situation, where a client wants to realize a complex task defined
by a workflow on a crowdsourcing platform. The client provides input data and has an
initial budget of B0. As there exists no platform to realize complex tasks, there is no
available data to compare the realization of a workflow with our approach to existing
complex task executions. To address this issue, we design several typical workflows,
synthetic data, and consider realizations of these workflows for various execution poli-
cies, characteristics of data, and accuracy of workers.

We consider 5 different workflows, represented in Figure 6.11. Workflow W1 is a
simple sequence of tasks, W2 is a standard fork-join pattern i.e. parallel processing of
data followed by a merge of branches results, W3 and W4 are fork-join patterns with
equal and different lengths on branches, and W5 is a more complex workflow with two
consecutive forks followed by merges on each branch. Though this set of workflows is
not exhaustive, we think it already contains an interesting number of typical patterns
met in the execution of complex tasks. We consider that each micro-task simply tags
records, and simple exclusive guards sending each record to one successor, depend-
ing on the tag obtained at this phase. In Figure 6.11 we depict these choices by pairs
of letters (l0, l1) representing the binary decision taken on each phase, and assume
guards of the form f == l0 or f == l1, where f is the field of records produced by the
phase. For example, in workflow W1, phase p0 considers two possible tags denoted A
and B. After realization of the tasks, if the records are tagged with A by the workers
then records are moved to the phase pf and if tagged with B the records are assigned
to phase p1 for further processing. Each phase of workflows in Figure 6.11 implements
similar tagging and decision.

163

Chapter 6. Quality Assurance for Complex Workflows

We evaluate average costs and accuracies achieved by workflows realizations with
the following parameters. First, the input of each complex task is a dataset of 80
records. Notice that despite this fixed size, the number of micro-tasks to realize by
workers vary depending on the execution policy, on the value of data fields produced
by workers, but also on the initial dataset, on the initial budget, etc. Each record in
the original dataset has initially known data fields, and new fields are added by aggre-
gation of workers answers during the execution of the workflow. For these fields, we
assume a prior ground truth, which influences the probability that a worker answers
0 or 1 when filling this field and allows us to simulate an answer by a worker wi with
expertise αi, βi. We generate balanced (equal numbers of 0 and 1 in fields) and unbal-
anced datasets (unbalanced numbers of 0 and 1). Tasks are forwarded according to
final answers synthesized from tags returned by the workers. Hence, the balanced and
unbalanced characteristics of input dataset influences the number of records that go
through a branch or another.

p0

A/B

W1 :

p1

C/D

p2

E/F

p3

G/H

pf

DAnnotated

Union

(a) W1: Sequence of
phases.

p0

A/B
W2 :

p1

C/D
p2

E/F

p3

G/H

pf

DAnnotated

Union

(b) W2: Parallel data trans-
formations followed by an
aggregation of results.

p0

A/B

W3 :
p1

C/D

p2

E/F

p3

G/H

p4

I/J
p5

K/L

p6

M/N

pf

DAnnotated

Union

(c) W3: Fork-join patterns
with uniform lengths on their
branches.

p0

A/B

W4 :
p1

C/D

p2

E/F

p3

G/H

p4

I/J

p5

K/L

p6

M/N

pf

DAnnotated

Union

(d) W4: Fork-join patterns with nonuniform
lengths on their branches.

p0

A/B

W5 :

p1

C/D

p2

E/F

p3

G/H

p4

I/J
p5

K/L

p6

M/N

p7

Union

p8

Union

p9

M/N

p10

O/P

p11

DAnnotated

Union

(e) W5: Fork-join-Fork patterns with nonuni-
form lengths on their branches.

Figure 6.11 – Workflows with different orchestrations.

164

Chapter 6. Quality Assurance for Complex Workflows

We run the experiment with 4 randomly generated pools of 50 crowd workers, mak-
ing their accuracy range from low to high expertise. For each pool, we sampled ac-
curacies of workers according to normal distributions ranging respectively in intervals
[0.2, 0.7] (low expertise of workers), [0.4, 0.9] (low to average expertise), [0.6, 0.99] (av-
erage expertise) and [0.8, 0.99] (high expertise). The composition of pools is shown in
Figure 6.12.

0.2 0.3 0.4-0.5 0.6 0.7
0
5
10
15

4 6
13 9

18

Expertise 0
Low Accuracy in [0.2, 0.7]

0.65 0.70-0.75 0.75-0.80 0.85-0.90 0.95
0

5

106
11 12 12

9

Expertise 2
Average Accuracy in [0.65, 0.95]

0.4 0.5 0.6-0.7 0.7-0.8 0.8-0.9
0
5
10
15

5 6
14 10

15

Expertise 1
Mid Accuracy in [0.4, 0.9]

0.825 0.85-0.875 0.875-0.9 0.925-0.95 0.95-0.975
0
5
10
1513

6
15

8 8

Expertise 3
High Accuracy in [0.825, 0.975]

Figure 6.12 – Distributions of workers accuracy(Pool of 50 workers).

The last parameter to set is the initial budget of B0. We first evaluated the cost for
the realization of workflows with a static allocation policy that associates a fixed number
of k workers to each record in each phase and aggregates their answers with Majority
Voting. We call this policy Static Majority Voting (static MV). For each workflow, we
performed random runs with static MV to evaluate the maximal budget Bmv needed
for three different values k = 10/20/30. Note that the total budget Bmv consumed by
static MV technique cannot be fixed a priori, as it depends on the execution path
followed by records during execution, with random answers of workers. However, static
MV is a naive approach showed in the previous chapter, so starting with a budget of
B0 = Bmv for realization techniques tailored to save budget is a sensible approach.

In a second step of the experiment, we used the total budget Bmv spent by the
static MV approach as an initial budget for synchronous and asynchronous execution.
The idea was to achieve at least the same accuracy as static MV with synchronous
and asynchronous execution with the same initial budget B0 = Bmv, but to spend a
smaller fraction of this budget. Overall, our experiments cover the realization of 5 differ-

165

Chapter 6. Quality Assurance for Complex Workflows

Workflow W1 W2 W3 W4 W5

Parameter Value
Workers Accuracy Low Mid Average High
Budget for Bmv, k = 10 20 30

Data Type Balanced Imbalanced
Mechanisms Static MV Synchronous Asynchronous

Table 6.1 – Evaluation Parameters.

ent workflows with different values for initial budget, workers accuracy, characteristics
of data, and realization policy. This represents 72 different contexts, represented in
Table 6.1 (one type of experiment represents a selection of one entry in each row).
We run each experiment 15 times to get rid of bias. This represents a sample of 1080
workflow realizations.

We can now analyze the outcomes of our experiments. A first interesting result is
that all workflow executions terminated without exhausting their given initial budget,
even with low competencies of workers. A second interesting result is that for all re-
alization policies, and for all workflows, complex workflows realization end with poor
accuracy when expertise is low i.e. when the distribution of workers expertise is ex-
pertise 0 shown in Figure 6.13. Now, consider for instance the results of Figure 6.13.
The figure gives the consumed budget and achieved accuracy for a given workflow
and a given initial budget when workers have a low expertise. The first series of results
concern Workflow 1 with a budget allowing respectively 10, 20, 30 workers per record
in each phase when realizing the workflow with static MV policy. The overall expended
budget with a static MV approach is around 1200, 2800, 4000, respectively. Regardless
of the initial budget, synchronous and asynchronous approaches spend only a fraction
of the budget used by static MV. Accuracy is not conclusive, as the best realization
policy varies with each experiment: for instance, for W1 with 10 workers to tag each
records in each phase, static MV seems to be the best approach, while with a bud-
get allowing 20 workers per record, the synchronous approach is the best. However,
most of the experiments achieve accuracies below 0.2, which is quite low. An explana-
tion is that, as shown in Figure 5.1 in Chapter 5, with low expertise, workers answers
are almost random choices. Hence when all workers have low expertise, individual er-
rors are not corrected by other answers, and the ground truth does not influence the
results. At each phase, the algorithms take their decisions mostly based on wrong an-
swers provided by the low expert workers, and in consequence, the errors accumulate.
The system’s behavior is then completely random, which results in poor performance.

166

Chapter 6. Quality Assurance for Complex Workflows

(a) Budget spent and accuracy with low ex-
pertise of workers and Balanced Data.

(b) Budget spent and accuracy with low ex-
pertise of workers and Unbalanced Data.

Figure 6.13 – Accuracy and cost comparison on low expertise.

This tendency is shown for all workflows and initial budgets with balanced data (see
Figure 6.13a) is confirmed on unbalanced data (see Figure 6.13b).

Next, we consider experiments with mid-level to high expertise, which is the most
common case in a crowdsourcing setting. The experiments with competent workers
and synchronous and asynchronous execution policies clearly show that dynamic al-
location schemes outperform the static MV approach both in terms of cost and accu-
racy. One can easily see these results Figures 6.14a, 6.14b, that represent executions
of workflow W1 with three levels of expertise, three initial budgets, and all execution
policies, both for balanced and unbalanced data. We get similar results for workflows
W2,W3,W4,W5 as shown in Figures 6.15, 6.16, 6.17, 6.18.

In the worst cases, synchronous and asynchronous executions achieve accuracies
that are almost identical to that of static MV, but in most cases they give answers with
better accuracy. With a sufficient initial budget, dynamic approaches achieve accu-
racy greater than 0.9. An explanation for this improvement of synchronous and asyn-
chronous executions with respect to static MV is that in static MV, one does not consider
the expertise of the worker, whereas the synchronous and asynchronous executions
are EM based algorithms that derive the final answers by weighting individual answers

167

Chapter 6. Quality Assurance for Complex Workflows

(a) Workflow 1 on Balanced Data. (b) Workflow 1 on Unbalanced Data.

Figure 6.14 – Accuracy and cost comparison on Workflow 1.

(a) Workflow 2 on Balanced Data. (b) Workflow 2 on Unbalanced Data.

Figure 6.15 – Accuracy and cost comparison on Workflow 2.

according to worker’s expertise. This makes EM -based evaluation of final answers
more accurate than static MV. This improvement already occurs at the level of a single
phase execution (this was also the conclusion of Chapter 5).

168

Chapter 6. Quality Assurance for Complex Workflows

(a) Workflow 3 on Balanced Data. (b) Workflow 3 on Unbalanced Data.

Figure 6.16 – Accuracy and cost comparison on Workflow 3.

(a) Workflow 4 on Balanced Data. (b) Workflow 4 on Unbalanced Data.

Figure 6.17 – Accuracy and cost comparison on Workflow 4.

The reasons for cost improvement with respect to static MV are also easy to fig-
ure. Static MV allocates a fixed number of workers to every record in every phase
of a workflow, whereas synchronous and asynchronous execution schemes allocate
workers on-the-fly based on a confidence level that depends on the difficulty of tasks,
workers expertise, and returned answers. By comparing confidence levels with a dy-

169

Chapter 6. Quality Assurance for Complex Workflows

(a) Workflow 5 on Balanced Data. (b) Workflow 5 on Unbalanced Data.

Figure 6.18 – Accuracy and cost comparison on Workflow 5.

namic threshold, workers allocation considers the remaining budget and workload as
well. This clever allocation of workers saves costs, as easy tasks call for the help of
fewer workers than the fixed number imposed by static MV. The resources that are not
used on easy tasks can be reused later for difficult tasks, hence improving accuracy.

These results were expected. A more surprising outcome of the experiment is
that in most cases synchronous execution outperforms the asynchronous execution
in terms of accuracy. The intuitive reason behind this result is that the way records are
spread in the workflow execution affects the evaluation of expertise and difficulty. The
synchronous execution realizes tasks in phases, while asynchronous execution starts
tasks independently in the whole workflow. A consequence is that evaluation of hid-
den variables such as the difficulty of tasks and workers expertise evaluated by the
EM aggregation improves with a larger number of records per phase in synchronous
execution, while it might remain imprecise when the records are spread in different
phases during an asynchronous execution. This precise estimation helps synchronous
execution to allocate workers as well as to derive the final answers in a more efficient
way and hence outperforms asynchronous execution. A third general observation is
that both synchronous and asynchronous executions need a greater budget to com-
plete a workflow when data is unbalanced. Observe the results in Figure 6.14a and
Figure 6.14b: the budgets spent are always greater with unbalanced data. A possi-
ble explanation is that in the balanced cases, records are distributed uniformly on all

170

Chapter 6. Quality Assurance for Complex Workflows

phases, which helps evaluation of workers expertise and difficulty of tasks, while with
unbalanced data, some phases receive only a few records, which affects the evaluation
of hidden variables.

Unsurprisingly (see for instance Figure 6.14a), for a fixed budget, when worker ex-
pertise increases, accuracy increases too, and the consumed budget decreases. Com-
petent workers return correct answers, reach a consensus earlier, and hence achieve
better accuracy faster. Similarly for a fixed expertise level, increasing the initial budget
increases the overall accuracy of the workflow. Again, the explanation is straightfor-
ward: a higher budget increases the threshold used to consider an aggregated answer
as correct, giving better accuracies. To summarize, for a fixed initial budget and high
enough expertise, synchronous and asynchronous policies usually improve both cost
and accuracy.

6.6 Conclusion

In this chapter, we proposed a framework to foster the advantages of crowdsourcing
systems and of workflow systems. The resulting model can be used to realize complex
tasks with the help of a crowd workers. Particular attention is paid to the quality of the
data produced, and to the overall cost of complex task realization. We showed the dif-
ferent mechanisms namely synchronous and asynchronous workflow executions and
observed how different factors as data, budget, and accuracy affects the overall per-
formance of the workflow. We compared several task distribution strategies through
experiments and showed that the dynamic distribution of work outperforms static allo-
cation in terms of cost and accuracy.

A short-term extension for this work is to consider the termination of complex tasks
realization with dynamic policies. Indeed, workflows realized with dynamic policies may
not terminate: this happens when, for some record, all workers agree to return the
answers that do not increase the confidence. However, this situation was never met
during our experiments, even with the low expertise of workers. The probability of non-
terminating executions with synchronous/asynchronous policies seems negligible. The
intuitive reasoning behind this is the threshold falls as the budget is being consumed
and it pushes the records to the next phase. An interesting extension is to consider
various strategies to hire workers in the most efficient way. Also, in this work, we as-
sumed that all worker are uniformly paid and a non-uniform cost per worker can also

171

Chapter 6. Quality Assurance for Complex Workflows

be considered, for instance to hire experts. The difficulty in this case is then to find the
best trade-off between costly but accurate answers returned by experts, and cheaper
but less accurate answers by general workers. A possibility to address this challenge is
to see complex workflows as stochastic games, in which one player tries to maximize
accuracy by hiring more expert or costly workers while its opponent tries to hire a large
number of workers with lesser costs and the objective is to maximize the accuracy.

172

PART IV

Closure

173

CHAPTER 7

CONCLUSION

7.1 Contribution Summary

The objective of this thesis, as stated in the introduction was to define techniques
to deploy complex applications on top of conventional crowdsourcing platforms and to
provide data centric algorithms optimizing cost and accuracy.

The first contribution of the thesis is to define a data centric formal model for com-
plex crowdsourcing applications. The proposed model called complex workflows can
be used to specify, deploy and verify intricate tasks on top of the existing crowdsourcing
platforms. The model provides high-level constructs which allow the design of complex
tasks as orchestrations of a set of simple tasks described in the form of a workflow
and besides handles worker skills, data dependency, and constraints on data input and
output returned by workers. This gives complex workflows a huge expressive power.
We also study the termination and correctness properties of the workflow. The sec-
ond result of the thesis is that existential termination and correctness are undecidable
in general. Universal correctness and termination are decidable when constraints and
input are specified in a decidable fragment of FO. Last existential correctness and
termination become decidable for specifications with bounded recursion which con-
straints and input are specified in a decidable fragment of FO. However, the complexity
of correctness and termination for decidable cases is quite high: they are at least in
co-2EXPTIME. This complexity comes from the size of weakest precondition that have
to be built to prove termination and correctness.

The third contribution of the thesis is an aggregation technique for crowdsourcing plat-
forms. We considered as key factors the difficulty of tasks, and the expertise of workers,
expressed in terms of recall and specificity to model how a worker answers. Aggre-
gation is based on the expectation-maximization algorithm that jointly estimates the

174

Chapter 7. Conclusion

answers, the difficulty of tasks and expertise of workers. Building on this EM based
aggregation technique, we propose CrowdInc that optimizes the overall cost to col-
lect answers and aggregate them. The algorithm implements a worker allocation policy
that takes decisions from a dynamic threshold computed at each round, which helps in
achieving a good trade-off between cost and accuracy. We evaluated the algorithm on
existing benchmarks to validate our approach and showed that our aggregation tech-
nique outperforms the existing state-of-the-art techniques. We also showed that our
incremental crowdsourcing approach achieves the same accuracy as EM with a static
allocation of workers, better accuracy than majority voting, and in both cases at lower
costs.

The fourth contribution of the thesis is to realize complex workflows with cost and qual-
ity assurance. We showed several mechanisms to allocate tasks to workers during the
realization of a complex tagging task described by a workflow. We observed that the
factors such as data, budget and accuracy of workers affects the overall performance
of the workflows realization, and that workers hiring mechanisms also plays an impor-
tant role in cost minimization and quality maximization. The experiments showed that
the dynamic allocation of workers to tasks outperforms the existing static mechanisms
in terms of cost and accuracy.

The last contribution of the thesis is the development of the tool CrowdPlex. The tool
takes as input a workflow specification, task mapping, profiles, workers availability,
workers skills, task pre-requisite, defining an initial configuration and input data. The
tool checks termination or correctness of the workflow by deriving weakest precondi-
tions required to satisfy termination or a given FO property along a run. Satisfiability of
this precondition is then verified using a SAT solver.

These works have led to the publication of following articles [a, b , c , [d], e].

7.2 Perspectives

In this section, we discuss open research directions. We begin with short term re-
search directions, i.e. the problems that may take less effort and then draw longer term
perspectives, i.e. the questions that may take longer time, but possess a potential for
high impact.

175

Chapter 7. Conclusion

7.2.1 Short Term Perspectives

Latency. Human latency is one of the critical factors in crowdsourcing. Sometimes
workers cannot perform the task that was assigned to them, either because it is too
difficult or they are unavailable. Workers come from different and remote places. This
means that a workflow can be realized by a crowd composed of workers originating
from different time zones. In a complex workflow environment, the tasks are depen-
dent and subsequently, the output of one phase acts as an input to others. In such
cases, latency at a particular task delays the workflow. The crowd-powered algorithms
need optimization to reduce the latency when eventual results are not available. This
calls for definition of lazy mechanisms to progress the workflow based on the partial
outcomes: prioritizing for quick partial results by generating some initial results or pro-
viding some parameterized approximate output. In a complex crowdsourcing setting,
one possible solution to reduce latency is alternative hiring of more workers.

Validation. Workers at crowdsourcing platform are heterogeneous, comes with wide
range level of expertise and are unknown. Usually, there is no control on the quality
of the workers. Workers at the platform can be spammers which provide answers ran-
domly without looking at the task or provide wrong answers on purpose. Also, some
tasks are difficult and are hard to reach consensus. It makes the cost of acquiring
answers more expensive and also degrades the overall quality. In complex workflow
environment where the output of one task acts as an input to other, the wrong answers
at a phase directly impact the answerability in the successive phase(s).

The solution to the problem is the post-processing phase in which answers can be
validated by experts. In Chapter 5, we give a solution to evaluate the difficulty of each
task. The task which are more difficult are those where workers have disagreements
and are not able to reach consensus with high confidence. In such cases on top of our
model, expert workers can be hired to get their opinion. However, it comes with various
other challenges. First, the experts are not so easily available. The hiring of experts
also incurs a high cost. The expert varies from domain to domain and in practice it is
hard to get experts in each field. Also, experts can be hired at various phases and it
requires to identify the best instance in the complex workflow that maximizes the accu-
racy considering the cost factor. Another solution is to monitor the task execution in the
workflows and client or task manager can intervene, guide and suggest the execution
of the tasks in a complex workflow. Also, if required the manager can hire the workers

176

Chapter 7. Conclusion

based on the progress of the task. This validation mechanism may need subtle re-
design of the system for monitoring the workflow execution and hiring expert workers
on demand.

View. In this thesis, we present a data-centric complex workflow model where tasks are
individually assigned to the workers. Each worker is provided with data and contribute
in its own. The data produced by a worker acts as an input to the other successor tasks.
In this setting, workers in complex workflows are only aware of their task, data, opera-
tions and executions. They only see a fragment of the whole workflow and have a local
view of the system. They are not aware of the global goal of the workflow due to limited
access and shortfalls in the understanding of the overall objective of the complex task.
Adding a global view to the complex workflow system may bring envision to the overall
process. The workers may be able to visualize the final goal and may provide more
sensible answers. However, a full view of the workflow may also have issues such as
privacy, bias, etc. One of the solutions is to have a global or limited view. The limited
visibility can be added in terms of a view of up to some k successor tasks in the work-
flow. The issue of privacy and bias can be mitigated by data anonymization techniques.

Testing. We tested the CrowdPlex tool on various workflow specification with vary-
ing workflow, tasks, workers, tasks pre-requisite, worker skills and data specification.
The tested use cases range from a very simple to a complex orchestrated workflow.
The test of the complex workflow was successful. It allowed to check termination and
correctness properties in a few seconds. Next, the tool needs to be tested on real
crowdsourcing marketplaces with a more complex environment. The real crowdsourc-
ing comes with a large number of workers as well as varying tasks. The system needs
to be scalable in such cases and testing in such an environment will help us to find the
limitation of the model. Though, the theoretical worst case complexity demonstrated
in Chapter 4 is redhibitory, it is interesting to check if such complexity appears in real
situations.

177

Chapter 7. Conclusion

7.2.2 Long Term Perspectives

Collaborative Crowdsourcing. The existing crowdsourcing marketplaces provide a
mechanism to realize the tasks independently. Often workers do not collaborate and
possess no information about the other sub-tasks in the workflow. Collaborative crowd-
sourcing is an emerging prototype where a set of workers with diverse and comple-
mentary skills can form groups and work together to solve a task. In a collaborative
crowdsourcing mechanism, a group of workers works on a single task and contribute
individually based on their skills.

To start, Crowd4U [Mor+12] is a volunteer-based system which enables collabo-
rative crowdsourcing with data-flows in a declarative manner. Yet a lot of challenges
are still unsolved and collaborative mechanisms comes with diverse challenges. Unlike
the independent task execution, collaboration is the principle of such systems. Like-
wise our complex workflow model, collaborative workflows require an end to end de-
ployment of a task, needs task decomposition, task assignments and effective worker
collaboration. Appropriate collaboration schemes are required to enforce efficient co-
ordination between the workers in such systems. Collaborative crowdsourcing can be
used for various emerging applications such as article writing, surveillance tasks, text
translation, and citizen journalism. Challenges that need to be addressed are worker
contribution, sequential or simultaneous collaboration, task-worker assignment, inter-
face design etc.

Imprecision in Data. Workers at crowdsourcing platforms are not always confident
about their answers. Sometimes workers make a random guess or provide imprecise
results. The existing crowdsourcing systems do not provide ways to enter imprecise re-
sults nor provide mechanisms for the self-assessment of answers. The next generation
crowdsourcing model should provide flexibility to the workers to enter imprecise data
along with the self-assessed confidence score in the provided answers. Such a system
can improve answers by getting more imprecise answers for a task which will improve
accuracy. Besides, it requires novel aggregation policies. A good starting point could
be to consider imprecision and corrective mechanisms based on belief functions. The
aggregation policy should consider the imprecise outputs, confidence in answers and
then accordingly update the system dynamics to gather more information. Modeling
such an imprecise system is not trivial and requires a solid framework to aggregate
imprecise answers.

178

Chapter 7. Conclusion

Human in the Loop Machine Learning. Crowdsourcing is a valuable tool to collect
annotated data to train machine learning models. However, machine learning models
are often not accurate and make mistakes. Human in the loop machine learning is a
technique in which a learning algorithm can query a worker to validate the decisions for
which it had lesser confidence. The new validated decisions by the crowd workers can
then be used to make the machine learning model more precise. The open, dynamic
and huge availability of workers round a clock at the crowdsourcing platforms makes
a natural choice to leverage the power of the crowd and human wisdom to build more
precise machine learning models. For example, consider a machine learning model
that classifies an image in categories as cat and dog. Consider, in real test setting for
some images the machine learning model is not able to decide with high confidence. In
such cases, human intelligence can be leveraged and crowd workers can be hired to
annotate the data accurately. The new set of annotated and verified data returned by
the workers can then be used as training data to further improve the model decision-
making ability. There have been some initial works in this space [Zha+20; Moz+12].
Human in the loop machine learning models can be one of the most mature machine
learning paradigm that will continue to attract enough research attention in the highly
developing field of artificial intelligence.

179

Publications
[a] Pierre Bourhis, Loïc Hélouët, Zoltan Miklos, and Rituraj Singh, « Data centric

workflows for crowdsourcing », in: International Conference on Applications and The-
ory of Petri Nets and Concurrency, Springer, 2020, pp. 24–45 [Regular paper]

[b] Rituraj Singh, Loïc Hélouët, and Zoltan Miklos, « Reducing the Cost of Aggre-
gation in Crowdsourcing », in: International Conference on Web Services, Springer,
2020, pp. 77–95 [Regular paper]

[c] Pierre Bourhis, Loïc Hélouët, Rituraj Singh, and Zoltán Miklós, « Data Centric
Workflows for Crowdsourcing », in: (2019) [Full paper]

[d] Rituraj Singh, Loïc Hélouët, and Zoltan Miklos, « Reducing the Cost of Aggrega-
tion in Crowdsourcing », in: BDA - Conférence sur la Gestion de Données – Principes,
Technologies et Applications, 2020 [Regular paper]

[e] Loïc Hélouët, Zoltan Miklos, and Rituraj Singh, « Cost and Quality in Crowd-
sourcing Workflows », in: International Conference on Applications and Theory of Petri
Nets and Concurrency, Springer, 2021, pp. 33–54 [Regular paper]

BIBLIOGRAPHY

[99d] 99Designs, https://en.99designs.fr/.

[AA11] Mehmet Aci and Mutlu Avci, « K nearest neighbor reinforced expecta-
tion maximization method », in: Expert Systems with Applications 38.10
(2011), pp. 12585–12591.

[Aal97] Wil MP Van der Aalst, « Verification of workflow nets », in: International
Conference on Application and Theory of Petri Nets, Springer, 1997,
pp. 407–426.

[Aal98] Wil MP Van der Aalst, « The application of Petri nets to workflow man-
agement », in: Journal of circuits, systems, and computers 8.01 (1998),
pp. 21–66.

[AHV95] Serge Abiteboul, Richard Hull, and Victor Vianu, Foundations of databases,
vol. 8, Addison-Wesley Reading, 1995.

[All16] Thomas Allweyer, BPMN 2.0: introduction to the standard for business
process modeling, BoD–Books on Demand, 2016.

[Amta] Amazon mechanical turk, https://www.mturk.com/.

[Amtb] AMT Pricing Policy, https://www.mturk.com/pricing.

[ASV09] S. Abiteboul, L. Segoufin, and V. Vianu, « Static analysis of active XML
systems », in: Trans. on Database Systems 34.4 (2009), 23:1–23:44.

[AV13] S. Abiteboul and V. Vianu, « Collaborative data-driven workflows: think
global, act local », in: Proc. of PODS’13, ACM, 2013, pp. 91–102.

[Ayd+14] Bahadir Ismail Aydin, Yavuz Selim Yilmaz, Yaliang Li, Qi Li, Jing Gao,
and Murat Demirbas, « Crowdsourcing for multiple-choice question an-
swering », in: Twenty-Sixth IAAI Conference, 2014.

[Ban+85] Francois Bancilhon, David Maier, Yehoshua Sagiv, and Jeffrey D Ull-
man, « Magic sets and other strange ways to implement logic pro-
grams », in: Proceedings of the fifth ACM SIGACT-SIGMOD symposium
on Principles of database systems, 1985, pp. 1–15.

183

https://en.99designs.fr/
https://www.mturk.com/
https://www.mturk.com/pricing

[Bee+06] C. Beeri, A. Eyal, S. Kamenkovich, and Tova Milo, « Querying Business
Processes », in: Proc. of VLDB’06, ACM, 2006, pp. 343–354.

[Beh+11] Tara S Behrend, David J Sharek, Adam W Meade, and Eric N Wiebe,
« The viability of crowdsourcing for survey research », in: Behavior re-
search methods 43.3 (2011), p. 800.

[Ber+15] M.S. Bernstein, G. Little, R.C. Miller, B. Hartmann, M.S. Ackerman, D.R.
Karger, D. Crowell, and K. Panovich, « Soylent: a word processor with
a crowd inside », in: Communications of the ACM 58.8 (2015), pp. 85–
94.

[BHM16] Eric Badouel, Loïc Hélouët, and Christophe Morvan, « Petri nets with
structured data », in: Fundamenta Informaticae 146.1 (2016), pp. 35–
82.

[BHS09] Kamal Bhattacharya, Richard Hull, and Jianwen Su, « A data-centric
design methodology for business processes », in: Handbook of Re-
search on Business Process Modeling, IGI Global, 2009, pp. 503–531.

[Bin] Microsoft Bing, https://www.bing.com/.

[BK98] Falko Bause and Pieter S Kritzinger, « Stochastic Petri nets: An intro-
duction to the theory », in: ACM SIGMETRICS Performance Evaluation
Review 26.2 (1998), pp. 2–3.

[Blu02] Moritz Blume, « Expectation maximization: A gentle introduction », in:
Technical University of Munich Institute for Computer Science (2002).

[Boo05] Grady Booch, The unified modeling language user guide, Pearson Ed-
ucation India, 2005.

[Bou+19] Pierre Bourhis, Loïc Hélouët, Rituraj Singh, and Zoltán Miklós, « Data
Centric Workflows for Crowdsourcing », in: (2019).

[Bou+20] Pierre Bourhis, Loïc Hélouët, Zoltan Miklos, and Rituraj Singh, « Data
centric workflows for crowdsourcing », in: International Conference on
Applications and Theory of Petri Nets and Concurrency, Springer, 2020,
pp. 24–45.

[BS28] P. Bernays and M. Schönfinkel, « Zum entscheidungsproblem der math-
ematischen logik », in: Mathematische Annalen 99.1 (1928), pp. 342–
372.

184

https://www.bing.com/

[BT06] D. G. Brizan and A. U. Tansel, « A survey of entity resolution and record
linkage methodologies », in: Communications of the IIMA 6.3 (2006),
p. 5.

[BW18] Jonathan Bragg and Daniel S Weld, « Sprout: Crowd-powered task de-
sign for crowdsourcing », in: Proceedings of the 31st Annual ACM Sym-
posium on User Interface Software and Technology, 2018, pp. 165–
176.

[BW84] Alan Bundy and Lincoln Wallen, « Skolemization », in: Catalogue of Ar-
tificial Intelligence Tools, Springer, 1984, pp. 123–123.

[Cao+12] Caleb Chen Cao, Jieying She, Yongxin Tong, and Lei Chen, « Whom to
ask ? jury selection for decision making tasks on micro-blog services »,
in: arXiv preprint arXiv:1208.0273 (2012).

[Car+02] Chad Carson, Serge Belongie, Hayit Greenspan, and Jitendra Malik,
« Blobworld: Image segmentation using expectation-maximization and
its application to image querying », in: IEEE Transactions on pattern
analysis and machine intelligence 24.8 (2002), pp. 1026–1038.

[CCAY16] Anand Inasu Chittilappilly, Lei Chen, and Sihem Amer-Yahia, « A survey
of general-purpose crowdsourcing techniques », in: IEEE Transactions
on Knowledge and Data Engineering 28.9 (2016), pp. 2246–2266.

[CDGM13] Diego Calvanese, Giuseppe De Giacomo, and Marco Montali, « Foun-
dations of data-aware process analysis: a database theory perspec-
tive », in: Proceedings of the 32nd ACM SIGMOD-SIGACT-SIGAI sym-
posium on Principles of database systems, 2013, pp. 1–12.

[CGT+89] Stefano Ceri, Georg Gottlob, Letizia Tanca, et al., « What you always
wanted to know about Datalog(and never dared to ask) », in: IEEE
transactions on knowledge and data engineering 1.1 (1989), pp. 146–
166.

[CGV08] Laura Carnevali, Leonardo Grassi, and Enrico Vicario, « State-density
functions over DBM domains in the analysis of non-Markovian mod-
els », in: IEEE Transactions on Software Engineering 35.2 (2008), pp. 178–
194.

185

[Cha12] Donald D Chamberlin, « Early history of SQL », in: IEEE Annals of the
History of Computing 34.4 (2012), pp. 78–82.

[Chu+36] Alonzo Church et al., « A note on the Entscheidungsproblem », in: J.
Symb. Log. 1.1 (1936), pp. 40–41.

[CKO13] Balder ten Cate, Phokion G Kolaitis, and Walied Othman, « Data ex-
change with arithmetic operations », in: Proceedings of the 16th Inter-
national Conference on Extending Database Technology, 2013, pp. 537–
548.

[Cli] Clickworker, https://www.clickworker.com/.

[CLZ13] Xi Chen, Qihang Lin, and Dengyong Zhou, « Optimistic knowledge gra-
dient policy for optimal budget allocation in crowdsourcing », in: Inter-
national conference on machine learning, 2013, pp. 64–72.

[Cod02] Edgar F Codd, « A relational model of data for large shared data banks »,
in: Software pioneers, Springer, 2002, pp. 263–294.

[Cod72] E. F. Codd, « Relational completeness of data base sublanguages », in:
Database Systems (1972), pp. 65–98.

[Cod+72] Edgar F Codd et al., Relational completeness of data base sublan-
guages, Citeseer, 1972.

[Coo+10] Seth Cooper, Firas Khatib, Adrien Treuille, Janos Barbero, Jeehyung
Lee, Michael Beenen, Andrew Leaver-Fay, David Baker, Zoran Popović,
et al., « Predicting protein structures with a multiplayer online game »,
in: Nature 466.7307 (2010), pp. 756–760.

[Cro] CrowdFlower, http://crowdflower.com/.

[CSW95] Weidong Chen, Terrance Swift, and David S Warren, « Efficient top-
down computation of queries under the well-founded semantics », in:
The Journal of logic programming 24.3 (1995), pp. 161–199.

[Cze+19] Wojciech Czerwiński, Sławomir Lasota, Ranko Lazić, Jérôme Leroux,
and Filip Mazowiecki, « The reachability problem for Petri nets is not
elementary », in: Proceedings of the 51st Annual ACM SIGACT Sym-
posium on Theory of Computing, 2019, pp. 24–33.

186

https://www.clickworker.com/
http://crowdflower.com/

[Dan+18] F. Daniel, P. Kucherbaev, C. Cappiello, B. Benatallah, and M. Allah-
bakhsh, « Quality Control in Crowdsourcing: A Survey of Quality At-
tributes, Assessment Techniques, and Assurance Actions », in: ACM
Computing Surveys 51.1 (2018), p. 7.

[Dav93] Thomas H Davenport, Process innovation: reengineering work through
information technology, Harvard Business Press, 1993.

[DDCM12] G. Demartini, D.E. Difallah, and Ph. Cudré-Mauroux, « ZenCrowd: lever-
aging probabilistic reasoning and crowdsourcing techniques for large-
scale entity linking », in: Proc. of WWW 2012, ACM, 2012, pp. 469–
478.

[DDV12] E. Damaggio, A. Deutsch, and V. Vianu, « Artifact systems with data
dependencies and arithmetic », in: Trans. on Database Systems 37.3
(2012), p. 22.

[Deu+06] A. Deutsch, L. Sui, V. Vianu, and D. Zhou, « Verification of communi-
cating data-driven web services », in: Proc. of PODS’06, ACM, 2006,
pp. 90–99.

[dFM18] M. de Leoni, P. Felli, and M. Montali, « A Holistic Approach for Sound-
ness Verification of Decision-Aware Process Models », in: Proc. of ER’18,
vol. 11157, LNCS, 2018, pp. 219–235.

[DHV14] Alin Deutsch, Richard Hull, and Victor Vianu, « Automatic verification
of database-centric systems », in: ACM SIGMOD Record 43.3 (2014),
pp. 5–17.

[Dij75] E. W. Dijkstra, « Guarded Commands, Nondeterminacy and Formal
Derivation of Program. », in: Communications of the ACM 18.8 (1975),
pp. 453–457.

[DLR77] A.P. Dempster, N. M. Laird, and D. B. Rubin, « Maximum likelihood from
incomplete data via the EM algorithm », in: J. of the Royal Statistical
Society: Series B (Methodological) 39.1 (1977), pp. 1–22.

[DLW13] P. Dai, C. H. Lin, and D. S. Weld, « POMDP-based control of workflows
for crowdsourcing », in: Artificial Intelligence 202 (2013), pp. 52–85.

187

[DMB08] Leonardo De Moura and Nikolaj Bjørner, « Z3: An efficient SMT solver »,
in: International conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems, Springer, 2008, pp. 337–340.

[DS79] A.Ph. Dawid and A.M. Skene, « Maximum likelihood estimation of ob-
server error-rates using the EM algorithm », in: J. of the Royal Statistical
Society: Series C (Applied Statistics) 28.1 (1979), pp. 20–28.

[EAGLDG12] Enrique Estellés-Arolas and Fernando González-Ladrón-De-Guevara,
« Towards an integrated crowdsourcing definition », in: Journal of Infor-
mation science 38.2 (2012), pp. 189–200.

[Esk+13] Maxine Eskenazi, Gina-Anne Levow, Helen Meng, Gabriel Parent, and
David Suendermann, Crowdsourcing for speech processing: Applica-
tions to data collection, transcription and assessment, John Wiley &
Sons, 2013.

[EV11] Carsten Eickhoff and Arjen de Vries, « How crowdsourcable is your
task », in: Proceedings of the workshop on crowdsourcing for search
and data mining (CSDM) at the fourth ACM international conference on
web search and data mining (WSDM), 2011, pp. 11–14.

[Fig] Figure Eight, http://www.appen.com.

[Fin+13] Ailbhe Finnerty, Pavel Kucherbaev, Stefano Tranquillini, and Gregorio
Convertino, « Keep it simple: Reward and task design in crowdsourc-
ing », in: Proceedings of the Biannual Conference of the Italian Chapter
of SIGCHI, 2013, pp. 1–4.

[Fla12] P.A. Flach, Machine Learning - The Art and Science of Algorithms that
Make Sense of Data, Cambridge University Press, 2012.

[FLM19] Paolo Felli, Massimiliano de Leoni, and Marco Montali, « Soundness
verification of decision-aware process models with variable-to-variable
conditions », in: 2019 19th International Conference on Application of
Concurrency to System Design (ACSD), IEEE, 2019, pp. 82–91.

[Fol] FoldIt, solve puzzles for science. http://fold.it/portal/..

[Fow04] Martin Fowler, UML distilled: a brief guide to the standard object mod-
eling language, Addison-Wesley Professional, 2004.

188

http://www.appen.com
 http://fold.it/portal/.

[Fra+11] Michael J Franklin, Donald Kossmann, Tim Kraska, Sukriti Ramesh,
and Reynold Xin, « CrowdDB: answering queries with crowdsourcing »,
in: Proceedings of the 2011 ACM SIGMOD International Conference
on Management of data, 2011, pp. 61–72.

[Fre] Freelancer, https://www.freelancer.com/.

[Gad+17] Ujwal Gadiraju, Besnik Fetahu, Ricardo Kawase, Patrick Siehndel, and
Stefan Dietze, « Using worker self-assessments for competence-based
pre-selection in crowdsourcing microtasks », in: ACM Transactions on
Computer-Human Interaction (TOCHI) 24.4 (2017), pp. 1–26.

[GC11] M.R. Gupta and Y. Chen, « Theory and use of the EM algorithm », in:
Foundations and Trends in Signal Processing 4.3 (2011), pp. 223–296.

[GIL16] Shinsuke Goto, Toru Ishida, and Donghui Lin, « Understanding Crowd-
sourcing Workflow: Modeling and Optimizing Iterative and Parallel Pro-
cesses », in: Proceedings of the Fourth AAAI Conference on Human
Computation and Crowdsourcing, HCOMP 2016, 30 October - 3 Novem-
ber, 2016, Austin, Texas, USA, ed. by Arpita Ghosh and Matthew Lease,
AAAI Press, 2016, pp. 52–58.

[Glo] Global Crowdsourcing Market, https : / / www . prnewswire . com / in /
news-releases/global-crowdsourcing-market-was-valued-to-be-
us-9-519-53-mn-in-2018-and-is-expected-to-reach-us-154-835-
74-mn-by-2027-growing-at-a-cagr-of-36-5-over-the-forecast-
period-owing-to-advancement-in-crowdsourcing-methods-says-
absolute-markets-ins-826488722.html.

[GM05] Robert J Glushko and Tim McGrath, « Document Engineering: analyz-
ing and designing the semantics of Business Service Networks », in:
Proceedings of the IEEE EEE05 international workshop on Business
services networks, Citeseer, 2005, pp. 2–2.

[GM+16] H.Garcia-Molina, M.Joglekar, A.Marcus, A.Parameswaran, and V.Ver-
roios, « Challenges in data crowdsourcing », in: Trans. on Knowledge
and Data Engineering 28.4 (2016), pp. 901–911.

[Goo] Google Inc. https://www.google.com/.

189

https://www.freelancer.com/
https://www.prnewswire.com/in/news-releases/global-crowdsourcing-market-was-valued-to-be-us-9-519-53-mn-in-2018-and-is-expected-to-reach-us-154-835-74-mn-by-2027-growing-at-a-cagr-of-36-5-over-the-forecast-period-owing-to-advancement-in-crowdsourcing-methods-says-absolute-markets-ins-826488722.html
https://www.prnewswire.com/in/news-releases/global-crowdsourcing-market-was-valued-to-be-us-9-519-53-mn-in-2018-and-is-expected-to-reach-us-154-835-74-mn-by-2027-growing-at-a-cagr-of-36-5-over-the-forecast-period-owing-to-advancement-in-crowdsourcing-methods-says-absolute-markets-ins-826488722.html
https://www.prnewswire.com/in/news-releases/global-crowdsourcing-market-was-valued-to-be-us-9-519-53-mn-in-2018-and-is-expected-to-reach-us-154-835-74-mn-by-2027-growing-at-a-cagr-of-36-5-over-the-forecast-period-owing-to-advancement-in-crowdsourcing-methods-says-absolute-markets-ins-826488722.html
https://www.prnewswire.com/in/news-releases/global-crowdsourcing-market-was-valued-to-be-us-9-519-53-mn-in-2018-and-is-expected-to-reach-us-154-835-74-mn-by-2027-growing-at-a-cagr-of-36-5-over-the-forecast-period-owing-to-advancement-in-crowdsourcing-methods-says-absolute-markets-ins-826488722.html
https://www.prnewswire.com/in/news-releases/global-crowdsourcing-market-was-valued-to-be-us-9-519-53-mn-in-2018-and-is-expected-to-reach-us-154-835-74-mn-by-2027-growing-at-a-cagr-of-36-5-over-the-forecast-period-owing-to-advancement-in-crowdsourcing-methods-says-absolute-markets-ins-826488722.html
https://www.prnewswire.com/in/news-releases/global-crowdsourcing-market-was-valued-to-be-us-9-519-53-mn-in-2018-and-is-expected-to-reach-us-154-835-74-mn-by-2027-growing-at-a-cagr-of-36-5-over-the-forecast-period-owing-to-advancement-in-crowdsourcing-methods-says-absolute-markets-ins-826488722.html
https://www.google.com/

[GP14] Yihan Gao and Aditya G. Parameswaran, « Finish Them!: Pricing Algo-
rithms for Human Computation », in: Proc. VLDB Endow. 7.14 (2014),
pp. 1965–1976.

[Haa+15] Daniel Haas, Jiannan Wang, Eugene Wu, and Michael J. Franklin, « CLAMShell:
Speeding up Crowds for Low-latency Data Labeling », in: Proc. VLDB
Endow. 9.4 (2015), pp. 372–383.

[Hac76] Michel Henri Théodore Hack, « Decidability questions for Petri Nets. »,
PhD thesis, Massachusetts Institute of Technology, 1976.

[Har+13] B.B Hariri, D. Calvanese, G. De Giacomo, A. Deutsch, and M. Montali,
« Verification of relational data-centric dynamic systems with external
services », in: Proc. of PODS 2013, 2013, pp. 163–174.

[HGL11] Shan Shan Huang, Todd Jeffrey Green, and Boon Thau Loo, « Datalog
and emerging applications: an interactive tutorial », in: Proceedings of
the 2011 ACM SIGMOD International Conference on Management of
data, 2011, pp. 1213–1216.

[Hil+95] Gerd G Hillebrand, Paris C Kanellakis, Harry G Mairson, and Moshe
Y Vardi, « Undecidable boundedness problems for datalog programs »,
in: The Journal of logic programming 25.2 (1995), pp. 163–190.

[HMS21] Loïc Hélouët, Zoltan Miklos, and Rituraj Singh, « Cost and Quality in
Crowdsourcing Workflows », in: International Conference on Applica-
tions and Theory of Petri Nets and Concurrency, Springer, 2021, pp. 33–
54.

[Hoa69] Charles Antony Richard Hoare, « An axiomatic basis for computer pro-
gramming », in: Communications of the ACM 12.10 (1969), pp. 576–
580.

[Hor+12] András Horváth, Marco Paolieri, Lorenzo Ridi, and Enrico Vicario, « Tran-
sient analysis of non-Markovian models using stochastic state classes »,
in: Performance Evaluation 69.7-8 (2012), pp. 315–335.

[How06] Jeff Howe, « The rise of crowdsourcing », in: Wired magazine 14.6
(2006), pp. 1–4.

190

[Hul+99] Richard Hull, Francois Llirbat, Eric Siman, Jianwen Su, Guozhu Dong,
Bharat Kumar, and Gang Zhou, « Declarative workflows that support
easy modification and dynamic browsing », in: ACM SIGSOFT Software
Engineering Notes 24.2 (1999), pp. 69–78.

[HZS17] Simone Hantke, Zixing Zhang, and Björn W Schuller, « Towards In-
telligent Crowdsourcing for Audio Data Annotation: Integrating Active
Learning in the Real World. », in: INTERSPEECH, 2017, pp. 3951–
3955.

[Ipe10] Panagiotis G Ipeirotis, « Analyzing the amazon mechanical turk market-
place », in: XRDS: Crossroads, The ACM Magazine for Students 17.2
(2010), pp. 16–21.

[Itz+17] S. Itzhaky, T. Kotek, N. Rinetzky, M. Sagiv, O. Tamir, H. Veith, and F.
Zuleger, « On the Automated Verification of Web Applications with Em-
bedded SQL », in: Proc. of ICDT’17, vol. 68, LIPIcs, 2017, 16:1–16:18.

[Jen89] K. Jensen, « Coloured Petri nets: A high level language for system de-
sign and analysis », in: Proc. of Petri Nets’90, vol. 483, LNCS, 1989,
pp. 342–416.

[Jor+07] Diane Jordan, John Evdemon, Alexandre Alves, Assaf Arkin, Sid Askary,
Charlton Barreto, Ben Bloch, Francisco Curbera, Mark Ford, Yaron Goland,
et al., « Web services business process execution language version
2.0 », in: OASIS standard 11.120 (2007), p. 5.

[Kam68] Johan Anthony Wilem Kamp, « Tense logic and the theory of linear
order », in: (1968).

[KCH12] A. Kulkarni, M. Can, and B. Hartmann, « Collaboratively crowdsourc-
ing workflows with turkomatic », in: Proc. of CSCW’12, ACM, 2012,
pp. 1003–1012.

[KCM06] D. Kitchin, W.R. Cook, and J. Misra, « A Language for Task Orches-
tration and Its Semantic Properties », in: Proc. of CONCUR’06, 2006,
pp. 477–491.

[KG12] Hyun-Chul Kim and Zoubin Ghahramani, « Bayesian classifier combi-
nation », in: Artificial Intelligence and Statistics, 2012, pp. 619–627.

[Kha11] Mumit Khan, Longest path in a directed acyclic graph (DAG), 2011.

191

[Kha+11] Firas Khatib, Frank DiMaio, Seth Cooper, Maciej Kazmierczyk, Miroslaw
Gilski, Szymon Krzywda, Helena Zabranska, Iva Pichova, James Thomp-
son, Zoran Popović, et al., « Crystal structure of a monomeric retroviral
protease solved by protein folding game players », in: Nature structural
& molecular biology 18.10 (2011), pp. 1175–1177.

[Kha80] L.G. Khashiyan, « Polynomial algorithms in linear programming », in:
U.S.S.R. Computational Mathematics and Mathematical Physics 20 (1980),
pp. 51–68.

[Kit+11] A. Kittur, B. Smus, S. Khamkar, and R.E. Kraut, « Crowdforge: Crowd-
sourcing complex work », in: Proc. of UIST’11, ACM, 2011, pp. 43–52.

[Kit+12] Aniket Kittur, Susheel Khamkar, Paul André, and Robert Kraut, « Crowd-
Weaver: visually managing complex crowd work », in: Proceedings of
the ACM 2012 conference on Computer Supported Cooperative Work,
2012, pp. 1033–1036.

[KM69] Richard M Karp and Raymond E Miller, « Parallel program schemata »,
in: Journal of Computer and system Sciences 3.2 (1969), pp. 147–195.

[KOS11] D.R. Karger, S. Oh, and D. Shah, « Iterative learning for reliable crowd-
sourcing systems », in: Proc. of NIPS’11, 2011, pp. 1953–1961.

[Kry18] Kryll, A powerful crypto trading tool for everyone, tech. rep., https :
//twitter.com/kryll_io, KRYLL, 2018.

[KSK16] Aikaterini Katmada, Anna Satsiou, and Ioannis Kompatsiaris, « Incen-
tive mechanisms for crowdsourcing platforms », in: International Con-
ference on Internet Science, Springer, 2016, pp. 3–18.

[Kuc+16] P. Kucherbaev, F. Daniel, S. Tranquillini, and M. Marchese, «Crowdsourcing
processes: A survey of approaches and opportunities », in:IEEEInternet
Computing 20.2 (2016), pp. 50–56.

[Kum+03] Santhosh Kumaran, Prabir Nandi, Terry Heath, Kumar Bhaskaran, and
Raja Das, « ADoc-oriented programming », in: 2003 Symposium on Ap-
plications and the Internet, 2003. Proceedings. IEEE, 2003, pp. 334–
341.

192

https://twitter.com/kryll_io
https://twitter.com/kryll_io

[KV17] A. Koutsos and V. Vianu, « Process-centric views of data-driven busi-
ness artifacts », in: Journal of Computer and System Sciences 86 (2017),
pp. 82–107.

[KWD10] Ehud D Karnin, Eugene Walach, and Tal Drory, « Crowdsourcing in the
document processing practice », in: International Conference on Web
Engineering, Springer, 2010, pp. 408–411.

[Laz+08] Ranko Lazić, Tom Newcomb, Joël Ouaknine, Andrew W Roscoe, and
James Worrell, « Nets with tokens which carry data », in: Fundamenta
Informaticae 88.3 (2008), pp. 251–274.

[LB88] Mary J Lindstrom and Douglas M Bates, « Newton—Raphson and EM
algorithms for linear mixed-effects models for repeated-measures data »,
in: Journal of the American Statistical Association 83.404 (1988), pp. 1014–
1022.

[Le+10] J. Le, A. Edmonds, V. Hester, and L. Biewald, « Ensuring quality in
crowdsourced search relevance evaluation: The effects of training ques-
tion distribution », in: SIGIR 2010 workshop on crowdsourcing for search
evaluation, vol. 2126, 2010, pp. 22–32.

[Lea11] Matthew Lease, « On quality control and machine learning in crowd-
sourcing », in: Workshops at the Twenty-Fifth AAAI Conference on Ar-
tificial Intelligence, 2011.

[Leo+14] Massimiliano de Leoni, Jorge Munoz-Gama, Josep Carmona, and Wil
MP van der Aalst, « Decomposing alignment-based conformance check-
ing of data-aware process models », in: OTM Confederated Interna-
tional Conferences" On the Move to Meaningful Internet Systems", Springer,
2014, pp. 3–20.

[Lew80] H.R. Lewis, « Complexity Results for Classes of Quantificational For-
mulas », in: J. Comput. Syst. Sci. 21.3 (1980), pp. 317–353.

[LGC15] Ajeet Lakhani, Ashish Gupta, and K Chandrasekaran, « IntelliSearch:
A search engine based on Big Data analytics integrated with crowd-
sourcing and category-based search », in: 2015 International Confer-
ence on Circuits, Power and Computing Technologies [ICCPCT-2015],
IEEE, 2015, pp. 1–6.

193

[Li+14] Q. Li, Y. Li, J. Gao, B. Zhao, W. Fan, and J. Han, « Resolving conflicts
in heterogeneous data by truth discovery and source reliability estima-
tion », in: Proc. of SIGMOD’14, ACM, 2014, pp. 1187–1198.

[Li+16a] G. Li, J. Wang, Y. Zheng, and M.J. Franklin, « Crowdsourced data man-
agement: A survey », in: Trans. on Knowledge and Data Engineering
28.9 (2016), pp. 2296–2319.

[Li+16b] Qi Li, Fenglong Ma, Jing Gao, Lu Su, and Christopher J Quinn, « Crowd-
sourcing high quality labels with a tight budget », in: Proceedings of the
ninth acm international conference on web search and data mining,
2016, pp. 237–246.

[Lit+09] G. Little, L.B. Chilton, M. Goldman, and R.C. Miller, « Turkit: tools for
iterative tasks on Mechanical Turk », in: Proc. of HCOMP’09, ACM,
2009, pp. 29–30.

[Liu12] B. Liu, « Sentiment analysis and opinion mining », in: Synthesis lectures
on human language technologies 5.1 (2012), pp. 1–167.

[Lom01] Irina A Lomazova, « Nested Petri nets: Multi-level and recursive sys-
tems », in: Fundamenta Informaticae 47.3-4 (2001), pp. 283–293.

[Löw15] L. Löwenheim, « Über möglichkeiten im relativkalkül », in:Math. Ann.
76.4 (1915), pp. 447–470.

[LS00] Sea Ling and Heinz Schmidt, « Time Petri nets for workflow modelling
and analysis », in: Smc 2000 conference proceedings. 2000 ieee in-
ternational conference on systems, man and cybernetics.’cybernetics
evolving to systems, humans, organizations, and their complex interac-
tions’(cat. no. 0, vol. 4, IEEE, 2000, pp. 3039–3044.

[LS99] I.A. Lomazova and Ph. Schnoebelen, « Some Decidability Results for
Nested Petri Nets », in: Perspectives of System Informatics, 1999, pp. 208–
220.

[Mao+17] Ke Mao, Licia Capra, Mark Harman, and Yue Jia, « A survey of the use
of crowdsourcing in software engineering », in: Journal of Systems and
Software 126 (2017), pp. 57–84.

[May81] Ernst Mayr, « Persistence of vector replacement systems is decidable »,
in: Acta Informatica 15.3 (1981), pp. 309–318.

194

[Mei+20] Hongyuan Mei, Guanghui Qin, Minjie Xu, and Jason Eisner, « Neural
Datalog through time: Informed temporal modeling via logical specifica-
tion », in: International Conference on Machine Learning, PMLR, 2020,
pp. 6808–6819.

[Mer74] Philip Merlin, « A study of the recoverability of communication proto-
cols », in: PhD Theses, Irvine (1974).

[MGAM16] Panagiotis Mavridis, David Gross-Amblard, and Zoltán Miklós, « Using
hierarchical skills for optimized task assignment in knowledge-intensive
crowdsourcing », in: Proceedings of the 25th International Conference
on World Wide Web, 2016, pp. 843–853.

[MGM16] P. Mavridis, D. Gross-Amblard, and Z. Miklós, « Using Hierarchical Skills
for Optimized Task Assignment in Knowledge-Intensive Crowdsourc-
ing », in: Proc. of WWW’16, ACM, 2016, pp. 843–853.

[Min67] Marvin Lee Minsky, Computation, Prentice-Hall Englewood Cliffs, 1967.

[Mol82] Michael K. Molloy, « Performance analysis using stochastic Petri nets »,
in: IEEE Transactions on computers 9 (1982), pp. 913–917.

[Moo96] Todd K Moon, « The expectation-maximization algorithm », in: IEEE
Signal processing magazine 13.6 (1996), pp. 47–60.

[Mor+12] Atsuyuki Morishima, Norihide Shinagawa, Tomomi Mitsuishi, Hideto Aoki,
and Shun Fukusumi, « CyLog/Crowd4U: A declarative platform for com-
plex data-centric crowdsourcing », in: Proceedings of the VLDB Endow-
ment 5.12 (2012), pp. 1918–1921.

[Mor19] Mohammad Moradi, « Crowdsourcing for search engines: perspectives
and challenges », in: International Journal of Crowd Science (2019).

[Mor75] M. Mortimer, « On languages with two variables », in: Mathematical
Logic Quarterly 21.1 (1975), pp. 135–140.

[Moz+12] Barzan Mozafari, Purnamrita Sarkar, Michael J Franklin, Michael I Jor-
dan, and Samuel Madden, « Active learning for crowd-sourced databases »,
in: arXiv preprint arXiv:1209.3686 (2012).

[Mur89] Tadao Murata, « Petri nets: Properties, analysis and applications », in:
Proceedings of the IEEE 77.4 (1989), pp. 541–580.

195

[Nac] PetriNets Tutorial, http://www.cs.tau.ac.il/~nachumd/models/
Nets.pdf.

[Nas84] S. G. Nash, « Newton-type minimization via the Lanczos method », in:
SIAM J. on Numerical Analysis 21.4 (1984), pp. 770–788.

[NC03] A. Nigam and N.S. Caswell, « Business artifacts: An approach to oper-
ational specification », in: IBM Systems Journal 42.3 (2003), pp. 428–
445.

[NW06] J. Nocedal and S. Wright, « Numerical optimization: Springer science
& business media », in: New York (2006).

[OAS07] OASIS, Web Services Business Process Execution Language, tech.
rep., http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-
OS.pdf, OASIS, 2007.

[Par+12] Aditya Ganesh Parameswaran, Hyunjung Park, Hector Garcia-Molina,
Neoklis Polyzotis, and Jennifer Widom, « Deco: declarative crowdsourc-
ing », in: Proceedings of the 21st ACM international conference on In-
formation and knowledge management, 2012, pp. 1203–1212.

[PCZ15] Shenle Pan, Chao Chen, and Ray Y Zhong, « A crowdsourcing solution
to collect e-commerce reverse flows in metropolitan areas », in: IFAC-
PapersOnLine 48.3 (2015), pp. 1984–1989.

[Pet62] Carl Adam Petri, « Kommunikation mit automaten », in: (1962).

[PL04] B. Pang and L. Lee, « A sentimental education: Sentiment analysis us-
ing subjectivity summarization based on minimum cuts », in: Proc. of
the 42nd annual meeting on Association for Computational Linguistics,
Association for Computational Linguistics, 2004, p. 271.

[Pnu77] Amir Pnueli, « The temporal logic of programs », in: 18th Annual Sym-
posium on Foundations of Computer Science (sfcs 1977), IEEE, 1977,
pp. 46–57.

[Pro] Programming Z3, http://theory.stanford.edu/~nikolaj/programmingz3.
html.

196

http://www.cs.tau.ac.il/~nachumd/models/Nets.pdf
http://www.cs.tau.ac.il/~nachumd/models/Nets.pdf
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf
http://theory.stanford.edu/~nikolaj/programmingz3.html
http://theory.stanford.edu/~nikolaj/programmingz3.html

[QB11] Alexander J Quinn and Benjamin B Bederson, « Human computation:
a survey and taxonomy of a growing field », in: Proceedings of the
SIGCHI conference on human factors in computing systems, 2011,
pp. 1403–1412.

[Quo] Quora, https://www.quora.com/.

[RA14] V. Raykar and P. Agrawal, « Sequential crowdsourced labeling as an
epsilon-greedy exploration in a Markov Decision Process », in: Artificial
intelligence and statistics, 2014, pp. 832–840.

[Ray+10] V. C. Raykar, S. Yu, L.H. Zhao, G.H. Valadez, C. Florin, L. Bogoni, and
L. Moy, « Learning from crowds », in: J. of Machine Learning Research
11.Apr (2010), pp. 1297–1322.

[Rec+03] Laura Recalde, Manuel Silva, Joaquín Ezpeleta, and Enrique Teruel,
« Petri nets and manufacturing systems: An examples-driven tour », in:
Advanced Course on Petri Nets, Springer, 2003, pp. 742–788.

[Ric68] Daniel Richardson, « Some undecidable problems involving elementary
functions of a real variable », in: The Journal of Symbolic Logic 33.4
(1968), pp. 514–520.

[Ros+10] Joel Ross, Lilly Irani, M Six Silberman, Andrew Zaldivar, and Bill Tomlin-
son, « Who are the crowdworkers? Shifting demographics in Mechani-
cal Turk », in: CHI’10 extended abstracts on Human factors in comput-
ing systems, 2010, pp. 2863–2872.

[SC+15] D. Sánchez-Charles, V. Muntés-Mulero, M. Solé, and J. Nin, « Crowd-
WON: A Modelling Language for Crowd Processes based on Workflow
Nets. », in: AAAI, 2015, pp. 1284–1290.

[Sch13] Florian Alexander Schmidt, « The good, the bad and the ugly: Why
crowdsourcing needs ethics », in: 2013 International Conference on
Cloud and Green Computing, IEEE, 2013, pp. 531–535.

[SDS20] Asit Subudhi, Manasa Dash, and Sukanta Sabut, « Automated segmen-
tation and classification of brain stroke using expectation-maximization
and random forest classifier », in: Biocybernetics and Biomedical Engi-
neering 40.1 (2020), pp. 277–289.

197

https://www.quora.com/

[SHM20a] Rituraj Singh, Loïc Hélouët, and Zoltan Miklos, « Reducing the Cost of
Aggregation in Crowdsourcing », in: International Conference on Web
Services, Springer, 2020, pp. 77–95.

[SHM20b] Rituraj Singh, Loïc Hélouët, and Zoltan Miklos, « Reducing the Cost of
Aggregation in Crowdsourcing », in: BDA - Conférence sur la Gestion
de Données – Principes, Technologies et Applications, 2020.

[Sta] StackExchange, https://stackexchange.com/.

[SVW16] T. Sturm, M. Voigt, and C. Weidenbach, «Deciding First-Order Satisfia-
bility when Universal and Existential Variables are Separated », in:Proc.
of LICS’16,2016, pp. 86–95.

[TAK20] Zeinab Tirandaz, Gholamreza Akbarizadeh, and Hooman Kaabi, « Pol-
SAR image segmentation based on feature extraction and data com-
pression using Weighted Neighborhood Filter Bank and Hidden Markov
random field-expectation maximization », in: Measurement 153 (2020),
p. 107432.

[Tar98] Alfred Tarski, « A decision method for elementary algebra and geome-
try », in: Quantifier elimination and cylindrical algebraic decomposition,
Springer, 1998, pp. 24–84.

[ŢM05] Ferucio Laurenţiu Ţiplea and Dan Cristian Marinescu, « Structural sound-
ness of workflow nets is decidable », in: Information Processing Letters
96.2 (2005), pp. 54–58.

[Tra+15] S. Tranquillini, F. Daniel, P. Kucherbaev, and F. Casati, « Modeling, En-
acting, and Integrating Custom Crowdsourcing Processes », in: TWEB
9.2 (2015), 7:1–7:43.

[TT+13] L. Tran-Thanh, M. Venanzi, A. Rogers, and N.R. Jennings, « Efficient
budget allocation with accuracy guarantees for crowdsourcing classi-
fication tasks », in: Proc. of AAMAS’13, International Foundation for
Autonomous Agents and Multiagent Systems, 2013, pp. 901–908.

[TT+14] Long Tran-Thanh, Trung Dong Huynh, Avi Rosenfeld, Sarvapali Ram-
churn, and Nicholas R Jennings, « BudgetFix: budget limited crowd-
sourcing for interdependent task allocation with quality guarantees »,
in: (2014).

198

https://stackexchange.com/

[TT+15] Long Tran-Thanh, Trung Dong Huynh, Avi Rosenfeld, Sarvapali D Ram-
churn, and Nicholas R Jennings, « Crowdsourcing complex workflows
under budget constraints », in: Twenty-Ninth AAAI Conference on Arti-
ficial Intelligence, 2015.

[Tur37] Alan Mathison Turing, On computable numbers, with an application to
the Entscheidungsproblem; a correction, Royal Society, 1937.

[Upw] Upwork, In-demand talent on demand. https://www.upwork.com/.

[VD00] David A Van Dyk, « Fitting mixed-effects models using efficient EM-type
algorithms », in: Journal of Computational and Graphical Statistics 9.1
(2000), pp. 78–98.

[VDA+11] W.M.P Van Der Aalst, K.M. van Hee, A.H.M. ter Hofstede, N. Sidorova,
HMW Verbeek, M. Voorhoeve, and M.T. Wynn, « Soundness of work-
flow nets: classification, decidability, and analysis », in: Formal Aspects
of Computing 23.3 (2011), pp. 333–363.

[VDAVHH04] Wil Van Der Aalst, Kees Max Van Hee, and Kees van Hee, Workflow
management: models, methods, and systems, MIT press, 2004.

[Ven+14] M. Venanzi, J. Guiver, G. Kazai, P. Kohli, and M. Shokouhi, « Community-
based bayesian aggregation models for crowdsourcing », in: Proc. of
WWW’14, ACM, 2014, pp. 155–164.

[VHSV04] Kees Van Hee, Natalia Sidorova, and Marc Voorhoeve, « Generalised
soundness of workflow nets is decidable », in: International Conference
on Application and Theory of Petri Nets, Springer, 2004, pp. 197–215.

[Wan+12] J. Wang, T. Kraska, M.J. Franklin, and J. Feng, « Crowder: Crowdsourc-
ing entity resolution », in: Proc. of the VLDB Endowment 5.11 (2012),
pp. 1483–1494.

[Wel+10] P. Welinder, S. Branson, P. Perona, and S.J. Belongie, « The multidi-
mensional wisdom of crowds », in: Proc. of NIPS’10, 2010, pp. 2424–
2432.

[Wes12] Mathias Weske, « Business process management architectures », in:
Business Process Management, Springer, 2012, pp. 333–371.

[Whi04] Stephen A White, « Process modeling notations and workflow patterns »,
in: Workflow handbook 2004 (2004), pp. 265–294.

199

https://www.upwork.com/

[Whi+09] J. Whitehill, T. Wu, J. Bergsma, J.R. Movellan, and P.L. Ruvolo, « Whose
vote should count more: Optimal integration of labels from labelers of
unknown expertise », in: Proc. of NIPS’09, 2009, pp. 2035–2043.

[Wir] Wirk, https://www.wirk.io/.

[WK05] Jianrui Wang and Akhil Kumar, « A framework for document-driven work-
flow systems », in: International Conference on Business Process Man-
agement, Springer, 2005, pp. 285–301.

[WRA20] Dong Wei, Senjuti Basu Roy, and Sihem Amer-Yahia, « Recommend-
ing Deployment Strategies for Collaborative Tasks », in: Proceedings of
the 2020 International Conference on Management of Data, SIGMOD
Conference 2020, online conference [Portland, OR, USA], June 14-19,
2020, ed. by David Maier, Rachel Pottinger, AnHai Doan, Wang-Chiew
Tan, Abdussalam Alawini, and Hung Q. Ngo, ACM, 2020, pp. 3–17.

[Wu+15] Heting Wu, Hailong Sun, Yili Fang, Kefan Hu, Yongqing Xie, Yangqiu
Song, and Xudong Liu, « Combining machine learning and crowdsourc-
ing for better understanding commodity reviews », in: Twenty-Ninth AAAI
Conference on Artificial Intelligence, 2015.

[XFT15] Aifang Xu, Xiaonan Feng, and Ye Tian, « Revealing, characterizing, and
detecting crowdsourcing spammers: A case study in community Q&A »,
in: 2015 IEEE Conference on Computer Communications (INFOCOM),
IEEE, 2015, pp. 2533–2541.

[Yah] Yahoo! Inc, http://www.yahoo.com..

[Yu+12] Han Yu, Zhiqi Shen, Chunyan Miao, and Bo An, « Challenges and op-
portunities for trust management in crowdsourcing », in: 2012 IEEE/WIC/ACM
International Conferences on Web Intelligence and Intelligent Agent
Technology, vol. 2, IEEE, 2012, pp. 486–493.

[YWL15] Bin Ye, Yan Wang, and Ling Liu, « Crowd trust: A context-aware trust
model for worker selection in crowdsourcing environments », in: 2015
IEEE international conference on web services, IEEE, 2015, pp. 121–
128.

200

https://www.wirk.io/
 http://www.yahoo.com.

[Zha+20] Yunpeng Zhao, Mattia Prosperi, Tianchen Lyu, Yi Guo, and Jing Bian,
« Integrating Crowdsourcing and Active Learning for Classification of
Work-Life Events from Tweets », in: arXiv preprint arXiv:2003.12139
(2020).

[Zhe+16] Q. Zheng, W. Wang, Y. Yu, M. Pan, and X. Shi, « Crowdsourcing Com-
plex Task Automatically by Workflow Technology », in: MiPAC’16 Work-
shop, 2016, pp. 17–30.

[Zhe+17] Y. Zheng, G. Li, Y. Li, C. Shan, and R. Cheng, « Truth inference in
crowdsourcing: Is the problem solved? », in: Proc. of the VLDB En-
dowment 10.5 (2017), pp. 541–552.

[ZLH11] Haichao Zheng, Dahui Li, and Wenhua Hou, « Task design, motivation,
and participation in crowdsourcing contests », in: International Journal
of Electronic Commerce 15.4 (2011), pp. 57–88.

[ZLM14] Dong Zhao, Xiang-Yang Li, and Huadong Ma, « How to crowdsource
tasks truthfully without sacrificing utility: Online incentive mechanisms
with budget constraint », in: IEEE INFOCOM 2014-IEEE Conference on
Computer Communications, IEEE, 2014, pp. 1213–1221.

201

APPENDIX

A.1 Proof of Theorem 1

Theorem 1 Existential termination of complex workflows is undecidable.
Proof. The proof is done by reduction from the halting problem of two counter

machines to termination of complex workflows. A 2-counter machine (2CM) is a tuple
〈Q, c1, c2, I, q0, qf〉 where:

— Q is a finite set of states.
— q0 ∈ Q is the initial state, qf ∈ Q is a particular state called the final state.
— c1, c2 are two counters holding non-negative integers.
— I = I1 ∪ I2 is a set of instructions. Instructions in I1 are of the form instq =

inc(q, cl, q′), depicting the fact that the machine is in state q, increases the value
of counter cl by 1, and moves to a new state q′. Instructions in I2 are of the form
instq = dec(q, cl, q′, q′′), depicting the fact that the machine is in state q, if cl == 0,
the machine moves to new state q′ without making any change in the value of
counter cl, and otherwise, decrements the counter cl and moves to state q′′. We
consider deterministic machines, i.e. there is at most one instruction instq per
state in I1 ∪ I2. At any instant, the machine is in a configuration C = (q, v1, v2)
where q is the current state, v1 the value of counter c1 and v2 the value of counter
c2. The machine executes instructions from its current configuration, and stops
as soon as it reaches state qf .

From a given configuration C = (q, v1, v2), a machine can only execute instruction
instq, and hence the next configuration denoted by ∆(C) of the machine is also unique.
A run of a two counters machine is a sequence of configurations ρ = C0.C1 . . . Ck

such that Ci = ∆(Ci−1). The halting problem is defined as follows: given a 2-CM, an
initial configuration C0 = (q0, 0, 0), decide whether a run of the machine reaches some
configuration (qf , n1, n2), where qf is the final state and n1, n2 are arbitrary values of the
counter. It is well known that this halting problem is undecidable [Min67].

Let us now show how to encode a counter machine with complex workflows.
— We consider a dataset D with relational schema rs = (R, {k, cname}) where k

202

is a unique identifier, and cname ∈ Cnt1, Cnt2,⊥. Clearly, we can encode the
value of counter cx with the cardinal of {(k, n) ∈ D | n = Cntx}. We start from a
configuration where the dataset contains a single record R(0,⊥)

— For every instruction of the form inc(q, cx, q′), we create a task tq, and a workflow
W inc
q , and a worker uq, who is the only worker allowed to execute this task.

The only operation that uq can do is refine tq with workflow W inc
q . W inc

q has two
nodes nincq and nq′ such that (nincq , nq′) ∈−→, λ(nincq) = tincq and λ(nq′) = tq′

as depicted in Figure A.1. Task tincq is an atomic task that adds one record of
the form (k′, Cntx) to the dataset. Hence, after executing tasks tq and tincq , the
number of occurrences of Cntx has increased by one.

nincq

tincq

n
′
q

t
′
q

inc(q, cx, q′)

Figure A.1 – Encoding of inc(q, cx, q′) instruction.

— For every instruction of the form dec(q, cx, q′, q′′), we create a complex task tq

and a worker uq who can choose to refine tq according to rule (tq,Wq,Z) or rule
(tq, ,Wq,NZ) as shown in Figure A.2. The choice of one workflow or another will
simulate the decision to perform a zero test or a non-zero test. Note that as the
choice of a particular rule to replace a task workflow is non-deterministic, worker
uq can choose one or the other. However, the wrong choice of refinement will
cause a deadlock.

nq

tq ∈ Tcx

dec(q, cx, q′, q′′)

Wq,Z

Wq,Zuq
Choice

Figure A.2 – Encoding of dec(q, cx, q′, q′′) instruction.

— Let us now detail the contents ofWq,NZ , represented in Figure A.3. This workflow
is composed of nodes ndivq , nCxq , nCx̄∪⊥q , n⊗q , n

dec
q and nq′′, respectively labeled by

203

tasks tdivq , tCxq , tCx̄∪⊥q , t⊗q , tdecq and tq′′. The dependence relation in Wq,NZ contains
pairs (ndivq , nCxq), (ndivq , nCx̄∪⊥q), (nCxq , n⊗q), (nCx̄∪⊥q , n⊗q), (n⊗q , ndecq) and (ndecq , nq′).
The role of tdivq is to split Dass(ndivq) into disjoint parts: the first one contains
records of the form R(k, Cx) and the second part consists of all other remaining
records. Tasks tCxq and tCx̄∪⊥q simply forward their inputs, and task t⊗q computes
the union of its inputs. Note however that if one of the inputs is empty, the task
cannot be executed. Then, task tdecq deletes one record of the form R(k, Cx).
Hence, ifDq = Dass(nq) is a dataset that contains at least one record of the from
R(k, Cx), the execution of all tasks in Wq,NZ leaves the system in a configuration
with a minimal node nq′′ labeled by task tq′′, and with Dass(nq′) = Dq \R(k, Cx)

ndivqtdivq

nCxq tCxqnCx̄∪⊥q tCx̄∪⊥q

n⊗qt⊗q

ndecqtdecq

nq′′tq′′

Wq,NZ

Figure A.3 – Encoding of Non-zero test followed by decrement.

— Let us now detail the contents of Wq,Z shown in Figure A.4. This workflow
is composed of nodes ndivq ,nCx∪⊥q , nidq , nbtestq , ndoneq , nq′ respectively labeled by
tasks tdivq ,tCx∪⊥q , tidq , tbtestq , tdoneq , t′q. The flow relation if given by pairs (ndivq , nCx∪⊥q),
(ndivq , nidq), (nCx∪⊥q , nbtestq), (nbtestq , ndoneq) and (nidq , ndoneq). The role of task tdivq is to
project its input dataset on records with cname = Cx or cname = ⊥, and forward
the obtained dataset to node nCx∪⊥q . On the other hand, it creates a copy of the
input dataset and forwards it to node nidq . The role of task tCx∪⊥q is to perform
a boolean query that returns {true} if the dataset contains a record R(k, Cx)

204

and {false} otherwise, and forwards the result to node nbtestq . Task tbtestq selects
records with value {false} (it hence returns an empty dataset as the result of
the boolean test was {true}). Task tidq forwards its input to node ndoneq . Task tdoneq

receives input datasets from nbtestq and nidq and forwards the input from nidq to
node nq′′. One can immediately see that if the dataset input to ndivq contains an
occurrence of Cx then one of the inputs to ndoneq is empty and hence the work-
flow deadlocks. Conversely, if this input contains no occurrence of Cx, then this
workflows reached a configuration with a single node nq′′ labeled by task tq′′,
and with the same input dataset as nq.

Wq,Z

ndivqtdivq

nCx∪⊥q tCx∪⊥q nidq tidq

nbtestq tbtestq

ndoneq tdoneq

nq′′ tq′′

Figure A.4 – Encoding of Zero test followed by state change.

One can see that for every run ρ = C0 . . . Ck of the two counter machine, where
Ck = (q, v1, v2) there exists a single non-deadlocked run of the complex workflow, that
terminates of configuration (W,wa,Dass) where W consists of a single node nq labeled
by task tq, and such that Dass(nq) contains v1 occurrences of records of the form
R(k, C1) and v2 occurrences of records of the form R(k, C2). Hence, a two counter
machine terminates in a configuration (qf , v1, v2) iff the only non-deadlocked run of the
complex workflow that encodes the two counter machine reaches a final configuration.

�

205

A.2 Proof of Theorem 2
Theorem 2 : Let CW be a complex workflow, in which tasks do not use SQL difference.
Let Din be an input dataset, and Din be a FO formula. Universal termination of CW on
input Din is in co − 2EXPTIME. Universal termination on inputs that satisfy Din is
undecidable in general. It is in

— co− 2EXPTIME (in K, the length of runs) if Din is in ∀FO
— co− 3EXPTIME if Din is ∃FO or BSR-FO
— co− nin-fold-EXPTIME, where nin = |Din|+ 2K if Din is in SF-FO.

Proof. Complex workflows terminate iff they have bounded recursive schemes, and
if they do not deadlock. This can be verified inO(|T 2

cx|+|R|) (see proposition 4). If CW is
recursion free, checking universal termination of CW can be done by guessing a path.
It is hence a non-deterministic process. In the worst case, one may have to explore
all symbolic executions CS

0 . . . C
S
k of size at most 3.KTcx. If an execution deadlocks,

then there is an execution of CW that does not terminate, and we can safely conclude
that CW does not terminate universally (for any input). The absence of deadlocks can
hence be checked in EXPTIME.

If this execution contains a potential deadlock at symbolic configuration CS
i , then

Ci is a configuration from which a particular dataset D must be used as input by a
task, and must be empty to cause a deadlock. Before concluding that CS

i can be a real
deadlock, one has to check whether there exists an actual real execution C0 . . . Ci such
that property D = ∅ holds at Ci. Emptiness of D can be encoded as by a universal FO
formula of the form ψi ::= ∀

−→
X , rn(

−→
X) 6∈ D. We can show that the precondition ψi−1

that needs to hold at Ci−1 in order to obtain an empty dataset D at step Ci are still of
the form D′ = ∅ (hence expressible via an universal formula) for some D′ (this is the
case if the move from Ci−1 to Ci just adds a field to D′ to obtain D) or a FO formula in
the universal fragment computed as the weakest precondition wp[mi]ψi. Then one can
repeat the following steps at each step k ∈ i− 1, i− 2, . . . up to CS

0 :

— compute ψk = wp[mk]ψk+1. We know that the weakest precondition can be com-
puted, and that ψk is still an universal formula of size in O(r.|ψk+1|) (see propo-
sition 1).

— Check satisfiability of ψk. If the answer is false, then Fail: one cannot satisfy the
conditions required to have D = ∅ at step i, and hence there is no execution
with signature CS

0 . . . C
S
i that deadlocks at Ci, the randomly chosen execution is

not a witness for deadlock. If the answer is true, continue.

206

If the algorithm does not stop before step k = 0, then the iteration computes a satisfi-
able formula ψ0 of size in O(ri). It remain to show that inputs of the complex workflow
meet the conditions in ψ0.

Let us assume that the universal termination question is considered for a single
input dataset Din, one has to check that Din |= ψ0. As ψ0 is a universal formula i.e.
is of the form ∀

−→
X ,ϕ0, this can be solved in O(|Din||ψ0|). If the answer is true then we

have found preconditions that are satisfied by Din and that are sufficient to obtain an
empty dataset at configuration Ci in a run C0 . . . Ci that has signature CS

0 . . . C
S
i , i.e.

CS
0 . . . C

S
i witnesses the existence of a deadlock. Overall, one has to solve up to i <

3.KTcx satisfiability problems for universal FO formulas ψi−1, ψi−2 . . . ψ1 of size smaller
than ri, and a model checking problem for input Din with a cost in O(|Din|r

i). The
satisfiability problems are NEXPTIME in the size of the formula [Lew80] and hence
checking satisfiability of ψi−1, . . . , ψ0 has a complexity that is doubly exponential in KTcx.
Considering that data fields are encoded with c bits of information, Din is a dataset of
size in O(2r.c). Hence, the overall complexity to check that CS

0 . . . C
S
i is a witness path

that deadlocks in 2− EXPTIME.
Conversely, if the universal termination question is considered for several input

datasets described with a FO formula Din, one has to check that no contradiction
arises when requiring the existence of input Din that satisfies both Din and ψ0. This
can be done by checking satisfiability of the conjunction Din ∧ ψ0. The formula is of
size |Din|+ |ψ0|, and one can consider variables in Din and ψ0 to be disjoint. Standard
equivalence rules (miniscoping rules, see def.14) allow rewriting this conjunction into
an equivalent formula in prenex normal form. If Din is in ∀FO, then Din ∧ ψ0 is in ∀FO
and we have a co-2EXPTIME procedure to verify its satisfiability. For fragments (∃FO,
BSR-FO), Din ∧ ψ0 fall in the class of BSR-FO or SF-FO formulas, but with three al-
ternations, with a NEXPTIME complexity of satisfiability, yielding a triple exponential
complexity. For Din in SF-FO, the complexity of the last step is nin-fold exponential in
the size of Din plus the size of ψ0. As for the unique input case, if Din ∧ ψ0 is satisfi-
able, then CS

0 . . . C
S
i witnesses existence of a non-terminating execution. Hence, one

can witness existence of a non-terminating run in O(KTcx .2r
KTcx +Cin) where Cin is the

cost required to check satisfiability of Din ∧ ψ0. Last if Din is specified in an undecid-
able fragment of FO, then one cannot conclude whether there exists a legal input that
satisfies Din and ψ0. �

207

Titre : Workflows centrés sur les données pour l’application Crowdsourcing

Mot clés : Crowdsourcing, workflows centrés sur les données, assurance qualité

Resumé : Le crowdsourcing utilise l’intelli-
gence humaine pour résoudre des tâches dif-
ficiles à réaliser par des machines. Les pla-
teformes de crowdsourcing existantes per-
mettent de réaliser des lots de micro-tâches
très simples. Cependant, de nombreux pro-
cessus sont des tâches complexes, qui né-
cessitent d’enchaîner la collecte de données,
des prétraitements, de l’analyse de données,
de la synthèse, etc. Dans cette thèse, nous
étudions comment spécifier ces tâches com-
plexes, pour les faire réaliser par des plate-
formes de crowdsourcing. Nous proposons
tout d’abord le modèle des workflows com-
plexes qui fournit des constructions de haut ni-
veau pour décrire une tâche complexe comme
une orchestrations d’un ensemble de tâches
simples. Nous fournissons des algorithmes
permettant de vérifier la terminaison et la
correction de ces workflows pour un sous-

ensemble du langage (ces questions étant in-
décidables dans le cas général). Un des incon-
vénients du crowdsourcing est le fait que de
mauvaises réponses peuvent être produites
par les agents humains. Pour pallier à ce pro-
blème, il est habituel de répliquer les tâches,
puis d’aggréger les résultats pour fiabiliser
une réponse finale. La réplication augmente la
qualité des données, mais elle est coûteuse.
Nous proposons des techniques d’agrégation
de résultats dans lesquelles l’aggrégation est
réalisée à partir d’algorithmes d’Expectation
Maximization, et la réplication est faite à la de-
mande en tenant compte de la confiance esti-
mée sur les agrégats. Les résultat expérimen-
taux montrent que ces techniques permettent
de regrouper les réponses tout en obtenant
un bon compromis coût-fiabilité pour des lots
de micro-tâches, mais aussi pour des tâches
complexes.

Title : Data Centric Workflows for Crowdsourcing Application

Keywords : Crowdsourcing, Data-centric workflows, Quality assurance.

Abstract : Crowdsourcing uses human intel-
ligence to solve tasks which are still difficult
for machines. Tasks at existing crowdsourcing
platform are batches of relatively simple micro-
tasks. However, real-world problems are often
more difficult than micro-tasks. They require
data collection, organization, pre-processing,
analysis, and synthesis of results. In this the-
sis, we study how to specify complex crowd-
sourcing tasks and realize them with the help
of existing crowdsourcing platforms. The first
contribution of this thesis is a complex work-
flows model that provides high-level constructs
to describe a complex task through orchestra-
tion of simpler tasks. We provide algorithms to
check termination and correctness of a com-
plex workflow for a subset of the language
(these questions are undecidable in the ge-

neral case). A well-known drawback of crowd-
sourcing is that human answers might be
wrong. To leverage this problem, crowdsour-
cing platforms replicate tasks, and forge a fi-
nal trusted answer out of the produced results.
Replication increases quality of data, but it is
costly. The second contribution of this thesis
is a set of aggregation techniques where mer-
ging of answers is realized using Expectation
Maximization, and replication of tasks is per-
formed online after considering the confidence
estimated for aggregated data. Experimental
results show that these techniques allow to ag-
gregate the returned answers while achieving
a good trade-off between cost and data quality,
both for the realization of a batches of micro-
tasks, and of complex workflow.

	Acknowledgements
	Résumé
	I Prologue
	Introduction
	Thesis Overview and Contribution
	Outline

	State of the Art
	Crowdsourcing Marketplaces
	Crowdsourcing Space
	Orchestration of Tasks and Languages
	Process Centric Approaches
	Artifact Centric Approaches

	Data
	Reasoning on Data
	Datalog
	SQL
	Data Centric Models
	Weakest Precondition

	Quality Assurance
	Aggregation Techniques
	Budget optimization

	II Data Centric Workflows for Crowdsourcing
	Complex Workflows for Crowdsourcing
	Higher Order Example
	A simple example: the actor popularity poll
	A real field example: the SPIPOLL initiative

	Preliminaries
	Workflow Formalization
	Operational Semantics
	Data operations
	Operational Semantics

	Conclusion

	Decidability
	Effective Computation of Weakest Preconditions
	Closure of FO classes

	Termination of Complex Workflows
	Symbolic Execution Tree
	Termination with a guaranteed bound

	Correctness of Complex Workflows
	Use Case
	Formulation of Symbolic Execution Tree
	Algorithm to check termination

	Platform
	Conclusion

	III Quality Assurance
	Quality Assurance for Atomic Tasks
	Basic ingredients of aggregation
	Probability theory
	Factors influencing efficiency of crowdsourcing
	Expectation Maximization

	The Aggregation model
	Aggregating Answers

	Cost Model
	Confidence and Threshold
	CrowdInc: An algorithm to optimize costs

	Experiments
	Conclusion

	Quality Assurance for Complex Workflows
	Introduction
	Complex workflow with aggregation
	Aggregation Model
	Cost Model for Workflow
	Experiments and results
	Conclusion

	IV Closure
	Conclusion
	Contribution Summary
	Perspectives
	Short Term Perspectives
	Long Term Perspectives

	Bibliography

	Appendix
	Proof of Theorem 1
	Proof of Theorem 2

