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Chapter

Introduction

The concept of sensory feedback is at the core of the study of cybernetics agents targeting
autonomy. To realize actions, an agent needs a representation of the current state of
the world, which is inferred from its past sensors measurements. Current actions may
then affect this state, which is reflected in a change of its sensors output. This creates a
feedback loop, that, if designed well, leads to a stable, auto-regulated system.

For most robotics applications, the complexity of building a proper feedback behavior
comes both from the difficulty to capture a proper representation of the robot world and
the diversity of possible control reactions. The world representation is built by an estima-
tor that fuses several sources of information. The challenge is then to choose the set of
appropriate sensors for each application and to design an efficient estimation algorithm
to fuse them. Let us first discuss how this feedback loop has evolved while robotics was
growing mature.

1.1 From factory automation to dancing robots

Within the field of robotics, the implementation of the feedback loop has seen dramatic
changes over the years, propelled by the changing nature of the mechatronic systems, in
particular in the actuation and sensor array, the applications at play, and the mathematical
formulations used to model the systems. The progression of the perception side of the
loop, extracting meaningful information from sensor data, can be divided into a few steps
that accompany the evolution of robotics, from fixed manipulators to agile legged robots.

The first major robotic use was in the industrial space: starting in the early 60’s !, arm
manipulators have been progressively integrated into many assembly lines, especially in
the automotive industry. This application requires the performance of highly precise,
repetitive tasks, which are predefined by specialized human operators. These highly rigid
robots are controlled in position and fixed to the ground, which usually limits the percep-
tion needs to the relative angles between their different parts.

On the other end of the spectrum, researchers started to equip wheeled mobile plat-
forms Fig. 1.1b in controlled laboratory environments with exteroceptive sensors [Nil84;
CL85] to apply planning algorithms, using mainly range sensors to control the presence

The Unimate manipulator Fig. 1.1a was adopted by General Motors to displace hot die casting pieces
to cooling tanks or assembly lines, first tests starting in 1961.
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Figure 1.1: Evolution of robotics platforms from factory manipulators to humanoid robots. (a)
Unimate factory manipulator, (b): Hilare mobile robotics research platform developed at LAAS-
CNRS, (c): Stanford autonomous car winner of the 2005 DARPA grand challenge, (d): Digit
(Agility Robotics) commercial humanoid robot.

of obstacles, along with wheel odometry * to detect relative displacement. Research on
mobile robotics moved to outdoors applications, using motorized vehicles as research
platforms. The 2005 DARPA grand challenge offered one of the first large scale proof of
concept of autonomous cars, where a few teams managed to safely drive 150 miles paths
in desert-environments [Thr*06] (see Fig. 1.1c), while the 2007 DARPA Urban challenge
concentrated on urban road environments [Urm*08]. In both cases, cars were equipped
with GPS, IMU’s, cameras, and a metric map of the path. Most teams relied heavily
on global positioning, exteroceptive sensors being used for minor checks and corrections
[Hil*14]. Nowadays, the most successful autonomous car systems seem to tend toward
exclusive use of vision for local navigation (lane following, lane changing, overtaking,
etc.) 3.

In this landscape of autonomous systems, legged robots Fig. 1.1d (humanoid or quadrupeds)
are singular in many regards. First and foremost, they are inherently unstable dynamical
systems that require continuous active control by applying forces at chosen locations of
the environment. Therefore, they require an acute sense of balance, in which Inertial
Measurement Units and contact detection play important roles. Secondly, they are mobile

2Odometry is, in the large sense, information about the relative motion of a robot obtained from the
integration of a motion sensor (wheel encoder, IMU, Doppler Velocity Logs, etc.)
3As Andrej Karpathy puts it, “Lidar is really a shortcut”
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1.2. Biological equivalent, an example

platforms, whose primary function is to be able to navigate environments to perform tasks
such as inspection or manipulation. A perception of the environment is therefore required
for any meaningful tasks to be undertaken, contrary to fixed manipulators. Thirdly, they
can in theory navigate cluttered, unstructured environments, which extends their opera-
tional capacities, compared to wheeled platforms. This makes for challenging perceptual
problems that require taking into account their many embarked sensor modalities.

In this thesis, we are interested in extending the perceptual capabilities of legged
robots (humanoids and quadrupeds). This kind of robot requires both a high-rate (1 kHz),
low latency estimates of its physical quantities to balance itself, like a precise direction of
the gravity, and an accurate environment representation for safe navigation and interac-
tion. As we will explain in the next chapter, these tasks are oftentimes handled separately
in the literature. We believe that it is possible to improve existing systems by a tight
integration of the many sensor modalities available on such a platform.

As a first justification of this point of view, let us consider a biological example that
will motivate this approach.

1.2 Biological equivalent, an example

A digression through a biological example may provide some intuitions about complexity
of the problem. For instance, the simple task of picking up a box makes use of almost
all of our senses: our eyes to spot the object, our vestibular system to balance against
gravity, our proprioception (kinesthetic sense) to extend our arms toward the object, our
sense of touch to assess its softness, etc. However, this simplistic enumeration hides a
more complex reality: in many cases, the information processed by our brain to make
decisions results from the fusion of multi-modal stimuli. For instance, it is demonstrated
that during communication between animals or humans, vocal stimuli, mouth movements,
and facial gestures are tightly integrated [MDO0S5; Sug*06]: watching a speaker’s mouth
changes our perception of its speech. The combination of these stimuli can affect the
recovered information, either clarifying the underlying message [MS83] or compromising
it, as for the McGurk effect [MM76]. These coupling phenomena being highlighted by
group experiments [MM?76], the location of the fusion can be demonstrated by recording
the activity of neurons [RRM97].

This tight coupling is also present in the sense of movement. One major example is
the vestibulo-ocular reflex [ML81]: our eye movements are regulated by the semicircu-
lar canals signals, that essentially provide angular-velocity measurements, stabilizing our
gaze. This reflex is very fast: less than 10 ms [Aw*96] and is constantly being recali-
brated throughout our life [ML81]. Notice that this performance is made possible by the
colocation of the two senses and their proximity to the central nervous system. Evidence
suggests that this concentration of senses and processing capability in the head has an
evolutionary advantage that can be explained by several reasons [Bai"18]: it is easier to
process stimuli from sensory organs whose spatial relation is fixed; shorter pathways be-
tween senses and the brain increases information bandwidth; independence of the head
helps to stabilize the senses inputs while enabling active exploration strategies. Despite
these facts, except for humanoid robots, few systems come equipped with a truly multi-
sensory head nowadays. This would be justified by estimation approaches that are capable
of truly coupling the different sensor modalities.
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1.3 How to implement artificial sensing for legged robots

To be able to able to achieve any meaningful tasks, robots need to display a sufficient
level of dynamical intelligence and perception capabilities. In particular, the perception
should be adapted to real-time control at the high frequencies usually found in legged-
robot controllers (in the kHz range). The estimated state should accurately reflect both
the dynamics of the robot as well as its surounding environment. Balance controllers in
particular require a precise estimation of the gravity vector direction, as well centroidal
quantities (center of mass, angular momentum, etc.). In our opinion, this implies that the
ideal perception system should encourage the multiplication of perception sources both
in the number of sensors and their variety. Special care should be taken to obtain sensors
of the best quality and to carry out a precise calibration, both of their inner parameters
(intrinsics) as well as their location on the robot (extrinsics). In addition, to maximize the
accuracy of the estimator, any available correlations between variables and prior knowl-
edge should in principle be taken into account. We also need to enable online calibration
of many sensor biases and fixed parameters. To achieve these goals, the development of
tightly-coupled estimators, which exploit as many data correlations as possible between
the sensor measurements, should be undertaken [NKT15; WCF21]. On the other end,
loosely-coupled estimator usually neglect part of the correlations, potentially resulting in
suboptimal solutions.

Two main perception problems are typically considered onboard a legged robot. On
the first hand, the sense of balance is replicated through high-frequency local estimator
fusing IMU and contact information to obtain the robot base velocity directed with respect
to the gravity field. On the other hand, exteroceptive sensors (cameras, LIDARs) are used
to localize the robot with respect to a representation of its environment, ideally built on
the flight. This second layer is typically estimated at lower frequencies.

It is not exactly clear what the optimal set of sensors that needs to be integrated on
legged platforms is (though Inertial Measurement Units, kinesthesis, and cameras or LI-
DARS are becoming more and more standard for industrial applications). This set may
depend heavily on the type of application, the size of the platform (LIDARS are too bulky
for smaller quadrupeds), or the acceptable price range of the robot. Thus, it is important
to allow for a great modularity in the design of estimators. And even though modularity
together with tight coupling may seem incompatible at first, we believe these two assets
must be attained simultaneously. We think that this can be done by different means. First,
by using a factor graph formulation together with a modular front-end/back-end architec-
ture, that naturally leads to a tightly-coupled, optimization based, Maximum a Posteriori
estimation. Second, by a flexible software architecture that allows a general formulation
of estimation problems (which is the endeavor of WOLF [Sol*21]*, that we have used and
contributed to during the preparation of this thesis). Third, by endeavoring to generalize
the mathematical formulations of the measurement models as much as possible.

1.4 Thesis statement and organization of the manuscript

This thesis aims at contributing to the estimation of legged robots by taking into account
information from many sensors, of many types, and in a modular way. Tightly-coupled
estimation, whose necessity will be recurrently corroborated in this thesis, maximizes the

“The WOLF repository, documentation and examples can be found in www.iri.upc.edu/wolf

4


www.iri.upc.edu/wolf

1.4. Thesis statement and organization of the manuscript

observability of the system, as opposed to loosely-coupled methods. In particular, tightly-
coupled methods makes it possible to estimate the biases and calibration parameters on
top of state variables. The Maximum a Posteriori approach, which is best described with
the Factor Graph framework, lends itself comfortably to tightly-coupled approaches. I
shall seek to demonstrate it by formulating several measurement models, in particular
generalizing some existing approaches to other sensor modalities in the first part of this
thesis. In the second part, I will then display the operational capacity of the system on
several proofs of concepts, building blocks for a future whole-body estimator, providing
both gravity aware estimation for balance control, and world reconstruction for naviga-
tion. Those intermediate systems will enable to experimentally qualify the performances,
and feasability of the method.
This thesis is organized in two parts:

Chapter 2 presents a literature overview of state estimation legged robots, that we
will use to position our objectives.

Chapter 3 serves as a general introduction to Factor Graph optimization using the
Maximum a Posteriori. We emphasize the special treatment of variables belonging to
manifolds and give a brief introduction to Lie theory, which is used extensively in Chapter 6.

Chapter 4 describes two different measurement models used in the object-level visual-
inertial systems that we built.

Chapter S presents the use of robot kinematics to obtain leg-odometry measurements.

Chapter 6 introduces a generalization of the IMU pre-integration theory. Examples
of the classic on-manifold pre-integration are recalled and then extended to a compact Lie
group formulation.

Chapter 7 shows that the generalized pre-integration theory can be use to pre-integrate
force sensors present at end effectors. Along with the centroidal kinematics, this enables
to obtain unbiased estimates of the centroidal states of legged robots

The chapters of the second part present three different applications where we fuse sev-
eral of the sensing modalities described so far. Regarding their practical implementation,
we contributed to different parts of the WOLF state estimation framework [Sol™21] which
was submitted to RAL journal this year. We present these applications in the chronolog-
ical order of their development, reflecting the opinions that we had at those respective
times.

Chapter 8 presents the first application, which is a visual-inertial object-level SLAM
system based on fiducial markers. This chapter describes results presented in Humanoids
2019 conference paper [Fou™19].

In Chapter 9 we propose a whole-body (base and centroidal states) estimator based
on the fusion of IMU, kinematics, and force-torque sensors. This work was presented at
ICRA 2021 conference [Fou*21].

In Chapter 10, a visual-inertial SLAM system using deep-learning-based object pose
estimation is presented. This work will be submitted to IROS 2022 conference [Deb*21].

5



Chapter 1: Introduction

Chapter 11 describes a multi sensor dataset taken at LAAS on the Solo quadruped on
which we plan to benchmark our future estimators.

In Chapter 12, we will present the conclusions and perspectives of this work.



Chapter

State estimation for legged robots: a
literature review

The field of state estimation for autonomous systems is at the frontier between many fields
including control theory, probability theory, nonlinear optimization, etc. The general aim
is to design and implement computationally tractable algorithms using noisy causal sensor
measurements that can be embedded in feedback-controlled systems. With the advent of
digital computers and the theoretical breakthroughs of Kalman [Kal60] among others, a
vast family of observers has been developed [SSM62; BD67; WVHO1; Thr*04]. Applica-
tions range the full scope of autonomous systems from spacecraft guidance [McG*85] to
autonomous underwater vehicle navigation [LB16]. Each application has its own specific
sets of requirements, depending on the physical nature of the system and its environment,
available sensors, and embedded computation power. Legged robots in particular require
high frequency (kHz) and low latency (<1 ms) estimates owing to the inherent instabil-
ity of their dynamics. Moreover, they interact with the environment through intermittent
contacts to move around, which requires to plan in advance the motion using Model Pre-
dictive Control (MPC). These tight requirements have given birth to a wealth of research
works that are now commonly used in commercial products [Hut"16].

We will focus our review on works applying state estimation theory on legged robots,
which include mainly quadrupeds and humanoid robots. The first part will be centered
around proprioceptive estimation of the robot’s base. We will then examine the estimation
of centroidal quantities. The use of exteroceptive sensors to obtain information from
the robot environment will then be described. Finally, we will see that a new class of
optimization-based estimator is a promising alternative to filtering-based methods.
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Figure 2.1: A few legged robots examples cited in the literature review. Top (left to right): Boston
Dynamics’ Atlas (2013 version), Wandercraft exoskeleton Atalante [Har"18a] , Kawada Indus-
tries’ HRP-2, PAL Robotic’s Talos [Sta*17]. Bottom: Solo from the Open Dynamic Robot Initia-
tive [Gri*20], MIT Mini Cheetah.

2.1 Definitions

Let us first introduce terms and key concepts that are commonly used in the legged robot
estimation literature.

Legged robots are poly-articulated systems that use a set of end-effectors (commonly
referred to as feet whatever their nature) to move their main body by pushing on its en-
vironment. The kinematic chain of the robot is modeled as a graph composed of fixed
shape segments (aka. links) linked together by articulations (aka. joints). Joints come
in various forms (revolute, prismatic, ball...) and can be actuated or not. The base refers
to a reference frame rigidly attached to the main body of the robot (often the trunk for
quadrupeds and the pelvis for humanoids). We are most often interested in the estimation
of the position, velocity, and orientation of this frame with regard to an inertial world
frame, which is called the base state. An example of these frames is given for the Solo
robot in Fig. 2.2. The base state is the main focus in most of legged robot estimation lit-
erature. In fact, knowing the base and other quantities directly measurable (such as joint
angles), and assuming a perfect robot kinematic model, the state of any part of the poly-
articulated system can be recovered using forward kinematics. This algorithm permits to
compute poses (position and orientation) and spatial veloctities (linear and angular veloc-
ities) of reference frames attached to the robot segments relative to the base or the world
frames. Rigid body algorithms [Feal4] provide methods to efficiently compute the center
of mass, linear and angular momentum of the poly-articulated systems. These computa-

8



2.1. Definitions

tions are again based on the robot kinematic model as well as the segments inertia, which
we together call the kinodynamic robot model. This model is often found in URDF files
(Unified Robot Description Format) which are generated from CAD models (Computer
Aided Design).

The centroidal state refers to the center of mass, angular momentum, and their deriva-
tives. The center of mass (barycenter of the robot segment masses) is a virtual point that
is the main control variable for locomotion.

Proprioceptive sensors measure values about the internal state of the robot. For legged
robots, they include joint encoders, strain gauges measuring either joint torques or end-
effector torques, dedicated feet contact sensors, and Inertial Measurement Units (IMUs).
These sensors do not directly provide information about the external robot environment
and can therefore only be used to compute a drifting pose of the robot, the odometry !.

Exteroceptive sensors (cameras, depth cameras, LIDARs...) provide information about
the environment of the robot. They are needed to obtain non-drifting estimates of the robot
pose. They are used either to localize with respect to a map or to build a representation of
the environment online, that the robot can use to plan contacts for instance.

These measurement sources convey tremendously different types of information and
are captured at various frequencies (e.g. tens of Hz for cameras, kHz for encoders). In
this work, we assume that they are reasonably well time-synchronized, that is to say with
delays inferior to the highest sampling period of all sensors. Measurements are generally
noisy and sometimes biased. High levels of noise can come from the lower quality of
the sensor (a low-cost MEMS IMU gyroscope exhibits much more noise than a high-end
fiber-optic gyroscope) or from the process needed to obtain the data (joint velocities mea-
surements are obtained by numerical differentiation of the encoder measurements). Noise
can either be filtered using classical finite impulse response filters, though this may intro-
duce delays, or by fusing measurements using probabilistic filters. Biases are constant or
slowly varying quantities affecting measures and are either inherent to the sensor nature
(IMU accelerometers and gyroscopes exhibit slowly varying biases) or to uncertainties
of the used model (inaccuracies in the robot calibration produce biased kinematic esti-
mates whatever the precision of the encoders). Biases may be compensated by explicitly
introducing them in the estimator. It is for instance common to estimate IMU biases in
visual-inertial filters.

With these few key terms explicated, we can now explore the legged estimation liter-
ature.

I'The status of an IMU is debatable since an accelerometer measures the external gravity vectors which
can be used to infer an approximate but non-drifting orientation. It is however often considered a proprio-
ceptive sensor in the legged robot literature [RSR18; Sco*™17; Yan*19; Lin™21]

9
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base imu

( contact
W

Figure 2.2: Solo 12 [Gri*20] important reference frames

2.2 Proprioceptive base estimation

We refer to proprioceptive base estimation for any state observer that estimates the base
frame states by purely relying on proprioceptive sensors. The goal is then to design ob-
servers fusing IMU, kinematics, and possibly strain gauges measurements to obtain an
odometry and orientation of the robot with respect to the gravity vector. The robot is akin
to a blindfolded animal that has to balance and perform locomotion using only its inner
ear, kinesthesis and sense of touch. Bloesch [Blo"13b; Rot"14] showed through an ob-
servability analysis that the absolute velocity, pitch, and roll angles as well as IMU biases
are observable using only IMU and kinematic measurements when at least one contact is
kept with the ground.

The roboticist has to make many design choices when building such a system. Those
choices mainly include: the type of kinematic information used, the nature of the observer
(tightly-coupled vs loosely-coupled), stable contacts detection, and whether extra sensors
or modeling need to be used to mitigate model errors.

2.2.1 Kinematic information

Legged robots move by interacting with their environment through intermittent contacts.
Once a stable contact (no slipping/tipping) is detected, the relative pose and velocity of the
base with respect to the end-effector in contact can be computed through forward kinemat-
ics. Integrated over time, the relative displacement of the base of the robot can be inferred,
a computation often referred to as leg odometry (by analogy with wheel odometry). This
computation takes about 1 microsecond thanks to libraries such as [Car"19; HA17]. It
uses readings from the joint encoders as well as the robot kinematic model. In systems
with actuator reduction steps, encoders are usually placed before the reduction step to
increase accuracy (precision of 0.002 degrees for Solo equipped with optical encoders
[Gri*20]!). Joint velocities are often less precise since they are generally computed from
numerical differentiation [Rot*]. The main sources of uncertainty usually come from inac-
curacies in the parameters of the kinematic models such as approximate segment lengths,
flexibilities [Vig*18; Vil*22], or joint backlash [Fal*14; Koo"16]. Bloesch [BH18] clas-
sifies kinematic measurement models in three categories that define the structure of this
section. Those measurement models are summarized in Fig. 2.3.

Feet matching is the earliest example of leg-odometry to be used in the leg robotics
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literature. Pioneered by [RKO1] 2, multiple feet matching provides a relative 6D pose
between moments during which at least three feet are in stable contact with the ground.
For point-feet robots (such as most quadrupeds, if their feet are sufficiently small to avoid
rolling on the contact surface), the problem is an instance of the orthogonal Procrustes
problem [ELF97]. Follow up works adapted the method to smaller hexapods [LKKO05]
and began to fuse it with other sensors such as GPS [Gas*05; CEDO0S8] and most impor-
tantly IMUs [LKKO6; RHI11]. The inherent limitation of this method is that for point-
feet robots it requires that at least three feet stay contact with the ground between given
timesteps, limiting applications to hexapods or very slow quadruped gaits. Single foot
matching is also possible for humanoid robots as each flat foot contact defines a 6D con-
straint [BH18]. After fixing the position of the contact by computing forward kinematics
at the beginning of the stance phase using the current base estimate, this constraint directly
produces 6D relative displacements [Fla®17; Xin*14; Joh™15]. This approach is less in-
vestigated for point-feet robots and was first demonstrated (to the best of our knowledge)
in my work [Fou®21]. Another work published later this year [Kim*21] also includes this
factor formulation along with a null velocity factor.

Instantaneous relative pose between the base and the foot can also be directly used
as a residual in the estimator. This formulation was introduced in [Blo*13b; Blo*13a]
for a point-feet quadruped using only relative positions. It was subsequently adapted
for a humanoid robot [Rot"14], whose 6D foot constraints permitted to add orientation
information. In this formulation, states variables corresponding to the robot feet pose have
to be added to the estimator. This approach was adopted by several other groups [Har" 18c;
Har*18b; Har*20; Ble*18a]. Potential undetected slips and rolls of the foot are modeled
in this context as a random walk on the stance foot position [Blo"13b; Rot"14]. When the
estimator is formulated as a Kalman Filter [Kal60], this phenomenon is represented by
a process noise on the feet position dynamics, which is a crucial parameter that the user
needs to tune.

When a single point foot is in contact with the ground, the leg can move around the
three remaining rotational degrees of freedom without changing encoder measurements.
The base relative velocity can however be computed by using joint velocities and the
angular velocity of the robot body. Joint velocities are usually obtained through numeri-
cal differentiation of the joint encoder outputs, which may result in noisy measurements
[Rot"]. Gyro measurements are also subject to noise and affected by a bias that should
be compensated for. These velocity measurements can then directly be used as residuals
for the base velocity [Blo*13a; Ble™18a] or integrated over time as relative displacements
[Ma*12; WCF20]. Some authors such as [Blo"13a; Ble"18a] use these types of measure-
ments in conjunction with instantaneous relative pose which seems to reduce position
drift. On the other end, one may argue [Fal®14] that in the case of an erroneous kinematic
model (backlash, flexibilities), using exclusively direct velocity measurements prevents
the estimator to become inconsistent when another source of position measurement is
present (such as LIDAR localization).

These measurement models are the base of all legged robot estimators. We will see
in the next section how they can be used with other data sources, in particular IMUs, to
derive proprioceptive filters.

2 An earlier example might exist in [WM86] even though the technical report is unclear about the method
they used: "Leg-position feedback is used from legs in support phase for the purpose of correcting for gyro
and integration drift in the inertial reference system."
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Figure 2.3: Legged robots kinematic measurement models classification. Red arrows correspond
to the residuals derived for each model using encoder measurements and contact information.
Orange elements correspond to the state variables affected by these residuals. Figures (a),(b), and
(c) are models for point feet robot, commonly used for quadrupeds. Figures (d),(e), and (f) are flat
feet based models, commonly used for humanoid robots. The green rotational arrow represents
gyroscope measurements used in addition to encoders for the point-feet linear velocity model (c).
N,: number of feet in contact, T € SE(3): spatial transformation, p € R3: translation, v € R%:
spatial velocity [Feal4, Section 2.2].
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2.2.2 Filter based data fusion

Many types of observer designs have been put to test on legged robots proprioceptive
estimation. The problem being Markovian in nature, most are Bayes filters such as vari-
ants of the Kalman Filter [Kal60] and complementary filters [Hig75]. While a complete
history of the evolution of proprioceptive filters is instructive [Gas*05; LKKO05; LKKO06;
CEDO08; APLO8; LAP11; CHGI1; RH11; GS12; Ma*12; GS13], this has been treated
exhaustively by other authors [Blo17; Cam17]. It is however interesting to delve into a
particular dichotomy between different estimators implemented in recent works. Those
can be roughly divided between loosely-coupled (LL.C) approaches, which divide the esti-
mation in several steps whose results are being successively taken as fixed priors to the
following steps and tightly-coupled (TC) approaches, which try to capture all statistical
cross-correlations between the estimated states.

In the context of proprioceptive estimation, a common loosely-coupled filter is to pre-
compute the base orientation independently by a first filter and using it as a fixed value in
the next estimation steps. The 2015 Darpa robotic challenge, which mimicked a disaster
intervention scenario, was an interesting testing field for humanoid robotics team imple-
menting control and estimation strategies. For instance, the CMU [Fen*15] and IHMC
[Joh*15] teams, that were both using the Atlas humanoid robot (picture in Fig. 2.1), ex-
plain that they implemented tightly-coupled nonlinear estimators for the early trials, based
on ad hoc implementations of a proprioceptive filter, but ended up using the orientation
estimation provided by the Atlas IMU without modification later in the competition prepa-
ration. This was helped by the fact that Atlas IMU was a tactical-grade fiber-optic model.
An experimental comparison of two decoupled proprioceptive filters for HRP-2 was pro-
posed [Fla*17]. For both, a complementary filter estimates the orientation of the base
from IMU measurements only. The second step is either a straightforward Kalman Filter
on the position and velocity or an ad hoc two-stage weighting algorithm: first orienta-
tion weighting between the IMU and both feet, then position and velocity measurements
weighting between both feet. Similar decoupled approaches have been implemented on
quadruped robots such as a Kalman Filter for [Ble*18a] and a two-stage complementary
filter for [Léz*21].

The tightly-coupled approach to proprioceptive base estimation was first introduced
in works like [CHG1 1], but [Blo"13b] was the most decisive step. In this work, states of
interest (position, velocity, orientation, IMU biases) are jointly estimated in an error state
Kalman Filter (ErKF). Strapdown integration of an IMU and a direct kinematic model
were used. In particular, translation-orientation coupling was showed to play a central
role in making the IMU biases observable. An observability analysis and experiments
showed that the orientation degrees of freedom need to be slightly excited to decipher
accelerometer bias from the projection of the gravity vector. The same coupled approach
was applied to humanoid robots [Rot"14; Fal*14]. [Har"20; Lin*21] take another step
toward coupling the state variables by expressing the aforementioned variables as a sin-
gle matrix Lie group. This new kind of estimator called Invariant Kalman Filter [BB 18]
exhibits a larger pool of convergence compared to the EKF and does not become incon-
sistent because of linearization issues.

All in all, one of the major factors affecting the choice in favor of either a tightly or
loosely-coupled estimator is the quality of the platform sensors. Other factors may include
personal experience of the designer, software/hardware architecture, need for modularity,
etc. A very high-end IMU such as the Atlas fiber optics IMU will be able to compute
a very consistent orientation and even biases inside its internal filter using an approxi-
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mate motion model. On the other end, a lower quality IMU may require data fusion from
sources such as leg-odometry, provided that this source of information is not too biased.
Progress in miniaturization and production of MEMS-based IMUs, which equip most
legged robots nowadays, seem to guide to the use of staged approaches for quadruped
robots [Ble*18a; Léz*21]. However, these IMU classes still represent a significant por-
tion of the robot’s price. Furthermore, we believe that, in the long-range, tightly-coupled
approaches present several advantages. Firstly, as legged robot gains in industrial ma-
turity, tight coupling carries the promise of augmented performances by being able to
more easily integrate online debiasing and calibration of lesser cost sensors. Secondly,
as a software tool, we will show in this thesis that libraries based around tightly-coupled
estimators may enable more versatility in the observer design. However, as we will see
in Section 2.5 tightly-coupled estimators implementations based on Bayes filters do not
scale up well to use exteroceptive sensors, which motivate us to use in our work of a new
class of estimators, based on factor graph optimization.

2.2.3 Contact detection

As we saw, a critical part of legged robot estimation is the integration of kinematic infor-
mation when feet are in contact. A major assumption of those methods is that the stable
contacts are known a priori. The definition of a stable contact depends on the system:
for quadrupeds that are usually equipped with point-feet, three positional degrees of free-
dom are blocked, the leg only being able to rotate around the contact point; while for a
humanoid robot with planar feet, the six degrees of freedom are constrained. Slipping
appears when the contact forces go outside of the Coulomb friction cone, that is when the
ratio fj/fi (where f| and f, correspond to the tangential and normal components of the
contact force) exceeds a certain threshold, called friction coefficient. This coefficient is
generally unknown as it depends on the nature of the foot and ground surface properties.
The most generally available information is the planned sequence of contacts [Ble™ 18b],
which may be assumed to be approximately respected in nominal operation. While re-
lying only on a prior plan lacks robustness due to unexpected events such as changes in
terrain heights and feet slips, it is straightforward to implement and does not require extra
sensors. Some robustness can be gained by reducing the confidence in the contact soon
after impact or just before takeoff [Léz*21; Ble"18b]. Most high-end humanoid robots
however [Sta®17; Eng*14] are equipped with strain gauges at their feet that can fairly
accurately measure the ground reaction forces (GRFs). Though often biased depending
on temperature, force measurements can be used as a proxy to stable contact by setting a
reasonably large threshold [Fal*14]. This method is an approximation to checking if the
contact force lies in Coulomb cone of the foot. However, for quadruped slip detection,
Focchi [Foc*15] argues that force sensing is not enough, because the friction coefficient,
as well as the contact normal, is generally hard to infer. The authors propose a simple al-
gorithm checking relative feet velocities values in the base frame and discarding those far
from the median. A similar choice is made by [Blo"13a] in which Unscented Kalman Fil-
ter velocity updates are rejected as outliers if their innovation exceeds a threshold. More
recent papers try to fuse these different sources of information in Bayes filters. Hwangbo
[Hwa*16] and subsequently Jenelten [Jen*19] fuse the kinodynamic models of the robot,
IMU measurements, joint encoders values (and their first and second-order differentia-
tion) as well as joint torques in a discrete state Hidden Markov Model (HMM) where
contact states are binary values. A HMM is used instead of a continuous Bayes filter
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because the feet state are modeled as taking a finite set of values: either in contact or
not. They build separate filters for contact and slip detections and demonstrate walking
on ice with an ANYmal-C using a special controller. A similar approach formulated as
a Kalman Filter directly estimates contact probabilities [Ble* 18b]. It questions previous
works that assume the availability [Hwa*16] or negligibility [Cam™17] of joint angular
accelerations in the context of whole-body dynamics end-effector force estimation. It
proposes to instead rely on a new formulation of the generalized momentum estimator
to estimate forces based on first-order derivative only by exploiting the structure of the
whole-body dynamics Coriolis matrix. The gait cycle is taken into account as a process
model and is fused with kinematics and contact forces updates.

This problem is not trivial and practical solutions seem to hesitate between simple
heuristics and complicated Bayes filters. The problem with simple heuristics is that they
neglect the temporal aspect of the data stream. On top of that, their parameters (though
few in numbers) may be hard to tune. Bayes filters, on the other hand, provide more fine-
tuned control of the modeled aspects of the problem, at the expense of complex parameter
tuning. One thread of research tries to alleviate the need for tuning by relying on data-
driven approaches. Supervised learning can be used [Cam™17] to introduce a probabilistic
contact detector using only joint torques and robot kinematics, expressed as a logistic re-
gression. The detectors provide a probability distribution on feet contacts that is used to
ponder kinematic measurements of a tightly-coupled proprioceptive filter. The method
outperforms a baseline based on threshold selection. However, different thresholds are
fitted for each type of gait which may hardly generalize to different terrains and robot
loads. Rotella [RSR18] proposes to cluster fuzzy contact states by training an unsuper-
vised model on humanoid robot simulated data. The datasets are augmented with IMU
measurements at the feet that are removed at evaluation time. The resulting estimator
odometry system is shown to outperform a contact force classifier but was not validated
on real hardware. More recently, Lin [Lin*21] proposed to train a deep neural network to
infer contact states using a buffer of 150 ms of raw IMU, encoder, and kinematic measure-
ments. The emphasis is put on training the estimator in various ground types in outdoors
extended environment using an MIT Mini Cheetah. Ground truth is generated by finding
aregion around the local minimum of low passed feet height trajectories in the hip frames.
The estimator provides a reliable source of contact information and generalizes better to
different environments. It does not provide covariances about the contacts, contrary to
[Cam™17].

Contact estimation is a still burgeoning field of research, especially for small quadrupeds
which often do not embed contact sensors. The main reason is the fact that adding extra
weight at the very end of the legs can increase significantly the leg’s inertia, limiting the
explosivity of possible movements. The extra electronics and wiring required may also
be a limiting factor. As part of our work is to include leg-odometry in an factor graph
estimator, for which contact detection is important, we scrutinized closely the state of
the art on the topic. However, the tests we conducted were on flat ground for which the
planned contacts are very similar to the actual contacts, so that slightly reducing the size
of the planned contact phase was a sufficient heuristic for us.

2.2.4 Mitigation of kinematic model inaccuracies

We have seen in Section 2.2.2 that most legged robot proprioceptive filters rely on the
robot kinematics in order to bound the drift in the integration of the inertial odometry and
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debias IMU raw measurements. However, to obtain consistent filters, special care has to
be taken to ensure that the kinematic measurements are not themselves biased. Mainly
two main issues have been identified and addressed so far in the literature: inaccuracies
in the joint velocities derived from encoder measurements and the undesired flexibilities
of robot segments and joints.

Encoders measuring joint angles are usually placed at the actuator level [Xin™14].
They produce a very precise angle estimation when subsequent reduction steps are present.
It is then acceptable to numerically differentiate and slightly filter those values to use them
for joint impedance control for instance. However, hydraulic actuators do not include such
reduction steps and fall victim to important joint velocity noise, which can degrade feed-
back control. Xinjilefu [Xin"14] proposes to use the dynamic model of the robot and joint
torques to obtain filters on the joint angles and velocities of the Atlas robot. The same
author [XFA16] also implemented a network of low-cost gyroscopes to estimate the joint
velocities on the same platform. A Kalman Filter is used to fuse desired joint accelera-
tions from the control as process input and angular velocity measurements coming from
the MEMS with a numerical differentiation of the encoders. It requires a calibration pro-
cedure of the gyroscopes orientations and a good quality attitude estimation of the base,
from a high-grade IMU for instance. This method was extended in [Rot"] by also includ-
ing accelerometers measurements, explicitly compensating IMU biases, and alleviating
the need for a global attitude estimation.

Another source of kinematic error comes from the presence of flexibilities in the struc-
ture of the robot, which is a common problem in many human-sized legged robots. For
the HRP-2 humanoid robot (see Fig. 2.1), a rubber joint is placed at the ankle to mechan-
ically absorb feet impacts. It also acts as a rotational spring that, given the length of the
ankle-base lever, leads to important and unmeasured base accelerations. HRP-2 being
equipped with 6-axis force sensors at the end-effectors, Flayols [Fla™17] proposes to map
these measurements to relative orientations that can directly be included in the kinematic
chain as an intermediate ball joint. Calibration of the rotational stiffness matrix is done
by comparing kinematics to motion capture measurements. Similarly, Villa [Vil*22] pro-
poses to account for the flexibility of the hip joint of Talos robot [Sta®17] (see Fig. 2.1)
by modeling it as a passive joint with a damped-spring model. Benallegue [BL15] derives
a procedure to alleviate the need for force-torque sensors by designing a centroidal fil-
ter using an inverted pendulum dynamical model. In Wandercraft’ exoskeleton Atalante
[Har" 18a], flexibilities are shown to be spread along the successive segments of the kine-
matic chain, and can be modeled as punctual, 3D rotations with a linear spring behavior
[Vig"18]. This work implements an IMU network similar to the ideas of [XFA16; Rot"]
but it uses independent complementary filters for each IMU to recover their tilt (pitch and
roll). Each filter uses the "zero-on-average" assumption, considering linear accelerations
of the IMU frame negligeable on average before gravity and filtering them as noise on the
accelerometer measurements. These orientations are then used as virtual joints and fused
with the robot whole-body dynamics and the linear spring models to recover segments
relative orientation and angular velocities. In a follow up work [Vig™22], the same au-
thors revisit the linear acceleration negligibility assumption and drop the use of the robot
dynamical model. They design an observer jointly estimating linear velocity and tilt of
each IMU by fusing IMU data and linear velocities from the kinematics, which are prop-
agated forward starting from the contacts by applying the filter recursively. It is shown
that the new model converges more quickly than the zero-on-average estimators and has
a reduced phase shift. The approach is validated with a controller which exhibits a better
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behavior than the rigid one (that trips and falls) when a dummy of human size and weight
(80 kg) is put in the exoskeleton, exciting the flexibilities.

Other kinematic uncertainties are however often present and are harder to model or
sense. For instance, the foot of the quadruped used in [Blo*13b] is spherical but is only
modeled as a point. Backlash prevented Fallon [Fal*14] to use a direct kinematic mea-
surement model and was one of the limiting factors of Vigne first flexibilities estimator
[Vig©18]. These works advocate for the addition of many different sensor sources in the
estimator, in particular to account for the limited observability capabilities of legged sys-
tems and to benefit from cheap, distributed, low consumption sensors. Ideally, we could
see the evolution of legged robot estimation going toward whole-body perception. In our
opinion, the main limiting factor to that goal is the mathematical formulation of efficient
tightly-coupled estimators, to which this thesis would like to contribute.

2.3 Centroidal dynamics estimation

2.3.1 Why is centroidal dynamic estimation important?

Legged robots are highly nonlinear systems that use contact forces between their end-
effector and the environment to implement stable locomotion. The effect of these forces
is described by the Newton/Euler equations, also known as the underactuated dynamics,
which state that the variation of the system momentum is equal to the external wrench
applied to the robot. Though these equations may appear simple, they introduce a non-
linear coupling between the CoM position and the angular momentum. Many reduced-
order models are based directly on various levels of approximation of these equations
[Kaj*01; WieO6b; Car"16b] to derive predictive control algorithm, for locomotion for
instance. These works assume knowledge of centroidal quantities of the system at con-
trol frequency, namely the position of the center of mass, angular momentum, and their
derivatives. It is therefore crucial to implement accurate and efficient estimators for these
quantities.

2.3.2 Information sources

Assuming that the base state and joint configurations are perfectly known (up to linear
and angular accelerations), it is theoretically possible to compute all centroidal quantities
using the kinematic model of the robot and the mass distribution in the different segments.
However, this model is most often obtained from CAD data that may be inaccurate. This
may call for a calibration of the platform [AVNO8; AVN14; Bon*18; Bon*19]. This prob-
lem was closely scrutinized in the biomechanics literature where mass distributions often
come from standardized anthropomorphic tables [De 96]. A second kind of information
comes from measurements of the external wrench. Forces provide the CoM accelerations
while moments relate to the CoM position through a line called the central axis. This
line passes only approximately by the CoM because of gesticulation * induced angular
momentum variations [Wie0O; WieO6a]. Moreover, the wrench measurements are usually
noisy and require the presence of expensive deformation gauge sensors at each contact

3We call gesticulation the part of the angular momentum due to the movement of the limbs. The total
angular momentum is the sum of the centroidal angular momentum and the gesticulation. If no torque
is applied to it, a polyarticulated system angular momentum is conserved but its angular velocity may be
non-zero due to compensate for the gesticulation. Walking in space makes you turn!
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point. A complete analysis of the particularities of these different information sources
along with an observability analysis can be found in [Car"16a]. This fosters the use of
more complex algorithms by fusing kinematic and external wrench measurements.

2.3.3 Reduced dynamical models

The contact wrench is not always directly accessible to the estimator. For instance, the
Atlas robot gauge sensors measure only the contact normal force and horizontal moments.
Thus, the exact underactuated dynamics cannot be directly used. Some works propose to
use simplified models of the dynamics that require less information. For instance, the
popular Linear Inverse Pendulum Model (LIPM) [Kaj*01] treats the body as a lumped
mass, centered at the center of mass (COM), that only moves horizontally and therefore
neglects the robot angular momentum. It only requires the position of the Center of
Pressure (CoP) to obtain the CoM dynamics. The CoP is defined as the point where
the moment component of the resulting wrench is aligned with the normal axis of the
plane. The computation of this point only requires the contact normal force and horizontal
moments, which is coincidingly the kind of sensor present on the Atlas robot.

Stephens [Stel1] proposes to use the LIPM for the process model to an EKF that also
includes kinematic measurements. Model errors in the form of a CoM position measure-
ment offset and external forces are added to the formulation and it is shown that either
of these quantities is observable. Xinjilefu [XA12] ponders the use of a more complete
planar sagital dynamical model by comparing it to the LIPM model without introducing
model biases as was done in Stephens [Stel1]. It instead relies on tuning filter covari-
ances to alleviate their effects. Simulations shows that the LIPM seems more able to cope
with model errors but performances on the real robot show similar results between the
two estimators. One of the benefits the LIPM model is that force measurements can be
summarized by the Center of Pressure (CoP) (aka. Zero Moment Point (ZMP) [SB04]).
In the context of the DARPA robotic challenge, the CMU team implemented a centroidal
estimator [ XFA15] similar to that of Stephen [Stel1] that was able to prevent a fall during
the challenge finals. Similar EKF based estimators using respectively a LIPM [PT16] or a
fly-wheel process model [PKT18], which models a non-zero angular momentum contrary
to the LIPM, is later implemented on a NAO robot. A LIPM process can also be used with
a fixed contact point assumption [BL15]. By a tight fusion with IMU measurements and
kinematic information, centroidal quantities can jointly be estimated with joint flexibili-
ties at the ankles under external force disturbances. The particularity of this approach is to
avoid the need for force sensors but it is restricted to motions with fixed rigid contacts with
the ground such as during manipulation. Xinjilefu [XFA14] took a different approach by
estimating unmeasured components of the feet contact wrench (only normal force and
pitch+roll torque are measured). This was done by leveraging the whole-body dynamics
of the humanoid robot, IMU, and kinematic measurements. A generalized torque slack
variable was introduced to represent the dynamical model errors. The estimator is im-
plemented using Quadratic Programming which allows to enforce inequality constraints
on state variables. Constraints are used to model joint limits and the positivity of normal
ground reaction forces (the robot can only push on the ground).

18



2.4. Environment awareness

2.3.4 Estimators based on underactuaded dynamics

While previously mentioned works rely on approximate dynamical models, we must ac-
knowledge that an inaccurate process model must lead to a biased estimation. Rotella
[Rot™15] proposes instead to use the underactuated dynamics, which is possible since
the Sarcos robot used in their experiments is equipped with 6-axis force-torque sensors
at its feet. The authors build several estimators by fusing force-torque and kinematic
measurements in an EKF. These estimators introduce offsets on CoM position and linear
momentum as well as an external 6D wrench disturbance. A nonlinear observability anal-
ysis is conducted and shows that either the biases or the external wrench are observable.
Carpentier [Car*16a] chooses a different viewpoint by proposing a frequency analysis of
the information sources used for centroidal estimation. The model assumes the presence
of wrench sensors at the contacts and does not requires explicit modelling of the kine-
matic bias and external disturbances. Instead, it relies on a complementary filter to filter
out problematic frequency bands in each signal. For instance, kinematic measurements
are high passed filtered to remove its slowly varying bias. Bailly [Bai*19] extends this
methodology to include CoM acceleration and angular momentum derivative in the es-
timation variables. Both works outperform a simple EKF by offering an unbiased CoM
position estimate. The same author [BCS21] propose to use Differential Dynamic Pro-
gramming (DDP), an algorithm traditionally used as a Optimal Control Problem solver
[Mas*20b]. This algorithm estimates the same quantities as the previous work of the au-
thor [Bai*19] by solving a Maximum a Posteriori (MAP) problem on a sliding window of
states sampled at IMU frequency, which permits to back-propagate information from the
future to the past. The approach compares favorably to both previous work [Bai*19] and
a simple EKF.

2.4 Environment awareness

Any useful task undertaken by an autonomous robot involves some level of awareness
of its environment, even for partially teleoperated robots [Koo™16]. For ground robots,
this problem is most often tackled with exteroceptive sensors such as cameras, depth
cameras, and LIDARs. The environment might be known through a previous mapping
procedure like Structure-from-Motion (SfM) [Tri"99] or mapped on the fly. Applications
can be such as localizing with respect to a known map [Del*99], following a previously
traversed path without a metric map [FB10], Simultaneous Localization And Mapping
[Aul™08; Cad*16], object detection and pose retrieval [Du*21], autonomous exploration
[Rou®19; Kul*21]... An intermediate case is the one of visual/LIDAR odometry in which
a local representation of the environment is built to provide a precise odometry source
[SF11] and is later discarded.

The particularity of legged platforms is that they use intermittent contacts to move,
usually by using predefined cyclic gaits. While some controllers are robust enough so
that a purely proprioceptive estimation provides enough feedback even in complex en-
vironments [Tan"18; Lee™20], having an estimate of the terrain shape may help planning
steps. Moreover, multicontact approaches [Car*17; Hen"17] in which arms of a humanoid
may also be used for locomotion are a promising way to increase the range of possible
movements and reduce energy consumption.

The literature related to these questions is immensely vast and goes largely beyond
the scope of this thesis, although the formal underlying methods are closely related, as
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we will see in Section 2.5. Moreover, we will see that our ambition and latest results tend
to merge legged state estimation with exteroceptive localization and mapping at large.
We will quickly review the most relevant works, first focusing on localization e.g. for
navigation, then on dense mapping for contact planning.

2.4.1 Localization and mapping

IMU/kinematics fusion inherently drifts in position and yaw orientation. For teleoperated
tasks, this drift may not be problematic as the balance control loop mainly requires in-
stantaneous base velocity and orientation with regard to the gravity while navigation can
be handled by the operator. However, for autonomous navigation, it becomes critical to
have some kind of precise odometry or localization strategy, or, even better, being able to
run onboard Simultaneous Localization And Mapping. Davison [Dav*07] proposed the
first example of a monocular vision-based SLAM system implemented for the navigation
of a humanoid robot HRP-2. The gyro of the robot is also incorporated in the filter at the
camera rate to minimize the growth of uncertainty before loop closing. [Sta*06] expends
on this concept by also fusing kinematic velocity and altitude (known from the planning).
Other systems based on sparse features were later developed [Ahn*12; Ori*12; Ori*16;
Kwa*®09]. Visual Teach and Repeat [FB10] has also been recently brought to quadruped
robots [Mat*21; MCF22], which opens up practical long-term operations in industrial en-
vironments. Some works also propose to use mature visual odometry libraries as black-
boxes sources of odometry by integrating them as relative pose measurements [Har" 18c;
Har*18b]. While it may lead to sub-optimal estimators, this method has the benefit of
greatly simplifying the development process.

While a camera system benefits from low-cost and hardware integration difficulty,
outdoors environments may cause some difficulties to such systems, such as shadows
being mistaken for solid edges (Figure 8. of [Fal*14]). During the 2015 DARPA robotic
challenge, where robots had to semi-autonomously traverse challenging environments
while performing manipulation tasks at known given checkpoints, LIDAR information
was crucial for teleoperated manipulation tasks [Koo*16] which required a precise metric
representation of the scene. Localization with respect to a fixed map was also proposed
[Fal*14] but not used in the finals [Fal16]. In fact, though supposed to represent a closed
static industrial environment, the final trials happened in a semi-opened outside place with
an important moving crowd on one side, making LIDAR localization very noisy.

Hornung [Hor"14] proposes to apply Monte Carlo Localization using depth measure-
ments (LIDAR) thanks to a highly efficient data structure called Octomap [Hor"13]. The
algorithm is validated on a NAO humanoid robot and used a learned leg-odometry motion
model, pitch and roll information from the IMU as well as an edge-based vision mea-
surement model. The MIT team [Fal*14] uses the same method but replaces the motion
model with an inertial kinematics proprioceptive filter. Other occupancy mapping algo-
rithms such as Bayesian generalized kernel OctoMap (BGKOctoMap) [DWEI17] try to
infer unobserved parts of the of map by considering correlations between grid cells. This
inference model has the interesting property to smoothly transition to sanely defined prior
(like a uniform probability distribution) while keeping similar computation time as the
Octomap. BGKOctoMap is generalized to jointly infer the probabilistic occupancy grid
and semantic information using stereo camera and LIDAR information [Gan*20]. Poten-
tial for legged robot navigation was demonstrated with a dataset taken outdoor on a Cassie
robot. Semantic information prior come from a Convolutional neural network fine-tuned
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to manually labeled pictures (= 1000) of similar scenes.

LIDAR can also be used as an odometry source by matching point clouds taken at
successive timestamps with ICP. However, this procedure is time-consuming and leads
to time delays with other measurement sources, which is generally a problem for Bayes
filters. Nobili [Nob*17] solves this issue by keeping a buffer of past belief state of the
EKF, a method on which is based the Pronto framework [Cam*20].

2.4.2 Reconstruction for footstep planning

Even though some legged robots designs and controllers [RMA19; Ble*18a] are robust, to
some extent, to terrain model uncertainty, having information about the local shape of the
environment enables a more reactive contact planning. For instance, the guide path imple-
mented in the contact planner [Ton" 18] uses the complete 3D structure of the environment
provided as an STL file while a mixed integer contact planner like [Ton*20] uses a list of
vertex tuples representing convex planar surfaces. Most reconstruction implementations
rely on a depth sensor to obtain these representations.

An interesting representation is to build a grid-based elevation maps, that associates a
probabilistic distribution to the height of each 2D cell. This is a simplified representation
of the 3D environment, that does not take terrain slopes into account for instance, but
provides advantageous computational features. For rover applications, one can argue that
building a globally consistent elevation map is too costly and it is instead more efficient
to switch the representation to the local robot frame [KD07]. The map is constantly up-
dated using two sources of information: range measurements that refine the visible parts
of the map; wheel odometry that increases uncertainty on the map using heuristics based
on the traveled distance. Fankhauser [Fan*14; FBHI18] adapted these ideas to legged
robots. The map grid probabilistic representation was also improved by including hori-
zontal uncertainty due to the robot’s relative motion. A costly map fusion process that
computes lower and upper bound on the elevations is decoupled from the sensor updates
and can be computed intermittently at the discretion of the user. This system was recently
integrated in a reactive planning system [HG21] able to navigate outdoor uneven terrain
with a biped using LIDAR data. Taking another route, Kim [Kim*20] proposed a much
simpler algorithm, relying on integrated RealSense sensors, in order to alleviate on-board
computations. A T265 integrated SLAM algorithm provides localization and a D435
provides noisy depth information. A 2.5D world-centered height map is produced from
scratch at each point cloud acquisition using opening morphological transformation filter-
ing. Classification of the terrain, based on local gradient thresholds, is used to implement
dynamical manoeuvers in a cluttered environment with an MIT Mini-Cheetah.

An extension of the elevation grid map is to represent occupied 3D space as an 3D
occupancy voxel map, which can be efficiently stored using an Octomap. While [Hor" 14;
Fal*14] only used this representation as prior for online localization, it was used for online
foot planning in [Win"15; Mas*15].

Kolter [KKNO09] adopts a mesh representation built from point clouds aligned twice a
second off-board using an ICP procedure initialized by proprioceptive odometry and filled
with a texture synthesis step. This representation directly provides richer information
such as the slope of the terrain which is used in [Mas™20a] to tightly couple motion/step
planning and terrain reconstruction.

Fallon [Fal™15] used the Kintinuous framework [Whe*12] to obtain a local Truncated
Signed Distance Function based dense representation. This map was shown to be of
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equivalent quality to that of a LIDAR and used as an input to a feasible contact surface
segmentation algorithm selecting planar convex regions of uneven cinder blocks. In order
to handle local loopy trajectories better than Kintinuous, Elastic Fusion [Whe*16], which
is a dense depth-based vision system using surfels 4, was shown to be usable on humanoid
platforms [Sco*17]. The system augmented the Elastic Fusion algorithm by adding pro-
prioceptive odometry term to the solved nonlinear least-squares (NLLS) problem, using
a heuristic to increase the weight of proprioception in visually degenerate situations. The
dense reconstruction is accurate up to 2 cm, which is enough for motion planning. How-
ever, in this case, the map was only used for localization.

Online terrain reconstruction extends the capabilities of legged robots to uneven sur-
faces. It is however not central to the problem statement of this thesis and is considered
as out of scope. Our main goal is to investigate a new class of estimators based on Factor
Graph optimization, which we will now introduce.

2.5 Factor Graph optimization

As we have previously discussed, the largest part of the legged robotics state estima-
tion literature consists in fusing sensor modalities using various implementations of the
Bayesian and complementary filters. The core of those systems consists of a tightly or
loosely-coupled IMU/kinematics proprioceptive filter. Then, either this proprioception is
used as a prior odometry source for a SLAM system or the exteroceptive sensors are used
to localize with respect to a known map, making position and yaw observable. A different
kind of estimator has been investigated over the last decades in the visual/LIDAR SLAM
community and has become predominant in applications such as drone navigation: factor
graph optimization (FGO), also known as simply graph optimization.

2.5.1 Visual SLAM transition to graph optimization

While the Bayes filter summarizes the accumulated information about the current esti-
mated state and its cross-correlations as a single probabilistic distribution, Factor Graph
optimization keeps a trajectory of arbitrarily spaced past states that are regularly re-
optimized in the least-squares sense, by finding the so-called Maximum a Posteriori over
the trajectory joint distribution. The terms smoothing and mapping or sliding window es-
timator are also used when a limited window of past states is kept in the estimator, the old
ones being marginalized. The earliest example [LM97] proposed to obtain globally con-
sistent 2D LIDAR range scan alignments by minimizing a cost function over a trajectory
of 2D poses constrained by LIDAR scans and wheel odometry. Many ad hoc efficient
solvers such as [Gri*11; Kae*12; Ila*17; AM*] have been developed over the years to
leverage the specific sparsity of the SLAM problem.

While the first successful online monocular visual SLAM algorithm was implemented
using an EKF [Dav*(07], a breakthrough happened with the Parallel Tracking And Map-
ping (PTAM) system [KMO9] that proposed to split the visual tracking of features and
camera motion from the mapping in separate processes. This new modularity enabled the
use of a specific algorithm for the mapping part: Bundle Adjustment (BA) [Tri*99; SF16]
of sparse features, a method that was previously reserved for offline SfM pipelines. PTAM

4" A surfel is a zero-dimensional n-tuple with shape and shade attributes that locally approximate an
object surface [Pfi*00]
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enabled Augmented Reality applications in limited spaces. BA is actually a special case of
a more general estimation algorithm called factor graph optimimization which has several
conceptual and computational advantages over filtering. A great wealth of papers follow-
ing either Gaussian filtering (to which EKF belongs) or graph optimization were subse-
quently published. A thorough comparison of the two approaches [SMD12] concluded
that BA was computationally superior in that it had the greatest precision to computational
cost ratio, for most benchmarks. Most of the state-of-the-art visual SLAM framework now
follow a factor graph approach [For"17; MMTI15; QLS18; Leu™15; Fer*21].

In the context of real-time visual SLAM, the prime conclusion of Strasdat experiments
[SMD12] is that to increase accuracy, it is more profitable to increase the number of fea-
tures than the number of frames. In this regard, the superiority of the graph optimization
approach is based on a cost argument: the complexity of BA scales linearly with the num-
ber of features while filtering exhibits cubic scaling. A second important argument is that
Gaussian filters linearize the nonlinear measurement models only once, around the cur-
rent estimate. On the contrary, for FGO re-linearization is done at each solver step, the
resulting Jacobians getting better as the estimate converges to the optimal solution. BA
is therefore more accurate than its filtering counterpart, especially for nonlinear motion
(due to the state rotation matrix). The greater cost of Gaussian filtering is due to the ex-
plicit computation of the state covariance function, which becomes rapidly dense, while
FGO keeps the variables’ correlations in a sparse information matrix. An advantage of
the Gaussian form is direct access to the covariance matrix. This was leveraged in early
SLAM systems such as the work of Davison [Dav*07] to perform active tracking: search
for image feature correspondences in a limited uncertainty-aware region. However, mod-
ern visual feature front-ends do not tend to use active tracking anymore, relying on robust
matching (RANSAC) [MMT15] or KLT tracking [BMO04; Fer*21]. Another advantage of
FGO optimization for visual systems is that the front-end operations (in particular camera
pose tracking and feature tracking) can be decoupled from the back-end, which imple-
ments BA optimization at a lower rate (and usually in a separate thread). This results in a
more modular software architecture which can be leveraged to include other "front-ends"
treating raw measurements from other sensor modalities.

A very popular extension to these works is to inject IMU measurements into the
SLAM system.

2.5.2 Visual-Inertial odometry

To robustify visual SLAM/odometry systems in cases of adverse situations, IMUs provide
complementary high rate odometry information that can be debiased by tightly coupling
mapping and odometry. Another important feature of visual-inertial estimation is that the
orientation absolute pitch and roll can be observed thanks to the gravity (absolute yaw
is unobservable, unless a compass is used). Estimation of the pose and velocity of the
system can be estimated at the IMU frequency (which is usually an order of magnitude
higher than the camera’s).

A careful pre-integration [LS09; For*17] of these high rate measurements had to be
developed in the context of smoothing for the optimization to remain tractable. The core
idea of this algorithm has since been applied to other information sources such as drone
thrust commands [Nis*19] to make external force estimation possible; while we propose
in this thesis to preintegrate force-torque measurements present in legged robots. A de-
tailed description of the theory of pre-integration and discussion of related works is found
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in Chapter 6.

2.5.3 Factor Graph estimation for legged robots

Very recently, two teams started to apply factor graph optimization principles as a gen-
eral framework for legged robot estimation. At Michigan University, Hartley [Har*18c]
proposes to fuse IMU pre-integration with a novel kinematic factor by adding the con-
tact foot pose in the optimized states, similarly to [Blo*13b; Rot*14]. Semi-direct Visual
Odometry [FPS14] is also used to integrate camera measurements as relative pose. The
estimation backend was based on GTSAM framework [Del12] and tests were conducted
on a Cassie bipedal robot. In a later work [Har" 18b], the same authors extended the kine-
matic factor formulation, taking into account uncertainty induced by contact switches. At
the Dynamic Robot Systems Group at Oxford, Wisth proposed in [WCF19] to replace a
modeled kinematic factor by integrating odometry from the onboard proprioceptive filter
of the ANYmal robot. Stereo vision was also used as a source of odometry by using a
sparse 3D landmark map. In a following work [WCF20], the proprioceptive odometry fac-
tor was changed to include a slowly variable bias on odometry measurements by adapting
the pre-integration theory from [For"17]. The same authors extended this work by includ-
ing LIDAR measurements in [WCF21]. [Kim*21] also implemented an inertial kinematic
proprioceptive smoothing estimator on the MIT Mini Cheetah (see Fig. 2.1), mitigating
slipping of the feet by removing kinematic measurements whose residual errors exceed a
certain threshold.

The maturity of the aforementioned factor graph optimization solver libraries certainly
played an important role in these recent developments. It seems that tools originally
developed in the SLAM community are making their way in the legged robot commu-
nity. Software libraries are becoming more generalist, more precise and, based on Lie
theory [SDA18], they handle more nicely the specificities of the manifold structure of
the problem variables. Other projects propose to deal with the inherent complexity of
multi-sensory systems, proposing principled ways to handle multiple data sources, po-
tentially asynchronous and at different frequencies. Those frameworks also provide a
mathematical formulation for most common sensor models and higher level interfaces
with NNLS solvers in an effort to bring these techniques to a broader audience [Sol*21;
Bla19; Col*20].

From here, the reader is invited to revisit the main scientific statement of the thesis
in Section 1.4, as we hope the presentation of the state of the art cast a new light on this
section. The remaining of the thesis will then first go through the theoretical formulation
(starting with a tutorial on MAP), before reporting the application of the theory to 3
estimators for legged robotics
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The state of the robot is a reduced set of variables of particular interest to the roboti-
cist, be it for control, parameter identification, etc. For example, on a quadruped robot,
the state may typically be composed of the base position, velocity, and orientation, the
center of mass (CoM) position and velocity, joint angles, etc. Those quantities may not
directly be measurable, due to their physical nature (the center of mass is a virtual point)
or because sensor data is too noisy, biased, or impractical to obtain (e.g. GPS for local-
ization is bad close to flat surfaces because of beam reflections). Those latent variables
can however be estimated by fusing multiple sensors data using a state estimator (aka.
observer in automation). The task of estimation can then simply be stated as finding the
robot state given these measurements. This intuition can be formalized as finding the
mode of the posterior distribution on the states conditioned by the measurements.
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Probabilistic theory applied to signal processing and information theory has been the
bedrock of the state estimation theory development. For probabilistic estimators, states
are random variables, that, in the robotics context, are mostly continuous. The goal is to
find the best estimate using sensor measurements. In the Bayesian perspective, this means
to find a distribution over a collection of random variables X given a set of measurements
Z, p(X|Z), which is known as the posterior distribution. The Bayes law represents this

inference:
p(Z|X)p(X)
p(Z)

p(Z|X) is the measurement model, also called the likelihood of the observation. p(X)
is a prior that we have on the state variable distribution. This may include for instance
knowledge about the initial state of the robot or an approximate value of parameters that
we seek to estimate. The marginalized likelihood p(Z) = [p(Z|X)p(X)dX can be
thought of as a global normalization constant ([KF09, Chapter 20]) in case the Z ran-
dom variable is observed, which is our case. In general, this term is computationally
intractable to compute, since it requires marginalizing the likelihood distribution over all
possible states. Exact inference is therefore rarely possible, the Bayesian practitioner
instead relying on approximate inference.

For example, in the context of robotics, recursive Monte Carlo sampling ([KF09,
Chapter 12]) has been leveraged in the popular recursive particle filter for tasks such
as localization [Del™99] and SLAM [Mon*02]. A very interesting property of this ap-
proximation is the fact that multimodal distributions can be modeled, which can be useful
for multi hypothesis problems such as the kidnapped robot problem [Del*99] or target
tracking [Gus*02].

Another type of approximate inference, with scarcer applications in robotics until
now, is variational inference ([KF09, Chapter 11]). The idea here is to fit the parameters
of a candidate distribution so that the Kullback-Leibler divergence between the posterior
and the candidate distribution is minimized. Gaussian distributions are then often used
because closed forms of their divergence are easy to evaluate. Very recent works start to
find applications in robotics as an alternative to MAP-based graph optimization [BFY?20;
Won*20] or to Bayes filtering [LBB22].

A more popular approach to the estimation problem is to concentrate on finding the
mode of the posterior distribution, a.k.a. the Maximum a Posteriori (MAP).

p(X[2) = (3.1)

3.1 Maximum a Posteriori estimation

An efficient way to characterize the posterior distribution is to first find its mode, that is
the states that result in the highest posterior probability. The estimation problem is, in this
case, an unconstrained optimization problem:

XMAP 2 aromax p(X|2) = arg max p(Z|X)p(X). (3.2)
X X

Notice that the p(Z) term does not appear anymore on the right side since it is con-
stant relative to X’. States variables X’ in our case are a collection of n random variables
{ & }iep1..n) that each relate to a physical quantity of interest (e.g. the initial robot position,
constant camera parameters, orientation of an object in the scene, IMU biases, etc.). Mea-
surements Z are similarly a collection of m individual sensor measurements {zi}ie[l__m].
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Additional assumptions have to be made to obtain a numerical implementation of this
problem. First, the measurements are supposed to be conditionally independent of each
other, so that the likelihood function can be factorized

n

p(Z|X)p(X) = p(Xs,) [ ] p(2i] Xs,).- (3.3)

=1

Each factor represents the measurement model associated to the observation z; and
depends only on a subset S; of the state variables Xg,. S, denotes the subset of ran-
dom variables with nonuniform priors. Secondly, the measurements are assumed to be
corrupted by multivariate Gaussian noise:

1 1
\/ﬁ eXp(_E(Hei(‘XSi)

p(ZZ’XSz> = : Z) = K; (bz(XSz) (3.4)

where the residuals e;(Xs,) € R are (potentially) nonlinear functions of the state vari-
ables, K; € R are constants, 3; € RM:*M: are the covariances of the measurements’
noise, ¢;(Xs,) are the un-normalized measurement likelihoods called factors, and

llei(Xs,)|ls, 2 \/ei(Xs,) S ei(Xs,)

is known as the squared Mahalanobis distance. Residuals e; can generally be formulated
as a difference between an expectation function h and the actual measurements

ei(Xs;) = h(Xs,) — 2, (3.5)

although some exceptions may exist (see for instance the IMU pre-integration residual
(6.21) in Section 6.2.4).
Thus, the posterior probability is proportional to a product of individual factors:

P(X|2) o dolXs,) [ (5. (6)

Recognizing that maximizing the likelihood in (3.2) is equivalent to minimizing the
negative log-likelihood, we can apply the assumptions successively to write:

XMAP — arg max p(X|2) MAP problem definition  (3.7)
X
= arg min — log p(X|2) Negative log likelihood  (3.8)
X
= arg min — log p(Z|X)p(X) Unaffected by constant denominator  (3.9)
X
= arg min — log p(Ap) H p(zi| Xs,) Conditional independences (3.10)
i=1
= arg min — log ¢o(Xs,) H i(Xs,) Factorized likelihood (3.11)

=1

= argmin3- [l ()13

=0

Gaussian measurement models (3.12)

Thus, solving the MAP problem with the aforementioned hypotheses boils down to
solving a nonlinear weighted least-squares (NLLS) problem. Notice that we included the
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prior in the sum of the residuals, as it is mathematically equivalent to a measurement
model. The weights are the inverse of the measurement covariances: the more uncertain
a measurement is, the higher its covariance and, therefore, the lower its influence on the
weighted squared residuals sum.

A vast part of the literature on MAP estimation has been dedicated to the implemen-
tation of efficient ad hoc NLLS solvers. Most of them are gradient-based algorithm, typ-
ically some variation of the Gauss-Newton algorithm, such as the Levenberg-Marquardt
algorithm [BBV04]. We chose to use the Ceres solver [AM™] for its maturity and wide
range of features and because it was already integrated with the team state estimation
framework WOLF [Sol*21].

3.2 The Gauss-Newton algorithm and some variants

In this section, we will give a brief introduction to a classical numerical algorithm used in
robotics to solve an NNLS problem efficiently: the Gauss-Newton algorithm. We will use
this solver to address the MAP problem. For many practical robotics applications, some
state variables (such as rotation matrices) live on manifolds. For now, we will assume that
state variables and measurements all live in vector spaces to simplify the derivations and
we will extend the method to manifold states in Section 3.3.2.

We purposely keep this tutorial to a minimal version; the reader is referred to [DK*17;
Sol17] for an extended version.

3.2.1 The algorithm

The Gauss-Newton algorithm is an iterative algorithm to find the minimum of NLLS cost
functions that can be decomposed in a series of steps.

1. Initialize the state estimate at an initial value X := X°

2. Approximate the NLLS cost function around the current estimate as a quadratic
function (see (3.17) below).

3. Find the optimal step Ax* as the root of F(Ax), corresponding to a linear set of
equations (see (3.18) below)

4. Update the current state estimate X =X+ Ax*

5. Loop over steps 2-4 until convergence

3.2.2 Derivation of the Gauss-Newton step

We will now detail the critical parts of the algorithm, namely the linearization of the
residuals and the computation of an optimal step. First, we will simplify notations by
dropping dependencies on state variables Xg, where evident. Secondly, we will make a
change of variables. The weighted squared residuals can be expressed as:

_1 _1 _1
leil|%, = eZi e, = (3, 2e) ' %, %e; = || 2el | = ||y (3.13)
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where r;(Xg,) £ X, %ei(X s,) can be interpreted as a whitened residual. X, % can be
obtained from the Cholesky factorization of 3; . Therefore, the NLLS MAP problem
can simply be written:

AMAP = arg min ||r(X)||? (3.14)

X

where r is a vector of vertically stacked residuals (column vectors) and the cost function
is the squared norm of the residual vector. Let us assume we have a current estimate X of
the state variables X' . Each residual can be linearized with respect to the states it depends
on Xg, at their current estimate Xs,:

where J; is the Jacobian of the residual at )Esii

or;
Ji & (3.16)
OXs, | ¢,
We can note N = >0, dim(x;) and M = Y, dim(e;). We stack up the Ax;

column vectors as Ax € R and the residual Jacobians at the linearization point J €
RM*N We call this new function F(Ax) a ||r(X + Ax)||%, so that the linearized cost
function writes:

F(Ax) = || + JAx|)? = 7'+ + 2F T JAx + Ax T TJAx. (3.17)

F(Ax) is therefore a local parabolic approximation of the squared residual around
the current estimate and H £ J'J is the approximate Hessian of the squared residual
with respect to the state variables !. Note that by construction, H is always semi-definite
positive.

The optimal step (Gauss-Newton step) Ax* is by definition the step that minimizes F.
This minimum is found by differentiating F with respect to Ax and equaling to 0, giving
the linear system of equation:

HAx* = —J'r. (3.18)

Substituting H by its expression, the Gauss-Newton step is found by solving the linear
system, that is to say, inverting H:

Axpy =-H ' 'r=—-J') " J'r=-Jr

where J7* is the (right) pseudo-inverse of the residual gradient.
Taking a Gauss-Newton step then refers to applying the optimal step to get a new
estimate:

X = X + Ax*. (3.19)

In practice, the individual Jacobians (3.16) are usually obtained by automatic differ-
entiation, e.g. using dual number [AM*] and J* is not constructed explicitly. Efficient
linear system solvers based on the Cholesky factorization of H and the QR factorization
of J are commonly used in SLAM since they can exploit the sparsity of these matrices.

ISee [Sol17, Section 4.2.1] for more details on the nature of the approximation.
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3.2.3 The Levenberg-Marquardt variants

The quality of the Gauss-Newton step depends on the validity of the quadratic approxi-
mation of its cost function. When the cost is truly quadratic, this approximation is quite
good and leads to a near quadratic (super linear) convergence of the optimization proce-
dure. Otherwise, for example in the typical pathological situation where the local shape
of the cost function is flat, that is if the hessian has small eigenvalues, the resulting step
can largely differ from the optimal descent direction or even lead to a divergent behavior.
The Levenberg-Marquardt is an extension of the Gauss-Newton algorithm in which the
linear system (3.18) is modified to alleviate this phenomenon.

Levenberg Levenberg [Lev44] contribution was to propose to dampen the Hessian by
the identity matrix:
AX; = —a(H+A)"'J'r (3.20)

where « and A are scalar coefficients that can be tuned depending on the evolution of the
cost function. In particular, A controls the amount of damping: if a step computed with
a given A step is wrong (the cost function goes up), A is increased so that the Hessian
influence is regularized. For large values, the steps are close to a gradient descent step. o
provides a way to tune the size of the descent steps.

Marquardt Marquardt [Mar63] improves on Levenberg by proposing to dampen by the
Hessian diagonal diag(H) instead of the identity matrix:

AX; = —a(H + Mdiag(H)) ' 'r. (3.21)

Thus, the damping affects each direction of the state differently, depending on the
local shape of the cost function.

The values of a and A are continuously adapted to accommodate for the local shape
of the cost function. This can be understood as an implementation of the Trust Region
paradigm [BBV04].

3.2.4 Other algorithms

The Levenberg-Marquardt algorithm is only one example of a vast family of algorithmic
strategies to mitigate the shortcomings of the "pure" Gauss-Newton algorithm. Other
examples include the Trust region algorithm Dogleg. For very large structure-from-
motion problems, Conjugate Gradient Descent is also used as an alternative to Gauss-
Newton derivates, though extra care has to be taken toward the conditioning of the Hes-
sian [JBD12].

Those algorithms are trade-offs between accuracy, speed, memory budget, and imple-
mentation complexity, that suit better in different applications. It seems that, for robotics,
Levenberg-Marquardt has proven to be a good trade-off between the real-time and accu-
racy requirements.

3.3 State estimation on manifolds

Some of the state variables that we manipulate in robotics are challenging since they do
not belong to vector spaces.
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These variables live on smooth manifolds, also known as Riemannian manifolds.
Some of the equations involved in the Gauss-Newton algorithm cannot be directly ap-
plied without extra care when it is the case. Many examples of Riemannian geometry
arise in data science and robotics [Mio*20]. In our case, taking care of the manifold
structure is necessary and enough to derive optimization algorithms.

Besides, many of these robotics state variables also exhibit a group structure. Espe-
cially useful are the existence of an identity element (that can be thought of as the origin
of the group), the existence of a unique inverse for each element, the possibility to inter-
polate between elements, and the consequent existence of the adjoint linear map.

If a variable has these two properties, they can be described as belonging to a so-
called Lie group, whose properties we will review. We will introduce operations such as
the exponential map that are necessary to describe the measurement models proposed in
the following chapters.

This section is organized by first describing the geometrical properties of manifold
elements and how these properties can be exploited to derive optimization algorithms on
manifolds. Of particular interest is the special definition that are given to covariances
and Jacobians on manifold elements. Finally, we will see how these properties can be
brought together by the Lie theory, of which we give a very brief introduction, illustrating
properties with the important example of rotation matrices.

3.3.1 Smooth manifold structure

A smooth manifold M, or differentiable manifold, is a topological space that can be pic-
tured as a smooth surface embedded in a higher dimensional vector space. The smooth-
ness property (there are no spikes or edges on the manifold) means that to each manifold
point x corresponds a unique tangent (hyper-)plane 7, M, called the tangent-space. The
tangent space is a vector space on which traditional calculus operations are applicable.

The dimension of this vector space is equal to the dimension of the manifold as well
as the degrees of freedom of its elements. We will denote by p the dimension of the space
in which the manifold is embedded and by n the dimension of the manifold. Note that by
definition n < p.

An element of tangent space at x, noted 7" € T, M can naturally be decomposed
as a linear combination of the tangent space basis vectors F;. We can therefore define
an element by its coefficient, which is the vector 7 € R", called the Cartesian tangent
vector. The hat and vee are mutually inverse linear maps permit to pass back and forth
from 7, M to R™, which are therefore isomorphic:

Hat : R" — T M; T 1" =) 7E (3.22)

i=1

Vee : TeM — R™; = () =1 =) Te; (3.23)
=1

where e; are basis vectors of R™.

Vector spaces operations such as the addition of a vector to a point or subtraction of
two vectors do not apply in Riemannian geometry. For instance, if we take a point on a
sphere (the 2-sphere embedded in the 3-dimensional Euclidean space for instance) and
add to it an arbitrary vector, we do not get in general another point on the sphere. These
operations have equivalent in the retraction and the [ift, its inverse. Retraction pulls an
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element from the local tangent space back to the manifold as represented in Fig. 3.1. We
denote the retraction and lift operators & and ©:

Retraction : M xR" — M, (x1,T) > Xo=X1 DT (3.24)
Lift : M x M — R"; (X1,X2) = T =X O X3 (3.25)

»

T M~RY — u
X1 P
X2

Figure 3.1: Manifold, tangent space, retraction and lift operations

As in [SDA18], we use the concept of composite manifold, which allows us to deal
with a collection of elements x* living in their respective manifold M?, which very of-
ten occur in robotics. We define the composite manifold as the concatenation M, =
</\/l1, MM > An element of this composite manifold is denoted by X'. We will also
write a composite Lie group equivalent of the retraction & and lift © operations. It con-
sists in applying operations to individual elements of the manifold and its tangent space:

x! x! ) 1 X% ) x%
xM xM g M xyr o xM

3.3.2 Back to the MAP optimization problem

Elements of the tangent space can be interpreted as steps that we can make to go from one
point of the manifold to another. This ties closely to the notion of Gaussian steps that we
defined in Section 3.2.2. We will now consider that the estimated state X’ is an element
of a composite manifold. In this case, the Gaussian steps of (3.19) are in the composite
manifold tangent space and the step updates write:

X=X @ Ax* (3.27)
obtained by solving 5
Ax* = argmin [|r(X © Ax)|[>. (3.28)
Ax

Concerning residual formulation in (3.5), if the measurement z; is itself an element of
a manifold, then the vector subtraction needs to be replaced:
e;(Xs,) = h(Xs,) © z;, (3.29)

Note that many state variables belong to vector spaces (such as the robot position),
which are trivial manifolds. For those, the & and © operators simply reduce to the addi-
tion and subtraction of Cartesian vectors.
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3.3. State estimation on manifolds

3.3.3 Uncertainty on manifolds, Jacobians

Our state variables are random variables approximated by multivariate Gaussian distribu-
tions, that can be summarized by their mean vector and covariance matrix. These concepts
need to be slightly modified to account for the manifold nature of some of these by defin-
ing Gaussian distributions on manifolds. Let 7 € R" be a small perturbation around a
point X € M, so that we can write:

X=XdT, T=XO6X (3.30)

where x designates the mean value of the distribution on x. We define a zero mean
"Cartesian" Gaussian distribution on the tangent space, the covariance being defined as:

Y 2 E[rr' ]| =E[xox)(xox)] € R™" (3.31)

where E[-] denotes the expectation operator. By a slight abuse of notation, we note that
the manifold distribution is x ~ N (x, 3).

As an illustration, the group of unit quaternions H = {q € R* | q ® q* = 1} under
quaternion multiplication ® is a manifold (the S® sphere, p=4 and n=3) [Sol12]. The
tangent space is the set of antisymmetric matrices, which is isomorphic to the angle axis
rotation vectors & € R3. If we naively define the covariance matrix of a quaternion as
E[(g —a)(q — q) '] € R**, this covariance matrix is ill-defined. The covariance must
be more properly defined as a 3 x 3 real matrix on the angle axis space.

In general, covariances can be propagated through nonlinear function of random vari-
ables using the chain rule. For instance, if x € R"* and y € R™ are Cartesian multivariate
Gaussian distribution related by the nonlinear function f, propagating the x covariance
3 € R™ " through f writes:

_Df !

Y Dx

bf

f:xeR™ —5yeR"Y, h) <
Dx

(3.32)

X

The same equation applies for random variables x € My and y € M, living on
manifolds. The definition of Jacobians has however to be redefined as:

DS 5y, Hx©T) 010

Dx —0 T

(3.33)

These Jacobians also play a central role in the derivation of the residual Jacobians
(3.16). Examples of manifold Jacobian derivations in the context of Lie groups can be
found in [SDA18].

3.3.4 Lie groups for robotic state estimation

Riemannian geometry is enough to deal with optimization problems with variables living
on smooth manifolds. However, many of these state variables, in the context of robotics,
also exhibit a group structure, which gives them extra interesting properties.

A group is an ordered pair (G, o) comprised of a set G and a composition law o that
together satisfy the group axioms:
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Closure undero :xoy (3.34)
Associativity o : (xoy)oz =x0 (yoz) (3.35)
Identity element £ :xo& =€fox =X (3.36)
Inverse existence x ! :x lox=xox ! =¢& (3.37)

Vx,y,z €G.

Simply stated, a Lie group is a group whose elements live in a smooth manifold M.

A vector can represent a displacement from one point to another along a straight line
in the euclidean space, or directly a point (displacement from the origin). Analogously,
an element of a Lie group represents either a path from one element to another along
a geodesic of the manifold or directly an element of the group (displacement from the
identity element &).

In particular, the identity element £ relates to a notion of a global reference from
which each element of the manifold can be compared. The tangent space at this element
is called the Lie algebra m £ Tz M.

Let us compute the retraction operations in the case of Lie groups. We will follow the
example of 3D rotations as they are of great use in robotics and provide good intuitions
regarding the general behavior of Lie groups. The group of 3D rotations is defined as the
Special Orthogonal group in 3D:

SO(3) = {R € GL(n,R)| RR" =R"R =1, det(R) = 1} (3.38)

under matrix multiplication.
Firstly, properties that make SO(3) a group are immediate from the properties of
matrix multiplication:

* Closure under the matrix product

* Associativity through the matrix product

* Identity element I3

* Inverse element R™! = R." (from the group definition)

Let us explicit the manifold structure of SO(3). It can be shown [SDA 18] that taking
the time difference of a rotation matrices results in an element of its local tangent space:

R = R[w]" € TrSO(3) (3.39)

where [-]" is the skew-symmetric operator associated with the cross product. [w]" = w X -.
The Lie algebra so(3) is therefore the 3 dimensional vector space of antisymmetric matri-
ces. For a constant w, this defines an ordinary differential equation (ODE) whose solution
is R(t) = Ry exp(|w]"t) where exp is the matrix exponential:
00 k
exp(A) = lz‘ (3.40)
k=0 "’
For SO(3) and most other Lie groups, properties of the Lie algebra simplify the infinite
sum of the matrix exponential to a simpler closed-form formula. In the SO(3) case, this
formula is known as the Rodrigues’ formula:
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Exp(0) = exp([0]") = I+ [u]" sin(6) + [u]*(1 — cos(8)) (3.41)

where 8 £ fu € R? and 6 is the norm of the rotation vector (angle in radians) and u its
unitary direction. Finally, we have denoted by Exp the composition of the hat operator
(0" = [0)" € s0(3)) and the matrix exponential: Exp(7) = exp(7"). The inverse
operation, that maps elements from the group to the Lie algebra, is defined as the Log
map. A general representation of Lie group operations can be found in Fig. 3.2

With all of that in mind, the link with the Riemannian manifold terminology becomes
clearer. We can compose a rotation with an increment '@ taken in the tangent space at
x; to obtain another rotation: R, = R, Exp(le). This corresponds to the & retraction
operator. Conversely, the lift © corresponds to the application of The logarithm on the
relative rotation as described here:

R, =R, ®'0 =R, Exp('9) (3.42)
'0 = R, © R, = Log(R| Ry) (3.43)

In robotics terms, ' is the axis angle representation of the relative rotation 'dR 5 =
R| R and local rotations represent the orientation of reference frames {1, 2} in a global
world reference frame. The identity element, therefore, corresponds to the world frame.

Due to the general non-commutativity of the group operation, an additional & operator
exists that retracts and composes vectors at the Lie algebra instead of the local tangent
space, the left-&. The local operator, that corresponds to the manifold retraction, is called
the right-®. The Adjoint Ad,M is an operator that maps elements from the local tangent
space to the Lie algebra.

£ = AduM*r (3.4)

For rotation matrices, the adjoint matrix is AdgSO(3) = R: to change the reference
frame of the angle axis from local to global reference, it needs to be rotated from one
frame to another. Those operations are illustrated in Fig. 3.3.

Figure 3.2: Representations of a Lie group including the identity element £, operations of compo-
sition between increments and relations between a tangent space increment at the identity €7 and
at the local element *7 through the adjoint matrix Adx. Figure adapted from [SDA18].
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world

YRy Y= Ad,'0 =Ry 0

Right @ : Rz =R;®'0 =R1Exp(*f) = Ry '"6R1»
Left D R2 = w¢9 (&) Rl = Exp(wQ)Rl = w5R12R1

Figure 3.3: Representation of SO(3) Lie groups operations. Note that we represented frames with
different origins for better readability while the group elements only represent pure rotations (no
translation). world is the "global" reference frame of the problem to which we assign the identity
element of SO(3): Is. 1 and 2 are two frames of reference defined by their orientations with
respect to world, R and Ro. d Rq2 is the relative rotation between elements R and R and can
be computed using the exponential map on the angle axis 8 expressed in world or local frame,
depending on whether we use the right or left & operator.

3.4 Factor Graphs: a visual language for robotics esti-
mation

A crucial aspect of solving the MAP problem is the fact that the likelihood function is
factorizable. This represents the fact that the problem exhibits a particular structure that
has important computational implications. We will first explain how this factorization can
be described visually using a graphical model known as the Factor Graph and then link
this representation to the sparsity of the matrices involved in solving the NLLS problem.

3.4.1 Factor Graph representation

Let us consider the toy example represented in Fig. 3.4a. We wish to estimate the trajec-
tory of a differential robot, that is its states at chosen timestamps called Keyframes, and
remarkable elements of the environment, called landmarks. We suppose that this robot
is equipped with an odometer, whose measurements integrated over time provide relative
transformations between Keyframes, and an exteroceptive sensor that provides relative
measurements between Keyframes and landmarks.

In this case, the state variables are X = {x3,X2, X3,(1,/2} and measurements Z =
{Z015 202, %1, Ze.2 }. We also apply a prior on the pose of the first Keyframe of the trajec-
tory, which can be understood as fixing the frame origin of the reference frame in which
the estimation is done.
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AV

\/ \—»‘

t1 12 t3

@) )

Figure 3.4: (a): toy estimation problem, a differential drive robot equipped with an odometer
moves in an scene with landmarks represented by stars. (b): Factor Graph representation the
problem, the estimated variables are represented by circles (blue for robot Keyframes, green for
landmarks) and factors by squares (orange for odometry, black for exteroceptive sensor, red for
the prior).

The factorization of the likelihood of (3.6) in this example writes:

p(X|Z) o ¢o(x0) (3.45)
X1. X2 X9, X3 (346)
¢3(X1> )¢4(X2,]1>72)¢5(X5712) (3.47)

This factorization can be represented as a factor graph as seen in Fig. 3.4b. Factor
graphs are popular probabilistic graphical models [KF09] that can describe a vast family
of statistical models [Loe04]. In the general sense, a factor graph is a bipartite graph that
represents the factorization of a function of several variables. In estimation , we use it to
represent the factorized likelihood (3.11), or equivalently the NLLS problem (3.12).

We adopt the visual notation commonly found in robotics: round nodes for variables,
square nodes for factors, edges represent the dependency of each factor on a subset of
variables. In the following parts, we will use the following terminology to designate
factors depending on which variables they depend on:

* Unary factor ¢: depends on a single Keyframes, obtained from a an absolute mea-
surement (e.g. a prior, GPS etc.)

* Motion factor ¢: depends on successive Keyframes, obtained from a motion sensor
(e.g. wheel odometry, IMU etc.)

» Relative or exteroceptive factor ¢: depends on a Keyframe and a part of the map,
a few landmarks in this case, obtained from exteroceptive sensors

Dellaert and Kaess [DKO06] were the first to recognize the link between NLLS prob-
lems and factor graphs [DL19]. Over the last two decades, they have grown in popularity
among roboticists as a visual language to describe estimation problems [DK*17] and plan-
ning problems [Don*16]. As Frank Dellaert puts it 2, factor graphs are "an amazing thing
to write on blackboards". Aside from providing insights into the computational structure

2(Citation from a recent talk, see this video, around 15:30.

39


https://www.youtube.com/watch?v=-yCC7mpgL4w

Chapter 3: Tutorial on factor graph state estimation

of the problems, they can be used as a common language between engineering teams to
convey insights about the nature of the problems to solve.

The problems typically represented by factor graphs and found in estimation are very
sparse. Many specialized solvers [Gri*11; Kae"12; Ila*17] have been implemented to
exploit this sparsity. Let us discuss the basis of sparse NLLS to conclude this chapter.

3.4.2 Sparsity of the NLLS problem

Each residual of the NLLS problem is a function of a small subset of the state variables.
Therefore, each factor node in the Factor Graph representation of the problem is con-
nected to but a few of the variable nodes. This makes for a graph with low connectivity.
We will show that this low connectivity is linked to an important sparsity of the Jacobian
matrix of the residuals.

The Jacobian matrix of the residuals J € RM*¥ is a big sparse matrix of dimensions

* Mrows =3", dim(e;) — the sum of residual dimensions
* Ncolumns =", dim(7Tx,M;) — the sum of variables tangent-spaces dimensions

Each block column corresponds to one of the state variables and each row corresponds
to a residual. For each row, only the blocks corresponding to the state variables that the
residual depends on are non-zero. For instance, the Jacobian corresponding to the toy
problem described in Fig. 3.4a is:

Jy,
Ta
Ss I
J=|Ja I (3.48)
T Un
U Ay
J J

The approximate Hessian matrix H € RV*" displays a similarly remarkable sparsity
that makes the resolution of the linear system at each step very efficient. Algorithms such
as the Schur complement [BBV04, Section A.5.5], Cholesky factorization [BBV04, Sec-
tion C.3], and QR factorization [BBV04, Section C.5] were applied by different authors
to the problem of SLAM and estimation.

3.4.3 The algorithm (revisited)

To tie things together, we now recapitulate the Gauss-Newton algorithm in the context of
variables living on manifolds. We highlight the parts that differ from the regular Gauss-
Newton algorithm with vector spaces.

1. Initialize the state estimate at an initial value X := X
X lives on a composite manifold. Its error and increments are expressed in its local
tangent space.

2. Approximate the NLLS cost function around the current estimate as a quadratic
function
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The linear approximation is done using the notation of Jacobian on manifolds de-
scribed in Section 3.3.3. Ax is defined as the Cartesian representation of a com-
posite tangent space element.

3. Find the optimal step Ax* by solving a linear set of equations (3.18)
This part does not change. As mentioned in Section 3.2.3, globalization of Gauss-
Newton such as the Levenberg-Marquardt algorithm may alter the linear system to
be solved for increased performance.

4. Update the current state estimate X=X P Ax*
The update of the current state is done using the retraction operator & of the com-
posite manifold (3.26).

5. Loop over steps 2-4 until convergence

When the estimation algorithm has converged we can also obtain the covariance on
the estimates (details and illustration are available in the appendix Chapter A). This is
however a costly computation that is usually reserved for offline investigation of the esti-
mation quality.

3.5 Conclusion

We have described a general algorithm to solve NLLS problems with variables belonging
to manifolds and weighted by covariance matrices. This problem comes from framing the
state estimation as a MAP problem and using multiple assumptions on the nature of the
measurement models. These measurement models are described as residuals weighted by
their respective covariance matrices, representing the confidence we have in the sensor
measurements. Factor Graphs can represent visually those problems and their connectiv-
ity exactly translates to the sparsity of the linear problems appearing in the optimization
algorithm.

In our opinion, two equally important research directions start from here: (i) finding
new solvers extending these ideas to new sets of problems, such as multi-robot or multi-
hypothesis problems, and (ii) formulating new, efficient, and generalizable measurement
models. This thesis mostly theoretically contributes to the direction of extending the esti-
mation model (ii) while we mostly rely on existing algorithms (i) to solve the subsequent
problems. A commonly used denomination in the context of robotics state estimation is to
refer to the solver implementation as the backend while the algorithms processing sensor
information to create residuals are referred to as front-ends.

The next chapters concentrate on a range of sensor modalities useful for legged robots:
object pose retrieval from vision algorithms, a generalized pre-integration theory for high
rate sensors, legged robot kinematics, and the application of pre-integration to legged
robots force measurements.
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The field of computer vision comprises a wide range of methods to extract information
about the real world from images taken by digital cameras. Among others, this informa-
tion may be the structure of the environment (mapping or object tracking), the movement
of the system to which is attached the camera (localization), or both at the same time
(Simultaneous Localization And Mapping, a.k.a. SLAM). In the context of robotics, the
images are obtained one after another at a constant rate. This leads to a somewhat contin-
uous evolution of the image appearance, which can be leveraged in various ways (feature
tracking, motion models, etc.). We are here interested in solving SLAM, which is the
most general application of this method and is used when a robot needs to localize it-
self in an a priori unknown environment. A vast literature of dedicated algorithms have
been developed in this regard, from approaches based on geometrical constraints using
sparse feature detection [MMT15; Fer"21] to methods leveraging photometric consis-
tency [NLD11; ESC14; EKC17], certain methods combining ideas from both approaches
[FPS14; For*16].

These algorithms aim at generalizing to any kind of environment and have their re-
spective strengths and weaknesses [FRR15]. Although open-source code is available for
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most, these pieces of software may be difficult to integrate into other frameworks. Be-
sides, though providing quite accurate localization, maps obtained from these methods
are rarely immediately useful, lacking semantic information about the scene.

In this thesis, rather than investing time and energies in new vision processing algo-
rithms, we chose to focus our attention on legged-robot state estimation. In particular,
we are interested in localizing the robot with respect to objects of interest such as stairs,
tables, or the like, whose geometrical models are known. Approaches based on object-
level measurement can provide an affordable alternative, and are readily available. These
systems assume the presence of known objects in the scene which can be detected in the
images. Dedicated algorithms can then infer the object pose relative to the camera, which
can be used to build object-level SLAM systems.

In this chapter, we present two measurement models based on available software,
that enable the implementation of this paradigm. The first one uses unique AprilTag
fiducial markers [WO16] (to which we may refer to as tags informally) that are laid out
sparsely in the scene. The second uses a deep-learning-based method [LLab"20] to obtain
relative poses from an object of interest, such as a pair of stairs. Instead of artificially
augmenting the environment with fiducial markers, we assume that objects of interest
exist in the scene, whose CAD models are known. Both systems lack ways to estimate
the uncertainty of their output and we, therefore, propose methods for the computation of
their measurements outputs covariances.

In both models, we assume that we have a calibrated pinhole camera and that the im-
ages have been corrected for distortions. The camera reference frame C' has its origin at
the camera optical center and follows the convention X-Y-Z = Righ-Down-Front, Front
being the optical axis direction, looking through the lens. This chapter starts by introduc-
ing the measurement model based on a general 6D factor used by both systems. Methods
to recover the covariance of both algorithms are then given. For applications fusing these
models with IMU data, please refer to Chapter 8 and Chapter 10.

4.1 Relative 6D pose factor

In this section, we will derive a general 6D relative transformation factor between a
Keyframe and a object, whose poses in world frame are respectively "V Tp € SE(3) and
WT, € SE(3). We denote by “T;, € SE(3) 6D transformations transforming a 3D point
’p € R3 expressed in frame b to its expression in frame a “p = “T,’p € R3.

Let us assume that an algorithm estimates directly CTO, a measurement of the pose of
an element of the scene with an attached frame O with respect to the camera frame C'. The
kinematic chain of the problem described in Fig. 4.1 unrolls as oo ="TzB8T-Ty
where W and B correspond to the world and body frames. T« corresponds to the ex-

. . Ch . i .
trinsic pose of the camera. Given measurement T, this relation can be turned into a
residual relating the robot pose, the camera extrinsics, and the object pose:

_ Cx
ev(" T, "Tc, " To) = [(VT5 Tc) 1 WTo| & To € R (4.1)
= Log(("WTpBTe “To) ' WTy) € RS 4.2)
SE(3)

where here Loggg ) denotes the log map on SE(3) [SDA18].
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Figure 4.1: Kinematic tree of the object/camera measurement model

Depending on the nature of the problem, we can fix some of the variables of the
residual. In Table 4.1, various estimation problems are modeled depending on which
variable is fixed.

Table 4.1: Some possible estimation problems corresponding to fixing either of the variables.
Estimated variables are checkmarked with " v'". Fixed variables are marked with "X".

SLAM with

extrinsics calibration v v v
SLAM v X v
Loc‘ahz‘atlon ‘Wlth. v v %
extrinsics calibration

Localization v X X
Mapping X X v

We also assume that we have access to the covariance of this measurement 3y € R6*6,

This factor is general enough to be used in two applications that we successively
describe, based on AprilTag fiducial markers and CosyPose. For both, we explain the
algorithm behind the pose measurements and propose covariance models.

4.2 Fiducial markers

4.2.1 Markers Pose estimation algorithms

Fiducial markers (such as ARToolkit [KB99], ARTag [Fia05], ArUco [Gar*14]) are widely
used in robotics and Augmented Reality (AR) applications as they provide an easy way
to obtain a relative 6D pose between a calibrated camera and the marker. These mark-
ers are designed so that they are uniquely and robustly identifiable in any scene [WO16;
RMM18].

The pose extraction happens in two steps. First, the tag corners sub-pixel projections
are extracted from the image along with the unique id of the detected tag. In this work we
used the AprilTag library [WO16] for its performances and popularity within the robotics
community. Second, knowing the tag size, we can compute the position of these corners
in the local tag frame, as defined in Fig. 4.3. Recovering the pose of the tag from the
corner projections and their local coordinates is then an instance of the Perspective-n-
Point (PnP) algorithm [Gao*03], which requires at least four 2D-3D correspondences to
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Figure 4.2: Illustration of the tag ambiguity problem. The red circles represent uncertainty in the
corner detection due to pixel noise. The conic perspective projections of faces from two cubes with
120 degrees orientation difference fall withing these regions and are, therefore, hard to distinguish.
Figure taken from [JMS17].

compute a unique solution the 3D pose !. A vast literature has been written on the topic,
many methods relying on efficient analytical models [Gao*03; LMF09; CB14; TL20b],
sometimes refined by a nonlinear maximum likelihood step.

4.2.2 Ambiguity in the pose estimation

A known problem of fiducial markers is the orientation ambiguity of detections in noisy
images. This phenomenon may make the PnP estimation of the tag orientation jump
wildly from one frame to the next. This is due to the fact that the conic perspective
projection of the corners is weak, that is the difference between two symmetrical tag
orientations is very close. If this difference falls below the camera pixel noise, then the
two solutions are indistinguishable, as shown in Fig. 4.2. This happens especially when
the tag corner projection is close to a square, that is when the tag is orthogonal to the
axis passing through the camera and tag origins. We refer to this situation as tags being
fronto-parallel with respect to the camera. This phenomenon is intensified when the tag
is far from the camera as it spans a smaller region of the image.

One solution is to define the tag factor residual as the pixel error between the detected
corners and their projection given the current tag pose estimate and let the optimizer find
the most probable tag poses given the complete set of measurements. However, if one tag
is wrongly initialized, the optimizer is not guaranteed to leave the local minimum with
new measurements.

Our solution is to bring the disambiguation to the front-end side. [CB14] provides
an implementation of the PnP problem that retrieves both ambiguous poses. When ex-
pressed in the camera frame, both solutions share the tag position and differ only in their
orientation. We typically want to select the solution with the smallest error. However, if
the reprojection errors e; and e, are too close (we test for z—f < h with e; < ey and h an
empirical threshold), we increase the rotational part of the covariance matrix by a great
factor to cancel the influence of the wrong tag orientation on the overall MAP problem.

4.2.3 Covariance model

Obtaining a covariance of the estimated transformation is an important step toward the
integration of these measurements in a sensor fusion algorithm.

The P3P algorithm yields up to four geometrically feasible solutions, a fourth point being then used to
select the right one.
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Urban [ULH16, Eq. (23)] uses a careful parameterization of the homogeneous coor-
dinates associated with 2D features to develop a maximum likelihood PnP algorithm and
also proposes a covariance model based on the problem Hessian. However, the particular
choice of variable parameterization makes the formulation of the covariance computation
overcomplicated. We think that a simpler yet equivalent formulation is possible.

Usually, when a nonlinear mapping of noise variables from one space to another is
available, we can propagate the covariance through the nonlinearity as shown in Eq.
(3.32). Instead of directly obtaining Jacobians from the PnP algorithms, we found that
a natural way to proceed is to take the opposite direction as follows. It should somehow
be possible, knowing the marker size and the relative pose measurement, and assuming
pixel noise, to recover the pose covariance Xr. A simple model of pixel noise is to as-
sume isotropic Gaussian noise on the pixels with variance 2. If we stack four pixel (the
four tag corners) x; = [u;,v;] € R? in the column vector x = [x; X5 X3 X4] ', we have
therefore that x is corrupted by a Gaussian noise 3, = o2Ig, where o, usually takes
values of 1 or 2 pixels. The PnP algorithm provides us with a function pnp defined as:

pnp,, : R® — SE(3)

4.3
x — Ty = pnp,, (x) (4-3)

where w denotes the dependency on the width of the marker. This "pnp" function imple-
mentation depends on the specificities of the PnP algorithm used and is in general hard to
analytically differentiate. Instead, if we consider the inverse function.

proj,, : SE(3) — R®

, 4.4
Ty 5 x = projw(CTO) “44)

"proj" maps the relative pose to the projection of the tag in the image. A rather simple
Jacobian expression can be derived using the chain rule, as follows.

We denote the marker corner coordinates in the marker frame as shown in Fig. 4.3. As
a convention [WO16], we order the corners counter-clockwise starting from bottom-left
(looking straight at the tag).

C1

_w w w _w
2 2 2 2
_ | €2 w w — | _w — | _w 4.5
C=le | @7 2| 2= |2) = 5 | ca= 5 4.5)
0 0 0 0
Cq

Then, assuming that images are corrected (no distortion), the pinhole camera model
gives us that

x; = eucl(h;) = eucl(K “Toc;) (4.6)

for each corner c¢;, where h; are the homogeneous coordinates representing the projected
corners and "eucl" is the function that maps homogeneous coordinates to euclidean pixel
coordinates defined as

eucl : R? — R?

X
[0 _>X:<x/z>. 4.7)
. y/z
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Cq

Cc1 C2

Y

Figure 4.3: AprilTag local coordinate systems and corners conventions [WO16]

We need to compute the Jacobian of each corner projection with respect to the esti-
mated relative pose, decomposed using the chain rule as

i o L
Regarding the transformation, we will consider it to be an element of the composite

Lie group (R(3) x SO(3)) as it is done in our solver. The expressions of those functions
are, therefore, expressed as:

h; = K(“Roc; + “po)

1, =K
, 4.9)

e, = -KRolci.

Jgiro - [chlipo JléiRo] - K[I?’ - CRO[CZ']X]

while the Jacobian of the map from homogeneous coordinates to euclidean pixels is

«  (Vz 0 —mz;/27
Jhi—< 0 1 _yi/ZiQ). (4.10)

Finally, we stack the 4 Jacobians to get the full Jacobian to be used for covariance
propagation:
Jer
o
X2

J%
JL T = J;TO c R8*6 4.11)
CTO
o
O

We therefore have the covariance propagation equation X, = JX1J". Since X, and
J are known, this equation must be inverted in order to recover the needed covariance
1. J being non square and full column rank for four corners (J € R8%5), we can use the
right pseudo inverse J* = (J'J)~1JT. Multiplying left and right by respectively J* and
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J+ T, we obtain: ¥p = J*X,Jt . Given that the pixel noise covariance is isotropic as
explained above, 3, = 021, this equation finally simplifies to:

Se=J" N ISAATHTINT
=2 JTHITIITH?
=2(JT )N (4.12)
Note that the derivations above are not limited to a square tag with four corners and
could be used for any object defined as a set of points in its local coordinate system
provided their configuration is not degenerate and makes the PnP computation possible
[Gao*03]. We have therefore a compact model informed by the geometry of the measure-
ment model with a single tuning parameter in the pixel noise o,.

4.2.4 Covariance visualization

It is hard to represent graphically the appearance of this uncertainty model from the full
6D covariance. However, we can inspect the positional and orientational uncertainty (re-
spectively the 3x3 upper-left and 3x3 lower-right sub-matrices) by representing them as
confidence ellipsoids.

The principle is the following. For a 3D random variable x ~ N (u, ) described by
a multivariate normal distributions with mean p € R3 and covariance matrix 3 € R3*3,
the statistics:

(x—p) 2 (x—p) = x? (4.13)

follows a chi-square distribution with 3 degrees of freedom. Since (4.13) is the equation of
an ellipse centered at 1« and shape governed by 32, we can then plot confidence volumes as
ellipsoids by replacing the right-hand side of (4.13) by the critical value of the chi-square
distribution for the desired confidence interval (we chose o = 99%).

We simulate a realistic scenario using calibration data from a laboratory RealSense
camera, 15 cm tags and o, = 2 pixels. Fig. 4.4 and Fig. 4.5 show how the uncertainty on
position and orientation relate to different factors.

In all cases, the covariance increases with the distance to the camera (the volume of the
ellipses increases). On top of that, we can see that, for both position and orientation, the
uncertainty distribution is clearly anisotropic: the uncertainty of the pose measurements
is logically higher in the dimensions that lead to the least change in the aspect of the tag
projection.

For the position uncertainty (Fig. 4.4), the shape of the covariance is easily inter-
pretable: the uncertainty is the highest along the camera-tag axis. Besides, this uncer-
tainty is not much influenced by the relative camera-tag orientation.

For the orientation uncertainty (Fig. 4.5), the shape of the covariance is harder to in-
terpret: a high uncertainty about the orientation along one axis corresponds to a dilatation
of the ellipse along this axis. For instance, in Fig. 4.5a, tags placed along the Z-axis of
the camera frame have a very high uncertainty along the X and Y-axis (in camera frame).
Their uncertainty ellipses seem, therefore, very flat along the Z-axis. Fig. 4.5a directly
relates to our discussion about tag pose ambiguity in Section 4.2.2: tags close to fronto-
parallel configuration (along the camera Z-axis) have a very high rotational uncertainty
compared to tags that have a more important relative orientation as in Fig. 4.5a. On the
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(a) Relative position covariances, 15 cm tags (b) Relative position covariances, 30 cm tags

Figure 4.4: Position uncertainty from the analytical covariance model. The single frame at the
bottom represents the pose of the virtual camera, others are identical AprilTags placed in front of
the camera at different distances but identical orientations. Covariances are represented in orange,
centered at the corresponding tag position. (a) shows that the main positional uncertainty is along
the camera-tag axis, which corresponds to the distance information. In (b), tags are twice the size,
which shrinks their position uncertainty.

contrary, tags with higher relative orientation in Fig. 4.5a display a much lower rotational
uncertainty.

In Fig. 4.6, 3 tags are projected: the first (black) is half a meter away from the camera
in fronto-parallel orientation, the second (orange) 10 cm to the right, and the third (rose)
10 cm behind. We can see that the difference of appearance due to a depth-wise movement
is much smaller, which explains the higher uncertainty on the depth measurement.

This covariance seems well behaved and captures the physical intuitions about the
measurement uncertainties. This was leveraged in the context of a visual-inertial SLAM
system implemented in Chapter 8. A quantitative comparison with [ULH16] would be in-
teresting as well as an experimental validation campaign to further strengthen our results.
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(a) Relative orientation covariances, 10° orientation (b) Relative orientation covariances, 45° orientation

Figure 4.5: Orientation uncertainty from the analytical covariance model. The single frame at the
bottom represents the pose of the virtual camera, others are identical AprilTags placed in front of
the camera at different distances but identical orientations. Covariances are represented in orange,
centered at the corresponding tag position. In (a), tags are oriented to be nearly fronto parallel to
the camera (10 degrees orientation), resulting in high orientation uncertainty due to the ambiguous
perspective. (b) shows tags with the same positions but 45 degree orientations with respect to the
camera, which results in lesser uncertainty.
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Figure 4.6: Projection of 3 tags of camera frame position: black -> (0,0,0.5), orange -> (0.1,0,0.5),
rose -> (0.0,0,0.6)
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4.3 Learning-based object pose estimation

In this section, we propose to integrate a deep-learning-based algorithm to object pose
estimation [Lab*20] to our measurement models.

4.3.1 Object pose estimation

The problem of object pose estimation can simply be stated: given a calibrated camera
and a set of known object models, detect those objects in the current image frame and
extract camera-objects poses. Traditionally, competing methods were developed using
either local features matching or learning-based methods. As shown by the most recent
BOP challenge results [Hod"20], deep-learning methods now clearly dominate the field in
terms of accuracy. At the time of the writing, the highest-ranking non-learning based pose
extraction method [KD20] (object detection is deep learning based) actually uses depth
measurements and is dominated by a purely RGB, deep-learning-based model [HB21],
though [KD20] seems to be ten times faster 2.

In terms of accuracy, these results advocate for the use of deep-learning purely RGB
image-based methods, that now provide accurate enough results for these to be used in
robotics applications [Lab®21]. We use the CosyPose model of Labbe et al. [Lab*20]
which at the time ranked first in the BOP challenge leaderboard. This approach mixes a
new state-of-the-art single-view pose estimation algorithm with a multi-view algorithm
using RANSAC and Bundle Adjustment. This system obtains precision in the order of
centimeters on real objects whose 3D model is known. Its performances make it a good
candidate as a direct 6D pose sensor to perform a multi-sensor fusion. In the context of
legged robots, this is very useful to localize the robot relative to objects it needs to interact
with, such as objects to manipulate or stairs to climb. While CosyPose is not yet able to
generalize to unseen classes of objects, rapid progress is expected in this direction.

4.3.2 CosyPose

The front end of the SLAM system designed for this project includes object detection
and object pose estimation. This function is provided by CosyPose [Lab*20], a deep-
learning-based 6D pose estimator that reaches state-of-the-art performances for 6D object
pose estimation. In the original paper, a single-view pose estimator and a multi-view
algorithm were introduced. In our context, only the single-view module is used, while
object tracking and mapping is handled by the SLAM framework.

CosyPose takes as input a single image / and a set of 3D models, each associated with
an object label . The camera C'is assumed to be calibrated. A set of object detections is
performed using the object detector Mask-RCNN [He"18]. Each 2D candidate detection
is identified by an index « and associated with an object candidate O,. Its 6D pose
“Typ, € SE(3) relative to the camera C'is then computed as follows.

The single-view procedure for pose estimation of CosyPose is an improvement over
the one proposed in DeepIm [Li*19]. The general idea is to use the same neural network
to iteratively converge to the object pose (Fig. 4.7). It takes as input the cropped image of
the detected object bounding box and a rendered image based on the current object pose
solution CTOmk_l at iteration k£ — 1. It returns a transformation update O“’k_lTOmk that
brings the rendered image closer to the cropped image. In practice, two neural networks

2BOP challenge leaderboard is available at ht tps://bop. felk.cvut.cz/leaderboards/
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Figure 4.7: Progressive convergence of a stair step estimated pose over successive iterations of
CosyPose.

with the same structure are trained independently: one for coarse pose estimation, i.e. the
first iteration of the iterative process, and another for the refinement of the pose. The
coarse network gives the first transformation CTOQ,O, and the prediction of the pose of the
object is obtained by composing the /V successive transformations:

“To, = “To. 0 ]‘[ Ok 5 k- (4.14)
k=1

CosyPose reuses the neural network architecture of DeepIm with a new backbone for
feature extraction, Efficient-Net [TL20a], with a spatial average pooling layer added after
it. Then, it disables the optical flow sub-network during the training. A new rotation
parametrization, introduced in [Zho*20], is used for the loss function, which has been
shown to bring more stability during training. Then, the focal length of the cropped
images is recomputed during training to fit the virtual camera of these images. Finally,
the object symmetries are taken into account during training thanks to the symmetric
distance. Each 3D model [ is associated with a set of symmetries S(/), that is the set

of transformations that leave the aspect of the object unchanged:

S() ={S € SE(3) | VT € SE(3),R(I,T) = R(l, TS)} (4.15)

where R ([, T) is the rendered image of the object [ captured in pose M. Given a set of
symmetries S((), the symmetric distance D; measures the distance between two 6D poses
represented by transformation T4 and T5. Given an object [ associated to a set A; of 3D
points x € A&}, we have:

Dy(Ty,Ty) = — T Tox||” 4.1
(T, Ty) srélé%})m Z || T1Sx — Tox||*. (4.16)
Equation (4.16) measures the average d1stance between the points of the object model
transformed by T; and Ty according to the symmetry that best aligns the transformed
points. In practice, for continuous symmetries that are rotations around an axis (e.g. for a
texture-less cylinder), S(1) is discretized using 64 angles.
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4.3.3 Empirical covariance estimation

When considering merging a tracker such as CosyPose with other sensor modalities, an
important aspect is to predict covariance representing the level of confidence in the tracker
estimate. Such data uncertainty is crucial to the robustness of SLAM systems involving
neural networks subsystems such as [ Yan*20a]. The depth-based object SLAM algorithm
[Sal*13] claimed to compute a covariance matrix approximated as the inverse of the Itera-
tive Closest Point output. The methods targeted for deep learning applications are harder
to implement, especially if the goal is to use an off-the-shelf pose estimation neural net-
work, as is the case for this paper. For instance, Bayesian Neural Networks [Jos*20]
need to be trained explicitly for uncertainty prediction while Monte Carlo (MC) Dropout
[GG16] requires multiple forward passes at run-time.

In our work CosySLAM [Deb*21], we present a practical implementation of a SLAM
system based on the design of an off-the-shelf deep learning object pose estimation algo-
rithm [Lab*20], which empirical results are presented in Chapter 10. To integrate these
measurements with other sensors, we propose a noise model based on empirical data.

Covariance model

CosyPose does not provide an evaluation of its uncertainty. The two main families of
solutions available to estimate uncertainties of neural network predictions consist in MC
dropout [GG16] or Bayesian Neural Network (BNN) [Jos™20]. Using BNNs would re-
quire changing the architecture of CosyPose and retraining it. MC dropout would require
several forward passes through the network for each iteration, which would be computa-
tionally expensive.

We need to compute the covariance without changing the architecture of the network
and at an affordable cost. We propose to make an empirical error model based on poly-
nomial regression in order to compute the covariance matrix. The idea is to parametrize
the average error on each se(3) component returned by CosyPose. We conducted an em-
pirical study on several video sequences that explore the variations of the parameter set
for several object types. The error is computed by comparing the SE(3) transformations
between the camera C' and an object O returned by CosyPose “T with the same trans-
formation given by a motion capture system. We then use the error predictions of our
parametric model as a proxy to the true 6 covariances during model fitting. A different
model is fit for each object type due to their diversity of shapes, sizes, and textures.

The parameters used to compute the error need to represent the error sources of Cosy-
Pose as much as possible. To cover the error due to the configuration of the object in
space, we need to include the 3D coordinates of the camera in the object frame. We also
want to take into account some invariance that can occur by rotating around the object
if it is texture-less for example. For this reason, we choose spherical coordinates of the
camera origin with respect to the object frame to parametrize the model. Another source
of error can be the occlusion of the object in the scene, as well as the motion blur, or
any inherent noise in the image. This can affect the quality of the detection and of the
pose estimation. Mask-RCNN returns a confidence score s for each detection that we will
include in our model. This score is the output of the final softmax layer of the detector
and can be interpreted as the level of confidence Mask-RCNN has in its prediction.

To sum up, our model is parameterized by four values: r - distance, ¢ - azimuth, 6 -
elevation, s - Mask-RCNN softmax output.

We can then compute the error of CosyPose relative to the motion capture data:
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Figure 4.8: Example of values of the Mask-RCNN softmax output for various levels of occlusion.
These shows the impressive robustness of the CosyPose to partial occlusions.

N - O—~_10—~
e = lened 2 [ %Pe - 9o, Log( R, RC)} @.17)

where - and - denote quantities obtained from the motion capture system and CosyPose
respectively. Log denotes the logarithm application mapping elements of SO(3) to the R?
representation of its Lie algebra so(3).

We want to find a polynomial function f(r, ¢, 6, s) € R® that returns the error given
the set of training data {X, F'}. For each object, we capture a set of video sequences
and we compute the error with the motion capture data for each measurement. We then
perform polynomial regression implemented with Scikit Learn [Ped"11]. A simple linear
regression leads to a high root-mean-square error (RMSE) on a test dataset. Over degree
3, the model overfits and the high curvature of the polynomial returned high error values
outside of the training data range. Thus, a degree 2 polynomial regression seemed to offer
a good compromise. Quantitative results are given in the experimental validation section
(see Fig. Fig. 4.9 for a few examples of fitted polynomials).

This empirical model has the drawback that it needs to be trained (ideally with real
data) for each new object. If possible, the covariance model should directly result from
CosyPose nominal training. We started to investigate this direction (with the MSc thesis
of Cesar Debeunne) but acknowledged it as an open perspective.

Empirical covariance

As explained in Sec. II, we have trained empirical models to evaluate the covariance of the
estimation of CosyPose. To validate these models, we propose to exhibit a few intuitive
observations and quantitative statistical analysis. One of the parameters involved in our
model is the absolute distance between the camera and the object, noted . Our trained
models show an expected behavior regarding this parameter: the global error increases
when the camera moves away from the object.

Fig. 4.9 sheds light on these phenomena and gives an explicit comparison between
the models of different objects. The error of the object from the YCBV dataset seems
more stable and smaller than the one of the objects from the T-LESS dataset. This can be
explained by the texture of the object and the absence of symmetries: T-LESS objects are
known to be more challenging for pose estimation and this is confirmed by our model.

A more quantitative evaluation can be deduced from Table 4.2. The translation error
seems to be captured pretty well, as the RMSE is around the centimeter. However, the an-
gular error seems a little less predictable, especially for T-LESS objects whose orientation
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Figure 4.9: The norm of the translation error returned by the models of three different objects with
respect to r, the distance between the camera and the object. The other parameters 6, ¢ and s are
fixed to the average values of our training data.

estimation can suffer from an important measurement noise due to the lack of textures.
The R* € [0, 1] score is the coefficient of determination and is often used to evaluate
statistical models. Its interpretation is subject to debate and cannot conclude by itself on
the absolute quality of the model. However, a score higher than 0 demonstrates that the
model is more accurate than a baseline average model.

Table 4.2: A quantitative evaluation of our models, these values are computed on test samples that
were not used for training.

R? RMSE ang. err. (°) RMSE trans. err. (cm)
YCBV-4 0.55 5,1 0.6
T-LESS-23 | 0.5 11.7 1.5
T-LESS-26 | 0.68 22 0.6

4.3.4 Retraining with stairs

In order to produce a realistic SLAM scenario in the context of legged robots, we retrained
CosyPose with staircases present in our lab. We made a textured mesh of a stair step
used in our experimental platform. This textured mesh was used both for training and
using the trained model. The generation of photorealistic synthetic data was handled by
BlenderProc [Den™19]. The render-and-compare loop uses PyBullet [CB21].

We generate 10.000 synthetic images that are labeled with object pose ground truths.
We retrain the three modalities of CosyPose: the Mask-RCNN detector, the coarse pose
estimator, and the pose refiner. We slightly tune the training parameters used for the object
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Figure 4.10: On the left, a picture of our climbing module at LAAS and on the right the 3D model
of the stair projected according to CosyPose measurements on the same picture

from the BOP challenge as the scale is different: the stair is 1m x 0.3m x 0.07m whereas a
T-LESS object is never wider than 10cm. Thus, we generate training data on 10m x 10m
scenes, and we increase the noise used to train the refiner.

An illustration of the performances of CosyPose on a set of 3 stair steps is given on
Fig. 4.10: the pose of each step is here independently estimated which leads to local
accuracy but global inconsistency.

4.4 Conclusion

In this chapter, we have introduced our 2 first practical factors. Both handle a direct rela-
tion between the camera and an object of the scene, hence being related to semantic (or
object-level) SLAM. The first factor, using fiducial markers, mostly has a practical inter-
est and will be used in the first experimental setup to validate the IMU factors. It mostly
boiled down to defining a new uncertainty model, that we were able to analytically derive
directly from the PnP algorithm. The singularity of the 4 point projections are simply
handled by rejecting rotation information when it is detected. The same factor is then
extended to handle a complete object pose estimator, that we have implemented on top
of the award-winning CosyPose detector. Here also we have tried to directly derivate the
uncertainty model from the algorithm (by training a neural network able to predict both
the mean and the covariance), but finally relied on an empirical model trained a poste-
riori. Beyond the practical interest of this new perception feature inserted in the MAP
framework, this second work also contributed to the domain of neural-based object pose
estimation, by proposing a sound and generic way of sequential estimation, i.e. aggregat-
ing measurements across time and fusing them with other sensors (IMU, etc) to improve
the estimation quality. We will experimentally show in the last part of this thesis the
importance of this temporal sensor fusion, as CosyPose alone, despite the quality of the
algorithm, is not able to provide enough performance guarantee to be embedded in a robot
feedback loop.

This chapter paves the way to extending our work to true semantic SLAM, i.e. map-
ping while directly extracting the location of an object of interest. With CosyPose, we
directly identify the accurate pose of known objects. This is important in our context for
two reasons. First, the recognized objects can later be used to close the localization loop
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with a high degree of accuracy. Second, the object can be used (e.g. in a motion planner)
even if out of the perception range of the robot. A direct practical use case is for the
legged robot to step on an object that is typically not in the field of view (because legged
robots typically do not have cameras pointing on their feet). While the inclusion on the
MAP framework seems satisfactory in practice, some interesting theoretical work might
focus on the insertion of raw information extracted from the trackers, instead of the over-
all object pose. This would avoid possible singularities to invalidate the complete pose
information while partial information might benefit the MAP estimator (as we already dis-
cussed in the practical case of the PnP algorithm for fiducial markers), or even including
latent information directly in the MAP. It is also important to work on a more systematic
way of evaluating the uncertainty, in particular for neural-based estimators. Finally, some
recent work on extending object pose estimator to classes of objects, or even to unseen
objects, open very interesting directions to extend this work to semantic SLAM.
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The robot kinematic model along with encoder measurements make possible the com-
putation of poses and spatial velocities [Feal4] (aka. twists) of reference frames attached
to the robot segments relative to the base or world frame. This kinesthesis capability is
of paramount importance to control multi-body systems for locomotion or other interac-
tions with their environment. If we have information about stable contacts that the robot
keeps with its environment, it is possible to infer a relative motion measurement, which
is commonly called leg-odometry.

We will shortly describe the formulation of the forward-kinematics algorithm, that
enables to compute relative poses and spatial velocities between parts of the robot and
then show how this information can be used to define a leg-odometry factor to be added
in the factor graph. The last section shows how forward-kinematics can also be used to
leverage prior information about the height of the environment.

5.1 Forward kinematics

We first describe the forward-kinematics and differential kinematics algorithms by intro-
ducing notations commonly found in the legged robots literature.

The degrees of freedom (DoF) n of a poly-articulated system is the minimal number
of variables that completely describe his state given the base frame. For robots with rigid
segments, the DoF of the robot is the sum of the DoFs of its joints (1 for linear and
rotational joints, 3 for ball joints, etc.). The state of the joints (1 angle for rotational
joints) can be stacked together in the vector of joint configurations q, € R". For most
simple joints, the joint configuration velocities are simply the time derivative ¢, € R™!.
q. and q, are typically obtained from the joint encoder measurements. Legged robots

! An exception is the ball joint where the state is defined as an element of SO(3), thus its velocity vector
is defined as an angle axis in R3.
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are not fixed to the ground so we add a so-called "free-flyer" DoF which represents the
free pose of the base with respect to the world and is modeled as an unactuated joint of
6 DoF pertaining to the SE(3) group. Its velocities are therefore in the se(3) Lie algebra,
isomorphic to RS.

The whole-body state of the robot is defined by the robot configuration vector q =
[ap, 9a) € SE(3) x R™, where

w w
a2 VT = ( ok f3> 5.1)
3

is the configuration of the base, with “p, € R* and "Ry € SO(3) are the position and
orientation of the base with respect to the world. q, € R" is the configuration of the joints.
q therefore belongs to a composite manifold M, = (SE(3),R") and the configuration
velocity vector belongs to its tangent space se¢(3) x R™ which is isomorphic to R%*":
v, € R Those are concatenations of the base state and joint configuration vectors:

a=[a,qd E Mg ,  ve=[vpq) R (5.2)

where vy, is the twist of the base frame expressed in the base frame. The computation of
any segment pose of index k relative to the world is obtained using the forward-kinematics
(FK) algorithm:

Wy = FKy(q). (5.3)

The kinematic chains of most robots can be represented as a tree whose root is the
world frame, nodes are the joints to which are associated reference frames (including the
base, which is considered as a SE(3) joint), and edges are solid segment placed between
these nodes. The forward-kinematics algorithm consists of a forward pass from the root
of the tree "V T' through the joints along the path to the leaf "V T s that we wish to obtain.
Let us denote by ¢ the index of each intermediate joint between the root and the leaf,
the root (world) having index 0 and the base index 1, the forward-kinematics algorithm
simply writes as a composition of successive transformations:

0= 1~ / k—1 = /
Ty ="Ti(ap) To?Taq). ..~ Tw" Telq) (5.4)

where l_l’i‘i/ designates the transformation between joint frames ¢ — 1 and ¢ when the
joint configuration ¢; is at the identity value and is a constant. The Z'/TZ-(qi) designate
transformations caused by a non-zero joint value g;, as reprsented in Fig. 5.1.

It is also possible to obtain the pose relative to the base T, by simply setting the base
pose vector to be the identity pose [0,0,0, 0,0,0, 1].

Similarly, the spatial velocity relative to the base v}, can be obtained by setting the
base spatial velocity part of v, to zero. These algorithms are very fast to compute (= 1us)
using modern dedicated libraries [Car*19].

We will now see how FK can be used to derive leg-odometry for a quadruped robot.
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0— 1— ’ 2— ol 37
Ti ="Ti(ay) T Ta(g) Tz ® Ts(gs) Ta

Figure 5.1: Illustration of the Forward kinematics algorithm to get the transformation of the foot
4 with respect to the world 0.

5.2 Leg odometry

We will restrict ourselves to the case of point feet as the main platform on which we ex-
perimented is a quadruped robot. Quadrupeds are usually equipped with non-articulated
round feet whose contact with the ground is, in first approximation, punctual. Humanoid
robots are equipped with articulated flat feet that provide richer information. In Sec-
tion 2.2.1 we gave an exhaustive review of the types of leg odometry measurements that
can be obtained on legged machines.

The basic idea is that we assume to have access to accurate contact detection. If the
contact is held between time ¢; and ¢;, the contact point L (to which a frame is attached)
is fixed. This can be written "' p} = Wpi. In practice, the round feet of our robot can
slightly roll but we will neglect this phenomenon. If we unfurl the transformation chain
to make the base poses appear in the equation, we obtain the identity:

p'+ R 7p, =p’ + R/ 7pj (5.5)

We can immediately derive the residual e”® expression for each foot [ in contact
between ¢; and ¢;:

e/’(p', R\, p/,R?) = p' + R"’p, — (p’ + R/ "p}) (5.6)

To obtain a proper measurement model, we need to model the influence of mea-
surement inaccuracies. This equation depends on relative positions ”p’ and © f)JL that
are computed using FK. The quality of the computation depends on several things: the
robot kinematic model (calibration), deviations from the rigid body model (e.g. segmen-
t/joint flexibilities, backlash), encoder noise. It is tempting to propagate encoder noise
n,, through FK using the kinematic Jacobian [Blo*13b; Har"18c]:

BB = FK(q, +ng,) ~ FK(q) +Jing,, ¥, =331 (5.7)
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However, the resolution of Solo encoders is very high: 0.002 degrees, which would
account for a mere 10 micrometers difference. Therefore, most of the measurement errors
come from the other mentioned effects. Unfortunately, those are much harder to model,
and all act at the same time in an unpredictable fashion. Thus, we opt for a simple additive
noise on the foot position in the world:

Wpi ="pl +nz0 (5.8)

where nyo ~ N(0,X10) denotes a Gaussian noise accounting for potential roll/slip of
the foot and kinematic inaccuracies. This noise can be modeled as white noise on the foot
velocity n,, which when integrated gives a random walk. Its variance after At is

Yo =AtY, (5.9)

where Zp? and Pp?, are the contact positions in base frame at times t; and t; acquired
from q, via forward-kinematics. The residual errors e/“ and their covariances can be
added as factors to the factor graph that we wish to build.

In the literature review and Fig. 2.3, this method is referred to as single foot matching.
To obtain a relative transformation of the robot’s base frame between ¢; and ¢;, at least
three stable feet contacts are necessary. When it is the case, it is possible to directly
compute the relative transformation, which would be integrated as a separate residual, by
solving an orthogonal Procrustes problem [RK91].

However, for trotting gates common for quadrupeds, the robot is most of the time
standing on only two legs, which makes the Procrustes problem computation rarely ap-
plicable. Instead, we add a single factor for each foot in stable contact. In fact, when at
least 3 feet are in stable contact, the information extracted from these combined factors
is the same as if we had pre-computed a 6D transformation from the Procrustes problem.
Besides, when fusing with other sensors (such as the IMU, see Chapter 9), 1 or 2 legs in
contact already provide sufficient information to make the desired variables observable
[Blo™13b].

5.3 Terrain height

If we only use leg-odometry along with other sources of odometry such as an IMU (see
Chapter 9, the position of the robot drifts after some time. However, if we have prior
knowledge about the foot terrain height h € R, it is easy to define, for each foot [ in
contact, the residual:

e'(p,R)=(p+R'p).—h , ecR (5.10)

This residual can be assigned with a variance o7 which is hand-tuned. The error and
its covariance form a unary factor (only depends on one Keyframe) that can be added to
the factor graph we want to build. Giving information about the height of the feet of the
robot grounds the robot base height estimates and cancels the accumulation of drift in the
vertical direction.

5.4 Conclusion

We have shown that leg odometry easily enters the MAP framework, using directly the
FK algorithms. This is a cheap and efficient way to express the meaningful contact in-
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formation in the factor graphs. As discussed in the state of the art, there are multiple
ways of formulating this information as an estimation factor. We have discussed various
possibilities and show why we have chosen the final formulation. There remains some
space to formally analyze this choice, possibly leading to a better formulation. We will
see in the last part of this thesis how it performs in practice. Here we only considered the
contact information as a motion constraint. We will consider the resulting forces, ideally
measured at the contact interface with a direct force measurement device, to simultane-
ously estimate the basis state and the centroidal quantities. But before that, we need to
introduce the mathematics of pre-integration, which we will first introduce in the context
of the inertial measurements.
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This chapter presents a abstraction of the pre-integration, originally introduced in
[LS09; For*15]. We will explain the interest of this generalization that we in part de-
veloped with Dinesh Atchuthan at the end of his Ph. D.

Sensor modalities available on robotic platforms display a great variety in the rate at
which measurements are acquired. For instance, a camera may record images at 33Hz
while an IMU may be updated at 1 kHz. In the context of Factor Graph estimation, this
creates a challenge since residuals are defined between Keyframes selected at a relatively
low frequency, at times as low as 1 Hz. One needs to integrate measurements from these
high-rate sensors between Keyframes, which is not trivial in general.

In this chapter, we first describe the example of the integration of IMU measure-
ments which motivates the development of the pre-integration theory [L.S09; For"15]. We
then express this pre-integration in more abstract mathematical terms to generalize it to
other high-rate sensors, which was first described in Dinesh Atchuthan’s thesis [Atc18].
Then, we describe a possible reformulation of the original IMU-pre-integration algorithm
[For*17] by exploiting a new Lie group that we proposed in [Fou™19]. We conclude the
chapter with a discussion of related works.
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Chapter 6: High-rate motion data pre-integration

6.1 A motivational example: IMU integration for graph
optimization

In this section, we will introduce the IMU measurement model and explain why a naive in-
tegration of these measurements in the world frame does not immediately lead to a viable
factor in practice. We will then introduce the observations that lead to the development of
the so-called IMU pre-integration algorithm by Lupton [LS09], which we reformulated
with what we hope to be a more systematic approach. This systematic formulation will
then be used in the following chapters to account for force measurements.

Let us consider the estimation of a robot base state comprised of its pose and velocity
in the world frame,

x = [Ypws, Vviws, "Rs] £ [p,v,R]. (6.1)

We make a few hypotheses. First, we neglect effects due to the rotation of the Earth
by assuming that our world frame (which is fixed with respect to the ground) is an inertial
frame. This is a common simplification in robotics scenarios [For*17]. Second, without
loss of generality, we assume that the IMU frame is identical to the base frame in the
following developments.

The IMU measurements are known to be noisy, biased, and affected by the gravity,

&):BWWB+bw +n,

6.2
a :BaWB+ba+na+BRWg. ( )

The biases b = [b,, b,,] need to be estimated in order to be canceled and are thus included
in the estimator state. Fusing with other sensors will help make them observable.

These biases may drift over time, more or less slowly depending on the quality of the
IMU. This drift is modeled as a random walk, which is close to the observed behavior for
reasonably short periods of time [HJ15].

A continuous-time dynamical model based on strap-down integration of IMU mea-
surements can then be derived:

pPp=V

v ="aup

R = R[Pwws]« (6.3)
ba = W
by, = w,,

where w& € N(0, W¢) and w¢, € N (0, W¢) are the biases’ random walk continuous-
time white noises.

Introducing the measurement equations (6.2) in the continuous dynamics equations
(6.3) and using a zero order hold explicit Euler integration scheme during 4t results in the
discrete-time dynamics:

pft = p* + vt + g6t2 + = Rk(ak — nk)sr?

vt = P 4 gbt + Rk( bk n*)st

R"™ = RFExp((@" — bF — nk)dt) (6.4)
b = bk + w,

bt = bl 4w,
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6.1. A motivational example: IMU integration for graph optimization

where w, € N(0,W,) and w,, € N (0, W,,) are the bias” random walk discrete-time
white noises, satisfying W, = W;dt and W, = W¢it.

Now, these equations relate consecutive states with data sampled at IMU frequency.
To include these measurements in our smoothing estimator, one solution would be to
introduce new states at the rate of the IMU. However, the size of the problem would grow
very quickly due to the high acquisition rate of IMUs. A better option is to integrate IMU
measurements during extended periods, that is between Keyframes. If we simply integrate
the sequence of IMU measurements Z;,, between timestamps ¢; and ¢,, by recursively
applying (6.4), we obtain:

oo ! 1
p=p +3 {vkét +ogott+ o M@ — b - n‘;)aﬂ
k=i
V= vty [gat L RME —DbE — n’;)at] 6.5)
k=1
R"™ = R[] Exp((@* — b}, — nf,)dt)
k=1

where we assume that IMU biases stay constant during At;,,
b* =~ b’ Vk € [i..m],

which makes their integration trivial and thus allows us to concentrate in the upper three
lines of the model.

We are here in the position of illustrating why a naive definition of data integration
leads to very bad performance. By observing (6.5) we can define a motion error, as
follows. First, we naively define the motion increments or "deltas" in two ways. From the
integration of the motion model,

Ap, . 2 {v’“ét + 2got* + 3 R¥(aF — b;)étQ]
A (b',x") = Avin = ST, g0t + RE@* — bl )] (6.6)
o [T Exp((@® — b}, )ot)
and from the difference between initial and final states:
) Ap;, p"—p

A (X5 x™) = | Avin, v — i (6.7)
AARz‘m Ri,T R™

lI>

Then, we build a residual error as

Apim - A/\pzm
e(x', X", b)) = Ap (b, X)) © A (X', X™) = | AvVip — AV | (6.8)
Log(AR,, AR.,)

where © is the composite manifold lift operator defined in (3.26).

Aim(xi,xm) only depends on state variables and, thus, is cheap to compute. It
corresponds to the "expected" motion of the system, given the current state estimates.
A, (b?, x") is the motion computed from the integration of (very many) IMU measure-
ments during At;,,,. However, since we "naively" integrated in the world frame, this term
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Chapter 6: High-rate motion data pre-integration

also depends on the initial state x; and on IMU bias b,. This implies that for each update
of the estimate x;, that is for every iteration of the MAP solver, the IMU measurements
need to be re-integrated from the new x; and for the new b?. This is highly inefficient and,
therefore, not well adapted to the repeated evaluations required by nonlinear solvers.

To solve this problem, we need to re-define the deltas so that A, is independent of
the estimated states, that is, only dependent on the measured data. This new definition
reads [LLS09; For*15] (proof in the annex Section B.1):

i [A"ik& + JAR™(@" — b}, )ot?
A2 I, AR Bxp((a* by )61 (6.9)
[17-, Exp((@® — bY,)dt)

and:

o R (p™ — p' — viAty, — sgAL2)
A, (xt, x™) & R (v, — vi — gAtim) . (6.10)
Ri,T R™

Let us now emphasize the fact that Aim(bi) as defined in (6.9) does not depend on x;,
contrary to (6.6).

But we are not over yet. The dependency on the bias variable b in (6.9) still enforces
the repeated reintegration of the measurements buffer to get A;,, each time the solver
produces a new estimate of b’. Fortunately, because the variations in b; are small, a
linearized approximation can be used. The IMU measurements can be pre-integrated
using the prior bias estimation at time ¢;, that we note b;, to give the pre-integrated delta
A, 2 A, (E) Then, each time a new b; value is computed, we can correct the delta
linearly:

Ain(b) = Ay @ Jﬁim(bi —b,), (6.11)

that is, without the need for re-integration. This is why this method takes the name of
delta pre-integration.
With all these considerations, our residual error can be written as

eim(x', X", b)) = (A, @ Tpm (b — b)) © Ay (6.12)

In this expression, A;,, only depends on data and has been integrated only once. The rest
of the operations are small and can be made as many times as necessary in the solver side.
These two observations were first made by Lupton [LL.S09], whose formulation relied
on Euler angles, and were later formalized on SO(3) using Lie theory by Forster [For*17].
We will now show how this formulation can be generalized to other high rate sensory
data by abstracting a recursive implementation of the pre-integration that takes advantage
of the Lie-group structure of the deltas’ geometry.

6.2 Generalized pre-integration on Lie groups

Pre-integration refers to the integration of high rate proprioceptive sensory data efficiently
in the context of factor graphs. The IMU pre-integration theory can be generalized to
many other proprioceptive sensors as shown in [Atc18; DAS19; Fou™21].
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6.2. Generalized pre-integration on Lie groups

The generalization makes use of the Lie group structure of the motion deltas, (see
Section 3.3.4). Then, the motion data is interpreted as a member of the tangent space of
the group.

Different Lie group structures can be chosen that satisfy the necessary properties. For
the IMU, we explored the two variants: composite [For*15] and compact group (our paper
[Fou*19])).

In Chapter 7, we also use this generalized approach for the pre-integration of force-
torque sensors for the centroidal estimation of legged robots based on the composite Lie
group approach. This work was part of our published paper [Fou™21].

This section starts by stating the need to define a well-defined delta, then defining its
Lie group structure in detail, then describing the pre-integration algorithm at the front-
end, and finally the definition of the factor residual at the back-end.

6.2.1 Delta definition

The definition of the deltas needs to satisfy the property that such deltas A, resulting
from the integration of motion data from time ¢ to m must be independent of the initial
state x’. The general rule to achieve this stems from observing that an unbiased and
unnoisy sensor measuring null data should produce null deltas. This means that the deltas
would be the deviations from the sensor trajectories exhibiting null data — for example,
a free-falling non-rotating frame in the case of an IMU (see Fig. 6.2). Dependence on
the small-varying parameters b such as sensor bias or other calibration parameters is then
handled through linearization.

The relation of the delta with initial and final states is then defined through the opera-
tors H and H,

H : My X Ma — Mx, (Xi, Azm) — X, = x; B Azm (613)
8 My X My = Ma; (X4, Xm) = Ay = X, BX; . (6.14)

6.2.2 Description of the Lie group and the tangent space

The Delta Lie group used in the specific application has to be defined, by describing in
particular:

* its identity element A,
* its inverse element A1,
* the composition law o, and
* the Exp and Log operators.

Once these basic blocks are established, we shall refer to Section 3.3.4 to define the & and
© operators for the group. Likewise, to deal with the uncertainty of the integrated data,
Jacobians of these operators will need to be obtained, for which we follow [SDA18].

Also, we leverage the fact that motion data can easily be manipulated to be part of the
tangent space of this group since it expresses either velocities or increments on the state
manifolds. To account for sensor self-calibration, this motion data is first corrected using
currently known calibration parameters.
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Figure 6.1: The pre-integrated delta A;; contains all motion from the last KF at time 7, up to
time j. The current delta Ay, contains the motion from times j to k, computed from the last IMU
measurement at time k.

6.2.3 Delta pre-integration algorithm

From all the considerations exposed above, the delta pre-integration algorithm is per-
formed recursively via the following steps.

Initialization First, Aj; is initialized to the null motion via the identity of the group,
Ag. Its covariance X% and the Jacobian J ﬁ_“ are set to zero.

Calibration and retraction Second, at each reception of sensor data z; at time k, we
integrate during Jt to obtain the delta corresponding to a single data sample

using the calibration b, available in Keyframe i. In most cases, this function is split into
the stages of data calibration c(), producing a vector in the tangent space, and retraction
Exp(), retracting it onto the manifold,

e = (2, b;)6t € REIMM) (6.16)
dr = Exp(7y) e M, (6.17)

where the calibration, ¢(), depends on the sensor model, and the retraction, Exp(), on the
deltas Lie group.

Composition Third, this single delta is integrated onto the delta pre-integrated so far
using the delta composition law

Aik = Zij 9] (Sk € M, (618)

as can be seen in figure Fig. 6.1.

Covariance and Jacobian The delta covariance, as well as the Jacobian of the pre-
integrated delta with respect to the calibration parameters, are also pre-integrated using
the chain rule and standard covariance propagation,
; i AL T _ Toa, T
X = JAESIAY + I I, I Jg (6.19)
Jo* = Jaldn” + J5 v, (6.20)

where J ﬂ’z, J 2’; are the Jacobians of (6.15) and J ﬁzj J (sAk“c the Jacobians of (6.18), com-
puted according to Lie theory [SDA18], to which we give a brief introduction in Sec-
tion 3.3.4.

These steps are performed recursively until a new Keyframe is added to the factor
graph. When it is the case, a motion factor is created as explained in the next section.
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6.2.4 Residual definition

When a new Keyframe is added to the problem at time k£ = m, a factor is created to which
we pass A, b, J bAZ_"”, and Z", with which the residual can be defined:

eim(x',x™, b') = (A, @ I3 (b, — b)) © Ay (6.21)

with associated covariance EZ”. Here, b; is the current value of the sensor’s calibration
parameters, A, = x™ B x is the expected delta between KFs, and {®, ©} are the plus
and minus operators described in section Section 3.3.1.

In cases where the calibration parameters are subject to drift, the calibration drift is
modeled as the integration of a random walk. This drift is included as a second factor in
the factor graph, with residual error defined by

el (b',b™) =b™ — b (6.22)

with associated covariance
Yb,im = WAty (6.23)

6.2.5 Publishing the current optimal state

Interestingly, the proposed algorithm allows for the publication, at the high rate of the
motion sensor and with little lag, of the current state of the robot. To do so, we take
advantage of the delta pre-integrated so far, which can be corrected in case we dispose of
better estimates of the calibration parameters. The current state at time ¢, thus reads,

x" =x' B (Ay @ Ip* (b, — by)). (6.24)

This current state is optimal in the following sense. First, it uses the state x° of the last
Keyframe, which has been eventually optimized by the back-end. Second, it uses the most
updated version of the calibration parameters b; to correct the pre-integrated delta, thus
minimizing the dead-reckoning drift of the motion increment from Keyframe time #; to
the current time 7.

The optimal state x* is published at the rate of the motion sensor, which can reach
the kHz, and might be used for closed-loop control of the robot. This is so regardless of
the rate at which Keyframes are generated, and the rate at which the solver optimizes the
problem. These rates, in any case, but especially if they are slow, will logically impact
the accuracy of the published state.

6.3 IMU pre-integration on Lie groups

In this section, we will revisit the IMU pre-integration using the general pipeline defined
in the previous section. First, we will frame the on-manifold pre-integration of Forster
[For*15; For*17] as a delta pre-integration on a composite IMU delta group. Second, we
will present an alternative formulation of IMU pre-integration on a new compact delta
matrix Lie group D that we presented in [Fou™19]. We will finally discuss a few other
alternatives.
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G;

X

Figure 6.2: The free-falling, non-rotating frame G; follows a parabolic trajectory governed only
by gravity g and determined by the initial conditions p;, v; and R; at time ¢ (G; = x;, blue).
The IMU delta A;; between times 7 and j is defined as the state of the IMU at time j (x;, red)
expressed in the free-falling frame at time j (G;, green).

6.3.1 IMU pre-integraton on composite Lie group

Let us come back to the IMU pre-integration problem, as stated by Forster [LLS09; For*15],
defined in Section 6.1, and show that we can rewrite the algorithm in terms of the gener-
alized pre-integration described in Section 6.2.

The states involved in this integration are the base states x = [p, v, R] with deltas
A = [Ap,Av,AR| € Ma. The IMU produces biased and noisy measurements z =
[a, @] of the base proper acceleration and angular velocity, with bias b = [b,, b,,] and
noise n = [n,, n,|.

Definition of the deltas

The IMU deltas, as introduced in [LS09; For"15] can be defined [Atc18] as the motion
increments, in terms of position, velocity and orientation, between the current IMU frame
and another frame, that started at the IMU state at time ¢, x; = (p;, Vi, R;), and that falls
freely and without rotating at the acceleration of gravity (Fig. 6.2).

This derives in the definition of the operator H in (6.14) as what we detailed in (6.10),
and the operator B in (6.13) as being just its inverse. Full details can be found in [Atc18,
Section 3.4].

Definition of the group operations

Given two IMU deltas A = [Ap, Av, AR]and § = [0p, v, IR, the group composition
law A = A o0 in (6.18) is defined as

Ap + Avit + ARSp
Aod = Av + ARSv (6.25)
ARSR

with a group identity element composed of the identity element of its Lie groups:
03
Ags = |03], (6.26)
I
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the resulting inverse being

—~AR(Ap + AVAY)
Al = ~AR"Av (6.27)
AR'

The calibration function ¢() and exponential map Exp() are,

T,| |a—Db,
e
T 7.0t
0 = Exp(r) = T,0t (6.29)
Exp(7,0t)

yielding 6 = f(z, b, dt) in (6.15) as

op 1(a — b,)dt?
o =|ov| = (a — b,)dt (6.30)
SR Exp((@ — b,,)dt)

Delta pre-integration and factor residual

The concatenation of the operations above lead exactly to the Forster’s algorithm [For* 17]:
e Initialize A;; = Ag, XA =0, JbA = 0,and b; = b;.
 Calibrate data and retract to manifold using (6.30).
« Compose A using (6.25).

Likewise, the factor residual is computed following Section 6.2.4 exactly.

6.3.2 IMU pre-integration on compact Lie group

This formulation was proposed in our published paper [Fou*19].

Delta definition

We propose a matrix form of the Lie group of IMU deltas as,

AR Av Ap
A=1|0 1 At| eDcR™. (6.31)
0 0 1

The three main constituents of such deltas, namely Ap, Av, and AR, are defined exactly
as in the composite case above. Being computed in the same manner, the definition of the
H and H operators is a trivial manner of forming the matrix deltas from (6.10), yielding
proper expressions for

A

Notice a fourth, time interval component At as being also part of the delta definition.
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Group operations

Group composition, identity, and inverse stem from regular matrix product, identity, and
inverse (with AR™' = AR "),

[AROR Av + ARSv Ap + Avit + ARGp

Aod=| 0 1 At + 6t (6.32)
0 0 1
1, 0 0

As=10 1 0| =I5 (6.33)
0 0 1
[AR"T —AR'Av —AR'(Ap — AvAt)

A= 0 1 —At : (6.34)
0 0 1

Comparing against (6.25-6.27) we observe that this matrix Lie group behaves equiva-
lently to Forster’s IMU deltas above.

Lie algebra 0 and exponential map

The compact Lie group defines a different Lie algebra parametrization than Forster’s, and
therefore a different exponential map. The Lie algebra elements 7" and their isomorphic
Cartesian T have the forms

6l p v g X
=10 0 At| €0, T = £ At e R, (6.35)

0 0 0 0 “

At 1

with v £ Ap,a 2 Avand [w], £ AR'AR. Operators A and \ are defined so that
7" = (r)"and T = (7")".

The exponential map transfers tangent elements to the group; the logarithmic map is
its inverse,

Exp(0) Qu Qp+ PvAt

A = Exp(1) £ exp(7") = 0 1 At (6.36)
0 0 1
Q '(Ap — PQ'AVAY)
A 1A
T = Log(A) £ log(A)Y = L(gg(Al‘%/) (6.37)
At

where Log() is obtained by identifying terms in (6.31) and (6.36). Matrices P and Q are
provided in the appendix’s Section B.2.

The case of IMU data, leading to v = 0 We showed that IMU deltas could be inter-
preted as the motion relative to the free-falling frame (Fig. 6.2), which has initial velocity
v;, and the same physical analogy applies to the compact Lie group. Thus the tangent ve-
locity v = Ap is zero at the start of the integration step. Since the exponential Exp(vAt)
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assumes a constant tangent vector v = (v, a,w, 1) during the interval At, we have that
v = 0 during the full step. This gives immediately

0 Exp(wAt) QaAt PaAt?
a

Exp At = 0 1 At | (6.38)
Y 0 0 1

which we will use to integrate IMU data.

Pre-integration pipeline

Here we recall the general pre-integration pipeline in the case of the compact Lie group,
pointing at the minor differences with the composite Lie group case. The following
pipeline of operations is performed to recursively pre-integrate IMU data into a unique
measurement.

Initialization Pre-integration starts after each Keyframe with A;; = I, ¥2 = 0 and
J 6“’ = 0, using b; = b, the current best estimate of the bias at time .

Calibration At the reception of each IMU measurement z;, = (a, w )y, start by correct-
ing it with available bias estimates b; = (ba, by);, to produce the tangent vector 7 = vt.
For this, set the velocity part of v to zero as the IMU is by definition at zero speed with
respect to the moving frame, as in (6.38). Obtain at the same time the respective Jaco-
bians,

0
g} 5t (6.39)
0

Retraction Second, use the exponential map (6.38) to obtain the current delta step 6*

in the group manifold, and obtain Jacobian

6% = Exp(my,) , J° =T (7). (6.40)

T

Composition Third, use group composition (6.32) to update the pre-integrated delta;
obtain Jacobians

Ay =708, JAM = Ady! Jam =1, (6.41)

where Ad; is the adjoint and J, is the right Jacobian —see appendices Section B.2.3,
Section B.2.4 and technical paper [SDA18] for reference.

Covariance Fourth, propagate the delta covariance
. T
B4 = JANSAIAY 4 Jpes, ghn (6.42)

with 3, the covariance of the IMU measurements z, and J&# = J JA"’“J 9J7 computed
using the chain rule.
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Jacobian Finally, integrate the Jacobian of the delta with respect to the biases

Ik = JRRIT + I I0TT (6.43)

Pre-integration is complete (Fig. 6.1) when k = m, which yields A;,,, 2 and J bA””.

Factor residual

Computation of the residual in the case of the Lie Delta group formulation follows the
steps defined in Section 6.2. Use the pre-integrated Jacobian J ﬁ”" to correct the pre-
integrated delta A;,,, to account for the new bias estimate b; # b,

Ain(b) = Ay, @ I (b; — by) . (6.44)

Use (6.10) as H to compute the expected delta from x; to x,,,

—

A (x4, %) =%, Bx; . (6.45)
Compute the residual in the tangent of D at A,,,,,

eien(xia Xim bz) = zim(xia Xm) S Azm<bz) (646)
= Log(Azm(bz)_l © Zim(xh Xm)) € Rg ) (647)

In this last equation, the minus operator © is the lift operator defined in (3.25) and spe-
cialized for this particular group.

Jacobians, uncertainty

For general functions f : M — N;y = f(z), we propagate uncertainty normally via the
Jacobians J¥ = g—g, ie., ¥, =JY%,J¥". These Jacobians map the tangent spaces of the
manifolds M, A at x and y, and in the case of vector spaces, they resort to the classical
Jacobian. They also satisfy the chain rule, which we use extensively in our developments.
Ample reference and justification of this approach can be found in [SDA18].

A comment is however necessary for the present IMU case. It relates to the uncertainty
of the last component of the tangent space (6.35), which is the time A¢. This component
has no uncertainty by definition. Having it in the covariances would imply singularity
and result in the risk of several well-known numerical issues. We therefore systematically
marginalize this time component out of the covariances, simply by removing the last row

and column.

6.3.3 About the choice of the proper Lie group
Our IMU Lie group versus Forster’s method

Mathematically, and disregarding methodology, the main difference between our method
(Section 6.3.1) and Forster’s [For"17] (Section 6.3.2) is to be found in the exponential
map. To see it, let us consider small rotation increments @ = wdt captured at each single
IMU sample. In such cases, the matrices P, QQ appearing in the exponential map (6.36)
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and detailed in (B.9) can be approximated by P ~ %I and Q ~ I. The exponential
becomes,

g Exp(wét) adt sadt?
Exp w ot | ~ 0 1 ot , (6.48)
1 0 0 1

where we find the terms adt and %aétQ, which are exactly the terms obtained with Forster’s
method (6.30). In effect, with this approximation, if we now compact all the steps (6.39—
6.41) of our integration into a cumulative expression,

0
. . .
a'— b’
Ay = ][] Exp (<wﬂ B b‘i)) ot |, (6.49)

j=i+1
1

it is possible (although tedious) to show that both Forster’s and our method are exactly
equivalent when wdt — 0.

Further discussion regarding Lie group choice

Regarding "compact group” designs, there is still another proposal, the SE(3) group
proposed by [BB20; Bro*21], which can be used for IMU pre-integration. This proposal
differs from ours in the following aspects:

* The SE,(3) group does not contain the time and therefore the composition law does
not account for the whole integration. Some extra algebra needs to be added.

* The SE5(3) group is easier to manipulate since the closed forms for the exponential
map, the adjoint, and the right-Jacobian are easier to obtain.

* Our group better separates between the delta states and the velocity of these states
which depend only on the IMU data.

Therefore, it is apparent that depending on the structure of the defined Lie group, we
can have different designs:

* Forster [For”15]: Composite Lie group
* Barrau [BB20]: SE5(3) compact Lie group without time
* Fourmy [Fou®19]: Compact IMU group with time

In the context of filtering, using a compact group formulation of the robot state has
been proven to improve greatly the basin of convergence of the so-called Invariant Kalman
Filter [BB18; Har"20]. This method tackles one of the issues of standard EKF: the Ja-
cobians are computed around the current estimates, which leads to an inconsistency of
the estimate if the filter is initialized far from the optimal. However, this issue is not
so present with factor graph optimization since we repeatedly linearize around the new
estimates. Nevertheless, it seems that compact Lie groups may provide slightly better
performances than composite Lie groups [Bro*21], thanks to a more precise linearization
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with respect to the IMU biases and a covariance propagation that better represents the
geometry of the problem.

However one may ask whether these more elegant mathematical formulations and
slight improvements are worth the effort. Compact designs may be seen as going against
our modularity philosophy since for each new motion sensor, we need to find a new ap-
propriate Lie group instead of being able to reuse the machinery developed for composite
groups, which is vastly simpler.

6.4 Related works

Pre-integration principles were laid out by Lupton [LS09] for a smoothing-based visual-
inertial estimator. His work was motivated partly by the fact that previous systems re-
quired a precise initialization of orientation and velocity (using a specialized routine) to
begin to integrate IMU measurements. With this new formulation, Lupton noted that pre-
integration of IMU data permitted the use of measurements immediately and delay the
estimation of the initial orientation about the gravity vector in particular.

This seminal work was quickly adopted by other authors using smoothing filters
[Car"14]. As pioneering as this work was, it was however limited by the use of Euler
angles whose problematic geometric properties are notorious. Indelman [Ind*13] first
proposed to use the exponential of the matrix rotation group instead of Euler integration
and to relax the assumptions of non-rotating and flat earth of Lupton [LLS09]. Forster
[For"15; For*17] proposed the same formulation using the SO(3) Lie group, which was
adapted to the quaternions group S* by Atchuthan [Atc18]. Various experiments brought
to light three main problems with the Euler angle formulation, that are completely absent
from the quaternion "on-manifold" formulation. Firstly, first-order integration of angular
velocities using Euler angles is approximate, which leads to accumulated errors for high
angular velocities or sampling rate. Secondly, the log-likelihood of the angular displace-
ment is not invariant under the action of rigid body transformations, e.g. the choice of
the world frame influence the results of the estimation. Finally, the well-known gimbal
lock singularity of Euler angles has a consequence on the IMU noise covariance propaga-
tion, which is severely degraded when the robot trajectory comes close to the singularity.
[SMKI15], later improved in [QLS18] proposed to use a more precise numerical inte-
gration procedure than the default forward Euler used by Forster. Eckenhoff [EGH19]
derived closed-form solutions of the pre-integration equations using various piecewise
constant models.

Barrau [BB20] described a compact matrix Lie group for the propagation of pre-
integration errors taking into account the earth rotation with the aerospace inertial naviga-
tion system in view. This work was later extended [Bro*21] and showed that the linearized
bias update is slightly more precise than the work of Forster [For"17]. Le Gentil [LVH20]
used a different trajectory parametrization framework by formulating the pre-integration
algorithm in the context of Gaussian Process smoothing. Self-calibration of IMU/Camera
time offsets was also developed [Yan™20b]. [LGL*21] derived a comprehensive collec-
tion of motion models depending on the various possible choices of reference frames and
motion conditions.

As we saw the pre-integration theory began in the context of visual-inertial odome-
try. It was however adapted to other high rate sensors such as wheel odometry [Qua*19],
possibly including self-calibration [DAS19]. In his thesis, Atchuthan ([Atc18, Section
4.3]) derived the general form of the pre-integration equations as a sensor agnostic form
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that is integrated in the state estimation framework WOLF [Sol*21]. As previously men-
tioned, other teams applied pre-integration theory in the context of factor graph legged
robots state estimation to derive new leg-odometry factors [Har"18c; WCF19; WCF20].
It was also applied to integrate drone dynamics to estimate external forces disturbances
[Nis™19].

In Chapter 7, we propose to pre-integrate force-torque measurements that are present
in some legged-robots. We show that permits to estimate the centroidal quantities of the
robot as well making the kinematic bias on the center of mass measurements observable.
A practical implementation is demonstrated in Chapter 9, which is based on our paper
[Fou™21]

6.5 Conclusion

In this chapter, we have recalled the mathematics of the pre-integration, which is very im-
portant when handling high-frequency measurements strongly correlated with Lie-group
quantities. Pre-integration was first introduced for handling IMU in the MAP framework,
as we also did in our experiments. We introduced here an abstraction of the original math-
ematics, which allows us to more systematically generalize to other measurements. We
also present a reformulation of the algorithm based on a compact Lie group. We also
believe that this formulation, relying on Lie theory, gives some easier intuition to catch,
at least when the reader is familiar with Lie groups.

We are now going to use the generalized pre-integration to handle force sensors, which
also stream meaningful information at high (1 kHz) frequency, and integrate to to an
extended MAP problem where the centroidal quantities are also estimated simultaneously
to previously estimated basis state and map variables.
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In this chapter, we discuss how a tight coupling of the force measurements in the MAP
formulation can lead to the direct estimation of centroidal quantities, i.e. the robot center
of mass (CoM) position and velocity, and its angular momentum.

Centroidal estimation is crucial for legged robots balancing. However, this aspect has
not been explored in the case of a factor graph estimator. We propose to fuse the centroidal
kinematics of the robots with the pre-integration of the force-torque measurements of the
platform.

We will first review the dynamical model of legged robots, then describe how we
propose to use them as measurement models for quadruped and humanoid robots alike. In
particular, we design a new application of the generalized pre-integration algorithm (see
Section 6.2) for force-torque measurements, which constitutes one of the major theoretical
contributions of this thesis.

7.1 Centroidal dynamics
The robot dynamics is described by the Lagrangian dynamics:

M(q)v, + h(aq,vy) =7+ > I & (7.1)
l

where q,v,, v,, 7, are the position, velocity, acceleration and torques of the robot in
configuration space, ¢; = [f;, m;] are the contact force-torques, M is the generalized
inertia matrix, h the sum of gravity, Coriolis and centrifugal forces, and J; the Jacobians of
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the contact points. Because of the underactuated nature of legged robots, the configuration
is often separated into q = ("' pp, "V qp, q.) where " pp is the position of the robot base
in world frame (typically, the torso or in our case the IMU), " qp the orientation of the
base body with respect to the world and q, are the joint configuration of the actuated
joints. The generalized velocity has a similar separation, as described in Section 5.1.

While (7.1) represents the whole dynamics, a subpart of it is of particular importance
for legged robots. The centroidal dynamics is written by the two equations:

mé=mg+>» f | C:Z(pl—c)xfz—l—mz (7.2)
! 1

where c, £ are the position of the Center of Mass (CoM) and Angular Momentum (AM)
around the CoM (both expressed in world frame), m is the robot total mass, and the p;
are the positions of the contact points in world frame. The centroidal dynamics is an
exact part of (7.1) and more deeply reveals the underactuation: the robot can move only
if applying the proper forces and torques to the environment, as the joint torques alone
cannot lead to any modification of CoM or AM.

The classical approach in legged robot state estimation is to first estimate the base
state and then to reconstruct the centroidal state in world frame

(C? é? ‘c) £ (WpC7 WVC> Wﬁ) (73)

using the joint position and velocity measurements, and the robot model. This assumes
that there is no direct measurement of the centroidal state. Consequently, we are not able
to recover the exact centroidal state if there is any bias in the robot model.

Yet, we can see from the centroidal dynamics that the force measurements are con-
nected to the variation of the centroidal state. As observed in [Car*16a], a proper fusion
of the force measurements with an estimation of the state of the base makes the centroidal
state observable. We achieve this by adding two different kinds of information to the fac-
tor graph: centroidal kinematics and pre-integrated forces and torques. The derivation of
their involved factors is presented hereafter.

7.2 Centroidal kinematics

We need to relate base states to centroidal quantities to ground their estimate. For that, we
can rely on the inertial-kinematic model to compute the CoM position with respect to base
frame Ppc(q,) € R3, the CoM velocity with respect to base frame Zve(qq, q.) € R3,
the inertial matrix Z(q,) € R**?, and the kinematic momentum due to gesticulation of the
robot limbs £,(qq4, q.) € R3. The geometrical relation between base states and centroidal
states is:

c=R ch +p
¢=v+R(Pwp x Ppc + Bv¢) (7.4)
L= R(IB(.UB + Ea)
By definition, computation of the CoM position from the kinodynamic model resorts
to the formula

n

Bpe =" m; Ppe,(aa), (7.5)

=1
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were m; are the individual segment masses and Pp. the levers between the base and the
center of mass of each segment, computed from the robot configurations q,. In general,
these terms are not exactly accurate as our model of the robot may not be faithful to the
real system. The computation of p. and masses m; are therefore biased. Worse, this
bias is not constant, since it nonlinearly depends on the robot limbs configuration.

We chose a simple additive model on the CoM kinematics noisy measurements

Ppc = Ppc+b.+n,., (7.6)

where n. is a Gaussian noise and b, is a varying bias that we wish to estimate.
The angular velocity from the IMU is used and its bias b, has to be incorporated in
the factor, @ = Bwgp + b, + n,,. In the end, the equations used to derive the factor are:

C:R<Bf)0_bc_nc)+p
¢=v+R|@-b,—n,) x ("pc — b — n) + (*¥e — n,)] (7.7)
L=R(Z@-b, —n,)+L,)

The residual e“X ¢ R? is finally expressed as:

RT<C - p) + bc - Bf)C
e (p,v,R,c,¢,L,b.,by) = |RT(¢—v) = [(@ — by) x (PP — b,) + P¥¢]
R'L—[Z(w —by,)+ L]
(7.8)
To obtain a covariance X~k associated to the residual, we considered three sources of
measurement noise: the CoM position measurement n., the CoM velocity measurement
n,, and the angular velocity measurement n,. We group this noises in a single noise
vector n = [n,, n,, n,| with associated covariance:

3, 0 0
s.=[0 =, o0 (7.9)
0 0 X,

The residual covariance is then obtained by propagating the noise n through the non-
linearity of the residual error function (7.8), neglecting the second order noise terms found
in (7.7). The linearized propagation writes Yo = JX,J T, with J¢ the Jacobian with
respect to the noise vector constructed as:

I 0 0
Jo=|l@—-bx I —[’Pc—b,l« (7.10)
0 0 T

This factor is added to the factor graph as a link between base states and centroidal
states and, therefore, depends on almost all variables of the problem at a certain times-
tamp. We use this factor in the application presented in Chapter 9, whose factor graph is
represented in Fig. 9.1.

7.3 Force-torque pre-integration

In this section, we apply the generalized pre-integration algorithm to the problem of us-
ing measured external forces applied on a legged robot in a smoothing estimator. We
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propose to integrate the underactuated dynamics (7.2) using force-torque measurements.
To this end, we derive the specificities of the pre-integration of external forces of a poly-
articulated system. This is the main theoretical contribution of this chapter.

7.3.1 Newton-Euler integration

The Newton-Euler equations (7.2) relate the evolution of the CoM and AM due to gravity,
external forces, and torques. In the case of a legged robot with punctual contact feet, only
forces f, are applied at each limb contact L, with no torque. However, we will derive the
equations in the general case where force-torque are available (like for humanoids) since
it is then easy to just set the torque terms to zero.

We assume that at each limb contact we have access to noisy local force f L=, +n ¥
and pure torques m;, = “m/ +n,, measurements. To transform them into the body frame
b, we compute Ry, 2 PR (q,) € SO(3) and p;, 2 PpL(q.) € R? from the joint config-
uration q, € R'? using forward kinematics Section 5.1. The lever arm (py, — c¢) in the Eu-
ler equation (7.2) uses a measurement of the CoM position in base frame “pc(q,) € R®.
This measure is biased and noisy as explained before: we use again the measurement
model (7.6). Assuming constant forces during each interval d¢ the integration of (7.2)
yields the discrete dynamic model for the centroidal states:

1 1 -
cF ="t e ot + —gdt? + — RV ORY () — ny)ot?
2 2m 7
1 .
eb =&t 4 got + — R*Y RJ(ff —ny)ét
L

£F =M 4 RN (BF - BE + bE +n.) x RE(F} —ny) + RE (", — ny,)| ot
L
R* = R* ' Exp(@” — bF —nF)

(7.11)

This model is well adapted to humanoid robots with 6-axis force-torque sensors at
their flat feet or quadrupeds with 3D force sensors at their (approximately) point feet.
Indeed, for quadruped with point feet, no pure moment is applied by the ground of the
robot. In this case, the same equations can be kept, simply setting the pure torques m
terms to zero.

Note that the orientation of the system R appears in the centroidal states equations to
relate the local kinematic and force measurement to the world frame in which we conduct
the integration. We, therefore, have to include the dynamical model of the orientation by
integrating gyroscope measurements w together with forces and torques.

As illustrated in Section 6.1, recursively applying (7.11) and defining a naive differ-
ence in the world frame leads to an inefficient residual definition. Instead, we resort to the
generalized pre-integration algorithm that we developed in Section 6.2.

7.3.2 Force-torque pre-integration on composite Lie group

This section follows the same structure and logic as the two IMU pre-integration algo-
rithm described in Section 6.3.1 and Section 6.3.2 since we use the same generalized

84



7.3. Force-torque pre-integration

pre-integration pipeline. The sensor measurements z* involved in the integration are kine-
matics, gyro, and force-torques measurements:

Zk = [f)c,&}, {fL,Llf’\IJIL, IN)L, ﬁL}L:L,Jk (712)

that we assume to be synchronized.

As we explained, pc and w are corrupted by noise and biases. Thus, these biases
b = [b,, b,] are added to the estimator. As we did in the IMU case, we assume them
constant between two Keyframes and affected by a random walk drift.

Definition of the delta group

The state variables on which the pre-integration is applied are defined as x = [c, ¢, £, R].
Note that the rotation has to be included to be able to define residuals in the local frame.

The definition of delta and & operator comprises two parts. For the force-torque pre-
integration onto centroidal dynamics, we observe that a body subject to no force and
torque will free-fall at the acceleration of gravity while keeping a constant angular mo-
mentum. For the orientation part, as we did for the IMU, a null angular velocity means
a non-rotating frame. The deltas, defined as the motion between such free-falling frames
and the current state, can therefore be written as:

Ac™ Rﬂ(cm —c' — &' Aty — %gAtfm)

. N R (em — & — gAlin)

Am=—x"Hx'2 | = | = . o ) 7.13
AL R (L" - L) 719
AR™ Ri' R™

With this definition, the pre-integrated deltas are guaranteed to depend only on the sensor
measurements and bias, and not on the initial state x*. The inverse operation H is obtained
as
¢ + EA™ + RIAC™ + 1gAt7
(':Z + R’LACZ?’TL + gAt’Lm
L'+ RIAL™
R'AR™

. .
x"=x"HA"™ =

(7.14)

Definition of the group operations

Given two centroidal deltas A = [Ac,A¢, AL, AR] and § = [dc,d¢,dL,0R), the
group composition law A = A o § is defined as

Ac + Acit + ARoc
Ac+ ARdc
AL+ AROL

ARIR

Aod = (7.15)

with a group identity element composed of the identity element of its components:

03
Ag = Os , (7.16)
03

Is
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the resulting inverse being

—ART(Ac + AcAt)
—ARTA¢
—~AR'AL

AR’

Al = (7.17)

The calibration function ¢() and exponential map Exp() are combined to integrate one
step of measurement z, yielding 6 = f(z, b, 0t) in (7.18) as

= EIE f’z5t2
- 2 RIZEIZ(SE B
> [(Ph — (P& — bL) x Rf £f + Rf m})| ot
Exp((w® — bt)dt)

o%(z* b, 6t) = (7.18)

Delta pre-integration and factor residual

The concatenation of the operations above lead exactly the algorithm we implemented in
[Fou™21]:

e Initialize A;; = Ag, Xa =0, JbA = 0,and b; = b;.
* Calibrate data and retract to manifold using (7.18).
» Compose A using (7.15).

The factor residual is again computed following Section 6.2.4 exactly.

Comment on the link with IMU composite pre-integration

The reader will have noticed the high similarity between the centroidal motion delta group
defined here and the composite IMU delta Lie group defined in Section 6.3.1 (e.g. between
equations (7.13) and (6.10)). If we only consider the center of mass, its velocity, and the
orientation of the base equations, they are in fact the same. Indeed, the force sensors
provide local second-order information on the CoM position, which is akin to the IMU
acceleration measurements.

Where the problems differ however is in the inclusion of the angular momentum (the
second part of the Newton-Euler equations (7.2)). This equation introduces the depen-
dence on the CoM lever bias b, which is also present in the centroidal kinematics resid-
ual (7.8). [Rot"15] showed that including the same set of measurements on centroidal
quantities as us, the state space centroidal system with centroidal kinematics bias is made
observable, provide we have a prior estimation of the base states. In our case, base states
are state variables estimated in conjunction with the centroidal states. However, if the base
states are made observable by other sensor sources, then the same observability analysis
should apply to the centroidal states in our case. This is confirmed by experimental results
presented in Chapter 9.

86



7.4. Conclusion

7.4 Conclusion

In this chapter, we have proposed the first step toward a whole-body estimator based on
MAP. On the first hand, we have introduced centroidal states into the MAP problem, in
addition to the previous decision variables, classical estimated in SLAM. The centroidal
states are related to the basis states through the centroidal kinematics, which is typically
used in state-of-the-art estimators. While the same relation is here used, the classical cen-
troidal estimator only loosely couples these two estimated quantities, then being unable
to exploit other observations on the centroidal states to also contribute to the estimation
of the basis. Then we draw the relation between the force measurements and the cen-
troidal states, which enriches the MAP factor graph and enables us to take advantage of
the tight coupling between basis and centroidal states. The force sensors are related to the
centroidal states in a somehow similar relation to the IMU is connected to the base state.
As shown previously on more theoretical estimation work, the force sensors provide the
observability condition to unbias the COM position despite (unavoidable) kinematic and
inertial calibration problem of the robot model.

We will show in the experimental part of this thesis (Chapter 9) how this tight cou-
pling can be implemented on a quadruped robot, although a significant experimental work
remains to be done to demonstrate its interest in practice. As previously said, this contri-
bution is a first step toward building a whole-body estimator, i.e. an estimator that would
be able to estimate all robot related quantities by fusing any available sensors, in particu-
lar, grid sensors such as robot skin and distributed IMUs.
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8.1 Introduction

In this chapter, we are looking for a solution to localize a humanoid robot indoors, with
sufficient accuracy to navigate on some stairs, grasp a handrail, or walk on a 30-cm wide
beam. As the robot is going to come back again and again in the same environment, we
would like to benefit from loop-closure information and localization with respect to some
known landmarks. While our final goal is to merge in the optimal estimator the measure-
ments coming from all the sensors of the robot, we focus here on contributions validating
the use of visual-inertial localization and mapping on a humanoid robot navigating in-
doors in a 3D environment.

For the visual factor, we rely on AprilTags [WO16], while proposing a practical con-
tribution to avoid ambiguity issues in the pose estimation of the tags, as described in
Section 4.2. For the inertial factor, we build upon Forster pre-integration [For*17] and
propose an original, by exhibiting a compact Lie group (described in Section 6.3.2) that
is suitable for optimal estimation. This formulation, although leading to very similar for-
mulas for the inertial factors, enables a generalization to the other high-frequency factors
that would typically arise in the humanoid contact (leg odometry based on coders, force
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Chapter 8: Visual-inertial SLAM with fiducial markers

sensors, etc). Both inertial and visual factors are processed in a factor graph formalizing
a MAP problem.

This first application is typically addressed in the literature as Visual-Inertial esti-
mation and expressed by various approaches in several robotics domains. We will first
discuss the state-of-the-art related to this experimental context to more accurately define
the experimental stakes.

We then formalize the inertial SLAM estimation problem using factor definitions
given in the previous part. Most of the chapter will be presenting experimental results
on datasets obtained with a visual-inertial sensor (VIS) carried by a human operator and
the HRP-2 humanoid robot.

8.2 Related works

The difficulty in fusing inertial, kinematics, and exteroceptive measurements stems from
the disparity in the properties of each data source. Inertial and kinematic measurements
come at high frequency (typically 100 Hz to 1 kHz) and are cheap to process, while
images and laser scans are obtained at some few frames per second and are expensive to
process. On the other hand, inertial measurements are quickly deprecated while images
and scans provide absolute information. This implies a rigorous synchronization between
the sensors with the risk of decreasing the performances of the inertial estimation when
images and laser scans are not carefully merged.

These difficulties explain that the first works to merge proprioceptive and exterocep-
tive sensors for legged localization have been with staggered approach, first fusing inertial
and kinematic measurements at high frequency, and then correcting the localization drift
with absolute localization computed from the camera and/or the LIDAR with low band-
width and higher delay [Nob*17; Fal*14].

Quite recently, several concurrent approaches have been proposed to merge all rele-
vant data in a unique estimator. Following the recent results in UAVs localization [For*17;
Leu*15], optimal estimation structured by a factor graph seems to be a suitable frame-
work to formulate the fusion. In [Har"18c], a graph-SLAM is proposed to fuse iner-
tial, kinematics, and visual data. Inertial measurements are considered using Forster’s
pre-integration factors [For*17], which is recalled in Section 6.3.1. Kinematics data are
included using a 6D factor which is also pre-integrated, taking into account the hybrid
nature of the contact dynamics using an event-based approach. Visual factors are also
expressed as 6D factors obtained by visual odometry. Results are reported on sequences
of a few meters with motion-capture ground truth. In [WCF19], the graph-SLAM also
considers inertial measurements through Forster’s pre-integration, while kinematic mea-
surements are pre-treated by the robot low-level system [Blo*17] and integrated directly
as 6D factors without further consideration. Finally, the visual information is included
as 2D pixel reprojection factors in the image space, obtained from feature tracking (KLT
[BMO04]). Impressive experimental results are demonstrated with long outdoor sequences,
using a ground truth obtained from off-line LIDAR reconstruction.

The pros and cons of these two approaches come from the choice of the factors, but
the similarities are possibly more important than the differences. Both use a plain Forster
pre-integration [For*17]. Using either visual odometry or feature tracking, both systems
cannot natively benefit from the information brought by loop closure and would fail to
exploit known map information. In both cases, the kinematic factor is straightforward
to write as a 6D probabilistic constraint. Finally, both works can account for the very
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different sensor frequencies, while providing a good estimate at the higher frequency if
needed.

As for the specific problem that we wish to solve in this chapter, two AprilTag based
visual-inertial SLAM systems have been implemented in the previous years. In [NBB16],
the authors rely on an EKF in which state propagation is naturally handled by the IMU and
each marker detection is used in an update step where the reprojection error of its 4 corners
provides an 8D innovation vector. A closer solution to ours was very recently proposed in
[HZG19] and is also based on graph SLAM optimization benefiting from Forster’s IMU
pre-integration from GTSAM. As explained previously, the AprilTag factor formulation is
different from ours and the algorithm is tested on large datasets consisting only of smooth
motions.

(b) Experimental room with parkour, HRP-2 and fiducial
(a) HRP2 robot with which were con- markers.

ducted the experiments. The head was
replaced by our visual-inertial sensor.

Figure 8.1: Experimental setup. (a): installation of the visual-inertial sensor. (b): experimental
space.

Figure 8.2: Factor graph supporting the estimator used in this chapter, involving state blocks
corresponding to keyframes x; = (p;, Vi, R;), biases b; and landmark poses 1,. IMU factors
(blue) relate consecutive Keyframes and the IMU biases. The lower branch controls bias drift
along time. Visual factors (red) relate landmarks with poses (p;, R;).
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8.3 Problem statement

As mentioned in the tutorial on MAP estimation (Chapter 3), the problem is well repre-
sented as a bipartite graph, where one type of node refers to the variables, and the other
type called factors represents probabilistic constraints between variables, produced by
the measurements. In the case of landmark-based visual-inertial SLAM (see Fig. 8.2),
x includes robot poses and velocities x = (p, v, R) and IMU biases b, both at selected
Keyframes along the trajectory, and landmark poses 1 € SE(3). Biases are considered
constant between Keyframes. In line with the recent works on the subject, we write the
MAP optimization as the least-squares minimization (Fig. 8.2),

2
X* = argmmz
X i

o P @, @1

v/ (X))

with {r’, 37} and {r", X"} indicating the residuals and covariances of respectively the
inertial (IMU) and visual factors. These residuals are computed differently depending on
the nature of the measurements and the state blocks they relate to. The AprilTag factor is
described in this thesis Chapter 4 and the IMU factor in Chapter 6. The factor graph is
then implemented in the WOLF framework [Sol*21], using Ceres [AM*] as the backend
solver. A ROS-based demo with installation instructions can be found in this page.

8.4 Experimental setup

We have gathered several datasets in the experimental arena of the humanoid robots at
LAAS-CNRS, a 3D environment about 10m x 5m made of flat floor, stairs, and a 30cm
wide beam. The robot environment was augmented with about 20 fiducial “AprilTag”
markers (of about 20 cm width). The tags have been randomly dispatched in the environ-
ment. They are fixed during a run but may vary significantly between two sets of data,
and their locations are not calibrated —that is, we do not have ground truth localization
of the tags.
Each dataset is composed of 3 sequences:

* a sequence of RGB images captured at 33 Hz
* a sequence of IMU measures captured at 200 Hz

* a sequence of motion-capture (MoCap) at 200 Hz measurements used as ground
truth.

The visual-inertial sensor (VIS) is comprised of a Memsic IMU running at 200 Hz
and an Imagine Source camera. IMU and camera are hardware synchronized: the image
acquisition is triggered by a micro-controller (STM32) synchronized with the IMU. We
have validated that there is less than a 2 ms synchronization error by the hardware (shutter
time) and that this delay is stable. The camera and the IMU are collocated, with less
than 10 cm of distance between IMU and camera focal. The camera-to-IMU extrinsics
parameter was calibrated using the Kalibr library [FRS13]. In each sequence, we have
taken care that the camera is navigating in a comfortably-dense field of tags, even if it may
not have always a tag in its field of view. The motion-capture data have been obtained
from a calibrated 3D marker attached to the camera and are synchronized in post-process
by maximizing the velocity norm cross-correlation between MoCap and estimated state
sequences.
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Figure 8.3: Two loops of the experimental field with camera in hand
Table 8.1: Datasets description and results
Description Duration  Length MTE! STE?
Handheld loop 59.0s  20.6m 290 113
HRP2 turns then walks | 59.9s 12.87m 30.9 15.7
HRP2 climbs stairs 47.1s 6.25m 139 6.3
HRP2 descends stairs 19.39s  2.62m 304 11.8
I Mean translation error [mm]
2 Std. dev. of translation error [mm]
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Figure 8.4: Translation estimation error (cm) as a function of time (s). In the clock-wise sens, start-
ing from the top-left corner, the datasets are handheld camera, stairs climbing, stairs descending
and walking on flat ground. RGB colors correspond to xyz axes.
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8.5 Results

8.5.1 Absolute localization

We consider four datasets that are summarized in Table 8.1. They cover different tasks on
which a consistent estimation of the robot movement is necessary. The first one is a rela-
tively long sequence consisting of two loops with the VIS handheld. This is used to test
the long-term localization of the robot, which is interesting for navigation. Secondly, we
made the LAAS Gepetto team HRP-2 walk and turn around on a short distance to evalu-
ate the resilience of the filter to the vibrations of the robot. Finally, two more challenging
datasets are recorded while the robot is climbing and descending stairs. Especially on the
latter, the locomotion causes impacts that on one hand bring the IMU close to its dynamic
range saturation, and on the other hand, provoke images with motion blur. Note that dur-
ing these experiments, the estimator was not used for feedback control. To compare our
results with the ground truth, we used methods described in [ZS18] to align trajectories
given that 4 DoFs are unobservable in VI estimation. For each case, Keyframes are cre-
ated at a frequency of 6.6 Hz (every 5 images) if tags are detected in the corresponding
image.

Fig. 8.4 presents a quantitative evaluation of the translational errors. In all cases,
our estimator achieves errors consistently below a few centimeters. The biggest errors
are obtained for the walking datasets where the two humps correspond to phases where
the robot is turning on itself and sees landmarks that will not be seen again later in the
trajectory.

8.5.2 High-rate velocity estimation

A high rate estimation of a humanoid robot velocity and in particular of its center of
mass is critical for balance controllers. It can be recovered from motion capture through
numerical differentiation of the positions, but this results in a quite noisy time series. It is
especially visible when hard impacts make the robot when descending stairs for instance.

Fig. 8.5 presents a zoom-in one part of the stairs descending trajectory. Here, within
2.5 seconds, HRP-2 lowers its base and then its foot touches the next step. The velocity
is thus first negative until the impact of the foot on the step. Then, the estimated velocity
follows a familiar oscillatory damped system behavior while the mocap estimation is more
erratic.

The high rate estimate of the velocity is obtained by integrating IMU measurements
with optimally estimated biases from the last Keyframe optimized by the solver, as ex-
plained in Section 6.2.5. The smoothness of the trajectory is a good indicator that the
problem has converged to a consistent state.
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Figure 8.5: Descending stairs (one step): the robot first lowers its base and then touches the next
step with results in vibrations from the impact. Vibrations at approximately 10 Hz visible in both
the motion capture ground truth and optimal state estimation. Note that the estimation in this case
has a smoother curve. Keyframes are introduced at 6.6 Hz (every ~ 150 ms) and are represented
by vertical red bars. State in between is obtained by applying the pre-integrated delta from the last
Keyframe to the current time to the estimate of the last Keyframe state estimate (see Section 6.2.5).

8.6 Conclusion

This chapter reports our first experimental results, validating our IMU observation model
(using pre-integration), that we assembled into an observable estimator using fiducial
markers. The implementation reproduces what now is a classical formulation of visual-
inertial odometry, but has been the first demonstration on a humanoid at the time of pub-
lication, to the best of our knowledge. We have been able to obtain an accurate estimation
of the humanoid robot HRP-2 in a 3D terrain. The IMU enables the estimator to have ex-
cellent accuracy and high bandwidth in the resulting estimation. In particular, the impact
of the feet on the stairs, and ensuing vibrations, clearly appears as a relevant movement in
the estimator output. On the other hand, the fiducial markers enable the filter to display a
global localization, by closing the loop when previously-seen markers are observed again
while the robot walks along a loop in the experimental room. This experimentally vali-
dates the relevance of fusing these two information sources for localizing a legged robot.
In particular, the filter provides a full consistency, on the opposite to loosely-coupled fil-
ters where the global localization (SLAM-like) is not guaranteed to be consistent with the
local estimation of the base state.

Since this work, a few interesting MAP-based estimators have been deployed on
legged robots, as we are going to discuss in the next chapters. For the implementation we
reported here, we mostly missed some visual odometry (i.e. low level geometrical visual
features) that would have helped the estimator to have a better mid-frequency accuracy
(between the high-frequency provided by the IMU and the low-frequency provided by
the sparse fiducial tracker). The experimental results were running in real-time by using
a fixed window of Keyframes active in the estimator and removing the older ones. The
approach may be improved by introducing a marginalization procedure as done in some
classical visual-inertial systems [Leu®15].
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In this chapter, we have not yet added the information coming from the foot contact.
Moreover, the fiducial markers are not strongly related to any relevant part of the robot
environment, which makes it difficult to use the localization information in a contact
planner. In the next chapters, we are going to show, on one hand, how this estimator
extends to fully account for the contact information and, on the other hand, how it may
obtain information about parts of the environment, that a motion planner could directly
use, by replacing the visual front-end.
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In this chapter, we propose a tightly-coupled estimator of the base and centroidal states
that fuses IMU, kinematics, centroidal kinematics, and force-torque measurements. This
work was first presented in our published paper [Fou™21].

9.1 Introduction

As mentioned in the literature review, centroidal states are key to the control of legged
robots. Indeed, they provide rich information about the general behavior of the system
and can be used to check for the stability of the system. The centroidal state estimation
literature is rich, especially for humanoid robots (see Section 2.3). To our knowledge, all
of the centroidal estimators proposed in the literature can be classified as loosely-coupled
estimators (following the terminology introduced in Section 2.2.2): they rely on prior
knowledge of a base state. For instance, Piperakis [PKT18] describes the whole pipeline:
first, an inertial-kinematics EKF estimates the base state, then an EKF uses this fixed base
state to obtain centroidal states. Since the factor graph optimization framework that we
use theoretically reaches its full potential when the maximum number of cross-correlation
are considered, we did not find this solution satisfactory. Here, we rather propose a tightly-
coupled estimator that jointly estimates base and centroidal states using IMU, kinematics,
and force measurements.

To the best of our knowledge, this is the first time an estimator tightly couples forces,
IMU, and proprioception to estimate both base and centroidal quantities. This estimator
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finds its roots in visual-inertial SLAM as described in the previous chapter, and in the
observability studies of centroidal quantities, already discussed in Section 7.1. We then
skip here a discussion of related works which has been sufficiently covered, to directly
describe the underlying factor before exhibiting the experimental results.

9.2 Problem statement

We define here an estimator capable of observing both base states (position, orientation,
velocity) and centroidal states (CoM, CoM velocity, angular momentum) from propri-
oception only. We assume that the following measurements are available on the robot:
IMU data, kinematics (leg odometry), centroidal kinematics, and force-torque sensors.
Since the IMU measurements (6.2) and CoM local position from the kinematics (7.6) are
biased, we also need to integrate them to the estimated variables.

Bloesch [Blo*13b] showed that the base states of legged robots and IMU biases are ob-
servable using a tightly-coupled estimator based on IMU and kinematics measurements.
On the other end, Rotella [Rot™15] showed that the centroidal state of a robot and a bias
on the centroidal kinematics can be obtained by fusing force-torque sensor measurements
with centroidal kinematics, based on prior knowledge of the base states. We join the
two problems into a single state estimation problem, represented by the factor graph of
Fig. 9.1.

In this estimator, we have two motion sensors, IMU and force-torque, whose measure-
ments we pre-integrate as explained in Section 6.3.1 and Section 7.3 respectively. Base
states and centroidal states are tightly constrained by the centroidal kinematics factor,
which relates almost all estimation variables at a given Keyframes.
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Figure 9.1: Factor graph representation of the tightly-coupled base-centroidal state estimation
problem. Each round node corresponds to an estimated state variable. Each square corresponds
to a factor, that is a measurement residual. The colors of the residuals are as follows. Red: leg
odometry (Section 5.2), green: IMU pre-integration and IMU bias drift (Section 6.2.4), purple:
centroidal kinematics (Section 7.2), blue: force-torque pre-integration and centroidal kinematics
bias drift (Section 7.3).

9.3 Experimental setup

This estimator is implemented in WOLF [Sol*21], with necessary kinematics and dy-
namics quantities computing with Pinocchio software [Car"19], and is experimentally
validated on the Solo-12 quadruped robot.

As is often the case with quadruped robots, Solo-12 is not equipped with three-axis
force sensors at its feet. Yet, in order to validate the present method, it is possible to
reconstruct the contact forces based on the robot dynamics equation (7.1). Knowing the
robot configuration and derivatives q, v, v4, and joint torques 7 (from motor currents),
recovering forces from this equation results in solving an over-determined linear system.
Some of these quantities are hard to obtain directly since they depend on the state being
estimated (e.g. base orientation) or on numerical differentiation (q,). For these reasons,
we pre-calculated these forces by benefiting from an internal filter of the 3DM-CX5-25
IMU for the base orientation, centered window differentiation of encoder speed measure-
ments for the articulation acceleration q,, and neglecting the influence of linear velocity.
Fig. Fig. 9.2 shows an example of the force reconstruction of one leg using the robot
proprioceptive sensors.

This movement and another one are displayed in the video https://peertube.
laas.fr/videos/watch/16822d27-3557-4e35-9a0d-ce5b0aead4c27. The
configuration trajectories were obtained using task space inverse dynamics [Pre*16] and
applied to the robot with joint-level admittance control.
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Figure 9.2: Force estimation on X-Y-Z axis (r-g-b) of one Solo-12 leg expressed in world frame
using proprioceptive sensors during the sinXYZ trajectory

9.4 Results

9.4.1 Base estimation through inertial kinematic fusion

First, to validate the use of our kinematic factor, we include uniquely the IMU and leg-
odometry factors to obtain an Inertial Kinematics estimator which conceptually includes
the same information as estimators such as [Blo"13b]. In Fig. 9.3, we compare our state
estimation at 1 kHz with motion capture (Mo-Cap) up-sampled from 200 Hz to 1 kHz.
Velocity in the base frame is also shown in Fig. 9.4.
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Figure 9.3: sinXYZ trajectory base position from the IMU+Kinematics (IK) estimator (blue) vs
Mo-Cap (red)

Artificially removing contact factors (considering only 1, 2, or 3 feet in contact) can
help us gain confidence in the use of this kinematic factor in situations where we rarely
have all feet in contact, like for example with trotting gaits. In Fig. 9.5, we can see that
only considering 1 foot in contact during the whole trajectory results in a drifting position,
but as soon as 2 or more feet are in contact, the system is constrained enough for the drift
to remain below around Smm on all axes.
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Figure 9.4: sinXYZ trajectory base velocity in base frame from the IMU+kinematics estimator
(blue) vs Mo-Cap (red)

9.4.2 Centroidal estimation

Now, on the same trajectory, we deploy the full estimator with all factors described in the
factor graph in Fig. 9.1 to jointly estimate the base and centroidal quantities. A ground
truth on the centroidal quantities is difficult to obtain since no direct sensor can provide
us with this information contrary to the base state. We can however validate our method
by comparing it to a two-step procedure: first, estimate the base state with a state Kalman
filter as implemented in [Ble"18a], then compute the centroidal quantities directly from
the robot kinematic model. The full estimator should be able to infer a bias on the Zpo
measure so we artificially add a constant disturbance in the robot dynamic model on
the lever of the base link of [0.03, 0.06, 0.04] cm, which then corresponds to a CoM
bias of [-0.0197, -0.0394, 0.0263] cm. Fig. 9.8 shows that the bias estimated with our
method closely matches the introduced bias. Fig. 9.9 shows a comparison between the
base and CoM reconstruction with our method and with the two-step base Kalman filter
with geometric CoM. Note that the base-CoM difference on the z-axis reflects the fact
that the limbs of the robot naturally lower its CoM. The estimated CoM velocity closely
follows the velocity of the base as shown in Fig. 9.7.
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Figure 9.5: sinXYZ trajectory base position error with different numbers of feet used for the leg-
odometry factors: 1 (blue), 2 (orange), 3 (green), 4 (red) from the IMU-+kinematics estimator
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Figure 9.6: Base position (blue) vs CoM (red) from the full estimator
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Figure 9.7: Base (blue) vs CoM (red) velocities from the full estimator
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Figure 9.8: Estimation of bias on CoM measurement from the full estimator along x-y-z axis (
red-green-blue) in base frame
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Figure 9.9: Comparison of the estimates between decoupled the Kalman filter base estimator and
geometric CoM reconstruction (blue) and the tightly-coupled estimator presented in this paper
(red) on the sinXYZ trajectory with artificial base link CoM bias.
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9.5 Discussion

On the theoretical side, the correlation of the IMU and forces pre-integration models

(due to the common gyroscope data integration) might also be investigated. One of the

hypotheses involved in factor graph MAP estimation is the conditional independence of

measurement data (see (3.11) in Section 3.1 for more details). Using the same mea-

surements for both factors violates this assumption. Our model is not an exception

in MAP estimation: for example, [WCF19] uses integrates the velocity output of an

inertial-kinematic filter to obtain an odometry factor, while using IMU data in an IMU-

preintegration factor. In our case, a solution would be to derive an algorithm pre-integrating
IMU and force data at the same time. This choice would be at the cost of the modularity

of the use of two separate factors.

While the results correspond to the expectation, several aspects of the experimental
protocol would benefit from improvements in the future. First, the experimental platform
we used is not the most appropriate to implement this type of estimator. Indeed, Solo-12
does not have force-sensors at the feet, which required the force estimation procedure
described in Section 9.3. The inconvenience of this method is two-fold. Firstly, the
estimated forces make heavy use of the IMU acceleration measurements which makes the
forces pre-integration correlated with IMU pre-integration. Secondly, the force estimation
gave us good performances only for rather slow trajectories, which prevented their use for
walking trajectories for instance. We could have turned our interest to our humanoid
robot Talos (see Fig. 2.1) which features force-torque sensors at its feet. However, at the
time, Solo-12 was still a safer choice for several issues with Talos, that have since been
partially addressed (kinematic calibration, higher flexibility of the structure, biased feet
force sensors).

Nevertheless, Solo-12 allowed us to easily generate datasets based on simple quasi-
static trajectories. We since recorded more datasets with walking trajectories based on
the walking controller [Léz21], including the robot proprioceptive measurements as well
as images from an onboard camera (See Chapter 11 for more details). Evaluation of our
inertial-kinematic estimator on these new trajectories is ongoing (see Chapter 11).

9.6 Conclusion

To the best of our knowledge, the work presented in this chapter corresponds to the first
demonstration of the feasibility of tightly coupling the estimation of both the robot ba-
sis and its centroidal state. Beyond the practical limitations of our experimental setup, it
opens the road to more ambitious filters able to provide a consistent by design estima-
tion of the quantities needed for balance control and navigation, which we believe to be
essential for reaching safe locomotion on 3d terrains. Our main effort is now to extend
this work to also integrate advanced exteroceptive measurements able to provide mean-
ingful information about the surrounding environment, as will be explained in the next
chapter. We then see exciting perspectives in extending this estimator to multiple other
information sources on the robot’s whole body, to tightly couple the estimation of a more
complete state.
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In this chapter, we present an object-level visual-inertial SLAM system based on the
deep-learning-based pose estimation CosyPose [Lab*20]. We present experimental re-
sults from our paper [Deb*21].

10.1 Introduction

Navigation of legged robots using onboard exteroceptive sensors has gained a lot of
traction in recent years due to their progressive deployment for industrial applications
[Bel"18]. For repeated travels, the map-less teach and repeat methods [FB10; Mat™21]
avoid the need for a metric and globally coherent localization by benefiting from the
knowledge of a human operator. This works very well for applications in which such
supervision is available, and a global map is not. Building a metric and semantic map of
the environment may be useful to automatize navigation and exploration in larger envi-
ronments. Besides, standard objects whose CAD model is known (such as gauges, valves,
stairs, etc.) may often appear.

Many representations of the environment are possible depending on the needs of the
system. In [Fal®14] a prior map defined as a LIDAR point cloud is used in a Gaussian
particle filter to localize a humanoid robot and perform online foot planning. Fankhauser
[Fan™14] takes as an input an external odometry source to produce efficient robot-centric
elevation maps while [Kim*20] builds a global height map to navigate through cluttered
environments. Other approaches [WCF21] rely on a tight fusion between proprioceptive
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and exteroceptive sensors to make the odometry more robust. A full overview of these
systems can be found in our literature review (Section 2.4).

Figure 10.1: Experimental setup: a RealSense D435i is mounted on the Solo robot that localizes
itself with respect to stairs. A motion capture system provides ground truth of the robot pose.

These approaches build metric maps that do not usually leverage the presence of
known assets in the scene, although a few examples in the computer vision literature
exist. In [Sal*13], the authors develop one of the first object-level SLAM algorithms from
a depth sensor. Using a voting process based on point cloud descriptors, a simultaneous
recognition and pose estimation of known objects was performed and included as factors
in a graph optimization estimator. The method benefited from an active search of the
objects in the scene, the detection being done in the SLAM loop. Aside from the robot
trajectory and poses of objects, [SWD20] also proposes to optimize the object shapes us-
ing a differentiable rendering engine. In such approaches, objects need to be detected,
classified, and their relative pose with respect to the camera has to be integrated into the
estimator. On the other end, a work like [PL15] uses a semi-dense mono camera SLAM
algorithm to produce a scale-ambiguous feature map. Then, a descriptor-based multi-view
object proposal is performed as a post-processing step.

As described in Section 4.3.1, deep-learning-based object detection systems have now
reached an accuracy that makes them candidates for mobile robotics applications. Appli-
cations range from robot manipulation, like sorting known objects, or localization with
respect to known assets. For this last application, however, the direct output of Cosy-
Pose is not sufficient for two reasons. First, many objects have strong symmetries, which
makes CosyPose orientation estimation jumps from one to the other depending on the
frames. This output has, therefore, to be filtered using prior knowledge about the world or
the robot’s movements. Second, the robot needs to keep a memory of objects it has seen
when they go out of its field of view.

We present in this chapter a practical implementation of the proposed MAP formula-
tion fusing inertial measurements and object-level visual features estimated by CosyPose.
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The stake is to demonstrate that a centroidal filter is able to merge information typically
used for balance control (IMU related) with features typically needed by a high-level plan-
ner, e.g. the stair steps locations extracted by the object pose estimator. Beyond the practi-
cal validation for legged robots, this also demonstrates that the single view CosyPose can
be extended to a sequential tracker able to benefit from complementary measurements
such as an IMU.

To integrate CosyPose measurements with other sensors, we used the noise model
based on empirical data, presented in Section 4.3.3. We also detail here the pragmatic
implementation of heuristics to circumvent outliers in the network output. Experimental
validations were conducted with a visual-inertial system, first handheld then mounted
on a quadruped robot. Finally, we fine-tuned the pre-trained models to perform stairs
localization, as explained in Section 4.3.4.

10.2 Implementation of the Visual Inertial filter

10.2.1 Factor Graph formulation

This section will be very short so as not to repeat ourselves: the problem has the same
structure as the AprilTag-IMU VI system presented in Chapter 8, thus it as the same
factor graph Fig. 8.2. The AprilTag pose measurement model is replaced by the CosyPose
measurement model, presented in Section 4.3.

10.2.2 Data association and Outlier rejection

A key part of our SLAM system is the association of landmarks with the rejection of
erroneous pose estimates. First of all, each object is associated with a label « so that a
detection can only match a landmark with the same label. Then, the position of the robot is
propagated by integrating the IMU measurements with the current biases estimates. Thus,
each detected object pose can be transformed in the world frame using the propagated
robot state. We check if this pose is similar to the one of a landmark with the same label
with a threshold on the distance between the poses in SE(3). If a detection does not
match any landmark then a new landmark is created.

CosyPose can return poses of objects that are not included in the scene because of
false detections, of Mask-RCNN, or wrong pose estimations (most often due to object
symmetries). To handle these outlier detections, each landmark is associated with a score
c that corresponds to its repeatability over time:

ny
c=x; (10.1)
At is the time since the landmark initialization and ny is the number of factors asso-
ciated with it. The lowest scores are filtered with a threshold determined empirically and
the associated landmarks are removed from the map.

10.3 Experimental validation

We have produced datasets in the robotic experimental arena at LAAS-CNRS in Toulouse.
This is a 3D environment about 10m x 5m made of flat floors, stairs and beams. The robot
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environment was augmented with objects of the datasets that were used to train CosyPose.
Each dataset is composed of three data sources:

* A sequence of RGB images (30 Hz)
* A sequence of IMU measurements (200 Hz)

* A sequence of motion capture (MoCap) measurements (200 Hz), used as ground
truth

We recorded two types of datasets: one for the uncertainty models and one for SLAM
experiments. For the uncertainty models, reflective MoCap markers were attached to the
object to obtain the ground truth of their pose. For the SLAM, only the camera was
tracked. We used the monocular RGB camera and the Bosh BMI085 IMU of an Intel Re-
alSense L.515 Camera for handheld trajectories. The Intel RealSense d4351 was used with
the same modalities for the experiments on the quadruped robot Solo [Gri*20] as shown
in Fig. 10.1. The extrinsic calibration between the IMU and the camera was provided by
Intel and the delays observed between IMU and Camera measurements were negligible.
Our datasets are publicly available at https://homepages.laas.fr/mfourmy/
icra22_cosyslam.

10.3.1 Object level VI-SLAM

1.2
1.0
0.8
_ —— mocap
E£06 | CosySLAM IMU
- | —— CosySLAM
0.4
0.2
0.0
0.2 0.4 0.6 0.8 1.0 1.2

x(m)

Figure 10.2: Comparison between the MoCap, the output of CosySLAM with visual factors only
and the output of CosySLAM with IMU fusion on the circular trajectory.
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10.3. Experimental validation

In order to validate the performances of the fusion of CosyPose estimates and inertial
measurements, we evaluated three scenarios with the camera held by hand and T-LESS
objects' in the scene. The first one is a short and slow trajectory, i.e. an ideal scenario.
The second one is a slow but long trajectory, to validate the consistency of our system
over time. The last one is a highly dynamic scenario with a lot of motion that can blur
some frames and lose sight of objects for more extended periods. Moreover, T-LESS
objects being the most difficult objects for pose estimation with CosyPose, they may
return many outliers and noisy measurements. This is therefore a challenging dataset to
test the robustness of our algorithm. Keyframes are selected at 10 Hz, only if objects are
detected in the images.

Table 10.1: Datasets description and results of the hand held videos

Scenario Length(m) Duration(s) MTEY(cm) STE?(cm)
V-only - Circular | 3.7 23.7 3.8 1.6
V-only - Short 2.5 12 3.8 2.4
V-only - Dynamic | 3.5 17.8 7.8 4.0
V-IMU - Circular | 3.7 23.7 1.9 0.7
V-IMU - Short 2.5 12 1.9 0.5
V-IMU - Dynamic | 3.5 17.8 1.7 1.2

1 Mean translation error
2 Standard deviation of translation error

It is interesting to analyze the gains brought by the IMU fusion. The most evident
observation is that the output trajectory is smoother, which gives more consistency to the
result (Fig. 10.2). But we can notice that the mean translation error (MTE) is also reduced
(Table 10.1). Indeed, the motion model is more precise thanks to IMU data. This makes
the outlier rejection more efficient than the visual-only CosySLAM which makes a zero
velocity assumption between Keyframes.

10.3.2 Localization and Mapping of stairs by Solo

With our retrained model (Section 4.3.4) we were able to perform SLAM in our exper-
imental area, without augmenting it with other objects. We recorded video sequences
including stairs with a camera fixed on a Solo robot (Fig. 10.3). A stair has three discrete
symmetries that are hard to handle for an object pose estimator and the images provided
by Solo were noisy because of the walk. These scenarios are challenging for our SLAM
system, but it maps successfully the stairs and the error on the position of the base of Solo
remains reasonable (Table 10.2).

I'T-LESS is one of the datasets for which CosyPose is trained by default and whose object can be bought
in the Czech Republic [Hod*17]. It features several small electric devices, whose symmetry at lack of
texture make them an interesting benchmark for realistic scenarios.
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Table 10.2: Datasets description and results of the videos taken on Solo

Scenario Length(m) Duration(s) MTE(cm) STE(cm)
V-IMU - Approach | 1.3 18.7 2.0 0.9
V-IMU - Module 1.3 15.5 24 1.5

Figure 10.3: This trajectory was recorded on Solo walking along a climbing module made of
three stairs using a walking controller [Léz*21]. The green dots represent the trajectory of Solo
provided by the MoCap, and the red dots the one produced by our visual-inertial SLAM. The blue
rectangles represent the map of the SLAM made of stairs.

10.4 Conclusion

This chapter presents the first step toward a semantic reconstruction of the robot envi-
ronment. We see in this method the potential to provide multi-contact locomotion con-
trollers [Car*17] with their needed contact surface reconstructions. By leveraging models
of known objects in the scene, one may imagine localizing staircases, their handrail, door
handles, etc. that the robot is required to interact with. This work was conducted during
the MSc thesis of Cesar Debeunne, who was a passionate collaborator.

In the case where few or no object of interest are in the field of view, the IMU han-
dles the estimation as a strap-down integration, which is viable for a few seconds. After
this delay, extra sources of information are required to avoid drift in the estimates. One
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solution would be to increase the robustness of the visual front-end by including resid-
uals using classical 2D salient points features, as visual odometry, as already discussed
in Chapter 8. In this context, objects in the scene would be useful both for providing
semantic and surface information, as well as providing loop-closures.

The covariance model that we developed also requires more development. In par-
ticular, it required important experimental work to build the dataset of CosyPose errors.
Collecting data for each individual object is very time-consuming. Besides, the models
are likely to overfit the obtained dataset and generalize poorly to datapoints outside of its
boundaries.

To improve this, we could work on several aspects. First, the ideal method would be
to find a general model, as we did for the AprilTag PnP algorithm (Section 4.2.3), directly
computable from the CosyPose network. Second, if we show that this is not feasible, we
could try to train the covariance model in simulation which provides a vastly superior di-
versity in situations, though lacking some of the artifacts of reality. CosyPose itself is only
trained in simulation. For this, we could use a reduced model as presented in this chapter
or retrain Cosypose using methods specialized for neural networks [Jos*20]. Third, we
could work on the formal definition of an uncertainty model, e.g. using a Bayesian for-
mulation, that we also would have to fit empirical data. This would potentiality enable to
quantify this quality of the predictions when extrapolating outside of the training domain
(for example, if trained on a range 2-4 meters, the current model would diverge without
warning if triggered at Sm, while a Bayesian model would predict a the variance and and
uncertainty on this prediction).

Finally, we are eager to validate this formulation jointly with the tight estimation of
Chapter 10 and are getting prepared for that as explained in next chapter.
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A new proprioceptive and vision dataset

This short chapter presents a dataset that we recently produced with Gepetto team’s
quadruped robot Solo-12. This dataset was acquired in our experimental space in LAAS-
CNRS (see Fig. 11.1) and includes several walking trajectories using the controller [Léz*21].
We remote-controlled the robot in a scene augmented with AprilTags and elements from
the T-less dataset, recording proprioceptive and exteroceptive measurements.

Figure 11.1: Solo quadruped in the experimental room.

The recorded sensor measurements include joint encoders, joint currents, the IMU
from Solo onboard sensing as well as RGB camera and IMU from a RealSense D435i.
Controller logs (such as the planned feet contacts timings) are also recorded. The Re-
alSense was fixed at the front of the robot, slightly down-facing (30 degrees). A summary
of available data is reported in Table 11.1. Calibration data using a fiducial marker grid
were recored before the experiments to obtain the image distortion, camera-IMU relative
transformation, and potential time-shift of the RealSense system. A sample image of one
of the trajectories is shown in Fig. 11.2. External video recordings of each experiment
were taken.

All data from Solo’s onboard sensing is hardware synchronized. Similarly, the Re-
alSense IMU and RGB images streams are synchronized. However, we do not have the
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Table 11.1: Summary of available data sources from Solo-12 onboard sensing and RealSense
D435i

Type Source Details Frequency

Joint currents Solo-12 1 kHz
3DM-CX5-25

MU Solo-12 LORD Microstrain I'kHz

RGB images ~ Solo-12 1920 x 1080 30 Hz
rolling shutter

MU RealSense Bosch BMIO55 200 Hz

Ground truth  Qualysis Motion Capture 200 Hz

possibility to hardware synchronize the RealSense with Solo yet. Instead, we plan to
rely on the correlation between Solo’s IMU and the RealSense IMU to synchronize the
streams of data in a post-processing step. To this end, we proceeded to a synchronization
procedure at the beginning of each trajectory by tapping on the robot a few times. This
precise signal should be enough to align both IMU time series and, thus, the rest of the
sensor streams.

Recorded trajectories (2 minutes each) include motions of increasing difficulty, with
forward-backward walking in a straight line, a square path around the scene, and loopy
trajectories. With this dataset, we plan to implement an estimator fusing inertial, kine-
matics, and object-level transformation based on our previous work. This will serve to
benchmark an integration work destined to obtain an estimator for both balance con-
trol states (orientation, velocity) and global localization through object-level SLAM. The
loopy trajectories in particular will serve to display the behavior of the estimator when
closing longer loops.

B
\

Figure 11.2: Example of an image captured with the RealSense attached to Solo while walking
(with AprilTag detections).
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Conclusion

The objective of this thesis was to develop a new class of state estimators for legged
robots able to fuse proprioceptive and exteroceptive sensors. We advocated for the use
of tightly-coupled formulations where all measurements and state variables are integrated
into a single estimation problem. This type of estimator enables a greater accuracy and
the estimation of extra parameters by leveraging all sensors correlations. It also makes
use of a sound mathematical formulation to extend generic estimators to more diverse
and numerous perception sources, toward whole-body estimation. The accent was put
on the necessary modularity of the formulations to make the mathematical developments
extendable to new types of sensors. This was achieved through the use of Maximum a
Posteriori estimation, modeled as Factor Graph optimization. All mathematical formula-
tions used extensively the smooth manifold and Lie group theories that best represent the
geometry of the state variables. We also emphasize the generalizability of the developed
measurement models.

12.1 Contributions

We developed a range of measurement models targeted at sensors present on legged plat-
forms. These measurement models were integrated as factors in three factor-graph-based
estimators.

We implemented a general factor for camera-based object-level pose estimations based
on object pose estimators. First, the AprilTag library was used to obtain poses of fiducial
markers augmenting the scene with unique landmarks. We proposed a new analytical
model to estimate the covariance of these measurements. We discussed the problem of
the orientation ambiguity of these markers and proposed a practical method to alleviate
this problem. The anisotropic nature of the pose uncertainty was highlighted in simulated
experiments. Second, we used a deep-learning-based framework to obtain the pose of
known objects in the scene. A covariance model based on empirical data was obtained
through experiments. We also showed that we could fine-tune the model to elements of
the scene of interest for legged-robots navigation such as stairs.

We then leverage the pre-integration formulation to include high-frequency sensors
such as IMU in the factor graph. We propose a more systematic formulation of this
idea, generalizable to other high-rate proprioceptive sensors. Within this framework,
we proposed a new IMU pre-integration algorithm based on a compact ''delta' Lie-
group. This approach was theoretically compared to the seminal work on IMU pre-
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integration, based on composite delta Lie groups. We then leveraged the generalized
pre-integration method to extend the pre-integration to force-torque sensors present
at the end-effectors of legged robots. We then proposed a first step toward whole-body
estimation, by extending the factor graph approach to also estimate centroidal quantities
(center of mass position and velocity, and angular momentum) by merging centroidal
kinematics and force measurements. This makes it possible to accurately estimate the
centroidal states, despite unavoidable biases in the kinematic model.

These measurement models were all integrated into the WOLF framework [Sol*21] to
which we contributed, joining our effort with the IRI team, which was recently released
open-source. WOLF provided the necessary modularity to formulate various estimation
problems. It then allowed us to implement three different applications of the proposed
theory, which we used to experimentally validate our models.

First, we developed a visual-inertial SLAM system based on IMU pre-integration
and the AprilTag pose measurement model. This estimator was validated through a
series of experiments conducted at LAAS on the HRP-2 humanoid robot. We showed
that the system provided both: localization and mapping with centimetric precision for
the locomotion of the robot on flat terrain and stairs, and a high-rate, smooth estimation
of the base velocity. Both were evaluated against a motion capture ground truth.

Second, we proposed a tightly-coupled algorithm for simultaneous estimation of
the base and centroidal states of the robot. This estimator combined the pre-integration
of IMU and force-torque data, centroidal kinematics, and leg odometry. We showed that
the estimator enables to estimate the bias on CoM kinematics measurements, which is
sometimes ignored by controllers in first approximation. Experimental validation was
conducted on simple trajectories performed on the Solo-12 quadruped robot.

Third, we implemented an object-level visual-inertial SLAM system based on a
deep-learning framework for object pose estimation. This system used the same IMU
pre-integration as well as our empirical model of the object pose uncertainty. We showed
that the trajectory of the system and objects in the scene could be recovered and that the
IMU contributed to the robustness of the system by alleviating the instability of the pose
estimation. We proposed as a proof of concept to perform visual-inertial SLAM using
stairs elements as landmarks, for which we retrained the neural network. This dataset was
recorded on the Solo-12 quadruped robot.

Finally, we recorded a new dataset on Solo-12 quadruped for following works on the
fusion of inertial, kinematics, and vision data.

12.2 Perspectives

This work laid the foundations of a general factor-graph-based estimation framework for
legged robotics. However, a lot of alleys have yet to be explored to obtain an estimator
usable on any legged platform. Here we present a few of the next projects that we wish to
undertake.

12.2.1 Short term

We developed on one hand an object-level visual-inertial system and on the other hand a
proprioceptive estimator for the sense of balance. A short-term goal would be to merge
both estimators in one, providing simultaneously a high-rate estimation for control and
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a non-drifting localization based on SLAM, which should serve also as an input for gait
and/or contact planning.

We began to work in this direction by recording a dataset using Solo-12 as an experi-
mental platform. For this experiment, we will concentrate on estimating the base state by
including inertial, kinematics, and object pose measurements.

We also plan to integrate the system in a feedback loop with the current controller of
Solo-12. For the moment, instabilities in the solver convergence times prevented us from
obtaining a hard-real-time estimate for the proprioceptive estimator, while the AprilTag
based visual-inertial SLAM system works in real-time. One of the solutions would be
a hyperparameter search on the numerous options provided by the Ceres solver [AM*].
Another is to search for the most appropriate size of the graph, that is the frequency of
Keyframe creation and their number. Marginalization of older states and sparsification
procedures should also be investigated.

12.2.2 Mid term

In a second time, we would like to further strengthen the environmental perception of
our system. This would be done by developing or integrating a vision system based on
general geometric constraints. Many of the most mature vision-based SLAM systems are
based on sparse feature extraction. This will be the first venue that we explore.

Our ideal realization would then be an integrated demo on Solo-12 with an odometry
estimator based on kinematics, IMU, and a sparse feature KLT [BM04] tracking-based
vision front-end. This system would then easily be extended with either of our object-
level SLAM algorithms to provide loop closures and, therefore, a global localization,
together with high bandwidth gravity related state estimation.

The reproducibility of experimental results is a common issue in many scientific fields,
which is especially notable in the robotics community. Many benchmarks including IMU,
vision, and LIDAR sensors are nowadays available [Bur*16; Cor*18; KMH19; ZCF21].
However, to the best of our knowledge, very few legged robots datasets are available
[FS20; Ahm*21] and none include both proprioceptive and exteroceptive sensors. The
Open Dynamic Robot Initiative [Gri*20], through the development of open-hardware
robots (such as Solo-12) and open-source low-level controllers aims at making a robotic
platform easily accessible to many institutions. One could imagine that a dataset to bench-
mark estimation algorithms on such a platform would be useful to the community as a
whole.

12.2.3 Longer term

We will here develop a few ideas and reflections that our work on a general estimator for
legged robots inspired.

Following the endeavor to develop an estimator fusing as many sources of informa-
tion, we could turn our attention to a whole-body state estimation. As we have seen,
the standard proprioception sensor set for legged robots is an IMU attached to the robot
base and encoders at the joints (possibly along with joint torque, motor current, and force
sensors at the end effector). This set of sensors is enough to implement proprioceptive
odometry of the base but is quite limited when it comes to perceiving finer information
about the state of the robot and its environment. In particular, the kinesthesis sense of
artificial-legged systems is far from the subtleties of their biological counterparts, partly
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because of the rigid segment assumptions. One solution is to augment the robot with other
sensors measuring these flexibilities. Recent solutions have demonstrated the applicabil-
ity of such methods by placing IMUs in each segment of an exoskeleton. One might also
imagine adding strain gauges to measure directly the segments’ deflections.

The sense of touch is for the moment also underrepresented in legged robotics. Some
teams propose to add artificial skins that are implemented as strain cells sheets, which
provides a higher density haptic feedback than strain-gauges. These systems in particular
demonstrated a great potential for human-robot interactions. A higher-quality sense of
touch may also provide richer information about the nature of the contacts between the
robot and its environment, be it for locomotion (slip detection, terrain nature, etc.), or for
manipulation (object surface analysis, 3D object position estimation).

On the other end of the spectrum, one could imagine methods targeted toward robots
with limited sets of sensors that an observability study based on our formulation would
help to optimize. For instance, Solo-12 is too small to be equipped with high-fidelity,
multiple-axis strain gauges such as those found on humanoid robots. Such a robot may be
equipped with cheap one-dimensional strain-gauges, which would require new measure-
ment model formulations, with application in centroidal estimation.

With a limited set of sensors, the choice of their nature and placement on the robotic
platform is crucial, which is limited by the nature of its initial design. On the control side,
the concept of co-design is gaining traction. The goal is to optimize the design of a robot
to certain criteria, such as energy efficiency or dynamic capabilities, exploring the design
space guided by the simulated control of the platform. A dual concept could be applied to
optimize the design of the platform to maximize the efficiency of estimation algorithms.

Our visual-inertial SLAM work based on CosyPose object position is a first step in
deriving semantic information from the environment. On this line of research, we may
imagine including more general information about the scene objects by leveraging latent
space representations of these deep-learning algorithms. This might enable us to deal
with the problem caused by the symmetries of these objects more properly. Work is
also currently conducted on the side of the CosyPose team to better generalize the pose
estimation to objects on which the model has not been trained. More broadly, the dialog
between trained models and optimal estimation has a lot of potentials, both in robotics
and computer vision communities. On one hand, learned factors could be trained with the
end goal of improving the result of the estimation algorithm. On the other end, injecting
priors based on physical models of the world, such as the dynamics of legged systems, can
be used to improve the results of vision-based algorithms for dynamic scenes and human
pose reconstruction.

Finally, the notion of state feedback may be rethought entirely. Model-based con-
trollers rely on a limited set of physically grounded states to compute the robot control
inputs. However, some recent learning-based systems do not require this kind of in-
formation, relying instead on latent space representations of the robot state learned in
simulation. Some of these algorithms abstract the concepts of robot and environment
as a single latent state vector resulting from a tight coupling of raw proprioceptive and
exteroceptive measurements. While demonstrating impressive results in practice, those
representations might have the downside of not being interpretable by a human operator
and other systems, making the communication and fault detection harder to manage.
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Covariance of the MAP estimate

An important question to ask is how confident are we in our MAP estimate. This can in-
form us on the quality of the performed estimation. In particular, in the case of parameter
identification, a certain degree of excitation, namely variability in the data, is necessary
to obtain reliable values. Unfortunately, as we will see, the computation of the covariance
on the posterior is a costly process that is, therefore, rarely used in online estimation.

First we will review the process to obtain the posterior’s covariance, known as the
Laplacian approximation. Then we will give a simple example to illustrate the nature of
the approximation and compare it to an exact inference of the posterior distribution.

A.1 Laplace approximation

Even if our priors and measurement models are Gaussian distributions, the posterior distri-
bution is in general non-Gaussian (unless all measurement models are linear). The region
near the peak of the posterior is, however, often nearly Gaussian in shape. The curvature
around the mode is described by the Hessian of the posterior negative log-likelihood at
the MAP estimated state. It can be shown that he Hessian is the information matrix of
the problem'. Thus, finding the covariance of the MAP estimate resolves to inverting a
sparse positive definite matrix.

p(X|Z) ~ N(XMAF HT) (A.1)

This is referred to as the quadratic or Laplace approximation ([McE18, Section 2.4.2]).
Obtaining an approximation of the full posterior is then a two-step process: first, find the
mode of the posterior (the MAP), then "fit a Gaussian" on this mode.

The full covariance is however rarely computed for a few reasons. First, few al-
gorithms rely on this information (a notable exception being active feature matching
[Dav*07], which is not longer used in state of the art vision systems). Second, computing
the Hessian’s inverse is too costly to be realized "in the loop". Sometimes, only parts
of the covariance are computed using the Schur-complement method [Kon05], which is
costly but much less than the full inverse. The covariance computation is then often left
for offline evaluations of the estimation.

IThe proof of this statement is out of the scope of this document and can be found in [Pen18, Section
5.1]
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To contrast this approach with the aforementioned approximations, variational infer-
ence as applied in Barfoot et al. [BFY?20] for instance fit both the mean and the informa-
tion matrix of a Gaussian model as a result of a single optimization problem.

A.2 Example: stereoscopic depth estimation

We can illustrate the Laplace approximation with a one-dimensional toy problem (bor-
rowed from Barfoot [Barl7, Section 4.1.1]). The problem is stated as estimating the
depth x € R of a landmark in the scene with a nonlinear camera model (see Fig. A.1)

y=104 n, (A2)
X

where y = u — v is a disparity measurement (u and v are pixels corresponding to the
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Figure A.1: Stereo depth estimation toy model [Bar17]

projection of the landmark in each camera), f is the focal length of the cameras (in pixels),
b is the horizontal distance between cameras (the baseline, in meters), and n,, ~ N (0, O'S)
is the measurements noise (in pixels), assumed to be Gaussian. We also assume that we
have prior knowledge about the estimated value x,, with a standard deviation of o,.

To ground the problem, we will assign sensible values to the problem (same as [Bar17]):

Ttrue = 22m, T, =20m, o0, =3m

f =400 pizels, b=0.1m, o,=0.3pizels

where x4, is the true depth that we seek to estimate.

Notice that the prior standard deviation is quite big, assuming a great uncertainty
about the prior value. We simulate noisy measurements by drawing samples {¥ic[1..m] }
of the measurement model using z;.,. (we drew m = 10 measurements). For a low
dimensional problem such as this one, it is possible to compute the full posterior distribu-
tion p(z|y) by numerical integration, which is referred to as the "grid approximation" by
[McE18]. We can make this computation almost arbitrarily precise since the computations
are quite cheap. The prior and density distribution are represented in Fig. A.2. Applying
the Laplacian approximation to compute a posterior approximation involves minimizing
the negative log-likelihood:

1 9 1 & fb
—(x — — — -y A3
307 @ )+ 55 20— w) (A3)
Finding the MAP and approximating the covariance deviation of x, we can plot the
MAP posterior along with its numerical computation in Fig. A.2. Both computations re-

sult in largely overlapping functions: the main mass of the real posterior density function
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is captured by the Laplacian approximation. However, notice that the real posterior distri-
bution is not symmetrical contrary to the prior it derives from. This means that, contrary
to its Gaussian approximation, the mean of the of the real posterior is not equal to its

mode.

=== prior
—— Grid posterior
—— MAP posterior
0.4 .
—=—= posterior mode
—=—=- posterior mean
wn
@
= 0.3
C
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©
2
Q2 0.2 1
Q
2
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0.0 =

T T T

20 22 24

distance x (m)

Figure A.2: Representation of the posterior distribution inference for the 1D depth estimation
problem. Dotted black: prior on z, continuous black: numerical "grid" integration of the posterior,
continuous red: Laplacian approximation of the posterior. Vertical lines: red=MAP, green=mean
of the posterior. The true value (22 m) is reasonably close to the MAP given the variance of the

posterior distribution.
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Appendix B

Pre-integration on Lie groups

B.1 Justification of Forster’s delta formulas
We detail here how the delta formulas of equations (6.9) and (6.10) can be derived from

(6.5).
The rotation one is easy to get, multiplying by R%7":

AR, £ R"TR™ = H Exp((@® —bY —nk)dt) (B.1)
k=i

The velocity is as well quite easy, by defining At;,, = X7, 6t = (m — i)dt:

Av;, = R (v, — vi — gAty) = [[ ARu Exp((a* — bl — nk)dt) (B.2)

k=i

The position delta requires more calculations. First, inject equation (B.2) in the posi-
tion equation of (6.5) then rearrange and reorder the terms.

mo | 1 1
-y [(v% + gALi + RIAV)I + Jgot* + ) RH@ bl - n‘;)aﬂ

k=1
1
= VAl + gz At bt + chStQ LRY [Avikét + AR (@ - b - n’;)5t2]
k=1
m 1
= VAt + gz (At;,0t + 5t2) +R Y {Avik& + iARik(a’f — bk — n’;)étﬂ
k=1 k=1
(B.3)

We will simplify the gravity term that we will call Gt;,,. Noting that:

UL UL (. m(m—1) (i —1)
g k= g k — E k= —
k=i k=1 k=1 2 2

we can deduce that:
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m m 1
5t Y (Atyy, + 5t =6t> ((k—1i)ot+ 5&t)
k=1 k=1

=0t _Z kSt — i(m — 1)6t] + ;Atim}

5t (;t(m(m ) —i(i—1) = 2i(m—1)) + ;Atim}
=it (;t(zz —2im+m? +i—m)+ ;At,—m}

1 1 1
— 5t 5 (m — 0%t = S (m — )0t + QAtim}
1 N2 742 1 2
2(m i)°dt 5 ton

Multiplying by R and reordering the terms, we can finally define a position delta quan-
tity:

m

, o 1 1
Ap,, £ R (p"—p' = v/ Aty — gAE,) = 3 {AW’“&*zARz‘k(ﬁ’“—b’;—n’;)évt2
- (B.4)

ol

B.2 Elements of the compact IMU delta matrix Lie group

B.2.1 Tangent space and Lie algebra 0

[SDA18] Following [SDA18], the tangent space of D at the point A is found by taking
the time derivative of the group constraint, A~'A = I. Noting ¢ = ‘gz, this yields after a
few manipulations

w AR"a ART(v—Av
A-TA = [[ L AR ) )}, (B.5)
0 0 0

withv £ Ap,a 2 Avand [w], 2 ARTA'R. The Lie algebra 0 is the tangent space at
the identity A = I. Its elements " = A|a—r and their isomorphics v in Cartesian space
are given by,

w], av v v
V/\:|:0X01 €0 ﬁé vV = fj‘,
0 00 A 1

c R, (B.6)

This tangent v” corresponds to the ‘velocity’ of the group element. Any point in the
Lie algebra can be obtained after moving at constant velocity during a period At, that is,
7N =V At € 0 —see (6.35).

B.2.2 The exponential map

Eq. (B.5) can be written as A = A -v". This is an ordinary differential equation whose
integral for constant v yields the exponential map [SDA18], A(t) = exp (v"*t). This
gives a direct expression of the integral of information of the type (v, a, w) onto the deltas
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manifold. The closed form of the exponential map is obtained through Taylor expansion
(see e.g. [SDA18] for examples). Att = At we have,

A(AD) = exp( A) £ 3 ;'(VAAt)” | (B.7)

Exploiting the cyclic pattern of the powers of [w],, this results in

W], av exp([w], At) QaAt QvAt+PaAt?
e ([ gijan =[N Y B3

with (we skip proofs for space reasons)

Qo) =1+ =20y 4 Ty B.9)
1. 6 —sinf cosf+ 360 —1

where 6 = wAt, § = ||@]] and u = 0/6 form the angle-axis representation of the rotation
step wA(f.

B.2.3 The adjoint and small adjoint matrices

Following the general methodology explained in [SDA 18], the adjoint matrix is obtained
by identifying the linear terms in AdaT = (AT A1)V, We get after long but relatively
easy calculations,

AR —ARA¢ [Ap—AvVAl, AR Av
Adp = g AOR [AVA]XRAR g e R10x10 (B.11)
0 0 0 1

Similarly, from [Ead18] the small adjoint matrix can be computed by identifying the
linear terms in ad,o = (7" — o"7")" which for 7 = (p, v, 0, At) € 0 yields,

[O]X —IAt [p]x v
0 [6], [v], 0 10%10

ad, o o [ 0] eR . (B.12)
0 0 0 0

B.2.4 The right Jacobian

The right Jacobian J, is the Jacobian of Exp() as described in [SDA18]. Lacking at
the moment a closed form for it, we take the general methodology for the left Jacobian
described in [Ead18], and transform it to the right using J .(7) = J,(—7) [SDA18],

ad_.'  (—ad,)
SRS (B.13)

J(r)=d(=7) =3

i

This sum can be truncated at the desired degree of accuracy.
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Abstract

Legged robots are complex mechanisms whose stable behavior depends on the proper estima-
tion of several different quantities that must be observed at high speed and accuracy. While the
robot state can mostly not be observed directly by any existing sensors, it is typically reconstructed
by fusing very diverse sensor modalities. These sources of information differ significantly on their
acquisition frequencies, the nature of the data, and the computational processing cost. While state
estimation by sensor fusion is a common topic to most robotic platforms, it offers a particular
challenge in legged robotics by their peculiar dynamics. For legged robots, on the one hand, the
robot state is needed to maintain its sense of balance and locomote safely, and, on the other hand,
a precise representation of the environment is required for navigation and interaction.

The current approach for many legged systems, in the literature, solve these problems inde-
pendently, using cascades of estimators that may neglect some of the correlation present in the
data. This artificial decoupling acts as strong priors that enable simple estimators to handle the
estimation of each part of the cascade and stabilize the behavior of the overall estimation scheme.
On the other hand, designing a cascade involves a lot of specialized work that hardly generalizes
to new scenarios or new sensor modalities. In this thesis, we rather defend the idea of building a
single tightly-coupled estimator capable of estimating all quantities needed by the robot. For this
goal, the framework of a-posteriori estimation, formalized as a factor graph, is very suitable. This
assertion does not come as a surprise, as factor graphs are nowadays highly popular in the SLAM
literature, yet they are still under-represented in legged robots systems.

In this thesis, we investigate a few avenues that we believe are crucial to achieving these
goals. First, we develop tailored sensor measurement models with attention to the correct math-
ematical formulation involving Lie theory. Second, we propose visual-inertial systems based on
object-level detection that provide relative transformation between the camera and the objects. We
provide covariance models for two kinds of objects: the first one is an analytical model for fiducial
markers ; the second is an empirical model for deep-learning-based object pose estimation. Third,
we handle high-rate sensors by developing a generalization of the IMU pre-integration theory. We
propose a new formulation of the IMU pre-integration based on compact Lie groups. Fourth, we
show that pre-integration can also be applied to use force-torque sensors found on legged robots.
By fusing it with a leg-kinematics based odometry and IMU, we show that this new formulation
makes possible the tightly-coupled estimation of centroidal quantities within the context of Factor
Graph estimation.

The proposed theoretical ideas are implemented in a coherent estimation framework, extend-
ing the factor-graph software Wolf. Each new modality is validated in a dedicated experimental
setup that allowed us to quantify its interest and relevance for legged robotics.

Keywords

Factor Graph, estimation, legged robots, SLAM, pre-integration, IMU, force sensor, vision
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Résumé

Les robots a pattes sont des mécanismes complexes dont la stabilité dépend de la bonne esti-
mation de plusieurs quantités qui doivent &tre observées a grande vitesse et avec précision. Bien
que I’état du robot ne puisse généralement pas étre observé directement par des capteurs, il est
généralement possible de le reconstruire en fusionnant plusieurs capteurs a condition d’étre capa-
ble de bénéficier des modalités tres diverses qu’ils offrent. C’est bien sur un sujet commun a la
plupart des plateformes robotiques, mais le défi posé par 1’estimation d’état par fusion de capteurs
se renouvelle dans le cadre de la robotique a patte a cause de la dynamique particuliere de ces sys-
temes. D’une part, leur équilibre dépend intimement de 1’estimation correcte de leur état ; d’autre
part, ils ont besoin d’une représentation fine de leur environnement pour y naviguer et y interagir.

A ce jour, I’approche actuelle dominante les robots a pattes est de résoudre indépendamment
plusieurs problemes d’estimation, en utilisant des cascades d’estimateurs qui peuvent négliger
une partie des corrélations présente dans les données. Ce découplage artificiel agit comme des a
priori forts qui permettent a des estimateurs simples de gérer chaque partie de la cascade et de
stabiliser le comportement du schéma d’estimation global. Ce pragmatisme implique néanmoins
beaucoup de travail spécialisé qui ne se généralise guere a de nouveaux scénarios ou a de nouvelles
modalités de capteurs. Dans cette these, nous défendons 1’idée de construire un unique estimateur
capable d’estimer toutes les quantités nécessaires au robot de maniere étroitement couplée. Le
cadre de I’estimation a-postériori, formalisé sous la forme d’un graphe de facteurs, est alors tres
approprié pour formaliser ’approche. Cette affirmation n’est pas une surprise, car les graphes
de facteurs sont aujourd’hui tres populaires dans la littérature SLAM. Ils sont cependant encore
sous-représentés pour les robots a pattes.

Dans cette these, nous étudions quelques pistes qui nous semblent cruciales pour atteindre cet
objectif. Tout d’abord, nous développons des modeles de mesure de capteurs en prétant attention
a la formulation mathématique correcte fondée sur la théorie des groupes de Lie. Deuxieémement,
nous proposons des systemes visuels inertiels basés sur des algorithmes de détection d’objets, qui
fournissent une transformation relative entre la caméra et les objets. Nous fournissons des mod-
¢les de covariance pour deux types d’objets : le premier est un modele analytique pour les mar-
queurs fiduciaires ; la deuxieme est un modele empirique pour 1’estimation de pose d’objet basée
sur |’apprentissage en profondeur. Troisiémement, nous traitons les capteurs a haute fréquence en
développant une généralisation de la théorie de pré-intégration IMU. Nous proposons une nouvelle
formulation de la pré-intégration IMU basée sur des groupes de Lie compacts. Quatriemement,
nous montrons que la pré-intégration peut également étre appliquée pour utiliser les capteurs de
forces trouvés sur les robots a pattes. En la fusionnant avec une odométrie basée sur la cinématique
des jambes et une IMU, nous montrons que cette nouvelle formulation rend possible 1’estimation
étroitement couplée des quantités centroidale dans le contexte de I’estimation des graphes de fac-
teurs.

Les idées théoriques proposées sont mises en ceuvre dans un cadre d’estimation cohérent,
étendant le logiciel de graphe de facteurs Wolf. Chaque nouvelle modalité est validée dans un
montage expérimental dédié qui nous a permis de quantifier son intérét et sa pertinence pour la
robotique a pattes.

Mots clefs
Estimation, graphes de facteurs, robots a pattes, SLAM, pre-integration, IMU, capteur de
force, vision
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