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Résumé

Dans ce travail, nous appliquons des méthodes d'ordre réduit (ROM's) pour e�ectuer

une décomposition de mode de l'écoulement �uide dans deux systèmes largement utilisés

dans l'industrie biochimique : les cuves agitées et les colonnes à bulles. Cette décompo-

sition permet d'identi�er et de classer les composantes de l'écoulement �uide en fonction

de leur pertinence dynamique. Les structures les plus importantes identi�ées correspon-

dent à des structures à grande échelle avec un haut degré d'organisation. La classi�cation

des résultats conduit à une reconstruction de l'écoulement �uide, la précision et le temps

de calcul impliqués dans la procédure des ROM's ont également été déterminés. Ces

paramètres sont comparés à ceux correspondant à la CFD ; cette comparaison montre que

l'approche des ROM's implique un coût en temps inférieur avec une erreur relativement

faible. Les ROM's choisies sont: Proper Orthogonal Decomposition (POD) et Dynamical

Mode Decomposition (DMD). La mise en ÷uvre de ces méthodes dans la cuve agitée a été

abordée selon deux stratégies car la simulation du système (ANSYS/FLUENT) comporte

une zone de maillage �xe et une zone glissant. La première stratégie est l'algorithme usuel

et la seconde est un nouvel algorithme non rapporté dans la littérature. Pour la première

stratégie, la POD a été appliquée dans la zone �xe et dans la zone rotative séparément.

Les résultats ont permis de reconstruire l'écoulement moyen et les vortex trainants générés

par la rotation de la turbine. Cependant, les vitesses dans la zone tournante doivent être

exprimées dans le repère rotatif de la turbine avant la procédure de ROM. Pour la deux-

ième implémentation, la POD et la DMD ont été appliqués directement à l'ensemble du

domaine de simulation sans séparer les zones respectives. Selon les résultats trouvés,

cette nouvelle proposition permet également la reconstruction de structures organisées à

grande échelle. Cependant, dans ce cas, il n'est pas possible d'e�ectuer une interprétation

physique des vecteurs propres de la POD. Les résultats obtenus pour la POD et la DMD

en utilisant l'approche proposée sont équivalents en raison de la présence d'un écoulement

�uide hautement périodique, comme mentionné dans la littérature. De plus, l'algorithme

DMD permet l'identi�cation de structures à basse fréquence et à faible énergie associées

à des macro-instabilités identi�ées expérimentalement et numériquement dans d'autres

travaux publiés. L'identi�cation des macro-instabilités dans les simulations par DMD n'a

pas été rapportée dans la littérature. Les données numériques pour la cuve agité ont été

générées en utilisant le modèle de turbulence U-RANS. Le choix de ce modèle de tur-

bulence par rapport à d'autres modèles disponibles, tels que la simulation des grandes

tourbillons (LES), est dû à l'objectif de générer des champs de vitesse reconstruits qui

seront utilisés dans des travaux futurs pour la mise en ÷uvre de modèles de comparti-

ment (CMA). Nous appliquons également la POD et la DMD au cas d'un panache de

bulles dans une colonne quasi-2D. Un modèle euler-euler à deux �uides a été résolu pour



l'écoulement de bulles et l'approche Rij-epsilon a été testée comme modèle de turbulence.

A partir de cette approche, il a été possible d'identi�er les structures organisées domi-

nantes (structures basse fréquence) pour les deux phases en utilisant POD et DMD. La

simulation pour ce cas a été prise à partir d'une base de données générée par David Laup-

sien (PhD 2017), en utilisant le code CFD NEPTUNE. En�n, nous abordons brièvement

les principes de base nécessaires au couplage de la CFD avec la CMA. Dans ce cadre

conceptuel de mélange, nous implémentons dans le modèle le transport de particules basé

sur la simulation par approche Monte-Carlo.
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Abstract

In this research work, we apply Reduced Order Methods (ROM's) to perform a mode

decomposition of the �uid �ow present in two systems widely used in the bio-chemical

industry: stirred tanks and bubble columns. This decomposition allows to identify and

classify the �uid �ow components according to their dynamical relevance. The most

important structures identi�ed correspond to large-scale structures with a high degree

of organization known as coherent structures. Subsequently, the classi�cation of results

lead to a reconstruction of the �uid �ow, the accuracy and computation time involved

in the procedure of ROM's were also determined. These parameters are compared with

those corresponding to CFD, this comparison shows that ROM's approach implies a lower

time cost with a relatively low error. The ROM's chosen are the most recently used for

industrial applications: Proper Orthogonal Decomposition (POD) and Dynamical Mode

Decomposition (DMD). The implementation of these methods in the ba�ed stirred tank

was approached through two strategies because the simulation of the system (perform in

ANSYS/FLUENT) has a �xed mesh zone and a sliding mesh zone. The �rst strategy is

the typical or standard algorithm and the second is a new algorithm not reported in the

literature. For the �rst strategy or typical approach, the POD was applied in the �xed

zone and in the rotating zone separately. The results allowed the reconstruction of the

mean �ow and the trailing vortices generated by the passage of the turbine blades. In

this case the velocity �elds of the rotating zone were suitably transformed to the rotating

reference frame of the turbine before the ROM's procedure. For the second and novel

implementation the POD and DMD were applied directly to the entire simulation domain

without separating the respective zones. According �ndings found, this new proposal

also allows the reconstruction of large-scale organized structures (mean �ow and trailing

vortices in the impeller region). However, for this case it is not possible to perform a

physical interpretation of the POD eigenvectors as it is the case for the conventional POD

algorithm. The results obtained for the POD and DMD using the proposed approach

are equivalent due to the presence of highly periodic �uid �ow, such as a similarity is

mentioned (but not veri�ed) in the literature. Additionally, the DMD algorithm allows the

identi�cation of low-frequency, low-energetic structures associated with macro instabilities

identi�ed experimentally and numerically in other published works. The identi�cation of

macro-instabilities in simulations through DMD has not been reported in the literature.

The numerical data for the stirred tank were generated using the U-RANS turbulence

model. The choice of this turbulence model over others available such as Large Eddy

Simulation (LES) is due to the objective of generating reconstructed velocity �elds to

be used in future works for compartmentalization models (CMA) implementations. The

CMA models can be fed with mean velocity �elds calculated by U-RANS simulations or



alternatively reconstructed velocity �elds generated by order reduction methods. We also

apply POD and DMD to the case of bubble plume in a quasi-2D column. An euler-euler

two-�uid model was solved for the bubbly �ow and Rij-epsilon approach was tested as

turbulence model. From this approach, it was possible to identify the dominant organized

structures (low-frequency structures) for both phases employing POD and DMD. The

simulation for this case was taken from a database generated by David Laupsien (PhD

2017), using the NEPTUNE CFD code. Finally we brie�y address the basic principles

necessary for the coupling of CFD with CMA. In this conceptual framework of mixing

we implement in the model the particle transport based on the Monte-Carlo approach

simulation. This introduction aims to prepare the way for the future implementation of

reduced order models POD + CMA or DMD + CMA.
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General introduction

.1 Motivation

The rapid advance of industry and technology requires better control of industrial

processes and optimizing their designs to achieve higher e�ciencies. This situation

implies a deeper and more realistic understanding of the physical, biological, and

chemical phenomena involved. Experimental and numerical approaches are available to

meet this need. In particular, �uid dynamics research has bene�ted immensely from

these two strategies. On the experimental side, it is worth mentioning that optical or

particle imaging techniques have proven for decades to be e�ective and practical for the

study and analysis of �uids for many �ow conditions and con�gurations (Tayali & Bates,

1990).

Among the various experimental methodologies available, particle image velocimetry

(PIV) has gained interest due to its accuracy, resolution, ease of implementation, and

analysis of the data generated (Grant & Smith, 1988; Adrian, 1988; Adrian, 1991; Adrian

& Westerweel, 2011; Scharnowski & Kähler, 2020).

Alternatively, numerical tools provide a means for the study of �uid dynamics for any

possible condition or con�guration. The group of numerical algorithms intended to

accomplish such a task is known as Computational Fluid Dynamics or CFD. As its

name suggests, CFD uses numerical and computational techniques to solve the equations

that satisfy the conservation of mass, momentum and energy. There are a variety of

approaches to numerically to solve these nonlinear partial di�erential equations. For

example, it is possible to obtain a numerical solution over the full range of spatial and

temporal scales of turbulence, this strategy is known as Direct Numerical Simulation or

1
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(DNS). This approach is computationally demanding and remains limited to academic

studies. On the other hand, one can use some methods with lower calculation cost to

model certain turbulent scales (Large Eddy Simulation) or all turbulent scales (U-RANS)

of the �ow �uid.

It also is possible to incorporate in the CFD methodology other types of phenomena

(biological, electromagnetic, chemical, structural, etc.) that must be coupled with the

�uid dynamics of the system under study. At present, there is a considerable amount

of in-house and commercial CFD codes, which shows its popularity and applicability in

di�erent areas of the industry (Freitas, 1995; Keshmiri et al., 2015).

Implementing an experimental or numerical approach to the study of industrial

problems implies the need for high data storage and processing capacity (Kozelkov et al.,

2016). This situation is precisely the case when seeking an improved understanding of

processes leading to better production e�ciencies. There are two possibilities to address

this subject. The �rst is to use high-performance computers whose capacity satis�es

the computational demand. This option is generally not the most feasible because high-

performance computing equipment is not always available. Alternatively, a second option

is to extract the most relevant numerical information from experimental measurements

or computational simulations to perform high-�delity simpli�cations of the input data.

The information retained will be that which best describes the hydrodynamic behavior

according to the scale of the phenomenon of interest. Mathematical models designed to

achieve this objective are called Reduced-Order Methods or simply ROM's (Quarteroni

& Rozza, 2014; Rowley & Dawson, 2017; Taira et al., 2017; Rozza et al., 2018; Taira

et al., 2020). These methodologies have gained great interest in the industrial sector due

to the signi�cant advantages they o�er in terms of practicality and convenience. For

example, identifying the most relevant hydrodynamic elements of the system makes it

possible to use minimal computational resources. This saving of computational resources

can be used for the application or improvement of other models complementary to �uid

mechanics. This strategy is a way to favor the investigation of very complex industrial

processes.

Among the most popular ROM's we �nd the Proper Orthogonal Decomposition (POD)

and the Dynamical Mode Decomposition (DMD). The former allows generating an order
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reduction using the covariance (energy) of the input database as a criterion. The latter

leads to an order reduction based on the di�erent frequencies contained in the data to be

analyzed. As will be seen throughout this document, both ROM's approaches work quite

well when used for the study of periodic �uid �ows. This feature of both methodologies

makes them good candidates for coupling with mixing models such as Compartment

Model Approach (CMA) for which the use of ROM's results could lead to more accurate

calculations.

.2 Objectives of the research project

For a particular class of problems involving multiple time scales, it would be advantageous

to maintain the high spatio-temporal resolution of CFD while running simulation for sev-

eral days. This typically includes the case of bioreactors in which the repeated exposure

to concentration gradients at the scale of a minute may impact the course of the fermen-

tation process which lasts several days. Among, the solutions prevoiusly examined, the

Compartment Model Approach is based on the spatial integration of the time averaged

velocity �eld. Both the spatial and temporal resolution of the initial CFD simulations are

�ltered through this process and one might wonder if it is possible to preserve both while

reducing the computational cost. Reduced Order Methods are ideal candidates since a

velocity �eld reconstruction is theoretically feasible from a linear combination of modes.

Because ROMs are data-driven methods, the spatial and temporal resolution of the input

data sets are preserved. The main objective of this research is the implementation of POD

and DMD order reduction methods to analyse and reconstruct the velocity �elds using as

input data the outcome of 3D and unsteady CFD numerical simulations. We investigated

the case of a ba�ed stirred tank and that of a bubble plume in a quasi 2D column.

To this end, we performed the following actions:

� Identi�cation and classi�cation of organized structures (coherent structures) of high

and low frequency from the above implementations according to covariance (POD)

and frequency (DMD).

� Reconstruction of velocity �elds in the analyzed systems using relevant dynamical

structures from the POD and DMD implementations.
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� Evaluation of the computational cost of velocity �elds reconstruction and compari-

son to CFD numerical simulation.

� Evaluation of the error associated to the POD and DMD reconstruction taking as

reference the velocity �elds generated in the CFD numerical simulations.

The secondary objective is to investigate the oportunity to combine Reduced Order

Models and Compartiment Model Approach to perform time resolved simulations of chem-

ical and bio-chemical reactors. In order to pave the way for dynamic CMA models that

considers deviation from the mean �ow (periodic structures and macro-instabilities) we

propose:

� Implement a methodology for a dynamic CMA model using as input di�erent �uxes

maps of a stationary CMA model.

� Evaluate the proposed CMA model for particle transport and chemical reactions.

This is intended to show the feasibility of generating CMA models that are fed by

reconstructed ROM velocity �elds, such a scenario will be addressed in future work.

.3 Contributions of the research project

The work composing this thesis has resulted in the following products:

C. Mayorga, J. Morchain, A. Liné, Reconstruction of the 3D hy-

drodynamics in a ba�ed stirred tank using Proper Orthogonal De-

composition, Chemical Engineering Science, Volume 248, Part A,

2022, 117220, ISSN 0009-2509, https://doi.org/10.1016/j.ces.2021.117220.

(https://www.sciencedirect.com/science/article/pii/S0009250921007855)

It has also been presented at the following conferences:

� Congress of Chemical and Process Engineering CHISA Virtually (18 may 2021 - 18

mars 2021) CHISA Virtually, Novotného Lávka 5, 116 68 Praha 1, Czech Republic..

� The 10th International Symposium on Mixing in Industrial Processes ISMIP10, 29th

Nov. - 2nd Dec., 2021 in Kobe, JAPAN.
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Chapter I

State of art

I.1 Basic concepts of Computational Fluid Dynamics

Computational �uid dynamics (CFD) is a hybrid discipline having components of mathe-

matics, physics, and computer science. The main objective of CFD is the prediction and

analysis of �uid �ow, heat transfer, mass transfer, chemical reactions, and related phe-

nomena by solving numerically the mathematical equations that govern these processes.

CFD can be used in a wide range of industrial and academic applications such as the aero-

dynamics of aircraft and vehicles, power plants turbines, turbomachinery, electrical and

electronic engineering, chemical engineering, biomedical engineering, environmental engi-

neering, geophysical sciences, and even in food industry. CFD modeling has advantages

and disadvantages when compared to experimental results. Among the most relevant

advantages can be mentioned:

� Once the CFD results have been validated with physical experiments, it can be

achieved a substantial reduction of lead times and costs for the study and analysis

of new designs.

� When DNS simulations are implemented, it is possible to study systems where

controlled experiments are di�cult or impossible to perform. Such as complex cases

in the stationary and non-stationary regimen.

� High level of detail of the results if one has a �ne enough spatial and temporal

resolution. In this case "enough" depends on the phenomenon under study.

� The possibility of accessing the pressure �eld.
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On the other hand, this computational procedure also presents problems such as:

� Physical simpli�cations are considered when running simulations that include mod-

els such as those used for turbulent �ows (e.g. RANS, LES, etc.).

� Errors in the results due to the process of numerical discretization and truncation.

� Time investment for code implementation (when a simulation software is no avail-

able), setup, and run of the computation and simulations.

� Data processing can be very arduous and involve a large investment of time and

computational resources.

� In some cases, the interpretation of the obtained results is di�cult.

I.1.1 Stages involved in the implementation of a CFD experiment

The application of the CFD procedure (and therefore the respective codes) implies the

following stages: pre-processing stage(geometry design, boundary conditions, model as-

sumptions, and mesh design), discretization and numerical solution of the �ow equations,

post-processing stage, and �nally the storage of the data.

The pre-processing stage: The design of the geometric domain is a fundamental

aspect because it in�uences the numerical modeling and the discretization to be imple-

mented. Additionally, one must consider spatial features such as possible symmetries

(applies for RANS models for example), number of spatial dimensions (1-D,2-D, 3-D)

that simplify the numerical experiment without compromising the desired physical valid-

ity.

Next, it is necessary to de�ne the assumptions of the model, such as steady-state regime,

incompressible �ow, inviscid �ow, laminar or turbulent �ow. In this part, the boundary

conditions must be properly de�ned to ensure compliance with physical laws, such as the

conservation of mass, momentum, and energy. Once the geometry, boundary conditions

and model assumptions are de�ned we can discretize or divide the domain space into

unit cells. This step is immensely complex because there are almost in�nite ways of seg-

mentation for any proposed geometry. Aspects such as the size distribution and quality

parameters of the unit cells that make up the mesh further complicate this step.

To exemplify this geometric process of spatial segmentation, let us look at the �gure I.1.
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The �gure shows two di�erent ways of geometric partitioning for a 2-D annular domain

generated in the ANSYS mesher. In the �rst image, one observes a quadrangular mesh

with a clear size distribution of the elements. Also in the second image, another type

of geometric segmentation consisting of a distribution of triangular elements is proposed.

The re�nement of the mesh at domain boundaries is related to the implementation of the

boundary layer. It is easy to imagine that an almost in�nite number of mesh con�gura-

tions can be realized for the indicated domain. According to (Versteeg & Malalasekera,

2007), this meshing process can involve about 50% of the total time spent on a CFD

implementation. In general, a very �ne meshing leads to more accurate results but the

size involved may compromise the available computational resources1. In the absence

of experimental data to validate a numerical simulation, it is imperative to perform a

sensitivity study of the results for di�erent mesh sizes.

It should not be overlooked that each of the unit cells of the mesh has geometrical

properties to be taken into account in the subsequent numerical solution algorithm. Like

many geometrical entities, each unit element has vertices or nodes, a center point or cell

center, and area (2D) or volume (3D).

Numerical solver and discretization of the physical equations: The cases in

which we can �nd analytical solutions for the partial di�erential equations involved in

�uid mechanics are very rare. In consequence, it is necessary to get the approximated

solutions of the governing equations of �uid dynamics. For this purpose, a numerical

method called discretization has to be applied to the meshed domain created at the

respective stage described above. This procedure consists of the adaptation of the �uid

equations for the unit cells (or control volumes as we are going to see soon) that make

up the simulation grid. The result of this stage is a system of spatially and temporally

discretized algebraic equations 2. Three methods are often used for this purpose: �nite

element method (FEM), �nite di�erence method (FDM) and �nite volume method

(FVM). The FVM has been widely used for CFD because its formulation is based on

the conservation of physical quantities Ψ in each of the unit mesh cells or control

volumes (see equation I.1). This feature allows a more straightforward interpretation of

1Obviously, the accuracy of the CFD results depends not only on the number of meshing elements
but also (deeply) of the implemented model (e.g. RANS, LES, DNS).

2The general conservation (transport) equations of mass, momentum, energy are the basic equations
to be discretized into a system of algebraic equations. However, depending on the phenomena to be
analyzed more equations have to be added to the procedure.
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a)

b)

Figure I.1: a) Quadrangular segmentation of an annular domain. b)Triangular segmentation of
an annular domain.

the FVM results compared to the FEM and FDM approaches (Versteeg & Malalasekera,

2007).


Rate of change

over time of

Ψ(in a cell volume)

 =


Net rate of

increase of

Ψ due to

convection

+


Net rate of

increase of

Ψ due to

diffusion

+


Net rate of

production of

Ψ

 (I.1)

After the formulation of the discretized equations, we proceed to their resolution in ev-

ery node of each mesh unit cell. To obtain the numerical non-linear solutions is necessary

an iterative procedure that ensures a numerical convergence according to the numerical

residuals that are considered appropriate in each case of study. Naturally, several criteria
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or conditions facilitate numerical convergence. One of the most notable is known as the

Courant-Friedrichs-Lewy condition or simply Courant number. This quantity (valid for

time explicit scheme) consists of the ratio between the time interval (time discretization

or time step) ∆t and the residence or modelization time (= ∆l
U
) in a �nite volume (asso-

ciated with the size ∆l of a particular unit cell and the corresponding velocity U to be

determined).

C =
U∆t

∆l
≤ Cmax (I.2)

The �rst implication of the equation I.2 is that the time step ∆t in a numerical

experiment must have a higher bound, otherwise, the simulation will produce incorrect

results. Second, when the spacing between grid points is reduced, the upper bound for the

time interval is also reduced. This condition could eventually make high computational

resources necessary for the proper simulation of turbulent �uids. Therefore the CFL

condition is an indispensable aspect for the mesh design to be implemented in the CFD

implementation.

Once an appropriate CFL number has been de�ned, the numerical convergence of the

simulation will require a certain number of iterations. In this iterative stage, the following

guidelines are typically considered:

� The changes in the solution variables (e.g. numerical residuals) from one iteration

to the next are negligible.

� Overall properties conservation are achieved (mass imbalance, energy dissipation).

� Monitoring quality key parameters such as torque, velocity pro�les, pressure pro�tes

or others associated with the studied phenomena.

Failure to comply with some of these aspects could imply the redesign of the mesh

for the studied domain. In this sense, the implementation of CFD also has an iterative

character as it usually happens in the designs or solutions to problems in most engineering

�elds.

The post-processing stage: The process ends with the presentation and visualiza-

tion of results. For this purpose, most commercial codes such as ANSYS/FLUENT and

COMSOL are provided with user-friendly tools. In the case of in-house codes, software
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such as Matlab, Python, or Paraview can be used. The most important aspect at this

stage is to know the type of format of the results generated in the numerical simulation

in order to choose an appropriate visualization tool.

Figure I.2 shows the most important steps involved in the implementation of a CFD

experiment. The dotted line shows a possible route to follow when key criteria such

as maximum numerical residuals and conservation laws are not ful�lled in the results

obtained.

Figure I.2: c of a CFD experiment.

I.1.2 Fluid mechanics equations (turbulence models)

In this section we present the �uid �ow equations of interest in the present work. Speci�-

cally, we will provide the basic mathematical relations corresponding to a 3D Newtonian

single-phase incompressible �uid and to a 3D two-phase �uid �ow.

I.1.2.1 3D RANS equations and k − ε turbulence model

If one omits gravity forces the governing equations for the �rst kind of �uid �ow are

written as follows (Einstein summation convention applies to repeated indices):
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∂Ui

∂xi

= 0 (I.3)

∂Ui

∂t
+ Uj

∂Ui

∂xj

= −1

ρ

∂p

∂xi

+ ν
∂2Ui

∂xj∂xj

(I.4)

with:

xi: x,y,z Cartesian directions.

Ui : component of the total instantaneous velocity in the direction i.

p : presion.

ρ : density of the �uid.

ν : kinematic viscosity of the �uid.

Equation I.3 denotes the mass conservation and equation I.4 gives the momentum

conservation (Newton's Second Law).

The numerical solution of equations I.3 and I.4 for turbulent �ows is computationally

very expensive because the entire spectrum of Kolmogorov3 spatial and temporal scales

involved (on the order of micro-meters and milli-seconds) must be considered in the cor-

responding simulation. To tackle this situation there are two options. The �rst strategy

is called direct numerical solution (DNS) and implies to use supercomputers whose com-

putational capabilities allow the solution of the equations with the spatial and temporal

resolutions already indicated. This option is sometimes not very practical, especially in

the case of industrial volume domains. The second option is the implementation of turbu-

lence models that make it feasible to obtain approximate numerical solutions. A variety

of turbulence models are currently available (Tennekes et al., 1972; Chassaing, 2000; Ver-

steeg & Malalasekera, 2007). Each of these proposals is designed for speci�c objectives

depending on the conditions and characteristics of the �uid �ow to be studied. For exam-

ple we can mention the Large Eddy Simulation (LES) and the k− ϵ models. The LES is a

very e�cient approach, which allows computing the most energetic scales, while modellng

only a part of the turbulence scales. The second model, the k − ϵ proposes to model

all turbulent scales by introducing two additional variables: turbulent kinetic energy and

turbulent dissipation. Below we will provide more details on the implementation of this

model.

3This spectrum is constituted by the smallest scales of the turbulent motion of the �uid. In these
dimensions of space and time the viscous and inertial e�ects are of the same magnitude.
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The most industrially relevant �ows there are con�ned �uids in which Reynolds shear

stresses are of major relevance. It has been shown that in these conditions solving for

mean �ow and modeling all turbulent scales leads to results very close to those obtained

in physical experiments (Versteeg & Malalasekera, 2007). The simulation model we have

just described is known as the RANS model because it is based on an averaged version of

the Navier-Stokes �ow equations (Alfonsi, 2009). Consider that the instantaneous local

velocity Ui (r⃗, t) can be written as the sum of an average local component Ūi (r⃗) and a

�uctuating or random turbulent local component u′
i (r⃗, t) as indicated by the equation:

Ui (r⃗, t) = Ūi (r⃗) + u′
i (r⃗, t) (I.5)

One can see that the decomposition equation I.5 is nothing more than a solution

strategy for the Navier-Stokes equations. We must therefore include the velocity decom-

position in I.3 and I.4 to obtain the corresponding equations to be solved. Such relations

are known as Reynolds Averaged Navier-Stokes equations or RANS equations:

∂Ūi

∂t
+ Ūj

∂Ūi

∂xj

= −1

ρ

∂p̄

∂xi

+ ν
∂2Ūi

∂xj∂xj

−
∂u′

iu
′
j

xj

(I.6)

The term τij = −ρu′
iu

′
j is known as the Reynolds stress tensor and incorporates turbulent

e�ects in the mean stress.

From a mathematical perspective, equations I.6 do not have a unique solution be-

cause there are more unknowns than equations ("non-closed" equations). To solve this

inconvenience one proposes additional equations (known as closure models) to equalize

the number of equations and unknowns in relation I.6. A typical closure model used in

industrial applications for RANS equations is known as the k − ε model standard.

This model proposes to determine the components of the Reynolds tensor τij from the

resolved mean velocity gradients (Boussinesq hypothesis). Additionally, this proposal ig-

nores small-scale vortices (or eddies) in the motion. This leads to the calculation of a

large-scale motion with an e�ective viscosity νT or "eddy viscosity" or turbulent, which

characterizes the transport and dissipation of energy in the smaller-scale �ow. The math-

ematical relationships corresponding to these quantities are shown below.

τij = −ρu′
iu

′
j = ρνT

(
∂Ūi

∂xj

+
∂Ūj

∂xi

)
− 2

3
ρδiju′

iu
′
j (I.7)
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νT = Cµ
k2

ε
(I.8)

where Cµ is a dimensionless constant.

From I.7 and I.8 one observes that the k − ε model incorporates the formulation and

solution of two additional equations of motion: the k equation of turbulent kinetic energy

and the ε equation associated with the turbulent energy dissipation rate:

∂k

∂t
+ Ūi

∂k

∂xi

=
∂
((

ν + νT
σk

)
∂k
∂xi

)
∂xi

− u′
iu

′
j

∂Ūi

∂xj

− ε (I.9)

∂ε

∂t
+ Ūi

∂ϵ

∂xi

=
∂
((

ν + νT
σε

)
∂ε
∂xi

)
∂xi

− Cε1
ε

k
u′
iu

′
j

∂Ūi

∂xj

− Cε2
ε2

k
(I.10)

where σk,σε, Cε1,Cε2 are dimensionless constants to be de�ned.

The values of the constants given in equations 1,2,3 are summarized in the table

(Launder & Spalding, 1972):

TABLE I.1: Values of the constants for the k − ε model.

Cε1 Cε2 Cµ σk σε

1.44 1.92 0.09 1.00 1.30

I.1.2.2 3D two-phase �uid �ow: Bubbly �ows

To conclude this section, we will present the model equations corresponding to the 3D

two-phase �uid �ow used in our work. For this case, we will consider the Euler-Euler

CFD approach for multiphase �ows. In this model, the media involved are considered

continuous and mathematically interconnected. Each grid element has a certain amount

of gas and liquid. This consideration introduces the concept of phase volume fraction to

describe the phase transport αL for liquid and αG for gas. These volume fractions of the

liquid and gas phases are taken as functions of space and time, and naturally, their sum

is equal to 1. As shown for the RANS equations, conservation laws must be ensured in

this case for each phase. These physical requirements become a set of the main equations

that must be complemented with additional turbulent and closure equations.

In this conceptual framework the laws of conservation of mass take the following form:
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∂αkρk
∂t

+
∂
(
αkρkUk,i

)
∂xj

= 0 (I.11)

with

k = l: liquid phase, or k = g: gas phase.

xi: x,y,z Cartesian directions.

The conservation of the momentum has the following structure:

∂αkρkU⃗k

∂t
+∇ ·

(
αkρkU⃗k U⃗k

)
= −αk∇ (p) + +αkρkg⃗ +∇ · (αk (Σk +Rtk)) (I.12)

where

p is the pressure.

g is the gravity acceleration.

Σk is the molecular stress tensor.

Rtk is the Reynolds stress tensor.

and all acting forces in bubble are described by the following expression:

M⃗k = M⃗D
k + M⃗AM

k + M⃗L
k + M⃗TD

k (I.13)

The terms of I.13 represent the averaged drag, added mass, lift, and turbulent disspersion

forces per unit volume. Now it is convenient to provide the mathematical expressions for

each of these terms.

Drag force

M⃗D
g = −M⃗D

l = −1

8
AiρlCD

∣∣∣U⃗g − U⃗l

∣∣∣ (U⃗g − U⃗l

)
(I.14)

with

Ai: interfacial area concentration. CDi: drag coe�cients for bubbles.

This parameters can be determined experimentally.
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Added mass force

M⃗AM
g = −M⃗AM

l = −C lg
A

1 + 2αg

1− αg

αgρl

[(
∂U⃗g

∂t
+ U⃗g · ∇U⃗g

)
−

(
∂U⃗l

∂t
+ U⃗l · ∇U⃗l

)]
(I.15)

In I.15 C lg
A is named added mass coe�cient and is equal to 0.5 for spherical bubble.

In addition, the factor 1+2αg

1−αg
takes into account the e�ect of the bubbles concentration

(Zuber, 1964; Ishii, 1990).

Lift force

M⃗L
g = −M⃗L

l = −CLαgρl

(
U⃗g − U⃗l

)
∧
(
∇∧ U⃗l

)
(I.16)

The CL is named the lift coe�cient and the ∧ symbol stands for vectorial product.

Turbulent dispersion force

According to (Lance & Lopez de Bertodano, 1994) one can express the turbulent

dispersion contribution as:

M⃗TD
g = −M⃗TD

l = −CTDρlKl∇αg (I.17)

In this expression Kl is the liquid turbulent kinetic energy and CTD is a numerical

constant of order 1.

Finally we have to propose an appropriate turbulence model (closure model) for the

conservation equations already exposed. We begin this stage by indicating that the pro-

posed de�nition of dynamic viscosity is taken as a reference the model of Lopez de Berto-

dano, which consists of a linear superposition according to the relationships:

µ = µshear + µBIT (I.18)

µBIT = 0.6αgρLDB |UR| (I.19)

The equations I.18 and I.19 represent a bubble induced turbulence approach (BIT).

These expressions are complemented by the closure relation which models the Reynolds

tensor Rtij for the continuous phase. According to this conceptual framework, this

tensor has as its predominant component the dissipative turbulence produced by the mean
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velocity gradient and by the wakes of the bubbles. The corresponding model establishes:

(1− αl)

[
∂Rtij
∂t

+
3∑

k=1

Ul,k
∂Rtij
∂x

]
=

∂

∂xk

{(
ρlνl + ρlCs

K

ϵ
Rtij

)
∂

∂xk

((1− αL)Rtij)

}
+(1− αl) (Pij +Gij + Φij + ϵij)

(I.20)

where Cs is a constant, Φij corresponds to the pressure �uctuations, Pij the production

of turbulent kinetic energy, Gij the velocity gradient, and ϵij the dissipation of turbulent

kinetic energy.

The viscous destruction of the stress tensor can be modeled as follows:

ϵij =
2

3
ϵδij (I.21)

In addition, the turbulent di�usion (of di�usive nature) has a very well-known struc-

ture in terms of the generalized gradient di�usion:

Dt
ij =

∂

∂xk

(
Cs

K

ϵ
u′
ku

′
q

∂u′
iu

′
j

∂xq

)
(I.22)

We also consider that the pressure �uctuations a�ect turbulent structures so that there

is a redistribution of energy producing more isotropy. This can be express according to

the next equations:

Φij = Φij,1 + Φij,2 + Φij,3 (I.23)

where

Φij,1 = −C1ϵ

(
u′
iu

′
j

K
− 2

3
δij

)
(I.24)

Φij,2 = −C2

(
Pij −

2

3
Pδij

)
(I.25)

Φij,3 = −C3

(
Gij −

2

3
Gδij

)
(I.26)
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with:

C1 = 1.8

P = 0.5Pkk

C2 = 0.6

G = 0.5Gkk

C3 = 0.55

I.1.2.3 Fluid �ow components or structures of interest for the present project

It is possible to show that any turbulent �uid �ow (valid for experimental or numerical

data) is composed of a set of structures of di�erent spatial and temporal scales and energy

content. We will see later that this impressive feature will allow the implementation of

numerical tools aimed at the identi�cation of the mentioned �uid components. Figure

I.3 schematizes the typical groups of structures that can be identi�ed in a �uid �ow ac-

cording to the scale associated with each group (esa, 2018). The energy �ow associated

to turbulent �ows is also presented in this �gure (Richardson's energy cascade). First,

the power provided or injected into the system (whether by mechanical, chemical, elec-

trical, etc.) is invested in the creation of large structures known as coherent or organized

structures. In this group are located components such as mean �ow, large vortices (of

the order of the dimensions of the whole domain under consideration, large circulation

loops, traveling vortices, etc.). Then the energy is transmitted to the smaller structures

(turbulente eddies) and scales that are associated with turbulent phenomena. It is in

the latter domain that energy dissipation occurs. In the present research project, we will

focus our attention on coherent structures speci�cally on mean �ow, traveling vortices,

and a type of structure called macro-instabilities or MI's.

The mean �ow is the component of the �ow that does not change in time but can

change in space.

As for the trailing vortices, it is important to mention some characteristics. They are

rotating �ow structures that also move in space and play an important role in mixing.

They are generally produced in the �uid �ow generated by rotating turbines (see Figure

I.4 (adapted from (Lee & Yianneskis, 1998))). The oscillations in the �uid produced by
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Figure I.3: Schematic view of Richardson's energy cascade in turbulence.

highly periodic trailing vortices can be expressed as a superposition of traveling waves

having the typical expression shown below (Arfken et al., 2012):

Θ(r⃗, t) = Θ0 g (r⃗) e
iωt = Θ0 g (r⃗) (cos (ωt) + i sin (ωt)) (I.27)

where

Θ0: is a constant related to the wave amplitude that can be a complex number.

g (r⃗): de�nes the spatial part of the wave.

i =
√
−1: is the unit imaginary number.

As will be seen in the section I.3.2 the mathematical structure of equation I.27 is not

limited only to the case of trailing vortices. In fact, we will see that any �uid �ow can be

represented approximately as a sum of �ow components (whether periodic or not) every

expression analogous to I.27.

The third type of organized structure that concerns us is the MI's. This kind of

�ow has been identi�ed in physical experiments (Yianneskis et al., 1987; Bruha et al.,

1996; Montes et al., 1997; Hasal, 2000; Micheletti & Yianneskis, 2004; Doulgerakis et al.,

2011) and numerical simulations (Hartmann et al., 2004b; Nurtono et al., 2009) of mixing

devices widely used in industry4. This type of structures has a spatial con�guration of

whirlpool type, with frequencies that are sub-harmonic to the frequency associated with

the rotating �ows of the system (of the order of hundredths of Hz for our cases of interest).

Macro instabilities produce variations in mean �ow that can signi�cantly change �ow

patterns, thus a�ecting mixing e�ciency (Ducci et al., 2008). Therefore, critically im-

4We will give more details of these devices in section I.2. For now, our interest is to provide the most
relevant characteristics of MI's.
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Figure I.4: Schematic representation of the trailing vortices in the blade of a Rushtone turbine.
The structures start on the internal side of the blade and afterward travel outward.

portant processes such as mass and heat transport, local retention of gases or solids,

homogenization, mechanical stress distribution (Hasal et al., 2004), and even turbulence

levels (Nikiforaki et al., 2003) can be a�ected due to the presence of MI's. Due to the

aforementioned facts, the analysis and identi�cation of these �uid components are of

utmost importance for the design of the mixing apparatus.

In the following section, we will address the particular aspects related to the imple-

mentation of CFD in the systems of interest for the present study.

I.2 Application of CFD for the study of reactor vessels

The CFD implementation of a speci�c system has unique particularities that depend on

the phenomena involved as well as on the models associated with such phenomena. Due

to the above, we will brie�y describe some aspects associated with the two systems that

will be studied in this document: stirred tank reactors with radial �ow impellers and

bubble column reactors.

One of the most interesting and relevant applications of CFD is related to the numer-

ical study of industrial devices known as reactor vessels (IAEA, 2020). These systems

are extremely important for both practical and academic reasons. Reactor vessels are

widely used in all types of the chemical industry. In addition, the complexity of the phys-

ical, chemical, and biological phenomena involved in these devices make them extremely
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attractive in the academic �eld.

A particular type of reactor vessel that is dynamically activated by a turbine (with

one or several impellers) is widely used in industrial chemical processes especially to favor

mixing through axial �ows. Figure I.5 shows the typical con�guration of an open agitation

tank activated by a Rushton turbine. The device shown has a �at bottom and also four

vertical elements called ba�es whose function is to promote mixing and at the same time

avoid parabolic velocity pro�les.

Figure I.5: Typical con�guration of a ba�ed stirred tank activated by a Rushton turbine.

The values of the dimensions indicated are a function of whether one is working at

laboratory scale or industrial scale. The details of the dimensions used for the CFD im-

plementation we investigate analyzed will be given in chapter II.

(Joshi et al., 2011) indicates in a very concise and clear way the most important aspects

to take into account when implementing CFD for stirred tank reactors with radial �ow

impellers. According to these authors, in addition to the general considerations corre-

sponding to the implementation of CFD simulations cited in section I.1.1 and I.1.2 a

CFD implementation for these stirred tanks should include the impeller rotation and baf-

�es modelling.

The modeling of these stirred tank elements can be developed following two di�erent ap-

proaches: steady and unsteady state approaches.

The �rst strategy consists of solving all the equations of the system in a steady-state,

incorporating the e�ect of the impellers by imposing boundary conditions between the

two zones of the domain. To achieve this there are some models such as the Impeller
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I.2 Application of CFD for the study of reactor vessels

boundary condition approach (IBC), Source-sink approach (SS), Inner-outer approach

(IO), and Multiple reference frame technique (MRF).

The second modeling category, the unsteady state approach, establishes a time-dependent

interaction of the impellers with the �uid �ow of the system. This approach has di�er-

ent models such as Impeller modeling within lattice-Boltzmann-LES framework (adaptive

force �eld technique, AFT), Moving-deforming grid technique, and Sliding Mesh Approach

(SM).

For most of these models, the studied domain is divided into two zones, a low in�uence

zone and a high in�uence zone of the impellers (see Figure I.6).

Figure I.6: Con�guration of two mesh zones for a ba�ed stirred tank activated by a Rushton
turbine. The rotative zone contains the turbine, the �xed zone the rest of the domain.

Table I.2 and table I.3 provide a basic description of each modeling approach (Joshi

et al., 2011).
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As we will see in chapter IV our working numerical database for the ba�ed stirred

tank was generated using the unsteady-state SM model.

The second type of vessel we are concerned with is known as a bubble column. The

relevance of this device lies in the fact that it operates with a two-phase �ow that is present

in numerous industrial chemical processes. The typical con�guration of this type of device

is very simple as shown in the Figure I.7. The vessel has a cylindrical or prismatic tank

containing a liquid material, typically water. In the lower part of the vessel, there are

ori�ces through which gas is injected at a given rate and velocity.

Figure I.7: Typical con�guration of a bubble column vessel.

The interaction of the rising gas and the surrounding liquid results in a type of �ow

�uid known as bubble swarms or plumes. The type of �ow structure generated depends

essentially on parameters such as the velocity of the injected gas, the viscosity of the

liquid, and the aspect ratio (height H-to-width W ratio). Figure I.8 provides a picture

that allows visualizing di�erent types of �ow according to two di�erent gas injection

velocities (2.4 mm/s and 21.3 mm/s respectively) reported by (Cachaza et al., 2011).

The Euler-Euler approach presented in the section I.1.2.2 is reported in some papers

(Becker et al., 1994; P�eger et al., 1999; Olmos et al., 2001; Olmos et al., 2003; Fard

24



I.3 Data Driven Methods and Reduction Order Methods (ROM's) for �ow �elds

Figure I.8: Typical con�guration of a bubble column vessel.

et al., 2020; Guan et al., 2021; Gaurav et al., 2022; Cappelli et al., 2022) to implement

CFD simulations for bubble column systems.

Similar to the case of stirred tanks, the implementation of CFD for these devices

involves the consideration of additional aspects to those described in section I.1.2.2.

Particularly for the case study of the present investigation, additional approaches included

in the NEPTUNE CFD software were considered, which allow modeling the forces of drag,

added mass, lift, and turbulent dispersion. Speci�c details are provided in the section II.2.

I.3 Data Driven Methods and Reduction Order Meth-

ods (ROM's) for �ow �elds

The last few decades have been characterized by unprecedented progress in experimental

and numerical simulation techniques, leading to the generation of highly accurate digitized

data. The processing requirements of these data often exceed the available computational

resources. In this context, the implementation of algorithms or methodologies that allow
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the extraction, analysis, and classi�cation of information becomes a real necessity. This

scenario explains why the attention of a large part of the scienti�c community has been

directed towards this type of numerical methodologies for data processing which helps to

exploit the immense potential of large databases (Hey et al., 2009; Montáns et al., 2019;

Mendez et al., 2020; Karniadakis, 2021).

As the family of data-driven methodologies is vast, they can be applied in �elds as

diverse as fundamental physics, materials science, bio-engineering, chemical industry,

petroleum industry, pharmaceutical industry, and, of course, �uid mechanics. Our in-

terest is focused on the latter, speci�cally concerning reducing the number of data inputs

(velocity �elds) to a manageable size while preserving the most relevant information in

the data in terms of energy or variance. In purely technical terms, reduction order meth-

ods (ROMs) belong to the group of disciplines known as unsupervised Machine Learning

(Ding et al., 2002; Chinesta et al., 2019; Brunton et al., 2020; Delua, 2021; Vinuesa

& Brunton, 2021). These algorithms allow the identi�cation of patterns present in the

databases studied even when this input information is not associated with a particular

model. This feature provides data-driven methods with immense versatility.

Within the group of order reduction algorithms, we �nd some techniques that have been

widely used for CFD and PIV known as Proper Orthogonal Decomposition (POD) and

Dynamical Mode Decomposition (DMD). The conceptual basis of these methodologies is

the decomposition of the input data in terms of modes. These results are obtained by

solving eigenvalue problems through matrix operations such as singular value decompo-

sition (SVD) or QR decomposition.

In the present work, we will use the POD and DMD modal decompositions as order re-

duction tools for velocity �eld data from CFD numerical simulations. Below we will focus

on the description of POD and DMD techniques.

I.3.1 The fundamentals of POD

I.3.1.1 Principle of the method

The proper orthogonal decomposition (POD) or Kosambi-Karhunen-Loève decomposition

(Kosambi, 1943; Loève, 1945; Karhunen, 1946; Berkooz et al., 1993; Holmes et al., 1996)

is a practical procedure for extracting the most energetic components from a set of func-

tions (in the continuous case) or experimental (physical or numerical) data (in the discrete
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case). The key idea of the technique is to provide a vector space basis with the special

condition that the mean square projection of the data set in this vector space is maximal.

The vectors constituting the resulting POD basis become modes that allow reconstructing

approximately the information contained in the input database. The supreme advantage

of this is that the modes or elements that are statistically most important can be identi-

�ed and retained. Under these conditions, we can reduce a large number of variables to

a much smaller set of spatially uncorrelated variables, while maintaining the spatial and

temporal resolution of the original set of variables (Liang et al., 2002; Kerschen et al.,

2005). When applied to �uid �ow analysis, the data set can be obtained from a series of

experimental or simulated velocity �elds.

To begin the mathematical description of the method let us note that the POD recon-

struction of the p modes (�nite truncations in the modal expansion) is optimal compared

to any other possible orthogonal basis having the same dimension p (Liang et al., 2002;

Aubry, 1991). This surprising feature is because this orthogonal decomposition minimizes

the mean square of the associated error resulting from the reconstruction procedure. If

the data set consists of a collection of instantaneous three-dimensional velocity �elds, the

original �eld U⃗ (r⃗, t) is approximated as a linear combination of p modes, ϕ⃗k (r⃗) weighted

by time varying coe�cients (modal coe�cients) ak as follows:

U⃗POD (r⃗, t, p) =

p∑
k=1

akϕ⃗k (r⃗) (I.28)

In summary, POD allows minimizing the amount of information needed to represent

statistically dependent data.

Therefore, POD is an extremely useful tool that �nds multiple applications in CFD and

other areas of computational processing when it is desired to generate a reduced-order

description without compromising the most relevant information (Lu et al., 2019). More-

over, the characteristic of the POD to generate a reduction that separates the spatial and

temporal parts opens the possibility of understanding phenomena of immense complexity

in a simpler manner.

As with any approximation method, POD also has some disadvantages. These draw-

backs are based on the fact that this procedure is based on a second-order correlation

(or energy), so the higher-order correlations are ignored (Aubry, 1991; Taira et al., 2017).

For example, (Graham & Kevrekidis, 1996) points out that the analysis downplays the
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importance of infrequent events or structures, even though they may be dynamically very

important (burst-like phenomena). In the section III.2.2, we will show in detail a case

that exempli�es this situation. Moreover, (Schmid, 2010) pointed out, the variance (or

energy) ranking might not be in some cases the most appropriate parameter for the choice

of dominant elements in the studied databases. This last aspect is particularly relevant

when seeking to identify structures that are monochromatic, i.e. associated with a speci�c

frequency.

The elements required to construct the linear combination of equation I.28 can be deter-

mined from two di�erent approaches: the direct method and the snapshot method. The

choice of the approach to be used depends on the spatial and temporal resolution in the

studied database. If one has a spatial resolution that is much higher than the temporal

one, the snapshot method is preferable, as it involves lower computational requirements

than the direct approach (Sirovich, 1987a; Sirovich, 1987b; Sirovich, 1987c; Smith et al.,

2005). The following section shows the fundamental equations of the orthogonal decom-

position.

I.3.1.2 Mathematical details: Direct method and Snapshot method

Let us sample for N instants (each one separated by a time of ∆t) a 3D velocity vector

�eld U⃗ (r⃗) = (u (r⃗) , v (r⃗) , w (r⃗)) , composed of L points in the space of a de�ned domain.

Each of the vector �elds in the resulting database is called a snapshot since it represents

a vector "photograph" of the system under study. The data set can be arranged or

structured in a matrix M with 3L lines and N columns (called the snapshot matrix) as

follows:
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M =



u
(1)
1 · · · u

(N)
1

... · · · ...

u
(1)
L · · · u

(N)
L

v
(1)
1 · · · v

(N)
1

... · · · ...

v
(1)
L · · · v

(N)
L

w
(1)
1 · · · w

(N)
1

... · · · ...

w
(1)
L · · · w

(N)
L



=
(
U⃗ (1), U⃗ (2), · · · , U⃗ (N)

)
(I.29)

The kth column of the relation I.29 represents the velocity �eld sampled at the kth

instant and U⃗ (k) is a column vector of 3L lines.

From I.29 the covariance or correlation tensor R can be constructed following the

direct or snapshot method as follows:

R =


1
N
M
(
MT

)
DirectMethod 3L× 3L

1
N

(
MT

)
M SnapshotMethod N ×N

(I.30)

The correlation tensorR de�nes the magnitude and manner in which the velocities at

di�erent points are correlated. Consider the velocity vector U⃗ (r⃗i) at a ith point and the

velocity U⃗ (r⃗j) at a jth point in the �uid domain. If the velocities U⃗ (r⃗i) and U⃗ (r⃗j) are

statistically dependent their correlation will be non-zero, otherwise, the correlation will

be zero. In other words,R represents a two-point spatial correlation averaged over time.

If one uses the direct method, the correlation tensor is represented by a 3L× 3L matrix,

where L represents the number of data points. This mathematical process causes the com-

putational cost to increase with the square power of the number of points in the domain

under study (the size of the tensorR is (3L)2). For this reason, when one has a domain

with a large number of points, it is necessary to evaluate whether one has the minimum

computational and storage requirements associated with POD matrix operations.

We can also use the snapshot approach in lieu of the direct method. The snapshot method

proposed by (Sirovich, 1987a; Smith et al., 2005) is always valid when the ergodic hypoth-

esis is ful�lled (all accessible microstates in the phase space have the same probability to
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occur over a long period). As can be deduced from the de�nition I.29, the implementation

of this approach involves the construction of an R tensor with dimensions N ×N . In this

case the computational cost less prohibitive compared with the Direct method (the size of

the tensor R is (N)2 ). Due to this advantage, the snapshot method is used in this work.

The implementation of the snapshot method involves solving an eigenvalue problem to

determine the lamda eigenvalues and ksi eigenvectors that diagonalize the R correlation

tensor:

Rγ⃗k = λkγ⃗k (I.31)

It is pertinent to recall that the correlation tensor R is Hermitian so the �rst N (N

being the number of instants analyzed) eigenvalues are identical for the direct approach

and the snapshot approach. However, the eigenvectors are di�erent for each method.

Once one has calculated the eigenvectors γ⃗k associated with the snapshot technique it is

necessary to determine the vectors ϕ⃗k with the appropriate 3L dimensions. The necessary

relationship for this procedure is as follows:

ϕ⃗k = Mγ⃗k
1

λk

, k = 1, ..., N (I.32)

Since the eigenvectors constitute an orthonormal basis, they obey the following rela-

tionship:

(
ϕ⃗i

)T
ϕ⃗j = δij, i, j = 1, ..., N (I.33)

After the calculation of the eigenvector, ϕ⃗k the modal components ak (t) are obtained

as:

ak (t) = (M)T ϕ⃗k, k = 1, ..., N (I.34)

This completes all the elements necessary to reconstruct the velocity �eld according

to I.28.

At this point, it is important to emphasize one aspect regarding the de�nition of

the correlation tensor R. Whichever the approach one implements (direct or snap-

shot method), the main objective is to �nd a basis of orthonormal ϕ⃗k (r⃗) vectors (3L-
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dimension)5 and modal coe�cients ak (N -dimension) that allow us to construct the vec-

torial space associated to the matrix M . Note that we are looking for a set of vector

�elds that minimize the mean squared deviation between the POD approximation and

the values contained in M .

I.3.1.3 Examples of POD as a ROM's tool for reactor vessels

As already mentioned in I.2, stirred tank reactors are widely used in chemical and bio-

chemical industrial applications (Nienow, 2014). The hydrodynamics of such systems has

been the subject of numerous experimental (Ng & Yianneskis, 2000; Bugay et al., 2002;

Baldi et al., 2004; Escudié & Liné, 2004; Ducci & Yianneskis, 2007) and CFD studies that

revealed its complexity (Hartmann et al., 2004a; Delafosse et al., 2008; Delafosse et al.,

2009). Beside the hydrodynamic aspects, additional models describing the chemical or

biochemical reactions have to be implemented in the CFD software in order to couple

mixing and reaction and perform predictive simulations (Olmos et al., 2013). In some

applications, it is important to consider the time varying �ow �eld but the computational

cost for solving simultaneously momentum and chemical equations is often prohibitive.

In such situations, it is advantageous to �nd a way to access the spatio temporal varia-

tion for the velocity �eld without solving the Reynolds Averaged Navier-Stokes equations

(RANS) throughout the process duration. Since the �ow in a stirred tank is periodic and

organized, the reduced order methods, such POD or DMD, can be used to achieve this

objective.

Due to its elegance and practicality, POD has been used to identify, study and model

the dynamics of large-scale average spatial structures of the �uctuating velocity �eld for

turbulent �ow (Sirovich, 1987a; Sirovich, 1987b; Sirovich, 1987c; Berkooz et al., 1993;

Borée, 2003; Joshi et al., 2009; Tirunagari et al., 2012; Du et al., 2013; El-Adawy et al.,

2018). In terms of kinetic energy, these large structures (named coherent structures)

dominate in the �uctuating �ow, it follows that their identi�cation is crucial in the study

of the �uid dynamics. This feature evidences the relevance and convenience of the POD

to identify such organized structures, turning the method into an extremely attractive

5Typically the 3L-dimensional space refers to the Cartesian coordinates of the points at which the
velocity vectors are sampled. However, due to the versatility associated with the POD method, we do not
rule out the possibility of its implementation in a space of a di�erent nature than the positioning of points
in space. In chapter III we will show with numerical arguments the feasibility of this reinterpretation in
the de�nition of the space associated with the ϕ⃗k vector basis.
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numerical technique (Holmes et al., 1996).

The POD methodology has also been shown to be e�ective for studying instabilities

(Hasal, 2000; Hasal et al., 2004) and the transition to the turbulent regime in �uids

(Knight & Sirovich, 1990; Holmes et al., 1996). In (Arányi et al., 2013) the technique

was also used to study complex �ows. This technique has also proved to be very useful

for the analysis of turbulent �ow �elds in mixing tanks (Raju et al., 2005; Gabelle et al.,

2013; de Lamotte et al., 2018b; Janiga, 2019; Fernandes del Pozo et al., 2020; Mikhaylov

et al., 2021). For example (Raju et al., 2005), implemented the POD algorithm to study

the structures associated to the periodic �uctuations about the mean �ow induced by

the impeller in a stirred tank. In this work, experimental PIV data were used as input

to the method for di�erent diameters of a Rushton-type turbine, and Reynolds numbers

between 4,000 and 80,000. Moreover (Liné et al., 2013) used experimental PIV data from

a mixing tank to study the presence of coherent structures and the turbulent phenom-

ena associated. In addition, the kinetic energy was successfully obtained from the POD

methodology. Likewise (Gabelle et al., 2013; Gabelle et al., 2017; Fernandes del Pozo

et al., 2020) used the decomposition method in 2D PIV data to reconstruct organized

motion induced by impeller blades without performing angle-averaged sampling. The

manner in which energy was transferred between the POD modes was also studied. Also

it is reported in the literature the application of the POD on CFD data for the study of

turbulent swirling �ow in an axisymmetric sudden pipe expansion (Howard et al., 2017).

The order reduction technique used proved to be quite robust in reducing the transient

database, showing its potential to provide valuable insights into the �ow structure. By

using a large array of pressure and velocity data, POD was able to pick out several key

�ow features, including the movement of vortices, and the structure and period of the

precessing �ow. This was followed by the reconstruction and assessment of the �ow �eld

in a stirred tank by applying POD to a 2D domain using CFD and PIV data (de Lamotte

et al., 2018a; de Lamotte et al., 2018b). As reported in this work, the reduced order

method was able to reconstruct the �uid �ow into di�erent structures: mean �ow, co-

herent structures, and turbulent �ow. Also (Janiga, 2019) applied the POD algorithm

for the analysis of coherent structures and macro-instability in a 3D (3-dimensional), 3C

(3-component velocity) LES (Large Eddy Simulation) simulation for an unba�ed stirred

tank. In this numerical experiment the sliding mesh technique was implemented, thus the
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simulation domain was divided into a �xed part and a rotating part. A similar work was

recently published by (Mikhaylov et al., 2021). The data was created through a Direct

Numerical Simulation (DNS) with a �frozen rotor� approach and Reynolds numbers of

500, 600 and 700. In this research, POD was useful to reconstruct the temporal evolution

of large-scale organized vortical structures behind the blades of a Rushton impeller in a

non-ba�ed stirred tank. It was found that the �rst two modes dominate the energy spec-

trum by carrying 90 % of the total kinetic energy. It also is relevant to mention that some

higher modes (3rd, 4th and 5th, 6th ) came in pairs in the energy ranking. These two latest

remarkable works show the feasibility of the numerical recipe for order reduction in very

complex �ow �elds generated by numerical simulations. However, some important points

were not addressed. For example in (Janiga, 2019), the POD decomposition was applied

to each part of the mesh separately but a reconstruction of the 3D, 3C velocity �eld for the

bulk was not performed. In general, it is neither simple nor straightforward to determine

the relationship and similarity between the POD method for separate parts of the domain

and the POD method corresponding to taking the domain as a whole. This is due to the

essentially statistical nature of the method. Additionally, an analysis of the e�ciency of

the POD method in terms of calculation time, global and localized error was not provided.

(Mikhaylov et al., 2021) performed the reconstruction of coherent structures just in the

zone around the impeller blades at low Reynolds number through the POD treatment of

the velocity �eld expressed in a rotating frame. Finally, in both investigations the presence

of ba�es in the simulated stirred tanks was not considered. The incorporation of these

elements is of great importance due to their contribution to the mean �ow (circulation

loops) and their decisive role in mixing phenomena. To sum up, running time-resolved

CFD (Large Eddy Simulation or U-RANS) and applying Reduced Order Methods such as

POD (Proper Orthogonal Decomposition or Karhunen-Loève decomposition) is appealing

because it generates a time-varying velocity �elds at a moderate expense while preserving

the spatial resolution (Du et al., 2013; de Lamotte et al., 2018b). This opens the route to

both re�ned and cost-e�ective description of the unsteady velocity �elds. From this brief

review of the existing literature on the subject, it appears that the POD analysis of the

�ow �eld in a ba�ed stirred tank, in the fully turbulent regime (at a Reynolds number

> 104), using CFD data computed with a sliding mesh approach has not been considered

yet.
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Among the objectives of our work is to address the indicated aspects not developed in

these last two mentioned works.

According to the literature consulted, the assessment of bubbly �ows (experimental or

numerical) using POD or DMD has not been deeply addressed. In the following, we will

mention the most relevant ones, which will serve to give a context of the aspects treated

in this type of analysis.

I.3.2 The fundamentals of DMD

Similar to POD, the DMD methodology allows identifying, separating, and classifying

the dominant structures of a �uid �ow. This tool allows decomposing time-resolved data

into modes, taking as a criterion the characteristic oscillation frequency f j
DMD (or fj),

growth/decay rate σj
DMD (or σj) of each DMD mode Φ̃j . In addition, the dynamic evo-

lution will be given by the time coe�cient Θ̃j (t) which allows proposing a reconstruction

expression analogous to I.28:

U⃗DMD (r⃗, t, p) =

p∑
j=1

Θ̃j (t) Φ̃j (r⃗) (I.35)

We will show the relationship between these DMD parameters in the next section.

The DMD procedure consists of the decomposition of a linear best-�t operator A that

approximates the existing dynamics in the data. The results obtained allow describing

the physical mechanisms immersed in the input data and then signi�cantly reducing the

degrees of freedom of dynamic systems. It is important to emphasize that unlike POD

modes the DMD modes Φ̃j (r⃗) of I.35 are not orthogonal. This characteristic will imply

certain conditions in the way one can perform an energy ranking of such modes. We will

discuss this topic at the end of this section.

Consider again the arrangement of N chronologically ordered elements(
U⃗ (1), U⃗ (2), · · · , U⃗ (N)

)
of the equation I.29, but assume that each element U⃗ (j)

represents a vector in the R3L space. It is proposed to �nd an operator A that allows

establishing the following linear model:

U⃗ (k+1) = A U⃗ (k) (I.36)

where A is an operador in the C3L×3L space.The transformation in I.36 represents a linear
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tangent approximation when applied to nonlinear dynamics.

If I.36 is applied to all U⃗ (j) elements a sequence relationship can be expressed as

follows:

(
U⃗ (2), U⃗ (3), · · · , U⃗ (N)

)
= A

(
U⃗ (1), U⃗ (2), · · · , U⃗ (N−1)

)
(I.37)

or in a more compact form:

M
(N)
(2) = AM

(N−1)
(1) (I.38)

From the expression, it follows that the eigenvectors and eigenvalues of A allow es-

tablishing the approximation of the linear model sought. However, when L is very large

the resolution of the corresponding eingenvalue problem implies a huge computational

expense. To reduce these requirements, two algorithms known as companion matrix and

similar matrix or Singular Value Decomposition procedure (SVD) can be implemented

(Schmid, 2010; Tissot, 2014; Taira et al., 2017). In the following, we will give a brief

description of each numerical recipe.

I.3.2.1 Mathematical details: Companion matrix and Similar matrix (SVD)

Companion matrix

An alternative to reducing the calculation requirements of I.37 is through matrix

equivalence:

M
(N)
(2) = AM

(N−1)
(1) = M

(N−1)
(1) S̃ + rẽN−1 (I.39)

where S̃ is a matrix in the CN−1×N−1 space named companion matrix of A, r is a

residual vector in R3L, and ẽN−1 is an Euclidean vector of size N − 1. When N is much

smaller than L, the eigenvalue problem associated with S̃ is more convenient than the

corresponding one for A.

Clearly, the eigenvalues and eigenvectors of S̃ are an approximation of those corresponding

to A. The larger N the better the respective approximation.

We can show that S̃ can be determined by a least-square procedure like qr decomposition

of M
(N−1)
(1) :
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M
(N)
(2) ≈M

(N−1)
(1) S̃ = q r S̃ ⇒ S̃ = (r)−1 q⋆M

(N)
(2) (I.40)

where q⋆ is the complex conjugate of q.

By determining the eigenvalues λj
DMD and eigenvectors Υ⃗j

DMD of S̃ one obtains the fol-

lowing DMD parameters:

ℜj = M
(N−1)
(1) Υ⃗j

DMD (I.41)

f j
DMD =

arg
(
λj
DMD

)
2π∆t

(I.42)

σj
DMD =

ln
(∣∣λj

DMD

∣∣)
∆t

(I.43)

The vectorial quantity ℜj is named Ritz vector and is associated to a single DMD

frequency f j
DMD and to a growth rate σj

DMD. To calculate the time coe�cients Θ̃j (t) we

must �rst de�ne the Gram matrix G of the Ritz vectors:

G = (ℜ)⋆ℜ (I.44)

where ℜ = (ℜ1,ℜ2, ....,ℜN−1) and the (ℜ)⋆ is the complex conjugate.

Then we can determine the relationship:

Θ̃ = (G)−1 (ℜ)⋆M (N)
(1) (I.45)

The expression I.45 results in a matrix (of size N − 1×N) in which the line j is the

time coe�cient Θ̃j (t).

Finally we can calculate the DMD vectors de�ned in equation I.35:

Φ̃j (r⃗) = ℜj Θ̃j (t = t0) (I.46)

Similar matrix (SVD)

The Similar matrix or simply SVD procedure proposes that the matrix A can be approx-

imated by using the SVD decomposition of the M
(N−1)
(1) matrix as shown below (Schmid,

2010; Jovanovi¢ et al., 2014).
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We know that we can express M
(N−1)
(1) according to the SVD decomposition:

M
(N−1)
(1) = UΣ (V)† (I.47)

One observes that U and V (the symbol † corresponds to the matricial transposition)

are unitary, the columns of each of them form a set of orthonormal vectors or basis vectors.

Moreover, Σ is a diagonal matrix whose non-zero elements correspond to the eigenvalues

of M
(N−1)
(1) .

Now the expression of I.47 can be replaced in I.39 which leads to a new form of S̃:

S̃ = (U)†M
(N)
(2) V (Σ)−1 = (U)† A U (I.48)

We can see that the relation I.48 implies a projection of A into the eigenvector space of

M
(N−1)
(1) .

Following the same logic established for the matrix companion method it follows to �nd

the eigenvalues and eigenvectors of S̃.

S̃Yj = mjYj (I.49)

From the information provided by I.49 we can determine the following parameters:

The new Ritz vectors:

ℜj = UYj (I.50)

The frequency and growth rate of each DMD mode.

f j
DMD =

arg (mj)

2π∆t
(I.51)

σj
DMD =

ln (|mj|)
∆t

(I.52)

Needless to say that both DMD methods are equivalent. However, the SVD algorithm

may be more convenient if the matrix (G)−1 in I.45 is close to singular o badly scaled.

Finally, it is necessary to establish a criterion to order the DMD modes according

to their energy content. Because the DMD modes are not orthogonal, no single way to
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perform energy ranking can be determined. Given this situation, the literature proposes

two possible criteria (Tissot, 2014; Tissot et al., 2014).

The �rst ranking method de�nes the ranking according to the amplitude of the DMD

modes Φ̃j (r⃗). However, this criterion does not consider that highly damped DMD modes

have a negligible contribution, regardless of their long-term amplitude.

An energetic ranking method that contemplates the dynamic e�ect of the contribution

of each mode is, therefore, more suitable in the presence of modes with a very negative

growth rate σj. (Tissot, 2014; Tissot et al., 2014) proposes to use the following relation:

Ej =
1

τ

∫ τ

0

(∥∥∥Φ̃j

∥∥∥2 [λj
DMD

] t
∆t

)
=
∥∥∥Φ̃j

∥∥∥2 e2σj
DMDτ − 1

2σj
DMDτ

(I.53)

with τ = total analysis duration and ∆t is the time step used in the analysis.

The two criteria mentioned above will be used in the sections III and IV to classify the

DMD modes in terms of energy content.

I.3.2.2 Examples of DMD as a ROMs tool for reactor vessels

The e�ectiveness of this technique has been shown in the study of the dynamic informa-

tion of �ow �elds obtained by numerical simulations and by measurements in physical

experiments. For example, (Semeraro et al., 2012) implemented this numerical tool to

analyze 2D PIV data measured in a planar and con�ned jet with co-�ow. The results

allowed identifying important dynamical features as the large-scale oscillation of the inner

jet and shear-layer oscillations.

In (Schmid et al., 2012) DMD made it possible to identify relevant �uid �ow frequencies

from PIV tomographic data performed on a transition water jet. This information led to

a low-dimensional description of the �ow �eld.

(Kou & Zhang, 2017) used DMD to predict the �ow regime of �ow past a cylinder at

the transient state of Re = 60. Additionally, this work studied the transient �ow in a

NACA0012 airfoil (Reynolds numbers of 60 and 3.0 x 106).

(Le Clainche & Vega, 2017) simulated a three-dimensional �ow around a circular cylinder

(Reynolds number = 220). The resulting data allowed the implementation of a DMD

reduction order model. This research proposes using this ROM to �nd �ow patterns in

complex �ows, highlighting the advantages of reducing the computational cost of numer-

ical simulations or the necessary amount of data collected in experiments.
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Likewise, in (de Lamotte et al., 2018a; de Lamotte et al., 2018b) DMD allowed extracting

the spatial structures according to their temporal behavior (frequency) from PIV data

and CFD simulations in a stirred tank with ba�es. In these outstanding works, a 2D

plane analysis led to compare the numerical simulation results with those of the PIV ex-

periments. In (Weheliye et al., 2018) PIV data was used as input to the DMD technique

to assess the �ow dynamics in an orbital shaken bioreactor of cylindrical geometry and �at

bottom. The results allowed to assess the �ow dynamics in di�erent operating conditions

of the vessel. Also (Wu et al., 2019) used this reduced order methodology to generate a

reduced model of a low-moment laminar jet discharged in a laminar channel cross-�ow

through a circular ori�ce (Reynolds number = 3333). More recently, (Jin & Fan, 2020)

investigated the �ow structure in a square stirred tank without ba�es and with a Rush-

ton impeller (RT) using (PIV) technique. In this publication, the ROM's technique was

practical for analyzing velocity �elds, �ow structure, and dynamic information out of the

impeller area. It was possible to identify and extract large-scale �ow structures such as

the mean �ow and wake structure generated by the periodic jet in blade passage.

Some works have implemented DMD to assess the dynamics of very complex �ow �uids in

the human cardiovascular system. For example (Habibi et al., 2020) study sick patient-

speci�c blood �ow generated from CFD. The results showed that the ROMs method

represented accurately the analytical solutions for incompressible pulsatile �ow in tubes.

In (Arzani & Dawson, 2021) a review of examples and applications of ROMs in cardiovas-

cular �ow �uids was reported. Others autors (Yu & Durgesh, 2021) also report the use of

DMD to identify the impact of in�ow conditions on spatio-temporal �ow behavior in an

cerebral aneurysm �ow �uid. These researchers perfomed low-order �ow reconstruction

from PIV data that allowed to understand the complexity of the �ow �uid investigated.

The article (Le, 2021) also performed assessment but in this case the DMD reconstruction

was compared with in vivo data.

According to the literature consulted, the assessment of bubbly �ows (experimental or

numerical) using POD or DMD has not been deeply addressed. In the following, we will

mention some of the most recent works, which will serve to give a context of the aspects

treated in this type of analysis.

In (Tabib & Joshi, 2008) POD was implemented to reveal the dominant �ow components

and their dynamics in various industrial equipment including a cylindrical bubble column
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system. The data were generated from PIV measurements and using LES simulations. In

the case of the bubble column, the authors implemented a LES simulation to generate the

database. The researchers report that it was possible to determine the variation in plume

oscillation and �ow structures in the vortical region of the bubble column resulting from

changes in sparger design. Furthermore, it was reported that a reconstruction of 50 POD

modes were necessary to capture 88% of kinetic energy and to observe in a pronounced

way the e�ects of plume oscillations on �ow patterns of the liquid phase.

For his part, (Kim et al., 2012) investigated the spatial and temporal structures of tur-

bulent water �ows driven by air bubbles in a cylindrical tank. The corresponding data

were generated by means of PIV. The dynamics of the �ow was analyzed using POD.

This paper showed that the POD technique was able to capture three dominant dynamic

structures: recirculating �ow, bubble-induced �ow, and free surface oscillation for �ows

with di�erent Reynolds numbers (from 8,300 to 21,100).

(Pang & Wei, 2013) investigated bubbly �ows from data measured with the PIV tech-

nique in a prismatic vessel. The authors considered two parts: the pure liquid part and

the liquid phase (phase discrimination methods were used to perform this separation pro-

cedure). The POD technique was then applied to the liquid phase and to the pure liquid

part databases to determine the in�uence of bubbles on the turbulence structure. Specif-

ically, POD analyses allowed to establish that the injection of bubbles (present in the

liquid phase) increases the energetic contribution of the large-scale turbulence structures.

Likewise bubbly �ows was assessed in (Aliyu et al., 2018) through PIV measurements

in a square tank. POD analysis on the liquid velocity data led to the identi�cation of

dominant structures according to the corresponding energy criteria. From these �ndings,

it was possible to ascertain that vortices induced in the liquid phase are more evident

at the locations away from the stream. Moreover, the POD allowed to establish that

strong streamwise �ow is associated with the �rst POD mode. This mode dominates

(over bubble-induced motions) since it had the highest contribution to the turbulent ki-

netic energy as well as the fewest large-scale vortical structures. Finally, the higher modes

showed more vortical structures including smaller scale and lower contribution to the over-

all kinetic energy.

More recently (Laupsien et al., 2021) investigated an oscillating bubble plume created in

a quasi-two-dimensional bubble column, three di�erent gas �ow rates of 50, 100, and 200
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l/h were used in the investigation. The POD allowed the description of the overall hy-

drodynamics of the system. Speci�cally, it was found that the periodic motion structures

associated with the large-scale motions (vortices, plume oscillations) were successfully ex-

tracted by the orthogonal decomposition.

There seems to be even less published work on implementing DMD in vertical bubbly

�ows. According to the authors in (Klevs et al., 2021), their work is the �rst to perform

an application of DMD to bubble �ow with resolved dynamic liquid/gas boundaries. The

researchers simulated a system in which horizontal and vertical arrays or "chains" of bub-

bles ascend through a rectangular liquid vessel. Liquid gallium and argon gas are used as

working �uids. Additionally, a constant static magnetic horizontal force is applied using

permanent magnets. Di�erent gas �ows with and without magnetic force are simulated.

In this investigation, DMD allows making visible various momentum transfer and bubble

interaction mechanisms. Moreover, the mode analysis makes possible the explanation of

the observed �ow patterns. This work is an excellent example of the applicability of DMD

in the study and analysis of highly complex �uid �ows.

Chapter summary and conclusions

This chapter presents the basics of Computational Fluid Dynamics (CFD): conservation

equations, fundamental steps, advantages, and disadvantages of the methodology. Such

exposition provides a general overview of the CFD that will allow a better understanding

of the content corresponding to the next chapters of this document. One �nds that CFD

is a widely used tool for the study of �ows of academic and industrial interest. The

implementation of these algorithms implies the realization of several stages related to:

the phenomenon under study, the creation of the geometry and the discretization of the

domain to be analyzed, the formulation and the numerical solution of the �ow equations,

the evaluation of the numerical residuals and the post-processing of the �nal solution of

the �ow equations.

Next, we present the �uid �ow equations of interest for this research. In the �rst

place, the equations for the RANS-k − ε turbulence model are shown. This approach

solves the mean �ow and models all scales of turbulence. To achieve this, one invokes the

Boussinesq hypothesis which proposes that the momentum transfer caused by turbulent

eddies can be modeled with an eddy viscosity. This aspect implies the computation of a

large-scale motion with an e�ective turbulent viscosity. Moreover, one incorporates two
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variables (and therefore two equations) known as turbulent kinetic energy and turbulent

dissipation.

One �nds that the RANS-k − ε approach is a practical methodology for numerically

obtaining the mean �ow and �ow components associated with organized structures.

Second, the equations for the two-phase �uid �ow are presented. For this case, the

Euler-Euler equations are proposed. In this approach, the media studied is considered

continuous and mathematically interconnected. Each element of the grid has a certain

amount of liquid (volume fraction of the liquid) and gas (volume fraction of gas). Fur-

thermore, this approach takes into consideration the four forces involved in liquid-gas

interaction: the drag force, added mass force, lift force, and turbulent dispersion force.

The turbulent model proposed contemplates the de�nition of dynamic viscosity as an

addition of a term associated with the shear and other related to the bubble-induced tur-

bulence. One also proposes a Rij−ε model that incorporates the anisotropy of turbulence.

Subsequently, one presents some research works that apply the CFD: the RANS-k− ε

and the Euler-Euler approaches for �ow determination in stirred tanks and bubbly �ows.

This section ends with the presentation of the mathematical principles associated with

ROMs: POD and DMD. The ROMs allow decomposing of the �uid �ow into modes.

Each mode has its own amount of energy (POD) or frequency (DMD) and a temporal

part and a spatial part. We also provide a large list of research works in which ROMs

have been successfully used for the study of �uid �ow in several systems, including those

that will be analyzed in the following sections of this manuscript. The articles cited show

the relevance and e�ectiveness of ROMs for the analysis of complex �uid �ows.

The following chapter presents the details corresponding to the numerical implemen-

tation of the systems to be studied.
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Brief details of the performed

numerical experiments

The following section is devoted to the exposition of the systems and numerical experi-

ments carried out in this project.

II.1 Stirred tank and simulation set up

Our numerical data were generated from an unsteady RANS CFD simulation in a 70 L

stirred tank with ba�es developed by (Delafosse, 2008). The geometry and con�guration

of the �at-bottom stirred tank equipped with a Rushton turbine and four ba�es are

presented in �gure II.1.

Figure II.1: Schematic representation of the ba�ed stirred tank simulated.

The dimensions of the simulated vessel are provided in Table II.1:
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TABLE II.1: Dimensions (in meters) of the simulated stirred tank.

C D DRZ H hz lB tB lp tp w
0.1500 0.1500 0.3000 0.4500 0.0600 0.0450 0.0050 0.0375 0.0020 0.0300

The working �uid was water at room temperature and atmospheric pressure (density

ρ = 998.2 kg.m−3, dynamic viscosity µ = 1.003 × kg.m−1.s−1 ) is used as working �uid.

The stirring speed is 150 RPM (revolutions per minute) what corresponds to an angular

velocity ω = 5π rad.s−1 or a frequency f = 2.5 Hz, the Reynolds number is 56250 according

to the following relation:

Re =
ρfD2

µ
(II.1)

The power number Np for the Rushton turbine is calculated using the torque C on

the impeller (P = Cω = 6.5 Watts) according to the expression:

Np =
P

ρf 3D5
(II.2)

From equation II.3 one obtains a value Np of 5.4, using this value we determine the volume

averaged viscous dissipation of kinetic energy ε according to the following equation:

ε =
Npf

3D5

V
=

4

27π
Npf

3D2 (II.3)

where V is the volume of the tank.

The resulting value for ε is 0.090 m2.s−3 or 90 W.m−3.

The numerical mesh composed of 1,129,140 cells and 1,184,282 nodes, the models,

settings and the numerical simulation procedure are identical to those used in (Delafosse,

2008). The standard k − ε turbulence model was implemented with a standard wall

function.

A symmetry boundary condition is used on the free surface. The domain is divided into

two zones: the �xed zone contains the walls, ba�es, the major part of the shaft, and the

volume outside the rotating zone RZ, the latter is a cylindrical domain, which contains

the impeller and a small portion of the shaft, as depicted in Figure II.1. A structured

mesh made of hexahedrons was built in the RZ zone (see Figure II.2).

The �rst step in the mesh design was a projection of all necessary edges on a horizontal

plane followed by the creation of as many surfaces as needed to further build the impeller
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II.1 Stirred tank and simulation set up

shape. Each face was meshed and the corresponding volume mesh was obtained using

the sweeping method. Due to this strategy, the mesh is made of prismatic cells and it is

almost invariant by rotation around the vertical axis.

Figure II.2: Mesh FLUENT views of the most important parts of the simulated tank: a) Top
surface of the tank, b) External walls of the tank, c) Shaft and Rushton turbine, d) Shaft and
rotating zone of the simulation domain.

The simulations and data treatment were performed with ANSYS-FLUENT R20 on

a parallel computer provided of with 40 processors Intel Xeon(R) E5-2660, 2.60 GHz.

The time step used in the simulation is ∆tCFD ≈ 5× 10−4 s corresponding to an angular

rotation of 0.5 degrees per time step and a Courant number less than 1 in the whole domain

to ensure numerical stability. Third order discretization scheme was implemented. For

each time step, 30 iterations of the non-linear solver were necessary to reach a plateau at

10−4 for the velocity and continuity residuals.
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The convergence toward a stationary �ow was evaluated through two criteria: the

equality between the torque on the turbine and the torque on the external walls of the

tank, and the equality between the volume integral of the turbulent dissipation rate and

the power input.

Figure II.3 shows that the torque on the turbine and the turbine shaft is practically

identical to the torque generated on the external walls of the tank

Figure II.3: Curves of the torque on the turbine and the torque on the external walls of the
vessel during the numerical simulation.

Regarding the second criterion, the ratio of energy dissipation to the power input is

about 98%, as suggested by the �gure II.4

Figure II.4: Curves of the turbine power and the energy dissipation in the vessel during the
numerical simulation.

The stationary �ow �eld was established after 139 turbine revolutions (4 days of sim-

ulation).
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To conclude with the presentation of the details regarding the simulation of the stirred

tank, it is essential to mention that the numerical results obtained by the CFD methodol-

ogy were compared with the PIV data reported in (Escudié, 2001). Figure II.5 (Delafosse,

2008) gives the experimental and numerical (RANS-k − ε) vertical pro�les of the mean

velocity for three di�erent positions close to the Rushton turbine. It is observed that the

PIV experimental data agree quite well with the results of the numerical simulation.

Figure II.5: Experimental and numerical vertical pro�les (RANS-k−ε) of the three components
of the mean velocity in the turbine jet.

II.2 Bubble column and simulation set up

The geometry used is the same as reported in (Laupsien, 2017). The vessel is of the

prismatic type with 0.06m deep (th), 0.35m wide (W ) and 2.0 m height (H). The liquid

height is �xed to 1.3m corresponding to a ratio of H
W

> 3.5 (see Figure II.6). The gas

injection sparger is located at 1
2
W , the sparger diameter is 20mm. The gas injection �ow

rate is 50 l
h
. Water at atmospheric pressure and room temperature was used as work

�uid.

The numerical simulation was carried out in the CFD code known as NEPTUNE. The

mesh is composed entirely of 2,016,000 hexahedron ("bricks").

Details of the force models implemented in this tool are provided below.

The drag force coe�cient is proposed by (Ishii & Zuber, 1979) and is applicable for

small bubbles of the spherical type:
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Figure II.6: Typical con�guration of a bubble column vessel.

CD =
24

Reb

(
1 + 0.1Re0.75b

)
(II.4)

where Reb is the bubble Reynolds number:

Reb = ρldb
|Ug − Ul|

µl

(II.5)

Likewise, the added mass force coe�cient is proposed by (Zuber, 1964):

CM
V =

1

2

(
1 + 2αg

1 + 2αg

)
(II.6)

The lift force is proposed by (Tomiyama et al., 2002). In this approach the lift coe�-

cient CL depends on the bubble Eötvös number E0.

Finally the turbulent dispersion force is based on the model developed by (Laviéville et al.,

2017). According to this approach the coe�cients of equation I.17 are de�ned as follows:

CTD =
(
⟨FD⟩ τ tlg − 1

) b+ ηr
1 + ηr

+
〈
CM

V

〉 b2 + ηr
1 + ηr

(II.7)

with the following de�nitions:
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τ tlg =
3

2
Cµ

Kl

ϵl

(
1 + β

V 2
r

Kl

) 1
2

(II.8)

Cµ = 0.09, β = 2.7, and Vr is the relative velocity of bubbles.

⟨FD⟩ =
1

8
CD

6

d2b

∣∣∣U⃗g − U⃗l

∣∣∣ (II.9)

ηr =
τ lgt

τ lgF
(II.10)

τ lgF = ⟨FD⟩−1

(
ρg
ρl

+ CVM

)
(II.11)

and

b =

(
ρl + ρlCVM

ρg + ρlCVM

)
(II.12)

Finally, it is important to mention that the simulation results for this system were

compared with PIV data obtained in the window indicated by the red rectangle in the

�gure II.7 (Laupsien, 2017). A good match between the local vertical velocity values of

the PIV and those predicted by the Rij+BIT (Reynolds ij model + Bubble Turbulence

Induced) model is con�rmed (see section I.1.2.2).

Figure II.7: Comparison between PIV values and simulated values for the window indicated by
the red rectangle shown (0 ≤ x ≤ 0.17 cm, 0.6 ≤ z ≤ 0.7 cm).
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Chapter summary and conclusions

This chapter shows the speci�c details of the numerical experiments carried out. For

the case of the stirred tank, the simulation carried out in the doctoral work of (Delafosse,

2008) was taken as a reference. The corresponding geometry consists of a stirred tank

provided with four ba�es, activated by a six-blade Rushton turbine (with a rotational

speed of 150 RPM) and water as working �uid at standard atmospheric conditions. The

simulation (unstable RANS-k − ε model) whose mesh has a million cells implements the

sliding mesh approach to model the turbine rotation. The mesh is therefore divided into

two zones: a rotating zone that contains the turbine together with a small volume around

it, and a �xed zone in which the rest of the volume of the stirred tank is located. After

20 s of simulation, the torque on the turbine is essentially equal to the torque on the

external walls of the tank. Similarly, for this simulation time, the volume integral of the

turbulent dissipation rate is very close to the input power. These �ndings con�rms the

numerical convergence to a stationary �ow. In addition, (Delafosse, 2008) compared the

numerical simulation results with PIV experimental data (Escudié, 2001). The results

of the simulation show a good agreement with the experimental measurements. For its

part, the data of the bubble column were taken from the numerical simulation carried out

by (Laupsien, 2017). In this case, the mesh is �xed and contains around 2 million grid

cells. (Laupsien, 2017) compared the numerical results with experimental PIV data for

a portion of the study domain. This comparison veri�es that the numerical simulation

leads to results quite close to those measured by (Laupsien, 2017).

Therefore, the numerical data to be analyzed in the following chapters are reliable,

since it comes from properly implemented numerical simulations whose results were veri-

�ed with experimental data.

The following chapter describes in detail the implementation of the ROMs for the sim-

ulated data of the described stirred tank. Subsequently, the results for high and low

frequencies are provided.
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Chapter III

Ba�ed stirred tank case

III.1 Proper Orthogonal Decomposition (POD)

III.1.1 Sampling and data processing

After reaching the stationary �ow condition1 (139 complete revolutions), the velocity �eld

data was collected (see chapter IV).

The sampling of the simulated data consists of a set of 3D velocity �elds (snapshots)

collected in the entire �uid domain (1,129,140 cells). A total physical time of 11 s,

representing around 28 complete rounds of the turbine and requiring 26 days of computa-

tional calculation, was spanned. During this time lapse, 386 snapshots were taken every

53 computational time steps. Consequently, the time interval between two samples is

∆tst = 0.03s (∆tst = 53∆tCFD). As will be shown later, the application of POD to 250,

271, and 386 snapshots will allow us to assess the sensitivity of the results. Figure III.1

provides an overview of the sampling data chosen in the present study.

Additionally, it is necessary to check that the number of snapshots and the time

window of data acquisition are su�cient to capture the structures carrying the highest

variance in the �ow. The total simulation time must be long enough to collect su�cient

information of the rotational motion while the sampling frequency must be high enough

to prevent the �ltering of small-scale �uid motion. Attention must be paid regarding

the sampling frequency to avoid the collection of snapshots �in phase� with the impeller

1In our context, stationary �ow condition refers to a �ow that is recurrent and to which a well-de�ned
mean can be assigned with respect to time. More precisely this requirement of stationary �ow �uid does
not necessarily imply a �ow that is independent of time.
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Chapter III. Baffled stirred tank case

Figure III.1: Sampling data sets collected for apply POD. Each rectangle represents a snapshot
of registered velocity.

rotation. Figure III.2 shows a dotted curve (�Continuous plot�,∆tCFD = 0.5ms) associated

with the angular rotation of the turbine (150 RPM,ω = 5π rad
s

or f = 2.5 Hz, T = 0.4

s). The sampling points (red circles) indicate the instants at which the snapshots of the

velocity �eld were registered ((∆tst = 53∆tCFD)). This �gure shows that the sampling

frequency is high enough to capture the expected periodic behavior while sampling events

are not in phase with the rotation motion. Finally, the frequency of data acquisition must

meet the Nyquist criterion. A sample rate of fS of 33.3Hz (0.03s) leads to a Nyquist

frequency fN of 16.7Hz. This means that frequencies lower than fN will not exhibit the

aliasing phenomenon. As will be seen later, the results obtained satisfactorily comply

with this upper limit value of frequency. It is indispensable to emphasize that the present

analysis will not capture structures whose period is longer than the total sampling time,

i.e., 11 seconds. In this sense, we say that we are performing a high-frequency analysis.

Naturally, to capture low-frequency structures, an analysis time much longer than 11 s is

required (see section III.2.2 ).

The sampling location in the simulation domain also implies particularities worth

mentioning.

A typical POD decomposition requires that velocity vectors and cell location be expressed
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Figure III.2: Schematic representation of the data sampling frequency. The continuous plot is
given by y = sin(5πt).

in the same frame of reference. This is the case when POD is performed on experimental

PIV data, since velocities are generally measured in a �xed plane and at �xed cell locations

(Liné et al., 2013; Rodriguez et al., 2013). Some particular attention must be paid when

dealing with CFD data. In a previous work, Mikhaylov and co-workers used CFD to

compute the velocity �eld in an unba�ed stirred tank. The problem was solved in a

rotating reference frame using a single mesh domain (Mikhaylov et al., 2021). Here also,

velocities are expressed in the rotating frame and calculated at some �xed position in that

frame. In the present work dealing with a stirred tank, the presence of ba�es necessitates

to split the �uid domain into two mesh zones, a �xed one and a rotating one, this strategy

is described extensively in (Joshi et al., 2011). In order to satisfy the above-mentioned

condition for a typical POD decomposition, velocities must be expressed in the inertial

frame for the �xed zone and in the rotating frame for the rotating zone. The export

of data, in FLUENT, extracts velocities expressed in the inertial frame. Thus, prior to

the POD treatment, the data collected in the rotating zone have to be converted into

velocities in the rotating frame (see III.3). The algorithm is applied to this transformed

velocity �eld, afterwards the reconstructed information is expressed in the inertial frame

of reference, and it is added to the one coming from the �xed zone. Then, the POD

treatment was performed separately for each set of velocities. This �per zone approach�

corresponds to the procedure adopted by Janiga when two mesh zones are present in the

CFD model (Janiga, 2019).
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Figure III.3: 2D schematic representation for the velocity vector expressed in the inertial and
rotating frames. The inertial frame is equivalent to the laboratory frame of reference. The inertial
and rotating frame share the same origin. The rotating frame rotates around the z − axis with
angular velocity ω. In that frame, the coordinates of the rotating cells are time independent.

On the other hand, a global POD treatment considering the two zones altogether

(with the entire velocity �eld expressed in the inertial frame) is attempted with a view of

performing the 3D reconstruction of the �ow �eld in the entire �uid domain. This global

approach has not been yet proposed in the literature for ba�ed stirred tanks and its

feasibility remains to be demonstrated. We will show that the global treatment is feasible

bearing in mind that its essential purpose is not to perform a hydrodynamic study of the

�uid �ow structure but a reconstruction of the velocity �eld through a linear combination

of POD modes. Evidence of that will be provided in the section of accuracy and e�ciency

assessment of the �ow �eld reconstruction.

Figure III.4 depicts schematically the steps involved in the typical and global treat-

ments.

Proposed con�guration for the global treatment: To better understand the fea-

tures of the global approach on POD results, it is of utmost importance to observe that

the data extracted from the CFD code are the components of the velocity vectors ex-

pressed in the inertial frame (laboratory reference frame). In addition, this information is

referenced with respect to a cell index. Thus, each 3D snapshot consists of a matrix whose

rows correspond to the index of the meshing cells or Cell Index (CI), and the columns
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Figure III.4: Schematic representation of the typical and global treatments.

correspond to the three components of the velocity vector in the inertial reference frame

IF . Figure III.5 outlines the matrix of the nth snapshot U⃗
(n)
IF (CI).

Figure III.5: Schematic representation for the nth snapshot of the 3D velocity �eld U⃗
(n)
IF (CI).

The �rst step of the POD treatment is to transform the matrix of the velocity �eld

presented in the �gure III.5 into a column vector of 3k rows, where the �rst k rows

correspond to the x-components, the next k rows to the y-components and the last k

rows to the z-components (see �gure III.6).

Subsequently, the snapshot matrix M is constructed by placing in chronological order
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Figure III.6: One-column array representation for the nth snapshot of the 3D velocity �eld

U⃗
(n)
IF (CI).

each of the column elements U⃗
(n)
IF (CI). In this way a 3× k ×N array is obtained, where

N is the total number of snapshots (k = 1,129,140 cells, N = 386 snapshots for our case)

The rows of the matrix M represent the cell indexes, and the columns represent the time

instants at which the data were registered. When moving along a row, the time changes,

however, a given line always corresponds to the same cell index CI, as illustrated in Figure

III.7.

III.1.2 POD typical treatment

III.1.2.1 POD analysis in the �xed zone

The POD analysis is performed using 386 snapshots containing the velocity vector be-

longing to the �xed zone of the mesh. The velocity components are here expressed in the

inertial frame IF . In this situation, the relationship between the cell index and the cell

location in the inertial reference frame is time independent. The eigenvalue spectrum or

mode spectrum is presented in Figure III.8 a, as well as the corresponding modal com-
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Figure III.7: Schematic representation for the snapshot matrix M . The superscript notation
(N) refers to the N (th) snapshot.

ponent and the vector �eld associated to the �rst mode. As expected, this �rst mode

accounts for 90 % of the total velocity variance, its modal component is positive, almost

time independent (Figure III.8 a,b) and thus this �rst mode reveals the structure of the

mean �ow. It is also remarkable the presence of two additional modes which carry about

10 % of the total velocity variance. These modes reveal a periodic �uid motion in the

region outside the rotating zone of the grid, induced by the impeller rotation. As shown

in Figure III.8 b, the corresponding modal components oscillate around zero with a period

of 0.4 s corresponding to the impeller frequency of 2.5 Hz. The possibility of identify-

ing these periodic modes is an outstanding advantage that justi�es the use of the POD

methodology. In addition, Figure III.8 c and Figure III.8 d, provide di�erent views of the

spatial con�guration contained in the �rst mode. Note that in Figure III.8 c an angular

sector of 3.5 degrees is visualized in a vertical XZ-plane. Well-known organized structures

are present: jet �ow, re-circulation loops, and vortices behind the ba�es. Additionally,

a predominantly axial �uid �ow can be observed near the shaft and in the regions above

and below the rotating zone. The seemingly absence of velocity vectors in the central

zone around the shaft (III.8 c) is an artefact due to the small number of grid points used

to describe the shaft surface itself. Since there is only one grid point every 30 degrees

around the shaft, the probability to �nd a grid node within the angular sector of only
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a) b)

c) d)

Figure III.8: POD analysis of the �ow in the �xed zone of the mesh: a) mode spectrum, b)
mode component associated with the top three ranking modes, circles: �rst mode, x's second
mode and rhomboids third mode (each data set is normalized by the variance corresponding to
each mode.), c) First eigen-vector visualized in a vertical XZ plane, d) Top view of the �rst
eigen-vector. The main feature of the mean �ow, i.e. radial jet �ow, re-circulation loops and
coherent vortices behind the ba�es are clearly visible (red boxes 1, 2 and 3).

3.5 degrees decreases as one approaches the shaft. In consequence, the side view of the

velocity �eld in the sector may not contain enough information close to the shaft resulting

in an apparent absence of data. Although, it can be seen, from the top view (III.8 d) that

the �ow �eld reconstruction at every grid point of the computational mesh is actually

obtained close to the shaft.

III.1.2.2 POD analysis in the rotating zone:

After having analyzed the �xed zone, the results corresponding to the rotating zone are

presented. The POD analysis is performed using the velocity vectors belonging to the

rotating zone of the mesh using again 386 snapshots. In this zone, the mesh rotates with
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respect to the inertial reference frame and the velocity �elds U⃗IF are obtained in di�erent

locations for each time instant. Consequently, the velocity �elds must be expressed in

a reference frame in which the velocity measurement coordinates do not change in time.

We recall here that the CFD code export procedure gives access to the Cartesian velocity

components in the inertial reference frame. The velocity components in the moving (or

rotating) frame RF , U⃗RF , were deduced performing the next steps:

U⃗ ′
IF = U⃗IF + r⃗(t)x ω⃗ (III.1)

U⃗RF = MRotation U⃗ ′
IF (III.2)

Where r⃗(t) is the position vector of any cell expressed in the inertial reference frame

IF . Importantly, the vector position of a cell di�ers from one snapshot to the other due

to the rotation of the mesh. This rotation takes place around the vertical axis (z-axis)

aligned with the shaft and the position vector is known from the current cell coordinates

r⃗(t) = r⃗(xIF (t), yIF (t), zIF (t)). MRotation is the time dependent rotation matrix that is

used to express the velocity U⃗ ′
IF in a frame attached to the turbine (the position of the

mesh in the �rst snapshot is used as a reference)2. Once the entire data set is treated, the

snapshot database now contains a time series of the velocity components in the rotating

reference frame RF . Since the mesh is subjected to a solid rotation, the location of the

cells, in the moving (rotating) frame, is now also time-independent. Once the transforma-

tions of equations III.1 and III.2 have been performed, the POD algorithm can be used.

The POD results obtained are displayed in Figure III.9.

According to Figure III.9 a one single mode dominates the ranking of the variance. This

dominant mode exhibits a time-independent behavior as indicated in Figure III.9 b. Ad-

ditionally, the second and third modes both oscillate with a frequency of 10 Hz or a

period of 0.1 s. To validate this time behavior the corresponding data was �tted using

the Matlab curve �tting toolbox® and taking as reference the function A sin (ω t + φ) .

The results from Table III.1 con�rmed that these modes oscillate with a period of 0.1 s

(10 Hz) corresponding to the passage of the ba�es observed from the moving frame. This

makes sense since from the rotating reference frame, four ba�e periods must be registered

2It is convenient to indicate that the rotation operation does not produce a change in the elements
of the vector �eld.
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for each complete turn of the turbine.

TABLE III.1: Sinusoidal �tting of the mode components, ak(t) associated to the second
and third POD modes.

Modal Ak ωk fk φk Rsquare
f

(2.5Hz)

coe�cient Amplitude Angular frequency Frequency Phase
(m/s) (rad/s) (Hz) (rad)

a1(t) 8.320 62.83 10 21.81 1 4
a2(t) 8.310 62.83 10 23.83 1 4

Reconstruction of the velocity �eld from the POD results per zone: After

applying the POD method to the �xed and rotating zones separately, it is now possible

to reconstruct the velocity �eld (expressed in the inertial reference frame IF ) for

the whole domain of the stirred tank. Since the two zones mentioned above were

processed independently, the reconstruction of the velocity �eld was done by placing

the reconstructed vector �elds in each region. Special attention must be paid to two

important details.

First, the entire velocity �eld was built as a superposition of the velocity �elds recon-

structed in each zone because the POD components involved are synchronized (the same

snapshots were used). Second, all the data (�xed and rotating zone) must be expressed

in the inertial reference frame IF . In the case of the �xed zone, non additional procedure

is necessary because the POD technique was applied on a �xed grid. Therefore, for this

area, the reconstruction of the velocity �eld is already expressed in the inertial reference

frame IF . The foregoing case is not valid for the rotating zone because the CFD data

were processed through the transformations of equations III.1 and III.2. Therefore, the

reconstructed velocity �eld in this region must be processed to express it again in the

inertial frame of reference. Speci�cally, the inverse transformations of equations III.1 and

III.2 should be applied to the reconstructed vector �elds shown in Figure III.9.

In summary, to produce a 3D velocity reconstruction for the whole �uid domain, the

recorded 3D �ow �elds are divided into a �xed zone and a rotating zone. The POD

method is applied directly to the �xed zone. On the other hand, the data corresponding

to the rotating part is transformed through equations III.1 and III.2 to generate the

velocity �elds U⃗RF expressed in the rotating frame of reference. Subsequently, a typical
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a) b)

c) d)

Figure III.9: POD results for the velocity �elds in rotating zone measured in the moving frame.
a) Mode spectrum: one mode dominates the variance ranking; b) mode components associated
to the three modes, circles: �rst mode, x's second mode and rhomboids third mode (each data
set is normalized by the variance corresponding to each mode). The modal component of the
�rst ranking mode is time independent and the second and third modes both oscillate with a
frequency of 10 Hz. These oscillations are related to the passage of the ba�es observed from the
moving frame. c) The �rst eigenvector in the plane Y Z three degrees behind one of the turbine
blades reveal the presence of the trailing vortices (red box 1), d) The �rst eigenvector in the
plane Y Z six degrees behind one of the turbine blades reveals the radial displacement of the
trailing vortices (red box 2).
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POD treatment is applied to these velocity �elds to obtain a reconstructed velocity

representation. Then the reconstructed information is again transformed back to the

inertial frame. Finally, the POD results of the �xed zone are added to those of the

rotating zone to generate the reconstruction of the entire domain. The described

procedure is feasible but long, complex, and cumbersome.

III.1.3 Global POD treatment

In the above treatments, velocities are expressed either in the �xed frame or in the moving

or rotating frame. Such velocity �elds are also referenced by a cell index, which does not

change over time, i.e., U⃗IF (CI, t), r(t) = CI. The POD method is a statistical method

that seeks a correlation between di�erent observed values. Also, the POD procedure does

not require that all data be recorded in the same location. In the present case, the cell

index is independent of time, while the relationship between the cell index and the location

of that cell at any time is easily accessible. Consequently, it is postulated that a global

POD treatment considering the entire mesh, with all velocities expressed in the inertial

frame, might make sense. The collected snapshots were analyzed using the numerical

procedure described in the previous sections, producing a decomposition of the time-

varying 3D �ow �eld on an orthogonal basis of 3D vector �elds called modes. It is crucial

to note that such a POD decomposition is performed in cell index space, which means

that the associated POD modes are not spatial modes and their physical interpretation (as

descriptors of the �ow structure) has to be questioned3. From the vector reconstruction

point of view, the above methodology means that the velocity is reconstructed for the

whole domain under the geometrical conditions (angle of rotation of the rotating zone)

corresponding to a given snapshot. Once the reconstruction has been performed under

these conditions, the velocity vectors belonging to the rotating zone must be placed in

the appropriate location, taking into account the rotation of the mesh. Presumably, this

will not a�ect the velocity reconstruction derived from the POD method, this hypothesis

will be con�rmed based on the error values calculated at the of this section.

3This fact is true for the part of a POD mode that belongs to the rotating zone. In contrast, those
parts of a POD mode that correspond to the �xed zone meet the condition of the typical POD method
and therefore have a straightforward physical interpretation.
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III.1.3.1 Energy analysis of the Global POD treatment spectrum

Figure III.10 shows the mode spectrum of the POD obtained by the global treatment.

The �rst three modes have 99.99 % of the total system variance (Figure III.10 b). The

�rst and second modes share the same variance content, while the third mode has slightly

lower variance. In addition, from modes 4 to 11, pairs of modes of equal variance are

observed. In general, one or more pairs of modes with the same variance content are

typical of coherent structures propagating in space (The phase di�erence between the time

coe�cients and the spatially shifted con�guration between modes leads to the movement

of the structures). Hence, this decomposition evidences a strong spatial organization of

the �ow in the form of multiple coherent structures with decreasing variance content.

Interestingly, the third mode is a single-mode, suggesting that it is associated with the

reconstruction of the mean �ow, the time-independent component of the 3D velocity

�eld. Similar results were obtained using 250, 286, and 386 snapshots, showing statistical

convergence of the POD methodology. The use of three di�erent time spans will allow

validation of the DMD results in section III.2. After this validation, we will be able to

compare the POD results with the DMD results.

Subsequent discussion will focus on the �rst three modes because they contain almost all

of the variance in the system.

III.1.3.2 Modes for the Global POD treatment: Modal components and

eigenvectors

Figure III.11 depicts the time variation of the normalized amplitude factors associated

with the �rst and second modes over 28 impeller turns (time span 386 snapshots). The

temporal organization of these modes is clear; their behavior is oscillatory, with an identi-

cal period (0.4 s equal to the rotation period of the turbine) and amplitude. In addition,

the phase shift between these modes is π
2
as can be seen from the circular con�guration of

Figure III.11 b. Similarly, the amplitude factor of the third mode, presented in III.11 c,

shows a periodic time variation (again with a period of 0.4 s) but its mean value is di�erent

from zero. Such a characteristic of the mean value together with the variance content of

the mode suggests that this third mode will be associated with mean �ow reconstruction.

The relatively small oscillations presented by that component of the POD are related to

the interaction between the periodic �ow in the turbine region and the other parts of the
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a)

b)

Figure III.10: a) POD eigenvalue spectrum for the �rst twenty modes and three di�erent time
spans: the �rst three modes represents almost the 100 % of the total system variance. It is also
evident a correlation between pairs in the upper modes until the eleventh one. b) Cumulated
variance POD spectrum for the time span of 386 snapshots. The cumulated variance until the
third mode already represents the 99.9 % of the total system variance.

tank domain.

To statistically verify the periodic behavior of the coe�cients a1, a2, and a3, the

probability density function or pdf functions associated with each modal component are

provided (see Figure III.12 a, b, c). The pdf functions are centered at the origin (except

a3), proving their periodic character, which coincides with the results reported by (Liné

et al., 2013).
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a)

b)

c)

Figure III.11: Graphical representation of the �rst three modes identi�ed with the global treat-
ment. For clarity, results are illustrated during 2 seconds only. a) Normalized time variation of
the �rst and second mode. The circles and the crosses correspond to the modal component a1
and a2 respectively. The dotted and continuous lines correspond to their �tting by continuous
sinusoidal functions. b) The circular con�guration reveals a phase shift of π

2 between the �rst
and second modes. c) Normalized time variation of the third mode. The solid circle corresponds
to the modal component a3. The dotted line corresponds to the sinusoidal �tting of the third
mode.
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a) a1(t) b) a2(t)

c) a3(t)

Figure III.12: Probability Density Functions for a1(t), a2(t) a3(t).

Moreover, a �tting of the modal components of the �rst eleven modes was performed,

using as reference the function A sin (ω t + φ) with the Matlab curve �tting toolbox®.

The intention is to determine if the higher modes with lower variance content have also

a periodical temporal behavior. In addition, obtaining continuous functions of the modal

components makes possible a reconstruction in time steps shorter than the sampling

interval, which is tremendously useful as it will allow the generation of �ow �elds that

have a higher (or customizable) time resolution. Table III.2 summarizes the results of the

corresponding mathematical �tting. All the modes considered exhibit a highly organized

temporal pattern since all the Rsquare correlation coe�cients are equal to 1. The �rst three

modes oscillate with a period of 0.4 s (2.5 Hz) corresponding to the impeller rotation speed

while the remaining modes turn out to be associated with harmonic frequencies of the

main frequency. It also is clear the presence of paired modes with the same frequency

and amplitude. Such a modal con�guration implies a strong correlation between duets

and is usually an indicator of coherent �ow structure being present. Furthermore, Figure

III.13 presents the relationship of the �rst mode with the fourth through tenth modes.

According to the results of Table III.2, each pair of modes correlates with the �rst in

terms of Lissajous patterns. For each member of each pair, the number of loops is related

to the corresponding harmonic mode. So, for example, the �fth mode has three loops
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since this is the third harmonic of the main frequency associated with the �rst mode. The

same reasoning applies to the sixth, eighth, and tenth modes.

TABLE III.2: Sinusoidal �tting of the mode components, ak(t) associated to the �rst
eleven POD modes.

Modal Ak ωk fk φk Rsquare
f

(2.5Hz)

coe�cient Amplitude Angular frequency Frequency Phase
(m/s) (rad/s) (Hz) (rad)

a1(t) 454.50 15.71 2.500 17.21 1 1
a2(t) 454.60 15.71 2.500 15.65 1 1
a3(t) 6.510 15.71 2.500 15.64 1 1
a4(t) 6.840 47.12 7.500 7.840 1 3
a5(t) 6.840 47.12 7.500 12.55 1 3
a6(t) 5.150 62.83 10.00 21.91 1 4
a7(t) 5.150 62.83 10.00 26.62 1 4
a8(t) 3.470 78.54 12.50 5.970 1 5
a9(t) 3.470 78.54 12.50 4.390 1 5
a10(t) 1.530 94.25 15.00 21.61 1 6
a11(t) 1.530 94.25 15.00 23.17 1 6

Figure III.13: Lissajous patterns obtained from the temporal variation of the �rst to tenth
modes.

The information obtained above concerning the ak mode components provides evidence

that the global POD approach produces an unexpected pattern of the temporal behavior

of the corresponding modes. Furthermore, a strong correlation is evident between all

frequencies and the rotational speed of the impeller. This result suggests that mode
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components capture information related to mesh rotation rather than �ow structure. Since

the amplitude factors associated with each mode are expressed as continuous sinusoidal

functions, it is possible to perform a continuous or quasi-continuous reconstruction of

the 3D velocity �eld at any instant and not only at the instants corresponding to the

analyzed snapshots. However, it is crucial to note that the modes produced by global

POD treatment are related to cell indices, or in other words, they are not spatial modes

as it is the case in typical POD analysis:

U⃗POD(CI, t) =
N∑
k=1

Ak sin (ωk + φk) ϕ⃗k(CI) (III.3)

For the cells belonging to the rotating zone, the relationship between the cell index and

the location in the inertial frame is given by a simple rotation around the z-axis. More

precisely, the exact location of any cell at any moment can be easily determined by

knowing its initial position and the speed of rotation of the rotating zone. The angle of

rotation is θ (t) = ω×(t − t0) where t0 is the instant corresponding to the �rst snapshot.

Finally, for those cells that belong to the �xed zone, the relationship between cell index

and spatial location does not depend on time this implies that the angle of rotation is

constant for all snapshots: θ (t) = θ0. To sum up, the global procedure to perform the

velocity �eld reconstruction contains only three steps:

� Perform the POD on the entire domain.

� Reconstruct the velocity �eld in the entire domain using cell index POD modes.

� Relocate the velocity vector of the rotating zone at their actual location.

To better identify the �ow characteristics derived from the implementation of the

previous steps (and the equation III.3) it is necessary to observe or analyze a time instant

of the rotating zone. Figure III.14 depicts the reconstructed �ow �eld close to the blade

impeller region. The moment when the blade passes through the middle of a 3.5 degree

circular sector is shown in this representation. Three main characteristics of a �ow �eld

generated by a Rushton turbine are visible. First, there is an axial �ow that moves

towards the blade. This e�ect is due to the suction produced by the passage of the

turbine blade (red boxes # 1). Secondly, a pair of symmetrical vortices develop behind

the blade (red boxes # 2). These highly organized structures represent a manifestation of
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the well-known trailing vortices, which play a very important role in mixing and transport

processes. These organized �ow structures would not be present if a time average of the

instantaneous velocity �eld (snapshots) is performed. This result represents an important

advantage of using the POD for velocity �eld reconstruction in comparison to a mean

�ow �eld description. Third, an axial jet �ow is produced at the periphery of the turbine

(red box # 3). The jet �ow is, on average, slightly de�ected upwards (despite a small

wiggle) in concordance with (Escudié & Liné, 2004; Delafosse, 2008). This �ow feature is

present in the third mode and can therefore be related to the mean �ow. Figure III.14 b

shows the velocity �eld obtained from the CFD simulation at the same instant of the POD

reconstruction (Figure III.14 a). A simple inspection of both �gures shows a very close

resemblance between the reconstructed �eld and the �eld generated by the simulator.

After presenting the most relevant results generated by the global POD method, it is

convenient to provide a general summary of the properties of this new methodology. The

results of the global POD treatment are not as intuitive as those obtained in the typical

POD method. For example, the eigenvector obtained through the global treatment does

not reveal the structure of the �ow. Nevertheless, this �non-standard� treatment o�ers

some striking features worth noting. First, the resulting modes preserve the variance

content and allow a direct reconstruction without applying the per-zone method. This

fact is an advantage in terms of computational resource savings by avoiding the use the

transformations included in Equations III.1 and III.2. Second, the rotational frequency

of the mesh is present in the temporal behavior of all modes. This fact does not reveal a

periodic �uid motion but re�ects a correlation between velocity data as the mesh occupies

the initial location again after every turn. In that sense, this observation is related

to the statistical nature of POD. This type of correlation emerges here in the modal

components because the velocity �eld in every cell is strongly correlated with that obtained

one turn later. Higher frequencies can be related to a high angular periodicity of the

mesh. Third, examination of the local characteristics of the cell index modes provides

insight into the results of the global POD treatment. The �rst and second modes are

signi�cant in the rotation region and almost negligible outside this zone (the same is true

for the higher-order modes). Both contain only radial and angular components and axial

components of almost zero magnitudes. Since these modes do not arise from a typical

POD procedure and refer to a cell index, there is no point in trying to visualize them as
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a) b)

Figure III.14: a) Reconstruction of the velocity using the �rst three modes. From the left to
the right side the most important features of the �eld are marked by numbered dot rectangles:
Upward and downward axial pumping �ow (red boxes #1), vortices generated by the passage
of the blade (red boxes #2), and radial �ow out of the impeller-sweeping zone (red box #3), b)
Velocity �eld from the CFD data in the same snapshot of the POD reconstruction.

such. However, as already emphasized, their contributions to the reconstructed velocity

�eld can be identi�ed. These �rst two modes are involved in the description of the trailing

vortices.

On the other hand, the third mode is present throughout the tank, including the
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rotating zone, and all three components (axial, radial, and angular) are present in this

mode. Although, the three components are not present everywhere. In the zone swept

by the rotating mesh, the third mode contains essentially an axial component above and

below the turbine and an intense radial component away from the blades (see Figure

III.15). Considering that the corresponding mode component is almost constant, the

third mode seems to contain the axial �ow corresponding to the pumping �ow rate of the

turbine and a radial �ow rate associated to the jet �ow created by the radial impeller.

Note that both of these �ow structures are, on average, independent of the actual mesh

position. And as one might expect, reconstructing the actual �ow �eld in the rotating

zone requires using the �rst three modes together. In other words, this zone needs a

combination of the characteristics of the dominant modes. For the �xed zone we also

obtained another striking and expected result. The third mode of the global treatment

is very similar to the �rst mode of the typical (per-zone) POD treatment in the �xed

zone (see Figure III.8). This is a positive result in favor of the validity of the global

method because, in a �xed domain, the per-zone and global approaches are equivalent.

Indeed, the con�guration of the third global POD treatment mode is very similar to the

�rst per-zone POD mode; a simple inspection of Figures III.8 and III.15 con�rms the

equivalence in the respective results. Both cases reveal the large circulation loops and

the jet directed radially outward from the region swept by the turbine. Likewise, the

vortices behind the blades are present in both �gures.

Consequently, the global treatment of the entire volume leads to identical results in those

regions where the location of the cells does not change over time. In the particular case

studied here, it was observed that the constant mode in the rotation zone presents a

contribution (independent of time) to the �ow. Structured mesh con�guration probably

played a role here. The z-location of the cells in the rotation zone does not depend on

time, being the mesh is invariable to rotation outside the zone swept by the impeller.
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a) b)

c)
d)

Figure III.15: Flow reconstruction using the third mode. a) In an angular sector of 3.5 degrees
visualized in a vertical XZ plane. The circulation loops are marked with red boxes 1 and 2. b)
Coherent structures made of cylindrical eddies rotating clockwise are clearly observed behind
the blades reveals the presence of clockwise vortices next to the ba�es as marked by red boxes
3 and 4. c) and d) shows a zoom of two of the coherent structures behind the ba�es.

III.1.3.3 Dynamical representation of the reconstructed �ow using the three

�rst POD modes

As already stipulated, the visualization of the results from the global method is less di-

rect than the corresponding one from the typical method (see the analysis of the equation
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III.3). This situation does not imply the impossibility of generating a dynamic represen-

tation of the reconstruction obtained by the global method. Using the sinusoidal �t of the

amplitude factor from Table III.2 is possible to perform a �ow �eld reconstruction for a

complete turn of the turbine, taking a temporal resolution of the CFD (∆tCFD = 0.5ms),

which corresponds to 714 snapshots. The resulting snapshots were then superposed to

generate a dynamic visualization or video of the plane reconstruction shown in Figure

III.14.

The generated dynamic visualization will only be available for the digital version of

this document following the next link 3POD modes POD Reconst FITTING.avi. The

video shows that the axial �ow (boxes # 1 in Figure III.14 a) and the jet �ow (box # 3

in III.14 a) are essentially constant. The traveling vortices also appear each time a blade

passes through the viewing plane. Once such organized structures are generated, they

move radially away from their point of origin.

The POD reconstruction for the whole domain is contained in arrays whose size is much

smaller than the CFD analogous. The dimension of each POD mode is 3 × L and each

modal component has a size of N × 1. In our case of study, L = 1.129.140 elements,

N = 386 snapshots, and only the �rst three POD eigenvectors with their respective

modal components are necessary to recover 99 % of the total variance of the system. The

corresponding storage requirement (taking 3 modes) is (3× L× 3) = 9× L for the POD

vectors plus the temporal components (N × 3) = 3 × N elements, the total number of

elements being 1 × 107 or 0.08 GB4 in total. The CFD data size 3 × L ×N = 1.3 × 109

elements which is equivalent to a data storage of 9.7 GB. Thus, 121 times more storage

capacity is required when using CFD data.

III.1.3.4 Accuracy of the �ow �eld reconstruction using Global POD treat-

ment

Once the results obtained through the global POD method have been presented, it is

pertinent to evaluate the accuracy associated with the proposed POD reconstruction.

Equation III.4 provides the quality of the approximation as a function of the number

of modes p used for the �ow �eld reconstruction from global approach. Equation III.4

estimates a maximum average relative error EMAR. First, the average of the maximum

4GB = Gigabyte.
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error between the reconstructed velocity �eld and the CFD velocity �eld is calculated for

every snapshot. Then by dividing this quantity by the tip blade velocity: Utip = 1.18ms−1,

a normalized averaged error is obtained. This quantity is relevant because the POD

technique is designed to minimize the average error between the reconstructed data and

the experimental data (CFD data in this case).

Equation III.4 was evaluated using 2, 3, 5 and 10 PODmodes (time span of 386 snapshots).

The results are provided in the Table III.3 and depicted in Figure III.16.

EMAR =

∑N
i=1 max

(∥∥∥U⃗ i
POD − U⃗ i

CFD

∥∥∥)
N

Utip

(III.4)

TABLE III.3: Normalized Averaged Error as a function of the number of modes used for
the reconstruction.

Number of modes 2 3 5 10
Normalized Averaged Error (%) 62 6 5 3.5

Figure III.16: Maximum average relative error for 2, 3, 5 and 10 POD modes.

Using the �rst and second POD modes, an average error of 62% is obtained. These

modes are independent of the third mode whose contribution allows the reconstruction of

the mean �ow. Therefore, the POD reconstruction associated with the �rst two modes

does not provide the mean �ow information, such a situation implies a considerably high

mean error. The inclusion of the third mode in the reconstruction produces a signi�cantly
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lower mean error. This result is fully consistent with the analysis already presented.

According to the Table III.3, the maximum error becomes approximately 6.0 % when

the third mode is included. Adding more modes to the reconstruction slowly reduces

the error down to 3.5 %. This information shows that the global treatment allows the

reconstruction of the velocity �eld with a low average error.

In addition to the error determined by Equation III.4, it is pertinent to quantify the

error considering the number of cells in which the error is signi�cant, that is, the error

as a function of the accumulated percentage of cells. This error computation allows

a stricter evaluation of the error committed in the reconstructive approximation of the

POD. Equation III.5 estimates the local di�erence between the global POD reconstruction

of the velocity �eld and the CFD velocity �eld as a fraction of the local CFD velocity

magnitude for each cell of the mesh.

E (r⃗, t, p) =

∥∥∥U⃗POD (r⃗, t, p)− U⃗CFD (r⃗, t)
∥∥∥∥∥∥U⃗CFD (r⃗, t)

∥∥∥ (III.5)

In contrast to Equation III.4, Equation III.5 provides the error due to the recon-

struction in a localized and instantaneous manner because the respective calculation is

performed for each cell. For the present work, i.e., an unsteady representation of the �uid

�ow, the de�nition of Equation III.5 is more appropriate as it allows a more accurate

evaluation of the POD reconstruction.

Figure III.17 provides a bar chart of the error distribution corresponding to three di�erent

snapshots (n = 1, 23, 386) using p = 5 and p = 10 POD modes for the POD reconstruc-

tion. For the case of 5 POD modes, about 90.5 % of the total number of cells have an

error smaller than 3 %. The relative error of the rest of the cells is distributed according

to the following categories: 4.5 % of the cells have an error greater than 3 % and less than

5 %. The remaining 5 % has an error greater than 5 % and less than 27 %.

The previous results are improved by using 10 POD modes to perform �ow reconstruction:

98.5 % of the total number of cells have an error less than 3 %, 1 % of the cells have an

error between 3 % and 5 %. The remaining 0.5 % error is greater than 5 % and less than

27 %. Table III.4 provides the same results in terms of the percentage of cells with an

error within a given range.

As a complement to Table III.4, Figure III.18 shows the information of the localized
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Figure III.17: Bar charts of local and instantaneous relative error for three di�erent snapshots
using 5 and 10 POD modes.

TABLE III.4: Percentage of cells with an error E (r⃗, t, p) comprised in a given range for
p = 5 and p = 10 modes.

Number of snapshots
E (r⃗, t, p) < 3% 3% < E (r⃗, t, p) < 5% 5% < E (r⃗, t, p)
p = 5 p = 10 p = 5 p = 10 p = 5 p = 10

1 90.5 98.5 4.5 1 5 0.5
23 90.4 98.0 4.5 1.4 5.1 0.6
386 90.5 98.5 4.5 1 5 0.5

error versus the cumulated percentage of the number of cells for the reconstructions of 5

and 10 POD modes. For the case of 5 POD modes, 90.5% of the mesh shows an error

less than that indicated by the dotted red line (3%). For 10 POD modes, the results are

even better since 98.5% of the cells have an error of less than 3%.
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Figure III.18: Cumulative percentage of the number of cells as a function of the relative error
calculated by equation III.5, using either 5 and 10 POD modes. An increase in the number of
POD modes leads to an upward shift of the curve. The vertical red line indicates 3% relative
error.

The local error provided by Equation III.5 also allows the cells associated with a given

error to be located in space. Figure III.19 provides an example for the cases evaluated

in Table III.4 and Figures III.17 and III.18. The POD reconstruction is inaccurate in a

limited number of cells that are located close to the non-conformal interface connecting

the two mesh zones. Increasing the number of modes clearly improves the quality of the

velocity reconstruction. It is plausible that the inaccuracy in the �at bottom of the tank

is related to low-frequency macro instabilities that are not present in the reconstruction

(Yianneskis et al., 1987; Nikiforaki et al., 2003; Micheletti & Yianneskis, 2004; Doulgerakis

et al., 2011). The last part of this chapter will deal with the corresponding low-frequency

analysis.

An exhaustive study of the precision obtained by using the global POD method as a tool

to reconstruct the �ow �uid in the agitated tank was carried out. The results obtained

show that the method is feasible and leads to an accurate reconstructive approximation

of the �uid �ow in the studied system.
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a)

b)

Figure III.19: a) Localized error bigger than 5 % for the 1th, 23rd and 386th snapshots from
a 5 POD modes reconstruction. b) Localized error bigger than 3 % for the 1th, 23rd and 386th

snapshots from a 10 POD modes reconstruction.

III.1.3.5 Numerical cost of a spatio-temporal reconstruction using the Global

POD technique

The use of the POD methodology also has to consider the e�ciency of implementation

compared to using standard CFD tools. With this idea in mind, it is interesting to

propose a quasi-continuous spatio-temporal reconstruction of the 3D unsteady �ow �eld,

i.e., a POD approximation of the �ow �ied with a higher temporal resolution than the

initial CFD data used in the POD analysis (386 snapshots). Based on the previous

POD results and after identifying the continuous function associated with the modal

components, we reconstructed 714 snapshots (one snapshot every 5.6 × 10−4 s) of the

3D �ow �eld to complete 0.4 s, the duration of one rotation. The temporal parameters,
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i.e. duration and resolution used to perform this POD reconstruction are the same as

in the CFD calculation. Obviously, this analysis will allow comparing the time cost of

the velocity �eld reconstruction and the corresponding computational �uid mechanics

approach.

Table III.5 summarises the wall clock times required to simulate a complete turn of the

entire domain and perform the POD reconstruction by a global treatment using 5 and 10

modes. The �rst two lines refer to the results for �ve and ten POD modes. For both cases,

the setup time (time to read the data and perform the POD decomposition) is the same

because the input data and numerical operations are identical. The reconstruction of the

3D �ow �eld takes longer when considering ten modes than when considering 5 modes,

133.6 s for 10 modes versus 64.5 s for the 5-mode reconstruction. The corresponding time

for the CFD simulation is 2.7 × 104 s, which corresponds to 58 (50) times the duration

of the POD reconstruction using 5 (10) POD modes.

TABLE III.5: Comparative summary of the time duration for the CFD and POD recon-
struction procedure. (N.A. = Not Applicable)

Procedure
Number of
POD modes

Set up time
(s)

Reconstruction
time (s)

Total time
(s)

tPODReconst

tCFD

POD
Reconstruction

5
400

64.5 464.5 1.7x10−2

10 133.6 533.6 2.0x10−2

CFD N.A. 2.7x104 N.A.

The savings in calculation time are signi�cant, especially when the reconstruction pro-

cess is carried out only once. Comparing the processing times between the two numerical

methodologies shows the advantage of using the global POD method for �ow reconstruc-

tion. Using the reconstructed information to feed other physical and biochemical models

is therefore attractive, especially if the latter seek a more accurate description of the phe-

nomena involved. For example, a quasi-continuous 3D POD reconstruction of the velocity

�eld with minimal computational cost can be interesting for Lagrangian particle tracking

and/or compartmentalization of the �uid domain.

The following section presents the details corresponding to the implementation of the

DMD method for the stirred tank already studied with POD. The DMD constructs a

linear dynamic approximation of the �uid �ow. The results obtained will be compared

79



Chapter III. Baffled stirred tank case

with those generated by the global POD method. Some works (Semeraro et al., 2012;

Schmid et al., 2012) suggest that POD and DMD methods should be equivalent for a

highly periodic system. There are no convincing numerical examples of such veri�cation

in the consulted literature. From our results, we will show that both methodologies are

indeed equivalent, which represents an interesting benchmark case for the comparison

between POD and DMD in a highly complex experimentally veri�ed system. In addition,

it will be shown that DMD can identify and capture low-frequency, low-energy structures

reported in previous experimental work (Yianneskis et al., 1987; Nikiforaki et al., 2003;

Micheletti & Yianneskis, 2004; Doulgerakis et al., 2011). Obviously, POD was not able

to capture these peculiar low energy structures. The possible reasons for this �nding will

also be discussed in the development of the next section III.2.

III.2 Dynamical Mode Decomposition (DMD)

III.2.1 High frequency analysis

The exposition and analysis of the DMD (companion matrix algorithm) begin with the

high-frequency case. We will present �ndings similar to those already discussed in the

previous section III.1. In addition, this section provides information on the dynamic stabil-

ity and statistical convergence linked to the dynamic decomposition method. Arguments

supporting the equivalence between the POD and DMD methods are provided.

III.2.1.1 Sampling and data processing

The sampling procedure used for the implementation of the DMD is identical to the one

discussed in the subsection IV.1. The information generated by the method will not

contain frequencies (�ow structures) beyond the cut-o� imposed by the Nyquist sampling

theorem. As already stipulated the highest frequency captured by DMD analysis is limited

by the expression: 1
2 tS

, where tS is the sampling period. Likewise, the approach used for

formulating the snapshot matrix M is the same implemented in the Global POD method.

In this way, the application of the DMD method considers the whole simulation domain

expressed in the space of cell indexes, considering the three sets of snapshots or durations

indicated in IV.1, however the focus will be on the case of 386 snapshots. It is worth

mentioning that similar to the case of POD, the literature consulted does not report the
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implementation of DMD in domains with moving or sliding meshes.

III.2.1.2 Dynamical stability and statistical convergence of the DMD modes

The DMD algorithm o�ers the possibility to verify the dynamical stability and the statis-

tical convergence of the calculated modes. This information is relevant and practical as it

allows to establish whether the method can generate appropriate dynamics associated with

the input data. For example, the position in the complex plane of the eigenvalues λDMD

of the companion matrix M makes it possible to identify dynamically decaying, stable (or

steady), and dynamically growing structures according to the criteria described below.

When the eigenvalues lie within a unit circle, the corresponding mode structures have a

decaying behavior. The steady modes will present eigenvalues lying on the perimeter of

the unit circle. Finally, modes whose eigenvalues lie outside the unit circle correspond to

growing mode structures. It is worth mentioning that the modes represented by points

close to the unit circle have a dynamic attractor-like behavior (Mezi¢ & Banaszuk, 2004;

Mezi¢, 2005; Rowley et al., 2009). This fact means that the stable modes will evolve to a

steady-state even if their conditions are slightly disturbed. Figure III.20 shows the stabil-

ity DMD results for the three durations or snapshots sets already analyzed with POD. The

three eigenvalue spectrums are mainly composed of dynamically stable modes (dynamic

attractor). In addition, we �nd some λDMD values within the unit circle that represents

dampening structures. The predominant structures must be in the group of stable modes

since the dynamics of the system must be represented in the expansion I.35 by dominant

terms that do not diminish or grow without limit. We will soon provide numerical argu-

ments to support such a hypothesis. Figure III.20 also provides the maximum real and

imaginary values for the studied λDMD spectra. The presence of maximum real values

equal to unity implies zero imaginary parts and, therefore, the existence of non-oscillatory

modes whose magnitude is constant, e.g., the mean �ow (third POD mode). In contrast,

imaginary parts equal or close to unity imply pure oscillatory modes without damping,

i.e., structures with a time behavior identical to the �rst and second POD modes. These

dynamic features are congruent (but not exclusive) with a closed system con�guration

like the stirred vessel studied in this work.

Another way to visualize the dynamical stability of the spectra consists of separating and

analyzing the exponential and oscillatory parts of each jth mode. The �rst part (σj
DMD)
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(growth rate) gives visibility to the temporal bounding (exponential behavior) of the

modes. The second part (ωj
DMD) is related to the oscillatory behavior of every element of

the spectrum.

Next, we will analyze the information regarding the exponential behavior of the spectra.

The results corresponding to the oscillatory part will be presented later with the energy5

analysis of the DMD modes.

(a) DMD dynamical stability plots time step 0.03 s for 250,271,386 and snapshots

Number of snapshots
Maximum

real part of λDMD

Maximum
imaginary part of λDMD

250 1.00 0.998
270 1.00 0.999
386 1.00 0.999

(b) Maximum values of the real and imaginary parts of the λDMD parameter

Figure III.20: Summary of the dynamical stability results for the spectra corresponding to
250, 271 and 386 snapshots. Obviously, the parameter λDMD should not be confused with
the parameter λPOD. The former is a complex number containing the DMD frequency
and the DMD growth rate, the latter is a measure of the covariance calculated in the
POD method.

Figure III.21 provides the values of σj
DMD for the three cases analyzed. Most point

values are close to the horizontal stability line (σj
DMD = 0 s−1). Some of the values lie

5Note that in this case, the term energy refers to the energy content carried by the vector �eld and
not to the energy of the �uid. This result is based on the de�nition of the snapshot matrix M which does
not involve the volumes of each cell that constitute the numerical mesh
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below the stability line associated with temporally decaying modes. In addition, certain

growth rate values are slightly larger than zero. As will be seen later, such DMD modes

carry a very small amount of energy. The largest magnitude for each data set shown is

of the order of 10−3 s−1. This temporal behavior of the spectra means that most of the

terms of the DMD expansion I.35 will not decay or increase in an unbounded manner over

time.

(a) DMD stability plots time step 0.03 s for 250,271,386 and snapshots

Number of
snapshots

Maximum

σj
DMD (growth rate s−1)

250 0.005
271 0.009
386 0.002

(b) Maximum values of the real and imaginary parts of the λDMD parameter

Figure III.21: Summary of the growth stability results for the spectra corresponding to
250, 271 and 386 snapshots.

To conclude the stability analysis, it is relevant to note that the dynamic stability

condition is obtained for the three sets of snapshots analyzed. Even the increase of 136

snapshots (when going from 250 to 386 snapshots) or 4.1 minutes (10.2 turns) does not

modify the stability results in the DMD spectrum. The most important direct implication

of this behavior is that the proposed dynamic decomposition is statistically stable or has
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reached statistical convergence. These statistical conditions imply that parameters such

as average and variance of the velocity at any point in the tank are independent of time.

This scenario is favorable if one wishes to use the proposed decomposition (reconstruction)

as input data to feed models such as the compartmentalization model.

III.2.1.3 Energy analysis of the DMD spectrum

Similar to the POD procedure, the DMD methodology allows calculating the speci�c

energy associated with each mode. These calculations lead to a spectrum ranking. It is

worth recalling some of the DMD details mentioned in the chapter I. First of all, we have to

point out that the DMD modes are not orthogonal, which implies that the energy rankings

of the POD and the DMD do not necessarily coincide (except in very particular cases for

highly periodic systems). From this feature derives the fact that the total energy of the

DMD spectrum is not in general equal to the total energy contained in the vector �eld.

Second, there is no single way to determine the energy associated to each DMD mode.

According to the consulted literature, one can calculate the energy contained in each

DMD mode by calculating the square of the amplitude of the corresponding DMD vector∥∥∥Φ̃j

∥∥∥2. Alternatively, (Tissot et al., 2014) suggests that the square of the amplitude of

each mode has to be weighted by the corresponding time coe�cient to correctly calculate

the energy of each element of the DMD spectrum Ej =
∥∥∥Φ̃j

∥∥∥2 e
2σ

j
DMD

τ−1

2σj
DMD τ

.

Below we present the results based on the two criteria mentioned above. Surprisingly,

the energy rankings for each criterion coincide. Unlike the POD algorithm, the dynamic

decomposition procedure allows for an analysis of the energy spectrum in terms of three

di�erent DMD parameters: σj
DMD or σj (growth rate), f

j
DMD or fj (oscillation frequency),

and mode number. The following discussion will be carried out in the order of appearance

of the parameters just cited.

Figure III.22 consolidates the energy information of the spectrum as a function of the

growth rate for the 386 snapshots data set. The normalized energy values presented are

those corresponding to the typical ranking criteria. Figure III.22 a reveals that modes

with very negative growth rate values carry a very small quantity of energy on the order

of 10−7 or less. This behavior implies that these elements of the spectrum quickly vanish

and contribute slightly to the total energy content of the vector �eld. Furthermore, one

observes very small negative (to the left of zero) and very small positive (to the right of
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zero) growth rate values (see Figure III.22 b). These values correspond to stable DMD

modes having a relatively small energy contribution, no more than 10−6. Finally, we have

σj
DMD values almost equal to zero with normalized energy values close to unity. As will be

shown later in this group of values we will �nd the dominant and therefore most important

modal structures associated with the decomposition (reconstruction) of the �uid �ow.

a)

b)

Figure III.22: Spectral ranking results for σj
DMD corresponding to the DMD modes for the

386 snapshots case typical ranking criteria: a) Modes with a very negative sigma value carry
very small amounts of energy compared to modes whose sigma value is approximately zero. , b)
Approach in the neighborhood of σj

DMD = 0s−1. Both positive and negative sigma values have
a very small energy content compared to modes whose sigma values are approximately zero.

Similar to Figure III.22, Figure III.23 provides the spectrum energy information as

a function of the growth rate for the 386 snapshot data set. However, the normalized

energy values presented were calculed using the alternative ranking criterion. As in the

case of the typical energy criterion very negative growth rate values are observed. In

85



Chapter III. Baffled stirred tank case

this case, the corresponding amount of energy is even smaller (less than 10−9) than the

analogous to the typical criterion. A cluster of modes is also evident in the vicinity of

σj
DMD = 0 s−1. Figure III.23 b reveals that the elements of this cluster (the leftones and

the rightones) are almost negligible in terms of energy content. Once again we observe

an important group of modes with near-zero σj
DMD.

a)

b)

Figure III.23: Spectral ranking results for σj
DMD corresponding to the DMD modes for the

386 snapshots case Tissot ranking criteria: a) Modes with a very negative sigma value carry
very small amounts of energy compared to modes whose sigma value is approximately zero. , b)
Approach in the neighborhood of σj

DMD = 0s−1. Both positive and negative sigma values have
a very small energy content compared to modes whose sigma values are approximately zero.

Continuing with the energy analysis of the DMD spectrum, we will carry out a dis-

cussion similar to that of the growth rate. This time the reference parameter will be the

frequency f j
DMD associated with each mode.
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Figure III.24 gives the energy rankings (typical and alternative criteria) according to the

frequency f j
DMD in Hz corresponding to each DMD mode. There are some features pre-

sented in the �gure worth highlighting. First, we note that the results are symmetrical

about the 0 HZ frequency. This symmetric con�guration implies some practical aspects.

First, the existence of "mirror pairs" in frequency allows the mathematical description of

traveling waves which are structures expected in the �ow �eld description (trailing vor-

tices). Furthermore, the expression I.35 has to produce a real vector �eld for k = 0, such a

result is achieved when the superposition of the DMD modes annihilates or eliminates the

imaginary terms of each element. Such a condition is possible when one has conjugated

pairs of modes. In addition, the presence of speci�c frequencies with a predominant energy

content is evident. The top three corresponds to 0 and 2.5 Hz. The next ranking positions

are modes with frequencies of 7.5, 10, 12.5, and 15 Hz which are harmonics of the 2.5 Hz.

These predominant DMD frequencies coincide with those of the POD method. Thus the

predominant DMD and some POD modes oscillate with identical frequencies. Finally, it

remains to verify if the decreasing order of energy of the DMD spectrum matches with the

corresponding to the POD. Figure III.25 allows us to conclude that, indeed, both spectra

coincide when the corresponding information is sorted in decreasing energy order. As in

the case of the POD, the dynamic decomposition generates two modes carrying a total

of 81 percent and a third mode with a relative contribution of 16 percent. This result

suggests that these top three corresponds to the 1st and 2nd, and 3rd POD modes.

To provide more support to the discussion about the energy content of the DMD

spectra, we provide in the Appendix A the �gures (analogous to �gures III.22, III.23,

III.24, III.25) corresponding to the sets of 250 and 271 snapshots. A simple inspection of

the attached information allows us to con�rm that the results are consistent with those

exposed for the case of 386 snapshots.
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a)

b)

Figure III.24: Frequency spectral ranking results corresponding to the DMD modes for the 386
snapshots case: a) Typical ranking criteria, b) Alternative ranking criteria. The black boxes to
the left of 0 Hz represent the "mirror" pairs of 2.5, 7.5, 10.0, 12.5, and 15.0 Hz. The horizontal
dashed line represents a normalized energy value of 10−6.

The table III.66 summarizes the information of the dominant DMD modes in the

spectrum. All growth rates provided are close to zero. As obtained for the POD case, the

�rst three modes contribute almost 100 percent of the total energy. The �rst and second

modes have a frequency of 2.5 Hz. The third mode of ranking has an energy content of 16

percent and a frequency of 0 Hz. The information from the DMD analysis suggests some

6The table shows only one conjugate pair of modes 3,61,279,335.
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Figure III.25: POD and DMD (alternative criteria) spectrum mode for the 386 snapshots case.
The ranking of the modes is identical for both methodologies.

interesting facts. The �rst three modes will be su�cient to reconstruct the �uid �ow, as

they carry almost all the information in the system, and the third mode is related to the

mean �ow. We also observe the presence of harmonic modes of 2.5 Hz. These elements of

the spectrum lead the energy ranking after the �rst three modes. The following section

III.2.1.4 presents the results associated with the DMD vectors and the �uid vector �eld

reconstruction. The POD and DMD reconstructions are also compared. The �ndings

obtained will con�rm the equivalence between the two data-driven methods.

TABLE III.6: Summary of DMD parameters for the top seven modes.

DMD mode number Normalized energy Growth rate σj (s
−1) Frequency fj (Hz)

112 0.420 9.61× 10−7 2.5
113 0.420 9.61× 10−7 2.5
83 0.159 1.15× 10−8 0.0
335 9.50× 10−5 −1.16× 10−6 7.5
279 5.40e− 5× 10−5 −1.47× 10−6 10
3 2.55× 10−5 2.09× 10−6 12.5
61 4.77× 10−6 1.21× 10−6 15

III.2.1.4 Dynamical representation of the reconstructed �ow using the three

�rst DMD modes

We will start the section by discussing the time parameters corresponding to the top

three modes DMD 112, 113, and 83 (see table III.6). Figure III.26 provides a graphical

representation of these leading DMD modes for 2 seconds. It is evident the oscillatory
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behavior presented in the real parts (red rhomboids) and the imaginary parts (blue circles)

of the modal coe�cients 112 and 113. Additionally, the real and imaginary part of each

mode presents a phase of π
2
(see the Figure A.8 in the appendix A). These kinds of

temporal structures are associated with the representation/reconstruction of traveling

waves. Regarding mode 83 one observes that the real part is constant and non-zero

while the imaginary part is zero. Therefore mode 83 does not oscillate and has a constant

behavior in time. Similar results to those of modes 112, 113, and 83 were already reported

in an experimental work in which the DMD method was also used in a stirred tank

(de Lamotte et al., 2018a).

Figure III.26: Graphical representation of the top three modes (temporal part) identi�ed with
the DMD method. For clarity, results are illustrated during 2 seconds only. Real (red rhomboids)
and imaginary (blue circles) parts of the 83rd,112th, and 113rd DMD modal coe�cients.

Continuing with the analysis of the DMD results, we will now present the correspond-

ing spatial representation of the DMD vectors. It is very important to emphasize that

the vectors obtained from DMD (neither the Ritz vectors nor the DMD vectors) do not

constitute an orthonormal basis (see Chapter I ) which is the case for the POD vectors.

Because of this fact, it is convenient to compare the �uid �ow reconstruction obtained for

each methodology.

Figure III.27 depicts a comparison (planes XZ and XY) between the POD reconstruc-

tion (3rd POD mode) and the corresponding DMD reconstruction (83rd DMDmode) of the

mean �ow. A simple inspection of the information shown allows the equivalence between

the two modes to be con�rmed. All structural features obtained by POD reconstruction
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(see also Figure III.15) are also obtained by the DMD procedure.

a) b)

c) d)

Figure III.27: Comparison between the POD reconstruction and the corresponding DMD
reconstruction for the mean �ow using: a) 3rd POD eigenvector �eld (6.5 degrees), b) 83rd

DMD vector �eld (6.5 degrees), c) 3rd POD eigenvector �eld, d) 83rd DMD vector �eld.

Similarly, the �gure III.28 shows the DMD reconstruction (using 112th, 113th, and

83rd modes) of the �uid �ow in the impeller region when the blade passes through the

XZ plane. The presence of the structures (axial �ow, traveling vortices, jet �ow) already

indicated in the �gure III.14 are obtained by DMD. The DMD reconstruction also is

compared with the corresponding vector �eld obtained from CFD, the similarity between

both results is evident.
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These �ndings are surprising because, as already mentioned, the DMD modes by

construction are not orthogonal while the POD modes are orthogonal. Despite these dif-

ferences, the reconstruction produced by both methodologies leads to essentially identical

results. Analogous to the POD, the information contained in the DMD modes requires

less space than the CFD data. The top three of the DMD spectrum (elements 112,113,

and 83) need a total storage space of 0.16 GB7 versus 9.7 GB corresponding to the CFD

vector �eld. Thus, 60 times more storage capacity is required when using CFD data.

a)

b)

Figure III.28: Reconstruction of the velocity using the real parts of the 83,112, and 113 DMD
modes. Important features (also obtained by the POD method) are identi�ed: Upward and
downward axial pumping �ow, trailing vortices generated by the passage of the blade, and the
radial �ow out the impeller-sweeping zone, b) Velocity �eld from the CFD data in the same
snapshot of the DMD reconstruction.

7The DMD modes have a real and an imaginary part then the storage space is bigger than the POD
modes.
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III.2.1.5 Accuracy of the �ow �eld reconstruction using DMD

To conclude the high-frequency analysis, we will present the accuracy calculations asso-

ciated with the DMD procedure. In this case, we use 11 DMD modes to include the

conjugate pairs of spectral elements 3,61,279 and 335 (see table III.6). Additionally, for

this case, we will take into account the instantaneous �elds 1, 23, and 300. The idea of

this is to evaluate an additional instant to the 386 already considered in the POD. Similar

to the POD case discussed in section III.1.3.4, we will review the accuracy according to

the maximum average relative error EMAR and the instantaneous localized error.

For the EMAR estimation, one uses the equation III.4. Figure III.29 provides the results

obtained for both POD and DMD. As can be seen, the resulting match is perfect for the

EMAR.

Figure III.29: Maximum average relative error for POD and DMD for a time span of 386
snapshots or 11 s.

Regarding the localized error (see equation III.5), we present again the information

summarized employing three �gures III.30, III.31, and III.32. The �rst �gure (III.30)

shows the distribution of the localized error for the POD and DMD in four di�erent

snapshots. We �nd that the percentages of cells obtained for each category of the DMD

method are essentially identical to those obtained for the POD case. For 5 DMD modes,

about 90.5 % of the total number of cells have an error smaller than 3 %. The relative

error of the rest of the cells is distributed according to the following categories: 4.5 % of

the cells have an error greater than 3 % and less than 5 %. The remaining 5 % has an

error greater than 5 % and less than 27 %.

As with the POD, the results improve when using 11 DMD modes to perform the �ow

reconstruction: 98.5% of the total cells have an error less than 3%, 1% of the cells have

an error between 3% and 5%. The remaining 0.5% have an error greater than 5% and
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less than 27%.

a) Local and instantaneous relative error for three di�erent snapshots using 5 and 10 POD modes.

b) Local and instantaneous relative error for three di�erent snapshots using 5 and 11 DMD modes.

Figure III.30: Bar charts of local and instantaneous relative error for four di�erent snapshots
using POD and DMD procedures.

Figure III.31 depicts the results of the cumulative percentage of the number of

cells versus the instantaneous localized error for the POD and the DMD. The error

distribution for both methods is essentially identical: a 5 DMD modes reconstruction

leads to 90.5% of the mesh with an error less than that indicated by the dotted red line

(3%). By using 11 DMD modes, the results improve as 98.5% of the cells have an error

of less than 3%.
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a) Cumulative error for 5 and 10 POD modes.

b) Cumulative error for 5 and 11 DMD modes.

Figure III.31: Cumulative error for the POD and DMD in four di�erent snapshots.

Finally, we show in Figure III.32 the location of the cells with an instantaneous error

bigger than 5% for 5 DMD modes and 3% for 11 DMD modes. We �nd that the cells

with high error percentages are located essentially in the interface zone between the

rotating part and the �xed part of the mesh. In addition, one observes some elements in

the lower part of the domain (see also �gure III.30). This fact probably indicates that

the mean �ow reconstruction needs to be improved.
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a)

b)

Figure III.32: a) Localized error bigger than 5 % for the 1th, 23rd and 300th snapshots from a
5 DMD modes reconstruction. b) Localized error bigger than 3 % for the 1th, 23rd and 300th

snapshots from a 11 DMD modes reconstruction.

III.2.1.6 Numerical cost of a spatio-temporal reconstruction using the DMD

technique

To conclude the exposition of the high-frequency analysis, we present the times involved

for the DMD reconstruction of the �uid �ow. The table III.7 compares the time resource

invested for the implementation of each procedure. We need about 377 s for the setup

of the information to be used in the dynamical decomposition. This time is slightly

less than the corresponding time for the POD. This result is because in the latter

the determination of the coe�cients aj (projection of each CFD snapshot along with

each POD mode) consumes an important amount of time. The reconstruction and

implementation of the DMD involve a total investment of 404 s (1.5 × 10−2CFD) for 5
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modes and 424 s (1.6 × 10−2CFD) for 11 modes. As we can see the e�ciency values are

approximately similar to those associated with the POD. However, it should be noted that

the DMD energy ranking is not obtained automatically as in the case of the POD. An ad-

ditional e�ort has to be made in DMD to identify the modes that are dominant and stable.

TABLE III.7: Comparative summary of the time duration for the CFD and DMD recon-
struction procedure. (N.A. = Not Applicable)

Procedure
Number of
DMD modes

Set up time
(s)

Reconstruction
time (s)

Total time
(s)

tDMDReconst

tCFD

DMD
Reconstruction

5
377

26 404 1.5x10−2

11 46 424 1.6x10−2

CFD N.A. 2.7x104 N.A.

After having exposed and analyzed the results derived from the POD and DMD

methods we can state some facts. The implementation of these data-driven algorithms for

the presented CFD simulation is numerically feasible. Moreover, the time and accuracy

obtained to validate the practicality of the proposed �uid �ow reconstruction. For the

simulated system, the equivalence of the implemented methods is evident. The DMD did

not generate dominant structures di�erent from those found by the POD. This �nding

allows us to conclude that the POD was able to capture the most important dynamic

information in the analyzed data set. Such a scenario is not always valid. This fact means

that there may be situations in which the DMD captures dominant structures that are

not revealed by the POD. An example is some transient type structures or structures that

are not representative of the statistics imposed by the POD on a given database(Schmid,

2010). In the following section, we will discuss a case that exempli�es this situation.

Speci�cally, we will show that the DMD can capture important low-frequency �uid �ow

components that play a relevant role in mixing processes.
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III.2.2 Low frequency - low energy analysis

The application of the DMD in this section will be performed using the CFD velocity �eld

without taking into account the mean �ow. This strategy was implemented in the ex-

perimental works in which the presence of low-frequency structures or macro-instabilities

(MI's) is reported (Hasal, 2000; Doulgerakis et al., 2011). This choice seeks to eliminate

the in�uence that can produce the components or modes associated with the mean �ow.

The subtraction of the mean �ow in the database implies the presence of very small values

in many mesh cells which favors the use of the SVD-DMD algorithm. This is because the

matrix companion algorithm presents certain numerical accuracy problems when one uses

very small velocity values8. One observes that the dynamical decomposition allows iden-

tifying macro-instabilities with a normalized frequency f ' = 0.02 or fMI = 0.05Hz= f ′N ,

being N the impeller rotacional frequency 2.5 Hz. The typical snapshot POD is also

used for the study of low-frequency structures. We will show that this procedure cannot

capture such long-period structures.

III.2.2.1 Sampling and data processing

In order to evaluate the presence of MI's in di�erent regions of the domain space, data

were collected in the zones shown in the Figure III.33. It is observed that zones close to

the turbine (regions I and II) are taken into account in the analysis. This is important

to highlight because the experimental works report the presence of IM's just in the upper

zone or region I and/or below the turbine.

Regarding time sampling, a time span of 2.3 mins with a time step of 0.03 s was

analyzed, which represents approximately 4670 snapshots (see Figure III.34). This time

step is used because it is intended in the future to use the low-frequency results together

with the high-frequency results obtained in the previous section. The sampling process

started at 32 seconds of simulation after the turbine had rotated 80 times (see the graph

of physical convergence of the numerical results in the chapter II).

8In the companion matrix method, the calculation of the inverses of the matrix is not always appro-
priate because the existence of matrices that are close to singular or badly scaled, so the results can be
inaccurate.
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Figure III.33: Sampling regions for the low-frequency analysis.

Figure III.34: Sampling time for the low-frequency analysis.

III.2.2.2 Dynamical stability and statistical convergence of the DMD modes

The dynamic stability results will be performed in the region I because it has a larger

number of cells. Moreover, some works report the presence of MI's in this region (Niki-

foraki et al., 2003; Micheletti & Yianneskis, 2004).The results for regions II and III will

be shown in the energy analysis section.

The database for the region I was divided into three subsets with time spans of 1 minute,

1.5 minutes, and 2.3 minutes. Then the SVD-DMD algorithm was applied for each subset

of data. This procedure pretends to evaluate the sensitivity of the results for the three
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di�erent time spans (Schmid, 2010).

Figure III.35 shows the real and imaginary values for the studied λDMD spectra. One

observes that all values lie on the unit circle of the complex plane for the three subsets

processed. As explained in section III.2.1.2 this implies dynamic stability for each resulting

DMD spectra. This �nding means good numerical stability in the database.

Figure III.35: DMD dynamical stability plots for the subsets: 1 min, 1.5 mins and 2.3 mins
corresponding to the region I.

Likewise, Figure III.36 depicts the values of σj versus the corresponding frequency f for

the three cases analyzed, similar to the case of high frequency we obtain a symmetrical

spectra. Most point values are close to the horizontal stability line (σj = 0 s−1).It is

important to note that the smallest frequencies or those close to zero have essentially

zero growth rates (see the blue dotted line rectangle). This fact tells us that the slowest

oscillating modes are the most stable of the spectra. Some of the values are below or

above the stability line, but they are also close to zero.

III.2.2.3 Energy analysis of the DMD spectrum

The evaluation of the energy content was carried out considering the alternative criteria

(Tissot et al., 2014) exposed in section III.2.1.3. This choice is based on the fact that

such a criterion considers the energy contribution over time of each mode. Two di�erent

scenarios are analyzed to visualize the energy spectrum according to the number of modes

and the three regions of the Figure III.33. In the �rst scenario, the modal spectra for
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Figure III.36: Summary of the growth stability results for the three time spans corresponding
to the region I. In the blue dotted line rectangle on �nds the smallest growth rate values.

the three subsets 1 minute, 1.5 minutes, and 2.3 minutes of the region I are determined.

Figure III.37 summarizes the corresponding results. We note several interesting aspects.

First, a change in the time span results in a change in the total energy of the spectrum.

This should not be surprising since the SVD-DMD does not produce orthogonal vectors

so the spectral energy could vary according to the time span considered. The three

subsets produce a symmetrical spectrum in which the peaks at frequencies 1.5, 2.5, 15 Hz

are noticeable. The presence of 1.5 Hz (1st and 2nd in the energy ranking) in the energy

spectrum is interesting. Such an oscillation is neither a harmonic nor a sub-harmonic of

the fundamental frequency of 2.5 Hz. There is also no mention in the literature of such

an oscillation in the system studied. For these reasons, we do not consider it correct to

associate any physical interpretation to the corresponding mode. Further analysis will

be necessary to establish the possible physical meaning of the 1.5 Hz frequency. There

is also a possibility that this oscillation is related to the CFD meshing. The 2.5 Hz

frequency (3rd and 4th in the energy ranking) is associated with the rotation of the sliding

mesh. It makes sense that this fundamental frequency remains important even in the

upper part of the domain and on large time scales. The frequency of 15 Hz (one-sixth of

2.5 Hz) is related to the passage of the turbine blades. This high frequency is in the 7th

and 8th positions of the energy ranking There are also important energy values for the

frequencies of 5, 7.5, 10, and 12.5 Hz which correspond to harmonics of the fundamental

frequency of 2.5 Hz.

What is surprising is the appearance of a peak with a cluster of elements carrying
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frequencies very close to zero, this means the presence of a family of low-frequency

modes. We will show more details about this special group shortly.

Figure III.37: Energy spectrum vrs frequency for the subsets: 1 min, 1.5 mins and 2.3 mins
corresponding to the region I.

The second scenario evaluates the energy content of the DMD modes for the time span

in the three regions of Figure III.33. The results are shown in Figure III.38, to facilitate

the understanding of the �gure only half of the spectrum is given. It is evident that the

presence of frequencies in the three cases. It is clear the energetic importance of the 0.05

Hz frequency (13th and 14th modes in the energy ranking) for regions I and II. This low

frequency leads the modes that are close to zero. Moreover as one approaches the turbine

(going from region I to II and then to III) this slow oscillation of 20 s period (0.05 Hz)

and its "companions" are less and less important. Also, the high frequencies become more

and more important for the zones near the turbine.

The con�guration of the spectra is similar to that of Figure III.37. The frequencies

of 1.5, 2.5, 5, 7.5, 10, and 12.5 Hz continue to show peaks. Additionally, a peak at 3.7

Hz is observed. As with the 1.5 Hz frequency, there is not enough information to assign

a physical interpretation to this oscillation.

The �ndings of this section allow us to argue that the SVD-DMD procedure is able

to identify a �uid structure with a frequency of 0.05 Hz (20 s period) that represents

the 50th sub-harmonic of the fundamental frequency of 2.5 Hz. This sub-harmonic is

reported in some experimental works (Nikiforaki et al., 2003; Micheletti & Yianneskis,

2004) and represents a macro-instability whose inclusion in the �uid reconstruction would
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Figure III.38: Energy spectrum vrs frequency for the regions I,II and III using a time span of
2.3 mins (around 4700 snapshots).

substantially improve the implementation of order reduction models for the stirred tank.

III.2.2.4 Energy analysis of the spectrum: POD vrs DMD

To conclude this section, we will analyze the results obtained using the snapshot POD for

the 2.3 minutes database in the region I. Thus, the sampling process is identical to that

applied for SVD-DMD.

The objective of this section III.2.2.3 is to determine whether it is possible to identify

some low-frequency-low energy structures from the POD. Similar to the case of section

III.2.2.3 we will give priority to those frequencies that have already been found through

experiments.

Figure III.39 compares the POD spectrum with the corresponding SVD-DMD. We

note that the �rst four modes carry the same amount of energy for both methods. From

the �fth mode onwards the energy content is di�erent for POD and SVD-DMD. This

result is explained by the fact that the POD modes are orthogonal while the DMD modes

are not. Special attention should be given to the 13th and 14th modes. This group of

elements is the ones that oscillate with a frequency of 0.05 Hz according to the DMD

energy ranking. The corresponding POD modes carry lower energy than their DMD

analogs. Additionally, these POD elements do not constitute a pair (same energy level)

so their frequencies cannot be equal.
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Figure III.39: POD and DMD (alternative criteria) spectrum mode for 2.3 minutes. The ranking
of the modes is not identical for both methodologies. The energy content for the 13th and 14th

modes is di�erent for each data-driven method.

To verify the time behavior of the 13th and 14th modes let's take a look at their modal

components aj. Figure III.40 provides the a13 and a14.

It is shown that both modes start oscillating with a low frequency at the beginning

of the time span. However, after a certain time (approximately 25 s) the modes are

attenuated and start oscillating with a frequency much higher than 0.05 Hz or 20 s period.

Thus even though these modes have the same energy ranking as those of the DMD they

do not present an organized temporal behavior with low frequency.

Another possibility to address is to search among the remaining POD modes for one

or several that have a frequency of 0.05 Hz. This search represents an arduous task

since there are approximately 4700 POD modes. However, for veri�cation purposes, we

calculated the fast Fourier transform of the �rst twenty POD modes. The corresponding

results can be found in Appendix A. It is observed that the �rst four modes have a

dominant frequency of 1.5 and 2.5 Hz respectively. This is in congruence with the fact

that the energy spectrum of both methods is the same for those dominant modes. On

the other hand, an inspection of the spectral densities of the other modes (from 5th up)

reveals that no mode is related to a frequency of 0.05 Hz. In fact, it is found that most

modes have more than one frequency. An exception is the seventh mode POD which has

a predominant frequency of 0.05 Hz. However, when reviewing the temporal behavior

of the corresponding modal component, it is not found that its oscillations are stable in

amplitude or frequency, similar to the 13th and 14th modes (see Figure III.41). This is
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natural because the POD does not allow the separation of the data in terms of frequencies.

Despite the above, there is the possibility of �nding a higher mode with a frequency of

0.05 Hz. However, the corresponding energy content would be practically negligible. The

above arguments point to the fact that the POD is not as e�cient for capturing low

frequencies (low energy) as the DMD, at least for the analyzed database.

Figure III.40: Modal components for the 13th and 14th POD mode.

Figure III.41: Modal component for the 7th POD mode.

Obtaining MI's is surprising because one uses CFD data generated with a RANS

model. This result could be explained by arguing that the implemented mesh was con-

ceived to perform a simulation for an LES turbulence model. This fact implies that it is

possible to generate an excellent description of the mean �ow even when using a RANS

simulation.

105



Chapter III. Baffled stirred tank case

In the next section, we will apply the POD and DMD methods to the study of the

last system of our work which is the bubble column. The most interesting thing to be

addressed corresponds to the study of the gas phase of the stirred tank.

Chapter summary and conclusions

This chapter deals with the details associated with the implementation of ROMs for the

simulated data of the stirred tank. It begins with a description of the sampling and data

processing strategies. This stage is of vital importance for the adequate application of

the ROMs. This is so since the sampling frequency must avoid the record of snapshots

that are in phase with the rotation of the turbine. Additionally, data acquisition must

comply with the Nyquist criterion, which prevents analysis errors associated with the

aliasing phenomenon. The ROMs were applied following two di�erent approaches. In the

�rst approach (typical method) the order reduction tools are applied to the rotating and

�xed mesh parts separately. The second method called the global method consists of the

application of the ROMs to the entire simulation domain without making a distinction

between the rotating and �xed parts of the mesh. This approach is innovative and is

more direct than the typical method. However, the global method does not allow a

direct physical interpretation of the spatial part associated with each mode. This fact

does not at all prevent the representation of �uid �ow in terms of POD or DMD modes.

The results obtained from the ROMs implementation allow identifying and classifying

organized structures of high frequency and low frequency. Moreover, it was possible for

both approaches the reconstruction of the velocity �elds in the analyzed system with

a good accuracy and time cost compared to the CFD procedure. It is important to

mention that 3 POD/DMD modes are enough to capture 99.9% of the system variance.

The POD and DMD results for high frequency are identical which is associated with

the highly periodic features of the �ow in the stirred tank. Nonetheless, for the case of

low frequency, the POD and DMD results are di�erent. The �rst ROMs method did

not allow the identi�cation of low-energy structures known as macro-instabilities. For

its part, the DMD did allow the identi�cation of macro-instabilities (low-energy), which

is consistent with the properties of this ROMs method of being able to identify �ow

components associated with speci�c frequencies.
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Bubble plume case

IV.1 Sampling and data processing

The sampling of the simulated data consists of a set of 3D velocity �elds (snapshots)

collected in a plane of symmetry (y = 0.00125m , −0.18m ≤ x ≤ 0.18m, 0m ≤ z ≤

1.3m) of the simulated domain. Once a stationary mean �ow condition is established (at t

= 50.6 s), a total physical time of 5 minutes (which corresponds to 10 periods of oscillation

of the bubble plume), every 0.1 s representing around 2996 snapshots was sampled to be

used as input data.

The snapshot POD method and the companion matrix DMDmethod were implemented to

the liquid phase �eld αLU⃗L (r⃗, t) and the gas phase �eld αGU⃗G (r⃗, t) separately. According

to the consulted literature the assessment of two-phase �ow has not been deeply studied.

IV.2 Proper Orthogonal Decomposition (POD)

IV.2.1 Kinetic energy analysis

In this case, since the mesh is uniform, the eigenvalues POD represent a direct measure of

the kinetic energy of the system. Figure IV.1 provides the normalized modal or eigenvalue

spectra for the liquid phase and the gas phase. Interestingly, the two spectra do not

resemble each other. Regarding the liquid phase, we observe three dominant modes which

contribute around 80% of the total kinetic energy of the system. Subsequently we �nd

a group of three modes (4th, 5th, 6th modes) very close to each other with energies of the

order 10−2. Due to their closeness, these might be correlated. Finally, we �nd that the

107



Chapter IV. Bubble plume case

higher modes begin to cluster so that it is not possible to identify modes that stand out

from their neighbors.

a)

b)

Figure IV.1: a) POD eigenvalue spectrum for the liquid phase: the �rst three modes represents
around the 80 % of the total kinetic energy of the system. POD eigenvalue spectrum for the gas
phase: the �rst three modes represents around the 70 % of the total kinetic energy of the system.
b) Cumulated normalized energy POD spectrum for both phases show that a lot of modes have
to be taken to capture the 100 % of the total system kinetic energy.

The spectrum of the gas phase shows curious characteristics. There is a continuous

decrease of the gas phase eigenvalues in the log-log plot provided. One can propose a

expression of the form λi∑
i λi

= e−n i where n is equal to −5
3
. It is interesting to note that

this tendency is mentioned in the experimental work carried out by (Laupsien, 2017)

Finally, it is observed that for both cases about 400 modes are necessary to capture

essentially all the kinetic energy of the system.
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We will see shortly that these characteristics of the eigenvalue spectra do not necessar-

ily prevent us from identifying relevant organized structures in the liquid and gas phase

�uid �ows.

IV.2.2 Modal components and eigenvectors

Now we beging to analyse the most energetic elements of the POD spectra for both phases.

Figure IV.2 provides the modal components for the liquid phase associated to the �rst

POD modes.

Liquid phase

The �rst and second modes of the liquid phase show an organized periodic time behav-

ior with a period of approximately 24 s. This period value is reasonable when compared

with the period of 28.2 s reported by (Laupsien, 2017; Laupsien et al., 2021) for the plume

oscillation period. Additionally, these elements of the spectrum are approximately out of

phase by π
2
as can be seen in �gure IV.2 b. It is expected that these are related to the

generation of vortices that move in space. For its part, the third mode presents small

�uctuations but is constant. Due to its time behavior and its energy content, this mode

must be related to the mean �ow. This is in agreement with the POD analysis performed

by (Laupsien, 2017) in a smaller region of the �ow domain.

Regarding the eigenvectors, we observe a clear spatial organization for the �rst 6

modes shown in �gure IV.3 and IV.4 . The 1st mode eigenvector presents two large

vortices whose dimensions are of the order of the vessel height. The 2nd mode eigenvector

presents three vortices, this time smaller in size but still comparable to the dimensions

of the tank. One also observes that these modes (1 and 2) have similar wavelengths.

These �rst two modes have to be related to the plume oscillation and will clearly

play a determining role in the mixing process. The 3rd mode eigenvector reveals two

large circulation loops typical of the average �ow in this type of device. This spatial

con�guration con�rms that this mode represents the mean �ow. Finally, the fourth, �fth,

and sixth modes also present a certain degree of spatial organization but their structures

are smaller than the lower modes (1 and 2). Their wavelengths are half the wavelengths

of the modes 1 and 2.
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a)

b)

Figure IV.2: Normalized mode components associated to the �rst three POD modes for the
liquid phase. b) Relation between the �rst and the second POD components modes, the circular
con�guration evidences la periodic behavior between these parameters.
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Figure IV.3: Eigenvectors associated to the �rst three POD modes for the liquid phase. The
red loops represent the sense of circulation for the organized structures in each eigenvector.

Gas phase

Figures IV.5 and IV.6 depicts the time evolution captured by POD for the velocity

�eld of the gas. One observes that the time organization for this phase is less clear as it is

for the liquid phase. The a1 exhibits slight �uctuations but remains essentially constant

over time. This dominant mode should represent the mean gas �ow. This fact is con-

�rmed by the Figure IV.7 where one observes a jet �ow con�guration for the �rst POD

eigenvector.

The a2 and a3 oscillate with a period of approximately 20 s. However, their temporary

behavior presents a signi�cant degree of disorganization. The second and third POD

eigenvectors (Figure IV.7) show an important spatial organization. In addition, an inter-

esting aspect is noted, the wavelength of the second eigenvector of the gas phase is similar

to that of the �rst eigenvector of the liquid phase (Figure IV.3). The same can be said if

the third eigenvector of the gas phase is compared to the second eigenvector of the liquid

111



Chapter IV. Bubble plume case

Figure IV.4: Eigenvectors associated to the fourth, �fth and sixth POD modes for the liquid
phase.

phase.

The higher modes fourth, �fth and sixth (Figures IV.6 and IV.8) also present characteris-

tics similar to the second and third modes of the gas phase. It is interesting to note that

for these less energetic modes, a period of approximately 20 s is still observed. As one

already noted a similar period appears in the liquid phase. Because of this fact the POD

seems to capture the coupling that exists between the two phases.

Figure IV.5: Normalized mode components associated to the �rst three POD modes for the gas
phase.

Due to this con�guration and its temporal behavior, these modes are related to the

periodic movement induced by the gas on the liquid phase.
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Figure IV.6: Normalized mode components associated to the fourth, �fth and sixth POD modes
for the gas phase.

Figure IV.7: Eigenvectors associated to the �rst three POD modes for the gas phase.

IV.2.3 Dynamical representation of the reconstructed �ow using

the POD modes

Once the eigenvectors and modal components for each phase have been determined, we

can continue with the reconstruction of the velocity �eld for both the liquid phase and

the gas phase. To visually evaluate the results of the POD reconstruction, we present a

series of reconstructed instantaneous �elds together with the velocity �elds corresponding

to the simulation. The �gures IV.9 and IV.10 provide the vector plots for the instants

for both phases. For the instants shown in �gure IV.9 we �nd that the con�guration of

vortices for both POD reconstruction (600 modes) and CFD scenarios coincide quite well.

However, it is clearly observed that the reconstructed �elds do not faithfully replicate the
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Figure IV.8: Eigenvectors associated to the fourth, �fth and sixth POD modes for the gas phase.

detailed description of structures present in the CFD. This suggests that the ROM's tool

was not able to e�ciently extract such small structures. However, it is notable that large

organized structures are captured by the POD.

For the gas phase, we also observe that the POD and CFD reconstruction agree

relatively well. Once again it is observed that the reconstructed �elds do not faithfully

replicate the detailed description of structures present in the CFD. In addition, a

widening of the gas jet is observed. Despite such divergences, it is notable that POD is

capable of replicating the overall structure con�guration generated by CFD.
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a)

b)

Figure IV.9: a) POD reconstruction using 600 POD modes for the liquid phase in the snapshots
1th, 49th, 87th, and 133rd. b) CFD velocity �eld for the liquid phase in the snapshots 1th, 49th,
87th, and 133rd.
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a)

b)

Figure IV.10: a) POD reconstruction using 600 POD modes for the gas phase in the snapshots
1th, 49th, 87th, and 133rd. b) CFD velocity �eld for the gas phase in the snapshots 1th, 49th,
87th, and 133rd.

IV.2.4 Accuracy of the �ow �eld reconstruction using POD treat-

ment

Due to plume oscillations, the velocity value may be zero or very small in some cells for

the liquid phase and especially for the gas phase. Such characteristics make it impractical

to determine the error from equation III.5 because of the possibility of division by zero.

Therefore we propose the standard calculation of the mean POD error (DMD) according

to the following equation IV.1:

EMAR =
N∑
i=1


∥∥∥U⃗ i

Reconstruction − U⃗ i
CFD

∥∥∥
N

 1

max
(∥∥∥U⃗CFD

∥∥∥) (IV.1)
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where: i corresponds to the ith mesh cell,
∥∥∥U⃗ i

Reconstruction − U⃗ i
CFD

∥∥∥ is computed in

every mesh cell, N is the total number of the snapshots and max
(∥∥∥U⃗CFD

∥∥∥) is the biggest
velocity magnitude in the system.

To evaluate equation IV.1, the reconstruction of the velocity �eld was carried out

for each phase, taking 2996 POD modes. Then the corresponding error calculation was

performed. As shown in table IV.1, the maximum mean error is similar for both phases.

It is clear that increasing from 600 modes to 1500 modes does not signi�cantly reduce

the error. This is due to the fact that the higher modes in the spectrum are very close to

each other. It is noted that the case of the reconstruction with 600 modes gives an error

of 3% for the liquid phase and approximately 1% for the gas phase.

TABLE IV.1: Maximum mean error for the POD reconstruction: liquid and gas phases.

Phase
Number of modes

for the reconstruction
Mean Error Phase

Number of modes
for the reconstruction

Mean Error

LIQUID
600 0.03

GAS
600 0.008

1500 0.02 1500 0.003
2996 8×10−11 2996 8.4×10−12
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IV.3 Dynamical Mode Decomposition (DMD)

As we saw in the POD section, the time behavior for higher modes for the two phases

analyzed does not show a high degree of organization. The small �uctuations of the mean

�ow probably prevents capturing organized time behavior for higher modes. This e�ect

could be even more intense for the gas phase for which the mean �ow is the highest energy

mode. For this reason, we proceed to perform the DMD analysis by subtracting the mean

�ow from the data set. Once again this strategy will allow us to capture the structures

of low frequency and low energy content. In this case we applied the companion matrix

DMD method.

IV.3.1 Dynamical stability and statistical convergence of the

DMD modes

As usual, we start with the dynamic stability analysis. Figure IV.11 provides the DMD

dynamical stability plots for the subsets: 1000,1500, 2996 snapshots for the two phases.

As can be seen, essentially all DMD modes for both phases are extremely stable. This

result is a good sign since it indicates that the ROM's tool has the possibility of generating

a stable linear model of the system.

In �gure IV.12 is also shown that the growth rate values for the spectra of both

phases are very close to zero. This characteristic of the spectra implies that there will be

no burst-like structures. Additionally, makes us choose the typical criterion to determine

the energy associated with each mode (growth rates close to zero can produce a numerical

divergence for the Tissot criterion, see equation I.53 ). Such results of the energy ranking

will be seen below.
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a)

b)

Figure IV.11: a) Summary of the DMD dynamical stability plots for the subsets: 1000,1500,
2996 snapshots for the liquid phase. b) Summary of the DMD dynamical stability plots for the
subsets: 1000,1500, 2996 snapshots for the gas phase

IV.3.2 Kinetic energy analysis

In �gure IV.13 we see that the two spectra are symmetric in terms of energy ranking.

It is evident that the spectrum is dominated by low frequency structures in the vicinity

of 0.043 Hz, which corresponds to a period of approximately 23 s. This period value

is very close to that found for the POD case. In this way the results of both tools are

coincident. However, in the case of DMD, it is possible to identify several structures with

unique periods of low frequency, while with POD we �nd a period that corresponds to a

superposition of di�erent frequencies. In the gas spectrum, modes 59 and 60 is the most

energetic and has a period of 0.04339 Hz. It is therefore interesting to observe its spatial

structure.
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a)

b)

Figure IV.12: a) Summary of the growth stability results for the subsets: 1000,1500, 2996
snapshots for the liquid phase. b) Summary of the growth stability results for the subsets:
1000,1500, 2996 snapshots for the gas phase

120



IV.3 Dynamical Mode Decomposition (DMD)

a)

b)

Figure IV.13: a) Frequency spectral ranking results corresponding to the DMD modes for
the liquid phase using 1000,1500 and 2996 snapshots. b) Frequency spectral ranking results
corresponding to the DMD modes for the gas phase using 1000,1500 and 2996 snapshots.

IV.3.3 DMD vectors

The �gure IV.14 depicts the real part and imaginary parts of DMD vectors 507 (�rst of

energy ranking). An organized con�guration of vertical structures is clearly observed. The

dimensions of these structures are of the order of the size of the vessel. It is interesting to

note that the real part of the DMD 507 vector (0.04 Hz) presents a structure very similar

to that shown by the second POD eigenvector. Moreover, the corresponding imaginary

part shows a spatial con�guration that resembles to that of the �rst POD eigenvector.

It is important to mention that these spatial characteristics are present in vectors from

second to eighth DMD modes in the energy ranking.
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Figure IV.14: DMD vector 507: real and imaginary parts for the liquid phase. The red loops
represent the sense of circulation for the organized structures in the DMD vector.

Also, the �gure IV.15 depicts the real and imaginary parts of the DMD vector 563

(ninth in the energy ranking). The real part of this mode is quite similar to the fourth

eigenvector POD and the corresponding imaginary part shows a structure almost identical

to the �fth eigenvector POD. The mentioned features are also given for the partner of

vector 563, i.e. mode 564.

Figure IV.15: DMD vector 563: real and imaginary parts for the liquid phase.

Finally, �gure IV.16 provides the spatial con�guration (real and imaginary parts) of

the �rst two DMD modes according to the corresponding energy ranking (gas phase). One

notes that there are some similarities of these vectors to the second, third, and fourth POD
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eigenvectors of the gas phase. However the similarity this time is less than the case for

the liquid phase.

Figure IV.16: DMD vectors 607, 605: real and imaginary parts for the gas phase.

IV.3.4 Accuracy of the �ow �eld reconstruction using DMD

treatment

Once again we use equation IV.1 to determine the maximum average error corresponding

to the reconstruction, in this case for the DMD method. Table 8978 provides the results

obtained.

The error results for this method are quite similar to those of the POD. Again, the error

associated with 1500 modes is not much smaller than that corresponding to 600 modes.

Moreover, the error committed for both phases is essentially similar.

So far we have shown that the implementation of the DMD for the bubby �ow analyzed

is feasible. The results show the presence of stable low-frequency modes with an organized

spatial con�guration for the liquid and gas phases. The �ndings also show that the two

phases have essentially identical frequencies suggesting coupling for the �ows of both

phases. We were also able to identify some similarities in the POD eigenvectors and those

corresponding to the DMD methodology. These resemblances are to be expected due to

the periodicity of the analyzed �ow.

Our incursion into the DMD analysis of this system has reached this point. A deeper

analysis of the DMD results for this type of system will be devoted to future works.

Remarks on the ROM's results for the liquid and gas phases

The calculation of the errors as presented in this section responds to the need to evaluate
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TABLE IV.2: Maximum mean error for the DMD reconstruction: liquid and gas phases.

Phase
Number of modes

for the reconstruction
Mean Error Phase

Number of modes
for the reconstruction

Mean Error

LIQUID
600 0.05

GAS
600 0.02

1500 0.02 1500 0.01
2996 1×10−11 2996 3×10−13

the accuracy of the implemented ROM's methods. However, one of the objectives of

the order reduction is to determine the possibility of e�ciently capturing organized �ow

structures. According to the results obtained for the liquid phase (POD, DMD), less than

ten modes are necessary to reconstruct a �ow that presents structures associated with

large-scale organized motions of the �ow �uid (see Figures IV.17 and IV.18). In fact, as

discussed in section IV.2.2, the second, fourth, �fth, and sixth modes are harmonics of the

�rst POD mode (according to the ratio of the corresponding wavelengths). This implies

that for the liquid phase the ROM's used can extract coherent structures associated

with di�erent scales even taking a relatively small number of modes. In contrast, for the

gas phase, it is found that even taking the �rst six modes it is not possible to obtain

structures that show noticeable changes. This means that in the case of the gas phase

it will be necessary to take a larger number of modes compared to the liquid phase to

detect structures with di�erent wavelengths.
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IV.3 Dynamical Mode Decomposition (DMD)

Figure IV.17: POD reconstruction of the velocity �eld for the liquid phase using the �rst three
modes in the snapshots 1, 49, 87, and 133. Reconstruction with 3 POD modes allows obtaining
coherent structures whose con�guration is roughly similar to the CFD results.

Figure IV.18: POD reconstruction of the velocity �eld for the liquid phase using the �rst six
modes in the snapshots 1, 49, 87, and 133. Even taking only 6 POD modes the �ow reconstruction
is relatively good when compared to the CFD results shown earlier in this section.

Chapter summary and conclusions

This section describes sampling and data processing. For this case, the data was taken

in a plane of symmetry and for a span equivalent to 10 oscillations of the bubble plume.

The implementation of ROMs for the liquid and gas phases was carried out separately,

which is an innovative proposal since such a scenario has not been addressed before.

The results obtained show that the ROMs were able to e�ciently identify large-scale

organized structures such as vortices associated with the oscillations of the bubble plume

(�rst and second POD modes) and the mean �ow of the bubble plume (third POD mode)

present in the phase liquid, these 3 modes contain 80% of the total kinetic energy of the

corresponding phase. The time parts of the �rst and second modes have a period of about

24 s whose value is close to the oscillation period of the plume found experimentally.

For the gas phase, ROMs also allowed the identi�cation of large-scale organized structures.

In this case, the �rst POD mode represents the mean �ow, the second and third modes

present an organized con�guration with wavelengths similar to the �rst and second modes

of the liquid phase, respectively. These �rst three modes contain about 70% of the total
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kinetic energy of the corresponding phase. A period of about 20 s is associated with the

second and third modes. Findings for DMD are similar to those for POD for both phases.

The results obtained from ROMs for the analyzed two-phase �ow system are promising,

this opens a door for future research work on this type of system.

The next section presents the last part of this document. In such a chapter a novel CMA

approach is proposed which includes time evolution. As will be seen, this proposal allows

modeling scalar and particle transport phenomena. The proposed dynamic CMA model

can be generated from velocity �elds that come from CFD or a ROM reconstruction.
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Chapter V

Coupling CFD for CMA and particle

tracking

V.1 from CFD to CMA

In this part, we brie�y present the tool developed by (Pigou, 2018) and Bastien POLIZZI

(post-doctoral fellow, IDEX program BIREM) to convert the results coming form a CFD

analysis into a matrix of �owrates between a set of compartments. The approach is very

similar to that developed by (Delvigne et al., 2005) and later adapted to compartment

models generated from CFD data by (Delafosse et al., 2010; Delafosse & et. al., 2014).

A compartment is a volume of �uid, much larger than the computational cell size used in

the CFD. The collection of compartments occupies the same volume as the total volume

simulated in the CFD. The compartments are numbered and the �owrate leaving or

entering a given compartment is extracted from the integration of the velocity �eld around

its contour. As depicted in �gure V.1, the �ow through a given face between two adjacent

compartments is characterized by a pair of values which de�ne the entering and outing

�owrates with respect to the said compartments. This tool can handle single and two

phase �ows in cylindrical geometries. Besides the �owrates between compartments, an

integration of some quantities is performed so as to provide the mean value of the gas

hold-up or the kinetic energy dissipation within each compartment.

From these values, a square matrix Nc × Nc is built as follows: the �owrate from a

compartment i to a compartment j is placed on the ith line and the jth column of the said

matrix. Nc refers to the number of compartments.
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Chapter V. Coupling CFD for CMA and particle tracking

Figure V.1: Exit �owrates between adjacent compartments and construction of the matrix
of �owrates

This information can usefully be used to perform the simulation of a (bio)chemical

reactor coupling transport and reaction. In the following, the mixing of an inert scalar,

the transport of massless particles as well as homogeneous and heterogeneous catalysis

numerical experiments will be presented.

V.1.1 Scalar transport

Once built, the matrix allows writing a simple expression for the transport of a scalar in

the space of compartments. Indeed, the conservation of c in the compartment i writes

dV (i)c(i)

dt
=
∑
k

c(k)F (k, i)− c(i)
∑
j

F (i, j) (V.1)

The �rst term in equation V.1 corresponds to the summation of mass �uxes of c

originating from the compartments k and entering the compartment i. The second term

on the right-hand side is the sum of mass �uxes leaving the compartment i. Thus, forming

a new matrix M such that the diagonal is �lled with the sum of �owrates exiting a
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compartment, is helpful to write the mass balance in a more compact formM(i, j) = F (i, j) for i ̸= j

M(i, i) = −
∑

j F (i, j)

(V.2)

Let C be a Ns × Nc matrix, where Ns is the number of scalars transported by the

�uid �ow. Thus C(m, i) contains the concentration of the scalar m in the compartment

i. The mass balance for each scalar over the entire set of compartments can be written

in a compact form as
dCV

dt
= C.M+ SV (V.3)

S is a Ns × Nc matrix of volumetric source terms due to interfacial mass transfer and

reaction. V is a Nc×Nc diagonal matrix made of the volume of each compartment.

It is worth observing that there is no spatial information associated to the compart-

ments. The information regarding the indices of the compartment adjacent to a given

compartments is now embedded in the matrix M. Typically, the neighbors of any com-

partment, i, are found as the column indices of the non-zero terms on the corresponding

line. The knowledge of the compartment numbering procedure allows the creation of

visual representation that resembles the physical �uid domain.

V.1.2 Particle transport

We shall now consider massless particles and their movement in the space of compart-

ments, one takes as reference the approach reported in (Delafosse et al., 2015). Any

particle can be indexed by the compartment it belongs to at time t. Let, idxloc(p) be

the index of the compartment in which particle p resides. The displacement of particles

actually consists in updating that table of particle location index idxloc.

The probability that a particle present in the compartment i, will leave the compart-

ment during the time interval ∆t isPout = 1− e−∆t/τ(i)

Pout ≈ ∆t/τ(i) if ∆t << τ(i)

(V.4)
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τ(i) is the mean residence time in the compartment i de�ned as

τ(i) =
V (i)∑
j F (i, j)

(V.5)

Assuming that the particle under consideration is to leave the compartment i, the

probability to reach the compartment j writes

P j
i =

F (i, j)∑
F (i, j)

(V.6)

A given compartment has a maximum of six neighbors, so for any compartment i one

will actually compute a maximum of six probabilities. These are stored in a Nc×6 table,

P (i, k). In that table, some elements may be zero if the number of neighbors is actually

less than 6. We also de�ne another Nc× 6 connectivity table, idxngb, which contains the

compartement indices of the said six neighbors.

In order to select the destination compartment from a random number trail, it appears

interesting to build a new Nc× 6 matrix CP of the cumulative probability as

CP(i,m) =
m∑
k=1

P (i, k) (V.7)

By construction, CP is a stepwise function that exhibits at most 6 di�erent values in

[0, 1].

It is shown in �gure V.2 how the destination compartment is identi�ed using a random

number sampled in a uniform distribution. The y-axis presents the cumulated probabili-

ties to exit a compartement. Two examples are illustrated : the blue one corresponds to

a compartment with �ve neighbors, the orange one corresponds to a compartment with 4

neighbors. Accordingly, the [0, 1] interval on the y-axis is split into 5 and 4 subintervals,

marked by blue and orange dots respectively.

The procedure start with the trail of a random number β ∈ [0, 1]. The destination

compartment is found through the identi�cation of the interval β belongs to.

CP (i, k) < β < CP (i, k + 1) (V.8)

The procedure �rst identi�es an integer between 1 and 6 and then the connectivity
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Figure V.2: Identi�cation of the destination compartment from the know cumulated prob-
ability CP and the random number β. For any compartment, neighboring compartments
are indexed form 1 to 6 (x-axis)

table idxngb provides the corresponding compartment index. From there the table of

particle location index is updated. The following algorithm describes the step by step

procedure used to update the particle location index using two random number trials for

each particle.

Algorithm 1 Calculate the new location index of a particle

for p = 1 to Np do
trial a random number α in the uniform distribution U(0, 1)
if α < 1− e−∆t/τ(i) then
the particle leaves the compartment
trial a random number β in the uniform distribution U(0, 1)
idxloc(p)← idxngb(i, 1) (assuming β < CP (1))
for k = 1 to 5 do
if CP (i, k) < β < CP (i, k + 1) then
idxloc(p)← idxngb(i, k + 1)

end if
end for

end if
end for

V.1.3 Data processing and preliminary calculations

The CFD data correspond to those computed in the previous chapter, i.e. in a 70 L reactor

�lled with water and equiped with a Rushton turbine rotating at 150 rpm. The CFD data

set stored over one rotation of the impeller are processed so as to produce 14 matrices

F corresponding to the instantaneous �owrates for 14 di�erent positions of the impeller.
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Hence, an identical number of matrices M, P and CSP are build and stored. In contrast,

the connectivity table idxngb is unique since the indices of neighbors are independent

of the actual �owrates between compartments. Considering instantaneous �owrates and

consequently the �uctuations with respect to the time average value is interesting here

because it naturally produces some kind of dispersion in the particle pathways. In contrast

to the strategy adopted by (Delafosse et al., 2015), we do not refer to a turbulent transition

matrix to introduce some stochasticity in the particle displacement algorithm. Indeed,

the turbulent motions act on the particle trajectory over a length scale that is much

smaller than the compartment characteristic size. Turbulent velocity �uctuations most

probably cannot be considered as the source of particle dispersion at the compartment

scale. Our approach do not require a model for particle dispersion (whatever the physical

justi�cation supporting this model). Indeed, looping over a set of instantaneous �owrates

allows simulating the blade passages in a more realistic way and produces some changes

in the transition matrix (probabilities Pk ) from one instant to another.

Transition Matrix: As far as the particle motion is concerned, the prerequisite is

that the statistics of particle displacement match the expected values computed from

the known �owrates between compartments. In order to check this point, 105 particles

were randomly distributed in the compartments and mixed during 30 seconds while the

transition matricesP were periodically updated every∆tu = 1/(2.5∗14) ≈ 0.0286 seconds.

During that process, all exit events were recorded and cumulated in a Nc × 6 table. This

allows to compute the e�ective transition probabilities n(i, k)/
∑

n(i, k) and compare

them with the expected values. Alltough the transition matrices Pi(k) change in time,

the accumulation of all exiting events in a single table, without refering to the current

transition matrix, provides an information about the transport of particle by the mean

�ow. Hence, the expected values were computed from equation V.9, using the temporal

mean of the 14 matrices F.

Pi(k)expected =
F (i, j)∑
F (i, j)

(V.9)

Figure V.3 indicates that the algorithm is correctly implemented as the e�ective tran-

sition probabilities (based on the number of displacements) closely match the expected

values based on the mean �owrates.
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Figure V.3: Parity plot of the e�ective transition probabilities vs. expected probabilities.
About 9 Million exit events were collected.

V.2 Results

V.2.1 Mixing of a inert scalar

We �rst study the mixing of an inert scalar. In this context, one usefully de�nes

� The mean volumetric concentration of a scalar c as

⟨c(t)⟩ = 1

V

Nc∑
i=1

c(i, t)V (i) (V.10)

� The variance of the concentration distribution

σc(t) =
1

Nc

Nc∑
i=1

(c(i, t)− ⟨c⟩)2 (V.11)

� The segregation index, or the normalized variance

Ic =
σc(t)

σc(0)
(V.12)
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Figure V.4: Scalar mixing validation : Mean scalar concentration (left) and normalized
concentration pro�les in �ve randomly seleted compartments.

Mixing is often described as a process that reduces the variances of a distribution.

V.2.2 Mixing of inert particles

In this part, the mixing of massless particles is simulated. In this context, we de�ne

� The particle density (in number), i.e the number of particles, np(i, t), in the com-

partment of volume V (i)

ϕp(i, t) = np(i, t)/V (i) (V.13)

� The mean particle density

⟨ϕp(t)⟩ =
1

V

Nc∑
i=1

np(i, t) =
1

V

Nc∑
i=1

ϕp(i, t)V (i) (V.14)

� the variance of the particle density and the de�nition of the segregation index are

unchanged. This because, the particle density in number is analogous to a concen-

tration : a number of molecules/particle per unit volume.

All particles are initially placed in a given compartment and then displaced following

the algorithm previously described. The same experiment is repeated for di�erent numbers

of particles Np ∈ {0.5, 1, 5, 10} × 105. The number of particles per compartment at each

time step is computed and stored.

The local particle density in �ve randomly selected compartment are presented on �g-

ure V.5. The broken line aspect is due to the fact that results are collected every second.
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Figure V.5: Local particle density np(i, t)/V (i) in �ve randomly selected compartments.
a. 5 104 particles, b. 105 particles, c. 5 105 particles, d. 106 particles.

135



Chapter V. Coupling CFD for CMA and particle tracking

Particle homogenization takes place between 15 s and 20 s whereas the scalar mixing time

computed by Delafosse using CFD (LES) was found to be as 14 s. This slight overesti-

mation is a consequence of the severe reduction in �ow description (500 compartments

against 1,2 M cells). It therefore appears that the proposed strategy provides reasonably

accurate results for a minor computational cost, on condition that the unsteadiness of the

�ow is considered. However, it appears that the particle density �uctuations are all the

more pronounced than the number of particle is small. This point will be discussed in the

next paragraph.

V.2.3 Cross-validation of scalar and particle mixing

We observe in �gure V.6 that the reduction of variance is very similar for scalar mixing

and particle mixing. however, as explained before, the residual variance of the particle

density is dependent on the total number of particles.

Figure V.6: Segregation index for scalar mixing and particle mixing. The residual variance
evolves with the inverse of the total number of particles.

In order to provide a more detailled view on the dynamics of mixing, the normalized

concentration and normalized particle density are plotted against time for �ve randomly

selected compartments, in Figure V.7. A very good agreement is found between the local

densities computed with an Eulerian approach and a stochastic method for particles. This

indicates that the particle displacement algorithm is not only good to describe the overall

dynamics of mixing, it is also capable, if the number of particles is large enough to describe
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the local evolution in particle density throughout the mixing process.

Figure V.7: Normalized scalar and particle densities in �ve randomly selected compart-
ments. Continuous line : scalar mixing, symbols : particle mixing (106 particles), 500
compartments.

V.2.4 Understanding noise on the number particle density

Despite the mixing process has reached the point where the mean number of particles per

unit volume is constant, the number of particle per compartiment still �uctuates from one

iteration to another due to the stoachastic nature of the particle displacement. Moreover,

the magnitude of this �uctuation seems to be related to the compartment itself and the

total number of particles, as illustrated in Figure V.5.

Let us de�ne the discrete random variable Xi,n(t) such that Xi,n(t) = 1 if a particle is

in the volume V (i) and Xi,n(t) = 0 if a particle is not in the volume V (i). This variable

follows a law of Bernoulli with parameter ui such thatP(Xi,n(t) = 0) = 1− ui

P(Xi,n(t) = 1) = ui

(V.15)

A property of the law of Bernoulli is that the expectation of the associated variable is

equal to the parameter ui and the variance is equal to ui(1− ui).

The expectation of Xi,n(t) is the number of events true divided by the total number of

events. In our particular case, the total number of events is limited to the total number

of particles tracked. The event true reads the particle is in the compartment i .
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Let np(i, t) be the number of particles found in compartment i at time t.

np(i, t) =

Np∑
i=1

Xi,n(t) (V.16)

We further assume that there is no correlation between the particle location and this

allows to express the mean number of particles that one expects to �nd in a compartment

as

⟨np(i, t)⟩ =

〈
Np∑
i=1

Xi,n(t)

〉
=

Np∑
i=1

⟨Xi,n(t)⟩ = Np ⟨Xi,n(t)⟩ (V.17)

By de�nition of the particle density, the following property holds in well mixed reactor

⟨np(i, t)⟩
Np

=
V (i)

V
(V.18)

which leads to the expectation of Xi,n(t)

⟨Xi,n(t)⟩ =
V (i)

V
(V.19)

The variance of the number of particle in a compartment expresses as

σn =

〈
Np∑
i=1

(Xi,n(t)− ⟨Xi,n(t)⟩)2
〉

(V.20)

which leads after calculations to

σ2
n =

Np∑
i=1

〈
X2

i,n(t)
〉
−

Np∑
i=1

⟨Xi,n(t)⟩2 (V.21)

σ2
n = Np

V (i)

V
−Np

(
V (i)

V

)2

= Np
V (i)

V

(
1− V (i)

V

)
(V.22)

Thus the relative deviation to the expected number of particle in a given compartment

writes

∆np

⟨np(i)⟩
=

σn

⟨np(i)⟩
=

(
Np

V (i)

V

)−1/2(
1− V (i)

V

)1/2

(V.23)
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since V (i) << V in the present case, the expression may be simpli�ed into

∆np

⟨np(i)⟩
=

(
Np

V (i)

V

)−1/2

(V.24)

As the total number of particles goes to in�nity, the relative change in particle number

goes to zero. However, this convergence is slower for smaller compartments. In other

words, once the stationary condition is reached, the relative change in the local number

of particles is larger for small compartments and it is inversely proportional to the square

root of the total number of particles.

In order to check the consistency of the algorithm implementation, the number of

particles in each compartment is stored every seconds form t = 20 to t = 30 seconds, that is

to say once mixing is achieved. The standard deviation in each compartment is quanti�ed

and normalized by the expected number of particles, readily accessible from equation

(V.18). Results are presented in Figure V.8. It is clear that the standard deviation

decreases as the number of particle increases : groups of black circles are much closer to

the origin than green circles are. One can also observe several horizontal lines of circles

among the same color which correspond to compartments with similar volumes. Each of

these clouds is more or less centered on the parity curve. Averaging over compartments of

the same size would cleary improve the results. The relatively large spreading is actually

due to the fact that we only used 10 particles counts to perform the statistics. Anyway,

the trend issuing from the particle mixing experiment is in very good agreement with the

analytical prediction given by equation (V.24).

V.2.5 Coupling with the reaction

In this part, we perform the comparison between to options to calculate the source term

in a scalar transport equation. For illustration purposes, a �rst order kinetic reaction is

choosen.

a . a homogeneous catalysis : the reaction rate is set from the concentrations in the

liquid phase:

SC = −kC (V.25)

b . a heterogeneous catalysis : the reaction rate in a compartment i results from the
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Figure V.8: Relative standard deviation in local particle number for all compartments.
The parity curve represents equation (V.24). x-axis: measured values, y-axis : expected
values.

contribution of the np(i, t) particles located in that compartment:

SC(i) =
1

⟨np(i)⟩

np(i,t)∑
i=1

−kC = −np(i, t)V

NpV (i)
kC (V.26)

The scalar concentration in the reactor is initially homogeneous as well as the particle

density in number. In order to perform the comparison, two scalars are transported by the

�ow. However, the source term for the �rst one obeys the homogeneous catalysis formula-

tion whilst the source term for the second scalar is computed through the heterogeneous

approach (as the sum of particle contributions).

Obviously, in this example, both approaches should give the same results, i.e. C(t) =

C0(1 − e−kt). Indeed, �gure V.9 shows the evolution of the concentration of a scalar

in �ve compartments (randomly selected among 500) using either the homogenous or

the heterogeneous catalysis approach. The continuous line is actually a superposition of

�ve concentration pro�les using the homogeneous catalysis approach. The �ve pro�les

naturally overlap. The open circles indicate the concentration in the same compartments

computed through the heterogeneous catalysis approach. In line with equation (V.26),
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Figure V.9: First order reaction calculation in a 500 compartments, 70 L reactor. In
�ve randomly selected compartments, the concentration pro�les computed using particle
information (open circles) matches the usual homogeneous approach (continuous line).
Dashed lines stand for the normalized particle density which remain constant over time.

the calculation of the local source term is not strictly identical in every compartment due

to the noise in the particle number. As a results, the open circle do not exactly overlap

at each instant. However, in the present case, the total number of particles (around 105)

is large enough to ensure that the deviation in terms of particle number is negligible.

Hence the local source terms computed using the particle based approach are practically

identical.

V.3 Extension to biological populations

From a fundamental point of view, the combination of a compartiment model approach

and the representation of the biological population as an ensemble of particles permits

to overcome the usual limitations encoutered when the number of properties required

to describe the state of the bioparticle is large. Indeed, the set of equation describing

the changes in dissolved species concentrations contains an integral term refering to the

number density function. One of the possible strategy in that case is to solve a population
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balance equation.

∂n(x, ξ, t)

∂t
+

∂ẋn(x, ξ, t)

∂x
+

∂ξ̇n(x, ξ, t)

∂ξ
− Γ(ξ)n(x, ξ, t) . . .

· · · =
∫

Γ(ξ′)K(ξ, x′
i)n(x, ξ

′, t)dξ′

(V.27)

ẋ it the velocity of particles, ξ̇ describes the velocity in the space of particle properties,

Γ(ξ) is the division frequency, K(ξ, ξ′) the redistribution kernel de�ning the probability

to form a particle with properties ξ from the division of a particle with properties ξ′.

The equation for the dissolved scalars consummed by the biological particles is generally

expressed as
∂C(x, t)

∂t
+

∂ẋC(x, t)

∂x
=

∫
q(C, ξ)m(x, ξ, t)dξ (V.28)

q(C, ξ) is the vector of speci�c consumption rates per unit mass of bio particle, m(x, ξ, t)

is the mass of bioparticles in the state ξ. The latter can be accessed from the size and

density of particles which can actually be part of the vector of properties.

The last equation refers to the dynamics of cell properties:

ξ̇ = f(q, ξ) (V.29)

We showed in the previous section that we could compute the source term in the scalar

equation as a sum over the particles present in a compartment at a given time.

∫
q(C, ξ)m(x, ξ, t)dξ ≈

∑np(i,t)
p=1 q(C, ξp)mp xi V (i)∑np(i,t)

p=1 mp

(V.30)

In other words, the knowledge of the location of particles is su�cient to solve the

conservation equation for the scalar. Moreover, the evolution of particle properties must

be updated using equation V.29 which poses no real di�culty. Finally, the remaining task

lies in the de�nition of the division kernel as well as the algorithm to set the properties

of the daughter cell. Here again, a constant number Monte-Carlo strategy can be used.
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Chapter summary and conclusions

This section proposes a CMA approach that incorporates time into the modeling

process. This approach consists in switching (computing) periodically the CMA �uxes

matrix. In this way, the �ows between compartments will change over time due to the ro-

tation of the turbine. In this framework, the time �uctuations of the �ux values naturally

produce some kind of dispersion in the particle pathways. The methodology proposes

to model scalar and particle transport phenomena. For the case of scalar transport, a

mass conservation equation is proposed in which the incoming and outgoing �ows of each

compartment depend on time. For the case of particle transport, a stochastic approach is

used. In this methodology each particle is referenced by the compartment it belongs to,

at time t. Two stages are considered that allow modeling for each snapshot the transport

of the particles in the studied tank. In the �rst stage, it is evaluated if a particle is going

to leave its residence compartment. Subsequently, if a particle leaves its compartment of

residence, one determines to which neighboring compartment it will migrate. The phe-

nomena of scalar and particle transport (mixing), and coupling with a chemical reaction

(homogeneous and heterogeneous catalysis) were modeled. The corresponding CMA was

based on CFD data from the stirred tank simulation described in section II.1 for �ve

hundred compartments and one full turn of the Rushton turbine. For the case of scalar

transport and particle transport, the results show that the temporal evolution of the con-

centration per compartment is consistent, since a state of homogenization is reached in a

time very close to that calculated by means of a LES simulation (Delafosse, 2008). Finally,

the results for the homogeneous and heterogeneous catalysis reactions coincide quite well,

which shows the correct modeling of the transport phenomena involved. These �ndings

show that the proposed dynamic CMA approach is promising and opens one way for the

generation of models that integrate phenomena associated with the biological population

in stirred tanks.
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Chapter V. Coupling CFD for CMA and particle tracking
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Conclusions and perspectives

POD and DMD were applied to U-RANS CFD data describing the turbulent �ow in a

ba�ed stirred tank.

Energy spectrum and �ow structure analysis can be performed in a classical manner in

each zone of the mesh (�xed or rotating). As expected the main �ow structure and the

trailing vortices could be identi�ed from the data analysis.

An original methodology is proposed to perform the spatio-temporal reconstruction of

the velocity �eld in the entire volume. In principle, this objective is out of reach due to

the fact that the cell location is time dependent. We showed that, although the physical

meaning of modes is lost, the ROM's methods (POD and DMD) can serve the objective

of reconstructing the �ow �eld.

Both POD and DMD are adapted to this reconstruction as proved by an error analysis

between the initial (CFD �elds) and reconstructed �ow �elds. As expected, the accuracy

increases with the number of modes. In the very case of an unsteady turbulent �ow sim-

ulated using the U-RANS approach, the �rst 15 modes are su�cient to recover the �ow

�eld with an accuracy lower than 3%.

The 3D unsteady �ow �eld is reconstructed at a very moderate cost compared to that of

the CFD solver. Obviously, the generation of CFD data remains time consumming but

the investment is highly interesting if the �ow is periodic.

The POD results are identical to those obtained by the DMD for the high-frequency anal-

ysis. Whereas POD cannot identify low-energy structures, DMD is able to identify low

energy (low frequency) structures (macroinstabilities) because such structures are not as-

sociated with high energy contents. Tracking such macro-instabiities in a set of numerical

data coming from U-RANS CFD simulation represented a considerable investment and

145



Conclusions and perspectives

we showed that the correct strategy is to sample over a long period of time and treat the

data with the DMD method. Also, the observation of macro-instabilities in our U-RANS

simulation is clearly related to the re�nement of the mesh and the small time step.

The ROM's methods (POD and DMD) were also applied to CFD data describing the

turbulent �ow for a bubble plume in a quasi-2D column. In this case, a �xed uniform

mesh was used in the numerical simulation so that the POD and DMD energy spectra can

be directly associated with the kinetic energy of the system. Both POD and DMD were

applied for the velocity �elds of the liquid and gas phases weighted by their respective

volume fractions. The POD implementation for the liquid phase reveals that the �rst

3 modes are su�cient to capture 80% of the kinetic energy of the system. The �rst

two POD modes are associated with the oscillation of the plume and the third mode

represents the mean �ow. The modal components ak of the �rst and second POD modes

show a periodic behavior with an oscillation period of 24 s which is close to the 28.2 s

oscillation period of the plume found experimentally. Likewise, the respective eigenvectors

present a spatial organization whose wavelengths are comparable to the dimensions of the

tank. It also is observed that the higher POD modes are the harmonics of the �rst

mode. Regarding the gas phase, the POD energy spectrum indicates that the �rst three

modes represent approximately 70% of the corresponding kinetic energy. Interestingly

the slope of this spectrum in the log-log plot showed a slope of −5
3
such a result may give

clues about important �uid �ow phenomena. In addition, the �rst six modes presented

a slightly organized behavior in time, suggesting an oscillation period of approximately

20 s. Concerning the spatial part of the POD modes, it was found that the �rst mode

is associated with the mean �ow of the gas, this is the gas jet. The second mode shows

an organized structure with a wavelength similar to that of the �rst mode of the liquid

phase. The same can be said if the third eigenvector of the gas phase is compared to the

second eigenvector of the liquid phase.

Similar results were found for DMD in both phases when the data was analysed without

the mean �ow. For this case, very stable structures are observed with a maximum at the

frequency of 0.043 Hz or approximately 23 s. This �nding is in agreement with the POD

results.

This work opens interesting questions related to the POD and DMD analysis of the gas

phase.
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Finally, a strategy to perform the transient simulations of reacting unsteady �ows for

mixing tanks in real-time is proposed. It consists simply in switching periodically the

matrix of �ow rates in a Compartment Model Approach.

As far as the application to stirred tank is targetted, several point would deserve fur-

ther attention. The full integration of the velocity �elds reconstruction results with mixing

models such as the CMA is envisioned for future work. To achieve this goal it should be

foreseen that the reconstructed velocity �eld data are rewritten according to the formats

used by the CMA tools available in the research group. Indeed, for the moment, matrices

of �owrates are build directly from CFD data and not from the ROM's reconstruction of

velocity �elds. The bene�t of using a reconstructed �ow �eld is that it contains the con-

tribution of macro-instabilities, especially if the reconstruction is performed with DMD.

Once the conditions are in place to generate reduced order models: CMA + POD or CMA

+ DMD, the impact on mixing performance due to the use of reconstructed velocity �elds

can be veri�ed.

The main di�culty encountered in this work, among several others, was related to the

sliding mesh. The fact that the input data are generated at nodes whose location is time

dependent creates serious di�culties and also forbid the standard interpretation of modes

as velocity vector �elds. One option to circumvent this limitation is to interpolate the

instantaneous velocity �elds on a �xed grid when sampling it. Whether this can be done

within the CFD code or after exporting the data has to be examined.

Saving the data on a �xed grid would also greatly facilitate the construction of the

compartments and the calculation of the matrix of �owrates. Quite obviously, this im-

provement would allow to analyse time resolved input data issued from Large Eddy Simu-

lation. This is actually ongoing work but the number of snapshot to consider is enormous

due to the much wider range of scales that are produced in such highly resolved simulation.

The �ow structure analysis of LES input data is certainly interesting but the use of

the reconstructed �ow �elds to transport scalars is relevant only if short term e�ects are

present in the coupled physics. In such a case, it would be advantageous to bene�t from

the numerous models and solver already implemented in CFD codes. So, one interesting

option could be to by-pass the velocity calculation loop and replace it by the direct

reconstruction of the velocities from the POD or DMD modes. Clearly, this is a hard

work since solving the Navier-Stokes equation is the core of any CFD code.
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Concerning the bubble plume in a quasi 2D column, a short term perspective would be

to further analyse the di�erences and similarities in the energy spectra of the two phases.

The spectra mode are markedly di�erent in the two phases for the low order modes. This

might contains some information regarding the energy transfer between phases. Since the

input data are well resolved spatially and temporally, one can expect to �nd the evidence

of physical phenomena in the entire range of modes. It is expected for example that

the slopes of the spectra is related to the turbulence and possibly helps to identify a

relationship between gas and liquid turbulence.
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Appendix A

Appendix 1
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a)

b)

Figure A.1: Spectral ranking results for σj corresponding to the DMD modes for the 250 snap-
shots case typical ranking criteria: a) Modes with a very negative sigma value carry very small
amounts of energy compared to modes whose sigma value is approximately zero, b) Approach
in the neighborhood of σj = 0s−1. Both positive and negative sigma values have a very small
energy content compared to modes whose sigma values are approximately zero.
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a)

b)

Figure A.2: Spectral ranking results for σj corresponding to the DMD modes for the 250
snapshots case alternative ranking criteria: a) Modes with a very negative sigma value carry
very small amounts of energy compared to modes whose sigma value is approximately zero, b)
Approach in the neighborhood of σj = 0s−1. Both positive and negative sigma values have a
very small energy content compared to modes whose sigma values are approximately zero.

151



a)

b)

Figure A.3: Frequency spectral ranking results corresponding to the DMD modes for the 250
snapshots case: a) Typical ranking criteria, b) Alternative ranking criteria.
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Figure A.4: POD and DMD (alternative criteria) spectrum mode for the 250 snapshots case.
The ranking of the modes is identical for both methodologies.

a)

b)

Figure A.5: Spectral ranking results for σj corresponding to the DMD modes for the 271
snapshots case alternative ranking criteria: a) Modes with a very negative sigma value carry
very small amounts of energy compared to modes whose sigma value is approximately zero, b)
Approach in the neighborhood of σj = 0s−1. Both positive and negative sigma values have a
very small energy content compared to modes whose sigma values are approximately zero.
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a)

b)

Figure A.6: Frequency spectral ranking results corresponding to the DMD modes for the 271
snapshots case: a) Typical ranking criteria, b) Alternative ranking criteria.
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Figure A.7: POD and DMD (alternative criteria) spectrum mode for the 271 snapshots case.
The ranking of the modes is identical for both methodologies.

Figure A.8: Imaginary part vrs Real part for the DMD coe�cients 112 and 113 (386 snapshots
case). The circular con�guration implies that the imaginary and real parts are shifted by π

2 .
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Figure A.9: FFT for the 1st POD mode

Figure A.10: FFT for the 2nd POD mode
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Figure A.11: FFT for the 3rd POD mode

Figure A.12: FFT for the 4th POD mode
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Figure A.13: FFT for the 5th POD mode

Figure A.14: FFT for the 6th POD mode

158



Figure A.15: FFT for the 7th POD mode

Figure A.16: FFT for the 8th POD mode
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Figure A.17: FFT for the 9th POD mode

Figure A.18: FFT for the 10th POD mode
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Figure A.19: FFT for the 11th POD mode

Figure A.20: FFT for the 12th POD mode
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Figure A.21: FFT for the 13th POD mode

Figure A.22: FFT for the 14th POD mode
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Figure A.23: FFT for the 15th POD mode

Figure A.24: FFT for the 16th POD mode
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Figure A.25: FFT for the 17th POD mode

Figure A.26: FFT for the 18th POD mode
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Figure A.27: FFT for the 19th POD mode

Figure A.28: FFT for the 20th POD mode
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