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Résumé en Français

Le Deep Learning (DL) constitue, de nos jours, un élément important de notre vie
quotidienne. Le Machine Learning (ML) est utilisé dans presque tous les domaines.
Les modèles de ML peuvent prédire un diagnostic en se basant sur des images médi-
cales [101], reconnaître nos visages ou nos empreintes pour nous authenti�er [13],
ou même prédire et résoudre des crimes [110, 37]. Une application de plus en plus
présente est la reconnaissance faciale [13]. Par exemple, L'iPhone X de Apple permet
à l'utilisateur de dévérouiller son téléphone grâce à son visage.

Les modèles de ML sont des algorithmes dont le but est d'apprendre une tâche
spéci�que à travers une phase d'amélioration de ses capacités en se basant sur des
données. Cette phase est appelée l'apprentissage. Par exemple, en classi�cation
d'image, un tel modèle apprend à reconnaître des images et à les classi�er dans
di�érentes catégories. De ce fait, si le modèle reçoit une image de chat, il retourne
l'étiquette `chat'. Un modèle de ML est alors considéré comme précis lorsque ses
sorties sont correctes avec une forte probabilité.

Pour une tâche donnée, la précision d'un modèle dépend de son architecture
et de ses paramètres. Il existe une grande variété de modèles de ML, mais ils
sont généralement adaptés à di�érentes tâches [69, 127, 1, 105]. Par exemple, des
réseaux de neurones par convolution (CNN) sont souvent utilisés dans le cadre de
la classi�cation et le traitement d'images, puisqu'ils arrivent à détecter e�cacement
les caractéristiques d'une image [115, 48, 119].

Parmi les modèles de ML, les réseaux de neurones arti�ciels (NNs) � et plus par-
ticulièrement le DL � sont en hausse. Les NNs sont des algorithmes qui cherchent à
accomplir leur tâche en imitant le cerveau humain. Ils sont divisés en couches com-
posées de neurones interconnectés. Les valeurs de ces neurones sont mises à jour
durant l'entraînement a�n d'approcher des prédictions optimales. Malgré leur grand
nombre de neurones, les techniques de DL sont en gain de popularité. Cela est dû à
leur e�cacité à traiter des problèmes complexes nécessitant de larges bases de don-
nées. Ils ont aussi l'avantage que la sélection de leur base de données d'entraînement
ne nécessite pas d'expertise particulière, et que leur objectif n'a pas besoin d'être
subdivisé en des problèmes plus simples. Cela est le cas pour d'autres techniques de
ML, pour lesquelles un humain doit prétraiter les données d'entraînement manuelle-
ment, ou le problème de départ doit être réduit à plusieurs petits problèmes. Un
exemple est l'identi�cation des éléments d'une image en utilisant des Machines à
Vecteur de Support (SVM): les éléments doivent d'abord être localisés, puis leur
classe doit leur être assignée par la SVM.

La nouvelle capacité à traiter de grands ensembles de données grâce à l'amé-
lioration des capacités de stockage et de calcul a également permis aux techniques
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de DL de se développer. Ceci est d'autant plus vrai que plusieurs articles se sont
concentrés sur l'accélération des calculs, par exemple par le biais d'accélérateurs [117,
151]. En outre, il a été constaté que les modèles DL pré-entraînés peuvent s'adapter
relativement facilement à de nouvelles tâches : c'est ce qu'on appelle l'apprentissage
par transfert. Ainsi, les modèles pré-entraînés peuvent être utilisés avec un réglage
de précision pour réduire le besoin de grands ensembles de données d'apprentissage.

En raison de leur large utilisation dans notre vie quotidienne ainsi que dans
l'industrie, leur sécurité est primordiale. Plus précisément, trois problèmes potentiels
doivent être signalés.

Premièrement, les modèles ML eux-mêmes doivent être protégés. La sélection
� ou la création � de la meilleure architecture pour la tâche à accomplir est di�-
cile et prend du temps. Mais une fois l'architecture dé�nie, l'apprentissage de ses
paramètres prend encore plus de temps et nécessite des ressources de calcul intensif.
En e�et, pour des tâches complexes, les architectures ML peuvent avoir des millions
de paramètres [115, 48]. Même les plus petites architectures, adaptées à une util-
isation mobile, ont souvent plus d'un million de paramètres [107]. L'entraînement
de ces paramètres pour atteindre une précision presque optimale peut parfois pren-
dre des semaines, même en utilisant plusieurs processeurs de traitement graphique
(GPU). C'est le cas d'AlphaGo, une intelligence arti�cielle jouant au Go, qui a né-
cessité trois semaines d'entraînement avec 50 GPUs pour battre le meilleur joueur de
Go au monde de l'époque [114] Le temps et les ressources informatiques nécessaires
pour entraîner correctement les modèles ML en font une propriété intellectuelle (IP).

Le deuxième problème de sécurité concerne la protection des données. L'en-
traînement des modèles ML repose généralement sur de grands ensembles de don-
nées. Ces derniers peuvent être des données sensibles, par exemple dans les domaines
médical ou biométrique. Il est donc primordial d'éviter toute fuite de l'ensemble de
données d'entraînement. Il est également crucial de protéger l'entrée du modèle au
moment de l'exécution, encore une fois pour des raisons de con�dentialité. En pra-
tique, cela signi�e que les sorties et la structure interne du modèle ne doivent pas
révéler d'information sur ses entrées et ses données d'apprentissage.

En�n, la dernière question de sécurité concerne l'intégrité des entrées et des sor-
ties. Il est primordial que l'utilisateur puisse faire con�ance à la sortie du modèle.
De plus, certaines applications exigent l'exactitude de la prédiction pour une grande
majorité d'entrées. La précision est par exemple critique lorsqu'il s'agit de recon-
naissance faciale. Sinon, un utilisateur malveillant pourrait se faire passer pour une
autre personne a�n d'accéder à des données con�dentielles ou d'endommager des
�chiers sensibles. Pour cette raison, un tiers ne devrait pas être en mesure d'altérer
les entrées ou les prédictions du modèle.

Ces trois problèmes de sécurité peuvent donc être résumés comme suit :

� Le modèle et ses paramètres constituent une propriété intellectuelle et ne
doivent donc pas être divulgués.

� Les données stockées par l'utilisateur et les données utilisées pour l'entraînement
peuvent être sensibles.

� Les prédictions du modèle doivent être résistantes à l'altération des entrées et
des sorties, car cela compromettrait l'intégrité du modèle.
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Ce grand intérêt pour les modèles DL a attiré l'attention sur leurs failles de
sécurité. Parmi les attaques les plus anciennes et les plus étudiées �gurent les
attaques adversariales [91, 116]. Dans ce type d'attaque, une partie malveillante
ajoute un petit bruit à l'entrée de façon à ce qu'il soit indétectable par un ora-
cle - souvent considéré comme l'÷il humain - mais trompe le modèle cible. De
telles attaques constituent une faille de sécurité majeure, car elles peuvent être à la
base d'usurpations d'identité, par exemple [64]. Les attaques par empoisonnement
compromettent l'ensemble de données d'apprentissage en y ajoutant des défauts.
Cela compromet une fois de plus l'intégrité du modèle car les prédictions sont alors
faussées.

Les attaques par adhésion, quant à elles, s'attaquent à la vie privée de l'utilisa-
teur, en divulguant des informations sur l'ensemble de données d'entraînement [112].
Dans les attaques de vol de modèle, l'attaquant tente de récupérer une entrée chi�rée
ou cachée en se basant sur la sortie ou les calculs du modèle.

En�n, ces dernières années, divers articles sur les attaques de rétro-ingénierie
ont été publiés, mettant ainsi en péril la propriété intellectuelle. Certaines sont
basées sur des équations et tentent de récupérer les paramètres internes à partir des
valeurs de sortie [125]. D'autres approches mathématiques consistent à utiliser la
structure interne du modèle ML, et plus particulièrement les hyperplans associés à
chaque neurone, pour récupérer les paramètres [16, 103, 60, 87]. Mais les NNs ont
également été la cible d'attaques par canaux cachés (SCA), qui utilisent des fuites
liées à l'implémentation plutôt que des vulnérabilités mathématiques pour retrouver
le secret recherché. Des exemples de vecteurs de fuites incluent le cache [141, 53, 52,
79], la puissance, les émanations électromagnétiques [10, 146, 55, 137] ou le temps
écoulé [32, 56].

Par conséquent, les articles ont récemment exploité tous les problèmes de sécu-
rité mentionnés ci-dessus. Même s'ils sont la cible de diverses attaques, les NNs
ne sont souvent pas assez protégés, comme l'indique [118]. Cela montre le besoin
de protection dans le domaine du ML. En réalité, les auteurs de [16] notent que
les NNs n'ont pas été conçus pour être sécurisés, comme le montrent les attaques
susmentionnées. Il apparaît alors que trouver de nouvelles protections pour les NNs
est un sujet critique. C'est pourquoi cette thèse présente de nouvelles approches
pour apporter la sécurité nécessaire.

Nous nous concentrons principalement sur la protection des paramètres et de
l'architecture. La raison est triple. Elle permet non seulement de protéger l'IP, mais
aussi d'atténuer certaines attaques adversariales et par adhésion, qui nécessitent
l'architecture et/ou les paramètres de leurs modèles victimes [96, 113, 112]. Les
auteurs de [24] notent même que la recherche adversariale basée sur le gradient
- qui nécessitent une certaine connaissance du NN - sont les plus e�caces. La
troisième raison est que l'accès au modèle complet entraîne une fuite d'informations
sur les sorties du modèle. Comme indiqué dans [6], les entrées des NNs se situent
dans un espace de faible dimension et les NNs opèrent une réduction de dimension
majeure entre l'espace d'entrée et l'espace de sortie. Par exemple, dans un scénario
d'appariement où un système détermine si le vecteur d'un utilisateur est proche de
la sortie d'un modèle, un utilisateur malveillant a plus de chances de trouver un
vecteur correspondant lorsque le modèle est connu. Pour le démontrer, nous avons
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tenté (dans [160]) de faire correspondre la sortie d'un modèle sur 1 000 images de
l'ensemble de données ALOI [39] avec les 13 394 images d'Imagenette [54]). Nous
avons obtenu 17 correspondances parmi toutes les paires possibles, soit 1.27×10−4%
des correspondances. Cela représente une probabilité beaucoup plus élevée que si
l'utilisateur avait sélectionné un vecteur de sortie au hasard (< 1

284
% dans notre

cas).
Les trois raisons susmentionnées montrent la nécessité de protéger le modèle

contre les attaques par rétro-ingénierie.
Notons que cette thèse se concentre également sur les défenses logicielles plutôt

que matérielles. En e�et, les défenses logicielles sont plus faciles à distribuer sans
changer l'équipement des utilisateurs, par exemple par le biais d'une mise à jour
logicielle. Nous nous concentrons également sur la reconnaissance d'images, car c'est
l'exemple le plus commun de NNs que nous rencontrons dans notre vie quotidienne.

Contributions Dans cette thèse, nous commençons par introduire les NNs et leur
structure, ainsi que les attaques et défenses qui ont déjà été publiées. Notons qu'au
cours du doctorat, nous avons publié une enquête sur les attaques de rétro-ingénierie
de l'architecture d'un modèle par canaux cachés, intitulé �Side-Channel Attacks for
architecture Extraction of Neural Networks�. Cette enquête a été publiée dans CAAI
Transactions on Intelligence Technology [158]. Dans cette enquête, nous parlons
également d'attaques de rétro-ingénierie sur les paramètres et évoquons certaines
défenses.

La première partie de ce mémoire se place dans un contexte de boîte grise,
où l'attaquant connaît tout ou partie de l'architecture cible. Dans ce cadre, nous
proposons des défenses contre l'extraction des paramètres, mais également une pro-
tection face à des exemples adversariaux.

Nous commençons par introduire la notion de modèle parasite, un élément clé
de notre première partie. Il s'agit d'un CNN entraîné à approximer une identité
bruitée. Nous plaçons un (ou plusieurs) parasite(s) à l'intérieur du modèle cible a�n
de changer la structure interne de ce dernier. En e�et, nous montrons que cet ajout
de couches change les frontières de classi�cation à travers l'introduction d'hyperplans
en lien avec les nouveaux neurones. Plus particulièrement, les couches parasites
que nous ajoutons en premier lieu contiennent des fonctions d'activation ReLU
qui rendent nuls les neurones négatifs et gardent la valeur des neurones positifs.
Cela introduit non seulement de nouveaux hyperplans correspodant à des neurones
valant 0, mais la non linéarité de ReLU entraîne également un changement dans
les hyperplans de départ. Certaines attaques mathématiques de rétro-ingénierie [56,
103, 16, 27] se basent sur ce type d'hyperplans a�n de retrouver les paramètres
du modèle cible. En changeant la structure interne du modèle de départ, nous
rendons alors ce type d'attaques plus di�ciles. En raison de leur fort lien avec les
frontières de classi�cations, nous mesurons l'impact de notre contremesure sur les
exemples adversariaux générés et observons un grand changement dans ces exemples:
de nombreux exemples générés sur le modèle de départ (pouvant aller jusqu'à environ
40%) ne sont plus adversériaux pour le modèle protégé. Cette observation montre
que notre technique a bien mené à un changement dans la structure interne du
modèle de départ. Ces résultats ont été présentés à ICISSP 2021, sous le titre �A
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Protection against the Extraction of Neural Network Models� [157].
Bien que ce changement de structure impacte les attaques mathématiques, il est

insu�sant pour se protéger des attaques SCA physiques se basant sur la puissance
ou les émanations électromagnétiques [10]. Pour pallier à cela, nous introduisons
alors du dynamisme aux parasites présentés, et les plaçons à l'entrée du modèle à
protéger. Ces attaques sont des attaques statistiques qui se basent sur des traces de
puissance ou électromégnétiques, ainsi que sur la connaissance des données d'entrée,
a�n d'extraire les paramètres � et même l'architecture � du modèle. Sélection-
ner un modèle parasite à chaque exécution du modèle permet de cacher l'entrée
du modèle et d'ainsi se défendre contre ces attaques statistiques. Nous proposons
donc de sélectionner, pour chaque exécution, au moins un parasite à placer en en-
trée. Ainsi, nous nous sommes assurés qu'un utilisateur malicieux ne puisse voir
qu'une entrée changeant constamment, l'empêchant d'extraire les paramètres précis
du modèle. Notons qu'en plaçant les parasites en entrée, nous misons également sur
l'e�et domino: le bruit introduit en entrée et extrait par un attaquant est ampli-
�é par les couches suivantes. Ce travail a mené à une publication à SPACE 2021,
sous le nom �Parasite: Mitigating Physical Side-Channel Attacks against Neural
Networks� [155].

En étudiant la protection des paramètres d'un modèle à l'aide de nos parasites,
nous avons remarqué l'impact que ces parasites avaient sur les exemples adverséri-
aux. Cela nous a menés à la troisième contribution de cette thèse: une protection
contre des exemples adversariaux. En e�et, bien que nos parasites ne faisaient que
changer les exemples adversariaux générés, nous les adaptons a�n de limiter les
attaques adversériales. Pour cela, nous considérons à nouveau une introduction dy-
namique de modèles parasites à l'intérieur du modèle cible. Cette fois, le type de
parasites que nous utilisons est di�érent. Nous choisissons d'entraîner des autoen-
codeurs, qui compressent les données d'entrée (encodage), puis leur redonnent leur
forme initiale (décodage). La compression intermédiaire permet d'éliminer du bruit,
et donc de potentiellement éliminer du bruit adversarial. Le décodage, quant à lui,
introduit des détails di�érents de ceux de départ. Les autoencodeurs ont déjà été
utilisés avec comme objectif l'élimination d'exemples adversariaux. Cependant, leur
entraînement est di�érent du nôtre, et, surtout, ne considèrent pas le dynamisme que
nous proposons. Le dynamisme fait en sorte qu'un attaquant n'ait accès qu'à une
structure changeante. En générant des exemples sur une structure donnée, ces ex-
emples ne sont alors pas nécessairement transférables aux autres structures, comme
nous le montrons dans notre manuscrit [159].

Une autre méthode permettant la protection des paramètres d'un réseau de neu-
rones est de protéger l'architecture directement. En e�et, les attaques de rétro-
ingénierie existantes peuvent soit supposer que l'attaquant connaît l'architecture de
base [16], soit extraire l'architecture en même temps que les paramètres [10]. De
plus, l'architecture constitue en elle-même une IP. En e�et, l'architecture, et no-
tamment la sélection de ses hyper-paramètres, est cruciale dans l'entraînement du
modèle. Une architecture trop petite aura du mal à apprendre correctement ses
données, tandis qu'un modèle trop gros prendra plus de temps à apprendre et risque
de ne pas se généraliser à des entrées extérieures aux données d'entraînement. C'est
pourquoi, dans une deuxième partie, nous nous intéressons à la protection, en boîte

vii



noire, de l'architecture des NNs.
Plus particulièrement, nous mitigeons une attaque SCA se basant sur le cache.

Etant donné que les attaques d'extraction d'architecture utilisent généralement
l'exécution séquentielle des couches de NNs, nous proposons de changer l'ordre de
calculs des neurones a�n de les contrer. Pour cela, nous calculons des neurones par
blocs et en profondeur. A�n de rendre la tâche de l'attaquant encore plus di�cile,
nous ajoutons de l'aléa dans la taille des blocs de calculs. Ainsi, nous générons
des tailles de blocs aléatoires à la création de l'architecture, puis nous entamons
des calculs dès qu'un bloc est prêt (i.e. lorsqu'assez de valeurs sont parvenues
depuis la couche précédente). Notons que ce réarrangement des calculs est possible
uniquement pour certains types de couches, telles que les couches convolutionnelles.
Cependant, ces couches sont très répandues et nous montrons que nous arrivons à
protéger une architecture connue: VGG16. Les résultats de cette contribution ont
été publiés dans ACNS 2021 en tant que �Telepathic Headache: Mitigating Cache
Side-Channel Attacks on Convolutional Neural Networks".
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Chapter 1: Introduction

Deep Learning (DL) now forms an important part of our daily lives. Almost all
�elds in technology rely on Machine Learning (ML) models to achieve their goals.
ML models can predict a diagnosis based on medical images [101], recognize our
faces or our �ngerprints for authentication [13] or predict and solve crimes [110, 37].
One application on the rise is facial recognition. For instance, Apple's iPhone X [13]
enables its user to unlock their phone through facial recognition.

ML models are algorithms whose aim is to learn a speci�c task through a data-
based automatic improvement phase called the learning phase. For instance, in
image classi�cation, such a model learns to recognize images and classify them into
the correct categories. As such, if it receives a picture of a cat, it should return the
label `cat'. An ML model is then considered accurate when its outputs are correct
with a high probability.

For a given task, a model's accuracy depends on its architecture and its pa-
rameters. There is a large variety of ML models, but they are generally adapted
to di�erent tasks [69, 127, 1, 105]. For example, Convolutional Neural Networks
(CNNs) are often used in image classi�cation and processing, as they are e�cient
when it comes to detecting target features [115, 48, 119].

Among Machine Learning models, Neural Networks (NNs) � and more speci�-
cally Deep Learning � have been on the rise [20, 68, 48, 115]. NNs are algorithms
which aim at learning their task by imitating the brain. They are divided into
layers comprised of interconnected neurons. The neurons' values are updated dur-
ing training to ensure optimal predictions. Despite their large number of neurons,
DL techniques have been gaining in popularity, due to their e�ciency when dealing
with complex problems requiring large datasets. They also have the advantage of
necessitating little expertise when selecting training data, and the target task does
not need to be broken down into smaller, easier problems. Other ML techniques do
need this division of the main problem into smaller ones, or human intervention for
preprocessing or selecting data. It is the case for identifying elements in an image
using Support Vector Machines (SVM) for instance: the elements �rst need to be
located, then their label is assigned by the SVM [23].

The new ability to deal with large datasets thanks to enhanced storing and
computing capacities has also enabled DL techniques to surge. This is especially
the case since several papers have been focusing on accelerating computations, for
instance through DL accelerators [117, 151]. Moreover, it has been noted that
pretrained DL models can relatively easily adapt to new tasks: this is called transfer
learning. Thus, pretrained models can be used with �ne-tuning to reduce the needs
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for large sets of training data.
Because of their wide use in our daily lives as well as in the industry, security is

paramount. More speci�cally, three potential issues should be �agged.
First, ML models themselves should be protected. Selecting � or creating �

the best architecture for the task at hand is di�cult and time consuming. But
once the architecture is set, training its parameters takes even longer, and requires
resources for intensive computing. Indeed, for complex tasks, ML architectures can
have millions of parameters [115, 48]. Even smaller ones, adapted to mobile use,
often have over a million parameters [107]. Training those parameters to achieve
an almost optimal accuracy can sometimes take weeks, even using several Graphics
Processing Units (GPUs). This was the case for AlphaGo, a Go playing arti�cial
intelligence, which required three weeks of training using 50 GPUs to beat the best
Go player in the world at the time [114]. The time and computational resources
required to correctly train ML models make them Intellectual Property (IP).

The second security issue deals with data protection. The training of ML model
generally relies on large datasets. The latter might be sensitive data, for instance in
the medical or biometrics �elds. It is therefore paramount to prevent leakage of the
training dataset. It is also crucial to protect the model's input at run time, once
again for user privacy reasons. In practice, it means that the model's outputs and
internal structure should not reveal information about its inputs and training data.

Finally, the last security matter concerns the input and output integrity. It is
paramount that the user can trust the model's output. Moreover, some applications
require correctness of the prediction for a vast majority of inputs. It is for instance
critical when it comes to facial recognition. Otherwise, a malicious user might
impersonate another person to access con�dential data or damage sensitive �les.
For this reason, a third party should not be able to tamper with either the input or
predictions of the model.

The three security concerns can thus be summarized as follows:

� The model and its parameters constitute IP and should therefore not be leaked.

� The user's stored data and the data used for training might be sensitive.

� The model's predictions should be robust against tampering with inputs and
outputs, as it would otherwise undermine the model's integrity.

This high interest in DL models has led to a new focus on their security failures.
Among the oldest and most studied attacks are adversarial ones [91, 116]. In this
type of attack, a malicious party adds a small noise to the input such that it is
undetectable to an oracle � often taken as the human eye � but fools the target
model. Such attacks constitute a serious security issue, as they can be the basis of
impersonation attacks, for example [64]. Poisoning attacks compromise the training
dataset by adding faults to it. This once again jeopardizes the model's integrity, as
it falsi�es the predictions.

Membership attacks, on the other hand, tackle the user's privacy, by leaking
information about the training dataset [112]. In model stealing attacks, the at-
tacker tries to recover an encrypted or hidden input based on the model's output or
computations.
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Finally, in recent years, various reverse-engineering attack papers have been pub-
lished, thus jeopardizing the IP. Some are equation-based, trying to recover the inner
parameters from the output values [125]. Other mathematical approaches include
the use of the ML model's internal structure, and more speci�cally the hyperplanes
associated to each neuron, to recover the parameters [16, 103, 60, 87]. But NNs
have also been the target of side-channel attacks (SCAs), which use implementation-
related leakages rather than mathematical vulnerabilities to recover the sought out
secret. Examples of leakage vectors include the cache [141, 53, 52, 79], power or
electromagnetic emanations [10, 146, 55, 137] or time elapsed [32, 56].

Therefore, papers have recently exploited all security matters mentioned above.
Besides being the target of various attacks, NNs are also often not protected enough,
as stated in [118]. This shows the need of protection in the ML �eld. In fact, the
authors of [16] note that NNs were not designed to be secure, as shown by the
aforementioned attacks. It is therefore apparent to us that �nding new protections
for NNs is a critical subject. This is why this thesis presents new approaches to
providing the needed security.

We mainly focus on parameter and architecture protection. The reason is three-
fold. It not only enables the protection of IP, but it also mitigates some adversarial
and membership inference attacks which require the architecture and/or parameters
of their victim models [96, 113, 112]. The authors of [24] even note that gradient-
based adversarial search � which does require some knowledge about the NN � are
the most e�cient ones. The third reason is that access to the full model leaks in-
formation about the outputs of the model. As noted in [6], NNs inputs lie in a low
dimensionality manifold and NNs operate a major dimension reduction between the
input space and the output space. For instance, in a matching scenario where a sys-
tem determines whether a user's vector is close to the output of a model, a malicious
user is more likely to �nd a matching vector when the model is known. To show
this (in the context of our submitted paper [160]), we tried matching the output of
a model on 1,000 images from the ALOI dataset [39] with the 13,394 images from
Imagenette [54]. We got 17 matches amongst all possible pairs, or 1.27× 10−4% of
matches, which is a much higher probability than if the user had selected an output
vector at random (< 1

284
%).

The three aforementioned reasons show the necessity to protect the model against
reverse-engineering attacks.

Let us note that this thesis also focuses on software rather than hardware-based
defenses. Even though hardware-based defenses are generally more e�cient and less
time consuming, they are less �exible. Indeed, software-based defenses are easier to
distribute without changing the users' equipment, for instance through a software
update. This is even more the case for IDEMIA, whose Machine Learning team
relies on software approaches for its products. We also focus on image recognition,
as it is the most intuitive instance of NNs that we come across in our daily lives.

Contributions in this Manuscript

This dissertation's contributions are the following:
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� We present NNs, as well as attacks and defenses against them. In particular,
we published a survey about architecture extraction SCAs [158] (Chapter 2).

� We propose to add one or several parasitic model(s) to an NN to protect its
weights against some mathematical reverse-engineering attacks (Chapter 3).

� We feed an NN's input to a dynamically selected parasite before sending it to
the base model. Hiding the input in this way constitutes a protection against
some physical parameter extraction SCAs (Chapter 4).

� We show that we can adapt the parasites to make NN models more robust
against adversarial attacks (Chapter 5).

� We protect an NN's architecture against reverse-engineering SCAs by reorder-
ing the way its neurons are computed (Chapter 6).

Overview

Due to their sheer number, an NN's parameters are di�cult to protect. For all
the aforementioned reasons, they are very sensitive, and ensuring their security is
crucial. We seek to achieve this security in our thesis. We start by giving some
background on NNs in Chapter 2. This enables us to explain the various attacks
that target a model's architecture and parameters, as well as the existing defenses.
Since one of the motivations of our thesis is to protect a model against adversarial
attacks, we also present them, along with their defenses.

After setting the foundations of this work, we dive into a �rst part which focuses
on the use of parasitic models as a protection against gray-box attacks in Part I.
We introduce the notion of parasites in Chapter 3. Incorporating such models in
a base model leads to a change in its internal structure. More precisely, we show
that the additional layers alter the classi�cation boundaries, as adversarial samples
generated on the original model are not necessarily adversarial for the protected
model.

While this modi�cation of the structure is enough to tackle some mathematical
reverse-engineering attacks, side-channel reverse-engineering attacks still manage to
recover the parameters of a model protected with the �rst countermeasure. To
extract precise weights, most side-channel attackers only need to gather power or
electromagnetic (EM) traces associated to known inputs. Based on this, we add
dynamism to the previously introduced parasites to hide a model's input. Placing
the parasites at the input layer not only hides the input values, but it yields a
domino e�ect, as explained in another publication [154]. Indeed, parasitic layers
early in the target model impact later layers as well. Moreover, dynamism is more
e�cient against statistical attacks. In Chapter 4 we therefore place the parasites
in a dynamic fashion at the entrance of the victim model to counter a statistical
physical SCA.

While these countermeasures aim at protecting a model's parameters, we note
in Chapter 5 that a similar technique also mitigates adversarial attacks. We adapt
the parasitic models to procure a defense against adversarial samples.
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An attacker cannot recover an NN's parameters without prior knowledge about
its architecture. Another way of securing the learnt weights is therefore to focus
on hiding the architecture itself. Protecting the architecture also has the advantage
of preventing other types of threats, such as membership inference or adversarial
attacks. Architectures are also a key element in a model's training, and therefore
constitute intellectual property. This is why, in Part II, we propose a novel way of
carrying out NN computations, which mitigates current black-box attacks that can
recover an NN's architecture. Instead of keeping the sequential execution of NNs, we
show in Chapter 6 that carrying out neuron evaluations by blocks in a randomized
fashion mitigates cache-based architecture extraction attacks.

Finally, we summarize our countermeasures and consider potential future work
in Chapter 7.
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Chapter 2: Literature Review

This chapter details the notions related to Neural Networks, their attacks and ex-
isting defenses.

2.1 Neural Networks

Neural Networks (NNs) are algorithms trained to carry out a preset Machine Learn-
ing (ML) task. They are comprised of a set of interconnected nodes called neurons.
Each connection between those neurons is associated to a real number, its weight.
This network of neurons is inspired by biological brains.

Applications An NN can be assigned a variety of tasks, which can generally be
categorized as follows:

� Classi�cation. In classi�cation tasks, an NN knows N classes and, given input
I predicts the class number I belongs to. For instance, an NN might seek
to di�erentiate between dogs and cats [97], or identify digits [72]. The medi-
cal �eld bene�ts from classi�ers, as they can help identify cancerous cells, for
instance. In language processing, NNs can learn to classify texts, which is
essential when it comes to web browsing for example. Segmentation can also
fall under this category. In segmentation, an NN is tasked with identifying a
certain target within the input. Self-driving cars are an application of segmen-
tation: identifying some objects and shapes in the environment is imperative
in that context [106]. Classi�cation and pattern recognition also come up in
various aspects of robotics. For instance, classi�ers enable prosthetics to have
a behaviour similar to a person's missing limb [92].

� Function Approximation. Based on previous data, NNs can predict future
occurrences. Such models are useful in �nance, for example for stock price
predictions [84]. Recent papers have also applied NNs to weather forecast.
Google Research scientists managed to forecast precipitation up to twelve
hours ahead [36].

� Data processing. When processing data in an unsupervised training � i.e. when
the correct labels are not provided � setting, the NN learns to identify some
characteristics features within a dataset. Clustering is an instance of data
processing wherein the NN aims at dividing the data provided into various
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groups. Biology often requires such a pattern or feature identi�cation, for
instance when it comes to analysing the genome. Clustering techniques have
therefore been applied to that �eld [65]. Generative Adversarial Networks
(GANs) train to fool another NN as a way of learning to imitate the training
dataset. They can be exploited for art, for example in order to turn photos
into Hayao Miyazaki-style cartoons [4]. They can also help increase the size
of training dataset for more accurate NNs and detect anomalies [38], among
other applications.

This non-exhaustive list of NN applications shows how vast the �eld is. We
cannot address all applications. We restrict ourselves to image classi�cation in this
thesis.

Accuracy A model is trained by updating its weights using a large dataset to
reach a high accuracy. The �rst question here is how to measure a model's accuracy.
Several metrics exist, but we will only present the most common ones that we need
for this thesis.

First, when an NN's task is to classify images among C classes, then the metric
generally used is the percentage of correct labels output by the model on the con-
sidered input set. On a dataset D of size N and with labels Y , we compute a model
f 's accuracy by measuring the percentage of elements x ∈ D such that f(x) = Yx
where Yx is x's correct label. This can be written as:

ADf =
1

N

∑

x∈D

11f(x)=Yx × 100

Another classi�cation task consists in matching two inputs whenever they corre-
spond to the same class. This method is used in facial or biometric recognition. Let
us place ourselves in the context where a user U wishes to authenticate into a system
S which has a picture xU of U . U sends a picture x to the model f . Then, the system
computes d(f(xU), f(x)) where d(·) is a preset distance. If d(f(xU), f(x)) ≤ t for
a preset threshold t, then the system considers that x and xU are both pictures of
user U . Otherwise, the authentication is refused. In other words, given an input x,
f computes an output vector such that images x′ from the same class as x have an
output f(x′) close � under a certain norm d � to f(x). On the other hand, images
x′′ from a di�erent class are such that f(x′′) is far from f(x). In this scenario, the
accuracy is measured through a False Acceptance Rate (FAR) and a False Rejection
Rate (FRR). The FAR is the probability of a user U ′ 6= U being accepted when
trying to authenticate as user U . On the other hand, the FRR is the probability of
a user U being rejected when trying to be authenticated as themself. While a high
FAR results in security issues, a high FRR results in inconvenience to the users. The
goal of the NN model and the system is therefore to reach a balance between these
two metrics. While both metrics are important, the accuracy is often measured by
choosing an FAR and measuring the corresponding FRR. Let us note that one can
set the FAR by selecting the appropriate threshold t.

Given a threshold t, a set X of `gallery' images with one image xU per user U ,
and a `probe' set Xp divided in groups of images XU

p per user U , then the FAR can
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be computed as:

FAR =
1

|X|
∑

xU∈X

1

|XU ′
p |

∑

x∈XU′
p ;U ′ 6=U

1d(xU ,x)≤t

where |X| is the cardinality of X.
Similarly, the FRR can be computed as:

FRR =
1

|X|
∑

xU∈X

1

|XU
p |
∑

x∈XU
p

1d(xU ,x)>t

Label matching, FAR and FRR are the most common metrics in image classi�-
cation, and the only ones we will use in the rest of this manuscript.

Training Phase Once an NN is assigned a task, the training phase can start.
The NN is provided with a � preferably large � training dataset, and the weights
are updated according to the data received over several rounds � or epochs. This
updating process is called training.

During this phase, the weights change each round so as to optimize a carefully
selected function called loss function. This process is generally executed by batches:
the training dataset is divided into smaller datasets, and the optimization over each
of the batches contributes to reducing the loss value. The testing phase is commonly
called the inference.

The loss function L should be chosen so that when L decreases, the model's
accuracy increases. The loss function and optimization algorithm both contribute
greatly to the NN model's �nal accuracy. Indeed, optimizing an incorrect loss func-
tion would prevent the model from reaching the set goal. On the other hand, a
poorly chosen optimization method can make the training too long or reach � and
be stuck at � a suboptimal point.

More than the loss and optimization algorithms, an NN model's e�ciency de-
pends on the selected architecture. Various types of NNs have been introduced so
far. Even though the architecture should be selected depending on the goal, there is
a transferability factor that makes training much easier. Indeed, it has been noted
that a model trained on a certain dataset can still have a high accuracy on a di�erent
but somewhat similar dataset [122]. For this reason, standard pretrained architec-
tures with small tweaks are often used. Transferability is one of the reasons why
NNs have risen in popularity, along with increased storing and computing abilities.

LetM be a pretrained model, on a large dataset D1. Then one can train a model
M ′ on a smaller dataset D2 based on M . For this, one takes M 's weights for the
initialization. One can then add or remove a few layers at the end, to adapt the
model M ′ to their needs. M ′ can then be trained on D2. Because the initial weights
were already optimized for a large dataset, the new training is usually much shorter.
This is also the reason why D2 can be small. Such a retraining is called �ne-tuning.

Despite the transferability, selecting the correct pretrained model is still para-
mount. Not only are some architectures better adapted to some tasks, but it is also
important to consider the number of parameters to (re)train during the �ne-tuning.
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Figure 2.1: Simplest NN type: perceptron with n inputs {xi}i=1,...,n and associated
weights {wi}i=1,...,n.

2.2 Common NN Architectures

This section details some common NN architectures for image processing. They
generally constitute the baseline in papers, and the implementation and weights of
the more complex NNs are also available in most ML libraries.

2.2.1 General structure

Most NNs are divided into layers, where the input is the �rst layer and the output
is the last. The layers between the input and output ones are called hidden layers.
NNs can be represented by oriented graphs where the neurons are the nodes and the
edges are labeled by the weights. Within one layer, neurons are not interconnected.
The neurons within a layer can be connected to those from any of the previous
layers.

For instance, in a fully connected layer, each neuron is equal to the sum of all
the previous layers multiplied by their associated weights (see Figure 2.1). A bias is
then added to each output neuron. For the i-th neuron in layer l, we have that:

xli =
N∑

k=1

xl−1k · wl−1k,i + βi

where {xli}1,...,N are layer l's neurons, {wl−1i,j }1,...,N are layer (l− 1)'s weights, and βi
is the bias.

As in the fully connected case, all NN layers are linear. Having an NN only carry
out linear computations would limit it to simple tasks which might be solvable in
other ways. For NNs to be able to solve a great variety of tasks, some nonlinearity
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is therefore required. This is why each layer is followed by a nonlinear activation
function. They are thus called because they activate neurons corresponding to
important features and deactivate others.

The following are the most common activation functions:

� Recti�ed Linear Unit function (ReLU): ReLU (x) = max(0, x). In this func-
tion, negative neurons are deactivated. Because it is highly likely that many
neuron values will be negative and therefore set to 0 by ReLU , this activation
functions makes computations easier. ReLU also has the advantage that its
hardware computation is cheap.

� Softmax: softmax (x) = ex∑c
j=0 e

xj where x ∈ Rc. This function turns a layer's

neuron values into probabilities. It is often used in the last layer of classi�ers:
the NN's prediction corresponds to the class � the neuron number � with
highest probability.

� Logistic function: σ(x) = 1
1+e−x . This function turns its inputs into a value

between 0 and 1. Values much larger than 1 are set to a value close to 1, and
large negative values are set to a value close to 0

� Tanh: tanh(x) = e2x−1
e2x+1

. Similarly to σ, tanh clips its input value between -1
and 1.

Nonlinearity is sometimes introduced via other types of layers. Some aim at
reducing the dimensionality of their input. This is the case, for instance, for dropout
or pooling layers. Dropout layers select a subset of their input for which the value
is kept, while the other neurons are set to 0. Pooling layers reduce the size of their
input by dividing their input into blocks and selecting one representative value for
each block. For instance, max pooling returns the maximum value of each block,
while average pooling layers take the average of each block.

Furthermore, many researchers focus on making the training phase faster and
more e�cient. In 2015, the authors of [58] introduce Batch Normalization (BN) lay-
ers, which normalize their input to stabilize, improve the performance and e�ciency
of the training. For an input I, in a batch B, the BN layer returns:

Oi = γ × Ii − µB√
VB + ε

+ β

where γ, β, ε are learnt parameters, and µB, VB are the batch's expected value and
variance respectively.

The architecture of an NN is de�ned by its hyperparameters, namely:

� The number of layers.

� The number of neurons per layer.

� The layer types, along with the layers' internal hyperparameters (for instance,
block sizes in pooling layers).

� The activation functions.
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� The connections between layers.

While the hyperparameters are chosen once and for all, the parameters need to
be trained to reach the optimal accuracy. The most common training algorithm is
backpropagation. Given a carefully selected loss function L, the backpropagation
algorithm tries to minimize L by e�ciently computing its gradient with respect to
the weights using the chain rule. Because the gradients are computed e�ciently,
gradient-based optimization methods, such as stochastic gradient descent (SGD),
can be used to minimize L, even for deep models.

As stated previously, the loss function selection is critical, as it measures the
distance between the current model's predictions and the target ones. One such
function is the cross entropy function, which is suitable for classi�cation tasks. For
correct predictions p where p(i) = 1 if i is the correct class and p(j) = 0 ∀j 6= i, and
for current predictions y, cross entropy is de�ned as follows [62]:

L(y) = −
c−1∑

i=0

pi log(yi)

= −H(p) +DKL(y||p)
(2.1)

where c is the number of classes, H(p) is the entropy of p, and DKL(y||p) is the
Kullback-Leibler divergence between y and p. Once L has been chosen, the weights
are updated through gradient computations. For instance, in the case of SGD, the
update is carried out as follows:

wt+1 = wt − l · ∇L
where wt are the weights of layer t, l is a scalar called the learning rate and ∇L

is the gradient of L with relation to wt. Various losses and optimization algorithms
can be used, depending on the task at hand [62].

An issue which might arise when training a model is over�tting. Over�tting
means that the model does not geenralize well to inputs outside from the training
set. This might occur when the architecture is too complex for the task at hand,
or the model was trained for too long on too small a dataset [42]. Since the model
then tends to learn unimportant details � such as background noise �, its accuracy
tends to drop when given inputs from di�erent datasets. This shows the importance
of correctly selecting the architecture, training set, loss function and optimization
algorithm.

Given the high � and expanding � number of hyperparameters, the set of possible
NN architectures is in�nite � but limited by computing and storing capacities. In the
rest of this dissertation, we will focus on architectures related to image classi�cation.
In the following Section, we detail common NN architectures.

2.2.2 Multi-Layer Perceptron

The simplest NN architecture is the perceptron. As shown in 2.1, the perceptron is
only comprised of one layer and one output neuron. The output is computed as:

O = step(
n∑

i=1

xi · wi)
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Figure 2.2: Multi-Layer Perceptron with an input, an output and a hidden layer

where step is the step function: step(x) =

{
1 if x ≥ 0

−1 otherwise
.

The activation function being the step function, perceptrons are adapted to bi-
nary classi�cation. But they can also be generalized to multiple class classi�cation.
Multiclass Logistic Regression (MLR) are such a generalization, and a suitable ac-
tivation function is softmax .

However, the fact that perceptrons and MLRs are only comprised of one layer
means that they can usually only be used for the simplest of tasks. More layers are
required to carry out more complex tasks.

As their name states it, Multi-Layer perceptrons (MLPs) are perceptrons with
several layers (see Figure 2.2). Layers which are neither the input nor the output
layers are called hidden layers. In theory, one hidden layer su�ces to solve any
problem with enough neurons in the said layer [74, 150]. This result also depends
on the NNs' hyperparameters. For instance, the choice of the activation functions
a�ects the expressivity of a certain NN. Thus, some functions can be represented by
deep ReLU networks but not shallow ones [35]. In practice, however, the number
of neurons in the hidden layer � and the resulting number of weights � would have
to be too large for real-life applications. This is why MLPs usually need numerous
layers for complex tasks. Unfortunately, each fully connected layer introduces a high
number of new parameters, but also redundancy, hence the need for new types of
layers in Deep Learning (DL) architectures.

2.2.3 Convolutional Neural Networks

Despite their simplicity and expressivity, MLPs are often ine�cient compared to
NN models with sparsely connected layers, such as Convolutional Neural Networks
(CNNs). The latter, as their name implies, mainly rely on convolutions in their
layers to compute the predictions.
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Figure 2.3: Convolution between an input I of shape (4× 4) and a �lter F of shape
(3× 3).

Convolutional layers Convolutional layers compute a convolution between their
input and one or several three dimensional tensors named �lters. Let us �rst consider
the two dimensional case. For an input I of shape n×m and a �lter F with shape
w × h, the convolution between I and F is de�ned as:

(F ? I)i,j =
h∑

k=1

w∑

l=1

Ii+k,j+l · Fk,l

Figure 2.3 gives an example of a convolution between a 2-dimensional input of
shape (4× 4) and one 2-dimensional �lter F of shape (3× 3).

Here, the output has shape (n − h + 1) × (m − w + 1). This de�nition is valid
for a stride of one: the �lter `moves' one step to the right after each multiplication.
With a stride s along the height and s′ along the width, the de�nition becomes:

(F ? I)i,j =
h∑

k=1

w∑

l=1

Ii·s+k,j·s′+l · Fk,l

and the output has shape (b (n−h)
s
c+ 1)× (b (m−w)

s′ c+ 1), where b·c denotes the �oor
function. This can be generalized to three dimensional inputs and outputs. In this
case, the �rst dimension is called the channel, while the other two are called the
input height and width respectively. Let us note that this leads to a four-dimensional
�lter. Thus, given input I of shape (c×n×m) and �lter F of shape (c×h×w×c′), a
convolutional layer returns an output C of shape ((b (n−h)

s
c+1)× (b (m−w)

s′ c+1)× c′).
A neuron Cch,i,j is computed as:

Cch,i,j =
c∑

ch′=1

h∑

k=1

w∑

l=1

Ich′,i·s+k,j·s′+l · Fch,k,l

As in the fully connected case, a bias is then added to the output neurons, but
each channel has the same bias value.

Padding is another important hyperparameter of convolutional layers. Convolu-
tional layers often zero-pad their inputs: rows and columns of zeros are added to
the top and bottom, as well as the right and left of the input matrices. The reason
for this padding operation is threefold [67]:

13



Figure 2.4: LeNet architecture. The last three layers are fully connected ones. For
each layer, the input shape is indicated above it in the form channel_number ×
input_height× input_width

� To avoid the border e�ect. Due to its de�nition, corner and edge input neurons
occur in fewer convolutional operations than the ones in the center. Padding
increases the impact of those disadvantaged neurons on the layer operations.

� Each convolutional layer returns an output with smaller dimensions than its
input. A chain of such layers might therefore lead to too much information
loss. Padding can be used to keep the input and output dimensions equal.

� The stride and �lter size may not �t the input shape: some rows or columns
may not be considered at all in the multiplications. In this case, padding can
�t the input size to the layer's hyperparameters.

Pooling layers � as described in Section 2.2.1 � are a part of most common
CNNs, as they usually follow a group of convolutional layers. The goal of this
downsampling is to avoid over�tting on the training data. Indeed, only considering
the most characteristic elements of the inputs prevents the model from learning the
details in the dataset which are irrelevant to the predictions. This, in turn, enables
the model to generalize and make correct predictions on inputs that are not part of
the initial dataset. Dropout layers, which deactivate nonessential neurons, have the
same aim.

Common CNN architectures The �rst CNN was introduced in 1998 by LeCun
et al. [72]. It is comprised of two convolutional layers followed by an average pooling
layer each, and end with three fully connected layers. It was �rst introduced as a
classi�er for a hand-written digits dataset, MNIST (Modi�ed National Institute of
Standards and Technology database) [28], and it reaches a 98.94% accuracy on it.
The architecture is described in Figure 2.4. Since, the average pooling operation
has been replaced by max pooling.

However, for more elaborate databases such as CIFAR10 [71], LeNet's accuracy
is around 73%, which is much lower than state-of-the-art accuracy for this dataset:
99.5%. CIFAR10 is comprised of 60,000 images of shape 32 × 32 × 3 (50,000 in
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Figure 2.5: VGG16 architecture. VGG16 has 13 convolutional layers and 3 FC
ones. The input shape of each block of layers is indicated on top of it, in the format:
input_width× input_height× number_of_channels

the training dataset and 10,000 in the testing one), classi�ed in 10 di�erent classes.
Another version of CIFAR includes images from 100 classes.

Since the LeNet architecture was detailed in [72], CNNs have been surging, es-
pecially when it comes to image processing. One way of improving the training
of CNNs is to increase their depth and number of neurons. The depth and neu-
rons increase their probability of identifying characteristic features. For instance,
the VGG16 architecture has 13 convolutional layers, 3 fully-connected ones and 138
million parameters, as can be seen in Figure 2.5.

VGG16 reaches an accuracy of 93.56% on the CIFAR10 testing set. The authors
of [115] have expanded their architecture to create VGG19, which contains 3 more
convolutional layers. Although MNIST, and especially CIFAR10 can still be used in
papers for early stage research or proof-of-concept, they are generally considered to
be not representative enough of a model's e�ciency. ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) � often simply called ImageNet, on the other hand,
is present in most image processing papers, as it contains over 1,400,000 images
divided in 1,000 classes. On ImageNet, VGG16 achieves an accuracy of 71.3%,
when the state-of-the-art accuracy is over 90%. VGG19 reaches a slightly higher
accuracy: 75.2%.

So far, we have explained that the deeper the network, the better the accuracy.
However, this is only true up to a certain point. Indeed, very deep NNs encounter
a certain issue during training: the vanishing gradient problem.

Most Deep Neural Network (DNN)'s training is based on backpropagation, in
which gradients are computed using the chain rule, as explained in Section 2.2.1.
For deep networks, gradients end up being too small after a certain point: they
`vanish'. Since parameters are updated by adding a value proportional to the com-
puted gradient, the vanishing gradients prevent any further learning. The authors
of [48] introduce ResNets (Residual Networks) in order to mitigate this e�ect. For
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Figure 2.6: Skip connection. The output of the block is f(x) + x where x is the
block's input and f gives the output of the two layers at hand.

this, they consider residual blocks, which incorporate identity shortcuts � also called
skipping connections (see Figure 2.6). In those shortcuts, earlier layers are added to
deeper ones, in order to reintroduce information which would have otherwise been
lost because of the vanishing gradients.

Moreover, the authors argue that the additional shortcuts enable the model to
train e�ciently without changing the actual training. Thanks to this new block, the
ResNet architectures can be much deeper and more accurate than the VGG family.
ResNet152V2, which has 152 layers, achieves a 78% accuracy on ImageNet.

2.2.4 Software Implementation of NNs

Various ML libraries enable a fast and e�cient implementation of ML models.
Among them are Tensor�ow [83], PyTorch, Ca�e [63], Theano [123] and Keras [22]
(which can run on top of Tensor�ow or Theano for instance). Even though their
main interface is generally Python, many of them, such as Tensor�ow and PyTorch,
are partially based on C, C++ or CUDA for e�ciency. Those libraries are heavily
optimized to ensure fast computations on very large NNs.

Convolutional Implementation One of the optimization tricks was introduced
by Ca�e's author in 2014 [63]. If we omit the bias, then it is clear that FC layers can
be written as matrix multiplications. Indeed, given an input I with n neurons, and
a weight matrixW of shape (n,m), then the output has m neurons and is computed
as:

O = I ·W
This enables the use of e�cient and, once again, heavily optimized matrix multipli-
cation algorithms, for instance GeMM [45] in the OpenBLAS library.

But in Ca�e, convolutional layers are also computed as matrix multiplications.
To do so, each convolutional window in the input I is �attened to form a row in
the reformed input matrix I ′. Each �lter in F is also �attened to form a column in
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Figure 2.7: Process to turn a convolutional layer i into a matrix multiplication. Each
�lter and input channel is considered to be square in this depiction. The layer's �lter
Fi has shape (Di × k(i) × k(i) × Di+1) � meaning there are Di input channels and
Di+1) output ones. The reshaped �lter Fi, has shape (Di+1 × (k(i) · k(i) · Di)).
The input I has shape (Di × ni × ni), while its reshaped version F ′ has shape
(ni−k(i)+pi)(ni−k(i)+pi), where pi is the layer's padding. Indeed, each column in
I ′ corresponds to an input window on which a dot product with a �lter window is
carried out during the convolution. This leads to a reshaped output O′ with shape
(Di+1 × (ni − k(i) + pi)(ni − k(i) + pi). Each row in O′ corresponds to an output
channel.

the reshaped �lter F ′. Multiplying I ′ by F ′ yields a reshaped output O′ where each
column corresponds to one channel of the output O. This is described in Figure 2.7.

Despite the fact that the matrices involved can have extremely large dimensions
� given the high number of neurons in a given layer �, this method has been observed
to be more e�cient in most cases. This is why several ML libraries such as Tensor�ow
have adopted this technique whenever possible � or whenever it does correspond to
the most e�cient implementation.

Common NN Setups The setup of an NN model matters when it comes to its
security. For instance, some NN models' weights are protected during inference
computations by being located in a secure environment such as SGX [85].

In this dissertation, we consider two main setups, which correspond to very
common ones. In the �rst, the users have the model on their device. This means
that they can have physical access to it � for example through probes.

The second setup we discuss is one where the model is hosted by a cloud provider.
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This is the case for Machine Learning as a Service (MLaaS), such as Amazon Sage-
Maker [3]. In this scenario, the user generally only has access to the predictions,
and cannot easily � or physically � access the details of the model.

2.3 Attacks against Neural Networks

For years, NNs have been the victim of various attacks, targeting several parts of
the model. NNs can either be targeted during the training phase or during runtime
� also called the inference. Attack surfaces exist in both phases:

� During training:

� The training dataset

� The training algorithm

� During the inference:

� The architecture

� The testing set (or inputs)

� The trained parameters

All the aforementioned parts can be targeted by a potential attacker, in a vari-
ety of settings. A malicious user who has access to the training set can poison it
by adding crafted or mislabeled inputs, in order to change the model's predictions.
This is one type of poisoning attacks. More generally, attackers using a poison-
ing attack wish to a�ect the model's predictions by targeting the training process.
Besides injecting wrong data, they can also change the already existing training
input or directly manipulate the algorithm itself � by changing its parameters, for
example [130].

Another breach of security comes from membership inference attacks, where a
malicious user can determine whether a certain input belongs to the training set [113,
112]. Thus, attackers can both change the training process and leak information
about the training dataset.

But the runtime phase � also called inference �, along with the optimal architec-
ture and parameters, are not safe either.

Like poisoning, adversarial attacks also aim at modifying the target model's
input, but without requiring access to the training phase [43, 91, 80, 19, 5]. In
adversarial attacks, the user crafts adversarial inputs by adding a small noise, un-
detectable to a certain oracle such as the human eye, but which leads the model to
return the wrong predictions. This could lead to impersonation attacks, where an
attacker's face can fool a model into accepting their face as the owner's one.

Model inversion attacks aim at recovering the input in a context where it is
encrypted for privacy reasons [124, 136]. For instance, the input can be loaded in a
secure component such as Intel SGX, and the attacker can retrieve the hidden input
using another ML model trained on timing or power traces. Similarly, secret output
can also be recovered.
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Finally, multiple attack papers target the parameters and hyperparameters them-
selves. These are called reverse-engineering attacks. They can be of various types:

� Based on equation-solving or ML [125, 93, 126]: Tramèr et al. [125] train a
model with the same architecture as the original one to retrieve the correct
weights. Their aim is to solve the system of equations formed by f(x) = y
where x is an input selected at random, f is the original model and y is the
model's predictions. Solving the given system can be achieved by minimizing
a loss function through an optimization process, just like training. However,
here, the loss function measures the di�erence between the extracted model's
predictions and the original model's predictions rather than the true outputs.
The authors of [94] also aim at training a substitute model to recover the
predictive behavior of the target model. But instead of querying with ran-
dom inputs, they carefully select the set of queries. Other such attacks have
since then managed to make the recovery more e�cient using much fewer
queries [126, 66, 89].

� Mathematical attacks, which rely on the internal structure of the NN models,
as described in Section 2.3.2.

� Side-channel based. Side-channel attacks rely on leakages due to the implemen-
tation of an algorithm to extract secret information. Attack vectors include
the cache [141, 53, 52, 79], power or electromagnetic emanations [10, 146, 55,
136, 15, 137], memory access patterns [56] and running time [32, 82]. Some of
these attacks are detailed in Section 2.3.3.

All these attacks require di�erent threat models, depending on the attacker's
needs and capabilities. We di�erentiate between white-box, gray-box and black-
box attacks. In white-box attacks, the attacker has access to the entire NN model
and knows about potential defenses. In the black-box one, the attacker has no
prior information about the model and defenses. The gray-box context assumes an
attacker who has partial knowledge about either the model or the applied defenses.

In this thesis, we will mainly focus on mathematical and side-channel-based
reverse-engineering attacks. However, one of our proposals can also be applied to
adversarial attacks (see Chapter 5).

2.3.1 Introduction to Reverse-Engineering Attacks

Threat Scenarios First of all, let us note that reverse-engineering attacks can
have various threat scenarios, shown in Table 2.1.

Performance Measurement In a reverse-engineering attack the potential at-
tacker wishes to extract a model f̂ as close as possible to the original model f . The
authors of [61] consider three ways of measuring how `close' the two models are.

� Functionally Equivalent Extraction: In this case, the attacker wishes f̂ to be
such that f̂(x) = f(x)∀x ∈ I where I is the input set. This means that the
attacker wishes to �nd the original model's parameters so as to return the
exact same values on all inputs.
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Table 2.1: Threat scenarios in reverse-engineering attacks. The attacker has query
access to the model. She can then target the architecture, the parameters or both.
When an element is the target, partial information about it can be assumed to be
public.

Scenario Architecture Parameters
Scenario 1: Architecture Extraction Target Unknown
Scenario 2: Parameter Extraction Known Target
Scenario 3: Model Extraction Target Target

� Fidelity Extraction: Here, f̂ should be such that for some similarity function
S, Pr[S(f̂(x), f(x))] is maximal. In other words, the attacker wants to �nd
a model f̂ whose predictions are similar to f with a high probability. For
instance, in the classi�cation case, S can be label agreement. This means that
for all inputs x, there is a high probability that f̂ classi�es x in the same class
as f would.

� Task Accuracy Extraction: In this type of extraction, the attacker wishes to
�nd a model that achieves the highest possible accuracy on a given task, and
only uses f as a tool. She therefore aims at maximizing Pr[f̂(x) = y(x)] for
all inputs, where y(x) is x's the correct prediction.

In this dissertation, we mainly focus on Functionally Equivalent Extraction.

2.3.2 Mathematical Reverse-Engineering Attacks

Let us start by detailing the reverse-engineering attacks that rely on a model's
internal structure in order to recover its parameters [61, 87, 103, 16, 27].

Threat Scenario Mathematical attacks correspond to the parameter extraction
scenario (see Table 2.1). The attacker's goal is functionally equivalent extraction, as
de�ned in Section 2.3.1. In [103, 61, 87], the following assumptions are necessary:

� The model is assumed to be piece-wise linear.

� The model is comprised of linear layers (such as FC ones) withReLU activation
functions.

� The attacker has query access to the victim model: they can provide crafted
inputs to the model at hand. They receive the last layer's full outputs, where
each neuron has a value in R.

Although the authors of [87, 27] and [61] assume the architecture to be known, the
authors of [103] assume an attacker who does not know the number of neurons per
layer, and aims at recovering that secret along with the parameters.

While the authors of [16] also consider an attacker who already knows the model's
architecture, they claim that the only fundamental requirement for their attack is
the piece-wise linearity of the model.
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This attack model can correspond to the case of online services, where the at-
tacker is a user who can send queries and receive the output without accessing the
model's parameters.

Attacks Description The authors of [16] reach their goal with fewer queries
than [61, 87, 103]. The authors of [27] ensure a polynomial time exact extraction of
NNs with up to three layers. However, to achieve this, they make assumptions not
required in [16]. The most sensitive assumption is that the second layer's dimension
must be higher than the �rst. This is not always the case, as in most models
recovered in [16]. Moreover, even though [87] describes a strategy that applies to
arbitrarily deep NNs, [16] is the only paper that proves the practicability of their
attack on models with more than three layers. For these reasons, we focus on the
method described in [16]. However, all three attacks follow the same pattern.

Let us start with two de�nitions. Let V(η, x) denote the input of neuron η, before
applying the ReLU activation function, when the model's input is x. For a given
neuron η at layer l, its critical point is de�ned as follows:

De�nition 1. When, for an input x, V(η, x) = 0, the neuron η is said to be at a
critical point. Moreover, x is called a witness of η being at a critical point.

Finding at least one witness for a neuron η enables the attacker to compute η's
critical hyperplane.

De�nition 2. A bent critical hyperplane for a neuron η is the piece-wise linear
boundary B such that V(η, x) = 0 for all x ∈ B.

Given those de�nitions, the parameter extraction protocol is:

1. Identify critical points and deduce the critical hyperplanes

2. Filter out critical points from later layers

3. Deduce the weights up to a multiplicative factor

4. Find the weight signs

Even though the way critical planes and hyperplanes are found di�ers from one
paper to the next, all the attacks are based on the existence of a hyperplane for
each neuron, created by the activation function. The hyperplanes' equations are the
basis for the parameter recovery.

[16] covers several cases: the authors start by considering an NN with only one
layer, before moving on to contractive deep layers and �nally generalizing it to any
deep NN. Let us note that all layers are considered to be FC. We also only consider
ReLU activation functions for simplicity.

With one layer, the output is f(x) = A(1)·x+b(1) whereA is the weight matrix and
b is the vector of biases. Then A(1)

i = f(x+ei)−f(x), where ei = (0, . . . , 0, 1, 0, . . .),
and the 1 is at the i-th position.

New problems arise as soon as activation functions intervene, as the NN is no
longer linear. With ReLU , negative neurons are set to 0. Let us now consider a
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Figure 2.8: Hyperplanes for three neurons in the �rst layer. The dashed red line l
enables the attacker to �nd the critical points indicated by the slashes.
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Figure 2.9: Hyperplanes are bent by boundaries from previous layers. For instance,
η3's hyperplane on the second layer is bent by the hyperplanes of η0, η1 and η2 on
the �rst layer.

2-layered NN: f(x) = A(2) ·ReLU(A(1) · x+ b(1))+ b(2). The �rst step is then to �nd
critical points. To achieve this, the authors of [16] suggest selecting a random line
for each neuron in the input space. For each line � and therefore neuron, the attacker
selects an initial point x0 then carries out a binary search to �nd nonlinearities on
f(x0+tv) for t ∈ [−T, T ] by checking for changes in the partial derivatives. Although
the attacker does not have direct access to these derivatives, they approximate them
through �nite di�erences. Figure 2.8 displays the binary search process.

This provides a list of critical points. Let {ei}i be a basis for the input space
and x∗ a witness for neuron ηj. For ε > 0 small enough, ηj is the only neuron being
activated � or deactivated, if A(1)'s columns are not colinear (the authors adapt
the method to the general case). Since f is di�erentiable everywhere except on
hyperplanes, the attacker can compute:

αi+ =
∂f(x)

∂ei

∣∣∣∣∣
x=x∗+ε·ei

and αi− =
∂f(x)

∂ei

∣∣∣∣∣
x=x∗−ε·ei

Either x∗ + ε · ei is such that ηj = (A(2) · ReLU(A(1) · x + b(1)) + b(2))j > 0 and
x∗ − ε · ei is such that ηj = 0, or the other way around. This holds for any other
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basis vector ek. Thus, computing:

A
(1)
j,k

A
(1)
j,i

=
αi+ − αi+
α1
+ − α1

+

gives the �rst layer weights, up to a multiplicative scalar. In other words, computing
double partial derivatives enables the attacker to extract the �rst layer's weights up
to a multiplicative scalar. From those weights, the value of b(1) up to a multiplicative
scalar easily follows.

Once the �rst layer is recovered, getting the second layer's weights results from
applying the method for a 1-layer NN.

For deeper layers, a new di�culty arises: even though the attacker can still
�nd partial derivatives by looking for nonlinearities, she cannot determine which
neurons the critical points are witnesses for. Let us also note that hyperplanes in
deep layers are impacted and bent (hence the name) by previous layers' hyperplanes
(see Figure 2.9). For a layer l with dl neurons, the authors of [16] solve this problem
by considering dl + 1 random directions δ and taking the second partial derivatives
along those those directions, on all witnesses. Given the set:

{yi} =
{∂2f(x)
∂δ1∂δi

|x=x∗
}i=dl+1

i=1

where x∗ is a witness to a critical point. Generalising from the �rst layer recover,
the attacker buids a system of equations ReLU(fl−1(x + δi)) · w = yi where fl−1
is the model restricted to its �rst l − 1 layers. The equations corresponding to a
neuron x in the current layer provide the weights as the result, while the others give
completely di�erent � and seemingly random � results that can be discarded.

Solving the system of equations also gives the weights. However, it requires being
able to �nd a preimage of the network outputs, which is not always the case. In fact,
in most interesting cases, NNs are not contractive � i.e. some of their layers have
higher output dimension than input dimension � and their preimage can therefore
not be easily found. In those cases, a brute force attack on the sign is necessary.

Finally, the authors of [16] provide further details on how to implement this
attack e�ciently.

2.3.3 Side-Channel Attacks: Generalities

Side-Channel Attacks (SCAs) have been introduced in the 1990's. They take advan-
tage of unintended leakages proceeding from the implementation of cryptographic
algorithms. Processing the said leakages may involve statistical analysis or ML
models.

Access Abilities Di�erent SCAs can be carried out depending on the attacker's
access abilities. We di�erentiate between:

� A local access where the attacker is located on the same machine as the target.
The attacker and the victim therefore share some resources, such as the cache.
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� A remote access where the attacker can only access the victim algorithm re-
motely. For instance, the victim may run on the local network. Among other
possibilities, this setting enables timing attacks.

� A physical access where the attacker has access to the physical circuit, such
as a processor or smartcard. This type of setting is necessary for power or
electromagnetic-based SCAs for example.

Existing Attacks In recent years, NNs have been the target of numerous SCAs
[141, 146, 55, 10, 79, 136, 124, 137, 52, 153, 53, 32]. We published a survey [158]
focusing on cache-based SCAs, but presenting all SCAs at the time of publication, to
the best of our knowledge. Table 2.2 and Table 2.3 summarize the characteristics of
the existing architecture extraction attacks. For each architecture extraction attack,
they provide the knowledge requirements for the attacker, the SCA type as well as
the access type, the victim models on which the attack was tested, the results and
the limitations of the attack. Among them are Cache Telepathy [141] and CSI Neural
Networks [10] that we will detail in Section 2.3.4 and Section 2.3.5. To the best of
our knowledge, the only memory access pattern attack for reverse-engineering an
NN's architecture is [56]. The authors of [56] manage to recover a target model's
architecture by monitoring memory access patterns and, more speci�cally, read-and-
write (RAW) dependencies. They �rst di�erentiate between layers thanks to the
sequential execution: one layer's output is the next layer's input. Layer boundaries
therefore correspond to a memory write followed by a memory read on the same
address. Similarly, they can identify most hyperparameters in a layer through the
RAW dependencies. For instance, within a layer, the input neurons are only read,
while output neurons are only written. This reduces the possible architectures to a
very small set.

Parameter extraction SCAs are detailed in Table 2.4 in the same fashion. Xu
et al. also published a survey on the security of NNs in the hardware context in
2021 [140].

Some model extraction attacks are out of scope in this dissertation. Despite their
importance when it comes to correct predictions, we do not consider attackers whose
only goal is to recover speci�c hyperparameters [129]. Indeed, we already provide a
way to protect an architecture as a whole in Part II.

Moreover, new attack papers have been published since the survey's publication.
Among them, some rely on queries [27] and/or are ML-based [89], others are time-
based SCAs [82]. Physical leaks are also still exploited [144, 145]. While some
attacks in Table 2.2, such as Cache Telepathy [141], only target CPU runs, others [53,
52] also include GPU runs. While [53, 52] are cache-based, recent attacks have
managed to extract a partial architecture [21] or the entire model [15] through
power and EM traces from the GPU. The authors of [135] carry out a timing SCA
on GPUs to recover the architecture of a victim model during the training phase.

The Leaky Nets attack [82] is especially interesting, as it is the only one that
manages to recover parameters exploiting mainly timing patterns. The authors also
use Simple Power Analysis (SPA), but only to identify the interesting parts of an
power consumption acquisition. Indeed, an attacker targets the timing behaviour of
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Table 2.2
List of cache-based side-channel architecture extraction attacks.

Attack Assumptions
Access type
and SCA

Victims tested Results Limitations

Cache attacks

Cache Telepathy
[141]

Co-location, page
sharing, use of
GeMM, ML frame-
work known

Local, Cache VGG, ResNet

Set of possible ar-
chitectures (includ-
ing hyperparameter
dimensions)

Not applicable to
GPUs; the set can
be too large if the
architecture is com-
plex

DeepRecon [53]

Co-location, known
family of architec-
tures, page sharing,
ML framework known

Local, Cache

VGG, ResNet,
DenseNet, In-
ceptionV3,
InceptionRes-
Net, Xception,
MobileNet

Number of layers,
layer types, and ap-
proximation of the
hyperparameter di-
mensions

Cannot recover
novel architectures,
since it relies on
the knowledge of
the family of NNs

How to 0wn
NAS in Your
Spare Time [52]

Co-location, page
sharing, ML frame-
work known, some
knowledge about how
NNs are constructed

Local, Cache
MalConv, Prox-
ylessNAS

Full computational
graph

GANRED [79]
Set of possible archi-
tectures, ML frame-
work, shared LLC

Local, Cache
AlexNet, VG-
GNet

Full architecture

The attacker tries
all possible hyper-
parameters for each
layer

individual multiplications, as well as of activation functions in order to fully recover
the weights and biases of a given model.

The recent paper Can One Hear the Shape of a Neural Network? [15] show that
despite the belief, so far, that SCA-based reverse-engineering attacks are impractical,
very deep common architectures can be extracted through EM traces. This recent
release proves NNs' weakness when faced with physical attacks.

In this dissertation, we mainly focus on two SCAs: Cache Telepathy [141] and
CSI NN [10]. The �rst is a cache-based attack that aims at recovering a model's
full architecture, while in the second, the attacker extracts the architecture and
parameters simultaneously.

The authors of Cache Telepathy propose to use two SCA methods to monitor
the cache: Flush and Reload and Prime and Probe.

Flush and Reload Flush and Reload [142] is a cache-based SCA used by multiple
attacks targeting NNs [141, 79, 53, 52].

The goal of cache attacks is to determine whether a certain memory location has
been accessed by the victim model within a certain period of time.

The cache is a small but fast memory space used to store the data that have been
recently accessed in general purpose or bigger embedded processors. It is usually
divided in three parts corresponding to three hierarchical levels: L1, which is close
to the processor (CPU), L2, and LLC, which is the Last Level Cache. Usually data
residing in L1 is also included in L2, which in turn is included in LLC. When a
process tries to access an address, the CPU �rst looks for it in L1. If it is not there,
then it looks in L2. If it still cannot �nd it, it goes on to search the LLC. Finally,
if the address is not in the cache, it needs to access the much larger main memory.
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Table 2.3
List of other side-channel architecture extraction attacks.

Attack Assumptions
Access
type and
SCA

Victims
tested

Results Limitations
Number
of
traces

EM attacks

DeepEM
[146]

Known set of
architectures,
physical access

Physical,
EM ema-
nations

ConvNet,
VGGNet

Recovers layer bound-
aries, depth and layer
types. This leads to
a set of possible archi-
tectures for the victim
NN. An ML approach
recovers the weights.

Several hyperparame-
ters cannot be deter-
mined with EM ema-
nations only. Training
several architectures is
still necessary, even if
accelerated thanks to
adversarial samples

10,000

DeepSni�er
[55]

Only univer-
sal knowledge
about how NNs
are constructed

Physical,
EM ema-
nations

AlexNet,
VGG,
Resnet,
Nas-
net_large

Full computational
graph

1

Can one
hear the
Shape of
NNs? [15]

No prior knowl-
edge

Physical,
EM and
ML

AlexNet,
VGGNet,
ResNet101

Full computational
graph

Does not work on
small batches, re-
quires a training
dataset, does not
track data�ow

Not spec-
i�ed

Other attacks

Remote
timing
side-
channel
attack [32]

Distribution
of the training
dataset, precise
execution time
measurements

Local/
Remote,
Timing

LeNet,
AlexNet,
VGG,
ResNet

Number of layers,
their type and the
hyperparameter
dimensions

Requires precise mea-
surements; the distri-
bution of the training
set can be private

20

Memory
Access
Pattern
Attack [56]

Known family
of architectures,
ability to mon-
itor all RAW
memory pattern
accesses

Local,
Memory
access
pattern

AlexNet,
SqueezeNet,
LeNet,
ConvNet

Smaller set of possi-
ble architectures (in-
cluding hyperparame-
ter dimensions)

Activation functions
cannot be determined
through this attack.
The deduced set
can be too large if
the architecture is
complex

Not spec-
i�ed

If a process successfully retrieves data stored in the cache, this is called a cache hit.
On the other hand, if the address is not in the cache � and is therefore stored in the
main memory � it is a cache miss.

Given the way the cache works, the execution time of a memory access depends
on whether the target address is in the cache or not. Cache attacks are based on
this induced time di�erence.

Let us note that while L1 and L2 caches are usually only shared among processes
within the same core, the LLC is shared by all processes, independently of the core.
Moreover, the LLC is often divided in sets, called cache sets.

The Flush and Reload attack consists of the three following steps:

1. Flush cache line � which contains the data � corresponding to the target ad-
dress (�ush), such that the data is evicted from the cache and can only be
found in the main memory.

2. Wait for a certain period of time, leaving the victim enough time to access the
target memory location.
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Table 2.4: Parameter Extraction Attacks

Attack Assumptions
Side
chan-
nel

Victims
tested

Results Limitations

Memory
Access
Pattern
Attack
[56]

Known architec-
ture. Ability to
query the model.
Weight pruning
occurs.

Memory
Access
Pat-
terns

AlexNet,
SqueezeNet,
ConvNet

Weights as a function
of the bias. If the
pruning threshold can
be controlled, the bias
can also be recovered.

Requires the ability
to control the input.
The weights cannot
be recovered exactly if
the pruning threshold
cannot be controlled.

Open
DNN
Box [137]

Known set of
pre-trained
models. Redun-
dant weights are
set to 0.

Power

AlexNet,
ResNet,
Incep-
tion,
Mo-
bileNet

Architecture and spar-
sity, thus identifying
the correct weights
among the pretrained
ones.

The assumption that
the model and weights
are among a set of pre-
trained ones is quite
strong.

CSI NN
[10]

Ability to collect
EM emissions
and power
traces. The con-
sidered models
are FCNs.

Power
and EM

FCN,
CNN

Number of layers,
number of neurons
per layer and precise
weights.

The attack has only
been tested on FCNs
with few layers.

Leaky
Nets [82]

Query access,
ability to gather
power traces

Timing
and
SPA

CNN Weights and biases

Getting the timing
of individual NN
operations is possible
on embedded micro-
controllers, but more
di�cult in custom-
designed hardware
units such as FPGA

3. Access the target address and measure the access time (reload).

If the access time is short (i.e. below a threshold to determine), then the address
is in the cache. This means that the victim has called the corresponding function
(see Fig. 2.10a). A high access time, on the other hand, means that the CPU had
to load the address from the memory. Thus, the victim has not accessed it between
the �ush and the reload (see Fig. 2.10b).

Flush and Reload works on the LLC, which is shared by all processes even from
di�erent cores. However, each process has its own virtual address space. It can
therefore have di�erent virtual addresses for the same function. Thus, this attack
requires page sharing: when two processes use the same read-only memory pages,
these pages are shared. This is implemented in many systems for e�ciency purposes,
in particular for shared libraries. Moreover, to �ush a memory line from the cache,
one needs the clflush x86 instruction or equivalent.

Prime and Probe In fact, Flush and Reload is a variant of a previous attack,
Prime and Probe [95], which is slower but does not rely on any particular shared
memory requirements. Once again, the attacker targets the LLC. Since there is no
page sharing, the attacker does not know which cache location the target instruction

27



Access Flush probed address from the cache

Wait Other events

victim

attacker

(a) The attacker �ushes the probed address from the cache. Then, the victim accesses,

putting the probed address back in the cache. The attacker accesses again, and the access

time is reduced.

victim

attacker

(b) The attacker �ushes the probed address from the cache. The victim does not access

the address. The attacker accesses the address, and the access time is high.

Figure 2.10: Access times in the Flush and Reload attack, with (a) and without
(b) a victim access to the probed address. The x-axis is the time elapsed since the
beginning of the attack.

is mapped to. The �rst step of this attack is therefore to �nd the correct cache set
� a set of cache lines. The details of this step can be found in [95]. Once the correct
cache set has been recovered, the attacker can �nd out whether the victim accessed
a certain address as follows:

� Find the target cache set.

� Fill the cache set with the attacker's data, thus evicting the target from the
cache.

� Wait for a certain period of time, leaving the victim enough time to call the
target address.

� Access the attacker's data again.

If the access time is short, then the attacker's data has not been evicted. This means
that the target has not been loaded back into cache memory (see Fig. 2.11b). A
high access time means that the attacker's data has been evicted from the cache,
showing that the victim has accessed the target memory line (see Fig. 2.11a).

Even though Prime and Probe is more noisy � and therefore leads to less accurate
results �, both can be used to carry out architecture extraction attacks, as is shown
in Section 2.3.4. The main advantage of Prime and Probe is that it does not require
page sharing, contrary to Flush and Reload. The authors of [53] and [52], however,
give examples of how to achieve page sharing to launch an architecture extraction
attack using Flush and Reload.
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Access Fill cache with attacker’s addresses

Wait Other events

victim

attacker

(a) The attacker �lls the cache with her addresses, evicting the monitored address. The

victim accesses the monitored address, evicting one of the attacker's addresses. The at-

tacker accesses her addresses again, and the access time is higher.

victim

attacker

(b) The attacker �lls the cache with her addresses, evicting the monitored address. The

victim does not access the monitored address. The attacker's addresses are still in the

cache. The attacker accesses her addresses again, and the access time is reduced.

Figure 2.11: Access times in the Prime and Probe attack, with (a) and without
(b) a victim access to the probed address. The x-axis is the time elapsed since the
beginning of the attack.

2.3.4 Cache Telepathy: A Cache-Based Side-Channel Attack

Cache Telepathy [141] exploits a leak in matrix multiplications to recover most hy-
perparameters. Most ML frameworks, such as Tensor�ow, use an e�cient matrix
multiplication algorithm, such as GeMM [45], to implement FC and convolutional
layers. In their paper, the authors of [141] test their attack against two such algo-
rithms: GeMM and Intel MKL's matrix multiplication [131]. While the OpenBLAS
library is open source, making GeMM's code easy to analyze, the details of the im-
plementation remain more obscure in the Intel MKL case. For this reason, let us
�rst detail the attack methodology based on the GeMM algorithm.

Threat Scenario Cache Telepathy [141] is an architecture extraction attack (see
Table 2.1) in an MLaaS context, and the quality of the extracted model can be
measured through task accuracy. The goal is to retrieve a small set of possible
architectures for the possible model, then train those architectures and select the
one with highest accuracy. Even though this is a black box attack � in the sense
that the parameters and hyperparameters are unknown to the attacker �, there still
are some prerequisites:

� The attacker knows a large set of architectures the victim model belongs to,
called the search space. For instance, the model could form part of the VGG
(such as VGG16 or VGG19 [115]) or the ResNet (such as ResNet50 [48]) family.
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� The attacker and victim processes are co-located: they share the same cache.
Several papers have explained how to guarantee co-location in an MLaaS con-
text [149, 102].

� If Flush and Reload is used, then page sharing is necessary.

The goal here is to reduce the search space to a tractable one � i.e. a search
space that is small enough that an attacker can realistically train all models in it
and select the one with the best accuracy.

Attack Description The authors of Cache Telepathy track calls to certain func-
tions in Goto's implementation of GeMM [45] through the cache in order to deduce
a victim model's architecture. The said algorithm divides the input matrices in
smaller blocks so that the computations completely �ll the cache. Let us consider
the OpenBLAS library. In OpenBLAS, the algorithm makes use of three interest-
ing functions: itcopy, oncopy and kernel. The pattern of appearance of these
three functions is highly correlated with the dimensions of the matrices involved in
the matrix multiplication. Thus, monitoring these three functions is enough for an
attacker to recover the matrices' dimensions.

The Cache Telepathy attack consists in the following steps:

� Determine the number of layers thanks to the number of calls to GeMM.

� For each FC or convolutional layer, determine the input, �lter and output
dimensions by monitoring three of GeMM's internal functions: itcopy, oncopy
and kernel using Flush and Reload or Prime and Probe.

� Determine the activation function thanks to Flush and Reload or Prime and
Probe.

� Reduce the number of possible connections by measuring inter-GeMM latencies
and using dimension constraints.

� Eliminate unfeasible stride and padding values, and reduce the possibilities for
pooling and dropout layers thanks to dimension considerations.

Let us now explain the second step in this scheme. GeMM's implementation is
detailed in Algorithm 1. We notice four di�erent loops. They correspond to the
subdivision of the input matrices so as to completely �ll the cache, and therefore
optimize the computation time. The said subdivision is shown in Figure 2.12.

Because the loops are here to implement a subdivision of the matrices into blocks,
the number of iterations in the four loops is closely related to the matrices' dimen-
sions. For two matrices of shapes (m×k) and (k×n), block sizes P, Q, R � selected
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Figure 2.12: General Matrix Multiply (GeMM) algorithm implementation, which
relies on machine-dependent block size to optimize matrix multiplications. The
block sizes P, Q and R are selected depending on the user's machine, and more
speci�cally its cache size.

based on the user's machine �, and constant UNROLL, the �rst observation is that:

iter4 =

⌈
R

3UNROLL

⌉

or =

⌈
n mod R

3UNROLL

⌉

iter3 =
⌈m
P

⌉

iter2 =

⌈
k

Q

⌉

iter1 =
⌈n
R

⌉

(2.2)

Thus, determining the number of iterations in each loop for a given layer should
give possible hyperparameters for the layer at hand. To do so, the authors of [141]
monitor the three functions: itcopy, oncopy and kernel. If an attacker can closely
monitor them and count their appearances, then they can deduce the number of
iterations in the loops thanks to the observed pattern, detailed in Figure 2.13.

The scheme described enabled the authors of Cache Telepathy to reduce the
set of possible architectures from 5.4 × 1012 to 16 for the VGG16 family, and from
6× 1046 to 512 for the ResNet50 family.

Despite the fact that Intel's MKL library is not open source, the authors still
manage to carry out their attack on it. Using binary analysis, they managed to
identify a pattern similar to that in Figure 2.13. They can therefore apply the same
technique to decrease the set of possible architectures. The attack on Intel MKL
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Algorithm 1: Goto's GeMM algorithm in the OpenBlas library. It re-
ceives input matrices A, B and C, as well as scalar values α, β. It then
computes αA ·B+βC and stores the output in C. The block sizes correspond
to matrix subdivision carried in the implementation for e�ciency purposes
(see Figure 2.12). bufA and bufB correspond to small bu�ers used to store
temporary computation values.
input : Matrices A, B, C; Scalars α, β; Integers (Block sizes) P, Q, R; Integer UNROLL

1 for j ← 0 to n by R do

; /* Loop 1 */

2 for l← 0 to k by Q do

; /* Loop 2 */

/* Loop 3, first iteration */

3 itcopy(A[0, l], bufA, P, Q);
4 for jj ← j to j + R by 3UNROLL do

; /* Loop 4 */

5 oncopy(B[l, jj], bufB+(jj − j)× Q, Q, 3UNROLL); kernel(bufA, bufB+(jj − j)× Q,

C[l, j], P, Q, 3UNROLL);
6 endfor

7 endfor

8 for i←P to m by P do

/* Loop 3, rest of the iterations */

9 itcopy(A[i, l], bufA, P, Q); kernel(bufA, bufB, C[l, j], P, Q, 3UNROLL);

10 endfor

11 endfor

itcopy oncopy kernel itcopy kernel

iter3 - 1iter4

Figure 2.13: The functions itcopy, oncopy and oncopy form a pattern that is
closely linked to the number of iterations in each loop from Goto's algorithm (see
Algorithm 1).

leverages a reduced search space of 64 for VGG16 and 6144 for ResNet50. The
results reported here correspond to the Flush and Reload case. Prime and Probe
introduces more noise, and therefore leads to much larger reduced search spaces
in the Intel MKL case. Even though the attack is less e�ective in the MKL and
Prime and Probe cases, it still reduces the search space to a tractable one: it is
then possible to train the models in the new space and select the one with the best
accuracy.

2.3.5 CSI Neural Networks

Among the most powerful SCAs to date is a power or electromagnetic (EM)-based
attack that successfully recovers the parameters and hyperparameters simultane-
ously [10]: CSI NN. The authors of [143] apply a similar approach to fully extract
the architecture and secret parameters of Binary Neural Networks (BNNs). CSI NN
is a model extraction attack (see Table 2.1) whose goal is functionally equivalent
extraction as de�ned in Section 2.3.1.
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Threat Scenario The attacker does not require any prior knowledge regarding
the model. But she can still be considered strong, as she has a physical access to the
processor running the target model. Experiments have been carried out on small
FC and convolutional NNs.

Attack Description The authors of [10] statistically analyse power and/or EM
traces to recover both the architecture and parameters of the victim NN. Here, we
only describe the attack on FCNs.

Gathering EM and power traces can be achieved by placing a probe against the
microprocessor of the attacked device [10]. EM traces can also be gathered from
a distance. To do this, a software-de�ned radio may be used [14]. New methods
relying on machine learning techniques allow the attacker to carry out side-channel
analysis from a further distance (15m) [132].

The scheme in [10] relies on Correlation Power Analysis (CPA) [12] when power
traces are used, and Correlation Electromagnetic Analysis (CEMA) when EM traces
are gathered.

Let us start by detailing CPA. Given an algorithm requiring the use of a secret
s:

� The attacker �rst isolates a part of the algorithm where she knows s � or part
of s � intervenes. Let us denote by A the said subalgorithm.

� She gathers power traces T for inputs X to the subalgorithm A.

� She simulates the power consumption of A depending on s. This means that
she �nds a leakage model f such that f(s) is the modeled power consumption
for A. An example of such a leakage model f � used in [10] � is the Hamming
weight of the output of A.

� For each guess k of the secret, she compares the simulated traces f(k) for the
inputs X with the gathered traces T . Let Tk denote the simulated traces for
guess k. The comparison measure is the Pearson correlation coe�cient ρ:

ρ(T, Tk) =
cov(T, Tk)

σT · σTk
where cov(T, T ′) is the covariance between T and T ′, and σY denotes the
standard deviation of Y .

� The guess k∗ associated with the simulated traces Tk∗ with highest ρ is chosen
as the correct guess for s. If the attack works, k∗ = s

The only di�erence between CPA and CEMA is that instead of using power
traces, CEMA is based on EM emanations.

Some secret key recoveries require a simpler attack. SPA (resp. SEMA), only
uses one power (resp. EM) trace: in this case, the attacker can directly read the
secret by observing one trace.

The authors of [10] proceed iteratively to recover the architecture and weights
at the same time. The full scheme can be summarized as follows:
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1. Recover the number of neurons through SPA (or SEMA).

2. Start at layer l = 0. For each neuron η determine whether η is in layer l or
layer l + 1, as well as the weights by which it was multiplied thanks to CPA
(or CEMA).

3. Determine layer l's activation function through time analysis. Let us note that
later work [121] has established the possibility to recover activation functions
through EM analysis as well.

4. If η is in l + 1, then l ← l + 1. The previous two steps are repeated until the
attacker reaches the end of the gathered traces.

In the �rst step, the attacker uses one trace to di�erentiate between the various
neurons, and therefore count the total number of neurons (see Figure 2.15). Neurons
appear plainly because of the sequential execution of NNs. Indeed, each neuron is
multiplied by all the weights it is associated to, before moving on to the next neuron.
The activation function is also applied to each such neuron. On the other hand, it
is much more di�cult to di�erentiate between layers.

This is where the CPA comes into action, in the second step. In this second part,
the attacker targets each individual multiplication o = x ·w where x is a neuron and
w is a weight. She then applies CPA (or CEMA) to the said multiplication, where
w is the secret to be revealed. Thus, the attacker can use the Hamming weight of
the output o to model the power (or EM) traces. The attacker gathers a set T of
traces for x ·w for various values of x, and computes traces Tw thanks to the leakage
model for each possible weight value w. The weight w∗ with modeled traces closest
to the actual ones � i.e. which has highest Pearson coe�cient ρ(T, Tw∗) � is taken to
be the correct guess. This mechanism reveals the parameters associated to a given
neuron when the architecture is known. But it does not recover a neuron's layer in
the black-box case.

To overcome this issue, the authors of [10] suggest taking the layer into account
in the CPA (resp. CEMA). The attacker knows the input I with n neurons. She
starts with the n neurons from layer l = 1 and determines its weights through CPA
or CEMA. She then moves on to layer l = 2 and proceeds layer by layer. For
layer l and each neuron x, she knows x is either in layer l or in layer l + 1 because
of the sequential execution. Thus, she applies CPA or CEMA on two hypotheses
(w, layer). This statistical analysis therefore gives her the two parameters at the
same time. If x is in l + 1, she determines the activation function through a timing
attack then moves on to the next layer: l ← l + 1. She repeats this operation until
all neurons have been analyzed.

A time analysis is possible on the activation function because the various activa-
tions have a very di�erent timing behaviour. Figure 2.14 shows the behaviour of the
main activation functions depending on the input. The clear di�erences enable a
potential attacker to determine each layer's activation once the weights are known,
by trying various inputs and observing the resulting pattern.

Thus, the authors of [10] manage to fully recover small FCNs and convolutional
NNs through a mix of power or EM-based SCA and timing analysis. In the case
of an FCN, they recover the number of layers, the number of neurons per layer
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Figure 2.14: Timing behaviour for four common activation functions: (a) ReLU ,
(b) Sigmoid, (c) Tanh and (d) Softmax (see Section 2.2.1 for further details on
the activation functions). Each graph represents the function's runtime depending
on the input provided, for inputs in [-2, 2]. This image is taken from [10]

and the weights through an iterative process involving SPA (resp. SEMA) and CPA
(resp. CEMA). The activation function recovery, on the other hand, relies on timing
analysis. However, as mentioned, the authors of [121] have managed to launch the
activation function attack using EM emanations. It is therefore possible to fully
recover the architecture of models relying only on EM emanations.

In this Section, we have delved into the details of three among the numerous
reverse-engineering attacks targeting NNs. We will tackle the described attacks
in Chapters 3, 4 and 6 of this manuscript.

2.3.6 Adversarial Attacks

Reverse-engineering attacks have only recently become practical: most of them only
target small NNs, only uncover part of the model, or they require prior knowledge.
Adversarial attacks, on the other hand, can be applied to models of all sizes. While
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Figure 2.15: SPA on an FCN: Observing one trace reveals the number of neurons.
As is shown in (a), the neurons are easy to distinguish. However, as (b) and (c)
show, di�erentiating between layers is much harder.

reverse-engineering attacks are quite recent, the �rst ones appearing in 2016, ad-
versarial attacks have been discovered as early as 2013 [120] and have been heavily
studied since.

Generalities Given a victim model f , an oracle O � often taken to be the human
eye �, and an input x, the goal of an adversarial attack is to generate xadv = x + η
where η is some small noise, such that the noise is undetectable to the oracle, but
the target model's predictions are changed. In other words, O(x) = O(xadv) � the
oracle does not detect η � but f(x) 6= f(xadv).

The notion of `small noise' is relative, and it depends on the norm selected. Most
often, the norms l∞ or l2 are taken. In the general case, the goal can be achieved
by solving the following optimization problem:

xadv = min
||η||
{x+ η s.t. f(x) = l

and f(x+ η) = l′

and l 6= l′

and x+ η ∈ B}

(2.3)

where || · || is the considered norm and B is a ball (for instance determined by
||x+ η|| ≤ 1)

Various methods exist to achieve this optimal value, and they depend on the
prior information an attacker has. In a white-box context, where the attacker knows
the entire model, she can rely on gradients to �nd adversarial examples [91]. In a
black-box context, where the attacker only gets the output of the model � either
values corresponding to the last layer or labels corresponding to the classi�cation �,
she has to use approximations to reach the target [19]. For instance, one can �nd
adversarial samples on a model similar to the victim and rely on transferability to
attack the original model.

Adversarial examples can either be targeted or untargeted. If the �rst, then the
class l′ in Equation (2.3) is predetermined: the attacker does not simply aim at
changing a model's predictions, but also at selecting the output class [7]. If the
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second, then l′ can be any label other than l [43, 91]. As an example, let us suppose
that an input x's original label is `cat'. In the untargeted case, the attacker is
satis�ed whether x′'s label is `tiger' or `armchair'. In the targeted context, however,
the attacker is only satis�ed if the output is one speci�c class, say `tiger'.

In this dissertation, we will only consider adversarial attacks in a white-box
context. Let us note that an attacker's access to a model's gradient provides the
best results in terms of adversarial examples. Three attacks in particular will be of
interest to us.

Fast Gradient Sign Method The Fast Gradient Sign Method (FGSM) [43] was
introduced by Goodfellow et al. in 2015 as a fast and simple way of generating
untargeted adversarial examples. Given the model θ, input x with output y, a loss
function J and a small perturbation ε, then the adversarial sample is computed as
follows:

xadv = x+ ε× sign(∇xJ(θ, x, y))

where ∇xJ(θ, x, y) is the gradient of J relatively to x. The idea is to take a step
in the direction of the gradient, as it enables the attacker to move away from the
original class.

Projected Gradient Descent The Projected Gradient Descent algorithm (PGD)
is an iterative algorithm in �ve main steps which consists in applying FGSM multi-
ple times. For a given number of steps n and a � possibly varying � step size α, at
iteration i < n:

xi+1
adv = xiadv + α× sign(∇xJ(θ, x, y))

If necessary, xi+1
adv is projected to the constrained ball B.

DeepFool DeepFool [91] is an iterative attack which generally provides a smaller
perturbation than FGSM. It de�nes regions of input points that output the same
label. For the original point x, it aims at �nding the closest boundary to its label
region. For this, the authors approximate the region by a polyhedron P and then
approximate the distance from x to the closest of P 's edges. This is the full procedure
for input x and model f :

� x0 ← x

� while f(x) = f(xi): Find the smallest perturbation r that brings xi to an edge
of the current polyhedron.

� xi+1 ← xi + r

� i← i+ 1

Fast Adaptive Boundary Attack While DeepFool e�ciently produces an ad-
versarial example based on the classi�cation boundaries, and often provides a sample
closer to the original input than FSGM, it prioritises time e�ciency over closeness
to the original point. The authors of [26] consider a similar approach to DeepFool
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in their Fast Adaptive Boundary (FAB) Attack. The main di�erences introduced
in [26] are that they take the exact projection � without clipping � and introduce
a bias towards x. They also apply other measures, such as random restarts, to im-
prove the quality � i.e. decrease its distance to x � of the adversarial sample found
xadv.

Square Attack The attacks mentioned so far are only white-box ones. However,
a potential attacker may only have access to the outputs of a model. Among other
proposals, the authors of [19] and [5] introduce attacks that only rely on input-output
pairs to generate samples. While [19] approximates gradients to �nd the closest
classi�cation boundary, the Square attack [5] bases its approach on the well-known
random search optimization problem. Not only does the Square attack require no
information about the original model, but it can outperform gradient-based white-
box attacks. The idea is simple: it is an iterative method where at each step i, a
random update δ is sampled, and it is added to the current value xi if it helps with
the optimization � i.e. if it decreases the loss value in Equation (2.3).

Despite the numerous attacks on NNs, few defenses guarantee a full protection
against them as of now.

2.3.7 Protections

Reverse-Engineering Defenses Because the reverse-engineering �eld is still new
when it comes to NNs and attacks are generally not yet considered a signi�cant
threat, few countermeasures have been proposed so far.

Many of the existing defenses are hardware-based. The authors of [133] pro-
pose an NN accelerator which mitigates timing side-channel attacks. They present
a reverse-engineering attack based on instruction �les. They note that while pre-
venting leakages from intermediary data requires the encryption of intermediary
featuremaps � i.e. the output channels of hidden layers �, not all featuremaps are
of importance. Thus, as a defense, they propose to select a subset of critical fea-
turemaps. These critical channels are chosen based on their number of nonzero
elements, their absolute weight sum and energy consumption. As a defense, they
suggest only encrypting the aforementioned critical featuremaps.

[31] claims to introduce the �rst physical side-channel countermeasure for NNs.
It provides a masking and hiding hardware protection for architectures with binary
weights against power-based side-channel attacks. The authors present a masking
scheme for individual multiplications. As the masking is not done in modular arith-
metic, it still leaks due to a bias in the sign bit. Therefore, they also consider a hiding
mechanism to ensure the security of the entire model. The authors then introduce
an improvement of their hardware masking, BoMaNet [30]. The new methodology
eliminates all hiding mechanisms, ensuring a masking only defense. Moreover, the
scheme in [30] incurs less delay and makes the method glitch-resistant.

Building on [31, 30], the authors of ModuloNet [29] propose to adapt NN ar-
chitectures to masking instead of trying to introduce masking countermeasures in
already existing architectures. They propose a novel BNN architecture whose layers
are adapted to hardware masking in modular arithmetic. With this new BNN, the

38



previously noted leaks in masking [31, 30] are avoided.
[78] aims at preventing the recovery of the architecture through memory access

patterns attacks. It �rst considers [56] as a baseline attack, but proves the security of
its protection against stronger memory access pattern attacks. Since memory access
patterns leak enough information to provide the entire architecture to a malicious
user, the authors of [78] propose to randomize them. To achieve this, they mix
three common cryptographic tools: Oblivious Shu�e [44], Address Space Layout
Randomization [40] and adding dummy memory accesses.

These �ve papers are orthogonal to our work, since we only consider software
countermeasures in this thesis.

The authors of [82] suggest some countermeasures to their proposed attacks.
Changing the weight representation or making ReLU constant time would prevent
their recovery of the weights. The authors of [124] claim that input-dependent
functions � such as ReLU represent less than 10% of the computation time. They
therefore suggest making them independent to defend a model against an input
extraction. Such a method should also mitigate [82], as this approach is similar to
the suggestion of making ReLU constant time.

Adversarial Defenses Adversarial examples have been the bane of NNs' exis-
tence ever since Szegedy et al. introduced them in 2014 [120]. Numerous protections
with varying degrees of e�ciency have been proposed over the years.

Most adversarial defenses fall under the following categories [100]:

� Adversarial training has been found the most e�ective line of defense [81, 139,
17]. It consists in incorporating adversarial samples in the training dataset.
On top of being e�cient against the adversarial attack used to generate the
samples, it does not impact the original model's accuracy much � it can even
reach state-of-the-art accuracy in some settings.

� Some papers choose randomization to counter adversarial samples [76]. Be-
cause NNs are designed to be resistant to random noise, a possible scheme
consists in introducing randomness in the inference. Ways of achieving this
are through a random transformation of the input, the incorporation of random
noise or through the masking of some random parts of the output. Although
randomization performs well in the black and gray box contexts, adversarial
attacks remain e�cient in the white box case.

� NNs with a higher weight sparsity rate � i.e. with a higher rate of 0-valued
weights � have been observed to be more robust to adversarial attacks [46].
Following this observation, the authors of [138] use L1 regularization in order to
improve the sparsity. For a given loss function L, L1 regularization corresponds
to adding a penalty term during the training phase, as follows:

L′(θ, x, y) = L(θ, x, y) + λ
∑

w∈θ

|w|

where θ are the model's current parameters and λ is the regularization factor.

39



� Other papers consider eliminating adversarial noise through denoising tech-
niques. The aim of denoising is to �lter out noise by only keeping the features
in an input that matter for the predictions. One such way of achieving this
�ltering is through the use of autoencoders [86, 8]. As for the randomizing
methods, autoencoders are e�ective in the black and gray box scenarios, but
less so in white box ones.

Other protections include defenses based on the k-nearest neighbours algorithm [134]
or on Bayesian models [77]. The attacks presented so far can be applied to our main
focus � image classi�cation. But other tasks also have speci�c defenses [100]. While
adversarial training seems to be the most e�cient method so far, it is generally tai-
lored to a speci�c attack. Moreover, it requires generating a large set of adversarial
samples for training, as well as retraining the original model on the newly generated
dataset. This necessitates time and computational resources. While an additional
noise layer or a particular preprocessing generally require a speci�c training as well,
incorporating an autoencoder for denoising purposes does not.

2.3.8 Conclusion

NNs form an important part of our daily lives. They have made major leaps of
progress over the past years, even managing to beat the best Go players in the
world in 2016 [114]. New optimization and learning tricks, better storage facilities,
access to larger datasets have all contributed to make them e�cient, fast and reliable
tools. But the training data, inputs, parameters and hyperparameters all constitute
sensitive information that could cause harm in the wrong hands. For all those
reasons, they have been the target of multiple attacks over the years, and more
recently of reverse-engineering attacks. However, so far, the number of e�ective
countermeasures against reverse-engineering attacks remains small. This is why, in
what follows, we try to tackle some of the weaknesses that have arisen. We focus on
software countermeasures against mathematical, cache-based and physical reverse-
engineering attacks. The mathematical and physical attacks tackled in Chapters 3
and 4 aim at recovering the parameters in a gray-box context and seek a fully
equivalent extraction. The cache-based attack tackled in Chapter 6, on the other
hand, determines a victim model's architecture in a black-box context. We also apply
one of our countermeasures to counter white-box adversarial attacks in Chapter 5.

We start by addressing the gray-box context through the introduction of parasitic
models in Part I.
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Part I

Parasites as a Gray-Box Protection

41



Overview

As seen in Section 2.3, reverse-engineering attacks targeting NNs to recover their
parameter often rely either on the full knowledge of the architecture or some prior
knowledge about it. Even in the case of [10], the �rst step is to determine the number
of neurons in the model, and the weights extraction goes hand in hand with �nding a
neuron's layer. The assumption that a model is known is often realistic, as common
architectures and pretrained models � such as VGG16 [115] or ResNet [48] � can be
�ne-tuned to be adapted for various tasks. Since the use of common architectures is
e�cient and wide-spread for many usual tasks, it is possible that potential attackers
have at least some key prior knowledge about the architecture. In fact, the authors
of [16] write that "in practice, there are only a few architectures that represent most
of the deployed deep learning models".

As obtaining a model's optimal parameters for a given task takes a long time
and requires computational resources, they are a valuable asset that should be kept
secret. This is even more the case considering that once the parameters are re-
vealed, other attacks such as gradient-based adversarial attacks [43, 80, 91, 26] and
membership inference attacks are made easier.

Most e�cient adversarial attacks are white-box ones and make use of the gradient
to fool the target NN. They rely on the internal structure of NNs to determine the
closest input which changes the model's predictions. Indeed, a model's structure
� including both parameters and hyperparameters � determines the classi�cation
boundaries. Some works, such as DeepFool [91] speci�cally look for those boundaries
when searching for the best adversarial sample.

These reasons lead to the conclusion that changing a model's internal structure
shoulf constitute a countermeasure to several reverse-engineering and gradient-based
adversarial attacks. The �rst two Chapters in this Part propose a way to miti-
gate gray-box parameter extraction reverse-engineering attacks: the �rst focuses on
mathematical attacks such as [16], while the second considers physical ones such
as [10]. The third Chapter considers an application of the proposed methodology to
counter adversarial examples.
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Chapter 3: Parasites against Mathe-

matical Attacks

Mathematical attacks [16, 61, 88, 87, 103] query a model f and collect input-output
pairs (x, f(x)) to uncover its trained parameters. In Section 2.3.2, we detail one
particular attack, published by Carlini et al. in 2020 [16]. It is based on hyper-
planes created by the piece-wise linear activation functions. In particular, in their
work, they focus on FCNs with ReLU activation functions. We will follow suit in
this Chapter. Our aim is to mitigate the aforementioned mathematical attacks by
changing the original model's internal structure.

To achieve this, we introduce the notion of parasitic models, that will be used in
all three Chapters constituting this Part. These parasites are added to the original
target model so as to change its structure and obfuscate its weights and biases.

After stating the threat scenario and giving an overview of this Chapter's pro-
tection in Section 3.1, we explain the need and simplicity of approximating identity
functions with CNNs in Section 3.2. Then, we dive into the details of the proposed
defense in Section 3.3. Section 3.4 discusses the theoretical security of our defense by
showing that we indeed change the internal structure of the target model. We con-
duct experiments to demonstrate the impact of the parasites on the original model
in Section 3.5. Finally, Section 3.6 concludes this Chapter.

3.1 Threat Scenario and Defense Overview

We consider the same threat model as in [16]:

� The model is a piece-wise linear function.

� The model is comprised of linear FC or convolutional layers followed by ReLU
activation functions.

� The attacker has remote access to the model

� The attacker has query access � the attacker can send crafted inputs to the
model, and receives outputs in R.

� We also assume that the number of neurons per layer is known.

43



The goal of the considered attack is functionally equivalent extraction. As de-
tailed in Section 2.3.2, the scheme uses the hyperplanes introduced by the model's
neurons due to the ReLU functions. More speci�cally, it is based on the intro-
duced irregularities in the gradients. Increasing the number of these irregularities
by adding ReLU functions should therefore make the attacker's task more di�cult.
It is also interesting to note that while most steps involve a linear complexity (in
time), sign recovery is, in the general case, more complex and can be exponential.
This is the weakness we mean to exploit in this Chapter: adding a few hyperplanes
to the structure already highly increases the di�culty of the task, because of this
exponential time complexity for the last step.

In this Chapter, we consider changing the internal structure of the victim model
by adding linear layers followed by ReLU activation functions, without changing
the accuracy. Furthermore, this protection is independent from the victim model.
The full scheme is as follows:

� Train a set of CNN models, called parasite(s) to approximate a noisy identity
function. Let us note that this training is completely independent from the
model under attack.

� Place the parasite(s) at one or several locations in the model.

� The inputs are run through this modi�ed model.

The suggested countermeasure is further detailed in Section 3.3.

Related Works The authors of [49] inject normal noise during a model's training
as a way of mitigating adversarial attacks. They introduce a parameter, α, trained
along the original model so that α × N � where N is a �xed Gaussian noise � is
added to some layers. Furthermore, they add adversarial examples to the training
set to prevent α from converging to 0. Contrary to [49], our parasites are trained
independently from the base model, and do not rely on adversarial training. More-
over, we do not simply seek to add noise, but also dummy hyperplanes through new
ReLU functions. Our aims also di�er: we do not wish to ensure a robustness against
adversarial examples but to mitigate reverse-engineering attacks.

Shamir et al.'s paper [111] note the link between classi�cation boundaries and
adversarial examples inspired this protection: it is the intuition behind our wish to
change the base model's internal structure.

3.2 Approximating the Identity using CNNs

As explained, the goal of the countermeasure is to increase the number of hyper-
planes. Adding layers with ReLU activation functions results in the addition of
dummy hyperplanes, as detailed in Section 3.4. Since we also wish to maintain the
original model's accuracy, the parasitic layers we add correspond to a model approx-
imating the identity. However, because of the way CNNs adapt to the task at hand,
simply approximating the identity function allows for the hyperplanes to `disappear'
from the observable space, and thus, is not enough to thwart the attack at hand.

44



In order to mitigate the said attack, our parasitic CNNs approximate the identity
to which we add a centered Gaussian noise. Section 3.4 details how this additional
noise ensures that the introduced hyperplanes lie in the same space as the original
ones.

Since CNNs are intrinsically nonlinear, approximating the identity � the sim-
plest linear mathematical function � would appear to be a di�cult learning task.
However, thanks to the bias and the piecewise linearity of ReLU , CNNs manage
to avoid the obstacle of the hyperplanes by shifting the input to a space where the
activation function is linear. Therefore, CNNs manage to approximate the identity
very accurately.

The simplicity of the task at hand is demonstrated in [148]. Indeed, the authors
of [148] manage to approximate the identity mapping using CNNs with few layers,
few channels and only one training example from the MNIST dataset [28].

First, they observe that while both CNNs and FCNs achieve a good approxi-
mation of the identity on digits when trained on three training examples from the
MNIST dataset [28], only CNNs generalize to examples outside of the digits scope.
Moreover, they state that this bias can still be observed when the models are trained
with the whole MNIST training set.

In order to better characterize the observed bias, the authors take the worst case
scenario: they only train FCNs and CNNs on a single training example. Contrary
to what they expected, architectures that are not too deep manage some kind of
generalization: FCNs output noisy images for inputs that are not the training exam-
ple, while CNNs still manage to approximate the identity. Moreover, FCNs tend to
correlate more to a constant function than to the identity. The correlation between
the output of CNNs and the identity function decreases with a smaller input size
and a higher �lter size.

The authors of [148] consider the depth and �lter sizes necessary to learn the
identity in their constrained context. They show � by providing possible �lter values
� that in their case, if the input has n channels, 2 ·n channels su�ce to approximate
the identity mapping with only one training example. They also note that adding
output featuremaps does help with training. Moreover, they use 5× 5 �lters for all
their CNNs' layers. Finally, they explain that even though 20-layer CNNs can learn
the identity mapping given enough training examples, shallower networks learn the
task faster and provide a better approximation.

This ability of CNNs to learn the identity mapping using only one training ex-
ample from the MNIST dataset and to generalize it to other datasets shows the
simplicity of the task. Section 3.3 and Section 3.4 explain how this fact impairs the
defense when the parasitic CNN approximates the identity mapping. They also state
the necessity to approximate a noisy identity as well as to apply some constraints
on the CNN's parameters.

3.3 Changing the Internal Structure

Let us consider a ReLU NN model � an NN with ReLU as its activation functions
� to protect. The attack scenario described in Section 2.3.2 is based on the bent
critical hyperplanes induced by the ReLU functions in the model. In [16], the bent
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hyperplanes are especially used in the case of expansive NNs � i.e. for which a
preimage does not always exist for a given value in the output space �, in order to
�lter out witnesses that are not useful to the studied layer. To make the attacker's
task more complex, we propose to add arti�cial critical hyperplanes. Adding arti�-
cial hyperplanes would make the attack more complex: in a given layer, the attacker
would not only have to �lter out hyperplanes from other layers, but also arti�cial
hyperplanes. The additional hyperplanes also make the sign recovery process more
time consuming.

As explained in Section 3.2, CNNs can provide a very good approximation of
the identity mapping. Moreover, they generalize well: with only a single training
example from the MNIST dataset, CNNs up to 5 layers deep can still reach the
target function.

Parasites Based on the aforementioned observations, we propose to add dummy
hyperplanes through the insertion of parasitic CNNs between two layers of the model
to protect. To prevent a drop in the accuracy, these CNNs approximate the identity
function to which only a small centered Gaussian noise has been added. For a CNN
C and input x, this can be written as:

C(x) ≈ x+N (0, σ)

where N (0, σ) is a Gaussian distribution with mean 0 and standard deviation σ.
The parasitic CNNs select a number nb of neurons from the previous layer as

their input, and they return their noisy approximation.

Why add a noise? As will be further discussed in Section 3.4.2, simply adding a
CNN approximating the identity function is not enough to add dummy hyperplanes.
CNNs' training process has several tricks at its disposal to make those added ReLU
functions redundant and unobservable by a potential attacker. It can ensure that
the hyperplanes are either very close and almost parallel to the already existing
ones, or very far from the observable input space. In both these cases, there is a
high probability that the attacker would not notice the parasites, and the attack's
e�ciency would therefore not be impacted. Further constraints on the parasitic
CNNs are required. Approximating a noisy identity instead of an exact identity
mapping is a �rst step towards making the protection e�cient. The goal of the
CNN C is, given an input x, to return C(x) ≈ x + N (0, σ) instead of C(x) ≈ x.
Further constraints are also applied during training to further ensure a change in
the internal structure.

Other parasitic characteristics As Chapters 4 and 5 will delve into more deeply,
it is also possible to consider a dynamic addition of parasitic models. Instead of
considering a �xed position for the parasite(s), we can randomly select the parasites
from the set of pretrained CNNs and a location in the model, at each run. For
instance, in a client-server setting, each query from the client will be met with the
output of a di�erent model: the number, location and subset of the selected parasites
di�er from one query to the next.
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Furthermore, the small CNN(s) we add do not act on all neurons. The input of
a given parasite is a subset of the neurons from the previous layer. This yields two
advantages:

� The added CNN(s) can be small, implying fewer computations during infer-
ence.

� We can add di�erent CNNs to di�erent parts of the input, to further increase
the di�erence in behavior between neurons.

Figure 3.1 shows an example of adding such a parasitic CNN between the �rst and
the second layer of an NN with only one hidden layer. Let us note that because
we take our parasites to be CNNs, the number of its input neurons must be nb =
ch × nw × nh where ch is the number of input channels of the considered parasite,
and nw and nh are two integers. When the parasitic CNN receives the set of neurons
from the considered FC layer, it �rst reshapes it into ch images of width nw and
height nh.

Identity
CNN

Output

Hidden
layer

Figure 3.1: Neural Network with one hidden layer where a CNN approximating the
identity has been added to approximate the �rst fours input neurons.

Figure 3.2: Parasitic CNN with 4 convolutional layers, with a ReLU activation
function after each convolution. The shape of the inputs and outputs are indicated
in the form nb_channels@width×height. Image generated with [73].
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Figure 3.3: Parasitic CNN with 4 convolutional layers, with a Batch Normalization
layer and a ReLU activation function after each convolution. The shape of the
inputs and outputs are indicated in the form nb_channels@width×height. Image
generated with [73].

Moreover, for the much harder task tackled by the authors of [148], and even
though more channels improve the accuracy, 2 ·n channels in the intermediary layers
are enough to get a good approximation of the identity for an input with n channels.
Since we do not constrain ourselves to training our CNN with a single example, we
can also limit the number of channels in the hidden layers to two � with only one
input channel. This enables us to minimize the number of additional computations
for the dummy layers, with only a slight drop in the original model's accuracy
(see Section 3.5.3).

3.4 Complexity of Extraction in the Presence of

Parasitic Layers

Adding a convolutional model with t layers as described in the previous section
results in adding t layers to the architecture while keeping almost the same accuracy.
If those t layers add critical hyperplanes, then the complexity of extraction increases.
This section is dedicated to showing how the change in the structure impacts the
attack.

We �rst consider a CNN approximating the identity mapping added after the
�rst layer in the victim NN. We further assume that there are fewer neurons in the
second layer than in the �rst. We prove that in that case, the parasitic CNN does
add hyperplanes with high probability. Then, we explain the need to approximate
a noisy identity mapping rather than the identity itself.

3.4.1 Proof of Additional Hyperplanes

For simplicity, we only consider CNNs with one input channel and square images,
without loss of generality. Let us consider a target model with m input neurons.
Let us suppose we add one parasitic layer that takes inputs of shape n × n ≤ m.
Let also {Fi,j}1≤i≤k, 1≤j≤k be its associated �lter of shape k × k. This results in the
following weight matrix C:




Ci×n+j,(i+l)×n+j+h = Fl,h ∀(i, j) ∈ [[1, n− k + 1]]2 and (l, h) ∈ [[1, k]]2

Ci,i = 1 ∀i ≥ (n− k + 1)× (n− k + 1)
Ci,j = 0 otherwise

(3.1)

Here, without loss of generality, we assume there is no padding.
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This new layer adds at most n× n bent hyperplanes. This number decreases if
two neurons ηi and ηj share the same hyperplane.

Let V(ηi, x) be the value of ηi before the activation function, if the model's input
is x.

We need to consider two cases:

1. ηi and ηj are in di�erent layers. Let us suppose that ηi's layer is l and that
ηj's layer is l + 1. If the layers are not consecutive, then ηj's hyperplane is
bent by ReLUs from the layers in between, making the probability of the two
hyperplanes matching very low.

2. ηi and ηj are in the same layer.

First case: ηi is on layer l and ηj is on layer l + 1

Let us suppose that ηi is on the �rst layer, and ηj is on the second one. Let χ denote
the set of inputs. The output z(x) of the �rst layer, for x ∈ χ is:

z(x) = A(1)x+ β(1) (3.2)

In this proof, the rows of A(1) are assumed to be linearly independent. This is an
assumption made in [88], [61] and in [27]. As stated in [61], this is likely to be the
case when the input's dimension is much larger than the �rst layer's. The authors
of [16] state that it is the case in most ReLU NNs, but not necessarily the most
interesting ones. The general attack in [16] for the cases where the model to protect
is not contractive is more complex, and requires a layer by layer brute force attack
for the sign recovery.

Since we apply the parasitic layer, the output of the second layer is:

Out = C ·ReLU(z(x)) + β(2) (3.3)

Since the rows of A(1) are supposed to be linearly independent, for a given vector
V , there exists a solution x∗ such that z(x∗) = V , by the Rouché-Capelli theorem.
If we select V so that Vi ≥ 0 ∀i ≤ m, then V is not a�ected by the ReLU . We
can therefore select a vector V such that, letting k be the convolutional layer's �lter
size:

V(b j
n
c+h)×n+j%n+l = 0 ∀1 ≤ l, h ≤ k (where j%n means j modulo n)

except for one value i′ 6= ηi, where Vi′ = 1
(3.4)

where j is the �rst element in V necessary to compute ηj.
Since this second layer is a convolutional one, β(2)

i is the same for all i on a given
channel, denoted β. The window to compute ηj is zeroed out, except for one value.
The �lter weight associated to that value needs to be −β to nullify ηj. Since we can
repeat the process for all values of the window that are not ηi, all the �lter weights
except for that associated to ηi need to be −β except for the one associated with ηi.
This is not the case with high probability. In our experiments, we observe that our
parasitic weights do not have this form. Thus, with high probability, ηi = 0 does
not imply that ηj = 0.
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For deeper layers, if z is the output of layer l, then even though we cannot select
any vector V , it is unlikely for the following equation to happen:

zi(x) = 0 ⇐⇒ C(ReLU(z(x)) + β(l))j = 0 (3.5)

where i is the index of ηi in z(x) and j is the index of ηj in the parasitic layer.
When ηi is not in the window used to compute ηj, and the two neurons are

therefore unrelated, it is even less likely to be the case.
Therefore, two neurons on di�erent layers are very likely to have di�erent critical

hyperplanes.

Second case: ηi and ηj are in the same layer

Let us suppose that ηi and ηj are in layer l. Let l be the �rst convolutional layer.
Moreover, let us suppose that the CNN is set after the �rst layer of the model we
want to protect. Then l's input is:

z(x) = ReLU(A(1)x+ β(1)) (3.6)

where x is the model's input.
Let us also suppose, without loss of generality, that j > i. This means that the

windows used to compute the two neurons are not identical. With high probability,
one of the �lter values associated with the disjoint window values is nonzero. For
simplicity, and without loss of generality, let us suppose, in what follows, that F1,1

is such a �lter value: F1,1 6= 0.

Case where β = 0: As explained before, we can �nd x∗ such that:

z(x∗)h =

{
1 if h = i

0 otherwise

Since j > i, z(x∗)i is not in the window used to compute ηj, but it is in ηi's window.
In this case, ηi 6= 0 and ηj = 0. Thus, ηi and ηj do not share the same critical
hyperplane.

Case where β 6= 0: If β 6= 0 , we cannot directly apply the previous reasoning.
Let x∗ be a witness for ηj being at a critical point. Let us show that we can �nd an
input x∗∗ such that ηj = 0 but ηi 6= 0.

If x∗ already satis�es this property, our work is done. Otherwise, x∗ is such that
ηi = ηj = 0. As explained before, there exists an input to the NN x′ such that:

(A(1) · x′)h =
{
a with a > 0 if h = i

0 otherwise

Then, by piecewise linearity of z, we have, for a value a large enough, that:

z(x∗ + x′)i > z(x∗)i
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Moreover, for all other indices h,

z(x∗ + x′)h = z(x∗)h

Let us consider x∗∗ = x∗ + x′. We have that zi is not in ηj's window, which means
that ηj remains unchanged and ηj = 0 when the NN's input is x∗∗. On the other
hand, ηi's value changes since one of its window values changes and F1,1 6= 0. Thus,
ηi 6= 0. Therefore, we can indeed �nd x∗∗ such that ηj = 0 but ηi 6= 0.

Let us now consider the case where ηi and ηj are on deeper layers, in which case
the previous proof does not work. Let i = i1 × n + i2 and j = j1 × n + j2, where
i1 6= j1, and/or i2 6= j2. Let also F be the �lter of the considered convolutional
layer, of size k × k.

If ηi and ηj share the same hyperplane, then whenever z is such that Ciz+β = 0,
we have that:

k∑

l=1

k∑

h=1

Fl,h(z(i1+l)×n+i2+h − z(j1+l)×n+j2+h) = 0 (3.7)

Since Equation (3.7) needs to hold for all the z that are on the hyperplane, this
equation is unlikely to hold.

Therefore, with a high probability, no two neurons in the same layer share the
same hyperplane.

3.4.2 Approximating a Gaussian Noise for a Complex Ex-

traction

As explained before, adding CNNs approximating the identity to a victim neural
network adds hyperplanes. However, this does not necessarily lead to an increased
complexity for the extraction attacks at hand. Indeed, the parasitic CNN might
avoid the complexity of the task by isolating the newly introduced hyperplanes �
meaning the critical points are far from the input space �, or very close and parallel
to the original hyperplanes � i.e. the critical points correspond to a small translation
from the original points. The �rst case can be achieved by increasing the bias in the
convolutional layers, so that all values are made su�ciently large. This ensures that
no value is zeroed out during the computations. The last layer's bias then translates
the values back to their original position. In both cases, the attacker would not
notice the introduced hyperplanes, thus defeating the purpose of the parasitic CNN.

Similarly to [49], we inject noise into our layers in order to avoid cases where the
CNN we add is not detectable by an attacker. However, our method separates the
training of the added CNN from that of the model to protect. Having to train each
parasitic CNN along with the original model would result in too much overhead. This
is especially the case since we wish to make our protection generic, and therefore
independent of the victim model. We inject a �xed Gaussian noise to the labels
during the training of our CNN approximating the identity.

The standard deviation of this added noise is selected so as to avoid a signi�cant
drop in the original model's accuracy. Let us note that even though the selected
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standard deviation might depend on the victim network, several CNNs approximat-
ing the identity are trained independently from the victim network, and the victim
can then select one or several CNNs adapted to the network at hand.

Since the added noise is �xed, it only constitutes a translation of the victim
hyperplanes, and can be approximated by the CNN through an increase in the bias
β. We avoid this case by bounding the bias to a small value (||β||2 < ε, where
|| · || is the `2 norm) or eliminating the bias (β = 0). This makes the learning task
more complex, and forces the �lter values themselves to change, thus preventing the
introduced hyperplanes from being simple translations of the original ones.

Let us consider, for instance, the case where one convolutional layer is introduced.
As before, let C be the matrix associated to the layer and N be the �xed Gaussian
noise. Then the optimization problem becomes:

∑

1≤k≤m

Ci,kxk = xi +Ni ∀1 ≤ i ≤ n (3.8)

where n is the number of output neurons andm is the number of input neurons. The
only element that is independent of the input is the noise N . This makes this system
of equations impossible to solve for all inputs x. Thus, the solution C∗ provided by
the CNN is such that:

∑

1≤k≤m

Ci,kxk = xi +N ∗i(x) ∀1 ≤ i ≤ n (3.9)

where N ∗ is a noise close to N that depends on the input. C∗ leads to hyperplanes
for the various inputs which cannot be translations of the input hyperplanes. This
implies that the newly introduced hyperplanes intersect the original ones, increasing
the chances of modifying the polytopes formed by all the model's boundaries. This
explanation generalizes to the case of several layers. Indeed, in the general case, the
optimization problem for k convolutional layers without a bias becomes:

f(x) = xi +N ∗i(x) ∀1 ≤ i ≤ n (3.10)

with f(x) = ReLU(Ck(ReLU(...ReLU(C1x)))), where Cj is the matrix associated
to the j − th layer.

In order to further prevent the introduced hyperplanes from being too far from
the working space, we add Batch Normalization layers after each convolutional layer.
These layers center their inputs, thus also setting the hyperplanes closer to the center
� and the `observable' space for the attacker.

To summarize, we may encounter two main problems when adding dummy hy-
perplanes:

� The parasitic CNNs can set the hyperplanes far from the input structure.

� The parasitic CNNs can ensure the dummy hyperplanes are almost the same
as the existing ones.

To counter those possibilities, we change our parasites' training and architecture:

� The parasites approximate a noisy identity to make the hyperplane structure
more complex.
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� We add BN layers in between convolutional ones to center the hyperplanes.

� We bound or eliminate biases during the training phase to incentivize the
hyperplanes being visible to the attacker.

Measuring the impact on the internal structure To ensure the hyperplanes
have indeed changed, we measure the in�uence on adversarial examples. Adversarial
attackers �nd the shortest path from one prediction class to another. This path
depends on the subdivision of the space by the original model's hyperplanes [111,
91]. Thus, changes in the said subdivision lead to di�erent adversarial samples.
Conversely, if two models lead to the same subdivision of the space, then adversarial
examples remain the same for both models.

This property of adversarial samples is the reason why, in Section 3.5, we measure
the impact of the parasitic CNNs on both the original model's accuracy and the
adversarial samples. It is important to note that in this Chapter, we do not seek to
counter adversarial samples, but simply to change some of them.

3.5 Experiments

In this Section, we detail the model we want to protect as well as the added CNN.
Then, we measure the impact of the added layers on the model to protect by counting
the number of adversarial samples which do not generalize to the protected model.

3.5.1 Description of the NN Models Used

Parasitic architectures In our experiments, we consider two architectures for
our parasites. The �rst is comprised of:

� One convolutional layer with 1 input channel and 2 output channels.

� Two convolutional layers with 2 input channels and 2 output channels.

� One �nal convolutional layer with 2 input channels and 1 output channel.

Each convolutional layer is followed by a ReLU activation function and has �lter
shape 5× 5. Figure 3.2 shows this �rst parasite's architecture.

The second architecture is very similar, except that after each convolutional
layer and before the activation function, a BN layer is added. Figure 3.3 shows
this second parasite. The batch normalizations in this second model normalize their
input, ensuring a mean of 0 and a standard deviation of 1. This increases the chances
of the ReLU functions being activated.

Training the parasites We train these parasitic models over 10,000 random in-
puts {xi ∈ [0, 1]n}1≤i≤10,000 of size n = 16× 16. In our experiments, we select the n
input neurons as the �rst or the last ones from the previous layer, but they can be
selected at random among the previous layer's neurons. For a given training, we �x
N as a Gaussian noise, and we set the labels to be {xi +N}1≤i≤10,000.
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Target models The target model is a LeNet architecture [72] (see Figure 2.4
in Section 2.2.3) where average pooling layers are replaced by max pooling layers.
It is trained on the MNIST dataset [28]. We also consider a second model where
we introduce BN layers after the convolutional layers of the LeNet architecture
(see Figure 3.4). We denote VM the victim LeNet architecture and VM batch the
architecture where BN layers have been added.

Figure 3.4: LeNet architecture, as in [72], where a Batch Normalization (BN) layer
is added after each convolution. Image generated thanks to [73].

VM has an accuracy of 98.78% on the MNIST dataset, while VM batch's accuracy
is of 99.11%.

3.5.2 Generating Adversarial Examples

Several methods enable an attacker to compute adversarial samples [43, 80, 91, 90].
In this Chapter, we use the Fast Gradient Sign Method introduced by Goodfel-
low et al. [43] (see Section 2.3.6) to determine adversarial samples for our LeNet
architecture.

As previously explained, since adversarial examples are based on the subdivision
of the input space by the neurons' hyperplanes [111, 91], a modi�cation of those
examples is a good indicator of whether the said subdivision has indeed been changed
by the added CNN. As our protection aims at perturbating this subdivision, we
compute adversarial samples for the �rst 200 images of the MNIST set using the
FGSM method and measure the percentage of examples which do not generalize to
the modi�ed model. For the FGSM method, we start with ε = 0.05 and increase
it by steps of 0.05 until the computed xadv is indeed an adversarial example for the
original model.

3.5.3 Results

We test the two original models considered with the added parasitic CNNs, without
a bias β or with the constraint that ||β||2 < 0.05, where || · ||2 is the `2 norm. We
consider three experiments:

� We add one parasitic CNN (with and without BN layers) after the �rst 16×16
neurons of the second convolutional layer in the victim model. We report the
results in Table 3.1
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� We add one parasitic CNN (with and without BN layers) after the entire �rst
layer in the victim model. We report the results in Table 3.2. This experiment
is only possible if the �rst hidden layer has a number of neurons which can be
written as a multiplication of two factors greater than 1. Indeed, the parasites
being CNNs, we need to make their input two dimensional.

� We add two or three parasites after the second convolutional layer in the victim
model. Both parasites have input shape 16 × 16. Each of these parasites are
fed either the �rst 16× 16 neurons, or the last 16× 16. We report the results
in Table 3.3

Let us note that in all cases, we only count the number of adversarial samples for
the original model that are no longer adversarial for the protected CNN. There are
also examples which are adversarial for both models, but with di�erent predictions.

In the �rst experiment (Table 3.1), the parasites approximate the identity to
which a centered Gaussian noise with standard deviation σ = 0.2 has been added.
In every case, we observe a change in the adversarial examples.

Let us denoteMadv the percentage of adversarial examples for the original model
which are no longer adversarial for the protected model. In all cases from this �rst
experiment, Madv, is higher or equal to 12%, and the accuracy of the protected
model is very close to the original one. This shows that the boundaries between
classes � which are the result of the various layers' hyperplanes � have changed. Our
results are summarized in Tables 3.1 and 3.2.

Table 3.1: Measurement of the accuracy, and percentage of the adversarial samples
that are no longer adversarial for the protected CNN (Madv). All tests are made on
the MNIST dataset [28], and the parasitic CNNs approximate the identity to which
a centered Gaussian noise with a standard deviation of 0.2 was added. BN denotes
Batch normalization. All parasitic CNNs were added after the second convolutional
layer of the original model.

Parasite

Location

Original

Model

Original

Accu-

racy

Parasite
Bias con-

straints

New

accu-

racy

Madv

After BN
and
activation (if
BN)

VM (Fig.
2.4)

98.78%
Without BN

||β||2 < 0.05 98.69% 24.5%
No bias 98.7 % 19 %

With BN
||β||2 < 0.05 98.50 % 28%
No bias 98.67% 22%

VM batch

(Fig. 3.4)
99.11%

Without BN
||β||2 < 0.05 99.24% 17.5%
No bias 99.14% 14%

With BN
||β||2 < 0.05 99.18% 17%
No bias 99.15 % 12 %

Before BN
and
activation (if
BN)

VM batch

(Fig. 3.4)
99.11%

Without BN
||β||2 < 0.05 96.64% 37.5%
No bias 98.13% 39%

With BN
||β||2 < 0.05 99.05% 27.5%
No bias 99.16 % 14 %

As Table 3.1 shows, inserting a CNN trained to learn a Gaussian noise added
to the identity can lead to a modi�cation of the polytopes formed by the original
model's hyperplanes, with only a slight drop in the accuracy.
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Table 3.2: Measurement of the accuracy, and percentage of the adversarial samples
that are no longer adversarial for the protected CNN (Madv). All tests are made on
the MNIST dataset [28]. BN denotes Batch normalization. All parasitic CNNs were
added after the �rst convolutional layer of the original model, and their input is the
entire output of the �rst layer (after the BN layer). The target model is VM batch.
The original model's accuracy is 99.11%.

Parasite Bias constraints
Standard

Deviation
Accuracy Madv

With BN

No Bias
0.1 99.11% 9%
0.2 99.09 % 34 %
0.3 99.02 % 34%

||β||2 < 0.05
0.1 93.58% 48%
0.2 99.05% 32%
0.3 97.55% 46.5%

Without BN

No Bias
0.1 99.18% 16.5%
0.2 98.28 % 42 %
0.3 93.33 % 52%

||β||2 < 0.05
0.1 98.79% 46.5%
0.2 98% 48%
0.3 98.27% 45%

Adding the same parasitic CNNs but to all the neurons of the �rst layer, as in
the second experiment, leads to higher Madv, with mostly similar accuracy drops.
Let us note that the CNNs we use in this case have the same number of layers and
parameters. The only di�erence is the model's input and output sizes. The results
are shown in Table 3.2. Given the increased Madv with an acceptable accuracy
drop, this strategy seems more interesting. This can be explained by the fact that
all neurons are impacted by the change. Because this a�ects all neurons in the
following layers as well, adding a smaller noise to all neurons in a layer seems to
yield better results than adding a larger noise to a small portion of the layer's
neurons.

It is interesting to note that even though the parasitic CNNs trained with no bias
incur a lower Madv, in most cases, they entail a lower drop in the accuracy than the
CNNs learnt with a small bias. This might be explained by the fact that the CNN
with no bias cannot learn a noise independent of the input, and will therefore tend
to get closer to the non-noisy identity. Furthermore, the ability for the parasitic
CNN to operate a translation thanks to the small bias can explain the small drop
in the accuracy that we observe. However, despite this additional possibility, the
CNN with a small bias still changes the slope of the hyperplanes, as the drop in the
accuracy is not steep enough to justify the high Madv.

One can also add several parasitic CNNs to a given victim NN, as we did in the
third experiment. This might result in a higher protection, with no � or a small
� drop in the accuracy. Since the parasitic CNNs are already trained, the cost
of adding these CNNs remains small, and is equal to the additional computations
required for inference. On VM batch, we try adding parasitic CNNs in three di�erent
ways:

� Two parasites after the �rst layer
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Table 3.3: Measurement of the accuracy, and percentage of the adversarial samples
that are no longer adversarial for the protected NN (Madv). Several parasitic CNNs
were added to the victim NN. All tests are made on the MNIST dataset [28], and
the parasitic CNNs approximate the identity to which a centered Gaussian noise
with a standard deviation of 0.2 was added. BN denotes Batch normalization. The
parasitic CNNs are added after the second convolutional layer of VM batch. We add
them before, after, or both before and after the BN layer and activation function.
The original accuracy for VM batch is 99.11%. Small means that the constraint on
the bias β is ||β||2 < 0.05.

Parasitic CNNs' Locations Accuracy and Madv

2nd layer,
Before BN

and activation

2nd layer,
After BN

and activation

New

accuracy
Madv

Which neurons? With BN?
With
Bias?

With BN?
With
Bias?

First n BN Small No BN Small 99% 31%

First n BN Small BN Small 98.98% 37%

First n BN Small No BN No bias 98.93% 31.5%

First n BN Small BN No bias 98.99% 31%

First n BN No bias BN No bias 98.96% 28.5%

First n BN Small
- - 99.05% 31%

Last n BN No bias

First n
- -

BN Small
99.17% 27.5%

Last n BN No bias

First n
- -

BN No bias
99.15% 27%

Last n BN No bias

First n
- -

No BN No bias
99.19% 25.5%

First n No BN Small

First n BN Small BN Small
98.94% 40%

Last n BN No bias

First n BN Small BN Small
99.03% 38.5%

Last n - - BN Small

First n BN Small BN Small
98.89% 43%

Last n BN No bias - -

� One parasite after the �rst layer as well as one parasite after the second layer

� Two parasites after the �rst layer and one after the second layer

In our experiments, we observe that adding a small CNN after the �rst layer did
not improve our results much, be it on the accuracy or on Madv. Thus, Table 3.3
gives an example of accuracy andMadv obtained in various cases where the parasitic
CNNs are added after the second convolutional layer from VM batch, either before or
after the batch normalization layer and the activation function. Let us note that
once again, the standard deviation of the added noise is 0.2 in all cases. Moreover,
when there are two parasitic CNNs at the same location, the �rst is applied to the
�rst neurons and the second is applied to the last neurons of the victim layer.
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3.6 Conclusion

In this Chapter, we have introduced the notion of parasites to discuss mathemat-
ical attacks � and more speci�cally the one introduced by Carlini et al. [16]. The
latter relies on the internal structure of NNs induced by piece-wise linear activation
functions to determine its weights.

To increase the complexity of this attack, we introduce dummy hyperplanes
through parasitic CNNs. These are trained with criteria that aim at making the
hyperplanes visible to potential attackers. We can place one or several of those
parasites at various locations in a model to protect, as long as the accuracy drop
remains small. We evaluate the e�ect on the structure by measuring the impact of
our protection against adversarial examples. We manage to reach a modi�cation in
over 31% of the adversarial examples on a LeNet architecture tested against MNIST,
with an accuracy that remains almost unchanged (a drop of less that 0.1%).

In this defense, the balance between the parasites' hyperparameters � depth,
�lter size, number and location � and the drop in the protected model's accuracy is
crucial. Here, we showcase the feasibility of the countermeasure. Some tailoring of
the parasites' architecture depending, for instance, on the original model's family of
architectures (such as VGG or ResNet) could make this method even more e�cient.

The use of parasitic models is not limited to mathematical attacks. This Chapter
already hinted at a link with adversarial examples, that we will further explore
in Chapter 5. But it can also be used to thwart physical SCAs, as we discuss
in Chapter 4.
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Chapter 4: Dynamic Parasites aga-

inst Physical Side-Channel Attacks

While the notion of parasitic models was used in the previous Chapter to counter
mathematical attacks, we did not focus on the dynamic aspect. So far, we have only
discussed �xed parasitic models, as it was enough to change the internal structure
of an NN. Section 3.3 mentions that the parasites we add to the target model can
be changed at each run. Here, we show how, when placed at the entrance of the
base model, this dynamic selection of parasitic models at each run can help mitigate
physical SCAs.

As explained in Section 2.3.3, potential attackers can use physical leakages such
as power or EM emanations to recover a model's secret weights and biases. Sec-
tion 2.3.5 presents one such physical SCA: CSI Neural Networks [10].

Physical SCAs generally require a physical access to a device's processor. EM em-
anations can also be gathered from a distance [14]. In both cases, smartphones and
other everyday embedded systems are at risk. It is therefore crucial to protect mod-
els adapted to small devices, such as MobileNetV2 [108], from reverse-engineering
attacks.

Contrary to cryptographic algorithms, ML tasks do not require exact outputs:
it is possible to get di�erent outputs for a very similar model accuracy. We rely
on this fact to show that dynamic parasites can hide a model's input, making the
extraction much more complex.

After introducing the threat scenario and giving an overview of the proposed
defense in Section 4.1, we delve into the details of our proposal in Section 4.2.1.
We then evaluate our methodology through simulated attacks in Section 4.3 and
discuss the results and the provided security in Section 4.4. Finally, we conclude
this Chapter in Section 4.5.

4.1 Threat Scenario and Defense Overview

The authors of [10] aim at recovering a functionally equivalent model relying on
EM and/or power emanations (see Section 2.3.5). For small FCNs and CNNs, they
manage to extract both the architecture and the parameters with high accuracy.

Threat Scenario We consider a threat scenario that is close to the one in CSI
NN [10]. The CSI NN attack is detailed in Section 2.3.5. However, our scenario is
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gray-box, with a stronger attacker who has access to the architecture. Thus, the
attacker:

� Knows the target model's architecture.

� Knows the model's input.

� Aims at recovering the weights and biases of the said model.

� Can monitor electromagnetic emanations and use CEMA (see Section 2.3.5)
to extract the parameters.

We present our approach and carry our experiments out in the case of EM-
based attacks. However, we believe that other physical leaks would lead to the same
results.

Protection Overview Common cryptographic methods to tackle SCAs cannot
be applied to protect millions of parameters, as they incur too much overhead [158].
In our paper �Premium Access to Convolutional Neural Networks� [154], we study
various ways of protecting only part of a model. We observe that slightly changing
the values in one channel in the �rst convolutional layer leads to noticeable changes
in the accuracy. We protect the sensitive weights through a secret key. However,
the goal in that paper is to provide a premium access � i.e. a model with a higher
accuracy � to paying customers, and a valid but not optimal model to others. The
problem at hand is very di�erent, as we wish a potential attacker to be unable to
access a model with a decent accuracy. Thus, a di�erent approach is required.

The �rst observation one can make is that since the attacker in [10] � described
in Section 2.3.5 � proceeds layer by layer, protecting the �rst layer should be enough
to ensure the entire model's security. Indeed, the deduced weights from the �rst
layer are used to compute the input to the following layer and proceed with the
attack.

A second observation is that the attacker requires the input values to recover
the �rst layer's weights. An intuitive countermeasure to this attack would therefore
consist in hiding the said input values.

Third, contrary to common cryptographic problems, NNs' layers do not require
exact responses. The output of each layer can be approximated as long as the
model's accuracy is not a�ected.

Fourth, a change in a model's �rst layer impacts the following layers. By mod-
ifying the input of a model, we can therefore hope for a domino e�ect: a wrong
extraction in the �rst layer is ampli�ed by deeper layers.

Those four observations show that hiding the input values should mitigate the
attack at hand. Hence, we propose to dynamically apply one or several CNN models
approximating the identity to the entrance of the model. Our aim is to make sure
the modi�ed model's input is di�erent from the original input, with only a slight
drop in the accuracy. The extracted weights a potential attacker would get for the
�rst layer are then only an approximation of the actual weights. Even if those �rst
weights are still close to the original ones, the error propagates to the following
layers, amplifying the noise and making the extracted model's accuracy much lower
than the original one.
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4.2 Dynamic Parasitic Models

In the following section, we explain a novel approach to protecting against SCAs
that target NN parameters.

4.2.1 Proposal Description

Let us now detail our proposal.
As explained in Section 4.1, we aim at hiding a model's input values without

decreasing its accuracy, by dynamically adding small CNNs approximating a noisy
identity function. Our method is designed to limit the access to the correct input,
which is required by the attacker of Section 2.3.5.

Adding layers dynamically means that at each run � or after a certain number
of runs �, we consider parasitic CNNs with di�erent weights and/or a di�erent
architecture. At each run � or after a certain number of runs �, this new parasite is
selected at random among a set of small pretrained CNN models.

To carry out a CEMA, an attacker requires several traces (see Section 2.3.5).
If the small CNN we add to the input changes from one run to the next, the at-
tack becomes much harder. As explained in Section 2.3.5, CSI NN [10] enables an
attacker to determine the architecture of a victim NN along with its parameters,
through SEMA, CEMA and time analysis. The randomization in both the weights
and architecture due to the dynamic addition of parasites should mitigate the statis-
tic attack, even when the attacker tries to recover the architecture along with the
weights.

Thus, our methodology is as follows:

� Train a set S of small CNNs that approximate a noisy identity. For x in the
input space I and s ∈ S: s(x) = x+Ns(x) where Ns is a Gaussian distribution

� At each run, select s ∈ S. For x ∈ I, run x′ := s(x).

� Feed x′ to the target model.

Figure 4.1 shows the location where we add the parasitic CNN s ∈ S, to an FC
model with one hidden layer. Here, s is applied to the input x and the result x′ is
then fed to the model at hand.

Let us analyse the consequences of adding such CNNs at the entrance of the
model. Let X be the model's input, X ′ be the noisy input and xi,j ∈ X. To recover
the weight w in each multiplication xi,j ·w, the attacker requires several power or EM
traces for that operation. She also needs to know xi,j. But the input of the target
model is s(X) = X ′, and the attacker does not have access to X ′. Furthermore,
given she requires several traces and the parasitic CNN changes from one run to
the next, the attack cannot be carried out on the parasitic layers directly, knowing
input X. This is why we believe that our protection thwarts �rst-order physical
side-channel attacks such as CSI NN [10] (see Section 4.3 for our results).
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Figure 4.1: Fully Connected Neural Network with one hidden layer where a parasitic
CNN approximating the identity has been added to approximate the model's input.

4.2.2 Approximating the Identity Function

To prevent the attack, our goal is to add noise to the input without decreasing the
model's accuracy.

Noisy identity One possible way to achieve this is to add CNNs approximating
the identity to the entrance of the original model. As in Section 3.2, if we denote M
such a CNN model, thenM is trained to reachM(x) = x. This yields the advantage
of making the attack in [10] harder in the extended case where the attacker does
not know the architecture.

But, as explained in Section 3.2 and as shown in [148], the simplicity of ap-
proximating the identity through a CNN model M leads to practically no di�erence
between the input x and the model's output M(x).

Because of this, simply adding a CNN approximating the identity does not have
any impact on the attack. Indeed, no noise is added to the input, therefore keeping
the observed values unchanged to the attacker. Thus, we follow the same training
approach as in Chapter 3. The parasitic models we add are trained to approximate
the identity function to which we add noise. The goal when training a parasitic
CNN model M then becomes M(x) = x +N , where N is a given Gaussian noise.
This argument justi�es our training proposal in Section 4.2.1.

Additional computations Let us now compute the complexity of adding such
CNN models to the original model. Let us consider a convolutional layer with input
shape (n, n, cin), cout output channels and a �lter of shape k × k × cout. Then the
output of the layer has shape (n′ = n − k + 1, n′ = n − k + 1, cout). Let us denote
X the input of the layer, O its output and W its weights with shape (k, k, cin, cout).
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Then, as per Section 2.2.1, we have the following:

Oi,j,q =

cin∑

c=1

k∑

l=1

k∑

h=1

Xi+l,j+h,c ·Wl,h,c,q

This implies that for each neuron, k×k×cin multiplications are required. There-
fore, each output channel adds k×k× cin× (n−k+1)× (n−k+1) multiplications.
Since we have cout channels, the total number of additional multiplications for one
convolutional layer is:

M = cout × k × k × cin × (n− k + 1)× (n− k + 1) = O(n2)

Generally, convolutional layers include some zero-padding to preserve the input and
output sizes. This increases the necessary multiplications to:

M = cout × k × k × cin × n× n

To conclude, adding l identical layers leads to an increase in the number of
multiplications of l × k × k × n2 × cin × cout.

In this Chapter, we decided to apply the model to each channel independently.
Thus, the input number of channels is such that cin = 1 here, but we multiply the
total by the actual number of input channels. The new formula for l layers is then:

M = c
(1)
in ×

[
c
(1)
out × k(1)

2 × n(1)2 +
l∑

i=2

c
(i)
out × k(i)

2 × n(i)2 × c(i)in
]

where c(i)in is layer i's number of input channels, c(i)out is layer i's number of output
channels, k(i) is layer i's �lter size and n(i) is the layer's input size. Let us note that
generally, c(i−1)out = c

(i)
in , since a layer's input is the previous layer's output.

The reason why we choose this approach is so that the parasitic CNNs can be
adapted to inputs with any number of input channels. Moreover, this way, we can
keep a low number of channels in the middle layers without fearing any loss of
information.

4.3 Evaluation

4.3.1 Simulation

To comfort our idea, we simulate two attacks where the attacker's aim is to extract
a target model's weights:

� In the �rst, we consider one �xed parasitic model at the entrance of the target
model. The attacker does not know the parasite's architecture or weights.

� In the second, we select a di�erent pretrained parasite at each run. The
attacker knows a parasite has been added, and can therefore try to extract the
parasite's weights along with those of the base model.
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First simulation The �rst simulation corresponds to a scenario where the at-
tacker is unaware of the protection. We proceed layer by layer, as in CSI NN [10].
We suppose that the attacker knows all the outputs of intermediate multiplications
in the �rst layera.

Let X1, W 1 and O1 denote, respectively, the input, the weights and the output
of the model's �rst layer. For simplicity, let us only consider the case where the �rst
layer is a convolutional one. We remind the reader in Section 2.2.1 that:

O1
i,j =

k∑

l=0

k∑

h=0

X1
i+l,j+h ·W 1

l,h

Let X ′1 denote the input with added noise. The attacker only knows X ′1 and
the values o1i,j,l,h := X1

i+l,j+h ·W 1
l,h. She proceeds as follows:

1. For each output O1
i,j, the attacker computes W ′1

l,h :=
o1i,j,l,h
X1

i+l,j+h
if X1

i+l,j+h 6= 0.

Otherwise, the attacker �nds a nonzero input neuron X1
i′+l,j′+h to compute

W ′1
l,h in a similar fashion.

2. Once the �rst layer's weights are recovered, the attacker computes the second
layer's weights, W 2

i,j. For this, she �rst computes X ′2 :=
∑k

h=0X
1
i+l,j+h ·W ′1

l,h.
She takes X ′2 as the input of the second layer and extracts the second layer's
weights as in the �rst step.

3. The attacker repeats the previous step until all the layers' weights have been
recovered.

4. If there is a bias, the attacker simply recovers it through: β = X ′2 −O1.

In fact, to make sure we introduce as little noise as possible, we average the obtained
weights over 64 inputs.

Second simulation In the second simulation, the parasites are introduced dy-
namically, and the attacker knows about their existence. However, at each run, the
parasitic CNN's weights � and possibly the architecture � change. Since, as men-
tioned in Section 4.2, the attacker requires several traces to recover the weights, this
change of model at each run a�ects the results. We simulate an attacker's poten-
tial behaviour by averaging the various extracted weights over several inputs. This
second simulated attack also proceeds one layer at a time, as follows:

1. Start with the �rst parasitic layer, and compute the weights as in the �rst
simulation.

2. Repeat the operation over several inputs, and set the layer's weights to the
average wav of the extracted values.

3. The next layer's inputs is the output of the �rst layer with wav as the weights.

aThis is an unrealistic assumption, but since we aim to demonstrate the e�ectiveness of our
protection, we assume perfect conditions for the attacker. Real CEMA attacks are much harder.
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4. For each remaining layer in the model at hand (including the parasitic layers),
repeat the previous three steps.

Let us also note that in both simulations, we discard the weights that result in
a division by 0 � meaning that no nonzero input value among the provided set can
be found �, by setting the extracted weights to 0.

4.3.2 Models and Parasites Considered

Since we are mostly interested in models that could be used on smartphones and
embedded systems in general, we consider two small models: LeNet [72] and Mo-
bileNetV2 [108], that we trained on the CIFAR-10 dataset [71]. LeNet is only com-
prised of two convolutional layers followed by three dense layers. MobileNetV2's
more complex architecture is detailed in Table 4.1.

Table 4.1: Description of the MobileNetV2 architecture [108]. Each line corresponds
to a group of layers, repeated n times. All layers in a given group have c output
channels. The �rst layer of the group has stride s while the others have stride 1.
t is the expansion factor: if there are c input channels and c′ output channels in a
block, there is an intermediate operation with t · c channels.

Input
Shape

Operation
Expansion
t

Channels c
Repetition
n

Stride s

2242 × 3
Convolution (3×
3)

- 32 1 2

1122 × 32 Bottleneck 1 16 1 1
1122 × 16 Bottleneck 6 24 2 2
562 × 24 Bottleneck 6 32 3 2
282 × 32 Bottleneck 6 64 4 2
142 × 64 Bottleneck 6 96 3 1
142 × 96 Bottleneck 6 160 3 2
72 × 160 Bottleneck 6 320 1 1

72 × 320
Convolution (1×
1)

- 1,280 1 1

72 × 1, 280
Average Pooling
(7× 7)

- - 1 -

1 × 1 ×
1, 280

Convolution (1×
1)

- k - -

Finally, the parasitic models we add are based on the ones used in [148], with var-
ious layer numbers and in some cases, an additional Batch Normalization layer after
each convolutional one. We mainly focus on models with one or two convolutional
layers, described in Figure 4.2.
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(a) Parasitic model with one convolu-

tional layer. The input and output have

shape (1, 16, 16). The �lter shape is (5,

5).

(b) Parasitic model with two convolu-

tional layers. All inputs and output have

shape (16, 16), but the middle layer has

two channels. The �lter shape is (5, 5).

Figure 4.2: Parasitic CNN models with one (a) and two (b) convolutional layers. In
both cases, the convolution is followed by a ReLU activation function and a Batch
Normalization layer. (Images generated thanks to [73].)

4.3.3 Results

The set of possible parasitic CNNs should be tailored to the user's requirements and
tolerance: some tasks do not require as high an accuracy as more sensitive ones. In
general, we consider in this Chapter that a couple of percents drop can be acceptable.
To select the architectures that can be added to the set of possible architectures, we
determine the accuracy of the protected model depending on the standard deviation
of the noise of the parasitic models at hand. Figure 4.3 shows the impact of parasitic
models with various standard deviations on a MobileNetV2 architecture with a
71.41% accuracy on the CIFAR10 testing set (88.16% on the CIFAR10 training
set). We see that the accuracy decreases with the standard deviation, but also
depends on the training. In general, the drop in accuracy seems acceptable until
around σ = 0.2.

First simulation We carry out the �rst simulated attack described in Section 4.3.1
on a LeNet architecture trained on the CIFAR10 architecture with a 70.69% accuracy
on the testing set. The accuracy of the protected model depends on the parasitic
model(s) added.

We also check that when no parasite is added to the original model, our simulated
attack does not result in a drop in the accuracy. We then add a parasitic model
described in Section 4.3.2, approximating an identity function to which we add a
Gaussian noise with a standard deviation of 0.2. The training and evaluation of
the model at hand was performed on CIFAR10 images which have been normalized.
Thus, the images with no protection have a mean of 0 and a standard deviation of
1, and the ratio of standard deviations is : SNR = 1

0.2
= 5.

This leads to an accuracy of 70.84% on the LeNet architecture, which is very
similar to the original model's accuracy. The �rst simulated attack described in Sec-
tion 4.3.1 results in an extracted model with an accuracy of 12.66%.

In order to test our protection on a more representative NN model, we applied
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Figure 4.3: Accuracy of a protected MobileNetV2 model with relation to the stan-
dard deviation of the parasitic models. The parasitic models P are trained to return
P (x) = x+Nσ(x) where Nσ is a Gaussian noise with mean 0 and standard deviation
σ.

this �rst simulated attack on the �rst twelve layers of MobileNetV2 trained on the
CIFAR10 dataset. The original accuracy on CIFAR10's testing set is 71.41%. In
this case, the preprocessing of the training images only consists in dividing by 255,
making sure that the values are in the range [0, 1]. The standard deviation of the
three input channels are, respectively: 0.25, 0.24 and 0.26. We add a parasitic CNN
approximating the identity function to which we added a Gaussian noise with a
0.2 standard deviation. We therefore have an SNR approximately equal to 1 for
the three input channels. Adding a two-layer parasitic model with a 0.2 standard
deviation leads to a 70.23% accuracy for the protected model. We observe that with
only the �rst twelve layers considered for the �rst simulated attack, the model's
accuracy already drops from 71.41% for the original model to 9.97% for the extracted
one. On the training set, adding the same parasite leads to an 85.85% accuracy
instead of 88.16%. The accuracy of the extracted model drops to 10.40%.

We summarize our experimental results in Table 4.2. We see that increasing
the standard deviation and number of layers in the parasite leads to a much lower
extraction accuracy. It is therefore necessary to �nd a balance between a protected
model's accuracy and the e�ectiveness of the defense. We also note that in most
cases, the weights extracted from deeper layers are further from the original weights.

To further explain the way our countermeasure works, we measure the Pearson
correlation coe�cient ρ between the extracted weights and original ones, one output
channel at a time. Figure 4.4 shows the coe�cients for each extracted convolutional
layer, for a 1-layer protected model with standard deviation σ = 0.01. The decrease
of the correlation in deeper layers supports the domino e�ect: it is more di�cult to
extract deeper layers, as the noise introduced in the �rst one is ampli�ed.

To further analyse the impact per layer, we also plot the distribution of weight
di�erences δ = ŵi−wi

||W ||2 between the extracted and original weights, for each of the
four recovered convolutional layers. In Figures 4.5 and 4.6, we consider a Mo-
bileNetV2 [108] model protected by a 1-layer parasite with standard deviation re-
spectively σ = 0.01 and σ = 0.1. We can make two observations based on those
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Table 4.2: First simulation results on a protected MobileNetV2 model with an
original accuracy of 71.41% on the CIFAR10 testing set. The noise added in the
protected case is a Gaussian distribution with various standard deviations σ. The
attacker uses 128 inputs to extract the weights. We log the extracted accuracy, as
well as the mean d = E[Ŵ−W ]

||W ||2 between extracted weights Ŵ and original ones W
over the �rst four convolutions.

Number
of par-
asitic
layers

Standard
deviation
σ

New Accu-
racy

Extracted
Accuracy

1 0.01 71.41% 71.21%
1 0.05 71.24% 69.54%
1 0.1 71.05% 12.90%
1 0.2 70.23% 18.17%
2 0.01 67.84% 11.74%
2 0.05 69.51% 10.15%
2 0.2 66.43% 9.97%

Mean
Conv1

Mean
Conv2

Mean
Conv3

Mean
Conv4

1 · 10−4 2.1 · 10−3 5 · 10−3 3.3 · 10−3
3 · 10−4 4.9 · 10−3 6 · 10−3 2.9 · 10−3
3.1 · 10−3 1.33 · 10−2 1.79 · 10−2 1.29 · 10−2
9 · 10−4 3.6 · 10−3 1.6 · 10−2 3.6 · 10−2
1 · 10−4 1.7 · 10−3 6.9 · 10−3 2.3 · 10−3
3 · 10−4 4.8 · 10−3 9.5 · 10−3 7.6 · 10−3
2.7054 3.65 · 10−2 5.26 · 10−2 3.1 · 10−2

�gures. First, once again, we see that recovered weights from deeper layers tend to
be further away from the original ones. The second is that a higher σ leads to fewer
correctly extracted weights. We can thus understand why the attack succeeds for
σ = 0.01, leading to an extracted accuracy of 71.21% (almost equal to the original
accuracy) but fails for σ = 0.1, with an extracted accuracy of only 12.9%.

Second simulation In Section 4.3.1, we described a second simulated attack,
where the attacker tries to approximate the added parasite along with the target
parameters. But in this simulation, the parasite's weights change at each run. On
average, considering a set of 30 possible parasitic one-layer models, the LeNet model
to which we add one parasitic layer at random has an accuracy of 70.61%. In this
case, the attack on the aforementioned LeNet model leads to an extracted model
with an accuracy of 11.18%.

Similarly, we apply this second simulated attack to the �rst 13 layers Mo-
bileNetV2 with an additional parasite. On average, this also leads to an accuracy of
69.92% on the testing set and an extracted model with a very low accuracy: 10%.
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(a) Convolution 1 (b) Convolution 3

(c) Convolution 4

Figure 4.4: Pearson correlation coe�cient between the extracted weights and the
original ones, for the �rst, third and fourth convolutions in MobileNetV2. Each
point in the graph corresponds to the correlation coe�cient for one output channel.

Thus, in both simulations, the attack fails, as the extracted model is unusable
due to its low accuracy. This is the case despite the fact that we supposed the
attacker had perfect traces and could average them over several inputs. We believe
this proves the induced domino e�ect in the weight extraction process. Indeed, it
does seem that the small error introduced in the �rst layer because of the small
additional parasitic noise in the input is transferred to the following layers and
ampli�ed by them.

One could argue that an attacker might proceed the same way as the defender,
and also train CNNs on Gaussian noise to improve the extracted weights. However,
when training the parasites several times, we noticed that the resulting weights were
very di�erent from one training to the next. Thus, the attacker would still need more
work to extract the correct weights.

Additional computations Let us also compute the number of operations added
through the parasitic models. As detailed in Section 4.2.1, one layer adds M multi-
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(a) First convolution (Conv1) (b) Second convolution (Conv2)

(c) Third convolution (Conv3) (d) Fourth convolution (Conv4)

Figure 4.5: Distribution of the weight di�erences ŵi−wi

||W ||2 within each of the four
MobileNetV2 convolutional layers extracted by the attacker, in the �rst simulation
with 128 traces (see Section 4.3.1) and σ = 0.01.

plications:
M = cout × k × k × cin × n× n

where cout, cin are the layer's number of output and input channels respectively,
k is the �lter size and (n, n) is the layer's input size. We also explained that here,
we feed one channel at a time to the parasitic models.

In Section 4.3.1, we explain that, for the parasites, we consider models with
various layer numbers.

The LeNet architecture can be considered small compared to the ones used nowa-
days in the image processing �eld. Adding one parasitic layer should therefore al-
ready be noticeable in the total number of multiplications. For the one convolutional
layer model described in Section 4.3.2, we have: cout = 1, cin = 1, k = 5 and n = 32.
We also know that the inputs from the CIFAR10 dataset have 3 input channels.
Ignoring the much less time consuming Batch Normalization layer, this amounts to:

M = nb_input_channels× cin × cout × k × k × n× n = 76, 800 (4.1)

Thus, the one-layer model adds 76,800 multiplications to the original LeNet
model. But for inputs of size (32, 32, 3), LeNet requires 658,000 MAC (Multiply-
Accumulate) operations. Thus, one such parasitic layer represents an 11.7% addition
in the multiplications. Let us note that the tests carried out on LeNet were mainly
for a proof-of-concept, as LeNet is no longer a standard model for image processing.

70



(a) First convolution (Conv1) (b) Second convolution (Conv2)

(c) Third convolution (Conv3) (d) Fourth convolution (Conv4)

Figure 4.6: Distribution of the weight di�erences ŵi−wi

||W ||2 within each of the four
MobileNetV2 convolutional layers extracted by the attacker, in the �rst simulation
with 128 traces (see Section 4.3.1) and σ = 0.1.

MobileNetV2 is much larger than LeNet, and we can therefore consider larger
parasites. For the two-layer model described in Section 4.3.2, we have, for the �rst
layer:

c
(1)
out = 2

c
(1)
in = 1

k(1) = 5

n(1) = 32

c
(2)
out = 1

c
(2)
in = 2

k(2) = 5

n(2) = 32

Ignoring the much less time consuming Batch Normalization layer, this amounts to:

Mtot = nb_input_channels× (c
(1)
out · k(1) · k(1) · c(1)in · n(1) · n(1) (4.2)

+ c
(2)
out · k(2) · k2 · c(2)in · n(2) · n(2)) (4.3)

= 307, 200 (4.4)
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MobileNetV2 trained on the CIFAR10 dataset requires 6.32 millions MAC op-
erations. Thus, the additional 307,200 multiplications only represent 4.9% of the
original MAC operations.

4.4 Discussions

In this Section, we discuss the limits and possible improvements to our countermea-
sure. First, in Section 4.4.1, we consider the number of traces an attacker needs to
thwart our protection. Increasing the entropy in the set of parasitic models would
leverage more work for the attacker. Section 4.4.2 discusses how to achieve such a
higher entropy. Finally, Section 4.4.3 compares the overhead incurred by our method
to common cryptographic countermeasures.

4.4.1 Number of Traces to Recover the Weights

Since our protection consists in adding randomness, an attacker who gathers multiple
traces should be able to approximate the correct weights. The question that remains
is the number of traces necessary for an almost exact extraction.

For the �rst simulation, 1,024 traces already enable an attacker to increase
the extracted model's accuracy from 11.74% with 128 traces to 71.19% for a mo-
bileNetV2model protected by a two-layer parasite with σ = 0.01. But increasing
σ still enables a protection: for instance, with σ = 0.05, the extracted accuracy is
17.12% with only a slight drop in the original accuracy: 69.51% instead of 71.41%.
It is therefore paramount to �nd a balance between the standard deviation, the
number of parasitic layers, the drop in the model's accuracy and the e�ectiveness of
the protection.

4.4.2 Increasing the Entropy of the Added Noise

To maximize the e�ciency of the protection, it is important to have a large entropy
in terms of the possible parasitic architectures. One way to increase the said entropy
is to consider selecting either one or several CNNs at random instead of only one.
These can then be applied to several parts of the input, as long as all the neurons
are a�ected by at least one model.

Thanks to the randomness in the parasites' architectures, we believe that our
protection would be particularly advantageous when extending it to the black box
context � and [10]'s original threat model � where the attacker does not know the
model's architecture, and which is enforced by Chapter 3. This makes the parasitic
set's entropy higher.

4.4.3 Comparing to Common Countermeasures

The authors of CSI NN [10] consider two possible SCA countermeasures to thwart
the parameter extraction: masking and shu�ing independent operations. In both
cases, they mention that these would lead to a large overhead.
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According to the authors of [10], masking each neuron at each iteration should
prevent the attack. However, masking a multiplication is expensive: it is at least
twice the cost of the initial multiplication, as can be seen in Table 1 of [11]. Since
masking needs to be applied to all the multiplications, the total number of multipli-
cations in one run would double. In our case, our overhead only consists in a small
percentage of the original number of multiplications. More importantly, as explained
in Section 2.3.7, the authors of [31] note that since the masking is not computed
in an arithmetic �eld, a bias is incorporated due to the sign. Other methods are
therefore necessary to fully mask the parameters. The authors of [31] introduce hid-
ing techniques for the sign bit, while the authors of [30] take the masking further.
The authors of [29] consider completely changing the way BNNs are computed to
accommodate for arithmetic �eld masking. In all cases, the overhead goes beyond
the basic masking techniques.

Shu�ing is also an expensive operation. With the Fisher-Yates algorithm, if
there are n elements to swap, then the algorithm runs inO(n) but requires generating
n truly random numbers [34]. Here, n is the number of operations which can be
permuted. In an FC layer with nx inputs and nw weights, n = nx × nw. In the
convolutional case, supposing a stride of 1, an input shape (nx, ny, cin) and a weight
shape (k, k, cout), there are n = cout × (nx − k + 1) × (ny − k + 1) convolutional
operations to shu�e. Since random number generation is time consuming [10] and
needs to be applied to all layers, we believe that our countermeasure should also
generate less overhead.

4.5 Conclusion

This Chapter focuses on mitigating physical SCAs aiming at extracting a model's
weights and biases. As in Chapter 3, we make use of additional dummy layers called
parasites. But while in Chapter 3, we wished to change a model's structure by
adding dummy ReLU activation functions, our goal in this Chapter is to obfuscate
a model's input. The focus in this context is the dynamic addition of our dummy
layers: because the input is obfuscated with changing noise at each run, the at-
tacker struggles to recover precise weights for the �rst layer. This �rst error is then
ampli�ed by the following layers, rendering the extracted model inaccurate.

To comfort our claims, we realise two simulated attacks on a LeNet and a Mo-
bileNetV2 architectures, where the attacker is supposed to have exact traces. The
attack fails in both cases (the extracted model has an accuracy around 10%). While
the attack succeeds with enough traces in some cases, the defender can play with
the standard deviation of the additional noise to make the model more robust. We
also suggest other approaches to improve our defense in Section 4.4.

Even if the parasites incur an overhead, we explain in Section 4.4.3 that they
appear to be less time-consuming than common cryptographic measures.

While Chapter 3 and the current Chapter leverage parasitic models to counter
reverse-engineering attacks, we observe in Chapter 3 the impact that the current
change of structure has on adversarial samples. In the wake of this observation, the
next Chapter proposes a way to thwart adversarial attack through the introduction
of a di�erent type of parasite.
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Chapter 5: Application to Adversarial

Examples

While this thesis focuses on protecting NNs against reverse-engineering attacks,
one of the motivations to do so is to limit the possibility of other attacks, such
as adversarial ones. In Chapter 3, we explain that parasitic models also impact
adversarial samples. Therefore, we follow up with that observation in this Chapter,
and show that we can leverage parasitic models to mitigate adversarial examples.

So far, we have only exploited two aspects of the parasites:

� Additional layers make a model's internal structure more complex.

� Dynamically selecting parasites among a set of pretrained models and adding
them at the entrance of a model leverages randomness in the input values.
This, in turn, mitigates weight extraction physical SCAs.

We can mix the two techniques to tackle adversarial attacks. Indeed, the latter
rely on the internal structure of a model to generate adversarial samples. However,
simply changing the architecture does not make the adversarial search more complex.
It only modi�es the generated samples. We believe that a constantly changing
architecture leads to the need to �nd transferable examples, and therefore makes it
harder on an attacker. We show the e�ciency of our proposal in this Chapter.

First, we introduce the considered threat scenario and give an overview of our
proposal in Section 5.1. We then detail our proposal and justify the use of dynamic
autoencoders in Section 5.2. After showing our results in Section 5.3, we discuss
them in Section 5.4 and conclude this Chapter in Section 5.5.

5.1 Threat Scenario and Defense Overview

Adversarial attacks can be either black-box when the attacker has no prior knowledge
about the architecture, white-box when the architecture and parameters are known,
or gray-box when the attacker has access to part of the information. The best known
attacks rely on the use of gradients, which require access to the weights.

Threat Scenario In this Chapter, we consider a remote gray-box scenario:

� The attacker knows the base model's architecture and parameters
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� The �rst point implies that the attacker can compute gradients on the param-
eters, and therefore launch gradient-based adversarial attacks.

� The attacker has query access: she can query the model with crafted inputs
and get the model's output.

As will be further detailed in Section 5.3, we either consider that the attacker only
has access to the base model, or she also knows we have introduced a countermeasure.

Based on these assumptions, the attacker's goal is, given an input x, to generate
an adversarial sample x′ := x+ ε such that the small noise ε is unnoticeable to the
human eye but fools the base model.

More speci�cally, we focus on the standard evaluation from one library of attacks,
AutoAttack [25].

Protection Overview Once again, the parasites introduced in Chapter 3 come
in handy. As explained in that Chapter and in [111, 91], adversarial examples are
based on classi�cation boundaries, which are a result of the internal structure. As
observed in Chapter 3, a change in the internal structure goes hand in hand with
a modi�cation of the adversarial examples. As detailed in Section 2.3.7, autoen-
coders have been used to de�ect adversarial examples [9]. Indeed, they can keep the
important features and eliminate unwanted noise. Based on these assumptions, we
propose the following scheme:

� Train a set of parasitic autoencoders S to approximate a noisy identity.

� At each run, select one or several parasite(s) in S.

� Select one or several location(s) in the base model, where we place the selected
models. Let us note that in this Chapter, we only consider the case where these
autoencoders are placed at the entrance of the base model. But they can be
placed after any layer as long as the accuracy does not drop much.

The change in the structure that the autoencoders bring, along with the dynamism
of the method, ensure that a potential attacker would struggle in her search for
adversarial samples. We detail our methodology in Section 5.2 and test our defense
in Section 5.3.

Related Works Various protections against adversarial examples have been pro-
posed so far. We detail them in Section 2.3.7. Denoising autoencoders [9] are the
closest art to our technique. While we also consider incorporating autoencoders as
a countermeasure, our proposal di�ers from denoising autoencoders in two ways:

� Instead of training our autoencoders on noisy inputs, we add noise to the labels
(see Section 5.2.1).

� We consider a dynamic approach, so as to add randomness and protect the
base model even when the attacker knows an autoencoder has been introduced
(see Section 5.2.3).
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5.2 Dynamic Parasites

In this section, we explain and detail our proposed defense.

5.2.1 Autoencoders for a Noisy Identity

Chapters 3 and 4 introduce the notion of parasites approximating a noisy identity.
A parasitic model P is trained to return, for a given input x, P (x) = x + N (σ)
where N is a Gaussian noise with standard deviation σ.

Training While the parasites used in this defense undergo the same training, they
are of a di�erent kind. Autoencoders [51] are NNs whose aim is to approximate
the identity under constraints. They are comprised of an encoding phase e and a
decoding phase d. After its training, an autoencoder A should therefore be such
that f(e(x)) ≈ x for all x in the considered dataset. They have often been used
for compression (with dimensionality reduction) or feature learning [42]. Indeed,
they tend to have hidden layers with lower dimensions than the input and output
layers, giving them a `diabolo' shape. In that case, they are called undercomplete
autoencoders. For instance, when the decoding of an undercomplete autoencoder is
linear and the loss function used is the mean squared error (i.e. the `2 norm between
the current output and the label), then the coding phase is similar to applying a
Principal Component Analysis (PCA). This example explains why autoencoders can
be used for feature extraction or compression.

In fact, data distributions are not random: they lie within a lower dimension
manifold. This is why undercomplete autoencoders are generally able to learn com-
pressed versions of the data: only part of the input is necessary for predictions.

Since their appearance decades ago, much progress has been made on autoen-
coders and their use. One particular use is interesting in our case: denoising au-
toencoders learn to eliminate noise. A model A is then trained on a training set X
as follows:

� For x ∈ X, corrupt x to get x̃ = x+ ε for some noise ε.

� This forms the corrupted set X̃.

� Train the model with training set X̃ and labels X.

Our goal when training our parasitic autoencoders is, in a sense, the opposite
of the denoising task. Instead of having X̃ as the training set and X as the labels,
we proceed the other way around: X is the training set and X̃ are the labels. The
reason for this di�erence is that we wish to introduce noise, so as to ensure a change
in the base model's structure. Moreover, the di�erent layers within the base model
do not react similarly to noise. Since we can optionally select di�erent locations in
the model to add the autoencoder, it is easier � for the sake of a better adaptation
� to train the model with a noisy label rather than a noisy input. Thus, the input
is perturbed thanks to two aspects:
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� The compression produced by the encoding phase in undercomplete autoen-
coders only keeps the important features. The decoding phase then generates
details di�erent from the original ones to get the input back to its initial di-
mension.

� We train the autoencoder to add Gaussian noise to the identity.

Architecture While autoencoders can be trained with only one hidden layer �
i.e. only one layer besides the input and output ones �, depth presents four main
advantages:

� Just like any DNNs, depth yields the same advantages for autoencoders as
those mentioned in Section 2.2.2. Namely, complex tasks require large num-
bers of neurons, and even though one layer should be enough according to
the universal approximator theorem, depth makes the implementation more
realistic.

� Shallow networks do not leave room for additional constraints as required for
many autoencoders.

� Approximating some functions takes less computational time with deeper au-
toencoders [42].

� Most often, deeper autoencoders require exponentially less training data [42].

� In practice, depth contributes to better compression performances [50].

Since we wish to maximize the change in the architecture without the base
model's accuracy dropping much, we opt for a deep undercomplete autoencoder to
compress the input data. The autoencoders we consider in our experiments are
described in Section 5.3.

As explained in the two previous Chapters, approximating the identity is an
easy task for CNNs [148]. Moreover, adding a parasite to a model alters its internal
structure, especially thanks to the nonlinear activation functions. We exploited
this change in Chapter 3 to thwart mathematical attacks relying on the piece-wise
linearities of functions such as ReLU . However, in this Chapter, we do not limit
ourselves to the introduction of hyperplanes to make attacks more complex. Indeed,
new hyperplanes made the attacker in [16] struggle more because it added work to
its generally time consuming sign recovery step. In the adversarial case, deeper �
or larger � models are still easily targeted. The goal in this Chapter is to identify
the important features as well as introduce noise thanks to the aforementioned
autoencoders, and to ensure constantly changing samples through the dynamism of
the parasites. Autoencoders trained di�erently, while still able to correctly compress
the input data, lead to di�erent changes to the structure. Indeed, they have various
ways of extending the compressed data back to its initial shape. Then, ifM l

A denotes
the base model to which we add an autoencoder A at location l, adversarial examples
generated for M l

A do not necessarily transfer to M l
A′ . We show this last statement

in Section 5.2.2.
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5.2.2 Transferability

As previously, letM be our base model, andM l
A denote the base model to which we

add an autoencoder A at a certain location l. The constraints put on autoencoders
through their architecture, and the additional noise in the training labels lead to
a model MA di�erent from that of M . Because the elements of S are trained
di�erently, the variousMA models with A ∈ S also have various structures, and lead
to hardly transferable adversarial samples. The �rst step to ensure the e�ciency of
our countermeasure is to con�rm this lack of transferability between M l

A and MA′ .
With that aim, we train a set S of 14 autoencoders to approximate a noisy

identity. The autoencoders are trained on a Gaussian noise with various standard
deviations (between 0.008 and 0.15). In this experiment, we only consider adding
autoencoders after the input layer, as in Figure 5.1. The base model is a PyTorch
implementation of WideResNet [147]. Let MA be the base model preceded by au-
toencoder A. We generate 200 adversarial examples for each MA, where A ∈ S.
Let xA be the adversarial examples associated to MA. For each A ∈ S, we test
the accuracy of all MA′ , A

′ ∈ S against xA. For 1 ≤ i ≤ 13, we then compute the
ratio of elements in xA that are no longer adversarial for at least i models in S. For
instance, for i = 2, we wish to determine the number R of elements in xA that are
not adversarial for at least 2 models among the 13 considered. In other words, those
R elements are adversarial for MA, but there are at least two models MA1 and MA2

which output the original, correct labels for those samples.
Let us note that we give the details about the autoencoder and the base model's

architectures and training process in Section 5.3.
Table 5.1 shows the results of the aforementioned experiment. We see that

around 30% of adversarial samples for a model MA are no longer adversarial for at
least 8 other protected models. This high ratio is proof that adversarial samples
generated with one autoencoder are rarely transferable to other protected models.
It also means that if an attacker generates an adversarial example on model MA for
a certain A ∈ S, it is unlikely that it will also fool model MA′ .

We base our countermeasure on the lack of transferability observed in Table 5.1,
as explained in Section 5.2.3.

5.2.3 Dynamism

Because they tend to eliminate unnecessary details, autoencoders have been previ-
ously proposed as a countermeasure to adversarial attacks [9]. However, an attacker
who knows the existence of the autoencoder can still adapt its attack to the new
architecture. This denoising technique has been attacked by Carlini and Wagner's
transferable examples [18].

The fact that adversarial samples generated with AutoAttack on one model M l
A

are unlikely to be transferable to another modelM l
A′ justi�es the dynamic use of the

set S in the inference phase of the base model M . Every time an input is fed to the
base model M , we select an autoencoder A ∈ S at random. While in Section 5.3,
we only present the case where an autoencoder is associated to a given location, the
location l can also be selected at random.
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Table 5.1: For each model MA, A ∈ S, we generate adversarial examples xA. We
then compute, for 1 ≤ i ≤ 14, the ratio of elements from xA that are no longer
adversarial for at least i models. S is our set of 14 pretrained autoencoders. MA is
the base model to which we add autoencoder A ∈ S at the entrance. The base model
has an accuracy of 94.5%. The adversarial samples were generated on 200 elements
from the CIFAR10 testing set [71], using the standard evaluation of AutoAttack [25]

Accuracy
of MA

i=1 i=2 i=3 i=4 i=5 i=6

Autoencoder 1 90.95% 68% 67.5% 52.5% 46% 44% 41.5%
Autoencoder 2 90.46% 68.5% 57% 52% 49.5% 42.5% 39.5%
Autoencoder 3 89.82% 69.5% 60% 53% 49% 47% 43%
Autoencoder 4 90.16% 75.5% 68% 61.5% 57% 53.5% 48.5%
Autoencoder 5 90.06% 72% 65% 57% 51% 49% 44.5%
Autoencoder 6 90.36% 69% 61.5% 54.5% 50.5% 45% 42%
Autoencoder 7 90.06% 72% 60.5% 55.5% 51% 46% 44.5%
Autoencoder 8 90.51% 74.5% 65.5% 56.5% 53% 49.5% 45.5%
Autoencoder 9 89.67% 73% 65% 59.5% 55.5% 51% 48.5%
Autoencoder 10 90.79% 72% 64% 53.5% 48.5% 44.5% 41%

i = 7 i=8 i=9 i=10 i=11 i=12 i=13

Autoencoder 1 39.5% 34% 31.5% 27.5% 29% 24% 18%
Autoencoder 2 34% 30% 28.5% 26.5% 23% 18.5 13%
Autoencoder 3 40.5% 36.5% 34% 29.5% 25.5% 22% 17.5%
Autoencoder 4 44.5% 41% 36.5% 35% 33% 29.5% 24%
Autoencoder 5 40.5% 38% 33.5% 30% 26% 23.5% 16.5%
Autoencoder 6 40% 36.5% 33.5% 31% 26.5% 24% 20%
Autoencoder 7 40.5% 37% 34% 31% 27% 23.5% 20%
Autoencoder 8 42.5% 39.5% 38.5% 37% 34% 30.5% 23.5%
Autoencoder 9 46.5% 43.5% 40.5% 37.5% 35.5% 32.5% 25.5%
Autoencoder 10 39.5% 38% 35% 31% 27% 25.5% 19.5%

Because the model is constantly changing at each run, it becomes di�cult for
a potential attacker to carry out an adversarial attack. Indeed, even if she knows
that an autoencoder was added to its architecture, and considers one such pro-
tected model to generate an adversarial sample, then it is highly probable that the
generated example would not fool the dynamic protection.

The proposed countermeasure therefore consists in the following steps:

� Let X be a training set for the autoencoders. For instance, X can be the same
set as the inputs of the base model, or the output of one of the base model's
layers. The second example is useful in the case where the autoencoder is to
be placed in the middle of the base model's architecture. We generate the
corrupted sets X̃σ for various values of σ such that for each batch xB ∈ X, the
corrupted batch is x̃B = xB + N (0, σ) where N (0, σ) is a centered Gaussian
noise with standard deviation σ.
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Figure 5.1: At least one autoencoder is selected from the pretrained set S, and is
then incorporated in the model. In our experiments, we place them at the entrance
of the model.

� Train a set S of undercomplete autoencoders. For each autoencoder A, select
a standard deviation σ and train A on (X, X̃σ), where X is the training set
and X̃ is its corrupted version.

� At each run of the protected model, select one or several parasitic autoencoders
in S. Optionally, we can also select one or several locations within the base
model as well. Let us note that to be able to select the location l, the chosen
autoencoders should be adapted to the task. For instance, they can be trained
on normalized inputs, or directly on the outputs of the previous layer l − 1.
Moreover, the autoencoders in our experiments do not have FC layers so as to
be able to adapt to any input shape (see Section 5.3).

� The selected autoencoders are placed at the considered locations. It is im-
portant to note that this newly created model M ′ should not come with a
substantial drop in the accuracy on the dataset X. The generation of the
autoencoders' set is a sensitive task. The scheme is represented in Figure 5.1.

The dynamic selection of parasitic autoencoders along with their constrained
training constitutes a protection against adversarial attacks, as a potential attacker
would struggle to �nd an adversarial sample tailored to the current model.

5.3 Experiments

We have established the lack of transferability of adversarial examples, and detailed
our proposed scheme in Section 5.2. In this Section, we test our countermeasure
against the standard evaluation of AutoAttack.
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Table 5.2: Architecture of the autoencoders. The inputs are assumed to have 3
input channels. Conv2D(ch, f, s) is a convolutional layer with ch output channels,
�lter size f × f and stride s. ConvTranspose2D(ch, s) is a transposed convolutional
layer with output channels ch and stride s. Transposed convolutional layers compute
an upsampling operation. We select its parameters so that it generates an output
of shape (s · n× s · n) for an input of shape n× n.

Encoder Layers

Conv2D(16, 3, 2)
BatchNormalization

ReLU
Conv2D(32, 3, 1)

BatchNormalization
ReLU

Conv2D(32, 3, 2)
BatchNormalization

ReLU
Conv2D(64, 3, 1)

BatchNormalization
ReLU

Conv2D(64, 3, 2)
BatchNormalization

ReLU

Decoder Layers

ConvTranspose2D(64, 2)
BatchNormalization

ReLU
ConvTranspose(32, 2)
BatchNormalization

ReLU
ConvTranspose(16, 2)
BatchNormalization

ReLU
ConvTranspose(3, 2)

5.3.1 Experimental Settings

Our aim with the autoencoders is to ensure that while dynamically changing the
internal structure of the base model, they do not signi�cantly drop its accuracy. We
therefore opt for a deep architecture, described in Table 5.2. Some autoencoders
have one additional convolutional layer Conv2D(128, 3, 2) followed by a BN layer
and a ReLU activation.

We train the autoencoders on the CIFAR10 [71] dataset. The training is done
by batches. Given a standard deviation σ, for each epoch, we generate a random
Gaussian noise N (0, σ). Then, for each bacth XB, the label is XB +N (0, σ).

In our experiments, we place the autoencoders at the entrance of the base model.
This means that for input x, base modelM and autoencoder A, the protected model
computes M(A(x)).

Once the set S of autoencoders is ready, there are various ways of randomly
selecting one autoencoder in S during the inference phase. For each input x fed
to the protected model, we compute a hash value for x and use the autoencoder
corresponding to it. The hash function we settle on is SHA1 [33]. In other words,
with N elements in S, we compute, for each input x, i = hash(x) mod N . We then
place the i− th autoencoder at the entrance of the base model.

The base model we consider is the standard one for the CIFAR10 dataset in
RobustBench [24], when considering attacks for the `2 norm. It is a type of ResNet
called Wide ResNet [147], with accuracy 94.5% on the CIFAR testing set.
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In the following experiments, we launch the standard execution of AutoAt-
tack [25] on 200 elements from the CIFAR10 dataset. It consists in successively
applying an untargeted then a targeted PGD attack, before moving on to a targeted
FAB attack and �nally a Square attack (see Section 2.3.6 for details of the attacks).
In this evaluation, the maximum perturbation is ε = 0.5.

While various versions of the PGD attack are implemented in AutoAttack, the
one used in the standard evaluation is based on the cross entropy (CE) loss. This loss
is used for classi�cation tasks. Given input x, correct label y and current guessed
label ŷ, CE for a task with C output classes is de�ned as:

CE(x, y) = −
C∑

i=1

yi · log(ŷi)

5.3.2 Results

We consider two experiments to measure the e�ciency of our countermeasure. In
both cases, we callM the base model andMS the model protected with our dynamic
defense.

� In the �rst, the attacker has access to M 's architecture and parameters, but
does not know about the parasites' existence. She therefore generates adver-
sarial examples xadv on 200 elements from the CIFAR10 dataset thanks to
AutoAttack. We then test the accuracy of MS against xadv.

� In the second, the attacker is aware that an autoencoder has been added to the
model. She therefore generates samples xAadv to fool MA for a certain A ∈ S.
We then test the accuracy of MS against xAadv.

First experiment Once the adversarial examples againstM have been generated,
we try a dynamic defense with an autoencoders set of length N varying between
1 and 13. In this �rst experiment, all autoencoders are placed at the entrance of
the model. The results are presented in Table 5.3. We see that one autoencoder is
enough to mitigate an adversarial attack when the attacker is not aware of the de-
fense. This con�rms the e�ciency of previously introduced autoencoder defenses [9].
Table 5.3 also shows that when the attacker is oblivious to the parasitic autoencoder,
it is not necessary for the defense to be dynamic. Once again, this aligns with the
previous defenses that only rely on one �xed autoencoder.

However, an attacker can thwart such an attack by training an autoencoder A on
her own and generating adversarial samples against the compound model MA. The
following experiment shows the e�ciency of our countermeasure in such a scenario.

Second experiment We present the results of the previously explained second
experiment on 10 autoencoders. For each A ∈ S where S has length N = 10, we
generate adversarial examples xA. We then test the accuracy of the dynamically
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Table 5.3: We measure the robustness of our protected model in the case where the
attacker knows the original architecture and parameters. She generates adversarial
samples using the standard settings for AutoAttack on the CIFAR10 dataset for
norm `2. We test the accuracy of protected models with 1 ≤ i ≤ 13 autoencoders in
the parasitic set S. The initial accuracy of our protected model is over 90% in all
cases.

N autoencoders in S Initial Accuracy Robustness

1 90.46% 80%
2 90.82% 78.5%
3 89.16% 79.5%
4 90.06% 77%
5 90.36% 78%
6 90.06% 80%
7 90.51% 79.5%
8 90.67% 78.5%
9 89.61% 77.5%
10 90.04% 81%
11 90.79% 77.5%
12 90.52% 78.5%
13 89.73% 78%

Table 5.4: For each autoencoder A ∈ S, we generate adversarial examples xA onMA,
thanks to AutoAttack. We only present the results for the �rst 10 autoencoders,
as the other autoencoders present similar ones. We then test the accuracy of the
protected model MS, with N = |S| varying between 1 and 13.

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

N = 1 0% 37 % 45% 50.5% 39.5% 42% 45.5% 52.5% 52% 46.5%
N = 2 14% 21% 42.5% 46.5% 41.5% 43.5% 38.5% 52.5% 52% 48.5%
N = 3 26% 25% 31% 48.5% 43.5% 47% 39.5% 47.5% 49% 50%
N = 4 29.5% 26.5% 30% 35.5% 38% 44.5% 40.5% 47% 49.5% 48%
N = 5 33% 31% 38.5% 41% 29.5% 42% 38% 47.5% 50.5% 52%
N = 6 31% 30% 36% 43% 36.5% 38% 39% 43% 52.5% 47%
N = 7 33.5% 26.5% 30.5% 35.5% 35% 39% 34% 46.5% 55% 50%
N = 8 34% 35.5% 32.5% 40.5% 37% 41% 36% 40% 52.5% 47%
N = 9 36.5% 28% 39% 39.5% 36.5% 41.5% 40% 38.5% 46% 47.5%
N = 10 35% 34.5% 41% 43% 41% 42% 38% 41% 49% 46%
N = 11 40% 35.5% 38% 43.5% 30.5% 38.5% 38.5% 43.5% 46% 35.5%
N = 12 37.5% 33% 38% 46% 37.5% 42% 39.5% 41.5% 44.5% 40%
N = 13 39.5% 33.5% 37% 43% 38% 40.5% 37% 44% 44% 40%

83



protected model against xA, in the case where the autoencoders are placed at the
entrance of the model.

Table 5.4 shows that dynamically adding autoencoders ensures at least a 40%
accuracy when there are enough models in S. We also note that this threshold is
increased to at least 50% when we allow the accuracy to drop further (around 85%).
Let us note that the case where N = 1 often leads to a higher robustness because
the selected autoencoder is di�erent from the one used to generate the adversarial
examples. This cannot always be ensured. The dynamism enables us to avoid the
case where the attacker uses the correct autoencoder, as is the case in the �rst cell
of Table 5.4.

Let us also note that the autoencoder A used to generate the adversarial examples
is in the set of possible autoencoders S. This explains why in all columns, we observe
a drop in the accuracy � that is counterbalanced with enough other models: the drop
appears when A is among the models the defender can dynamically select.

Thus, this second experiment shows that our countermeasure mitigates attacks
where a malicious user trains an autoencoder to generate adversarial samples. While
knowing the full architecture enables an attacker to fool the model with or without
an autoencoder, a changing architecture makes her task harder.

5.4 Discussion

Because we use RobustBench's standard evaluation, we can compare our counter-
measure to their leaderboard. Two defenses in their leaderboard use the same
WideResNet model as we do. When the attacker is unaware of the attack, our
robustness is similar to that of the best model in the leaderboard [99]. Indeed, the
authors of [99] propose a defense with a 78.8% accuracy, which is similar to the
accuracies we get in Table 5.3.

In our second experiment, we have a robustness of over 40% with almost no drop
in the accuracy with autoencoders at the entrance. We can increase this robustness
to 50% if we are more lenient about the accuracy. The robustness might also be
increased by varying the locations of the autoencoders. These robustness values
are lower than the two models listed in the leaderboard [99, 104]. However, both
those techniques rely on adversarial training. While, as explained in Section 2.3.7,
adversarial training is the best method known so far, it requires retraining the model
on generated adversarial samples. Both the training and the adversarial attacks take
time, making adversarial training time consuming. In our defense, on the other hand,
the autoencoders do not require any adversarial sample generation. Moreover, we
do not need to train them along with the model: we only need to optimize the small
parasites' parameters.

In Section 2.3.7, we also mention that autoencoders have already been used to
mitigate adversarial attacks [9]. The authors of [9] use sparse denoising autoencoders
to protect models against various adversarial attacks. While this countermeasure
shows a robustness equivalent to ours in the gray-box context where the attacker
does not know about the defense, the authors do not show the results for the white-
box case on the CIFAR10 dataset. Moreover, our proposal is complementary to
that in [9]. Instead of training simple undercomplete autoencoders, our parasitic set
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can be comprised of sparse denoising autoencoders. We believe that applying our
scheme to the sparse denoising autoencoders in [9] could improve their robustness
in the case where the attacker knows an autoencoder has been introduced in the
original model.

5.5 Conclusion

In this Chapter, we pretrain a set of parasitic autoencoders, and exploit a dynamic
introduction of those parasites in order to thwart gradient-based adversarial attacks.

We carry out two experiments to show the e�ciency of our countermeasure
against the standard evaluation of AutoAttack on the CIFAR10 dataset. In the
�rst, the attacker has access to the target model but does not know about the
defense. In the second, the attacker knows that an autoencoder has been added to
the model. In both cases, the robustness of the model is increased thanks to our
countermeasure.

This Chapter suggests that the dynamic use of autoencoders is a promising
direction when it comes to tackling adversarial examples.

After proposing the insertion of parasitic models to thwart parameter extraction
reverse-engineering attacks in Chapters 3 and 4, we show in this Chapter that the
proposal can be adapted to mitigate adversarial attacks. But all the attacks and
defenses considered so far were set in a gray-box context, as they require prior
knowledge about the model's architecture. In the following part, we directly aim at
protecting a secret model architecture in a black-box context.
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Part II

Preventing the Black-Box

Reverse-Engineering of the

Architecture
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Figure 5.2: Evolution of the accuracy of image classi�cation on the ImageNet
dataset [70]. So far, the best model, Model Soups, achieves 90.94% accu-
racy. The metric used to measure the accuracy is the percentage of correctly
labeled images. This graph is taken from https://paperswithcode.com/sota/

image-classification-on-imagenet

Overview

Although the parameters of the model are what enable gradient-based attacks such
as [91], an attacker cannot �gure out the weights without recovering the architecture
as well. Thus, one way of protecting the weights and biases of a model is to obfuscate
its architecture.

We state in part Part I that for common tasks, it is realistic to assume that the
attacker has access to the architecture. However, for sensitive tasks such as biomet-
rics and facial recognition [13], or very speci�c ones, the architecture can be kept a
secret. Finding the correct architecture for the task at hand can be an arduous task.
Too deep architectures may over�t more easily, while shallow ones might not reach
a high enough accuracy. Other hyperparameters such as skips (see Section 2.2.1)
can improve a model's learning. The importance of the architecture selection can be
seen in Figure 5.2, where we see the evolution of the accuracy on the ImageNet [70]
dataset over the years.

Moreover, even though usual tasks generally require common architectures, there
are various families of architectures that could be selected. In fact, even within one
family of architectures � such as VGG or ResNet �, the numerous parameters make it
almost impossible for an attacker to determine the exact architecture. The authors
of [141], for instance, state that the initial set of possible architectures for the VGG16
architecture comprises over 5.4× 1012 architectures.

Furthermore, knowing the model already provides some information that an
attacker might exploit to carry out other types of attacks [64, 113].

Thus, despite it appearing as a trivial security aspect, it is also paramount to
ensure the architecture's protection.

To the best of our knowledge, so far, most reverse-engineering attacks that aim
at recovering the architecture of a target model rely on the sequential computation
of NNs. Based on this, we propose, in this Part, a novel way of carrying out inference
computations, mitigating the architecture recovery attacks published to this day.
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Chapter 6: Protecting CNN Architec-

tures

So far, most architecture extraction attacks rely on the sequential execution of NNs.
CSI NN [10] counts on that fact to iteratively determine the number of neurons per
layer. The authors of [53] and [52] monitor the call to individual layers through the
cache to reconstruct the model. Cache Telepathy [141] targets matrix multiplica-
tions corresponding to FC and convolutional layers in order to determine a model's
hyperparameters. In all cases, the attacker trusts the model to compute its predic-
tions layer by layer. Based on this observation, we introduce Telepathic Headache,
a countermeasure to cache-based architecture extraction attacks against CNNs.

In this Chapter, we �rst introduce the threat scenario and protection overview
in Section 6.1. Then, we explain how CNN computations can be reordered in Sec-
tion 6.2. Section 6.3 adds randomness to the reordering to make attacks more
complex. Section 6.4 summarizes the full scheme of our defense. The results, in-
cluding a theoretical analysis of the scheme's security, are presented in Section 6.5.2.
Finally, Section 6.6 concludes this Chapter.

6.1 Threat Scenario and Defense Overview

Threat Scenario Our goal is to prevent an attacker from recovering a model's
secret architecture. For this, we place ourselves in the same threat scenario as the
Cache Telepathy attack [141].

The attacker in [141] is relatively strong since she has access to the cache and
the computations are supposed to run on the CPU. On the other hand, this attack
extracts more information than [53, 52] and does not require the help of trained ML
models as in [93]. The last point makes the attack e�cient, as it does not require
the gathering of a dataset or training another ML model.

This is why we focus on this cache attack. But because our defense consists
in reordering CNN computations, as mentioned above, several other architecture
extraction attacks should also be mitigated [53, 52, 10].

The aim of [141] is to reduce the set of possible architectures to one small enough
that an attacker can train all models in it and select the best one. This is further
detailed in Section 2.3.4. It is a cache-based SCA in an MLaaS context. The attacker
is assumed to have the following abilities:

� She knows a set S of possible architectures for the target model. The set is
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intractable: an attacker cannot realistically train all models and determine the
best one.

� The attacker shares the victim's ML frameworks.

� The attacker and the victim share the cache (co-location). This enables the
attacker to monitor the GeMM functions (detailed in Section 2.2.4)

Given those assumptions, the attacker aims at recovering all of the hyperparam-
eters (or at least reducing the number of possibilities for them). To do so, she uses
Flush and Reload or Prime and Probe (see Section 2.3.3) to monitor internal func-
tions in the GeMM algorithm, as explained in Section 2.3.4. The full description of
Cache Telepathy can be found in Section 2.3.4.

Protection Overview The attacker in many reverse-engineering attacks relies on
the sequential execution of NNs. Therefore, we consider reordering computations
and adding randomness in the way neurons are computed to thwart those attacks.
Although it is impossible to determine the value of an FC layer neuron before earlier
layers are done computing, it is not the case for convolutional and pooling layers.
As shown in Figure 6.1, a given neuron in convolutional layer i only requires the
values from a window of neurons from layer i− 1. In the �gure, the blue neurons in
layer i− 1 are the only one necessary to compute the green neuron in layer i.

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19

Figure 6.1: The blue neurons from convolutional layer i (left) are the ones needed
to compute the green neuron in layer i+ 1 (right), when layer i's �lter size is 3.

RelatedWorks Several papers propose to modify the way convolutional layers are
generally computed, with the aim of accelerating CNN computations on hardware
devices.

The authors of [109] consider each neuron individually, and compute its value as
soon as it is ready. Indeed, in convolutional layers, only a small window of values
from the previous layer is used to compute a given neuron. In [109], a bu�er in layer
i stores the values as they arrive in a sequential order. Once enough values for a
given neuron arrive on the bu�er, it executes the computation and sends the value
to the following layer. The scheme is described in Fig. 6.1.

The authors of [2] consider computing CNN layers in a similar fashion. The aim
of [2] and [109] is to limit the bandwidth necessary to make NN computations, by
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only loading on chip the necessary values. It also enables a parallelization of some
computations.

As the following sections will explain it, we consider a similar approach as [109]
and [2], but outside of the hardware context. Furthermore, our goal is not to accel-
erate the computations but to protect them from architecture extraction attacks.

[128] also considers the computations in NNs in a di�erent order, but their goal
is to run the victim NNs in Trusted Execution Environments (TEEs). Since TEEs
have a limited memory space, all weights and inputs cannot be loaded at once.
Therefore, they partition the target NNs in three di�erent ways (per layer, within a
layer and branched partitioning) when loading them into the TEEs.

Like us, some papers [78, 30, 31] aim at protecting NNs from architecture extrac-
tion attacks. They are further detailed in Section 2.3.7. While the authors of [31]
ensure the power traces of NN inference are leakage free, [78] and [31] mitigate mem-
ory access pattern attacks. To the extent of our knowledge, no paper has tackled
the cache-based SCAs for architecture extraction yet.

In this Chapter, we mix two ideas: the interleaving of layers presented in [109]
and the block multiplications as in GeMM. We apply them to the software level
rather than the hardware one. Our aim also di�ers from previously mentioned pa-
pers: while existing approaches [2, 109] apply the interleaving of layers for e�ciency,
we apply it for security purposes. As detailed in Section 6.3, we also added a ran-
domization element. This mix of the two ideas along with the randomization lead
us to some experimental results showing our idea does thwart the Cache Telepathy
attack (see Section 6.5).

6.2 Reordering Computations: the Convolutional

Case

In this Chapter, our goal is to mitigate cache attacks targeting the GeMM com-
putations (the GeMM algorithm is detailed in Section 2.2.4) during the inference
phase of a victim CNN. We consider out of scope other side-channel vectors such as
power consumption or memory access patterns. Furthermore, our proposed method
concerns convolutional and max pooling layers. Even though Cache Telepathy also
targets FC layers, we will see in Section 6.5.1 that our approach still mitigates the
attack.

6.2.1 Convolutional Layer

The protection we propose is based on two observations:
First, the sequential execution of layers enables a potential attacker to determine

the depth of an NN. Indeed, the depth directly results from the number of observed
matrix multiplications.

Second, the hyper-parameters of a given layer can be deduced by a potential
attacker because each layer is executed as a whole before moving on to the next one.

Therefore, a depth-�rst computation should improve the security of an NN. In
CNNs, several neurons in a layer i can be executed before layer i− 1 has been fully
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computed. Indeed, a neuron only requires a window of values from the previous
layer, as described in Figure 6.1.

Based on these observations, we propose to compute layers in a depth-wise fash-
ion. But instead of computing a neuron in layer i as soon as all necessary neurons
in layer i− 1 are ready, we wait for a block of neurons in layer i to be ready before
starting the execution. With this method, we aim at making layer computations
overlap, without being restricted to computing one neuron at a time.

Let us detail our proposed method. Our goal is to make the computations of
several layers overlap. We start executing layer i+1 before the execution of layer i is
over. The GeMM algorithm [45] is thoroughly optimized, and makes sure the entire
cache is used for large matrix multiplications. Making one neuron computation at
a time � to execute neurons as soon as enough data is available � would lead to too
much overhead. Thus, a balance needs to be reached between the added overhead
and the number of subdivisions of matrix multiplications.

Block computations Let us �rst consider the case of convolutional layers. Let
layer i be a convolutional one, with n(i)

k �lters of size k(i)× k(i). As a reminder, each
convolutional layer is computed as one matrix multiplication between a reshaped
input matrix R and a reshaped �lter matrix F . Let R denote the reshaped matrix
� as in Figure 2.7 � of the input I (of size n × n). For an example of a standard
way to reshape the input, see Figure 6.2. Let F denote the n(i)

k × (k(i) · k(i)) matrix
where each row is a �attened �lter.

Here, our goal is to compute the matrix multiplication F × R by blocks. Every
time a block A of neurons in matrix R is ready, we multiply A with the corresponding
�lter blocks in F . Let us detail how this is achieved.

If there is no padding, the reshaped matrix R has dimensions (k(i)
2 · n(i)

k )× (n−
k(i)+1)2. Let B ∈ N. R is divided into N non-overlapping blocks {RBl

}1≤l≤N of size

B×B. There are W (i) :=
⌈
(n−k(i)+1)2

B

⌉
blocks RB width-wise and H(i) :=

⌈
k(i)×k(i)

B

⌉

blocks height-wise, corresponding to a total of:

N (i) :=

⌈
(n− k(i) + 1)2

B

⌉
×
⌈
k(i) × k(i)

B

⌉

blocks RB.
Each such block RBr needs to be multiplied by �lter blocks FBr of size n

(i)
k ×B.

We can further divide FBr into M (i)
r blocks {Fbr,l}1≤l≤M(i)

r
of size B × B. If n(i)

k is
not a multiple of B, we pad the last block Fb

M
(i)
r

. Thus, each block RB needs to be

multiplied by:

M (i)
r :=

⌈
n
(i)
k

B

⌉

�lter blocks.
Once the layer receives all the values in the r − th block RBr from the previous

layer, all the multiplications {RBr × Fbr,j}1≤j≤M(i)
r

are computed. The results are
added to those of the other RB blocks involving the same columns in R. Since
there are H(i) blocks RB height-wise, H(i) matrix multiplications are required to
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Algorithm 2: add_elts: Receive elements from the previous layer, and
compute ready blocks
input : Block size B. Arrays A_C, B_C. Value v to add. Accumulator acc

1 L = get_indices_reshaped_input(v) /* Gets indices where v needs to be added. */

2 for i ∈ L do

3 b_c = get_block_index(i); /* Gets index of the layer block i belongs to. */

4 B_C[b_c] += 1;
5 if B_C[b_c] = B ×B then

/* If the block is now full */

6 �lter_blocks = get_associated_�lter_blocks(b_c) ;
7 for F ∈ �lter_blocks do

8 R = compute_sgemm(F, b_c);
/* Send values to next layer. */

9 accumulator_handler(B, A_C, B_C, acc, R, get_next_layer());

10 endfor

11 end

12 endfor

compute one neuron for layer i + 1. Since, moreover, computations are made with
sub-matrices of sizes B ×B, B neurons are computed at a time.

Block characteristics Let us note that GeMM computations are more e�cient
when matrix sizes are multiples of 32 [45]. Thus, the default block size should be a
multiple of 32 as well. Moreover, the number of computations is correlated with the
block sizes: if we increase the block size, there are fewer matrix multiplications. But
the e�ciency of the computations also depends on the cache size, the various layers'
input sizes and the padding added. It is therefore important to tailor the block size
to the architecture's hyperparameters. Furthermore, taking into account the matrix
sizes in each layer is important: if the block sizes are too large, no overlap can occur
between a convolutional layer and the following one. Thus, block sizes need to be
adapted to the architecture at hand.

Process for one convolutional layer Figure 6.3 summarizes the process for
one convolutional layer. In Step 1, layer i − 1 sends neuron 7 to layer i, which
adds it in the reshaped matrix R. Since neuron 7 �lls the red block RBr , a matrix
multiplication can occur. Step 2 corresponds to the multiplications with the blue
and green �lter blocks {Fbr,j}j∈{1,2}. The results are added to the output matrix (O′

in Figure 2.7). A value in the output matrix is only correct when the associated
column in R is fully computed.

Algorithms 2 and 3 provide the pseudo-code for our method. Algorithm 2 receives
a list of elements from layer i − 1 and checks whether a block RBr is full (line 5).
If it is the case, it computes {Fbr,j × RBr}1≤j≤Mr (using compute_sgemm, line 10)
whether layer i−1's execution is over or not. It sends the temporary values to layer
i by calling Algorithm 3: accumulator_handler (lines 7-10). Algorithm 3 takes
those output elements, adds them to the correct locations in R(i) (lines 1-4) and
checks whether a neuron is completely computed (line 7). If it is the case, it sends
the result to layer i+ 1.
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Algorithm 3: accumulator_handler: Add computed elements and send
computed neurons to the next layer
input : Block size B. Arrays A_C, B_C. Array acc. Matrix of computed values R. Pointer to the next

layer: next_layer
/* acc stores the current values of the layer's elements. A_C is used to check whether a

value in acc is ready. B_C is used to check whether a block is ready. R is the result

of a matrix multiplication. */

1 indices = get_indices_acc(R)
2 n = len(R)
3 for i = 0 to n do

4 acc[indices[i]] += R[i];
5 A_C[indices[i]] += 1;
6 f_c = get_full_ac(indices[i], B); /* Gets the number of matrix multiplications necessary to

have a correct value in acc[indices[i]] */

7 if A_C[indices[i]] == f_c then

8 next_layer→add_elts(indices[i], A_C, B_C);
9 end

10 endfor

6.2.2 Dealing with Pooling Layers

Pooling layers need to be dealt with di�erently. The reason why is twofold: �rst, in
such layers, the various channels are managed independently. Filter sizes are small,
resulting in a small height for reshaped matrices. It is therefore more practical to
consider blocks width-wise only. Second, no GeMM multiplication is involved in the
computation. They are therefore not the target of the cache attack considered.

However, executing a pooling computation introduces overhead in between block
computations. This leaks some information to a potential attacker and she might
determine the number of multiplications required to obtain one column in the re-
shaped pooling input. This provides the attacker with a small range of possible
hyper-parameter values. If the victim waits for several columns in the reshaped
pooling layer to be ready before starting the execution, the range of possible hyper-
parameter values increases, making it harder for an attacker to recover the correct
architecture. It is therefore important to also consider a blocked computation for
layers without GeMM computations, such as pooling ones.

We propose to adapt the methodology described in Section 6.2.1 to pooling
layers. We still compute several neurons at once. But here, we wait for multiple
entire columns to be completed instead of blocks. Moreover, we deal with the
various channels independently. We consider a pooling layer i with a window size
of k(i) × k(i). Let B ∈ N. Given the max pooling layer's input I of size n × n,

let R (of size k(i)
2 × ( n

k(i)
)2) be its reshaping. We divide R into N (i) :=

⌈
(n/k(i))2

B

⌉

blocks {RBr}1≤r≤N(i) width-wise. Whenever all of block RBr 's values are ready �
i.e. whenever they were relayed by the previous layer �, the computation can be
executed for that block. This results in B neurons that need to be passed on to the
following layer.

6.3 Randomization of Block Sizes

Computing the matrix multiplications by blocks as explained in Section 6.2 helps
mitigate the attack at hand, as the attacker only recovers a set of possible hyper-
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Algorithm 4: full_computation: Full computation with random
input : Model's input I. Arrays A_C, B_C. Block size B

1 For each convolutional layer, generate random arrays W (block widths) and H (block heights)
2 for input blocks ib do

3 �lter_blocks = get_associated_�lters(ib);
4 for F ∈ �lter_blocks do

5 R = compute_sgemm(F, i_b);
6 accumulator_handler(B, A_C, B_C, acc, R, get_next_layer());

7 endfor

8 endfor

parameter values. However, it is still possible to increase that range of values, by
injecting randomness in the block sizes.

6.3.1 Improving Security through Randomization

So far, within a layer i, all block sizes were identical. Having di�erent block sizes
within a layer provides more entropy in the number of multiplications per layer
(see Section 6.5.1 for a more detailed analysis of the protection's security).

Let us �rst consider the convolutional case. When the architecture of the tar-
get NN is created, we generate two arrays tw and th of random block sizes. The
�rst array corresponds to the number of columns of each block, while the second
corresponds to the number of rows of each block. tw[l] returns the index of the
column at which the l− th block width-wise starts, and th[j] returns the index at
which the j − th block height-wise starts. A block with coordinates (l, j) therefore
has th[l]−th[l-1] rows and tw[j]−tw[j-1] columns. Figure 6.4 provides an
example of such a subdivision.

In that scenario, the blocks in the same column have the same width, and those
in the same row have the same height. To prevent an attacker from using this infor-
mation, we can zero-pad the blocks right before each multiplication to turn the rect-
angle blocks into squares. Thus, each block is a square of size max(width, height),
where width and height are the block's original width and height. This way, the
blocks in a same row or in a same column can have di�erent block sizes.

As explained in Section 6.2.2, the reshaped pooling matrices cannot be divided
height-wise due to their small height. Therefore, only one array of random block
sizes is created, to divide the matrix width-wise.

In the random case, Algorithm 2 needs to be updated to take into account the
height and width of the considered block. Only lines 5 and 6 in Algorithm 2 change.
Before the loop on line 5, we get the correct block width and height thanks to the
generated arrays tw and th. These are then provided to accumulator_handler.

Algorithm 4 is the full computation. For all input elements, the function com-
putes the GeMM multiplications (line 5) and sends them, one by one, to the accu-
mulator handler (line 6). This is enough to start the whole process.
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Figure 6.2: Reshaping the input to turn a convolution into a matrix multiplication.
The input size is n× n and the �lter size is k × k.
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neuron from previous
layer
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Figure 6.3: Process for a layer of size 4× 4 receiving values from the previous layer.
The block size is B = 3 and the �lter's width and height are equal to 3.

Figure 6.4: Example of a subdivision of a reshaped input
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6.4 Full Scheme

Let us now clearly state the steps of our proposed countermeasure, that we call
Telepathic Headache.

(a) Unprotected case. The layers are executed sequentially. We observe a large matrix

multiplication corresponding to Conv1, a latency for the max pooling layer and a smaller,

matrix multiplication corresponding to Conv2.

(b) Protected case. Block sizes are between 32 and 38. Each group of points corresponds

to one multiplication. 5 multiplications from Conv1 are executed, then there is a latency

for one max pooling computation, then another 4 multiplications from Conv1, etc. We see

that Conv1, MaxPool and Conv2 interleave.

Figure 6.5: Flush and Reload on an unprotected (a) and a protected (b) architecture
with two convolutional layers (�lter size: 3 × 3) separated by a max pooling layer
(window size: 2× 2). The y-axis corresponds to the number of clock cycles it takes
to access the correct cache line. The x-axis indicates the time elapsed since the
beginning of the experiment.

1. For each convolutional layer: Generate two arrays of block sizes, for the width
and the height. Possible block sizes need to ful�ll two conditions:

(a) Not too large: it would defeat the purpose of the countermeasure, as we
need an overlapping of layers. For instance, B ≤ n where n is the input
size. But higher B values are often possible.

(b) Not too small: it would lead to too much overhead (for instance, B > 1).

2. For each pooling layer: Generate an array of width-wise block sizes. Block
sizes need to ful�ll the two previous conditions as well.
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3. Start the �rst layer computations.

4. If a block in layer i is full, compute the matrix multiplications.

5. If the previous computations lead to at least one neuron being completely
computed, send the value to layer i+1 and pursue computations in layer i+1
if possible.

6. Repeat steps 4 and 5 until all values have been computed.

Steps 1 and 2 are part of the architecture creation, and are only executed once
for a given model. Generating the new, protected architecture only once per model
and user prevents a potential attacker from carrying out statistical attacks.

Let us further detail the way we deal with convolutional GeMM computations in
step 4. Let RBr be a full block in layer i, and w and h be its corresponding width and
height respectively. As explained in Section 6.2.1, each RBi

is associated with �lter
blocks {Fbr,j}1≤j≤M(i)

r
. M (i)

r multiplications Fbr,l ×RBr ∀0 ≤ l ≤M
(i)
r are computed.

The output of those multiplications are sent to the next layer. Since RBr 's columns
are only subcolumns from the reshaped input R's columns, the outputs computed
are only partial results. The results for all height-wise input blocks need to be
summed in order for some neurons to be ready in the following layer.

Figure 6.5 shows that contrary to a normal execution, our protection leads to
an overlap of layer computations.

6.5 Results

6.5.1 Security Analysis

We consider an attacker whose goal is to recover the architecture of a target CNN.
The list of hyper-parameters to recover is therefore:

� Number and types of layers, and connections between layers.

� Filter sizes for convolutional layers and window sizes for pooling ones.

� Input and output sizes.

� Padding.

The authors of Cache Telepathy restrict the possible target architectures to a
search space. The latter is built thanks to the following assumptions:

� In convolutional layers with �lter size k × k, we have that: k ∈ {1, ..., 11}.

� The padding p is such that p ≤ k.

� In each layer, the number of output channels is such that: nout is a multiple
of 64 and nout ≤ 64× 32.
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We make the same assumptions in this Chapter.
As explained in Section 2.3.4, the attackers in Cache Telepathy monitor GeMM

computations in order to recover those hyper-parameters. The number of convolu-
tional layers in the target CNN is equal to the number of matrix multiplications.
Filter sizes are deduced from the sizes of the matrices involved in the multiplica-
tions. The possibilities for padding values and pooling sizes are restricted thanks to
constraints on the dimensions of each layer.

Section 2.3.4 also mentions that the Flush and Reload attack along with these
assumptions enable the attacker to limit the search space to a very small set of
possible architectures. For instance, for the VGG16 architecture [115], the Cache
Telepathy attack reduces the search space from over 5.4×1012 possible architectures
to 16.

Let us consider layers 4 (Conv4), 5 (Conv5) and 6 (MaxPool) of VGG16
(see Figure 6.6). They are two convolutional layers followed by a max pooling
layer. Conv4 and Conv5 have input size n × n = 112 × 112. Let k(i) × k(i) denote
Convi's �lter size. In our case, k(4) = k(5) = 3. The input size is the same in both
layers because a padding of two (p = 1) is applied in both directions to Conv4's
output. Conv4 has in4 = 64 input channels and out4 = 128 output channels. Conv5
has in5 = out5 = 128 input and output channels.

224 × 224 × 3

224 × 224 × 64

112 × 112 × 128

56 × 56 × 256

28 × 28 × 512

14 × 14 × 512

7 × 7 × 512

1 × 1 × 4096

1 × 1 × 4096

Convolutional layer MaxPool FC layer

Max pooling layer Conv4 and Conv5 Input

Figure 6.6: VGG16 architecture. The sizes mentioned in the �gure are the input
sizes of the layers in the form: (input width × input height × number of channels).

The reshaped input image R4 for Conv4 has width:

W (4) = (n+ 2 · p− k(4) + 1)2 = 112× 112

and height:
H(4) = k(4) × k(4) × in4 = 576

. The reshaped �lter matrix F4 for Conv4 has width:

F
(4)
W = H(4) = k(4) × k(4) × in4

= 576

and height:
F

(4)
H = out4 = 128
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. A potential attacker is assumed to know n and in4. This is a reasonable assump-
tion, since the input size is known to an attacker who can query the target model.
Furthermore, for simplicity, let us assume that the attacker knows that layers are
sequentially connected.

Recovering the unprotected architecture with Cache Telepathy: By mon-
itoring GeMM multiplications, the attacker in Cache Telepathy can identify the two
convolutional layers, as each corresponds to one matrix multiplication. Moreover,
the lack of a max pooling layer in between the two layers is identi�ed through timing
analysis. Indeed, a max pooling layer incurs a time overhead between GeMM opera-
tions. The attacker also determines the matrix sizes. This directly provides her with
out4 = in5 and H(4). Since H(4) = k(4) × k(4) × in4 and in4 is known, the attacker
can deduce k(4). The attacker also directly observes that n′ = (n+2 · p− k(4) +1)2.
Since the attacker now knows n and k(4), she can easily recover p =

√
n′−n+k(4)−1

2
.

MaxPool's window size is determined to be 2 by comparing the input and output
sizes of the pooling layer.

Thus, monitoring GeMM computations enables an attacker to �nd:

� The number of convolutional layers by counting the GeMM operations.

� The input and output shapes (including channels) of Conv4 and Conv5 thanks
to the matrix sizes.

� The �lter sizes for the two layers thanks to the matrix sizes.

In short, the attacker manages to recover all the hyper-parameters of Conv4,
Conv5, as well as the maxpooling layer that follows them.

Protected Case, when convolutional layers can be distinguished: Let us
now study the impact of our protection on those two convolutional layers. The at-
tacker has at her disposal the same information as before. Once again, the goal is to
recover the hyper-parameters of Conv4, Conv5 and MaxPool. By launching Cache
Telepathy, the attacker is able to recover all matrix sizes in the GeMM multiplica-
tions. In our case, the layers are not executed sequentially but in blocks of various
sizes, and depth-wise. This means that as soon as a block of values � of random
size, as explained in Section 6.3 � in layer i is ready, it is executed, regardless of
whether layer i− 1 has �nished its execution. Thus, the layers interleave, as shown
in Figure 6.5.

Because the order of multiplications is changed and the layers are not executed
sequentially, the attacker knows neither the number of layers nor which layer a
matrix multiplication belongs to. However, an attacker can detect a pooling layer
computation, since it incurs a latency between multiplications. Therefore, she might
determine the number of multiplications required for the �rst blocked max pooling
computation to occur. We should also bear in mind that several architectures have
multiple consecutive convolutional layers [115, 75].

For a clearer explanation, we �rst focus on the unlikely case where the attacker
can observe a change of layer (and therefore identify the �rst Conv5 operation). Let
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us note that we believe this case to be mainly hypothetical. For it to hold, there
should be a notable latency in between convolutional layers. The said latency should
also be di�erent from the overhead incurred by max pooling layers. We present this
scenario for pedagogical purposes.

As Conv4 and Conv5 go through the GeMM process (see Figure 2.7), inputs I4
and I5 are reshaped into R4 and R5 respectively. Let us note that in order to have
an output size equal to the input size, the input needs to be padded. We consider
I4 and I5 to be the padded inputs. Their shape is (64, 114, 114) and (128, 114, 114)
respectively. Let O(j) denote the reshaped output of layer j � i.e. the output of
the layer's matrix multiplication. Let H(4) = {H(4)

1 , ..., H
(4)
t } be the number of

blocks height-wise for each width-wise column of blocks. Let us denote w(4) =
{w(4)

1 , ..., w
(4)
t′ } � respectively h(4) = {h(4)1 , ..., h

(4)
t } � the sizes of the blocks width-

wise � respectively height-wise. These are determined as described in Section 6.3.
Furthermore, let {M (4)

i,j }1≤i≤t,1≤t′ denote the number of �lter blocks associated with
each of Conv4's input blocks. The reshaped �lters are F4 and F5 respectively. The
blocks we consider are submatrices in R4,5 and F4,5. R4 and R5 both have width
W4,5 = 112× 112. R4 has height 3× 3× 64 while R5 has height 3× 3× 128.

In our case, each block has size between 32 × 32 and 64 × 64. Let (xb, yb) be
the coordinates of the last element in the �rst block in R5. If we take the minimal
block size, then (xmin, ymin) = (32, 32). In the case of the maximal block size,
(xmax, ymax) = (64, 64).

Let toti,jx,y denote the number of matrix multiplications in layer i required for
element (x, y) in Rj to be ready. Since our goal is to determine the number of mul-
tiplications in Conv4 necessary to have the �rst block in Conv5 ready, we actually
need to compute tot4,5xb,yb . We will consider block size extremes to give a range of
values for tot4,5xb,yb :

tot4,5xmax,ymax
≤ tot4,5xb,yb ≤ tot4,5xmin,ymin

In order to compute that value, we need to �nd the coordinates of element
e = (x, y) = (xb, yb) in I5 rather than R5. Indeed, this will provide us with the
blocks that need to be computed in Conv4 to obtain e.

First, let us �nd which input channel ch element e belongs to. Because of the
way R5 is obtained, we have that:

ch =

⌊
x

k(4) × k(4)
⌋

Thus:

chemin
=

⌊
32

k(4) × k(4)
⌋
= 3

chemax =

⌊
64

k(4) × k(4)
⌋
= 7

where emin = (xmin, ymin) and emax = (xmin, ymin) indicate the maximal and minimal
block sizes respectively.

Let us now �nd the coordinates (row, col) of element e in channel ch. Let n′ =
n + 2 · p = 114 be the padded input width and height. With an input of shape
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(n′, n′), a convolution results in an output of size (n′−k(4)+1, n′−k(4)+1) = (n, n)
here. Because of the way I5 is reshaped, each column in R5 is a k(5) × k(5) window
in I5. Thus,

row =
⌊y
n

⌋
+

⌊
x mod (k(5) × k(5))

k(5)

⌋

col = y mod n+ (x mod (k(5) × k(5))) mod k(5)

As mentioned before, these coordinates include the padding. We need to remove
said padding to �nd out how many computations from the previous layer need to
have been made. If (row, col) does not correspond to a padding value, we have:

rowunpadded = row − p
colunpadded = col − p

If row < p with ch = 0, then no value from the previous layer needs to be
computed for the �rst block to be executed. This results in tot4,5x,y = 0. The same
goes for row = p, ch = 0 and col < p.

If (x, y) is a padding value outside of the two previous cases, then we consider
the previous non-padding value in I5. This corresponds to:

rowunpadded = row − 1

colunpadded = n′

Indeed, we then need to take the last (non-padding) element in the previous row.
With (xmin, ymin) and (xmax, ymax), we have that:

rowmin =

⌊
32

112

⌋
+

⌊
32 mod (3× 3)

3

⌋
= 2

colmin = 32 mod 112 + (32 mod (3× 3)) mod 3 = 34

rowmax =

⌊
64

112

⌋
+

⌊
64 mod (3× 3)

3

⌋
= 0

colmax = 64 mod 112 + (64 mod (3× 3)) mod 3 = 65

Because emax = (xmax, ymax) is in the �rst row of I5, it corresponds to a padding
element. However, not all elements in that block stem from padding elements.
Instead, we can take the last non-padding element in the previous channel. We
therefore need to consider channel ch′emax

= chemax − 1 = 6. We also need to select
the last element of the (3× 3) input window, meaning:

row′max = 2

col′max = 66

We then remove the padding from emin = (xmin, ymin) so as to �nd the coordinates
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in Conv4's output. This gives us:

row′min = 1

col′min = 33

ch′emin
= 3

row′max = 2

col′max = 66

ch′emax
= 6

These are the coordinates of the last element we need in the output of Conv4.
The coordinates c of that element in the said output are:

cmin = (ch′emin
, row′min × n+ col′min) = (3, 145)

cmax = (ch′emax
, row′max × n+ col′max) = (6, 290)

We now have enough information to compute tot4,5e .

Let b = argminb′
(∑b′

q=0w1 ≥ c
)
. b is the number of the block width-wise containing

c. For each block number b′ < b, we need to multiply all the blocks height-wise with
their associated block �lters, meaning H(4)

b′ ×M
(4)
b′ multiplications for each block b′.

For b, we need to compute all the height-wise block multiplications up to the block

containing ch. This is equal to:

⌈
ch

h
(4)
1

⌉
×H(4)

b . The full formula is then:

tot1,2e =

(
b−1∑

q=0

H(4)
q ×M (4)

q

)
+

⌈
ch

h
(4)
1

⌉
×H(4)

b (6.1)

We can apply that to emax and emin, considering constant block shapes of either
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(32, 32) for emin or (64, 64) for emax:

bemin
=

⌈
145

32

⌉
= 5 (6.2)

H
(4)
q,min =

⌈
3× 3× 64

32

⌉
= 18 ∀q ≤ b (6.3)

M
(4)
q,min =

⌈
128

32

⌉
= 4 ∀q ≤ b (6.4)

⌈
che′min

32

⌉
×H(4)

b,min = 4 (6.5)

tot4,5emin
= bemin

×H(4)
q ×M (4)

q +

⌈
che′min

32

⌉
×H(4)

b (6.6)

= 292 (6.7)

bemax =

⌈
290

64

⌉
= 5 (6.8)

H(4)
max = H(4)

q,max =

⌈
3× 3× 64

64

⌉
= 9 ∀q ≤ b (6.9)

M (4)
max =M (4)

q,max =

⌈
128

64

⌉
= 2 (6.10)

⌈
che′max

64

⌉
×H(4)

b,max = 2 (6.11)

tot4,5emax
= (bemax − 1)×H(4)

max ×M (4)
max +

⌈
che′max

64

⌉
×H(4)

b,max (6.12)

= 74 (6.13)

Thus, the total number of matrix multiplications required for one block in Conv5
to be ready ranges between 74 and 292 depending on the block sizes: tot4,5 ∈ [74, 292]
(by Equations (6.7) and (6.13)).

This range of values can be obtained because we know the padding and �lter
sizes. A potential attacker, however, does not have access to this information. She
only knows the number of input channels and the input shape.

The remaining question is whether the range of values for di�erent �lter and
padding sizes overlap. If it is the case, then an attacker cannot di�erentiate be-
tween the various hyper-parameter values. Let us suppose, once again, that k =
k(4) = k(5) and compute all the possible values for tot4,5x,y ((x

′
min, y

′
min) = (32, 32) and

(x′max, y
′
max) = (64, 64)), given out4, out5 and in5. Table 6.1 shows the resulting

values.

Table 6.1: Maximal and minimal number of multiplications depending on the �lter
size, when the attacker can distinguish between convolutional layers.

k(4) 1 2 3 4 5 6 7 8 9 10 11

tot4,5
x′
min,y

′
max

2 8 306 928 1,400 4,896 5,488 7,168 6,480 8,000 6,776
tot4,5

x′
max,y

′
min

1 4 9 16 25 36 49 64 324 400 242
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If k = 1, tot4,5 ∈ [1, 2]. If k = 2, tot4,5 ∈ [4, 8] and so on. Because of those ranges,
if an attacker manages to recover tot4,5, she can determine whether k = 1 or k = 2.
However, the ranges for k > 2 overlap, meaning that for a given tot4,5, she has at
least two possibilities for k. In our architecture, we have that tot4,5 ∈ [74, 292]. An
attacker observing this number only knows that 9 > k > 2. This multiplies by 6 the
number of possible architectures for that set of layers. There are 13 convolutional
layers in VGG16. If we extrapolate and assume we have 6 possibilities for each
layer, the reduced search space is multiplied by 613. This is an overevaluation of the
added uncertainty. But we see, based on our computations on layers 4 to 6, that
because of the overlapping, we have at least two possibilities per layer for the �lter
value, when there was previously no uncertainty. This leads to a multiplication of
the search space by at least 213. Let us note that it represents a high increase in the
search space, as recovering the correct architecture then requires training all of the
remaining possibilities.

In [141], the authors reduced the search space for VGG16 to 16 possibilities.
With our protection, we can increase it to 217.

Furthermore, this computation does not provide the attacker with the padding,
as she does not know the full output size, resulting in an even larger search space.

Protected Case, When an Attacker Can Only See Max Pooling Layers:
In reality, as stated in the previous paragraph, it is di�cult for an attacker to
di�erentiate between convolutional layers. This means that tot4,5 is not observable,
and the attacker can only recover the number of multiplications required to reach
the following max pooling layer MaxPool. We therefore need to compute tot4,6.

If we denote (x, y) the last element in the �rst MaxPool block B, and (x′, y′)
the last element in Conv5 that needs to be computed for B to be ready, then:

tot4,6x,y = tot4,5x′,y′ + tot5,6x,y

.
This time, we consider the possible ranges of tot4,6, given that in5 and out5 are

not available to the attacker.
In our case, MaxPool has window size k(6) = 2, and does not require any

padding.
Furthermore, all channels need to be computed at once in the pooling case. Thus,

the coordinates of (x, y) in the output of Conv5 are:

row =

⌊
k(6) · y
n

⌋
+
⌊ x

k(6)

⌋

col =
(
y mod

n

k(6)

)
× k(6) + x mod k(6)

c = row × n+ col

We also have that b = argminb′
(∑b′

q=0w1 ≥ c
)
. Applying it to our case for (xmin, ymin) =
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(32, 32) and (xmax, ymax) = (64, 64), we have:

rowmin =

⌊
2 · 32
112

⌋
+

⌊
32

2

⌋
= 16

colmin =

(
32 mod

112

2

)
× 2 + 32 mod 2 = 64

cmin = row × 112 + col = 1856

bmin =
⌈cmin

32

⌉
= 58

rowmax =

⌊
2 · 64
112

⌋
+

⌊
64

2

⌋
= 33

colmax =

(
64 mod

112

2

)
× 2 + 64 mod 2 = 16

cmax = row × 112 + col = 3712

bmax =
⌈cmax

64

⌉
= 58

In O(5), we need the element with coordinates (ch,B · b) where ch is the last �lter of
Conv5, sinceMaxPool requires all channels to be completed. That element requires
element (x′, y′) = (in5 × k(5) × k(5), B · b) in I(5). Indeed, the column number in
O(5) and I(5) must be the same. Furthermore, the whole column must be computed,
which is why x′ = in5 × k(5) × k(5). Thus, the previous formulas directly provide us
with (x′, y′):

(x′min, y
′
min) = (in5 × k(5) × k(5) − 1, 32 · bmin) = (128× 9− 1, 1856)

(x′max, y
′
max) = (in5 × k(5) × k(5) − 1, 64 · bmax) = (128× 9− 1, 3712)

Thus, given Conv5 has 128 input and output channels:

H
(5)
min =

⌈
128× 9− 1

32

⌉
= 36

H(5)
max =

⌈
128× 9− 1

64

⌉
= 18

M
(5)
min =

⌈
128

32

⌉
= 4

M (5)
max =

⌈
128

64

⌉
= 2

tot5,632,32 = bmin ×H(5)
min ×M (5)

min = 8352

tot5,664,64 = bmax ×H(5)
max ×M (5)

max = 2088

Here, we have H(5) ×M (5) for width-wise block b as well because the whole b-th
block width-wise needs to be computed, as well as all channels.

Applying the same process as previously to compute tot4,5emin
and tot4,5emax

, we have:

tot4,5x′min,y
′
min

= 4338

tot4,5x′max,y
′
max

= 1053
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Thus, we have:

tot4,6x′min,y
′
min

= tot5,6xmin,ymin
+ tot4,5

in5×k(5)×k(5),emin·bmin
= 12690

tot4,6x′max,y
′
max

= tot5,6xmax,ymax
+ tot4,5

in5×k(5)×k(5),emax·bmax
= 3141

Therefore, the total number of multiplications for one MaxPool block to be
ready ranges between 3, 141 and 12, 690 in the set of layers we study from the
VGG16 architecture: tot4,6 ∈ [3141, 12690].

Once again, the attacker does not know k(4), k(5), k(6) or the padding values.
For each layer, k(i) ∈ {1, ..., 11}. We also suppose, like before, that k(4) = k(5).
The padding p between Conv4 and Conv5 (the only one that intervenes in the
computations) is such that p < k(4). We get tables of possible values depending on
k(4) = k(5), p and k(6). As before, we take the maximum and minimal values over
all possible p. Table 6.2 considers the range of tot4,6 depending on k(4).

Table 6.2: Maximal and minimal number of multiplications depending on the �lter
size, when the attacker cannot distinguish between convolutional layers but knows
out4, in5 and out5.

k(4) 1 2 3 4 5 6

tot4,6xmin,ymin
2,712 10,976 24,912 44,800 70,600 102,528

tot4,6xmax,ymax
126 504 1,134 1,984 3,100 4,464

k(4) 7 8 9 10 11

tot4,6xmin,ymin
141,120 185,856 237,168 295,200 360,096

tot4,6xmax,ymax
5,978 7,808 9,882 12,000 14,520

Once again, the ranges for all possible tot4,6 values overlap, making it harder for
the attacker to determine the architecture. In our case, we had tot4,6 ∈ [3141, 12041].
An attacker could therefore only deduce that 1 < k(4) < 11. The range can be further
deduced depending on the value actually observed, but there are at least two �lter
size values in every case. Furthermore, for most k(6) values, 2 < k(4) < 10.

So far, we had assumed, for simplicity, that the number of input and output
channels are known for all layers. But it is generally not the case. Taking this last
fact into account, the possible tot4,6 values are given in Table 6.3.

All k(4) values are possible. The attacker cannot determine k(4), k(5) or k(6). In
all cases, we have at least 2 possibilities for each of the �lter sizes. Since there are
18 max pooling and convolutional layers in VGG16, we can extrapolate once again
and say that our protection could lead to a multiplication of the search space by
218. This leads to a reduced search space of 222. Let also remind the reader that
k(4) and k(5) can actually di�er, making a potential attacker's life even harder.

6.5.2 Performance Evaluation

Experimental Platform. We launch our experiments on a DELL work station
OptiPlex 7040 with a 4-core Intel Core i7 processor and three levels of cache of sizes,
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Table 6.3: Maximal and minimal number of multiplications depending on the �lter
size, when the attacker cannot distinguish between convolutional layers.

k(4) 1 2 3 4

tot4,6xmin,ymin
> 9.6 · 106 > 10.5 · 106 > 10 · 106 > 11 · 106

tot4,6xmax,ymax
42 42 44 44

k(4) 5 6 7 8

tot4,6xmin,ymin
> 11 · 106 > 12 · 106 > 13.4 · 106 > 15.8 · 106

tot4,6xmax,ymax
46 48 54 64

k(4) 9 10 11

tot4,6xmin,ymin
> 19.2 · 106 > 28.3 · 106 > 54.7 · 106

tot4,6xmax,ymax
80 116 226

(a) Simulation of a Flush and Reload attack on itcopy and oncopy patterns of an unpro-

tected model.

(b) Simulation of a Flush and Reload attack on itcopy and oncopy patterns of a protected

model.

Figure 6.7: Simulation of Flush and Reload on an unprotected (a) and a protected
(b) model. The model considered has 2 convolutional layers separated by a max
pooling one. Block sizes are between 32 and 38 in (b).

respectively, 32 KB, 256 KB and 8192 KB. Our experiments are carried out using
Debian 4.19.152-1.

Performance. Let us consider a perfect attacker, who can recover the Flush and
Reload traces without any noise. To simulate this, we use the GNU Debugger
(GDB) to log all calls to itcopy and oncopy, along with the cycles at which they
were called. Figure 6.7a shows such a simulation of an unprotected model.

Once again, we can see in Figure 6.7 that the layers' traces are interleaved, and
it is di�cult for an attacker to distinguish between the various layers.

Let us now consider our protection's overhead. Note that we do note take the
creation of the architecture into account here, as it only needs to be executed once,
rather than at each inference computation. We consider three architectures in our
experiments. In all cases, there is only 1 input and output featuremap, the convo-
lutional �lter size is 3× 3, the pooling window size is 2× 2 and there is no padding.
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The architectures are as follows :

1. Conv � MaxPool � Conv � MaxPool (arch1)

2. Conv � MaxPool � Conv (arch2)

3. Conv � Conv (arch3)

We average the execution time over 1,000 runs for several input sizes, as shown
in Table 6.4. The time overhead depends heavily on the architecture's depth, the
input size, the layer types and the block sizes.

The case B = 1 in Table 6.5 is included to show the importance of correctly
selecting the minimal block size. The high overhead incurred in the case where one
neuron is computed at a time con�rms our assertion in Section 6.2.1, stating that
considering one neuron at a time would take too long.

Let us now consider the case B = 32. In some cases, such as arch2 with input
shape 1 × 20 × 20, the randomized protection has almost the same execution time
as a normal execution.

We believe that the higher overhead in arch3 is due to the lack of maxpooling
layers: this leads to higher input sizes for the convolutional layers, and convolutional
layers take naturally longer to compute than maxpooling.

Let us remind the reader that we did not use common frameworks such as Py-
Torch [98] or TensorFlow [83], as explained in Section 6.5.4. Moreover, because the
GeMM operation is operated on a very low level and ensures an optimally �lled
cache, it is very e�cient. It is not the case for our high-level block subdivisions
and multiplications. Thus, since common ML frameworks are heavily optimized,
and so is the GeMM operation, we believe that the worst case in Table 6.4 being 8
times more time consuming than an unprotected operation is reasonable, and the
time overhead could be improved with further optimization. This is especially the
case since we compare our implementation's execution time to a standard, highly
optimized, Keras � with TensorFlow as a backend � one.

Furthermore, despite the incurred overhead, we believe that our countermeasure
is a �rst important step towards a secure real time execution.

Table 6.4: Execution times for three di�erent architectures, depending on the type
of protection added. In all cases, the block size is B = 32.

Input
shape

Protection Type arch1 arch2 arch3

1× 28× 28
None / / 842µs 1 606µs 1
Blocks, no ran-
dom

/ / 1634µs ×1.94 4966µs ×8.19
Blocks, random / / 1714µs ×2.04 4995µs ×8.24

1× 22× 22
None 698µs 1 610µs 1 764µs 1
Blocks, no ran-
dom

904µs ×1.30 927µs ×1.52 2340µs ×3.06
Blocks, random 1004µs ×1.44 989µs ×1.62 2391µs ×3.13

1× 20× 20
None / / 635µs 1 542µs 1
Blocks, no ran-
dom

/ / 745µs ×1.17 1718µs ×3.17
Blocks, random / / 816µs ×1.29 1765µs ×3.26
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Table 6.5: Execution times for three di�erent architectures, depending on the block
size considered. We compare the case B = 1 to the case B = 32 to show how crucial
it is to select the correct block size. In all cases, we consider the random protection.

Block
size

Input shape arch1 arch2 arch3

1
1× 28× 28 / 2539µs 50198µs
1× 22× 22 1047µs 1006µs 13923µs
1× 20× 20 / 842µs 9406µs

32
1× 28× 28 / 1714µs 4995µs
1× 22× 22 1004µs 989µs 2391µs
1× 20× 20 / 816µs 1765µs

6.5.3 Discussion

Our approach is similar to [2] and [109] in the sense that we obtain the value of
some neurons in layer i+ 1 before the execution of layer i is done. But besides the
fact that we do not consider a hardware context, our suggestion di�ers in that we
introduce randomization in the computation of neurons: we do not compute the
value of a neuron as soon as enough elements are ready. Rather, we compute them
in a random way determined at the creation of the architecture. Moreover, our goal
is di�erent: we aim at increasing the security by mitigating cache attacks based on
the GeMM computations during an NN inference.

One limitation in our method is the pooling layer. Indeed, because its execu-
tion di�ers from that of convolutional layers, and no GeMM is applied, a potential
attacker can detect when an execution switches between a convolutional layer and
a pooling one. As shown in Section 6.5.1, however, our methodology still mitigates
Cache Telepathy in architectures with pooling layers. We believe that architectures
such as Fully Convolutional Networks [75], which have several consecutive convolu-
tional layers, could make the architecture almost completely leakage free.

The overhead induced depends on the block sizes and the model's depth. Balanc-
ing security of the protection � linked to the random block sizes � and the incurred
overhead is however possible, as the said overhead is still manageable. We also be-
lieve that a better optimization of our implementation should reduce the observed
overhead.

Even if our protection targets Cache Telepathy speci�cally, we believe it could
be used against other side-channel attacks such as CSI [10], DeepRecon [53] or How
to 0wn NAS [52]. Both CSI [10] and How to 0wn NAS [52] mention that reordering
would indeed be a countermeasure to their method. CSI [10] bases its attack on the
sequential nature of NNs. It proceeds layer by layer to �nd the number of neurons
and the weights in each layer. In each layer, and for each multiplication w ·x (where
w is the weight and x is an input value), the attacker makes two hypotheses: either
this multiplication takes place in layer i, or it takes place in layer i + 1. If the
layers are not computed sequentially, then the hypotheses no longer make sense,
as the multiplication could take place at a later layer. In the case of [52], layers
as a whole are targeted. Indeed, speci�c functions corresponding to speci�c layers
are monitored. Thus, splitting the layers would prevent them from targeting the
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pre-existing functions.

6.5.4 Scope and Limitations

Let us now discuss the scope and limitations of our countermeasure.
First of all, because the proposed approach needs to compute layers in a non-

sequential order, it does not apply to FC layers, even though Cache Telepathy
targets them as well. Indeed, these layers require all neurons from the previous
layer to be computed before they can start their execution. We therefore limit our
countermeasure to CNNs. However, as CNNs are now widely used in various �elds
such as the medical one [101], image processing [13] or game playing [114], our
countermeasure can still apply to many commonly used architectures [115, 48, 119].

Second, as in the Cache Telepathy paper [141], we place ourselves in the CPU
context. Indeed, as mentioned in [53], monitoring GeMM functions requires them
to be in the same instruction line in the cache for the victim and the attacker. They
therefore need to run on the CPU. As mentioned in Section 2.2.4, several popular
MLaaS frameworks [3] provide CPU computations for inference.

Third, instead of using high-level, highly optimized frameworks such as Tensor-
Flow [83] or PyTorch [98], we wrote our own implementation in C++. We required
more freedom when writing code, as commonly used functions in those frameworks
apply to entire layers, when we needed to deal with neurons individually. Moreover,
using C++ still enabled us to apply GeMM, which is the target of the attacker. This
C++ implementation � necessarily less optimized than common ML frameworks �
partially explains the overhead observed in Table 6.4 in Section 6.5.2.

Finally, as detailed in Section 6.5.2, our goal is to mitigate the Cache Telepathy
attack by preventing an attacker from getting a tractable search space for the victim
model's architecture. Thus, even though not all leakages are eliminated, an attacker
still cannot recover the correct architecture without training over 217 architectures,
which is not feasible in a reasonable period of time.

6.6 Conclusion

While the �rst part of this dissertation focused on the direct protection of models'
weights and biases, we discuss a way to defend the architecture in this second part.
Not only does this help in the parameter protection and secure IP, but it also prevents
other attacks such as membership inference attacks [113].

To achieve our goal, we propose Telepathic Headache, a protection against cache-
based attacks targeting the GeMM algorithm used by most ML frameworks to im-
plement FC and convolutional layers in a CPU setting. Our scheme consists in
mixing a model's layer by computing neurons in blocks, depth-wise. As soon as
certain random-sized blocks of values in a layer are ready, they are multiplied by
the associated �lter values and the results are sent to the next layer.

The security analysis has shown that our proposal leads to a multiplication by
at least 218 of the reduced search space obtained by Cache Telepathy on VGG16.
Even though we have only considered the Cache Telepathy attack when measuring
the e�ciency of our defense, the methodology we have presented could also be used
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against other timing-based SCAs, such as DeepRecon [53] and EM-based SCAs such
as CSI Neural Network [10]. In fact, the authors of [10] mention in their discussions
that randomizing the computation of neurons would thwart their attack.
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Chapter 7: Conclusion

The increasing number of reverse-engineering attacks on NNs pose serious security
issues, be it concerning the intellectual property of industries or the users' privacy.
Because of the novelty of the attacks, not many countermeasures have appeared.
Moreover, most existing protections are hardware-based. In this thesis, we provided
three software-based countermeasures to reverse-engineering attacks. Our work also
led us to apply one of our proposals to mitigate adversarial attacks.

7.1 Contributions

We started by introducing NNs and their structure, as well as the attacks and
protections that have already been published. Let us note that we published a
survey titled �Side-Channel Attacks for Architecture Extraction of Neural Networks�,
in CAAI Transactions on Intelligence Technology [158].

The �rst part was set in a gray-box context, where the attacker had partial
knowledge about the target model. In Chapters 3 and 4, we proposed defenses
against weight extraction attacks where the attacker had access to the architecture.

In Chapter 3, we �rst introduced the notion of parasitic models, a staple in Part I.
We showed how those parasitic CNNs alter a model's internal structure, therefore
making it harder to carry out mathematical weight extraction attacks. Indeed, the
introduction of layers with ReLU activation functions creates hyperplanes associated
to the new neurons being equal to 0. The non-linearity of activation functions
ensure that the newly introduced hyperplanes bend the previously existing ones,
thus enabling a modi�cation of the internal structure. Due to their strong relation
with the internal structure, we veri�ed our claim by measuring the modi�cation of
adversarial examples. The results from this Chapter led to a publication in ICISSP
2021 [157], titled �A Protection against the Extraction of Neural Network Models�.

A key element, dynamism, lacked in the contribution from Chapter 3. Indeed,
the protection previously suggested did not prevent physical side-channel attacks,
which can reconstruct an entire model based on power or electromagnetic traces.
Selecting a di�erent set of parasitic models at each run enabled us to hide the input
of a target model in Chapter 4. By placing at least one parasite, selected at random,
at the entrance of a model, we made sure a malicious user saw constantly changing
input values, preventing her from extracting precise weight values. In this case,
the overhead at runtime corresponds to the addition of only a few layers to the
original model, as well as selecting a model at random among a pretrained set. The
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latter is equivalent to randomly generating one integer. Overall, the overhead only
corresponds to a small percentage of a large NN's computations. The content of this
Chapter was published in SPACE 2021 [155], under the name �Parasite: Mitigating
Physical Side-Channel Attacks Against Neural Networks�.

When studying the impact of parasites on the internal structure of a model,
we noticed that the change in structure is closely linked to adversarial example
generation. This led us to the third contribution of this thesis, in Chapter 5. We
used autoencoders as parasites to both learn the important features in images and
add arti�cial noise. We showed the increased robustness that our proposal brought
in two experiment settings. In the �rst, the attacker only had access to the base
model. In the second, the attacker also knew that an autoencoder had been added to
the original model. The content of this Chapter was submitted to a conference [159].

As the parameter protection can be achieved through architecture security and
the architecture itself constitutes IP, we focused on a black-box model in the second
part of this thesis. Because SCAs that aim at recovering the architecture of a
model rely on the sequential execution of NN models, we proposed, in Chapter 6,
to reorder computations to mitigate a cache-based attack [141]. To this e�ect,
we considered blocks of neurons of random sizes. We computed neurons from the
following layer in a depth-wise fashion � i.e., we computed a block as soon as it
was ready. We published this work as �Telepathic Headache: Mitigating Cache
Side-Channel Attacks on Convolutional Neural Networks� in ACNS 2021 [156].

In Chapter 4 and Chapter 6, we have made use of simulations for the potential
attacker. However, in both cases, we assumed an attacker with perfect side-channel
leakage traces, making our defense task harder and thus validating our results.

Although we have demonstrated the feasibility and e�ciency of our counter-
measures, they are not without disadvantages. While small parasitic models only
introduce a few optimized layers, and their training can generally be made inde-
pendent from the model to protect, using them is a sensitive task. Indeed, we have
highlighted the importance of carefully selecting an appropriate architecture and
of proper training. In all three Chapters using them � Chapters 3 to 5, we noted
that a balance must be found between the drop in the accuracy and the protection
provided.

7.2 Future Work

In Chapters 3 to 6, we proposed four countermeasures against reverse-engineering
and adversarial attacks, and we showed their e�ciency. As in any proposal, these
defenses can be improved and built upon. In the wake of the work presented here,
future research could focus on the following subjects:

� In Chapter 4, on top of hiding the input, one could hide the activation func-
tions. This could be achieved by approximating them in a similar fashion
as for the input. One could study the impact of training small CNNs that
approximate the activation functions. For instance, one could train a CNN
to approximate a noisy ReLU instead of a noisy identity function. Because
ReLUs are more complex than the identity, it would also be interesting to
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study whether ReLU is complex enough that a small CNN cannot very pre-
cisely approximate it, and therefore introduce noise.

� It is also important to note, in Chapter 4, that a balance between the number
of added operations and a high entropy in the set of parasitic CNNs needs
to be reached. For this reason, further work could conduct a study on which
architecture could best approximate a noisy identity while minimising the
number of parasitic operations. For instance, one could consider a smaller
�lter size in the countermeasure: 3×3 instead of 5×5. One could also increase
the stride of the introduced convolutional layers. Indeed, the larger the �lter
and the higher the number of layers, the higher the number of operations. But
limiting the possible �lters and/or the number of layers decreases the size of
the parasitic CNN set. Hence, further testing could be carried out to determine
the right balance.

� In Chapter 5, we train parasitic autoencoders on the output of the layers after
which we wish to place them. However, one could train them on one normalized
channel at a time. Such autoencoders could then be placed anywhere in the
model. Moreover, they could only be applied to part of a layer. But when
doing so, one should take care that the trained autoencoders do not lead to a
noticeable drop in the base model's accuracy.

� In general, one could study the impact of the various parasitic parameters
for di�erent ML models. One interesting lead could be to set the parasites
to be NNs with numerous architectures � varying number of layers, of �lter
sizes, of activation functions,... � and determine the impact of each parameter
on the accuracy and robustness against reverse-engineering and adversarial
attacks. Another option would be to make a full analysis of the best locations
where one should introduce the models, depending on the task at hand. In our
dissertation, we placed them near the entrance of the model, as we observed it
led to a small drop in the accuracy. However, applying parasites in the middle
of the base model, to some carefully selected neurons could yield better results.
A third possibility would be to determine the ideal number of parasites to
incorporate in a target model M , taking into account M 's characteristics, the
incurred time overhead and the induced drop in the accuracy. Other similar
approaches could be carried out so as to conduct a full analysis of the impact
of parasitic models on both the base model's accuracy and the resistance to
reverse-engineering and adversarial attacks.

� In Chapter 3, we impose constraints on the training of parasites so as to ensure
the newly added hyperplanes are visible to the attacker. Improving these
constraints might intensify the e�ect of the parasitic hyperplanes. We made
the choice to train the parasites independently from the base model, so that
they can generalize to any target. But if we remove this condition, we could,
for example, determine the noise so as to maximize the impact on later layers.
Indeed, we explained that a hyperplane from layer l bends hyperplanes from
layers l+1 and deeper. We can therefore determine a loss function L(θ, θ′, x, y)
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such that minimizing L maximizes the intersections between neurons from the
base model θ and the parasitic one θ′.

� In Chapter 6, we propose to reorder a CNN's neuron computations. While we
deem the incurred overhead acceptable in our experiments, some architectures
presented a higher overhead than others. Further work could therefore consist
in a deeper analysis of the overhead depending on the architecture at hand.
It might help make the proposal more time e�cient. Moreover, testing the
e�ectiveness of the reordering against other reverse-engineering attacks such
as CSI NN [10], DeepRecon [53] or How to Own NAS [52] might con�rm our
beliefs that our countermeasure should also thwart them.

� In this thesis, we have not considered binary or quantized NNs [57, 47, 41,
152, 59]. In BNNs, the weights and outputs of activation functions are binary
while in quantized networks, these values are quantized. The two types of
networks enable other types of security measures. The authors of [31, 30]
propose a hardware masking countermeasure for BNNs. We could therefore
apply such common cryptographic countermeasures to the software setting. As
some models [115, 48] have millions of parameters, masking the entire model in
the software case would be impractical. However, we show in [154] that some
parameters are more sensitive to change. Adding noise to those parameters
leads to a larger drop in the model's accuracy. We used that observation to
provide premium users with a higher accuracy model, when common users had
access to a functioning but lower accuracy one. Further work could build on
this and perform a full analysis on the neurons' sensitivity from a range of NN
models. Once the analysis is done, we could select the most sensitive neurons
and encrypt those. With a su�ciently large set of encrypted parameters, an
attacker might not be able to access a model with a suitable accuracy. In
this quantized context, another line of research could consist in using look-up
tables (LUTs) for activation functions. This could prevent timing, magnetic
and power SCAs extracting them [10].

� When it comes to quantized NNs, an interesting line of further research would
also be to investigate the impact of mounting the mathematical attack de-
scribed in Section 2.3.2 against quantized NNs. Indeed, in the non-quantized
case, a great care should be taken when dealing with �oating-point impreci-
sion with real numbers machine representation. Today, quantized NNs share
almost the same accuracy as the �oating-point ones, but do not require such
a high precision. This lead could bring us closer to di�erential cryptanalysis
and make us explore alternative cryptanalytic defenses.

� Finally, it would also be interesting to consider mixing existing countermea-
sures with our proposals. For instance, we could ensure constant-time be-
haviour for activation functions (as proposed in [124]) or through LUTs, re-
order computations and introduce dynamic parasites. In the wake of Chap-
ter 5, one could also mix dynamism with the preexisting autoencoders from [8].
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Rêsumê : Les réseaux de neurones (NNs) sont
très présents dans notre vie quotidienne, à tra-
vers les smartphones, la reconnaissance faciale et
biométrique ou même le domaine médical. Leur
sécurité est donc de la plus haute importance. Si de
tels modèles fuitent, cela mettrait non seulement en
péril la confidentialité de données sensibles, mais por-
terait aussi atteinte à la propriété intellectuelle.
La sélection d’une architecture adaptée et l’en-
traı̂nement de ses paramètres prennent du temps -
parfois des mois – et nécessitent d’importantes res-
sources informatiques. C’est pourquoi un NN consti-
tue une propriété intellectuelle. En outre, une fois l’ar-
chitecture et/ou les paramètres connus d’un utilisa-
teur malveillant, de multiples attaques peuvent être
menées, telles des attaques contradictoires. Un atta-
quant trompe alors le modèle en ajoutant à l’entrée
un bruit indétectable par l’œil humain. Cela peut me-
ner à des usurpations d’identité. Les attaques par
adhésion, qui visent à divulguer des informations sur
les données d’entraı̂nement, sont également facilitées
par un accès au modèle. Plus généralement, lors-
qu’un utilisateur malveillant a accès à un modèle,
il connaı̂t les sorties du modèle, ce qui lui per-
met de le tromper plus facilement. La protection des
NNs est donc primordiale. Mais depuis 2016, ils
sont la cible d’attaques de rétro-ingénierie de plus
en plus puissantes. Les attaques de rétro-ingénierie
mathématique résolvent des équations ou étudient
la structure interne d’un modèle pour révéler ses
paramètres. Les attaques par canaux cachés ex-
ploitent des fuites dans l’implémentation d’un modèle
– par exemple à travers le cache ou la consomma-
tion de puissance – pour extraire le modèle. Dans
cette thèse, nous visons à protéger les NNs en mo-
difiant leur structure interne et en changeant leur
implémentation logicielle.
Nous proposons quatre nouvelles défenses. Les trois
premières considèrent un contexte de boı̂te grise

où l’attaquant a un accès partiel au modèle, et ex-
ploitent des modèles parasites pour contrer trois
types d’attaques. Nous abordons d’abord des at-
taques mathématiques qui récupèrent les paramètres
d’un modèle à partir de sa structure interne. Nous
proposons d’ajouter un – ou plusieurs – réseaux de
neurones par convolution (CNNs) parasites à divers
endroits du modèle de base et de mesurer leur im-
pact sur la structure en observant la modification des
exemples contradictoires générés.
La méthode précédente ne permet pas de contrer
les attaques par canaux cachés extrayant les pa-
ramètres par l’analyse de la consommation de puis-
sance ou électromagnétique. Pour cela, nous propo-
sons d’ajouter du dynamisme au protocole précédent.
Au lieu de considérer un – ou plusieurs – para-
site(s) fixe(s), nous incorporons différents parasites
à chaque exécution, à l’entrée du modèle de base.
Cela nous permet de cacher l’entrée, nécessaire à
l’extraction précise des poids. Nous montrons l’impact
de cette défense à travers deux attaques simulées.
Nous observons que les modèles parasites changent
les exemples contradictoires. Notre troisième contri-
bution découle de cela. Nous incorporons dynami-
quement un autre type de parasite, des autoenco-
deurs, et montrons leur efficacité face à des attaques
contradictoires courantes. Dans une deuxième partie,
nous considérons un contexte de boı̂te noire où l’at-
taquant ne connaı̂t ni l’architecture ni les paramètres.
Les attaques d’extraction d’architecture reposent sur
l’exécution séquentielle des NNs. La quatrième et
dernière contribution que nous présentons dans cette
thèse consiste à réordonner les calculs des neurones.
Nous proposons de calculer les valeurs des neurones
par blocs en profondeur, et d’ajouter de l’aléa. Nous
prouvons que ce réarrangement des calculs empêche
un attaquant de récupérer l’architecture du modèle ini-
tial.
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Abstract : In a context where Neural Networks (NNs)
are very present in our daily lives, be it through smart-
phones, face and biometrics recognition or even in
the medical field, their security is of the utmost impor-
tance. If such models leak information, not only could
it imperil the privacy of sensitive data, but it could also
infringe on intellectual property.
Selecting the correct architecture and training the cor-
responding parameters is time-consuming – it can
take months – and requires large computational re-
sources. This is why an NN constitutes intellectual
property. Moreover, once a malicious user knows the
architecture and/or the parameters, multiple attacks
can be carried out, such as adversarial ones. Adver-
sarial attackers craft a malicious datapoint by adding
a small noise to the original input, such that the noise
is undetectable to the human eye but fools the model.
Such attacks could be the basis of impersonations.
Membership attacks, which aim at leaking information
about the training dataset, are also facilitated by the
knowledge of a model. More generally, when a mali-
cious user has access to a model, she also has ac-
cess to the manifold of the model’s outputs, making it
easier for her to fool the model.
Protecting NNs is therefore paramount. However,
since 2016, they have been the target of increasin-
gly powerful reverse-engineering attacks. Mathema-
tical reverse-engineering attacks solve equations or
study a model’s internal structure to reveal its para-
meters. On the other hand, side-channel attacks ex-
ploit leaks in a model’s implementation – such as in
the cache or power consumption – to uncover the pa-
rameters and architecture. In this thesis, we seek to
protect NN models by changing their internal struc-
ture and their software implementation.
To this aim, we propose four novel countermeasures.
In the first three, we consider a gray-box context
where the attacker has partial access to the model,

and we leverage parasitic models to counter three
types of attacks.
We first tackle mathematical attacks that recover a
model’s parameters based on its internal structure.
We propose to add one – or multiple – parasitic
Convolutional Neural Networks (CNNs) at various lo-
cations in the base model and measure the incurred
change in the structure by observing the modification
in generated adversarial samples.
However, the previous method does not thwart side-
channel attacks that extract the parameters through
the analysis of power or electromagnetic consump-
tion. To mitigate such attacks, we propose to add dy-
namism to the previous protocol. Instead of conside-
ring one – or several – fixed parasite(s), we incorpo-
rate different parasites at each run, at the entrance of
the base model. This enables us to hide a model’s in-
put, necessary for precise weight extraction. We show
the impact of this dynamic incorporation through two
simulated attacks.
Along the way, we observe that parasitic models affect
adversarial examples. Our third contribution is deri-
ved from this, as we suggest a novel method to mi-
tigate adversarial attacks. To this effect, we dynami-
cally incorporate another type of parasite: autoenco-
ders. We demonstrate the efficiency of this counter-
measure against common adversarial attacks.
In a second part, we focus on a black-box context
where the attacker knows neither the architecture nor
the parameters. Architecture extraction attacks rely on
the sequential execution of NNs. The fourth and last
contribution we present in this thesis consists in reor-
dering neuron computations. We propose to compute
neuron values by blocks in a depth-first fashion, and
add randomness to this execution. We prove that this
new way of carrying out CNN computations prevents
a potential attacker from recovering a small enough
set of possible architectures for the initial model.
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