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Flots de Newton, transports parallèles stochastiques, Q-processus de Wiener, et équation de Dean-Kawasaki sur l'espace de Wasserstein

Résumé:

Nous allons introduire des flots de Newton sur l'espace de Wasserstein. L'existence et l'unicité de l'équation de Newton avec le problème de Cauchy sera établie. Nous allons éclaircir également les liens entre l'équation d'écoulement de Newton relâchée et l'équation de Keller-Segel.

Nous allons étendre lad éfinition de la connexion de Levi-Civita de Lott à l'espace de Wasserstein des mesures de probabilité ayant densité et divergence de tel sorte que les transports parallèles puissent être définis comme en géométrie différentielle. Nous allons démontrer l'existence des transports parallèles au sens fort de Lott pour le cas du tore.

Nous allons établir un formalisme intrinsèque pour le calcul stochastique d'Itô sur l'espace de Wasserstein à travers les trois fonctionnelles typiques. Nous allons construire la forme faible et la forme forte de l'équation différentielle partielle stochastique définissant le transport parallèle, dont l'existence et l'unicité est démontrée dans le cas du tore. Des processus de diffusion non-dégénérée sont construits en utilisant les fonctions propres du laplacian.

Nous allons construire une nouvelle approche du système d'interaction de particules aux solutions du problème de martingale pour l'équation de Dean-Kawasaki sur le tore sous une condition plus faible portant sur l'intensité de corrélation spatiale.

Optimal transport

Optimal transport problem is firstly proposed by French mathematician Monge form practical engineering problems. In general, assume that X, Y are two Polish spaces(complete separable metric space), T : X → Y is a Borel map and µ ∈ P(X) is a probability measure, then we say the probability measure T # µ ∈ P(Y ) is a pushforward measure of µ by T , if

T # µ(E) = µ(T -1 (E)), ∀ E ⊂ Y Borel.
The pushforward satisfies, for all Borel function f ∈ L 1 (T # µ),

∫ f dT # µ = ∫ f • T dµ.
T # µ is also called the image measure of µ under T , or T transports µ to T # µ .

Let c : X × Y → R ∪ +{∞} and µ ∈ P(X), ν ∈ P(Y ) , then the Monge optimal transport problem is to find the optimal transport map T such that minimize

I[T ] = ∫ X c(x, T (x))dµ(x) (1.1.1)
among all the measurable map satisfying T # µ = ν. Monge optimal transport problem is ill-posed because 1. there may not exist T satisfying T # µ = ν, for example, if µ is a Dirac measure while ν is not.

2. T # µ = ν is not weakly closed in general weak topology, i.e. if T n # µ = ν and T n weakly converges to T , it 1 Chapter 1: Introduction 2 is not necessary that T # µ = ν .

In 1940s, Kantorovich proposed a relaxed version of optimal transport problem in the optimal allocation of national resources. Let C(µ, ν) = {γ ∈ P(X × Y ) π X # γ = µ, π Y # γ = ν} , where π X , π Y are projection maps form X × Y to X and Y respectively. The Kantorovich optimal transport plan problem is to find γ ∈ C(µ, ν) such that it minimize I[γ] = ∫ X×Y c(x, y)dγ(x, y).

(1.1.2)

Usually, we call the minimizer as the optimal transport plan. When the cost function c is lower semi-continuous and bounded from below, there always exists a optimal transport plan. From Monge-Kantorovich optimal transport problem, Kantorovich introduced the 2-Wasserstein distance in the probability measure space: for µ, ν ∈ P 2 (X)

and c(x, y) = d 2 (x, y), define 2-Wasserstein distance W 2 as

W 2 2 (µ, ν) := inf γ∈Γ(µ,ν) ∫ X×X d 2 (x, y)γ(dx, dy).
Since we always consider 2-Wasserstein distance in this thesis, we will call W 2 as Wasserstein distance without additional requirements. We also call (P(X), W 2 ) as Wasserstein space.

Geometry and differential equations on the Wasserstein space

Denote P 2,ac (R d ) as the set containing all of the absolutely continuous probability measures with respect to Lebesgue measure on R d and finite second moments. When it is constrained in P 2,ac (R d ) with the cost function c = d 2 , Brenier [START_REF] Brenier | Polar factorization and monotone rearrangement of vector-valued functions[END_REF] used convex functions to describe optimal transport maps of Monge-Kantorovich optimal transport problems. This result built a bridge between the fields of optimal transport and Monge-Ampère equation, fluid dynamics, metric measure geometry, probability etc. We introduced some parts of related works .

• Partial differential equations: A class of diffusive equations can be seen as gradient flows on P(M ). This viewpoint brought new development to contraction of diffusion semigroup, log-sobolev inequality and other related fields(see [START_REF] Villani | Optimal transport: old and new[END_REF]) .

• Infinite dimensional differential geometry: Let P ∞ 2 (R d ) be the set of probability measures which have strictly positive smooth densities. Otto defined a Riemannian metric on P ∞ 2 (R d ), which makes (P ∞ 2 (R d ), W 2 ) a infinite dimensional Riemannian manifold. Also, Otto got the geodesic equation and calculated the lower bound of section curvature, so that he formally showed that P 2 (R d ) has nonnegative section curvature.

Based on these works, J. Lott [START_REF] Lott | Some Geometric Calculations on Wasserstein space[END_REF] derived the Riemann curvature of P ∞ 2 (M ), where the base space M is a complete simple connected Riemannian manifold without boundary.

• Metric measure geometry: Sturm, Lott, Villani etc. proved that nonnegativeness of Ricci curvature of the manifold M is equivalent to the convexity of Boltzmann entropy along Wasserstein geodesics(see [START_REF] Sturm | On the geometry of metric measure spaces[END_REF] 
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). This means one can use the geodesic convexity of Boltzmann entropy to give the lower bound of Ricci curvature of M , even when M is not a smooth Riemannian manifold.

Stochastic analysis on Wasserstein spaces

In 2013, Prof. Xiangdong Li constructed a Langevin deformation connecting geodesic flows and gradient flows, and collaborated with Songzi Li to prove the W-entropy formula about the Langevin deformation( [START_REF] Li | W-entropy formulas and Langevin deformation of flows on Wasserstein space over Riemannian manifolds[END_REF]) .In 2017, Prof. Xiangdong Li proposed a research plan for constructing Brown motion and Langevin diffusion process on Wasserstein spaces in his application for the funding from the National Natural Science Foundation of China.

In 2018, Prof. Xiangdong Li suggested me studying the construction of Brownian motion on Wasserstein spaces.

In this subsection, starting from Brownian motion on Wasserstein spaces, we introduce some developments on related studies on the stochastic analysis and stochastic differential equations on Wasserstein spaces.

von Renesse and Sturm [START_REF] Von Renesse | Entropic measure and Wasserstein diffusion[END_REF] constructed an entropic measure P β on P(T), and proved that the Wasserstein Dirichlet form

E(u, v) = ∫ P(T) < Du(µ), Dv(µ) > L 2 (µ) dP β (µ)
is closable, so that they can construct a reversible markov process with respect to P β on P(T): (µ t ) t∈[0,T ] . It satisfies Itô type formula and Varadhan type formula. In detail, for a smooth function u on P(T), u(µ t ) -u(µ 0 ) -1 2

∫ t 0 Lu(µ s )ds
is a martingale, where L is a second order differential operator. And its quadratic variation is square of Wasserstein gradient of u. This property is similar to the Itô formula for Brownian motion in Euclidean space. (µ t ) t∈[0,T ] also satisfies, for any Borel subset A of P(T),

lim ϵ→0 + ϵ ln P(µ t+ϵ ∈ A µ t ) = - 1 2 W 2 2 (µ t , A).

Main contents

Inspired by the works mentioned above, This paper mainly studies some topics on the geometry and stochastic analysis on the Wasserstein space.

In Chapter 2, we mainly introduce some preliminaries. Firstly, we review the basic topological facts about the Wasserstein space. Secondly, we introduce Brenier's and McCann's works on the optimal transport map. Then, starting from Benamou-Brenier formula, we describe geodesics on the Wasserstein space from viewpoint of displacement interpolation and Riemannian geometry. As a remark, we explain the relation between geodesic equations and zero-pressure Euler equation. Finally, we introduce a gradient flow equation on P(M ) and implicit Euler approximation.

In Chapter 3, we mainly introduce Newton flows on Wasserstein spaces. We firstly give a brief review on the Newton flow equation on R d , and use implicit Euler approximation method to prove the existence of solutions.

Using a similar method, we prove the existence of solutions to the Newton flow equation on P(T d ) under certain conditions (Theorem 3.2.6) and give the conditions for uniqueness. In particular, when the base space is R, we give conditions for the uniqueness of the limiting point of Newton flows, i.e. there exists a unique minimizer of

Main contents

the potential functional.. It is known that gradient flows on Wasserstein spaces are equivalent to Fokker-Planck equations. As a comparison, we introduce the corresponding partial differential equations of Newton flows of some calsses of calssical functionals in section 3.3. We also reveal the connection between the Newton flow equation on P(T) and the Keller-Segel equation.

The main contributions of this chapter:

• Under certain conditions, we prove the existence and uniqueness of the solution to the Newton flow equation on P(T d ). The conditions applies to the common functional

F (µ) = ∫ V dµ + ∫ W * µdµ .
• When the base space is R, we give conditions for the uniqueness of the limiting point of Newton flows, i.e.

there exists a unique minimizer of the potential functional.

• on P(T), we reveal the connection between the Newton flow equation and the Keller-Segel equation.

In Chapter 4, we mainly introduce the Riemannian geometry and parallel translation on P 2 (M ). We revisit the intrinsic differential geometry of the Wasserstein space (P 2 (M ), W 2 ). In detail, we fristly introduce the tangent space of P 2 (M ) from Ambrosio's theorem on the representation of absolutely continuous curves on P 2 (M ) .

Next, we prove the existence (Theorem 4.2.4) and uniqueness (Theorem 4.6.3) of solutions to ordinary differential equations on P 2 (M ). In section 4.3, we rewrite Lie bracket, Levi-Civita connection, proposed by J. Lott in [START_REF] Lott | Some Geometric Calculations on Wasserstein space[END_REF], in an intrinsic geometric way. We also extend the domain of Levi-Civita to more general vector fields in tangent spaces of the measure included in P div (M ) (Theorem 4.3.6). In section 4.4, we prove that when σ ∈ P 2,ac (M ), the square of Wasserstein distance W 2 2 (σ, µ) is derivable along any constant vector field at any µ . At last, in section 4.5, based on the pointwise derivability of W 2 2 , we obtain the extension of vector fields along good curves on P 2 (M ) (Theorem 4.5.1), and introduce the calssical results on parallel translation. We also prove the existence and uniqueness of the smooth solution to the parallel translation equation on P 2 (T) (Theorem 4.5.7).

The main contributions of this chapter:

• We extend the domain of Levi-Civita connection on P ∞ 2 (M ), so that one can introduce Levi-Civita connection for more general vector fields on P div (M ) .

• We extend vector fields on P 2 (M ), so that one can introduce parallel translations as in differential geometry.

• We prove the existence and uniqueness of the smooth solution to the parallel translation equation on P 2 (T), and improve the regularity results on the solution proposed by Ambrosio.

In Chapter 5, we mainly introduce stochastic parallel translations and Q-Wiener process on the Wasserstein space. First of all, we do Itô stochastic calculus for three kinds of functional on the Wasserstein space: potential functional, interaction functional and Entropy functional, along the image measure process induced by some stochastic differential equation. We also prove the existence and uniqueness of the solution to the stochastic gradient flow equation when the noise is finite dimensional (Theorem 5.2.8). Next, we construct stochastic parallel translation, along the image measure process induced by some stochastic differential equation with enough regularity, as a L 2 limit of Euler approximation (Proposition 5.3.3). To get more information about the dynamics of stochastic parallel translation, we prove that stochastic parallel translation is a weak solution, both in sense of probability and analysis, of a stratanovich form of stochastic partial differential equation (Theorem 5.3.4). Then, in the spirit of Wong-Zakai approximation, we find the strong form of stochastic partial differential equation satisfied by stochastic parallel translation (Theorem 5.3.5) and prove the conservation of norm (Theorem 5.3.8). In section 5.4, we pick a base on M so that we can construct a Q-Wiener process on P 2 (M ) (Theorem 5.4.5). Finally, as an example, we prove the well-posedness of stochastic parallel translation on P 2 (T) (Theorem 5.5.1).

The main contributions of this chapter:

• We prove the existence of stochastic parallel translation along the image measure process induced by a stochastic differential equation. And we construct the weak and strong form of stochastic partial differential equations satisfied by stochastic parallel translation. Also, we can prove the regular solution to the strong form equation preserves norm.

• We construct a Q-Wiener process on the Wasserstein space.

• We prove well-posedness of strong form of stochastic partial differential equations satisfied by stochastic parallel translation on P 2 (T).

In Chapter 6, we mainly study the diffusive Dean-Kawasaki equation on one dimensional Torus with colored noise.

Using the idea of Q-Wiener process and interaction particle system, we give a new particle approximation model to the regularized martingale problem (RM P ) α,β

T dx of the diffusive Dean-Kawasaki equation on one dimensional Torus driven by a white noise, whose spatial correlated intensity is larger than 1 (Theorem 6.3.1). Under such conditions, we prove the existence of solutions to the regularized martingale problem (RM P ) α,β

T dx (Theorem 6.4.1). We also prove that the solution {µ t , t ∈ [0, T ]} is non-atomic for all t ∈ [0, T ] almost surely (Lemma 6.4.2).

The main contributions of this chapter:

• We proposed a new particle approximation model to solutions to the regularized martingale problem of the diffusive Dean-Kawasaki equation on one dimensional Torus.

• We prove the existence of nontrivial solutions to the regularized martingale problem of the diffusive Dean-Kawasaki equation on one dimensional Torus under a weaker condition on noise than other classical conditions.

Chapter 2 Preliminaries

In this chapter, we will introduce some preliminaries about optimal transport theory. We will firstly introduce the basic topological facts about the Wasserstein space, then we will introduce Brenier's optimal transport map theorem and Benamou-Brenier formula. As a remark, We will explain the connection between fluid mechanics and optimal transport theory. Benamou-Brenier formula can be seen as a representation of the geodesic on the Wasserstein space. To illustrate this point of view, we introduce displacement interpolation and infinite dimensional Riemannian metric. At last, we will apply implicit Euler approximation method to approximate a gradient flow equation on the Wasserstein space.

Optimal transport and geodesics on the Wasserstein space

Theorem 2.1.1. X is a metric space, then • (P 2 (X), W 2 ) is a metric space;

• convergence in W 2 is equivalent to weak convergence plus convergence of second moments;

• if X is a Polish space, then (P 2 (X), W 2 ) is also a Polish space.

Proof. see [START_REF] Villani | Graduate studies in mathematics[END_REF] .

This theorem shows the topology properties of (P 2 (X), W 2 ). When the base space is a connected compact manifold, W 2 metrizes weak convergence. In this paper, we always consider the optimal transport problem when the cost function is the square of distance. Now, we come back to Monge-Kantorovich transportation problem and denote C o (µ, ν) as the set containing all of the optimal transport plans γ ∈ P(X × Y ) . It is natural to ask when there is a unique minimizer and when the minimizer of Kantorovich transportation problem can be a minimizer of Monge transportation problem? The following theorem gives the answer: Theorem 2.1.2. (Brenier) Let µ, ν ∈ P 2 (R d ), then, 1. If µ is absolutely continuous, Then there exists a unique optimal transport plan γ = (Id × ∇φ) # µ, where ∇φ is the unique(uniquely determined dµ-almost everywhere) gradient of a convex function φ which satisfies ∇φ # µ = ν .

2. Under the assumption of 1, ∇φ is the unique (dµ-a.s.) solution to the Monge transportation problem:

∫ R d |x -∇φ(x)| 2 dµ(x) = inf {T :T # µ=ν} ∫ R d |x -T (x)| 2 dµ(x).
. 3. If ν is also absolutely continuous, then, for dµ-almost all x and dν-almost all y ,

∇φ * • ∇φ = x, ∇φ • ∇φ * (y) = y,
where ∇φ * is the (dν-almost everywhere) unique gradient of a convex function which push ν forward to µ .

Brenier considered the optimal transport problem when c = d 2 on P 2 (R d ), and gave a sufficient condition for the uniqueness of the optimal transport plan: the initial probability measure is absolutely continuous with respect to Lebesgue measure. In this case, the optimal transport plan of Kantorovich transportation problem is also the optimal transport map of Monge transportation problem, which can be represented by a gradient of some convex function. McCann gave the optimal transport map theorem when the base space is a complete connected Riemannian manifold, so that one can see more clearly the geometric feature of optimal transport maps. Here, we briefly introduce a part of his results: Given µ, ν ∈ P 2 (M ), and suppose that µ is absolutely continuous with respect to dx, then there is a unique optimal transport plan γ from µ to ν such that

γ = (Id × T ) # µ,
where T is uniquely (dµ-almost surely) determined. And there is a d 2 2 -concave function φ such that T (x) = exp x (-∇φ).

Optimal transport and geodesics on the Wasserstein space

Proof. See [START_REF] John | Polar factorization of maps on Riemannian manifolds[END_REF].

These results describe the static optimal transport problem, while the theorem below deals with the optimal transport problem from the viewpoint of dynamics, which can be seen as a representation of geodesics on the Wasserstein space.

Theorem 2.1.4. (Benamou-Brenier formula) For (µ, v) := (µ t , v t ) t∈[0,1] , define the energy functional

A[µ, v] := ∫ 1 0 |v t | 2 µ t dt, then inf (µ,v)∈V (µ0,µ1) A[µ, v] = W 2 2 (µ 0 , µ 1 ), (2.1.1)
where V (µ 0 , µ 1 ) is a set contains all the pairs (µ, v) := (µ t , v t ) t∈[0,1] which satisfies the following conditions:

1. µ ∈ C([0, 1], P 2,ac (R d )) , where P 2,ac (R d ) is equipped with weak * topology. 2. v ∈ L 2 (dµ t dt). 3. ∪ t∈[0,1] supp(µ t ) is bounded.

The following mass transportation equation

∂ t µ t + div(µ t v t ) = 0
holds in sense of distribution.

µ(t

= 0, •) = µ 0 (•), µ(t = 1, •) = µ 1 (•).
Proof. See [START_REF] Benamou | A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem[END_REF].

Remark 2.1.5. The theorem above showed a connection between fluid dynamics and optimal transport.

We think of µ 0 and µ 1 as the density of particles in a given region in R d at time t = 0 and t = 1. If we assume that for any t ∈ [0, 1] , there exists a vector field v t , which is smooth in time t and uniformly Lipschitz in space, describing how particles move around, i.e. we can describe the time evolution of the particles position by

dX t dt = v t (X t ). (2.1.2)
According to the ordinary differential equation theory, given x 0 ∈ R d , (2.1.2)has a unique solution

X x0 (t) for t ∈ [0, 1]. Also, the map (t, x 0 ) → X x0 (t) is a one-to-one Lipschitz map. Then (T t ) 0≤t≤1 = (x → X x (t)
) is a diffeomorphic flow on R d . By the method of characteristics, µ t = (T t ) # µ 0 is the unique weak solution of the following mass transportation equation:

∂ t µ t + div(µ t v t ) = 0. (2.1.3)
The fluid's kinetic energy at time t is

E(t) = ∫ R d µ t |v t | 2 dx .
The total energy for all the particles moving with speed

v t from t = 0 to t = 1 is A[µ, v] = ∫ 1 0 E(t)dt .
In fact, (2.1.3) is the Eulerian representation of the fluid dynamic, (2.1.2) is the Lagranian representation. These two representations are equivalent

when T t is diffeomorphic. Each pair (µ, v) in V (µ 0 , µ 1 ) represents a continuous curve from µ 0 to µ 1 in P 2 (R d ).
It also represent a dynamic process of a fluid field transporting µ 0 to µ 1 according to the velocity field v t . The formula (2.1.1) reveals that the geodesic in probability measure space under W 2 distance corresponds to the fluid dynamic process with the lowest total kinetic energy, in which case the W 2 distance is the lowest kinetic energy.

The formula (2.1.1) can be seen as geodesic equation on the Wasserstein space from two points of view. Firstly, it is a random version of action minimizing curves. In detail, this viewpoint starts from the time dependent optimal transport problem and uses displacement interpolation to describe geodesics on the Wasserstein space.

Secondly, from the viewpoint of Riemannian geometry, if we equip P with suitable topology, tangent bundles and Riemannian metric, (2.1.1) can be realized as a energy variation formula for C 1 -curves. We will introduce these two viewpoints. We firstly introduce the time dependent Monge optimal transport problem on P ac : 

inf T { ∫ X ∫ 1 0 dT t (x) dt 2 dtµ(dx) T 0 = Id, (T 1 ) # µ = ν } . ( 2 
T t (x) = t∇φ(x) + (1 -t)x, 0 ≤ t ≤ 1. (2.1.5) Proof. See [McC97] .
µ t = (T t ) # µ is called the displacement interpolation from µ to ν . It shows the dynamic process of optimal transport. In general, we can still define displacement interpolation for µ ∈ P(R d ).

Definition 2.1.7. Let µ 0 , µ

1 ∈ P 2 (R d ) , γ ∈ C(µ 0 , µ 1 ) is a transport plan. We say that a curve [γ](t) : [0, 1] → P 2 (R d ) on P 2 (R d ) is a displacement interpolation from µ to ν induced by γ, if
2.1 Optimal transport and geodesics on the Wasserstein space

[γ](t) := ( (1 -t)π 1 + tπ 2 ) # γ.
where π 1 , π 2 are projection maps to the first variable and the second variable respectively.

It can be proved that the displacement interpolation between µ and ν is equivalent to the geodesic between µ and ν (see [START_REF] Gigli | On the inverse implication of Brenier-McCann theorems and the structure of (P 2 (M), W 2)[END_REF]).

Going back to the case for P ac (R d ), we can derive the geodesic equation by displacement interpolation. Note that although P ac (R d ) is not general, it has a obvious geometry feature and a clear correspondence with geometry structure and differential calculus on the Euclidean space or finite dimensional manifold. In detail, suppose that t = 0 the initial velocity field v 0 = ∇φ -Id at time 0, then v t = (∇φ -Id) 

     d dt T t = v t (T t ) d 2 dt 2 T t = 0.
(2.1.6)

Using (??), we have

0 = d 2 dt 2 T t = ∂v ∂t (T t ) + v(t, T t ) • ∇v(t, T t ).
Then, since (2.1.3), we give the Eulerian representation of the geodesic:

   ∂ t µ t + div(µ t v t ) = 0 ∂v ∂t + v • ∇v = 0, (2.1.7)
The initial condition is totally determined by µ and ν:

µ 0 = µ; v(0, x) = ∇φ(x) -x.
(2.1.8) Remark 2.1.8. There is a long history for researches on displacement interpolation, which is firstly proposed by McCann(see [START_REF] Villani | Optimal transport: old and new[END_REF]). Here, we only consider the simplest case for the kinetic energy E(t), while for a general Lagranian action , displacement interpolation can also be introduced. We refer to [START_REF] Villani | Optimal transport: old and new[END_REF] for more details.

Remark 2.1.9. (2.1.7), in which the first equation is mass conservation and the second one is movement conservation, is a compressible Euler equation for zero pressure. Generally, the well-posedness of (2.1.7) is not obvious. Even when the initial value is smooth enough, the solution may explode in finite time because of the intersection of characteristics, or in other word, mass concentration. However, in the discussion above, since φ is convex, characteristics will never intersect with each other during t ∈ [0, 1).

In dimension one, (2.1.7) is also an inviscid Burger's equation .

Remark 2.1.10. All the theorems above are valid when the base space is a complete connected compact Riemannian manifold with certain conditions on curvature.

Riemannian structure on the Wasserstein space

Next, we introduce another point of view: Riemannian geometry. This viewpoint is also one of the starting points of our works. In the early 21st century, Otto firstly proposed a Riemannian metric on P ∞ 2 (R d ). In this section, we introduce the tangent space and Riemannian metric on P ∞ (M ), where M is a compact Riemannian manifold. Definition 2.2.1. Given µ ∈ P ∞ (M ) with dµ = ρdx, define the tangent space T µ at µ as

T µ P ∞ (M ) := {∇ψ, ψ ∈ C ∞ (M )} For any ∇ψ 1 , ∇ψ 2 ∈ T µ P ∞ (M ) , the Riemannian metric is defined as ⟨∇ψ 1 , ∇ψ 2 ⟩ µ = ∫ M ⟨∇ψ 1 , ∇ψ 2 ⟩ρdx Theorem 2.2.2 (Geodesics). If c : [0, 1] → P ∞ (M )
is a smooth immersed curve, and suppose that

c(t) = ρ(t)dx. ρ satisfies ∂ t ρ = -∇.(ρ∇ϕ),
where ∇ϕ(t) ̸ = 0 and ∫ M ϕρdx = 0 . Then, the length of c, denoted as L(c), under Wasserstein distance satisfies:

L(c) = ∫ 1 0 ( ∫ M |∇ϕ(t)| 2 ρ(t)dx ) 1 2 dt.
Remark 2.2.3. P ∞ (M ) can become a infinite dimensional smooth Riemannian manifold if equipped with a topology induced by smooth curves(see [START_REF] Otto | The geometry of dissipative evolution equations: the porous medium equation[END_REF], [START_REF] Kriegl | The convenient setting of global analysis[END_REF]). The definition of tangent space and Riemannian metric can be naturally extended to P 2 (M ), which we will introduce in Chapter 4. However, P 2 (M ) can not be a differentiable Riemannian manifold. This can be seen by a simple observation: At discrete probability measure, the exponential map can not give a one-to-one local map from its tangent space to its neighbourhood.

There is an open problem: Can one find a subspace of P(M ), larger than P ∞ (M ), so that it can become a infinite dimensional Riemannian manifold? Or can the formal Riemannian structure and Riemannian calculus be extended to a larger space? In Chapter 4, we will try to find the answer to the second question from the point of analysis.

Gradient flow equation on the Wasserstein space

Gradient flow equation on the Wasserstein space

A huge class of partial differential equations can be seen as gradient flows on the Wasserstein space. This is firstly proposed by Otto in [START_REF] Otto | The geometry of dissipative evolution equations: the porous medium equation[END_REF]. In this section, we briefly introduce the gradient flow equation of the following functional

E(ρ) =    ∫ ρ log ρdx + ∫ V ρdx, ρ ∈ P ac (R d ) +∞, otherwise.
Its gradient under Wasserstein metric is gradF (ρ) = ∇ log ρ + ∇V , which we will explained later in Chapter 3 .

Suppose that V is smooth and λ-convex for λ > 0 . We will use implicit Euler approximation method to derive gradient flow equation.

At first, given time step τ > 0 and initial measure ρ 0 τ = ρ 0 . We construct discrete solution {ρ n τ }. Given ρ n τ , define

ρ n+1 τ = argmin E(ρ) + W 2 2 (ρ n τ ,ρ) 2τ . Since E is strictly convex( [Vil03]), ρ n+1 τ is unique. Because ∫ ρ n+1 τ log ρ n+1 τ dx + ∫ V ρ n+1 τ dx + W 2 2 (ρ n τ , ρ n+1 τ ) 2τ ≤ ∫ ρ n τ log ρ n τ dx + ∫ V ρ n τ dx, (2.3.1) This means sup n≤0 E(ρ n τ ) ≤ E(ρ 0 ).
Thus, we get the uniform boundedness of E(ρ τ ), so that ρ τ is weakly compact in L 1 . At the same time, by summing together the inequalities 3.2.4, we have the following energy estimate:

∑ n≥0 W 2 2 (ρ n τ , ρ n+1 τ ) ≤ 2τ (E(ρ 0 ) -inf E),
Also, from this last estimate, we can get equi-continuity by Cauchy-Schwarz inequality. Then by Ascoli's theorem, there exists a subsequence {ρ τ k } k≥0 uniformly converging to some ρ under C([0, T ], P ac (R d ) -ω -L 1 ).

Next, we want to prove ρ satisfies

∂ t ρ = ∆ρ + ∇.(ρ∇V ) (2.3.2) in distribution. Let ξ ∈ C ∞ c (R d + )
, we operate a small perturbation around ρ n+1 τ :

ρ ϵ = (Id + ϵξ) # ρ n+1 τ .
When ϵ is small enough, Id + ϵξ is a C 1 difeomorphism. We have

E(ρ ϵ ) = ∫ ρ n+1 τ log ρ n+1 τ det(I d + ϵ∇ξ) dx + ∫ ρ n+1 τ (x)V (x + ϵξ(x))dx.
Thus, On the other hand, since ρ n τ , ρ n+1 τ are absolutely continuous, there exists an optimal map ∇φ such that Chapter 2: Preliminaries

14 ∇φ # ρ n τ = ρ n+1 τ . Then ρ ϵ = [(Id + ϵξ) • ∇φ] # ρ n τ , so W 2 (ρ n τ , ρ ϵ ) ≤ ∫ ρ n τ (x)|x -∇φ(x) -ϵξ • ∇φ(x)| 2 dx.
Therefore, we obtain

E(ρ ϵ ) -E(ρ n+1 τ ) + W 2 2 (ρ n τ , ρ ϵ ) 2τ - W 2 2 (ρ n τ , ρ n+1 τ ) 2τ ≤ ∫ ρ n τ (x) 1 2τ ( |x -∇ϕ(x) -ϵξ • ∇ϕ(x)| 2 -|x -∇ϕ(x)| 2 ) dx + ∫ ρ n+1 τ [V (x + ϵξ) -V (x)]dx - ∫ ρ n+1 τ (x) log det(Id + ϵ∇ξ(x))dx. Since ρ n+1 τ is the minimizer of E(ρ) + W 2 2 (ρ n τ ,ρ) 2τ
, the left hand side of the above inequality must be larger than 0.

Let ϵ → 0 + , we get the Euler-Lagrange equation:

1 τ ∫ ρ n τ (x)⟨∇ϕ(x) -x, ξ(∇ϕ(x))⟩dx = ∫ ρ n+1 τ [⟨-∇ log(ρ n+1 τ ) -∇V, ξ⟩]dx. (2.3.3)
According to the energy estimate, we can prove, without every details which can be seen in [START_REF] Villani | Graduate studies in mathematics[END_REF],

∫ ρ(t)ξ - ∫ ρ(s)ξ = ∫ t s ∫ ρ(r)(∆ξ -∇V • ∇ξ)dr.
(2.3.2) is proved .

Although we have not strictly prove (2.3.2) is exactly the gradient flow of E on the Wasserstein space, it still use the viewpoint of gradient flow to approximate the solution to the diffusive equation (2.3.2). In Chapter 3 , we will use a similar method to approximate the Newton flow equation.

Chapter 3

Newton Flow on the Wasserstein

Space

Recently, gradient flows on the Wasserstein space attract much attention and get fruitful results. In 1998, using implicit Euler approximations to gradient flows on the Wasserstein space, [START_REF] Jordan | The variational formulation of the Fokker-Planck equation[END_REF] gave a time-discreted interation method for a class of Fokker-Planck equations. [START_REF] Otto | The geometry of dissipative evolution equations: the porous medium equation[END_REF] introduced Riemannian geometry on the Wasserstein space and proved that porous medium equations are gradient flows of Renyi's entropy on the Wasserstein space. Then, applying the ideas of gradient flows, Otto proved the contraction of diffusion semigroups under W 2 distance. Otto and Villani [START_REF] Otto | The geometry of dissipative evolution equations: the porous medium equation[END_REF] proved Talagrand inequalities and HWI inequalities for Fokker-Planck equations.

On the other hand, in Calculus, Newton method is an important algorithm to find solutions of f (x) = 0 for differentiable functions. It also plays an important role in proving implicit function theorem. Former soviet mathematician Kantorovich introduced generalized Newton method on Banach space, which can be used to solve a huge class of integral and differential equations. In May 2011, Fields Medal Winner Villani mentioned Newton method's application in nonequilibrium statistical mechanics in a public report.

In 2019, inspired by Villani's report, professor Xiangdong Li suggested me studying Newton flow on the Wasserstein space and related topics. In detail, we consider

• How to reasonably define Newton flow equations on Wasserstein spaces;

• the connections between Newton flows and differential equations;

• existence of solutions to Newton flow equations;

• uniqueness of solutions to Newton flow equations;

• convergence of Newton methods;

• applications of Newton flows and Newton methods.

In July 2019, under guidance of professor Xiangdong Li, we derived Newton flow equations on the Wasserstein space and got the conditions for uniqueness of solutions to Newton flow equations. In August 2019, professor Xiangdong Li mentioned our works on the joint meeting of Chinese Academy of Mathematics and System Sciences and Huawei company. After that, we further improved the results under the guidance of professor Xiangdong Li and studied the existence of Newton flows. Next, we briefly introduce the main contents of this chapter. Firstly, in section 3.1, we give a short review on Newton flow equations on R d , and use the implicit Euler approximation to prove the existence of solutions. In section 3.2, we prove the well-posedness of Newton flow equations(theorem 3.2.6, theorem 3.2.12). Especially, when the base space is R, we give the sufficient conditions for the uniqueness of limiting points of Newton flows of potential functionals (theorem 3.2.13), i.e. uniqueness of minimizer of potential functional on the Wasserstein space. It is known that gradient flows are equivalent to Fokker-Planck equations. As a comparison, we give the partial differential equations corresponding to Newton flows of several classes of classical functionals on the Wasserstein space. In the last section, we reveal the connection between relaxed Newton flow equations and Keller-Segel equations on P(T 1 ) .

In general, consider the operator P on a Banach space and suppose that x * is a zero point of P , i.e.

P (x * ) = 0.
Starting from a given point x 0 , assuming that [P ′ (x 0 )] -1 exists, define

x 1 = x 0 -[P ′ (x 0 )] -1 (P (x 0 )),
If we define in this way recursively , we can construct {x n } satisfying

x n+1 = x n -[P ′ (x n )] -1 (P (x n )). (3.0.1)
{x n } is a approximation solution to P (x) = 0. The sequence generating method introduced above is called Newton's method (see [START_REF] Vitaliyevich | Functional Analysis (seconde édition)[END_REF]). Its continued equation is called Newton flow equation. The convergence problem of Newton methods has been studied in [START_REF] Vitaliyevich | Functional Analysis (seconde édition)[END_REF] and other related works. It is interesting that the Newton's method usually has a faster convergence speed than another algorithm: gradient descent method.

We firstly introduce Newton flow equation on Euclidean space and the corresponding implicit Euler approximation.

Review of Newton flow equations on R d

We first study the easiest case to see how to use implicit Euler method to approximate the Newton flow equation.

At the same time, we compare with the process to approximate the gradient flow equation.

Review of Newton flow equations on R d

We assume that F : R d → R is second order differentiable and the operator ∇ 2 F is bounded uniformly by 0 < λ 1 < ∇ 2 F (x) < λ 2 . Given time step τ > 0 and x n τ , let

F x n τ ,τ := F (x) + 1 2τ ⟨∇ 2 F (x n τ ) • (x -x n τ ), x -x n τ ⟩,
We assume it has a unique minimizer and let x n+1 τ be the unique solution of the minimization problem:

min F x n τ ,τ (3.1.1)
Then the corresponding Euler-Lagrange equation is

∇F (x n+1 τ ) + 1 τ ∇ 2 F (x n τ ) • (x n+1 τ -x n τ ) = 0
Let the partition of [0, T ] be {0, τ, 2τ, ...nτ, ...}, we construct x τ (t) by connecting x n τ and x n+1 τ by straight line.

Also, define V τ (t) =

x n+1 τ -x n τ τ
, when t ∈ [nτ, (n + 1)τ ). Our goal is to prove that there exists one solution to the Newton flow equation

∇ 2 F (x(t)) • ẋ(t) = -∇F (x(t)) (3.1.2)
Step 1 we want to prove x τ (t) converges to x(t) under uniform norm, as τ → ∞.

First, by (3.1.1), we see that

F (x n τ ) -F (x n+1 τ ) ≥ 1 2τ ⟨∇ 2 F (x n τ ) • (x n+1 τ -x n τ ), x n+1 τ -x n τ ⟩ > λ 1 2τ ||x n+1 τ -x n τ || 2
then by Cauchy inequality, we can easily get the uniform boundedness:

||x n τ -x(0)|| 2 < C λ 1 τ |F (x(0) -inf F (x)|
and equicontinuity

||x n τ -x k τ || 2 < C ′ λ 1 (n -k)τ.
Then by Arzelà-Ascoli theorem, there exists a subsequence x τ (t) uniformly converges to x(t).

Step 2: we will prove V τ (t) has a subsequence weakly converging to some V (t) in L 2 (dt). Since

||x n+1 τ -x n τ || 2 2τ ≤ 1 λ 1 (F (x n τ ) -F (x n+1 τ )),
we have

∫ T 0 V 2 τ (t)dt ≤ C λ 1 |F (x(0) -inf F (x)| < +∞. (3.1.3)
By this property, we know that V τ (t) is compact with respect to the weak topology of L 2 (dt) because of Kakutani's theorem. So we can choose a subsequence , which will be denoted as V τ (t) for convenience. And the weak limit point is V (t).

Step 3: we come to prove

ẋ(t) = V (t) in weak sense, i.e. ∀f ∈ C ∞ c (T d ), f (x(T )) -f (x(0)) = ∫ T 0 ⟨∇f (x(t)), V (t)⟩dt .
In fact, by the convergence of x τ (t) to x(t) under the uniform norm,we have

lim τ →0 f (x τ (T )) -f (x(0)) = f (x(T )) -f (x(0)). Also, f (x τ (T )) -f (x(0)) = Σ [ T τ ] i=0 f (x τ ((i + 1)τ )) -f (x(iτ )) = Σ [ T τ ] i=0 ∫ 1 0 ⟨∇f (x τ (iτ + λτ )), x i+1 τ -x i τ ⟩dλ = Σ [ T τ ] i=0 ∫ (i+1)τ iτ ⟨∇f (x τ (t)), V τ (t)⟩dt
So to prove lim τ →0 f (x τ (T )) -f (x(0)) = ∫ T 0 ⟨∇f (x(t)), V (t)⟩dt, we only need to prove, as τ goes to 0,

| ∫ T 0 ⟨∇f (x(t)), V (t)⟩dt - ∫ T 0 ⟨∇f (x τ (t)), V τ (t)⟩dt| ≤ ∫ T 0 |⟨∇f (x(t)), V (t) -V τ (t)⟩|dt + ∫ T 0 |⟨∇f (x(t)) -∇f (x τ (t)), V τ (t)⟩|dt
The first part on the right side tend to 0 since weak convergence of V τ (t) , the second part also goes to 0 because Hölder inequality:

( ∫ T 0 |⟨∇f (x(t)) -∇f (x τ (t)), V τ (t)⟩|dt) 2 ≤ ∫ T 0 |∇f (x(t)) -∇f (x τ (t))| 2 dt ∫ T 0 |V τ (t)| 2 dt
By (3.1.3) and convergence of x τ (t) , Step 3 finished.

Step 4: prove

V (t) satisfies -∇F (x(t)) = ∇ 2 F (x(t)) • V (t) in weak sense. We have proved that ∀f ∈ C ∞ c ([0, T ] × R d ), lim τ →0 ∫ T 0 ⟨∇f (x τ (t)), V τ (t)⟩dt = ∫ T 0 ⟨∇f (x(t)), V (t)⟩dt.
On the other hand, because of Euler-Lagrange equation, we have

-∇F (x τ (t)) = ∇ 2 F (x τ (t -τ )) • V τ (t),
(3.1.4) The crucial point is h τ (t) is uniformly bounded from above. In fact,

Newton flow equations on

P(T d ) so ⟨∇f (x τ (t)), V τ (t)⟩ = ⟨∇f (x τ (t)), -(∇ 2 F ) -1 (x τ (t -τ ))∇F (x τ (t))⟩. Denote ⟨∇f (x τ (t)), -(∇ 2 F ) -1 (x τ (t -τ ))∇F (x τ (t)⟩ and -(∇ 2 F ) -1 (x(
|⟨∇f (x τ (t)), -(∇ 2 F ) -1 (x τ (t -τ ))∇F (x τ (t))⟩| ≤ 1 2 (|∇f (x τ (t))| 2 + |V τ (t)| 2 ) ≤ C|x τ (t)| 2
Therefore, using Fatou's lemma,

∫ T 0 ⟨∇f (x(t)), V (t)⟩dt ≤ lim inf ∫ T 0 h τ (t)dt.
Then by (3.1.4) and our choice of weak convergent subsequence V τ (t) → V (t) , we have 

∫ T 0 ⟨∇f (x(t)), V (t)⟩dt ≤ ∫ T 0 ⟨∇f (x(t)), V (t)⟩dt Change f into -f , we conclude that ∀f ∈ C ∞ c ([0, T ] × R d ), f (x(T )) -f (x(0)) = ∫ T 0 ⟨∇f (x(t)), -∇ 2 F (x(t)) • ∇F (x(

Newton flow equations on P(T d )

In this chapter, if µ ∈ P ac (T d ) with density ρ, we will use ρ to represent µ to simplify the notation. According to the Theorem 2.1.6 in Chapter 2, for µ, ν

∈ P ac (T d ) , ∃! convex function φ ν µ such that (∇φ ν µ ) ♯ µ = ν. And let T t = t∇φ ν µ + (1 -t)Id , then µ t = (T t ) ♯ µ
is the unique geodesic from µ to ν. The optimal transportation process can be described by

∂ t ρ t = -∇.(ρ t • ∇φ ν µ • T -1 t ).
For u ∈ T µ , the geodesic {µ s } s∈[0,ϵ) , starting from µ with initial velocity v, should satisfy
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{ ∂ s µ s = -∇.(µ s u s ) ∂ s (µ s u s ) = -∇.(µ s u s ⊗ u s ).
The initial conditions are µ 0 = µ and u 0 = u .

Next, we introduce grad operators and Hessian operators. According to [AKR96, LL07, RW21], at point µ ∈ P(T d ), the directional derivative of a functional F along u ∈ T µ is defined by

D u F (µ) := lim ε→0 + F ((Id + εu) # µ) -F (µ) ε .
When u → D u F (µ) is a bounded linear functional on T µ , then by Riesz representation, there exists a unique

element v ∈ T µ such that ⟨v, u⟩ L 2 (µ) = D u F (µ), u ∈ T µ .
We denote v(•) as gradF (µ, •). We say that F is differentiable at µ if gradF (µ, x) exists. We write

F ∈ C 1 (P(T d )) if F is differentiable at any µ ∈ P(T d ) and gradF (µ, x) is jointly continuous in (µ, x) ∈ P(T d ) × T d . If furthermore, for ∀u, v ∈ T µ , D u (D v F (µ))
exists, and the following form

H µ (u, v) H µ (u, v) = D u (D v F (µ)) - ∫ T d ⟨gradF (µ, x), ∇v(x)u(x)⟩µ(dx)
defines a bounded, symmetric quadratic form on T µ × T µ . Then we say F is second differentiable with respect to measure at µ. We denote H µ as Hess µ . We say F ∈ C 2 (P(T d )) if F ∈ C 1 (P(T d )) and for every µ ∈ P(T d ), F is second order differentiable.

When 0 < λ 1 ≤ Hess µ ≤ λ 2 , then by Lax-Milgram theorem, we can define a bounded linear operator

Hess µ F from T µ toT µ , such that for ∀u, v ∈ T µ ⟨ Hess µ F (u), v⟩ µ = Hess µ F (u, v).
If dµ = ρdx, ρ > 0 and ρ ∈ C 2 (T d ), then, according to Chapter 4, the projection operator Π ρ from L 2 (µ, T d ) to T µ is well defined, and for ∇ϕ ∈ T µ ,

Hess µ F (∇ϕ)(x) = Π µ (∇ 2 δF δρ (µ)(x) • ∇ϕ(x) + ∫ ∇ x ∇ y δ 2 F δρ 2 (µ, y, x)) • ∇ϕ(y)ρ(y)dy) (3.2.1)
where δ δρ stands for the gradient of the functional of F (ρ) with respect to the L 2 (mx). In particular , for

F (ρ) = ∫ ρV dx + 1 2 ∫ W (x -y)ρ(x)ρ(y)dxdy + ∫ ρ log ρdx, gradF (ρ) = ∇V + ∇W * ρ + ∇ log ρ, Hess ρ F (u, v) = ∫ ⟨u, ∇ 2 V v⟩ρdx + ∫ tr(∇u∇v)ρdx + ∫ ⟨∇ϕ(x) -∇ϕ(y), ∇ 2 W (x -y)(∇ψ(x) -∇ψ(y))⟩ρdx (3.2.2)

Euler-Lagrange equation

Given time step τ > 0 , for ρ ∈ P ac (T d ) , we assume that 

F ρ,τ (µ) := F (µ) + 1 2τ Hess ρ F (∇ϕ µ ρ -x, ∇ϕ µ ρ -x) is ( 1 τ + λ)-geodesically convex . For initial measure ρ 0 τ = ρ 0 ∈ P ac (T d ) ,
µ n+1 τ ρ n τ ) + o(ϵ) . Proof. Since µ ϵ τ = (Id + ϵξ) # µ n+1 τ , for any f ∈ C ∞ (T d ), we have ∫ f dµ ϵ τ - ∫ f dµ n+1 τ = ϵ ∫ ⟨∇f, ξ⟩dµ n+1 τ + o(ϵ). (3.2.3)
On the other hand,

∫ f dµ ϵ τ - ∫ f dµ n+1 τ = ∫ f (∇ϕ µ ϵ τ ρ n τ )dρ n τ - ∫ f (∇ϕ µ n+1 τ ρ n τ )dρ n τ = ∫ ⟨∇f (∇ϕ µ n+1 τ ρ n τ ), ∇ϕ µ ϵ τ ρ n τ -∇ϕ µ n+1 τ ρ n τ ⟩dρ n τ + o(||∇ϕ µ ϵ τ ρ n τ -∇ϕ µ n+1 τ ρ n τ || L 2 (ρ n τ ) ).
(3.2.4)

By triangle inequality,
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22 |∇ϕ µ ϵ τ ρ n τ -∇ϕ µ n+1 τ ρ n τ | ≤ |ϵξ(∇ϕ µ n+1 τ ρ n τ )|, Thus, ||∇ϕ µ ϵ τ ρ n τ -∇ϕ µ n+1 τ ρ n τ || L 2 (ρ n τ ) ≤ Cϵ.
As ϵ → 0, we can prove the lemma by comparing (3.2.3) with (3.2.4).

We use this lemma to deal with the following inequality. Because

F (µ n+1 τ ) + 1 τ Hess ρ n τ F (∇ϕ µ n+1 τ ρ n τ -x, ∇ϕ µ n+1 τ ρ n τ -x) ≤ F (µ ϵ τ ) + 1 τ Hess ρ n τ F (∇ϕ µ ϵ τ ρ n τ -x, ∇ϕ µ ϵ τ ρ n τ -x),
we have

F (µ ϵ τ ) -F (µ n+1 τ ) ≥ ϵ 1 τ Hess ρ n τ F (∇ϕ µ n+1 τ ρ n τ -x, ξ • ∇ϕ µ n+1 τ ρ n τ ) + o(ϵ). (3.2.5) But µ n+1 τ
may not be absolutely continuous, which stops us defining the next step discrete solution. To overcome this difficulty, we pick a mollifier η τ on T d , which satisfying

∫ T d η τ = 1 and ∫ T d |x -x o | 2 η τ (x)dx ≤ τ 6 .
for some fixed point

x 0 ∈ T d . Define ρ n+1 τ = µ n+1 τ * η τ . Since 0 ≤ x ≤ 1, it holds x 2 ≤ x. Therefore, W 2 2 (ρ n+1 τ , µ n+1 τ ) = inf ∫ |x -y| 2 dγ(x, y) ≤ inf ∫ |x -y|dγ(x, y) = W 1 (ρ n+1 τ , µ n+1 τ ),
By Kantorovich-Rubinstein theorem,

W 1 (ρ n+1 τ , µ n+1 τ ) = sup {∫ T d φd(ρ n+1 τ -µ n+1 τ ); φ ∈ L 1 (d|ρ n+1 τ -µ n+1 τ |), ||φ|| Lip ≤ 1 } . So, W 1 (ρ n+1 τ , µ n+1 τ ) ≤ ∫ T d |φ -φ * η τ |ρ n+1 τ dx ≤ ∫ ∫ T d |x -y| 2 η τ (x -y)dyρ n+1 τ (x)dx ≤ τ 6 .
Such error is so small that it will never influence the convergence of ρ n+1 τ . We will derive the Euler-Lagrange

equation. Due to (3.2.5), let ξ = ∇f , then for ∀f ∈ C ∞ , ⟨∇f, -gradF (µ n+1 τ )⟩ L 2 (µ n+1 τ ) = 1 τ Hess ρ n τ F (∇f, ∇ϕ µ n+1 τ ρ n τ -x), (3.2.6) as ϵ → 0 . Note that ∇ϕ µ n+1 τ ρ n τ -x = ∇ϕ µ n+1 τ ρ n τ -∇ϕ ρ n+1 τ ρ n τ + ∇ϕ ρ n+1 τ ρ n τ -x,
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Thus, the right hand side of (3.2.6) becomes

1 τ Hess ρ n τ F (∇f, ∇ϕ ρ n+1 τ ρ n τ -x) + 1 τ Hess ρ n τ F (∇f, ∇ϕ µ n+1 τ ρ n τ -∇ϕ ρ n+1 τ ρ n τ
).

If one wants to derive the Euler-Lagrange equation for {ρ n τ } , we need Lipschitz conditions on HessF and gradF . Next , we introduce the corresponding definitions. Definition 3.2.2. We say HessF is L 1 -Lips, if ∀ν ∈ P 2,ac (T d ), µ ∈ P(T d ) and ∀ξ ∈ T µ satisfying ξ • ∇φ ∈ L 2 (ν) (Here, ∇φ is the optimal transport map from ν to µ),

|| Hess ν F (ξ • ∇φ) -Hess µ F (ξ) • ∇φ|| L 1 (ν) W 2 (µ, ν) ≤ L||ξ|| L 2 (µ) . (3.2.7) Proposition 3.2.3. For V, W ∈ C 3 (T d ), F (ρ) = ∫ ρV dx+ 1 2 ∫ W (x-y)ρ(x)ρ(y)dxdy , Hess ρ F is L 1 -Lips . Proof. Because Hess ρ F (u) = ∇ 2 V u + ∫ ∇ 2 W (x -y)(u(x) -u(y))ρ(y)dy, we have || Hess ν F (Π ν (ξ • ∇φ)) -Hess µ F (ξ) • ∇φ|| L 1 (ν) ≤ ∫ |(∇ 2 V (x) -∇ 2 V (∇φ(x))) • ξ • ∇φ(x)|ν(x)dx+ + ∫ | ∫ (∇ 2 W (x -y) -∇ 2 W (∇φ(x) -∇φ(y))) • (ξ • ∇φ(x) -ξ • ∇φ(y))ν(y)dy|ν(x)dx ≤ K 1 ||ξ|| L 2 (µ) W 2 (µ, ν)+ K 2 [ ∫ |x -∇φ(x) -y + ∇φ(y)| 2 ν(x)ν(y)dxdy] 1 2 • [ ∫ |ξ • ∇φ(x) -ξ • ∇φ(y)| 2 ν(x)ν(y)dxdy] 1 2 ≤ L||ξ|| L 2 (µ) W 2 (µ, ν),
where we assume that

|∇ 2 V |, |∇ 2 W | are controlled by K 1 , K 2 on T d . Let ∇ϕ n+1 n = ∇ϕ ρ n+1 τ ρ n τ . If HessF is L 1 -Lips, then (3.2.6) becomes ⟨∇f, -gradF (µ n+1 τ )⟩ L 2 (µ n+1 τ ) - 1 τ Hess ρ n τ F (∇f, ∇ϕ ρ n+1 τ ρ n τ -x) ≤ 1 τ ⟨∇f, Hess ρ n+1 τ F (∇ϕ µ n+1 τ ρ n+1 τ -x) • ∇ϕ ρ n+1 τ ρ n τ ⟩ ρ n τ + max |∇f | L τ W 2 (ρ n τ , ρ n+1 τ )||∇ϕ µ n+1 τ ρ n+1 τ -x|| L 2 (ρ n+1 τ ) ≤ λ 2 max |∇f ||| 1 τ (∇ϕ µ n+1 τ ρ n+1 τ -x)|| L 2 (ρ n+1 τ ) + max |∇f |Lτ W 2 (ρ n τ , ρ n+1 τ ) ≤ C max |∇f |τ 2 (1 + W 2 (ρ n τ , ρ n+1 τ )).
We also give a Lipschitz condition for gradF : Definition 3.2.4. We say gradF is L 2 -Lips , if there exists K > 0 such that for all ν, µ ∈ P(T d ) and

π ∈ C o (ν, µ) , ∫ |∇Ψ(µ)(y) -∇Ψ(ν)(x)| 2 dπ(x, y) ≤ KW 2 2 (µ, ν).
In particular, if ν ∈ P ac (T d ) , the condition becomes

∫ |∇Ψ(µ) • ∇ϕ µ ν -∇Ψ(ν)| 2 dν ≤ KW 2 2 (µ, ν).
where ∇ϕ µ ν is the optimal transport map from ν to µ.

Proposition 3.2.5.

For F (µ) = ∫ V dµ + 1 2 ∫ W (x -y)dµ(y)dµ(x) , suppose that ∇V, ∇W are differen- tiable, then gradF (ρ) is L 2 -Lips. Proof. ∫ T d ×T d |gradF (ν, y) -gradF (µ, x)| 2 dπ(x, y) = ∫ T d ×T d |∇V (y) -∇V (x) + ∇W * µ(y) -∇W * ν(x)| 2 dπ(x, y) ≤ 2 ∫ T d ×T d |∇V (y) -∇V (x)| 2 dπ(x, y) + 2 ∫ T d ×T d ∫ T d ×T d ∇W (y -z)dπ(c, z) - ∫ T d ×T d ∇W (x -c)dπ(c, z) 2 dπ(x, y) ≤ 2K 1 W 2 2 (ν, µ) + 2K 2 ∫ T d ×T d |y -z -x + c| 2 dπ(c, z)dπ(x, y) ≤ KW 2 2 (ν, µ).
We give some notation. For t ∈ [nτ, (n + 1)τ ):

1. ρ τ (t) = ρ n+1 τ ; ρτ (t) = ρ n τ 2.
For ∀µ, ν ∈ P 2,ac (T d ) , let ∇ϕ ν µ be the optimal transport map from µ to ν. its inverse ∇ϕ µ ν is the optimal transport map from ν to µ. Especially, for t ∈ [nτ, (n + 1)τ ),

ϕ τ (t) = ϕ ρ n+1 τ ρ n τ is denoted as ϕ n+1 n .
3. We connect the adjacent points of discrete solution ρ τ by a unique geodesic. We denote this continuous polyline as ρτ . 

. V τ (t, x) = 1 τ (x -∇ϕ n n+1 (t, x)), for t ∈ [nτ, (n + 1)τ ) ; V n+1 τ = ∇ϕτ (t)-x τ .
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For ∀f ∈ C ∞ , we have

⟨∇f, -gradF (ρ n+1 τ )⟩ L 2 (ρ n+1 τ ) - 1 τ Hess ρ n+1 τ F (∇f, x -∇ϕ n n+1 ) ≤ ⟨∇f, -gradF (µ n+1 τ )⟩ L 2 (µ n+1 τ ) - 1 τ Hess ρ n τ F (∇f, ∇ϕ n+1 n -x) + ⟨∇f, -gradF (µ n+1 τ )⟩ L 2 (µ n+1 τ ) -⟨∇f, -gradF (ρ n+1 τ )⟩ L 2 (ρ n+1 τ ) + 1 τ Hess ρ n τ F (∇f, ∇ϕ n+1 n -x) - 1 τ Hess ρ n+1 τ F (∇f, x -∇ϕ n n+1 ) ≤ Cτ 2 (1 + W 2 (ρ n τ , ρ n+1 τ )) + CW 2 (µ n+1 τ , ρ n+1 τ ) + CW 2 (ρ n τ , ρ n+1 τ )|| ∇ϕ n+1 n -x τ || L 2 (ρ n τ ) ≤ C||V n+1 τ || 2 L 2 (ρ n τ ) τ + O(τ 2 ).
(3.2.8)

Existence of solutions to the Newton flow equation

Assumptions 1:

1. F is proper, lower semicontinuous(l.s.c), λ 1 -geodesically convex and F ∈ C 2 (P(T d )) . 2. gradF is L 2 -Lips (see definition 3.2.4) . 3. 0 < λ 1 ≤ Hess ρ F ≤ λ 2 , Hess is L 1 -Lips in P 2,ac (T d ) (see definition 3.2.2) .
4. For any ρ ∈ P ac (T d ), τ > 0, F ρ,τ is ( 1 τ + λ)-geodesically convex.

5. For any µ, ν ∈ P(T d ) and f ∈ C ∞ (T d ),

| Hess µ F (∇f ) -Hess ν F (∇f )| ≤ C f W 2 (µ, ν).
where C f is a constant only dependent on f . Theorem 3.2.6. Under Assumption 1, suppose that the initial value µ 0 = ρ 0 dx ∈ P ac (T d ) , then there exist a solution µ t ∈ P(T d ) to the following Newton flow equation in distributional sense:

{ ∂ t µ = -∇.(µv) Hess µt (v t , ∇f ) = ⟨-gradF (µ t ), ∇f ⟩ µt , ∀f ∈ C ∞ c ([0, T ] × T d ) (3.2.9) Proof.
Step 1: We will prove {ρ τ (t)} τ has a convergent subsequence under C([0, ∞), ω * -P(T d )) .

Given ρ n τ ∈ P ac (T d ) , since µ n+1 τ is a solution to the following problem

inf µ F ρ n τ ,τ (µ), thus 
F (ρ n τ ) ≥ F (µ n+1 τ ) + τ λ 1 2 ( W 2 (ρ n τ , µ n+1 τ ) τ ) 2 .
Then for ∀ n, m(n < m) ,

W 2 (ρ n τ , ρ m τ ) ≤ τ ( n-1 ∑ i=m W 2 (ρ i τ , ρ i+1 τ ) τ ) ≤ τ ( n-1 ∑ i=m ( W 2 (ρ i τ , ρ i+1 τ ) τ ) 2 ) 1 2 (m -n) 1 2 ≤ τ ( n-1 ∑ i=m ( W 2 (ρ i τ , µ i+1 τ ) + W 2 (µ i+1 τ , ρ i+1 τ ) τ ) 2 ) 1 2 (m -n) 1 2 ≤ Cτ 1 2 (m -n) 1 2 ( n-1 ∑ i=m F (ρ i τ ) -F (µ i+1 τ )) 1 2 + 2(m -n)τ 3 . (3.2.10) Note that F is λ-geodesically convex, let µ 0 = ρ i+1 τ , µ 1 = µ i+1 τ and set g(t) := F (µ t ) = F ((x + t(∇ϕ µ i+1 τ ρ i+1 τ -x)) # µ 0 ).
Then, g id λ-convex, and g ′ (1) = 0. By mean-value theorem,

F (ρ i+1 τ ) -F (µ i+1 τ ) = g(0) -g(1) ≤ |g ′ (0)| = |⟨gradF (ρ i+1 τ ), ∇ϕ µ i+1 τ ρ i+1 τ -x⟩ ρ n+1 τ |.
Because for all µ, ν ∈ P(T d ), W 2 (µ, ν) ≤ d. Alternatively, gradF is L 2 -Lips, we have

||gradF (µ)|| L 2 (µ) ≤ K.
Substituting this inequality to (3.2.10), we get

W 2 (ρ n τ , ρ m τ ) ≤ Cτ 1 2 (m -n) 1 2 (F (ρ 0 τ ) -inf F + K(m -n)τ 3 ) 1 2 + 2(m -n)τ 3 , therefore, W 2 (ρ n τ , ρ m τ ) ≤ C(|m -n|τ ) 1 2 + o(τ 2 ).
In particular, we have the following energy estimate:

W 2 2 (ρ n τ , ρ n+1 τ ) ≤ Cτ.
Due to the construction of ρ τ , it is easy to see that
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P(T d ) W 2 2 (ρ τ (t) -ρ τ (s)) ≤ C|t -s|.
We have proved equi-continuity. Uniform boundedness holds because F (ρ n τ ) ≤ F (ρ 0 ). Then, according the compactness theorem, {ρ τ } has a convergent subsequence under C([0, T ], ω * -P(T d )), converging to {µ t , t ∈ [0, T ]} .

Step 2: Let the discrete rescaled optimal plans γ τ := (i x × V τ ) ♯ ρ τ . For every bounded interval I T := [0, T ] , denoting by X T := X × I T , we can canonically identify T -1 ρ τ to an element of P(T d × I T ) and T -1 γ τ to an element in P(T d × I T × T d ), simply by integrating with respect to the (normalized) Lebesgue measure T -1 dm in I T . Therefore V τ (t) can be seen as a vector field in L 2 (ρ τ (t)). By (3.2.10), ) . Therefore we can extract a subsequence γ τ h weakly converging to γ.

∫ [0,T ] ∫ T d V 2 τ (t, x)ρ τ (t, x)dxdt = T τ ∑ i=1 W 2 2 (ρ i τ , ρ i+1 τ ) τ 2 < F (ρ 0 τ ) -inf F + K T τ τ 2 ≤ C ′ . ( 3 
Since π 1,2 ♯ T -1 γ τ = T -1 ρ τ , so π 1,2 ♯ γ = T -1 µ. We can define V (x 1 , t) ≜ ∫ T d x 2 dγ x1,t (x 2 ),
where γ x1,t is the disintegration of γ w.r.t. ρ. According to Theorem 5.4.4 in [AGS05], we have

∫ |V | 2 dµ ≤ lim inf h→∞ ∫ |V τ h | 2 ρ τ h dx ≤ C ′ .
For the sake of convenience, we will still use ρ τ to represent the subsequence ρ τ h .

Step 3: Next, we will prove

∂ t µ = -∇.(µV ) holds in distribution, i.e. ∀f (t, x) ∈ C ∞ c (I T × T d ), - ∫ I T ×T d ∂ t f dµ = ∫ I T ×T d < ∇f, V > dµ.
Note that

∫ f ρ n+1 τ dx - ∫ f ρ n τ dx = ∫ (f -f (∇ϕ n n+1 ))ρ n+1 τ dx = ∫ ⟨∇f (x), x -∇ϕ n n+1 (x)⟩ρ n+1 τ dx + C f ||∇ϕ n n+1 (x) -x|| 2 L 2 (ρ n+1 τ ) = τ ∫ ⟨∇f (x), y⟩d(γ τ ( (n + 1)T τ ))(x, y) + Cτ 2 ||V τ ( (n + 1)T τ )|| 2 L 2 (ρ n+1 τ ) , thus - ∫ I T ×T d ∂ t f dµ = lim τ →0 - ∫ I T ×T d ∂ t f ρ τ (t, x)dxdt = lim τ →0 - 1 τ ∫ I T ×T d (f (t + τ, x) -f (t, x))ρ τ (t, x)dxdt = lim τ →0 ∫ T d ×I T ×T d ⟨∇f (x), y⟩dγ τ (x, t, y) = ∫ I T ×T d ⟨∇f, V ⟩dµ.
Step 3 is finished.

Step 4: Finally, we want to prove

Hess µ F (∇f, v) = ⟨∇f, -gradF (µ)⟩ µ , for anyf ∈ C ∞ c (T d × I T ). (3.2.12)
Firstly, some definitions and assumptions should be stated.

Definition 3.2.7. weak convergence and strong convergence If

(µ n ) ⊂ P 2 (T d ) narrowly converges to µ ∈ P 2 (T d ). Let v n ∈ L 1 (µ n ). We say v n weakly cenverges to v ∈ L 1 (µ), if lim n→∞ ∫ T d ⟨∇f, v n ⟩dµ n = ∫ T d < ∇f, v > dµ, ∀f ∈ C ∞ (T d ). (3.2.13) Furthermore, we say v n strongly converges to v ∈ L 2 , if (3.2.13) holds and lim sup n→∞ ||v n || L 2 (µn) ≤ ||v|| L 2 (µ) .
We need the following lemma (see [START_REF] Ambrosio | Gradient flows: in metric spaces and in the space of probability measures[END_REF], Theorem 5.4.4):

Lemma 3.2.8. If µ n converges to µ narrowly, v n ∈ L 2 (µ n ) satisfy sup n∈N ∫ T d |v n (x)| 2 dµ n (x) < +∞. (3.2.14) If v n strongly converge to v, then γ n narrowly converges to (i × v) ♯ µ and lim n→∞ ||v n || 2 L 2 (µn) = lim n→∞ ∫ T d ×T d |x 2 | 2 dγ n = ||v|| 2 L 2 (µ) .
Proposition 3.2.9. For any fixed t ∈ [0, T ] , there exists subsequence {-gradF (ρ τ (t))} strongly con-

verges to -gradF (µ t ) . Proof. Because ||gradF (ρ τj (t))|| L 2 (ρτ j (t)) = ∫ |gradF (ρ τj (t))| 2 ρ τj (t)dx = ∫ |gradF (µ t )) • ∇ϕ µt ρτ j (t) -gradF (µ t ) • ∇ϕ µt ρτ j (t) + gradF (ρ τj (t))| 2 ρ τj (t)dx ≤ 2 ∫ |gradF (µ t ) • ∇ϕ ρ(t) ρτ j (t) | 2 ρ τj (t)dx + 2 ∫ |gradF (µ t ) • ∇ϕ µt ρτ j (t) -gradF (ρ τj (t))| 2 ρ τj (t)dx ≤ 2 ∫ |gradF (µ t )| 2 dµ t + KW 2 2 (µ t , ρ τj (t)), (3.2.15) 
then by lemma 3.2.8and λ-geodesically convexity, as n → ∞, there exists a subsequence {-gradF (ρ τj (t))} weakly converging to -gradF (ρ(t)) (see [START_REF] Ambrosio | Gradient flows: in metric spaces and in the space of probability measures[END_REF],lemma 10.1.3) . And (3.2.15) shows

lim sup j→∞ ||gradF (ρ τj (t))|| L 2 (ρτ j (t)) ≤ ||gradF (ρ(t))|| L 2 (ρ(t)) ,
This means -gradF (ρ τj (t)) strongly converges to -gradF (ρ(t)) .

Next , we assume that

f (t) ∈ C ∞ 0 ([0, T ]); g(x) ∈ C ∞ (T d ) . Let Ṽ (t) = Hess -1 µt F (-gradF (µ t )).
We will prove :

Lemma 3.2.10. as τ → 0,

Hess ρτ (t) F (∇g, V τ (t)) + ⟨∇g, gradF (µ t )⟩ L 2 (µt) → 0. (3.2.16)
Proof. Note that, because of (3.2.8) and (3.2.10), we have

| ∫ T 0 f (t) ∫ ⟨∇g, -gradF (ρ τ (t))⟩ρ τ (t)dxdt - ∫ T 0 f (t) ∫ ⟨∇g, Hess ρτ (t) F (V τ (t))⟩ρ τ (t)dxdt| = | ∫ T 0 f (t) ∫ ⟨∇g, -Hess ρτ (t) F (V τ (t)) -gradF (ρ τ (t))⟩ρ τ (t)dxdt| ≤ T τ ∑ i=0 ∫ (i+1)τ iτ |f (t)|dt • max |∇g| • ||V i+1 τ || 2 L 2 (ρ i+1 τ ) τ dt ≤ Cτ ∫ [0,T ]×T d |V τ | 2 ρ τ dx ≤ C ′ τ.
(3.2.17)

Therefore, according to Proposition 3.2.9, { Hess ρτ (t) F (V τ (t))} converges weakly to -gradF (µ t ) . This proposition is proved.

Use the convexity, we can get a more accurate estimate on W 2 (ρ n τ , ρ n+1 τ ):

Proposition 3.2.11. W 2 (ρ n τ , ρ n+1 τ ) ≤ Cτ . Proof. By Assumption 1(4), F τ,ρ is (λ + 1 τ )-geodesically convex. Set µ = argminF τ,ρ . Let the curve {µ t } t∈[0,1] be the geodesic from ρ to µ, then F τ,ρ (µ t ) is convex with respect to t, i.e. for 0 < t < 1, F τ,ρ (µ t ) ≤ tF τ,ρ (µ) + (1 -t)F τ,ρ (ρ) - λ + 1 τ 2 t(1 -t)W 2 2 (ρ, µ).
Since t = 1 arrive the minimum, the derivative of the right hand side of the above equality at t = 1 must be no bigger than 0:

F (µ) -F (ρ) + 1 τ Hess ρ F (∇ϕ µ ρ -x, ∇ϕ µ ρ -x) + λ + 1 τ 2 W 2 2 (ρ, µ) < 0.
By the properties of HessF ,

C W 2 2 (ρ, µ) τ 2 < F (ρ) -F (µ) W 2 (ρ, µ) W 2 (ρ, µ) τ .
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It follows that

C W 2 (ρ, µ) τ < F (ρ) -F (µ) W 2 (ρ, µ) ≤ ||gradF (ρ)|| L 2 (ρ) , (3.2.18) which means W 2 (ρ n τ , µ n+1 τ ) < C||gradF (ρ n τ )|| L 2 (ρ n τ ) τ .
We will prove that, for all t ∈ [0, T ] ,

Hess ρτ (t) F (∇g, V τ (t)) → Hess µt F (∇g, V t ). (3.2.19) Note that Hess ρτ (t) F (∇g, V τ (t)) -Hess µt F (∇g, V t ) = ∫ ⟨ Hess ρτ (t) F (∇g), V τ (t)⟩ρ τ (t)dx - ∫ ⟨ Hess µt F (∇g), V t ⟩dµ t ≤ ∫ ⟨ Hess ρτ (t) F (∇g), V τ (t)⟩ρ τ (t)dx - ∫ ⟨ Hess µt F (∇g), V τ (t)⟩ρ τ (t)dx + ∫ ⟨ Hess µt F (∇g), V τ (t)⟩ρ τ (t)dx - ∫ ⟨ Hess µt F (∇g), V t ⟩dµ t = (I) + (J).
For (J), set u = Hess µt F (∇g), we have

lim τ →0 ∫ T d ×I T ⟨u, V τ ⟩ρ τ (t)dx = lim τ →0 ∫ T d ×T d ⟨u(x 1 ), x 2 ⟩dγ τ (x 1 , t, x 2 ) = ∫ T d ×T d ⟨u(x 1 ), x 2 ⟩dγ(x 1 , t, x 2 ) = ∫ T d ⟨u, V ⟩dµ t .
It folllows that (J) → 0 .

For (I), by Assumption 1(5),

∫ ⟨ Hess ρτ (t) F (∇g) -Hess µt F (∇g), V τ (t)⟩ρ τ (t)dx ≤ max |∇g|W 2 (ρ τ (t), µ t )||V τ || L 2 (ρτ (t)) .
Due to Proposition 3.2.11, we get

||V τ || L 2 (ρτ (t)) = 1 τ W 2 (ρ τ (t), ρ τ (t + τ )) ≤ C.
It follows that (I) → 0. (3.2.19) has been proved. This means Hess µt (v t , ∇f ) conerverges to ⟨-gradF (µ t ), ∇f ⟩ µt for t -a.e. . We can prove (3.2.12) by dominated convergence theorem. Therefore, we have proved the existence of solutions to the Newton flow equation.

Uniqueness

Next, we state the abstract uniqueness result to finish the well-posedness of Newton flow equation in P(T d ) .

Theorem 3.2.12. Under the Assumption 1, if Hess

-1 µ F (gradF (µ)) is L 2 -Lips
, and the solutions to (3.2.9) are all abolutely continuous, i.e. µ t ∈ P ac (T d ), then (3.2.9) has a unique solution in sense of W 2 metric.

Proof. Let ρ 1 t , ρ 2 t ∈ P ac (T d ) are two absolutely continuous solutions to (3.2.9)with the same initial measure ρ 0 . Denote ∇ϕ 1,2 t (∇ϕ 2,1 t ) as the optimal transport map from

ρ 1 t (ρ 2 t ) to ρ 2 t (ρ 1 t ), then ( ∇ϕ 1,2 t ) * = ∇ϕ 2,1 t . Let ∇Φ 1,2 t = ∇ϕ 1,2 t -x. Note that ∇Φ 2,1 t • ∇φ 1,2 t = (∇ϕ 2,1 t -x) • ∇ϕ 1,2 t = -∇Φ 1,2 t ,
Thus,

d dt W 2 2 (ρ 1 t , ρ 2 t ) = 2 < ∇Φ 1,2 t , Hess -1 ρ 1 t F (-gradF (ρ 1 t )) > ρ 1 t +2 < ∇Φ 2,1 t , Hess -1 ρ 2 t F (-gradF (ρ 2 t )) > ρ 2 t = 2 < ∇Φ 1,2 t , Hess -1 ρ 1 t F (-gradF (ρ 1 t )) -Hess -1 ρ 2 t F (-gradF (ρ 2 t )) • ∇ϕ 1,2 t > ρ 1 t ≤ 2KW 2 2 (ρ 1 t , ρ 2 t ). (3.2.20) By Gronwall inequality, W 2 2 (ρ 1 t , ρ 2 t ) = 0 .
Next, let the base space be R. If we consider the Newton flow for the potential functional F = ∫ V dµ, we will not only give the conditions for uniqueness of the solution to (3.2.9), but also conditions for the uniqueness of Newton flow, i.e. for any initial value, Newton flow converges to the unique minimizer of F .

We consider the absolutely continuous solution ρ to the Newton flow equation for F = ∫ V dµ.
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P(T d )      ∂ t ρ = -∇.(ρϕ ′ ) ∫ R f ′ V ′′ ϕ ′ ρdx = - ∫ R V ′ ϕ ′ dx, ∀f ∈ C ∞ c (R) (3.2.21) Because P 2 (R) is flat, Hess ρ F -1 (-gradF (ρ)) = -V ′ V ′′ . Thus 1 2 d dt W 2 2 (ρ 1 t , ρ 2 t ) =< ∂ x Φ 1,2 t , Hess -1 ρ 1 t F (-gradF (ρ 1 t )) -Hess -1 ρ 2 t F (-gradF (ρ 2 t )) • ∂ x ϕ 1,2 t > ρ 1 t = -< V ′ V ′′ , ∂ x Φ 1,2 t > ρ 1 t -< V ′ V ′′ , ∂ x Φ 2,1 t > ρ 2 t = -< V ′ V ′′ - V ′ V ′′ • ∂ x ϕ 1,2 t , ∂ x Φ 1,2 t > ρ 1 t .
By mean-value theorem,

1 2 d dt W 2 2 (ρ 1 t , ρ 2 t ) =< ( -V ′ V ′′ ) ′ • σ(x)∂ x Φ 1,2 t , ∂ x Φ 1,2 t >, (3.2.22) where σ(x) is some value in [x, ∂ x φ 1,2 t ] . It follows that the absolutely continuous solution is unique if |( -V ′ V ′′ ) ′ | is bounded. Generally, we have Theorem 3.2.13. Assume that V ∈ C 3 (R), V ′′ > 0 . Consider the potential functional F (µ) = ∫ R V dµ. If |1 - V ′ V ′′′ (V ′′ ) 2 | ≤ C, (3.2.

23)

Then, There exists a solution to (3.2.21) .

If C ≥ 1 -V ′ V ′′′ (V ′′ ) 2 ≥ K > 0 , then W 2 2 (ρ 1 t , ρ 2 t ) ≤ e -2Kt W 2 2 (ρ 1 0 , ρ 2 0 ), (3.2.24)
which means, for any initial measure, the absolutely continuous solution to the Newton flow converges to the unique limit point in lifetime.

Proof. Note that Hess µ F -1 (-gradF (µ)) = -V ′ V ′′ holds. The assumptions guarantee that -V ′ V ′′ is a differentiable vector field, therefore, the following ODE

Ẋ = - V ′ V ′′ (X)
has a unique solution. µ t = (X t ) # µ 0 is the unique solution to Newton flow equation with initial measure

µ 0 . When 1 -V ′ V ′′′ (V ′′ ) 2 ≥ K > 0 , (3.2.22) hints 1 2 d dt W 2 2 (ρ 1 t , ρ 2 t ) ≤ -KW 2 2 (ρ 1 t , ρ 2 t ). It follows that W 2 2 (ρ 1 t , ρ 2 t ) ≤ e -2Kt W 2 2 (ρ 1 0 , ρ 2 0 ) .

Newton flows of several classes of functionals

In this section, we give partial differential equations satisfied by Newton flows of potential functionals, interaction functionals and entropy.

Firstly, there is a natural example which satisfies Assumption 1. For V, W ∈ C ∞ and ∇ 2 V ≥ λ 1 , W being convex, the following functional

F (µ) = ∫ V dµ + ∫ W * µdµ
satisfies Assumption 1. We briefly illustrate this. Propositions (3.2.3) and (3.2.5) prove the second and third term in Assumption 1. The first and fourth one in Assumption 1 is already proved in standard textbooks. The last one also can be proved with the representation formula (3.2.2). The corresponding Newton flow equation is

{ ∂ t µ = -∇.(µ∇ϕ) ⟨∇ 2 V • ∇ϕ + ∇ 2 W (x -y)(∇ϕ(x) -∇ϕ(y))dµ(y), ∇f ⟩ µ = ⟨-∇V -∇W * µ, ∇f ⟩ µ , ∀f ∈ C ∞ c ([0, T ] × T d ) .
However, for the functional containing entropy, for example,

F = ∫ V ρ + ∫ ρ log ρ(for ρ ∈ P ac )
, there is no existence of solutions to the Newton flow equation. We can still study its corresponding Newton flow equation in such case.

We consider the following functional:

F (ρ) =    ∫ ρ log ρ + ∫ V ρ, ρ ∈ P 2,ac (T d )
+∞, otherwise.

Newton flows of several classes of functionals

According to [START_REF] Villani | Optimal transport: old and new[END_REF], the gradient of F under the Wasserstein metric is

gradF = ∇ log ρ + ∇V.
HessF is

Hess ρ F (∇ϕ, ∇ϕ) = ∫ T d ||∇ 2 ϕ|| 2 ρ + ∫ T d ⟨∇ϕ, ∇ 2 V ∇ϕ⟩ρ.
Thus, from aspect of differential equation, we have

Theorem 3.3.1. For F (ρ) = ∫ T d ρ log ρ + ∫ T d V ρ
, the solution to the following equation is the Newton flow of F on P 2 (T):

{ ∂ t ρ + ∇.(∇ϕρ) = 0 ∇ 2 V ∇ϕ -∆∇ϕ -∇ log ρ • ∇ 2 ϕ = -∇V -∇ log ρ. (3.3.1)
Next, we consider Newton flow equations when the base space is a manifold. Generally, for a complete connected compact Riemannian manifold M , let dx be the Riemannian measure on M such that ∫ M dx = 1. We consider Newton flows of entropy functionals on

P 2 (M ). According to [Vil09, LL16], Hessian of E(ρ) = ∫ M ρ log ρdx is Hess ρ E(∇ϕ, ∇ϕ) = ∫ M ( ||∇ 2 ϕ|| 2 + Ric(∇ϕ, ∇ϕ) ) ρdx,
where ρ > 0. When the base manifold M has a positive Ricci curvature, Hess ρ E is a positive quadratic form.

By theorem 3.2.6, if Hess ρ F has a Lipschitz property, the solutions to the Newton flow equation exist. We give its corresponding partial differential equations under such case. Denote φ = -log ρ, by Bochner's formula, for ∇ϕ ∈ T ρ ,

Hess ρ E(∇ϕ) = -∇∆ϕ + ∇ ∇φ ∇ϕ,
and the gradient is

gradE(ρ) = ∇ρ ρ = ∇ log ρ.
Then we have

Theorem 3.3.2. For E(ρ) = ∫ M ρ log ρ, if M has a positive Ricci curvature,

then the solution to the following equation is the Newton flow on

P 2 (M ) of E { ∂ t ρ + ∇.(ρ∇ϕ) = 0 -∇∆ϕ -∇ ∇ log ρ ∇ϕ = -∇ log ρ.
Remark 3.3.3. In April 2022, when we were organizing the works in this chapter, we noticed that [START_REF] Li | Information Newton's flow: second-order optimization method in probability space[END_REF] obtained Newton flow equations on P 2 (R d ), which were similar to some of our results. They formally gave Newton flow equations of relative entropy in Wasserstein spaces, and the convergence rate of the Chapter 3: Newton Flow on the Wasserstein Space 36 Newton's method near the minimum point is analysed.

Relaxed Newton flow equation and Keller-Segel equation

We consider the following functional:

F (ρ) =    ∫ ρ log ρ + ∫ V ρ, ρ ∈ P 2,ac (T d ) +∞, otherwise.
We will gave the relaxed Newton flow equation. Let u = ∇ϕ and denote φ = -log ρ, according to (3.3.1), we give the relaxed Newton flow equation , which no longer requires u ∈ T ρ :

{ ∂ t ρ + ∇.(ρu) = 0 ∇ 2 V u -∆ φ u = -∇V + ∇φ, (3.4.1)
where 

∆ φ u = ∆u -∇φ • ∇u . When V is
∂ t ρ = -∇. ( ρ(∇ 2 V -∆ φ ) -1 (-∇V -∇φ) ) .
Furthermore, according to Bochner formula for 1-form, □ φ = -∆ φ + ∇ 2 φ + Ric. We have

{ ∂ t ρ + ∇.(ρu) = 0 ∇ 2 (V -φ) • u + □ φ u = -∇(V -φ). When V = 0 , { ∂ t ρ + ∇.(ρu) = 0 -∆ φ u = ∇φ. (3.4.2)
We can see the connection between (3.4.2) and Keller-Segel equation. It is known that Keller-Segel equation is

∂ t ρ = ∆ρ + ν∇ . (ρ∇∆ -1 (ρ -1)). (3.4.3)
When the base space is T 1 , (3.4.2) becomes

Relaxed Newton flow equation and Keller-Segel equation

       ∂ t ρ + ∂ x (ρu) = 0 -∂ 2 x u + ∂ x φ∂ x u = ∂ x φ x ∈ [0, 1], u(0) = u(1). (3.4.4)
For the second equation, we have

∂ x u(x) = 1 + Cρ(x).
In order to make sure u is a function on 1-D Torus , C = -1 . Thus, u(x) = x -∫ x 0 ρ(s)ds . The Newton flow equation becomes

∂ t ρ = ∂ x ( ρ( ∫ x 0 ρ(s)ds -x)
) .

On the other hand, the Keller-Segel equation(take ν = 1) is

∂ t ρ = ∂ 2 x ρ + ∂ x ( ρ( ∫ x 0 ρ(s)ds -x)
) .

It can be seen as a combination of gradient and Newton flow of entropy functional S(ρ) = ∫ T ρ log ρ:

∂ t ρ = -gradS(ρ) + Hess -1 ρ S(-gradS(ρ)).
The literature on the Keller-Segel equation is enormous. It is known that in dimensions larger than one, solutions to (3.4.3) can concentrate finite mass in a measure zero region and so blow up in finite time. The well-posedness of (3.4.3) in d = 2 and small smooth initial value has been proved by Keller and Segel.

Chapter 4

Geometry and Parallel Transport

In this chapter, based on the Riemannian structure founded by Otto, Sturm, Villani, Lott, etc., we will try to extend the Riemannian geometric computation to a larger probability measure space and larger function space, so that one can introduce parallel translation equation on P 2 (M ) as in differential geometry, and study the well-posedness of parallel translation equation.

We will define a formal Riemannian structure on P 2 (M ), which is a natural extension of the Riemannian structure on P ∞ (M ) introduced in the former chapter. For the sake of simplicity, we will consider in this paper a connected compact Riemannian manifold M of dimension m. We denote by d M the Riemannian distance and dx the Riemannian measure on M such that ∫ M dx = 1. Since the diameter of M is finite, any probability measure µ on M is such that ∫ M d 2 M (x 0 , x) dµ(x) < +∞, where x 0 is a fixed point of M . As usual, we denote by P 2 (M ) the space of probability measures on M , endowed with the Wasserstein distance W 2 defined by

W 2 2 (µ 1 , µ 2 ) = inf { ∫ M ×M d 2 M (x, y) π(dx, dy), π ∈ C(µ 1 , µ 2 ) } ,
where C(µ 1 , µ 2 ) is the set of probability measures π on M × M , having µ 1 , µ 2 as two marginal laws. It is well known that P 2 (M ) endowed with W 2 is a Polish space. In this compact case, the weak convergence for probability measures is metrized by W 2 ; therefore (P 2 (M ), W 2 ) is a compact Polish space.

Tangent space of P 2 (M )

The introduction of tangent spaces of P 2 (M ) can go back to the early work [START_REF] Otto | Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality[END_REF], as well as in [START_REF] Otto | The geometry of dissipative evolution equations: the porous medium equation[END_REF]. A more rigorous treatment was given in [START_REF] Ambrosio | Gradient flows: in metric spaces and in the space of probability measures[END_REF]. In differential geometry, for a smooth curve {c(t); t ∈ [0, 1]} on a manifold M , the derivative c ′ (t) with respect to the time t is in the tangent space : c ′ (t) ∈ T c(t) M . A classical result says that for an absolutely continuous curve {c(t

); t ∈ [0, 1]} on M , the derivative c ′ (t) ∈ T c(t) M exists for almost all t ∈ [0, 1]. Following [AGS05], we say that a curve {c(t); t ∈ [0, 1]} on P 2 (M ) is absolutely 39 4.1 Tangent space of P 2 (M ) continuous in L 2 if there exists k ∈ L 2 ([0, 1]) such that W 2 (c(t 1 ), c(t 2 )) ≤ ∫ t2 t1 k(s) ds, t 1 < t 2 .
The following result is our starting point:

Theorem 4.1.1 (see [START_REF] Ambrosio | Gradient flows: in metric spaces and in the space of probability measures[END_REF], Theorem 8.3.1). Let {c t ; t ∈ [0, 1]} be an absolutely continuous curve on P 2 (M ) in L 2 , then there exists a Borel vector field Z t on M such that

∫ [0,1] [ ∫ M |Z t (x)| 2 TxM c t (dx) ] dt < +∞
and the following continuity equation

dc t dt + ∇ • (Z t c t ) = 0, (4.1.1)
holds in the sense of distribution. Uniqueness to (4.1.1) holds if moreover Z t is imposed to be in

{ ∇ψ, ψ ∈ C ∞ (M ) }L 2 (ct) .
Then, we can define the tangent space T µ of P 2 (M ) at µ by

T µ = { ∇ψ, ψ ∈ C ∞ (M ) }L 2 (µ) , (4.1.2)
the closure of gradients of smooth functions in the space L 2 (µ). Note that here we use the definition of tangent space in [START_REF] Ambrosio | Gradient flows: in metric spaces and in the space of probability measures[END_REF]. It is isomorphic to the tangent space introduced in Chapter 2, which is the original definition given by Otto. Equation (4.1.1) implies that for almost all t ∈ [0, 1],

d dt ∫ M f (x) c t (dx) = ∫ M ⟨∇f (x), Z t (x)⟩ TxM c t (dx), f ∈ C 1 (M ). (4.1.3)
We will say that Z t is the intrinsic derivative of c t and use the notation

d I c t dt = Z t ∈ T ct .
In what follows, we will describe the tangent space T µ with the least conditions as possible on the measure µ.

Consider the quadratic form defined by

E(ψ) = ∫ M |∇ψ(x)| 2 dµ(x), ψ ∈ C 1 (M ).
We assume that there is a constant C µ > 0 such that 

β 1 = inf x∈M ρ(x) > 0, β 2 = sup x∈M ρ(x) < +∞.
Since M is compact, the following Poincaré inequality holds :

∫ M (ψ -⟨ψ⟩) 2 dx ≤ C ∫ M |∇ψ| 2 dx, then ∫ M (ψ -⟨ψ⟩) 2 dµ ≤ Cβ 2 β 1 ∫ M |∇ψ| 2 dµ.
Remark that Inequality (4.1.4) is not Poincaré inequality, since the mean ⟨ψ⟩ is not taken with respect to the measure µ, but to dx.

Now let Z ∈ T µ ; there is a sequence of functions ψ n ∈ C ∞ (M ) such that Z = lim n→+∞ ∇ψ n in L 2 (µ). By changing ψ n to ψ n -⟨ψ n ⟩ and by condition (4.1.4), {ψ n ; n ≥ 1} is a Cauchy sequence in L 2 (µ). If the quadratic form E(ψ) is closable in L 2 (µ)
, then there exists a function φ µ in the Sobolev space D 2 1 (µ) such that Z = ∇φ µ , where D 2 1 (µ) is the closure of C ∞ (M ) with respect to the norm

||φ|| 2 D 2 1 (µ) := ∫ M |φ(x)| 2 dµ(x) + ∫ M |∇φ(x)| 2 dµ(x).
A sufficient condition to ensure the closability for E is that the formula of integration by parts holds for µ; more precisely, for any C 1 vector field Z on M , there exists a function denoted by div µ (Z) ∈ L 2 (µ) such that

∫ M ⟨∇f (x), Z(x)⟩ TxM dµ(x) = - ∫ M f (x) div µ (Z)(x) dµ(x), f ∈ C 1 (M ). (4.1.5)
Definition 4.1.2. We say that a probability measure µ has divergence if div µ (Z) ∈ L 2 (µ) exists for all C 1 -vector field Z on M . We will use the notation

P div (M )
to denote the set of probability measures on M having strictly positive continuous density and satisfying conditions (4.1.5).

For example, if dµ(x) = ρ(x) dx for some strictly positive continuous density ρ ∈ D 2 1 (dx), then µ ∈ P div (M ).

Proposition 4.1.3. For a measure µ ∈ P div (M ), we have

T µ = { ∇ψ; ψ ∈ D 2 1 (µ) } .
Note that this result is not new, see for example [ 

Constant vector fields on P 2 (M )

For any gradient vector field ∇ψ on M with ψ ∈ C ∞ (M ), consider the ordinary differential equation (ODE):

d dt U t (x) = ∇ψ(U t (x)), U 0 (x) = x ∈ M. Then x → U t (x) is a flow of diffeomorphisms on M . Let µ ∈ P 2 (M ), consider c t = (U t ) # µ. It is easy to see that the curve {c t ; t ∈ [0, 1]} is absolutely continuous in L 2 and for f ∈ C 1 (M ), d dt ∫ M f (x) c t (dx) = d dt ∫ M f (U t (x)) dµ(x) = ∫ M ⟨∇f (U t (x)), ∇ψ(U t (x))⟩ dµ(x),
which is equal to, for any t ∈ [0, 1],

∫ M ⟨∇f, ∇ψ⟩ c t (dx).
In other term, c t is a solution to the following continuity equation:

dc t dt + ∇ • (∇ψ c t ) = 0.
According to above definition, we see that for each t ∈ [0, 1],

d I c t dt = ∇ψ.
It is why we call ∇ψ a constant vector field on P 2 (M ). In order to make clearly different roles played by ∇ψ, we will use notation V ψ when it is seen as a constant vector field on P 2 (M ).

Remark 4.1.4. In section 4.3 below, we will compute Lie brackets of two constant vector fields on P 2 (M )

without explicitly using the existence of density of measure, the Lie bracket of two constant vector fields is NOT a constant vector field.

Geodesics with constant speed

It is easy to introduce geodesics with constant speed when the base space is a flat space R m . A probability

measure µ on R m is in P 2 (R m ) if ∫ R m |x| 2 dµ(x) < +∞. Let c 0 , c 1 ∈ P 2 (R m ), there is an optimal coupling plan γ ∈ C(c 0 , c 1 ) such that W 2 2 (c 0 , c 1 ) = ∫ R m ×R m |x -y| 2 dγ(x, y). For each t ∈ [0, 1], define c t ∈ P 2 (R m ) by ∫ R m f (x) dc t (x) = ∫ R m ×R m f (u t (x, y)) dγ(x, y),
where u t (x, y) = (1 -t)x + ty. For 0 ≤ s < t ≤ 1, define π s,t ∈ C(c s , c t ) by ∫ R m ×R m g(x, y) π s,t (dx, dy) = ∫ R m ×R m g(u s (x, y), u t (x, y)) dγ(x, y).
Then

W 2 2 (c s , c t ) ≤ ∫ R m ×R m |u t (x, y) -u s (x, y| 2 dγ(x, y) = (t -s) 2 W 2 (c 0 , c 1 ) 2 .
It follows that W 2 (c s , c t ) ≤ (t -s)W 2 (c 0 , c 1 ). Combing with triangulaire inequality,

W 2 (c 0 , c 1 ) ≤ W 2 (c 0 , c s ) + W 2 (c s , c t ) + W 2 (c t , c 1 ) ≤ sW 2 (c 0 , c 1 ) + (t -s)W 2 (c 0 , c 1 ) + (1 -t)W 2 (c 0 , c 1 ) = W 2 (c 0 , c 1 ),
we get the property of geodesic with constant speed:

W 2 (c s , c t ) = |t -s| W 2 (c 0 , c 1 ).
According to Theorem 4.1.1, there is

Z t ∈ T ct such that, for f ∈ C 1 c (R d ), d dt ∫ R m f (x)c t (dx) = ∫ R m ⟨∇f (u t (x, y)), y -x⟩ R m dγ(x, y) = ∫ R d ⟨∇f (x), Z t (x)⟩ R m c t (dx)
where ⟨ , ⟩ R m is the canonical inner product of R m . We heuristically look for Z t such that Z t (u t (x, y)) = y -x.

Taking the derivative with respect to t yields 4.1 Tangent space of P 2 (M )

( d dt Z t )(u t (x, y)) + ⟨∇Z t (u t (x, y)), y -x⟩ = 0.
It follows that

( d dt Z t ) + ∇Z t (Z t ) = 0.
In the case where Z t = ∇ψ t , we have

( d dt ∇ψ t ) + ∇ 2 ψ t (∇ψ t ) = 0.
We remark that {∇ψ t , t ∈]0, 1[} satisfies heuristically the equation of Riemannian geodesic obtained in [START_REF] Lott | Some Geometric Calculations on Wasserstein space[END_REF] or heuristically obtained in [START_REF] Otto | Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality[END_REF], in which the authors showed that the convexity of entropy functional along these geodesics is equivalent to Bakry-Emery's curvature condition [START_REF] Bakry | Diffusions hypercontractives[END_REF] (see also [START_REF] Von Renesse | Transport inequalities, gradient estimates, entropy and Ricci curvature[END_REF][START_REF] Sturm | On the geometry of metric measure spaces[END_REF]).

In the case of Riemannian manifold M , it is a bit complicated. We follow the exposition of [START_REF] Gigli | On the inverse implication of Brenier-McCann theorems and the structure of (P 2 (M), W 2)[END_REF]. Let TM be the tangent bundle of M and π : TM → M the natural projection. For each µ ∈ P(M ), we consider the set

Γ µ = { γ probability measure on TM ; π # γ = µ, ∫ TM |v| 2 TxM dγ(x, v) < +∞ } .
The set Γ µ is obviously non empty. Let γ ∈ Γ µ , we consider ν = exp # γ, that is,

∫ M f (x)dν(x) = ∫ T M f (exp x (v)) dγ(x, v),
where exp x : T x M → M is the exponential map induced by geodesics on M . The map

TM → M × M, (x, v) → (x, exp x (v))
sends γ to a coupling plan γ ∈ C(µ, ν). We have

W 2 2 (µ, ν) ≤ ∫ TM d 2 M (x, exp x (v)) dγ(x, v) ≤ ∫ TM |v| 2 TxM dγ(x, v).
In order to construct geodesics {c t ; t ∈ [0, 1]} connecting µ and ν, we need to find

γ 0 ∈ Γ µ such that ν = exp # γ 0 and W 2 2 (µ, ν) = ∫ TM |v| 2 TxM dγ 0 (x, v). (4.1.6)
As M is connected, let x ∈ M , for each y, there is a minimizing geodesic {ξ(t), t ∈ [0, 1]} connecting x and y.

Let v x,y = ξ ′ (0) ∈ T x M , then y = exp x (v x,y ) and d M (x, y) = |v x,y | TxM .
Take a Borel version Ξ of such a map (x, y) → (x, v x,y ) from M × M to T M . Let γ0 ∈ C(µ, ν) be an optimal coupling plan; define γ 0 ∈ Γ µ by

∫ TM g(x, v) dγ 0 (x, v) = ∫ M ×M g ( x, Ξ(x, y) ) dγ 0 (x, y).
Therefore

∫ TM |v| 2 TxM dγ 0 (x, v) = ∫ M ×M |Ξ(x, y)| 2 dγ 0 (x, y) = ∫ M ×M d M (x, y) 2 dγ 0 (x, y) = W 2 2 (µ, ν).

Now we define the curve {c

t ; t ∈ [0, 1]} on P 2 (M ) by ∫ M f (x)c t (dx) = ∫ TM f (exp x (tv)) dγ 0 (x, v).
Similarly we check that

W 2 (c s , c t ) = |t -s| W 2 (c 0 , c 1 ).
The organization of this chapter is as follows. In Section 4.2, we consider ordinary equations on P 2 (M ), a Cauchy-Peano's type theorem is established, also Mckean-Vlasov equation involved. In Section 4.3, we emphasize that the suitable class of probability measures for developing the differential geometry is one having divergence and the strictly positive density with certain regularity. The Levi-Civita connection is introduced and the formula for the covariant derivative of a general but smooth enough vector field is obtained. In section 4.4, we precise result on the derivability of the Wasserstein distance on P 2 (M ), which enable us to obtain the extension of a vector field along a quite good curve on P 2 (M ) in Section 4.5 as in differentiable geometry; the parallel translation along such a good curve on P 2 (M ) is naturally and rigorously introduced. And we give the well-posedness results of parallel translation on P 2 (T) . In the last section 4.5.1, we give the Lipschitz condition for vector fields and the uniqueness of the solution to ODE.

Ordinary differential equations on P 2 (M )

Let φ ∈ C 1 (M ), consider the function F φ on P 2 (M ) defined by

F φ (µ) = ∫ M φ(x) dµ(x). (4.2.1)
A function F on P 2 (M ) is said to be a polynomial if it is an element of the algebra spanned by all the functions

F = F φ1 • • • F φ k , where φ 1 , . . . , φ k are finite number of functions in C 1 (M ). Let Z = V ψ be a constant vector field on P 2 (M ) with ψ ∈ C ∞ (M )
, and U t the flow on M associated to ∇ψ. For µ 0 ∈ P 2 (M ), we set µ t = (U t ) # µ 0 . Then we have seen in section 4.1.1,

{ d dt F φ (µ t ) } |t=0 = ∫ M ⟨∇φ(x), ∇ψ(x)⟩ dµ 0 (x) = ⟨V φ , V ψ ⟩ Tµ 0 .
The left hand side of above equality is the derivative of F φ along V ψ . More generally, for a function

F on P 2 (M ),
we say that F is derivable at µ 0 along V ψ , if

( DV ψ F )(µ 0 ) = { d dt F (µ t ) } |t=0 exists.
We say that the gradient ∇F (µ 0 ) ∈ T µ0 exists if for each ψ ∈ C ∞ (M ), ( DV ψ F )(µ 0 ) exists and

DV ψ F (µ 0 ) = ⟨ ∇F, V ψ ⟩ Tµ 0 . (4.2.2)
Note that for φ ∈ C 1 (M ), there is a sequence of ψ n ∈ C ∞ (M ) such that ∇ψ n converge uniformly to ∇φ so that V φ ∈ T µ for any µ ∈ P 2 (M ). It is obvious that

∇F φ = V φ . For the polynomial F = ∏ k i=1 F φi , we have ∇F = k ∑ i=1 ( ∏ j̸ =i F φj ) V φi .
Note that the family {F φ , φ ∈ C 1 (M )} separates the point of P 2 (M ). By Stone-Weierstrauss theorem, the space of polynomials is dense in the space of continuous functions on P 2 (M ).

Remark 4.2.1. If the gradient ∇ψ is replaced by a general C 1 -vector field on M , the above definition is also well-settled; in fact this has been done in the early work [START_REF] Albeverio | Differential geometry of Poisson spaces[END_REF] in another context for other applications. The links among different type of derivatives are recently characterized in [START_REF] Ren | Derivative formulas in measure on Riemannian manifolds[END_REF].

Remark 4.2.2. The definition of gradient gradF defined in the former chapter is actually an extension of ∇F .

Note that ∇F is defined by smooth constant fields ∇φ ∈ T µ , φ ∈ C ∞ c (M ), while gradF is defined by u ∈ T µ . The test function space is different. If gradF is well defined, gradF must equal to ∇F . However, if ∇F is well defined, even if the operator A µ (u) = ⟨ ∇F (µ), u⟩ L 2 (µ) is closable in T µ , gradF (µ) may still not exist, not to mention that gradF = ∇F . We give an example to illustrate the difference.

Consider

F (ρ) =    F = ∫ ρ log ρ + ∫ V ρ, ρ ∈ P 2,ac ([0, 1]) +∞, otherwise. Suppose that ρ 0 = [0,1] dx, u ∈ L 2 (ρ 0 ) u(x) = 2 n+2 -3 -2 n+2 x, x ∈ [1 - 1 2 n , 1 - 1 2 n+1 ), n = 0, 1, . . . It is obvious to see F ((Id + 1 2 k+1 u) # ρ 0 ) = +∞ for every k ∈ N. Thus, lim ϵ→0 + F ((Id + ϵu) # ρ 0 ) -F (ρ 0 ) ϵ does not exist. It means gradF (ρ 0 ) does not exist, while ∇F (ρ 0 ) = 0 .
In this chapter and later chapters, we use ∇F to represent the gradient of functional F . Similarly, we will use ∇2 F rather than HessF to represent the Hessian operator in the later chapters.

We will use ∇ to denote the gradient operator on the base space M , and ∇ to denote the gradient operator on the Wasserstein space

(P 2 (M ), W 2 ). For example, if (µ, x) → Φ(µ, x) is a function on P 2 (M ) × M , then ∇Φ(µ, x)
is the gradient with respect to x, while ∇Φ(µ, x) is the gradient with respect to µ.

Definition 4.2.3. We will say that Z is a vector field on P 2 (M ) if there exists a Borel map Φ :

P 2 (M ) × M → R such that for any µ ∈ P 2 (M ), x → Φ(µ, x) is C 1 and Z(µ) = V Φ(µ,•) .
A class of test vector fields on P 2 (M ) is

χ(P) = { ∑ f inite α i V ψi , α i polynomial, ψ i ∈ C ∞ (M ) } . (4.2.3)
Let Z be a vector field on P 2 (M ), how to construct a solution µ t ∈ P 2 (M ) to the following ODE

d I µ t dt = Z(µ t )?
Theorem 4.2.4. Let Z be a vector field on P 2 (M ) given by Φ. Assume that (µ, x) → ∇Φ(µ, x) is continuous, then for any µ 0 ∈ P 2 (M ), there is an absolutely continuous curve 

{µ t ; t ∈ [0, 1]} on P 2 (M ) such that d I µ t dt = Z(µ t ), µ |t=0 = µ 0 . ( 4 
d dt U t (x) = ∇Φ(µ t , U t (x)), µ t = (U t ) # µ 0 . (4.2.6)
Proof. We use the Euler approximation to construct a solution. We first note that

C 1 := sup (µ,x)∈P2(M )×M |∇Φ(µ, x)| < +∞. (4.2.7)
Let P t = e t∆ M be the heat semi-group associated to the Laplace operator ∆ M on functions, and T t = e -t□ the heat semigroup on differential forms, with de Rham-Hodge operator □. It is well-known that

|T t (∇φ)| ≤ e -tκ/2 P t |∇φ|, φ ∈ C 1 (M )
where κ is lower bound of Ricci tensor on M . Here, ∇φ can be identified by 1-form dφ. As t → 0, T t (∇φ) converges to ∇φ uniformly. For n ≥ 1, let

Z n (µ, x) = ( T 1/n ∇Φ(µ, •) ) (x).
According to (4.2.7) and above estimate, for n big enough,

sup (µ,x)∈P2(M )×M |Z n (µ, x)| ≤ 2C 1 . (4.2.8) Now let t k = k2 -n for k = 1, . . . , 2 n and [t] = t k if t ∈ [t k , t k+1 [.
On the intervall [t 0 , t 1 ], consider the ODE on M :

dU (n) t dt = Z n ( µ 0 , U (n) t ) , U (n) 0 (x) = x, (4.2.9)
and µ

(n) t = (U (n) t ) # µ 0 for t ∈ [t 0 , t 1 ]; inductively, on [t k , t k+1 ], we consider dU (n) t dt = Z n ( µ (n) t k , U (n) t ) , U (n) |t=t k (x) = U (n) t k (x), (4.2.10) and for t ∈ [t k , t k+1 ], µ (n) t = (U (n) t ) # µ (n) t k (4.2.11)
and so on, we get a curve {µ

(n) t ; t ∈ [0, 1]} on P 2 (M ). We now prove that this family is equicontinuous in C([0, 1], P 2 (M )). Let 0 ≤ s < t ≤ 1, define γ(θ) = U (n) (1-θ)s+θt , then dγ(θ) dθ = (t -s)Z n ( µ (n) [(1-θ)s+θt] , U (n) (1-θ)s+θt
) .

We have, according to (4.2.8),

d M ( U (n) t (x), U (n) s (x) ) ≤ ∫ 1 0 dγ(θ) dθ dθ ≤ 2C 1 (t -s).
Define a probability measure π on M × M by

∫ M ×M g(x, y)π(dx, dy) = ∫ M g ( U (n) t (x), U (n) s (x) ) dµ 0 (x).
Then π ∈ C(µ

(n) t , µ (n) s ), we have W 2 2 ( µ (n) t , µ (n) s ) ≤ ∫ M d 2 M ( U (n) t (x), U (n) s (x) ) dµ 0 (x) ≤ 4C 2 1 (t -s) 2 .
By Ascoli theorem, up to a subsequence, µ

(n) • converges in C([0, 1], P 2 (M )) to a continuous curve {µ t ; t ∈ [0, 1]} such that W 2 (µ t , µ s ) ≤ 2C 1 (t -s).
For proving that {µ t ; t ∈ [0, 1]} is a solution to ODE (4.2.4), we need the following preparation:

Lemma 4.2.5. Set Φ µ (x) = Φ(µ, x), then sup (µ,x)∈P2(M )×M |(T t ∇Φ µ )(x) -∇Φ(x)| TxM → 0, as t → 0. (4.2.12) Proof. We use || • || ∞ to denote the uniform norm on M . Let ε > 0, for µ ∈ P 2 (M ), there is tµ > 0 such that sup t≤ tµ ||T t ∇Φ µ -∇Φ µ || ∞ < ε. Since (µ, t) → ||T t ∇Φ µ -∇Φ µ || ∞ is continuous, there is δ µ > 0 such that for t ≤ tµ , W 2 (µ, ν) < δ µ ⇒ ||T t ∇Φ ν -∇Φ ν || ∞ < ε.
Let B(µ, δ) be the open ball in (P 2 (M ), W 2 ) centered at µ, of radius δ. We have

P 2 (M ) = ∪ µ∈P2(M ) B(µ, δ µ );
so there is a finite number of {µ 1 , . . . , µ K } such that

P 2 (M ) = ∪ K i=1 B(µ i , δ µi ). Let t = min { tµi , i = 1, . . . , K } > 0. Then for 0 < t < t, sup µ∈P2(M ) ||T t ∇Φ µ -∇Φ µ || ∞ ≤ ε.
So we get (4.2.12).

End of the proof of theorem : {µ

(n) t ; t ∈ [0, 1]} satisfies the following continuity equation - ∫ [0,1]×M α ′ (t)f (x)µ (n) t (dx)dt = α(0) ∫ M f (x)dµ 0 (x) + ∫ [0,1]×M α(t) ⟨∇f (x), Z n ( µ (n) [t] , x ) ⟩ µ (n) t (dx)dt, (4.2.13) 
for all α ∈ C 1 c ([0, 1)) and f ∈ C 1 (M ). We have

∫ [0,1]×M α(t) ⟨∇f (x), Z n ( µ (n) [t] , x ) ⟩ µ (n) t (dx)dt - ∫ [0,1]×M α(t) ⟨∇f (x), ∇Φ ( µ t , x ) ⟩ µ t (dx)dt = ∫ [0,1]×M α(t) ⟨∇f (x), Z n ( µ (n) [t] , x ) -∇Φ(µ t , x)⟩ µ (n) t (dx)dt + ∫ [0,1]×M α(t) ⟨∇f (x), ∇Φ ( µ t , x ) ⟩ µ (n) t (dx)dt - ∫ [0,1]×M α(t) ⟨∇f (x), ∇Φ ( µ t , x ) ⟩ µ t (dx)dt.
It is obvious that the sum of two last terms converge to 0 as n → +∞. Let I n be the first term on the right side, then

|I n | ≤ ||∇f || ∞ ∫ 1 0 |α(t)| ||T 1/n ∇Φ µ (n) [t] -∇Φ µt || ∞ dt Note that ||T 1/n ∇Φ µ (n) [t] -∇Φ µt || ∞ ≤ ||T 1/n ∇Φ µ (n) [t] -∇Φ µ (n) [t] || ∞ + ||∇Φ µ (n) [t] -∇Φ µt || ∞ . The term ||T 1/n ∇Φ µ (n) [t] -∇Φ µ (n) [t]
|| ∞ → 0 is due to above lemma. As n → +∞, µ

[t] converges to µ t . By continuity of (µ, x) → ∇Φ(µ, x), the last term tends to 0. Letting n → +∞ in (4.2.13) yields

- ∫ [0,1]×M α ′ (t)f (x)µ t (dx)dt = α(0) ∫ M f (x)µ 0 (dx) + ∫ [0,1]×M α(t) ⟨∇f (x), ∇Φ ( µ t , x ) ⟩ µ t (dx)dt,
which is the meaning of Equation (4.2.4) in distribution sense.

For the proof of second part, since x → Φ(µ, x) is C 2 , we can directly use ∇Φ(µ, •) instead of Z n in (4.2.9), (4.2.10), (4.2.11).

On the intervall [t 0 , t 1 ], consider the ODE on M :

dU (n) t dt = ∇Φ ( µ 0 , U (n) t ) , U (n) 0 (x) = x, (4.2.14)
and µ

(n) t = (U (n) t ) # µ 0 for t ∈ [t 0 , t 1 ]; inductively, on [t k , t k+1 ], we consider dU (n) t dt = ∇Φ ( µ (n) t k , U (n) t ) , U (n) |t=t k (x) = U (n) t k (x), (4.2.15) and for t ∈ [t k , t k+1 ], µ (n) t = (U (n) t ) # µ (n) t k . (4.2.16)
By above result, up to a subsequence, {µ

(n) t , t ∈ [0, 1]} converges to {µ t , t ∈ [0, 1]} in C([0, 1], P 2 (M )
). We use this subsequence to prove the convergence of {U

(n) t (x), t ∈ [0, 1]}. Now we prove that, under Condition (4.2.7), d M ( U (n) t (x), U (n) t (y) ) ≤ e C2t d M (x, y), x, y ∈ M. (4.2.17)
For x, y ∈ M given, there is a minimizing geodesic {ξ s , s ∈ [0, 1]} connecting x and y such that

d M (x, y) = ∫ 1 0 |ξ ′ s | ds. Set σ(t, s) = U (n) t (ξ s ).
Since the torsion is free, we have the relation:

D ds d dt σ(t, s) = D dt d ds σ(t, s), (4.2.18)
where D ds denotes the covariant derivative. We have

d dt U (n) t (ξ s ) = ∇Φ ( µ (n) [t] , U (n) t (ξ s )
) .

Taking the derivative with respect to s, we get

D ds d dt U (n) t (ξ s ) = ∇ 2 Φ ( µ (n) [t] , U (n) t (ξ s ) ) • d ds U (n) t (ξ s ).
Combining with (4.2.18) yields

D dt d ds U (n) t (ξ s ) = ∇ 2 Φ ( µ (n) [t] , U (n) t (ξ s ) ) • d ds U (n) t (ξ s ). Now, d dt d ds U (n) t (ξ s ) 2 = 2 ⟨ ∇ 2 Φ ( µ (n) [t] , U (n) t (ξ s ) ) • d ds U (n) t (ξ s ), d ds U (n) t (ξ s ) ⟩ ,
which is, by Condition (4.2.7), less than

2C 2 d ds U (n) t (ξ s ) 2 .
By Gronwall lemma,

d ds U (n) t (ξ s ) ≤ e C2t |ξ ′ s |, which implies that d M ( U (n) t (x), U (n) t (y) ) ≤ e C2t d M (x, y).
Therefore the family

{ (t, x) → U (n) t (x); n ≥ 1 } is equicontinuous in C([0, 1] × M ). By Ascoli theorem, up to a subsequence, U (n) t (x) converges to U t (x) uniformly in (t, x) ∈ [0, 1] × M . It is obvious to see that (U t , µ t ) solves Mckean-Vlasov equation (4.2.6).
Remark 4.2.6. Comparing to [START_REF] Buckdahn | Mean-field stochastic differential equations and associated pdes[END_REF], as well to [START_REF] Wang | Image-dependent conditional McKean-Vlasov SDEs for measure-valued diffusion processes[END_REF], we did not suppose the Lipschitz continuity with respect to µ; in counterpart, we have no uniqueness of solutions of (4.2.6).

Remark 4.2.7. Many interesting PDE can be interpreted as gradient flows on the Wasserstein space P 2 (M ) (see [START_REF] Ambrosio | Gradient flows: in metric spaces and in the space of probability measures[END_REF], [START_REF] Villani | Optimal transport: old and new[END_REF], [START_REF] Villani | Graduate studies in mathematics[END_REF], [START_REF] Fang | Fokker-Planck equation with respect to heat measures on loop groups[END_REF]). The interpolation between geodesic flows and gradient flows were realized using Langevin's deformation in [START_REF] Li | W-entropy formulas and Langevin deformation of flows on Wasserstein space over Riemannian manifolds[END_REF] and [START_REF] Li | W-entropy formulas on super Ricci flows and Langevin deformation on Wasserstein space over Riemannian manifolds[END_REF].
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In this section, we will revisit the paper by J. Lott [START_REF] Lott | Some Geometric Calculations on Wasserstein space[END_REF]: we try to reformulate conditions given there as weak as possible, also to expose some of them in an intrinsic way, avoiding the use of density. In order to obtain good pictures on the geometry of P 2 (M ), the suitable class of probability measures should be the class P div (M ) of probability measures on M having divergence (see Definition 4.1.2).

For convenience of readers, we will briefly prepare materials needed for our exposition. For a measure µ ∈ P 2 (M ), for any

C 1 vector field A on M , the divergence div µ (A) ∈ L 2 (M, µ) is such that ∫ M ⟨∇ϕ(x), A(x)⟩ TxM dµ(x) = - ∫ M ϕ(x) div µ (A)(x) dµ(x) for any ϕ ∈ C 1 (M ). It is easy to see that div µ (f A) = f div µ (A) + ⟨∇f, A⟩ for f ∈ C 1 (M ). If dµ = ρ dx has a density ρ > 0 in the space C 1 (M ), we have ∫ M ⟨∇ϕ, A⟩ dµ = ∫ M ⟨∇ϕ, ρA⟩ dx = - ∫ M ϕ div(ρA) dx = - ∫ M ϕ div(ρA) ρ -1 dµ, It follows that div µ (A) = ρ -1 div(ρA) = div(A) + ⟨∇(log ρ), A⟩.
(4.3.1)

For µ ∈ P div (M ) and ϕ ∈ C 2 (M ), we denote L µ (ϕ) ∈ L 2 (µ) such that ∫ M ⟨∇f, ∇ϕ⟩ dµ = - ∫ M f L µ ϕ dµ, for any f ∈ C 1 (M ), (4.3.2)
where L µ ϕ = div µ (∇ϕ) is a negative operator.

Let

ψ ∈ C 3 (M ), consider the ODE dU t dt = ∇ψ(U t ), U 0 (x) = x.
Proposition 4.3.1. Let dµ = ρ dx be a probability measure in P div (M ) with a strictly positive density ρ

in C 1 (M ) and ψ ∈ C 3 (M ). Then for each t ∈ [0, 1], µ t := (U t ) # µ ∈ P div (M ).
Proof. By Kunita [START_REF] Kunita | Stochastic flows and stochastic differential equations[END_REF] (see also [START_REF] Bela | Équations différentielles sur l'espace de Wiener et formules de Cameron-Martin non-linéaires[END_REF], [START_REF] Malliavin | Stochastic analysis[END_REF]), the push-forward measure (U -1 t ) # µ by inverse map of U t admits a density Kt with respect to µ, having the following explicit expression

Kt = exp ( - ∫ t 0 div µ (∇ψ)(U s (x))ds
) .

It follows that the density K t of µ t with respect to µ has the expression

K t = exp ( ∫ t 0 div µ (∇ψ)(U -s (x))ds
) .
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According to (4.3.1), x → div µ (∇ψ(x)) is C 1 . Therefore the condition in [START_REF] Bela | Équations différentielles sur l'espace de Wiener et formules de Cameron-Martin non-linéaires[END_REF] ∫ M exp(λdiv µ (∇ψ(x)) dµ(x) < +∞, for all λ > 0 is automatically satisfied. Again by (4.3.1),

x → K t (x) is in C 1 . Now let A be a C 1 vector field on M and f ∈ C 1 (M ), we have ∫ M ⟨∇f (x), A(x)⟩ TxM dµ t (x) = ∫ M ⟨∇f, A⟩ TxM K t (x)dµ(x) = - ∫ M f div µ (K t Z) dµ.
It follows that

div µt (A) = div µ (K t A) K -1 t .
For ψ 1 , ψ 2 ∈ C 2 (M ), we denote by V ψ1 , V ψ2 the associated constant vector fields on P 2 (M ). In what follows, we will compute the Lie bracket

[V ψ1 , V ψ2 ]. For f ∈ C 1 (M ), we set F f (µ) = ∫ M f dµ.
According to preparations given at the beginning of Section 4.2,

( DV ψ 2 F f )(µ) = ∫ M ⟨∇ψ 2 , ∇f ⟩ dµ = F ⟨∇ψ2,∇f ⟩ (µ).
Using again above formula, we have

( DV ψ 1 DV ψ 2 F f )(µ) = ∫ M ⟨∇ψ 1 , ∇⟨∇ψ 2 , ∇f ⟩⟩ dµ = - ∫ M L µ ψ 1 ⟨∇ψ 2 , ∇f ⟩ dµ. Therefore [V ψ2 , V ψ1 ]F f = DV ψ 2 DV ψ 1 F f -DV ψ 1 DV ψ 2 F f = ∫ M ⟨(L µ ψ 1 ∇ψ 2 -L µ ψ 2 ∇ψ 1 ), ∇f ⟩ dµ. Let C ψ1,ψ2 (µ) = L µ ψ 1 ∇ψ 2 -L µ ψ 2 ∇ψ 1 . (4.3.3) Note that C ψ1,ψ2 (µ) is in L 2 (M, TM ; µ), not in T µ .
Consider the orthogonal projection:

Π µ : L 2 (M, TM ; µ) → T µ .
As µ ∈ P div (M ) and by Proposition 4.1.3, there exists Φµ ∈ D 2 1 (µ) such that

Π µ (C ψ1,ψ2 (µ)) = ∇ Φµ . (4.3.4)
Then we have

[V ψ2 , V ψ1 ]F f = ∫ M ⟨∇ Φµ , ∇f ⟩ dµ = ( DVΦ µ F f )(µ). (4.3.5)
Above equality can be extended to the class of polynomials on P 2 (M ), that is to say that

[V ψ2 , V ψ1 ] µ = V Φµ on polynomials, (4.3.6)
We emphasize that Lie bracket of two constant vector fields is no more a constant vector field. 

Φµ = (L µ ) -1 div µ ( C ψ1,ψ2 (µ) ) . (4.3.7)
Proof. By (4.3.1),

L µ ψ = ∆ M ψ + ⟨∇ log ρ, ∇ψ⟩,
where ∆ M denotes the Laplace operator on M . It is well-known that L µ has a spectral gap if log ρ ∈ C 2 (M ). In [START_REF] Lott | Some Geometric Calculations on Wasserstein space[END_REF], the Lie bracket [V ψ2 , V ψ1 ] was expressed using Hodge decomposition for vector fields in L 2 (µ). For a complete study on Hodge decompositions, we refer to the paper [START_REF] Li | On the strong lp-Hodge decomposition over complete Riemannian manifolds[END_REF]. For

ψ 1 , ψ 2 ∈ C 3 (M ), we have div µ ( C ψ1,ψ2 (µ) ) = ⟨∇L µ ψ 1 , ∇ψ 2 ⟩ -⟨∇L µ ψ 2 , ∇ψ 1 ⟩.
By Hodge decomposition, C ψ1,ψ2 (µ) admits the decomposition

C ψ1,ψ2 (µ) = d µ * ω + ∇f + h,
where

ω is a differential 2-form on M , d µ * is adjoint operator of exterior derivative in L 2 (µ), h is harmonic form : (d µ * d + dd µ * )h = 0.
Taking the divergence div µ on the two sides of above equality, we see that f is a solution the following equation

L µ f = div µ ( C ψ1,ψ2 (µ)
) .

It follows that Φµ has the expression (4.3.7).
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Now we introduce the covariant derivative ∇V ψ 1 V ψ2 associated to the Levi-Civita connection on P 2 (M ) by

2⟨ ∇V ψ 1 V ψ2 , V ψ3 ⟩ = DV ψ 1 ⟨V ψ2 , V ψ3 ⟩ + DV ψ 2 ⟨V ψ3 , V ψ1 ⟩ -DV ψ 3 ⟨V ψ1 , V ψ2 ⟩ + ⟨V ψ3 , [V ψ1 , V ψ2 ]⟩ -⟨V ψ2 , [V ψ1 , V ψ3 ]⟩ -⟨V ψ1 , [V ψ2 , V ψ3 ]⟩.
We have

⟨V ψ2 , V ψ3 ⟩ = ∫ M ⟨∇ψ 2 , ∇ψ 3 ⟩ dµ = F ⟨∇ψ2,∇ψ3⟩ . Then DV ψ 1 ⟨V ψ2 , V ψ3 ⟩ = ∫ M ⟨∇ψ 1 , ∇ ⟨∇ψ 2 , ∇ψ 3 ⟩⟩ dµ = - ∫ M ⟨L µ ψ 1 ∇ψ 2 , ∇ψ 3 ⟩ dµ.
Replacing ψ 1 by ψ 2 , ψ 2 by ψ 3 and ψ 3 by ψ 1 , we get

DV ψ 2 ⟨V ψ3 , V ψ1 ⟩ = - ∫ M ⟨L µ ψ 2 ∇ψ 1 , ∇ψ 3 ⟩ dµ.
We have, in the same way

DV ψ 3 ⟨V ψ1 , V ψ2 ⟩ = - ∫ M ⟨L µ ψ 3 ∇ψ 1 , ∇ψ 2 ⟩ dµ. Now using expression of [V ψ1 , V ψ2 ], we have ⟨V ψ3 , [V ψ1 , V ψ2 ]⟩ = ∫ M ⟨-L µ ψ 1 ∇ψ 2 + L µ ψ 2 ∇ψ 1 , ∇ψ 3 ⟩ dµ.
In the same way, we get

⟨V ψ2 , [V ψ1 , V ψ3 ]⟩ = ∫ M ⟨-L µ ψ 1 ∇ψ 3 + L µ ψ 3 ∇ψ 1 , ∇ψ 2 ⟩ dµ and ⟨V ψ1 , [V ψ2 , V ψ3 ]⟩ = ∫ M ⟨-L µ ψ 2 ∇ψ 3 + L µ ψ 3 ∇ψ 2 , ∇ψ 1 ⟩ dµ.
Combining all these terms, we finally get

2⟨ ∇V ψ 1 V ψ2 , V ψ3 ⟩ = ∫ M ⟨∇⟨∇ψ 1 , ∇ψ 2 ⟩, ∇ψ 3 ⟩ dµ + ∫ M ⟨L µ ψ 2 ∇ψ 1 -L µ ψ 1 ∇ψ 2 , ∇ψ 3 ⟩ dµ.
Theorem 4.3.3. (see [START_REF] Lott | Some Geometric Calculations on Wasserstein space[END_REF]) For two constant vector fields V ψ1 , V ψ2 , we have

∇V ψ 1 V ψ2 = 1 2 V ⟨∇ψ1,∇ψ2⟩ + 1 2 [V ψ1 , V ψ2 ]. (4.3.8)
Chapter 4: Geometry and Parallel Transport 56 Moreover, for any constant vector field V ψ3 ,

⟨ ∇V ψ 1 V ψ2 , V ψ3 ⟩ Tµ = ∫ M ⟨∇ 2 ψ 2 , ∇ψ 1 ⊗ ∇ψ 3 ⟩ dµ. (4.3.9)
Proof. It is enough to prove (4.3.9). We have

⟨V ψ3 , [V ψ1 , V ψ2 ]⟩ Tµ = ∫ M ⟨-L µ ψ 1 ∇ψ 2 + L µ ψ 2 ∇ψ 1 , ∇ψ 3 ⟩ dµ = ∫ M ⟨∇ψ 1 , ∇⟨∇ψ 2 , ∇ψ 3 ⟩⟩ dµ - ∫ M ⟨∇ψ 2 , ∇⟨∇ψ 1 , ∇ψ 3 ⟩⟩ dµ = ∫ M ( ⟨∇ 2 ψ 2 , ∇ψ 1 ⊗ ∇ψ 3 ⟩ + ⟨∇ 2 ψ 3 , ∇ψ 1 ⊗ ∇ψ 2 ⟩ ) dµ - ∫ M ( ⟨∇ 2 ψ 1 , ∇ψ 2 ⊗ ∇ψ 3 ⟩ + ⟨∇ 2 ψ 3 , ∇ψ 2 ⊗ ∇ψ 1 ⟩ ) dµ = ∫ M ( ⟨∇ 2 ψ 2 , ∇ψ 1 ⊗ ∇ψ 3 ⟩ -⟨∇ 2 ψ 1 , ∇ψ 2 ⊗ ∇ψ 3 ⟩⟩ ) dµ,
due to the symmetry of the Hessian ∇ 2 ψ 3 . On the other hand,

⟨V ψ3 , V ⟨∇ψ1,∇ψ2⟩ ⟩ Tµ = ∫ M ( ⟨∇ 2 ψ 2 , ∇ψ 3 ⊗ ∇ψ 1 ⟩ + ⟨∇ 2 ψ 1 , ∇ψ 3 ⊗ ∇ψ 2 ⟩⟩ ) dµ.
Summing these last two equalities yields (4.3.9).

Remark 4.3.4. By (4.3.8), for two constant vector fields V ψ1 , V ψ2 , the covariant derivative ∇V ψ 1 V ψ2 is not a constant vector field on

P 2 (M ) if ψ 1 ̸ = ψ 2 .
Let α : P 2 (M ) → R be a differentiable function, we define

∇V ψ 1 ( α V ψ2 ) = DV ψ 1 α • V ψ2 + α ∇V ψ 1 V ψ2 . (4.3.10)
Proposition 4.3.5. Let Z be a vector field on P 2 (M ) in the test space

χ(P), that is, Z = k ∑ i=1 α i V ψi with α i polynomials.
Then ∇Z Z still is in the test space; moreover

∇Z Z = V Φ1 + 1 2 V |∇Φ2| 2 ,
where

Φ 1 = k ∑ j=1 ( k ∑ i=1 α i DV ψ i α j ) ψ j , Φ 2 = k ∑ i=1 α i ψ i . 57 4.3 Levi-Civita connection on P 2 (M )
Proof. Using the rule concerning covariant derivatives, ∇Z Z is equal to

k ∑ i,j=1 α i ( DV ψ i α j ) V ψj + 1 2 k ∑ i,j=1 α i α j V ⟨∇ψi,∇ψj ⟩ + 1 2 k ∑ i,j=1 α i α j [V ψi , V ψj ].
The last sum is equal to 0 due to the skew-symmetry of [V ψi , V ψj ], the first one gives rise to Φ 1 and the second one gives rise to Φ 2 .

In what follows, we will extend the definition of covariant derivative (4.3.10) for a general vector field Z on P 2 (M ). Let ∆ be the Laplace operator on M , let {φ n , n ≥ 0} be the eigenfunctions of ∆:

-∆φ n = λ n φ n .
We have λ 0 = 0 and φ 0 = 1. It is well-known, by Weyl's result, that

λ n ∼ n 2/m , n → +∞
where m is the dimension of M . The functions {φ n ; n ∈ N} are smooth, chosen to form an orthonormal basis of

L 2 (M, dx). A function f on M is said to be in H k (M ) for k ∈ N, if ||f || 2 H k = ∫ M |(I -∆) k/2 f | 2 dx < +∞.
By Sobolev embedding inequality, for k > m 2 + q,

||f || C q ≤ C ||f || H k . For f ∈ H k (M ), put f = ∑ n≥0 a n φ n which holds in L 2 (M, dx) with a n = ∫ M f (x)φ n (x) dx.
We have :

||f || 2 H k = ∑ n≥0 a 2 n (1 + λ n ) k . The system { ∇φ n √ λ n ; n ≥ 1 } is orthonormal. Let V n = V φn/ √ λn , then {V n ; n ≥ 1} is an orthonormal basis of T dx .
Let Z be a vector field on P 2 (M ) given by Z(µ) = V Φ(µ,•) or Z(µ) = ∇Φ(µ, •). In the sequel, we denote: 

Φ µ (x) = Φ(µ, x), Φ x (µ) = Φ(µ, x). Then, if x → ∇Φ µ (x) is continuous,
∇Φ µ = ∑ n≥1 ( ∫ M ⟨∇Φ µ , ∇φ n √ λ n ⟩ dx ) ∇φ n √ λ n = ∑ n≥1 ( ∫ M Φ µ φ n dx ) ∇φ n ,
which converges in L 2 (M, dx). Let µ ∈ P div (M ), the above series converges also in T µ . Let

a n (µ) = ∫ M Φ µ (x)φ n (x) dx. (4.3.11)
Let V ψ be a constant vector field on

P 2 (M ) with ψ ∈ C ∞ (M ). For q ≥ p ≥ 1, set S p,q = q ∑ n=p ( DV ψ a n V φn + a n ∇V ψ V φn ) = S 1 p,q + S 2 p,q
(4.3.12)

respectively. Let ϕ ∈ C ∞ (M ), according to (4.3.9), we have

⟨S 2 p,q , V ϕ ⟩ Tµ = ∫ M ( q ∑ n=p a n (µ)∇ 2 φ n ) (∇ψ(x), ∇ϕ(x)) dµ(x).
It follows that

|⟨S 2 p,q , V ϕ ⟩ Tµ | ≤ q ∑ n=p a n (µ)∇ 2 φ n ∞ |V ψ | Tµ |V ϕ | Tµ , therefore |S 2 p,q | Tµ ≤ q ∑ n=p a n (µ)∇ 2 φ n ∞ |V ψ | Tµ .
We have

|| q ∑ n=p a n (µ)(I -∆) k/2 φ n || 2 L 2 (dx) = q ∑ n=p a n (µ) 2 (1 + λ n ) k = q ∑ n=p ( ∫ M (I -∆) k/2 Φ µ φ n dx ) 2 → 0 as p, q → +∞ if Φ µ ∈ H k (M ).
On the other hand, we have

( DV ψ a n )(µ) = ∫ M ( DV ψ Φ x )(µ)φ n (x) dx = ∫ M ⟨∇ DV ψ Φ x , ∇φ n √ λ n ⟩ dx √ λ n , then 59 
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S 1 p,q = q ∑ n=p ( ∫ M ⟨∇ DV ψ Φ x , ∇φ n √ λ n ⟩ dx ) ∇φ n √ λ n and ∫ M |S 1 p,q | 2 dx = q ∑ n=p ( ∫ M ⟨∇ DV ψ Φ x , ∇φ n √ λ n ⟩ dx ) 2 → 0 as p, q → +∞ if ∫ M |∇ DV ψ Φ x | 2 dx < +∞.
Therefore for dµ = ρ dx with µ ∈ P div (M ), as p, q → ∞,

|S 1 p,q | 2 Tµ ≤ ||ρ|| ∞ ∫ M |S 1 p,q | 2 dx → 0.
We get the following result, which is new.

Theorem 4.3.6. Let Z be a vector field on P 2 (M ) given by Φ :

P 2 (M ) × M → R. Assume that (i) for some number k > m 2 + 2, Φ µ ∈ H k (M ) for any µ ∈ P 2 (M ), (ii) for any x ∈ M, DV ψ Φ x exists and ∇ DV ψ Φ • ∈ L 2 (M, dx).
Then the covariant derivative ∇V ψ Z is well defined at µ ∈ P div (M ) and for ϕ ∈ C ∞ (M ),

⟨ ∇V ψ Z, V ϕ ⟩ Tµ = ∫ M ⟨(∇ DV ψ Φ • ), ∇ϕ⟩ dµ + ∫ M ∇ 2 Φ µ ( ∇ψ, ∇ϕ ) dµ. (4.3.13) Proof. Let Z q = q ∑ n=1 a n V φn . Then ∇V ψ Z q = S 1,q .
Letting q → +∞ yields the result.

Derivability of the square of the Wasserstein distance

Let {c t ; t ∈ [0, 1]} be an absolutely continuous curve on P 2 (M ), for σ ∈ P 2 (M ) given, the derivability of t → W 2 2 (σ, c t ) was established in Chapter 8 of [START_REF] Ambrosio | Gradient flows: in metric spaces and in the space of probability measures[END_REF] , as well as in [START_REF] Villani | Optimal transport: old and new[END_REF] (see pages 636-649); however they hold true only for almost all t ∈ [0, 1]. The derivability at t = 0 was proved in Theorem 8.13 of [START_REF] Villani | Graduate studies in mathematics[END_REF] if σ and c 0 have a density with respect to dx. When {c t } is a geodesic of constant speed, the derivability at t = 0 was given Chapter 4: Geometry and Parallel Transport 60 in theorem 4.2 of [START_REF] Gigli | On the inverse implication of Brenier-McCann theorems and the structure of (P 2 (M), W 2)[END_REF] where the property of semi concavity was used. In what follows, we will use constant vector fields on P 2 (M ).

Before stating our result, we recall some well-known facts concerning optimal transport maps (see [START_REF] Villani | Optimal transport: old and new[END_REF][START_REF] John | Polar factorization of maps on Riemannian manifolds[END_REF][START_REF] Benamou | A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem[END_REF]). Let σ ∈ P 2,ac (M ) be absolutely continuous with respect to dx and µ ∈ P 2 (M ), then there is an unique

Borel map (up to a constant),ϕ ∈ D 2 1 (σ) such that ∫ M |∇ϕ(x)| 2 dσ(x) = W 2 2 (σ, µ)
and x → T (x) = exp x (∇ϕ(x)) pushes σ forward to µ. If µ is also in P 2,ac (M ), the map T : M → M is invertible and its inverse map T -1 is given by y → exp y (∇ φ(y)) with some function φ such that ∫ M |∇ φ| 2 dµ < +∞. We need also the following result Lemma 4.4.1. Let x, y ∈ M and {ξ(t); t ∈ [0, 1]} be a minimizing geodesic connecting x and y, given by ξ(t) = exp x (tu) with some u ∈ T x M . Then

d 2 M (exp y (v), x) -d 2 M (y, x) ≤ 2⟨v, ξ ′ (1)⟩ TyM + o(|v|) as |v| → 0. (4.4.1)
Proof. See [START_REF] John | Polar factorization of maps on Riemannian manifolds[END_REF], page 10.

Theorem 4.4.2. Assume that σ ∈ P 2,ac (M ) is absolutely continuous with respect to dx, then µ → χ(µ) := W 2 2 (σ, µ) is derivable along each constant vector field V ψ at any µ ∈ P 2 (M ). If µ ∈ P 2,ac (M ), the gradient ∇χ exists and admits the expression :

∇χ(µ) = -2∇ φ. (4.4.2)
Proof. Remark first that Formula (4.4.2) is well-known in the case where M = R m (see for example Theorem 8.13 in [START_REF] Villani | Graduate studies in mathematics[END_REF]). Let ψ ∈ C ∞ (M ) and (U t ) t∈R be the associated flow of diffeomorphisms of M :

dU t (x) dt = ∇ψ(U t (x)), x ∈ M. (4.4.3) The inverse map U -1 t of U t satisfies the ODE dU -1 t (x) dt = -∇ψ(U -1 t (x)), x ∈ M. (4.4.4) Set µ t = (U t ) # µ, then µ = (U -1 t ) # µ t . Let γ ∈ C o (σ, µ) be the optimal coupling plan such that W 2 2 (σ, µ) = ∫ M ×M d 2 M (x, y) dγ(x, y).
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The map (x, y) → (x, U t (y)) pushes γ forword to a coupling plan γ t ∈ C(σ, µ t ). Then for t > 0,

1 t [ W 2 2 (σ, µ t ) -W 2 2 (σ, µ) ] ≤ 1 t ∫ M ×M ( d 2 M (x, U t (y)) -d 2 M (x, y) ) dγ(x, y) = 1 t ∫ M ×M ( d 2 M (x, U t (y)) -d 2 M (x, exp y (t∇ψ(y))
) dγ(x, y)

+ 1 t ∫ M ×M ( d 2 M (x, exp y (t∇ψ(y)) -d 2 M (x, y) ) dγ(x, y) = I 1 (t) + I 2 (t)
respectively. Let ξ(t) = exp x (t∇ϕ(x)), by [START_REF] John | Polar factorization of maps on Riemannian manifolds[END_REF], ξ is a minimizing geodesic connecting x and y = T (x). By Lemma 4.4.1, we have

d 2 M ( x, exp y (t∇ψ(y) ) -d 2 M (y, x) ≤ 2t⟨∇ψ(y), ξ ′ (1)⟩ TyM + o(|t|) as t → 0.
On the other hand,

ξ ′ (1) = d exp x (∇ϕ(x)) • ∇ϕ(x) = // ξ 1 ∇ϕ(x),
where // ξ t denotes the parallel translation along the geodesic ξ.

Hence |ξ ′ (1)| = |∇ϕ(x)|. Therefore I 2 (t) ≤ 2 ∫ M ⟨∇ψ(T (x)), d exp x (∇ϕ(x)) • ∇ϕ(x)⟩ dσ(x) + o(1)
To justify the passage of limit throught the integral, we note that for t > 0,

1 t d 2 M ( x, exp y (t∇ψ(y)) ) -d 2 M (x, y) ≤ 2 t diam(M ) d M ( y, exp y (t∇ψ(y)) ) ≤ 2 diam(M ) |∇ψ(y)|.
Then

lim t↓0 I 2 (t) ≤ 2 ∫ M ⟨∇ψ(T (x)), d exp x (∇ϕ(x)) • ∇ϕ(x)⟩ dσ(x).
For estimating I 1 (t), it is obvious that

lim t↓0 1 t sup y∈M d M ( U t (y), exp y (t∇ψ(y)) ) = 0. (4.4.5)
Then lim t↓0 I 1 (t) = 0. In conclusion:
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lim t↓0 1 t [ W 2 2 (σ, µ t ) -W 2 2 (σ, µ) ] ≤ 2 ∫ M ⟨∇ψ(T (x)), d exp x (∇ϕ(x)) • ∇ϕ(x)⟩ dσ(x). (4.4.6)
For obtaining the minoration, we use the fact that lim t↓0 (-a t ) = -lim t↓0 a t .

Let γt ∈ C o (σ, µ t ) be the optimal transport plan:

W 2 2 (σ, µ t ) = ∫ M ×M d 2 M (x, y) γt (dx, dy).
Let η t ∈ C(σ, µ t ) be defined by

∫ M ×M f (x, y)η t (dx, dy) = ∫ M ×M f ( x, U -1 t (y)
) γt (dx, dy).

Then for t > 0, 1 t [ W 2 2 (σ, µ) -W 2 2 (σ, µ t ) ] ≤ 1 t ∫ M ×M ( d 2 M (x, U -1 t (y)) -d 2 M (x, y) ) γt (dx, dy).
Let T t : M → M be the optimal transport map which pushes forward σ to µ t , with T t (x) = exp x (∇ϕ t (x)).

As t ↓ 0, the map T t converges in measure to T (see for example [START_REF] Villani | Graduate studies in mathematics[END_REF], page 265). We have

1 t ∫ M ×M ( d 2 M (x, U -1 t (y)) -d 2 M (x, y) ) γt (dx, dy) = 1 t ∫ M ( d 2 M (x, U -1 t (T t (x))) -d 2 M (x, T t (x)) ) dσ(x) = 1 t ∫ M ( d 2 M (x, U -1 t (T t (x))) -d 2 M (x, exp Tt(x) (-t∇ψ(T t (x))) ) dσ(x) + 1 t ∫ M ( d 2 M (x, exp Tt(x) (-t∇ψ(T t (x))) -d 2 M (x, T t (x)) ) dσ(x) = J 1 (t) + J 2 (t)
respectively. According to (4.4.5), lim t↓0 J 1 (t) = 0. Concerning J 2 (t), we note as above,

1 t d 2 M ( x, exp Tt(x) (-t∇ψ(T t (x)) ) -d 2 M (x, T t (x)) ≤ 2 t diam(M )d M (T t (x), exp Tt(x) (-t∇ψ(T t (x))) ≤ 2 diam(M ) |∇ψ(T t (x)))| ≤ 2diam(M ) ||∇ψ|| ∞ .
Then by Lemma 4.4.1,
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J 2 (t) ≤ -2 ∫ M ⟨∇ψ(T t (x)), d exp x (∇ϕ t (x)) • ∇ϕ t (x)⟩ dσ(x) + o(1) Therefore lim t↓0 1 t [ W 2 2 (σ, µ) -W 2 2 (σ, µ t ) ] ≤ -2 ∫ M ⟨∇ψ(T (x)), d exp x (∇ϕ(x)) • ∇ϕ(x)⟩ dσ(x). (4.4.7)
Combining (4.4.6) and (4.4.7), we finally get

lim t↓0 1 t [ W 2 2 (σ, µ t ) -W 2 2 (σ, µ) ] = 2 ∫ M ⟨∇ψ(T (x)), d exp x (∇ϕ(x)) • ∇ϕ(x)⟩ dσ(x). (4.4.8)
Now if µ ∈ P 2,ac (M ) and the map y → exp y (∇ φ(y)) is the optimal transport map which pushes µ to σ.

Consider the minimizing geodesic

ξ(t) = exp y ((1 -t)∇ φ(y)),
which connects x and y. We have ξ ′ (1) = -∇ φ(y). In this case, replacing d exp x (∇ϕ(x)) • ∇ϕ(x) in (4.4.8) by ∇ φ(y), we obtain

lim t↓0 1 t [ W 2 2 (σ, µ t ) -W 2 2 (σ, µ) ] = -2 ∫ M ⟨∇ψ(T (x)), ∇ φ(T (x))⟩ dσ(x) = -2 ∫ M ⟨∇ψ(y), ∇ φ(y)⟩ dµ(y),
(4.4.9) from which we get (4.4.2). The proof is complete.

Parallel translations

Before introducing parallel translations on the space P div (M ), let's give a brief review on the definition of parallel translations on the manifold M , endowed with an affine connection. Let {γ(t); t ∈ [0, 1]} be a smooth curve on M , and {Y t ; t ∈ [0, 1]} a family vector fields along γ: Y t ∈ T γ(t) M . Then there exist vector fields X and Y on M such that

X(γ(t)) = γ(t), Y (γ(t)) = Y t . Y t is said to be parallel along {γ(t); t ∈ [0, 1]} if
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(∇ X Y )(γ(t)) = 0, t ∈ [0, 1].
Now let {c t ; t ∈ [0, 1]} be a one-to-one absolutely continuous curve on P div (M ) such that

d I c t dt = V Φt , with Φ t ∈ D 2 1 (c t ).
(4.5.1)

Let {Y t ; t ∈ [0, 1]} be a vector field along {c t ; t ∈ [0, 1]}, that is, Y t ∈ T ct given by Y t = V Ψt with Ψ t ∈ D 2 1 (c t ). Theorem 4.5.1. Assume that t → c t is C 1 in the sense that for any f ∈ C 1 (M ), t → F f (c t ) is C 1 and for t ∈ [0, 1], x → Φ t (x) is C 1 . If for each t ∈ [0, 1], |V Φt | 2 Tc t = ∫ M |∇Φ t (x)| 2 c t (dx) > 0, (4.5.2)
then there are functions (µ, x) → Φ(µ, x) and (µ,

x) → Ψ(µ, x) on P 2 (M ) × M such that Φ(c t , x) = Φ t (x), Ψ(c t , x) = Ψ t (x); (4.5.3) moreover for x ∈ M , µ → Φ(µ, x
) and µ → Ψ(µ, x) are derivable on P 2 (M ) along any constant vector fields V ψ , their gradients exist on P 2,ac (M ).

Proof. Fix t 0 ∈ [0, 1]; consider α(t) = F Φt 0 (c t ). Then α ′ (t) = d dt F Φt 0 (c t ) = ∫ M ⟨∇Φ t0 , ∇Φ t ⟩ c t (dx),
which is > 0 at t = t 0 . Therefore there is an open interval I(t 0 ) of t 0 such that t → α(t) is a C 1 diffeomorphism from I(t 0 ) onto an interval J(t 0 ) containing α(t 0 ). Let β : J(t 0 ) → I(t 0 ) be the inverse map of α. We have

F Φt 0 (c t ) ∈ J(t 0 ) for t ∈ I(t 0 ). Let U (t 0 ) = { µ ∈ P 2 (M ); F Φt 0 (µ) ∈ J(t 0 ) } ,
which is an open set in P 2 (M ). Let r > 0 and ν ∈ P 2 (M ), we denote by B(ν, r) the open ball in P 2 (M ) centered at ν of radius r. Take r 0 > 0 small enough such that

B(c t0 , r 0 ) ⊂ U (t 0 ).
We define, for µ ∈ B(c t0 , r 0 ),
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Remark 4.5.4. Let s → ξ(s) is a smooth curve on M such that ξ(0) = x and ξ ′ (0) = ∇Φ t (x), then

d dt ∇Ψ t + ∇ ∇Φt ∇Ψ t = lim ε→0 τ -1 ε ∇Ψ t+ε (ξ(ε)) -∇Ψ t (x) ε , (4.5.11)
where τ s is the parallel translation along s → ξ(s). We refind the similar expression of parallel translations given in [START_REF] Ambrosio | Construction of the parallel transport in the Wasserstein space[END_REF].

Proposition 4.5.5. Assume that the curve

{c t ; t ∈ [0, 1]} is induced by a flow of diffeomorphisms Φ t , that is, there is a C 1,2 function (t, x) → Φ t (x) such that { dUs,t(x) dt = ∇Φ t (U s,t (x)), U s,s (x) = x, c t = (U 0,t ) # c 0 .
Then for any u 0 = ∇Ψ 0 ∈ T c0 , there is a unique vector field

u t = ∇Ψ t ∈ T ct along {c t ; t ∈ [0, 1]} such that Π ct ( lim ε→0 τ -1 ε ∇Ψ t+ε (U t,t+ε (x)) -∇Ψ t (x) ε ) = 0 (4.5.12) holds in L 2 (c t )
, where τ ε is the parallel translation along {s → U t,t+s (x), s ∈ [0, ε]}.

Proof. Following Section 5 of [START_REF] Ambrosio | Construction of the parallel transport in the Wasserstein space[END_REF], for s ≤ t, we define

P t,s : T cs → T ct , u s → Π ct ( τ t-s u s • U -1 s,t
) .

For a subdivision D = {0 = t 0 < t 1 < . . . < t n = 1} of [0, 1], we define

P D : T c0 → T c1 , u 0 → (P 1,tn-1 • • • • • P t1,0 )(u 0 ).
Under the assumption of Theorem, we have the uniform bound

sup (t,x)∈[0,1]×M ||∇ 2 Φ t (x)|| < +∞,
which allows us to mimic the construction of section 5 in [START_REF] Ambrosio | Construction of the parallel transport in the Wasserstein space[END_REF], so that we get that P D converges as D becomes finer and finer, with

|D| = max i |t i -t i-1 | → 0.
As a result of (4.5.12), we have as in [START_REF] Ambrosio | Construction of the parallel transport in the Wasserstein space[END_REF] 

∫ M |∇Ψ t+ε (x)| 2 c t+ε (dx) = ∫ M |∇Ψ t+ε (U t,t+ε (x))| 2 c t (dx).
Therefore

||u t+ε || 2 Tt+ε -||u t || 2 Tc t = ∫ M [ |τ -1 ε ∇Ψ t+ε (U t,t+ε (x))| 2 -|∇Ψ t (x)| 2 ] c t (dx) = ∫ M ⟨ τ -1 ε ∇Ψ t+ε (U t,t+ε (x)) -∇Ψ t (x), τ -1 ε ∇Ψ t+ε (U t,t+ε (x)) ⟩ c t (dx) + ∫ M ⟨ ∇Ψ t (x), τ -1 ε ∇Ψ t+ε (U t,t+ε (x)) -∇Ψ t (x) ⟩ c t (dx).
It follows that

d dt ||∇Φ t || 2 ct = 2 ∫ M ⟨ lim ε→0 τ -1 ε ∇Ψ t+ε (U t,t+ε (x)) -∇Ψ t (x) ε , ∇Ψ t (x) ⟩ c t (dx) = 0.

The case when M = T

In this section, we give well-posedness of parallel translation on P(T) . A function v on T is the derivative of a function ϕ if and only if ∫ T v(x)dx = 0. Let dµ = ρ dx be a probability measure on T with ρ > 0. Set

ϕ ′ = Π µ (v); then ∫ T f ′ (x)v(x)ρ(x) dx = ∫ T f ′ (x)ϕ ′ (x)ρ(x) dx for any f ∈ C ∞ (T),
which implies that (vρ) ′ = (ϕ ′ ρ) ′ ; so there is a constante K ∈ R such that

vρ = ϕ ′ ρ + K, or v = ϕ ′ + K ρ ;
integrating the two sides over T yields In order to make clear the dependence of the density ρ = dµ dx , we write the projection Π µ in the form:

K = - ∫ T v(x) dx ∫ T dx ρ . It follows that Π µ (v) = v - ( ∫ T v(x) dx ∫ T dx ρ ) 1 ρ . ( 4 
Π ρ (v) = v - ( ∫ T v(x) dx ) ρ.
(4.5.15)

Theorem 4.5.7. Assume that the initial vector

∂ x Ψ 0 ∈ C ∞ , the initial measure density ρ o > 0, ρ 0 ∈ C ∞ ,
and ϕ ∈ C ∞ . Let the flow {X t , t ∈ [0, 1]} is induced by the following ODE:

d t X t = ∂ x ϕ(X t )dt.
Denote Ξ t = (X t ) -1 and the image measure ρ t = (X t ) # ρ 0 , then the parallel translation equation (4.5.10) has a unique smooth solution g t satisfies

g t = ∂ x Ψ 0 (Ξ t ) + ∫ t 0 ∫ T g s ∂ 2 x ϕdx ∫ T 1 ρs dx 1 ρ s • Ξ t-s
ds.

(4.5.16)

Proof. If g t solves (4.5.10) , i.e.

∂ t g t = -Π ρt (∂ x g t • ∂ x ϕ), ( 4 
.5.17) then, by (4.5.14) , we have

∂ t g t = -∂ x g t • ∂ x ϕ + 1 ρ t K g t where K g t = - ∫ T g t ∂ 2 x ϕdx ∫ T 1 ρt dx . (4.5.18)
This is a transport-type integral differential equation. By taking integration on both sides, we can see

∂ t ∫ T g t dx = - ∫ T ∂ x g t ∂ x ϕdx + K g t ∫ T 1 ρ t dx = 0.
Assume that f t = g t (X t ) , then

d dt f t = 1 ρ t • X t K g t (4.5.19)
We can use Euler approximation to prove the existence of solution. Given N -piece partition of [0, 1],

g N 0 = ∂ x Ψ 0 , f N 0 = ∂ x Ψ 0 ,
then for the next step, let

g N t = g N 0 , t ∈ [0, 1 N ), (4.5.20) f N t (x) = f N 0 (x) + ∫ t 0 K g N s 1 ρ s • X s ds, t ∈ (0, 1 N ]. (4.5.21) Define g N 1 N = f N 1 N
• Ξ 1 N , then we can continue this construction for g N and f N . For the k-th step, let

g N t = g N k N , t ∈ [ k N , k + 1 N ), (4.5.22) f N t (x) = f N 0 (x) + ∫ t 0 K g N s 1 ρ s • X s ds, t ∈ ( k N , k + 1 N ]. (4.5.23) Define g N k+1 N = f N k+1 N • Ξ k+1 N . Set M = max [0,1]×T ρ , m = min [0,1]×T ρ and M ′ = max T ∂ 2 x ϕ. Note that, |K g N s | ≤ M M ′ ∫ T |g N s |dx ≤ C ∫ T f N [N s] N • Ξ [N s] N 2 dx ≤ C m ∫ T f N [N s] N • Ξ [N s] N 2 ρ [N s] N dx ≤ C||f N [N s] N || L 2 .
(4.5.24) Thus, by (4.5.23), when N is large enough,

d dt ||f N t || 2 L 2 ≤ C m ||f N t || 2 L 2 .
So, by Gronwell inequality,

||f N t || 2 L 2 ≤ ||∂ x Ψ 0 || 2 L 2 exp Ct. (4.5.25)
L 2 -uniform boundedness has been proved. Moreover, we can prove uniform boundedness of {f N t } in D 2 1 so that {f N t } is compact in L 2 for each t . In fact,

||∂ x f N t || L 2 ≤ ||∂ x ∂ x Ψ 0 || L 2 + max s∈[0,t] |K g N s | max [0,t]×T |∂ x ( 1 ρ s • X s )| ≤ C ||∂ 2 x Ψ 0 || L 2 . (4.5.26)
The last inequality needs estimates (4.5.31) and (4.5.32) below. For the equicontinuity, through (4.5.24) and (4.5.25), we see that
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||f N t -f N s || L 2 ≤ C||∂ x Ψ 0 || L 2 |t -s|.
Therefore, with compactness and equicontinuity, we know that, according to Arzelà-Ascoli theorem,

{f N t , t ∈ [0, 1]} has a convergent subsequence {f n t , t ∈ [0, 1]} in C([0, 1], L 2 (T)
). Denote f t as the convergent limit . Note that, since

g n t = f n [nt] n • Ξ [nt] n , thus, ∫ T |g n t | 2 dx ≤ 1 m ∫ T |g n t | 2 ρ [nt] n dx ≤ C ∫ T f n [nt] n 2 dx.
The last inequality is due to (4.5.24). This , combined with (4.5.25), gives uniform boundedness of

{g n t , t ∈ [0, 1]}.
Similarly, we can also prove uniform boundedness of {g n t } in D 2 1 . Actually,

||∂ x g n t || = ||(∂ x f n [nt] n ) • Ξ [nt] n • ∂ x Ξ [nt] n ||
should be uniformly bound because of (4.5.26) and (4.5.31). Next , according to lemma 4.5.8 below,

||g n t -g n s || L 2 ≤ C|t -s| .
We proved the equicontinuity of {g n t , t ∈ [0, 1]} . Thus , again by Arzelà-Ascoli theorem, we have a subsequence (f n k , g n k ) such that f n k t and g n k t converge to f t and g t respectively under C([0, 1], L 2 ) . Note that , by (4.5.23) and L 2 convergence of g n k t , we can easily check that

max T |f n k t -f t | → 0, (4.5.27)
Thus, again , taking pointwise limit of (4.5.23) , we get

f t = ∂ x Ψ 0 + ∫ t 0 K g s 1 ρ s • X s ds. Since ρ s ∈ C ∞ , we see that f t ∈ C ∞ . Let ḡt = f t • Ξ t , then for each x ∈ T , ḡt (x) = lim k→∞ g n k t (x)
due to (4.5.27). By dominated convergence theorem, ||g t -ḡt || L 2 = 0. Next, we will prove ḡt is a gradient of some function on Torus and solves (4.5.17) . In fact,

d dt ḡt = ( d dt f t ) • Ξ t + ∂ x f t (Ξ t ) • d dt Ξ t = ( K g t 1 ρ t • Ψ t ) • Ξ t -∂ x f t (Ξ t )∂ x Ξ t ∂ x ϕ = K g t 1 ρ t -∂ x (ḡ t )∂ x ϕ.
It is easy to check that |K g t -K ḡt t | ≤ C||g -ḡt || L 2 = 0 . Therefore, ḡt solves (4.5.17) . Also, by Fubini theorem,

d dt ∫ T ḡt dx = ∫ T d dt ḡt dx = ∫ T K g t 1 ρ t -∂ x (ḡ t )∂ x ϕdx = ∫ T (ḡ t -g t )∂ 2 x ϕdx. Thus, d dt ∫ T ḡt dx ≤ C||g t -ḡt || L 2 = 0 . Note that ∫ T ḡ0 dx = ∫ T ∂ x Ψ 0 dx = 0 .
So we proved ḡt is a gradient of some function on Torus. We finished the proof. Lemma 4.5.8. For t > s, when n is large enough,

f n [nt] n • Ξ [nt] n -f n [ns] n • Ξ [ns] n L 2 ≤ C|t -s|. Proof. Since ||f n t -f n s || L 2 ≤ K|t -s| , thus f n [nt] n • Ξ [nt] n -f n [ns] n • Ξ [nt] n L 2 ≤ 1 m (∫ (f n [nt] n -f n [ns] n ) 2 dx ) 1 2 ≤ C 1 |t -s|.
(4.5.28) Also, because of

X t = x + ∫ t 0 ∂ x ϕ(X s )ds, (4.5.29) |Ξ t -x| = |X(Ξ t (x)) -Ξ t (x)| ≤ M ′ t . Therefore, when n is large enough, f n [ns] n • Ξ [nt] n -f n [ns] n • Ξ [ns] n L 2 ≤ 1 m (∫ (f n [ns] n • Ξ [nt] n -f n [ns] n • Ξ [ns] n ) 2 ρ [ns] n dx ) 1 2 = 1 m (∫ (f n [ns] n • Ξ [nt] n - [ns] n -f n [ns] n ) 2 dx ) 1 2 ≤ M ′ m max T ∂ x f n [ns] n • |t -s|.
(4.5.30)

Due to (4.5.23),

∂ x f n [ns] n ≤ max T |∂ x Ψ 0 | + ∫ t 0 |K g n s | • ∂ x ρ s ρ 2 s • X s • |∂ x X s |ds.
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Note that , by (4.5.24) and (4.5.25),

|K g n s | ≤ C||∂ x Ψ 0 || L 2 ,
Furthermore, by (4.5.29) , we can get

∂ x X t = 1 + ∫ t 0 ∂ 2 x ϕ(X s )∂ s X s ds, which means |∂ x X t | ≤ exp{max T |∂ 2 x ϕ|t} . Similarly, by the standard argument, when ϕ ∈ C ∞ , |∂ k x X s | ≤ C, for s ∈ [0, 1]. (4.5.31)
These estimates also hold for the inverse map Ξ t , which satisfies

Ξ t = x - ∫ t 0 ∂ x ϕ(Ξ t-s )ds.
On the other hand, by the property of push-forward measure ρ t = (X t ) # ρ 0 :

ρ t (X t ) = ρ 0 |∂ x X t |,
therefore, it is easy to deduce that , when ρ 0 ∈ C ∞ ,

|∂ x ρ s | ≤ C. (4.5.32)
In fact, estimates (4.5.32) and (4.5.31) are standard results on diffeomorphism induced by smooth vector fields.

Finally, we come to estimate (4.5.30) and get

f n [ns] n • Ξ [nt] n -f n [ns] n • Ξ [ns] n L 2 ≤ C 2 |t -s|.
(4.5.33)

Then, combining (4.5.28) and (4.5.33) , we have

f n [nt] n • Ξ [nt] n -f n [ns] n • Ξ [ns] n L 2 ≤ f n [ns] n • Ξ [nt] n -f n [ns] n • Ξ [ns] n L 2 + f n [nt] n • Ξ [nt] n -f n [ns] n • Ξ [nt] n L 2 ≤ (C 1 + C 2 )|t -s|.
(4.5.34)

Lipschitz condition for vector fields and uniqueness of solution to ODE

In what follows, we will say a few words on the Lipschitz condition on vector fields Z on P 2,ac (M ). Let µ, ν ∈ P 2,ac (M ). Recall that there is a unique optimal transport map T µ,ν : M → M which pushes µ to ν such that

T µ,ν (x) = exp x (∇ϕ(x)).
Let ξ µ,ν x (t) = exp x ( t∇ϕ(x)) and // ξx t be the parallel translation along {ξ x (t); t ∈ [0, 1]}.

Definition 4.6.1. We say that a vector field Z on P 2,ac (M ) given by Φ (see Definition 4.2.3) is Lipschitzian if there exists a constant κ > 0 such that

∫ M // ξ µ,ν x 1 ∇Φ(µ, x) -∇Φ(ν, T µ,ν (x)) 2 dµ(x) ≤ κ 2 W 2 2 (µ, ν) (4.6.1)
for any couple (µ, ν) ∈ P 2,ac (M ) × P 2,ac (M ).

Remark that the quantity defined by the left hand side of (4.6.1) is symmetric with respect to (µ, ν), using the inverse map T ν,µ of T µ,ν .

Proposition 4.6.2. Assume that for each µ ∈ P 2 (M ), x → ∇ 2 Φ(µ, x) exists and is continuous such that

C 1 = sup µ∈P2(M ) ||∇ 2 Φ(µ, •)|| ∞ < +∞, (4.6.2)
and there is a constant C 2 > 0 such that

|∇Φ(µ, x) -∇Φ(ν, x)| ≤ C 2 W 2 (µ, ν), x ∈ M ; (4.6.3)
then the Lipschitz condition (4.6.1) holds with

κ 2 ≤ 2(C 2 1 + C 2 2 ).
Proof. We have

// ξ µ,ν x 1 ∇Φ(µ, x) -∇Φ(ν, T µ,ν (x)) ≤ // ξ µ,ν x 1 ∇Φ(µ, x) -// ξ µ,ν x 1 ∇Φ(ν, x) + // ξ µ,ν x 1 ∇Φ(ν, x) -∇Φ(ν, T µ,ν (x)) ≤ ∇Φ(µ, x) -∇Φ(ν, x) + C 1 d M (x, T µ,ν (x))
where the second inequality is deduced from the fact for x, y ∈ M and {η t ; t ∈ [0, 1]} a minimizing geodesic connecting x and y, then for φ ∈ C 2 (M ),

Lipschitz condition for vector fields and uniqueness of solution to ODE

// η 1 ∇φ(x) -∇φ(y) ≤ ||∇ 2 φ|| ∞ d M (x, y). (4.6.4)
In fact, set z(t) = // η t ∇φ(x) -∇φ(η t ). Then the covariant derivative

D dt z of z(t) along η has the expression D dt z(t) = ∇ η ′ t ∇φ(η t ). It follows that D dt z(t) ≤ |η ′ t | ||∇ 2 φ|| ∞ ; therefore // η 1 ∇φ(x) -∇φ(y) ≤ ||∇ 2 φ|| ∞ ∫ 1 0 |η ′ t | dt = ||∇ 2 φ|| ∞ d M (x, y).
Using conditions (4.6.2) and (4.6.3), we get

∫ M // ξ µ,ν x 1 ∇Φ(µ, x) -∇Φ(ν, T µ,ν (x)) 2 dµ(x) ≤ 2 [ C 2 2 W 2 2 (µ, ν) + C 2 1 ∫ M d 2 M (x, T µ,ν (x)) dµ(x)
] .

The result follows.

Theorem 4.6.3. Let Z be a vector field on P 2 (M ) satisfying the Lipschitz condition (4.6.1), then the ODE

d I µ t dt = Z(µ t ), µ |t=0 = µ 0
admits unique solution on the space P 2,ac (M ).

Proof. Let µ 1 t , µ 2 t be two solutions in P 2,ac (M ) to above ODE. For fixed t, denote by T 1,2 t : M → M the optimal transport map which pushes µ 1 t to µ 2 t , with

T 1,2 t (x) = exp x ( ∇ϕ 1,2 (x)
) .

Let

T 2,1 t (y) = exp x ( ∇ϕ 2,1 (y) ) be the inverse map of T 1,2 t . Let η 1,2 s (x) = exp x ( s∇ϕ 1,2 (x)
) .

It is well known (see [START_REF] Villani | Optimal transport: old and new[END_REF]) that ϕ 1,2 and ϕ 2,1 are linked by the following relation

// η 1,2 (x) 1 ∇ϕ 1,2 (x) = -∇ϕ 2,1 (T 1,2 t (x)), x ∈ M.
(4.6.5)

According to Theorem 23.9 in [START_REF] Villani | Optimal transport: old and new[END_REF], for almost all t ∈ (0, 1),

d dt 1 2 W 2 2 (µ 1 t , µ 2 t ) = -⟨∇ϕ 1,2 , d I µ 1 t dt ⟩ T µ 1 t -⟨∇ϕ 2,1 , d I µ 2 t dt ⟩ T µ 2 t = - ∫ M ⟨∇ϕ 1,2 (x), ∇Φ(µ 1 t , x)⟩ µ 1 t (dx) - ∫ M ⟨∇ϕ 2,1 (y), ∇Φ(µ 2 t , y)⟩ µ 2 t (dy).
The second term on the right hand side is equal to

- ∫ M ⟨∇ϕ 2,1 (T 1,2 t (x)), ∇Φ(µ 2 t , T 1,2 t (x))⟩ µ 1 t (dx),
which is equal to, by (4.6.5),

∫ M ⟨// η 1,2 (x) 1 ∇ϕ 1,2 (x), ∇Φ(µ 2 t , T 1,2 t (x))⟩ µ 1 t (dx). Therefore d dt 1 2 W 2 2 (µ 1 t , µ 2 t ) = ∫ M ⟨// η 1,2 (x) 1 ∇ϕ 1,2 (x), ∇Φ(µ 2 t , T 1,2 t (x)) -// η 1,2 (x) 1 ∇Φ(µ 1 t , x)⟩ µ 1 t (dx),
which is dominated, using Cauchy-Schwarz inequality by

( ∫ M |∇ϕ 1,2 (x)|µ 1 t (dx) ) 1/2 ( ∫ M ∇Φ(µ 2 t , T 1,2 t (x)) -// η 1,2 (x) 1 ∇Φ(µ 1 t , x) 2 µ 1 t (dx) ) 1/2 ,
which is again dominated, using Lipschitz condition (4.6.1), by

κ W 2 2 (µ 1 t , µ 2 t ).
Now using Gronwall lemma, we complete the proof.

Chapter 5

Stochastic Parallel Transport and

Q-Wiener Process

Generally, one needs to construct stochastic parallel translation if one wants to intrinsically construct Brownian motion on a Riemannian manifold. Therefore, we will study stochastic parallel translation problem on the Wasserstein space in this chapter. First, we review some differential calculus on the Wasserstein space. Let M be a connected compact Riemannian manifold. For any gradient vector field ∇ψ on M with ψ ∈ C ∞ (M ), we consider the ordinary differential equation (ODE):

d dt U t (x) = ∇ψ(U t (x)), U 0 (x) = x ∈ M.
Then x → U t (x) is a flow of diffeomorphisms on M . Let µ ∈ P 2 (M ), and

µ t = (U t ) # µ. It is obvious that for f ∈ C 1 (M ) and any t ∈ [0, 1], d dt ∫ M f (x) µ t (dx) = d dt ∫ M f (U t (x)) dµ(x) = ∫ M ⟨∇f, ∇ψ⟩ µ t (dx).
We say that the intrinsic derivatives of {µ t ; t ∈ [0, 1]} at the time t is ∇ψ. In order to make clearly different roles played by ∇ψ, we will use notation V ψ as in [START_REF] Lott | Some Geometric Calculations on Wasserstein space[END_REF] when it is seen as a constant vector field on P 2 (M ). Namely we denote

d I µ t dt = V ψ ∈ T µt , t ∈ [0, 1].
For a functionnal F on P 2 (M ), we say that F is derivable at µ along V ψ , if the directional derivative

( DV ψ F )(µ) = { d dt F (µ t ) } |t=0 exists.
We say that the gradient ∇F (µ) exists in in T µ if for each ψ ∈ C ∞ (M ), ( DV ψ F )(µ) exists and

DV ψ F (µ) = ⟨ ∇F, V ψ ⟩ Tµ .
(5.0.1)

The main purpose of this work is to develop Itô stochastic calculus on P 2 (M ); to this end, we will need the differential calculus of order 2. Following J. Lott [START_REF] Lott | Some Geometric Calculations on Wasserstein space[END_REF], the covariant derivative ∇V ψ 1 V ψ2 associated to the Levi-Civita connection on P 2 (M ) is defined by

2⟨ ∇V ψ 1 V ψ2 , V ψ3 ⟩ Tµ = DV ψ 1 ⟨V ψ2 , V ψ3 ⟩ Tµ + DV ψ 2 ⟨V ψ3 , V ψ1 ⟩ Tµ -DV ψ 3 ⟨V ψ1 , V ψ2 ⟩ Tµ + ⟨V ψ3 , [V ψ1 , V ψ2 ]⟩ Tµ -⟨V ψ2 , [V ψ1 , V ψ3 ]⟩ Tµ -⟨V ψ1 , [V ψ2 , V ψ3 ]⟩ Tµ .
A few computation yields the formula (see [START_REF] Lott | Some Geometric Calculations on Wasserstein space[END_REF] and [START_REF] Ding | Geometry on the Wasserstein space over a compact Riemannian manifold[END_REF])

⟨ ∇V ψ 1 V ψ2 , V ψ3 ⟩ Tµ = ∫ M ⟨∇ 2 ψ 2 , ∇ψ 1 ⊗ ∇ψ 3 ⟩ dµ, (5.0.2) or ( ∇V ψ 1 V ψ2 )(µ) = Π µ (∇ ∇ψ1 ∇ψ 2 ), (5.0.3)
where Π µ : L 2 (M, TM ; µ) → T µ is the orthogonal projection.

For a functional F on P 2 (M ), we say that the Hessian ∇2 F (µ) ∈ T µ ⊗ T µ exists if for any ψ 1 ∈ C ∞ (M ), ∇V ψ 1 ∇F exists and

⟨ ∇V ψ 1 ∇F, V ψ2 ⟩ Tµ = ⟨ ∇2 F, V ψ1 ⊗ V ψ2 ⟩ Tµ⊗Tµ , for any ψ 2 ∈ C ∞ (M ).
The following three examples of functionals on P 2 (M ) will play the role of test functions.

Example 1. Let φ ∈ C 1 (M ) andF φ defined by

F φ (µ) = ∫ M φ(x) dµ(x).
(5.0.4)

We have { d dt F φ (µ t ) } |t=0 = ∫ M ⟨∇φ(x), ∇ψ(x)⟩ dµ(x) = ⟨V φ , V ψ ⟩ Tµ .
Therefore the gradient ∇F φ of F φ is equal to V φ . According to (5.0.2), we have

⟨ ∇2 F φ , V ψ1 ⊗ V ψ2 ⟩ Tµ⊗Tµ = ∫ M ⟨∇ 2 φ, ∇ψ 1 ⊗ ∇ψ 2 ⟩ dµ, ψ 1 , ψ 2 ∈ C ∞ (M ).
Example 2. The entropy functional F (µ) = Ent(µ) = ∫ M ρ ln(ρ) dx for dµ = ρ dx.

Let dµ 0 = ρ 0 (x) dx and define µ t = (U t ) # µ 0 . Then dµ t = ρ t (x) dx with ρ t = ρ 0 (U -t )K t where

K t = exp ( - ∫ t 0 div(∇ψ)(U -s ) ds
) .

We have

K t (U t ) = exp ( - ∫ t 0 (∆ψ)(U t-s ) ds
) .

It follows that, if ρ 0 ∈ C 1 (M ) with ρ 0 > 0, ⟨ ∇Ent, V ψ ⟩ Tµ 0 = - ∫ M ∆ψ ρ 0 dx = ∫ M ⟨∇ψ, ∇ ln(ρ 0 )⟩ µ 0 (dx).
(5.0.5)

Therefore at such a measure µ 0 , the gradient ∇Ent of Ent exists and

∇Ent(µ 0 ) = V ln(ρ0) .
The Hessian of Ent was first heuristically computed in [START_REF] Otto | Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality[END_REF], it is profoundly related to the Ricci curvature of M . We have, by (5.0.5),

⟨ ∇Ent, V ψ ⟩ Tµ t = - ∫ M ∆ψ ρ t dx = - ∫ M ∆ψ(U t )ρ 0 dx.
Taking the derivative with respect to t, at t = 0, we get the following expression for the Lie derivative of order 2:

( DV ψ DV ψ Ent)(µ 0 ) = d dt |t=0 ⟨ ∇Ent, V ψ ⟩ Tµ t = - ∫ M ⟨∇∆ψ(x)
, ∇ψ(x)⟩µ 0 (dx).

(5.0.6)

Next example comes from the framework of particle system (see [START_REF] Liu | Long-time behaviors of mean-field interacting particle systems related to McKean-Vlasov equations[END_REF]).

Example 3.

F 3 (µ) = ∫ M ×M W (x, y)µ(dx)µ(dy),
where

W ∈ C 2 (M × M ).
Let µ t = (U t ) # µ 0 . We have

F 3 (µ t ) = ∫ M ×M W (U t (x), U t (y))µ(dx)µ(dy).
Taking the derivative with respect to t, at t = 0, we get

d dt |t=0 F 3 (µ t ) = ∫ M ×M ( ⟨∇ 1 W (x, y), ∇ψ(x)⟩ + ⟨∇ 2 W (x, y), ∇ψ(y)⟩ ) µ(dx)µ(dy), (5.0.7)
where ∇ 1 denotes the partial gradient with respect to the first component, while ∇ 2 for the second component.

Let Φ(x, µ) = ∫ M ( W (x, y) + W (y, x)
) µ(dy); then we have

DV ψ F 3 (µ) = ∫ M ⟨∇Φ(x, µ), ∇ψ(x)⟩ µ(dx).
Therfore the gradient ∇F 3 (µ) exists and

∇F 3 (µ) = V Φµ , Φ µ (x) = Φ(x, µ).
We will compute the Hessian ∇2 F 3 of F 3 . Denote

W (x, y) = ⟨∇ 1 W (x, y), ∇ψ(x)⟩ + ⟨∇ 2 W (x, y), ∇ψ(y)⟩.
Then

DV ψ F 3 (µ) = ∫ M ×M
W (x, y)µ(dx)µ(dy). Using (5.0.7), we have

DV ψ DV ψ F 3 (µ) = ∫ M ×M ( ⟨∇ 1 W (x, y), ∇ψ(x)⟩ + ⟨∇ 2 W (x, y), ∇ψ(y)⟩ ) µ(dx)µ(dy).
We have

⟨∇ 1 W (x, y), ∇ψ(x)⟩ = ⟨∇ 2 1 W (x, y), ∇ψ(x) ⊗ ∇ψ(x)⟩ + ⟨∇ 1 W (x, y), ∇ ∇ψ(x) ∇ψ(x)⟩ + ⟨∇ 1 ∇ 2 W (x, y), ∇ψ(x) ⊗ ∇ψ(y)⟩,
and

⟨∇ 2 W (x, y), ∇ψ(y)⟩ = ⟨∇ 2 2 W (x, y), ∇ψ(y) ⊗ ∇ψ(y)⟩ + ⟨∇ 2 W (x, y), ∇ ∇ψ(y) ∇ψ(y)⟩ + ⟨∇ 2 ∇ 1 W (x, y), ∇ψ(x) ⊗ ∇ψ(y)⟩.
Combing these two terms, we get

∫ M ×M ⟨∇ 1 W (x, y), ∇ψ(x)⟩ + ⟨∇ 2 W (x, y), ∇ψ(y)⟩µ(dx)µ(dy) = ∫ M ×M Hess x,y W (∇ψ(x), ∇ψ(y))µ(dx)µ(dy) + ∫ M ×M ⟨∇ 1 W (x, y) + ∇ 2 W (y, x), ∇ ∇ψ(x) ∇ψ(x)⟩µ(dx)µ(dy). Note that ∇Φ(x, µ) = ∫ M ( ∇ 1 W (x, y) + ∇ 2 W (y, x)
) µ(dy).

By (5.0.2), we have

⟨ ∇F 3 , ∇V ψ V ψ ⟩ = ∫ M ⟨∇Φ(x, µ), ∇ ∇ψ(x) ∇ψ(x)⟩µ(dx).
Proposition 5.0.1. We have

⟨ ∇2 F 3 , V ψ ⊗ V ψ ⟩ = ∫ M ×M
Hess x,y W (∇ψ(x), ∇ψ(y))µ(dx)µ(dy).

(5.0.8)

In Chapter 4, some elements of differential geometry of the Wassertein space P 2 (M ) were revisited in order to construct the parallel translation in an intrinsic way; namely, a vector field along a regular curve in P 2 (M ) was enlarged into a vector field defined on the whole space, so that the parallel translation was introduced as in the classical differential geometry. We have to note that the equation for parallel translations was stated in [START_REF] Lott | Some Geometric Calculations on Wasserstein space[END_REF],

but no existence result was provided. In [START_REF] Ambrosio | Construction of the parallel transport in the Wasserstein space[END_REF], the authors considered regular curves {µ t ; t ∈ [0, 1]} generated by a flow of Lipschitz maps and proved the existence of parallel translations {V Ψt ; t ∈ [0, 1]} along such a regular curve in L 2 . The method used in [START_REF] Ambrosio | Construction of the parallel transport in the Wasserstein space[END_REF] is extrinsic and solutions to Lott's equation for parallel translations is in a weak sense. In the paper [START_REF] Lott | An intrinsic parallel transport in Wasserstein space[END_REF], Lott proposed an intrinsic construction for parallel translation along geodesics in P 2 (M ), also a weak result of existence was obtained. To our knowledge, the existence of strong solutions to Lott's equation remains unsolved.

In this chapter, we will consider stochastic regular curves in P 2 (M ), which are generated by stochastic flows of diffeomorphisms; the main purpose is to construct stochastic parallel translations along them. The involvement of the Brownian motion arises a basic difficulty, that is, the path of diffusion process is only Hölder of exponent less than 1/2: the method in [START_REF] Ambrosio | Construction of the parallel transport in the Wasserstein space[END_REF] does not work. On the other hand, the limit theorem developed in [Bis81, Mal97, IW81] provides a powerful tool in stochastic analysis on Riemannian manifolds, we will do some tentatives in this direction. Let's now explain a bit the content of this chapter. In section 5.1, we first state main results obtained in the literature. Since the orthogonal projection plays a fundamental role in our work, we will make a brief study on it: a representation formula is obtained, and its evolution along an absolutely continuous curve in P 2 (M ) is studied. In Section 5.2, we will establish an intrinsic formalism for Itô stochastic calculus on P 2 (M ): Itô formula is proved throughout three functionals; it takes the form as on a Riemannian manifold, much simpler than those previously obtained in [START_REF] Buckdahn | Mean-field stochastic differential equations and associated pdes[END_REF][START_REF] Wang | Image-dependent conditional McKean-Vlasov SDEs for measure-valued diffusion processes[END_REF]; stochastic differential equations on P 2 (M ) with a finite number of Brownian motions are also considered. Section 5.3 is devoted to find, in more or less formal way, a suitable weak form and a strong form of stochastic partial differential equations for parallel translations along stochastic regular curves in P 2 (M ); concerning the strong solution, the preservation of norms is proved. The purpose of Section 5.4 is to introduce an infinite numbers of noises in order to construct nondegenerated diffusion processes in P 2 (M );

to this end, we will use eigenfunctions of the Laplace operator on M . Finally, in Section 6, we deal with the case of P 2 (T), the Wasserstein space over the torus: we prove the existence of strong solutions to J. Lott's equation for parallel translations, as well as the existence of strong stochastic parallel translations.

Regular curves and parallel translations on P 2 (M )

Let's first show the state of art for parallel translations in the Wasserstein space P 2 (M ). Let {c t ; t ∈ [0, 1]} be an absolutely continuous curve in P 2 (M ) and {Y t ; t ∈ [0, 1]} a family of vector fields along {c t ; t ∈ [0, 1]}, that is Y t ∈ T ct . Suppose there are smooth functions (t, x) → Φ t (x) and (t, x) → Ψ t (x) such that

d I c t dt = V Φt , Y t = V Ψt , Lott obtained formally in [Lot06] that if {Y t ; t ∈ [0, 1]} is parallel along {c t ; t ∈ [0, 1]}, then {∇Ψ t ; t ∈ [0, 1]}
is a solution to the following linear partial differential equation:

d dt ∇Ψ t + Π ct ( ∇ ∇Φt ∇Ψ t ) = 0, (5.1.1)
where Π ct is the orthogonal projection to T ct . Up to now, only two classes of absolutely continuous curves have been considered in the literature: regular curves generated by a flow of Lipschitz maps in [START_REF] Ambrosio | Construction of the parallel transport in the Wasserstein space[END_REF], geodesics of

P 2 (M ) in [Lot17].
To introduce regular curves, we consider the flow of diffeomorphisms defined by the following ODE

dX t,s = ∇ϕ(t, X t,s ) dt, t ≥ s, X s (x) = x,
where (t, x) → ϕ(t, x) is a smooth enough function. Let c t = (X t,0 ) # c 0 with dc 0 (x) = ρ 0 dx and ρ 0 > 0. The following result mimics section 5 in [START_REF] Ambrosio | Construction of the parallel transport in the Wasserstein space[END_REF] and was proved in [START_REF] Ding | Geometry on the Wasserstein space over a compact Riemannian manifold[END_REF].

Theorem 5.1.1. For any ∇Ψ 0 ∈ L 2 (c 0 ), there is a unique weak solution {∇Ψ t , t ∈ [0, 1]} in the sense that V Ψt ∈ T ct and

Π ct ( lim ε↓0 τ -1 ε ∇Ψ t+ε (X t+ε,t ) -∇Ψ t ε ) = 0 (5.1.2) holds in L 2 (c t ) for almost all t ∈ [0, 1], where τ ε is the parallel translation along {s → X t+s,t , s ∈ [0, ε]},
that is equivalent to say that t → ∇Ψ t is absolutely continuous and

d dt ∫ M ⟨∇f, ∇Ψ t ⟩ c t (dx) = ∫ M ⟨∇ 2 f, ∇ϕ(t, •) ⊗ ∇Ψ t ⟩ c t (dx), f ∈ C ∞ (M ). (5.1.3)
Even in this case, the well-posedness of (5.1.1) is not yet established to our knowledge, the implication of (5.1.1) as well as (5.1.2) to (5.1.3) is obvious. However, for the case of geodesics, it requires some investigation for this implication, see [START_REF] Lott | An intrinsic parallel transport in Wasserstein space[END_REF]. In [START_REF] Ding | Geometry on the Wasserstein space over a compact Riemannian manifold[END_REF], it was proved if for any t,

Ψ t ∈ H k (M ) with k > dim(M ) 2 + 2, then Ψ t admits an extension (µ, x) → Ψ(µ, x) defined on P 2 (M ) × M such that for any µ, Ψ(µ, •) ∈ H k (M ) and ( ∇V ϕ(t,•) V Ψ) (c t ) = 0
, that is the classical definition for parallel translation in differential geometry.

Since the projection Π µ : L 2 (M, TM ; µ) → T µ is basically involved in our work, it will be useful to make a study on it. Let dµ = ρ dx with a smooth density ρ > 0, recall that for a vector field

ζ on M , div µ (ζ) = div(ζ) + ⟨∇ log ρ, ζ⟩
and for a function f ∈ C 2 , L µ f = div µ (∇f ) has the expression

L µ f = ∆f + ⟨∇ log ρ, ∇f ⟩.
It is well-known that L µ has discrete spectrum of eigenvalue λ µ n ∼ n 2/ dim(M ) . Consider the equation, for a given g such that

∫ M g µ(dx) = 0, ∆f + ⟨∇ log ρ, ∇f ⟩ = g.
By Shauder estimate for elliptic operators, if ∇ log ρ is in C q,α , then for g ∈ C q,α , the solution f to L µ f = g is in the class C q+2,α . For a regular vector field ζ on M , by Hodge decomposition (see for example [START_REF] Li | On the strong lp-Hodge decomposition over complete Riemannian manifolds[END_REF]), there exists a function β and a vector field

B of div µ (B) = 0 such that ζ = ∇β + B; therefore div µ (ζ) = L µ (β) and Π µ (ζ) = ∇ (L µ ) -1 ( div µ (ζ) ) .
(5.1.4)

We will get a representation formula for Π µ . Let T µ s = e sL µ be the semi-group associated to L µ , then (L µ ) -1 = ∫ +∞ 0 T µ s ds and (5.1.4) becomes

Π µ (ζ) = ∫ +∞ 0 ∇ T µ s ( div µ (ζ) ) ds.
(5.1.5)

To insure the convergence in (5.1.5), we have to introduce a modified De Rham-Hodge operator □ µ on differential 1-forms. As usual, for a vector field A on M , we denote by A ♭ the associated differential form and for a differential 1-form ω, we denote by ω # the associated vector field. Define δ µ (ω) = -div µ (ω # ) and d * µ the dual operator of exterior derivative d, that is

∫ M ⟨d * µ σ, ω⟩ Λ 1 dµ = ∫ M ⟨σ, dω⟩ Λ 2 dµ. Let □ µ = dδ µ + d * µ d.
Then the following commutation formula holds: d e sL µ f = e -s□ µ (df ). Note now

□ µ (df ) = dδ µ (df ) = □(df ) + i ∇V (df ),
where we denote for a moment V = log ρ and i ∇V denotes the inner product by ∇V . By Cartan formula:

L ∇V = i ∇V d + di ∇V , we get i ∇V (df ) = L ∇V (df ) = ∇ ∇V (df ) + ⟨∇ 2 V, df ⟩.
Therefore, ω s = dT µ s f is a solution to the following heat equation:

dω t dt = -□ω t -⟨∇ 2 V, ω t ⟩.
Let {A 1 , . . . , A m } be a family of vector fields on M such that

m ∑ i=1 L 2 Ai = ∆ and m ∑ i=1 ∇ Ai A i = 0. Let Y s be the solution to the following SDE on M dY ρ s = √ 2 m ∑ i=1 A i (Y ρ s ) • dW i s + ∇ log(ρ)(Y ρ s ) ds, (5.1.6)
where s → (W 1 s , . . . , W m s ) is a standard Brownian motion on a probability space (Ω, P).

Then T µ s f (x) = E ( f (Y ρ s (x))
)

. Let

Ric µ = Ric -∇ 2 (log ρ), (5.1.7)
and Q µ s be the resolvent defined by

dQ µ s ds = Ric µ Y ρ s Q µ s .
It is well-known that the following representation formula holds

⟨e -s□ µ df, A⟩ = E ( ⟨df (Y ρ s ), Q µ s A⟩ ) , A ∈ χ(M ).
Proposition 5.1.2. We have

Π µ (ζ) = ∫ +∞ 0 E ( (Q µ s ) * (∇div µ (ζ) Y ρ s )
) ds.

(5.1.8)

Hence the dependence µ → Π µ is good in the class of probability measures having C 2 positive density.

Theorem 5.1.3. For a smooth vector field ζ on M , t → Π ct (ζ) is absolutely continuous and

d dt Π ct (ζ) = -Π ct ( L ct (ϕ(t, •)) ( ζ -Π ct (ζ) ) ) .
(5.1.9)

Proof. The density ρ t of c t with respect to c 0 admits the expression (see [START_REF] Bela | Équations différentielles sur l'espace de Wiener et formules de Cameron-Martin non-linéaires[END_REF][START_REF] Kunita | Stochastic flows and stochastic differential equations[END_REF])

ρ t (x) = exp [ ∫ t 0 div c0 (∇ϕ) ( s, X s,t (x) ) ds
] .

Regular curves and parallel translations on P 2 (M )

Under the condition that the density ρ 0 of c 0 is in class C 3 , it is easy to see that t → log ρ t is continuous from [0, 1] to C 2 (M ). Now replacing ∇ log ρ by ∇ log ρ t in (5.1.6) and using the dependence of SDE, combining with definition Ric ct in (5.1.7), we get the absolute continuity of t → Π ct (ζ). We will use the following equation for ρ t

d dt ρ t = -div ct (∇ϕ(t, •))ρ t = -L ct (ϕ(t, •)) ρ t . (5.1.10) Let f ∈ C ∞ (M ), we have ∫ M ⟨∇f, ζ⟩ c t (dx) = ∫ M ⟨∇f, Π ct (ζ)⟩ c t (dx) or ∫ M ⟨∇f, ζ⟩ ρ t c 0 (dx) = ∫ M ⟨∇f, Π ct (ζ)⟩ ρ t c 0 (dx).
Taking the derivative with respect to t and using (5.1.10), we get

- ∫ M ⟨∇f, ζ⟩ L ct (ϕ(t, •))ρ t c 0 (dx) = - ∫ M ⟨∇f, Π ct (ζ)⟩ L ct (ϕ(t, •))ρ t c 0 (dx) + ∫ M ⟨∇f, d dt Π ct (ζ)⟩ ρ t c 0 (dx).
The result (5.1.9) follows.

Proposition 5.1.4. Let ζ be a smooth vector field on M , {Ψ t ; t ∈ [0, 1]} be a parallel translation along

{c t ; t ∈ [0, 1]} given in Theorem 5.1.1, then d dt ∫ M ⟨ζ, ∇Ψ t ⟩ c t (dx) = - ∫ M ⟨L ct (ϕ(t, •))Π ⊥ ct (ζ), ∇Ψ t ⟩ c t (dx) + ∫ M ⟨∇ ∇ϕ(t,•) ( Π ct (ζ) ) , ∇Ψ t ⟩ c t (dx), (5.1.11) 
where

Π ⊥ ct (ζ) = ζ -Π ct (ζ). Proof. Let I t = ∫ M ⟨Π ct (ζ), ∇Ψ t ⟩ c t (dx).
We have, for ε > 0,

I t+ε = ∫ M ⟨Π ct+ε (ζ), ∇Ψ t+ε ⟩ c t+ε (dx) = ∫ M ⟨τ -1 ε Π ct+ε (ζ), τ -1 ε ∇Ψ t+ε ⟩(X t+ε,t ) c t (dx).

Then
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I t+ε -I t = ∫ M ⟨τ -1 ε Π ct+ε (ζ)(X t+ε,t ) -Π ct (ζ)(x), τ -1 ε ∇Ψ t+ε (X t+ε,t )⟩ c t (dx) + ∫ M ⟨Π ct (ζ), τ -1 ε ∇Ψ t+ε (X t+ε,t ) -∇Ψ t (x)⟩ c t (dx) = J 1 ε + J 2 ε respectively. As ε → 0, τ -1 ε ∇Ψ t+ε (X t+ε,t
) converges to ∇Ψ t (x) and the term J 2 ε /ε converges to 0 according to (5.1.2). For J 1 ε , note that

1 ε ( τ -1 ε Π ct+ε (ζ)(X t+ε,t ) -Π ct (ζ)(x) ) = 1 ε ( τ -1 ε Π ct+ε (ζ)(X t+ε,t ) -τ -1 ε Π ct (ζ)(X t+ε,t ) ) + 1 ε ( τ -1 ε Π ct (ζ)(X t+ε,t ) -Π ct (ζ)(x)
) .

As ε → 0, the last term converges to

∇ ϕ(t,•) Π ct (ζ), while lim ε→0 1 ε ( Π ct+ε (ζ)(X t+ε,t ) -Π ct (ζ)(X t+ε,t ) ) = d dt Π ct (ζ)(x).
Now using (5.1.9), we obtain (5.1.11).

Itô stochastic calculus on P 2 (M )

We will introduce stochastic regular curves {µ t ; t ∈ [0, 1]} on P 2 (M ) and establish Itô formula for them. Let {X t,s , t ≥ s} be a stochastic flow of diffeomorphisms defined by the following Stratanovich stochastic differential equation (SDE) on M :

dX t,s = N ∑ i=0 ∇ϕ i (t, X t,s ) • dB i t , t ≥ s; X s,s (x) = x, (5.2.1)
where

dB 0 t = dt, (B 1 t , . . . , B N t ) is a Standard Brownian motion on R N and (t, x) → ϕ i (t, x) is smooth enough for i = 0, 1, . . . , N . Let µ t (ω) = (X t,0 ) # µ. Then for F φ (µ) = ∫ M φ dµ with φ ∈ C 2 (M ), t → F φ (µ t ) is a real valued semi-martingale. The Itô differential •d t F φ (µ t )
admits the expression:

•d t F φ (µ t ) = d t ∫ M φ(X t,0 ) dµ = N ∑ i=0 ( ∫ M ⟨∇φ, ∇ϕ i (t, •)⟩ dµ t ) • dB i t = N ∑ i=0 ⟨V φ , V ϕi(t,•) ⟩ Tµ t • dB i t .

Itô stochastic calculus on P 2 (M )

Definition 5.2.1. We will say that the intrinsic Itô stochastic differential of µ t , denoted by •d I t µ t , admits the following expression

•d I t µ t = N ∑ i=0 V ϕi(t,•) • dB i t .
(5.2.2)

Then using this notation, •d t F f (µ t ) can be rewritten in the form:

•d t F φ (µ t ) = ⟨ ∇F φ , •d I t µ t ⟩ Tµ t ,
the last term can be symbolically read as inner product in T µt . We will establish Itô formula for such a stochastic process {µ t ; t ∈ [0, 1]} on P 2 (M ). The Itô form of SDE (5.2.1) is the following

dX t,s = N ∑ i=0 ∇ϕ i (t, X t,s ) dB i t + 1 2 N ∑ i=1 ( ∇ ∇ϕi(t,•) ∇ϕ i (t, •) ) (X t,s ) dt. (5.2.3)
First of all, we consider the functional F φ (µ) = ∫ M φ dµ. By Itô formula,

d t φ(X t,0 ) = N ∑ i=0 ⟨∇φ, ∇ϕ i (t, •)⟩(X t,0 ) dB i t + 1 2 N ∑ i=1 ⟨∇φ, ∇ ∇ϕi(t,•) ∇ϕ i (t, •)⟩(X t,0 ) dt + 1 2 N ∑ i=1 ⟨∇ 2 φ, ∇ϕ i (t, •) ⊗ ∇ϕ i (t, •)⟩(X t,0 ) dt.
Then

d t F φ (µ t ) = N ∑ i=0 ( ∫ M ⟨∇φ, ∇ϕ i (t, •)⟩ dµ t ) dB i t + 1 2 N ∑ i=1 ( ∫ M L ∇ϕi(t,•) L ∇ϕi(t,•) φ dµ t ) dt.
(5.2.4)

According to [START_REF] Lott | Some Geometric Calculations on Wasserstein space[END_REF] or (5.0.2) or (5.0.3), we have

∫ M ⟨∇φ, ∇ ∇ϕi(t,•) ∇ϕ i (t, •)⟩ dµ t = ⟨ ∇F φ , ∇V ϕ i (t,•) V ϕi(t,•) ⟩ Tµ t ,
and

∫ M ⟨∇ 2 φ, ∇ϕ i (t, •) ⊗ ∇ϕ i (t, •)⟩ dµ t = ⟨ ∇2 F φ , V ϕi(t,•) ⊗ V ϕi(t,•) ⟩ Tµ t ⊗Tµ t .
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In other words,

d t F φ (µ t ) = N ∑ i=0 ⟨ ∇F φ , V ϕi(t,•) ⟩ Tµ t dB i t + 1 2 N ∑ i=1 ⟨ ∇F φ , ∇V ϕ i (t,•) V ϕi(t,•) ⟩ Tµ t dt + 1 2 N ∑ i=1 ⟨ ∇2 F φ , V ϕi(t,•) ⊗ V ϕi(t,•) ⟩ Tµ t ⊗Tµ t dt.
Remark that

DV ϕ i (t,•) DV ϕ i (t,•) F φ = ⟨ ∇F φ , ∇V ϕ i (t,•) V ϕi(t,•) ⟩ Tµ t + ⟨ ∇2 F φ , V ϕi(t,•) ⊗ V ϕi(t,•) ⟩ Tµ t ⊗Tµ t .
So we get the following Itô formula:

d t F φ (µ t ) = N ∑ i=0 ⟨ ∇F φ , V ϕi(t,•) ⟩ Tµ t dB i t + 1 2 N ∑ i=1 ( DV ϕ i (t,•) DV ϕ i (t,•) F φ )(µ t ) dt.
Proposition 5.2.2. Let F be a polynomial on P 2 (M ), we have

d t F (µ t ) = N ∑ i=0 ⟨ ∇F, V ϕi(t,•) ⟩ Tµ t dB i t + 1 2 N ∑ i=1 ( DV ϕ i (t,•) DV ϕ i (t,•) F )(µ t ) dt.
(5.2.5)

Proof. For two functionals F and G satisfying Formula (5.2.5), by Itô formula,

d t (F G)(µ t ) = d t F (µ t ) G(µ t ) + F (µ t ) d t G(µ t ) + d t F (µ t ) • d t G(µ t ). Notice that DV ϕ i (t,•) DV ϕ i (t,•) (F G) = G DV ϕ i (t,•) DV ϕ i (t,•) F + F DV ϕ i (t,•) DV ϕ i (t,•) G + 2⟨ ∇F, V ϕi(t,•) ⟩ • ⟨ ∇G, V ϕi(t,•) ⟩,
and d t F (µ t ) • d t G(µ t ) = N ∑ i=1 ⟨ ∇F, V ϕi(t,•) ⟩ • ⟨ ∇G, V ϕi(t,•) ⟩ dt; so Formula (5.2.5) holds true for F G. A polynomial F on P 2 (M ) is a finite sum of F φ1 • • • F φ k ,
therefore Formula (5.2.5) remains true. We complete the proof.

Secondly we deal with the entropy functional in example 3, which is defined for probability measures having positive density. Note that if dµ(x) = ρ(x) dx with ρ > 0, the measure µ t induced by SDE (5.2.3) has a density ρ t > 0 with respect to µ.

Proposition 5.2.3. The stochastic process {ρ t , t ≥ 0} satisfies the following SPDE:

dρ t = - N ∑ i=0 div µ (ρ t ∇ϕ i (t, •)) dB i t + 1 2 N ∑ i=1 div µ ( div µ (ρ t ∇ϕ i (t, •))∇ϕ i (t, •) ) .
(5.2.6)

Itô stochastic calculus on P 2 (M )

Proof. . We have

∫ M ⟨∇φ, ∇ϕ i (t, •)⟩ dµ t = ∫ M ⟨∇φ, ρ t ∇ϕ i (t, •)⟩ dµ = - ∫ M φ div µ ( ρ t ∇ϕ i (t, •) ) dµ.
In the same way, we have

∫ M L ∇ϕi(t,•) L ∇ϕi(t,•) φ dµ t = ∫ M φ div µ ( div µ (ρ t ∇ϕ i (t, •))∇ϕ i (t, •) ) dµ.
Using F (µ t ) = ∫ M φ ρ t dµ and (5.2.4), combined with above equalities, we get (5.2.6).

Proposition 5.2.4. We have

d t Ent(µ t ) = N ∑ i=0 ⟨ ∇Ent, V ϕi(t,•) ⟩ Tµ t dB i t + 1 2 N ∑ i=1 ( DV ϕ i (t,•) DV ϕ i (t,•) Ent)(µ t ) dt.
(5.2.7)

Proof. For the functional Ent, we have to take the density ρ t of µ t with respect to the Riemannian measure dx; in this case, we use div for the usual divergence. Therefore ρ t satisfies the relation

dρ t = - N ∑ i=0 div(ρ t ∇ϕ i (t, •)) dB i t + 1 2 N ∑ i=1 div ( div(ρ t ∇ϕ i (t, •))∇ϕ i (t, •) ) . It follows that dρ t • dρ t = N ∑ i=1 [ div(ρ t ∇ϕ i (t, •)) ] 2
. By Itô formula, we have

d t ( ρ t ln ρ t ) = (ln ρ t + 1)dρ t + 1 2 1 ρ t dρ t • dρ t = -(ln ρ t + 1) N ∑ i=0 div(ρ t ∇ϕ i (t, •)) dB i t + 1 2 (ln ρ t + 1) N ∑ i=1 div ( div(ρ t ∇ϕ i (t, •))∇ϕ i (t, •) ) dt + 1 2ρ t N ∑ i=1 [ div(ρ t ∇ϕ i (t, •))
] 2 dt.

(5.2.8)

We have

∫ M (ln ρ t + 1)div ( div(ρ t ∇ϕ i (t, •))∇ϕ i (t, •) ) dx = - ∫ M ⟨∇ρ t , ∇ϕ i (t, •)⟩ ρ t div(ρ t ∇ϕ i (t, •)) dx
Then integrating over M with respect to dx the sum of last two terms in (5.2.8), we get the quantity which is equal to

Chapter 5: Stochastic Parallel Transport and Q-Wiener Process 90 ∫ M 1 2ρ t [ div(ρ t ∇ϕ i (t, •)) ( div(ρ t ∇ϕ i (t, •)) -⟨∇ρ t , ∇ϕ i (t, •)⟩ )] dx = ∫ M 1 2ρ t div(ρ t ∇ϕ i (t, •)) ρ t ∆ϕ i (t, •) dx = - 1 2 ∫ M ⟨∇ϕ i (t, •)), ∇∆ϕ i (t, •))⟩ ρ t dx, which is ( DV ϕ i (t,•) DV ϕ i (t,•) Ent)(µ t
) by (5.0.6). For the martingale term, we note that

- ∫ M (ln ρ t + 1)div(ρ t ∇ϕ i (t, •)) dx = ∫ M ⟨ ∇ρ t ρ t , ∇ϕ i (t, •))⟩ ρ t dx,
which is equal to ⟨ ∇Ent, V ϕi(t,•) ⟩ Tµ t according to (5.0.5). Therefore we get Equality (5.2.7).

Proposition 5.2.5. Itô formula (5.2.5) remains true for the functional

F 3 considered in Section 1, that is, F 3 (µ) = ∫ M ×M W (x, y)µ(dx)µ(dy).
Definition 5.2.6. Let {µ t , t ≥ 0} be a stochastic process on P 2 (M ); we say that it solves the following SDE :

•d I t µ t = N ∑ i=0 V ϕi(t,•) (µ t ) • dB i t , µ 0 = µ.
(5.2.9)

if for each F of three functionals considered in Section 1, the following Itô formula holds:

d t F (µ t ) = N ∑ i=0 ⟨ ∇F, V ϕi(t,•) ⟩ Tµ t dB i t + 1 2 N ∑ i=1 ( DV ϕ i (t,•) DV ϕ i (t,•) F )(µ t ) dt.
In what follows, we will add an interesting drift term to SDE (5.2.9). For the sake of simplicity, we sup-

pose that W (x, y) = W (y, x) in Example 3; recall that Φ(x, µ) = ∫ M W (x, y)µ(dy), then ∇Φ(x, µ) = 2 ∫ M (∇ 1 W )(x, y)µ(dy),
where ∇ 1 denotes the partial gradient with respect to the first component. We have

∇ 2 Φ(x, µ) = 2 ∫ M ∇ 2 1 W (x, y)µ(dy).
It is obvious that (x, µ) → ∇Φ(x, µ) is continuous and sup

(x,µ)∈M ×P2(M ) |∇ 2 Φ(x, µ)| 2 < +∞. Let π ∈ C(µ, ν),
we have

∇Φ(x, µ) -∇Φ(x, ν) =2 ( ∫ M ∇ 1 W (x, y)µ(dy) - ∫ M ∇ 1 W (x, y)ν(dy) ) = 2 ∫ M ×M ( ∇ 1 W (x, y) -∇ 1 W (x, z)
) π(dy, dz).

Itô stochastic calculus on P 2 (M )

Hence

|∇Φ(x, µ) -∇Φ(x, ν)| ≤ 2 ∫ M × ||∇ 2 ∇ 1 W || ∞ d M (y, z) π(dy, dz) ≤ ||∇ 2 ∇ 1 W || ∞ W 2 (µ, ν).
(5.2.10)

We prove that µ → ∇F 3 (µ) satisfies the Lipschitz condition introduced in [START_REF] Ding | Geometry on the Wasserstein space over a compact Riemannian manifold[END_REF].

Stochastic Mckean-Vlasov equations have been recently considered in [START_REF] Wang | Image-dependent conditional McKean-Vlasov SDEs for measure-valued diffusion processes[END_REF][START_REF] Buckdahn | Mean-field stochastic differential equations and associated pdes[END_REF], the following proposition is highly related to [START_REF] Wang | Image-dependent conditional McKean-Vlasov SDEs for measure-valued diffusion processes[END_REF].

Proposition 5.2.7. There is a solution (X t , µ t ) to the following Mckean-Vlasov SDE:

dX t = N ∑ i=0 ∇ϕ i (X t ) • dB i t + ∇Φ(X t , µ t ) dt, µ t = (X t ) # µ, (5.2.11) where Φ(x, µ) = ∫ M W (x, y)µ(dy).
Proof. Let (U t ) t≥0 be the stochastic flow associated to the folllowing SDE

dU t = N ∑ i=0 ∇ϕ i (U t ) • dB i t .
Define the stochastic measure dependent vector fields V t (ω, x, µ) on M by

V t (ω, x, µ) = ( U -1 t (ω, •) ) * ∇Φ(x, (U t ) # µ) = (U -1 t ) ′ (ω, U t (x))∇Φ ( U t (x), (U t ) # µ ) ,
where the prime denotes the differential with respect to x. Since the manifold M is compact, we have

|V t (ω, x, µ) -V t (ω, x, ν)| ≤ ||(U -1 t ) ′ || ∞ |Φ ( U t (x), (U t ) # µ ) -Φ ( U t (x), (U t ) # ν ) |.
Now according to (5.2.10), we get

|V t (ω, x, µ) -V t (ω, x, ν)| ≤ ||(U -1 t ) ′ || ∞ |||∇ 2 ∇ 1 W || ∞ W 2 ( (U t ) # µ, (U t ) # ν ) ,
which is dominated by

||(U -1 t ) ′ || ∞ |||∇ 2 ∇ 1 W || ∞ ||U ′ t || ∞ W 2 (µ, ν).
So there is a unique solution (Y t , ν t ) to 

d dt Y t = V t (Y t , ν t ), ν t = (Y t ) # µ. Let Xt = U t (Y t ). By Itô-Ventzell formula, d Xt = N ∑ i=0 ∇ϕ i (U t (Y t )) • dB i t + U ′ t (Y t ) V t (Y t , ν t ),
the last term in above equality is

∇Φ ( Xt , (U t ) # ν t ) . Note that ( Xt ) # µ = (U t ) # (Y t ) # µ = (U t ) # ν t ; therefore ( Xt , (U t ) # ν t ) is a solution to Equation (5.2.11).
For the uniqueness of solutions, see [START_REF] Wang | Image-dependent conditional McKean-Vlasov SDEs for measure-valued diffusion processes[END_REF].

Theorem 5.2.8. Let F 3 be the functional in Example 3, and dµ = ρ dx with ρ > 0 in C 1 ; then there is a unique solution {µ t ; t ≥ 0} to the following SDE on P 2 (M ):

•d I t µ t = N ∑ i=0 V ϕi (µ t ) • dB i t + ∇F 3 (µ t ) dt, µ 0 = µ.
(5.2.12)

Proof. Let (X t , µ t ) be the unique solution to the Mckean-Vlasov SDE (5.2.11), then for any polynomial F on P 2 (M ), we have

d t F (µ t ) = N ∑ i=0 ⟨ ∇F, V ϕi ⟩ Tµ t dB i t + 1 2 N ∑ i=1 ( DV ϕ i DV ϕ i F )(µ t ) dt + ⟨ ∇F, ∇F 3 ⟩ Tµ t dt.
We check also this is true for two other examples in Section 1. The uniqueness comes from Lipschitz continuity of coefficients in (5.2.12).

Towards stochastic parallel translations in P 2 (M )

For the reason of simplicity, we consider the following SDE on

M dX t = N ∑ i=0 ∇ϕ i (X t ) • dB i t , X 0 (x) = x, (5.3.1)
where {ϕ 0 , ϕ 1 , . . . , ϕ N } are smooth enough and independent of the time t. We know that SDE (5.3.1) defines a stochastic flow of C r -diffeomorphisms. The main purpose of this scetion is to deal with the stochastic parallel translation along stochastic regular curves {µ t ; t ≥ 0} in P 2 (M ) defined by

•d I t µ t = N ∑ i=0 V ϕi (µ t ) • dB i t , µ 0 = µ. (5.3.2)
For almost surely ω, t → µ t (ω, dx) is not a regular curve of P 2 (M ) in the sense of [START_REF] Ambrosio | Construction of the parallel transport in the Wasserstein space[END_REF]. In fact, denoting

D(t, s) = Lip ( X t • X -1 s -Id ) ,
then the condition

lim t→s D 2 (t, s) |t -s| = 0 in [AG08] fails to hold, since for a Brownian motion {B t }, lim t→s |B t -B s | 2 |t -s| ̸ = 0. Therefore the method in [AG08]
does not work directly for stochastic regular curved defined by (5.3.2). On the other hand, divers limit theorems from ODE to SDE provide powerful tools in stochastic analysis, see for example [START_REF] Bismut | Mécanique aléatoire[END_REF][START_REF] Malliavin | Stochastic analysis[END_REF][START_REF] Ikeda | Stochastic differential equations and diffusion processes[END_REF]. In what follows, we will show what happens in this direction.

We consider the regularized Brownian motion {B n t , t ∈ [0, 1]} which is piecewise linear. More precisely, for n ≥ 1, denote

t n = [2 n t] 2 n , t + n = [2 n t] + 1 2 n , and Ḃn (t) = 2 n ( B t + n -B tn ) ,
where [x] denotes the integral part of real number x. Let X n t be the solution to the ODE

dX n t = N ∑ i=0 ∇ϕ i (X n t ) Ḃi n (t) dt, X n 0 (x) = x. (5.3.3) It is well-known ( [Bis81, Mal97, IW81]) that for almost surely ω ∈ Ω, as n → +∞, X n t (x, ω) converges to X t (x, ω) in a C r topology uniformly with respect to t ∈ [0, 1]. Let µ be a probability measure on M having a positive density ρ > 0 in C 2 , put µ n t (ω) = ( X n t (•, ω) ) # µ.
It is clear that for almost surely ω, as n → ∞, µ n t converges to µ t uniformly in t ∈ [0, 1]. By Lemma 4.3.1 in [START_REF] Kunita | Stochastic flows and stochastic differential equations[END_REF], the measure (X -1 t ) # µ relative to µ admits a positive density Kt (x), which has the following expression, for almost surely ω, all t ≥ 0 and x ∈ M :

Kt (x) = exp [ N ∑ i=0 ∫ t 0 div µ (∇ϕ i )(X s (x)) • dB i s ] . (5.3.4)
The density ρ t of (X t ) # µ relative to µ is given by

ρ t (x) = 1 Kt ( X -1 t (x)
) .

The SDE for writing X -1 t is much more complicated than ODE. On the other hand, for a

C 1 -diffeomorphism Ξ : M → M , the differential dΞ(x) sends T x M into T Ξ(x) M , its dual map (dΞ(x)) * sends T Ξ(x) M into T x M . Denoting σ Ξ (x) = (dΞ(x)) * • dΞ(x), the density k of Ξ # µ relative to dx has the expression k = ρ √ det(σ Ξ (x)) • Ξ -1 . (5.3.5) Let ρ n t = dµ n t dx
; then, according to above formula,

ρ n t = ρ √ det(σ t,n ) • (X n t ) -1 , σ t,n = (dX n t (x)) * d(X n t (x)). (5.3.6) 
For the convergence of k n t , we prepare the following lemma Lemma 5.3.1. Let Ξ n and Ξ be C 1 -diffeomorphism of M such that Ξ n and ∇Ξ n converge to Ξ and ∇Ξ uniformly as n → +∞, then Ξ -1 n converges to Ξ -1 uniformly as n → +∞.

Proof. Let γ be a geodesic curve which connects Ξ n (Ξ -1 n (x)) and Ξ n (Ξ -1 (x)). Let γ(s) = Ξ -1 n (γ(s)); then γ connects Ξ -1 n (x) and Ξ -1 (x). We have

γ(s) = Ξ n ( γ(s) ) , γ ′ (s) = dΞ n ( γ(s) ) γ′ (s).
There is a constant c > 0 such that ⟨σ Ξ (x)u, u⟩ TxM ≥ c|u| 2 TxM for all x ∈ M . Since

lim n→+∞ sup x∈M |σ Ξn (x) -σ Ξ (x)| = 0 for big enough n, ⟨σ Ξn (x)u, u⟩ TxM ≥ c|u| 2 TxM /2, which implies that |dΞ n (γ(s)) γ′ (s)| ≥ √ c 2 |γ ′ (s)|. It follows that ∫ 1 0 |γ ′ (s)| ds ≥ √ c 2 ∫ 1 0 |γ ′ (s)| ds ≥ √ c 2 d M ( Ξ -1 n (x), Ξ -1 (x)
) .

Towards stochastic parallel translations in P 2 (M )

Hence

d M ( Ξ -1 n (x), Ξ -1 (x) ) ≤ √ 2 c d M ( Ξ(Ξ -1 (x), (Ξ n (Ξ -1 (x) ) ≤ √ 2 c sup y∈M d M ( Ξ(y), Ξ n (y)
) .

The result follows.

Proposition 5.3.2. Almost surely,

lim n→+∞ sup (t,x)∈[0,1]×M |ρ n t (x) -ρ t (x)| = 0. (5.3.7) Furthermore lim n→+∞ sup (t,x)∈[0,1]×M |∇ log(ρ n t (x)) -∇ log(ρ t (x))| = 0. (5.3.8)
Proof. By formula (5.3.6) and above Lemma, we get the result (5.3.7). For (5.3.8), we note that for a diffeomorphism Ξ, ∇Ξ -1 = ( ∇Ξ(Ξ -1 ) ) -1 . Taking the derivative with respect to x in formula (5.3.6), we have

∇k n t = ∇ ( k √ det(σ t,n ) ) • (X n t ) -1 • ( ∇X n t • (X n t ) -1
) -1 .

Again by Lemma 5.3.1, we get (5.3.8).

Now by Theorem 5.1.1, for any ∇Ψ 0 ∈ L 2 (µ) given, there is a unique

∇Ψ n t (ω, •) ∈ T µ n t (ω) ,
which is the parallel translation along

{µ n t (ω); t ∈ [0, 1]}. Then for almost ω ∈ Ω, n ≥ 1, ∫ M |∇Ψ n t (ω, x)| 2 µ n t (ω, dx) = ∫ M |∇Ψ 0 (x)| 2 µ(dx),
or using the density

ρ n t of µ n t , ∫ M |∇Ψ n t (ω, x)| 2 ρ n t (ω, x) dx = ∫ M |∇Ψ 0 (x)| 2 µ(dx).
(5.3.9)

This result impies that for each (t, ω) ∈ [0, 1] × Ω, the sequence {∇Ψ n t (•, x)

√ ρ n t (•, ω); n ≥ 1} is bounded in L 2 by ||∇Ψ 0 || L 2 (µ)
. There is a limit point, but unfortunately, the subsequence is dependent of (t, ω). We have to consider the integration in the space [0, 1] × Ω × M . For any n ≥ 1, Chapter 5: Stochastic Parallel Transport and Q-Wiener Process 96

∫ [0,1]×Ω [ ∫ M |∇Ψ n t (ω, x)| 2 ρ n t (ω, x) dx ] dt P (dω) = ∫ M |∇Ψ 0 (x)| 2 µ(dx);
there exists then a Random time-dependent vector field v t (ω, x) satisfying

∫ [0,1]×Ω [ ∫ M |v t (ω, x)| 2 dx ] dt P (dω) ≤ ∫ M |∇Ψ 0 (x)| 2 µ(dx),
such that, up to a subsequence, the sequence {∇Ψ n t (ω, x) √ ρ n t (ω, x); n ≥ 1} converges weakly to v t (ω, x) in L 2 . We note that for any bounded Ramdon variable ξ : Ω → R and any bounded function α : [0, 1] → R,

∫ [0,1]×Ω [ ∫ M |∇f (x)| 2 ρ t dx ] α(t)ξ(ω) dt P (dω) < +∞.
Therefore

∫ [0,1]×Ω [ ∫ M ⟨∇f (x), v t (ω, x)⟩ √ ρ t dx ] α(t)ξ(ω) dt P (dω) = lim n→+∞ ∫ [0,1]×Ω [ ∫ M ⟨∇f (x), ∇Ψ n t ⟩ √ ρ n t (ω, x) √ ρ t dx ] α(t)ξ(ω) dt P (dω) = lim n→+∞ ∫ [0,1]×Ω [ ∫ M ⟨∇f (x), ∇Ψ n t ⟩ ρ n t (ω, x) dx ] α(t)ξ(ω) dt P (dω), Since v t (ω, •) ρ -1/2 t ∈ L 2 (µ t )
for almost surely (t, ω), there exists Ψ t (ω, •) ∈ H 1 (µ t ) such that for any f ∈

C 2 (M ), ∫ M ⟨∇f (x), v t (ω, x) ρ -1/2 t ⟩µ t (dx) = ∫ M ⟨∇f (x), ∇Ψ t (ω, x) ⟩µ t (dx).
We obtain the following result:

Proposition 5.3.3. There exists ∇Ψ • such that

∫ [0,1]×Ω [ ∫ M |∇Ψ t (ω, x)| 2 µ t (dx)
] dtP (dω) is finite and

∫ [0,1]×Ω [ ∫ M ⟨∇f (x), ∇Ψ t ⟩ µ t (ω, dx) ] α(t)ξ(ω) dt P (dω) = lim n→+∞ ∫ [0,1]×Ω [ ∫ M ⟨∇f (x), ∇Ψ n t ⟩ µ n t (ω, dx)
] α(t)ξ(ω) dt P (dω).

(5.3.10)

This convergence is too weak to yield interesting informations on

{Ψ t ; t ∈ [0, 1]}.
In what follows, we will try to get a weak form of SPDE for stochastic parallel translations.

Let f ∈ C 2 (M ); by (5.1.3), for any n ≥ 1, almost surely ω, 97 5.3 Towards stochastic parallel translations in P 2 (M )

d dt ∫ M ⟨∇f, ∇Ψ n t ⟩ µ n t (dx) = ∫ M ⟨∇f 2 , N ∑ i=0 ∇ϕ i Ḃi n (t) ⊗ ∇Ψ n t ⟩ µ n t (dx) = N ∑ i=0 ( ∫ M ⟨∇ ∇ϕi ∇f, ∇Ψ n t ⟩ µ n t (dx) ) Ḃi n (t).
(5.3.11)

For a C 1 vector field ζ on M , set

z n ζ (ω, t) = ∫ M ⟨ζ, ∇Ψ n t ⟩ µ n t (dx).
By (5.1.11), we have

d dt ∫ M ⟨ζ, ∇Ψ n t ⟩ µ n t (dx) = N ∑ i=0 ( ∫ M ⟨∇(Π µ n t (ζ)), ∇ϕ i ⊗ ∇Ψ n t ⟩µ n t (dx) ) Ḃn t - N ∑ i=0 ( ∫ M ⟨L µ n t (ϕ i )Π ⊥ µ n t (ζ), ∇Ψ n t ⟩µ n t (dx) ) Ḃn t ,
or for s < t,

z n ζ (t) -z n ζ (s) = N ∑ i=0 ∫ t s ( ∫ M ⟨∇(Π µ n τ (ζ)), ∇ϕ i ⊗ ∇Ψ n τ ⟩µ n τ (dx) ) Ḃn τ dτ - N ∑ i=0 ∫ t s ( ∫ M ⟨L µ n τ (ϕ i )Π ⊥ µ n τ (ζ), ∇Ψ n τ ⟩µ n τ (dx) ) Ḃn τ dτ
(5.3.12)

Therefore there is a constant C > 0 independent of n such that

E(|z n ζ (t) -z n ζ (s)| p ) ≤ C |t -s| p/2 .
By Kolmogorov's modification theorem, there exist

M n ∈ L p (Ω), bounded in L p (Ω) such that |z n ζ (ω, t) -z n ζ (ω, s)| ≤ M n (ω) |t -s| α , α > 0, (5.3.13) Remark that ||z n ζ || ∞ ≤ ||ζ|| ∞ ||∇Ψ 0 || L 2 (µ) .
(5.3.14)

For simplicity, denote for the moment, ζ i = ∇ ∇ϕi (∇f ). Consider the following family of R 2N +2 valued stochastic process

t → Λ n f (t) = ( z n ∇f (t), z n ζ0 (t), • • • , z n ζ N (t), B 1 (t), • • • , B N (t) ) . Let R > 0, define K R = { z ∈ C([0, 1], R 2N +2 ); ||z(0)|| ≤ R, ||z(t) -z(s)|| ≤ R |t -s| α } . By Ascoli theorem, K R is a compact subset of C([0, 1], R 2N +2 ). Let ν n f be the law of ω → Λ n f (ω, •) in C([0, 1], R 2N +2 ). Then ν n f (K c R ) ≤ ν n f ([|z(0)|| > R) + ν n f ( {∃t ̸ = s, ||z(t) -z(s)|| > R|t -s| α } ) . But ν n f ( {∃t ̸ = s, ||z(t) -z(s)|| > R|t -s| α } ) 2N +2 ∑ i=1 P ( {∃t ̸ = s, ||z ζi (t) -z ζi (s)|| > R|t -s| α } ) ≤ C 1 P(M n ≥ R) ≤ C 1 ||M n || p L p R p ≤ C R p ,
for a constant C > 0 independent of n. Therefore the family {ν n f ; n ≥ 1} is tight. Up to a subsequence, {ν n f ; n ≥ 1} converges weakly to a probability measure ν f on C([0, 1], R 2N +2 ).

Now by Skorohod representation theorem, there is a probability space (Ω f , P f ) and a sequence of Random variables Λn

f : Ω f → C([0, 1], R 2N +2 ) and Λf : Ω f → C([0, 1], R 2N +2
) such that the law of Λn f is ν n f , that of Λf is ν f , and

Λn

f converges almost surely to Λf , as n → +∞.

Furthermore let

Λn f (t) = ( Ẑn ∇f (t), Ẑn ζ0 (t), • • • , Ẑn ζ N (t), B1 (t), • • • , BN (t)
) ,

and

Λf (t) = ( Ẑ∇f (t), Ẑζ0 (t), • • • , Ẑζ N (t), B1 (t), • • • , BN (t)
) .

As 

or z n ∇f (t) -z n ∇f (s) - N ∑ i=0 ∫ t s z n ζi (τ ) Ḃi n (τ ) dτ = 0.
We can express the left hand side of above equality as a function J(Λ n f ) of Λ n f . Let G : R → R + be the bounded continuous function defined by G(ξ) = |ξ| 2 ∧ M . We have

Ê( G ( Ẑn ∇f (t) -Ẑn ∇f (s) - N ∑ i=0 ∫ t s Ẑn ζi (τ ) Ḃi n (τ ) dτ ) ) = E ( G ( z n ∇f (t) -z n ∇f (s) - N ∑ i=0 ∫ t s z n ζi (τ ) Ḃn i (τ ) dτ ) ) = 0. Now letting n → +∞, Ẑn ∇f (t) -Ẑn ∇f (s) → Ẑ∇f (t) -Ẑ∇f (s),
and

N ∑ i=0 ∫ t s Ẑn ζi (τ ) Ḃi n (τ ) dτ → N ∑ i=0 ∫ t s Ẑζi (τ ) • d Bi τ .
Therefore we obtain

Ẑ∇f (t) -Ẑ∇f (s) = N ∑ i=0 ∫ t s Ẑζi (τ ) • d Bi τ almost surely.
Using the separability of C 2 (M ) and diagonal method, we can get the common subsequence for all f ∈ C 2 (M ).

We state the above result as follows Theorem 5.3.4. There is a probability space ( Ω, P) such that there is a subsequence n k , for each of them and each

f ∈ C 2 (M ), the C([0, 1], R N +2 ) valued Random variable ( z n ∇f , z n ∇ ∇ϕ 0 (∇f ) , • • • , z n ∇ ∇ϕ N (∇f )
) , has a version Λn f defined on ( Ω, P), says,

Λn f = ( Ẑn ∇f , Ẑn ∇ ∇ϕ 0 (∇f ) , • • • , Ẑn ∇ ∇ϕ N (∇f )
) , which converges almost surely to 5.3 Towards stochastic parallel translations in P 2 (M )

Let's introduce the following notation:

R f t = 1 2 N ∑ i=1 Π µt ( ∇ ∇ϕi Π µt ( ∇ ∇ϕi (∇f ) ) ) , (5.3.15)
and

S f t = 1 2 N ∑ i=1 Π µt ( L µt (ϕ i )Π ⊥ µt ( ∇ ∇ϕi (∇f )
) ) .

(5.3.16)

The term R f t has an intrinsic expression using covariant derivatives on P 2 (M ), due to (5.0.3), that is,

R f t = 1 2 N ∑ i=1 ( ∇V ϕ i ∇V ϕ i V f )(µ t ).
(5.3.17)

Hence for any f ∈ C 3 (M ), we obtain the following Itô form of weak SPDE,

∫ M ⟨∇f, ∇Ψ t ⟩ µ t (dx) = ∫ M ⟨∇f, ∇Ψ 0 ⟩ µ(dx) + N ∑ i=1 ∫ t 0 ( ∫ M ⟨∇ ∇ϕi (∇f ) , ∇Ψ τ ⟩µ τ (dx) ) dB i (τ ) + ∫ t 0 ( ∫ M ⟨∇ ∇ϕ0 (∇f ) + R f τ + S f τ , ∇Ψ τ ⟩µ τ (dx)
) dτ,

(5.3.18)

or more intrinsically

⟨V f , V Ψt ⟩ Tµ t = ⟨V f , V Ψ0 ⟩ Tµ + N ∑ i=1 ∫ t 0 ⟨ ∇V ϕ i V f , V Ψτ ⟩ Tµ τ dB i (τ ) + ∫ t 0 ⟨ ∇V ϕ 0 V f , V Ψτ ⟩ Tµ τ dτ + 1 2 N ∑ i=1 ∫ t 0 ⟨ ∇V ϕ i ∇V ϕ i V f , V Ψτ ⟩ Tµ τ dτ + ∫ t 0 ⟨S f τ , V Ψτ ⟩ Tµ τ dτ.
( or intrinsically

•d t V Ψt = - N ∑ i=0 ∇V ϕ i V Ψt • dB i t .
(5.3.22)

Proof. Let ρ t = dµ t dµ be the density of µ t with respect to the initial measure µ, then {ρ t ; t ∈ [0, 1]} satisfies the following SPDE:

•d t ρ t = - N ∑ i=0 ( div µt (∇ϕ i ) ρ t ) • dB i t .
(5.3.23)

Using ρ t , the left hand side of (5.3.18) is equal to

∫ M ⟨∇f (x), ∇Ψ t (x)⟩ ρ t µ(dx), so the Stratanovich stochastic differential of this term is ∫ M ⟨∇f (x), •d t ∇Ψ t (x)⟩ ρ t µ(dx) + ∫ M ⟨∇f (x), ∇Ψ t (x)⟩ • d t ρ t µ(dx) = J 1 (t) + J 2 (t)
respectively. By (5.3.23),

J 2 (t) = - N ∑ i=0 [ ∫ M ⟨∇f (x), ∇Ψ t (x)⟩ div µt (∇ϕ i ) µ t (dx) ] • dB i t = N ∑ i=0 [ ∫ M ( ⟨∇ ∇ϕi ∇f (x), ∇Ψ t (x)⟩ + ⟨∇f (x), ∇ ∇ϕi ∇Ψ t (x)⟩ ) µ t (dx) ] • dB i t .
In Stratanovich form, the right hand side of (5.3.18) is

N ∑ i=0 [ ∫ M ⟨∇ ∇ϕi ∇f (x), ∇Ψ t (x)⟩ ) µ t (dx) ] • dB i t .
Combing these equalities, we obtain, for any f ∈ C 2 (M ), Proof. Using (5.3.23), we have formally,

∫ M ⟨∇f (x), •d t ∇Ψ t (x)⟩ µ t (dx) + N ∑ i=0 [ ∫ M ( ⟨∇f (x), ∇ ∇ϕi ∇Ψ t (x)⟩ ] • dB i t = 0,
d t ∫ M ⟨∇Ψ t , ∇Ψ t ⟩ µ t (dx) = d t ∫ M ⟨∇Ψ t , ∇Ψ t ⟩ ρ t µ(dx) = 2 ∫ M ⟨∇Ψ t , •d t ∇Ψ t ⟩ ρ t µ(dx) - N ∑ i=0 ∫ M ⟨∇Ψ t , ∇Ψ t ⟩ div µt (∇ϕ i ) ρ t µ(dx) • dB i t = 2 ∫ M ⟨∇Ψ t , •d∇Ψ t + N ∑ i=0 ∇ ∇ϕi ∇Ψ t • dB i t ⟩ µ t (dx) = 0
due to (5.3.21).

We will give a rigorous proof of above result in the case where M = T d , a d-dimensional torus. First we recall the following Kunita-Itô-Wenzell formula [dLHLT20]:

Theorem 5.3.7. Let t → K(t, •) ∈ C 2 (T d ) be a continuous adapted semimartingale, given by

K(t, x) = K(0, x) + ∫ t 0 G(s, x)ds + N ∑ j=1 ∫ t 0 H j (s, x)dB j s , t ∈ [0, T ]
where (B 1 t , . . . , B N t ) is a standard Brownian motion on R N , and

G ∈ L 1 ([0, T ], C 2 (T d )), H ∈ L 2 ([0, T ], C 2 (T d
)) are adapted semimartingales. Let X t be the solution of the following Stratanovich SDE:

dX t = b(t, X t )dt + N ∑ j=1 ξ j (t, X t ) • dB j t , X 0 (x) = x which is assumed to be a C 1 diffeomorphism, b(t, •) ∈ W 1,1 (T d , R d ) , ξ j (t, •) ∈ C 2 (T d , R d ) and ∫ T 0 [ |b(s, X s (x)) + 1 2 N ∑ j=1 ξ j • ∇ξ j (s, X s (x))| + N ∑ j=1 |ξ j (s, X s (x))| 2 ] ds < ∞, x ∈ T d .
Then the following formula holds:

K(t, X t (x)) = K(0, x) + ∫ t 0 G(s, X s (x))ds + N ∑ j=1 ∫ t 0 H j (s, X s (x))dB j s + ∫ t 0 ⟨∇K, b⟩(s, X s (x))ds + N ∑ j=1 ∫ t 0 ⟨∇K, ξ j ⟩(s, X s (x))dB j s + 1 2 N ∑ j=1 ∫ t 0 ⟨∇⟨∇K, ξ j ⟩, ξ j ⟩(s, X s (x))ds + N ∑ j=1 ∫ t 0 ⟨∇H j , ξ j ⟩(s, X s (x))ds.
Using this theorem, we can prove the conservation of norm.

Theorem 5.3.8.

If {Ψ t , t ∈ [0, 1]} is a L 2 ( [0, 1] × Ω, C 3 (T d ) )
solution of strong S.P.T equation (5.3.20), then Ψ t is a solution to weak S.P.T equation. Furthermore, for t ∈ [0, 1] ,

∫ T d |∇Ψ t | 2 µ t (dx) = ∫ T d |∇Ψ 0 | 2 µ(dx).
(5.3.24)

Proof. Let F t (x) = ⟨∇f, ∇Ψ t (x)⟩ . We have

F t (x) =F 0 (x) + ∫ t 0 ⟨ ∇f, Π µs ( -∇ ∇ϕ0 Ψ s + R Ψs s + S Ψs s )⟩ (x)ds - N ∑ j=1 ∫ t 0 ⟨∇f, Π µs ( ∇ ∇ϕj ∇Ψ s ) ⟩(x)dB j s .
Let L be the infinitesimal generator corresponding to diffusion (5.3.1), which satisfies, for ∀f ∈ C 2 ,

Lf = 1 2 N ∑ j=1 ⟨∇⟨∇f, ∇ϕ j ⟩, ∇ϕ j ⟩.
Then, by Kunita-Ito-Wenzell formula,

F t (X t ) = F 0 (x) + ∫ t 0 ⟨ ∇f, Π ρs ( -∇ 2 Ψ s ∇ϕ 0 + 1 2 R Ψs s + 1 2 S Ψs s )⟩ (X s )ds - N ∑ j=1 ∫ t 0 ⟨ ∇f, Π ρs ( ∇ 2 Ψ s ∇ϕ j )⟩ (X s )dB j s + ∫ t 0 ⟨∇F s , ∇ϕ 0 ⟩ (X s )ds + N ∑ j=1 ∫ t 0 ⟨∇F s , ∇ϕ j ⟩ (X s )dB j s + ∫ t 0 LF s (X s )ds - N ∑ j=1 ∫ t 0 ⟨ ∇ ⟨ ∇f, Π ρs ( ∇ 2 Ψ s ∇ϕ j )⟩ , ∇ϕ j ⟩ (X s )ds. Denote A s = ⟨ ∇f, Π ρs ( -∇ 2 Ψ s ∇ϕ 0 + 1 2 R Ψs s + 1 2 S Ψs s )⟩ (X s ) + ⟨∇F s , ∇ϕ 0 ⟩ (X s ) + LF s (X s ) - ⟨ ∇ ⟨ ∇f, Π ρs ( ∇ 2 Ψ s ∇ϕ j )⟩ , ∇ϕ j ⟩ (X s ); M s = - N ∑ j=1 ⟨ ∇f, Π ρs ( ∇ 2 Ψ s ∇ϕ j )⟩ (X s ) + N ∑ j=1 ⟨∇F s , ∇ϕ j ⟩ (X s ). Since Ψ t ∈ L 2 ( [0, 1] × Ω, C 3 (T d ) ) , ϕ j ∈ C ∞ , || ⟨∇F s , ∇ϕ 0 ⟩ + LF s || ≤ K 1 ||Ψ s || C 3 .
The boundedness of the left two terms in A s need a uniform estimate on Π ρt ( ∇ 2 Ψ t ∇ϕ j ) . In fact, it is known that ρ t ∈ C 2 and ρ t , ∇ρ t are continuous functions on [0, 1] × T d for almost surely ω. Thus, for the elliptic operators defined by L ρt u = ρ t ∆u + ⟨∇ρ t , ∇u⟩, we have the uniform bound on the coefficients:

min [0,1]×T d ρ > λ(ω); max [0,1]×T d {ρ, |∂ x ρ|} ≤ Λ(ω).
For the unique classical solution u of elliptic equation L ρt u = f , we have, by Shauder estimate,

||u|| C 2 ≤ C 1 (d, λ, Λ)(||u|| C + ||f || C ).
On the other hand, it can be proved that for

∀V ∈ C k (T d ; R d ), m ≤ k -1, ||∇.(ρ t V )|| C m ≤ C 2 (λ, Λ)||V || C m+1 .
Therefore, by (5.1.4),

||Π ρt ( ∇ 2 Ψ t ∇ϕ j ) || C 1 = ||∇L -1 ρt ∇.(ρ t ∇ 2 Ψ t ∇ϕ j )|| C 1 ≤ C||Ψ t || C 3 (5.3.25)
where C is not dependent on t. Thus,

|A s | ≤ K 2 ||Ψ s || C 3 . (5.3.26)
Again, by applying (5.3.25) , we also find

|M s | ≤ K 3 ||Ψ s || C 2 .
(5.3.27)

Combined with (5.3.26) and (5.3.27), we prove that , for almost surely ω ∈ Ω ,

∫ T d ∫ t 0 |A s |dsρ 0 (x)dx < ∞ ; ∫ T d (∫ t 0 |M s | 2 ds ) 1 2 ρ 0 dx < ∞.
Thus, by applying stochastic Fubini's theorem, we get

∫ T d ⟨∇f, ∇ϕ t ⟩ρ t dx = ∫ t 0 ∫ T d A s ρ 0 dxds + ∫ t 0 ( ∫ T d M s ρ 0 dx ) dB j s .
By direct substitution and integration by part, we proved ϕ t is a solution to weak S.P.T. equation .

The conservation of norm can be proved by the same method by defining G t (x) = |∇Ψ t | 2 . By Ito formula, we have

d t G t (x) = 2⟨∇Ψ t (x), d t ∇Ψ t (x)⟩ + d t < ∇Ψ t (x) > = 2 ⟨ ∇Ψ t (x), Π ρt ( -∇ 2 Ψ t ∇ϕ 0 + 1 2 R Ψt t + 1 2 S Ψt t ) (x) 
⟩ dt

+ N ∑ j=1 ⟨ Π ρt ( ∇ 2 ϕ t ∇ϕ j ) (x), Π ρt ( ∇ 2 Ψ t ∇ϕ j ) (x) ⟩ dt - N ∑ j=1 2 ⟨ ∇Ψ t (x), Π ρt ( ∇ 2 Ψ t ∇ϕ j ) (x) ⟩ dB j t .
Based on estimates above, we can again apply two major tools : Kunita-Ito-Wenzell formula and 5.4 Q-Wiener process on P 2 (M )

dX N t = N ∑ i=1 a i ∇φ i (X N t ) • dB i t ,
(5.4.4) where {B i t ; i ≥ 1} is a sequence of independent standard Brownian motions on R. For a given probability measure dµ = ρ dx with ρ ∈ C 2 and ρ > 0, we consider µ N t = (X N t ) # µ. It has been shown in Section 2 that {µ N t ; t ≥ 0} solves the following SDE on P 2 (M ):

•d I t µ N t = N ∑ i=1 a i V φi (µ N t ) • dB i t , µ 0 = µ.
(5.4.5)

Let Ent be the entropy functional on P 2 (M ). By Proposition 5.2.4, we have

d t Ent(µ N t ) = N ∑ i=1 a i ⟨ ∇Ent, V φi ⟩ T µ N t dB i t + N ∑ i=1 a 2 i 2 ( DVφ i DVφ i Ent ) (µ N t ) dt.
It follows that for any t ∈ [0, 1],

E ( Ent(µ N t ) ) = Ent(µ) + N ∑ i=1 a 2 i 2 ∫ t 0 E ( DVφ i DVφ i Ent ) (µ N s )
) ds.

(5.4.6)

Lemma 5.4.2. For k > dim(M )/2 + 1, there is a universal constant C > 0 such that, for any i ≥ 1, t ∈ [0, 1], almost surely ω, such that

| ( DVφ i DVφ i Ent ) (µ N t )| ≤ C λ i (1 + λ i ) k .
(5.4.7)

Proof. By Formula (5.0.6), we have

( DVφ i DVφ i Ent ) (µ t ) = - ∫ M ⟨∇∆φ i , ∇φ i ⟩ µ t (dx) = λ i ∫ M |∇φ i (x)| 2 µ t (x) ≤ λ i ||∇φ i || 2 ∞ ≤ λ i C ||φ i || 2 H k = C λ i (1 + λ i ) k .
The result (5.4.7) follows.

Theorem 5.4.3. For an integer k > dim(M )/2 + 1 given, if

∑ i≥1 a 2 i λ i (1 + λ i ) k < +∞, (5.4.8)
then the family {µ N t ; N ≥ 1} is tight.

Proof. Let ρ N t (ω, x) be the density of µ N t with respect to Riemannian measure dx, then for any N ≥ 1, according to (5.4.6) and (5. 

ρ N t (ω, x) log(ρ N t (ω, x)) dtP (dω) dx = ∫ [0,1] E ( Ent(µ N t ) ) dt ≤ Ent(µ) + C 2 ∑ i≥1 a 2 i λ i (1 + λ i ) 2 ,
which is finite under Condition (5.4.8). The result follows.

In fact, we have a stronger result, which says that the sequence {ρ N t ; ≥ 1} is in a weakly compact subset in L 1 ([0, 1] × Ω × M ). Therefore there is ρ ∈ L 1 and up to a subsequence, for any α

∈ L ∞ ([0, 1]), ξ ∈ L ∞ (Ω) and g ∈ L ∞ (M ), such that, lim N →+∞ ∫ [0,1]×Ω×M α(t)ξ(ω)g(x) ρ N t (ω, x) dtP (dω) dx = ∫ [0,1]×Ω×M α(t)ξ(ω)g(x) ρ t (ω, x) dtP (dω) dx.
It is obvious that for almost all (t, ω), ρ t (ω, x) ≥ 0 and ∫ M ρ t (ω, x)dx = 1.

In order to obtain stronger results, we have to deal with the convergence of diffusion processes {X N t ; n ≥ 1} appeared in (5.4.4). First of all, we consider the following Random series +∞ ∑ i=1 a i ∇ϕ i B i t .

(5.4.9)

Note that for any smooth function f on M , -∇∆f = □∇f , so that for any k ≥ 1,

∇(I -∆) k/2 f = (I + □) k/2 ∇f.
Let q ≥ p be two integers,

q ∑ i=p (I + □) k/2 ( a i ∇φ i B i t ) = q ∑ i=p a i (1 + λ i ) k/2 ∇φ i B i t . Then E [ ∫ M q ∑ i=p (I + □) k/2 ( a i ∇φ i B i t ) 2 dx ] = q ∑ i=p a 2 i λ i (1 + λ i ) k t.
Under Condition (5.4.8), almost surely the Random series (5.4.9) converges in H k (M ) uniformly in t ∈ [0, 1]; let W t (ω, x) be the sum of this series, which gives rise to a continuous martingale taking values in H k (T M ). When 5.4 Q-Wiener process on P 2 (M ) k > dim(M )/2 + 2, the vector field x → W t (ω, x) is of the class C 2,α . By the classical theory of stochastic flow [Kun97, Mal97, Elw92], there is a C 1 -diffeomorphisms X t (ω, •) of M , solving the SDE on Diff 1 (M ):

dX t = •dW t (X t )
or more explicitly

dX t = +∞ ∑ i=1 a i ∇φ i (X t ) • dB i t , X 0 (ω, x) = x.
(5.4.10) Proposition 5.4.4. Assume that, for k > dim(M )/2 + 3,

β := +∞ ∑ i=1 a 2 i (1 + λ i ) k < +∞.
(5.4.11)

Then almost surely,

X N t (x) converges to X t (x) uniformly in (t, x) ∈ [0, 1] × m, as N → +∞. Proof. Put A N = 1 2 N ∑ i=1 a 2 i ∇ ∇φi (∇φ i ).
Using (5.4.2), there is a constant C > 0 such that for k > dim(M )/2 + 3,

||A N || ∞ ≤ C +∞ ∑ i=1 a 2 i (1 + λ i ) k and ||∇A N || ∞ ≤ C +∞ ∑ i=1 a 2 i (1 + λ i ) k . Again N ∑ i=1 a 2 i ||∇ 2 φ i || ∞ ≤ C +∞ ∑ i=1 a 2 i (1 + λ i ) k .
These uniform estimates allow us to conclude.

Theorem 5.4.5. Let dµ = ρ dx be a probability measure on M with a strictly positive C 2 density ρ and µ t = (X t ) # µ. Then under Condition (5.4.11), {µ t ; t ∈ [0, 1]} is a solution to the following SDE on P 2 (M ):

•d I t µ t = +∞ ∑ i=1 a i V φi (µ t ) • dB i t , µ 0 = µ.
(5.4.12)

Proof. Note first that

sup t∈[0,1] W 2 2 (µ t , µ N t ) ≤ ∫ M sup t∈[0,1] d 2 M ( X t (x), X N t (x)
) µ(dx); then Proposition 5.4.4 implies that almost surely, µ N t converges to µ t uniformly in t ∈ [0, 1] as N → +∞. Let F be a polynomial on P 2 (M ), by Proposition 5.2.2, we have

F (µ N t ) = F (µ) + N ∑ i=1 ∫ t 0 (a i DVφ i F )(µ N s ) dB i s + 1 2 N ∑ i=1 ∫ t 0 a 2 i ( DVφ i DVφ i F )(µ N s ) ds.
Letting N → +∞ yields

F (µ t ) = F (µ) + +∞ ∑ i=1 ∫ t 0 (a i DVφ i F )(µ s ) dB i s + 1 2 +∞ ∑ i=1 ∫ t 0 a 2 i ( DVφ i DVφ i F )(µ s ) ds.
The entropy functional µ → Ent(µ) is not continuous. However, if we denote by ρ N t the density of µ N t with respect to dx, then ρ N t log(ρ N t ) converges to ρ t log(ρ t ) almost surely, and according to [START_REF] Fang | Stochastic differential equations with coefficients in Sobolev spaces[END_REF], the family {ρ N t log(ρ N t ); N ≥ 1} is uniformly integrable, so that we have

lim N →+∞ Ent(µ N t ) = Ent(µ t ).
By Proposition 5.2.3, we have 

Ent(µ N t ) = Ent(µ) + N ∑ i=1 ∫ t 0 a i ⟨ ∇Ent, V φi ⟩ T µ N s dB i s + N ∑ i=1 a 2 i 2 ∫ t 0 ( DVφ i DVφ i Ent ) (µ N s ) ds. Letting N → +∞ yields Ent(µ t ) = Ent(µ) + +∞ ∑ i=1 ∫ t 0 a i ⟨ ∇Ent, V φi ⟩ Tµ s dB i s + +∞ ∑ i=1 a 2 i 2 ∫ t 0 ( DVφ i DVφ i Ent ) (µ s ) ds. Let F 3 (µ) = ∫ M ×M W (x,
dX t = +∞ ∑ i=1 a i ∇φ i (X t ) • dB i t + ∇Φ(X t , µ t ) dt, µ t = (X t ) # µ, ( 5 
•d I t µ t = +∞ ∑ i=1 a i V φi (µ t ) • dB i t + ∇F 3 (µ t ) dt, µ 0 = µ.
(5.4.14)

Remark 5.4.7. Let µ P t be the law of µ t in the Wasserstein space P 2 (M ). By the Bakry-Emery's Γ 2 theory, the asymptotic behavior of µ P t as t → +∞ is dependent of

Ric P + ∇2 F 3 ,
where Ric P is the "Ricci tensor" associated to the Q-Brownian motion.

Remark 5.4.8. Since P 2 (M ) is compact, it is hopeful that for some constant κ ∈ R

⟨Ric P V ϕ , V ϕ ⟩ Tµ ≥ κ|V ϕ | Tµ , ϕ ∈ C ∞ (M ), µ ∈ P 2 (M ). Now by Proposition 5.0.1, if the function W is such that ∫ M ×M Hess x,y W ( ∇ϕ(x), ∇ϕ(y) ) µ(dx)µ(dy) ≥ κ 1 |V ϕ | 2 Tµ , ϕ ∈ C ∞ (M ), µ ∈ P 2 (M ) (5.4.15)
with κ + κ 1 > 0, then as t → +∞, µ P t converges to a Gaussian like probability measure γ ∞ on P 2 (M ).

Stochastic parallel translation on P(T)

For simplicity, we consider the following SDE on T:

dX t = ∇ϕ(X t ) • dB t .
Let µ t = (X t ) # (dx) and dµ t = ρ t dx, that is to say that the initial measure µ 0 is the Haar measure dx. Suppose there is a solution { ∂ x Ψ t ; t ∈ [0, 1] } to the equation of strong parallel translations:

d t ∂ x Ψ t = Π ρt ( R Ψt t + S Ψt t ) dt -Π ρt ( ∂ 2 x Ψ t ∂ x ϕ ) dB t .
(5.5.1)

Let f t = ∂ x Ψ t (X t ).
Then by Kunita-Itô-Wentzell formula,

d t f t = 1 ρ t (X t ) K ∂xΨt t dB t + 1 2 K ∂xΨt t ∂ 2 x ϕ ρ t (X t ) dt - 1 2 H ∂xΨt t 1 ρ t (X t ) dt,
where 

K ∂xΨt t = - ∫ T ∂ x Ψ t ∂ 2 x ϕ dx ∫ T dx ρt
H ∂xΨt t = ∫ T [ ∂ x Ψ t ∂ x (∂ 2 x ϕ ∂ x ϕ) + 3 K ∂x Ψ t t ρt ∂ 2 x ϕ ] dx ∫ T dx ρt . Using the notation ρ = 1 ρ ∫ T dx ρ
, we will simplify expression for K t as well for H t . We have

1 ρ t K ∂xΨt t = - ( ∫ T ∂ x Ψ t ϕ ′′ dx ) ρt ,
and

1 ρ t H ∂xΨt t = ( ∫ T [ ∂ x Ψ t ∂ x (∂ 2 x ϕ ∂ x ϕ) -3ρ t ∂ 2 x ϕ ∫ T ∂ x Ψ t ∂ 2 x ϕ dx ] dx ) ρt . Now remark that ∫ T ∂ x Ψ t ϕ ′′ dx = ∫ T (∂ x Ψ t )(X t ) ∂ 2 x ϕ(X t ) 1 ρ t (X t ) dx = ∫ T f t ∂ 2 x ϕ ρ t (X t ) dx.
In the same way,

∫ T [ ∂ x Ψ t ∂ x (∂ 2 x ϕ ∂ x ϕ) ] dx = ∫ T f t ∂ x (∂ 2 x ϕ ∂ x ϕ) ρ t (X t ) dx. Set a t = ∂ 2 x ϕ ρ t (X t ), b t = ∂ x (∂ 2 x ϕ ∂ x ϕ) ρ t (X t ).
Then we get the following equation for {f t ; t ∈ [0, 1]}:

d t f t = - ( ∫ T f t a t dx ) ρt (X t ) dB t - 1 2 ( ∫ T f t a t dx ) ( ρt ∂ 2 x ϕ)(X t ) dt + 1 2 ( ∫ T f t b t dx ) ρt (X t ) dt + 3 2 ( ∫ T f t a t dx ) ( ∫ T ∂ 2 x ϕ ρt dx ) ρt (X t ) dt.
(5.5.2)

We have

∫ T |a t | 2 dx = ∫ T ( ∂ 2 x ϕ ρ t ) 2 ρ t dx ≤ ||∂ 2 x ϕ|| 2 ∞ ∫ T dx ρ t ,
and

|b t | 2 dx ) ≤ ||∂ x (∂ 2 x ϕ ∂ x ϕ)|| 2 ∞ .
(5.5.4) Theorem 5.5.1. There is a unique strong solution {f t ; t ∈ [0, 1]} to the equation (5.5.2) such that

f 0 = ∂ x Ψ 0 .
Proof. The estimate (5.5.3) allows us to use the Picard iteration. Let f 0 t = ∂ x Ψ 0 , and

f n+1 t = ∂ x Ψ 0 - ∫ t 0 ( ∫ T f n s a s dx ) ρs (X s ) dB s - 1 2 ∫ t 0 ( ∫ T f n s a s dx ) ( ρs ∂ 2 x ϕ)(X s ) ds + 1 2 ∫ t 0 ( ∫ T f n s b s dx ) ρs (X s ) ds + 3 2 ∫ t 0 ( ∫ T f n s a s dx ) ( ∫ T ∂ 2 x ϕ ρs dx
) ρs (X s ) ds.

(5.5.5)

Set M t (x) = ∫ t 0 ( ∫ T (f n s -f n-1 s ) a s dx ) ρs (X s )(x) dB s .
We have

E [ sup 0≤t≤t ∫ T M 2 s dx ] ≤ ∫ T E ( sup 0≤s≤t M 2 s ) dx ≤ 4 ∫ T E [ ∫ t 0 ( ∫ T (f n s -f n-1 s ) a s dx ) 2 ρs (X s ) 2 ds ] dx = 4 ∫ t 0 E [ ∫ T ( ∫ T (f n s -f n-1 s ) a s dx ) 2 ρs (X s ) 2 dx ] ds ≤ 4 ||∂ 2 x ϕ|| 2 ∞ ∫ t 0 E ( ∫ T |f n s -f n-1 s | 2 dx ) ds,
due to Cauchy-Schwarz inequality and (5.5.3). In the last term of (5.5.5), with respect to previous ones, there is an extra term:
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( ∫ T ∂ 2 x ϕ ρs dx ) which is dominated by ||∂ 2 x ϕ∥| ∞ . Finally, there is a constant C ϕ > 0 such that E [ sup 0≤s≤t ∫ T |f n+1 t -f n t | 2 dx ] ≤ C ϕ ∫ t 0 E [ sup 0≤τ ≤s ∫ T |f n τ -f n-1 τ | 2 dx ] ds.
Now standard Picard iteration yields the result.

Proposition 5.5.2. Let g t = f t (X -1 t ). Then for any t ∈ [0, 1],

∫ T g t (x) dx = 0.
Proof. Let Kt be the density of X -1 t . We have

∫ T g t (x) dx = ∫ T f t (x) Kt (x) dx. By (5.3.4), Kt = exp [ ∫ t 0 (∂ 2 x ϕ)(X s ) • dB s ] . Let's see first the martingale part of d t ∫ T f t (x) Kt (x) dx. Using Itô formula, the martingale part of f t Kt is - ( ∫ T f t a t dx ) ρt (X t ) Kt dB t + f t ∂ 2 x ϕ(X t ) Kt dB t .
We have , we see that

∫ T f t ∂ 2 x ϕ(X t ) Kt dx = ∫ T f t a t dx.
Therefore the martingale part of d t ∫ T f t (x) Kt (x) dx is equal to 0. Futhermore we get

d t ∫ T f t (x) Kt (x) dx = 0. It follows that ∫ T g t (x) dx = ∫ T g 0 (x) dx = 0.
We complete the proof.

Chapter 6

Diffusive Dean-Kawasaki Equation

Dean-Kawasaki equation is a class of nonlinear SPDEs arising in fluctuating hydrodynamics theory( [Kaw98],

[Dea96], [START_REF] Lawrence | Dissipation and large thermodynamic fluctuations[END_REF]). As a prototype, one may consider the following diffusive Dean-Kawasaki equation

∂ t µ = α∆µ -∇.( √ µ ξ), (6.0.1) 
for space-time white noise ξ and α > 0. In general, we say a continuous measure-valued process {µ t , t ∈ [0, T ]} is a solution to the diffusive Dean-Kawasaki martingale problem (M P ) α µ0 of (6.0.1) with initial condition µ 0 if there exists a filtered probability space (Ω, F, {F t } t∈[0,T ] , P) such that for all ϕ ∈ C 2 (T d ) , M t (ϕ) := ⟨µ t , ϕ⟩ -⟨µ 0 , ϕ⟩ -α ∫ t 0 ⟨µ s , ∆ϕ⟩ds is a F tadapted martingale, whose quadratic variation is given by

⟨M t (ϕ)⟩ = ∫ t 0 ||∇ϕ|| 2 L 2 (µs) ds.
The well-posedness of (6.0.1) is challenging. The noise coefficient √ µ causes nonlinearity and possible lack of Lipschitz continuity, also the noise term in the form of a stochastic conservation law causes irregularity. Actually, according to the regularity theory [START_REF] Hairer | A theory of regularity structures[END_REF], (6.0.1) is a supercritical equation due to the irregularity of space-time white noise. And in [START_REF] Vitalii Von Renesse | Dean-Kawasaki dynamics: ill-posedness vs. triviality[END_REF], it is proved that a unique measure-valued martingale solution to (6.0.1) exists if and only if 2α ∈ N + , and in this case, the solution is trivial, i.e.

µ t = 1 N ∑ N i=1 δ W i t ,
where {W i t } i=1,...,N are N independent Brownian particles starting at different sites.

In order to get nontrivial solution, many works give regularization methods in various settings, along with some particle approximations. Sturm, Von Renesse, Konarovskyi and their collaborators ( [vRS09, KvR17, KvR15, AvR10]) prove that the Wasserstein diffusion, which can be seen as a infinite dimensional counterpart of Brownian motion in probability measure space equipped with Otto's formal Riemannian metric, is a solution to the Dean-Kawasaki equation with a modified drift term. And they also give several related particle models in case of 1-D Torus. Cornalba, Shardlow and Zimmer ( [CSZ19], [START_REF] Cornalba | From weakly interacting particles to a regularised Dean-Kawasaki model[END_REF]) regularize the model from second order Langevin dynamic derivation and get well-posedness for a regularised undamped equivalent of (6.0.1). Other works ( [Mar10, FG21]) deal with the case when the noise is spatially regularized. For example, Fehrman and Gess prove a general well-posedness result on a class of Dean-Kawasaki type equations in Stratonovich form of multiplicative noise in [START_REF] Fehrman | Well-posedness of the Dean-Kawasaki and the nonlinear Dawson-Watanabe equation with correlated noise[END_REF]. Besides, Marx ( [Mar18]) gives a particle approximation to a diffusion process on P 2 (R) , which has similar properties of Wasserstein diffusion but have better regularity on the measure.

According to the literature we know, there is existence of nontrivial solutions of (6.0.1) only when the spatial correlated intensity is larger than 3 2 . Also, only under such conditions on noise, can a particle approximation model, whose limit measure has a good spatial regularity, be constructed. The main contribution of this chapter is that, inspired by the idea of Q-Wiener process on P(T), we give a new particle approximation to the solution of diffusive Dean-Kawasaki regularised martingale problem (RM P ) α,β

T dx on 1-D Torus in sense of definition 6.2.1, with colored noise ξβ µ (see (6.2.3)) , whose spatial correlated intensity is larger than 1(see definition 6.1.1), thus proving the existence of solution in this case. We also prove that such solution {µ t , t ∈ [0, T ]}, approximated by the interacting particle model, is nonatomic for all t ∈ [0, T ] almost surely. Next, we will introduce the motivation of the particle model's construction.

From Q-Wiener process to the Dean-Kawasaki equation

Generally, let Q be a nonnegative definite symmetric trace-class on a separable Hilbert space K , {f j } ∞ j=1 be an O.N.B. in K diagonalizing Q , and the corresponding eigenvalues be {λ j } ∞ j=1 . Then, in general, we say the following process

W t = ∞ ∑ j=1 λ j f j W j t
is a Q-Wiener process in K. its derivative with respect t in distributional sense, which denoted as Ẇt , are called a colored Guassian noise. Definition 6.1.1. We say the spatial correlated intensity of W t is larger than

β if ∞ ∑ j=1 j β-1 λ j < ∞.
Especially, for K = L 2 (T) , we realize the 1-D Torus as the interval [0, 1] in this paper, and set 6.1 From Q-Wiener process to the Dean-Kawasaki equation

e k = √ 2 sin(2kπx), k = 1, 2...; e 0 = 1; e k = √ 2 cos(2kπx), k = -1, -2, ... .
We denote

K β 2 = 1 2 + ∞ ∑ j=1 1 j 2β , where β > 1 is a constant such that K β 2 < ∞ . Let {W k } k∈N
is a sequence of independent standard Brownian motions on a filtered probability space (Ω, F, {F t } t≥0 , P) . Then the usual Q-Wiener process on L 2 ([0, 1]) with spatial correlated intensity β can be defined as

ξ β (t, x) := +∞ ∑ k=-∞ 1 |k| β e k (x)W k t and it satisfies E[ξ β (t, x)] = 0; E[ξ β (t, x)ξ β (s, y)] = t ∧ s • ( 1 + +∞ ∑ k=1 2 |k| 2β cos(2k(x -y)) ) . It is obvious that ξ β (t) ∈ L 2 ([0, 1]), (t, ω) -a.s. . The kernel Qβ (x, y) = 1 + +∞ ∑ k=1 2 |k| 2β cos(2k(x -y))
determines the distribution of ξ β , and of course , its spatial correlated intensity. Generally, for a spatially correlated noise with such kernel, we denote it as ( Qβ ) 1 2 -Wiener process.

Q-Wiener process can be naturally seen as a infinite dimensional counterpart of Bownian motion in K. On the other hand, it is known (see [START_REF] Von Renesse | Entropic measure and Wasserstein diffusion[END_REF], [START_REF] Andres | Particle approximation of the Wasserstein diffusion[END_REF], [START_REF] Wang | Image-dependent conditional McKean-Vlasov SDEs for measure-valued diffusion processes[END_REF]) that the solution of (6.0.1) or its regularised form can be seen as a Wasserstein diffusion. To introduce the motivation of the particle model in section 6.3 , we start from the viewpoint of Q-Wiener process on Wasserstein space. Firstly, we will briefly show the connection between Q-Wiener process on Wasserstein space and the solution to the diffusive Dean-Kawasaki equation.

In [START_REF] Hao Ding | Towards stochastic analysis in the Wasserstein space[END_REF], they construct a Q-Wiener process extrinsiclly on Wasserstein space on general connected compact Riemannian manifold M . When it applies to the case M = T, we can choose the orthonormal system as the Chapter 6: Diffusive Dean-Kawasaki Equation 120standard Fourier base {e k } k∈N on [0, 1] , then

dX Q t = ∞ ∑ k=-∞ a k e k (X Q t )dW k t (6.1.1) induce a stochastic C 1 -diffeomorphic flow when a k = 1 |k| 4 . Suppose that µ 0 = [0,1] , let µ Q t = (X Q t ) # µ 0 , and denote C = ∞ ∑ k=0 1 |k| 8 . By applying Itô formula on ⟨f, µ Q t ⟩ for f ∈ C 2 (M ) , we get d⟨f, µ Q t ⟩ = ∞ ∑ k=-∞ 1 |k| 4 ⟨f ′ , e k ⟩ µ Q t dW k t + C⟨f ′′ , µ Q t ⟩dt. (6.1.2) Rewrite (6.1.2) in form of SPDE on µ Q t : ∂ t µ Q = C∂ 2 x µ Q -∂ x (µ Q ξβ ) (6.1.3)
for β = 4 . We see that the drift term coincides with the drift term in the diffusive Dean-Kawasaki equation.

Following this idea, we want to construct a solution as a image measure process induced by a process X t , which is in form of (6.1.1). In fact, from the point of fluid dynamic, if we see the diffusive Dean-Kawasaki equation as a Eulerian discription of some stochastically moving fluid, then, our construction can be seen as a corresponding

Lagrangian's discription.

However, µ Q t will never be a candidate for the solution of martingale problem associated with the diffusive Dean-Kawasaki equation because their quadratic variation process are not consistent. In fact, if we assume a k = 1 for all k ∈ N in (6.1.1), and formally write the flow equation as

dX ′ t = ∞ ∑ k=-∞ e k (X ′ t )dW k t .
We denote µ ′ t = (X ′ t ) # µ 0 , and formally compute the quadratic variation of the martingale part of ⟨f, µ ′ t ⟩ without consideration of regularity of the flow, we find that d < ⟨f, µ ′ t ⟩ >= ∑ ∞ i=1 ⟨f ′ , e k ⟩ 2 µ ′ t dt, while for the solution µ t of (M P ) C µ0 , d < ⟨f, µ t ⟩ >= ||f ′ || 2 L 2 (µt) dt . This is not surprising because if one wants to construct a Brownian motion on a manifold, the 'velocity' should be stochastically parallel translated along the path, while in (6.1.1), the vector fields {e k , k ∈ N} are just fixed. Here, as an experimental attempt, let

Introduction of the regularised martingale problem and the noise

dX t = ∞ ∑ k=-∞
e k (X 0 )dW k t , (6.1.4) then formally we have

d < ⟨f, µ t ⟩ > = ∞ ∑ i=1 ⟨f ′ , e i (X -1 t )⟩ 2 µt dt = ∞ ∑ i=1 ⟨f ′ (X t ), e i ⟩ 2 µ0 dt = ||f ′ (X t )|| 2 L 2 (µ0) dt = ||f ′ || 2 L 2 (µt) dt
Although the computation above is not strict, we still get a direct insight: we can construct a solution to diffusive Dean-Kawasaki equation on Torus by constructing a image process induced by a diffeomorphic, or at least oneto-one continuous map flow X t satisfying

dX t = ∞ ∑ i=-∞ a i e i (t, X t )dW i t ,
where e i (t, x) is a stochastically moving frame in form of e i (X -1 t (x)) . We will construct a new particle approximation in section 3 by following this idea.

We briefly introduce the main contents of this chapter. In section 6.2 , we give the definition of the noise term ξ β µ and regularised martingale problem (RM P ) α,β µ0 for initial measure µ 0 = T dx, and show its consistency with usual martingale problem to (6.0.1). In section 6.3, we will construct a particle model. Theorem 6.3.1 shows the well-posedness of this discrete model for any β > 1. In section 6.4, we will prove that, as the particle number goes to infinity, the distribution induced by the empirical measure process in C([0, T ], P(T)) is tight so that we can pick a weakly convergent limit process. We will also prove that any weakly convergent limiting process {p t , t ∈ [0, T ]} is a solution to (RM P )

K β 2 ,β
T dx . Thus we can prove the existence of solution to (RM P )

K β 2 ,β
T dx ( see theorem 6.4.1). As a necessary step in the proof, we find that p t is non-atomic for all t ∈ [0, T ] almost surely (see lemma 6.4.2).

Introduction of the regularised martingale problem and the noise

we firstly give the definition of regularised martingale problem (RM P ) α,β µ0 for µ 0 (dx) = T dx: Definition 6.2.1. We say a continuous P([0, 1])-valued process {µ t , t ∈ [0, T ]} is a solution to the regularised martingale problem (RM P ) α,β µ0 , if there exists a filtered probability space (Ω, F, {F t } t∈[0,T ] , P) such that for all ϕ ∈ C 2 ([0, 1]) , M t (ϕ) := ⟨µ t , ϕ⟩ -⟨µ 0 , ϕ⟩ -α ∫ t 0 ⟨µ s , ϕ ′′ ⟩ds is a F t -adapted martingale, whose quadratic variation process is given by

< M t (ϕ) >= ∫ t 0 Q β µs (ϕ, ϕ)ds.
The quadratic form Q β µs (ϕ, ϕ) is defined as In particular, we denote such regularised martingale problem, with initial condition dµ 0 = T dx, as

Q β µs (ϕ, ϕ) := ∫ [0,1] ∫ [0,1] ϕ ′ (x)ϕ ′ (y)
(RM P ) α,β T dx .
Note that, due to dx = (F ) # dµ , we have

Q β µs (ϕ, ϕ) = ∫ [0,1] ∫ [0,1]
ϕ ′ (G µs (x))ϕ ′ (G µs (y)) Although this is just a formal computation, since we can not prove the existence of µ s a priori, it still shows that our definition of regularised martingale problem is consistent with the definition of general martingale problem(see [START_REF] Vitalii Von Renesse | Dean-Kawasaki dynamics: ill-posedness vs. triviality[END_REF]) .

Next, we introduce the colored noise ξβ µ . Note that, given ϕ ∈ C 2 ([0, 1]) , the kernel Therefore , for general µ ∈ P(T) , we still can define a generalized ( Qβ µ )

1 2 -Wiener process in L 2 (µ) as 6.3 Construction of the particle model on T However, we can not guarantee that {X i N (t)} i=1,...,N do not collide for t ∈ [0, T ], i.e. ∃ i, j and T > t > 0 such that X i N (t) = X i+1 N (t) . This collision phenomenon shows the problem of concentration of mass, which is one of the main obstacle to avoid triviality of the solution to the martingale problem of (6.0.1). Inspired by mean-field background ( [LLX20], [START_REF] Christopher | Interacting Brownian particles and the Wigner law[END_REF]), We will construct a interacting particle model without collision by adding a replusive interaction between {X i N (t)} , and make sure that the interaction term is so small that its influence can be neglected when the empirical measure of {X N (t)} weakly converges to a solution to (RM P ) α,β T dx . In this section, we will construct the particle model.

For each N > 0 , we define the following process

dX i N (t) = 1 2N α+1 N ∑ j=1,j̸ =i cot ( π(X i N (t) -X j N (t)) ) dt + N ∑ k=-N 1 |k| β e k (x i )dW k t , (6.3.1)
where the initial value is X i 0 = x i . Note that in this case , the diffusion coefficient is fixed since e k (x i ) is independent of {X i N (t)} i=1,...,N . α is some positive constant which will be chosen later. Define ∆ N = {(x i ) 1≤i≤N ∈ R N : x 1 < x 2 < ... < x N , and |x 1 -x N | < 1} and X N (t) = (X i N (t)) 1≤i≤N . We denote

K N 1 = N ∑ j=1 4π 2 j 2β-2 ; K N 2 = 1 2 + N ∑ j=1 1 j 2β .
where β > 1 is a constant such that K N 2 < ∞ . It is obvious that K N 1 ≤ O(N 3-2β ) for 1 < β < 3 2 ,K N 1 ≤ O(log N ) for β = 3 2 and K N 1 ≤ C for β > 3 2 .

Theorem 6.3.1. For any β > 1 and initial condition X i N (0) = i N , we choose 0 < α < (2β -2) ∧ 1 . Then there exists a unique strong solution (X N (t)) t∈[0,T ] , which takes value in ∆ N , to SDE (6.3.1) when N is large enough.

Proof. We follow the method stated in [START_REF] Christopher | Interacting Brownian particles and the Wigner law[END_REF] and [START_REF] Li | On the law of large numbers for the empirical measure process of generalized Dyson Brownian motion[END_REF]. We firstly construct the truncated process.

Let ϕ R (x) be a C 2 (R) function which satisfies ϕ R (x) = cot(πx) for x ∈ (-1

+ 1 R , -1 R ) ∪ ( 1 R , 1 -1 R ). Then the following SDE dX i R,N (t) = 1 2N α+1 N ∑ j=1,j̸ =i ϕ R (X i R,N (t) -X j R,N (t))dt + N ∑ k=N 1 |k| β e k ( i N )dW k t ,
with initial value X i R,N (0) = i N for 1 ≤ i ≤ N , has a unique strong solution X R,N (t) . Let } .

Then τ R is monotone increasing in R and X R,N (t) = X R ′ ,N (t) for all t ≤ τ R and R < R ′ .

Let X N (t) = X R,N (t) on t ∈ [0, τ R ) . Then we need to prove: (X N (t)) t∈[0,T ] does not explode, never collide and |X N (t) -X 1 (t)| < 1. For abbreviation of notation, we denote X i N (t) as X i t without confusion .

Firstly, we prove non-explosion. Let R N t := 1 2N ∑ N i=1 (X i t ) 2 , then by Ito formula,

dR N t = ( N -1 4N 1+α + K N 2 )dt + 1 N N ∑ i=1 X i t ( N ∑ k=-N 1 |k| β e k ( i N )dW k t )
Computing the quadratic variation process of R N t , we find

d dt < R N t > = 1 N 2 N ∑ k=-N 1 |k| 2β ( N ∑ i=1 X i t e k ( i N ) ) 2 = 1 N 2 N ∑ k=-N 1 |k| 2β   N ∑ i=1 (X i t ) 2 e 2 k ( i N ) + N ∑ j=1 N ∑ i=1,i̸ =j X i t X j t e k ( i N )e k ( j N )   2 = 2 N 2 K N 2 N ∑ i=1 (X i t ) 2 + 1 N 2 N ∑ j=1 N ∑ i=1,i̸ =j X i t X j t N ∑ k=-N 1 |k| 2β e k ( i N
)e k ( j N ).

Note that

| N ∑ k=-N 1 |k| 2β e k ( i N )e k ( j N )| = |1 + N ∑ k=1 2 k 2β cos( i -j N 2kπ)| < 2K β 2 , thus, d dt ⟨R N t ⟩ < ( C 1 N + C 2 )R N t .
Then, by B.D.G. inequality, we have

E[| max s∈[0,t] R N s | 2 ] ≤ Ct 2 + E [ < ∫ t 0 1 N N ∑ i=1 X i s ( N ∑ k=-N 1 |k| β e k ( i N )dW k s ) > ] ≤ Ct 2 + C ∫ t 0 E[R N s ]ds ≤ Ct 2 + C ∫ t 0 E[ max q∈[0,s]
R N q ]ds.

( Note that for the above three terms (denoted as A,B and C) , we have ) -e k ( j N ) sin(π(X l t -X j t ))

A = M N (t) - 1 4N 3+α N ∑ i=1 N ∑ j=1,j̸ =i cot 2 (π(X l t -X j t ))dt B = 1 2N 2 N ∑ l=1 N ∑ j=1,j̸ =l ( π sin 2 (π(X l t -X j t )) N ∑ k=-N 1 |k| 2β |e k ( l N )| 2 ) dt C = - 1 2N 2 N ∑ l=1 N ∑ j=1,
| 2 . We divide it into three parts:

(A) = M1-1 ∑ M =1 N -M ∑ i=1 N ∑ k=-N 1 |k| 2β e k ( i N ) -e k ( i+M N ) sin(π(X i t -X i+M t )) 2 (B) = M2-1 ∑ M =M1 N -M ∑ i=1 N ∑ k=-N 1 |k| 2β e k ( i N ) -e k ( i+M N ) sin(π(X i t -X i+M t )) 2 (C) = N -1 ∑ M =M2 N -M ∑ i=1 N ∑ k=-N 1 |k| 2β e k ( i N ) -e k ( i+M N ) sin(π(X i t -X i+M t )) 2 .
We denote

a m = N -m ∑ i=1 1 sin(π(X i t -X i+m t )) 2 ; b m = N -m ∑ i=1 1 π(X i t -X i+m t ) 2 ; c m = N -m ∑ i=1 1 tan(π(X i t -X i+m t
))

2

;

Q N = 1 2N 1+α ∑ 1≤l<j≤N 1 | tan(π(X i t -X i+m t ))| 2 .
For (A) , Note that 

|e k ( i N ) -e k ( i + M N )| ≤ 1 |k| -1 2 √ 2πM N . ( 6 
1 |k| 2β-2 8π 2 M 2 N 2 • 1 sin 2 (π(X i t -X i+M t )) ≤ CK N 1 N 2 M1-1 ∑ M =1 M 2 a M < M 2 1 N 2-ϵ M1-1 ∑ M =1 a M .
where ϵ := (3 -2β) ∨ 0. We pick α ′ > α + ϵ and choose M 1 such that M 2 1 ≤ N 1-α ′ , (6.3.7) then we have

(A) ≤ 1 N 1+α ′ -ϵ M1-1 ∑ M =1 a M < 1 6N 1+α ∑ 1≤l<j≤N 1 sin 2 (π(X l t -X j t )) = 1 3 Q N + N -1 12N α .
When M is large, (6.3.6) is not enough to estimate (B) and (C) . Note that

1 sin 2 x = 1 tan 2 x + 1 ≤ 1 x 2 + 1 ≤ 1 sin 2 x + 1 = 1 tan 2 x + 2. (6.3.8)
Because of convexity of the function 1

x 2 , we have, for each

1 ≤ k ≤ [ M 2 ] , 1 |X i t -X i+M t | 2 = 1 | ∑ M -k l=0 (X i+l t -X i+l+k t ) + ∑ k-1 n=1 (-X i+n t + X i+M -k+n t )| 2 ≤ 1 M 3 ( M -k ∑ l=0 1 |X i+l t -X i+l+k t | 2 + k-1 ∑ n=1 1 |X n+i t -X i+n+M -k t | 2
) (6.3.9) Thus, Chapter 6: Diffusive Dean-Kawasaki Equation For (C) , by (6.3.8), we find that

130 b M ≤ N -M ∑ i=1 1 π 2 [ M 2 ] [ M 2 ] ∑ k=1 1 M 3 ( M -k ∑ l=0 1 |X i+l t -X i+l+k t | 2 + k-1 ∑ n=1 1 |X n+i t -X i+n+M -k t | 2 ) ≤ 2 π 2 M 4 [ M 2 ] ∑ k=1 ( M -k ∑ l=0 N -M ∑ i=1 1 |X i+l t -X i+l+k t | 2 + k-1 ∑ n=1 N -M ∑ i=1 1 |X n+i t -X i+n+M -k t | 2 ) ≤ M M 4 [ M 2 ] ∑ k=1 (b k + b M -k ) .
(C) < N -1 ∑ M =M2 N -M ∑ i=1 K β 2 | sin(π(X i t -X i+M t ))| 2 ≤ K β 2 N -1 ∑ M =M2 (b M + N -M ) = K β 2 (S N -1 -S M2 ) + K β 2 N -1 ∑ M =M2
(N -M ).

Combined with (6.3.12), (6.3.13) and choose M 2 such that ] .

N 2 ≫ M 2 2 ≥ N 1+η >
Also, we define

Q n µ (ϕ) = ∫ [0,1] ∫ [0,1]
ϕ ′ (x)ϕ ′ (y) Based on this observation, we define Remember that L n has the same distribution with p n . We must have

(
P( Ū m N ,N k ) = P(U m N ,N k ) = C ′ > 0.
On the other hand, we define a stopping time We have proved F (X m N (t)) + K β 2 t is a super-martingale. Denote

A = {τ k m N ≤ T }.
Then we have

Theorem 2.1. 3 .

 3 (McCann) Let M be a complete connected smooth Riemannian manifold, dx is a standard Riemannian measure. The cost function c(x, y) = d 2 (x, y), where d is the Riemannian diatance.

  4

  a strictly convex smooth function, then the second equation above has a unique solution, and the operator ∇ 2 V -∆ φ has a inverse. Then (3.4.1) becomes one equation. Theorem 3.4.1. When V is a strictly convex smooth function on T d , then the solution to the following equation is the Newton flow of F :

Chapter 4 :

 4 Geometry and Parallel Transport 40 ∫ M (ψ -⟨ψ⟩) 2 dµ ≤ C µ ∫ M |∇ψ| 2 dµ, (4.1.4) where ⟨ψ⟩ = ∫ M ψ(x) dx. The condition (4.1.4) is satisfied if µ admits a positive continuous density ρ > 0: dµ = ρ dx. In fact, let

Proposition 4.3. 2 .

 2 Let ψ 1 , ψ 2 ∈ C 3 (M ), for dµ = ρ dx with ρ > 0 and ρ ∈ C 2 (M ), the function Φµ obtained in (4.3.4) has the following expression :

Chapter 4 :

 4 Geometry and Parallel Transport58

.

  It is obvious that∫ T ρ dx = 1.

Chapter 5 :

 5 Stochastic Parallel Transport and Q-Wiener Process 92

or ( 5

 5 .3.21) holds. Now transforming Stratanovich stochastic calculus to Itô stochastic calculus yields the equation (5.3.20). 103 5.3 Towards stochastic parallel translations in P 2 (M ) Proposition 5.3.6. For such a solution to (5.3.20), we have ||V Ψt || Tµ t = ||V Ψ0 || Tµ for all t ∈ [0, 1].

  4.7), Chapter 5: Stochastic Parallel Transport and Q-Wiener Process 110 ∫ [0,1]×Ω×M

  .4.13) where Φ(x, µ) = ∫ M W (x, y)µ(dy). Moreover, {µ t ; t ∈ [0, 1]} is a solution to 5.5 Stochastic parallel translation on P(T)

,

  Chapter 5: Stochastic Parallel Transport and Q-Wiener Process 114 and

  t ) Kt dx = ∫ T ρt (x) dx = 1; on the other hand, by the relation Kt = 1 ρ t (X t )

  cos(2πk(F µs (x) -F µs (y)))) µ s (dx)µ s (dy),where F µs is the distribution function of µ s , satisfying F µs (0) = 0, F µs (1) = 1 andF µs (x) = ∫ x 0 (0,x] (y)µ s (dy), for 0 ≤ x ≤ 1.

f

  cos(2πk(x -y)))dxdy,where G µs is the quantile function ofµ s . Because | ∞ ∑ k=1 2 k 2β cos(2πk(x -y))| < 2K β 2 , we get Q β µs (ϕ, ϕ) ϕ ′ (G µs (x))ϕ ′ (G µs (y)) ( ∞ ∑ k=-∞ 1 |k| 2β e k (x)e k (y) ϕ ′ (G µs (x))e k (x)dx ∫ [0,1] ϕ ′ (G µs (y))e k (y)dy = +∞ ∑ k=-∞ 1 k 2β | ϕ ′ (G µs ) k | 2 , (6.2.1)where the fourier coefficient is defined as 1236.2 Introduction of the regularised martingale problem and the noisef k = 2 ∫ 1 0 f (x) sin(2πkx)dx, k = 1, 2, . . . ; (x) cos(2πkx)dx, k = -1, -2, . . . .Remark 6.2.2. In fact, (6.2.1) shows that the spatial correlated intensity of our noise is β , which we will only require β > 1 in existence theorem 6.4.1. Especially, when β = 0, the quadratic variation above becomes< M t (ϕ) >= ∫ t 0 ||ϕ ′ (G µs (x))|| 2 L 2 [0,1] ds = ∫ t 0 ||ϕ ′ || 2 L 2 (µs) ds. (6.2.2)

11

  cos(2πk(F µ (x) -F µ (y)))determines the martingale M t (ϕ) in distribution. Although L 2 (µ) may not be separable, we still can define a ( Qβ µ )1 2 -Wiener process in the tangent space L 2 (µ) with orthonormal eigenfunctions {e k (µ)} k∈N in L 2 (µ), which are defined ase k (µ, x) = e k (F µ (x)), k ∈ N.This is because dx = (F ) # dµ , |i| 2β e i (F (x))e i (F (y))) e k (F (y))µ(dy) |i| 2β e i (F (x))e i (y)) e k (y)dy = 1 |i| 2β e k (F (x)).

  (t) -e 2πiX j R,N (t) | ≤ R -1

  b M < 1 M 3 S M -1 . (6.3.11)Therefore, we see that, for m > n , when N goes to infinity and n is large enough ,

U n,N k =.

 k {ω : ∃ (t, x), such that for ∀ j ≥ n, Therefore, for each N , we can find m N such that P(U m N ,N k) > C 3 = C ′ . Now, let Ū m N ,N k = {ω : ∃ (t, x), such that for ∀ j ≥ m N ,

  LL16, LL18]. Here we indicate what are necessary conditions which yield to this result. The inconvenient for (4.1.3) is the existence of derivative for almost all t ∈ [0, 1]. In what follows, we will present two typical classes of absolutely continuous curves in P 2 (M ).

  the following property: We have c t+ε = (U t,t+ε ) # c t , and

	Chapter 4: Geometry and Parallel Transport		68
	Proof.		
	Proposition 4.5.6. Let {∇Ψ t ; t ∈ [0, 1]} be given in Proposition 4.5.5, then	
	d dt	||∇Ψ t || 2 ct = 0.	(4.5.13)

  5.3.19)The last term in above equality is novel. If furthermore, for t ∈ [0, 1], x → ∇Ψ t (x) is regular enough, we have the following strong SPDE:Let {∇Ψ t ; t ∈ [0, 1]} be a solution to (5.3.18) such that x → Ψ t (x) is C 3 , then d t ∇Ψ t = -

	Chapter 5: Stochastic Parallel Transport and Q-Wiener Process	102
		•d t ∇Ψ t = -	N ∑	Π µt	(	∇ ∇ϕi ∇Ψ t	)	• dB i t ,	(5.3.21)
			i=0					
	Theorem 5.3.5. N ∑	Π µt (∇ ∇ϕi ∇Ψ t ) dB i t + Π µt	(	-∇ ∇ϕ0 ∇Ψ t + R Ψt t + S Ψt t	)	dt,	(5.3.20)
	i=1							
	or in Stratanovich form:							

  According to Gronwall type inequality and monotonicity of r(t) , we prove non-explosion of r . It follows that , if we set ζ = lim K→∞ ζ K , whereζ K := inf{t ≥ 0 : |X j t | ≥ K, for some j = 1, . . . ,N }, (6.3.4) then ζ ≥ T for any T . R N t will not explode in finite time almost surely. Thus the process {e 2πiX j N (t) } j=1,...,N is well defined on [0, T ] . We secondly prove the non-collision. Consider the Lyapunov function F (x 1 , ...x N ) = -1 N 2 ∑ l̸ =j log |e 2πix le 2πixj | , by Itô formula,

	127											6.3 Construction of the particle model on T
	On the other hand, by Cauchy inequality, we have	
											(	) 2
								E[| max s∈[0,t]	R N s | 2 ] ≥		E[ max s∈[0,t]	R N s ]	.	(6.3.3)
	Denote r(t) :=	(	E[max s∈[0,t] R N s ] ) 2 . By (6.3.2) and (6.3.3) , we finally get
								r(t) ≤ Ct 2 + C	∫ t	√	r(s)ds.
												0
	d t F (X 1 t , ...X N t )						
	= -	1 2N 2 	N ∑ l=1	N ∑ j=1,j̸ =l	cot(π(X l t -X j t ))dX l t +	1 2N 2	 	N ∑ l=1	N ∑ j=1,j̸ =l	π sin 2 (π(X l t -X j t ))	d t ⟨X l t ⟩ 
	-	1 2N 2		N ∑ l=1	N ∑ j=1,j̸ =l	π sin 2 (π(X l t -X j t ))	d t ⟨X l t , X j t ⟩	
												6.3.2)

  j̸ =l

	Chapter 6: Diffusive Dean-Kawasaki Equation					128
	d t F (X 1 t , ...X N t ) 										
	=	1 2N 2	 -	1 2N 1+α	∑ 1≤l<j≤N	cot 2 (π(X l t -X j t )) + π	∑ 1≤l<j≤N	N ∑ k=-N	1 |k| 2β |	e k ( l N ) -e k ( j N ) sin(π(X l t -X j t ))	| 2	 dt	(6.3.5)
	+ d t M N (t).										
	]Next, we are going to estimate	∑ 1≤l<j≤N	N ∑ k=-N	1 |k| 2β |	e k ( l N	
								(	π sin 2 (π(X l t -X j t ))	N ∑ k=-N	1 |k| 2β e k (	l N	)e k (	j N	) )	dt,
	where M N (t) is a local martingale. Thus,				

  U i = {ω ∈ U : ∃t, x, such that p t (ω, dx) = ηδ x with η > 1 i },then it is obvious that U i ⊂ U i+1 and = U . Thus , we can find someU k such that P(U k ) > C 2 .We defineE N x = (x -1 2N , x + 1 2N ) .Notethat, for P-a.s. ω , p n t (ω, •) weakly converges to p t (ω, •) uniformly in t ∈ [0, T ] . If p t (ω, dx) = ηδ x dx , then, for each N , there exists n(N, ω, t, x, ) such that ∀ n ≥ n(N, ω, t, x),

	Since					1 +	n ∑ k=1 ∫ E N k 2β cos 2 x p n t (ω, dy) > ( 2πk( ∫ [0,1] η 2 .	(x∧y,x∨y] (z)µ(dz)) )	) µ(dx)µ(dy).
	∞ ∑ k=n	2 k 2β cos	(	2πk( ∫ [0,1]	(x∧y,x∨y] (z)µ(dz)) )	<	+∞ ∑ k=n	2 k 2β → 0, as n → ∞,
	and							
		= lim n→∞	( Ẽ[( G(p n +∞ ∑ k=n + t ) -G(p n -n ∑ k=-∞ ) k ∫ t 2 DG(p r )dr s s ) -∫ t s D n G(p n ) • H(p [0,s] ) ] r )dr ) • H(p n	[0,s] ) ] .
	Because Law(p n ) = P n ,						
		Ẽ[( G(p n t ) -G(p n s ) -= E [( G(L ∫ t ∫ t D n G(p n r )dr s s D n G(L n (r))dr ) • H(p n [0,s] ) ] )	• H(L n [0,s] )	] .
	Therefore, to prove (6.4.3) , we only need to prove
		lim n→∞	E [ G(L n (t)) -G(L n (0)) -	0 ∫ t	D n G(L n (s))ds ]	= 0	(6.4.4)
	In fact,							

2β → 0, as n → ∞, thus, by denoting D n G(µ) = K n 2 g ′ (⟨ϕ, µ⟩)⟨µ, ϕ ′′ ⟩ + g ′′ (⟨µ, ϕ⟩)Q n µ (ϕ) , we have Ẽ[( G(p t ) -G(p s )n (t)) -G(L n (s)) -∞ ∪ i=1 U i

Acknowledgments

Parallel translations

Φt0 (µ) = Φ β(FΦ t 0 (µ)) , Ψt0 (µ) = Ψ β(FΦ t 0 (µ)) .

(4.5.4)

We remark that for t ∈ [0, 1] such that c t ∈ U (t 0 ), we have: β(F Φt 0 (c t )) = t. Note that {c t ; t ∈ [0, 1]} is a compact set of P 2 (M ) and

There exists a finite number of t 1 , . . . , t k ∈ [0, 1] such that

Set U = ∪ k i=1 B(c ti , r i ). Let µ ∈ U , then µ ∈ B(c ti , r i ); according to (4.5.4), we define,

Then for t ∈ [0, 1] such that c t ∈ B(c ti , r i ), Φti (c t ) = Φ t and Ψti (c t ) = Ψ t . Now for r > 0 and ν ∈ P 2 (M ), we define g r,ν (µ) = exp

) , if W 2 (ν, µ) < r, (4.5.5) and g r,ν (µ) = 0 otherwise. Then g r,ν (µ) > 0 if and only if µ ∈ B(ν, r). By Theorem 4.4.2, if ν ∈ P div , µ → g r,ν (µ) is derivable along any constant vector field V ψ . Remark that k ∑ i=1 g ri,ct i > 0 on U.

Let

for µ ∈ U, and α i = 0 otherwise. (4.5.6) Now define

(4.5.7)

We have

Chapter 4: Geometry and Parallel Transport 66 Note that α i (c t ) > 0 if and only if c t ∈ B(c ti , r i ), which implies that Φti (c t ) = Φ t and Φ(c t ) = k ∑ i=1 α i (c t )Φ t = Φ t . It is the same for Ψ. The proof is completed.

Notice that for such a curve {c t ; t ∈ [0, 1]} given in Theorem 4.5.1, and {Y t ; t ∈ [0, 1]} a vector field along {c t ; t ∈ [0, 1]} given by Ψ t . If furthermore for any t 

Using this definition, we re-discover the following formula, originally due to [START_REF] Lott | Some Geometric Calculations on Wasserstein space[END_REF].

Theorem 4.5.3. Keeping the same notation in Theorem 4.5.1, if

Proof. Note that

Then (4.5.8) follows from (4.3.13).

When ∇

, it is more convenient to put Equation (4.5.8) in the following form :

where Π ct the orthogonal projection from L 2 (M, TM, c t ) onto T ct . By arguments in the proof of Proposition 4.3.2, when dc t = ρ t dx with ρ t ∈ C 2 (M ) and ρ t > 0, Π ct admits the expression

The price for this pointwise formulation of (4.5.9) as well as of (4.5.10) is the involement of second order derivative of Ψ.

) .

Furthermore for s < t,

Now we look for the strong form of SPDE for stochastic parallel translations. To this end, we suppose that there is a continuous process

} such that, up to a subsequence, almost surely, for any

In the spirit of Wong-Zakai approximation, the term

converges, as n → +∞, to the following Stratanovich stochastic integral:

We have to compute the Itô stochastic contraction:

Using formally the equality (5.1.11), we have

)

• dB j (t).

Towards stochastic parallel translations in P 2 (M )

stochastic Fubini theorem . In fact, we find

(5.3.28)

(5.3.30)

(5.3.31)

We have (5.3.28) + (5.3.30) = 0 . By integration by parts, we have

Thus,

(5.3.29)

The proof is complete.

Q-Wiener process on P 2 (M )

Now we will construct a non-degenerated diffusion process on P 2 (M ). Let {φ n ; n ≥ 0} be the eigenfunctions of the Laplace ∆ on M :

We have λ 0 = 0 and φ 0 = 1. It is well known that ) as n → +∞.

(5.4.1)

The functions φ n are smooth, and {φ n ; n ≥ 0} forms an orthonormal basis of L 2 (M, dx):

. By the Sobolev embedding inequality, for

(5.4.2)

(5.4.3)

Proof. We have

The result (5.4.3) follows.

In this section, we are given a sequence of strictly positive real numbers {a n ; n ≥ 1}. Consider the following SDE on M :

where {e k (µ, •)} k∈N is a family of orthonormal vectors in L 2 (µ) .And ξ β µ satisfies :

) )

, 

Comparing with the original form of (6.0.1), we actually change the bad term √ µ into µ by transferring nonlinearity to the noise. Luckily, in case of 1-D Torus, the noise ξ β µ has the form of (6.2.3) so that we can analyse it.

Construction of the particle model on T

Following the idea introduced in section 6.1 and the definition of L 2 (µ)-Wiener process ξ β µ , e k (µ, x) is the stochastically moving frame, and we want to construct a solution to (RM P ) α µ0 as a image measure process µ t = (X t ) # µ 0 , induced by the process X t satisfying

The main difficulty is we can not guarantee X t is a diffeomorphism, or even a one-to-one C α map, when β is only larger than 1. Although in this paper we will not analyse X t directly since we only need to construct the particle approximation of X t , the similar difficulty still appears in the construction of the particle model. In detail, given N particles {X i N (t)} i=1,...,N , if we use a direct idea for the construction of a particle approximation to X t , we usually want X i N (t) to satisfy

Construction of the particle model on

(6.3.15)

Based on the estimates above , we deal with the part (B) .

Based on (6.3.7) and (6.3.14) and taking use of (6.3.11), we have, for N is large enough,

It follows that

We conclude that when N is large enough,

Since the diffusion process {e 2πiX j N (t∧τ R ) } j=1,...,N on the torus is well defined alomstly surely, then, following the standard argument(see [START_REF] Christopher | Interacting Brownian particles and the Wigner law[END_REF]) , we denote

Therefore,

For fixed T , Letting R → ∞ , it follows that {(e 2πiX j N (t∧T ) )} j=1,...,N never collide. Then letting T → ∞ , since P(τ ∞ ≤ T ) = 0 always holds, so there is no collision of the particles {e 2πiX j N (t) } j=1,...,N in torus for all t ∈ [0, +∞). Furthermore, coming back to the original process , this means {X j N (t)} j=1,...,N never collides and |X 1 N (t) -X N N (t)| < 1 . Finally, by continuity of the trajectories of X N (t) , we have X N (t) ∈ ∆ N for all t ≥ 0 . We finished the proof . Remark 6.3.2. We give a short comparison between the common noise and the stochastically moving noise above . Generally, if we apply the same computation on the Lyapunov function for the case of the common noise, i.e.

We can bound it by N 2 K N 1 . It is obvious that β should be larger than 3 2 in order to get non-collision of particles in the case of common noise. However, if we use the stochastically moving noise, we can prove the non-collision of particles for each β > 1 .

Construction of a solution to (RM P )

In this section, we will construct a solution to (RM P )

T dx as a weakly convergent subsequence limit of the empirical measure process of the interacting particle model introduced in section 3.

Let the integer function [•] : R → N be defined as 133 6.4 Construction of a solution to (RM P )

And {x} := x -[x]. Then , we define the empirical measure on [0, 1] :

The distribution function F N t of L N (t) , defined on [0, 1] , satisfies F N t (0) = 0 and

We also denote the corresponding quantile function G N t (x), which satisfies

Theorem 6.4.1. Under the assumption in Theorem 6.

, and the limit of any weakly convergent subsequence of {L N (t), t ∈ [0, T ]} is a solution to (RM P )

.

Proof. Denote P N as the distribution of {L N (t), t ∈ [0, T ]} in C([0, T ]; P(T)) , and P ϕ N as the distribution of {< L N (t), ϕ >, t ∈ [0, T ]} in C([0, T ]; R) for ϕ ∈ C ∞ (T) . Then, by [START_REF] Dawson | Measure-valued Markov processes[END_REF] (Theorem 3.7.1), P N is tight if and only if P ϕ N is tight for each ϕ ∈ C ∞ (T) . Here, for ϕ ∈ C ∞ (T) , we actually means ϕ ∈ C ∞ ([0, 1]) so that we can extend it as a period function on R. For sake of convenience, we still denote the extended function as ϕ . Note that, by Theorem 6.3.1, there is no collision and no explosion for the particles (X i N (t)) for all t ∈ [0, T ] . Therefore, we can apply Itô formula to get, ∀ ϕ ∈ C ∞ (T) ,

where Chapter 6: Diffusive Dean-Kawasaki Equation 134

Here, the inequality above is because ϕ is a function on torus, we can choose a shorter interval between

, then, applying the mean value theorem, we have

On the other hand, we have

For the martingale part, by Cauchy inequality and boundness of |ϕ ′ | , we have

Therefore, by B.D.G inequality,

6.4 Construction of a solution to (RM P )

Also, (K) → ∫ T ϕdx . According to ( [KS12] p.63 Theorem 4.10) , we have proved tightness of {P ϕ N } . Thus , P N is tight. Due to separability, we can apply Prohorov theorem, so we proved the relative compactness of the distribution P N on C([0, T ], P(T)) . Therefore , we have a subsequence, still denoted as P N for convenience, weakly converges to some P in C([0, T ], P(T)) . By Skorohod representation theorem, we can find a new probability space ( Ω, F, P) and a sequence of random variable {p n }, p defined on it , which takes value in C([0, T ], P(T )) and satisf ies Law(p n ) = P N , Law(p) = P , such that p n converges to p weakly almost surely.

Next, we will show that the limiting process {p t (ω, x), t ∈ [0, T ]} , associated with ( Ω, F, P) , is a solution to (RM P ) K β 2 T dx . Note that for a solution µ t to (RM P ) K β 2 T dx , the generator L associated with ⟨µ t , ϕ⟩ is

Thus, according to the equivalent description of P(T)-valued process, see [START_REF] Dawson | Measure-valued Markov processes[END_REF] lemma 7.2.1, we only need to prove that, for

where In fact, when k > 0, e k (x) = -e k (-x) , thus

) ) µ(dx)µ(dy).

Since we can prove that, for P-a.s. p t (ω) is non-atomic for all t ∈ [0, T ] (lemma 6.4.2 below), thus , for P-almost surely,

then, by dominated convergence theorem,

Construction of a solution to (RM

Then, by Itô formula ,

where M g,ϕ n (t) is a P-local martingale . Note that (J) = K n 2 g ′ (⟨ϕ, L n (t)⟩)⟨L n (t), ϕ ′′ ⟩, (6.4.5) and

(6.4.6)

For the last part (I) , we have

So, combining (6.4.5), (6.4.6) and (6.4.7) , we proved (6.4.4) . We finished the proof.

Lemma 6.4.2. For P-a.s., p t is non-atomic for all t ∈ [0, T ] .

Proof. Let U = {ω : ∃t, such that p t (ω)is atomic} . If the measurable set U has positive measure, i.e. P(U ) = C > 0 . We define 6.4 Construction of a solution to (RM P ) The proof is the similar.