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Résumé en Français

Le Deep Learning (DL) constitue, de nos jours, un élément important de notre vie quotidienne. Le Machine Learning (ML) est utilisé dans presque tous les domaines.

Les modèles de ML peuvent prédire un diagnostic en se basant sur des images médicales [START_REF] Richens | Improving the accuracy of medical diagnosis with causal machine learning[END_REF], reconnaître nos visages ou nos empreintes pour nous authentier [START_REF] Bud | Facing the future: the impact of Apple FaceID[END_REF], ou même prédire et résoudre des crimes [START_REF] Shah | Crime forecasting: a machine learning and computer vision approach to crime prediction and prevention[END_REF][START_REF] Fatih | Police Use of Technology to Fight Against Crime[END_REF]. Une application de plus en plus présente est la reconnaissance faciale [START_REF] Bud | Facing the future: the impact of Apple FaceID[END_REF]. Par exemple, L'iPhone X de Apple permet à l'utilisateur de dévérouiller son téléphone grâce à son visage.

Les modèles de ML sont des algorithmes dont le but est d'apprendre une tâche spécique à travers une phase d'amélioration de ses capacités en se basant sur des données. Cette phase est appelée l'apprentissage. Par exemple, en classication d'image, un tel modèle apprend à reconnaître des images et à les classier dans diérentes catégories. De ce fait, si le modèle reçoit une image de chat, il retourne l'étiquette `chat'. Un modèle de ML est alors considéré comme précis lorsque ses sorties sont correctes avec une forte probabilité.

Pour une tâche donnée, la précision d'un modèle dépend de son architecture et de ses paramètres. Il existe une grande variété de modèles de ML, mais ils sont généralement adaptés à diérentes tâches [START_REF] Kou | A deep-learningbased unsupervised model on esophageal manometry using variational autoencoder[END_REF][START_REF] Devi Arockia | Gene Expression Data Classication Using Support Vector Machine and Mutual Informationbased Gene Selection[END_REF][START_REF] Md | A Random Forest based predictor for medical data classication using feature ranking[END_REF][START_REF] Rustam | Predicting Bank Financial Failures using Random Forest[END_REF]. Par exemple, des réseaux de neurones par convolution (CNN) sont souvent utilisés dans le cadre de la classication et le traitement d'images, puisqu'ils arrivent à détecter ecacement les caractéristiques d'une image [START_REF] Simonyan | Very Deep Convolutional Networks for Large-Scale Image Recognition[END_REF][START_REF] He | Deep Residual Learning for Image Recognition[END_REF][START_REF] Szegedy | Going deeper with convolutions[END_REF].

Parmi les modèles de ML, les réseaux de neurones articiels (NNs) et plus particulièrement le DL sont en hausse. Les NNs sont des algorithmes qui cherchent à accomplir leur tâche en imitant le cerveau humain. Ils sont divisés en couches composées de neurones interconnectés. Les valeurs de ces neurones sont mises à jour durant l'entraînement an d'approcher des prédictions optimales. Malgré leur grand nombre de neurones, les techniques de DL sont en gain de popularité. Cela est dû à leur ecacité à traiter des problèmes complexes nécessitant de larges bases de données. Ils ont aussi l'avantage que la sélection de leur base de données d'entraînement ne nécessite pas d'expertise particulière, et que leur objectif n'a pas besoin d'être subdivisé en des problèmes plus simples. Cela est le cas pour d'autres techniques de ML, pour lesquelles un humain doit prétraiter les données d'entraînement manuellement, ou le problème de départ doit être réduit à plusieurs petits problèmes. Un exemple est l'identication des éléments d'une image en utilisant des Machines à Vecteur de Support (SVM): les éléments doivent d'abord être localisés, puis leur classe doit leur être assignée par la SVM.

La nouvelle capacité à traiter de grands ensembles de données grâce à l'amélioration des capacités de stockage et de calcul a également permis aux techniques iii de DL de se développer. Ceci est d'autant plus vrai que plusieurs articles se sont concentrés sur l'accélération des calculs, par exemple par le biais d'accélérateurs [START_REF] Song | Cambricon-G: A Polyvalent Energy-Ecient Accelerator for Dynamic Graph Neural Networks[END_REF][START_REF] Zhou | ParaML: A Polyvalent Multicore Accelerator for Machine Learning[END_REF]. En outre, il a été constaté que les modèles DL pré-entraînés peuvent s'adapter relativement facilement à de nouvelles tâches : c'est ce qu'on appelle l'apprentissage par transfert. Ainsi, les modèles pré-entraînés peuvent être utilisés avec un réglage de précision pour réduire le besoin de grands ensembles de données d'apprentissage.

En raison de leur large utilisation dans notre vie quotidienne ainsi que dans l'industrie, leur sécurité est primordiale. Plus précisément, trois problèmes potentiels doivent être signalés.

Premièrement, les modèles ML eux-mêmes doivent être protégés. La sélection ou la création de la meilleure architecture pour la tâche à accomplir est dicile et prend du temps. Mais une fois l'architecture dénie, l'apprentissage de ses paramètres prend encore plus de temps et nécessite des ressources de calcul intensif.

En eet, pour des tâches complexes, les architectures ML peuvent avoir des millions de paramètres [START_REF] Simonyan | Very Deep Convolutional Networks for Large-Scale Image Recognition[END_REF][START_REF] He | Deep Residual Learning for Image Recognition[END_REF]. Même les plus petites architectures, adaptées à une utilisation mobile, ont souvent plus d'un million de paramètres [START_REF] Sandler | MobileNetV2: Inverted Residuals and Linear Bottlenecks[END_REF]. L'entraînement de ces paramètres pour atteindre une précision presque optimale peut parfois prendre des semaines, même en utilisant plusieurs processeurs de traitement graphique (GPU). C'est le cas d'AlphaGo, une intelligence articielle jouant au Go, qui a nécessité trois semaines d'entraînement avec 50 GPUs pour battre le meilleur joueur de Go au monde de l'époque [START_REF] Silver | Mastering the game of Go with deep neural networks and tree search[END_REF] Le temps et les ressources informatiques nécessaires pour entraîner correctement les modèles ML en font une propriété intellectuelle (IP).

Le deuxième problème de sécurité concerne la protection des données. L'entraînement des modèles ML repose généralement sur de grands ensembles de données. Ces derniers peuvent être des données sensibles, par exemple dans les domaines médical ou biométrique. Il est donc primordial d'éviter toute fuite de l'ensemble de données d'entraînement. Il est également crucial de protéger l'entrée du modèle au moment de l'exécution, encore une fois pour des raisons de condentialité. En pratique, cela signie que les sorties et la structure interne du modèle ne doivent pas révéler d'information sur ses entrées et ses données d'apprentissage.

Enn, la dernière question de sécurité concerne l'intégrité des entrées et des sorties. Il est primordial que l'utilisateur puisse faire conance à la sortie du modèle.

De plus, certaines applications exigent l'exactitude de la prédiction pour une grande majorité d'entrées. La précision est par exemple critique lorsqu'il s'agit de reconnaissance faciale. Sinon, un utilisateur malveillant pourrait se faire passer pour une autre personne an d'accéder à des données condentielles ou d'endommager des chiers sensibles. Pour cette raison, un tiers ne devrait pas être en mesure d'altérer les entrées ou les prédictions du modèle.

Ces trois problèmes de sécurité peuvent donc être résumés comme suit :

Le modèle et ses paramètres constituent une propriété intellectuelle et ne doivent donc pas être divulgués.

Les données stockées par l'utilisateur et les données utilisées pour l'entraînement peuvent être sensibles.

Les prédictions du modèle doivent être résistantes à l'altération des entrées et des sorties, car cela compromettrait l'intégrité du modèle. iv Ce grand intérêt pour les modèles DL a attiré l'attention sur leurs failles de sécurité. Parmi les attaques les plus anciennes et les plus étudiées gurent les attaques adversariales [START_REF] Moosavi-Dezfooli | Deep-Fool: A Simple and Accurate Method to Fool Deep Neural Networks[END_REF][START_REF] Song | Physical Adversarial Examples for Object Detectors[END_REF]. Dans ce type d'attaque, une partie malveillante ajoute un petit bruit à l'entrée de façon à ce qu'il soit indétectable par un oracle -souvent considéré comme l'÷il humain -mais trompe le modèle cible. De telles attaques constituent une faille de sécurité majeure, car elles peuvent être à la base d'usurpations d'identité, par exemple [START_REF] Kakizaki | Toward Practical Adversarial Attacks on Face Verication Systems[END_REF]. Les attaques par empoisonnement compromettent l'ensemble de données d'apprentissage en y ajoutant des défauts.

Cela compromet une fois de plus l'intégrité du modèle car les prédictions sont alors faussées.

Les attaques par adhésion, quant à elles, s'attaquent à la vie privée de l'utilisateur, en divulguant des informations sur l'ensemble de données d'entraînement [START_REF] Shokri | Membership Inference Attacks Against Machine Learning Models[END_REF].

Dans les attaques de vol de modèle, l'attaquant tente de récupérer une entrée chirée ou cachée en se basant sur la sortie ou les calculs du modèle.

Enn, ces dernières années, divers articles sur les attaques de rétro-ingénierie ont été publiés, mettant ainsi en péril la propriété intellectuelle. Certaines sont basées sur des équations et tentent de récupérer les paramètres internes à partir des valeurs de sortie [START_REF] Tramèr | Stealing Machine Learning Models via Prediction APIs[END_REF]. D'autres approches mathématiques consistent à utiliser la structure interne du modèle ML, et plus particulièrement les hyperplans associés à chaque neurone, pour récupérer les paramètres [START_REF] Carlini | Cryptanalytic Extraction of Neural Network Models[END_REF][START_REF] Rolnick | Reverse-engineering deep ReLU networks[END_REF][START_REF] Jagielski | High Accuracy and High Fidelity Extraction of Neural Networks[END_REF][START_REF] Milli | Model Reconstruction from Model Explanations[END_REF]. Mais les NNs ont également été la cible d'attaques par canaux cachés (SCA), qui utilisent des fuites liées à l'implémentation plutôt que des vulnérabilités mathématiques pour retrouver le secret recherché. Des exemples de vecteurs de fuites incluent le cache [START_REF] Yan | Cache Telepathy: Leveraging Shared Resource Attacks to Learn DNN Architectures[END_REF][START_REF] Hong | Security Analysis of Deep Neural Networks Operating in the Presence of Cache Side-Channel Attacks[END_REF][START_REF] Hong | How to 0wn the NAS in Your Spare Time[END_REF][START_REF] Liu | GANRED: GAN-based Reverse Engineering of DNNs via Cache Side-Channel[END_REF], la puissance, les émanations électromagnétiques [START_REF] Batina | CSI NN: Reverse Engineering of Neural Network Architectures Through Electromagnetic Side Channel[END_REF][START_REF] Yu | DeepEM: Deep Neural Networks Model Recovery through EM Side-Channel Information Leakage[END_REF][START_REF] Hu | DeepSniffer: A DNN Model Extraction Framework Based on Learning Architectural Hints[END_REF][START_REF] Xiang | Open DNN Box by Power Side-Channel Attack[END_REF] ou le temps écoulé [START_REF] Duddu | Stealing Neural Networks via Timing Side Channels[END_REF][START_REF] Hua | Reverse engineering convolutional neural networks through side-channel information leaks[END_REF].

Par conséquent, les articles ont récemment exploité tous les problèmes de sécurité mentionnés ci-dessus. Même s'ils sont la cible de diverses attaques, les NNs ne sont souvent pas assez protégés, comme l'indique [START_REF] Sun | Mind Your Weight(s): A Large-scale Study on Insucient Machine Learning Model Protection in Mobile Apps[END_REF]. Cela montre le besoin de protection dans le domaine du ML. En réalité, les auteurs de [START_REF] Carlini | Cryptanalytic Extraction of Neural Network Models[END_REF] notent que les NNs n'ont pas été conçus pour être sécurisés, comme le montrent les attaques susmentionnées. Il apparaît alors que trouver de nouvelles protections pour les NNs est un sujet critique. C'est pourquoi cette thèse présente de nouvelles approches pour apporter la sécurité nécessaire.

Nous nous concentrons principalement sur la protection des paramètres et de l'architecture. La raison est triple. Elle permet non seulement de protéger l'IP, mais aussi d'atténuer certaines attaques adversariales et par adhésion, qui nécessitent l'architecture et/ou les paramètres de leurs modèles victimes [START_REF] Ozbulak | Perturbation analysis of gradient-based adversarial attacks[END_REF][START_REF] Shokri | Membership Inference Attacks Against Machine Learning Models[END_REF][START_REF] Shokri | Membership Inference Attacks Against Machine Learning Models[END_REF]. Les auteurs de [START_REF] Croce | RobustBench: a standardized adversarial robustness benchmark[END_REF] notent même que la recherche adversariale basée sur le gradient -qui nécessitent une certaine connaissance du NN -sont les plus ecaces. La troisième raison est que l'accès au modèle complet entraîne une fuite d'informations sur les sorties du modèle. Comme indiqué dans [START_REF] Ansuini | Intrinsic dimension of data representations in deep neural networks[END_REF], les entrées des NNs se situent dans un espace de faible dimension et les NNs opèrent une réduction de dimension majeure entre l'espace d'entrée et l'espace de sortie. Par exemple, dans un scénario d'appariement où un système détermine si le vecteur d'un utilisateur est proche de la sortie d'un modèle, un utilisateur malveillant a plus de chances de trouver un vecteur correspondant lorsque le modèle est connu. Pour le démontrer, nous avons v tenté (dans [START_REF] Chabanne | One Picture is Worth a Thousand Words: A New Wallet Recovery Process[END_REF]) de faire correspondre la sortie d'un modèle sur 1 000 images de l'ensemble de données ALOI [START_REF] Geusebroek | The Amsterdam Library of Object Images[END_REF] avec les 13 394 images d'Imagenette [START_REF] Howard | Imagenette[END_REF]). Nous avons obtenu 17 correspondances parmi toutes les paires possibles, soit 1.27×10 -4 % des correspondances. Cela représente une probabilité beaucoup plus élevée que si l'utilisateur avait sélectionné un vecteur de sortie au hasard (< 1 284 % dans notre cas).

Les trois raisons susmentionnées montrent la nécessité de protéger le modèle contre les attaques par rétro-ingénierie.

Notons que cette thèse se concentre également sur les défenses logicielles plutôt que matérielles. En eet, les défenses logicielles sont plus faciles à distribuer sans changer l'équipement des utilisateurs, par exemple par le biais d'une mise à jour logicielle. Nous nous concentrons également sur la reconnaissance d'images, car c'est l'exemple le plus commun de NNs que nous rencontrons dans notre vie quotidienne.

Contributions Dans cette thèse, nous commençons par introduire les NNs et leur structure, ainsi que les attaques et défenses qui ont déjà été publiées. Notons qu'au cours du doctorat, nous avons publié une enquête sur les attaques de rétro-ingénierie de l'architecture d'un modèle par canaux cachés, intitulé Side-Channel Attacks for architecture Extraction of Neural Networks. Cette enquête a été publiée dans CAAI Transactions on Intelligence Technology [START_REF] Chabanne | Sidechannel attacks for architecture extraction of neural networks[END_REF]. Dans cette enquête, nous parlons également d'attaques de rétro-ingénierie sur les paramètres et évoquons certaines défenses.

La première partie de ce mémoire se place dans un contexte de boîte grise, où l'attaquant connaît tout ou partie de l'architecture cible. Dans ce cadre, nous proposons des défenses contre l'extraction des paramètres, mais également une protection face à des exemples adversariaux.

Nous commençons par introduire la notion de modèle parasite, un élément clé de notre première partie. Il s'agit d'un CNN entraîné à approximer une identité bruitée. Nous plaçons un (ou plusieurs) parasite(s) à l'intérieur du modèle cible an de changer la structure interne de ce dernier. En eet, nous montrons que cet ajout de couches change les frontières de classication à travers l'introduction d'hyperplans en lien avec les nouveaux neurones. Plus particulièrement, les couches parasites que nous ajoutons en premier lieu contiennent des fonctions d'activation ReLU qui rendent nuls les neurones négatifs et gardent la valeur des neurones positifs.

Cela introduit non seulement de nouveaux hyperplans correspodant à des neurones valant 0, mais la non linéarité de ReLU entraîne également un changement dans les hyperplans de départ. Certaines attaques mathématiques de rétro-ingénierie [START_REF] Hua | Reverse engineering convolutional neural networks through side-channel information leaks[END_REF][START_REF] Rolnick | Reverse-engineering deep ReLU networks[END_REF][START_REF] Carlini | Cryptanalytic Extraction of Neural Network Models[END_REF][START_REF] Daniely | An Exact Poly-Time Membership-Queries Algorithm for Extraction a three-Layer ReLU Network[END_REF] se basent sur ce type d'hyperplans an de retrouver les paramètres du modèle cible. En changeant la structure interne du modèle de départ, nous rendons alors ce type d'attaques plus diciles. En raison de leur fort lien avec les frontières de classications, nous mesurons l'impact de notre contremesure sur les exemples adversariaux générés et observons un grand changement dans ces exemples:

de nombreux exemples générés sur le modèle de départ (pouvant aller jusqu'à environ 40%) ne sont plus adversériaux pour le modèle protégé. Cette observation montre que notre technique a bien mené à un changement dans la structure interne du modèle de départ. Ces résultats ont été présentés à ICISSP 2021, sous le titre A vi Protection against the Extraction of Neural Network Models [START_REF] Chabanne | A Protection against the Extraction of Neural Network Models[END_REF].

Bien que ce changement de structure impacte les attaques mathématiques, il est insusant pour se protéger des attaques SCA physiques se basant sur la puissance ou les émanations électromagnétiques [START_REF] Batina | CSI NN: Reverse Engineering of Neural Network Architectures Through Electromagnetic Side Channel[END_REF]. Networks [START_REF] Chabanne | Parasite: Mitigating Physical Side-Channel Attacks Against Neural Networks[END_REF].

En étudiant la protection des paramètres d'un modèle à l'aide de nos parasites, nous avons remarqué l'impact que ces parasites avaient sur les exemples adversériaux. Cela nous a menés à la troisième contribution de cette thèse: une protection contre des exemples adversariaux. En eet, bien que nos parasites ne faisaient que changer les exemples adversariaux générés, nous les adaptons an de limiter les attaques adversériales. Pour cela, nous considérons à nouveau une introduction dynamique de modèles parasites à l'intérieur du modèle cible. Cette fois, le type de parasites que nous utilisons est diérent. Nous choisissons d'entraîner des autoencodeurs, qui compressent les données d'entrée (encodage), puis leur redonnent leur forme initiale (décodage). La compression intermédiaire permet d'éliminer du bruit, et donc de potentiellement éliminer du bruit adversarial. Le décodage, quant à lui, introduit des détails diérents de ceux de départ. Les autoencodeurs ont déjà été utilisés avec comme objectif l'élimination d'exemples adversariaux. Cependant, leur entraînement est diérent du nôtre, et, surtout, ne considèrent pas le dynamisme que nous proposons. Le dynamisme fait en sorte qu'un attaquant n'ait accès qu'à une structure changeante. En générant des exemples sur une structure donnée, ces exemples ne sont alors pas nécessairement transférables aux autres structures, comme nous le montrons dans notre manuscrit [START_REF] Chabanne | Let's Get Dynamic: Dynamic Autoencoders Against Adversarial Attacks[END_REF].

Une autre méthode permettant la protection des paramètres d'un réseau de neurones est de protéger l'architecture directement. En eet, les attaques de rétroingénierie existantes peuvent soit supposer que l'attaquant connaît l'architecture de base [START_REF] Carlini | Cryptanalytic Extraction of Neural Network Models[END_REF], soit extraire l'architecture en même temps que les paramètres [START_REF] Batina | CSI NN: Reverse Engineering of Neural Network Architectures Through Electromagnetic Side Channel[END_REF]. De plus, l'architecture constitue en elle-même une IP. En eet, l'architecture, et notamment la sélection de ses hyper-paramètres, est cruciale dans l'entraînement du modèle. Une architecture trop petite aura du mal à apprendre correctement ses données, tandis qu'un modèle trop gros prendra plus de temps à apprendre et risque de ne pas se généraliser à des entrées extérieures aux données d'entraînement. C'est pourquoi, dans une deuxième partie, nous nous intéressons à la protection, en boîte vii noire, de l'architecture des NNs.

Plus particulièrement, nous mitigeons une attaque SCA se basant sur le cache.

Etant donné que les attaques d'extraction d'architecture utilisent généralement l'exécution séquentielle des couches de NNs, nous proposons de changer l'ordre de calculs des neurones an de les contrer. Pour cela, nous calculons des neurones par blocs et en profondeur. An de rendre la tâche de l'attaquant encore plus dicile, nous ajoutons de l'aléa dans la taille des blocs de calculs. Ainsi, nous générons des tailles de blocs aléatoires à la création de l'architecture, puis nous entamons des calculs dès qu'un bloc est prêt (i.e. lorsqu'assez de valeurs sont parvenues depuis la couche précédente). Notons que ce réarrangement des calculs est possible uniquement pour certains types de couches, telles que les couches convolutionnelles. Values required to compute one neuron . . . . . . . . . . . . . . . . .
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6.5

Impact of reordering computations on the Flush and Reload attack . ML models can predict a diagnosis based on medical images [START_REF] Richens | Improving the accuracy of medical diagnosis with causal machine learning[END_REF], recognize our faces or our ngerprints for authentication [START_REF] Bud | Facing the future: the impact of Apple FaceID[END_REF] or predict and solve crimes [START_REF] Shah | Crime forecasting: a machine learning and computer vision approach to crime prediction and prevention[END_REF][START_REF] Fatih | Police Use of Technology to Fight Against Crime[END_REF].

One application on the rise is facial recognition. For instance, Apple's iPhone X [START_REF] Bud | Facing the future: the impact of Apple FaceID[END_REF] enables its user to unlock their phone through facial recognition.

ML models are algorithms whose aim is to learn a specic task through a databased automatic improvement phase called the learning phase. For instance, in image classication, such a model learns to recognize images and classify them into the correct categories. As such, if it receives a picture of a cat, it should return the label `cat'. An ML model is then considered accurate when its outputs are correct with a high probability.

For a given task, a model's accuracy depends on its architecture and its parameters. There is a large variety of ML models, but they are generally adapted to dierent tasks [START_REF] Kou | A deep-learningbased unsupervised model on esophageal manometry using variational autoencoder[END_REF][START_REF] Devi Arockia | Gene Expression Data Classication Using Support Vector Machine and Mutual Informationbased Gene Selection[END_REF][START_REF] Md | A Random Forest based predictor for medical data classication using feature ranking[END_REF][START_REF] Rustam | Predicting Bank Financial Failures using Random Forest[END_REF]. For example, Convolutional Neural Networks (CNNs) are often used in image classication and processing, as they are ecient when it comes to detecting target features [START_REF] Simonyan | Very Deep Convolutional Networks for Large-Scale Image Recognition[END_REF][START_REF] He | Deep Residual Learning for Image Recognition[END_REF][START_REF] Szegedy | Going deeper with convolutions[END_REF].

Among Machine Learning models, Neural Networks (NNs) and more specically Deep Learning have been on the rise [START_REF] Chen | Ultra-Data-Ecient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly[END_REF][START_REF] Khemakhem | Variational Autoencoders and Nonlinear ICA: A Unifying Framework[END_REF][START_REF] He | Deep Residual Learning for Image Recognition[END_REF][START_REF] Simonyan | Very Deep Convolutional Networks for Large-Scale Image Recognition[END_REF]. NNs are algorithms which aim at learning their task by imitating the brain. They are divided into layers comprised of interconnected neurons. The neurons' values are updated during training to ensure optimal predictions. Despite their large number of neurons, DL techniques have been gaining in popularity, due to their eciency when dealing with complex problems requiring large datasets. They also have the advantage of necessitating little expertise when selecting training data, and the target task does not need to be broken down into smaller, easier problems. Other ML techniques do need this division of the main problem into smaller ones, or human intervention for preprocessing or selecting data. It is the case for identifying elements in an image using Support Vector Machines (SVM) for instance: the elements rst need to be located, then their label is assigned by the SVM [START_REF] Cristianini | An Introduction to Support Vector Machines and Other Kernel-based Learning Methods[END_REF].

The new ability to deal with large datasets thanks to enhanced storing and computing capacities has also enabled DL techniques to surge. This is especially the case since several papers have been focusing on accelerating computations, for instance through DL accelerators [START_REF] Song | Cambricon-G: A Polyvalent Energy-Ecient Accelerator for Dynamic Graph Neural Networks[END_REF][START_REF] Zhou | ParaML: A Polyvalent Multicore Accelerator for Machine Learning[END_REF]. Moreover, it has been noted that pretrained DL models can relatively easily adapt to new tasks: this is called transfer learning. Thus, pretrained models can be used with ne-tuning to reduce the needs for large sets of training data.

Because of their wide use in our daily lives as well as in the industry, security is paramount. More specically, three potential issues should be agged.

First, ML models themselves should be protected. Selecting or creating the best architecture for the task at hand is dicult and time consuming. But once the architecture is set, training its parameters takes even longer, and requires resources for intensive computing. Indeed, for complex tasks, ML architectures can have millions of parameters [START_REF] Simonyan | Very Deep Convolutional Networks for Large-Scale Image Recognition[END_REF][START_REF] He | Deep Residual Learning for Image Recognition[END_REF]. Even smaller ones, adapted to mobile use, often have over a million parameters [START_REF] Sandler | MobileNetV2: Inverted Residuals and Linear Bottlenecks[END_REF]. Training those parameters to achieve an almost optimal accuracy can sometimes take weeks, even using several Graphics

Processing Units (GPUs). This was the case for AlphaGo, a Go playing articial intelligence, which required three weeks of training using 50 GPUs to beat the best Go player in the world at the time [START_REF] Silver | Mastering the game of Go with deep neural networks and tree search[END_REF]. The time and computational resources required to correctly train ML models make them Intellectual Property (IP).

The second security issue deals with data protection. For this reason, a third party should not be able to tamper with either the input or predictions of the model.

The three security concerns can thus be summarized as follows:

The model and its parameters constitute IP and should therefore not be leaked.

The user's stored data and the data used for training might be sensitive.

The model's predictions should be robust against tampering with inputs and outputs, as it would otherwise undermine the model's integrity.

This high interest in DL models has led to a new focus on their security failures.

Among the oldest and most studied attacks are adversarial ones [START_REF] Moosavi-Dezfooli | Deep-Fool: A Simple and Accurate Method to Fool Deep Neural Networks[END_REF][START_REF] Song | Physical Adversarial Examples for Object Detectors[END_REF]. In this type of attack, a malicious party adds a small noise to the input such that it is undetectable to an oracle often taken as the human eye but fools the target model. Such attacks constitute a serious security issue, as they can be the basis of impersonation attacks, for example [START_REF] Kakizaki | Toward Practical Adversarial Attacks on Face Verication Systems[END_REF]. Poisoning attacks compromise the training dataset by adding faults to it. This once again jeopardizes the model's integrity, as it falsies the predictions.

Membership attacks, on the other hand, tackle the user's privacy, by leaking information about the training dataset [START_REF] Shokri | Membership Inference Attacks Against Machine Learning Models[END_REF]. In model stealing attacks, the attacker tries to recover an encrypted or hidden input based on the model's output or computations.

Finally, in recent years, various reverse-engineering attack papers have been published, thus jeopardizing the IP. Some are equation-based, trying to recover the inner parameters from the output values [START_REF] Tramèr | Stealing Machine Learning Models via Prediction APIs[END_REF]. Other mathematical approaches include the use of the ML model's internal structure, and more specically the hyperplanes associated to each neuron, to recover the parameters [START_REF] Carlini | Cryptanalytic Extraction of Neural Network Models[END_REF][START_REF] Rolnick | Reverse-engineering deep ReLU networks[END_REF][START_REF] Jagielski | High Accuracy and High Fidelity Extraction of Neural Networks[END_REF][START_REF] Milli | Model Reconstruction from Model Explanations[END_REF]. But NNs have also been the target of side-channel attacks (SCAs), which use implementationrelated leakages rather than mathematical vulnerabilities to recover the sought out secret. Examples of leakage vectors include the cache [START_REF] Yan | Cache Telepathy: Leveraging Shared Resource Attacks to Learn DNN Architectures[END_REF][START_REF] Hong | Security Analysis of Deep Neural Networks Operating in the Presence of Cache Side-Channel Attacks[END_REF][START_REF] Hong | How to 0wn the NAS in Your Spare Time[END_REF][START_REF] Liu | GANRED: GAN-based Reverse Engineering of DNNs via Cache Side-Channel[END_REF], power or electromagnetic emanations [START_REF] Batina | CSI NN: Reverse Engineering of Neural Network Architectures Through Electromagnetic Side Channel[END_REF][START_REF] Yu | DeepEM: Deep Neural Networks Model Recovery through EM Side-Channel Information Leakage[END_REF][START_REF] Hu | DeepSniffer: A DNN Model Extraction Framework Based on Learning Architectural Hints[END_REF][START_REF] Xiang | Open DNN Box by Power Side-Channel Attack[END_REF] or time elapsed [START_REF] Duddu | Stealing Neural Networks via Timing Side Channels[END_REF][START_REF] Hua | Reverse engineering convolutional neural networks through side-channel information leaks[END_REF].

Therefore, papers have recently exploited all security matters mentioned above.

Besides being the target of various attacks, NNs are also often not protected enough, as stated in [START_REF] Sun | Mind Your Weight(s): A Large-scale Study on Insucient Machine Learning Model Protection in Mobile Apps[END_REF]. This shows the need of protection in the ML eld. In fact, the authors of [START_REF] Carlini | Cryptanalytic Extraction of Neural Network Models[END_REF] note that NNs were not designed to be secure, as shown by the aforementioned attacks. It is therefore apparent to us that nding new protections for NNs is a critical subject. This is why this thesis presents new approaches to providing the needed security.

We mainly focus on parameter and architecture protection. The reason is threefold. It not only enables the protection of IP, but it also mitigates some adversarial and membership inference attacks which require the architecture and/or parameters of their victim models [START_REF] Ozbulak | Perturbation analysis of gradient-based adversarial attacks[END_REF][START_REF] Shokri | Membership Inference Attacks Against Machine Learning Models[END_REF][START_REF] Shokri | Membership Inference Attacks Against Machine Learning Models[END_REF]. The authors of [START_REF] Croce | RobustBench: a standardized adversarial robustness benchmark[END_REF] even note that gradientbased adversarial search which does require some knowledge about the NN are the most ecient ones. The third reason is that access to the full model leaks information about the outputs of the model. As noted in [START_REF] Ansuini | Intrinsic dimension of data representations in deep neural networks[END_REF], NNs inputs lie in a low dimensionality manifold and NNs operate a major dimension reduction between the input space and the output space. For instance, in a matching scenario where a system determines whether a user's vector is close to the output of a model, a malicious user is more likely to nd a matching vector when the model is known. To show this (in the context of our submitted paper [START_REF] Chabanne | One Picture is Worth a Thousand Words: A New Wallet Recovery Process[END_REF]), we tried matching the output of a model on 1,000 images from the ALOI dataset [START_REF] Geusebroek | The Amsterdam Library of Object Images[END_REF] with the 13,394 images from Imagenette [START_REF] Howard | Imagenette[END_REF]. We got 17 matches amongst all possible pairs, or 1.27 × 10 -4 % of matches, which is a much higher probability than if the user had selected an output vector at random (< 1 2 84 %).

The three aforementioned reasons show the necessity to protect the model against reverse-engineering attacks.

Let us note that this thesis also focuses on software rather than hardware-based defenses. Even though hardware-based defenses are generally more ecient and less time consuming, they are less exible. Indeed, software-based defenses are easier to distribute without changing the users' equipment, for instance through a software update. This is even more the case for IDEMIA, whose Machine Learning team relies on software approaches for its products. We also focus on image recognition, as it is the most intuitive instance of NNs that we come across in our daily lives.

Contributions in this Manuscript

This dissertation's contributions are the following:

We present NNs, as well as attacks and defenses against them. In particular, we published a survey about architecture extraction SCAs [START_REF] Chabanne | Sidechannel attacks for architecture extraction of neural networks[END_REF] (Chapter 2).

We propose to add one or several parasitic model(s) to an NN to protect its weights against some mathematical reverse-engineering attacks (Chapter 3).

We feed an NN's input to a dynamically selected parasite before sending it to the base model. Hiding the input in this way constitutes a protection against some physical parameter extraction SCAs (Chapter 4).

We show that we can adapt the parasites to make NN models more robust against adversarial attacks (Chapter 5).

We protect an NN's architecture against reverse-engineering SCAs by reordering the way its neurons are computed (Chapter 6).

Overview

Due to their sheer number, an NN's parameters are dicult to protect. For all the aforementioned reasons, they are very sensitive, and ensuring their security is crucial. We seek to achieve this security in our thesis. We start by giving some background on NNs in Chapter 2. This enables us to explain the various attacks that target a model's architecture and parameters, as well as the existing defenses.

Since one of the motivations of our thesis is to protect a model against adversarial attacks, we also present them, along with their defenses.

After setting the foundations of this work, we dive into a rst part which focuses on the use of parasitic models as a protection against gray-box attacks in Part I.

We introduce the notion of parasites in Chapter 3. Incorporating such models in a base model leads to a change in its internal structure. More precisely, we show that the additional layers alter the classication boundaries, as adversarial samples generated on the original model are not necessarily adversarial for the protected model.

While this modication of the structure is enough to tackle some mathematical reverse-engineering attacks, side-channel reverse-engineering attacks still manage to recover the parameters of a model protected with the rst countermeasure. To extract precise weights, most side-channel attackers only need to gather power or electromagnetic (EM) traces associated to known inputs. Based on this, we add dynamism to the previously introduced parasites to hide a model's input. Placing the parasites at the input layer not only hides the input values, but it yields a domino eect, as explained in another publication [START_REF] Bringer | Premium Access to Convolutional Neural Networks[END_REF]. Indeed, parasitic layers early in the target model impact later layers as well. Moreover, dynamism is more ecient against statistical attacks. In Chapter 4 we therefore place the parasites in a dynamic fashion at the entrance of the victim model to counter a statistical physical SCA.

While these countermeasures aim at protecting a model's parameters, we note in Chapter 5 that a similar technique also mitigates adversarial attacks. We adapt the parasitic models to procure a defense against adversarial samples. Chapter 2: Literature Review

This chapter details the notions related to Neural Networks, their attacks and existing defenses.

Neural Networks

Neural Networks (NNs) are algorithms trained to carry out a preset Machine Learning (ML) task. They are comprised of a set of interconnected nodes called neurons. Each connection between those neurons is associated to a real number, its weight.

This network of neurons is inspired by biological brains.

Applications An NN can be assigned a variety of tasks, which can generally be categorized as follows:

Classication. In classication tasks, an NN knows N classes and, given input I predicts the class number I belongs to. For instance, an NN might seek to dierentiate between dogs and cats [START_REF] Omkar M Parkhi | Cats and dogs[END_REF], or identify digits [START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF]. The medical eld benets from classiers, as they can help identify cancerous cells, for instance. In language processing, NNs can learn to classify texts, which is essential when it comes to web browsing for example. Segmentation can also fall under this category. In segmentation, an NN is tasked with identifying a certain target within the input. Self-driving cars are an application of segmentation: identifying some objects and shapes in the environment is imperative in that context [START_REF] Sagar | Semantic Segmentation With Multi Scale Spatial Attention For Self Driving Cars[END_REF]. Classication and pattern recognition also come up in various aspects of robotics. For instance, classiers enable prosthetics to have a behaviour similar to a person's missing limb [START_REF] Nayak | Application of Articial Intelligence (AI) in Prosthetic and Orthotic Rehabilitation[END_REF].

Function Approximation. Based on previous data, NNs can predict future occurrences. Such models are useful in nance, for example for stock price predictions [START_REF] Matsubara | Stock Price Prediction by Deep Neural Generative Model of News Articles[END_REF]. Recent papers have also applied NNs to weather forecast.

Google Research scientists managed to forecast precipitation up to twelve hours ahead [START_REF] Espeholt | Skillful Twelve Hour Precipitation Forecasts using Large Context Neural Networks[END_REF].

Data processing. When processing data in an unsupervised training i.e. when the correct labels are not provided setting, the NN learns to identify some characteristics features within a dataset. Clustering is an instance of data processing wherein the NN aims at dividing the data provided into various groups. Biology often requires such a pattern or feature identication, for instance when it comes to analysing the genome. Clustering techniques have therefore been applied to that eld [START_REF] Karim | Deep learning-based clustering approaches for bioinformatics[END_REF]. Generative Adversarial Networks (GANs) train to fool another NN as a way of learning to imitate the training dataset. They can be exploited for art, for example in order to turn photos into Hayao Miyazaki-style cartoons [4]. They can also help increase the size of training dataset for more accurate NNs and detect anomalies [START_REF] Feng | Convolutional Transformer based Dual Discriminator Generative Adversarial Networks for Video Anomaly Detection[END_REF], among other applications.

This non-exhaustive list of NN applications shows how vast the eld is. We cannot address all applications. We restrict ourselves to image classication in this thesis.

Accuracy A model is trained by updating its weights using a large dataset to reach a high accuracy. The rst question here is how to measure a model's accuracy.

Several metrics exist, but we will only present the most common ones that we need for this thesis.

First, when an NN's task is to classify images among C classes, then the metric generally used is the percentage of correct labels output by the model on the considered input set. On a dataset D of size N and with labels Y , we compute a model f 's accuracy by measuring the percentage of elements x ∈ D such that f (x) = Y x where Y x is x's correct label. This can be written as:

A D f = 1 N x∈D 1 1 f (x)=Yx × 100
Another classication task consists in matching two inputs whenever they correspond to the same class. This method is used in facial or biometric recognition. Let us place ourselves in the context where a user U wishes to authenticate into a system S which has a picture x U of U . U sends a picture x to the model f . Then, the system computes d(f

(x U ), f (x)) where d(•) is a preset distance. If d(f (x U ), f (x))
≤ t for a preset threshold t, then the system considers that x and x U are both pictures of user U . Otherwise, the authentication is refused. In other words, given an input x, f computes an output vector such that images x from the same class as x have an output f (x ) close under a certain norm d to f (x). On the other hand, images x from a dierent class are such that f (x ) is far from f (x). In this scenario, the accuracy is measured through a False Acceptance Rate (FAR) and a False Rejection Rate (FRR). The FAR is the probability of a user U = U being accepted when trying to authenticate as user U . On the other hand, the FRR is the probability of a user U being rejected when trying to be authenticated as themself. While a high FAR results in security issues, a high FRR results in inconvenience to the users. The goal of the NN model and the system is therefore to reach a balance between these two metrics. While both metrics are important, the accuracy is often measured by choosing an FAR and measuring the corresponding FRR. Let us note that one can set the FAR by selecting the appropriate threshold t. Given a threshold t, a set X of `gallery' images with one image x U per user U , and a `probe' set X p divided in groups of images X U p per user U , then the FAR can be computed as:

F AR = 1 |X| x U ∈X 1 |X U p | x∈X U p ;U =U 1 d(x U ,x)≤t
where |X| is the cardinality of X.

Similarly, the FRR can be computed as:

F RR = 1 |X| x U ∈X 1 |X U p | x∈X U p 1 d(x U ,x)>t
Label matching, FAR and FRR are the most common metrics in image classication, and the only ones we will use in the rest of this manuscript.

Training Phase Once an NN is assigned a task, the training phase can start.

The NN is provided with a preferably large training dataset, and the weights are updated according to the data received over several rounds or epochs. This updating process is called training.

During this phase, the weights change each round so as to optimize a carefully selected function called loss function. This process is generally executed by batches:

the training dataset is divided into smaller datasets, and the optimization over each of the batches contributes to reducing the loss value. The testing phase is commonly called the inference.

The loss function L should be chosen so that when L decreases, the model's accuracy increases. The loss function and optimization algorithm both contribute greatly to the NN model's nal accuracy. Indeed, optimizing an incorrect loss function would prevent the model from reaching the set goal. On the other hand, a poorly chosen optimization method can make the training too long or reach and be stuck at a suboptimal point.

More than the loss and optimization algorithms, an NN model's eciency depends on the selected architecture. Various types of NNs have been introduced so far. Even though the architecture should be selected depending on the goal, there is a transferability factor that makes training much easier. Indeed, it has been noted that a model trained on a certain dataset can still have a high accuracy on a dierent but somewhat similar dataset [START_REF] Gabriel Lins Tenório | Improving Transfer Learning Performance: An Application in the Classication of Remote Sensing Data[END_REF]. For this reason, standard pretrained architectures with small tweaks are often used. Transferability is one of the reasons why NNs have risen in popularity, along with increased storing and computing abilities.

Let M be a pretrained model, on a large dataset D 1 . Then one can train a model M on a smaller dataset D 2 based on M . For this, one takes M 's weights for the initialization. One can then add or remove a few layers at the end, to adapt the model M to their needs. M can then be trained on D 2 . Because the initial weights were already optimized for a large dataset, the new training is usually much shorter. This is also the reason why D 2 can be small. Such a retraining is called ne-tuning.

Despite the transferability, selecting the correct pretrained model is still paramount. Not only are some architectures better adapted to some tasks, but it is also important to consider the number of parameters to (re)train during the ne-tuning. 

Common NN Architectures

This section details some common NN architectures for image processing. They generally constitute the baseline in papers, and the implementation and weights of the more complex NNs are also available in most ML libraries.

General structure

Most NNs are divided into layers, where the input is the rst layer and the output is the last. The layers between the input and output ones are called hidden layers.

NNs can be represented by oriented graphs where the neurons are the nodes and the edges are labeled by the weights. Within one layer, neurons are not interconnected.

The neurons within a layer can be connected to those from any of the previous layers.

For instance, in a fully connected layer, each neuron is equal to the sum of all the previous layers multiplied by their associated weights (see Figure 2.1). A bias is then added to each output neuron. For the i-th neuron in layer l, we have that:

x l i = N k=1 x l-1 k • w l-1 k,i + β i
where {x l i } 1,...,N are layer l's neurons, {w l-1 i,j } 1,...,N are layer (l -1)'s weights, and β i is the bias.

As in the fully connected case, all NN layers are linear. Having an NN only carry out linear computations would limit it to simple tasks which might be solvable in other ways. For NNs to be able to solve a great variety of tasks, some nonlinearity is therefore required. This is why each layer is followed by a nonlinear activation function. They are thus called because they activate neurons corresponding to important features and deactivate others.

The following are the most common activation functions:

Rectied Linear Unit function (ReLU ): ReLU (x) = max(0, x). In this function, negative neurons are deactivated. Because it is highly likely that many neuron values will be negative and therefore set to 0 by ReLU , this activation functions makes computations easier. ReLU also has the advantage that its hardware computation is cheap. Logistic function: σ(x) = 1 1+e -x . This function turns its inputs into a value between 0 and 1. Values much larger than 1 are set to a value close to 1, and large negative values are set to a value close to 0 Tanh: tanh(x) = e 2x -1

Softmax: softmax (x) =
e 2x +1
. Similarly to σ, tanh clips its input value between -1 and 1.

Nonlinearity is sometimes introduced via other types of layers. Some aim at reducing the dimensionality of their input. This is the case, for instance, for dropout or pooling layers. Dropout layers select a subset of their input for which the value is kept, while the other neurons are set to 0. Pooling layers reduce the size of their input by dividing their input into blocks and selecting one representative value for each block. For instance, max pooling returns the maximum value of each block, while average pooling layers take the average of each block.

Furthermore, many researchers focus on making the training phase faster and more ecient. In 2015, the authors of [START_REF] Ioe | Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift[END_REF] introduce Batch Normalization (BN) layers, which normalize their input to stabilize, improve the performance and eciency of the training. For an input I, in a batch B, the BN layer returns:

O i = γ × I i -µ B √ V B + + β
where γ, β, are learnt parameters, and µ B , V B are the batch's expected value and variance respectively.

The architecture of an NN is dened by its hyperparameters, namely:

The number of layers.

The number of neurons per layer.

The layer types, along with the layers' internal hyperparameters (for instance, block sizes in pooling layers).

The activation functions.

The connections between layers.

While the hyperparameters are chosen once and for all, the parameters need to be trained to reach the optimal accuracy. The most common training algorithm is backpropagation. Given a carefully selected loss function L, the backpropagation algorithm tries to minimize L by eciently computing its gradient with respect to the weights using the chain rule. Because the gradients are computed eciently, gradient-based optimization methods, such as stochastic gradient descent (SGD), can be used to minimize L, even for deep models.

As stated previously, the loss function selection is critical, as it measures the distance between the current model's predictions and the target ones. One such function is the cross entropy function, which is suitable for classication tasks. For correct predictions p where p(i) = 1 if i is the correct class and p(j) = 0 ∀j = i, and for current predictions y, cross entropy is dened as follows [START_REF] Janocha | On Loss Functions for Deep Neural Networks in Classication[END_REF]:

L(y) = - c-1 i=0 p i log(y i ) = -H(p) + D KL (y||p) (2.1)
where c is the number of classes, H(p) is the entropy of p, and D KL (y||p) is the Kullback-Leibler divergence between y and p. Once L has been chosen, the weights are updated through gradient computations. For instance, in the case of SGD, the update is carried out as follows:

w t+1 = w t -l • ∇L
where w t are the weights of layer t, l is a scalar called the learning rate and ∇L is the gradient of L with relation to w t . Various losses and optimization algorithms can be used, depending on the task at hand [START_REF] Janocha | On Loss Functions for Deep Neural Networks in Classication[END_REF].

An issue which might arise when training a model is overtting. Overtting means that the model does not geenralize well to inputs outside from the training set. This might occur when the architecture is too complex for the task at hand, or the model was trained for too long on too small a dataset [START_REF] Goodfellow | Deep Learning[END_REF]. Since the model then tends to learn unimportant details such as background noise , its accuracy tends to drop when given inputs from dierent datasets. This shows the importance of correctly selecting the architecture, training set, loss function and optimization algorithm.

Given the high and expanding number of hyperparameters, the set of possible NN architectures is innite but limited by computing and storing capacities. In the rest of this dissertation, we will focus on architectures related to image classication.

In the following Section, we detail common NN architectures.

Multi-Layer Perceptron

The simplest NN architecture is the perceptron. As shown in 2.1, the perceptron is only comprised of one layer and one output neuron. The output is computed as:

O = step( n i=1 x i • w i ) Input #1 Input #2 Input #3 Input #4 Input #5 Input #6 Input #7
Input #8

Output

Hidden layer Multiclass Logistic Regression (MLR) are such a generalization, and a suitable activation function is softmax . However, the fact that perceptrons and MLRs are only comprised of one layer means that they can usually only be used for the simplest of tasks. More layers are required to carry out more complex tasks.

As their name states it, Multi-Layer perceptrons (MLPs) are perceptrons with several layers (see Figure 2.2). Layers which are neither the input nor the output layers are called hidden layers. In theory, one hidden layer suces to solve any problem with enough neurons in the said layer [START_REF] Leshno | Multilayer feedforward networks with a nonpolynomial activation function can approximate any function[END_REF][START_REF] Zhou | Theory of deep convolutional neural networks: Downsampling[END_REF]. This result also depends on the NNs' hyperparameters. For instance, the choice of the activation functions aects the expressivity of a certain NN. Thus, some functions can be represented by deep ReLU networks but not shallow ones [START_REF] Eldan | The Power of Depth for Feedforward Neural Networks[END_REF]. In practice, however, the number of neurons in the hidden layer and the resulting number of weights would have to be too large for real-life applications. This is why MLPs usually need numerous layers for complex tasks. Unfortunately, each fully connected layer introduces a high number of new parameters, but also redundancy, hence the need for new types of layers in Deep Learning (DL) architectures.

Convolutional Neural Networks

Despite their simplicity and expressivity, MLPs are often inecient compared to NN models with sparsely connected layers, such as Convolutional Neural Networks (CNNs). The latter, as their name implies, mainly rely on convolutions in their layers to compute the predictions. Convolutional layers Convolutional layers compute a convolution between their input and one or several three dimensional tensors named lters. Let us rst consider the two dimensional case. For an input I of shape n × m and a lter F with shape w × h, the convolution between I and F is dened as: Here, the output has shape (nh + 1) × (mw + 1). This denition is valid for a stride of one: the lter `moves' one step to the right after each multiplication.

×0 ×1 ×2 ×1 ×2 ×3 ×2 ×3 ×4 0 1 2 1 1 1 3 1 2 4 1 6 3 2 0 1             0 1 2 1 2 3 2 3 4       = 37 
(F I) i,j = h k=1 w l=1 I i+k,j+l • F k,l
With a stride s along the height and s along the width, the denition becomes:

(F I) i,j = h k=1 w l=1 I i•s+k,j•s +l • F k,l
and the output has shape ( (n-h) s + 1) × ( (m-w) s + 1), where • denotes the oor function. This can be generalized to three dimensional inputs and outputs. In this case, the rst dimension is called the channel, while the other two are called the input height and width respectively. Let us note that this leads to a four-dimensional lter. Thus, given input I of shape (c×n×m) and lter F of shape (c×h×w ×c ), a convolutional layer returns an output C of shape (( (n-h)

s + 1) × ( (m-w) s + 1) × c ). A neuron C ch,i,j is computed as: C ch,i,j = c ch =1 h k=1 w l=1 I ch ,i•s+k,j•s +l • F ch,k,l
As in the fully connected case, a bias is then added to the output neurons, but each channel has the same bias value.

Padding is another important hyperparameter of convolutional layers. Convolutional layers often zero-pad their inputs: rows and columns of zeros are added to the top and bottom, as well as the right and left of the input matrices. The reason for this padding operation is threefold [START_REF] Karpathy | Convolutional Neural Networks: Architectures, Convolution / Pooling Layers[END_REF]: Each convolutional layer returns an output with smaller dimensions than its input. A chain of such layers might therefore lead to too much information loss. Padding can be used to keep the input and output dimensions equal.

The stride and lter size may not t the input shape: some rows or columns may not be considered at all in the multiplications. In this case, padding can t the input size to the layer's hyperparameters.

Pooling layers as described in Section 2.2.1 are a part of most common CNNs, as they usually follow a group of convolutional layers. The goal of this downsampling is to avoid overtting on the training data. Indeed, only considering the most characteristic elements of the inputs prevents the model from learning the details in the dataset which are irrelevant to the predictions. This, in turn, enables the model to generalize and make correct predictions on inputs that are not part of the initial dataset. Dropout layers, which deactivate nonessential neurons, have the same aim.

Common CNN architectures The rst CNN was introduced in 1998 by LeCun et al. [START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF]. It is comprised of two convolutional layers followed by an average pooling layer each, and end with three fully connected layers. It was rst introduced as a classier for a hand-written digits dataset, MNIST (Modied National Institute of Standards and Technology database) [START_REF] Deng | The mnist database of handwritten digit images for machine learning research[END_REF], and it reaches a 98.94% accuracy on it.

The architecture is described in Figure 2.4. Since, the average pooling operation has been replaced by max pooling.

However, for more elaborate databases such as CIFAR10 [START_REF] Krizhevsky | Learning multiple layers of features from tiny images[END_REF], LeNet's accuracy is around 73%, which is much lower than state-of-the-art accuracy for this dataset: 99.5%. CIFAR10 is comprised of 60,000 images of shape 32 × 32 × 3 (50, Another version of CIFAR includes images from 100 classes.

Since the LeNet architecture was detailed in [START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF], CNNs have been surging, especially when it comes to image processing. One way of improving the training of CNNs is to increase their depth and number of neurons. The depth and neurons increase their probability of identifying characteristic features. For instance, the VGG16 architecture has 13 convolutional layers, 3 fully-connected ones and 138 million parameters, as can be seen in Figure 2.5.

VGG16 reaches an accuracy of 93.56% on the CIFAR10 testing set. The authors of [START_REF] Simonyan | Very Deep Convolutional Networks for Large-Scale Image Recognition[END_REF] ResNet152V2, which has 152 layers, achieves a 78% accuracy on ImageNet.

Software Implementation of NNs

Various ML libraries enable a fast and ecient implementation of ML models.

Among them are Tensorow [START_REF] Abadi | TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems[END_REF], PyTorch, Cae [START_REF] Jia | Cae: Convolutional Architecture for Fast Feature Embedding[END_REF], Theano [START_REF] Development | A Python framework for fast computation of mathematical expressions[END_REF] and Keras [22] (which can run on top of Tensorow or Theano for instance). Even though their main interface is generally Python, many of them, such as Tensorow and PyTorch, are partially based on C, C++ or CUDA for eciency. Those libraries are heavily optimized to ensure fast computations on very large NNs.

Convolutional Implementation One of the optimization tricks was introduced by Cae's author in 2014 [START_REF] Jia | Cae: Convolutional Architecture for Fast Feature Embedding[END_REF]. If we omit the bias, then it is clear that FC layers can be written as matrix multiplications. Indeed, given an input I with n neurons, and a weight matrix W of shape (n, m), then the output has m neurons and is computed as:

O = I • W
This enables the use of ecient and, once again, heavily optimized matrix multiplication algorithms, for instance GeMM [START_REF] Goto | Anatomy of high-performance matrix multiplication[END_REF] in the OpenBLAS library.

But in Cae, convolutional layers are also computed as matrix multiplications.

To do so, each convolutional window in the input I is attened to form a row in the reformed input matrix I . Each lter in F is also attened to form a column in filters 

D i+1 D i k (i) k (i) D i k (i) k (i) D i n i n i I i D i+1 n i+1 n i+1 O i filter 0 filter 1 × k (i) 2 D i (n i -k (i) + p i )(n i -k (i) + p i ) = channel 0 channel 1 F i R i O i 1 2 3 4
F i has shape (D i × k (i) × k (i) × D i+1 ) meaning there are D i input channels and D i+1 ) output ones. The reshaped lter F i , has shape (D i+1 × (k (i) • k (i) • D i )).
The input I has shape (D i × n i × n i ), while its reshaped version F has shape (n ik (i) + p i )(n ik (i) + p i ), where p i is the layer's padding. Indeed, each column in I corresponds to an input window on which a dot product with a lter window is carried out during the convolution. This leads to a reshaped output O with shape Despite the fact that the matrices involved can have extremely large dimensions given the high number of neurons in a given layer , this method has been observed to be more ecient in most cases. This is why several ML libraries such as Tensorow have adopted this technique whenever possible or whenever it does correspond to the most ecient implementation.

(D i+1 × (n i -k (i) + p i )(n i -k (i) + p i ).
Common NN Setups The setup of an NN model matters when it comes to its security. For instance, some NN models' weights are protected during inference computations by being located in a secure environment such as SGX [START_REF] Mckeen | Innovative instructions and software model for isolated execution[END_REF].

In this dissertation, we consider two main setups, which correspond to very common ones. In the rst, the users have the model on their device. This means that they can have physical access to it for example through probes.

The second setup we discuss is one where the model is hosted by a cloud provider. This is the case for Machine Learning as a Service (MLaaS), such as Amazon Sage-Maker [3]. In this scenario, the user generally only has access to the predictions, and cannot easily or physically access the details of the model.

2.3

Attacks against Neural Networks This is one type of poisoning attacks. More generally, attackers using a poisoning attack wish to aect the model's predictions by targeting the training process.

Besides injecting wrong data, they can also change the already existing training input or directly manipulate the algorithm itself by changing its parameters, for example [START_REF] Wang | Poisoning attacks and countermeasures in intelligent networks: Status quo and prospects[END_REF].

Another breach of security comes from membership inference attacks, where a malicious user can determine whether a certain input belongs to the training set [START_REF] Shokri | Membership Inference Attacks Against Machine Learning Models[END_REF][START_REF] Shokri | Membership Inference Attacks Against Machine Learning Models[END_REF]. Thus, attackers can both change the training process and leak information about the training dataset.

But the runtime phase also called inference , along with the optimal architecture and parameters, are not safe either.

Like poisoning, adversarial attacks also aim at modifying the target model's input, but without requiring access to the training phase [START_REF] Goodfellow | Explaining and Harnessing Adversarial Examples[END_REF][START_REF] Moosavi-Dezfooli | Deep-Fool: A Simple and Accurate Method to Fool Deep Neural Networks[END_REF][START_REF] Madry | Towards Deep Learning Models Resistant to Adversarial Attacks[END_REF][START_REF] Chen | HopSkipJumpAttack: A Query-Ecient Decision-Based Attack[END_REF][START_REF] Andriushchenko | Square Attack: A Query-Ecient Black-Box Adversarial Attack via Random Search[END_REF]. In adversarial attacks, the user crafts adversarial inputs by adding a small noise, undetectable to a certain oracle such as the human eye, but which leads the model to return the wrong predictions. This could lead to impersonation attacks, where an attacker's face can fool a model into accepting their face as the owner's one.

Model inversion attacks aim at recovering the input in a context where it is encrypted for privacy reasons [START_REF] Tople | Privado: Practical and Secure DNN Inference[END_REF][START_REF] Wei | I Know What You See: Power Side-Channel Attack on Convolutional Neural Network Accelerators[END_REF]. For instance, the input can be loaded in a secure component such as Intel SGX, and the attacker can retrieve the hidden input using another ML model trained on timing or power traces. Similarly, secret output can also be recovered.

Finally, multiple attack papers target the parameters and hyperparameters themselves. These are called reverse-engineering attacks. They can be of various types:

Based on equation-solving or ML [START_REF] Tramèr | Stealing Machine Learning Models via Prediction APIs[END_REF][START_REF] Oh | Towards Reverse-engineering Black-Box Neural Networks[END_REF][START_REF] Truong | Walls, and Nicolas Papernot. Data-Free Model Extraction[END_REF]: Tramèr et al. [START_REF] Tramèr | Stealing Machine Learning Models via Prediction APIs[END_REF] train a model with the same architecture as the original one to retrieve the correct weights. Their aim is to solve the system of equations formed by f (x) = y where x is an input selected at random, f is the original model and y is the model's predictions. Solving the given system can be achieved by minimizing a loss function through an optimization process, just like training. However, here, the loss function measures the dierence between the extracted model's predictions and the original model's predictions rather than the true outputs.

The authors of [START_REF] Orekondy | Knocko Nets: Stealing Functionality of Black-Box Models[END_REF] also aim at training a substitute model to recover the predictive behavior of the target model. But instead of querying with random inputs, they carefully select the set of queries. Other such attacks have since then managed to make the recovery more ecient using much fewer queries [START_REF] Truong | Walls, and Nicolas Papernot. Data-Free Model Extraction[END_REF][START_REF] Kariyappa | MAZE: Data-Free Model Stealing Attack Using Zeroth-Order Gradient Estimation[END_REF][START_REF] Miura | MEGEX: Data-Free Model Extraction Attack against Gradient-Based Explainable AI[END_REF].

Mathematical attacks, which rely on the internal structure of the NN models, as described in Section 2.3.2.

Side-channel based. Side-channel attacks rely on leakages due to the implementation of an algorithm to extract secret information. Attack vectors include the cache [START_REF] Yan | Cache Telepathy: Leveraging Shared Resource Attacks to Learn DNN Architectures[END_REF][START_REF] Hong | Security Analysis of Deep Neural Networks Operating in the Presence of Cache Side-Channel Attacks[END_REF][START_REF] Hong | How to 0wn the NAS in Your Spare Time[END_REF][START_REF] Liu | GANRED: GAN-based Reverse Engineering of DNNs via Cache Side-Channel[END_REF], power or electromagnetic emanations [START_REF] Batina | CSI NN: Reverse Engineering of Neural Network Architectures Through Electromagnetic Side Channel[END_REF][START_REF] Yu | DeepEM: Deep Neural Networks Model Recovery through EM Side-Channel Information Leakage[END_REF][START_REF] Hu | DeepSniffer: A DNN Model Extraction Framework Based on Learning Architectural Hints[END_REF][START_REF] Wei | I Know What You See: Power Side-Channel Attack on Convolutional Neural Network Accelerators[END_REF][START_REF]Can one hear the shape of a neural network?: Snooping the GPU via Magnetic Side Channel[END_REF][START_REF] Xiang | Open DNN Box by Power Side-Channel Attack[END_REF], memory access patterns [START_REF] Hua | Reverse engineering convolutional neural networks through side-channel information leaks[END_REF] and running time [START_REF] Duddu | Stealing Neural Networks via Timing Side Channels[END_REF][START_REF] Maji | Leaky Nets: Recovering Embedded Neural Network Models and Inputs Through Simple Power and Timing Side-Channels -Attacks and Defenses[END_REF]. Some of these attacks are detailed in Section 2.3.3.

All these attacks require dierent threat models, depending on the attacker's needs and capabilities. We dierentiate between white-box, gray-box and blackbox attacks. In white-box attacks, the attacker has access to the entire NN model and knows about potential defenses. In the black-box one, the attacker has no prior information about the model and defenses. The gray-box context assumes an attacker who has partial knowledge about either the model or the applied defenses.

In this thesis, we will mainly focus on mathematical and side-channel-based reverse-engineering attacks. However, one of our proposals can also be applied to adversarial attacks (see Chapter 5).

Introduction to Reverse-Engineering Attacks

Threat Scenarios First of all, let us note that reverse-engineering attacks can have various threat scenarios, shown in Table 2.1.

Performance Measurement In a reverse-engineering attack the potential attacker wishes to extract a model f as close as possible to the original model f . The authors of [START_REF] Jagielski | High Accuracy and High Fidelity Extraction of Neural Networks[END_REF] consider three ways of measuring how `close' the two models are.

Functionally Equivalent Extraction: In this case, the attacker wishes f to be such that f (x) = f (x)∀x ∈ I where I is the input set. This means that the attacker wishes to nd the original model's parameters so as to return the exact same values on all inputs. Fidelity Extraction: Here, f should be such that for some similarity function

S, P r[S( f (x), f (x))
] is maximal. In other words, the attacker wants to nd a model f whose predictions are similar to f with a high probability. For instance, in the classication case, S can be label agreement. This means that for all inputs x, there is a high probability that f classies x in the same class as f would.

Task Accuracy Extraction: In this type of extraction, the attacker wishes to nd a model that achieves the highest possible accuracy on a given task, and only uses f as a tool. She therefore aims at maximizing P r[ f (x) = y(x)] for all inputs, where y(x) is x's the correct prediction.

In this dissertation, we mainly focus on Functionally Equivalent Extraction.

Mathematical Reverse-Engineering Attacks

Let us start by detailing the reverse-engineering attacks that rely on a model's internal structure in order to recover its parameters [START_REF] Jagielski | High Accuracy and High Fidelity Extraction of Neural Networks[END_REF][START_REF] Milli | Model Reconstruction from Model Explanations[END_REF][START_REF] Rolnick | Reverse-engineering deep ReLU networks[END_REF][START_REF] Carlini | Cryptanalytic Extraction of Neural Network Models[END_REF][START_REF] Daniely | An Exact Poly-Time Membership-Queries Algorithm for Extraction a three-Layer ReLU Network[END_REF].

Threat Scenario Mathematical attacks correspond to the parameter extraction scenario (see Table 2.1). The attacker's goal is functionally equivalent extraction, as dened in Section 2.3.1. In [START_REF] Rolnick | Reverse-engineering deep ReLU networks[END_REF][START_REF] Jagielski | High Accuracy and High Fidelity Extraction of Neural Networks[END_REF][START_REF] Milli | Model Reconstruction from Model Explanations[END_REF], the following assumptions are necessary:

The model is assumed to be piece-wise linear.

The model is comprised of linear layers (such as FC ones) with ReLU activation functions.

The attacker has query access to the victim model: they can provide crafted inputs to the model at hand. They receive the last layer's full outputs, where each neuron has a value in R.

Although the authors of [START_REF] Milli | Model Reconstruction from Model Explanations[END_REF][START_REF] Daniely | An Exact Poly-Time Membership-Queries Algorithm for Extraction a three-Layer ReLU Network[END_REF] and [START_REF] Jagielski | High Accuracy and High Fidelity Extraction of Neural Networks[END_REF] assume the architecture to be known, the authors of [START_REF] Rolnick | Reverse-engineering deep ReLU networks[END_REF] assume an attacker who does not know the number of neurons per layer, and aims at recovering that secret along with the parameters.

While the authors of [START_REF] Carlini | Cryptanalytic Extraction of Neural Network Models[END_REF] also consider an attacker who already knows the model's architecture, they claim that the only fundamental requirement for their attack is the piece-wise linearity of the model.

This attack model can correspond to the case of online services, where the attacker is a user who can send queries and receive the output without accessing the model's parameters.

Attacks Description The authors of [START_REF] Carlini | Cryptanalytic Extraction of Neural Network Models[END_REF] reach their goal with fewer queries than [START_REF] Jagielski | High Accuracy and High Fidelity Extraction of Neural Networks[END_REF][START_REF] Milli | Model Reconstruction from Model Explanations[END_REF][START_REF] Rolnick | Reverse-engineering deep ReLU networks[END_REF]. The authors of [START_REF] Daniely | An Exact Poly-Time Membership-Queries Algorithm for Extraction a three-Layer ReLU Network[END_REF] ensure a polynomial time exact extraction of NNs with up to three layers. However, to achieve this, they make assumptions not required in [START_REF] Carlini | Cryptanalytic Extraction of Neural Network Models[END_REF]. The most sensitive assumption is that the second layer's dimension must be higher than the rst. This is not always the case, as in most models recovered in [START_REF] Carlini | Cryptanalytic Extraction of Neural Network Models[END_REF]. Moreover, even though [START_REF] Milli | Model Reconstruction from Model Explanations[END_REF] describes a strategy that applies to arbitrarily deep NNs, [START_REF] Carlini | Cryptanalytic Extraction of Neural Network Models[END_REF] is the only paper that proves the practicability of their attack on models with more than three layers. For these reasons, we focus on the method described in [START_REF] Carlini | Cryptanalytic Extraction of Neural Network Models[END_REF]. However, all three attacks follow the same pattern.

Let us start with two denitions. Let V(η, x) denote the input of neuron η, before applying the ReLU activation function, when the model's input is x. For a given neuron η at layer l, its critical point is dened as follows: Denition 1. When, for an input x, V(η, x) = 0, the neuron η is said to be at a critical point. Moreover, x is called a witness of η being at a critical point.

Finding at least one witness for a neuron η enables the attacker to compute η's critical hyperplane. Denition 2. A bent critical hyperplane for a neuron η is the piece-wise linear boundary B such that V(η, x) = 0 for all x ∈ B.

Given those denitions, the parameter extraction protocol is:

1. Identify critical points and deduce the critical hyperplanes 2. Filter out critical points from later layers 3. Deduce the weights up to a multiplicative factor 4. Find the weight signs Even though the way critical planes and hyperplanes are found diers from one paper to the next, all the attacks are based on the existence of a hyperplane for each neuron, created by the activation function. The hyperplanes' equations are the basis for the parameter recovery.

[16] covers several cases: the authors start by considering an NN with only one layer, before moving on to contractive deep layers and nally generalizing it to any deep NN. Let us note that all layers are considered to be FC. We also only consider ReLU activation functions for simplicity.

With one layer, the output is f (x) = A (1) •x+b (1) where A is the weight matrix and b is the vector of biases. Then A (1)

i = f (x + e i ) -f (x)
, where e i = (0, . . . , 0, 1, 0, . . .), and the 1 is at the i-th position.

New problems arise as soon as activation functions intervene, as the NN is no longer linear. With ReLU , negative neurons are set to 0. Let us now consider a 2-layered NN: f (x) = A (2) • ReLU (A (1) • x + b (1) ) + b (2) . The rst step is then to nd critical points. To achieve this, the authors of [START_REF] Carlini | Cryptanalytic Extraction of Neural Network Models[END_REF] suggest selecting a random line for each neuron in the input space. For each line and therefore neuron, the attacker selects an initial point x 0 then carries out a binary search to nd nonlinearities on f (x 0 +tv) for t ∈ [-T, T ] by checking for changes in the partial derivatives. Although the attacker does not have direct access to these derivatives, they approximate them through nite dierences. Figure 2.8 displays the binary search process. This provides a list of critical points. Let {e i } i be a basis for the input space and x * a witness for neuron η j . For > 0 small enough, η j is the only neuron being activated or deactivated, if A (1) 's columns are not colinear (the authors adapt the method to the general case). Since f is dierentiable everywhere except on hyperplanes, the attacker can compute:

α i + = ∂f (x) ∂e i x=x * + •e i and α i -= ∂f (x) ∂e i x=x * -•e i Either x * + • e i is such that η j = (A (2) • ReLU (A (1) • x + b (1) ) + b (2)
) j > 0 and x * -• e i is such that η j = 0, or the other way around. This holds for any other basis vector e k . Thus, computing:

A (1) j,k A (1) j,i = α i + -α i + α 1 + -α 1 +
gives the rst layer weights, up to a multiplicative scalar. In other words, computing double partial derivatives enables the attacker to extract the rst layer's weights up to a multiplicative scalar. From those weights, the value of b (1) up to a multiplicative scalar easily follows.

Once the rst layer is recovered, getting the second layer's weights results from applying the method for a 1-layer NN.

For deeper layers, a new diculty arises: even though the attacker can still nd partial derivatives by looking for nonlinearities, she cannot determine which neurons the critical points are witnesses for. Let us also note that hyperplanes in deep layers are impacted and bent (hence the name) by previous layers' hyperplanes (see Figure 2.9). For a layer l with d l neurons, the authors of [START_REF] Carlini | Cryptanalytic Extraction of Neural Network Models[END_REF] solve this problem by considering d l + 1 random directions δ and taking the second partial derivatives along those those directions, on all witnesses. Given the set:

{y i } = ∂ 2 f (x) ∂δ 1 ∂δ i | x=x * i=d l +1 i=1
where x * is a witness to a critical point. Generalising from the rst layer recover, the attacker buids a system of equations ReLU (f l-1 (x + δ i )) • w = y i where f l-1 is the model restricted to its rst l -1 layers. The equations corresponding to a neuron x in the current layer provide the weights as the result, while the others give completely dierent and seemingly random results that can be discarded.

Solving the system of equations also gives the weights. However, it requires being able to nd a preimage of the network outputs, which is not always the case. In fact, in most interesting cases, NNs are not contractive i.e. some of their layers have higher output dimension than input dimension and their preimage can therefore not be easily found. In those cases, a brute force attack on the sign is necessary.

Finally, the authors of [START_REF] Carlini | Cryptanalytic Extraction of Neural Network Models[END_REF] provide further details on how to implement this attack eciently.

Side-Channel Attacks: Generalities

Side-Channel Attacks (SCAs) have been introduced in the 1990's. They take advantage of unintended leakages proceeding from the implementation of cryptographic algorithms. Processing the said leakages may involve statistical analysis or ML models.

Access Abilities Dierent SCAs can be carried out depending on the attacker's access abilities. We dierentiate between:

A local access where the attacker is located on the same machine as the target.

The attacker and the victim therefore share some resources, such as the cache.

A remote access where the attacker can only access the victim algorithm remotely. For instance, the victim may run on the local network. Among other possibilities, this setting enables timing attacks.

A physical access where the attacker has access to the physical circuit, such as a processor or smartcard. This type of setting is necessary for power or electromagnetic-based SCAs for example.

Existing Attacks In recent years, NNs have been the target of numerous SCAs [START_REF] Yan | Cache Telepathy: Leveraging Shared Resource Attacks to Learn DNN Architectures[END_REF][START_REF] Yu | DeepEM: Deep Neural Networks Model Recovery through EM Side-Channel Information Leakage[END_REF][START_REF] Hu | DeepSniffer: A DNN Model Extraction Framework Based on Learning Architectural Hints[END_REF][START_REF] Batina | CSI NN: Reverse Engineering of Neural Network Architectures Through Electromagnetic Side Channel[END_REF][START_REF] Liu | GANRED: GAN-based Reverse Engineering of DNNs via Cache Side-Channel[END_REF][START_REF] Wei | I Know What You See: Power Side-Channel Attack on Convolutional Neural Network Accelerators[END_REF][START_REF] Tople | Privado: Practical and Secure DNN Inference[END_REF][START_REF] Xiang | Open DNN Box by Power Side-Channel Attack[END_REF][START_REF] Hong | How to 0wn the NAS in Your Spare Time[END_REF][START_REF] Zhu | Hermes Attack: Steal DNN Models with Lossless Inference Accuracy[END_REF][START_REF] Hong | Security Analysis of Deep Neural Networks Operating in the Presence of Cache Side-Channel Attacks[END_REF][START_REF] Duddu | Stealing Neural Networks via Timing Side Channels[END_REF]. We published a survey [START_REF] Chabanne | Sidechannel attacks for architecture extraction of neural networks[END_REF] focusing on cache-based SCAs, but presenting all SCAs at the time of publication, to the best of our knowledge. Table 2.2 and Table 2.3 summarize the characteristics of the existing architecture extraction attacks. For each architecture extraction attack, they provide the knowledge requirements for the attacker, the SCA type as well as the access type, the victim models on which the attack was tested, the results and the limitations of the attack. Among them are Cache Telepathy [START_REF] Yan | Cache Telepathy: Leveraging Shared Resource Attacks to Learn DNN Architectures[END_REF] and CSI Neural Networks [START_REF] Batina | CSI NN: Reverse Engineering of Neural Network Architectures Through Electromagnetic Side Channel[END_REF] that we will detail in Section 2.3.4 and Section 2.3.5. To the best of our knowledge, the only memory access pattern attack for reverse-engineering an NN's architecture is [START_REF] Hua | Reverse engineering convolutional neural networks through side-channel information leaks[END_REF]. The authors of [START_REF] Hua | Reverse engineering convolutional neural networks through side-channel information leaks[END_REF] manage to recover a target model's architecture by monitoring memory access patterns and, more specically, read-andwrite (RAW) dependencies. They rst dierentiate between layers thanks to the sequential execution: one layer's output is the next layer's input. Layer boundaries therefore correspond to a memory write followed by a memory read on the same address. Similarly, they can identify most hyperparameters in a layer through the RAW dependencies. For instance, within a layer, the input neurons are only read, while output neurons are only written. This reduces the possible architectures to a very small set.

Parameter extraction SCAs are detailed in Table 2.4 in the same fashion. Xu et al. also published a survey on the security of NNs in the hardware context in 2021 [START_REF] Xu | Security of Neural Networks from Hardware Perspective: A Survey and Beyond[END_REF].

Some model extraction attacks are out of scope in this dissertation. Despite their importance when it comes to correct predictions, we do not consider attackers whose only goal is to recover specic hyperparameters [START_REF] Wang | Stealing Hyperparameters in Machine Learning[END_REF]. Indeed, we already provide a way to protect an architecture as a whole in Part II.

Moreover, new attack papers have been published since the survey's publication.

Among them, some rely on queries [START_REF] Daniely | An Exact Poly-Time Membership-Queries Algorithm for Extraction a three-Layer ReLU Network[END_REF] and/or are ML-based [START_REF] Miura | MEGEX: Data-Free Model Extraction Attack against Gradient-Based Explainable AI[END_REF], others are timebased SCAs [START_REF] Maji | Leaky Nets: Recovering Embedded Neural Network Models and Inputs Through Simple Power and Timing Side-Channels -Attacks and Defenses[END_REF]. Physical leaks are also still exploited [START_REF] Yoshida | Model-Extraction Attack Against FPGA-DNN Accelerator Utilizing Correlation Electromagnetic Analysis[END_REF][START_REF] Yoshida | Model Reverse-Engineering Attack against Systolic-Array-Based DNN Accelerator Using Correlation Power Analysis[END_REF]. While some attacks in Table 2.2, such as Cache Telepathy [START_REF] Yan | Cache Telepathy: Leveraging Shared Resource Attacks to Learn DNN Architectures[END_REF], only target CPU runs, others [START_REF] Hong | Security Analysis of Deep Neural Networks Operating in the Presence of Cache Side-Channel Attacks[END_REF][START_REF] Hong | How to 0wn the NAS in Your Spare Time[END_REF] also include GPU runs. While [START_REF] Hong | Security Analysis of Deep Neural Networks Operating in the Presence of Cache Side-Channel Attacks[END_REF][START_REF] Hong | How to 0wn the NAS in Your Spare Time[END_REF] are cache-based, recent attacks have managed to extract a partial architecture [START_REF] Chmielewski | On Reverse Engineering Neural Network Implementation on GPU[END_REF] or the entire model [START_REF]Can one hear the shape of a neural network?: Snooping the GPU via Magnetic Side Channel[END_REF] through power and EM traces from the GPU. The authors of [START_REF] Wei | Leaky DNN: Stealing Deep-Learning Model Secret with GPU Context-Switching Side-Channel[END_REF] carry out a timing SCA on GPUs to recover the architecture of a victim model during the training phase.

The Leaky Nets attack [START_REF] Maji | Leaky Nets: Recovering Embedded Neural Network Models and Inputs Through Simple Power and Timing Side-Channels -Attacks and Defenses[END_REF] is especially interesting, as it is the only one that manages to recover parameters exploiting mainly timing patterns. The authors also use Simple Power Analysis (SPA), but only to identify the interesting parts of an power consumption acquisition. Indeed, an attacker targets the timing behaviour of The attacker tries all possible hyperparameters for each layer individual multiplications, as well as of activation functions in order to fully recover the weights and biases of a given model.

The recent paper Can One Hear the Shape of a Neural Network? [START_REF]Can one hear the shape of a neural network?: Snooping the GPU via Magnetic Side Channel[END_REF] show that despite the belief, so far, that SCA-based reverse-engineering attacks are impractical, very deep common architectures can be extracted through EM traces. This recent release proves NNs' weakness when faced with physical attacks.

In this dissertation, we mainly focus on two SCAs: Cache Telepathy [START_REF] Yan | Cache Telepathy: Leveraging Shared Resource Attacks to Learn DNN Architectures[END_REF] and CSI NN [START_REF] Batina | CSI NN: Reverse Engineering of Neural Network Architectures Through Electromagnetic Side Channel[END_REF]. The rst is a cache-based attack that aims at recovering a model's full architecture, while in the second, the attacker extracts the architecture and parameters simultaneously.

The authors of Cache Telepathy propose to use two SCA methods to monitor the cache: Flush and Reload and Prime and Probe.

Flush and Reload Flush and Reload [START_REF] Yarom | FLUSH+ RELOAD: a high resolution, low noise, L3 cache side-channel attack[END_REF] is a cache-based SCA used by multiple attacks targeting NNs [START_REF] Yan | Cache Telepathy: Leveraging Shared Resource Attacks to Learn DNN Architectures[END_REF][START_REF] Liu | GANRED: GAN-based Reverse Engineering of DNNs via Cache Side-Channel[END_REF][START_REF] Hong | Security Analysis of Deep Neural Networks Operating in the Presence of Cache Side-Channel Attacks[END_REF][START_REF] Hong | How to 0wn the NAS in Your Spare Time[END_REF].

The goal of cache attacks is to determine whether a certain memory location has been accessed by the victim model within a certain period of time.

The cache is a small but fast memory space used to store the data that have been recently accessed in general purpose or bigger embedded processors. It is usually divided in three parts corresponding to three hierarchical levels: L1, which is close to the processor (CPU), L2, and LLC, which is the Last Level Cache. Usually data residing in L1 is also included in L2, which in turn is included in LLC. When a process tries to access an address, the CPU rst looks for it in L1. If it is not there, then it looks in L2. If it still cannot nd it, it goes on to search the LLC. Finally, if the address is not in the cache, it needs to access the much larger main memory. If a process successfully retrieves data stored in the cache, this is called a cache hit.

On the other hand, if the address is not in the cache and is therefore stored in the main memory it is a cache miss.

Given the way the cache works, the execution time of a memory access depends on whether the target address is in the cache or not. Cache attacks are based on this induced time dierence.

Let us note that while L1 and L2 caches are usually only shared among processes within the same core, the LLC is shared by all processes, independently of the core.

Moreover, the LLC is often divided in sets, called cache sets.

The Flush and Reload attack consists of the three following steps:

1. Flush cache line which contains the data corresponding to the target address (ush ), such that the data is evicted from the cache and can only be found in the main memory.

2. Wait for a certain period of time, leaving the victim enough time to access the target memory location. If the access time is short (i.e. below a threshold to determine), then the address is in the cache. This means that the victim has called the corresponding function (see Fig. 2.10a). A high access time, on the other hand, means that the CPU had to load the address from the memory. Thus, the victim has not accessed it between the ush and the reload (see Fig. 2.10b).

Flush and Reload works on the LLC, which is shared by all processes even from dierent cores. However, each process has its own virtual address space. It can therefore have dierent virtual addresses for the same function. Thus, this attack requires page sharing: when two processes use the same read-only memory pages, these pages are shared. This is implemented in many systems for eciency purposes, in particular for shared libraries. Moreover, to ush a memory line from the cache, one needs the clflush x86 instruction or equivalent.

Prime and Probe In fact, Flush and Reload is a variant of a previous attack, Prime and Probe [START_REF] Dag | Cache attacks and countermeasures: the case of AES[END_REF], which is slower but does not rely on any particular shared memory requirements. Once again, the attacker targets the LLC. Since there is no page sharing, the attacker does not know which cache location the target instruction is mapped to. The rst step of this attack is therefore to nd the correct cache set a set of cache lines. The details of this step can be found in [START_REF] Dag | Cache attacks and countermeasures: the case of AES[END_REF]. Once the correct cache set has been recovered, the attacker can nd out whether the victim accessed a certain address as follows:

Access

Find the target cache set.

Fill the cache set with the attacker's data, thus evicting the target from the cache.

Wait for a certain period of time, leaving the victim enough time to call the target address.

Access the attacker's data again.

If the access time is short, then the attacker's data has not been evicted. This means that the target has not been loaded back into cache memory (see Fig. 

Cache Telepathy: A Cache-Based Side-Channel Attack

Cache Telepathy [START_REF] Yan | Cache Telepathy: Leveraging Shared Resource Attacks to Learn DNN Architectures[END_REF] exploits a leak in matrix multiplications to recover most hyperparameters. Most ML frameworks, such as Tensorow, use an ecient matrix multiplication algorithm, such as GeMM [START_REF] Goto | Anatomy of high-performance matrix multiplication[END_REF], to implement FC and convolutional layers. In their paper, the authors of [START_REF] Yan | Cache Telepathy: Leveraging Shared Resource Attacks to Learn DNN Architectures[END_REF] test their attack against two such algorithms: GeMM and Intel MKL's matrix multiplication [START_REF] Wang | High-Performance Computing on the Intel R© Xeon Phi 2018[END_REF]. While the OpenBLAS library is open source, making GeMM's code easy to analyze, the details of the implementation remain more obscure in the Intel MKL case. For this reason, let us rst detail the attack methodology based on the GeMM algorithm.

Threat Scenario Cache Telepathy [START_REF] Yan | Cache Telepathy: Leveraging Shared Resource Attacks to Learn DNN Architectures[END_REF] is an architecture extraction attack (see Table 2.1) in an MLaaS context, and the quality of the extracted model can be measured through task accuracy. The goal is to retrieve a small set of possible architectures for the possible model, then train those architectures and select the one with highest accuracy. Even though this is a black box attack in the sense that the parameters and hyperparameters are unknown to the attacker , there still are some prerequisites:

The attacker knows a large set of architectures the victim model belongs to, called the search space. For instance, the model could form part of the VGG (such as VGG16 or VGG19 [START_REF] Simonyan | Very Deep Convolutional Networks for Large-Scale Image Recognition[END_REF]) or the ResNet (such as ResNet50 [START_REF] He | Deep Residual Learning for Image Recognition[END_REF]) family.

The attacker and victim processes are co-located: they share the same cache.

Several papers have explained how to guarantee co-location in an MLaaS context [START_REF] Zhang | Cross-Tenant Side-Channel Attacks in PaaS Clouds[END_REF][START_REF] Ristenpart | you, get o of my cloud: exploring information leakage in third-party compute clouds[END_REF].

If Flush and Reload is used, then page sharing is necessary.

The goal here is to reduce the search space to a tractable one i.e. a search space that is small enough that an attacker can realistically train all models in it and select the one with the best accuracy.

Attack Description The authors of Cache Telepathy track calls to certain functions in Goto's implementation of GeMM [START_REF] Goto | Anatomy of high-performance matrix multiplication[END_REF] through the cache in order to deduce a victim model's architecture. The said algorithm divides the input matrices in smaller blocks so that the computations completely ll the cache. Let us consider the OpenBLAS library. In OpenBLAS, the algorithm makes use of three interesting functions: itcopy, oncopy and kernel. The pattern of appearance of these three functions is highly correlated with the dimensions of the matrices involved in the matrix multiplication. Thus, monitoring these three functions is enough for an attacker to recover the matrices' dimensions.

The Cache Telepathy attack consists in the following steps:

Determine the number of layers thanks to the number of calls to GeMM.

For each FC or convolutional layer, determine the input, lter and output dimensions by monitoring three of GeMM's internal functions: itcopy, oncopy and kernel using Flush and Reload or Prime and Probe.

Determine the activation function thanks to Flush and Reload or Prime and Probe.

Reduce the number of possible connections by measuring inter-GeMM latencies and using dimension constraints.

Eliminate unfeasible stride and padding values, and reduce the possibilities for pooling and dropout layers thanks to dimension considerations.

Let us now explain the second step in this scheme. GeMM's implementation is detailed in Algorithm 1. We notice four dierent loops. They correspond to the subdivision of the input matrices so as to completely ll the cache, and therefore optimize the computation time. The said subdivision is shown in Figure 2.12.

Because the loops are here to implement a subdivision of the matrices into blocks, the number of iterations in the four loops is closely related to the matrices' dimensions. For two matrices of shapes (m × k) and (k × n), block sizes P, Q, R selected

Loop 1: iter= n/R m n C + = m k A × k n B Loop 2: iter= k/Q m R C + = m k A × k R B B j Pack B i to bufferB Loop 3: iter= m/P m R C + = m Q Ai × Q R bufferB Pack A i to bufferA Macro-kernel P R + = P Q buffer A ×Q R bufferB Figure 2
.12: General Matrix Multiply (GeMM) algorithm implementation, which relies on machine-dependent block size to optimize matrix multiplications. The block sizes P, Q and R are selected depending on the user's machine, and more specically its cache size. based on the user's machine , and constant UNROLL, the rst observation is that:

iter4 = R 3UNROLL or = n mod R 3UNROLL iter3 = m P iter2 = k Q iter1 = n R (2.2)
Thus, determining the number of iterations in each loop for a given layer should give possible hyperparameters for the layer at hand. To do so, the authors of [START_REF] Yan | Cache Telepathy: Leveraging Shared Resource Attacks to Learn DNN Architectures[END_REF] monitor the three functions: itcopy, oncopy and kernel. If an attacker can closely monitor them and count their appearances, then they can deduce the number of iterations in the loops thanks to the observed pattern, detailed in Figure 2.13.

The scheme described enabled the authors of Cache Telepathy to reduce the set of possible architectures from 5.4 × 10 leverages a reduced search space of 64 for VGG16 and 6144 for ResNet50. The results reported here correspond to the Flush and Reload case. Prime and Probe introduces more noise, and therefore leads to much larger reduced search spaces in the Intel MKL case. Even though the attack is less eective in the MKL and Prime and Probe cases, it still reduces the search space to a tractable one: it is then possible to train the models in the new space and select the one with the best accuracy.

CSI Neural Networks

Among the most powerful SCAs to date is a power or electromagnetic (EM)-based attack that successfully recovers the parameters and hyperparameters simultaneously [START_REF] Batina | CSI NN: Reverse Engineering of Neural Network Architectures Through Electromagnetic Side Channel[END_REF]: CSI NN. The authors of [START_REF] Yli-Mäyry | Extraction of Binarized Neural Network Architecture and Secret Parameters Using Side-Channel Information[END_REF] Attack Description The authors of [START_REF] Batina | CSI NN: Reverse Engineering of Neural Network Architectures Through Electromagnetic Side Channel[END_REF] statistically analyse power and/or EM traces to recover both the architecture and parameters of the victim NN. Here, we only describe the attack on FCNs.

Gathering EM and power traces can be achieved by placing a probe against the microprocessor of the attacked device [START_REF] Batina | CSI NN: Reverse Engineering of Neural Network Architectures Through Electromagnetic Side Channel[END_REF]. EM traces can also be gathered from a distance. To do this, a software-dened radio may be used [START_REF] Camurati | Screaming Channels: When Electromagnetic Side Channels Meet Radio Transceivers[END_REF]. New methods relying on machine learning techniques allow the attacker to carry out side-channel analysis from a further distance (15m) [START_REF] Wang | Far Field EM Side-Channel Attack on AES Using Deep Learning[END_REF].

The scheme in [START_REF] Batina | CSI NN: Reverse Engineering of Neural Network Architectures Through Electromagnetic Side Channel[END_REF] relies on Correlation Power Analysis (CPA) [START_REF] Brier | Correlation power analysis with a leakage model[END_REF] when power traces are used, and Correlation Electromagnetic Analysis (CEMA) when EM traces are gathered.

Let us start by detailing CPA. Given an algorithm requiring the use of a secret s:

The attacker rst isolates a part of the algorithm where she knows s or part of s intervenes. Let us denote by A the said subalgorithm.

She gathers power traces T for inputs X to the subalgorithm A.

She simulates the power consumption of A depending on s. This means that she nds a leakage model f such that f (s) is the modeled power consumption for A. An example of such a leakage model f used in [START_REF] Batina | CSI NN: Reverse Engineering of Neural Network Architectures Through Electromagnetic Side Channel[END_REF] is the Hamming weight of the output of A.

For each guess k of the secret, she compares the simulated traces f (k) for the inputs X with the gathered traces T . Let T k denote the simulated traces for guess k. The comparison measure is the Pearson correlation coecient ρ:

ρ(T, T k ) = cov(T, T k ) σ T • σ T k
where cov(T, T ) is the covariance between T and T , and σ Y denotes the standard deviation of Y .

The guess k * associated with the simulated traces T k * with highest ρ is chosen as the correct guess for s. If the attack works, k * = s

The only dierence between CPA and CEMA is that instead of using power traces, CEMA is based on EM emanations. Some secret key recoveries require a simpler attack. SPA (resp. SEMA), only uses one power (resp. EM) trace: in this case, the attacker can directly read the secret by observing one trace.

The authors of [START_REF] Batina | CSI NN: Reverse Engineering of Neural Network Architectures Through Electromagnetic Side Channel[END_REF] proceed iteratively to recover the architecture and weights at the same time. The full scheme can be summarized as follows:

1. Recover the number of neurons through SPA (or SEMA).

2. Start at layer l = 0. For each neuron η determine whether η is in layer l or layer l + 1, as well as the weights by which it was multiplied thanks to CPA (or CEMA).

3. Determine layer l's activation function through time analysis. Let us note that later work [START_REF] Takatoi | Simple Electromagnetic Analysis Against Activation Functions of Deep Neural Networks[END_REF] has established the possibility to recover activation functions through EM analysis as well.

4. If η is in l + 1, then l ← l + 1. The previous two steps are repeated until the attacker reaches the end of the gathered traces.

In the rst step, the attacker uses one trace to dierentiate between the various neurons, and therefore count the total number of neurons (see Figure 2.15). Neurons appear plainly because of the sequential execution of NNs. Indeed, each neuron is multiplied by all the weights it is associated to, before moving on to the next neuron.

The activation function is also applied to each such neuron. On the other hand, it is much more dicult to dierentiate between layers.

This is where the CPA comes into action, in the second step. In this second part, the attacker targets each individual multiplication o = x • w where x is a neuron and w is a weight. She then applies CPA (or CEMA) to the said multiplication, where w is the secret to be revealed. Thus, the attacker can use the Hamming weight of the output o to model the power (or EM) traces. The attacker gathers a set T of traces for x • w for various values of x, and computes traces T w thanks to the leakage model for each possible weight value w. The weight w * with modeled traces closest to the actual ones i.e. which has highest Pearson coecient ρ(T, T w * ) is taken to be the correct guess. This mechanism reveals the parameters associated to a given neuron when the architecture is known. But it does not recover a neuron's layer in the black-box case.

To overcome this issue, the authors of [START_REF] Batina | CSI NN: Reverse Engineering of Neural Network Architectures Through Electromagnetic Side Channel[END_REF] suggest taking the layer into account in the CPA (resp. CEMA). The attacker knows the input I with n neurons. She starts with the n neurons from layer l = 1 and determines its weights through CPA or CEMA. She then moves on to layer l = 2 and proceeds layer by layer. For layer l and each neuron x, she knows x is either in layer l or in layer l + 1 because of the sequential execution. Thus, she applies CPA or CEMA on two hypotheses (w, layer). This statistical analysis therefore gives her the two parameters at the same time. If x is in l + 1, she determines the activation function through a timing attack then moves on to the next layer: l ← l + 1. She repeats this operation until all neurons have been analyzed.

A time analysis is possible on the activation function because the various activations have a very dierent timing behaviour. Thus, the authors of [START_REF] Batina | CSI NN: Reverse Engineering of Neural Network Architectures Through Electromagnetic Side Channel[END_REF] manage to fully recover small FCNs and convolutional NNs through a mix of power or EM-based SCA and timing analysis. In the case of an FCN, they recover the number of layers, the number of neurons per layer . This image is taken from [START_REF] Batina | CSI NN: Reverse Engineering of Neural Network Architectures Through Electromagnetic Side Channel[END_REF] and the weights through an iterative process involving SPA (resp. SEMA) and CPA (resp. CEMA). The activation function recovery, on the other hand, relies on timing analysis. However, as mentioned, the authors of [START_REF] Takatoi | Simple Electromagnetic Analysis Against Activation Functions of Deep Neural Networks[END_REF] have managed to launch the activation function attack using EM emanations. It is therefore possible to fully recover the architecture of models relying only on EM emanations.

In this Section, we have delved into the details of three among the numerous reverse-engineering attacks targeting NNs. We will tackle the described attacks in Chapters 3, 4 and 6 of this manuscript.

Adversarial Attacks

Reverse-engineering attacks have only recently become practical: most of them only target small NNs, only uncover part of the model, or they require prior knowledge.

Adversarial attacks, on the other hand, can be applied to models of all sizes. While As is shown in (a), the neurons are easy to distinguish. However, as (b) and (c)

show, dierentiating between layers is much harder.

reverse-engineering attacks are quite recent, the rst ones appearing in 2016, adversarial attacks have been discovered as early as 2013 [START_REF] Szegedy | Intriguing properties of neural networks[END_REF] and have been heavily studied since.

Generalities Given a victim model f , an oracle O often taken to be the human eye , and an input x, the goal of an adversarial attack is to generate x adv = x + η where η is some small noise, such that the noise is undetectable to the oracle, but the target model's predictions are changed. In other words, O(x) = O(x adv ) the oracle does not detect η but f (x) = f (x adv ).

The notion of `small noise' is relative, and it depends on the norm selected. Most often, the norms l ∞ or l 2 are taken. In the general case, the goal can be achieved by solving the following optimization problem:

x adv = min ||η|| {x + η s.t. f (x) = l and f (x + η) = l and l = l and x + η ∈ B} (2.3)
where || • || is the considered norm and B is a ball (for instance determined by ||x + η|| ≤ 1)

Various methods exist to achieve this optimal value, and they depend on the prior information an attacker has. x adv = x + × sign(∇ x J(θ, x, y))

where ∇ x J(θ, x, y) is the gradient of J relatively to x. The idea is to take a step in the direction of the gradient, as it enables the attacker to move away from the original class.

Projected Gradient Descent The Projected Gradient Descent algorithm (PGD) is an iterative algorithm in ve main steps which consists in applying FGSM multiple times. For a given number of steps n and a possibly varying step size α, at iteration i < n: x i+1 adv = x i adv + α × sign(∇ x J(θ, x, y))

If necessary, x i+1 adv is projected to the constrained ball B.

DeepFool DeepFool [START_REF] Moosavi-Dezfooli | Deep-Fool: A Simple and Accurate Method to Fool Deep Neural Networks[END_REF] is an iterative attack which generally provides a smaller perturbation than FGSM. It denes regions of input points that output the same label. For the original point x, it aims at nding the closest boundary to its label region. For this, the authors approximate the region by a polyhedron P and then approximate the distance from x to the closest of P 's edges. This is the full procedure for input x and model f :

x 0 ← x while f (x) = f (x i ):
Find the smallest perturbation r that brings x i to an edge of the current polyhedron.

x i+1 ← x i + r i ← i + 1
Fast Adaptive Boundary Attack While DeepFool eciently produces an adversarial example based on the classication boundaries, and often provides a sample closer to the original input than FSGM, it prioritises time eciency over closeness to the original point. The authors of [START_REF] Croce | Minimally distorted Adversarial Examples with a Fast Adaptive Boundary Attack[END_REF] consider a similar approach to DeepFool in their Fast Adaptive Boundary (FAB) Attack. The main dierences introduced in [START_REF] Croce | Minimally distorted Adversarial Examples with a Fast Adaptive Boundary Attack[END_REF] are that they take the exact projection without clipping and introduce a bias towards x. They also apply other measures, such as random restarts, to improve the quality i.e. decrease its distance to x of the adversarial sample found x adv .

Square Attack The attacks mentioned so far are only white-box ones. However, a potential attacker may only have access to the outputs of a model. Among other proposals, the authors of [START_REF] Chen | HopSkipJumpAttack: A Query-Ecient Decision-Based Attack[END_REF] and [START_REF] Andriushchenko | Square Attack: A Query-Ecient Black-Box Adversarial Attack via Random Search[END_REF] introduce attacks that only rely on input-output pairs to generate samples. While [START_REF] Chen | HopSkipJumpAttack: A Query-Ecient Decision-Based Attack[END_REF] approximates gradients to nd the closest classication boundary, the Square attack [START_REF] Andriushchenko | Square Attack: A Query-Ecient Black-Box Adversarial Attack via Random Search[END_REF] bases its approach on the well-known Despite the numerous attacks on NNs, few defenses guarantee a full protection against them as of now.

Protections

Reverse-Engineering Defenses Because the reverse-engineering eld is still new when it comes to NNs and attacks are generally not yet considered a signicant threat, few countermeasures have been proposed so far.

Many of the existing defenses are hardware-based. The authors of [START_REF] Wang | NPU-Fort: a secure architecture of DNN accelerator against model inversion attack[END_REF] propose an NN accelerator which mitigates timing side-channel attacks. They present a reverse-engineering attack based on instruction les. They note that while preventing leakages from intermediary data requires the encryption of intermediary featuremaps i.e. the output channels of hidden layers , not all featuremaps are of importance. Thus, as a defense, they propose to select a subset of critical featuremaps. These critical channels are chosen based on their number of nonzero elements, their absolute weight sum and energy consumption. As a defense, they suggest only encrypting the aforementioned critical featuremaps.

[31] claims to introduce the rst physical side-channel countermeasure for NNs.

It provides a masking and hiding hardware protection for architectures with binary weights against power-based side-channel attacks. The authors present a masking scheme for individual multiplications. As the masking is not done in modular arithmetic, it still leaks due to a bias in the sign bit. Therefore, they also consider a hiding mechanism to ensure the security of the entire model. The authors then introduce an improvement of their hardware masking, BoMaNet [START_REF] Dubey | BoMaNet: Boolean Masking of an Entire Neural Network[END_REF]. The new methodology eliminates all hiding mechanisms, ensuring a masking only defense. Moreover, the scheme in [START_REF] Dubey | BoMaNet: Boolean Masking of an Entire Neural Network[END_REF] incurs less delay and makes the method glitch-resistant.

Building on [START_REF] Dubey | MaskedNet: A Pathway for Secure Inference against Power Side-Channel Attacks[END_REF][START_REF] Dubey | BoMaNet: Boolean Masking of an Entire Neural Network[END_REF], the authors of ModuloNet [START_REF] Dubey | ModuloNET: Neural Networks Meet Modular Arithmetic for Ecient Hardware Masking[END_REF] propose to adapt NN architectures to masking instead of trying to introduce masking countermeasures in already existing architectures. They propose a novel BNN architecture whose layers are adapted to hardware masking in modular arithmetic. With this new BNN, the previously noted leaks in masking [START_REF] Dubey | MaskedNet: A Pathway for Secure Inference against Power Side-Channel Attacks[END_REF][START_REF] Dubey | BoMaNet: Boolean Masking of an Entire Neural Network[END_REF] are avoided.

[78] aims at preventing the recovery of the architecture through memory access patterns attacks. It rst considers [START_REF] Hua | Reverse engineering convolutional neural networks through side-channel information leaks[END_REF] as a baseline attack, but proves the security of its protection against stronger memory access pattern attacks. Since memory access patterns leak enough information to provide the entire architecture to a malicious user, the authors of [START_REF] Liu | Mitigating Reverse Engineering Attacks on Deep Neural Networks[END_REF] propose to randomize them. To achieve this, they mix three common cryptographic tools: Oblivious Shue [START_REF] Michael | Anonymous Card Shufing and Its Applications to Parallel Mixnets[END_REF], Address Space Layout Randomization [START_REF] Giurida | Enhanced Operating System Security Through Ecient and Fine-grained Address Space Randomization[END_REF] and adding dummy memory accesses.

These ve papers are orthogonal to our work, since we only consider software countermeasures in this thesis.

The authors of [START_REF] Maji | Leaky Nets: Recovering Embedded Neural Network Models and Inputs Through Simple Power and Timing Side-Channels -Attacks and Defenses[END_REF] suggest some countermeasures to their proposed attacks.

Changing the weight representation or making ReLU constant time would prevent their recovery of the weights. The authors of [START_REF] Tople | Privado: Practical and Secure DNN Inference[END_REF] claim that input-dependent functions such as ReLU represent less than 10% of the computation time. They therefore suggest making them independent to defend a model against an input extraction. Such a method should also mitigate [START_REF] Maji | Leaky Nets: Recovering Embedded Neural Network Models and Inputs Through Simple Power and Timing Side-Channels -Attacks and Defenses[END_REF], as this approach is similar to the suggestion of making ReLU constant time. On top of being ecient against the adversarial attack used to generate the samples, it does not impact the original model's accuracy much it can even reach state-of-the-art accuracy in some settings.

Adversarial Defenses

Some papers choose randomization to counter adversarial samples [START_REF] Liu | Towards Robust Neural Networks via Random Self-ensemble[END_REF]. Because NNs are designed to be resistant to random noise, a possible scheme consists in introducing randomness in the inference. Ways of achieving this are through a random transformation of the input, the incorporation of random noise or through the masking of some random parts of the output. Although randomization performs well in the black and gray box contexts, adversarial attacks remain ecient in the white box case.

NNs with a higher weight sparsity rate i.e. with a higher rate of 0-valued weights have been observed to be more robust to adversarial attacks [START_REF] Guo | Sparse DNNs with Improved Adversarial Robustness[END_REF].

Following this observation, the authors of [START_REF] Yuanqing | Training for Faster Adversarial Robustness Verication via Inducing ReLU Stability[END_REF] use L1 regularization in order to improve the sparsity. For a given loss function L, L1 regularization corresponds to adding a penalty term during the training phase, as follows:

L (θ, x, y) = L(θ, x, y) + λ w∈θ |w|
where θ are the model's current parameters and λ is the regularization factor.

Other papers consider eliminating adversarial noise through denoising techniques. The aim of denoising is to lter out noise by only keeping the features in an input that matter for the predictions. One such way of achieving this ltering is through the use of autoencoders [START_REF] Meng | MagNet: A Two-Pronged Defense against Adversarial Examples[END_REF][START_REF] Bakhti | DDSA: A Defense Against Adversarial Attacks Using Deep Denoising Sparse Autoencoder[END_REF]. As for the randomizing methods, autoencoders are eective in the black and gray box scenarios, but less so in white box ones.

Other protections include defenses based on the k-nearest neighbours algorithm [START_REF] Wang | Analyzing the Robustness of Nearest Neighbors to Adversarial Examples[END_REF] or on Bayesian models [START_REF] Liu | Adv-BNN: Improved Adversarial Defense through Robust Bayesian Neural Network[END_REF]. The attacks presented so far can be applied to our main focus image classication. But other tasks also have specic defenses [START_REF] Kui Ren | Adversarial Attacks and Defenses in Deep Learning[END_REF]. While adversarial training seems to be the most ecient method so far, it is generally tailored to a specic attack. Moreover, it requires generating a large set of adversarial samples for training, as well as retraining the original model on the newly generated dataset. This necessitates time and computational resources. While an additional noise layer or a particular preprocessing generally require a specic training as well, incorporating an autoencoder for denoising purposes does not.

Conclusion

NNs form an important part of our daily lives. They have made major leaps of progress over the past years, even managing to beat the best Go players in the world in 2016 [START_REF] Silver | Mastering the game of Go with deep neural networks and tree search[END_REF]. New optimization and learning tricks, better storage facilities, access to larger datasets have all contributed to make them ecient, fast and reliable The assumption that a model is known is often realistic, as common architectures and pretrained models such as VGG16 [START_REF] Simonyan | Very Deep Convolutional Networks for Large-Scale Image Recognition[END_REF] or ResNet [START_REF] He | Deep Residual Learning for Image Recognition[END_REF] can be ne-tuned to be adapted for various tasks. Since the use of common architectures is ecient and wide-spread for many usual tasks, it is possible that potential attackers have at least some key prior knowledge about the architecture. In fact, the authors of [START_REF] Carlini | Cryptanalytic Extraction of Neural Network Models[END_REF] write that "in practice, there are only a few architectures that represent most of the deployed deep learning models".

As obtaining a model's optimal parameters for a given task takes a long time and requires computational resources, they are a valuable asset that should be kept secret. This is even more the case considering that once the parameters are revealed, other attacks such as gradient-based adversarial attacks [START_REF] Goodfellow | Explaining and Harnessing Adversarial Examples[END_REF][START_REF] Madry | Towards Deep Learning Models Resistant to Adversarial Attacks[END_REF][START_REF] Moosavi-Dezfooli | Deep-Fool: A Simple and Accurate Method to Fool Deep Neural Networks[END_REF][START_REF] Croce | Minimally distorted Adversarial Examples with a Fast Adaptive Boundary Attack[END_REF] and To achieve this, we introduce the notion of parasitic models, that will be used in all three Chapters constituting this Part. These parasites are added to the original target model so as to change its structure and obfuscate its weights and biases.

membership
After stating the threat scenario and giving an overview of this Chapter's pro- 

Threat Scenario and Defense Overview

We consider the same threat model as in [START_REF] Carlini | Cryptanalytic Extraction of Neural Network Models[END_REF]:

The model is a piece-wise linear function.

The model is comprised of linear FC or convolutional layers followed by ReLU activation functions.

The attacker has remote access to the model

The attacker has query access the attacker can send crafted inputs to the model, and receives outputs in R.

We also assume that the number of neurons per layer is known.

The goal of the considered attack is functionally equivalent extraction. As detailed in Section 2.3.2, the scheme uses the hyperplanes introduced by the model's neurons due to the ReLU functions. More specically, it is based on the introduced irregularities in the gradients. Increasing the number of these irregularities by adding ReLU functions should therefore make the attacker's task more dicult.

It is also interesting to note that while most steps involve a linear complexity (in time), sign recovery is, in the general case, more complex and can be exponential. This is the weakness we mean to exploit in this Chapter: adding a few hyperplanes to the structure already highly increases the diculty of the task, because of this exponential time complexity for the last step.

In this Chapter, we consider changing the internal structure of the victim model by adding linear layers followed by ReLU activation functions, without changing the accuracy. Furthermore, this protection is independent from the victim model.

The full scheme is as follows:

Train a set of CNN models, called parasite(s) to approximate a noisy identity function. Let us note that this training is completely independent from the model under attack.

Place the parasite(s) at one or several locations in the model.

The inputs are run through this modied model.

The suggested countermeasure is further detailed in Section 3.3.

Related Works

The authors of [START_REF] He | Parametric Noise Injection: Trainable Randomness to Improve Deep Neural Network Robustness Against Adversarial Attack[END_REF] inject normal noise during a model's training as a way of mitigating adversarial attacks. They introduce a parameter, α, trained along the original model so that α × N where N is a xed Gaussian noise is added to some layers. Furthermore, they add adversarial examples to the training set to prevent α from converging to 0. Contrary to [START_REF] He | Parametric Noise Injection: Trainable Randomness to Improve Deep Neural Network Robustness Against Adversarial Attack[END_REF], our parasites are trained independently from the base model, and do not rely on adversarial training. Moreover, we do not simply seek to add noise, but also dummy hyperplanes through new ReLU functions. Our aims also dier: we do not wish to ensure a robustness against adversarial examples but to mitigate reverse-engineering attacks.

Shamir et al.'s paper [START_REF] Shamir | A Simple Explanation for the Existence of Adversarial Examples with Small Hamming Distance[END_REF] note the link between classication boundaries and adversarial examples inspired this protection: it is the intuition behind our wish to change the base model's internal structure.

Approximating the Identity using CNNs

As explained, the goal of the countermeasure is to increase the number of hyperplanes. Adding layers with ReLU activation functions results in the addition of dummy hyperplanes, as detailed in Section 3.4. Since we also wish to maintain the original model's accuracy, the parasitic layers we add correspond to a model approximating the identity. However, because of the way CNNs adapt to the task at hand, simply approximating the identity function allows for the hyperplanes to `disappear' from the observable space, and thus, is not enough to thwart the attack at hand.

In order to mitigate the said attack, our parasitic CNNs approximate the identity to which we add a centered Gaussian noise. Section 3.4 details how this additional noise ensures that the introduced hyperplanes lie in the same space as the original ones.

Since CNNs are intrinsically nonlinear, approximating the identity the simplest linear mathematical function would appear to be a dicult learning task.

However, thanks to the bias and the piecewise linearity of ReLU , CNNs manage to avoid the obstacle of the hyperplanes by shifting the input to a space where the activation function is linear. Therefore, CNNs manage to approximate the identity very accurately.

The simplicity of the task at hand is demonstrated in [START_REF] Zhang | Identity Crisis: Memorization and Generalization under Extreme Overparameterization[END_REF]. Indeed, the authors of [START_REF] Zhang | Identity Crisis: Memorization and Generalization under Extreme Overparameterization[END_REF] manage to approximate the identity mapping using CNNs with few layers, few channels and only one training example from the MNIST dataset [START_REF] Deng | The mnist database of handwritten digit images for machine learning research[END_REF].

First, they observe that while both CNNs and FCNs achieve a good approximation of the identity on digits when trained on three training examples from the MNIST dataset [START_REF] Deng | The mnist database of handwritten digit images for machine learning research[END_REF], only CNNs generalize to examples outside of the digits scope.

Moreover, they state that this bias can still be observed when the models are trained with the whole MNIST training set.

In order to better characterize the observed bias, the authors take the worst case the necessity to approximate a noisy identity as well as to apply some constraints on the CNN's parameters.

Changing the Internal Structure

Let us consider a ReLU NN model an NN with ReLU as its activation functions to protect. The attack scenario described in Section 2.3.2 is based on the bent critical hyperplanes induced by the ReLU functions in the model. In [START_REF] Carlini | Cryptanalytic Extraction of Neural Network Models[END_REF], the bent hyperplanes are especially used in the case of expansive NNs i.e. for which a preimage does not always exist for a given value in the output space , in order to lter out witnesses that are not useful to the studied layer. To make the attacker's task more complex, we propose to add articial critical hyperplanes. Adding articial hyperplanes would make the attack more complex: in a given layer, the attacker would not only have to lter out hyperplanes from other layers, but also articial hyperplanes. The additional hyperplanes also make the sign recovery process more time consuming.

As explained in Section 3. C and input x, this can be written as:

C(x) ≈ x + N (0, σ)
where N (0, σ) is a Gaussian distribution with mean 0 and standard deviation σ.

The parasitic CNNs select a number nb of neurons from the previous layer as their input, and they return their noisy approximation.

Why add a noise? As will be further discussed in Section 3.4.2, simply adding a CNN approximating the identity function is not enough to add dummy hyperplanes.

CNNs' training process has several tricks at its disposal to make those added ReLU functions redundant and unobservable by a potential attacker. It can ensure that the hyperplanes are either very close and almost parallel to the already existing ones, or very far from the observable input space. In both these cases, there is a high probability that the attacker would not notice the parasites, and the attack's eciency would therefore not be impacted. Further constraints on the parasitic CNNs are required. Approximating a noisy identity instead of an exact identity mapping is a rst step towards making the protection ecient. The goal of the

CNN C is, given an input x, to return C(x) ≈ x + N (0, σ) instead of C(x) ≈ x.
Further constraints are also applied during training to further ensure a change in the internal structure.

Other parasitic characteristics As Chapters 4 and 5 will delve into more deeply, it is also possible to consider a dynamic addition of parasitic models. Instead of considering a xed position for the parasite(s), we can randomly select the parasites from the set of pretrained CNNs and a location in the model, at each run. For instance, in a client-server setting, each query from the client will be met with the output of a dierent model: the number, location and subset of the selected parasites dier from one query to the next.

Furthermore, the small CNN(s) we add do not act on all neurons. The input of a given parasite is a subset of the neurons from the previous layer. This yields two advantages:

The added CNN(s) can be small, implying fewer computations during inference.

We can add dierent CNNs to dierent parts of the input, to further increase the dierence in behavior between neurons. we take our parasites to be CNNs, the number of its input neurons must be nb = ch × n w × n h where ch is the number of input channels of the considered parasite, and n w and n h are two integers. When the parasitic CNN receives the set of neurons from the considered FC layer, it rst reshapes it into ch images of width n w and height n h . Moreover, for the much harder task tackled by the authors of [START_REF] Zhang | Identity Crisis: Memorization and Generalization under Extreme Overparameterization[END_REF], and even though more channels improve the accuracy, 2 • n channels in the intermediary layers are enough to get a good approximation of the identity for an input with n channels.

Identity CNN

Since we do not constrain ourselves to training our CNN with a single example, we can also limit the number of channels in the hidden layers to two with only one input channel. This enables us to minimize the number of additional computations for the dummy layers, with only a slight drop in the original model's accuracy (see Section 3.5.3).

Complexity of Extraction in the Presence of Parasitic Layers

Adding a convolutional model with t layers as described in the previous section results in adding t layers to the architecture while keeping almost the same accuracy. If those t layers add critical hyperplanes, then the complexity of extraction increases.

This section is dedicated to showing how the change in the structure impacts the attack.

We rst consider a CNN approximating the identity mapping added after the rst layer in the victim NN. We further assume that there are fewer neurons in the second layer than in the rst. We prove that in that case, the parasitic CNN does add hyperplanes with high probability. Then, we explain the need to approximate a noisy identity mapping rather than the identity itself.

Proof of Additional Hyperplanes

For simplicity, we only consider CNNs with one input channel and square images, without loss of generality. Let us consider a target model with m input neurons.

Let us suppose we add one parasitic layer that takes inputs of shape n × n ≤ m.

Let also {F i,j } 1≤i≤k, 1≤j≤k be its associated lter of shape k × k. This results in the following weight matrix C:

   C i×n+j,(i+l)×n+j+h = F l,h ∀(i, j) ∈ [[1, n -k + 1]] 2 and (l, h) ∈ [[1, k]] 2 C i,i = 1 ∀i ≥ (n -k + 1) × (n -k + 1) C i,j = 0 otherwise (3.1)
Here, without loss of generality, we assume there is no padding.

This new layer adds at most n × n bent hyperplanes. This number decreases if two neurons η i and η j share the same hyperplane.

Let V(η i , x) be the value of η i before the activation function, if the model's input is x.

We need to consider two cases:

1. η i and η j are in dierent layers. Let us suppose that η i 's layer is l and that η j 's layer is l + 1. If the layers are not consecutive, then η j 's hyperplane is bent by ReLU s from the layers in between, making the probability of the two hyperplanes matching very low.

2. η i and η j are in the same layer.

First case: η i is on layer l and η j is on layer l + 1

Let us suppose that η i is on the rst layer, and η j is on the second one. Let χ denote the set of inputs. The output z(x) of the rst layer, for x ∈ χ is:

z(x) = A (1) x + β (1) (3.2) 
In this proof, the rows of A (1) are assumed to be linearly independent. This is an assumption made in [START_REF] Milli | Model Reconstruction from Model Explanations[END_REF], [START_REF] Jagielski | High Accuracy and High Fidelity Extraction of Neural Networks[END_REF] and in [START_REF] Daniely | An Exact Poly-Time Membership-Queries Algorithm for Extraction a three-Layer ReLU Network[END_REF]. As stated in [START_REF] Jagielski | High Accuracy and High Fidelity Extraction of Neural Networks[END_REF], this is likely to be the case when the input's dimension is much larger than the rst layer's. The authors of [START_REF] Carlini | Cryptanalytic Extraction of Neural Network Models[END_REF] state that it is the case in most ReLU NNs, but not necessarily the most interesting ones. The general attack in [START_REF] Carlini | Cryptanalytic Extraction of Neural Network Models[END_REF] for the cases where the model to protect is not contractive is more complex, and requires a layer by layer brute force attack for the sign recovery.

Since we apply the parasitic layer, the output of the second layer is:

Out = C • ReLU (z(x)) + β (2) (3.3)
Since the rows of A (1) are supposed to be linearly independent, for a given vector V , there exists a solution x * such that z(x * ) = V , by the Rouché-Capelli theorem.

If we select V so that V i ≥ 0 ∀i ≤ m, then V is not aected by the ReLU . We can therefore select a vector V such that, letting k be the convolutional layer's lter size:

V ( j n +h)×n+j%n+l = 0 ∀1 ≤ l, h ≤ k (where j%n means j modulo n) except for one value i = η i , where V i = 1

(3.4)
where j is the rst element in V necessary to compute η j .

Since this second layer is a convolutional one, β

(2) i is the same for all i on a given channel, denoted β. The window to compute η j is zeroed out, except for one value. The lter weight associated to that value needs to be -β to nullify η j . Since we can repeat the process for all values of the window that are not η i , all the lter weights except for that associated to η i need to be -β except for the one associated with η i . This is not the case with high probability. In our experiments, we observe that our parasitic weights do not have this form. Thus, with high probability, η i = 0 does not imply that η j = 0.

Moreover, for all other indices h, z(x * + x ) h = z(x * ) h Let us consider x * * = x * + x . We have that z i is not in η j 's window, which means that η j remains unchanged and η j = 0 when the NN's input is x * * . On the other hand, η i 's value changes since one of its window values changes and F 1,1 = 0. Thus, η i = 0. Therefore, we can indeed nd x * * such that η j = 0 but η i = 0.

Let us now consider the case where η i and η j are on deeper layers, in which case the previous proof does not work. Let i = i 1 × n + i 2 and j = j 1 × n + j 2 , where i 1 = j 1 , and/or i 2 = j 2 . Let also F be the lter of the considered convolutional layer, of size k × k.

If η i and η j share the same hyperplane, then whenever z is such that C i z +β = 0, we have that:

k l=1 k h=1 F l,h (z (i 1 +l)×n+i 2 +h -z (j 1 +l)×n+j 2 +h ) = 0 (3.7)
Since Equation (3.7) needs to hold for all the z that are on the hyperplane, this equation is unlikely to hold.

Therefore, with a high probability, no two neurons in the same layer share the same hyperplane.

Approximating a Gaussian Noise for a Complex Extraction

As explained before, adding CNNs approximating the identity to a victim neural network adds hyperplanes. However, this does not necessarily lead to an increased complexity for the extraction attacks at hand. Indeed, the parasitic CNN might avoid the complexity of the task by isolating the newly introduced hyperplanes meaning the critical points are far from the input space , or very close and parallel to the original hyperplanes i.e. the critical points correspond to a small translation from the original points. The rst case can be achieved by increasing the bias in the convolutional layers, so that all values are made suciently large. This ensures that no value is zeroed out during the computations. The last layer's bias then translates the values back to their original position. In both cases, the attacker would not notice the introduced hyperplanes, thus defeating the purpose of the parasitic CNN.

Similarly to [START_REF] He | Parametric Noise Injection: Trainable Randomness to Improve Deep Neural Network Robustness Against Adversarial Attack[END_REF], we inject noise into our layers in order to avoid cases where the CNN we add is not detectable by an attacker. However, our method separates the training of the added CNN from that of the model to protect. Having to train each parasitic CNN along with the original model would result in too much overhead. This is especially the case since we wish to make our protection generic, and therefore independent of the victim model. We inject a xed Gaussian noise to the labels during the training of our CNN approximating the identity.

The standard deviation of this added noise is selected so as to avoid a signicant drop in the original model's accuracy. Let us note that even though the selected standard deviation might depend on the victim network, several CNNs approximating the identity are trained independently from the victim network, and the victim can then select one or several CNNs adapted to the network at hand.

Since the added noise is xed, it only constitutes a translation of the victim hyperplanes, and can be approximated by the CNN through an increase in the bias β. We avoid this case by bounding the bias to a small value (||β|| 2 < , where || • || is the 2 norm) or eliminating the bias (β = 0). This makes the learning task more complex, and forces the lter values themselves to change, thus preventing the introduced hyperplanes from being simple translations of the original ones.

Let us consider, for instance, the case where one convolutional layer is introduced.

As before, let C be the matrix associated to the layer and N be the xed Gaussian noise. Then the optimization problem becomes:

1≤k≤m C i,k x k = x i + N i ∀1 ≤ i ≤ n (3.8)
where n is the number of output neurons and m is the number of input neurons. The only element that is independent of the input is the noise N . This makes this system of equations impossible to solve for all inputs x. Thus, the solution C * provided by the CNN is such that:

1≤k≤m C i,k x k = x i + N * i (x) ∀1 ≤ i ≤ n (3.9)
where N * is a noise close to N that depends on the input. C * leads to hyperplanes for the various inputs which cannot be translations of the input hyperplanes. This implies that the newly introduced hyperplanes intersect the original ones, increasing the chances of modifying the polytopes formed by all the model's boundaries. This explanation generalizes to the case of several layers. Indeed, in the general case, the optimization problem for k convolutional layers without a bias becomes:

f (x) = x i + N * i (x) ∀1 ≤ i ≤ n (3.10) with f (x) = ReLU (C k (ReLU (...ReLU (C 1 x))))
, where C j is the matrix associated to the jth layer.

In order to further prevent the introduced hyperplanes from being too far from the working space, we add Batch Normalization layers after each convolutional layer.

These layers center their inputs, thus also setting the hyperplanes closer to the center and the `observable' space for the attacker.

To summarize, we may encounter two main problems when adding dummy hyperplanes:

The parasitic CNNs can set the hyperplanes far from the input structure.

The parasitic CNNs can ensure the dummy hyperplanes are almost the same as the existing ones.

To counter those possibilities, we change our parasites' training and architecture:

The parasites approximate a noisy identity to make the hyperplane structure more complex.

We add BN layers in between convolutional ones to center the hyperplanes.

We bound or eliminate biases during the training phase to incentivize the hyperplanes being visible to the attacker.

Measuring the impact on the internal structure To ensure the hyperplanes have indeed changed, we measure the inuence on adversarial examples. Adversarial attackers nd the shortest path from one prediction class to another. This path depends on the subdivision of the space by the original model's hyperplanes [START_REF] Shamir | A Simple Explanation for the Existence of Adversarial Examples with Small Hamming Distance[END_REF][START_REF] Moosavi-Dezfooli | Deep-Fool: A Simple and Accurate Method to Fool Deep Neural Networks[END_REF]. Thus, changes in the said subdivision lead to dierent adversarial samples.

Conversely, if two models lead to the same subdivision of the space, then adversarial examples remain the same for both models.

This property of adversarial samples is the reason why, in Section 3.5, we measure the impact of the parasitic CNNs on both the original model's accuracy and the adversarial samples. It is important to note that in this Chapter, we do not seek to counter adversarial samples, but simply to change some of them.

Experiments

In this Section, we detail the model we want to protect as well as the added CNN.

Then, we measure the impact of the added layers on the model to protect by counting the number of adversarial samples which do not generalize to the protected model.

Description of the NN Models Used

Parasitic architectures In our experiments, we consider two architectures for our parasites. The rst is comprised of:

One convolutional layer with 1 input channel and 2 output channels.

Two convolutional layers with 2 input channels and 2 output channels.

One nal convolutional layer with 2 input channels and 1 output channel.

Each convolutional layer is followed by a ReLU activation function and has lter shape 5 × 5. The second architecture is very similar, except that after each convolutional layer and before the activation function, a BN layer is added. Training the parasites We train these parasitic models over 10,000 random inputs {x i ∈ [0, 1] n } 1≤i≤10,000 of size n = 16 × 16. In our experiments, we select the n input neurons as the rst or the last ones from the previous layer, but they can be selected at random among the previous layer's neurons. For a given training, we x N as a Gaussian noise, and we set the labels to be {x i + N } 1≤i≤10,000 .

Target models The target model is a LeNet architecture [START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF] (see Figure 2.4 in Section 2.2.3) where average pooling layers are replaced by max pooling layers.

It is trained on the MNIST dataset [START_REF] Deng | The mnist database of handwritten digit images for machine learning research[END_REF]. We also consider a second model where we introduce BN layers after the convolutional layers of the LeNet architecture (see Figure 3.4). We denote VM the victim LeNet architecture and VM batch the architecture where BN layers have been added.

Figure 3.4: LeNet architecture, as in [START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF], where a Batch Normalization (BN) layer is added after each convolution. Image generated thanks to [START_REF] Lenail | NN-SVG: Publication-Ready Neural Network Architecture Schematics[END_REF].

VM has an accuracy of 98.78% on the MNIST dataset, while VM batch 's accuracy is of 99.11%.

Generating Adversarial Examples

Several methods enable an attacker to compute adversarial samples [START_REF] Goodfellow | Explaining and Harnessing Adversarial Examples[END_REF][START_REF] Madry | Towards Deep Learning Models Resistant to Adversarial Attacks[END_REF][START_REF] Moosavi-Dezfooli | Deep-Fool: A Simple and Accurate Method to Fool Deep Neural Networks[END_REF][START_REF] Miyato | Virtual Adversarial Training: A Regularization Method for Supervised and Semi-Supervised Learning[END_REF].

In this Chapter, we use the Fast Gradient Sign Method introduced by Goodfellow et al. [START_REF] Goodfellow | Explaining and Harnessing Adversarial Examples[END_REF] (see Section 2.3.6) to determine adversarial samples for our LeNet architecture.

As previously explained, since adversarial examples are based on the subdivision of the input space by the neurons' hyperplanes [START_REF] Shamir | A Simple Explanation for the Existence of Adversarial Examples with Small Hamming Distance[END_REF][START_REF] Moosavi-Dezfooli | Deep-Fool: A Simple and Accurate Method to Fool Deep Neural Networks[END_REF], a modication of those examples is a good indicator of whether the said subdivision has indeed been changed by the added CNN. As our protection aims at perturbating this subdivision, we compute adversarial samples for the rst 200 images of the MNIST set using the FGSM method and measure the percentage of examples which do not generalize to the modied model. For the FGSM method, we start with = 0.05 and increase it by steps of 0.05 until the computed x adv is indeed an adversarial example for the original model.

Results

We test the two original models considered with the added parasitic CNNs, without a bias β or with the constraint that ||β|| 2 < 0.05, where || • || 2 is the 2 norm. We consider three experiments:

We add one parasitic CNN (with and without BN layers) after the rst 16 × 16

neurons of the second convolutional layer in the victim model. We report the results in Table 3.1

We add one parasitic CNN (with and without BN layers) after the entire rst layer in the victim model. We report the results in Table 3.2. This experiment is only possible if the rst hidden layer has a number of neurons which can be written as a multiplication of two factors greater than 1. Indeed, the parasites being CNNs, we need to make their input two dimensional.

We add two or three parasites after the second convolutional layer in the victim model. Both parasites have input shape 16 × 16. Each of these parasites are fed either the rst 16 × 16 neurons, or the last 16 × 16. We report the results in Table 3.3

Let us note that in all cases, we only count the number of adversarial samples for the original model that are no longer adversarial for the protected CNN. There are also examples which are adversarial for both models, but with dierent predictions.

In the rst experiment (Table 3.1), the parasites approximate the identity to which a centered Gaussian noise with standard deviation σ = 0.2 has been added.

In every case, we observe a change in the adversarial examples.

Let us denote M adv the percentage of adversarial examples for the original model which are no longer adversarial for the protected model. In all cases from this rst experiment, M adv , is higher or equal to 12%, and the accuracy of the protected model is very close to the original one. This shows that the boundaries between classes which are the result of the various layers' hyperplanes have changed. Our results are summarized in Tables 3.1 and 3.2. Adding the same parasitic CNNs but to all the neurons of the rst layer, as in the second experiment, leads to higher M adv , with mostly similar accuracy drops.

Let us note that the CNNs we use in this case have the same number of layers and parameters. The only dierence is the model's input and output sizes. The results are shown in Table 3.2. Given the increased M adv with an acceptable accuracy drop, this strategy seems more interesting. This can be explained by the fact that all neurons are impacted by the change. Because this aects all neurons in the following layers as well, adding a smaller noise to all neurons in a layer seems to yield better results than adding a larger noise to a small portion of the layer's neurons.

It is interesting to note that even though the parasitic CNNs trained with no bias incur a lower M adv , in most cases, they entail a lower drop in the accuracy than the CNNs learnt with a small bias. This might be explained by the fact that the CNN with no bias cannot learn a noise independent of the input, and will therefore tend to get closer to the non-noisy identity. Furthermore, the ability for the parasitic CNN to operate a translation thanks to the small bias can explain the small drop in the accuracy that we observe. However, despite this additional possibility, the CNN with a small bias still changes the slope of the hyperplanes, as the drop in the accuracy is not steep enough to justify the high M adv .

One can also add several parasitic CNNs to a given victim NN, as we did in the third experiment. This might result in a higher protection, with no or a small drop in the accuracy. Since the parasitic CNNs are already trained, the cost of adding these CNNs remains small, and is equal to the additional computations required for inference. On VM batch , we try adding parasitic CNNs in three dierent ways:

Two parasites after the rst layer One parasite after the rst layer as well as one parasite after the second layer Two parasites after the rst layer and one after the second layer

In our experiments, we observe that adding a small CNN after the rst layer did not improve our results much, be it on the accuracy or on M adv . Thus, Table 3.3 gives an example of accuracy and M adv obtained in various cases where the parasitic CNNs are added after the second convolutional layer from VM batch , either before or after the batch normalization layer and the activation function. Let us note that once again, the standard deviation of the added noise is 0.2 in all cases. Moreover, when there are two parasitic CNNs at the same location, the rst is applied to the rst neurons and the second is applied to the last neurons of the victim layer. 57

Conclusion

In this Chapter, we have introduced the notion of parasites to discuss mathematical attacks and more specically the one introduced by Carlini et al. [START_REF] Carlini | Cryptanalytic Extraction of Neural Network Models[END_REF]. The latter relies on the internal structure of NNs induced by piece-wise linear activation functions to determine its weights.

To increase the complexity of this attack, we introduce dummy hyperplanes through parasitic CNNs. These are trained with criteria that aim at making the hyperplanes visible to potential attackers. We can place one or several of those parasites at various locations in a model to protect, as long as the accuracy drop remains small. We evaluate the eect on the structure by measuring the impact of our protection against adversarial examples. We manage to reach a modication in over 31% of the adversarial examples on a LeNet architecture tested against MNIST, with an accuracy that remains almost unchanged (a drop of less that 0.1%).

In this defense, the balance between the parasites' hyperparameters depth, lter size, number and location and the drop in the protected model's accuracy is crucial. Here, we showcase the feasibility of the countermeasure. Some tailoring of the parasites' architecture depending, for instance, on the original model's family of architectures (such as VGG or ResNet) could make this method even more ecient.

The use of parasitic models is not limited to mathematical attacks. This Chapter already hinted at a link with adversarial examples, that we will further explore in Chapter 5. But it can also be used to thwart physical SCAs, as we discuss in Chapter 4. Physical SCAs generally require a physical access to a device's processor. EM emanations can also be gathered from a distance [START_REF] Camurati | Screaming Channels: When Electromagnetic Side Channels Meet Radio Transceivers[END_REF]. In both cases, smartphones and other everyday embedded systems are at risk. It is therefore crucial to protect models adapted to small devices, such as MobileNetV2 [START_REF] Sandler | MobileNetV2: Inverted Residuals and Linear Bottlenecks[END_REF], from reverse-engineering attacks.

Contrary to cryptographic algorithms, ML tasks do not require exact outputs:

it is possible to get dierent outputs for a very similar model accuracy. We rely on this fact to show that dynamic parasites can hide a model's input, making the extraction much more complex.

After introducing the threat scenario and giving an overview of the proposed defense in Section 4.1, we delve into the details of our proposal in Section 4.2.1.

We then evaluate our methodology through simulated attacks in Section 4.3 and discuss the results and the provided security in Section 4.4. Finally, we conclude this Chapter in Section 4.5.

Threat Scenario and Defense Overview

The authors of [START_REF] Batina | CSI NN: Reverse Engineering of Neural Network Architectures Through Electromagnetic Side Channel[END_REF] aim at recovering a functionally equivalent model relying on EM and/or power emanations (see Section 2.3.5). For small FCNs and CNNs, they manage to extract both the architecture and the parameters with high accuracy.

Threat Scenario We consider a threat scenario that is close to the one in CSI NN [START_REF] Batina | CSI NN: Reverse Engineering of Neural Network Architectures Through Electromagnetic Side Channel[END_REF]. The CSI NN attack is detailed in Section 2.3.5. However, our scenario is gray-box, with a stronger attacker who has access to the architecture. Thus, the attacker:

Knows the target model's architecture.

Knows the model's input.

Aims at recovering the weights and biases of the said model.

Can monitor electromagnetic emanations and use CEMA (see Section 2.3.5)

to extract the parameters.

We present our approach and carry our experiments out in the case of EMbased attacks. However, we believe that other physical leaks would lead to the same results.

Protection Overview Common cryptographic methods to tackle SCAs cannot be applied to protect millions of parameters, as they incur too much overhead [START_REF] Chabanne | Sidechannel attacks for architecture extraction of neural networks[END_REF].

In our paper Premium Access to Convolutional Neural Networks [START_REF] Bringer | Premium Access to Convolutional Neural Networks[END_REF], we study various ways of protecting only part of a model. We observe that slightly changing the values in one channel in the rst convolutional layer leads to noticeable changes in the accuracy. We protect the sensitive weights through a secret key. However, the goal in that paper is to provide a premium access i.e. a model with a higher accuracy to paying customers, and a valid but not optimal model to others. The problem at hand is very dierent, as we wish a potential attacker to be unable to access a model with a decent accuracy. Thus, a dierent approach is required.

The rst observation one can make is that since the attacker in [START_REF] Batina | CSI NN: Reverse Engineering of Neural Network Architectures Through Electromagnetic Side Channel[END_REF] described in Section 2.3.5 proceeds layer by layer, protecting the rst layer should be enough to ensure the entire model's security. Indeed, the deduced weights from the rst layer are used to compute the input to the following layer and proceed with the attack.

A second observation is that the attacker requires the input values to recover the rst layer's weights. An intuitive countermeasure to this attack would therefore consist in hiding the said input values.

Third, contrary to common cryptographic problems, NNs' layers do not require exact responses. The output of each layer can be approximated as long as the model's accuracy is not aected. 

Dynamic Parasitic Models

In the following section, we explain a novel approach to protecting against SCAs that target NN parameters.

Proposal Description

Let us now detail our proposal.

As explained in Section 4.1, we aim at hiding a model's input values without decreasing its accuracy, by dynamically adding small CNNs approximating a noisy identity function. Our method is designed to limit the access to the correct input, which is required by the attacker of Section 2.3.5.

Adding layers dynamically means that at each run or after a certain number of runs , we consider parasitic CNNs with dierent weights and/or a dierent architecture. At each run or after a certain number of runs , this new parasite is selected at random among a set of small pretrained CNN models.

To carry out a CEMA, an attacker requires several traces (see Section 2.3.5).

If the small CNN we add to the input changes from one run to the next, the attack becomes much harder. As explained in Section 2.3.5, CSI NN [START_REF] Batina | CSI NN: Reverse Engineering of Neural Network Architectures Through Electromagnetic Side Channel[END_REF] enables an attacker to determine the architecture of a victim NN along with its parameters, through SEMA, CEMA and time analysis. The randomization in both the weights and architecture due to the dynamic addition of parasites should mitigate the statistic attack, even when the attacker tries to recover the architecture along with the weights.

Thus, our methodology is as follows:

Train a set S of small CNNs that approximate a noisy identity. For x in the input space I and s ∈ S: s(x) = x+N s (x) where N s is a Gaussian distribution At each run, select s ∈ S. For x ∈ I, run x := s(x).

Feed x to the target model. Let us analyse the consequences of adding such CNNs at the entrance of the model. Let X be the model's input, X be the noisy input and x i,j ∈ X. To recover the weight w in each multiplication x i,j •w, the attacker requires several power or EM traces for that operation. She also needs to know x i,j . But the input of the target model is s(X) = X , and the attacker does not have access to X . Furthermore, given she requires several traces and the parasitic CNN changes from one run to the next, the attack cannot be carried out on the parasitic layers directly, knowing input X. This is why we believe that our protection thwarts rst-order physical side-channel attacks such as CSI NN [START_REF] Batina | CSI NN: Reverse Engineering of Neural Network Architectures Through Electromagnetic Side Channel[END_REF] (see Section 4.3 for our results). 

Approximating the Identity Function

To prevent the attack, our goal is to add noise to the input without decreasing the model's accuracy.

Noisy identity One possible way to achieve this is to add CNNs approximating the identity to the entrance of the original model. As in Section 3.2, if we denote M such a CNN model, then M is trained to reach M (x) = x. This yields the advantage of making the attack in [START_REF] Batina | CSI NN: Reverse Engineering of Neural Network Architectures Through Electromagnetic Side Channel[END_REF] harder in the extended case where the attacker does not know the architecture.

But, as explained in Section 3.2 and as shown in [START_REF] Zhang | Identity Crisis: Memorization and Generalization under Extreme Overparameterization[END_REF], the simplicity of approximating the identity through a CNN model M leads to practically no dierence between the input x and the model's output M (x).

Because of this, simply adding a CNN approximating the identity does not have any impact on the attack. Indeed, no noise is added to the input, therefore keeping the observed values unchanged to the attacker. Thus, we follow the same training approach as in Chapter 3. The parasitic models we add are trained to approximate the identity function to which we add noise. The goal when training a parasitic CNN model M then becomes M (x) = x + N , where N is a given Gaussian noise.

This argument justies our training proposal in Section 4.2.1.

Additional computations Let us now compute the complexity of adding such

CNN models to the original model. Let us consider a convolutional layer with input shape (n, n, c in ), c out output channels and a lter of shape k × k × c out . Then the output of the layer has shape (n = nk + 1, n = nk + 1, c out ). Let us denote X the input of the layer, O its output and W its weights with shape (k, k, c in , c out ).

Then, as per Section 2.2.1, we have the following:

O i,j,q = c in c=1 k l=1 k h=1 X i+l,j+h,c • W l,h,c,q
This implies that for each neuron, k ×k ×c in multiplications are required. Therefore, each output channel adds k × k × c in × (nk + 1) × (nk + 1) multiplications. Since we have c out channels, the total number of additional multiplications for one convolutional layer is:

M = c out × k × k × c in × (n -k + 1) × (n -k + 1) = O(n 2 )
Generally, convolutional layers include some zero-padding to preserve the input and output sizes. This increases the necessary multiplications to:

M = c out × k × k × c in × n × n
To conclude, adding l identical layers leads to an increase in the number of

multiplications of l × k × k × n 2 × c in × c out .
In this Chapter, we decided to apply the model to each channel independently.

Thus, the input number of channels is such that c in = 1 here, but we multiply the total by the actual number of input channels. The new formula for l layers is then:

M = c (1) in × c (1) out × k (1) 2 × n (1) 2 + l i=2 c (i) out × k (i) 2 × n (i) 2 × c (i) in where c (i) in is layer i's number of input channels, c (i)
out is layer i's number of output channels, k (i) is layer i's lter size and n (i) is the layer's input size. Let us note that generally, c

(i-1) out = c (i)
in , since a layer's input is the previous layer's output. The reason why we choose this approach is so that the parasitic CNNs can be adapted to inputs with any number of input channels. Moreover, this way, we can keep a low number of channels in the middle layers without fearing any loss of information.

Evaluation

Simulation

To comfort our idea, we simulate two attacks where the attacker's aim is to extract a target model's weights:

In the rst, we consider one xed parasitic model at the entrance of the target model. The attacker does not know the parasite's architecture or weights.

In the second, we select a dierent pretrained parasite at each run. The attacker knows a parasite has been added, and can therefore try to extract the parasite's weights along with those of the base model.

First simulation

The rst simulation corresponds to a scenario where the attacker is unaware of the protection. We proceed layer by layer, as in CSI NN [START_REF] Batina | CSI NN: Reverse Engineering of Neural Network Architectures Through Electromagnetic Side Channel[END_REF].

We suppose that the attacker knows all the outputs of intermediate multiplications in the rst layer a .

Let X 1 , W 1 and O 1 denote, respectively, the input, the weights and the output of the model's rst layer. For simplicity, let us only consider the case where the rst layer is a convolutional one. We remind the reader in Section 2.2.1 that:

O 1 i,j = k l=0 k h=0 X 1 i+l,j+h • W 1 l,h
Let X 1 denote the input with added noise. The attacker only knows X 1 and the values o 1 i,j,l,h := X 1 i+l,j+h • W 1 l,h . She proceeds as follows:

1. For each output O 1 i,j , the attacker computes W 1 l,h :=

o 1 i,j,l,h X 1 i+l,j+h
if X 1 i+l,j+h = 0. Otherwise, the attacker nds a nonzero input neuron X 1 i +l,j +h to compute W 1 l,h in a similar fashion.

2. Once the rst layer's weights are recovered, the attacker computes the second layer's weights, W 2 i,j . For this, she rst computes

X 2 := k h=0 X 1 i+l,j+h • W 1 l,h .
She takes X 2 as the input of the second layer and extracts the second layer's weights as in the rst step.

3. The attacker repeats the previous step until all the layers' weights have been recovered.

4.

If there is a bias, the attacker simply recovers it through: β = X 2 -O 1 .

In fact, to make sure we introduce as little noise as possible, we average the obtained weights over 64 inputs.

Second simulation In the second simulation, the parasites are introduced dynamically, and the attacker knows about their existence. However, at each run, the parasitic CNN's weights and possibly the architecture change. Since, as mentioned in Section 4.2, the attacker requires several traces to recover the weights, this change of model at each run aects the results. We simulate an attacker's potential behaviour by averaging the various extracted weights over several inputs. This second simulated attack also proceeds one layer at a time, as follows:

1. Start with the rst parasitic layer, and compute the weights as in the rst simulation.

2. Repeat the operation over several inputs, and set the layer's weights to the average w av of the extracted values.

3. The next layer's inputs is the output of the rst layer with w av as the weights. a This is an unrealistic assumption, but since we aim to demonstrate the eectiveness of our protection, we assume perfect conditions for the attacker. Real CEMA attacks are much harder. Let us also note that in both simulations, we discard the weights that result in a division by 0 meaning that no nonzero input value among the provided set can be found , by setting the extracted weights to 0.

Models and Parasites Considered

Since we are mostly interested in models that could be used on smartphones and embedded systems in general, we consider two small models: LeNet [START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF] and Mo-bileNetV2 [START_REF] Sandler | MobileNetV2: Inverted Residuals and Linear Bottlenecks[END_REF], that we trained on the CIFAR-10 dataset [START_REF] Krizhevsky | Learning multiple layers of features from tiny images[END_REF]. LeNet is only comprised of two convolutional layers followed by three dense layers. MobileNetV2's more complex architecture is detailed in Table 4.1. 
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Finally, the parasitic models we add are based on the ones used in [START_REF] Zhang | Identity Crisis: Memorization and Generalization under Extreme Overparameterization[END_REF], with various layer numbers and in some cases, an additional Batch Normalization layer after each convolutional one. We mainly focus on models with one or two convolutional layers, described in Figure 4.2.

(a) Parasitic model with one convolutional layer. The input and output have shape [START_REF] Md | A Random Forest based predictor for medical data classication using feature ranking[END_REF][START_REF] Carlini | Cryptanalytic Extraction of Neural Network Models[END_REF][START_REF] Carlini | Cryptanalytic Extraction of Neural Network Models[END_REF]. The lter shape is [START_REF] Andriushchenko | Square Attack: A Query-Ecient Black-Box Adversarial Attack via Random Search[END_REF][START_REF] Andriushchenko | Square Attack: A Query-Ecient Black-Box Adversarial Attack via Random Search[END_REF].

(b) Parasitic model with two convolutional layers. All inputs and output have shape [START_REF] Carlini | Cryptanalytic Extraction of Neural Network Models[END_REF][START_REF] Carlini | Cryptanalytic Extraction of Neural Network Models[END_REF], but the middle layer has two channels. The lter shape is [START_REF] Andriushchenko | Square Attack: A Query-Ecient Black-Box Adversarial Attack via Random Search[END_REF][START_REF] Andriushchenko | Square Attack: A Query-Ecient Black-Box Adversarial Attack via Random Search[END_REF]. 

Results

The set of possible parasitic CNNs should be tailored to the user's requirements and tolerance: some tasks do not require as high an accuracy as more sensitive ones. In general, we consider in this Chapter that a couple of percents drop can be acceptable.

To select the architectures that can be added to the set of possible architectures, we determine the accuracy of the protected model depending on the standard deviation of the noise of the parasitic models at hand. We also check that when no parasite is added to the original model, our simulated attack does not result in a drop in the accuracy. We then add a parasitic model described in Section 4.3.2, approximating an identity function to which we add a Gaussian noise with a standard deviation of 0.2. The training and evaluation of the model at hand was performed on CIFAR10 images which have been normalized.

Thus, the images with no protection have a mean of 0 and a standard deviation of 1, and the ratio of standard deviations is : SN R = 1 0.2 = 5. This leads to an accuracy of 70.84% on the LeNet architecture, which is very similar to the original model's accuracy. The rst simulated attack described in Section 4.3.1 results in an extracted model with an accuracy of 12.66%.

In order to test our protection on a more representative NN model, we applied We summarize our experimental results in Table 4.2. We see that increasing the standard deviation and number of layers in the parasite leads to a much lower extraction accuracy. It is therefore necessary to nd a balance between a protected model's accuracy and the eectiveness of the defense. We also note that in most cases, the weights extracted from deeper layers are further from the original weights.

To further explain the way our countermeasure works, we measure the Pearson correlation coecient ρ between the extracted weights and original ones, one output channel at a time. Figure 4.4 shows the coecients for each extracted convolutional layer, for a 1-layer protected model with standard deviation σ = 0.01. The decrease of the correlation in deeper layers supports the domino eect: it is more dicult to extract deeper layers, as the noise introduced in the rst one is amplied.

To further analyse the impact per layer, we also plot the distribution of weight

dierences δ = ŵi -w i ||W || 2
between the extracted and original weights, for each of the four recovered convolutional layers. In Figures 4.5 
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4.9 • 10 -3 6 • 10 -3 2.9 • 10 gures. First, once again, we see that recovered weights from deeper layers tend to be further away from the original ones. The second is that a higher σ leads to fewer correctly extracted weights. We can thus understand why the attack succeeds for σ = 0.01, leading to an extracted accuracy of 71.21% (almost equal to the original accuracy) but fails for σ = 0.1, with an extracted accuracy of only 12.9%.

Second simulation In Section 4.3.1, we described a second simulated attack, where the attacker tries to approximate the added parasite along with the target parameters. But in this simulation, the parasite's weights change at each run. On average, considering a set of 30 possible parasitic one-layer models, the LeNet model to which we add one parasitic layer at random has an accuracy of 70.61%. In this case, the attack on the aforementioned LeNet model leads to an extracted model with an accuracy of 11.18%.

Similarly, we apply this second simulated attack to the rst 13 layers Mo-bileNetV2 with an additional parasite. On average, this also leads to an accuracy of 69.92% on the testing set and an extracted model with a very low accuracy: 10%. Thus, in both simulations, the attack fails, as the extracted model is unusable due to its low accuracy. This is the case despite the fact that we supposed the attacker had perfect traces and could average them over several inputs. We believe this proves the induced domino eect in the weight extraction process. Indeed, it does seem that the small error introduced in the rst layer because of the small additional parasitic noise in the input is transferred to the following layers and amplied by them.

One could argue that an attacker might proceed the same way as the defender, and also train CNNs on Gaussian noise to improve the extracted weights. However, when training the parasites several times, we noticed that the resulting weights were very dierent from one training to the next. Thus, the attacker would still need more work to extract the correct weights.

Additional computations Let us also compute the number of operations added through the parasitic models. As detailed in Section 4. 

M = c out × k × k × c in × n × n
where c out , c in are the layer's number of output and input channels respectively, k is the lter size and (n, n) is the layer's input size. We also explained that here, we feed one channel at a time to the parasitic models.

In Section 4.3.1, we explain that, for the parasites, we consider models with various layer numbers.

The LeNet architecture can be considered small compared to the ones used nowadays in the image processing eld. Adding one parasitic layer should therefore already be noticeable in the total number of multiplications. For the one convolutional layer model described in Section 4.3.2, we have: c out = 1, c in = 1, k = 5 and n = 32.

We also know that the inputs from the CIFAR10 dataset have 3 input channels.

Ignoring the much less time consuming Batch Normalization layer, this amounts to:

M = nb_input_channels × c in × c out × k × k × n × n = 76, 800 (4.1) 
Thus, the one-layer model adds 76,800 multiplications to the original LeNet model. But for inputs of size [START_REF] Duddu | Stealing Neural Networks via Timing Side Channels[END_REF][START_REF] Duddu | Stealing Neural Networks via Timing Side Channels[END_REF]3), LeNet requires 658,000 MAC (Multiply-Accumulate) operations. Thus, one such parasitic layer represents an 11.7% addition in the multiplications. Let us note that the tests carried out on LeNet were mainly for a proof-of-concept, as LeNet is no longer a standard model for image processing. 

out = 2 c (1) in = 1 k (1) = 5 n (1) = 32 c (2) out = 1 c (2) in = 2 k (2) = 5 n (2) = 32 (1) 
Ignoring the much less time consuming Batch Normalization layer, this amounts to:

M tot = nb_input_channels × (c (1) out • k (1) • k (1) • c (1) in • n (1) • n (1) (4.2) + c (2) out • k (2) • k 2 • c (2) in • n (2) • n (2) ) (4.3) = 307, 200 (4.4) 
MobileNetV2 trained on the CIFAR10 dataset requires 6.32 millions MAC operations. Thus, the additional 307,200 multiplications only represent 4.9% of the original MAC operations.

Discussions

In this Section, we discuss the limits and possible improvements to our countermeasure. First, in Section 4.4.1, we consider the number of traces an attacker needs to thwart our protection. Increasing the entropy in the set of parasitic models would leverage more work for the attacker. Section 4.4.2 discusses how to achieve such a higher entropy. Finally, Section 4.4.3 compares the overhead incurred by our method to common cryptographic countermeasures.

Number of Traces to Recover the Weights

Since our protection consists in adding randomness, an attacker who gathers multiple traces should be able to approximate the correct weights. The question that remains is the number of traces necessary for an almost exact extraction.

For the rst simulation, 1,024 traces already enable an attacker to increase the extracted model's accuracy from 11.74% with 128 traces to 71.19% for a mo-bileNetV2model protected by a two-layer parasite with σ = 0.01. But increasing σ still enables a protection: for instance, with σ = 0.05, the extracted accuracy is 17.12% with only a slight drop in the original accuracy: 69.51% instead of 71.41%.

It is therefore paramount to nd a balance between the standard deviation, the number of parasitic layers, the drop in the model's accuracy and the eectiveness of the protection.

Increasing the Entropy of the Added Noise

To maximize the eciency of the protection, it is important to have a large entropy in terms of the possible parasitic architectures. One way to increase the said entropy is to consider selecting either one or several CNNs at random instead of only one.

These can then be applied to several parts of the input, as long as all the neurons are aected by at least one model.

Thanks to the randomness in the parasites' architectures, we believe that our protection would be particularly advantageous when extending it to the black box context and [START_REF] Batina | CSI NN: Reverse Engineering of Neural Network Architectures Through Electromagnetic Side Channel[END_REF]'s original threat model where the attacker does not know the model's architecture, and which is enforced by Chapter 3. This makes the parasitic set's entropy higher.

Comparing to Common Countermeasures

The authors of CSI NN [START_REF] Batina | CSI NN: Reverse Engineering of Neural Network Architectures Through Electromagnetic Side Channel[END_REF] consider two possible SCA countermeasures to thwart the parameter extraction: masking and shuing independent operations. In both cases, they mention that these would lead to a large overhead.

According to the authors of [START_REF] Batina | CSI NN: Reverse Engineering of Neural Network Architectures Through Electromagnetic Side Channel[END_REF], masking each neuron at each iteration should prevent the attack. However, masking a multiplication is expensive: it is at least twice the cost of the initial multiplication, as can be seen in Table 1 of [START_REF] Biryukov | Optimal First-Order Boolean Masking for Embedded IoT Devices[END_REF]. Since masking needs to be applied to all the multiplications, the total number of multiplications in one run would double. In our case, our overhead only consists in a small percentage of the original number of multiplications. More importantly, as explained in Section 2.3.7, the authors of [START_REF] Dubey | MaskedNet: A Pathway for Secure Inference against Power Side-Channel Attacks[END_REF] note that since the masking is not computed in an arithmetic eld, a bias is incorporated due to the sign. Other methods are therefore necessary to fully mask the parameters. The authors of [START_REF] Dubey | MaskedNet: A Pathway for Secure Inference against Power Side-Channel Attacks[END_REF] introduce hiding techniques for the sign bit, while the authors of [START_REF] Dubey | BoMaNet: Boolean Masking of an Entire Neural Network[END_REF] take the masking further.

The authors of [START_REF] Dubey | ModuloNET: Neural Networks Meet Modular Arithmetic for Ecient Hardware Masking[END_REF] consider completely changing the way BNNs are computed to accommodate for arithmetic eld masking. In all cases, the overhead goes beyond the basic masking techniques.

Shuing is also an expensive operation. With the Fisher-Yates algorithm, if there are n elements to swap, then the algorithm runs in O(n) but requires generating n truly random numbers [START_REF] Eberl | Arch. Formal Proofs[END_REF]. Here, n is the number of operations which can be permuted. In an FC layer with n x inputs and n w weights, n = n x × n w . In the convolutional case, supposing a stride of 1, an input shape (n x , n y , c in ) and a weight shape (k, k, c out ), there are n = c out × (n xk + 1) × (n yk + 1) convolutional operations to shue. Since random number generation is time consuming [START_REF] Batina | CSI NN: Reverse Engineering of Neural Network Architectures Through Electromagnetic Side Channel[END_REF] and needs to be applied to all layers, we believe that our countermeasure should also generate less overhead.

Conclusion

This Chapter focuses on mitigating physical SCAs aiming at extracting a model's weights and biases. As in Chapter 3, we make use of additional dummy layers called parasites. But while in Chapter 3, we wished to change a model's structure by adding dummy ReLU activation functions, our goal in this Chapter is to obfuscate a model's input. The focus in this context is the dynamic addition of our dummy layers: because the input is obfuscated with changing noise at each run, the attacker struggles to recover precise weights for the rst layer. This rst error is then amplied by the following layers, rendering the extracted model inaccurate.

To comfort our claims, we realise two simulated attacks on a LeNet and a Mo-bileNetV2 architectures, where the attacker is supposed to have exact traces. The attack fails in both cases (the extracted model has an accuracy around 10%). While the attack succeeds with enough traces in some cases, the defender can play with the standard deviation of the additional noise to make the model more robust. We also suggest other approaches to improve our defense in Section 4.4.

Even if the parasites incur an overhead, we explain in Section 4.4.3 that they appear to be less time-consuming than common cryptographic measures.

While Chapter 3 and the current Chapter leverage parasitic models to counter reverse-engineering attacks, we observe in Chapter 3 the impact that the current change of structure has on adversarial samples. In the wake of this observation, the next Chapter proposes a way to thwart adversarial attack through the introduction of a dierent type of parasite.

Chapter 5: Application to Adversarial

Examples

While this thesis focuses on protecting NNs against reverse-engineering attacks, one of the motivations to do so is to limit the possibility of other attacks, such as adversarial ones. In Chapter 3, we explain that parasitic models also impact adversarial samples. Therefore, we follow up with that observation in this Chapter, and show that we can leverage parasitic models to mitigate adversarial examples.

So far, we have only exploited two aspects of the parasites:

Additional layers make a model's internal structure more complex.

Dynamically selecting parasites among a set of pretrained models and adding them at the entrance of a model leverages randomness in the input values.

This, in turn, mitigates weight extraction physical SCAs.

We can mix the two techniques to tackle adversarial attacks. Indeed, the latter rely on the internal structure of a model to generate adversarial samples. However, simply changing the architecture does not make the adversarial search more complex.

It only modies the generated samples. We believe that a constantly changing architecture leads to the need to nd transferable examples, and therefore makes it harder on an attacker. We show the eciency of our proposal in this Chapter.

First, we introduce the considered threat scenario and give an overview of our proposal in Section 5.1. We then detail our proposal and justify the use of dynamic autoencoders in Section 5.2. After showing our results in Section 5.3, we discuss them in Section 5.4 and conclude this Chapter in Section 5.5.

Threat Scenario and Defense Overview

Adversarial attacks can be either black-box when the attacker has no prior knowledge about the architecture, white-box when the architecture and parameters are known, or gray-box when the attacker has access to part of the information. The best known attacks rely on the use of gradients, which require access to the weights.

Threat Scenario In this Chapter, we consider a remote gray-box scenario:

The attacker knows the base model's architecture and parameters

The rst point implies that the attacker can compute gradients on the parameters, and therefore launch gradient-based adversarial attacks.

The attacker has query access: she can query the model with crafted inputs and get the model's output.

As will be further detailed in Section 5.3, we either consider that the attacker only has access to the base model, or she also knows we have introduced a countermeasure.

Based on these assumptions, the attacker's goal is, given an input x, to generate an adversarial sample x := x + such that the small noise is unnoticeable to the human eye but fools the base model.

More specically, we focus on the standard evaluation from one library of attacks, AutoAttack [START_REF] Croce | Mind the box: l 1 -APGD for sparse adversarial attacks on image classiers[END_REF].

Protection Overview Once again, the parasites introduced in Chapter 3 come in handy. As explained in that Chapter and in [START_REF] Shamir | A Simple Explanation for the Existence of Adversarial Examples with Small Hamming Distance[END_REF][START_REF] Moosavi-Dezfooli | Deep-Fool: A Simple and Accurate Method to Fool Deep Neural Networks[END_REF], adversarial examples are based on classication boundaries, which are a result of the internal structure. As observed in Chapter 3, a change in the internal structure goes hand in hand with a modication of the adversarial examples. As detailed in Section 2.3.7, autoencoders have been used to deect adversarial examples [START_REF] Bakhti | DDSA: A Defense Against Adversarial Attacks Using Deep Denoising Sparse Autoencoder[END_REF]. Indeed, they can keep the important features and eliminate unwanted noise. Based on these assumptions, we propose the following scheme:

Train a set of parasitic autoencoders S to approximate a noisy identity.

At each run, select one or several parasite(s) in S.

Select one or several location(s) in the base model, where we place the selected models. Let us note that in this Chapter, we only consider the case where these autoencoders are placed at the entrance of the base model. But they can be placed after any layer as long as the accuracy does not drop much.

The change in the structure that the autoencoders bring, along with the dynamism of the method, ensure that a potential attacker would struggle in her search for adversarial samples. We detail our methodology in Section 5.2 and test our defense in Section 5.3.

Related Works Various protections against adversarial examples have been pro-

posed so far. We detail them in Section 2.3.7. Denoising autoencoders [START_REF] Bakhti | DDSA: A Defense Against Adversarial Attacks Using Deep Denoising Sparse Autoencoder[END_REF] are the closest art to our technique. While we also consider incorporating autoencoders as a countermeasure, our proposal diers from denoising autoencoders in two ways:

Instead of training our autoencoders on noisy inputs, we add noise to the labels (see Section 5.2.1).

We consider a dynamic approach, so as to add randomness and protect the base model even when the attacker knows an autoencoder has been introduced (see Section 5.2.3).

Dynamic Parasites

In this section, we explain and detail our proposed defense.

5.2.1

Autoencoders for a Noisy Identity Chapters 3 and 4 introduce the notion of parasites approximating a noisy identity.

A parasitic model P is trained to return, for a given input x, P (x) = x + N (σ)

where N is a Gaussian noise with standard deviation σ.

Training While the parasites used in this defense undergo the same training, they are of a dierent kind. Autoencoders [START_REF] Georey | Autoencoders, Minimum Description Length and Helmholtz Free Energy[END_REF] are NNs whose aim is to approximate the identity under constraints. They are comprised of an encoding phase e and a decoding phase d. After its training, an autoencoder A should therefore be such that f (e(x)) ≈ x for all x in the considered dataset. They have often been used

for compression (with dimensionality reduction) or feature learning [START_REF] Goodfellow | Deep Learning[END_REF]. Indeed, they tend to have hidden layers with lower dimensions than the input and output layers, giving them a `diabolo' shape. In that case, they are called undercomplete autoencoders. For instance, when the decoding of an undercomplete autoencoder is linear and the loss function used is the mean squared error (i.e. the 2 norm between the current output and the label), then the coding phase is similar to applying a Principal Component Analysis (PCA). This example explains why autoencoders can be used for feature extraction or compression.

In fact, data distributions are not random: they lie within a lower dimension manifold. This is why undercomplete autoencoders are generally able to learn compressed versions of the data: only part of the input is necessary for predictions.

Since their appearance decades ago, much progress has been made on autoencoders and their use. One particular use is interesting in our case: denoising autoencoders learn to eliminate noise. A model A is then trained on a training set X as follows:

For x ∈ X, corrupt x to get x = x + for some noise .

This forms the corrupted set X.

Train the model with training set X and labels X.

Our goal when training our parasitic autoencoders is, in a sense, the opposite of the denoising task. Instead of having X as the training set and X as the labels, we proceed the other way around: X is the training set and X are the labels. The reason for this dierence is that we wish to introduce noise, so as to ensure a change in the base model's structure. Moreover, the dierent layers within the base model do not react similarly to noise. Since we can optionally select dierent locations in the model to add the autoencoder, it is easier for the sake of a better adaptation to train the model with a noisy label rather than a noisy input. Thus, the input is perturbed thanks to two aspects:

The compression produced by the encoding phase in undercomplete autoencoders only keeps the important features. The decoding phase then generates details dierent from the original ones to get the input back to its initial dimension.

We train the autoencoder to add Gaussian noise to the identity.

Architecture While autoencoders can be trained with only one hidden layer i.e. only one layer besides the input and output ones , depth presents four main advantages:

Just like any DNNs, depth yields the same advantages for autoencoders as those mentioned in Section 2.2.2. Namely, complex tasks require large numbers of neurons, and even though one layer should be enough according to the universal approximator theorem, depth makes the implementation more realistic.

Shallow networks do not leave room for additional constraints as required for many autoencoders.

Approximating some functions takes less computational time with deeper autoencoders [START_REF] Goodfellow | Deep Learning[END_REF].

Most often, deeper autoencoders require exponentially less training data [START_REF] Goodfellow | Deep Learning[END_REF].

In practice, depth contributes to better compression performances [START_REF] Hinton | Reducing the dimensionality of data with neural networks[END_REF].

Since we wish to maximize the change in the architecture without the base model's accuracy dropping much, we opt for a deep undercomplete autoencoder to compress the input data. The autoencoders we consider in our experiments are described in Section 5.3.

As explained in the two previous Chapters, approximating the identity is an easy task for CNNs [START_REF] Zhang | Identity Crisis: Memorization and Generalization under Extreme Overparameterization[END_REF]. Moreover, adding a parasite to a model alters its internal structure, especially thanks to the nonlinear activation functions. We exploited this change in Chapter 3 to thwart mathematical attacks relying on the piece-wise linearities of functions such as ReLU . However, in this Chapter, we do not limit ourselves to the introduction of hyperplanes to make attacks more complex. Indeed, new hyperplanes made the attacker in [START_REF] Carlini | Cryptanalytic Extraction of Neural Network Models[END_REF] struggle more because it added work to its generally time consuming sign recovery step. In the adversarial case, deeper or larger models are still easily targeted. The goal in this Chapter is to identify the important features as well as introduce noise thanks to the aforementioned autoencoders, and to ensure constantly changing samples through the dynamism of the parasites. Autoencoders trained dierently, while still able to correctly compress the input data, lead to dierent changes to the structure. Indeed, they have various ways of extending the compressed data back to its initial shape. Then, if M l A denotes the base model to which we add an autoencoder A at location l, adversarial examples generated for M l A do not necessarily transfer to M l A . We show this last statement in Section 5.2.2.

Transferability

As previously, let M be our base model, and M l A denote the base model to which we add an autoencoder A at a certain location l. The constraints put on autoencoders through their architecture, and the additional noise in the training labels lead to a model M A dierent from that of M . Because the elements of S are trained dierently, the various M A models with A ∈ S also have various structures, and lead to hardly transferable adversarial samples. The rst step to ensure the eciency of our countermeasure is to conrm this lack of transferability between M l A and M A . With that aim, we train a set S of 14 autoencoders to approximate a noisy identity. The autoencoders are trained on a Gaussian noise with various standard deviations (between 0.008 and 0.15). In this experiment, we only consider adding autoencoders after the input layer, as in Figure 5.1. The base model is a PyTorch implementation of WideResNet [START_REF] Zagoruyko | Wide Residual Networks[END_REF]. Let M A be the base model preceded by autoencoder A. We generate 200 adversarial examples for each M A , where A ∈ S. Let x A be the adversarial examples associated to M A . For each A ∈ S, we test the accuracy of all M A , A ∈ S against x A . For 1 ≤ i ≤ 13, we then compute the ratio of elements in x A that are no longer adversarial for at least i models in S. For instance, for i = 2, we wish to determine the number R of elements in x A that are not adversarial for at least 2 models among the 13 considered. In other words, those R elements are adversarial for M A , but there are at least two models M A 1 and M A 2 which output the original, correct labels for those samples.

Let us note that we give the details about the autoencoder and the base model's architectures and training process in Section 5.3. Table 5.1 shows the results of the aforementioned experiment. We see that around 30% of adversarial samples for a model M A are no longer adversarial for at least 8 other protected models. This high ratio is proof that adversarial samples generated with one autoencoder are rarely transferable to other protected models.

It also means that if an attacker generates an adversarial example on model M A for a certain A ∈ S, it is unlikely that it will also fool model M A .

We base our countermeasure on the lack of transferability observed in Table 5.1, as explained in Section 5.2.3.

Dynamism

Because they tend to eliminate unnecessary details, autoencoders have been previously proposed as a countermeasure to adversarial attacks [START_REF] Bakhti | DDSA: A Defense Against Adversarial Attacks Using Deep Denoising Sparse Autoencoder[END_REF]. However, an attacker who knows the existence of the autoencoder can still adapt its attack to the new architecture. This denoising technique has been attacked by Carlini and Wagner's transferable examples [START_REF] Carlini | Towards Evaluating the Robustness of Neural Networks[END_REF].

The fact that adversarial samples generated with AutoAttack on one model M l A are unlikely to be transferable to another model M l A justies the dynamic use of the set S in the inference phase of the base model M . Every time an input is fed to the base model M , we select an autoencoder A ∈ S at random. While in Section 5.3, we only present the case where an autoencoder is associated to a given location, the location l can also be selected at random. Because the model is constantly changing at each run, it becomes dicult for a potential attacker to carry out an adversarial attack. Indeed, even if she knows that an autoencoder was added to its architecture, and considers one such protected model to generate an adversarial sample, then it is highly probable that the generated example would not fool the dynamic protection.

The proposed countermeasure therefore consists in the following steps:

Let X be a training set for the autoencoders. For instance, X can be the same set as the inputs of the base model, or the output of one of the base model's layers. The second example is useful in the case where the autoencoder is to be placed in the middle of the base model's architecture. We generate the corrupted sets Xσ for various values of σ such that for each batch x B ∈ X, the corrupted batch is xB = x B + N (0, σ) where N (0, σ) is a centered Gaussian noise with standard deviation σ. 

Experimental Settings

Our aim with the autoencoders is to ensure that while dynamically changing the internal structure of the base model, they do not signicantly drop its accuracy. We therefore opt for a deep architecture, described in Table 5.2. Some autoencoders have one additional convolutional layer Conv2D(128, 3, 2) followed by a BN layer and a ReLU activation.

We train the autoencoders on the CIFAR10 [START_REF] Krizhevsky | Learning multiple layers of features from tiny images[END_REF] dataset. The training is done by batches. Given a standard deviation σ, for each epoch, we generate a random Gaussian noise N (0, σ). Then, for each bacth X B , the label is X B + N (0, σ).

In our experiments, we place the autoencoders at the entrance of the base model.

This means that for input x, base model M and autoencoder A, the protected model computes M (A(x)).

Once the set S of autoencoders is ready, there are various ways of randomly selecting one autoencoder in S during the inference phase. For each input x fed to the protected model, we compute a hash value for x and use the autoencoder corresponding to it. The hash function we settle on is SHA1 [START_REF] Eastlake | RFC3174: US Secure Hash Algorithm[END_REF]. In other words, with N elements in S, we compute, for each input x, i = hash(x) mod N . We then place the ith autoencoder at the entrance of the base model.

The base model we consider is the standard one for the CIFAR10 dataset in RobustBench [START_REF] Croce | RobustBench: a standardized adversarial robustness benchmark[END_REF], when considering attacks for the 2 norm. It is a type of ResNet called Wide ResNet [START_REF] Zagoruyko | Wide Residual Networks[END_REF], with accuracy 94.5% on the CIFAR testing set.

In the following experiments, we launch the standard execution of AutoAttack [START_REF] Croce | Mind the box: l 1 -APGD for sparse adversarial attacks on image classiers[END_REF] on 200 elements from the CIFAR10 dataset. It consists in successively applying an untargeted then a targeted PGD attack, before moving on to a targeted FAB attack and nally a Square attack (see Section 2.3.6 for details of the attacks).

In this evaluation, the maximum perturbation is = 0.5.

While various versions of the PGD attack are implemented in AutoAttack, the one used in the standard evaluation is based on the cross entropy (CE) loss. This loss is used for classication tasks. Given input x, correct label y and current guessed label ŷ, CE for a task with C output classes is dened as:

CE(x, y) = - C i=1 y i • log(ŷ i ) 5.3.

Results

We consider two experiments to measure the eciency of our countermeasure. In both cases, we call M the base model and M S the model protected with our dynamic defense.

In the rst, the attacker has access to M 's architecture and parameters, but

does not know about the parasites' existence. She therefore generates adversarial examples x adv on 200 elements from the CIFAR10 dataset thanks to AutoAttack. We then test the accuracy of M S against x adv .

In the second, the attacker is aware that an autoencoder has been added to the model. She therefore generates samples x A adv to fool M A for a certain A ∈ S. We then test the accuracy of M S against x A adv .

First experiment Once the adversarial examples against M have been generated, we try a dynamic defense with an autoencoders set of length N varying between 1 and 13. In this rst experiment, all autoencoders are placed at the entrance of the model. The results are presented in Table 5. 3. We see that one autoencoder is enough to mitigate an adversarial attack when the attacker is not aware of the defense. This conrms the eciency of previously introduced autoencoder defenses [START_REF] Bakhti | DDSA: A Defense Against Adversarial Attacks Using Deep Denoising Sparse Autoencoder[END_REF]. Table 5.3 also shows that when the attacker is oblivious to the parasitic autoencoder, it is not necessary for the defense to be dynamic. Once again, this aligns with the previous defenses that only rely on one xed autoencoder.

However, an attacker can thwart such an attack by training an autoencoder A on her own and generating adversarial samples against the compound model M A . The following experiment shows the eciency of our countermeasure in such a scenario.

Second experiment We present the results of the previously explained second experiment on 10 autoencoders. For each A ∈ S where S has length N = 10, we generate adversarial examples x A . We then test the accuracy of the dynamically Table 5.3: We measure the robustness of our protected model in the case where the attacker knows the original architecture and parameters. She generates adversarial samples using the standard settings for AutoAttack on the CIFAR10 dataset for norm 2 . We test the accuracy of protected models with 1 ≤ i ≤ 13 autoencoders in the parasitic set S. protected model against x A , in the case where the autoencoders are placed at the entrance of the model.

Table 5.4 shows that dynamically adding autoencoders ensures at least a 40% accuracy when there are enough models in S. We also note that this threshold is increased to at least 50% when we allow the accuracy to drop further (around 85%).

Let us note that the case where N = 1 often leads to a higher robustness because the selected autoencoder is dierent from the one used to generate the adversarial examples. This cannot always be ensured. The dynamism enables us to avoid the case where the attacker uses the correct autoencoder, as is the case in the rst cell of Table 5.4.

Let us also note that the autoencoder A used to generate the adversarial examples is in the set of possible autoencoders S. This explains why in all columns, we observe a drop in the accuracy that is counterbalanced with enough other models: the drop appears when A is among the models the defender can dynamically select.

Thus, this second experiment shows that our countermeasure mitigates attacks where a malicious user trains an autoencoder to generate adversarial samples. While knowing the full architecture enables an attacker to fool the model with or without an autoencoder, a changing architecture makes her task harder.

Discussion

Because we use RobustBench's standard evaluation, we can compare our countermeasure to their leaderboard. Two defenses in their leaderboard use the same WideResNet model as we do. When the attacker is unaware of the attack, our robustness is similar to that of the best model in the leaderboard [START_REF] Sylvestre-Alvise | Fixing Data Augmentation to Improve Adversarial Robustness[END_REF]. Indeed, the authors of [START_REF] Sylvestre-Alvise | Fixing Data Augmentation to Improve Adversarial Robustness[END_REF] propose a defense with a 78.8% accuracy, which is similar to the accuracies we get in Table 5.3.

In our second experiment, we have a robustness of over 40% with almost no drop in the accuracy with autoencoders at the entrance. We can increase this robustness to 50% if we are more lenient about the accuracy. The robustness might also be increased by varying the locations of the autoencoders. These robustness values are lower than the two models listed in the leaderboard [START_REF] Sylvestre-Alvise | Fixing Data Augmentation to Improve Adversarial Robustness[END_REF][START_REF] Rony | Decoupling Direction and Norm for Ecient Gradient-Based L2 Adversarial Attacks and Defenses[END_REF]. However, both those techniques rely on adversarial training. While, as explained in Section 2. In Section 2.3.7, we also mention that autoencoders have already been used to mitigate adversarial attacks [START_REF] Bakhti | DDSA: A Defense Against Adversarial Attacks Using Deep Denoising Sparse Autoencoder[END_REF]. The authors of [START_REF] Bakhti | DDSA: A Defense Against Adversarial Attacks Using Deep Denoising Sparse Autoencoder[END_REF] use sparse denoising autoencoders to protect models against various adversarial attacks. While this countermeasure shows a robustness equivalent to ours in the gray-box context where the attacker does not know about the defense, the authors do not show the results for the whitebox case on the CIFAR10 dataset. Moreover, our proposal is complementary to that in [START_REF] Bakhti | DDSA: A Defense Against Adversarial Attacks Using Deep Denoising Sparse Autoencoder[END_REF]. Instead of training simple undercomplete autoencoders, our parasitic set can be comprised of sparse denoising autoencoders. We believe that applying our scheme to the sparse denoising autoencoders in [START_REF] Bakhti | DDSA: A Defense Against Adversarial Attacks Using Deep Denoising Sparse Autoencoder[END_REF] could improve their robustness in the case where the attacker knows an autoencoder has been introduced in the original model.

Conclusion

In this Chapter, we pretrain a set of parasitic autoencoders, and exploit a dynamic introduction of those parasites in order to thwart gradient-based adversarial attacks.

We carry out two experiments to show the eciency of our countermeasure against the standard evaluation of AutoAttack on the CIFAR10 dataset. In the rst, the attacker has access to the target model but does not know about the defense. In the second, the attacker knows that an autoencoder has been added to the model. In both cases, the robustness of the model is increased thanks to our countermeasure.

This Chapter suggests that the dynamic use of autoencoders is a promising as [START_REF] Moosavi-Dezfooli | Deep-Fool: A Simple and Accurate Method to Fool Deep Neural Networks[END_REF], an attacker cannot gure out the weights without recovering the architecture as well. Thus, one way of protecting the weights and biases of a model is to obfuscate its architecture.

We state in part Part I that for common tasks, it is realistic to assume that the attacker has access to the architecture. However, for sensitive tasks such as biometrics and facial recognition [START_REF] Bud | Facing the future: the impact of Apple FaceID[END_REF], or very specic ones, the architecture can be kept a secret. Finding the correct architecture for the task at hand can be an arduous task.

Too deep architectures may overt more easily, while shallow ones might not reach a high enough accuracy. Other hyperparameters such as skips (see Section 2.2.1) can improve a model's learning. The importance of the architecture selection can be seen in Figure 5.2, where we see the evolution of the accuracy on the ImageNet [START_REF] Krizhevsky | ImageNet Classication with Deep Convolutional Neural Networks[END_REF] dataset over the years.

Moreover, even though usual tasks generally require common architectures, there are various families of architectures that could be selected. In fact, even within one family of architectures such as VGG or ResNet , the numerous parameters make it almost impossible for an attacker to determine the exact architecture. The authors of [START_REF] Yan | Cache Telepathy: Leveraging Shared Resource Attacks to Learn DNN Architectures[END_REF], for instance, state that the initial set of possible architectures for the VGG16 architecture comprises over 5.4 × 10 12 architectures.

Furthermore, knowing the model already provides some information that an attacker might exploit to carry out other types of attacks [START_REF] Kakizaki | Toward Practical Adversarial Attacks on Face Verication Systems[END_REF][START_REF] Shokri | Membership Inference Attacks Against Machine Learning Models[END_REF].

Thus, despite it appearing as a trivial security aspect, it is also paramount to ensure the architecture's protection.

To the best of our knowledge, so far, most reverse-engineering attacks that aim CSI NN [START_REF] Batina | CSI NN: Reverse Engineering of Neural Network Architectures Through Electromagnetic Side Channel[END_REF] counts on that fact to iteratively determine the number of neurons per layer. The authors of [START_REF] Hong | Security Analysis of Deep Neural Networks Operating in the Presence of Cache Side-Channel Attacks[END_REF] and [START_REF] Hong | How to 0wn the NAS in Your Spare Time[END_REF] monitor the call to individual layers through the cache to reconstruct the model. Cache Telepathy [START_REF] Yan | Cache Telepathy: Leveraging Shared Resource Attacks to Learn DNN Architectures[END_REF] targets matrix multiplications corresponding to FC and convolutional layers in order to determine a model's hyperparameters. In all cases, the attacker trusts the model to compute its predictions layer by layer. Based on this observation, we introduce Telepathic Headache, a countermeasure to cache-based architecture extraction attacks against CNNs.

In this Chapter, we rst introduce the threat scenario and protection overview in Section 6.1. Then, we explain how CNN computations can be reordered in Section 6.2. Section 6.3 adds randomness to the reordering to make attacks more complex. Section 6.4 summarizes the full scheme of our defense. The results, including a theoretical analysis of the scheme's security, are presented in Section 6.5.2.

Finally, Section 6.6 concludes this Chapter.

Threat Scenario and Defense Overview

Threat Scenario Our goal is to prevent an attacker from recovering a model's secret architecture. For this, we place ourselves in the same threat scenario as the Cache Telepathy attack [START_REF] Yan | Cache Telepathy: Leveraging Shared Resource Attacks to Learn DNN Architectures[END_REF].

The attacker in [START_REF] Yan | Cache Telepathy: Leveraging Shared Resource Attacks to Learn DNN Architectures[END_REF] is relatively strong since she has access to the cache and the computations are supposed to run on the CPU. On the other hand, this attack extracts more information than [START_REF] Hong | Security Analysis of Deep Neural Networks Operating in the Presence of Cache Side-Channel Attacks[END_REF][START_REF] Hong | How to 0wn the NAS in Your Spare Time[END_REF] and does not require the help of trained ML models as in [START_REF] Oh | Towards Reverse-engineering Black-Box Neural Networks[END_REF]. The last point makes the attack ecient, as it does not require the gathering of a dataset or training another ML model.

This is why we focus on this cache attack. But because our defense consists in reordering CNN computations, as mentioned above, several other architecture extraction attacks should also be mitigated [START_REF] Hong | Security Analysis of Deep Neural Networks Operating in the Presence of Cache Side-Channel Attacks[END_REF][START_REF] Hong | How to 0wn the NAS in Your Spare Time[END_REF][START_REF] Batina | CSI NN: Reverse Engineering of Neural Network Architectures Through Electromagnetic Side Channel[END_REF].

The aim of [START_REF] Yan | Cache Telepathy: Leveraging Shared Resource Attacks to Learn DNN Architectures[END_REF] is to reduce the set of possible architectures to one small enough that an attacker can train all models in it and select the best one. This is further detailed in Section 2. Based on these observations, we propose to compute layers in a depth-wise fashion. But instead of computing a neuron in layer i as soon as all necessary neurons in layer i -1 are ready, we wait for a block of neurons in layer i to be ready before starting the execution. With this method, we aim at making layer computations overlap, without being restricted to computing one neuron at a time.

Let us detail our proposed method. Our goal is to make the computations of several layers overlap. We start executing layer i+1 before the execution of layer i is over. The GeMM algorithm [START_REF] Goto | Anatomy of high-performance matrix multiplication[END_REF] is thoroughly optimized, and makes sure the entire cache is used for large matrix multiplications. Making one neuron computation at a time to execute neurons as soon as enough data is available would lead to too much overhead. Thus, a balance needs to be reached between the added overhead and the number of subdivisions of matrix multiplications.

Block computations Let us rst consider the case of convolutional layers. Let layer i be a convolutional one, with n

(i)
k lters of size k (i) × k (i) . As a reminder, each convolutional layer is computed as one matrix multiplication between a reshaped input matrix R and a reshaped lter matrix F . Let R denote the reshaped matrix as in Figure 2.7 of the input I (of size n × n). For an example of a standard way to reshape the input, see Figure 6.2. Let F denote the n

(i) k × (k (i) • k (i) ) matrix
where each row is a attened lter.

Here, our goal is to compute the matrix multiplication F × R by blocks. Every time a block A of neurons in matrix R is ready, we multiply A with the corresponding lter blocks in F . Let us detail how this is achieved.

If there is no padding, the reshaped matrix R has dimensions (k

(i) 2 • n (i) k ) × (n - k (i) +1) 2 . Let B ∈ N. R is divided into N non-overlapping blocks {R B l } 1≤l≤N of size B × B. There are W (i) := (n-k (i) +1) 2 B
blocks R B width-wise and H (i) := k (i) ×k (i) B blocks height-wise, corresponding to a total of:

N (i) := (n -k (i) + 1) 2 B × k (i) × k (i) B blocks R B .
Each such block R Br needs to be multiplied by lter blocks F Br of size n

(i) k × B. We can further divide F Br into M (i) r blocks {F b r,l } 1≤l≤M (i) r of size B × B. If n (i) k is not a multiple of B, we pad the last block F b M (i) r
. Thus, each block R B needs to be multiplied by:

M (i) r := n (i) k B lter blocks.
Once the layer receives all the values in the rth block R Br from the previous layer, all the multiplications {R Br × F b r,j } 1≤j≤M (i) r are computed. The results are added to those of the other R B blocks involving the same columns in R. Since there are H (i) blocks R B height-wise, H (i) In that scenario, the blocks in the same column have the same width, and those in the same row have the same height. To prevent an attacker from using this information, we can zero-pad the blocks right before each multiplication to turn the rectangle blocks into squares. Thus, each block is a square of size max(width, height), where width and height are the block's original width and height. This way, the blocks in a same row or in a same column can have dierent block sizes.

As explained in Section 6.2.2, the reshaped pooling matrices cannot be divided height-wise due to their small height. Therefore, only one array of random block sizes is created, to divide the matrix width-wise.

In the random case, Algorithm 2 needs to be updated to take into account the height and width of the considered block. Only lines 5 and 6 in Algorithm 2 change.

Before the loop on line 5, we get the correct block width and height thanks to the generated arrays tw and th. These are then provided to accumulator_handler.

Algorithm 4 is the full computation. For all input elements, the function computes the GeMM multiplications (line 5) and sends them, one by one, to the accumulator handler (line 6). This is enough to start the whole process.

I n (n -k + 1) × (n -k + 1) k × k × n (i) k I n (n -k + 1) × (n -k + 1) k × k × n (i) k I (n -k + 1) × (n -k + 1) k × k × n (i) k n I (n -k + 1) × (n -k + 1) k × k × n (i) k n R R R R
The blue neuron's value in the input (left) is added to the four highlighted columns (right). The input size is n × n and the lter size is k × k.

Step 1: Receiving neuron from previous layer Layer i -1

I (Input of layer i) n k (i) × k (i) × n (i) k R (reshaped input of layer i) (n -k (i) + 1) × (n -k (i) + 1)
Adding neuron 7 to the correct locations in R 

B

Step 2: Multiplying with the filter blocks

Zero padding

Reshaped filter Let us further detail the way we deal with convolutional GeMM computations in step 4. Let R Br be a full block in layer i, and w and h be its corresponding width and height respectively. As explained in Section 6.2.1, each R B i is associated with lter blocks {F b r,j } 1≤j≤M

k (i) × k (i) n (i+1) k F br,1 F br,2 × Full block R Br B 1 2 5 2 3 6 3 4 7 = Temporary output (n -k (i) + 1) × (n -k (i) + 1) n (i+1) k F br,1 × R Br F br,2 × R Br
(i) r . M (i) r multiplications F b r,l × R Br ∀0 ≤ l ≤ M (i) r are computed.
The output of those multiplications are sent to the next layer. Since R Br 's columns are only subcolumns from the reshaped input R's columns, the outputs computed are only partial results. The results for all height-wise input blocks need to be summed in order for some neurons to be ready in the following layer. Figure 6.5 shows that contrary to a normal execution, our protection leads to an overlap of layer computations.

Results

Security Analysis

We consider an attacker whose goal is to recover the architecture of a target CNN.

The list of hyper-parameters to recover is therefore:

Number and types of layers, and connections between layers.

Filter sizes for convolutional layers and window sizes for pooling ones.

Input and output sizes.

Padding.

The authors of Cache Telepathy restrict the possible target architectures to a search space. The latter is built thanks to the following assumptions:

In convolutional layers with lter size k × k, we have that: k ∈ {1, ..., 11}.

The padding p is such that p ≤ k.

In each layer, the number of output channels is such that: n out is a multiple of 64 and n out ≤ 64 × 32.

. A potential attacker is assumed to know n and in 4 . This is a reasonable assumption, since the input size is known to an attacker who can query the target model.

Furthermore, for simplicity, let us assume that the attacker knows that layers are sequentially connected.

Recovering the unprotected architecture with Cache Telepathy: By monitoring GeMM multiplications, the attacker in Cache Telepathy can identify the two convolutional layers, as each corresponds to one matrix multiplication. Moreover, the lack of a max pooling layer in between the two layers is identied through timing analysis. Indeed, a max pooling layer incurs a time overhead between GeMM operations. The attacker also determines the matrix sizes. This directly provides her with out 4 = in 5 and H (4) . Since H (4) = k (4) × k (4) × in 4 and in 4 is known, the attacker can deduce k (4) . The attacker also directly observes that n = (n + 2 • pk (4) + 1) 2 . Since the attacker now knows n and k (4) , she can easily recover p = √ n -n+k (4) -1 2 .

M axP ool's window size is determined to be 2 by comparing the input and output sizes of the pooling layer.

Thus, monitoring GeMM computations enables an attacker to nd:

The number of convolutional layers by counting the GeMM operations.

The input and output shapes (including channels) of Conv4 and Conv5 thanks to the matrix sizes.

The lter sizes for the two layers thanks to the matrix sizes.

In short, the attacker manages to recover all the hyper-parameters of Conv4, Conv5, as well as the maxpooling layer that follows them.

Protected Case, when convolutional layers can be distinguished: Let us now study the impact of our protection on those two convolutional layers. The attacker has at her disposal the same information as before. Once again, the goal is to recover the hyper-parameters of Conv4, Conv5 and M axP ool. By launching Cache Telepathy, the attacker is able to recover all matrix sizes in the GeMM multiplications. In our case, the layers are not executed sequentially but in blocks of various sizes, and depth-wise. This means that as soon as a block of values of random size, as explained in Section 6.3 in layer i is ready, it is executed, regardless of whether layer i -1 has nished its execution. Thus, the layers interleave, as shown in Figure 6.5.

Because the order of multiplications is changed and the layers are not executed sequentially, the attacker knows neither the number of layers nor which layer a matrix multiplication belongs to. However, an attacker can detect a pooling layer computation, since it incurs a latency between multiplications. Therefore, she might determine the number of multiplications required for the rst blocked max pooling computation to occur. We should also bear in mind that several architectures have multiple consecutive convolutional layers [START_REF] Simonyan | Very Deep Convolutional Networks for Large-Scale Image Recognition[END_REF][START_REF] Lin | Accelerating Local Binary Pattern Networks with Software-Programmable FPGAs[END_REF].

For a clearer explanation, we rst focus on the unlikely case where the attacker can observe a change of layer (and therefore identify the rst Conv5 operation). Let us note that we believe this case to be mainly hypothetical. For it to hold, there should be a notable latency in between convolutional layers. The said latency should also be dierent from the overhead incurred by max pooling layers. We present this scenario for pedagogical purposes.

As Conv4 and Conv5 go through the GeMM process (see Figure 2.7), inputs I 4 and I 5 are reshaped into R 4 and R 5 respectively. Let us note that in order to have an output size equal to the input size, the input needs to be padded. We consider I 4 and I 5 to be the padded inputs. Their shape is [START_REF] Kakizaki | Toward Practical Adversarial Attacks on Face Verication Systems[END_REF][START_REF] Silver | Mastering the game of Go with deep neural networks and tree search[END_REF][START_REF] Silver | Mastering the game of Go with deep neural networks and tree search[END_REF] and [START_REF] Peter | Condential Deep Learning: Executing Proprietary Models on Untrusted Devices[END_REF][START_REF] Silver | Mastering the game of Go with deep neural networks and tree search[END_REF][START_REF] Silver | Mastering the game of Go with deep neural networks and tree search[END_REF] respectively. Let O (j) denote the reshaped output of layer j i.e. the output of the layer's matrix multiplication. Let H (4) = {H 

t } be the number of blocks height-wise for each width-wise column of blocks. Let us denote w (4) = {w 

t } respectively h (4) = {h (4) 1 , ..., h (4) 
t } the sizes of the blocks widthwise respectively height-wise. These are determined as described in Section 6.3. In our case, each block has size between 32 × 32 and 64 × 64. Let (x b , y b ) be the coordinates of the last element in the rst block in R 5 . If we take the minimal block size, then (x min , y min ) = [START_REF] Duddu | Stealing Neural Networks via Timing Side Channels[END_REF][START_REF] Duddu | Stealing Neural Networks via Timing Side Channels[END_REF]. In the case of the maximal block size, (x max , y max ) = [START_REF] Kakizaki | Toward Practical Adversarial Attacks on Face Verication Systems[END_REF][START_REF] Kakizaki | Toward Practical Adversarial Attacks on Face Verication Systems[END_REF].

Let tot i,j x,y denote the number of matrix multiplications in layer i required for element (x, y) in R j to be ready. Since our goal is to determine the number of multiplications in Conv4 necessary to have the rst block in Conv5 ready, we actually need to compute tot 4,5 x b ,y b . We will consider block size extremes to give a range of values for tot 4,5 x b ,y b : tot 4,5 xmax,ymax ≤ tot 4,5

x b ,y b ≤ tot 4,5

x min ,y min

In order to compute that value, we need to nd the coordinates of element e = (x, y) = (x b , y b ) in I 5 rather than R 5 . Indeed, this will provide us with the blocks that need to be computed in Conv4 to obtain e. First, let us nd which input channel ch element e belongs to. Because of the way R 5 is obtained, we have that:

ch = x k (4) × k (4) Thus: ch e min = 32 k (4) × k (4) = 3 ch emax = 64 k (4) × k (4) = 7
where e min = (x min , y min ) and e max = (x min , y min ) indicate the maximal and minimal block sizes respectively.

Let us now nd the coordinates (row, col) of element e in channel ch. Let n = n + 2 • p = 114 be the padded input width and height. With an input of shape (n , n ), a convolution results in an output of size (nk (4) + 1, nk (4) + 1) = (n, n) here. Because of the way I 5 is reshaped, each column in R 5 is a k (5) × k (5) window in I 5 . Thus, row = y n + x mod (k (5) × k (5) ) k (5) col = y mod n + (x mod (k (5) × k (5) )) mod k (5) As mentioned before, these coordinates include the padding. We need to remove said padding to nd out how many computations from the previous layer need to have been made. If (row, col) does not correspond to a padding value, we have:

row unpadded = row -p col unpadded = col -p
If row < p with ch = 0, then no value from the previous layer needs to be computed for the rst block to be executed. This results in tot 4,5 x,y = 0. The same goes for row = p, ch = 0 and col < p.

If (x, y) is a padding value outside of the two previous cases, then we consider the previous non-padding value in I 5 . This corresponds to:

row unpadded = row -1 col unpadded = n
Indeed, we then need to take the last (non-padding) element in the previous row.

With (x min , y min ) and (x max , y max ), we have that: Because e max = (x max , y max ) is in the rst row of I 5 , it corresponds to a padding element. However, not all elements in that block stem from padding elements.

Instead, we can take the last non-padding element in the previous channel. We therefore need to consider channel ch emax = ch emax -1 = 6. We also need to select the last element of the (3 × 3) input window, meaning:

row max = 2 col max = 66
We then remove the padding from e min = (x min , y min ) so as to nd the coordinates in Conv4's output. This gives us: 

H (4) q × M (4) q + ch h (4) 1 × H (4) b (6.1)
We can apply that to e max and e min , considering constant block shapes of either [START_REF] Duddu | Stealing Neural Networks via Timing Side Channels[END_REF][START_REF] Duddu | Stealing Neural Networks via Timing Side Channels[END_REF] for e min or [START_REF] Kakizaki | Toward Practical Adversarial Attacks on Face Verication Systems[END_REF][START_REF] Kakizaki | Toward Practical Adversarial Attacks on Face Verication Systems[END_REF] = 74 (6.13) Thus, the total number of matrix multiplications required for one block in Conv5 to be ready ranges between 74 and 292 depending on the block sizes: tot 4,5 ∈ [ [START_REF] Leshno | Multilayer feedforward networks with a nonpolynomial activation function can approximate any function[END_REF]292] (by Equations (6.7) and (6.13)).

This range of values can be obtained because we know the padding and lter sizes. A potential attacker, however, does not have access to this information. She only knows the number of input channels and the input shape.

The remaining question is whether the range of values for dierent lter and padding sizes overlap. If it is the case, then an attacker cannot dierentiate between the various hyper-parameter values. Let us suppose, once again, that k = k (4) = k (5) and compute all the possible values for tot 4,5 x,y ((x min , y min ) = (32, 32) and (x max , y max ) = (64, 64)), given out 4 , out 5 and in 5 . Table 6.1 shows the resulting values. 4,[START_REF] Bakhti | DDSA: A Defense Against Adversarial Attacks Using Deep Denoising Sparse Autoencoder[END_REF] and so on. Because of those ranges, if an attacker manages to recover tot 4,5 , she can determine whether k = 1 or k = 2. However, the ranges for k > 2 overlap, meaning that for a given tot 4,5 , she has at least two possibilities for k. In our architecture, we have that tot 4,5 ∈ [74, 292]. An attacker observing this number only knows that 9 > k > 2. This multiplies by 6 the number of possible architectures for that set of layers. There are 13 convolutional layers in VGG16. If we extrapolate and assume we have 6 possibilities for each layer, the reduced search space is multiplied by 6 13 . This is an overevaluation of the added uncertainty. But we see, based on our computations on layers 4 to 6, that because of the overlapping, we have at least two possibilities per layer for the lter value, when there was previously no uncertainty. This leads to a multiplication of the search space by at least 2 13 . Let us note that it represents a high increase in the search space, as recovering the correct architecture then requires training all of the remaining possibilities.

k = 1, tot 4,5 ∈ [1, 2]. If k = 2, tot 4,5 ∈ [
In [START_REF] Yan | Cache Telepathy: Leveraging Shared Resource Attacks to Learn DNN Architectures[END_REF], the authors reduced the search space for VGG16 to 16 possibilities.

With our protection, we can increase it to 2 17 . Furthermore, this computation does not provide the attacker with the padding, as she does not know the full output size, resulting in an even larger search space.

Protected Case, When an Attacker Can Only See Max Pooling Layers:

In reality, as stated in the previous paragraph, it is dicult for an attacker to dierentiate between convolutional layers. This means that tot 4,5 is not observable, and the attacker can only recover the number of multiplications required to reach the following max pooling layer M axP ool. We therefore need to compute tot 4,6 .

If we denote (x, y) the last element in the rst M axP ool block B, and (x , y ) the last element in Conv5 that needs to be computed for B to be ready, then: tot 4,6 x,y = tot 4,5

x ,y + tot 5,6 x,y . This time, we consider the possible ranges of tot 4,6 , given that in 5 and out 5 are not available to the attacker.

In our case, M axP ool has window size k (6) = 2, and does not require any padding.

Furthermore, all channels need to be computed at once in the pooling case. Thus, the coordinates of (x, y) in the output of Conv5 are: 6) col = y mod n k (6) × k (6) + x mod k (6) c = row × n + col

row = k (6) • y n + x k ( 
We also have that b = arg min b b q=0 w 1 ≥ c . Applying it to our case for (x min , y min ) = Thus, we have: tot 4,6 x min ,y min = tot 5,6 x min ,y min + tot 4,5 in 5 ×k (5) ×k (5) ,e min •b min = 12690 tot 4,6

x max ,y max = tot 5,6 xmax,ymax + tot 4,5 in 5 ×k (5) ×k (5) ,emax•bmax = 3141

Therefore, the total number of multiplications for one M axP ool block to be ready ranges between 3, 141 and 12, 690 in the set of layers we study from the VGG16 architecture: tot 4,6 ∈ [3141, 12690].

Once again, the attacker does not know k (4) , k (5) , k (6) or the padding values. For each layer, k (i) ∈ {1, ..., 11}. We also suppose, like before, that k (4) = k (5) . The padding p between Conv4 and Conv5 (the only one that intervenes in the computations) is such that p < k (4) . We get tables of possible values depending on k (4) = k (5) , p and k (6) . As before, we take the maximum and minimal values over all possible p. Table 6.2 considers the range of tot 4,6 depending on k (4) . Once again, the ranges for all possible tot 4,6 values overlap, making it harder for the attacker to determine the architecture. In our case, we had tot 4,6 ∈ [3141, 12041]. An attacker could therefore only deduce that 1 < k (4) < 11. The range can be further deduced depending on the value actually observed, but there are at least two lter size values in every case. Furthermore, for most k (6) values, 2 < k (4) < 10.

So far, we had assumed, for simplicity, that the number of input and output channels are known for all layers. But it is generally not the case. Taking this last fact into account, the possible tot 4,6 values are given in Table 6.3.

All k (4) values are possible. The attacker cannot determine k (4) , k (5) or k (6) . In all cases, we have at least 2 possibilities for each of the lter sizes. Since there are 18 max pooling and convolutional layers in VGG16, we can extrapolate once again and say that our protection could lead to a multiplication of the search space by 2 18 . This leads to a reduced search space of 2 22 . Let also remind the reader that k (4) and k (5) can actually dier, making a potential attacker's life even harder.

Performance Evaluation

Experimental Platform. We launch our experiments on a DELL work station OptiPlex 7040 with a 4-core Intel Core i7 processor and three levels of cache of sizes, Performance. Let us consider a perfect attacker, who can recover the Flush and Reload traces without any noise. To simulate this, we use the GNU Debugger (GDB) to log all calls to itcopy and oncopy, along with the cycles at which they were called. Figure 6.7a shows such a simulation of an unprotected model.

Once again, we can see in Figure 6.7 that the layers' traces are interleaved, and it is dicult for an attacker to distinguish between the various layers.

Let us now consider our protection's overhead. Note that we do note take the creation of the architecture into account here, as it only needs to be executed once, rather than at each inference computation. We consider three architectures in our experiments. In all cases, there is only 1 input and output featuremap, the convolutional lter size is 3 × 3, the pooling window size is 2 × 2 and there is no padding. 

Discussion

Our approach is similar to [2] and [START_REF] Shaee | ISAAC: A Convolutional Neural Network Accelerator with In-Situ Analog Arithmetic in Crossbars[END_REF] in the sense that we obtain the value of some neurons in layer i + 1 before the execution of layer i is done. But besides the fact that we do not consider a hardware context, our suggestion diers in that we introduce randomization in the computation of neurons: we do not compute the value of a neuron as soon as enough elements are ready. Rather, we compute them in a random way determined at the creation of the architecture. Moreover, our goal is dierent: we aim at increasing the security by mitigating cache attacks based on the GeMM computations during an NN inference.

One limitation in our method is the pooling layer. Indeed, because its execution diers from that of convolutional layers, and no GeMM is applied, a potential attacker can detect when an execution switches between a convolutional layer and a pooling one. As shown in Section 6.5.1, however, our methodology still mitigates Cache Telepathy in architectures with pooling layers. We believe that architectures such as Fully Convolutional Networks [START_REF] Lin | Accelerating Local Binary Pattern Networks with Software-Programmable FPGAs[END_REF], which have several consecutive convolutional layers, could make the architecture almost completely leakage free.

The overhead induced depends on the block sizes and the model's depth. Balancing security of the protection linked to the random block sizes and the incurred overhead is however possible, as the said overhead is still manageable. We also believe that a better optimization of our implementation should reduce the observed overhead.

Even if our protection targets Cache Telepathy specically, we believe it could be used against other side-channel attacks such as CSI [START_REF] Batina | CSI NN: Reverse Engineering of Neural Network Architectures Through Electromagnetic Side Channel[END_REF], DeepRecon [START_REF] Hong | Security Analysis of Deep Neural Networks Operating in the Presence of Cache Side-Channel Attacks[END_REF] or How to 0wn NAS [START_REF] Hong | How to 0wn the NAS in Your Spare Time[END_REF]. Both CSI [START_REF] Batina | CSI NN: Reverse Engineering of Neural Network Architectures Through Electromagnetic Side Channel[END_REF] and How to 0wn NAS [START_REF] Hong | How to 0wn the NAS in Your Spare Time[END_REF] mention that reordering would indeed be a countermeasure to their method. CSI [START_REF] Batina | CSI NN: Reverse Engineering of Neural Network Architectures Through Electromagnetic Side Channel[END_REF] bases its attack on the sequential nature of NNs. It proceeds layer by layer to nd the number of neurons and the weights in each layer. In each layer, and for each multiplication w • x (where w is the weight and x is an input value), the attacker makes two hypotheses: either this multiplication takes place in layer i, or it takes place in layer i + 1. If the layers are not computed sequentially, then the hypotheses no longer make sense, as the multiplication could take place at a later layer. In the case of [START_REF] Hong | How to 0wn the NAS in Your Spare Time[END_REF], layers as a whole are targeted. Indeed, specic functions corresponding to specic layers are monitored. Thus, splitting the layers would prevent them from targeting the pre-existing functions.

Scope and Limitations

Let us now discuss the scope and limitations of our countermeasure.

First of all, because the proposed approach needs to compute layers in a nonsequential order, it does not apply to FC layers, even though Cache Telepathy targets them as well. Indeed, these layers require all neurons from the previous layer to be computed before they can start their execution. We therefore limit our countermeasure to CNNs. However, as CNNs are now widely used in various elds such as the medical one [START_REF] Richens | Improving the accuracy of medical diagnosis with causal machine learning[END_REF], image processing [START_REF] Bud | Facing the future: the impact of Apple FaceID[END_REF] or game playing [START_REF] Silver | Mastering the game of Go with deep neural networks and tree search[END_REF], our countermeasure can still apply to many commonly used architectures [START_REF] Simonyan | Very Deep Convolutional Networks for Large-Scale Image Recognition[END_REF][START_REF] He | Deep Residual Learning for Image Recognition[END_REF][START_REF] Szegedy | Going deeper with convolutions[END_REF].

Second, as in the Cache Telepathy paper [START_REF] Yan | Cache Telepathy: Leveraging Shared Resource Attacks to Learn DNN Architectures[END_REF], we place ourselves in the CPU context. Indeed, as mentioned in [START_REF] Hong | Security Analysis of Deep Neural Networks Operating in the Presence of Cache Side-Channel Attacks[END_REF], monitoring GeMM functions requires them to be in the same instruction line in the cache for the victim and the attacker. They therefore need to run on the CPU. As mentioned in Section 2.2.4, several popular

MLaaS frameworks [3] provide CPU computations for inference.

Third, instead of using high-level, highly optimized frameworks such as Tensor-Flow [START_REF] Abadi | TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems[END_REF] or PyTorch [START_REF] Paszke | PyTorch: An Imperative Style, High-Performance Deep Learning Library[END_REF], we wrote our own implementation in C++. We required more freedom when writing code, as commonly used functions in those frameworks apply to entire layers, when we needed to deal with neurons individually. Moreover, using C++ still enabled us to apply GeMM, which is the target of the attacker. This C++ implementation necessarily less optimized than common ML frameworks partially explains the overhead observed in Table 6.4 in Section 6.5.2.

Finally, as detailed in Section 6.5.2, our goal is to mitigate the Cache Telepathy attack by preventing an attacker from getting a tractable search space for the victim model's architecture. Thus, even though not all leakages are eliminated, an attacker still cannot recover the correct architecture without training over 2 17 architectures, which is not feasible in a reasonable period of time.

Conclusion

While the rst part of this dissertation focused on the direct protection of models' weights and biases, we discuss a way to defend the architecture in this second part.

Not only does this help in the parameter protection and secure IP, but it also prevents other attacks such as membership inference attacks [START_REF] Shokri | Membership Inference Attacks Against Machine Learning Models[END_REF].

To achieve our goal, we propose Telepathic Headache, a protection against cachebased attacks targeting the GeMM algorithm used by most ML frameworks to implement FC and convolutional layers in a CPU setting. Our scheme consists in mixing a model's layer by computing neurons in blocks, depth-wise. As soon as certain random-sized blocks of values in a layer are ready, they are multiplied by the associated lter values and the results are sent to the next layer.

The security analysis has shown that our proposal leads to a multiplication by at least 2 18 of the reduced search space obtained by Cache Telepathy on VGG16.

Even though we have only considered the Cache Telepathy attack when measuring the eciency of our defense, the methodology we have presented could also be used against other timing-based SCAs, such as DeepRecon [START_REF] Hong | Security Analysis of Deep Neural Networks Operating in the Presence of Cache Side-Channel Attacks[END_REF] and EM-based SCAs such as CSI Neural Network [START_REF] Batina | CSI NN: Reverse Engineering of Neural Network Architectures Through Electromagnetic Side Channel[END_REF]. In fact, the authors of [START_REF] Batina | CSI NN: Reverse Engineering of Neural Network Architectures Through Electromagnetic Side Channel[END_REF] mention in their discussions that randomizing the computation of neurons would thwart their attack.

latter is equivalent to randomly generating one integer. Overall, the overhead only corresponds to a small percentage of a large NN's computations. The content of this Chapter was published in SPACE 2021 [START_REF] Chabanne | Parasite: Mitigating Physical Side-Channel Attacks Against Neural Networks[END_REF], under the name Parasite: Mitigating Physical Side-Channel Attacks Against Neural Networks.

When studying the impact of parasites on the internal structure of a model, we noticed that the change in structure is closely linked to adversarial example generation. This led us to the third contribution of this thesis, in Chapter 5. We used autoencoders as parasites to both learn the important features in images and add articial noise. We showed the increased robustness that our proposal brought in two experiment settings. In the rst, the attacker only had access to the base model. In the second, the attacker also knew that an autoencoder had been added to the original model. The content of this Chapter was submitted to a conference [START_REF] Chabanne | Let's Get Dynamic: Dynamic Autoencoders Against Adversarial Attacks[END_REF].

As the parameter protection can be achieved through architecture security and the architecture itself constitutes IP, we focused on a black-box model in the second part of this thesis. Because SCAs that aim at recovering the architecture of a model rely on the sequential execution of NN models, we proposed, in Chapter 6, to reorder computations to mitigate a cache-based attack [START_REF] Yan | Cache Telepathy: Leveraging Shared Resource Attacks to Learn DNN Architectures[END_REF]. To this eect, we considered blocks of neurons of random sizes. We computed neurons from the following layer in a depth-wise fashion i.e., we computed a block as soon as it was ready. We published this work as Telepathic Headache: Mitigating Cache Side-Channel Attacks on Convolutional Neural Networks in ACNS 2021 [START_REF] Chabanne | Telepathic Headache: Mitigating Cache Side-Channel Attacks on Convolutional Neural Networks[END_REF].

In Chapter 4 and Chapter 6, we have made use of simulations for the potential attacker. However, in both cases, we assumed an attacker with perfect side-channel leakage traces, making our defense task harder and thus validating our results.

Although we have demonstrated the feasibility and eciency of our countermeasures, they are not without disadvantages. While small parasitic models only introduce a few optimized layers, and their training can generally be made independent from the model to protect, using them is a sensitive task. Indeed, we have highlighted the importance of carefully selecting an appropriate architecture and of proper training. In all three Chapters using them Chapters 3 to 5, we noted that a balance must be found between the drop in the accuracy and the protection provided.

Future Work

In Chapters 3 to 6, we proposed four countermeasures against reverse-engineering and adversarial attacks, and we showed their eciency. As in any proposal, these defenses can be improved and built upon. In the wake of the work presented here, future research could focus on the following subjects:

In Chapter 4, on top of hiding the input, one could hide the activation functions. This could be achieved by approximating them in a similar fashion as for the input. One could study the impact of training small CNNs that approximate the activation functions. For instance, one could train a CNN to approximate a noisy ReLU instead of a noisy identity function. Because ReLU s are more complex than the identity, it would also be interesting to study whether ReLU is complex enough that a small CNN cannot very precisely approximate it, and therefore introduce noise.

It is also important to note, in Chapter 4, that a balance between the number of added operations and a high entropy in the set of parasitic CNNs needs to be reached. For this reason, further work could conduct a study on which architecture could best approximate a noisy identity while minimising the number of parasitic operations. For instance, one could consider a smaller lter size in the countermeasure: 3×3 instead of 5×5. One could also increase the stride of the introduced convolutional layers. Indeed, the larger the lter and the higher the number of layers, the higher the number of operations. But limiting the possible lters and/or the number of layers decreases the size of the parasitic CNN set. Hence, further testing could be carried out to determine the right balance.

In Chapter 5, we train parasitic autoencoders on the output of the layers after which we wish to place them. However, one could train them on one normalized channel at a time. Such autoencoders could then be placed anywhere in the model. Moreover, they could only be applied to part of a layer. But when doing so, one should take care that the trained autoencoders do not lead to a noticeable drop in the base model's accuracy.

In general, one could study the impact of the various parasitic parameters for dierent ML models. One interesting lead could be to set the parasites to be NNs with numerous architectures varying number of layers, of lter sizes, of activation functions,... and determine the impact of each parameter on the accuracy and robustness against reverse-engineering and adversarial attacks. Another option would be to make a full analysis of the best locations where one should introduce the models, depending on the task at hand. In our dissertation, we placed them near the entrance of the model, as we observed it led to a small drop in the accuracy. However, applying parasites in the middle of the base model, to some carefully selected neurons could yield better results.

A third possibility would be to determine the ideal number of parasites to incorporate in a target model M , taking into account M 's characteristics, the incurred time overhead and the induced drop in the accuracy. Other similar approaches could be carried out so as to conduct a full analysis of the impact of parasitic models on both the base model's accuracy and the resistance to reverse-engineering and adversarial attacks.

In Chapter 3, we impose constraints on the training of parasites so as to ensure the newly added hyperplanes are visible to the attacker. Improving these constraints might intensify the eect of the parasitic hyperplanes. We made the choice to train the parasites independently from the base model, so that they can generalize to any target. But if we remove this condition, we could, for example, determine the noise so as to maximize the impact on later layers.

Indeed, we explained that a hyperplane from layer l bends hyperplanes from layers l+1 and deeper. We can therefore determine a loss function L(θ, θ , x, y)

such that minimizing L maximizes the intersections between neurons from the base model θ and the parasitic one θ .

In Chapter 6, we propose to reorder a CNN's neuron computations. While we deem the incurred overhead acceptable in our experiments, some architectures presented a higher overhead than others. Further work could therefore consist in a deeper analysis of the overhead depending on the architecture at hand.

It might help make the proposal more time ecient. Moreover, testing the eectiveness of the reordering against other reverse-engineering attacks such as CSI NN [START_REF] Batina | CSI NN: Reverse Engineering of Neural Network Architectures Through Electromagnetic Side Channel[END_REF], DeepRecon [START_REF] Hong | Security Analysis of Deep Neural Networks Operating in the Presence of Cache Side-Channel Attacks[END_REF] or How to Own NAS [START_REF] Hong | How to 0wn the NAS in Your Spare Time[END_REF] might conrm our beliefs that our countermeasure should also thwart them.

In this thesis, we have not considered binary or quantized NNs [START_REF] Hubara | Quantized Neural Networks: Training Neural Networks with Low Precision Weights and Activations[END_REF][START_REF] Han | Deep Compression: Compressing Deep Neural Network with Pruning, Trained Quantization and Human Coding[END_REF][START_REF] Gong | Compressing Deep Convolutional Networks using Vector Quantization[END_REF][START_REF] Zhou | DoReFa-Net: Training Low Bitwidth Convolutional Neural Networks with Low Bitwidth Gradients[END_REF][START_REF] Jacob | Quantization and Training of Neural Networks for Ecient Integer-Arithmetic-Only Inference[END_REF]. In BNNs, the weights and outputs of activation functions are binary while in quantized networks, these values are quantized. The two types of networks enable other types of security measures. The authors of [START_REF] Dubey | MaskedNet: A Pathway for Secure Inference against Power Side-Channel Attacks[END_REF][START_REF] Dubey | BoMaNet: Boolean Masking of an Entire Neural Network[END_REF] propose a hardware masking countermeasure for BNNs. We could therefore apply such common cryptographic countermeasures to the software setting. As some models [START_REF] Simonyan | Very Deep Convolutional Networks for Large-Scale Image Recognition[END_REF][START_REF] He | Deep Residual Learning for Image Recognition[END_REF] have millions of parameters, masking the entire model in the software case would be impractical. However, we show in [START_REF] Bringer | Premium Access to Convolutional Neural Networks[END_REF] that some parameters are more sensitive to change. Adding noise to those parameters leads to a larger drop in the model's accuracy. We used that observation to provide premium users with a higher accuracy model, when common users had access to a functioning but lower accuracy one. Further work could build on this and perform a full analysis on the neurons' sensitivity from a range of NN models. Once the analysis is done, we could select the most sensitive neurons and encrypt those. With a suciently large set of encrypted parameters, an attacker might not be able to access a model with a suitable accuracy. In this quantized context, another line of research could consist in using look-up tables (LUTs) for activation functions. This could prevent timing, magnetic and power SCAs extracting them [START_REF] Batina | CSI NN: Reverse Engineering of Neural Network Architectures Through Electromagnetic Side Channel[END_REF].

When it comes to quantized NNs, an interesting line of further research would also be to investigate the impact of mounting the mathematical attack described in Section 2.3.2 against quantized NNs. Indeed, in the non-quantized case, a great care should be taken when dealing with oating-point imprecision with real numbers machine representation. Today, quantized NNs share almost the same accuracy as the oating-point ones, but do not require such a high precision. This lead could bring us closer to dierential cryptanalysis and make us explore alternative cryptanalytic defenses.

Finally, it would also be interesting to consider mixing existing countermeasures with our proposals. For instance, we could ensure constant-time behaviour for activation functions (as proposed in [START_REF] Tople | Privado: Practical and Secure DNN Inference[END_REF]) or through LUTs, reorder computations and introduce dynamic parasites. In the wake of Chapter 5, one could also mix dynamism with the preexisting autoencoders from [START_REF] Bakhti | DDSA: A Defense Against Adversarial Attacks Using Deep Denoising Sparse Autoencoder[END_REF]. are very present in our daily lives, be it through smartphones, face and biometrics recognition or even in the medical field, their security is of the utmost importance. If such models leak information, not only could it imperil the privacy of sensitive data, but it could also infringe on intellectual property. Selecting the correct architecture and training the corresponding parameters is time-consuming -it can take months -and requires large computational resources. This is why an NN constitutes intellectual property. Moreover, once a malicious user knows the architecture and/or the parameters, multiple attacks can be carried out, such as adversarial ones. Adversarial attackers craft a malicious datapoint by adding a small noise to the original input, such that the noise is undetectable to the human eye but fools the model. Such attacks could be the basis of impersonations. Membership attacks, which aim at leaking information about the training dataset, are also facilitated by the knowledge of a model. More generally, when a malicious user has access to a model, she also has access to the manifold of the model's outputs, making it easier for her to fool the model. Protecting NNs is therefore paramount. However, since 2016, they have been the target of increasingly powerful reverse-engineering attacks. Mathematical reverse-engineering attacks solve equations or study a model's internal structure to reveal its parameters. On the other hand, side-channel attacks exploit leaks in a model's implementation -such as in the cache or power consumption -to uncover the parameters and architecture. In this thesis, we seek to protect NN models by changing their internal structure and their software implementation. To this aim, we propose four novel countermeasures. In the first three, we consider a gray-box context where the attacker has partial access to the model, and we leverage parasitic models to counter three types of attacks. We first tackle mathematical attacks that recover a model's parameters based on its internal structure. We propose to add one -or multiple -parasitic Convolutional Neural Networks (CNNs) at various locations in the base model and measure the incurred change in the structure by observing the modification in generated adversarial samples. However, the previous method does not thwart sidechannel attacks that extract the parameters through the analysis of power or electromagnetic consumption. To mitigate such attacks, we propose to add dynamism to the previous protocol. Instead of considering one -or several -fixed parasite(s), we incorporate different parasites at each run, at the entrance of the base model. This enables us to hide a model's input, necessary for precise weight extraction. We show the impact of this dynamic incorporation through two simulated attacks. Along the way, we observe that parasitic models affect adversarial examples. Our third contribution is derived from this, as we suggest a novel method to mitigate adversarial attacks. To this effect, we dynamically incorporate another type of parasite: autoencoders. We demonstrate the efficiency of this countermeasure against common adversarial attacks. In a second part, we focus on a black-box context where the attacker knows neither the architecture nor the parameters. Architecture extraction attacks rely on the sequential execution of NNs. The fourth and last contribution we present in this thesis consists in reordering neuron computations. We propose to compute neuron values by blocks in a depth-first fashion, and add randomness to this execution. We prove that this new way of carrying out CNN computations prevents a potential attacker from recovering a small enough set of possible architectures for the initial model. 

Institut

  Pour pallier à cela, nous introduisons alors du dynamisme aux parasites présentés, et les plaçons à l'entrée du modèle à protéger. Ces attaques sont des attaques statistiques qui se basent sur des traces de puissance ou électromégnétiques, ainsi que sur la connaissance des données d'entrée, an d'extraire les paramètres et même l'architecture du modèle. Sélectionner un modèle parasite à chaque exécution du modèle permet de cacher l'entrée du modèle et d'ainsi se défendre contre ces attaques statistiques. Nous proposons donc de sélectionner, pour chaque exécution, au moins un parasite à placer en entrée. Ainsi, nous nous sommes assurés qu'un utilisateur malicieux ne puisse voir qu'une entrée changeant constamment, l'empêchant d'extraire les paramètres précis du modèle. Notons qu'en plaçant les parasites en entrée, nous misons également sur l'eet domino: le bruit introduit en entrée et extrait par un attaquant est amplié par les couches suivantes. Ce travail a mené à une publication à SPACE 2021, sous le nom Parasite: Mitigating Physical Side-Channel Attacks against Neural
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  j where x ∈ R c . This function turns a layer's neuron values into probabilities. It is often used in the last layer of classiers: the NN's prediction corresponds to the class the neuron number with highest probability.

Figure 2 . 2 :

 22 Figure 2.2: Multi-Layer Perceptron with an input, an output and a hidden layer

Figure 2 . 3 :

 23 Figure 2.3: Convolution between an input I of shape (4 × 4) and a lter F of shape (3 × 3).

Figure 2 .

 2 Figure 2.3 gives an example of a convolution between a 2-dimensional input of shape (4 × 4) and one 2-dimensional lter F of shape (3 × 3).Here, the output has shape (nh + 1) × (mw + 1). This denition is valid

Figure 2 . 4 :

 24 Figure 2.4: LeNet architecture. The last three layers are fully connected ones. For each layer, the input shape is indicated above it in the form channel_number × input_height × input_width To avoid the border eect. Due to its denition, corner and edge input neurons occur in fewer convolutional operations than the ones in the center. Padding increases the impact of those disadvantaged neurons on the layer operations.

Figure 2 . 5 :

 25 Figure 2.5: VGG16 architecture. VGG16 has 13 convolutional layers and 3 FC ones. The input shape of each block of layers is indicated on top of it, in the format: input_width × input_height × number_of _channels

Figure 2 . 7 :

 27 Figure 2.7: Process to turn a convolutional layer i into a matrix multiplication. Each lter and input channel is considered to be square in this depiction. The layer's lter

  Each row in O corresponds to an output channel. the reshaped lter F . Multiplying I by F yields a reshaped output O where each column corresponds to one channel of the output O. This is described in Figure 2.7.

For years,

  NNs have been the victim of various attacks, targeting several parts of the model. NNs can either be targeted during the training phase or during runtime also called the inference. Attack surfaces exist in both phases: During training: The training dataset The training algorithm During the inference: The architecture The testing set (or inputs) The trained parameters All the aforementioned parts can be targeted by a potential attacker, in a variety of settings. A malicious user who has access to the training set can poison it by adding crafted or mislabeled inputs, in order to change the model's predictions.

Figure 2 . 8 : 3 Figure 2 . 9 :

 28329 Figure 2.8: Hyperplanes for three neurons in the rst layer. The dashed red line l enables the attacker to nd the critical points indicated by the slashes.

3 .

 3 Access the target address and measure the access time (reload ).

Flush

  The attacker ushes the probed address from the cache. Then, the victim accesses, putting the probed address back in the cache. The attacker accesses again, and the access time is reduced. victim attacker (b) The attacker ushes the probed address from the cache. The victim does not access the address. The attacker accesses the address, and the access time is high.

Figure 2 . 10 :

 210 Figure 2.10: Access times in the Flush and Reload attack, with (a) and without (b) a victim access to the probed address. The x-axis is the time elapsed since the beginning of the attack.

Figure 2 . 11 :

 211 Figure 2.11: Access times in the Prime and Probe attack, with (a) and without (b) a victim access to the probed address. The x-axis is the time elapsed since the beginning of the attack.

Figure 2 . 13 :

 213 Figure 2.13: The functions itcopy, oncopy and oncopy form a pattern that is closely linked to the number of iterations in each loop from Goto's algorithm (see Algorithm 1).

Figure 2 .

 2 [START_REF] Camurati | Screaming Channels: When Electromagnetic Side Channels Meet Radio Transceivers[END_REF] shows the behaviour of the main activation functions depending on the input. The clear dierences enable a potential attacker to determine each layer's activation once the weights are known, by trying various inputs and observing the resulting pattern.

Figure 2 . 14 :

 214 Figure 2.14: Timing behaviour for four common activation functions: (a) ReLU , (b) Sigmoid, (c) T anh and (d) Sof tmax (see Section 2.2.1 for further details on the activation functions). Each graph represents the function's runtime depending on the input provided, for inputs in [-2, 2]. This image is taken from[START_REF] Batina | CSI NN: Reverse Engineering of Neural Network Architectures Through Electromagnetic Side Channel[END_REF] 

Figure 2 .

 2 Figure 2.15: SPA on an FCN: Observing one trace reveals the number of neurons.

  Adversarial examples have been the bane of NNs' existence ever since Szegedy et al. introduced them in 2014 [120]. Numerous protections with varying degrees of eciency have been proposed over the years.Most adversarial defenses fall under the following categories[START_REF] Kui Ren | Adversarial Attacks and Defenses in Deep Learning[END_REF]:Adversarial training has been found the most eective line of defense[START_REF] Madry | Towards Deep Learning Models Resistant to Adversarial Attacks[END_REF][START_REF] Xie | Feature Denoising for Improving Adversarial Robustness[END_REF][START_REF] Carlini | Ground-Truth Adversarial Examples[END_REF]. It consists in incorporating adversarial samples in the training dataset.

  tools. But the training data, inputs, parameters and hyperparameters all constitute sensitive information that could cause harm in the wrong hands. For all those reasons, they have been the target of multiple attacks over the years, and more recently of reverse-engineering attacks. However, so far, the number of eective countermeasures against reverse-engineering attacks remains small. This is why, in what follows, we try to tackle some of the weaknesses that have arisen. We focus on software countermeasures against mathematical, cache-based and physical reverseengineering attacks. The mathematical and physical attacks tackled in Chapters 3 and 4 aim at recovering the parameters in a gray-box context and seek a fully equivalent extraction. The cache-based attack tackled in Chapter 6, on the other hand, determines a victim model's architecture in a black-box context. We also apply one of our countermeasures to counter white-box adversarial attacks in Chapter 5. We start by addressing the gray-box context through the introduction of parasitic models in Part I.Part I Parasites as a Gray-Box Protection OverviewAs seen in Section 2.3, reverse-engineering attacks targeting NNs to recover their parameter often rely either on the full knowledge of the architecture or some prior knowledge about it. Even in the case of[START_REF] Batina | CSI NN: Reverse Engineering of Neural Network Architectures Through Electromagnetic Side Channel[END_REF], the rst step is to determine the number of neurons in the model, and the weights extraction goes hand in hand with nding a neuron's layer.

Chapter 3 :

 3 inference attacks are made easier.Most ecient adversarial attacks are white-box ones and make use of the gradient to fool the target NN. They rely on the internal structure of NNs to determine the closest input which changes the model's predictions. Indeed, a model's structure including both parameters and hyperparameters determines the classication boundaries. Some works, such as DeepFool[START_REF] Moosavi-Dezfooli | Deep-Fool: A Simple and Accurate Method to Fool Deep Neural Networks[END_REF] specically look for those boundaries when searching for the best adversarial sample.These reasons lead to the conclusion that changing a model's internal structure shoulf constitute a countermeasure to several reverse-engineering and gradient-based adversarial attacks. The rst two Chapters in this Part propose a way to mitigate gray-box parameter extraction reverse-engineering attacks: the rst focuses on mathematical attacks such as[START_REF] Carlini | Cryptanalytic Extraction of Neural Network Models[END_REF], while the second considers physical ones such as[START_REF] Batina | CSI NN: Reverse Engineering of Neural Network Architectures Through Electromagnetic Side Channel[END_REF]. The third Chapter considers an application of the proposed methodology to counter adversarial examples. Parasites against Mathematical Attacks Mathematical attacks[START_REF] Carlini | Cryptanalytic Extraction of Neural Network Models[END_REF][START_REF] Jagielski | High Accuracy and High Fidelity Extraction of Neural Networks[END_REF][START_REF] Milli | Model Reconstruction from Model Explanations[END_REF][START_REF] Milli | Model Reconstruction from Model Explanations[END_REF][START_REF] Rolnick | Reverse-engineering deep ReLU networks[END_REF] query a model f and collect input-output pairs (x, f (x)) to uncover its trained parameters. In Section 2.3.2, we detail one particular attack, published by Carlini et al. in 2020[START_REF] Carlini | Cryptanalytic Extraction of Neural Network Models[END_REF]. It is based on hyperplanes created by the piece-wise linear activation functions. In particular, in their work, they focus on FCNs with ReLU activation functions. We will follow suit in this Chapter. Our aim is to mitigate the aforementioned mathematical attacks by changing the original model's internal structure.

tection in Section 3 . 1 ,

 31 we explain the need and simplicity of approximating identity functions with CNNs in Section 3.2. Then, we dive into the details of the proposed defense in Section 3.3. Section 3.4 discusses the theoretical security of our defense by showing that we indeed change the internal structure of the target model. We conduct experiments to demonstrate the impact of the parasites on the original model in Section 3.5. Finally, Section 3.6 concludes this Chapter.

  scenario: they only train FCNs and CNNs on a single training example. Contrary to what they expected, architectures that are not too deep manage some kind of generalization: FCNs output noisy images for inputs that are not the training example, while CNNs still manage to approximate the identity. Moreover, FCNs tend to correlate more to a constant function than to the identity. The correlation between the output of CNNs and the identity function decreases with a smaller input size and a higher lter size. The authors of [148] consider the depth and lter sizes necessary to learn the identity in their constrained context. They show by providing possible lter values that in their case, if the input has n channels, 2 • n channels suce to approximate the identity mapping with only one training example. They also note that adding output featuremaps does help with training. Moreover, they use 5 × 5 lters for all their CNNs' layers. Finally, they explain that even though 20-layer CNNs can learn the identity mapping given enough training examples, shallower networks learn the task faster and provide a better approximation. This ability of CNNs to learn the identity mapping using only one training example from the MNIST dataset and to generalize it to other datasets shows the simplicity of the task. Section 3.3 and Section 3.4 explain how this fact impairs the defense when the parasitic CNN approximates the identity mapping. They also state

2 ,

 2 CNNs can provide a very good approximation of the identity mapping. Moreover, they generalize well: with only a single training example from the MNIST dataset, CNNs up to 5 layers deep can still reach the target function.Parasites Based on the aforementioned observations, we propose to add dummy hyperplanes through the insertion of parasitic CNNs between two layers of the model to protect. To prevent a drop in the accuracy, these CNNs approximate the identity function to which only a small centered Gaussian noise has been added. For a CNN

Figure 3 .

 3 Figure 3.1 shows an example of adding such a parasitic CNN between the rst and the second layer of an NN with only one hidden layer. Let us note that because

Figure 3 . 1 :

 31 Figure 3.1: Neural Network with one hidden layer where a CNN approximating the identity has been added to approximate the rst fours input neurons.

Figure 3 . 2 :

 32 Figure 3.2: Parasitic CNN with 4 convolutional layers, with a ReLU activation function after each convolution. The shape of the inputs and outputs are indicated in the form nb_channels@width×height. Image generated with [73].

Figure 3 . 3 :

 33 Figure 3.3: Parasitic CNN with 4 convolutional layers, with a Batch Normalization layer and a ReLU activation function after each convolution. The shape of the inputs and outputs are indicated in the form nb_channels@width×height. Image generated with [73].

Figure 3 .

 3 2 shows this rst parasite's architecture.

Figure 3 . 3

 33 shows this second parasite. The batch normalizations in this second model normalize their input, ensuring a mean of 0 and a standard deviation of 1. This increases the chances of the ReLU functions being activated.

Chapter 4 :

 4 Dynamic Parasites against Physical Side-Channel Attacks While the notion of parasitic models was used in the previous Chapter to counter mathematical attacks, we did not focus on the dynamic aspect. So far, we have only discussed xed parasitic models, as it was enough to change the internal structure of an NN. Section 3.3 mentions that the parasites we add to the target model can be changed at each run. Here, we show how, when placed at the entrance of the base model, this dynamic selection of parasitic models at each run can help mitigate physical SCAs. As explained in Section 2.3.3, potential attackers can use physical leakages such as power or EM emanations to recover a model's secret weights and biases. Section 2.3.5 presents one such physical SCA: CSI Neural Networks [10].

Fourth, a change

  in a model's rst layer impacts the following layers. By modifying the input of a model, we can therefore hope for a domino eect: a wrong extraction in the rst layer is amplied by deeper layers.Those four observations show that hiding the input values should mitigate the attack at hand. Hence, we propose to dynamically apply one or several CNN models approximating the identity to the entrance of the model. Our aim is to make sure the modied model's input is dierent from the original input, with only a slight drop in the accuracy. The extracted weights a potential attacker would get for the rst layer are then only an approximation of the actual weights. Even if those rst weights are still close to the original ones, the error propagates to the following layers, amplifying the noise and making the extracted model's accuracy much lower than the original one.

Figure 4 .

 4 Figure 4.1 shows the location where we add the parasitic CNN s ∈ S, to an FC model with one hidden layer. Here, s is applied to the input x and the result x is then fed to the model at hand.

Figure 4 . 1 :

 41 Figure 4.1: Fully Connected Neural Network with one hidden layer where a parasitic CNN approximating the identity has been added to approximate the model's input.

4 .

 4 For each remaining layer in the model at hand (including the parasitic layers), repeat the previous three steps.

Figure 4 . 2 :

 42 Figure 4.2: Parasitic CNN models with one (a) and two (b) convolutional layers. In both cases, the convolution is followed by a ReLU activation function and a Batch Normalization layer. (Images generated thanks to [73].)

Figure 4 .

 4 3 shows the impact of parasitic models with various standard deviations on a MobileNetV2 architecture with a 71.41% accuracy on the CIFAR10 testing set (88.16% on the CIFAR10 training set). We see that the accuracy decreases with the standard deviation, but also depends on the training. In general, the drop in accuracy seems acceptable until around σ = 0.2.First simulationWe carry out the rst simulated attack described in Section 4.3.1 on a LeNet architecture trained on the CIFAR10 architecture with a 70.69% accuracy on the testing set. The accuracy of the protected model depends on the parasitic model(s) added.

Figure 4 . 3 :

 43 Figure 4.3: Accuracy of a protected MobileNetV2 model with relation to the standard deviation of the parasitic models. The parasitic models P are trained to return P (x) = x+N σ (x) where N σ is a Gaussian noise with mean 0 and standard deviation σ.

  and 4.6, we consider a Mo-bileNetV2[START_REF] Sandler | MobileNetV2: Inverted Residuals and Linear Bottlenecks[END_REF] model protected by a 1-layer parasite with standard deviation respectively σ = 0.01 and σ = 0.1. We can make two observations based on those
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Figure 4 . 4 :

 44 Figure 4.4: Pearson correlation coecient between the extracted weights and the original ones, for the rst, third and fourth convolutions in MobileNetV2. Each point in the graph corresponds to the correlation coecient for one output channel.

  2.1, one layer adds M multi-(a) First convolution (Conv1) (b) Second convolution (Conv2) (c) Third convolution (Conv3) (d) Fourth convolution (Conv4)

Figure 4 . 5 :

 45 Figure 4.5: Distribution of the weight dierences ŵi -w i ||W || 2 within each of the four MobileNetV2 convolutional layers extracted by the attacker, in the rst simulation with 128 traces (see Section 4.3.1) and σ = 0.01.

Figure 4 . 6 :

 46 Figure 4.6: Distribution of the weight dierences ŵi -w i ||W || 2 within each of the four MobileNetV2 convolutional layers extracted by the attacker, in the rst simulation with 128 traces (see Section 4.3.1) and σ = 0.1.

3 . 7 ,

 37 adversarial training is the best method known so far, it requires retraining the model on generated adversarial samples. Both the training and the adversarial attacks take time, making adversarial training time consuming. In our defense, on the other hand, the autoencoders do not require any adversarial sample generation. Moreover, we do not need to train them along with the model: we only need to optimize the small parasites' parameters.

Figure 5 . 2 :

 52 Figure 5.2: Evolution of the accuracy of image classication on the ImageNet dataset [70]. So far, the best model, Model Soups, achieves 90.94% accuracy. The metric used to measure the accuracy is the percentage of correctly labeled images. This graph is taken from https://paperswithcode.com/sota/ image-classification-on-imagenet

  at recovering the architecture of a target model rely on the sequential computation of NNs. Based on this, we propose, in this Part, a novel way of carrying out inference computations, mitigating the architecture recovery attacks published to this day. Chapter 6: Protecting CNN Architectures So far, most architecture extraction attacks rely on the sequential execution of NNs.

3 . 4 .

 34 It is a cache-based SCA in an MLaaS context. The attacker is assumed to have the following abilities: She knows a set S of possible architectures for the target model. The set is computed. Indeed, a neuron only requires a window of values from the previous layer, as described in Figure 6.1.
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 62 Figure 6.2: Reshaping the input to turn a convolution into a matrix multiplication.

Figure 6 . 3 :

 63 Figure 6.3: Process for a layer of size 4 × 4 receiving values from the previous layer. The block size is B = 3 and the lter's width and height are equal to 3.

Figure 6 . 4 :

 64 Figure 6.4: Example of a subdivision of a reshaped input

Figure 6 . 5 :

 65 Figure 6.5: Flush and Reload on an unprotected (a) and a protected (b) architecture with two convolutional layers (lter size: 3 × 3) separated by a max pooling layer (window size: 2 × 2). The y-axis corresponds to the number of clock cycles it takes to access the correct cache line. The x-axis indicates the time elapsed since the beginning of the experiment.

2 . 3 .

 23 For each pooling layer: Generate an array of width-wise block sizes. Block sizes need to fulll the two previous conditions as well. 97 Start the rst layer computations. 4. If a block in layer i is full, compute the matrix multiplications. 5. If the previous computations lead to at least one neuron being completely computed, send the value to layer i + 1 and pursue computations in layer i + 1 if possible. 6. Repeat steps 4 and 5 until all values have been computed. Steps 1 and 2 are part of the architecture creation, and are only executed once for a given model. Generating the new, protected architecture only once per model and user prevents a potential attacker from carrying out statistical attacks.

Furthermore, let {M ( 4 )

 4 i,j } 1≤i≤t,1≤t denote the number of lter blocks associated with each of Conv4's input blocks. The reshaped lters are F 4 and F 5 respectively. The blocks we consider are submatrices in R 4,5 and F 4,5 . R 4 and R 5 both have width W 4,5 = 112 × 112. R 4 has height 3 × 3 × 64 while R 5 has height 3 × 3 × 128.

  112 + (64 mod (3 × 3)) mod 3 = 65

row min = 1

 1 col min = 33 ch e min = 3 row max = 2 col max = 66 ch emax = 6 These are the coordinates of the last element we need in the output of Conv4. The coordinates c of that element in the said output are: c min = (ch e min , row min × n + col min ) = (3, 145) c max = (ch emax , row max × n + col max ) = (6, 290) We now have enough information to compute tot 4,5 e . Let b = arg min b b q=0 w 1 ≥ c . b is the number of the block width-wise containing c. For each block number b < b, we need to multiply all the blocks height-wise with their associated block lters, meaning H block b . For b, we need to compute all the height-wise block multiplications up to the block containing ch. This is equal to: ch h

  (a) Simulation of a Flush and Reload attack on itcopy and oncopy patterns of an unprotected model. (b) Simulation of a Flush and Reload attack on itcopy and oncopy patterns of a protected model.

Figure 6 . 7 :

 67 Figure 6.7: Simulation of Flush and Reload on an unprotected (a) and a protected (b) model. The model considered has 2 convolutional layers separated by a max pooling one. Block sizes are between 32 and 38 in (b).
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  An attacker cannot recover an NN's parameters without prior knowledge about its architecture. Another way of securing the learnt weights is therefore to focus on hiding the architecture itself. Protecting the architecture also has the advantage of preventing other types of threats, such as membership inference or adversarial

	attacks. Architectures are also a key element in a model's training, and therefore
	constitute intellectual property. This is why, in Part II, we propose a novel way of
	carrying out NN computations, which mitigates current black-box attacks that can
	recover an NN's architecture. Instead of keeping the sequential execution of NNs, we
	show in Chapter 6 that carrying out neuron evaluations by blocks in a randomized
	fashion mitigates cache-based architecture extraction attacks.
	Finally, we summarize our countermeasures and consider potential future work
	in Chapter 7.

  Simplest NN type: perceptron with n inputs {x i } i=1,...,n and associated weights {w i } i=1,...,n .

	1	w 0	
	x 1	w 1	
	x 2	w 2	
	. . .	. . .	Activation function
	x n	w n	
	inputs weights	
	Figure 2.1:		

Table 2 .

 2 1: Threat scenarios in reverse-engineering attacks. The attacker has query access to the model. She can then target the architecture, the parameters or both.When an element is the target, partial information about it can be assumed to be public.

	Scenario	Architecture	Parameters
	Scenario 1: Architecture Extraction	Target	Unknown
	Scenario 2: Parameter Extraction	Known	Target
	Scenario 3: Model Extraction	Target	Target

Table 2 . 2

 22 List of cache-based side-channel architecture extraction attacks.

	Attack	Assumptions		Access and SCA	type	Victims tested Results	Limitations
				Cache attacks
	Cache Telepathy [141]	Co-location, sharing, GeMM, ML use frame-page of work known	Local, Cache	VGG, ResNet	Set of possible ar-chitectures (includ-ing hyperparameter dimensions)	Not applicable to GPUs; the set can be too large if the architecture is com-plex
	DeepRecon [53]	Co-location, family of tures, page sharing, known architec-ML framework known	Local, Cache	VGG, DenseNet, ResNet, In-ceptionV3, InceptionRes-Net, Xception, MobileNet	Number of layers, layer types, and ap-proximation of the hyperparameter di-mensions	Cannot novel architectures, recover since it relies on the knowledge of the family of NNs
		Co-location,	page			
	How NAS Spare Time [52] to 0wn in Your	sharing, work known, ML frame-some knowledge about how	Local, Cache	MalConv, Prox-ylessNAS	Full computational graph
		NNs are constructed			
	GANRED [79]	Set of possible archi-tectures, ML frame-work, shared LLC	Local, Cache	AlexNet, GNet	VG-	Full architecture

Table 2 . 3

 23 List of other side-channel architecture extraction attacks.

	Attack	Assumptions	Access type and SCA	Victims tested	Results	Limitations	Number of traces
				EM attacks		
					Recovers layer bound-		
					aries, depth and layer		
	DeepEM [146]	Known architectures, set physical access of	Physical, EM ema-nations	ConvNet, VGGNet			

Table 2 .

 2 

			4: Parameter Extraction Attacks	
	Attack	Assumptions	Side chan-nel	Victims tested	Results	Limitations
	Memory					
	Access					
	Pattern					
	Attack					
	[56]					

  The attacker lls the cache with her addresses, evicting the monitored address. The victim accesses the monitored address, evicting one of the attacker's addresses. The attacker accesses her addresses again, and the access time is higher.

	Access	Fill cache with attacker's addresses
	Wait	Other events
	victim	
	attacker	
	(a)	
		2.11b). A
	high access time means that the attacker's data has been evicted from the cache,
	showing that the victim has accessed the target memory line (see Fig. 2.11a).
	Even though Prime and Probe is more noisy and therefore leads to less accurate
	results , both can be used to carry out architecture extraction attacks, as is shown

in Section 2.3.4. The main advantage of Prime and Probe is that it does not require page sharing, contrary to Flush and Reload. The authors of

[START_REF] Hong | Security Analysis of Deep Neural Networks Operating in the Presence of Cache Side-Channel Attacks[END_REF] 

and

[START_REF] Hong | How to 0wn the NAS in Your Spare Time[END_REF]

, however, give examples of how to achieve page sharing to launch an architecture extraction attack using Flush and Reload. victim attacker (b) The attacker lls the cache with her addresses, evicting the monitored address. The victim does not access the monitored address. The attacker's addresses are still in the cache. The attacker accesses her addresses again, and the access time is reduced.

  12 to 16 for the VGG16 family, and from 6 × 10 46 to 512 for the ResNet50 family. Goto's GeMM algorithm in the OpenBlas library. It receives input matrices A, B and C, as well as scalar values α, β. It then computes αA • B + βC and stores the output in C. The block sizes correspond to matrix subdivision carried in the implementation for eciency purposes (see Figure2.12). buf A and buf B correspond to small buers used to store temporary computation values.

		input : Matrices A, B, C; Scalars α, β; Integers (Block sizes) P, Q, R; Integer UNROLL
	1 for j ← 0 to n by R do			
		;				/* Loop 1 */
	2	for l ← 0 to k by Q do			
		;				/* Loop 2 */
		/* Loop 3, first iteration */		
	3 4	itcopy(A[0, l], buf A , P, Q); for jj ← j to j + R by 3UNROLL do		
		;				/* Loop 4 */
	5	oncopy(B[l, jj], buf B +(jj -j)× Q, Q, 3UNROLL); kernel(buf A , buf B +(jj -j)× Q,
		C[l, j], P, Q, 3UNROLL);		
	6	endfor			
	7	endfor			
	8	for i ←P to m by P do			
		/* Loop 3, rest of the iterations */	
	9	itcopy(A[i, endfor			
	11 endfor			
		itcopy	oncopy	kernel	itcopy	kernel
			iter4		iter3 -1

Despite the fact that Intel's MKL library is not open source, the authors still manage to carry out their attack on it. Using binary analysis, they managed to identify a pattern similar to that in Figure

2

.13. They can therefore apply the same technique to decrease the set of possible architectures. The attack on Intel MKL Algorithm 1: l], buf A , P, Q); kernel(buf A , buf B , C[l, j], P, Q, 3UNROLL); 10

  Scenario The attacker does not require any prior knowledge regarding the model. But she can still be considered strong, as she has a physical access to the processor running the target model. Experiments have been carried out on small FC and convolutional NNs.

apply a similar approach to fully extract the architecture and secret parameters of Binary Neural Networks (BNNs). CSI NN is a model extraction attack (see Table 2.1) whose goal is functionally equivalent extraction as dened in Section 2.3.1. Threat

  In a white-box context, where the attacker knows can be any label other than l[START_REF] Goodfellow | Explaining and Harnessing Adversarial Examples[END_REF][START_REF] Moosavi-Dezfooli | Deep-Fool: A Simple and Accurate Method to Fool Deep Neural Networks[END_REF]. As an example, let us suppose that an input x's original label is `cat'. In the untargeted case, the attacker is satised whether x 's label is `tiger' or `armchair'. In the targeted context, however, the attacker is only satised if the output is one specic class, say `tiger'. Gradient Sign Method The Fast Gradient Sign Method (FGSM)[START_REF] Goodfellow | Explaining and Harnessing Adversarial Examples[END_REF] was introduced by Goodfellow et al. in 2015 as a fast and simple way of generating untargeted adversarial examples. Given the model θ, input x with output y, a loss function J and a small perturbation , then the adversarial sample is computed as follows:

	In this dissertation, we will only consider adversarial attacks in a white-box
	context. Let us note that an attacker's access to a model's gradient provides the
	best results in terms of adversarial examples. Three attacks in particular will be of
	interest to us.
	the entire model, she can rely on gradients to nd adversarial examples [91]. In a
	black-box context, where the attacker only gets the output of the model either
	values corresponding to the last layer or labels corresponding to the classication ,
	she has to use approximations to reach the target [19]. For instance, one can nd
	adversarial samples on a model similar to the victim and rely on transferability to
	attack the original model.

Adversarial examples can either be targeted or untargeted. If the rst, then the class l in Equation (2.3) is predetermined: the attacker does not simply aim at changing a model's predictions, but also at selecting the output class

[START_REF] Athalye | Synthesizing Robust Adversarial Examples[END_REF]

. If the second, then l Fast

  random search optimization problem. Not only does the Square attack require no information about the original model, but it can outperform gradient-based whitebox attacks. The idea is simple: it is an iterative method where at each step i, a random update δ is sampled, and it is added to the current value x i if it helps with the optimization i.e. if it decreases the loss value in Equation (2.3).

Table 3 .

 3 

	Parasite Location	Original Model	Original Accu-racy	Parasite	Bias straints	con-	New racy accu-	M adv
	After BN and	VM (Fig. 2.4)	98.78%	Without BN With BN	||β|| 2 < 0.05 No bias ||β|| 2 < 0.05 No bias	98.69% 24.5% 98.7 % 19 % 98.50 % 28% 98.67% 22%
	activation (if BN)	VM batch (Fig. 3.4)	99.11%	Without BN With BN	||β|| 2 < 0.05 No bias ||β|| 2 < 0.05 No bias	99.24% 17.5% 99.14% 14% 99.18% 17% 99.15 % 12 %
	Before BN and activation (if BN)	VM batch (Fig. 3.4)	99.11%	Without BN With BN	||β|| 2 < 0.05 No bias ||β|| 2 < 0.05 No bias	96.64% 37.5% 98.13% 39% 99.05% 27.5% 99.16 % 14 %

1: Measurement of the accuracy, and percentage of the adversarial samples that are no longer adversarial for the protected CNN (M adv ). All tests are made on the MNIST dataset

[START_REF] Deng | The mnist database of handwritten digit images for machine learning research[END_REF]

, and the parasitic CNNs approximate the identity to which a centered Gaussian noise with a standard deviation of 0.2 was added. BN denotes Batch normalization. All parasitic CNNs were added after the second convolutional layer of the original model. As Table

3

.1 shows, inserting a CNN trained to learn a Gaussian noise added to the identity can lead to a modication of the polytopes formed by the original model's hyperplanes, with only a slight drop in the accuracy.

Table 3 .

 3 2: Measurement of the accuracy, and percentage of the adversarial samples that are no longer adversarial for the protected CNN (M adv ). All tests are made on the MNIST dataset[START_REF] Deng | The mnist database of handwritten digit images for machine learning research[END_REF]. BN denotes Batch normalization. All parasitic CNNs were added after the rst convolutional layer of the original model, and their input is the entire output of the rst layer (after the BN layer). The target model is VM batch .

	The original model's accuracy is 99.11%.		
	Parasite	Bias constraints	Standard Deviation	Accuracy	M adv
			0.1	99.11%	9%
		No Bias	0.2	99.09 %	34 %
			0.3	99.02 %	34%
	With BN	||β|| 2 < 0.05	0.1 0.2 0.3	93.58% 99.05% 97.55%	48% 32% 46.5%
			0.1	99.18%	16.5%
		No Bias	0.2	98.28 %	42 %
			0.3	93.33 %	52%
	Without BN	||β|| 2 < 0.05	0.1 0.2 0.3	98.79% 98% 98.27%	46.5% 48% 45%

Table 3 .

 3 3: Measurement of the accuracy, and percentage of the adversarial samples that are no longer adversarial for the protected NN (M adv ). Several parasitic CNNs were added to the victim NN. All tests are made on the MNIST dataset[START_REF] Deng | The mnist database of handwritten digit images for machine learning research[END_REF], and the parasitic CNNs approximate the identity to which a centered Gaussian noise with a standard deviation of 0.2 was added. BN denotes Batch normalization. The parasitic CNNs are added after the second convolutional layer of VM batch . We add them before, after, or both before and after the BN layer and activation function.The original accuracy for VM batch is 99.11%. Small means that the constraint on the bias β is ||β|| 2 < 0.05.

		Parasitic CNNs' Locations		Accuracy and M adv
		2 nd layer, Before BN	2 nd layer, After BN	New accuracy	M adv
		and activation	and activation		
	Which neurons?	With BN?	With Bias?	With BN?	With Bias?		
	First n	BN	Small	No BN	Small	99%	31%
	First n	BN	Small	BN	Small	98.98%	37%
	First n	BN	Small	No BN	No bias	98.93%	31.5%
	First n	BN	Small	BN	No bias	98.99%	31%
	First n	BN	No bias	BN	No bias	98.96%	28.5%
	First n Last n	BN BN	Small No bias	-	-	99.05%	31%
	First n Last n	-	-	BN BN	Small No bias	99.17%	27.5%
	First n Last n	-	-	BN BN	No bias No bias	99.15%	27%
	First n First n	-	-	No BN No BN	No bias Small	99.19%	25.5%
	First n Last n	BN BN	Small No bias	BN	Small	98.94%	40%
	First n Last n	BN -	Small -	BN BN	Small Small	99.03%	38.5%
	First n Last n	BN BN	Small No bias	BN -	Small -	98.89%	43%

Table 4 .

 4 1: Description of the MobileNetV2 architecture[START_REF] Sandler | MobileNetV2: Inverted Residuals and Linear Bottlenecks[END_REF]. Each line corresponds to a group of layers, repeated n times. All layers in a given group have c output channels. The rst layer of the group has stride s while the others have stride 1. t is the expansion factor: if there are c input channels and c output channels in a block, there is an intermediate operation with t • c channels.

	Input Shape	Operation	Expansion t	Channels c	Repetition n	Stride s
	224 2 × 3	Convolution (3× 3)	-	32	1	2
	112 2 × 32 112 2 × 16 56 2 × 24 28 2 × 32 14 2 × 64 14 2 × 96 7 2 × 160 7 2 × 320	Bottleneck Bottleneck Bottleneck Bottleneck Bottleneck Bottleneck Bottleneck Convolution (1× 1)	1 6 6 6 6 6 6 -	16 24 32 64 96 160 320 1,280	1 2 3 4 3 3 1 1	1 2 2 2 1 2 1 1

Table 4 .

 4 2: First simulation results on a protected MobileNetV2 model with an original accuracy of 71.41% on the CIFAR10 testing set. The noise added in the protected case is a Gaussian distribution with various standard deviations σ. The attacker uses 128 inputs to extract the weights. We log the extracted accuracy, as well as the mean d = E[ Ŵ -W ]

	||W || 2	between extracted weights Ŵ and original ones W
	over the rst four convolutions.		
	Number of par-asitic layers	Standard deviation σ	New Accu-racy	Extracted Accuracy
	1	0.01	71.41%	71.21%
	1	0.05	71.24%	69.54%
	1	0.1	71.05%	12.90%
	1	0.2	70.23%	18.17%
	2	0.01	67.84%	11.74%
	2	0.05	69.51%	10.15%
	2	0.2	66.43%	9.97%
	Mean	Mean	Mean	Mean
	Conv1	Conv2	Conv3	Conv4

Table 5 .

 5 1: For each model M A , A ∈ S, we generate adversarial examples x A . We then compute, for 1 ≤ i ≤ 14, the ratio of elements from x A that are no longer adversarial for at least i models. S is our set of 14 pretrained autoencoders. M A is the base model to which we add autoencoder A ∈ S at the entrance. The base model

	has an accuracy of 94.5%. The adversarial samples were generated on 200 elements
	from the CIFAR10 testing set [71], using the standard evaluation of AutoAttack [25]
		Accuracy of M A	i=1	i=2	i=3	i=4	i=5	i=6
	Autoencoder 1	90.95%		68%	67.5%	52.5%	46%	44%	41.5%
	Autoencoder 2	90.46%		68.5%	57%	52%	49.5%	42.5%	39.5%
	Autoencoder 3	89.82%		69.5%	60%	53%	49%	47%	43%
	Autoencoder 4	90.16%		75.5%	68%	61.5%	57%	53.5%	48.5%
	Autoencoder 5	90.06%		72%	65%	57%	51%	49%	44.5%
	Autoencoder 6	90.36%		69%	61.5%	54.5%	50.5%	45%	42%
	Autoencoder 7	90.06%		72%	60.5%	55.5%	51%	46%	44.5%
	Autoencoder 8	90.51%		74.5%	65.5%	56.5%	53%	49.5%	45.5%
	Autoencoder 9	89.67%		73%	65%	59.5%	55.5%	51%	48.5%
	Autoencoder 10	90.79%		72%	64%	53.5%	48.5%	44.5%	41%
		i = 7		i=8	i=9	i=10	i=11	i=12	i=13
	Autoencoder 1	39.5%		34%	31.5%	27.5%	29%	24%	18%
	Autoencoder 2	34%		30%	28.5%	26.5%	23%	18.5	13%
	Autoencoder 3	40.5%	36.5%	34%	29.5%	25.5%	22%	17.5%
	Autoencoder 4	44.5%		41%	36.5%	35%	33%	29.5%	24%
	Autoencoder 5	40.5%		38%	33.5%	30%	26%	23.5%	16.5%
	Autoencoder 6	40%	36.5%	33.5%	31%	26.5%	24%	20%
	Autoencoder 7	40.5%		37%	34%	31%	27%	23.5%	20%
	Autoencoder 8	42.5%	39.5%	38.5%	37%	34%	30.5%	23.5%
	Autoencoder 9	46.5%	43.5%	40.5%	37.5%	35.5%	32.5%	25.5%
	Autoencoder 10	39.5%		38%	35%	31%	27%	25.5%	19.5%

Table 5 .

 5 2: Architecture of the autoencoders. The inputs are assumed to have 3 input channels. Conv2D(ch, f, s) is a convolutional layer with ch output channels, lter size f × f and stride s. ConvTranspose2D(ch, s) is a transposed convolutional layer with output channels ch and stride s. Transposed convolutional layers compute an upsampling operation. We select its parameters so that it generates an output of shape (s • n × s • n) for an input of shape n × n.

	Encoder Layers	
	Conv2D(16, 3, 2)	
	BatchNormalization	Decoder Layers
	ReLU Conv2D(32, 3, 1) BatchNormalization ReLU Conv2D(32, 3, 2) BatchNormalization ReLU Conv2D(64, 3, 1) BatchNormalization ReLU Conv2D(64, 3, 2)	ConvTranspose2D(64, 2) BatchNormalization ReLU ConvTranspose(32, 2) BatchNormalization ReLU ConvTranspose(16, 2) BatchNormalization ReLU ConvTranspose(3, 2)
	BatchNormalization	
	ReLU	

Table 5 .

 5 The initial accuracy of our protected model is over 90% in all cases. 4: For each autoencoder A ∈ S, we generate adversarial examples x A on M A , thanks to AutoAttack. We only present the results for the rst 10 autoencoders, as the other autoencoders present similar ones. We then test the accuracy of the protected model M S , with N = |S| varying between 1 and 13.

		N autoencoders in S Initial Accuracy Robustness		
				1		90.46%		80%		
				2		90.82%	78.5%		
				3		89.16%	79.5%		
				4		90.06%		77%		
				5		90.36%		78%		
				6		90.06%		80%		
				7		90.51%	79.5%		
				8		90.67%	78.5%		
				9		89.61%	77.5%		
				10		90.04%		81%		
				11		90.79%	77.5%		
				12		90.52%	78.5%		
				13		89.73%		78%		
		A 1	A 2	A 3	A 4	A 5	A 6	A 7	A 8	A 9	A 10
	N = 1	0%	37 %	45%	50.5%	39.5%	42%	45.5%	52.5%	52%	46.5%
	N = 2	14%	21%	42.5%	46.5%	41.5%	43.5%	38.5%	52.5%	52%	48.5%
	N = 3	26%	25%	31%	48.5%	43.5%	47%	39.5%	47.5%	49%	50%
	N = 4	29.5%	26.5%	30%	35.5%	38%	44.5%	40.5%	47%	49.5%	48%
	N = 5	33%	31%	38.5%	41%	29.5%	42%	38%	47.5%	50.5%	52%
	N = 6	31%	30%	36%	43%	36.5%	38%	39%	43%	52.5%	47%
	N = 7	33.5%	26.5%	30.5%	35.5%	35%	39%	34%	46.5%	55%	50%
	N = 8	34%	35.5%	32.5%	40.5%	37%	41%	36%	40%	52.5%	47%
	N = 9	36.5%	28%	39%	39.5%	36.5%	41.5%	40%	38.5%	46%	47.5%
	N = 10 35% 34.5% 41%	43%	41%	42%	38%	41%	49%	46%
	N = 11 40% 35.5% 38% 43.5% 30.5% 38.5% 38.5% 43.5% 46% 35.5%
	N = 12 37.5% 33%	38%	46%	37.5%	42%	39.5%	41.5%	44.5%	40%
	N = 13 39.5% 33.5% 37%	43%	38%	40.5%	37%	44%	44%	40%

  matrix multiplications are required to Algorithm 4: full_computation: Full computation with random input : Model's input I. Arrays A_C, B_C. Block size B 1 For each convolutional layer, generate random arrays W (block widths) and H (block heights) 2 for input blocks i b do far, within a layer i, all block sizes were identical. Having dierent block sizes within a layer provides more entropy in the number of multiplications per layer (see Section 6.5.1 for a more detailed analysis of the protection's security).Let us rst consider the convolutional case. When the architecture of the target NN is created, we generate two arrays tw and th of random block sizes. The rst array corresponds to the number of columns of each block, while the second corresponds to the number of rows of each block. tw[l] returns the index of the column at which the lth block width-wise starts, and th[j] returns the index at which the jth block height-wise starts. A block with coordinates (l, j) therefore

	3 4	lter_blocks = get_associated_lters(i b ); for F ∈ lter_blocks do
	5	R = compute_sgemm(F, i_b);
	6	accumulator_handler(B, A_C, B_C, acc, R, get_next_layer());
	7	endfor
	8 endfor
	parameter values. However, it is still possible to increase that range of values, by
	injecting randomness in the block sizes.
	6.3.1	Improving Security through Randomization
	has th[l]-th[l-1] rows and tw[j]-tw[j-1] columns. Figure 6.4 provides an
	example of such a subdivision.

So

  for e max :

	b e min		=	145 32	= 5	(6.2)
	H q,min (4)		=	3 × 3 × 64 32	= 18 ∀q ≤ b	(6.3)
	M q,min (4)		=	128 32	= 4 ∀q ≤ b	(6.4)
	ch e min 32	× H b,min (4)	= 4			(6.5)
	tot 4,5 e min		= b e min × H (4) q × M (4) q +	ch e min 32	× H b (4)	(6.6)
			= 292		(6.7)
	b emax		=	290 64	= 5	(6.8)
	H (4) max		= H (4) q,max =	3 × 3 × 64 64	= 9 ∀q ≤ b	(6.9)
	M (4) max		= M (4) q,max =	128 64	= 2	(6.10)
	ch e max 64	× H b,max (4)	= 2			(6.11)
	tot 4,5 emax		= (b emax -1) × H (4) max × M (4) max +	ch e max 64	× H b,max (4)	(6.12)

Table 6 .

 6 1: Maximal and minimal number of multiplications depending on the lter size, when the attacker can distinguish between convolutional layers.

	k (4)	1	2	3	4	5	6	7	8	9	10	11
	tot 4,5 x min ,y max	2	8	306	928	1,400	4,896	5,488	7,168	6,480	8,000	6,776
	tot 4,5 x max ,y min	1	4	9	16	25	36	49	64	324	400	242

Table 6 .

 6 2: Maximal and minimal number of multiplications depending on the lter size, when the attacker cannot distinguish between convolutional layers but knows out 4 , in 5 and out 5 .

	k (4)	1	2	3	4	5	6
	tot 4,6 x min ,y min tot 4,6 xmax,ymax	2,712 126	10,976 504	24,912 1,134	44,800 1,984	70,600 3,100	102,528 4,464
	k (4)	7	8	9	10	11	
	tot 4,6 x min ,y min tot 4,6 xmax,ymax	141,120 5,978	185,856 7,808	237,168 9,882	295,200 12,000	360,096 14,520	

Table 6 .

 6 3: Maximal and minimal number of multiplications depending on the lter size, when the attacker cannot distinguish between convolutional layers. > 12 • 10 6 > 13.4 • 10 6 > 15.8 • 10 6 tot 4,6 x min ,y min > 19.2 • 10 6 > 28.3 • 10 6 > 54.7 • 10 6 tot 4,6

	k (4)	1	2	3	4
	tot 4,6 x min ,y min tot 4,6 xmax,ymax	> 9.6 • 10 6 > 10.5 • 10 6 42 42	> 10 • 10 6 44	> 11 • 10 6 44
	k (4) 5	6	7	8	
	tot 4,6 x min ,y min xmax,ymax	> 11 • 10 6 46	48	54	64
	k (4)	9	10	11	
	tot 4,6				
	xmax,ymax	80	116	226	

Table 6 .

 6 5: Execution times for three dierent architectures, depending on the block size considered. We compare the case B = 1 to the case B = 32 to show how crucial it is to select the correct block size. In all cases, we consider the random protection.

	Block size	Input shape	arch1 arch2	arch3
	1 32	1 × 28 × 28 1 × 22 × 22 1 × 20 × 20 1 × 28 × 28 1 × 22 × 22 1 × 20 × 20	/ 1047µs 1006µs 2539µs / 842µs / 1714µs 1004µs 989µs / 816µs	50198µs 13923µs 9406µs 4995µs 2391µs 1765µs
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For deeper layers, if z is the output of layer l, then even though we cannot select any vector V , it is unlikely for the following equation to happen: z i (x) = 0 ⇐⇒ C(ReLU (z(x)) + β (l) ) j = 0 (3.5) where i is the index of η i in z(x) and j is the index of η j in the parasitic layer.

When η i is not in the window used to compute η j , and the two neurons are therefore unrelated, it is even less likely to be the case.

Therefore, two neurons on dierent layers are very likely to have dierent critical hyperplanes.

Second case: η i and η j are in the same layer Let us suppose that η i and η j are in layer l. Let l be the rst convolutional layer.

Moreover, let us suppose that the CNN is set after the rst layer of the model we want to protect. Then l's input is:

z(x) = ReLU (A (1) x + β (1) )

where x is the model's input. Let us also suppose, without loss of generality, that j > i. This means that the windows used to compute the two neurons are not identical. With high probability, one of the lter values associated with the disjoint window values is nonzero. For simplicity, and without loss of generality, let us suppose, in what follows, that F 1,1 is such a lter value: F 1,1 = 0.

Case where β = 0: As explained before, we can nd x * such that:

Since j > i, z(x * ) i is not in the window used to compute η j , but it is in η i 's window. In this case, η i = 0 and η j = 0. Thus, η i and η j do not share the same critical hyperplane.

Case where β = 0: If β = 0 , we cannot directly apply the previous reasoning.

Let x * be a witness for η j being at a critical point. Let us show that we can nd an input x * * such that η j = 0 but η i = 0. If x * already satises this property, our work is done. Otherwise, x * is such that η i = η j = 0. As explained before, there exists an input to the NN x such that:

(A (1) • x ) h = a with a > 0 if h = i 0 otherwise Then, by piecewise linearity of z, we have, for a value a large enough, that: Train a set S of undercomplete autoencoders. For each autoencoder A, select a standard deviation σ and train A on (X, Xσ ), where X is the training set and X is its corrupted version.

At each run of the protected model, select one or several parasitic autoencoders in S. Optionally, we can also select one or several locations within the base model as well. Let us note that to be able to select the location l, the chosen autoencoders should be adapted to the task. For instance, they can be trained on normalized inputs, or directly on the outputs of the previous layer l -1.

Moreover, the autoencoders in our experiments do not have FC layers so as to be able to adapt to any input shape (see Section 5.3).

The selected autoencoders are placed at the considered locations. It is important to note that this newly created model M should not come with a substantial drop in the accuracy on the dataset X. The generation of the autoencoders' set is a sensitive task. The scheme is represented in Figure 5.1.

The dynamic selection of parasitic autoencoders along with their constrained training constitutes a protection against adversarial attacks, as a potential attacker would struggle to nd an adversarial sample tailored to the current model.

Experiments

We have established the lack of transferability of adversarial examples, and detailed our proposed scheme in Section 5.2. In this Section, we test our countermeasure against the standard evaluation of AutoAttack.

intractable: an attacker cannot realistically train all models and determine the best one.

The attacker shares the victim's ML frameworks.

The attacker and the victim share the cache (co-location). This enables the attacker to monitor the GeMM functions (detailed in Section 2.2.4)

Given those assumptions, the attacker aims at recovering all of the hyperparameters (or at least reducing the number of possibilities for them). Protection Overview The attacker in many reverse-engineering attacks relies on the sequential execution of NNs. Therefore, we consider reordering computations and adding randomness in the way neurons are computed to thwart those attacks.

Although it is impossible to determine the value of an FC layer neuron before earlier layers are done computing, it is not the case for convolutional and pooling layers.

As shown in Figure 6.1, a given neuron in convolutional layer i only requires the values from a window of neurons from layer i -1. In the gure, the blue neurons in layer i -1 are the only one necessary to compute the green neuron in layer i. The blue neurons from convolutional layer i (left) are the ones needed to compute the green neuron in layer i + 1 (right), when layer i's lter size is 3.

Related Works Several papers propose to modify the way convolutional layers are generally computed, with the aim of accelerating CNN computations on hardware devices.

The authors of [START_REF] Shaee | ISAAC: A Convolutional Neural Network Accelerator with In-Situ Analog Arithmetic in Crossbars[END_REF] consider each neuron individually, and compute its value as soon as it is ready. Indeed, in convolutional layers, only a small window of values from the previous layer is used to compute a given neuron. In [START_REF] Shaee | ISAAC: A Convolutional Neural Network Accelerator with In-Situ Analog Arithmetic in Crossbars[END_REF], a buer in layer i stores the values as they arrive in a sequential order. Once enough values for a given neuron arrive on the buer, it executes the computation and sends the value to the following layer. The scheme is described in Fig. 6.1.

The authors of [2] consider computing CNN layers in a similar fashion. The aim of [2] and [START_REF] Shaee | ISAAC: A Convolutional Neural Network Accelerator with In-Situ Analog Arithmetic in Crossbars[END_REF] is to limit the bandwidth necessary to make NN computations, by only loading on chip the necessary values. It also enables a parallelization of some computations.

As the following sections will explain it, we consider a similar approach as [START_REF] Shaee | ISAAC: A Convolutional Neural Network Accelerator with In-Situ Analog Arithmetic in Crossbars[END_REF] and [2], but outside of the hardware context. Furthermore, our goal is not to accelerate the computations but to protect them from architecture extraction attacks.

[128] also considers the computations in NNs in a dierent order, but their goal is to run the victim NNs in Trusted Execution Environments (TEEs). Since TEEs have a limited memory space, all weights and inputs cannot be loaded at once. Therefore, they partition the target NNs in three dierent ways (per layer, within a layer and branched partitioning) when loading them into the TEEs.

Like us, some papers [START_REF] Liu | Mitigating Reverse Engineering Attacks on Deep Neural Networks[END_REF][START_REF] Dubey | BoMaNet: Boolean Masking of an Entire Neural Network[END_REF][START_REF] Dubey | MaskedNet: A Pathway for Secure Inference against Power Side-Channel Attacks[END_REF] aim at protecting NNs from architecture extraction attacks. They are further detailed in Section 2.3.7. While the authors of [START_REF] Dubey | MaskedNet: A Pathway for Secure Inference against Power Side-Channel Attacks[END_REF] ensure the power traces of NN inference are leakage free, [START_REF] Liu | Mitigating Reverse Engineering Attacks on Deep Neural Networks[END_REF] and [START_REF] Dubey | MaskedNet: A Pathway for Secure Inference against Power Side-Channel Attacks[END_REF] mitigate memory access pattern attacks. To the extent of our knowledge, no paper has tackled the cache-based SCAs for architecture extraction yet.

In this Chapter, we mix two ideas: the interleaving of layers presented in [START_REF] Shaee | ISAAC: A Convolutional Neural Network Accelerator with In-Situ Analog Arithmetic in Crossbars[END_REF] and the block multiplications as in GeMM. We apply them to the software level rather than the hardware one. Our aim also diers from previously mentioned papers: while existing approaches [2,[START_REF] Shaee | ISAAC: A Convolutional Neural Network Accelerator with In-Situ Analog Arithmetic in Crossbars[END_REF] apply the interleaving of layers for eciency, we apply it for security purposes. As detailed in Section 6.3, we also added a randomization element. This mix of the two ideas along with the randomization lead us to some experimental results showing our idea does thwart the Cache Telepathy attack (see Section 6.5).

Reordering Computations: the Convolutional

Case

In this Chapter, our goal is to mitigate cache attacks targeting the GeMM computations (the GeMM algorithm is detailed in Section 2.2.4) during the inference phase of a victim CNN. We consider out of scope other side-channel vectors such as power consumption or memory access patterns. Furthermore, our proposed method concerns convolutional and max pooling layers. Even though Cache Telepathy also targets FC layers, we will see in Section 6.5.1 that our approach still mitigates the attack.

Convolutional Layer

The protection we propose is based on two observations:

First, the sequential execution of layers enables a potential attacker to determine the depth of an NN. Indeed, the depth directly results from the number of observed matrix multiplications.

Second, the hyper-parameters of a given layer can be deduced by a potential attacker because each layer is executed as a whole before moving on to the next one.

Therefore, a depth-rst computation should improve the security of an NN. In CNNs, several neurons in a layer i can be executed before layer i -1 has been fully Block characteristics Let us note that GeMM computations are more ecient when matrix sizes are multiples of 32 [START_REF] Goto | Anatomy of high-performance matrix multiplication[END_REF]. Thus, the default block size should be a multiple of 32 as well. Moreover, the number of computations is correlated with the block sizes: if we increase the block size, there are fewer matrix multiplications. But the eciency of the computations also depends on the cache size, the various layers' input sizes and the padding added. It is therefore important to tailor the block size to the architecture's hyperparameters. Furthermore, taking into account the matrix sizes in each layer is important: if the block sizes are too large, no overlap can occur between a convolutional layer and the following one. Thus, block sizes need to be adapted to the architecture at hand. Algorithms 2 and 3 provide the pseudo-code for our method. Algorithm 2 receives a list of elements from layer i -1 and checks whether a block R Br is full (line 5). If it is the case, it computes {F b r,j × R Br } 1≤j≤Mr (using compute_sgemm, line 10) whether layer i -1's execution is over or not. It sends the temporary values to layer i by calling Algorithm 3: accumulator_handler (lines 7-10). Algorithm 3 takes those output elements, adds them to the correct locations in R (i) (lines 1-4) and checks whether a neuron is completely computed (line 7). If it is the case, it sends the result to layer i + 1. Pooling layers need to be dealt with dierently. The reason why is twofold: rst, in such layers, the various channels are managed independently. Filter sizes are small, resulting in a small height for reshaped matrices. It is therefore more practical to consider blocks width-wise only. Second, no GeMM multiplication is involved in the computation. They are therefore not the target of the cache attack considered.

Process for one convolutional layer

However, executing a pooling computation introduces overhead in between block computations. This leaks some information to a potential attacker and she might determine the number of multiplications required to obtain one column in the reshaped pooling input. This provides the attacker with a small range of possible hyper-parameter values. If the victim waits for several columns in the reshaped pooling layer to be ready before starting the execution, the range of possible hyperparameter values increases, making it harder for an attacker to recover the correct architecture. It is therefore important to also consider a blocked computation for layers without GeMM computations, such as pooling ones.

We propose to adapt the methodology described in Section 6.2.1 to pooling layers. We still compute several neurons at once. But here, we wait for multiple entire columns to be completed instead of blocks. Moreover, we deal with the various channels independently. We consider a pooling layer i with a window size of k (i) × k (i) . Let B ∈ N. Given the max pooling layer's input

blocks {R Br } 1≤r≤N (i) width-wise. Whenever all of block R Br 's values are ready i.e. whenever they were relayed by the previous layer , the computation can be executed for that block. This results in B neurons that need to be passed on to the following layer.

Randomization of Block Sizes

Computing the matrix multiplications by blocks as explained in Section 6.2 helps mitigate the attack at hand, as the attacker only recovers a set of possible hyper-

We make the same assumptions in this Chapter.

As explained in Section 2.3.4, the attackers in Cache Telepathy monitor GeMM computations in order to recover those hyper-parameters. The number of convolutional layers in the target CNN is equal to the number of matrix multiplications.

Filter sizes are deduced from the sizes of the matrices involved in the multiplications. The possibilities for padding values and pooling sizes are restricted thanks to constraints on the dimensions of each layer.

Section 2.3.4 also mentions that the Flush and Reload attack along with these assumptions enable the attacker to limit the search space to a very small set of possible architectures. For instance, for the VGG16 architecture [START_REF] Simonyan | Very Deep Convolutional Networks for Large-Scale Image Recognition[END_REF], the Cache Telepathy attack reduces the search space from over 5.4 × 10 The reshaped input image R 4 for Conv4 has width:

and height:

. The reshaped lter matrix F 4 for Conv4 has width:

and height: F

H = out 4 = 128 [START_REF] Duddu | Stealing Neural Networks via Timing Side Channels[END_REF][START_REF] Duddu | Stealing Neural Networks via Timing Side Channels[END_REF] and (x max , y max ) = (64, 64), we have: 

In O (5) , we need the element with coordinates (ch, B • b) where ch is the last lter of Conv5, since M axP ool requires all channels to be completed. That element requires element (x , y ) = (in 5 × k (5) × k (5) , B • b) in I (5) . Indeed, the column number in O (5) and I (5) must be the same. Furthermore, the whole column must be computed, which is why x = in 5 × k (5) × k (5) . Thus, the previous formulas directly provide us with (x , y ):

(x min , y min ) = (in 5 × k (5) × k (5) -1, 32

Thus, given Conv5 has 128 input and output channels: Here, we have H (5) × M (5) for width-wise block b as well because the whole b-th block width-wise needs to be computed, as well as all channels.

Applying the same process as previously to compute tot 4,5 e min and tot 4,5 emax , we have:

x min ,y min = 4338 tot 4,5

x max ,y max = 1053

The architectures are as follows :

1. Conv MaxPool Conv MaxPool (arch1)

2. Conv MaxPool Conv (arch2)

Conv Conv (arch3)

We average the execution time over 1,000 runs for several input sizes, as shown in Table 6.4. The time overhead depends heavily on the architecture's depth, the input size, the layer types and the block sizes.

The case B = 1 in Table 6.5 is included to show the importance of correctly selecting the minimal block size. The high overhead incurred in the case where one neuron is computed at a time conrms our assertion in Section 6.2.1, stating that considering one neuron at a time would take too long.

Let us now consider the case B = 32. In some cases, such as arch2 with input shape 1 × 20 × 20, the randomized protection has almost the same execution time as a normal execution.

We believe that the higher overhead in arch3 is due to the lack of maxpooling layers: this leads to higher input sizes for the convolutional layers, and convolutional layers take naturally longer to compute than maxpooling.

Let us remind the reader that we did not use common frameworks such as Py-Torch [START_REF] Paszke | PyTorch: An Imperative Style, High-Performance Deep Learning Library[END_REF] or TensorFlow [START_REF] Abadi | TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems[END_REF], as explained in Section 6.5.4. Moreover, because the GeMM operation is operated on a very low level and ensures an optimally lled cache, it is very ecient. It is not the case for our high-level block subdivisions and multiplications. Thus, since common ML frameworks are heavily optimized, and so is the GeMM operation, we believe that the worst case in Table 6.4 being 8 times more time consuming than an unprotected operation is reasonable, and the time overhead could be improved with further optimization. This is especially the case since we compare our implementation's execution time to a standard, highly optimized, Keras with TensorFlow as a backend one. Furthermore, despite the incurred overhead, we believe that our countermeasure is a rst important step towards a secure real time execution. The increasing number of reverse-engineering attacks on NNs pose serious security issues, be it concerning the intellectual property of industries or the users' privacy.

Because of the novelty of the attacks, not many countermeasures have appeared.

Moreover, most existing protections are hardware-based. In this thesis, we provided three software-based countermeasures to reverse-engineering attacks. Our work also led us to apply one of our proposals to mitigate adversarial attacks.

Contributions

We started by introducing NNs and their structure, as well as the attacks and A key element, dynamism, lacked in the contribution from Chapter 3. Indeed, the protection previously suggested did not prevent physical side-channel attacks, which can reconstruct an entire model based on power or electromagnetic traces.

Selecting a dierent set of parasitic models at each run enabled us to hide the input of a target model in Chapter 4. By placing at least one parasite, selected at random, at the entrance of a model, we made sure a malicious user saw constantly changing input values, preventing her from extracting precise weight values. In this case, the overhead at runtime corresponds to the addition of only a few layers to the original model, as well as selecting a model at random among a pretrained set. The