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So there you sit. And how much blood was shed
That you might sit there. Do such stories bore you ?

Well, don’t forget that others sat before you
who later sat on people. Keep your head!

Your science will be valueless, you’ll find
And learning will be sterile, if inviting

Unless you pledge your intellect to fighting
Against all enemies of all mankind.

Never forget that men like you got hurt
That you might sit here, not the other lot.

And now don’t shut your eyes, and don’t desert
But learn to learn, and try to learn for what.

— Bertolt Brecht, To The Students Of The Workers’ And Peasants’ Faculty





A B S T R A C T

Several important problems in learning theory and data science involve high-
dimensional optimization objectives that transcend the Lipschitz regularity con-

ditions that are standard in the field. This absence of Lipschitz regularity – smooth-
ness or continuity – poses significant challenges to the convergence analysis of
most optimization algorithms and, in many cases, it requires the introduction of
novel analytical and algorithmic tools. In this thesis, we aim to partially fill this
gap via the design and analysis of universal first-order methods in two general
optimization frameworks: (a) online convex optimization (which contains as special
cases deterministic and stochastic convex optimization problems); and (b) abstract
variational inequalities (which contain as special cases min-max problems and
games) both without global Lipschitz continuity/smoothness conditions.

In this “NoLips” setting, we take a geometric approach – Riemannian, Finslerian,
or Bregman-based – that allows us to handle vector fields and functions whose
norm or variation becomes infinite at the boundary of the problem’s domain.
Using these non-Euclidean surrogates for Lipschitz continuity and smoothness,
we propose a range of adaptive first-order methods that concurrently achieve
order-optimal convergence rates in different problem classes, without any prior
knowledge of the class or the problem’s (relative) smoothness parameters. These
methods are based on a suitable mirror descent or mirror-prox template (for convex
minimization and monotone variational inequalities respectively), and they revolve
around adaptive step-size policies that exploit the geometry of the gradient data
observed at earlier iterations to perform more informative (extra-)gradient steps
in later ones. Our results do not always coincide with what one would expect in
standard Lipschitz problems, and serve to further highlight the differences between
the “Lispschitz” and “NoLips” frameworks.
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R E S U M E

Plusieurs problèmes importants issus de l’apprentissage statistique et de la sci-
ence des données concernen des objectifs d’optimisation à très haute dimension

qui vont au delà des hypothèses de régularité de Lipschitziennes. L’absence de
régularité de Lipschitz – continuité ou lissitude – pose des défis importants à
l’analyse de convergence des algorithmes existants d’optimisation et nécessite sou-
vent de nouveaux outils analytiques et algorithmiques pour être traitée de manière
efficace. Dans cette thèse, nous visons à combler partiellement cette lacune en
proposant de nouvelles méthodes universelles du premier ordre dans deux cadres
généraux : (a) l’optimisation convexe en ligne (qui contient comme cas particuliers
les problèmes d’optimisation convexe déterministes et stochastiques) ; et (b) les
inégalités variationnelles (qui contiennent comme cas particulier les problèmes de
point-selle et les jeux).

Nous étudions ces deux problèmes génériques dans un "NoLips" et nous adop-
tons une approche géométrique - Riemannienne ou Bregmanienne - qui nous
permet de traiter des champs vectoriels et/ou des fonctions dont la norme ou
la variation explose vers le bord du domaine du problème. En utilisant ces sub-
stituts non-euclidiens, nous proposons des nouvelles méthodes adaptatives du
premier ordre qui atteignent simultanément des taux de convergence optimaux
dans différentes classes de problèmes, sans aucune connaissance préalable des
paramètres de régularité du problème. Nos méthodes sont basées sur un template
"mirror descent" ou "mirror-prox" (pour les problèmes de minimisation convexe
et les inégalités variationnelles monotones respectivement), et elles se basent sur
des politiques adaptatives de pas qui exploitent l’historique des gradients observés
afin d’effectuer des pas de gradient mieux adaptés à la régularité du problème.
Nos résultats ne coïncident pas toujours avec ce que l’on attendrait dans le cadre
Lipschitz, et ainsi apportent une intuition très utile pour comprendre les différences
fondamentales entre les problèmes "Lispschitz" et "NoLips".
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1
I N T R O D U C T I O N

The rise of machine learning protocols has reaffirmed the interest in the theory
of optimization problems. To that end, two important settings stand out, that of

online convex optimization and (monotone) variational inequality problems.

The first framework refers to a scenario where the optimizer faces a (possibly
adversarial) sequence of time-varying loss functions ft, t = 1, 2, . . . , one at a time
– for instance, when drawing different sample points from a large training set
[31, 105]. Specifically, if the optimizer faces a sequence of G-Lipschitz convex
losses, the incurred min-max regret, a standard performance criterion that will
be discussed in detail later, is Ω(GT1/2) after T rounds and this bound can be
achieved by inexpensive first-order methods – such as online mirror descent and
its variants [31, 105, 106, 122].

This setting properly includes (static) convex minimization problems, but the
situation in this case changes dramatically. The analysis of static minimization
problems typically revolves around two main regularity conditions for the problem
at hand: (a) Lipschitz continuity of the problem’s objective function and/or (b) Lipschitz
continuity of its gradient (also referred to as Lipschitz smoothness). Depending on which
of these conditions holds, the lower bounds for first-order methods with perfect
gradient input are Θ(1/

√
T) and Θ(1/T2) after T gradient queries, and they are

achieved by gradient descent and Nesterov’s fast gradient algorithm respectively
[88, 89]. By contrast, if the optimizer only has access to stochastic gradients (as
is often the case in machine learning and distributed control), the corresponding
lower bound is Θ(1/

√
T) for both problem classes [30, 86, 89].

On the other hand, the surge of recent breakthroughs in generative adversarial
networks (GANs) [46], robust reinforcement learning [97], and other adversarial
learning models [73] has sparked renewed interest in the theory of min-max
optimization problems and games. In this broad setting, it has become empirically
clear that, ceteris paribus, the simultaneous training of two (or more) antagonistic
models faces drastically new challenges relative to the training of a single one.
Perhaps the most prominent of these challenges is the appearance of cycles and
recurrent (or even chaotic) behavior in min-max games. This has been studied
extensively in the context of learning in bilinear games, in both continuous [41,
80, 96] and discrete time [37, 43, 44, 81], and the methods proposed to overcome
recurrence typically focus on mitigating the rotational component of min-max
games.

The method with the richest history in this context is the extra-gradient (EG)
algorithm of Korpelevich (1976) and its variants. The EG algorithm exploits the

1



2 introduction

Lipschitz smoothness of the problem and, if coupled with a Polyak–Ruppert
averaging scheme, it achieves an O(1/T) rate of convergence in smooth, convex-
concave min-max problems [85]. This rate is known to be tight [84, 95] but, in order
to achieve it, the original method requires the problem’s Lipschitz constant to be
known in advance. If the problem is not Lipschitz smooth (or the algorithm is run
with a vanishing step-size schedule), the method’s rate of convergence drops to
O(1/

√
T).

From the above, one may directly observe that from a practical perspective the
challenging part in order to apply the respective optimal solution method to the
problem at hand is to able to identify which regularity condition and/or oracle
feedback she has at hand. Therefore, a question that naturally arises in this context
is the following:

Is it possible to design methods that simultaneously achieve optimal convergence rates
without any prior knowledge of the problem’s regularity features ?

The positive answer to the above question gives rise to the so-called adaptive methods.
In its general context, adaptivity of a method may refer to (at least) two different
things:

1. Automatic adjustment to the function’s regularity parameters within a fixed
problem class (Lipschitz continuous, Lipschitz smooth, etc.).

2. Interpolation of convergence rates between different problem classes (e.g.,
O(1/

√
T) for non-smooth vs. O(1/T) or O(1/T2) for smooth, etc.).

In what follows we treat both questions in tandem.

1.1 related work

minimization problems . There is an extensive corpus of literature concerning
the convex minimization framework. To name out the methods of [54] and [65]
successfully interpolate between the stochastic and smooth deterministic regimes
achieving a O(1/

√
T) convergence rate for the former and an O(1/T2) rate for

the latter; however, their interpolation guarantees require prior knowledge of the
function’s smoothness parameter. More recently, [92] proposed a method that
adjusts automatically to the Lipschitz (or Hölder) modulus of the function based
on line-search queries of the objective1; in the Lipschitz smooth case, the method
of Nesterov [92] attains an accelerated rate of convergence of the. order O(1/T2).
However, in order to establish an implementable stopping criterion, said method
requires as an input parameter an estimate of the distance between the algorithm’s
initial state to the problem’s solution set (i.e., this upper bound should be known
to the optimizer a priori).

Such an estimate is difficult to come by in problems with unbounded domains,
so the performance of the method is unclear in this case.

By contrast, the AcceleGrad method of [67] and the more recent UnixGrad
algorithm of [60] successfully interpolate between the O(1/

√
T) and O(1/T2)

1 Non smooth and smooth objectives are included as extreme cases for the Hölderian exponent q = 0, 1.



1.1 related work 3

rates for the Lipschitz continuous and/or stochastic settings and smooth regimes
respectively without requiring a line search – but the boundedness caveat is still
present. Finally, beyond the minimization framework, [14] proposed a universal
mirror-prox method for solving (stochastic) variational inequalities, with or without
smoothness requirements. When applied to function minimization, the algorithm
of [14] interpolates between the O(1/

√
T) and an unaccelerated O(1/T) rate.

What makes this particularly interesting for our purposes is that this scheme does
not require vanishing gradients near a minimizer.

variational inequalities. There have been several works focusing on the
convergence guarantees of the original EG / mirror-prox (MP) template. We review
the most relevant of these works below. In unconstrained problems with an
operator that is locally Lipschitz continuous (but not necessarily globally so), the
golden ratio algorithm (Graal) of [75] achieves convergence without requiring
prior knowledge of the problem’s Lipschitz parameter. However, Graal provides
no rate guarantees for non-smooth problems – and hence, a fortiori, no interpolation
guarantees either. By contrast, such guarantees are provided in problems with a
bounded domain by the generalized mirror-prox (GMP) algorithm of [109] under
the umbrella of Hölder continuity.

Another method that simultaneously achieves an O(1/
√

T) rate in non-smooth
problems and an O(1/T) rate in smooth ones is the recent algorithm of Bach and
Levy (2019). The BL algorithm employs an adaptive, AdaGrad-like step-size policy
which allows the method to interpolate between the two regimes – and this, even
with noisy gradient feedback. On the negative side, the BL algorithm requires a
bounded domain with a (Bregman) diameter that is known in advance; as a result,
its theoretical guarantees do not apply to unbounded problems.

beyond lipschitz regularity. Despite the fact that the (Euclidean-based)
Lipschitz regularity conditions appear quite generic there exists a whole set of real
life situations where both of these conditions fail, either because the loss profile
of the problem grows too rapidly (e.g., as in support vector machines or GAN
models with Kullback-Leibler losses), or because the problem exhibits singularities
near the boundary of the feasible region (e.g., as in resource allocation and inverse
problems). A prominent example that will serve as motivation for the NoLips
setting is that of Poisson Inverse Problems. We examine this in detail below.

Example 1.1 (Poisson Inverse Problems). Poisson inverse problem (PIP) arise in
various practical problems stemming from image sciences and machine learning
problems. Informally, this consists of two components: a matrix A ∈ Rm×n which
models the experimental protocol and a vector b ∈ Rm

+ represents the measurements
made by the optimizer. With all this in hand, the objective would be to recover the
signal or image x ∈ Rn

+ from the noisy measurements b such that:

Ax ' b (1.1)
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A natural measure that evaluates the proximity of these two vectors is that of the
Kullback–Leibler (KL) divergence. Namely, we are facing the following convex
minimization problem:

minimize d(b, Ax) =
m

∑
i=1

[
bi log

bi
(Ax)i

+ (Ax)i − bi

]
subject to x ∈ Rn

+

(1.2)

As one may recognize the above minimization objective is neither Lipschitz contiu-
ous nor smooth due to the singular behaviour of the logarithm near the origin.

The above schemes all rely intrinsically on Lipschitz/Hölder continuity and/or
smoothness. Achieving convergence beyond the Lipschitz framework has been the
focal point of a recent strand in the literature, starting with the work of [19] and the
concurrent paper of [72]. More recent works have provided different extensions to
non-convex [25] and stochastic optimization [48], including a tentative path towards
acceleration [49]; however, these methods are neither universal nor adaptive.

In more detail Bauschke et al. [19] introduced a “Lipschitz-like” smoothness
condition for convex minimization problems and used it to establish a O(1/T)
value convergence rate for mirror descent methods (as opposed to mirror-prox).
Always in the context of loss minimization problems, Bolte et al. [25] subsequently
extended the results of Bauschke et al. [19] to non-convex problems that satisfy
the Kurdyka–Łojasiewicz (KL) inequality, while Lu et al. [72] considered functions
that are also relatively strongly convex and showed that mirror descent achieves a
geometric convergence rate in this context.

The condition of Bauschke et al. [19] is remarkably simple as it only posits that
the problem’s loss function f is such that :

βh− f is convex (RS)

for some reference Bregman function h and some β > 0. A straightforward exten-
sion of this condition to an operator setting would be to require the monotonicity
of β∇h − A, where A is the operator defining the variational inequality under
study. However, the cornerstone of this “Lipschitz-like” condition is a descent
lemma which does not carry over to variational inequalities, so it does not seem
possible to extend the analysis of Bauschke et al. [19] to an operator setting at least
not directly.

Insofar as Lipschitz continuity of the objective is concerned, Lu [71] also consid-
ered a “relative continuity” condition for loss minimization problems positing that

‖∇ f (x)‖ ≤ G inf
x′

√
2D(x′, x)/‖x′ − x‖ (1.3)

(where f is the problem’s objective and D is the Bregman divergence of h). Written
this way, the condition of Lu [71] can also be extended to an operator setting, but
this would provide a surrogate for operator boundedness, not Lipschitz continuity
(since A = ∇ f in minimization problems). Extending the above definition Zhou
et al. [119] proposed a similar notion, i.e.,

〈∇ f (x), x− x′〉 ≤ G
√

2D(x′, x) (RC)



1.2 main objective and contributions of this thesis 5

and applied it for the context of online convex optimization problems. Finally, in
Teboulle [111] the notion of W[h]-continuity is proposed by singling out particular
properties of Bregman divergences; formally, given an appropriate regularizer h an
operator A is called to be W[h]- continuous:

t〈A(x), x− x′〉 − D(x′, x) ≤ t2

2
G2 for all x′ ∈ dom h, x ∈ dom ∂h. (W)

In the sequel, we shall introduce an alternative way that will allow us to extend
the Lipschitz continuity conditions in a unified manner for both minimization and
(VI) problems.

1.2 main objective and contributions of this thesis

In view of the above, the objective of this thesis is twofold:

1. Introduce novel regularity conditions, which are able to include variational in-
equality problems whose associated operator exhibits a "singular" behaviour.

2. Bridge the gap between the development of general Lipschitz continuity
conditions on the one hand and the lack of respective adaptive methods on
the other.

Tackling each objective separately, we begin by introducing two novel classes of
operators. In particular inspired by the idea that Lipschitz continuity is first and
foremost a metric space property we use the notion of local norms extensively as a
primal geometrical tool in order to capture finer geometrical aspects of the problem.
More precisely, in contrast to the traditional setting, local norms dependent on
the point where it is evaluated, i.e., we have a continuous assignment ‖·‖x for all
x ∈ X . This in turn defines the associated dual norm in the standard way, i.e., for
all w ∈ V∗,

‖w‖x,∗ = max{〈w, x′〉 : ‖x′‖x = 1} (1.4)

Armed with this geometry-aware local norm machinery we revisit the Euclidean
based regularity conditions. In particular, we define two new operator classes
that of metrical boundedness and metrical smoothness (see [6, 8]). Formally, an
operator A is called metrically bounded when:

‖A(x)‖x,∗ ≤ G (MB)

and metrically smooth whenever the following inequality holds:

‖A(x)− A(x′)‖x,∗ ≤ β‖x− x′‖x′ (MS)

In this context, the adaptivity results evolve throughout this thesis gradually. More
precisely, our contributions can be summarized as follows:

• We begin gently by investigating online convex optimization (OCO) problems
by recovering optimal regret minimization upper bounds under (MB).

• We proceed by taking a closer look at static/ stochastic convex minimization
problems. More precisely we establish optimal interpolation guarantees
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for both stochastic and/or deterministic oracle feedback under the blanket
assumptions of (RS) and (RC).

• In the last part of this thesis, we focus on the generic framework of variational
inequalities. To that end, for this setting we provide convergence rates starting
from non-adaptive to adaptive to the "Lipschitz"-like modulus and finally
regime-agnostic order optimal interpolation guarantees for both deterministic
and stochastic (VI)’s under (MB) and/or (MS).

In what follows we present the content of each chapter in a more detailed manner.

1.3 diagrammatic outline

This thesis consists of two parts. In Part i the general theoretical setup is pre-
sented, while Part ii examines the particular algorithmic guarantees achieved in
each setting. We now provide a quick overview of the content of each chapter
individually.

• Chapter 2 contains the main ingredients of this thesis; the particular problemPreliminaries

set-ups along with the state of the art first order methods and the respective
convergence rate guarantees. An important part of this chapter is devoted
to the pivotal role that Lipschitz continuity plays in all these optimization
scenarios.

• Chapter 3 introduces and examines in detail the NoLips conditions discussedNoLips

above. In doing, we distinguish our presentation for the different optmization
frameworks.

• Chapter 4 provides concrete definitions of the main algorithmic schemesBregman Methods

which will be of interest throughout the sequel. More precisely, we start
with the basic mathematical toolkit of Bregman divergences which serves as
the key ingredient for generalizing the standard Euclidean based projection
operators. Based on this machinery, we describe a set of Bregman driven
iterative methods for both optimization scenarios.

• Chapter 5 Motivated by applications to machine learning and imaging sci-Online Convex
Optimization ence, we study a class of online and stochastic optimization problems with

loss functions that are not Lipschitz continuous; in particular, the loss func-
tions encountered by the optimizer could exhibit gradient singularities or be
singular themselves. Drawing on tools and techniques from Finsler geometry,
we examine the (MB) continuity condition which is tailored to the singularity
landscape of the problem’s loss functions. In this way, we are able to tackle
cases beyond the Lipschitz framework provided by a global norm, and we
derive optimal regret bounds and last iterate convergence results through the
use of regularized learning methods (such as online mirror descent).

• Chapter 6 We propose a new family of adaptive first-order methods for a classConvex
Optimization of convex minimization problems that may fail to be Lipschitz continuous

or smooth in the standard sense. Specifically, we consider problems that are
continuous or smooth relative to a reference Bregman function – as opposed
to a global, ambient norm (Euclidean or otherwise). In this setting, the
application of existing order-optimal adaptive methods – like UniXGrad

or AcceleGrad– is not possible, especially in the presence of randomness
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and uncertainty. The proposed method, adaptive mirror descent (AdaMir),
aims to close this gap by concurrently achieving min-max optimal rates in
problems that are relatively continuous or smooth, including stochastic ones.

• Chapter 7 We present a new family of min-max optimization algorithms that Variational
Inequalitiesautomatically exploit the geometry of the gradient data observed at earlier

iterations to perform more informative extra-gradient steps in later ones.

Thanks to this adaptation mechanism, our proposed method, adaptive mirror-
prox (AdaProx) automatically detects whether the problem is smooth or not,
without requiring any prior tuning by the optimizer. As a result, AdaProx

simultaneously achieves order-optimal convergence rates, i.e., it converges
with a rate of O(1/T) iterations in smooth problems, and O(1/

√
T) in non-

smooth ones. Importantly, these guarantees do not require any of the standard
boundedness or Lipschitz continuity conditions that are typically assumed in
the literature; in particular, they apply even to problems with singularities
(such as resource allocation problems and the like). This adaptation is
achieved through the use of a geometric apparatus based on Finsler metrics
and a suitably chosen mirror-prox template that allows us to derive sharp
convergence rates for the methods at hand.

Moving forward, we finally illustrate the full potential of our results. Namely,
by employing the dual extrapolation (DualX) template run with a similar
adaptive learning as is AdaProx, we are able to show optimal convergence
rates for both deterministic and stochastic oracles and smooth and non-
smooth settings.

1.4 notational conventions

Throughout the sequel, V ∼= Rn will denote an n-dimensional space with norm ‖·‖
and V∗ will denote its (algebraic) dual. We will also write 〈w, x〉 for the canonical
pairing between w ∈ V∗ and x ∈ V , and ‖w‖∗ ≡ max{〈w, x〉 : ‖x‖ ≤ 1} for the
associated dual norm on V∗. We also use the notation Õ(·) to dismiss logarithmic
factors.





Part I
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2
P R E L I M I N A R I E S

The main objective of this introductory chapter is to present the basic concepts of
two general optimization scenarios: a) the time-varying setting of online convex

optimization (OCO); and b) the operator-based setting of variational inequalities (VIs).
In both frameworks, we seek to briefly review the main definitions, applications,
and state-of-the-art solution methods.

To begin with, the online convex optimization setting – presented in detail in
Section 2.1 – concerns decision-making processes that unfold in an otherwise
unknown and time-varying environment. More precisely, the optimizer is assumed
to be facing a sequence of convex losses ft which evolves from round to round,
possibly in an adversarial manner. This framework properly includes as special
cases the class of convex minimization problems, deterministic and/or stochastic;
these problems will be of individual interest throughout as well.

Moving forward, Section 2.2 provides a detailed description of an optimization
framework that goes beyond ordinary minimization problems – the general setting
of variational inequalities. This setup serves as a unifying framework for various
“convex-structured” optimization problems so, in addition to standard minimization
problems, it allows us to put under the same umbrella cases such as saddle-point,
fixed-point and Nash equilibrium problems.

Having described these two settings of interest, in Section 2.3 we discuss two
generic regularity conditions – boundedness and Lipschitz continuity of the defin-
ing operators of each problem class. Subsequently, in Section 2.4 we present the
general framework of first-order methods which will be our main candidate so-
lution methods. Moreover, we illustrate how the performance of these methods
is influenced under each specific regularity condition, by providing “worst-case”
optimal lower bounds. Finally, in Section 2.5 and Section 2.6 we present the state-
of-the-art first-order methods that match the optimal lower bounds along with
their adaptive counterparts.

2.1 online convex optimization

2.1.1 Problem setup and examples

We begin by presenting the core protocol of online convex optimization (OCO), i.e.,
when the optimizer faces a sequence of time-varying loss functions ft, t = 1, 2, . . . ,
one at a time. Formally, this can be described by the following sequence of events:

11
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1. At each round t = 1, 2, . . . , the optimizer chooses an action Xt from a convex
– but not necessarily closed or compact – subset X of an ambient normed
space V ∼= Rn.

2. The optimizer incurs a loss ft(Xt) based on some (a priori unknown) loss
function ft : X → (−∞,+∞] which is assumed to be proper, lower semi-
continuous (l.s.c.) and convex.

3. The optimizer updates their action and the process repeats.
Online Convex

Optimization Protocol This broad setting captures a wide range of convex problems, for instance, when
drawing different sample points from a large training set [31, 105]. To that end, we
distinguish below two iconic examples of OCO problems which are going to be of
individual interest in the sequel.

Example 2.1 (Static convex minimization). Consider a convex minimization prob-
lem of the general form:Convex Minimization

minimize f (x)

subject to x ∈ X
(Opt)

where f : X → R is a convex function. The notion of “stationarity” refers here to
the fact that (Opt) is obtained by the online protocol by assuming that the optimizer
faces at each round the same convex loss function, i.e., ft = f .

Example 2.2 (Stochastic convex minimization). A variant of (Opt) with important
applications to machine learning, distributed control and data science is the so-
called stochastic optimization problem:Stochastic Convex

Minimization

minimize f (x) = E [F(x; ω)]

subject to x ∈ X .
(StochOpt)

where F : X ×Ω→ R is a stochastic objective defined over a (complete) probability
space (Ω,F , P) and F(·; ω) is assumed convex for all ω ∈ Ω. Clearly, (StochOpt)
can be seen as a special case of an OCO protocol where the optimizer faces at each
round the convex loss function ft = F(·; ωt) with ωt drawn i.i.d. from Ω at each
round.

2.1.2 Performance evaluation and merit functions

The most widely used figure of merit in OCO problems is the optimizer’s regret.
Intuitively, this notion compares the average loss incurred by the agent to the
minimum loss they could have incurred in hindsight by playing a fixed x ∈ X .
Formally, the regret of a policy Xt ∈ X , t = 1, 2, . . . , against a “benchmark action”
x ∈ X is defined asRegret

Regx(T) =
T

∑
t=1

[ ft(Xt)− ft(x)] (2.1)

and we define the optimizer’s static (or external) regret (without any benchmark
quantifiers) as

Reg(T) = sup
x∈X

Regx(T) = sup
x∈X

T

∑
t=1

[ ft(Xt)− ft(x)]. (2.2)
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With all this in hand, a natural property that the optimizer would like to attain is
for their regret to remain “small” over time; this amounts to the requirement:

Regx(T) = o(T) for all x ∈ X . (2.3)

This, in turn, yields that on average the cumulative loss compared to the best No-Regret

action in hindsight becomes asymptotically non-positive.

For concreteness, we discuss below the implications of attaining no regret in the
special cases of static and stochastic minimization problems discussed above. To
begin with, if the optimizer is facing (Opt) while deploying an iterative method
generating the sequence of actions Xt, t = 1, 2, . . . , the regret given by (2.2) becomes

Regret Conversion

Reg(T) = Regx∗(T) =
T

∑
t=1

f (Xt)− T f (x∗) (2.4)

with x∗ ∈ arg minx∈X f (assumed here to be nonempty). Now, since f is assumed
to be convex, Jensen’s inequality shows that the performance (in terms of function
values) of the time-averaged sequence

XT =
1
T

T

∑
t=1

Xt (2.5)

is bounded by the optimizer’s regret as Optimality Gap

f (XT)− f (x∗) ≤ Reg(T)
T

(2.6)

In a similar fashion, if the optimizer is facing (StochOpt), we get Expected Optimality
Gap

E
[

f (XT)− f (x∗)
]
≤ E [Reg(T)]

T
. (2.7)

As a result, in view of (2.6) and (2.7), no-regret policies clearly guarantee an
“optimality gap” f (·)−minx∈X f (x) that vanishes asymptotically for the associated
time-average sequence Xt.

2.2 variational inequalities

2.2.1 Problem setup and examples

Despite the generality of OCO protocols, there are relevant instances that arise in
practice and which necessitate a framework for “optimization beyond minimiza-
tion”. A large class of such problems can be captured by the variational inequality
(VI) framework: Variational Inequality

Problem

Find x∗ ∈ X such that 〈A(x∗), x− x∗〉 ≥ 0 for all x ∈ X (VI)

where A : X → V∗ is a single-valued operator, which we call the problem’s defining
vector field. Moreover, for the time being we shall assume that the feasible region X
is a convex and closed subset of Rn. Following [40], we will refer to this problem as
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X

TC(x∗)

PC(x∗)

.
x∗

x

A(x∗)

Figure 2.1: Schematic representation of a variational inequality problem: the defining vector
field A at a solution x∗ of (VI) belongs to the polar cone PC(x∗) to X at x∗.

VI(X , A) and we will write X ∗ ≡ Sol(X , A) for its set of solutions.1 Moreover, to
avoid trivialities, we will also assume that the solution set X ∗ of (VI) is nonempty
and we will reserve the notation x∗ for solutions thereof.

In terms of blanket requirements, we will assume throughout that A is continu-
ous and monotone, i.e.,Monotone Operators

〈A(x)− A(x′), x− x′〉 ≥ 0 for all x, x′ ∈ X . (Mon)

This condition translates the notion of convexity to the language of operators:
indeed, if A = ∇ f for some smooth function f , then A satisfies (Mon). For a
panoramic overview of monotone operators we refer the reader to Bauschke and
Combettes [18]

For illustration purposes, we present some archetypal examples of such problems
below:

Example 2.3 (Function minimization). If A = ∇ f for some smooth convex function
f on X = Rn, solutions of (VI) coincide with the global minimizers of f , i.e., theMinimization Problems

solutions of (Opt).

Example 2.4 (Min-max optimization). Suppose that A = (∇x1 f ,−∇x2 f ) for some
real-valued function f (x1, x2) with x1 ∈ X1, x2 ∈ X2, and X1,X2 convex. If f isMin-Max Problems

convex-concave (i.e., convex in x1 and concave in x2), any solution x∗ = (x∗1 , x∗2) of
(VI) is a global saddle-point of f , i.e.,

f (x∗1 , x∗2) ≤ f (x1, x∗2) and f (x∗1 , x∗2) ≥ f (x∗1 , x2) (2.8)

for all x1 ∈ X1, x2 ∈ X2. Problems of this type have attracted considerable interest
in the fields of machine learning and artificial intelligence because they constitute
the basic optimization framework for GANs [46]. For a series of recent papers
focusing on this interplay, see [37, 43, 69, 81, 116] and references therein.

Convex Games

Example 2.5 (Convex Games). A continuous game in normal form is defined as
follows: Consider a finite set of players N = {1, . . . , N}, each with their own

1 In the literature, this formulation of the problem is sometimes referred to as a Stampacchia [40] or
“strong” variational inequality [56, 90]. This is to distinguish with the Minty or “weak” variational
inequality; these two formulations are equivalent when A is monotone, so we will not distinguish
between them in the sequel.
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action space Xi ⊂ Rni (convex but possibly not closed). During play, each player
selects an action xi from Xi with the aim of minimizing a loss determined by the
ensemble x ≡ (xi; x−i) = (x1, . . . , xN) of all players’ actions. In more detail, writing
X = ∏i Xi for the game’s total action space, we assume that the loss incurred by
the i-th player is `i(xi; x−i), where `i : X → R is the player’s loss function.

In this context, a Nash equilibrium is any action profile x∗ ∈ X that is unilaterally
stable, i.e.,

`i(x∗i ; x∗−i) ≤ `i(xi; x∗−i) for all xi ∈ Xi and all i ∈ N . (NE)

In most cases of interest, the players’ loss functions are individually subdifferentiable
on a subset X ′ of X with riX ⊆ X ′ ⊆ X [51, 102]. This means that there exists a
(possibly discontinuous) vector field Ai : X → Rni such that

`i(x′i ; x−i) ≥ `i(xi; x−i) + 〈Ai(x), x′i − xi〉 (2.9)

for all x ∈ X ′, x′ ∈ X and all i ∈ N [51]. In the simplest case, if `i is differentiable
at x, then Ai(x) can be interpreted as the gradient of `i with respect to xi. In turn,
this means that Nash equilibria of the game are solutions of VI(X , A).

2.2.2 Merit functions

Due to the lack of a single objective function the quality of a candidate solution of
(VI) becomes much trickier to assess compared to the minimization case. To that
end, we start with the unconstrained case, i.e., when X = Rn. Then (VI) is reduced
to the zero-finding problem: Stationarity Problem

Find x∗ ∈ Rn such that A(x∗) = 0 (Zer)

Therefore, a natural performance criterion of a given policy Xt for this case would
be to examine how fast ‖A(Xt)‖∗ converges to 0. 2

However, if X is a strict subset of Rn, i.e., when we are facing a genuine
constrained problem, then the operator may not necessarily vanish at a solution
of (VI). Therefore, we shall need a more general measure in order to be able to
capture cases where the solution lies on the border of the domain X .

A popular performance criterion in this context is that of the restricted merit
function, first introduced in [11, 12]: Gap Function

GapC(x̂) = supx∈C〈A(x), x̂− x〉, (2.10)

where the “test domain” C is a nonempty convex subset of X [40, 56, 90]. The
following proposition generalizes earlier characterizations by [11, 90] and justifies
the use of GapC(x) as a merit function for (VI); since every solution of (VI) is a
zero of (2.10) and vice versa.

Proposition 2.1 (6). Let C be a nonempty convex subset of X . Then: a) GapC(x̂) ≥ 0
whenever x̂ ∈ C; and b) if GapC(x̂) = 0 and C contains a neighborhood of x̂, then x̂ is a
solution of (VI).

2 Recent developments on convergence results and rates can be found in [45, 117] and references therein.
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Proof. Let x∗ ∈ X be a solution of (VI) so 〈A(x∗), x− x∗〉 ≥ 0 for all x ∈ X . Then,
by monotonicity, we get:

〈A(x), x∗ − x〉 ≤ 〈A(x)− A(x∗), x∗ − x〉+ 〈A(x∗), x∗ − x〉
= −〈A(x∗)− A(x), x∗ − x〉 − 〈A(x∗), x− x∗〉 ≤ 0, (2.11)

so GapC(x∗) ≤ 0. On the other hand, if x∗ ∈ C, we also get Gap(x∗) ≥ 〈A(x∗), x∗−
x∗〉 = 0, so we conclude that GapC(x∗) = 0.

For the converse statement, assume that GapC(x̂) = 0 for some x̂ ∈ C and
suppose that C contains a neighborhood of x̂ in X . First, we claim that the
following inequality holds:

〈A(x), x− x̂〉 ≥ 0 for all x ∈ C. (2.12)

Indeed, assume to the contrary that there exists some x1 ∈ C such that

〈A(x1), x1 − x̂〉 < 0. (2.13)

This would then give

0 = GapC(x̂) ≥ 〈A(x1), x̂− x1〉 > 0, (2.14)

which is a contradiction. Now, we further claim that x̂ is a solution of (VI),i.e.,:

〈A(x̂), x− x̂〉 ≥ 0 for all x ∈ X . (2.15)

If we suppose that there exists some z1 ∈ X such that 〈A(x̂), z1 − x̂〉 < 0, then, by
the continuity of A, there exists a neighborhood U′ of x̂ in X such that

〈A(x), z1 − x〉 < 0 for all x ∈ U′. (2.16)

Hence, assuming without loss of generality that U′ ⊂ U ⊂ C (the latter assumption
due to the assumption that C contains a neighborhood of x̂), and taking λ > 0
sufficiently small so that x = x̂ + λ(z1 − x̂) ∈ U′, we get that 〈A(x), x − x̂〉 =
λ〈A(x), z1 − x̂〉 < 0, in contradiction to (2.12). We conclude that x̂ is a solution of
(VI), as claimed.

2.3 lipschitz regularity

Having described the problems of interest, besides the structural assumption of
convexity (or monotonicity for the (VI) context) there are two additional regular-
ity conditions which heavily determine the performance of the respective merit
functions of each framework. In what follows, we shall present them in a nutshell.
More precisely, given an operator A : X → Rn we have the following definitions:

1. A is bounded, i.e., there exists some positive constant G > 0 such that :Bounded Operators

‖A(x)‖∗ ≤ G for all x ∈ X (Bd)

2. A is Lipschitz continous, i.e., there exists some positive constant β > 0 such
that :Lipschitz Continuous

Operators
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‖A(x)− A(x′)‖∗ ≤ β‖x− x′‖ for all x, x′ ∈ X (LC)

As said these conditions play a crucial role in determining the performance of the
various algorithmic methods at play; this fact will become apparent in Section 2.4.

Now, when A = ∇ f for some convex objective f , (Bd), (LC) give rise to a series
of explicit properties for f . Starting with (Bd) one can straightforwardly derive
that said property essentially boils to Lipschitz continuity of f ,i.e., : Lipschitz Objectives

| f (x)− f (x′)| ≤ G‖x− x′‖ for all x, x′ ∈ X (2.17)

On the other hand under (LC), f satisfies the descent inequality Descent Inequality

f (x′) ≤ f (x) + 〈∇ f (x), x′ − x〉+ β

2
‖x′ − x‖2 for all x, x′ ∈ X , (2.18)

which lies at the core of the success of first order "descent" methods. In particular,
we have the following proposition: Smoothness Properties

Proposition 2.2. Assume that X is a convex and closed subset of Rn and f : X → R is a
continuously differentiable convex function on intX . Then, the following statements are
equivalent:

1. ∇ f satisfies (LC)

2. f satisfies (2.18)

3. β
2 ‖·‖2 − f is a convex function

4. 〈∇ f (x)−∇ f (x′), x− x′〉 ≤ β‖x− x′‖2 for all x, x′ ∈ X

Finally, a quite interesting equivalence holds whenever X = Rn which is known
as the Baillon-Haddad theorem [15]. In particular, we have: Baillon-Haddad Theorem

Theorem 2.3. Assume that f : Rn → R is a continuously differentiable convex function.
Then, the following statements are equivalent:

1. ∇ f satisfies (LC)

2. ∇ f is 1/β- cocoercive3:

1
β
‖∇ f (x)−∇ f (x′)‖2

∗ ≤ 〈∇ f (x)−∇ f (x′), x− x′〉 for all x, x′ ∈ Rn (2.19)

2.4 first-order methods

Now we turn our attention towards the respective iterative solution methods. In
particular, our focal point would be the so-called first-order methods, i.e., methods
that require at each iteration access on a first order/ gradient feedback. The
surge of recent breakthroughs in machine learning and artificial intelligence has
reaffirmed the prominence of these methods in solving large-scale optimization

3 For a panoramic overview of cocoercive operators we refer the reader to [18]
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problems. One of the main reasons for this is that the computation of higher-order
derivatives of functions with thousands – if not millions – of variables quickly
becomes prohibitive; another is that gradient calculations are typically easier to
distribute and parallelize, especially in large-scale problems. In view of this, first-
order methods have met with prolific success in many diverse fields, from machine
learning and signal processing to wireless communications, nuclear medicine, and
many others [30, 103, 108]. In what follows, we present the main structure of these
methods combined with the respective optimal lower bounds.

2.4.1 Oracle mechanism and feedback

From an algorithmic point of view, we aim to solve (Opt) and/or (VI) by using
iterative methods that require access to a stochastic first-order oracle (SFO) [89]. This
means that, at each stage of the process, the optimizer can query a black-box
mechanism that returns an estimate of the objective’s gradient (or subgradient)
at the queried point. Formally, when called at x ∈ X , an SFO is assumed to
return a random (dual) vector V(x; ω) ∈ V∗ where ω belongs to some (complete)
probability space (Ω,F , P). In practice, the oracle will be called repeatedly at a
(possibly) random sequence of points Xt ∈ X generated by the algorithm under
study. Thus, once Xt has been generated at stage t, the oracle draws an i.i.d. sample
sample ωt ∈ Ω and returns the dual vector:First Order Oracle

Vt ≡ V(Xt; ωt) = A(Xt) + Ut (SFO)

with Ut ≡ U(Xt; ωt) ∈ V∗ denoting the “measurement error” of the oracle. In
terms of measurability, we will write Ft for the history (natural filtration) of Xt; in
particular, Xt is Ft-adapted, but ωt, Vt and Ut are not.

Finally, we will also make the following statistical assumptions. First, we shallFirst Order Oracle’s
Statistics assume that (SFO) is an unbiased estimator:

E[Ut | Ft] = 0 (2.20)

Moreover, we shall assume that for some (known) q ∈ (2,+∞] we have:

‖Ut‖Lq ,∗ = E[‖Ut‖q
∗]

1/q ≤ σ2 for all t = 1, 2, . . . (2.21)

For concreteness, we will refer to the oracles with σ = 0 as "perfect" – since, in
that case, Ut = 0 for all t almost surely. Otherwise, if ‖Ut‖Lq ,∗ > 0 the noise will
be called persistent and the model will be called stochastic.

2.4.2 Lower bounds

With all this in hand, the first question that arises is what is the worst perfor-
mance that the optimizer may expect and how is this influenced by the different
feedback and regularity conditions at play. The answer to the above question is
formally stated by the notion of worst-case lower bounds and differs depending on
the respective setting. So, we shall investigate each setting individually.
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• Online Convex Optimization/ Stochastic Minimization: We begin with the on-
line convex optimization framework. More precisely, under (Bd) the regret
optimal lower bound is

Reg(T) = Θ(1/
√

T) (2.22)

Moreover, (LC) does not help the optimizer to improve upon this lower Regret Lower Bound

bound [1].

• Static Convex Minimization: Now, we turn our attention towards the particular
case of (Opt). We distinguish the deterministic (σ = 0) and the (purely) Convex Minimization

Lower Boundsstochastic (σ > 0) instances of (SFO). Starting with the deterministic one,
the sub-optimality gap for first-order methods with perfect gradient input
possesses a "worst-case" guarantee

f (XT)− f (x∗) = Ω(1/
√

T) (2.23)

under (Bd). This guarantee is improved significantly, i.e.,

f (XT)− f (x∗) = Ω(1/T2) (2.24)

whenever (LC) kicks in [89]. On the other hand, if the optimizer has only
access to stochastic gradients (as is often the case in machine learning and
distributed control), the corresponding lower bound for the expected sub-
optimality gap is

E[ f (XT)− f (x∗)] = Ω(1/
√

T) (2.25)

For details we refer the reader to [30, 86, 89].

• Variational inequalities: Finally, we describe the worst case guarantees for the
generic framework of (VI). In doing so, if the optimizer has access to a perfect Variational Inequality

Lower Bound(SFO) oracle then the respective optimal lower bound for the restricted merit
function (2.10) under (Bd) is:

GapC(XT) = Ω(1/
√

T), (2.26)

while under (LC) a lower bound of Θ(1/T) is achievable [83, 84]; the latter
illustrates also a significant gap between VI’s and the static smooth minimiza-
tion setting. Finally, for a purely stochastic (SFO) the respective lower bound
relative to the restricted merit function (2.10) would be that of Θ(1/

√
T)

under (Bd).

2.5 first-order methods for online convex optimization

2.5.1 Gradient descent and its primal-dual variant

For OCO, the most popular first order methods are the so called greedy/lazy (pro-
jected) gradient descent algorithms. In what follows, we describe these methods in
detail.

To start with, the greedy version is defined formally as: Gradient Descent

Xt+1 = prX (Xt − γtVt) (GD)
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Figure 2.2: Schematic representation of (projected) gradient descent.

X

X1

Y2

Xeager
2 = Xlazy

2

Y3

Xlazy
3

Xeager
3

+γ1V1

+γ2V2
+γ2V2

Figure 2.3: Lazy vs. ordinary gradient descent.

In the above prX (x) = arg minx′∈X ‖x′ − x‖ denotes the euclidean projection onto
the convex and closed feasible domain X , γt > 0 is the method’s step-size and
Vt is the (SFO) feedback at Xt. We refer to (GD) also as greedy gradient descent in
order to distinguish it from the so-called lazy variant [105] which is defined by the
following recursion:Lazy Gradient Descent

Yt+1 = Yt − γtVt

Xt+1 = prX (Yt+1)
(LGD)

A different perspective of the above method is given by the so-called dual
averaging scheme, originally introduced by Nesterov in [91] and further developed
in [115]. This is formally given by the following recursion:Dual Averaging

Yt+1 = Yt −Vt

Xt+1 = prX (ηt+1Yt+1)
(DA)

More precisely, the critical difference between (LGD) and (DA) is that in the latter
the learning rate ηt changes its role. In particular, in (DA) ηt acts as a post-multiplier
over the ensemble aggregation of Vt instead of allocating a specific weight on each
individual Vt. As we discuss in the sequel this key feature of (DA) would enable
us to deal with unbounded feasible domains X .

2.5.2 Performance guarantees

We now proceed to describe the regret minimization guarantees of the family of
algorithms presented in Section 2.5.1. More precisely, if (GD)/(LGD) are run with
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a "horizon"-dependent step-size policy γt ≡ 1/
√

T4 we have the following the
proposition [105, 122]: Regret of Descent

Variants
(Horizon-dependent

step-size)Proposition 2.4. Assume that Xt are the iterates of (GD) or (LGD) run with a step-
size γt = 1/

√
T and a "perfect" oracle feedback. Then, if ft satisfies (2.17). for all

t = 1, 2, . . . , T with supt‖∇ ft(x)‖2
∗ ≤ G, we have:

1
T

[
T

∑
t=1

ft(Xt)−
T

∑
t=1

ft(x)

]
= O

(
‖X1 − x‖2 + G2

√
T

)
for all x ∈ X (2.27)

Some comments concerning the particular step-size are in order. More precisely,
this step-size policy is based on the idea on dividing the infinite play into epochs
(or time-windows) of length T. Hence, the optimizer practically applies a constant,
within the time window [1, T] and then repeats the same idea for the next window
[T, 2T] and the procedure repeats to infinity. Moreover, if the feasible domain X
is a compact set, one may apply a "dynamic" step-size γt ∝ 1/

√
t and derive an

"any-time" regret bound in contrast to that of Proposition 2.4. This is described by
the following proposition. Regret of Descent

Variants (Dynamic
step-size)Proposition 2.5. Assume that X is a compact set and let Xt be the iterates of (GD) or

(LGD) run with γt ∝ 1/
√

t and a "perfect" oracle feedback. Then, if ft satisfy (2.17) with
supt‖∇ ft(x)‖2

∗ ≤ G2, we have:

1
T

[
T

∑
t=1

ft(Xt)−
T

∑
t=1

ft(x)

]
= O

(
diamX + G2

√
T

)
for all x ∈ X (2.28)

where diamX = supx,x′∈X ‖x− x′‖.

Moving forward our next step is to illustrate the respective regret guarantees
for (DA). Similarly with the above guarantees we have the following result for the
(DA) [115]: Regret of Dual

Averaging

Proposition 2.6. Assume that Xt are the iterates of (DA) run with a learning rate ηt ∝
1/
√

t and a "perfect" oracle feedback. Then, if ft satisfy (2.17) with supt‖∇ ft(x)‖2
∗ ≤ G2,

we have:

1
T

[
T

∑
t=1

ft(Xt)−
T

∑
t=1

ft(x)

]
= O

(
‖x‖2 + G2
√

T

)
for all x ∈ X (2.29)

An important difference between Proposition 2.5 and Proposition 2.6 is that in
the latter no compactness-or rather boundedness- assumption for the domain X is
required.

2.5.3 Sub-optimality for smooth minimization and accelerated methods

In this section we shall investigate the particular case of (Opt) in a more detailed
manner in accordance to the optimal worst case lower bounds (cf. Section 2.4.2).

4 The choice of such a step-size assumes a prior knowledge of the horizon of the process and is also
referred to as "doubling" trick [105]



22 preliminaries

In doing so, the first candidate would be the (GD) methods presented in Sec-
tion 2.5.1. More precisely, we first describe their performance under the different
regularity conditions (Bd) and (LC). A preliminary result under (Bd) can be ob-
tained via a straightforward adaptation of Propositions 2.5 and 2.6; more precisely
this yields that under (Bd):

f (Xt)− f (x∗) = O(1/
√

T) (2.30)

with XT denoting the time average of the (GD)/(LGD) and (DA) iterates run with a
step-size policy γt ∝ 1/

√
t. Hence, the generic (GD) algorithms exhibit an optimal

convergence rate within this class of objectives.

That said, the situation changes drastically under (LC). For that particular
case, (GD) and (LGD) run with a constant step-size γt ≡ γ ≤ 1/β guarantees
a performance rate of order O(1/T). This result confirms the sub-optimality of
(GD) family of methods for smooth deterministic minimization problems, since its
performance does not match the iconic 1/T2 lower bound. This 1/T2 rate was first
achieved by Nesterov in his seminal paper [88]. This algorithm has since generated
an immense literature with several hallmark contributions like the fast iterative
shrinkage-thresholding algorithm (FISTA) method,[21], for composite minimiza-
tion problems and many others. More precisely, following [13] we consider the
improved interior gradient algorithm (IGA) algorithm:Acceleration Schemes

Yt = (1− λt)Xt + λtZt

Zt+1 = prX (Zt −
λt

β
Vt)

Xt+1 = (1− λt)Xt + λtZt+1

(IGA)

with the weight sequence λt being defined recursively as follows:

1− λt+1

λ2
t+1

=
1

λ2
t

(2.31)

The crucial difference of (IGA) is the particular averaging part that serves as an
acceleration mechanism of the (GD) template. This is described formally by the
following proposition.Acceleration Rate

Proposition 2.7. Assume that Xt are the iterates of (IGA) run with a step-size given by
(2.31). Then, if f satisfies (LC) we have:

f (Xt)− f (x∗) ≤ 2β‖X1 − x∗‖2

T2 (2.32)

Variants of this method can be also found in [49].

2.6 optimal methods: the variational inequality case

2.6.1 Extra-Gradient method and its primal-dual variant

Now we turn our attention towards defining optimal iterative methods for (VI).
Perhaps the most widely used solution method for VIs is the EG algorithm of
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Figure 2.4: Schematic representation of the extra-gradient algorithm.

Korpelevich (1976) and its variants [74, 99, 100]. This algorithm has a rich history
in optimization, and it has recently attracted considerable interest in the fields of
machine learning and AI, see e.g., [33, 37, 43, 52, 53, 81, 82] and references therein.
In its simplest form, for problems with closed and convex domains, the algorithm
proceeds recursively as

Xt+1/2 = prx(Xt − γtVt)

Xt+1 = prX (Xt − γtVt+1/2)
(EG)

In a nutshell (EG) suggests first to generate a leading state Xt+1/2 by taking a Extra-Gradient

"gradient" step as usual. Then, instead of continuing from Xt+1/2, (EG) samples
Vt+1/2 and goes back to the original state Xt in order to generate a new state Xt+1
via a "gradient" step along the direction of Vt+1/2.

Let us now present its primal-dual counterpart, firstly introduced by Nesterov
in [90]. In particular, the (euclidean based) dual extrapolation (DualX) method is
given via the following recursive formula: Dual Extrapolation

Xt+1/2 = prx(Xt − γtVt)

Yt+1 = Yt −Vt+1/2

Xt+1 = prX (γt+1Yt+1)

(DualX)

In turn, the (DualX) template hinges on a combination of the (GD) and (DA)
methods. In particular, it suggests the following updating rule: first generate
a leading state Xt+1/2 by taking a "gradient" step as in (EG) and again samples
Vt+1/2. Then, the method aggregates these feedbacks and finally the method’s
update is obtained by applying a dual averaging step.

2.6.2 Performance guarantees

Building on the templates of (EG) and (DualX) in this section we present the
performance guarantees (in terms of the restricted merit function (2.10)) under the
light of the different regularity conditions (Bd) and/or (LC). Starting with the (EG)
template, we have the proposition for the case where A is not necessarily Lipschitz
continuous:
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Proposition 2.8 (Juditsky et al. [56]). Assume that Xt, t = 1, 1/2, . . . are the iterates
of (EG) with an oracle satisfying (SFO) with σ2 > 0 and A satisfies (Bd). Moreover, letExtra-Gradient

Guarantees (Stochastic)
XT =

[
∑T

t=1 γt

]−1
∑T

t=1 γtXt+1/2, let C be a compact neighbourhood of a solution of the

(VI) and set D2 = supx∈C‖x− X1‖2. Then, if (EG) run with a decreasing (deterministic)
step-size γt satisfies the following estimate:

E
[
GapC(XT)

]
≤

D2 +
[
G2 + σ2]∑T

t=1 γ2
t

∑T
t=1 γt

(2.33)

In particular, if (EG) is run with γt ∝ 1/
√

t, then

E
[
GapC(XT)

]
= O(1/

√
T) (2.34)

We distinguish the "perfect" (SFO) case, i.e., σ2 = 0, where the particular influ-
ence of the respective regularity conditions becomes more apparent. In particular,
this is illustrated by the following result.Extra-Gradient

Guarantees
(Deterministic) Proposition 2.9 (Nemirovski [85]). Assume that Xt, Xt+1/2 are the iterates of (EG) with

a "perfect" (SFO) and A satisfies (Bd). Let us denote XT =
[
∑T

t=1 γt

]−1
∑T

t=1 γtXt+1/2,

C is a compact neighbourhood of a solution of the (VI) and D = supx∈C‖x− X1‖2. Then,
the following hold:

1. Under (Bd) then,

GapC(XT) ≤
D + G2 ∑T

t=1 γ2
t

∑T
t=1 γt

(2.35)

In particular, if γt ∝ 1/
√

t, then GapC(XT) = O(1/
√

T)

2. Under (LC) and 0 < inft γt ≤ γt ≤ 1/β then,

GapC(XT) ≤
D

2T inft γt
(2.36)

On the other the hand, for the (DualX) template we may obtain similar con-
vergence rate guarantees by consider the time average, 1/T ∑T

t=1 Xt+1/2, as the
method’s output. Formally, we have the following proposition.5Dual-Extrapolation

Guarantees (Stochastic)
Proposition 2.10. Assume that Xt, Xt+1/2 are the iterates of (DualX) with an oracle
satisfying (SFO) with σ2 > 0. Moreover, XT = 1/T ∑T

t=1 Xt+1/2 and C is a compact
neighbourhood of a solution of the (VI) and D2 = supx∈C‖x− X1‖2. Then, if (DualX) is
run with a (deterministic) decreasing step-size γt the following holds:

E
[
GapC(XT)

]
≤

D +
[
G2 + σ2]∑T

t=1 γt

T
(2.37)

In particular, if (DualX) is run with γt ∝ 1/
√

t then

E
[
GapC(XT)

]
= O(1/

√
T). (2.38)

5 Proposition 2.10 hinges on the methodology of. the Dual-Extapolation method of [91]. However, we are
not aware of a specific paper which provides a proof for it. We revisit this from a more general point of
view in Chapter 7.
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Now in the same spirit as for the (EG) for the deterministic case we obtain the
respective range of rates as in Proposition 2.11: Dual- Extrapolation

Guarantees
(Deterministic)Proposition 2.11 (Nesterov [91]). Assume that Xt, Xt+1/2 are the iterates of (DualX)

with a "perfect" (SFO). Moreover, let us denote XT = 1/T ∑T
t=1 Xt+1/2, C is a compact

neighbourhood of a solution of the (VI) and D2 = supx∈C‖x− X1‖2. Then, the following
hold:

1. Under (Bd) then,

GapC(XT) ≤
D + G2 ∑T

t=1 γt

T
(2.39)

In particular, if and γt ∝ 1/
√

t then GapC(XT) = O(1/
√

T).

2. Under (LC) and γt ≤ 1/β then,

GapC(XT) ≤
D
T

(2.40)

As one may observe the set of results presented above rely their success on prior
knowledge of the Lipschitz modulus of the associated operator. In what follows,
we describe the state-of-the-art methods which transcend this restriction.

2.7 adaptive methods

Having described the performance guarantees under different regularity conditions
and step-sizes, we move forward by introducing a range of "adaptive" methods
that automatically detect the level of regularity in the problem and the quality of
the oracle. In particular, adaptivity of a method refers (at least) to two different
scenarios:

• The method automatically adjusts its performance to parameters within a
fixed operator class (Lipschitz/Hölder smoothness and the like).

• The method automatically detects the respective Lipschitz modulus at hand
and exhibits (optimal) rate interpolation guarantees between different classes-
for example between non-smooth and smooth objectives etc.6

Of course, one may straightforwardly recognize the fact that the second type
properly includes the other two. In Section 2.7.1 and Section 2.7.2, we squarely
focus on the latter. Moreover, in what will follow we address each framework
individually.

2.7.1 The minimization case

We assume first that the optimizer is facing an unconstrained (Opt) version and/or
(StochOpt). For this particular framework one may show that the (GD) template
run with the adaptive step-size of the form: AdaGrad Step-Size

γt =
1√

∑t
j=1‖Vj‖2∗

(2.41)

6 The methods that satisfy this property are also denoted in the literature as universal.
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achieve the following convergence rate:

• For the deterministic case, (GD) run with the step-size policy (2.41) interpo-
lates between O(1/

√
T) for non-smooth and stochastic regimes and O(1/T)

whenever smoothness kicks in.

• For the stochastic case, guarantees an O(1/
√

T) under (Bd) and O( β
T + σ√

T
)

under (LC).

Remark 2.1. This iterative scheme is often refered as adaptive inverse-norm-squared
(AdaNorm) and is a simplified variant of the general AdaGrad firstly introduced
in [39, 76].

More precisely, the following result describes formally the above properties for
(GD). For detailed proof we defer the reader to [67].AdaGrad Guarantees

Proposition 2.12 (Levy et al. [67]). Assume Xt are the iterates of (GD) run with adaptive
step-size policy (2.41) and an oracle feedback of the form (SFO) and XT = 1/T ∑T

t=1 Xt.
Moreover we assume that supt∈N‖Xt − x∗‖ ≤ D. Then the following hold:

1. Under (Bd) we have:

E
[

f (XT)− f (x∗)
]
≤ D2(G + σ)

2
√

T
(2.42)

2. Under (LC) we have:

E
[

f (XT)− f (x∗)
]
≤ βD2

T
+

σD√
T

(2.43)

The above result indicates that even if (GD) is run with an adaptive step-size
this does not seem to match the worst-case 1/T2 lower bound remaining sub-
optimal for smooth objectives. In order to overcome this and achieve an adaptive
optimal rate interpolation from O(1/

√
T) to O(1/T2), more elaborate schemes are

required.

The first result of this kind is done by Nesterov in [92]; in particular it shown
that under "perfect" oracle feedback an optimal rate interpolation for objectives
with gradient whose variance satisfy: For some β > 0 and q ∈ [0, 1]7:

‖∇ f (x)−∇ f (x′)‖∗ ≤ β‖x− x′‖q for all x, x′ ∈ Rn (2.44)

That said, since this result requires a perfect oracle feedback in an essential man-
ner er we shall not dive into more detail. A different approach which captures
adaptivity even for noisy settings is to mimic the idea of (2.41); a step-size that is
updated "on the fly". That idea is incarnated by AcceleGrad [67] and Unixgrad [60]
methods for the unconstrained and the constrained case. In particular, for X = Rn

the Accelegrad method suggests:AcceleGrad Scheme

Xt+1 = λtZt + (1− λt)Yt

Zt+1 = prK(Zt − αtγtVt)

Yt+1 = Xt+1 − γtVt

(AcceleGrad)

7 Of course (2.44) includes the classes of (Bd) and (LC) as extreme cases for q = 0 and q = 1 respectively.
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Some notational comments are here in order to describe each part of the method.
In particular, K is a convex and compact subset of Rn and denotes a "domain of
interest",i.e., an initial speculation of a subset where the global minimizer lives.
Moreover, D denotes the diameter of K. In terms of the weighting sequences we
set αt = t, λt = 1/αt. Having all this in hand, the method’s step-size step-size is
defined:

γt = 2D

√√√√θ2 +
t

∑
j=1

α2
j ‖Vj‖2∗

−1

(2.45)

The following result describes the precise convergence rates of (AcceleGrad); for
details we refer the reader to [67]. AcceleGrad Guarantees

Proposition 2.13 (Levy et al. [67]). Assume that Yt are the iterates of (AcceleGrad)

and let YT =
[
∑T

t=1 αt

]−1
∑T

t=1 αtYt with oracle feedback satisfying (SFO). Then, the
following hold:

1. If σ = 0, then

• Under (Bd) we have:

f (YT)− f (x∗) ≤
GD

√
log T√
T

(2.46)

• Under (LC) we have:

f (YT)− f (x∗) ≤ DG2 + βD2 log(βD/G)

T2 (2.47)

2. If σ > 0, then

E
[

f (YT)− f (x∗)
]
≤

GD
√

log T√
T

(2.48)

Now, we turn our attention towards the constrained setting and the (UniXGrad)
method, which hinges on the (EG) template. More precisely, this is given by the UniXGrad Scheme

following:
Xt+1/2 = prX (Xt − αtγtVt)

Xt+1 = prX (Xt − αtγtVt+1/2)
(UniXGrad)

The crucial difference with generic (EG) is that Vt and Vt+1/2 are the oracle queries
for the gradient evaluated at the averaged points:

Xt =
αtXt + ∑t−1

j=1 αjXj+1/2

∑t
j=1 αj

and Xt+1/2 =
∑t

j=1 αjXj+1/2

∑t
j=1 αj

(2.49)

with αt = t. Having induced this acceleration mechanism in the (EG) routine, one
may obtain the first result concerning the universal properties of (UniXGrad) for
the deterministic framework. UniXGrad Guarantees

Proposition 2.14 (Kavis et al. [60]). Assume that Xt t = 1, 1/2, . . . are the iterates of
(UniXGrad) under an oracle of the form (SFO). Then, we have the following:
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1. If f satisfies (Bd), then,

E
[

f (XT+1/2)− f (x∗)
]
≤ 6D

T2 +
14σD√

T
(2.50)

2. If f satisfies (LC), then,

E
[

f (XT+1/2)− f (x∗)
]
≤ 224

√
14D2L

T2 +
14
√

2σD√
T

(2.51)

An important remark concerning Proposition 2.14 is that the compactness as-
sumption for the feasible region X is crucial for establishing the desired agnostic
rate interpolation.

2.7.2 The variational inequality case

Now we move forward towards adaptive methods for (VI). To that end a reasonable
candidate would be that of the (EG). Indeed, in [14] a novel adaptive step-size is
proposed for constrained (VI) problems in the following manner: If X is convex
and compact with diamX = D, then, Bach-Levy in [14] propose:Universal

Extra-Gradient

γt =
2D√

θ2 + ∑t−1
j=1 Z2

j

(2.52)

with θ > 0 being an arbitrarily chosen positive constant and Z2
j :

Z2
j =
‖Xj+1/2 − Xj‖2 + ‖Xj+1/2 − Xj+1‖2

γ2
j

(2.53)

As it becomes apparent the (2.53) is the crucial ingredient of the adaptive step-size
(2.52). In terms of convergence rate guarantees for the stochastic case [14] provides
us the following result:Universal

Extra-Gradient
Guarantees Proposition 2.15 (Bach and Levy [14]). Assume that Xt, Xt+1/2 are the iterates of

(EG) un with the adaptive step-size policy (2.52) and an oracle feedback of the form
(SFO). Moreover, assume that XT = 1/T ∑T

t=1 Xt+1/2 and C is a convex and compact
neighbourhood of a solution x∗ of the (VI). Then, the following hold:

1. If A satisfies (Bd), then

E
[
GapC(XT)

]
≤

αD(G + σ)
√

log T√
T

(2.54)

2. If A satisfies (Bd) and (LC), then

E
[
GapC(XT)

]
≤ αGD + α2βD2 + βD2 log βD/θ0

T
+

α√
T

(2.55)

The analysis of Proposition 2.15 is that in order to achieve rate adaptivity, even
for the case of perfect oracle feedback hinges on the following limitations:
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• Compactness of the feasible domain X .

• The associated operator A should satisfy simultaneously both (Bd) and (LC).

As a prelude of our contributions our general beyond Lipschitz analysis will allow
us to drop both these restrictions.





3
B E Y O N D L I P S C H I T Z R E G U L A R I T Y

# This section incorporates material from the papers [6–8]

Throughout this chapter we focus on extending the Lipschitz regularity condi-
tions presented in Section 2.3. Even though boundedness and Lipschitz continuity

conditions (Bd) and (LC) appear to be fairly mild, they may fail to hold in a wide
array of practical applications. These unboundedness issues also arise for the
case of bounded domains. Indeed, consider as a toy example the 1- dimensional
minimization objective:

f (x) = − log x for x > 0. (3.1)

In that case, since ∇ f (x) = − 1
x , one may straightforwardly verify that ∇ f remains

unbounded for all positive intervals that include the origin; so it fails to satisfy both
(Bd) and (LC). The main objective would be to design efficient definitions which
are able to account for possible "blow ups" of the associated operators. In doing
so, one should apply more "geometry aware" toolkits than the standard geometry-
blind Euclidean setup of the previous chapter. Therefore in Section 3.2 we present
two frameworks of that kind. We first describe the notion of a regularization
function (or regularizer for short) along with the associated Bregman divergence.
The Bregman divergence will serve in the sequel as a generalized distance function
surrogate; despite the fact that it is not a distance function per se (it does not satisfy
neither symmetry nor the triangle inequality). Moreover, drawing arguments from
differential geometry we provide an alternative approach based on the notion of
a Finsler metric. This framework allows us to induce families of local1 norms
over the ambient space which are able to capture the geometry of the feasible
region in a more efficient way. Armed with these mathematical tools, we introduce
in Section 3.3 and Section 3.4 the main classes of objectives that transcend the
traditional Lipschitz regularity conditions. To motivate all the above, we first
present some prominent examples of widely studied problems with "gradient
singularities" in Section 3.1.

3.1 motivating examples

3.1.1 Poisson Inverse Problems
Poisson Inverse
ProblemsMany problems in machine learning and the imaging sciences focus on the recon-

struction of an unknown object from a set of imperfect observations (e.g., noisy 2D

1 Local for this context refers to the fact that the said family of norms dependents on the point upon
which it is evaluated.

31
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cross-sections of a 3D object). This is especially true in the fields of emission to-
mography and optical/infrared astronomy, where images are obtained by counting
particles (usually photons) reaching a detector. In this case, factors such as fluores-
cence emissions, radioactive decay and thermal noise can severely affect particle
counts, typically by introducing Poisson-distributed errors in the measurement
process [22].

Mathematically, inverse problems of this kind boil down to solving linear systems
of the form

y = Hx + z (3.2)

where:
• x ∈ Rn

+ is the object under study (a signal, image, . . . ).

• y ∈ Rm
+ is the observed data (usually m� n).

• The kernel matrix H ∈ Rm×n
+ is a representation of the data-gathering protocol

and is typically ill-conditioned (e.g., a Toeplitz matrix in the case of image
deconvolution problems).

• z ∈ Rm is the noise affecting the measurements.

When data points are obtained by means of a counting process, measurements
can be modeled as Poisson random variables of the form yj ∼ Pois(Hx)j. 2 Then,
up to an additive constant, the log-likelihood of x ∈ Rn given an observation
y ∈ Rm will be

`(x; y) = −
m

∑
j=1

[
yj log

yj

(Hx)j
+ (Hx)j − yj

]
. (3.3)

Hence, obtaining a maximum likelihood estimate for x leads to the archetypal
Poisson inverse problem:

minimize f (x) ≡ DKL(y, Hx),

subject to x ∈ Rn
+,

(PIP)

where DKL(p, q) = ∑m
j=1[pj log(pj/qj) + qj − pj] denotes the generalized KL diver-

gence on Rm
+.

In many cases of practical interest, measurements arrive in distinct batches over
time – e.g., as sequential optical sections in microscopy and tomography. Moreover,
due to the large numbers of pixels/voxels involved (a typical range of values for
m is between 106 and 107), gradients of f are very costly to compute; as such,
optimization methods that rely on accurate gradient data are difficult to apply in
this setting. Accordingly, a natural workaround to this obstacle is to exploit the
online nature of the measurement process, model (PIP) as an online optimization
problem, and then to use an online-to-batch conversion to get a candidate solution
[105].

On the downside, this online optimization analysis crucially requires the loss
functions faced by the optimizer to be Lipschitz continuous, and this assumption

2 In the above, we are ignoring background emission noise which, in many applications, can be eliminated
by pre-processing the detected image [22].
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does not hold for (PIP): Indeed, if f j(x) = −yj log(yj/(Hx)j) denotes the singular
part of the KL divergence for the j-th sample, we readily get

∂ f j

∂xj
=

yj Hji

(Hx)j
. (3.4)

This shows that the gradient of f j exhibits an O(1/x) singularity at the boundary
of Rn

+, so f cannot be Lipschitz under any global norm on Rn. The same of course
holds for (LC).

3.1.2 Resource sharing problems

Consider a set of resources r ∈ R = {1, . . . , R} serving a stream of demands that
arrive at a rate of ρ per unit of time (for instance, a GPU cluster or a computing
grid processing a stream of jobs). If the load on the r-th resource is xr, the expected Resource Sharing

Formulationservice time in the standard Kleinrock model [62] is given by the M/M/1 loss
function

`r(xr) =
1

cr − xr
, (3.5)

where cr denotes the capacity of the resource. In this setting, the set of feasible
resource allocations is X ≡ {(x1, . . . , xr) : 0 ≤ xr < cr, x1 + · · ·+ xR = ρ},3 and we
say that a resource allocation profile x∗ ∈ x∗ is at Nash/Wardrop equilibrium [94, 113]
if

`r(x∗r ) ≤ `r(xr) for all x ∈ X and all r ∈ R such that x∗r > 0 (3.6)

i.e., when no job would be better served by transferring it to a different priority
queue. In this case, if we let A(x) = (`1(x1), . . . , `R(xR)), a standard calculation
shows that x∗ is an equilibrium allocation if and only if it solves the associated
variational inequality problem for A.

3.1.3 Fisher market model

Following [94], a Fisher market consists of a set N = {1, . . . , N} of N buyers – or
players – that seek to share a set A = {1, . . . , n} of n perfectly divisible goods (ad
space, CPU/GPU runtime, bandwidth, etc.). The allocation mechanism for these Fisher Model

Formulationgoods follows a proportionally fair price-setting rule that is sometimes referred to
as a Kelly auction [61]: each player i = 1, . . . , N bids xia per unit of the a-th good,
up the player’s individual budget; for the sake of simplicity, we assume that this
budget is equal to 1 for all players, so ∑n

a=1 xia ≤ 1 for all i = 1, . . . , N. The price
of the p-th good is then set to be the sum of the players’ bids, i.e., pa = ∑i∈N xia;
then, each player gets a prorated fraction of each good, namely wia = xia/pa.

Now, if the marginal utility of the i-th player per unit of the a-th good is θip, the
agent’s total utility will be

ui(xi; x−i) = ∑
a∈A

θiawia = ∑
a∈A

θiaxia

∑j∈N xja
, (3.7)

3 For posterity, note here that X is convex but it is not necessarily closed.
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where xi = (xia)a∈A denotes the bid profile of the i-th player, and we use the
shorthand (xi; x−i) = (x1, . . . , xi, . . . , xN). A Fisher equilibrium is then reached when
the players’ prices bids follow a profile x∗ = (x∗1 , . . . , x∗N) such that

ui(x∗i ; x∗−i) ≥ ui(xi; x∗−i) (Eq)

for all i ∈ N and all xi = (xia)a∈A such that xia ≥ 0 and ∑a∈A xia = 1.4

As was observed by Shmyrev [107], the equilibrium problem (Eq) can be rewrit-
ten equivalently as

minimize F(x; θ) ≡ ∑
a∈A

pa log pa − ∑
i∈N

∑
a∈A

xia log θia

subject to pa = ∑
i∈N

xia, ∑
a∈A

xia = 1, and xia ≥ 0 for all a ∈ A, i ∈ N ,
(Opt)

with the standard continuity convention 0 log 0 = 0. In the above, the agents’
marginal utilities are implicitly assumed fixed throughout the duration of the
game. On the other hand, if these utilities fluctuate stochastically over time, the
corresponding reformulation instead involves the mean objective

f (x) = E[F(x; ω)]. (3.8)

Because of the logarithmic terms involved, F (and, a fortiori, f ) cannot be Lipschitz
continuous or smooth in the standard sense.

3.2 tools for transcending the euclidean framework

In this section we present the necessary mathematical machinery that will allow
us to generalize the notions of (Bd) and (LC). In doing so, we shall use two key
notions. The first is that of the so-called Bregman divergence, whereas the second
consists of the geometrical tool of a local norm, i.e., a norm that depends on the
point upon which it is calculated.

3.2.1 Bregman functions and divergences

The notion of a Bregman divergence was first introduced by Bregman [29]. The
building block for this pseudo-distance function is that of a suitable “reference”
Bregman function. This is defined as follows:

Definition 3.1. A convex l.s.c. function h : V → R∪ {∞} is a Bregman function onBregman Functions

X , if

1. The subdifferential of h admits a continuous selection, i.e., there exists a
continuous mapping

∇ : dom ∂h→ ∇h(x) ∈ ∂h(x) (3.9)

for all x ∈ dom ∂h.

4 It is trivial to see that, in this market problem, all users would saturate their budget constraints at
equilibrium, i.e., ∑a∈A xia = 1 for all i ∈ N .
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2. h is strongly convex, i.e., there exists some K > 0 such that

h(x′) ≥ h(x) + 〈∇h(x), x′ − x〉+ K
2
‖x′ − x‖2 (3.10)

for all x ∈ dom ∂h, x′ ∈ dom ∂h.

The induced Bregman divergence of h is then defined for all x ∈ dom ∂h, x′ ∈ dom h
as Bregman Divergence

D(x′, x) = h(x′)− h(x)− 〈∇h(x), x′ − x〉. (3.11)

Remark. Our definition follows [56, 87, 91], but there are variant definitions where
h is not necessarily assumed strongly convex, cf. [7, 32, 34] and references therein.

Some standard examples of Bregman functions are as follows:

Example 3.1. Euclidean regularizer: Let X be a convex subset of Rn endowed
with the Euclidean norm ‖·‖2. Then, the Euclidean regularizer on X is defined
as h(x) = ‖x‖2

2/2 and the induced Bregman divergence is the standard square
distance D(x′, x) = ‖x′ − x‖2

2 for all x, x′ ∈ X

Example 3.2. Entropic regularizer: Let X = {x ∈ Rn
+ : ∑n

i=1 xi = 1} be the
unit simplex of Rn endowed with the L1-norm ‖·‖1. Then, the entropic regularizer
on X is h(x) = ∑i xi log xi and the induced divergence is the relative entropy
D(x′, x) = ∑i x′i log(x′i/xi) for all x′ ∈ X x ∈ riX . In particular, h is 1- strongly
convex with respect to ‖·‖1.

Example 3.3. Log-barrier: Let X = Rn
++ denote the (open) positive orthant of

Rn. Then, the log-barrier regularizer on X is defined as h(x) = −∑n
i=1 log xi for all

x ∈ Rn
++. The corresponding divergence is known as the Itakura-Saito divergence

and is given by D(x, x′) = ∑n
i=1(xi/x′i − log(xi/x′i)− 1) [34].

We conclude this presentation by providing some elementary properties of a
Bregman [56].

Lemma 3.1. Let h be a Bregman function on X with associated divergence D. Then:

1. D(x′, x) is convex with respect to x′ (but not necessarily with respect to x).

2. D(x, x′) ≥ K
2 ‖x− x′‖2 for all x ∈ dom h, x′ ∈ dom ∂h.

Remark. In a nutshell, the first part of Lemma 3.1 is directly derived by the convexity
of h, whereas the second is obtained by collecting the terms that constitute the
Bregman divergence in (3.16). In the sequel we shall revisit Lemma 3.1 under the
light of the notion of local norms.

3.2.2 Finsler geometry and local norms

Following [17, 35] a Finsler metric [17, 35] is described as follows:

Definition 3.2. A Finsler metric on a convex subset X of V is a continuous function Finsler Metrics

Φ : X × V → R+ which satisfies the following properties for all x ∈ X and all
z, z′ ∈ V :
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1. Subadditivity: Φ(x; z + z′) ≤ Φ(x; z) + Φ(x; z′).
2. Absolute homogeneity: Φ(x; λz) = |λ|Φ(x; z) for all λ ∈ R.

3. Positive-definiteness: Φ(x; z) ≥ 0 with equality if and only if z = 0.

Given a Finsler metric on X , the induced primal / dual local norms on X are respec-
tively defined asFinslerian Local Norms

‖z‖x = Φ(x; z) and ‖w‖x,∗ = max{〈w, z〉 : Φ(x; z) = 1} (3.12)

for all x ∈ X and all z, w ∈ V . We will also say that a Finsler metric on X is
regular when ‖w‖x′ ,∗/‖w‖x,∗ = 1 +O(‖x′ − x‖x) for all x, x′ ∈ X , w ∈ V∗. Finally,
for simplicity, we will also assume in the sequel that ‖·‖x ≥ ν‖·‖ for some ν > 0
and all x ∈ X (this last assumption is for convenience only, as the norm could be
redefined to ‖·‖x ← ‖·‖x + ν‖·‖ without affecting our theoretical analysis).

When X is equipped with a regular Finsler metric as above, we will say that it is
a Finsler space.

Example 3.4. Let Φ(x; z) = ‖z‖ where ‖·‖ denotes the reference norm of X = V .
Then the properties of Definition 3.2 are satisfied trivially.

Example 3.5. For a more interesting example of a Finsler structure, consider the
set X = (0, 1]n and the metric ‖z‖x = maxi|zi|/xi, z ∈ Rn, x ∈ X . In this case
‖w‖x,∗ = ∑n

i=1 xi|wi| for all w ∈ Rn, and the only property of Definition 3.2 that
remains to be proved is that of regularity. To that end, we have

‖w‖x′ ,∗−‖w‖x,∗ ≤ ∑n
i=1|wi| · |x′i− xi| = ∑n

i=1 xi|wi| · |x′i− xi|/xi ≤ ‖w‖x,∗ · ‖x′− x‖x.
(3.13)

Hence, by dividing by ‖w‖x,∗, we readily get ‖w‖x′ ,∗/‖w‖x,∗ ≤ 1 + ‖x− x′‖x i.e.,
‖·‖x is regular in the sense of Definition 3.2.

Example 3.6 (Riemannian metrics). In its simplest form, a Riemannian metric on
C ⊆ Rn is a field of positive-definite matrices g(x) � 0, x ∈ C; for a panoramic
view of the subject we refer the reader to [9, 66]. This defines a local norm as

‖z‖x =
√

z>g(x)z, and a dual local norm as ‖w‖x,∗ =
√

w>g(x)−1w. In this way,
Riemannian metrics can be seen as special cases of Finsler metrics; the converse
however is not true (35; see also Example 3.7 below).

Examples of Finsler
Spaces

Example 3.7 (Shahshahani p-norm). Consider the Finsler metric on C = Rn
++ given

by
Φ(x; z) = (∑n

i=1|zi|p/xi)
1/p (3.14)

By a straightforward application of Hölder’s inequality, the associated dual norm
is given by

‖w‖x,∗ =
(

∑n
i=1 xc−1

i |w|ci
)1/q

(3.15)

with the convention p−1 + q−1 = 1. This metric is known as the Shahshahani
p-norm [104] and it plays an important role in game theory, optimal transport,
evolutionary biology, and many other fields – see e.g., [2, 3, 58, 108], and references
therein. The Shahshahani p-norm comes from a Riemannian metric if p = 2 but
not otherwise (since it does not satisfy the parallelogram law for p 6= 2).
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We are now in the position to revisit Definition 3.1 under the light of the local
norms. More precisely, we may assume that the respective Bregman function is
compatible with the said norm, resulting to the new notion of a Bregman-Finsler
regularizer. In particular, we propose the following definition firstly introduced in
Antonakopoulos et al. (2019):

Definition 3.3 (Antonakopoulos et al. [6, 7, 8]). Let ‖·‖x be a local norm. We say Bregman-Finsler
Functionsthat h : V → R is a Bregman-Finsler function on X if: h is a Bregman function in the

sense of Definition 3.1 and h is strongly convex relative to the underlying local
norm, i.e.,

h(p) ≥ h(x) + 〈∇h(x), p− x〉+ 1
2 α‖p− x‖2

x (3.16)

for some α > 0 and all p ∈ X , x ∈ dom ∂h.

As a consequence of the above, we have:

Lemma 3.2. A Bregman function h is α-strongly convex relative to ‖·‖x if and only if

D(p, x) ≥ 1
2 α‖p− x‖2

x for all p ∈ X and all x ∈ dom ∂h. (3.17)

Proof. The result follows by rearranging (3.16) along with the definition of the
Bregman divergence described in (3.11).

The main difference between Definition 3.3 and Definition 3.1 or the standard
assumptions in the literature [19, 27, 28, 56, 77–79, 87, 90, 91] is the strong convexity
requirement relative to the local norm ‖·‖x (whose choice, in turn, is aimed to
capture the singularity landscape of the operator). We illustrate this with two
examples of Bregman-Finsler functions below:

Example 3.8. Suppose that X = Rn is endowed with the Euclidean norm. Then,
setting h(x) = (1/2)‖x‖2

2, we get the standard expression D(p, x) = (1/2)‖p− x‖2
2

for the associated Bregman divergence. Obviously, h is 1-strongly convex relative
to ‖·‖2.

Example 3.9. Let X = [0, 1)n (so X is neither open nor closed), and consider the
local norm ‖z‖2

x = ∑n
i=1|z|2i /(1− xi)

2 for x ∈ X , z ∈ Rn (cf. Example 3.7 above). If
we set

h(x) = ∑n
i=1 1/(1− xi) (3.18)

a straightforward calculation gives

D(p, x) =
n

∑
i=1

(pi − xi)
2

(1− pi)(1− xi)2 ≥
n

∑
i=1

(pi − xi)
2

(1− xi)2 = ‖p− x‖2
x, (3.19)

i.e., h is strongly convex relative to ‖·‖x. Importantly, since ‖·‖x ≥ ‖·‖2, this
Bregman function is also strongly convex relative to the standard Euclidean norm.
However, even though the Euclidean regularizer of Example 3.8 is strongly convex
relative to any global norm on X , it cannot be strongly convex relative to the local
norm ‖·‖x because of the singularity of the latter when xi → 1−.
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3.3 surrogates for operator boundedness

Having described this background material, we now proceed to discuss the partic-
ular generalizations of Section 2.3 in order to account for problems with singular
objective functions. We divide our presentation into two parts. The first concerns
these notions that are based on the Bregman divergence, whereas the second part
considers the notions based on Finsler induced norms.
The first extension of (LC) is due to [111].

Definition 3.4 (Teboulle [111]). An operator A is said to be W[h]-continuous relative
to h on X if there exists some G > 0 such that, for all t > 0, we haveWeakly Continuous

Objectives

t〈A(x), x− x′〉 − D(x′, x) ≤ t2

2
G2 for all x′ ∈ dom h, x ∈ dom ∂h. (W)

As a prelude we mention that (W) notion intends to single out sufficient con-
ditions for the convergence of “proximal-like” methods like mirror descent. The
standard Euclidean (Bd) condition satisfies Definition 3.4. Indeed, if one chooses
h(x) = 1/2‖x‖2 and its respective Bregman divergence D(x, x′) = 1/2‖x− x′‖2

then by applying Fenchel-Young inequality we get:

t〈∇ f (x), x− x′〉 − 1
2
‖x′ − x‖2 ≤ t2‖∇ f (x)‖2

∗
2

+
1
2
‖x′ − x‖2 − 1

2
‖x′ − x‖2

≤ t2G2

2

which yields that f is weakly continuous. Moreover, another related notion is that
of (RC), as introduced by [71] and extended further in a recent paper by [119]:

Definition 3.5 (Zhou et al. [119]). An operator A : X → Rn is said to be relatively
continuous if there exists some G > 0 such thatRelative Continuous

Objectives

〈A(x), x− x′〉 ≤ G
√

2D(x′, x) for all x ∈ dom h, x′ ∈ dom ∂h. (RC)

The two notions above are linked in the following manner: Consider an objective
f which satisfies Definition 3.4. Then, we have:

t〈∇ f (x), x− x′〉 − D(x′, x) ≤ t2

2
G2 for all x′ ∈ dom h, x ∈ dom ∂h. (W)

By rearranging the above quadratic polynomial in t, we note that its discriminant is
∆ = [〈∇ f (x), x− x′〉]2 − 2G2D(x′, x), so it is immediate to check that (RC) holds.

Let us now turn our attention towards the Finsler driven generalized notion of
(Bd). In order to give some intuition, let us recall the toy-example presented in
Section 3.1. In particular, the 1− dimensional logistic regression f (x) = − log x
for x > 0 one may straightforwardly detect that the optimizer is dealing with a
gradient "singularity" of order O(1/x). Therefore, if one chooses a local norm of
the form:

‖x′‖x = |x′|/x for all x′ ∈ R, x > 0
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along with the corresponding dual (local) norm:

‖w‖x,∗ = x|w| for all w ∈ R, x > 0 (3.20)

which allows us to obtain:

‖∇ f (x)‖x,∗ = x(1/x) = 1 for all x > 0 (3.21)

Inspired by the above toy-example a robust theoretical is provided via a local norm
induced by Definition 3.2. Formally, we propose the following definition for a
generic operator A; firstly introduced in Antonakopoulos et al. (2021). Metric Boundedness

Definition 3.6 (Antonakopoulos et al. [8]). Let ‖·‖x, x ∈ X be a local norm. We say
that A is metrically bounded relative to ‖·‖x, if there exists some G > 0 such that:

‖A(x)‖x,∗ ≤ G for all x ∈ X (MB)

Remark 3.1. Of course, the standard Euclidean (Bd) is directly recovered by consid-
ering ‖·‖x = ‖·‖. Moreover, in Antonakopoulos et al. (2020) a Riemann-Lipschitz
continuity condition is introduced and extends (LC) for the OCO setting as follows.
Let ‖·‖x be a family of local norms on X , induced by an appropriate Riemannian
metric, and let ‖w‖x,∗ = max‖x′‖x≤1〈w, x′〉 denote the corresponding dual norm.
Then, f is Riemann–Lipschitz continuous relative to ‖·‖x if there exists some G > 0
such that: Riemann Lipschitz

Continuity‖∇ f (x)‖x,∗ ≤ G for all x ∈ X . (RLC)

That said, for the sake of generality we prefer the more general formulation of
Definition 3.6.

We conclude this section by presenting the connection between (W) and (MB).
More precisely, given a Bregman-Finsler fuction (cf. Definition 3.3) Fenchel-Young
inequality ensures:

t〈∇ f (x), x− x′〉 − D(x′, x) ≤
t2‖∇ f (x)‖2

x,∗
2K

+
K
2
‖x′ − x‖2

x − D(x′, x) (3.22)

which yields that f is weakly K-continuous.

3.4 surrogates for operator lipschitz continuity

Now we turn our attention towards the generalization of (LC). A popular notion,
closely linked with the particular minimization framework, is that of Lipschitz-like
(or relative smoothness) introduced by [19] (see also [23] [72]). Formally following
[19] we have: Lipschitz-like Objectives

Definition 3.7 (Bauschke et al. [19]). A convex l.s.c. function f : V → R ∪ {∞} is
said to be Lipschitz-like if there exists some β > 0 such that

βh− f is convex on int dom h. (RS)
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Here, we recall that the domain of the respective regularizer h is contained in
the domain of f . The main motivation behind this elegant definition Definition 3.7
is to generalize the standard descent inequality satisfied by smooth objectives:

f (x) ≤ f (x′) + 〈∇ f (x′), x− x′〉+ β‖x− x′‖2 (3.23)

by substituting it with the more geometry-sensitive Bregman divergence, i.e.,

f (x) ≤ f (x′) + 〈∇ f (x′), x− x′〉+ βD(x, x′) (3.24)

For the sake of completeness we provide an overview of some properties of
Lipschitz-like functions; proofs of the following appear in [19] (see also [23, 72]),
so we omit it.Lipschitz-like Properties

Proposition 3.3 (Bauschke et al. [19]). The following statements are equivalent:

1. f satisfies (RS) in intX .
2. f satisfies the inequality f (x) ≤ f (x′)+ 〈∇ f (x′), x− x′〉+ βD(x, x′), for allx, x′ ∈

intX
3. f satisfies the inequality 〈∇ f (x)−∇ f (x′), x− x′〉 ≤ β [D(x, x′) + D(x′, x)] .

That said, the success of (RS) condition is limited for minimization settings;
the reason is that descent-type inequalities of the form (3.23) and/or (3.24), are
not available for general (VI) problems. Therefore, in order to be able to include
optimization beyond minimization settings we should follow a different approach.
In particular, by applying similar reasoning with Definition 3.6, we have the
following definition again for a generic operator A. Following Antonakopoulos
et al. (2021), we propose a novel regularity condition based on the local norm
framework.Metric Smoothness and

Variants

Definition 3.8 (Antonakopoulos et al. [8]). Given a local norm ‖·‖x, x ∈ X , we say
that A is metrically smooth (relative to ‖·‖x) if

‖A(x)− A(x′)‖x,∗ ≤ β‖x− x′‖x′ for all x, x′ ∈ dom A. (MS)

Following Antonakopoulos et al. (2019), one may also get a similar notion to
(MS); namely that of Bregman continuity of an operator. Formally, this is given by
the following.

Definition 3.9. [Antonakopoulos et al. [6]] Let h be a Bregman-Finsler regularizer
relative to some local norm ‖·‖x on X . The operator A : X → V∗ is said to be
β-Bregman continuous if

‖A(x′)− A(x)‖x,∗ ≤ β
√

2D(x, x′) for all x, x′ ∈ dom A. (BC)

Remark 3.2. If A satisfies (MS) and we are given with some h Finsler-Bregman
regularizer adapted to the associated norm then one may straightforwardly obtain
that (MS) implies (BC).
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Finally, we conclude by describing the connection between (RS) and (MS) condi-
tions; of course under the assumption that A = ∇ f for some f convex function.
Indeed, if h is a Bregman-Finsler function (cf. Definition 3.3), we have:

〈∇ f (x)−∇ f (x′), x− x′〉 ≤ ‖∇ f (x)−∇ f (x′)‖x,∗‖x− x′‖x

≤ β‖x− x′‖x′‖x− x′‖x

≤ β

2

[
‖x− x′‖2

x′ + ‖x− x′‖2
x

]
. (3.25)

Thus by the compatibility of h and ‖·‖x, we readily obtain

〈∇ f (x)−∇ f (x′), x− x′〉 ≤ β

K
[
D(x, x′) + D(x′, x)

]
. (3.26)

Therefore, the claim that (MS) implies (RS) follows from Proposition 3.3.
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B R E G M A N F I R S T O R D E R M E T H O D S

We now turn to the presentation of the necessary algorithmic machinery that
will allow us transcend the limitations of Euclidean based algorithmic schemes.

The main ingredient of these methods boils down to a generalized notion of
"projections" which are based on a appropriately chosen reference function in the
sense of Definition 3.1 and/or Definition 3.3. We describe this toolkit in Section 4.1,
where we also present more precisely the so-called prox and mirror mappings.

As an additional feature we present a novel primal-dual variant of the Bregman
divergences; the so-called Fenchel coupling. This will serve a "primal-dual" measure
of distance and will come in handy for the particular analysis of primal-dual
methods in the sequel.

Finally, in Section 4.2 and Section 4.2 we illustrate the explicit defining recursive
formulas of the particular algorithmic schemes. In particular, these methods
are obtained by revisiting the (GD) and (EG) methods (see in Section 2.5.1 and
Section 2.6.1) under the light of these new projection operators, i.e., the prox and
mirror mappings. These generic iterative methods will enable us in the sequel to
capture in an efficient manner the finer geometrical aspects that arise from the
non-Lipschitz framework.

4.1 prox-and mirror mappings

In order to describe the algorithmic methods we first present their key ingredients,
that of Bregman prox- and mirror mappings. In addition we provide their crucial
properties and template inequalities. Versions of these are known in the literature
[see e.g., 20, 34, 91, 105, and references therein] and mostly rely on global – norms.
However, in our case we revisit these results and provide here complete statements
and proofs armed with the notion local – norm.

In particular, we shall assume that h is a Bregman-Finsler regularization function
in the sense of Definition 3.3. To begin, we introduce two key notions that will be
useful in the sequel. The first is the convex conjugate of a Bregman function h, i.e.,

h∗(y) = max
x∈dom h

{〈y, x〉 − h(x)} (4.1)

and the associated primal-dual mirror map Q : V∗ → dom ∂h: Mirror Map

Q(y) = arg max
x∈dom h

{〈y, x〉 − h(x)} (4.2)

43
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That the above is well-defined is a consequence of the fact that h is proper,
l.s.c., convex and coercive; 1 in addition, the fact that Q takes values in dom ∂h
follows from the fact that any solution of (4.2) must necessarily have nonempty
subdifferential (see below Lemma 4.1). We also recall here the definition of the
Bregman proximal mapping:Proximal Mapping

Px(w) = arg min
x′∈dom h

{〈w, x− x′〉+ D(x′, x)} (4.3)

valid for all x ∈ dom ∂h and all w ∈ V∗.
We then have the following basic lemma connecting the above notions:Mirror and Prox

Mapping Links

Lemma 4.1. Let h be a K-strongly convex Bregman–Finsler regularizer. Then, for all
x ∈ dom ∂h and all w, y ∈ V∗ we have:

1. x = Q(y) ⇐⇒ y ∈ ∂h(x).

2. x+ = Px(w) ⇐⇒ ∇h(x) + w ∈ ∂h(x) ⇐⇒ x+ = Q(∇h(x) + w).

3. Finally, if x = Q(y) and p ∈ X , we get:

〈∇h(x), x− p〉 ≤ 〈y, x− p〉. (4.4)

Proof. For the first equivalence, note that x solves (4.1) if and only if 0 ∈ y− ∂h(x)
and hence if and only if y ∈ ∂h(x). Working in the same spirit for the second
equivalence, we get that x+ solves (4.3) if and only if ∇h(x) + w ∈ ∂h(x+) and
therefore if and only if x+ = Q(∇h(x) + w).

For our last claim, by a simple continuity argument, it is sufficient to show that
the inequality holds for the relative interior riX of X (which, in particular, is
contained in dom ∂h). In order to show this, pick a base point p ∈ riX , and let

φ(t) = h(x + t(p− x))− [h(x) + 〈y, t(p− x)〉] for all t ∈ [0, 1]. (4.5)

Since, h is strongly convex and y ∈ ∂h(x) due to the first equivalence, it follows
that φ(t) ≥ 0 with equality if and only if t = 0. Since, ψ(t) = 〈∇h(x + t(p −
x))− y, p− x〉 is a continuous selection of subgradients of φ and both φ and ψ are
continuous over [0, 1], it follows that φ is continuously differentiable with φ′ = ψ
on [0, 1]. Hence, with φ convex and φ(t) ≥ 0 = φ(0) for all t ∈ [0, 1], we conclude
that φ′(0) = 〈∇h(x)− y, p− x〉 ≥ 0 and thus we obtain the result.

To proceed, the basic ingredient for establishing connections between Bregman
proximal steps is a generalization of the rule of cosines which is known in the
literature as the “three-point identity” [34]. This will be our main tool for deriving
the main estimates for our results. Being more precise, we have the following
lemma:Bregman Three-Point

Identity

Lemma 4.2 (Chen and Teboulle [34]). Let h be a Bregman–Finsler regularizer. Then,
for all p ∈ dom h and all x, x′ ∈ dom ∂h, we have:

D(p, x′) = D(p, x) + D(x, x′) + 〈∇h(x′)−∇h(x), x− p〉. (4.6)

1 The latter holds because h is strongly convex relative to ‖·‖x , and ‖·‖x has been tacitly assumed
bounded from below by a multiple µ‖·‖ of ‖·‖.
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Proof. By definition:

D(p, x′) = h(p)− h(x′)− 〈∇h(x′), p− x′〉
D(p, x) = h(p)− h(x)− 〈∇h(x), p− x〉
D(x, x′) = h(x)− h(x′)− 〈∇h(x′), x− x′〉.

(4.7)

The lemma then follows by adding the two last lines and subtracting the first.

Remark 4.1. As one may directly observe from the proof of the above, Lemma 4.2
holds for a general convex function h. However, for the need of our analysis we
constrain our selves to the specific regularizer class of interest; namely that of
Bregman-Finsler ones.

Thanks to the three-point identity, we obtain the following estimate for the
Bregman divergence before and after a mirror descent step: One Step Mirror

Template Inequality

Proposition 4.3. Let h be a Bregman–Finsler function with strong convexity modulus
K > 0. Fix some p ∈ dom h and let x+ = Px(w) for some x ∈ dom ∂h and w ∈ V∗. We
then have:

D(p, x+) ≤ D(p, x)− D(x+, x) + 〈w, x+ − p〉 (4.8)

and

D(p, x+) ≤ D(p, x) + D(x, x+)− 〈w, x− p〉. (4.9)

Proof. By the three-point identity established in Lemma 4.2, we have:

D(p, x) = D(p, x+) + D(x+, x) + 〈∇h(x)−∇h(x+), x+ − p〉 (4.10)

Rearranging terms then yields:

D(p, x+) = D(p, x)− D(x+, x) + 〈∇h(x+)−∇h(x), x+ − p〉 (4.11)

By (4.4) and the fact that x+ = Px(w) so ∇h(x) + w ∈ ∂h(x+), the first inequality
follows; the second one is obtained similarly.

Thanks to the above estimations, we obtain the following inequalities relating
the Bregman divergence between two prox-steps: Two Steps Mirror

Template Inequality

Proposition 4.4. Let h be a Bregman function on X and fix some p ∈ X , x ∈ X ◦. Letting
x+1 = Px(w1) and x+2 = Px(w2), we have:

D(p, x+2 ) ≤ D(p, x) + 〈w2, x+1 − p〉+ [〈w2, x+2 − x+1 〉 − D(x+2 , x)] (4.12)

and

D(p, x+2 ) ≤ D(p, x) + 〈w2, x+1 − p〉+ 〈w2 − w1, x+2 − x+1 〉
− D(x+2 , x+1 )− D(x+1 , x). (4.13)

Proof. For the first inequality, by applying (4.8) for x+2 = Px(w2), we get:

D(p, x+2 ) ≤ D(p, x)− D(x+2 , x) + 〈w2, x+2 − p〉
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= D(p, x) + 〈w2, x+1 − p〉+ [〈w2, x+2 − x+1 〉 − D(x+2 , x)] (4.14)

For the second inequality, we need to bound 〈w2, x+2 − x+1 〉 − Dh(x+2 , x). In partic-
ular, applying again (4.8) for p = x+2 , we get:

D(x+2 , x+1 ) ≤ D(x+2 , x) + 〈w1, x+1 − x+2 〉 − D(x+1 , x) (4.15)

and hence:

D(x+2 , x) ≥ D(x+2 , x+1 ) + D(x+1 , x)− 〈w1, x+1 − x+2 〉. (4.16)

So, combining the above inequalities we get:

〈w2, x+2 − x+1 〉 − D(x+2 , x) ≤ 〈w2, x+2 − x+1 〉 − D(x+2 , x+1 )

− D(x+1 , x)− 〈w1, x+2 − x+1 〉 (4.17)

and thus we get the second inequality as well.

On the other hand, much of our analysis of primal-dual methods revolves around
a ”primal-dual” divergence between a target point p ∈ X and a dual vector y ∈ Y .
This gives rise to the primal-dual counterpart of the Bregman divergence, the
so-called Fenchel coupling. Following [79], this is defined as follows for all p ∈ X ,
y ∈ Y :Fenchel Coupling

F(p, y) = h(p) + h∗(y)− 〈y, p〉. (4.18)

The following lemma illustrates basic properties of the Fenchel coupling and
generalizes similar properties derived in [79]:Fenchel Coupling

Properties

Lemma 4.5. Let h be a Bregman-Finsler regularizer on X with convexity modulus α.
Then, for all p ∈ X and all y ∈ Y , we have:

1. F(p, y) ≥ D(p, Q(y)).

2. Moreover,

F(p, y) = D(p, Q(y)) if Q(y) ∈ X ◦ (but not necessarily otherwise). (4.19)

3. If x = Q(y), then F(p, y) ≥ α
2‖x− p‖2

x

Proof. For the first inequality we have,

F(p, y) = h(p) + h∗(y)− 〈y, y〉
= h(p)− h(Q(y)) + 〈y, Q(y)〉+ 〈y,−p〉
= h(p)− h(Q(y))− 〈y, p−Q(y)〉

Since y ∈ ∂h(Q(x)), by Lemma 4.1 we get

〈∇h(Q(y)), Q(y)− p〉 ≤ 〈y, Q(y)− p〉

With all the above we then have

F(p, y) = h(p)− h(Q(y))− 〈y, p−Q(y)〉
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≥ h(p)− h(Q(y))− 〈∇h(Q(y)), p−Q(y)〉
= D(p, Q(y))

For the equality, let x = Q(y). Then, by definition we have:

F(p, y) = h(p)− 〈y, Q(y)〉 − h(Q(y))− 〈y, p〉
= h(p)− h(x)− 〈y, p− x〉.

Since y ∈ ∂h(x), we have h′(x; p− x) = 〈y, p− x〉 whenever x ∈ X ◦, thus proving
our first claim. For our second claim, working in the previous spirit we get that:

F(p, y) = h(p)− h(x)− 〈y, p− x〉 (4.20)

Thus, we obtain the result by recalling the strong convexity assumption for h with
respect to the local norm ‖·‖x.

We continue with some basic relations connecting the Fenchel coupling relative
to a target point before and after a gradient step. The basic ingredient for this is a
primal-dual analogue of Lemma 4.2 Fenchel Three-Point

Identity

Lemma 4.6. Let h be a Bregman-Finsler regularizer on X . Fix some p ∈ X and let
y, y+ ∈ Y . Then, letting x = Q(y), we have

F(p, y+) = F(p, y) + F(x, y+) + 〈y+ − y, x− p〉. (4.21)

Proof. By definition, we get:

F(p, y+) = h(p) + h∗(y+)− 〈y+, p〉
F(p, y) = h(p) + h∗(y)− 〈y, p〉.

(4.22)

Then, by subtracting the above we get:

F(p, y+)− F(p, y) = h(p) + h∗(y+)− 〈y+, p〉 − h(p)− h∗(y) + 〈y, p〉
= h∗(y+)− h∗(y)− 〈y+ − y, p〉
= h∗(y+)− 〈y, Q(y)〉+ h(Q(y))− 〈y+ − y, p〉
= h∗(y+)− 〈y, x〉+ h(x)− 〈y+ − y, p〉
= h∗(y+) + 〈y+ − y, x〉 − 〈y+, x〉+ h(x)− 〈y+ − y, p〉
= F(x, y+) + 〈y+ − y, x− p〉 (4.23)

and our proof is complete.

4.2 bregman first order methods

Armed with the mirror and prox-mappings presented in Section 4.1, we are now
in the position to revisit the Sections 2.5 and 2.6. More precisely, we start with the
Bregman version of (GD); widely known as mirror descent (MD) algorithm.
The template upon which the template of MD hinges is the following recursion: Mirror Descent

Xt+1 = PXt(−γtVt) (MD)



48 bregman first order methods

X ⊆ V

Y = V∗

Q

Y1
Y2

Y3
−γ1V1 −γ2V2

X1 X2

X3

Figure 4.1: Schematic representation of lazy mirror descent.

In the above, the standard notation of Section 2.5 is preserved. In particular,
Xt ∈ dom ∂h denotes the current state of the algorithm, Vt ∈ V∗ denotes a generic
search direction, γt > 0 is a step-size parameter, and Xt+1 is the new state generated
after taking a Bregman proximal step from x along −γtVt. (MD) closely resembles
the projected gradient update (GD) and, indeed, (GD) is recovered if we take
h(x) = (1/2)‖x‖2

2 (cf. Example 3.8). In addition, the abstact template:

x+ = Px(−γw) (4.24)

is well-posed in our setting. Therefore, its allows us to iterate (MD) in perpetuity.
Formally, we have the following result:

Proposition 4.7. The abstract recursion,

x+ = Px(−γw) (4.25)

satisfies x+ ∈ dom ∂h for all x ∈ dom ∂h and all V ∈ V∗.

Proposition 4.7 is a direct corollary of Lemma 3.1, so we omit its proof. Now
we turn our attention towards generalizing the primal-dual methods described in
(LGD) and (DA); more precisely, we shall revisit these methods under the lens of
the mirror mapping (4.2). In particular, the lazy version of (MD) is given by the
following:Lazy Mirror Descent

Yt+1 = Yt − γtVt

Xt+1 = Q(Yt+1)
(LMD)

whereas the (DAvg) is given by:Mirror Dual Averaging

Yt+1 = Yt −Vt

Xt+1 = Q(γt+1Yt+1)
(DAvg)

Now, building on these templates we are in a position to generalize the method of
Section 2.6.1 along with its primal-dual counterpart. In particular, the (EG) template
is extended by applying the prox-mapping (4.3). More precisely, Mirror-Prox is
derived by applying the following recursion:Mirror-Prox

Xt+1/2 = PXt(−γtVt)

Xt+1 = PXt(−γtVt+1/2)
(MP)
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As it becomes apparent from (MP), the method consists of two (MD) steps. There-
fore,if we take h(x) = (1/2)‖x‖2

2 then (MP) boils down to the (EG) template. On
the other hand, the respective primal-dual version of (MP); namely that of the Breg-
man generalization of (DualX). In particular, this given by the following recursion:

Xt+1/2 = PXt(−γtVt)

Yt+1 = Yt −Vt+1/2

Xt+1 = Q(γt+1Yt+1)

(DualX)

Once more, if the optimizer chooses the euclidean regularizer h(x) = 1/2‖x‖2
2 Mirror Dual

Extrapolationthen (DualX) boils down directly to (DualX).

Having described the crucial algorithmic methods in what follows we shall
exploit their adaptivity to the particular geometrical features of problems which
exhibit "gradient" singularities.
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R E G R E T M I N I M I Z AT I O N B E Y O N D L I P S C H I T Z C O N T I N U I T Y

# This section incorporates material from the paper [7]

Our first set of results concerns the generic framework of OCO problems. In
particular, in Section 5.1 we present an optimal regret minimization result for

convex losses which satisfy (RLC) instead of the traditional (euclidean based)
Lipschitz continuity condition. Moving forward, in Section 5.2 we apply our
regret minimization result to the particular case of stochastic non-smooth convex
minimization and provide the respective convergence rates for such problems. In
addition, as an extra feature we also provide an almost sure convergence result
towards the problem’s set of f minimizers.

5.1 regret minimization

Throughout this section, we make the following blanket assumptions: Online Convex
Optimization Setting

1. The t-th stage loss function ft : X → R is convex and satisfies (MB) with
constant Gt.

2. The optimizer’s aggregate loss ∑T
t=1 ft attains its minimum value at some

x∗ ∈ X .

The purpose of the last assumption is to avoid cases where the infimum of a loss
function is not attained within the problem’s feasible region (such as e−x over R+).

Moreover, from an algorithmic point of view we consider the (LMD) template Online Lazy Mirror
Descent

Yt+1 = Yt − γtVt

Xt+1 = Q(Yt+1)
(5.1)

which satisfies the following blanket assumption: Blanket Assumptions

1. The underlying regularizer h is a Bregman-Finsler function, i.e., it satisfies
Definition 3.3.

2. The algorithm is initialized at the “prox-center” xc = arg min h of X and is
run with (constant) step-size α/T1/2 for some α > 0 chosen by the optimizer.

3. Finally, for (SFO). we make the following assumptions:

a) Unbiasedness: E[ĝt | Ft] = ∇ ft(Xt).
(5.2a)

53
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b) Finite mean square: E[‖ĝt‖2
∗ | Ft] ≤ M2

t . (5.2b)

Having established the algorithmic framework, we are in the position to introduce
our first result:NoLips Regret

Guarantees

Theorem 5.1 (Antonakopoulos et al. [7]). Let Reg(T) ≡ Regx∗(T) with x∗ ∈
arg minx∈X ∑T

t=1 f (x) and M2
T = T−1 ∑T

t=1 M2
t . Then, (LMD) algorithm with noisy

feedback of the form (SFO) enjoys the mean regret bound:

E[Reg(T)] ≤
[

D(x∗, xc)

α
+

αM2
T

2α

]
√

T (5.3)

In particular, if suptN Mt < +∞ then the method guarantees O(
√

T) regret.

The main idea behind the proof of Theorem 5.1 is to relate the Finslerian structure
of X to the Bregman regularization framework underlying (LMD). A first such
link is provided by the Bregman divergence; however, because of the primal-dual
interplay between Xt ∈ X and Yt ∈ V∗, the Bregman divergence is not sufficiently
adapted. At this point is were the Fenchel coupling, defined in (4.18), comes in
handy. Armed with toolkit, we are able to establish the main "energy" inequality
for this section. Formally, we have the following result.Regret Template

Inequality

Proposition 5.2 (Antonakopoulos et al. [7]). Let h be a Bregman-Finsler regularizer on
X with convexity modulus α, fix some p ∈ X , let x = Q(y) for some y ∈ Y . Then, for all
w ∈ Y , we have:

F(p, y + w) ≤ F(p, y) + 〈w, x− p〉+ 1
2α
‖w‖2

x,∗ (5.4)

Proof. By the three-point identity (4.21), we get

F(p, y) = F(p, y + w) + F(Q(y + w), y) + 〈y− (y + w), Q(y + w)− p〉 (5.5)

and hence, after rearranging:

F(p, y + w) = F(p, y)− F(Q(y + w), y) + 〈w, Q(y + w)− p〉
= F(p, y)− F(Q(y + w), y) + 〈w, x− p〉+ 〈w, Q(y + w)− x〉 (5.6)

By Young’s inequality [102], we also have

〈w, Q(y + w)− x〉 ≤ α

2
‖Q(y + w)− x‖2

x +
1

2α
‖w‖2

x,∗ (5.7)

Our claim then follows by the fact that F(Q(y + w), y) ≥ α
2‖Q(y + w)− x‖2

x (cf.
Lemma 4.5).

Proof of Theorem 5.1. Now, applying Proposition 5.2 to (LMD), we get:

F(x∗, Yt+1) ≤ F(x∗, Yt)− γ〈ĝt, Xt − x∗〉+ γ2

2α
‖ĝt‖2

Xt ,∗
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= F(x∗, Yt) + γ〈∇ ft(Xt), x∗ − Xt〉 − γ〈Ut+1, Xt − x∗〉+ γ2

2α
‖ĝt‖2

Xt ,∗.

(5.8)

Hence, after rearranging and telescoping, we obtain

Reg(T) ≤
T

∑
t=1
〈∇ ft(Xt), Xt − x∗〉 ≤ D(x∗, xc)

γ
+

T

∑
t=1

ξt+1 +
γ

2α

T

∑
t=1
‖ĝt‖2

Xt ,∗ (5.9)

where, in the last line, we used the definition of the Finsler dual norm ‖·‖∗ ≡ ‖·‖x∗ ,∗,
and we set ξt+1 = 〈Ut+1, x∗ − Xt〉. By taking expectations on both sides, we have:

E [Reg(T)] ≤ D(x∗, xc)

γ
+

T

∑
t=1

E [ξt+1] +
T

∑
t=1

E
[
‖ĝt‖2

Xt ,∗

]
(5.10)

We examine each (RHS) term individually. In particular, we have:

• For the term ∑T
t=1 E [ξt+1] we have:

E [ξt+1] = E [〈Ut+1, x∗ − Xt〉]
= E [E [〈Ut+1, x∗ − Xt〉|Ft]]

= E [〈E [Ut+1|Ft] , x∗ − Xt〉]
= 0

with the last equality being obtained by the unbiasedness of (SFO)

• For the term ∑T
t=1 E

[
‖ĝt‖2

Xt ,∗

]
we have by the finite mean square assumption

of (SFO):
T

∑
t=1

E
[
‖ĝt‖2

Xt ,∗

]
= O(

√
T) (5.11)

Finally the result follows by combining the above.

Remark 5.1. We emphasize here that theO(
√

T) regret bound above is achieved even
if X is unbounded or if the range of h H ≡ supx∈X D(x, xc) = sup h− inf h of X is
infinite.To see this, simply note that D(x, xc) = h(x)− h(xc)−〈∇h(xc), x− xc〉 < ∞
for all x ∈ X = dom h (recall also that, since xc = arg min h, we have 0 ∈ ∂h(xc) so
xc ∈ dom ∂h). Of course, if H < ∞ and G (or M) is known to the optimizer, (5.3)
can be optimized further by tuning α.

Our analysis hinges on controlling the second-order error term in (5.2) by means
of the (MB) continuity assumption. It is precisely this primal-dual inequality
which allows us to go beyond the standard Lipschitz framework: compared to
(primal-primal) inequalities of a similar form for global norms [16, 64, 87, 91, 120],
the distinguishing feature of (5.2) is the advent of the Finsler induced norm ‖w‖x,∗.
Thanks to the intricate connection between the Finsler norm and h, the second-
order term in (5.2) can be controlled even when the received gradient is unbounded
relative to any global norm, i.e., even if the objective is singular.

The main obstacle to achieve this is that the underlying local norm, the Fenchel
coupling F and the Bregman divergence D (all state-dependent notions of distance)
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need not be compatible with one another. That this is indeed the case is obtained
by Lemma 4.5; what plays a crucial role in deriving (5.2) is to introduce the local
strong convexity with respect to the the Finsler norm to the second argument of
the Bregman divergence instead of the first (or any other point in-between). Any
other relation between the local norms and h along these lines is not amenable to
analyzing (LMD) in this framework.

5.2 application to stochastic non-smooth minimization

As announced, the second part of our analysis focuses on the application of the
above regret analysis on stochastic non-smooth optimization problems of the form:

Non-Smooth Stochastic
Minimization minimize f (x) = E[F(x; ω)]

subject to x ∈ X
(Opt)

with the expectation taken over some model sample space Ω. Our first result here
is as follows:NonLips Non-Smooth

Guarantees

Theorem 5.3. Assume that f is convex and satisfies (MB) in mean square, i.e.,

sup
x

E[‖∇F(x; ω)‖2
x,∗] ≤ M2 (5.12)

for some M > 0. If (LMD) is run for T iterations with a constant step-size of the form
α/
√

T and stochastic gradients ĝt = ∇F(Xt; ωt) generated by an i.i.d. sequence ωt ∈ Ω,
we have

E[ f (X̄T)] ≤ min f +
[

Dc

α
+

αM2

2α

]
1√
T

(5.13)

where X̄T = (1/T)∑T
t=1 Xt is the “ergodic average” of Xt and

Dc = inf
x∗∈arg min f

D(x∗, xc) < ∞ (5.14)

denotes the Bregman distance of the prox-center xc of X to arg min f .

The key novelty in Theorem 5.3 is that the optimal O(T−1/2) convergence rate
of (LMD) is maintained even if the stochastic gradients of F become singular at residual
points x ∈ cl(X ) \ X . The proof of Theorem 5.3 likewise relies on an online-to-
batch conversion of the regret guarantees of (LMD) for the sequence of stochastic
gradients ∇F(·; ωt) of f .

To go beyond the ergodic guarantees of Theorem 5.3, we also analyze below the
convergence of the “last iterate” of online mirror descent (OMD), i.e., the actual
sequence of generated points Xt. This is of particular interest for non-convex problems
where ergodic convergence results are of limited value (because Jensen’s inequality
no longer applies). To obtain global convergence results in this setting, we focus
on a class of functions which satisfy a weak secant inequality of the formWeak Secant Inequality

inf{〈∇ f (x), x− x∗〉 : x∗ ∈ arg min f , x ∈ K} > 0 (SI)

for every closed subset K of X that is separated by neighborhoods from arg min f .
Variants of this condition have been widely studied in the literature and include non-



5.2 application to stochastic non-smooth minimization 57

convex functions with complicated ridge structures [26, 40, 55, 59, 70, 93, 118, 120].
In this very general setting, we have:

Theorem 5.4. Assume f satisfies (SI) and satisfies (MB) in L2. Suppose further that Last Iterate Convergence

arg min f is bounded and (LMD) is run with a sequence of stochastic gradients ĝt =
∇F(Xt; ωt), a Bregman–Finsler regularizer h, and a variable step-size γt such that
∑∞

t=1 γt = ∞, ∑∞
t=1 γ2

t < ∞. Then, with probability 1, Xt converges to some (possi-
bly random) x∗ ∈ arg min f .

We begin by recalling two important results from probability theory. The first is
a version of the law of large numbers for martingale difference sequences that are
bounded in L2 [47]: Law of Large Numbers

for Martingales

Theorem 5.5 (Hall and Heyde [47]). Let Yt = ∑t
i=1 ζi be a martingale and βt a

non-decreasing positive sequence such that limt→∞ βt = ∞. Then,

lim
t→∞

Yt/βt = 0 almost surely (5.15)

on the set ∑∞
t=1 β−2

t E[ζ2
t | Ft−1] < ∞.

The second is a convergence result for quasi-supermartingales due to Robbins
and Sigmund [101]: Stochastic Quasi-Fejer

Sequences

Lemma 5.6 (Robbins and Sigmund [101]). Let (Ft)t∈N be a non-decreasing sequence
of σ− algebras. Let (αt)t∈N, (θt)t∈N non-negative Ft− measurable random variables,
(ηt)t∈N is an Ft− measurable non-negative summable random variable and the following
inequality holds:

E[αt+1 | Ft] ≤ αt − θt + ηt almost surely (5.16)

Then, (αt)t∈N converges almost surely towards a [0, ∞)-valued random variable.

An application of this lemma leads us to the following result which is of inde-
pendent interest:

Proposition 5.7 (Antonakopoulos et al. [7]). Let Xt be the sequence of iterates generated
by (LMD) run with a step-size sequence γt such that ∑∞

t=1 γ2
t < ∞ and a stochastic oracle

as in the statement of Theorems 5.3 and 5.4. Then, for all x∗ ∈ arg min f , F(x∗, Yt)
converges with probability 1.

Proof. Let x∗ ∈ arg min f . Recalling our main estimation:

F(x∗, Yt+1) ≤ F(x∗, Yt)− γt〈ĝt, Xt − x∗〉x +
γ2

t
2α
‖ĝt‖2

Xt ,∗ (5.17)

and taking conditional expectations on both sides, we get due to Ft− measurability
arguments:

E[F(x∗, Yt+1)|Ft] ≤ F(x∗, Yt)− γt〈ĝt, Xt − x∗〉x +
γ2

t
2α

E[‖ĝt‖2
Xt ,∗|Ft]. (5.18)

Since, (2α)−1 ∑∞
t=1 γ2

t E[‖ĝt‖2
Xt ,∗|Ft] ≤ M(2α)−1 ∑∞

t=1 γ2
t < ∞ by applying the

above we get the result.
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Having this at hand, we can establish the following proposition:Almost Sure
Boundedness

Proposition 5.8. Let Xt be the sequence of iterates generated by (LMD) with assumptions
as in Theorem 5.4. Then, for all x∗ ∈ arg min f , the sequence ‖Xt − x∗‖Xt is bounded
with probability 1.

Proof. Recalling our main estimation and taking condition expectations on both
sides, we get:

E[F(x∗, Yt+1) | Ft] ≤ F(x∗, Yt)− γt〈ĝt, Xt − x∗〉x +
γ2

t
2α

E[‖ĝt‖2
Xt ,∗|Ft] (5.19)

Hence, by the above corollary, we have that the sequence F(x∗, Yt) converges with
probability 1 for all x∗ ∈ arg min f . Thus, it is also bounded with probability 1 for
all x∗. We then get

‖Xt − x∗‖2
Xt
≤ 2

α
F(x∗, Yt) (5.20)

which concludes our proof.

We continue by showing that Xt possesses a subsequence that converges to
arg min f :Existence of Convergent

Sub-sequence

Proposition 5.9 (Antonakopoulos et al. [7]). Let Xt be the sequence of iterates generated
by (LMD) with assumptions as in Theorem 5.4. Then, with probability 1, there exists a
(possibly random) subsequence of Xt which converges to arg min f .

Proof. Assume to the contrary that, with positive probability, the sequence Xt
generated by (LMD) admits no limit points in arg min f . Conditioning on this event,
there exists a (nonempty) closed set C ⊂ X which is separated by neighborhoods
from arg min f and is such that Xt ∈ C for all suffiently large t. Then, by relabeling
Xt if necessary, we can assume without loss of generality that Xt ∈ C for all t ∈N.
Thus, by Proposition 5.2, we get:

F(x∗, Yt+1) ≤ F(x∗, Yt)− γt〈ĝt, Xt − x∗〉+ γ2
t

2α
‖ĝt‖2

Xt ,∗

= F(x∗, Yt)− γt〈∇ f (Xt), Xt − x∗〉 − γt〈Ut+1, Xt − x∗〉+ γ2
t

2α
‖ĝt‖2

Xt ,∗

≤ F(x∗, Yt)− γtδ(C) + γtξt+1 +
γ2

t
2α
‖ĝt‖2

Xt ,∗ (5.21)

where in the last line we set δ(C) = inf{〈∇ f (x), x− x∗〉 : x∗ ∈ arg min f , x ∈ C} >
0 (by (SI)), Ut+1 = ĝt −∇ f (Xt), ξt+1 = −〈Ut+1, Xt − x∗〉 and βt = ∑t

i=1 γi. Thus,
by telescoping and factorizing we get:

F(x∗, Yt+1) ≤ F(x∗, Y1)− βt

[
δ(C)− ∑t

s=1 γsξs+1

βt
−

∑t
s=1 γ2

s‖ĝs‖2
Xs ,∗

2αβt

]
(5.22)
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By the unbiasedness assumption for Ut, we have E[ξt+1 | Ft] = 〈E[Ut+1 | Ft], Xt −
x∗〉 = 0. Moreover, for all x∗ ∈ arg min f , we have

∞

∑
t=1

γ2
t E[ξt+1 | Ft] ≤

∞

∑
t=1

γ2
t ‖Xt − x∗‖2

Xt
E[Ut+1 | Ft] ≤

∞

∑
t=1

γ2
t F(x∗, Yt)E[Ut+1 | Ft] < ∞

(5.23)

where the last (strict) inequality is obtained due to the finite mean square property,
the boundness of F(x∗, Yt) and the fact that ∑∞

t=1 γ2
t < ∞. Thus, we can apply

the law of large numbers for L2− martingales stated above and conclude that
β−1

t ∑t
s=1 γsξs+1 converges to 0 almost surely. On the other hand, for the term

St+1 = ∑t
s=1 γ2

s‖ĝs‖2
Xt ,∗, since ĝs+1 is Fs-measurable for all s = 1, 2 . . . , t− 1 we

have:

E[St+1 | Ft] = E

[
t−1

∑
i=1

γ2
t ‖ĝi‖2

xi ,∗ + γ2
t ‖ĝt‖2

Xt ,∗

∣∣∣∣∣Ft

]
= St + γ2

t E
[
‖ĝt‖2

Xt ,∗

∣∣∣Ft

]
≥ St

(5.24)
so St is a submartingale with respect to Ft. Furthermore, by the law of total
expectation, we also get:

E[St+1] = E[E[St+1 | Ft]] ≤ σ2
t

∑
i=1

γ2
i ≤ σ2

∞

∑
t=1

γ2
t < ∞, (5.25)

implying that St is bounded in L1. Thus, due to Doob’s submartingale convergence
theorem [47], we coclude that St converges to some (almost surely finite) random
variable S∞ so limt→∞

St+1
βt

= 0 with probability 1.

Now, by letting t→ ∞ in (5.22), we get F(x∗, Yt)→ −∞, a contradiction. Going
back to our original assumption, this shows that there exists a subsequence of Xt
which converges to arg min f with probability 1, as claimed.

With all this at hand, we proceed to the proof of our convergence result:

Proof of Theorem 5.4. By the boundedness (and hence compactness) of arg min f ,
Proposition 5.9 implies that, with probability 1, there exists some x∗ ∈ arg min f
such that Xtk → x∗ for some (possibly random) subsequence Xtk of Xt. By the
Riemann–Legendre property of h, it follows that F(x∗, Ytk ) = D(x∗, Xtk ) → 0 as
k → ∞, implying in turn that limt→∞ D(x∗, Xt) = 0 (by Proposition 5.7). Since
D(x∗, Xt) ≥ α‖Xt − x∗‖2

Xt
≥ µ‖Xt − x∗‖2, we conclude that Xt → x∗, and our

proof is complete.

The above result is a first step towards establishing convergence rate guarantees
for NoLips (non-smooth) convex minimization problems. In what will follow,
we dive into more detail regarding the interplay between the different NoLips
regularity conditions.

5.3 numerical evaluation in poisson inverse problems

For the purposes of validation, we proceed with an application of our algorithmic
results to a broad class of Poisson inverse problems that arise in tomography
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Figure 5.1: Reconstruction of the Lena test image from a sample contaminated with Poisson
noise. Left to right: (a) the contaminated sample; (b) RMD reconstruction; and (c)
Poisson likelihood loss at each iteration. The RMD process provides a sharper
definition of image features relative to the CMP algorithm (which is the second-
best).

problems; the objective of interest here is the Poisson likelihood loss (generalized
Kullback–Leibler divergence):

f (x) = ∑N
j=1

[
xj log

xj

(Hx)j
+ (Hx)j − xj

]
(5.26)

where x ∈ RN
+ is a vector of Poisson data observations (e.g., pixel intensities)

and H ∈ RN×n is an ill-conditioned matrix representing the data-gathering pro-
tocol. From an algorithmic point of view we will restrict ourselves to the Rie-
mannian framework. Since the generalized KL objective of (5.26) exhibits an
O(1/x) singularity at the boundary of the orthant, we consider the Poincaré metric
g(x) = diag(1/x1, . . . , 1/xn) under which the KL divergence is Riemann–Lipschitz
continuous. ( Going back to PIP, a suitable Riemannian regularizer for this metric
is h(x) = ∑N

i=1 1/x2
i , which is 1-strongly convex relative to g. We then run the

induced mirror descent algorithm with an online-to-batch conversion mechanism
as described in Section 5.2. For reference purposes, we call the resulting process
Riemannian mirror descent (RMD).

Subsequently, we ran RMD on a Poisson denoising problem for a 384× 384 test
image contaminated with Poisson noise (so n ≈ 105 in this case). For benchmarking,
we also ran a fast variant of the widely used Lucy–Richardson (LR) algorithm
[22], and the recent composite mirror prox (CMP) method of [50]; all methods
were run with stochastic gradients and the same minibatch size. Because of the
“dark area” gradient singularities when [Hx]j → 0, Euclidean stochastic gradient
methods oscillate without converging, so they are not reported. As we see in
Fig. 5.1, the RMD process provides the sharpest reconstruction of the original. In
particular, after an initial warm-up phase, the last iterate of Riemannian mirror
descent consistently outperforms the LR algorithm by 7 orders of magnitude, and
CMP by 3. We also note that the Poisson likelihood loss decreases faster under
the last iterate of RMD relative to the different algorithmic variants that we tested,
exactly because of the hysteresis effect that is inherent to ergodic averaging.

Overall, we note that the introduction of an additional degree of freedom (the
choice of Bregman function and that of the local Riemannian norm), makes RMD
a particularly flexible and powerful paradigm for loss models with singularities.
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We find these results particularly encouraging for further investigations on the
interplay between Riemannian geometry and Bregman-proximal methods.





6
N O L I P S M I N I M I Z AT I O N P R O B L E M S

# This section incorporates material from the paper [4]

In this chapter, we proceed to treat in depth the specific case of convex minimiza-
tion problems. The key feature which differentiates the present analysis with the

results of Chapter 5 is that here we aim to establish order optimal convergence rate
guarantees for both deterministic and/or stochastic oracle feedback and (RC) and
(RS) respectively.

In doing so, a first issue that should be tackled is to determine what optimal
interpolation means for the NoLips framework, i.e., to determine the respective
worst case lower bounds under (RC) and (RS). To begin with, Theorem 5.3 provides
a convergence rate of order O(1/

√
T) under (RC) which matches the worst-case

lower bound presented in Section 2.4.2.

Therefore, the most intriguing part is whether an O(1/T2) bound can also be
achieved in the (RS) case. This question remained open until Dragomir et al.
(2019) established the discrepancy between standard smoothness and (RC). More
precisely, they showed that the worst case lower bound under (RS) is Ω(1/T) and
hence the optimal rate for relatively smooth problems does not match the O(1/T2)
rate for standard Lipschitz smooth problems.1

With all this in hand, in Section 6.1 we begin by describing the respective
"universal" step-size policy that we will study to interpolate between (RC) and
(RS). Moving forward, in Section 6.2 we present our results with respect to a
deterministic oracle. More precisely, we show that the time-averages of the (MD)
iterates run with our adaptive step-size policy achieve simultaneously order optimal
guarantees for both (RS) and (RC) objectives. As an additional feature we establish
that the actual iterates of the method - before any averaging occurs- converge
towards the solution set.

We conclude this chapter by providing the respective convergence rate guarantees
for stochastic case. More precisely, in Section 6.3 we illustrate the respective
stochastic rates under (RC) and (RS) via explicit upper bounds.

6.1 a universal step-size

Throughout this chapter, the blanket algorithmic template which we will be focus-
ing on is that of (MD), i.e., Mirror Descent

Template
1 In [49] proposed a tentative path towards faster convergence in certain beyond Lipschitz problems.

However, in doing so they require some strict regularity conditions.
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Constr. / Uncon. Stoch. (L) (RC) (RS) Stoch. (R)

AdaGrad [39] X/X X 5 5 5

AcceleGrad [67] 5/ X X 5 5 5

UniXGrad [60] X/ 5 X 5 5 5

UPGD [92] X/ X 5 5 5 5

GMP [110] X/ X 5 5 1/T 5

AdaProx [8] X/ X 5 partial partial 5

AdaMir [4] X/ X X 1/
√

T 1/T 1/
√

T

Table 6.1: Overview of related adaptive methods for convex optimization. For the purposes
of this table, (L) refers to “Lipschitz” and (R) to “relative” continuity or smooth-
ness respectively. In the case of AdaProx, “partial” means that the non-Lipschitz
conditions under which it guarantees convergence form a subset of (RC) / (RS).
Logarithmic factors are ignored throughout; we also note that the O(1/T) rate in
the column (RS) is, in general, unimprovable [38].

X+ = PX(−γV) (6.1)

where P is a (Bregman) proximal operator associated to a Bregman function h as
per Definition 3.1 and V ∈ V∗. The next important element for our analysis is
to define the method’s step-size. In the unconstrained case, as we described in
Section 2.7 , a popular adaptive choice is the so-called “inverse-sum-of-squares”
policy:

γt = 1
/√

∑t
s=1‖∇ f (Xs)‖2∗, (6.2)

where Xt is the series of iterates produced by the algorithm. However, in relatively
continuous/smooth problems, this definition encounters two crucial issues. First,
because the gradient of f is unbounded (even over a bounded domain), the
denominator of (6.2) may grow at an uncontrollable rate, leading to a step-size
policy that vanishes too fast to be of any practical use. The second is that, if the
problem is constrained, the extra terms entering the denominator of γt do not
vanish as the algorithm approaches a solution, so (6.2) may still be unable to exploit
the smoothness of the objective.

We begin by addressing the second issue. In the Euclidean case, the key observa-
tion is that the difference ‖x+ − x‖ must always vanish near a solution (even near
the boundary), so we can use it as a proxy for ∇ f (x) in constrained problems. This
idea is formalized by the notion of the gradient mapping [89] that can be defined
here asGradient Mapping

δ = ‖x+ − x‖
/

γ. (6.3)

On the other hand, in a Bregman setting, the prox-mapping tends to deflate
gradient steps, so the norm difference between two successive iterates x+ and x of
(MD) could be very small relative to the oracle signal that was used to generate the
update. As a result, the Euclidean residual (6.3) could lead to a disproportionately
large step-size that would be harmful for convergence. For this reason, we consider
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a gradient mapping that takes into account the Bregman geometry of the method
and we set

δ =
√

D(x, x+) + D(x+, x)
/

γ. (6.4)

Obviously, when h(x) = (1/2)‖x‖2
2, we readily recover the definition of the Bregman

Gradient MappingEuclidean gradient mapping (6.3). In general however, by the strong convexity
of h, the value of this “Bregman residual” exceeds the corresponding Euclidean
definition, so the induced step-size exhibits smoother variations that are more
adapted to the framework in hand.

Having all this hand, we are in a position to put everything together and define
our adaptive (MD) method. In this regard, combining the abstract template (MD)
with the Bregman residual and “inverse-sum-of-squares” approach discussed above,
we will consider the recursive policy AdaMir

Algorithm

Xt+1 = PXt(−γtVt) (6.5)

with Vt, t = 1, 2, . . . , coming from a oracle model of the form (SFO), and with γt
defined as

γt =
1√

∑t−1
s=0 δ2

s

with δ2
s =

D(Xs, Xs+1) + D(Xs+1, Xs)

γ2
s

. (Adapt)

In the sequel, we will use the term to refer interchangeably to the update Xt ←
Xt+1 and the specific step-size policy used within. The convergence properties of
(MD) run with (Adapt); abbreviated as AdaMir are discussed in detail in the next
two sections in both deterministic and stochastic problems.

6.2 deterministic analysis

We are now in a position to state our main convergence results for our method. We
begin with the deterministic analysis (σ = 0), treating both the method’s “time-
average” as well as the induced trajectory of query points; the analysis for the
stochastic case (σ > 0) is presented in the next section.

6.2.1 Ergodic convergence and rate interpolation

We begin by showing the convergence rate guarantees of the method’s “time-
averaged” state, i.e., XT = (1/T)∑T

t=1 Xt. More precisely, we show that our
method simultaneously achieves an O(1/

√
T) value convergence rate under (RC)

and O(1/T) under (RS). Moreover, if both regularity conditions are satisfied we
are able to obtain a more detailed "any-time" rate. Formally, we have the following
result.

Theorem 6.1. Let Xt, t = 1, 2, . . . , denote the sequence of iterates generated by AdaMir,
and let D1 = D(x∗, X1). Then, AdaMir simultaneously enjoys the following guarantees:
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1. If f satisfies (RC), we have:

f (XT)−min f ≤
√

2G
[
D1 + 8G2/δ2

0 + 2 log(1 + 2G2T/δ2
0)
]

√
T

+
3
√

2G + 4G2/δ2
0

T
.

(6.6)

2. If f satisfies (RS), we have f (XT)−min f = O(D1/T).

3. If f satisfies (RS) and (RC), we have:

f (XT)−min f ≤
[

f (X1)−min f +

(
2 +

8G2

δ2
0

+ 2 log
4β2

δ2
0

)
β

]2
D1

T
. (6.7)

Universality Guarantees
(Deterministic) As we already mentioned Theorem 6.1 shows that, up to logarithmic factors,

AdaMir achieves the optimal lower bounds for objectives which satisfy either
belong to the (RC) oracle complexity class or satisfy (RS). The key element of the
proof is to the following regret bound:Regret Analysis of

AdaMir

Proposition 6.2. With notation as in Theorem 6.1, AdaMir enjoys the regret bound

T

∑
t=1

[ f (Xt)− f (x∗)] ≤ D1

γT
+

∑T
t=1 γ2

t δ2
t

γT
+

T

∑
t=1

γtδ
2
t . (6.8)

Proof. By the convexity of f and the definition of the Bregman proximal step in
Proposition 4.3, we have:

f (Xt)− f (x∗) ≤ 〈Vt, Xt − x∗〉 ≤ 1
γt
〈∇h(Xt)−∇h(Xt+1), Xt − x∗〉. (6.9)

Hence, by applying again the three-point identity (Lemma 4.2), we obtain:

f (Xt)− f (x∗) ≤ D(x∗, Xt)− D(x∗, )
γt

+
D(Xt, )

γt

≤ D(x∗, Xt)− D(x∗, )
γt

+
D(Xt, ) + D(, Xt)

γt

=
D(x∗, Xt)− D(x∗, )

γt
+ γtδ

2
t (6.10)

where the last equality follows readily from the definition (6.4) of δt. Therefore, by
summing through t = 1, 2, . . . , T, we obtain:

T

∑
t=1

[ f (Xt)− f (x∗)] ≤ D(x∗, X1)

γ1
+

T

∑
t=2

[
1
γt
− 1

γt−1

]
D(x∗, Xt) +

T

∑
t=1

γtδ
2
t . (6.11)

Now, we are left to bound from above the second term on the right-hand side (RHS)
of (6.11). By the second part of Proposition 4.3, we have:

D(x∗, Xs+1) ≤ D(x∗, Xs)− γt〈Vt, Xt − x∗〉+ D(Xs, Xs+1)

≤ D(x∗, Xs) + D(Xs, Xs+1)

≤ D(x∗, Xs) + D(Xs+1, Xs) + D(Xs, Xs+1) (6.12)
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Thus, by telescoping through s = 1, 2, . . . , t, we obtain:

D(x∗, Xt) ≤ D(x∗, X1) +
t

∑
s=1

[D(Xs, Xs+1) + D(Xs+1, Xs)]

≤ D(x∗, X1) +
T

∑
s=1

[D(Xs, Xs+1) + D(Xs+1, Xs)]

= D(x∗, X1) +
T

∑
s=1

γ2
s δ2

s (6.13)

where the last equality follows from the definition (6.4) of δt. So, summarizing

T

∑
t=2

[
1
γt
− 1

γt−1

]
D(x∗, Xt) ≤

T

∑
t=2

[
1
γt
− 1

γt−1

](
D(x∗, X1) +

T

∑
s=1

γ2
s δ2

s

)

≤ D(x∗, X1)

γT
− D(x∗, X1)

γ1
+

T

∑
s=1

γ2
s δ2

s ·
T

∑
t=1

[
1
γt
− 1

γt−1

]
≤ D(x∗, X1)

γT
− D(x∗, X1)

γ1
+

∑T
t=1 γ2

t δ2
t

γT
. (6.14)

Hence, by combining the above with (6.11), our claim follows.

The proof of Proposition 6.2 hinges on the specific definition of the adaptive
step-size, and the exact functional form of the regret bound (6.8) plays a crucial
role in the sequel. Specifically, under the regularity conditions (RC) and (RS), we
respectively obtain the following key lemmas: Boundedness of the

Residuals Under (RC)

Lemma 6.3. Under (RC), the sequence of the Bregman residuals δt of is bounded as
δ2

t ≤ 2G2 for all t ≥ 1.

Proof. By the definition of the Bregman proximal step in (MD) and Proposition 4.3,
we have:

D(Xt, Xt+1) + D(Xt+1, Xt) = 〈∇h(Xt)−∇h(Xt+1), Xt − Xt+1〉
≤ γt〈Vt, Xt − Xt+1〉. (6.15)

Hence, by invoking (RC) we get:

D(Xt, Xt+1) + D(Xt+1, Xt) ≤ γtG
√

2D(Xt+1, Xt)

≤ γtG
√

2 [D(Xt+1, Xt) + D(Xt, Xt+1)] (6.16)

We thus get:
D(Xt, Xt+1) + D(Xt+1, Xt) ≤ 2γ2

t G2. (6.17)

Hence, by the definition (6.4) of δ2
t , we conclude that

δ2
t =

D(Xt, Xt+1) + D(Xt+1, Xt)

γ2
t

≤ 2G2. (6.18)
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Lemma 6.4. Under (RS), the sequence of the Bregman residuals δt is square-summable,
i.e., ∑t δ2

t < ∞. Consequently, the method’s step-size converges to a positive limit γ∞ > 0.
Summability of the

Residuals Under (RS)

Proof. Since the adaptive step-size policy γt is decreasing and bounded from below
(γt) ≥ 0 we get that its limit exists,i.e.,

lim
t→+∞

γt = γ∞ for some γ∞ ≥ 0 (6.19)

Assume that γ∞ = 0. By Proposition 3.3, we obtain:

f (Xt+1) ≤ f (Xt) + 〈∇ f (Xt), Xt+1 − Xt〉+ βD(Xt+1, Xt)

≤ f (Xt)−
1
γt

D(Xt, Xt+1)

− 1
γt

D(Xt+1, Xt) + β [D(Xt, Xt+1) + D(Xt+1, Xt)] (6.20)

whereas by recalling the definition of the residuals (Adapt) the above can be
rewritten as follows:

f (Xt+1) ≤ f (Xt)− γtδ
2
t + βγ2

t δ2
t = f (Xt)−

1
2

γtδ
2
t −

1
2

γtδ
2
t + βγ2

t δ2
t (6.21)

Moreover, by rearranging and factorizing the common term γtδ
2
t we get:

1
2

γtδ
2
t ≤ f (Xt)− f (Xt+1) + γtδ

2
t

[
βγt −

1
2

]
(6.22)

Now, by the fact that
[

βγt − 1
2

]
≤ 0 for γt ≤ 1/2β and the fact that γt converges

to 0 by assumption, we get that there exists some t0 ∈N such that:[
βγt −

1
2

]
≤ 0 for all t > t0 (6.23)

Hence, by telescoping for t = 1, 2, . . . , T for sufficiently large T, we have

1
2

T

∑
t=1

γtδ
2
t ≤ f (X1)− f (XT+1) +

t0

∑
t=1

[
βγt −

1
2

]
γtδ

2
t

≤ f (X1)−min
x∈X

f (x) +
t0

∑
t=1

[
βγt −

1
2

]
γtδ

2
t (6.24)

Now, by applying the (LHS) of Lemma A.4 we get:

1
2

[
1

γT
− δ0

]
≤ 1

2

√√√√δ2
0 +

T−1

∑
t=1

γtδ2
t ≤

T

∑
t=1

γtδ
2
t ≤ f (X1)−min

x∈X
f (x)+

t0

∑
t=1

[
βγt −

1
2

]
γtδ

2
t

(6.25)
Since γt → 0 we get that 1/γt → +∞ and hence the above yields that +∞ ≤
f (X1) −minx∈X f (x) + ∑t0

t=1

[
β
K γt − 1

2

]
γtδ

2
t , a contradiction. Therefore we get

that:
lim

t→+∞
γt = γ∞ > 0 (6.26)
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Moreover, by recalling the definition of the adaptive step-size policy γt:

γt =
1√

δ2
0 + ∑t−1

s=1 δ2
s

(6.27)

and after rearranging we obtain:

t−1

∑
s=1

δ2
s =

1
γ2

t
− δ2

0 (6.28)

and therefore by taking limit on both sides we obtain:

+∞

∑
t=1

δ2
t = lim

t→+∞

t−1

∑
s=1

δ2
s = lim

t→+∞

1
γ2

t
− δ2

0 =
1

γ2
∞
− δ2

0 < +∞ (6.29)

and hence the result follows.

As we explain below, the boundedness estimate of Lemma 6.3 is necessary to
show that the iterates of the method do not explode; however, without further
assumptions, it is not possible to sharpen this bound. The principal technical
difficulty – and an important novelty of our analysis – is the stabilization of the
step-size to a strictly positive limit in Lemma 6.4. This property plays a crucial
role because the method is not slowed down near a solution. To the best of our
knowledge, there is no comparable result for the step-size of parameter-agnostic
methods in the literature.2

Armed with these two lemmas, we will establish below the following series of
estimates:

1. Under (RC), the terms in the RHS of (6.8) can be bounded respectively
as O(G

√
T), O(log(G2T)

√
T), and O(G

√
T). As a result, we obtain an

Õ(1/
√

T) rate of convergence.

2. Under (RS), all terms in the RHS of (6.8) can be bounded as O(1), so we
obtain an O(1/T) convergence rate for X̄T .

We formalize all this below:

Proof of Theorem 6.1. Repeating the statement of Proposition 6.2, the iterate se-
quence Xt generated by ADM enjoys the bound:

T

∑
t=1

[ f (Xt)− f (x∗)] ≤ D(x∗, X1)

γT
+

∑T
t=1 γ2

t δ2
t

γT
+

T

∑
t=1

γtδ
2
t (6.8)

We now proceed to bound each term on the RHS of (6.8) from above. We consider
three separate cases, first only under (RC),then under (RS) and finally when both
(RC) and (RS) holds.

2 In more detail, [67], [68] and [60] establish the summability of a suitable residual sequence to sharpen
the O(1/

√
T) rate in their respective contexts, but this does not translate to a step-size stabilization

result. Under (RC)/(RS), controlling the method’s step-size is of vital importance because the gradients
that enter the algorithm may be unbounded even over a bounded domain; this crucial difficulty does
not arise in any of the previous works on adaptive methods for ordinary Lipschitz problems.
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1. Under (RC): We begin with problems satisfying (RC).Analysis Under (RC)

• For the first term, Lemma 6.3 gives:

D(x∗, X1)

γT
= D(x∗, X1)

√√√√T−1

∑
t=0

δ2
t ≤ D(x∗, X1)

√
2G2T. (6.30)

• For the second term, we have:

T

∑
t=1

γ2
t δ2

t ≤
T

∑
t=1

δ2
t

∑t−1
s=0 δ2

s
=

T

∑
t=1

δ2
t

δ2
0 + ∑t−1

s=1 δ2
s

. (6.31)

Hence, by Lemmas 6.3 and A.5, we get:

T

∑
t=1

γ2
t δ2

t ≤ 2 +
8G2

δ2
0

+ 2 log

(
1 +

T−1

∑
t=1

δ2
t

δ2
0

)

= 2 +
8G2

δ2
0

+ 2 log

(
T−1

∑
t=0

δ2
t

δ2
0

)

≤ 2 +
8G2

δ2
0

+ 2 log
2G2T

δ2
0

. (6.32)

• Finally, for the third term, we get:

T

∑
t=1

γtδ
2
t =

T

∑
t=1

δ2
t√

∑t−1
s=0 δ2

t

=
T

∑
t=1

δ2
t√

δ2
0 + ∑t−1

s=1 δ2
t

. (6.33)

Hence, Lemmas 6.3 and A.4 again yield:

T

∑
t=1

γtδ
2
t ≤

4G2

δ0
+ 3
√

2G + 3

√√√√δ2
0 +

T−1

∑
t=1

δ2
t

≤ 4G2

δ0
+ 3
√

2G + 3

√√√√T−1

∑
t=0

δ2
t

≤ 4G2

δ0
+ 3
√

2G + 3
√

2G2T. (6.34)

The claim of Theorem 6.1 then follows by combining the above within the
regret bound (6.8).

2. Under (RS): We now turn to problems satisfying (RS). Recalling Lemma 6.4,
we shall revisit the terms of (6.8). In particular, we have:Analysis Under (RS)

• For the first term, we have:

D(x∗, X1)

γT
= D(x∗, X1)

√√√√T−1

∑
t=0

δ2
t ≤

D(x∗, X1)

γ∞
(6.35)
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• For the second term, we have:

T

∑
t=1

γ2
t δ2

t ≤
1
δ2

0

T

∑
t=1

δ2
t ≤

1
δ2

0γ2
∞
− 1 (6.36)

• Finally, for the third term, we get:

T

∑
t=1

γtδ
2
t ≤

1
δ0

T

∑
t=1

δ2
t ≤

1
δ0γ2

∞
− δ0 (6.37)

Combining all the above, the result follows.

3. Under (RS) and (RC): Finally, we consider objectives where (RC) and (RS)
hold simultaneously. Now, by working in the same spirit as in the proof of
Lemma 6.4 we get: Analysis Under (RC) &

(RS)
1
2

γtδ
2
t ≤ f (Xt)− f (Xt+1) + γtδ

2
t

[
βγt −

1
2

]
(6.38)

which after telescoping t = 1, . . . , T it becomes:

1
2

T

∑
t=1

γtδ
2
t ≤ f (X1)−min

x∈X
f (x) +

T

∑
t=1

γtδ
2
t

[
βγt −

1
2

]
(6.39)

Now, after denoting:

t0 = max{t ∈N : 1 ≤ t ≤ T such that γt ≥
1

2β
} (6.40)

and decomposing the sum we get:

1
2

T

∑
t=1

γtδ
2
t ≤ f (X1)−min

x∈X
f (x) +

t0

∑
t=1

γtδ
2
t

[
βγt −

1
2

]
+

T

∑
t=t0+1

γtδ
2
t

[
βγt −

1
2

]

≤ f (X1)−min
x∈X

f (x) +
t0

∑
t=1

γtδ
2
t

[
βγt −

1
2

]

≤ f (X1)−min
x∈X

f (x) + β
t0

∑
t=1

γ2
t δ2

t (6.41)

On the other hand, by applying Lemma A.5, we have:

t0

∑
t=1

γ2
t δ2

t ≤ 2 +
8G2

δ2
0

+ 2 log

(
1 +

t0−1

∑
t=1

δ2
t

δ2
0

)

= 2 +
8G2

δ2
0

+ 2 log

(
1
δ2

0

[
δ2

0 +
t0−1

∑
t=1

δ2
t

])

= 2 +
8G2

δ2
0

+ 2 log
1

δ2
0γ2

t0

(6.42)
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and by the definition of t0 we get:

t0

∑
t=1

γ2
t δ2

t ≤ 2 +
8G2

δ2
0

+ 2 log
4β2

δ2
0

. (6.43)

which yields:

T

∑
t=1

γtδ
2
t ≤ f (X1)−min

x∈X
f (x) + β

[
2 +

8G2

δ2
0

+ 2 log
4β2

δ2
0

]
(6.44)

The result then follows by plugging in the above bounds in (6.8).

Having established the convergence rate for the time-average iterates as output
of our method, we proceed with examining the asymptotic behaviour of the iterates
of the method per se.

6.2.2 Other modes of convergence

In complement to the analysis above, we provide below a spinoff result for the
method’s “last iterate”, i.e., the actual trajectory of queried points. In particular,
these results become more appealing for the more general non-convex landscapes.
Formalizing the blanket assumption in order to get the said last-iterate convergence
results we shall assume throughout this section that the underlying objective f
satisfies the so-called ‘secant condition” [26, 121]:Weak Secant Inequality

inf{〈∇ f (x), x− x∗〉 : x∗ ∈ arg min f , x ∈ K} > 0 (SI)

for every closed subset K of X that is separated by neighborhoods from arg min f .
The formal statement is as follows.Last Iterate Convergence

Theorem 6.5. Suppose that f satisfies (RC) or (RS) along with (SI) condition. Then Xt
converges to arg min f .

The main idea of the proof consists of two steps. The first key step is to
show that, under (RC) ∪ (RS), the iterates have convergent subsequences, i.e.,
lim inf f (Xt) = min f . In particular, we have the following result.Extracting a Convergenr

Sub-sequence

Proposition 6.6. Assume that f satisfies (RC) or (RS) along with the (SI) and Xt are the
iterates generated by AdaMir. Then there exists a subsequence Xkt which converges to the
solution set X ∗.

Proof. Assume to the contrary that the sequence Xt generated by AMD admits no
limit points in X ∗ = arg min f . Then there exists a (non-empty) closed set K ⊆ X
which is separated by neighborhoods from arg min f and is such that Xt ∈ C for
all sufficiently large t. Then, by relabelling Xt if necessary, we can assume without
loss of generality that Xt ∈ K for all t ∈N. Thus, we have:

D(x∗, Xt+1) ≤ D(x∗, Xt)− γt〈∇ f (Xt), Xt − x∗〉+ D(Xt, Xt+1)
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≤ D(x∗, Xt)− γt〈∇ f (Xt), Xt − x∗〉+ [D(Xt, Xt+1) + D(Xt+1, Xt)]

= D(x∗, Xt)− γt〈∇ f (Xt), Xt − x∗〉+ γ2
t δ2

t (6.45)

with the last equality being obtained by the definition of (6.4). Now, applying (SI)
we get:

D(x∗, Xt+1) ≤ D(x∗, Xt)− γtδ(K) + γ2
t δ2

t (6.46)

with δ(K) = inf{〈∇ f (x), x− x∗〉 : x∗ ∈ arg min f , x ∈ K} > 0. Hence, by telescop-
ing t = 1, . . . , T, factorizing and setting βt = ∑T

t=1 γt we have:

D(x∗, XT+1) ≤ D(x∗, X1)− βt

[
δ(K)− ∑T

t=1 γ2
t δ2

t
βt

]
(6.47)

(6.47) will be the crucial lemma that will walk throughout our analysis. In par-
ticular, we will treat the different regularity conditions of (RC) and (RS) seperately.

1. The (RC) case: Assume that f satisfies (RC). By examining the asymptotic
behaviour of each term individually, we obtain: Sub-sequence Under

(RC)
• For the term βT = ∑T

t=1 γt, we have:

βT =
T

∑
t=1

1√
δ2

0 + ∑t−1
j=1 δ2

t

≥
T

∑
t=1

1√
δ2

0 + 2G2t
(6.48)

which yields that βT → +∞ and more precisely βT = Ω(
√

T).

• For the term ∑T
t=1 γ2

t δ2
t

βT
, for the numerator we have:

T

∑
t=1

γ2
t δ2

t =
T

∑
t=1

δ2
t

δ2
0 + ∑t−1

j=1 δ2
j /δ2

0

≤ 2 + 8G2/δ2
0 + 2 log(1 +

T−1

∑
t=1

δ2
t /δ2

0)

≤ 2 + 8G2/δ2
0 + 2 log(1 + 2G2T/δ2

0) (6.49)

which yields that ∑T
t=1 γ2

t δ2
t = O(log T), and combined with the fact

that βt = Ω(
√

T) we readily get:

∑T
t=1 γ2

t δ2
t

βT
→ 0 (6.50)

So, combining all the above and letting T → +∞ in (6.47), we get that
D(x∗, XT+1)→ −∞, a contradiction. Therefore, the result under (RC) follows.

2. The (RS) case: On the other hand, assume that f satisfies (RS). Recalling
Lemma 6.4 and the fact that γt is decreasing we have: Sub-sequence Under

(RS)
T

∑
t=1

γtδ
2
t ≤

+∞

∑
t=1

δ2
t < +∞ (6.51)
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which by working as in Lemma 6.4 also yields:

lim
t→+∞

γt = γ∞ > 0 (6.52)

Additionally, since γt is decreasing and bounded we also have that γ∞ =
inft γt. Now, we shall re-examine the terms of (6.47). More precisely, we have:

• For βT we have:

βT =
T

∑
t=1

γt ≥ γ∞

T

∑
t=1

1 = γ∞T (6.53)

which in turn yields that βT → +∞ and more precisely βT = Ω(T).

• For the term ∑T
t=1 γ2

t δ2
t

βT
, for the numerator we have by the fact that γt ≤

1/δ0 and Lemma 6.4:

T

∑
t=1

γtδ
2
t ≤

1
δ0

T

∑
t=1

δ2
t < +∞ (6.54)

which yields that ∑T
t=1 γ2

t δ2
t = O(1), which combined with (6.53) gives

that:
∑T

t=1 γ2
t δ2

t
βT

→ 0 (6.55)

so, again combing the above and letting T → +∞ in (6.47), we get that
D(x∗, XT+1)→ −∞, a contradiction. Therefore, the result follows also under
(RS).

Now, given the existence of a convergent subsequence, the rest of our proof
strategy branches out depending on whether f satisfies (RC) or (RS). Under (RS),
the analysis relies on arguments that involve a quasi-Fejér argument as in [26, 36];
this is described by the following lemma.Quasi-Fejer Seuences

Lemma 6.7. Let χ ∈ (0, 1], (αt)t∈N, (βt)t∈N non-negative sequences and (εt)t∈N ∈
l1(N) such that t = 1, 2, . . . :

αt+1 ≤ χαt − βt + εt (6.56)

Then, αt converges.

Proof. First, one shows that αt∈N is a bounded sequence. Indeed, one can derive
directly that:

αt+1 ≤ χt+1α0 +
t

∑
k=0

χt−kεk (6.57)

Hence, (αt)t∈N lies in [0, α0 + ε], with ε = ∑+∞
t=0 εt. Now, one is able to extract

a convergent subsequence (αkt)t∈N, let say limt→+∞ αkt = α ∈ [0, α0 + ε] and fix
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δ > 0. Then, one can find some t0 such that αkt0
− α < δ

2 and ∑m>tkt0
εm < δ

2 . That

said, we have:

0 ≤ αt ≤ αkt0
+ ∑

m>tkt0

εm <
δ

2
+ α +

δ

2
= α + δ (6.58)

Hence, lim supt αt ≤ lim inft αt + δ. Since, δ is chosen arbitrarily the result follows.

However, under (RC), the quasi-Fejér property fails, so we prove the convergence
of Xt via a novel induction argument that shows that the method’s iterates remain
trapped within a Bregman neighborhood of x∗ if they enter it with a sufficiently
small step-size. Therefore, we provide the relevant details of Theorem 6.5.

Proof of Theorem 6.5. We will divide our proof in two parts by distinguishing the
two different regularity cases.

1. The (RC) case: Given that γt is decreasing and bounded from below we have
that its limit exists, denoted by γ∞ ≥ 0. We shall consider two cases: Last Iterate Under (RC)

a) γ∞ > 0: Following the same reasoning with Lemma 6.4 we get that:

T

∑
t=1

γ2
t δ2

t ≤
+∞

∑
t=1

δ2
t < +∞ (6.59)

Hence, by recalling the inequality:

D(x∗, Xt+1) ≤ D(x∗, Xt) + γ2
t δ2

t for all x∗ ∈ X ∗ (6.60)

whereas after taking infima on both sides with respect to X ∗, we get:

inf
x∗∈X ∗

D(x∗, Xt+1) ≤ inf
x∗∈X ∗

D(x∗, Xt) + γ2
t δ2

t (6.61)

and since the sequence γ2
t δ2

t is summable we can directly apply Lemma 6.7
which yields that the sequence infx∗∈X ∗ D(x∗, Xt) is convergent. Now,
since by Proposition 6.6, AMD possesses a convergent subsequence
towards the solution set X ∗ the result follows.

b) γ∞ = 0: Pick some ε > 0 and consider the Bregman zone:

Dε = {x ∈ X : D(X ∗, x) < ε}. (6.62)

Then, it suffices to show that Xt ∈ Dε for all sufficiently large t. In doing
so, consider the inequality:

D(x∗, Xt+1) ≤ D(x∗, Xt)− γt〈∇ f (Xt), Xt − x∗〉+ γ2
t δ2

t

≤ D(x∗, Xt)− γt〈∇ f (Xt), Xt − x∗〉+ γ2
t

2G2

K
(6.63)

with the second inequality being obtained by Lemma 6.3. To proceed,
assume inductively that Xt ∈ Dε. By the regularity assumptions of the
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regularizer h, it follows that there exists a δ− neighbourhood contained
in the closure of Dε/2. So, by the (SI) condition we have:

〈 f (x), x− x∗〉 ≥ c > 0 for some c ≡ c(ε) > 0 and for all x ∈ Dε \ Dε/2 and x∗ ∈ X ∗
(6.64)

We consider two cases:

• Xt ∈ Dε \ Dε/2: In. this case, we have:

D(x∗, Xt+1) ≤ D(x∗, Xt)− γt〈∇ f (Xt), Xt − x∗〉+ γ2
t

2G2

K

≤ D(x∗, Xt)− γtc + γ2
t

2G2

K
(6.65)

Thus, provided that γt ≤ cK
2G2 we get that D(x∗, Xt+1) ≤ D(x∗, Xt).

Hence, by taking infima on both sides relative to x∗ ∈ X ∗, we get
that D(X ∗, Xt+1) ≤ D(X ∗, Xt) < ε.

• Xt ∈ Dε/2: In this case, we have:

D(x∗, Xt+1) ≤ D(x∗, Xt)− γt〈∇ f (Xt), Xt − x∗〉+ γ2
t

2G2

K

≤ D(x∗, Xt) + γ2
t

2G2

K
(6.66)

with the second inequality being obtained by the optimality of x∗.
Now, provided that γ2

t ≤ εK
4G2 or equivalently γt ≤

√
εK

2G we have:

D(x∗, Xt+1) ≤ D(x∗, Xt) +
ε

2
(6.67)

whereas again by taking infima on both sides we get that D(X ∗, Xt+1) ≤
D(X ∗, Xt) +

ε
2 < ε.

Hence, summarizing we have that Xt+1 ∈ Dε whenever Xt ∈ Dε and
γt ≤ min{ cK

2G2 ,
√

εK
2G }. Hence, the result follows by. Proposition 6.6 and

the fact that γt → 0.

2. The (RS) case Recall that we have the following inequality,Last Iterate Under (RS)

D(x∗, Xt+1) ≤ D(x∗, Xt) + γ2
t δ2

t for all x∗ ∈ X ∗ (6.68)

whereas taking infima on both sides relative to X ∗ we readily get:

inf
x∗∈X ∗

D(x∗, Xt+1) ≤ inf
x∗∈X ∗

D(x∗, Xt) + γ2
t δ2

t (6.69)

Now, by recalling that by Lemma 6.4, we have γ2
t δ2

t is summable. we can
apply directly Lemma 7.10. Thus, we have the sequence infx∗∈X ∗ D(x∗, Xt) is
convergent. Moreover, Proposition 6.6 guarantees that there a subsequence of
infx∗∈X ∗‖X− x∗‖2 that converges to 0. We obtain that there exists also a subse-
quence of infx∗∈X ∗ D(x∗, Xt) that converges to 0 and since infx∗∈X ∗ D(x∗, Xt)
is convergent, we readily get that:

inf
x∗∈X ∗

‖x∗ − Xt‖2 ≤ inf
x∗∈X ∗

D(x∗, Xt)→ 0 (6.70)
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and the proof is complete.

Even more generally, Lemma 6.4 also allows us to derive results for general non-
convex problems. Indeed, the proof of Proposition 3.3 shows that min1≤t≤T δ2

t =
O(1/T) without requiring any properties on f other than (RS). As a result, we
conclude that the “best iterate” of the method – i.e., the iterate with the least
residual – decays as O(1/

√
T). This fact partially generalizes a similar result

obtained in [68, 112] for AdaGrad applied to non-convex problems; however, an
in-depth discussion of this property would take us too far afield, so we do not
attempt it.

6.3 the stochastic case

In this last section, we focus on the stochastic case (σ > 0). Our main results here
are as follows.

Theorem 6.8. Let Xt, t = 1, 2, . . . , denote the sequence of iterates generated by AdaMir,
and let D1 = D(x∗, X1) and Gσ = G + σ/

√
K. Then, under (RC), we have

E [ f (X̄T)− f (x∗)] ≤ (D1 + H)

√
δ2

0 + 2G2
σ

T
(6.71)

where H = 8G2
σ/δ2

0 + 2 log(1 + 2G2
σT/δ2

0).
Guarantees of AdaMir
(Stochastic)Moreover, if (RS) kicks in, we have the sharper guarantee:

Theorem 6.9. With notation as above, if f satisfies (RS), it enjoys the bound

E[ f (X̄T)− f (x∗)] ≤ (2 + D1 + H)

[
A
T
+

Bσ√
T

]
(6.72)

where:

a) A = δ0 + 2[ f (X1)−min f ] + β
(

2 + 8G2
σ

/
δ2

0 + 2 log(4β2/δ2
0)
)

.

(6.73a)

b) B =
√
(4 + 2H)/K. (6.73b)

The proof of Theorems 6.8 and 6.9 hinges on the following key steps:

Step 1: We first show that, under (RC), the method’s residuals are bounded as
δ2

t ≤ 2G2
σ (a.s.).

Step 2: With this at hand, the workhorse for our analysis is the following boxing
bound for the mean “weighted” regret ∑T

t=1 E[γt〈∇ f (Xt), Xt − x∗〉]:

E

[
γT

T

∑
t=1

[ f (Xt)− f (x∗)]

]
≤ E

[
T

∑
t=1

γt〈∇ f (Xt), Xt − x∗〉
]
≤ D1 +E

[
T

∑
t=1

γ2
t δ2

t

]



78 nolips minimization problems

We prove this bound in the supplement, where we also show that E[∑T
t=1 γ2

t δ2
t ] =

O(log T).

At this point the analysis between Theorems 6.8 and 6.9 branches out. First, in
the case of Theorem 6.8, we show that the method’s step-size is bounded from

below as γt ≥ 1/
√
(δ2

0 + 2G2
σ)t; the guarantee (6.71) then follows by the boxing

bound. Instead, in the case of Theorem 6.9, the analysis is more involved and
relies crucially on the lower bound γt ≥ 1/(A + Bσ

√
t). The bound (6.72) then

follows by combining this lower bound for γt with the regret boxing bound above.
Therefore, we first provide the crucial lemma of almost sure boundedness of the
residual.

Lemma 6.10. Assume that f satisfies (RC) and Xt are the AdaMir iterates run with
feedback of the form (SFO). Then, the sequence of the residuals δ2

t is bounded with
probability 1. In particular, we have:

δ2
t ≤ G̃2 =

[
√

2G +

√
2
K

σ

]2

for all t = 1, 2, . . . almost surely (6.74)

Almost Sure
Boundedness of the

Residual Under (RC) Proof. By working in the same spirit, we get that:

D(Xt, Xt+1) + D(Xt+1, Xt) ≤ γt〈Vt, Xt − Xt+1〉 (6.75)

and by recalling that:
Vt = ∇ f (Xt) + Ut (6.76)

we get with probability 1:

D(Xt, Xt+1) + D(Xt+1, Xt) ≤ γt [〈∇ f (Xt), Xt − Xt+1〉+ 〈Ut, Xt − Xt+1〉]

≤ γt

[
G
√

2D(Xt+1, Xt) + ‖Ut‖∗‖Xt − Xt+1‖
]

(6.77)

with the second inequality being obtained by (RC). Now, by invoking the strong
convexity assumption of K, the (LHS) of the above becomes:

γt

[
G
√

2D(Xt+1, Xt) + ‖Ut‖∗‖Xt − Xt+1‖
]
≤ γt[G

√
2(D(Xt+1, Xt) + D(Xt, Xt+1))

+ ‖Ut‖∗
√

2
K
(D(Xt+1, Xt) + D(Xt, Xt+1))] (6.78)

which in turn yields:

D(Xt, Xt+1) + D(Xt+1, Xt) ≤ γt

√
D(Xt+1, Xt) + D(Xt, Xt+1)

[
√

2G +

√
2
K
‖Ut‖∗

]
(6.79)

Therefore, we get:

D(Xt, Xt+1) + D(Xt+1, Xt) ≤ γ2
t

[
√

2G +

√
2
K
‖Ut‖∗

]2

(6.80)
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and by stochastic first-order oracle (SFO) we get with probability 1:

D(Xt, Xt+1) + D(Xt+1, Xt) ≤ γ2
t

[
√

2G +

√
2
K

σ

]2

(6.81)

or equivalently,

δ2
t =

D(Xt, Xt+1) + D(Xt+1, Xt)

γ2
t

≤
[
√

2G +

√
2
K

σ

]2

(6.82)

and the result follows.

Armed with the above we are ready to provide the detailed of Theorem 6.8 and
Theorem 6.9. In particular, we have Stochastic Analysis

Under (RC)

Proof of Theorem 6.8. By the second part of Proposition 4.3, we have:

D(x∗, Xt+1) ≤ D(x∗, Xt)− γt〈Vt, Xt − x∗〉+ D(Xt, Xt+1)

≤ D(x∗, Xt)− γt〈Vt, Xt − x∗〉+ D(Xt+1, Xt) + D(Xt, Xt+1)

≤ D(x∗, Xt)− γt〈Vt, Xt − x∗〉+ γ2
t δ2

t (6.83)

which yields after rearranging and summing t = 1, . . . , T:

T

∑
t=1

γt〈Vt, Xt − x∗〉 ≤ D(x∗, X1) +
T

∑
t=1

γ2
t δ2

t (6.84)

and by recalling that Vt = ∇ f (Xt) + Ut and taking expectations on both sides we
get:

E

[
T

∑
t=1

γt〈∇ f (Xt), Xt − x∗〉
]
≤ D(x∗, X1) +E

[
T

∑
t=1

γt〈Ut, Xt − x∗〉
]
+E

[
T

∑
t=1

γ2
t δ2

t

]
(6.85)

First, we shall the (LHS) from below. In particular, we have by convexity:

E

[
T

∑
t=1

γt〈∇ f (Xt), Xt − x∗〉
]
≥ E

[
T

∑
t=1

γt( f (Xt)− f (x∗))

]
(6.86)

Moreover, by denoting G̃2 =

[√
2G +

√
2
K σ

]2
we have with probability 1:

T

∑
t=1

γt( f (Xt)− f (x∗) =
T

∑
t=1

1√
δ2

0 + ∑t−1
s=1 δ2

s

( f (Xt)− f (x∗)

≥
T

∑
t=1

1√
δ2

0 + G̃2t
( f (Xt)− f (x∗))

≥
T

∑
t=1

1√
(δ2

0 + G̃2)t
( f (Xt)− f (x∗)
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≥ 1√
(δ2

0 + G̃2)T

T

∑
t=1

( f (Xt)− f (x∗) (6.87)

with the second inequality being obtained by Lemma 6.10. Hence, we get:

E

[
T

∑
t=1

γt〈∇ f (Xt), Xt − x∗〉
]
≥ 1√

(δ2
0 + G̃2)T

E

[
T

∑
t=1

( f (Xt)− f (x∗))

]
(6.88)

We now turn our attention towards to the (LHS). In particular, we shall bound each
term individually from above.

• For the term E
[
∑T

t=1 γt〈Ut, Xt − x∗〉
]
:

E

[
T

∑
t=1

γt〈Ut, Xt − x∗〉
]
=

T

∑
t=1

E [γt〈Ut, Xt − x∗〉]

=
T

∑
t=1

E [E [γt〈Ut, Xt − x∗〉|Ft]]

=
T

∑
t=1

E [γt E [〈Ut, Xt − x∗〉|Ft]]

=
T

∑
t=1

E [γt〈E[Ut|Ft], Xt − x∗〉] = 0 (6.89)

with the third and the fourth equality being obtained by the fact that γt and
Xt are Ft− measurable.

• For the term E
[
∑T

t=1 γ2
t δ2

t

]
: By applying Lemma A.5 and Lemma 6.10, we

have with probability 1:

T

∑
t=1

γ2
t δ2

t ≤ 2 +
4G̃2

δ2
0

+ 2 log(1 +
T

∑
t=1

δ2
t

δ2
0
) ≤ 2 +

4G̃2

δ2
0

+ 2 log(1 +
G̃2

Kδ2
0

T)

(6.90)

Therefore we get:

E

[
T

∑
t=1

γ2
t δ2

t

]
≤ 2 +

4G̃2

δ2
0

+ 2 log(1 +
G̃2

δ2
0

T) (6.91)

Thus, combining all the above we obtain:

1√
(δ2

0 + G̃2)T
E

[
T

∑
t=1

( f (Xt)− f (x∗))

]
≤ D(x∗, X1) + 2 +

4G̃2

δ2
0

+ 2 log(1 +
G̃2

δ2
0

T)

(6.92)
and hence,

E

[
T

∑
t=1

( f (Xt)− f (x∗))

]
≤
√
(δ2

0 + G̃2)T

[
D(x∗, X1) + 2 +

4G̃2

δ2
0

+ 2 log(1 +
G̃2

δ2
0
)T)

]
(6.93)
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The result follows by dividing both sides by T.

Stachastic Analysis
Under (RS)

Proof of Theorem 6.9. By Proposition 3.3, we have:

f (Xt+1) ≤ f (Xt) + 〈∇ f (Xt), Xt+1 − Xt〉+ βD(Xt+1, Xt)

≤ f (Xt) + 〈∇ f (Xt), Xt+1 − Xt〉+ β [D(Xt+1, Xt) + D(Xt, Xt+1)]

= f (Xt) + 〈Vt, Xt+1 − Xt〉+ 〈Ut, Xt − Xt+1〉+ βγ2
t δ2

t

≤ f (Xt)−
1
γt

[D(Xt+1, Xt) + D(Xt, Xt+1)] + ‖Ut‖∗‖Xt − Xt+1‖+ βγ2
t δ2

t

= f (Xt)− γtδ
2
t + ‖Ut‖∗‖Xt − Xt+1‖+ βγ2

t δ2
t (6.94)

Now, since h is K− strongly convex we have that:

‖Xt − Xt+1‖ ≤
√

2
K
[D(Xt+1, Xt) + D(Xt, Xt+1)] =

√
2
K

γtδt (6.95)

and using the fact that the noise ‖Ut‖∗ ≤ σ almost surely, we have:

f (Xt+1) ≤ f (Xt)− γtδ
2
t +

√
2
K

γtδ
2
t + βγ2

t δ2
t (6.96)

Therefore, after rearranging and telescoping we get:

T

∑
t=1

γtδ
2
t ≤ 2

[
f (X1)−min

x∈X
f (x) +

T

∑
t=1

γtδ
2
t (βγt −

1
2
) + σ

√
2
K

T

∑
t=1

γtδt

]
(6.97)

Now, let us bound each term of the (RHS) of the above individually:

• For the term ∑T
t=1 γtδ

2
t (βγt − 1

2 ) we first set:

t0 = max{1 ≤ t ≤ T : γt ≥
1

2β
} (6.98)

Then, by decomposing the said sum we get:

T

∑
t=1

γtδ
2
t (βγt −

1
2
) =

t0

∑
t=1

γtδ
2
t (βγt −

1
2
) +

T

∑
t=t0+1

γtδ
2
t (βγt −

1
2
)

≤
t0

∑
t=1

γtδ
2
t (βγt −

1
2
)

≤ β
t0

∑
t=1

γ2
t δ2

t (6.99)

with the second inequality being obtained by the definition of t0. Now, due
to the fact that δ2

t ≤ G̃2 almost surely (by invoking Lemma 6.10) we have:

β
t0

∑
t=1

γ2
t δ2

t = β
t0

∑
t=1

δ2
t

δ2
0 + ∑t−1

s=1 δ2
s
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≤ β

[
2 +

4G̃2

δ2
0

+ 2 log(1 +
1
δ2

0

t0−1

∑
t=1

δ2
t )

]

≤ β

[
2 +

4G̃2

δ2
0

+ 2 log
1
δ2

0
(δ2

0 +
t0−1

∑
t=1

δ2
t )

]

≤ β

[
2 +

4G̃2

δ2
0

+ 2 log
1

δ2
0γ2

t0

]
(6.100)

Therefore, by the definition of t0 we finally get with probability 1:

T

∑
t=1

γtδ
2
t (βγt −

1
2
) ≤ β

[
2 +

4G̃2

δ2
0

+ 2 log
4β2

δ2
0

]
(6.101)

• For the term σ
√

2
K ∑T

t=1 γtδt we have:

σ

√
2
K

T

∑
t=1

γtδt = σ

√
2
K

T

∑
t=1

√
γ2

t δ2
t ≤ σ

√
2
K

√
T

√√√√ T

∑
t=1

γ2
t δ2

t (6.102)

Therefore, by working in the same spirit as above we get:

σ

√
2
K

T

∑
t=1

γtδt ≤ σ

√
2
K

√√√√2 +
4G̃2

δ2
0

+ 2 log(1 +
1
δ2

0

T

∑
t=1

δ2
t )

≤ σ

√
2
K

√
T

√
2 +

4G̃2

δ2
0

+ 2 log(1 +
G̃2

δ2
0

T) (6.103)

On the other hand, we may the (LHS) from below as follows:

T

∑
t=1

γtδ
2
t ≥ γT

T

∑
t=1

δ2
t ≥ γT

[
δ2

0 − δ2
0 +

T

∑
t=1

δ2
t

]
=

γT

γ2
T+1
− δ2

0γT =
1

γT
− δ2

0γT (6.104)

So, combining the above:

1
γT
− δ2

0γT ≤ 2( f (X1)−min
x∈X

f (x) + β

[
2 +

4G̃2

δ2
0

+ 2 log
4β2

δ2
0

]

+ σ

√
2
K

√
T

√
2 +

4G̃2

δ2
0

+ 2 log(1 +
G̃2

δ2
0

T)) (6.105)

which finally yields with probability 1:

1
γT
≤ δ0 + 2( f (X1)−min

x∈X
f (x) + β

[
2 +

4G̃2

δ2
0

+ 2 log
4β2

δ2
0

]

+ σ

√
2
K

√
T

√
2 +

4G̃2

δ2
0

+ 2 log(1 +
G̃2

δ2
0

T)) (6.106)
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and hence with probability 1:

γT ≥
[

δ0 + 2( f (X1)−min
x∈X

f (x) + β

[
2 +

4G̃2

δ2
0

+ 2 log
4β2

δ2
0

]
+ σ

√
2
K

√
T

√
2 +

4G̃2

δ2
0

+ 2 log(1 +
G̃2

δ2
0

T))

]−1

Therefore, by setting:

A = δ0 + 2( f (X1)−min
x∈X

f (x) + β

[
2 +

4G̃2

δ2
0

+ 2 log
4β2

δ2
0

]
(6.107)

and

B = σ

√
2
K

√
2 +

4G̃2

δ2
0

+ 2 log(1 +
G̃2

δ2
0

T)) (6.108)

we get that:

E

[
T

∑
t=1

( f (Xt)− f (x∗))γT

]
≥
(

A + B
√

T
)−1

E

[
T

∑
t=1

( f (Xt)− f (x∗))

]
(6.109)

Moreover, working in the same spirit as in Theorem 6.8 we have:

(
A + B

√
T
)−1

E

[
T

∑
t=1

( f (Xt)− f (x∗))

]
≤ E

[
T

∑
t=1

( f (Xt)− f (x∗))γT

]
≤
(

D1 + E

[
T

∑
t=1

γ2
t δ2

t

])
(6.110)

which in turn yields:

E

[
T

∑
t=1

( f (Xt)− f (x∗))

]
≤
(

D1 + E

[
T

∑
t=1

γ2
t δ2

t

])(
A + B

√
T
)

(6.111)

The result then follows by dividing both sides by T and by the fact that E
[
∑T

t=1 γ2
t δ2

t

]
=

O(log T).

6.4 fisher markets : a case study

6.4.1 The Fisher market model

We now proceed to illustrate the convergence properties of AdaMir in a Fisher
equilibrium problem with linear utilities – both stochastic and deterministic. Fol-
lowing [94], a Fisher market consists of a set N = {1, . . . , N} of N buyers – or
players – that seek to share a set A = {1, . . . , n} of n perfectly divisible goods (ad
space, CPU/GPU runtime, bandwidth, etc.). The allocation mechanism for these
goods follows a proportionally fair price-setting rule that is sometimes referred to
as a Kelly auction [61]: each player i = 1, . . . , N bids xia per unit of the a-th good,
up the player’s individual budget; for the sake of simplicity, we assume that this
budget is equal to 1 for all players, so ∑n

a=1 xia ≤ 1 for all i = 1, . . . , N. The price of
the a-th good is then set to be the sum of the players’ bids, i.e., pa = ∑i∈N xia; then,
each player gets a prorated fraction of each good, namely wia = xia/pa.
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(b) Ergodic convergence

Figure 6.1: The convergence speed of (EGD), (PR) and AdaMir in a stationary Fisher
market.

Now, if the marginal utility of the i-th player per unit of the a-th good is θia, the
agent’s total utility will be

ui(xi; x−i) = ∑
a∈A

θiawia = ∑
a∈A

θiaxia

∑j∈N xja
, (6.112)

where xi = (xia)a∈A denotes the bid profile of the i-th player, and we use the
shorthand (xi; x−i) = (x1, . . . , xi, . . . , xN). A Fisher equilibrium is then reached when
the players’ prices bids follow a profile x∗ = (x∗1 , . . . , x∗N) such that

ui(x∗i ; x∗−i) ≥ ui(xi; x∗−i) (Eq)

for all i ∈ N and all xi = (xia)a∈A such that xia ≥ 0 and ∑a∈A xia = 1.3

As was observed by Shmyrev [107], the equilibrium problem (Eq) can be rewrit-
ten equivalently as

minimize F(x; θ) ≡ ∑
a∈A

pa log pa − ∑
i∈N

∑
a∈A

xia log θia

subject to pa = ∑
i∈N

xia, ∑
a∈A

xia = 1, and xia ≥ 0 for all a ∈ A, i ∈ N ,
(Opt)

with the standard continuity convention 0 log 0 = 0. In the above, the agents’
marginal utilities are implicitly assumed fixed throughout the duration of the
game. On the other hand, if these utilities fluctuate stochastically over time, the
corresponding reformulation instead involves the mean objective

f (x) = E[F(x; ω)]. (6.113)

Because of the logarithmic terms involved, F (and, a fortiori, f ) cannot be Lipschitz
continuous or smooth in the standard sense. However, as was shown by Birnbaum
et al. [23], the problem satisfies (RS) over X = {x ∈ RNn

+ : ∑a∈A xia = 1} relative
to the negative entropy function h(x) = ∑ia xia log xia. As a result, mirror descent
methods based on this Bregman function are natural candidates for solving (6.113).

3 It is trivial to see that, in this market problem, all users would saturate their budget constraints at
equilibrium, i.e., ∑a∈A xia = 1 for all i ∈ N .



6.4 fisher markets : a case study 85

In more detail, following standard arguments [20], the general mirror descent
template (MD) relative to h can be written as

[+xia] =
xia exp(−γgia)

∑a′∈A xia′ exp(−γgia′)
(6.114)

where the (stochastic) gradient vector g ≡ g(x; θ) is given in components by

gia = 1 + log pa − log θia. (6.115)

Explicitly, this leads to the entropic gradient descent algorithm

Xia,t+1 =
Xia,t(θia/pa)γt

∑a′∈A Xia′ ,t(θia′/pa′)γt
(EGD)

In particular, as a special case, the choice γ = 1 gives the proportional response (PR)
algorithm of Wu and Zhang [114], namely

Xia,t+1 =
θiawia,t

∑a′∈A θia′wia′ ,t
, (PR)

where wia,t = Xia,t
/

∑j∈N Xja,t. As far as we aware, the PR algorithm is considered
to be the most efficient method for solving deterministic Fisher equilibrium problems
[23].

6.4.2 Experimental validation and methodology

For validation purposes, we ran a series of numerical experiments on a synthetic
Fisher market model with N = 50 players sharing n = 5 goods, and utilities
drawn uniformly at random from the interval [2, 8]. For stationary markets, the
players’ marginal utilities were drawn at the outset of the game and were kept
fixed throughout; for stochastic models, the parameters were redrawn at each stage
around the mean value of the stationary model (for consistency of comparisons).
All experiments were run on a MacBook Pro with a 6-Core Intel i7 CPU clocking
in at 2.6GHZ and 16 GB of DDR4 RAM at 2667 MHz. The Mathematica notebook
used to generate the raw data and run the algorithms is included as part of the
supplement (but not the entire sequence of random seed used in the stochastic
case, as this would exceed the OpenReview upload limit).

In each regime, we tested three algorithms, all initialized at the barycenter of X :
a) an untuned version of (EGD); b) the proportional response algorithm (PR); and
c) AdaMir. For stationary markets, we ran the untuned version of (EGD) with a
step-size of γ = .1; (PR) was ran “as is”, and AdaMir was run with δ0 determined
by drawing a second initial condition from X . In the stochastic case, following the
theory of Lu [71] and Antonakopoulos et al. [7], the updates of (EGD) and (PR)
were modulated by a

√
t factor to maintain convergence; by contrast, AdaMir was

run unchanged to test its adaptivity properties.

The results are reported in Figs. 6.1–6.3. For completeness, we plot the evolution
of each method in terms of values of f , both for the “last iterate” Xt and the
“ergodic average” X̄t. The results for the deterministic case are presented in Fig. 6.1.
For stochastic market models, we present a sample realization in Fig. 6.2, and a
statistical study over S = 50 sample realizations in Fig. 6.3. In all cases, AdaMir
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(a) Last-iterate convergence
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(b) Ergodic convergence

Figure 6.2: The convergence speed of (EGD), (PR) and AdaMir in a stochastic Fisher market,
with marginal utilities drawn i.i.d. at each epoch.
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(b) Ergodic convergence

Figure 6.3: Statistics for the convergence speed of (EGD), (PR) and AdaMir in a stochastic
Fisher market, with marginal utilities drawn i.i.d. at each epoch. The marked
lines are the observed means from S = 50 realizations, whereas the shaded areas
represent a 95% confidence interval.

outperforms both (EGD) and (PR), in terms of both last-iterate and time-average
guarantees.

An interesting observation is that each method’s last iterate exhibits faster
convergence than its time-average, and the convergence speed of the methods’
time-averaged trajectories is faster than our worst-case predictions. This is due to
the specific properties of the Fisher market model under consideration: more often
than not, players tend to allocate all of their budget to a single good, so almost all
of the problem’s inequality constraints are saturated at equilibrium. Geometrically,
this means that the problem’s solution lies in a low-dimensional face of X , which
is identified at a very fast rate, hence the observed accelerated rate of convergence.
However, this is a specificity of the market model under consideration and should
not be extrapolated to other convex problems – or other market equilibrium models
to boot.



7
VA R I AT I O N A L I N E Q U A L I T I E S B E Y O N D L I P S C H I T Z
C O N T I N U I T Y

# This section incorporates material from the papers [6, 8]

In this chapter we proceed by illustrating our contributions concerning the NoLips
(VI) framework; in particular in what follows we consider operators that satisfy

either (MB) or (MS). In a nutshell, Chapter 7 collects three types of results:

1. Establish methods that achieve optimal rates given that the optimizer has a
prior knowledge on the regularity class of the associated operator.

2. We proceed by deriving adaptive methods relative to the smoothness modulus
of the respective operator.

3. Finally, we provide our fully adaptive method for non-smooth/smooth and
stochastic cases. More precisely, we provide a method which does not require
any prior knowledge of Lipschitz conditions and/or the type of the oracle’s
feedback (deterministic or stochastic).

In what follows, we illustrate the above contributions in detail.

In Section 7.1 we start by presenting the non adaptive case for operators that
transcend the typical Lipschitz regularity conditions. Having this in hand we
show that the traditional optimal rates are recovered also for (VI) associated with
operators with possible singularities.

Our next step is to explore various adaptivity aspects. In doing so, we start
given that the associated operator satisfies the respective smoothness like condition.
To that end, in Section 7.2 we derive an adaptive mirror-prox algorithm which
attains the optimal O(1/T) rate of convergence in problems with possibly singular
operators, without any prior knowledge of the degree of smoothness (the Bregman
analogue of the Lipschitz constant).

Subsequently, in Section 7.3 we introduce a novel adaptive step-size policy with
mirror prox as the underlying template. The combination of these ingredients will
allow us to automatically exploit the geometry of the gradient data observed at
earlier iterations to perform more informative extra-gradient steps in later ones.
Thanks to this adaptation mechanism, the proposed method automatically detects
whether the problem is smooth or not, without requiring any prior tuning by
the optimizer. As a result, the algorithm simultaneously achieves order-optimal
convergence rates, i.e., it converges to an O(1/T) rate for smooth problems, and
O(1/

√
T) for non-smooth ones. Importantly, these guarantees do not require any
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EG [63] Graal [75] GMP [109] AMP [6] BL [14] AdaProx [8]

Param. Agnostic 5 X Partial X Partial X

Universality 5 5 X 5 X X

Unbounded 5 X 5 5 5 X

Singularities 5 5 5 X 5 X

Table 7.1: Overview of related adaptive methods for solving variational inequalities. For
the purposes of this table, “parameter-agnostic” means that the method does not
require prior knowledge of the parameters of the problem it was designed to
solve (Lipschitz modulus, domain diameter, etc.); “rate interpolation” means that
the algorithm’s convergence rate is O(1/T) or O

(
1/
√

T
)

in smooth / non-smooth
problems respectively; “unbounded domain” is self-explanatory; and, finally,
“singularities” means that the problem’s defining vector field may blow up at a
boundary point of the problem’s domain.

of the standard boundedness or Lipschitz continuity conditions that are typically
assumed in the literature.

That said, the set of results presented in Section 7.3 requires perfect oracle feed-
back. On that account, in Section 7.4 we present the full potency of our results by
being able to treat also stochastic settings. In particular, we employ an adaptive
learning rate combined with the Dual Extrapolation algorithmic template. This
combination allow us to achieve optimal convergence rates for both determinis-
tic and stochastic settings without any prior knowledge over the boundedness,
smoothness and/or the level of noise.

7.1 non adaptive case

We first start by presenting a family of non-adaptive methods and their respective
rates for NoLips operators. To that end we will make some preliminary assump-
tions. In particular throughout this section, we assume that the following blanket
assumptions hold:Blanket Assumptions

Assumption 7.1. The solution set X ∗ ≡ Sol(X , A) of (VI) is nonempty.

Assumption 7.2. A is monotone and β-Bregman continuous, i.e.,

‖A(x)− A(x′)‖x,∗ ≤ β
√

2D(x, x′) for all x, x′ ∈ X (7.1)

with D being the Bregman divergence defined in Definition 3.3.

In addition to the above, in terms of the oracle’s feedback structure we assume
that the optimizer gains access to an (SFO) mechanism where Ut ∈ V∗ is an
additive noise variable. The two cases of interest that we consider here are (i) when
Ut = 0 for all t; and (ii) when Ut satisfies the statistical hypotheses:Statistical Assumptions

a) Zero-mean: E[Ut | Ft] = 0.
(7.2a)

b) Finite variance: E[‖Ut‖2
∗ | Ft] ≤ σ2. (7.2b)
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with Ft denoting the history (natural filtration) of Xt. Finally, we assume for the
moment that the smoothness parameter β is known a priori.

Having all this in hand, we can now extend the (optimal) standard convergence
rates of the Euclidean setting for the general class of (7.1). Formally, this is stated
by the following result. NoLips Guarantees

Theorem 7.1 (Antonakopoulos et al. [6]). Assume that A satisfies Assumptions 7.1
and 7.2, and let GapH denote the restricted gap function for the Bregman zone CH =
{x ∈ X : D(x, xc) ≤ H}. Suppose further that (MP) is run with an α-strongly convex
Bregman function and oracle feedback of the form (SFO). Then, for all H > 0, the averaged
sequence X̄T = ∑T

t=1 γtXt+1/2
/

∑T
t=1 γt enjoys the following gap bounds:

a) If σ2 = 0 and the algorithm’s step-size satisfies

0 < γmin ≡ inft γt ≤ supt γt ≡ γmax ≤
√

α/β, (7.3)

we have
GapH(X̄T) ≤

H
γmin

1
T

(7.4)

b) Otherwise, if σ2 > 0 and γt ≤
√

α/2/β, we have

E[GapH(X̄T)] = O
(

H+σ2 ∑T
t=1 γ2

t
∑T

t=1 γt

)
(7.5)

In particular, if γt ∝ 1/
√

T, we get E[GapH(X̄t)] = O(1/
√

T).

For convenience we divide the proof of Theorem 7.1 into the deterministic and
stochastic part. In doing so, the main ingredient of the proof of the deterministic
case is the following energy inequality: Method’s Template

Inequality

D(p, Xt+1) ≤ D(p, Xt)− γt〈A(Xt+ 1
2
), Xt+ 1

2
− p〉 −

(
1− β2γ2

t
α

)
D(Xt+ 1

2
, Xt).

(7.6) is obtained directly by the connection established by Proposition 4.4 between
two prox-steps combined with the (7.1). Formally, we show the following result.

Proposition 7.2 (Antonakopoulos et al. [6]). Assume that A satisfies Assumption 7.2
and (MP) is run with perfect oracle feedback. Then, for all p ∈ X , we have:

D(p, Xt+1) ≤ D(p, Xt)− γt〈A(Xt+ 1
2
), Xt+ 1

2
− p〉 −

(
1− β2γ2

t
α

)
D(Xt+ 1

2
, Xt).

Proof. By setting x = Xt, y1 = −γt A(Xt), x+1 = Xt+ 1
2
, y2 = −γt A(Xt+ 1

2
) and

x+2 = Xt+1 in Proposition 4.4, we readily obtain:

D(p, Xt+1) ≤ D(p, Xt)− γt〈A(Xt+ 1
2
), Xt+ 1

2
− p〉

− γt〈A(Xt+ 1
2
)− A(Xt), Xt+1 − Xt+ 1

2
〉

− D(Xt+1, Xt+ 1
2
)− D(Xt+ 1

2
, Xt). (7.6)
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Proceeding line-by-line, the Fenchel-Young inequality applied to the function
φ(x) = ‖x‖2

X
t+ 1

2

further gives

〈A(Xt+ 1
2
)− A(Xt), Xt+1 − Xt+ 1

2
〉 ≤ α

2γt
‖Xt+1 − Xt+ 1

2
‖2

X
t+ 1

2

+
γt

2α
‖A(Xt+ 1

2
)− A(Xt)‖X

t+ 1
2

,∗. (7.7)

Thus, by substituting in (7.6), we get

D(p, Xt+1) ≤ D(p, Xt)− γt〈A(Xt+ 1
2
), Xt+ 1

2
− p〉

+
α

2
‖Xt+1 − Xt+ 1

2
‖2

X
t+ 1

2

+
γ2

t
2α
‖A(Xt+ 1

2
)− A(Xt)‖2

X
t+ 1

2
,∗

− D(Xt+1, Xt+ 1
2
)− D(Xt+ 1

2
, Xt). (7.8)

and hence, by Lemma 3.2, we obtain:

D(p, Xt+1) ≤ D(p, Xt)− γt〈A(Xt+ 1
2
), Xt+ 1

2
− p〉

+
γ2

t
2α
‖A(Xt+ 1

2
)− A(Xt)‖2

X
t+ 1

2
,∗ − D(Xt+ 1

2
, Xt). (7.9)

However, the Bregman continuity of A also yields

‖A(Xt+ 1
2
)− A(Xt)‖2

X
t+ 1

2
,∗ ≤ 2β2D(Xt+ 1

2
, Xt) (7.10)

so our claim follows by combining Eqs. (7.9) and (7.10).

Having established the template inequality in Proposition 7.2 we are now in a
position to illustrate the proof for the O(1/T) convergence rate of the restricted
merit function (2.10) for deterministic problems. Formally, we have:

Proof of Theorem 7.1 - deterministic case. Fix some p ∈ CH . Since γt ≤ 1/β by as-
sumption, a slight rearrangement of Proposition 7.2 readily yields:

γt〈A(Xt+ 1
2
), Xt+ 1

2
− p〉 ≤ D(p, Xt)− D(p, Xt+1) (7.11)

Moreover, by the monotonicity of A, we also have:

〈A(p), Xt+ 1
2
− p〉 ≤ 〈A(Xt+ 1

2
), Xt+ 1

2
− p〉. (7.12)

Thus, combining the two inequalities above, we get

γt〈A(p), Xt+ 1
2
− p〉 ≤ D(p, Xt)− D(p, Xt+1) (7.13)

and, proceeding to telescope from t = 1 to T, we obtain:

T

∑
t=1

γt〈A(p), Xt+ 1
2
− p〉 ≤ D(p, X1)− D(p, Xt+1) ≤ D(p, xc) (7.14)
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Then, dividing by ∑T
t=1 γt finally yields

〈A(p), X̄T − p〉 ≤ D(p, xc)

∑T
t=1 γt

≤ D(p, xc)

γminT
, (7.15)

so our result follows by taking the supremum over all p ∈ X such that D(p, xc) ≤ H
(i.e., over all p ∈ CH).

We now turn our attention towards the stochastic part of Theorem 7.1. In a
nutshell, we emphasize that the main building block for deriving this result is the
inequality obtained in Proposition 4.4. More precisely, we have the following:

Proof of Theorem 7.1 - stochastic case. Working in the same spirit as for the determin-
istic case, let x = Xt, y1 = −γtVt, x+1 = Xt+ 1

2
, y2 = −γtVt+ 1

2
and x+2 = Xt+1 in the

first part of Proposition 4.4. We then get:

D(p, Xt+1) ≤ D(p, Xt)− γt〈Vt+ 1
2
, Xt+ 1

2
− p〉

+
[
γt〈Vt+ 1

2
, Xt+1 − Xt+ 1

2
〉 − D(Xt+1, Xt)

]
≤ D(p, Xt)− γt〈A(Xt+ 1

2
), Xt+ 1

2
− p〉

− γtξt+ 1
2
+
[
γt〈Vt+ 1

2
, Xt+1 − Xt+ 1

2
〉 − D(Xt+1, Xt)

]
(7.16)

where we used the feedback decomposition Vt+ 1
2
= A(Xt+ 1

2
) + Ut+ 1

2
for Vt+ 1

2
and

we set ξt+ 1
2
= 〈Ut+ 1

2
, Xt+ 1

2
− p〉 in the last line. By the second part of Proposi-

tion 4.4, we also have

γt〈Vt+ 1
2
, Xt+1 − Xt+ 1

2
〉 − D(Xt+1, Xt) ≤ γt〈Vt −Vt+ 1

2
, Xt+1 − Xt+ 1

2
〉

− D(Xt+1, Xt+ 1
2
)− D(Xt+ 1

2
, Xt) (7.17)

Now, by applying the Fenchel-Young inequality to the duality pairing in the above
inequality, we get

γt〈Vt −Vt+ 1
2
, Xt+1 − Xt+ 1

2
〉 ≤ γ2

t
2α
‖Vt −Vt+ 1

2
‖2

X
t+ 1

2
,∗ +

α

2
‖Xt+1 − Xt+ 1

2
‖2

X
t+ 1

2

.

(7.18)
On the other hand, by the stochastic oracle assumption (SFO), we have:

γ2
t

2α
‖Vt −Vt+ 1

2
‖2

X
t+ 1

2
,∗ ≤

γ2
t

α
‖A(Xt)− A(Xt+ 1

2
)‖2

X
t+ 1

2
,∗ +

γ2
t

α
‖Ut −Ut+ 1

2
‖2

X
t+ 1

2
,∗

≤ 2β2γ2
t

α
D(Xt+ 1

2
, Xt) +

γ2
t

µα
‖Ut −Ut+ 1

2
‖2
∗. (7.19)

where the last line follows from the Bregman continuity of A (Assumption 7.2)
and the fact that ‖·‖x ≥ µ‖·‖ for some µ > 0 and all x ∈ X (implying in turn that
‖·‖x,∗ ≤ µ−1‖·‖∗ for all x ∈ X ). We thus get:

γt〈Vt+ 1
2
, Xt+1−Xt+ 1

2
〉−D(Xt+1, Xt) ≤

(
2β2γ2

t
α
− 1
)

D(Xt+ 1
2
, Xt)+

γ2
t

µα
‖Ut−Ut+ 1

2
‖2
∗

(7.20)
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Since γ2
t ≤ α/(2β2) by assumption, substituting (7.20) in (7.16) and rearranging

yields

γt〈A(Xt+ 1
2
), Xt+ 1

2
− p〉 ≤ D(p, Xt)− D(p, Xt+1)− γtξt+ 1

2
+

γ2
t

µα
‖Ut −Ut+ 1

2
‖2
∗

(7.21)
which in turn yields:

γt〈A(Xt+ 1
2
), Xt+ 1

2
− p〉 ≤ D(p, Xt)− D(p, Xt+1))− γtξt+ 1

2

+
2γ2

t
µα

[
‖Ut‖2

∗ + ‖Ut+ 1
2
‖2
∗

]
. (7.22)

In order to bound ξt+ 1
2
, we will need to introduce the auxilliary process

Zt+1 = arg min
x∈X

{〈Ut+ 1
2
, Zt − x〉+ µ

γt
D(x, Zt)} (7.23)

with Z1 = xc. We then have

−γtξt+1 = γt〈Ut+ 1
2
, p− Xt+ 1

2
〉 = γt〈Ut+ 1

2
, Zt − Xt+ 1

2
〉+ γt〈Ut+ 1

2
, p− Zt〉 (7.24)

In order to bound the term which depends on p, we have the following:

γt〈Ut+ 1
2
, p− Zt〉 = γt〈Ut+ 1

2
, p− Zt+1〉+ γt〈Ut+ 1

2
, Zt+1 − Zt〉

≤ µ〈∇h(Zt+1)−∇h(Zt), p− Zt+1〉

+
γ2

t
2α
‖Ut+ 1

2
‖2
∗,Zt

+
α

2
‖Zt+1 − Zt‖2

Zt
(7.25)

and so,

γt〈Ut+ 1
2
, p− Zt〉 ≤ µ〈∇h(Zt+1)−∇h(Zt), p− Zt+1〉+

γ2
t

2µα
‖Ut+ 1

2
‖2
∗

+
αµ

2
‖Zt+1 − Zt‖2. (7.26)

Hence, by the three-point identity, we obtain:

γt〈Ut+ 1
2
, p− Zt〉 ≤ µ[D(p, Zt)− D(p, Zt+1)]− µD(Zt+1, Zt)

+
γ2

t
2µα
‖Ut+ 1

2
‖2
∗ +

αµ

2
‖Zt+1 − Zt‖2

≤ µ[D(p, Zt)− D(p, Zt+1)] +
γ2

t
2µα
‖Ut+ 1

2
‖2
∗ (7.27)

where the last inequality is a consequence of the strong convexity of h. Thus,
combining all these with the fact that A is monotone, we can telescope and obtain

T

∑
t=1

γt〈A(p), Xt+ 1
2
− p〉 ≤ (1 + µ)D(p, xc)
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+
T

∑
t=1

γt〈Ut+ 1
2
, Zt − Xt+ 1

2
〉

+
1

µα

T

∑
t=1

γ2
t

[
2‖Ut‖2

∗ +
5
2
‖Ut+ 1

2
‖2
∗

]
.

Hence, after dividing by ∑T
t=1 γt and taking the supremum over p ∈ CH , by setting

λt = 〈Ut+ 1
2
, Zt − Xt+ 1

2
〉 we get:

GapH(X̄T) ≤
(1 + µ)H + ∑T

t=1 γtλt +
1

µα ∑T
t=1 γ2

t

[
2‖Ut‖2

∗ +
5
2‖Ut+ 1

2
‖2
∗

]
∑T

t=1 γt
. (7.28)

Since E[〈Ut+ 1
2
, Zt − Xt+ 1

2
〉] = E[E[〈Ut+ 1

2
, Zt − Xt+ 1

2
〉] | Ft+ 1

2
] = 0, taking expecta-

tions yields

E[GapH(X̄t)] ≤
(1 + µ)D + 9σ2

2µα ∑T
t=1 γ2

t

∑T
t=1 γt

, (7.29)

which proves our claim. Finally, the RHS of this last inequality is Õ(1/T1/2) if
γt ∝ 1/

√
t, so the Õ(1/

√
T) result follows.

Theorem 7.1 relies crucially on prior knowledge of the following key factors:

1. That the associated operator satisfies the respective Bregman smoothness
regularity condition.

2. A fortiori, in order to properly tune the method’s step-size policy the opti-
mizer needs to be able to estimate the precise (Bregman) Lipschitz constant.

As a prelude of the analysis to come the following section will be focusing on
relaxing different aspects of these elements.

7.2 adaptivity to the smoothness modulus

As we already mentioned, a crucial assumption underlying the analysis of the
previous section is that the optimizer must know in advance – or be otherwise able
to estimate – the Bregman constant β. In practice, this can be difficult to achieve, so
it is important to be able to run (MP) with an adaptive step-size policy. Therefore
our first step towards adaptivity is to design methods for solving Bregman smooth
(VI)’s where the respective "smoothness" parameter is unknown a priori.

Our starting point is the observation that, with perfect oracle feedback, one can
estimate β by setting Estimator of Smoothness

Constant

βt =
‖A(Xt+1/2)− A(Xt)‖Xt+1/2,∗√

2D(Xt+1/2, Xt)
(7.30)

whenever Xt+1/2 6= Xt; obviously, if A is β-Bregman continuous, we have βt ≤ β.1

However, the fact that the Bregman constant is being under-estimated means that a

1 In a Euclidean setting, similar ideas can be found in, e.g., [24, 75]. We ignore the origins of this
technique.
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step-size policy of the form γt ∝
√

α/βt would over-estimate the inverse Bregman
constant 1/β, so the resulting step-size policy would have no reason to satisfy (7.3).

To overcome this obstacle, we introduce the following comparison mechanism:
first, at each t = 1, 2, . . . , we use the estimation (7.30) to test the step-size γ̄t =√

α/βt. Then, to avoid the growth phenomenon outlined above, we shrink γ̄t by a
constant factor of θ and, to avoid running into vanishing step-size issues, we take
the previous step-size employed if the shrunk one would be smaller. Formally, we
consider the adaptive step-size policy:Step-Size Adaptive to

the Lipschitz Constant

γt+1 =

min{γt, θ
√

α/βt} if Xt 6= Xt+1/2,

γt otherwise,
(7.31)

with βt defined as in (7.30) and θ ∈ (0, 1) chosen arbitrarily.Guarantees under
Adaptivity to the

Lipschitz Constant

Theorem 7.3 (Antonakopoulos et al. [6]). Assume that the monotone operator A satisfies
Assumptions 7.1 and 7.2, and (MP) is run with perfect oracle feedback and the adaptive
step-size policy (7.31). Then, with notation as in Theorem 7.1, the algorithm’s ergodic
average

X̄T =
T

∑
t=1

γtXt+1/2
/ T

∑
t=1

γt (7.32)

enjoys the gap bound
GapH(X̄T) = O(1/T). (7.33)

Proof. We begin with an induction argument to show that the adaptive step-size
policy γt+1 = min{γt, θ

√
α/βt} is lower bounded as

γt ≥ min{γ1, θ
√

α/β}. (7.34)

Indeed, assuming this bound for γt, we have either a) γt+1 = γt ≥ θ
√

α/β by the
inductive assumption; or b) γt+1 = θ

√
α/βt ≥ θ

√
α/β by the fact that βt is an

under-estimate of β. Thus, with βt (weakly) decreasing, it follows that γt converges
to some well-defined limit value γ∞ ≥ θ

√
α/β <

√
α/β.

To proceed, given that βt ≤ β, working in the same spirit as we did to obtain the
basic energy inequality (7.6) in the previous section, we get:

D(p, Xt+1) ≤ D(p, Xt) + γt〈gt+1/2, Xt+1/2 − p〉 −
(

1− θ2 γ2
t

γ2
t+1

)
D(Xt+1/2, Xt)

(7.35)

leading to the estimate

γt〈A(Xt+1/2), Xt+1/2 − p〉 ≤ D(p, Xt)− D(p, Xt+1)

−
(

1− θ2 γ2
t

γ2
t+1

)
D(Xt+1/2, Xt). (7.36)
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Since γt converges, it follows that limt→∞ γ2
t /γ2

t+1 = 1, so we get

lim
t→∞

(
1− θ2 γ2

t
γ2

t+1

)
= 1− θ2 > 0, (7.37)

implying in turn that (
1− θ2 γ2

t
γ2

t+1

)
D(Xt+1/2, Xt) > 0 (7.38)

for all t greater than some (finite) t0. Accordingly, summing and telescoping as in
the analysis of the previous section, we get

T

∑
t=1

γt〈A(Xt+1/2), Xt+1/2 − p〉 ≤ D(p, xc) +
t0

∑
t=1

(
1− θ2 γ2

t
γ2

t+1

)
D(Xt+1/2, Xt)

< +∞

whenever T > t0. Our result then follows by dividing both sides of this last
inequality by ∑T

t=1 γt and recalling the fact that γt ≥ θ
√

α/β > 0 for all t.

As we mentioned the contributions of Theorem 7.3 hinge on the fact that the
optimizer knows in advance that associate operator satisfies (7.1). In what follows,
we shall tackle this drawback by developing methods that are agnostic to the
respective regularity condition at hand.

7.3 the deterministic case

Moving forward we define the appropriate adaptive step-size policy that will allow
the (MP) method to exhibit "regime-agnostic" optimal convergence rates, i.e., adjust
optimally its performance without any prior knowledge of the underlying regu-
larity condition. Our starting point for designing such methods is by considering
first the deterministic case. More precisely, throughout this section we assume the
following blanket conditions:

1. X is a regular Finsler space (cf. Section 3.2.2).

2. Regarding the NoLips condition we will assume that the respective operator
satisfies either (MB) or (MS)

3. The associated regularizer h is in the sense of Definition 3.3.

With all this is in place, the deterministic version (MP) method, defined by the
following recursion:

Xt+1/2 = PXt(−γtVt)

Xt+1 = PXt(−γtVt+1/2)
(7.39)

can be adapted to our current setting as follows: Universal Step-Size
(Deterministic)

γt =
1√

1 + ∑t−1
j=1‖Vj+1/2 −Vj‖2

Xj+1/2,∗
(Adapt)
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with Vt = A(Xt), t = 1, 1/2, . . . . In words, this method builds on the template
of (MP) by replacing the global norm with a dual Finsler norm evaluated at the
algorithm’s leading state Xj+1/2 combined with the respective adaptive step-size
policy. We conclude this section by providing an intuitive explanation for the
step-size (Adapt). In particular, under (MB) we get that:Intuition Behind

Universality

‖Vj −Vj+1/2‖2
Xj+1/2,∗ ≈ "constant"

and hence γt ∝ 1/
√

t. Hence, we have that:

T

∑
t=1

γt = Ω(
√

T) (7.40)

On the other hand under (MS) we show that γt stabilizes to some strictly positive
value which in turn yields:

T

∑
t=1

γt = Ω(T) (7.41)

and thus leads to a faster convergence rate. In the forthcoming analysis, we shall
explain this behaviour of the adaptive step-size in detail.

7.3.1 Optimal rate interpolation

With all this in hand, our main result for our method can be stated as follows:Universality Guarantees
(Deterministic)

Theorem 7.4 (Antonakopoulos et al. [8]). Suppose A is a monotone operator, let C be
a compact neighborhood of a solution of (VI), and set H = supx∈C D(x, X1) Then, (MP)
run with the adaptive step-size (Adapt) enjoys the guarantees:

1. If A satisfies (MB):

GapC(X̄T) = O
(

H + G3(1 + 1/K)2 + log(1 + 4G2(1 + 2/K)2T)√
T

)
. (7.42)

2. If A satisfies (MS):
GapC(X̄T) = O

(
H
/

T
)
. (7.43)

In a nutshell we mention here that its key element is the determination of the
asymptotic behavior of the adaptive step-size policy γt in the non-smooth and
smooth regimes, i.e., under (MB) and (MS) respectively. At a very high level, (MB)
guarantees that the difference sequence ‖A(Xt+1/2)− A(Xt)‖2

Xt+1/2,∗ is bounded,

which implies in turn that ∑T
t=1 γt = Ω(

√
T) and eventually yields the bound

(7.42) for the algorithm’s ergodic average X̄T . This is accomplished formally in the
following lemma.Boundness of the

Residual Under (MB)

Lemma 7.5 (Antonakopoulos et al. [8]). Suppose that the monotone operator A satisfies
(MB). Then, the sequence ‖A(Xt+1/2) − A(Xt)‖2

Xt ,∗ is bounded. In particular, the
following inequality holds:

‖A(Xt+1/2)− A(Xt)‖2
Xt+1/2,∗ ≤ C2 (7.44)
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with C = 2G + β 4G
K .

Proof. It suffices to show that: ‖A(Xt+1/2) − A(Xt)‖Xt+1/2,∗ is bounded. More
precisely, by the triangle inequality we have:

‖A(Xt+1/2)− A(Xt)‖Xt+1/2,∗ ≤ ‖A(Xt+1/2)‖Xt+1/2,∗ + ‖A(Xt)‖Xt+1/2,∗ (7.45)

We shall bound the (RHS) part of (7.45) term by term. In particular, we have:

• For the first term ‖A(Xt+1/2)‖Xt+1/2,∗ we readily get by (MB):

‖A(Xt+1/2)‖Xt+1/2,∗ ≤ G (7.46)

• For the second term ‖A(Xt)‖Xt+1/2,∗, we have:

‖A(Xt)‖Xt+1/2,∗ ≤ ‖A(Xt)‖Xt ,∗+ β
[
‖Xt − Xt+1/2‖Xt + ‖Xt − Xt+1/2‖Xt+1/2

]
≤ G + β

[
‖Xt − Xt+1/2‖Xt + ‖Xt − Xt+1/2‖Xt+1/2

]
(7.47)

Therefore, it suffices to show that the quantity ‖Xt − Xt+1/2‖Xt + ‖Xt −
Xt+1/2‖Xt+1/2 is bounded from above. Indeed, we have:

D(Xt, Xt+1/2) + D(Xt+1/2, Xt) = 〈∇h(Xt)−∇h(Xt+1/2), Xt − Xt+1/2〉
≤ γt〈A(Xt), Xt − Xt+1/2〉
≤ Gγt‖Xt − Xt+1/2‖Xt

where the last inequality is obtained by (MB). Moreover, by Definition 3.3 we
get:

D(Xt, Xt+1/2) + D(Xt+1/2, Xt) ≤ γtG

√
2
K

D(Xt+1/2, Xt)

≤ G

√
2
K
[D(Xt, Xt+1/2) + D(Xt+1/2, Xt)]

which yields

D(Xt, Xt+1/2) + D(Xt, Xt+1/2) ≤
2G2

K
(7.48)

Hence, by the local strong convexity in Definition 3.3 of h, we get:

K
2

[
‖Xt − Xt+1/2‖2

Xt
+ ‖Xt − Xt+1/2‖2

Xt+1/2

]
≤ 2G2

K
(7.49)

which in turn implies that:

‖Xt − Xt+1/2‖Xt ≤
2G
K

and ‖Xt − Xt+1/2‖Xt+1/2 ≤
2G
K

(7.50)

and so,

‖Xt − Xt+1/2‖Xt + ‖Xt − Xt+1/2‖Xt+1/2 ≤
4G
K

(7.51)
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Moreover, by combining (7.47) and (7.51) we get:

‖A(Xt)‖Xt+1/2,∗ ≤ G + β
4G
K

(7.52)

Summarizing, (7.45) combined with (7.47) and (7.52) yields:

‖A(Xt+1/2)− A(Xt)‖Xt+1/2,∗ ≤ 2G + β
4G
K

(7.53)

and hence the result follows.

On the other hand, if (MS) kicks in, we have the following finer result:Summability of the
Residual Under (MS)

Lemma 7.6 (Antonakopoulos et al. [8]). Assume the monotone operator A satisfies
(MS). Then,

1. γt decreases monotonically to a strictly positive limit γ∞ = limt→∞ γt > 0;

2. The sequence ‖A(Xt+1/2)− A(X)‖Xt+1/2,∗ is square summable: in particular,i.e.,

∞

∑
t=1
‖A(Xt+1/2)− A(X)‖2

Xt+1/2,∗ = 1/γ2
∞ − 1. (7.54)

Proof. Since γt is decreasing and bounded from below (γt ≥ 0), then we readily
obtain that its limit exists and more precisely we have:

lim
t→+∞

γt = inf
t∈N

γt = γ∞ ≥ 0 (7.55)

We now assume that γ∞ = 0. Then, by recalling (7.6):

D(p, Xt+1) ≤ D(p, Xt)− γt〈A(Xt+1/2), Xt+1/2 − p〉
+ γt〈A(Xt+1/2)− A(Xt), Xt+1 − Xt+1/2〉

− D(Xt+1/2, Xt)− D(Xt+1, Xt+1/2) (7.56)

By rearranging the above and telescoping t = 1, . . . , T we get:

T

∑
t=1

γt〈A(Xt+1/2), Xt+1/2 − p〉 ≤ D(p, X1)

+
T

∑
t=1

γt〈A(Xt+1/2)− A(Xt), Xt+1 − Xt+1/2〉

−
T

∑
t=1

D(Xt+1/2, Xt)−
T

∑
t=1

D(Xt+1, Xt+1/2) (7.57)

whereas, by applying Fenchel-Young inequality to the above we readily get:

T

∑
t=1

γt〈A(Xt+1/2), Xt+1/2 − p〉 ≤ D(p, X1)
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+
1

2K

T

∑
t=1

γ2
t ‖A(Xt+1/2)− A(Xt)‖2

Xt+1/2,∗ +
K
2

T

∑
t=1
‖Xt+1 − Xt+1/2‖2

Xt+1/2

−
T

∑
t=1

D(Xt+1/2, Xt)−
T

∑
t=1

D(Xt+1, Xt+1/2) (7.58)

and by considering that the local-strong convexity of Definition 3.3:

K
2

T

∑
t=1
‖Xt+1 − Xt+1/2‖2

Xt+1/2
−

T

∑
t=1

D(Xt+1, Xt+1/2) ≤ 0 (7.59)

we finally obtain:

T

∑
t=1

γt〈A(Xt+1/2), Xt+1/2− p〉 ≤ D(p, X1)+
1

2K

T

∑
t=1

γ2
t ‖A(Xt+1/2)−A(Xt)‖2

Xt+1/2,∗

−
T

∑
t=1

D(Xt+1/2, Xt) (7.60)

Therefore, by the definition (MS) we have:

T

∑
t=1

γt〈A(Xt+1/2), Xt+1/2− p〉 ≤ D(p, X1)+
1

2K

T

∑
t=1

γ2
t ‖A(Xt+1/2)−A(Xt)‖2

Xt+1/2,∗

− K
2β2

T

∑
t=1
‖A(Xt+1/2)− A(Xt)‖2

Xt+1/2,∗ (7.61)

which becomes:

T

∑
t=1

γt〈A(Xt+1/2), Xt+1/2 − p〉 ≤ D(p, X1)

+
T

∑
t=1

[
γ2

t
2K
− K

4β2

]
‖A(Xt+1/2)−A(Xt)‖2

Xt+1/2,∗−
K

4β2

T

∑
t=1
‖A(Xt+1/2)−A(Xt)‖2

Xt+1/2,∗

(7.62)

Now, by setting p = x∗ with x∗ being a solution of (VI) and using the fact that
〈A(Xt+1/2), Xt+1/2 − x∗〉 ≥ 0 and D(x∗, X1) ≤ D′ (by the compatibility of h), we
obtain:

K
4β2

T

∑
t=1
‖A(Xt+1/2)−A(Xt)‖2

Xt+1/2,∗ ≤ D′+
T

∑
t=1

[
γ2

t
2K
− K

4β2

]
‖A(Xt+1/2)−A(Xt)‖2

Xt+1/2,∗

(7.63)

Moreover, by observing that the quantity
[

γ2
t

2K −
K

4β2

]
≤ 0, whenever γt ≤

√
2K/2β

and since we assumed that γt → 0, there exists some t0 ∈N such that:[
γ2

t
2K
− K

4β2

]
≤ 0 for all t ≥ t0 (7.64)

Therefore, (7.63) becomes:
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1
γ2

T+1
− 1 =

T

∑
t=1
‖A(Xt+1/2)− A(Xt)‖2

Xt+1/2,∗ ≤ D′

+
t0

∑
t=1

[
γ2

t
2K
− K

4β2

]
‖A(Xt+1/2)− A(Xt)‖2

Xt+1/2,∗ (7.65)

In addition, since 1/γT+1 → +∞, by the fact that γt → 0, this yields that:

+∞ ≤ D′ +
t0

∑
t=1

[
γ2

t
2K
− K

4β2

]
‖A(Xt+1/2)− A(Xt)‖2

Xt+1/2,∗ (7.66)

which is a contradiction. Hence, we get that:

lim
t→+∞

γt = inf
t∈N

γt = γ∞ > 0 (7.67)

In order to prove our second claim, we first recall the definition of γt:

γt =
1√

1 + ∑t−1
j=1‖A(Xt+1/2)− A(Xt)‖2

Xt+1/2,∗

(7.68)

whereas by developing and rearranging we have:

t−1

∑
j=1
‖A(Xt+1/2)− A(Xt)‖2

Xt+1/2,∗
=

1
γ2

t
− 1 (7.69)

Hence, by taking limits on both sides we get:

+∞

∑
t=1
‖A(Xt+1/2)− A(Xt)‖2

Xt+1/2,∗
= lim

t→+∞

t−1

∑
j=1
‖A(Xt+1/2)− A(Xt)‖2

Xt+1/2,∗

=
1

γ2
∞
− 1

where 0 ≤ 1
γ2

∞
− 1 < +∞, since 0 < γ∞ ≤ 1 and therefore the result follows.

By means of this lemma, it follows that ∑T
t=1 γt ≥ γ∞T = Ω(T); hence it ulti-

mately follows that (MP) run with (Adapt) enjoys an O(1/T) rate of convergence
under (MS).

Proof of Theorem 7.4. By recalling (7.6) we have:

D(p, Xt+1) ≤ D(p, Xt)− γt〈A(Xt+1/2), Xt+1/2 − p〉
+ γt〈A(Xt+1/2)− A(Xt), Xt+1 − Xt+1/2〉 − D(Xt+1/2, Xt)− D(Xt+1, Xt+1/2)

(7.70)

We start our analysis rearranging (7.6). In particular, by telescoping t = 1, . . . , T
we get:

T

∑
t=1

γt〈A(Xt+1/2), Xt+1/2− p〉 ≤ D(p, X1)+
T

∑
t=1

γt〈A(Xt+1/2)−A(Xt), Xt+1−Xt+1/2〉
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−
T

∑
t=1

D(Xt+1/2, Xt)−
T

∑
t=1

D(Xt+1, Xt+1/2) (7.71)

On the other hand, since A is monotone, we readily get:

γt〈A(p), Xt+1/2 − p〉 ≤ γt〈A(Xt+1/2), Xt+1/2 − p〉 (7.72)

Thus, combining (7.72) and (7.71), dividing by ∑T
t=1 γt and setting

X̄T =

[
T

∑
t=1

γt

]−1 T

∑
t=1

γtXt+1/2 (7.73)

we get:

〈A(p), X̄T− p〉 ≤
[

T

∑
t=1

γt

]−1

(D(p, X1)+
T

∑
t=1

γt〈A(Xt+1/2)−A(Xt), Xt+1−Xt+1/2〉

−
T

∑
t=1

D(Xt+1/2, Xt)−
T

∑
t=1

D(Xt+1, Xt+1/2)) (7.74)

whereas, by applying Fenchel-Young inequality to the above we readily get:

〈A(p), X̄T − p〉 ≤
[

T

∑
t=1

γt

]−1

(D(p, X1) +
1

2K

T

∑
t=1

γ2
t ‖A(Xt+1/2)− A(Xt)‖2

Xt+1/2,∗

+
K
2

T

∑
t=1
‖Xt+1 − Xt+1/2‖2

Xt+1/2
−

T

∑
t=1

D(Xt+1/2, Xt)−
T

∑
t=1

D(Xt+1, Xt+1/2)) (7.75)

Thus, if C is a compact neighbourhood of the solution set X ∗, considering that by
Definition 3.3:

K
2

T

∑
t=1
‖Xt+1 − Xt+1/2‖2

Xt+1/2
−

T

∑
t=1

D(Xt+1, Xt+1/2) ≤ 0 (7.76)

and taking suprema on both sides, yields:

GapC(X̄T) ≤
[

T

∑
t=1

γt

]−1

(sup
p∈C

D(p, X1) +
1

2K

T

∑
t=1

γ2
t ‖A(Xt+1/2)− A(Xt)‖2

Xt+1/2,∗

−
T

∑
t=1

D(Xt+1/2, Xt)) (7.77)

1. Case 1: Convergence under (MB): Therefore, in order to determine the
convergence speed of XT under (MB), we shall examine the asymptotic Analysis Under (MB)

behaviour of each term of the nominator on the (RHS) of (7.87). In particular,
we have the following:

• For the first term: we readily get by the compactness of C,

sup
p∈C

D(p, X1) ≤ D′ for some constant D′ > 0. (7.78)
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by the Definition 3.3 of the regularizer h.

• For the second term: ∑T
t=1 γ2

t ‖A(Xt+1/2)− A(Xt)‖2
Xt+1/2,∗, we have:

T

∑
t=1

γ2
t ‖A(Xt+1/2)−A(Xt)‖2

Xt+1/2,∗ =
T

∑
t=1

(γ2
t −γ2

t+1)‖A(Xt+1/2)−A(Xt)‖2
Xt+1/2,∗

+
T

∑
t=1

γ2
t+1‖A(Xt+1/2)− A(Xt)‖2

Xt+1/2,∗ (7.79)

Since, γt is non-increasing and therefore (γ2
t − γ2

t+1 ≥ 0), and γt ≤ 1
the above becomes:

T

∑
t=1

γ2
t ‖A(Xt+1/2)−A(Xt)‖2

Xt+1/2,∗ ≤ C2 +
T

∑
t=1

γt+1‖A(Xt+1/2)−A(Xt)‖2
Xt+1/2,∗

(7.80)
and by the definition of γt we get:

T

∑
t=1

γ2
t ‖A(Xt+1/2)− A(Xt)‖2

Xt+1/2,∗ = C2

+
T

∑
t=1

‖A(Xt+1/2)− A(Xt)‖2
Xt+1/2,∗

1 + ∑t
j=1‖A(Xt+1/2)− A(Xt)‖2

Xt+1/2,∗
(7.81)

and finally,

T

∑
t=1

γ2
t ‖A(Xt+1/2)− A(Xt)‖2

Xt+1/2,∗ ≤ C2 + 1

+ log(1 +
T

∑
t=1
‖A(Xt+1/2)− A(Xt)‖2

Xt+1/2,∗) (7.82)

with the last inequality being obtained by Lemma A.2 which combined
with (MB) yields:

T

∑
t=1

γ2
t ‖A(Xt+1/2)− A(Xt)‖2

Xt+1/2,∗ ≤ C2 + 1 + log(1 + C2T) (7.83)

Finally, for ∑T
t=1 γt, we have the following lower-bound

T

∑
t=1

γt =
T

∑
t=1

1√
1 + ∑t−1

j=1‖A(Xt+1/2)− A(Xt)‖2
Xt+1/2,∗

≥
T

∑
t=1

1√
1 + tC2

(7.84)

which yields:
T

∑
t=1

γt = Ω(
√

T) and
T

∑
t=1

γt → +∞ (7.85)

Now, by combining (7.78), (7.83) and (7.85) we readily get that under (MB)
we get that:

GapC(X̄T) = O(1/
√

T). (7.86)
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2. Case 2: Convergence under (MS) We now suppose that A satisfies (MS)
condition. By applying Lemma 7.6 along with : Analysis Under (MS)

T

∑
t=1

γt〈A(Xt+1/2), Xt+1/2− p〉 ≤ D(p, X1)+
1

2K

T

∑
t=1

γ2
t ‖A(Xt+1/2)−A(Xt)‖2

Xt+1/2,∗

−
T

∑
t=1

D(Xt+1/2, Xt) (7.87)

by examining the asymptotic behaviour term by term, we get:

• For the first term D(x∗, X1), since x∗ ∈ dom A = dom h and X1 ∈
dom ∂h, we have:

D(x∗, X1) < +∞ (7.88)

• For the second term ∑T
t=1 γ2

t ‖A(Xt+1/2)− A(Xt)‖2
Xt+1/2,∗we have:

T

∑
t=1

γ2
t ‖A(Xt+1/2)− A(Xt)‖2

Xt+1/2,∗ ≤
T

∑
t=1
‖A(Xt+1/2)− A(Xt)‖2

Xt+1/2,∗

(7.89)
and by applying Lemma 7.6 we have:

T

∑
t=1
‖A(Xt+1/2)− A(Xt)‖2

Xt+1/2,∗ ≤
1

γ2
∞
− 1 (7.90)

with γ∞ = inft γt > 0.

Finally, by applying Lemma 7.6 once more by considering γ∞ = inft∈N γt > 0
we have:

T

∑
t=1

γt ≥ γ∞

T

∑
t=1

1 = γ∞T (7.91)

which yields:
T

∑
t=1

γt = Ω(T) (7.92)

and the result follows.

Having established optimal convergence rate interpolation guarantees for the
ergodic average of the (MP) iterates, a natural question that arises what the asymp-
totic behaviour of the iterates themselves,i.e., before any average occurs. This
problem is treated in the next section.

7.3.2 Trajectory convergence

Throughout this section we will provide a trajectory convergence result that governs
the actual iterates of the adaptive (MP) algorithm. Formally, we have the following:

Theorem 7.7 (Antonakopoulos et al. [8]). Suppose that 〈A(x), x− x∗〉 < 0 whenever
x∗ is a solution of (VI) and x is not. If, A satisfies (MB) or (MS), the iterates Xt of (MP)
run with the adaptive step-size (Adapt) converge to a solution of (VI).
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Last Iterate Convergence

The importance of this result is that, in many practical applications (especially in
non-monotone problems), it is more common to harvest the “last iterate” of the
method (Xt) rather than its ergodic average (X̄T); as such, Theorem 7.7 provides a
certain justification for this design choice.

Structurally, the first step is to show that Xt visits any neighborhood of a
solution point x∗ ∈ X ∗ infinitely often (this is where the coherence assumption
〈A(x), x− x∗〉 is used). The second is to use this trapping property in conjunction
with a suitable “energy inequality” to establish convergence via the use of a
quasi-Fejér technique as in [36].Vanishing Residuals

Lemma 7.8 (Antonakopoulos et al. [8]). Suppose that A satisfies (MB) (respectively
(MS)) and Xt, Xt+1/2 are the iterates of (MP) run with the adaptive step-size (Adapt).
Then, the following hold:

1. ‖Xt+1/2 − Xt‖ → 0 while t→ +∞

2. max{D(Xt+1/2, Xt), D(Xt, Xt+1/2)} ≤ 2G2

K γ2
t

Proof. For the proof of the first claim, we shall treat the cases of (MB) and (MS)
individually.

1. Under (MB) condition: Since γt is decreasing and bounded from below, then
we readily obtain that its limit exists and more precisely:

lim
t→+∞

γt = γ∞ ≥ 0 (7.93)

We shall distinguish two individual cases:

• γ∞ > 0: By recalling the definition of the adaptive step-size:

γt =
1√

1 + ∑t−1
j=1‖A(Xj+1/2)− A(Xj)‖2

Xj+1/2,∗
(7.94)

whereas by rearranging and developing we have:

t−1

∑
j=1
‖A(Xj+1/2)− A(Xj)‖2

Xj+1/2,∗ =
1

γ2
t
− 1 (7.95)

Therefore, by taking limits on both sides:

+∞

∑
t=1
‖A(Xt+1/2)− A(Xt)‖2

Xt+1/2,∗ = lim
t→+∞

1
γ2

t
− 1 =

1
γ2

∞
− 1 ≥ 0 (7.96)

Hence, by recalling (7.6) we have:

T

∑
t=1

D(Xt+1/2, Xt) ≤ D(x∗, X1) +
T

∑
t=1

γ2
t ‖A(Xt+1/2)− A(Xt)‖2

Xt+1/2,∗

≤ D(x∗, X1) +
T

∑
t=1
‖A(Xt+1/2)− A(Xt)‖2

Xt+1/2,∗
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which in turn by (7.96) yields:

+∞

∑
t=1

D(Xt+1/2, Xt) < +∞ (7.97)

and hence D(Xt+1/2, Xt)→ 0. Moreover, by considering Definition 3.3:

K
2
‖Xt+1/2 − Xt‖2

Xt
≤ D(Xt+1/2, Xt) (7.98)

Now, by recalling µ‖·‖ ≤ ‖·‖x, we get:

‖Xt+1/2 − Xt‖2 ≤ 1
µ2 ‖Xt+1/2 − Xt‖2

Xt
(7.99)

and the result follows.

• γ∞ = 0: By the prox-step, we get:

〈∇h(Xt)−∇h(Xt+1/2), Xt − Xt+1/2〉 ≤ γt〈A(Xt), Xt − Xt+1/2〉
≤ γt‖A(Xt)‖Xt ,∗‖Xt − Xt+1/2‖Xt (7.100)

On the other hand, we have:

〈∇h(Xt)−∇h(Xt+1/2), Xt − Xt+1/2〉 = D(Xt, Xt+1/2) + D(Xt+1/2, Xt)
(7.101)

Thus, we get by Definition 3.3:

D(Xt, Xt+1/2) + D(Xt+1/2, Xt) ≤ γt‖A(Xt)‖Xt ,∗‖Xt − Xt+1/2‖Xt

≤ γtG

√
2
K
[D(Xt, Xt+1/2) + D(Xt+1/2, Xt)]

where the last inequality is obtained due to (MB). This in turn yields:

D(Xt, Xt+1/2) + D(Xt+1/2, Xt) ≤
2G2

K
γ2

t (7.102)

So, a fortiori we have:

D(Xt, Xt+1/2) ≤
2G2

K
γ2

t (7.103)

Moreover, by Definition 3.3:

K
2
‖Xt+1/2 − Xt‖2

Xt+1/2
≤ D(Xt, Xt+1/2) ≤

2G2

K
γ2

t (7.104)

Now, by recalling µ‖·‖ ≤ ‖·‖x, we get:

‖Xt+1/2 − Xt‖2 ≤ 1
µ2 ‖Xt+1/2 − Xt‖2

Xt
(7.105)

and the result follows since we assumed that γt → 0.
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2. Under (MS) condition: Following similar reasoning as above, we have:

T

∑
t=1

D(Xt+1/2, Xt) ≤ D(x∗, X1) +
T

∑
t=1

γ2
t ‖A(Xt+1/2)− A(Xt)‖2

Xt+1/2,∗

≤ D(x∗, X1) +
T

∑
t=1
‖A(Xt+1/2)− A(Xt)‖2

Xt+1/2,∗

which by taking limits on both sides and by applying Lemma 7.6 we get that:

+∞

∑
t=1

D(Xt+1/2, Xt) < +∞ (7.106)

Therefore, D(Xt+1/2, Xt)→ 0, whereas by applying Definition 3.3 we obtain:

K
2
‖Xt+1/2 − Xt‖2

Xt
≤ D(Xt+1/2, Xt) (7.107)

Now, by recalling µ‖·‖ ≤ ‖·‖x, we get:

‖Xt+1/2 − Xt‖2 ≤ 1
µ2 ‖Xt+1/2 − Xt‖2

Xt
(7.108)

and the result follows.

On the other hand, for the second claim, we have by the prox-step:

D(Xt, Xt+1/2) + D(Xt+1/2, Xt) ≤ γt〈A(Xt), Xt+1/2 − Xt〉
≤ γtG‖Xt+1/2 − Xt‖Xt

Therefore, by following the same reasoning with the first claim, we get:

D(Xt, Xt+1/2) + D(Xt+1/2, Xt) ≤
2G2

K
γ2

t (7.109)

and hence since D(·, ·) ≥ 0, we have:

D(Xt+1/2, Xt) ≤
2G2

K
γ2

t and D(Xt, Xt+1/2) ≤
2G2

K
γ2

t (7.110)

and so the result follows

Remark 7.1. We shall point out that (1) in Lemma 7.8 establishes the convergence
with respect to the global ambient reference norm of Rn.

Extracting a Convergent
Sub-sequence

Proposition 7.9 (Antonakopoulos et al. [8]). Suppose that A satisfies (MB) (respectively
(MS)). Then, the iterates Xt, Xt+1/2 of (MP) run with the adaptive step-size (Adapt)
possess convergent subsequences towards the equilibrium set X ∗.

Proof. By Lemma 7.8, it suffices to show that Xt+1/2 possesses such a subsequence.
Assume to the contrary that it does not. That implies that:

lim inf
t

dist(Xt+1/2,X ∗) = δ > 0 (7.111)
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which in turn yields,

lim inf
t
〈A(Xt+1/2), Xt+1/2 − x∗〉 = c > 0 (7.112)

Now, by setting p = x∗ for some x∗ ∈ X ∗ in (7.6), we get:

D(x∗, Xt+1) ≤ D(x∗, Xt)− γt〈A(Xt+1/2), Xt+1/2 − x∗〉+ γ2
t ‖A(Xt+1/2)− A(Xt)‖2

Xt+1/2

≤ D(x∗, Xt)− cγt + γ2
t ‖A(Xt+1/2)− A(X)‖2

Xt+1/2

whereas by telescoping t = 1, . . . , T we obtain:

D(x∗, XT) ≤ D(x∗, X1)−
T

∑
t=1

γt

[
c−

∑T
t=1 γ2

t ‖A(Xt+1/2)− A(Xt)‖2
Xt+1/2,∗

∑T
t=1 γt

]
(7.113)

Having this established this general setting, we shall examine the asymptotic
behaviour term by term for each regularity case individually, which in both cases
shall lead to a contradiction.

1. Under (MB) condition:

• For the first term: ∑T
t=1 γt, we have by (7.85) that:

T

∑
t=1

γt → +∞ and
T

∑
t=1

γt = Ω(
√

T) (7.114)

• For the second term
∑T

t=1 γ2
t ‖A(Xt+1/2)− A(Xt)‖2

Xt+1/2,∗

∑T
t=1 γt

, we first ex-

amine the denominator. In particular, by the definition of (Adapt) we
get:

T

∑
t=1

γ2
t ‖A(Xt+1/2)−A(Xt)‖2

Xt+1/2,∗ =
T

∑
t=1

‖A(Xt+1/2)− A(Xt)‖2
Xt+1/2,∗

1 + ∑t−1
j=1‖A(Xj+1/2)− A(Xj)‖2

Xj+1/2,∗
(7.115)

which by recalling (7.83) we obtain:

T

∑
t=1

γ2
t ‖A(Xt+1/2)− A(Xt)‖2

Xt+1/2,∗ = O(log T) (7.116)

So, by combining (7.114) and (7.116) we readily obtain:

∑T
t=1 γ2

t ‖A(Xt+1/2)− A(Xt)‖2
Xt+1/2,∗

∑T
t=1 γt

→ 0 while T → +∞ (7.117)

Therefore, by letting T → +∞, the inequality (7.113) yields D(x∗, XT)→ −∞,
contradiction.

2. Under (MS) condition: Examining the asymptotic behavior of (7.113) term by
term under (MS) we get the following:
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• For ∑T
t=1 γt, (MS) guarantees by (7.92):

T

∑
t=1

γt = Ω(T) and
T

∑
t=1

γt → +∞ (7.118)

• For
∑T

t=1 γ2
t ‖A(Xt+1/2)−A(Xt)‖2

Xt+1/2,∗
∑T

t=1 γt
, (7.6) guarantees:

T

∑
t=1

γ2
t ‖A(Xt+1/2)− A(Xt)‖2

Xt+1/2,∗
= O(1) (7.119)

which combined with (7.92) gives us:

∑T
t=1 γ2

t ‖A(Xt+1/2)− A(Xt)‖2
Xt+1/2,∗

∑T
t=1 γt

→ 0 (7.120)

Therefore, y letting T → +∞, the inequality (7.113) yields that D(x∗, XT)→
−∞, a contradiction.

Having all this at hand, we are finally in the position to prove the main result of
this section; namely the convergence of the actual iterates of the method. For that
we will need an intermediate lemma that shall allow us to pass from a convergent
subsequence to global convergence (see also [36], [98]).Quasi-Fejer Sequences

Lemma 7.10. Let χ ∈ (0, 1], (αt)t∈N, (βt)t∈N non-negative sequences and (εt)t∈N ∈
l1(N) such that t = 1, 2, . . . :

αt+1 ≤ χαt − βt + εt (7.121)

Then, αt converges.

Proof. First, one shows that αt∈N is a bounded sequence. Indeed, one can derive
directly that:

αt+1 ≤ χt+1α0 +
t

∑
k=0

χt−kεk (7.122)

Hence, (αt)t∈N lies in [0, α0 + ε], with ε = ∑+∞
t=0 εt. Now, one is able to extract

a convergent subsequence (αkt)t∈N, let say limt→+∞ αkt = α ∈ [0, α0 + ε] and fix
δ > 0. Then, one can find some t0 such that αkt0

− α < δ
2 and ∑m>tkt0

εm < δ
2 . That

said, we have:

0 ≤ αt ≤ αkt0
+ ∑

m>tkt0

εm <
δ

2
+ α +

δ

2
= α + δ (7.123)

Hence, lim supt αt ≤ lim inft αt + δ. Since, δ is chosen arbitrarily the result follows.
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Proof of Theorem 7.7. Once more, we shall treat each regularity class individually.

1. Under (MB) condition: For the (MB), by denoting limt→+∞ γt = γ∞ case we
shall consider two cases for the asymptotic behaviour of the step-size γt.

• γ∞ > 0: By recalling the definition of γt:

γt =
1√

1 + ∑t−1
j=1‖A(Xj+1/2)− A(Xj)‖2

Xj+1/2

(7.124)

whereas by rearranging we get:

t−1

∑
j=1
‖A(Xj+1/1)− A(Xj)‖2

Xj+1/2
=

1
γ2

t
− 1 (7.125)

and hence:

+∞

∑
t=1
‖A(Xt+1/1)− A(Xt)‖2

Xt+1/2
=

1
γ2

∞
− 1 < +∞ (7.126)

Therefore, by recalling (7.6), we have for solution of (VI), x∗ ∈ X

D(x∗, Xt+1) ≤ D(x∗, Xt)− γt〈A(Xt+1/2), Xt+1/2 − x∗〉
+ γ2

t ‖A(Xt+1/2)− A(Xt)‖2
t+1/2,∗ (7.127)

which enables us to directly apply Lemma 7.10 for αt = D(x∗, Xt), βt =
γt〈A(Xt+1/2), Xt+1/2 − x∗〉 and εt = γ2

t ‖A(Xt+1/2)− A(Xt)‖2
Xt+1/2,∗.

• γ∞ = 0: Fix an equilibrium x∗ ∈ X ∗ and consider the "Bregman zone":

Dε = {x ∈ X : D(x∗, x) < ε} (7.128)

By the assumption for the regularizer h, it follows that there exists some
δ > 0 such that:

Bδ = {x ∈ X : ‖x∗ − x‖ < δ} (7.129)

is contained in Dε. Hence, by regularity assumption for the (2.10), it
follows that:

〈A(x), x− x∗〉 ≥ c > 0 for some c ≡ c(ε) > 0 and for all x /∈ Dε,
(7.130)

in particular, for all x ∈ D2ε \ Dε. Assume now that x∗ is a limit point of
Xt, i.e., Xt ∈ D2ε for infinitely many t ∈N. Now, by the prox-step, we
get:

γt〈A(Xt), Xt − x∗〉 ≤ 〈∇h(Xt)−∇h(Xt+1/2), Xt − x∗〉 (7.131)

whereas by Lemma 4.2 and after rearranging we get:

D(x∗, Xt+1/2) ≤ D(x∗, Xt)− γt〈A(Xt), Xt − x∗〉+ D(Xt, Xt+1/2)

≤ D(x∗, Xt)− γt〈A(Xt), Xt − x∗〉+ max{D(Xt, Xt+1/2), D(Xt, Xt+1/2)}
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Therefore, by Lemma 7.8 we obtain:

D(x∗, Xt+1/2) ≤ D(x∗, Xt)− γt〈A(Xt), Xt − x∗〉+ 2G2

K
γ2

t (7.132)

We consider two cases:

a) Xt ∈ D2ε \ Dε: Then, 〈A(Xt), Xt − x∗〉 ≥ c > 0. So,

D(x∗, Xt+1/2) ≤ D(x∗, Xt)− cγt +
2G2

K
γ2

t (7.133)

Now, provided that 2G2γ2
t

K ≤ cγt or equivalently γt ≤ cK
2G2 . we get:

D(x∗, Xt+1/2) ≤ 2ε.

b) Xt ∈ Dε: Then, in this case we have:

D(x∗, Xt+1/2) ≤ D(x∗, Xt) +
2G2

K
γ2

t (7.134)

Again, provided that 2G2

K γ2
t ≤ ε or equivalently γt ≤

√
2εK

2G we get
D(x∗, Xt+1/2) ≤ 2ε

Therefore, by summarizing the above we get that if γt ≤ min{
√

2εK
2G , cK

2G2 },
we have that Xt+1/2 ∈ D2ε whenever Xt ∈ D2ε. Going further, due to
Proposition 4.4 by setting p = x∗, x1 = Xt+1/2, x+2 = Xt+1, x = Xt,
w1 = −γt A(Xt+1/2) and w2 = −γt A(Xt+1/2) we get:

D(x∗, Xt+1) ≤ D(x∗, Xt)− γt〈A(Xt+1/2), Xt+1/2 − x∗〉
+γt〈A(Xt+1/2)−A(Xt), Xt+1−Xt+1/2〉−D(Xt+1, Xt+1/2)−D(Xt+1/2, Xt)

(7.135)

whereas by applying Fenchel’s inequality we obtain:

D(x∗, Xt+1) ≤ D(x∗, Xt)− γt〈A(Xt+1/2), Xt+1/2 − x∗〉

+
γ2

t
2K
‖A(Xt+1/2)− A(Xt)‖2

Xt+1/2,∗ +
K
2
‖Xt+1 − Xt+1/2‖2

Xt+1/2

− D(Xt+1, Xt+1/2)− D(Xt+1/2, Xt) (7.136)

Now, since K
2 ‖Xt+1 − Xt+1/2‖2

Xt+1/2
− D(Xt+1, Xt+1/2) ≤ 0 by Defini-

tion 3.3 we get:

D(x∗, Xt+1) ≤ D(x∗, Xt)− γt〈A(Xt+1/2), Xt+1/2 − x∗〉

+
γ2

t
2K
‖A(Xt+1/2)− A(Xt)‖2

Xt+1/2,∗ (7.137)

which, in turn, by (7.53) the above yields:

D(x∗, Xt+1) ≤ D(x∗, Xt)− γt〈A(Xt+1/2), Xt+1/2− x∗〉+ C2

2K
γ2

t (7.138)
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with C = 2G + β 4G
K . Recall that Xt+1/2 ∈ D2ε by our previous claim. We

now consider the following two cases:

a) Xt+1/2 ∈ D2ε \ Dε: In this case: 〈A(Xt+1/2), Xt+1/2 − x∗〉 ≥ c > 0,
so,

D(x∗, Xt+1) ≤ D(x∗, Xt)− cγt +
C2

2K
γ2

t (7.139)

which holds provided that C2γ2
t

2K ≤ cγt or equivalently γt ≤ 2cK
C2 ,

b) Xt+1/2 ∈ Dε: First recall that:

D(Xt+1/2, Xt+1) + D(Xt+1, Xt+1/2) ≤
2γ2

t
K
‖A(Xt+1/2)− A(Xt)‖2

Xt+1/2,∗

≤ 2γ2
t

K
C2

Therefore, we get that:

‖Xt+1 − Xt+1/2‖2 ≤ 4µ2C2

K2 γ2
t (7.140)

Now, let us define the following:

Dε(α) = max{D(x∗, x) : dist(x, Dε(x∗)) < α} (7.141)

Clearly, Dε(α) is continuous relative to α and limα→0+ Dε(α) = ε.
Therefore, we have:

Dε(α) ≤ ε for all α ≤ α∗ with α∗ sufficiently small. (7.142)

Moreover, due to (7.140), we conclude that D(x∗, Xt+1) ≤ 2ε, pro-
vided that γt ≤ α∗

2µC K.

We conclude that Xt+1 ∈ U2ε provided that Xt ∈ D2ε and

γt ≤ min{2cK
G2 ,

√
2εK

2G
,

α∗

2µC
K} (7.143)

Since, γt → 0 and Xt ∈ D2ε infinitely often (due to Proposition 7.9) we
conclude that Xt ∈ D2ε for all sufficiently large t. With ε > 0 being
arbitrary, the result follows.

2. Under (MS) condition: By plugging in αt = D(x∗, Xt), βt = γt〈A(Xt+1/2, Xt+1/2−
x∗〉 and εt = γ2

t ‖A(Xt+1/2)− A(Xt)‖2
Xt+1/2,∗ in Lemma 7.10 and combine it

with Lemma 7.6, we get infx∗∈X ∗‖x∗, Xt‖ converges. Thus, the result follows
by applying Proposition 7.9.

Having established the last iterate convergence of the adaptive method we
proceed to evaluate numerically the performance of the method.
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Figure 7.1: Numerical comparison between the extra-gradient (EG), Bach–Levy (BL) and
AdaProx algorithms (red circles, green squares and blue triangles respectively).
The figure on the left shows the methods’ convergence in a 100× 100 bilinear
game; the one on the right shows the methods’ convergence in a non-convex/non-
concave covariance learning problem. In both cases, the parameters of the EG and
BL algorithms have been tuned with a grid search (AdaProx has no parameters
to tune). All curves have been averaged over S = 100 sample runs, and the 95%
confidence interval is indicated by the shaded area.

7.3.3 Numerical evaluation

We conclude in this section with a numerical illustration of the convergence prop-
erties of AdaProx in two different settings: a) bilinear min-max games; and b) a
simple Wasserstein GAN in the spirit of Daskalakis et al. [37] with the aim of
learning an unknown covariance matrix.

bilinear min-max games . For our first set of experiments, we consider a min-
max game of the form of the form Φ(x1, x2) = (x1 − x∗1)

>A(x2 − x∗2) with x1, x2 ∈
R100 and A ∈ R100×R100 (drawn i.i.d. component-wise from a standard Gaussian).
To test the convergence of AdaProx beyond the “full gradient” framework, we ran
the algorithm with stochastic gradient signals of the form Vt = A(Xt) + Ut where
Ut is drawn i.i.d. from a centered Gaussian distribution with unit covariance matrix.
We then plotted in Fig. 7.1 the squared gradient norm ‖A(X̄T)‖2 of the method’s
ergodic average X̄T after T iterations (so values closer to zero are better). For
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benchmarking purposes, we also ran the extra-gradient (EG) and Bach–Levy (BL)
algorithms [14] with the same random seed for the simulated gradient noise. The
step-size parameter of the EG algorithm was chosen as γt = 0.025/

√
t, whereas the

BL algorithm was run with diameter and gradient bound estimation parameters
D0 = .5 and M0 = 2.5 respectively (both determined after a hyper-parameter
search since the only theoretically allowable values are D0 = M0 = ∞; interestingly,
very large values for D0 and M0 did not yield good results). The experiment was
repeated S = 100 times, and AdaProx gave consistently faster rates.

covariance matrix learning . Going a step further, consider the covariance
learning game

Φ(x1, x2) = Ex∼N (0,Σ)[x
>x1x]−Ez∼N (0,I)[z

>x>1 x2x1z], x1, x2 ∈ Rn ×Rn.
(7.144)

The goal here is to generate data drawn from a centered Gaussian distribution
with unknown covariance Σ; in particular, this model follows the Wasserstein GAN
formulation of Daskalakis et al. [37] with generator and discriminator respectively
given by G(z) = x1z and D(x) = x>x2x (no clipping). For the experiments, we
took n = 100, a mini-batch of m = 128 samples per update, and we ran the
EG, BL and AdaProx algorithms as above, tracing the square norm of A as a
measure of convergence. Since the problem is non-monotone, there are several
disjoint equilibrium components so the algorithms’ behavior is considerably more
erratic; however, after this initial warm-up phase, AdaProx again gave the faster
convergence rates.

7.4 universality in the presence of noise

In order to derive our general universality result, we change gears from the (MP)
template. In particular, we shall adopt a primal-dual approach; more precisely, our
focal point is that of the dual extrapolation template presented in (DualX). We recall
that the said method is defined by the following recursion: Universal Dual

Extrapolation

Xt+1/2 = PXt(−γtVt)

Yt+1 = Yt −Vt+1/2

Xt+1 = Q(γt+1Yt+1)

Throughout this section, given the dual extrapolation method run once more
with the adaptive learning rate (Adapt): Universal Step-Size

γt =
1√

1 + ∑t−1
j=1‖Vj+1/2 −Vj‖2

Xj+1/2,∗
(Adapt)

In addition, we assume that the optimizer has access to a first order oracle of the
form (SFO) which satisfies the following statistical assumptions: Blanket Assumptions

Assumption 7.3. 1. Zero-mean noise, i.e.,

E[Ut|Ft] = 0 for all t = 1, 2, . . . . (7.145a)
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2. Boundedness with probability 1, i.e., there exists some σ2 > 0 such that

‖Ut‖2
∗ ≤ σ2 almost surely for all t = 1, 2, . . . (7.145b)

Furthermore, concerning the regularity conditions assumed for the associated
operators and the ambient space the same assumptions hold as in Section 7.3, i.e.,

1. X is a regular Finsler space (cf. Section 3.2.2).

2. The respective generalizations of the standard Lipschitz regularity are: given
a family of local norms ‖·‖x with x ∈ X , the respective monotone operators
under study will be that satisfying (MB) and/or (MS)

3. The associated regularizer h is a Bregman-Finsler function, i.e., satisfies
Definition 3.3.

Having all this at hand, we are in position to present the main result of this sec-
tion; namely we present optimal convergence rate guarantees for both deterministic
and stochastic settings. Formally, we have the following theorem.

Universality Guarantees
(Stochastic &

Deterministic) Theorem 7.11 (Antonakopoulos and Mertikopoulos [5]). Assume that Xt+1/2, Xt are
the (DualX) iterates run with the adaptive step-size policy (Adapt) and a (SFO) satisfying
(7.145b). Then, the following hold:

1. If A satisfies (MB), then,

E [GapC(X̄T)] = O(1/
√

T) (7.146)

2. If A satisfies (MS), then,

E [GapC(X̄T)] = O
(

A
T
+

Bσ√
T

)
(7.147)

In order to prove Theorem 7.11 we will use extensively a key template which
connects iterates after the. respective prox and mirror steps. In what follows we
will illustrate this in a detailed manner.

7.4.1 Template inequalities

The proof of Theorem 7.11 hinges again on a primal-dual type template inequality
which involves Fenchel couplings instead of Bregman divergences as in (MP) setting.
Namely, we seek to prove an inequality of the form:

T

∑
t=1
〈Vt+1/2, Xt+1/2 − x〉 ≤ h(x)−min h

γT+1
+

T

∑
t=1
〈Vt+1/2 −Vt, Q(γtYt+1)− Xt+1/2〉

−
T

∑
t=1

1
γt

D(Q(γtYt+1), Xt+1/2)−
T

∑
t=1

1
γt

D(Xt+1/2, Xt) (7.148)

In doing so we will need the following result.Template Inequality for
Universality
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Lemma 7.12 (Antonakopoulos and Mertikopoulos [5]). If Xt+1/2, Xt are the iterates
of (DualX) run with a decreasing learning rate γt, then the following inequality holds for
all x ∈ X :

1
γt

F(x, γtYt+1) ≤
1
γt

F(x, γtYt)− 〈Vt+1/2, Xt+1/2 − x〉

+ 〈Vt+1/2−Vt, Q(γtYt+1)−Xt+1/2〉−
1
γt

D(Q(γtYt+1), Xt+1/2)−
1
γt

D(Xt+1/2, Xt)

(7.149)

Proof. For all x ∈ X we have:

〈Vt+1/2, Q(γtYt+1)− x〉 = 1
γt
〈γtYt − γtYt+1, Q(γtYt+1)− x〉

=
1
γt

F(x, γtYt)−
1
γt

F(x, γtYt+1)−
1
γt

F(Q(γtYt+1), γtYt)

Therefore, by rearranging we get:

1
γt

F(x, γtYt+1) =
1
γt

F(x, γtYt)− 〈Vt+1/2, Q(γtYt+1)− x〉 − 1
γt

F(Q(γtYt+1), γtYt)

=
1
γt

F(x, γtYt)− 〈Vt+1/2, Xt+1/2 − x〉+ 〈Vt+1/2, Q(γtYt+1)− Xt+1/2〉

− 1
γt

F(Q(γtYt+1), γtYt)

and since F(Q(γtYt+1), γtYt) ≥ D(Q(γtYt+1), Xt) the above becomes:

1
γt

F(x, γtYt+1) ≤
1
γt

F(x, γtYt)−〈Vt+1/2, Xt+1/2− x〉+ 〈Vt+1/2), Q(γtYt+1)−Xt+1/2〉

− 1
γt

D(Q(γtYt+1), Xt) (7.150)

On the other hand, by the prox-step we have:

〈Vt, Xt+1/2 − x〉 ≤ 1
γt
〈∇h(Xt)−∇h(Xt+1/2), Xt+1/2 − x〉

=
1
γt
〈∇h(Xt+1/2)−∇h(Xt), x− Xt+1/2〉

=
1
γt

D(x, Xt)−
1
γt

D(x, Xt+1/2)−
1
γt

D(Xt+1/2, Xt)

where the last equality is obtained by Lemma 4.2. Hence, by rearranging and
setting x = Q(γtYt+1) we get:

1
γt

D(Q(γtYt+1), Xt+1/2)+
1
γt

D(Xt+1/2, Xt)+ 〈Vt, Xt+1/2−Q(γtYt+1)〉 ≤
1
γt

D(Q(γtYt+1), Xt)

(7.151)
Thus, by combining the above inequalities we obtain:
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1
γt

F(x, γtYt+1) ≤
1
γt

F(x, γtYt)−〈Vt+1/2, Xt+1/2− x〉+ 〈Vt+1/2, Q(γtYt+1)−Xt+1/2〉

+ 〈Vt, Xt+1/2 −Q(γtYt+1)〉 −
1
γt

D(Q(γtYt+1), Xt+1/2)−
1
γt

D(Xt+1/2, Xt)

(7.152)

So, finally we have:

1
γt

F(x, γtYt+1) ≤
1
γt

F(x, γtYt)− 〈Vt+1/2, Xt+1/2 − x〉

+ 〈Vt+1/2−Vt, Q(γtYt+1)−Xt+1/2〉−
1
γt

D(Q(γtYt+1), Xt+1/2)−
1
γt

D(Xt+1/2, Xt)

(7.153)

and the result follows.

Now armed Lemma 7.12, we are in the position to prove our main "energy"
inequality (7.148).

Regret Inequality

Proposition 7.13. Assume that Xt+1/2, Xt are the iterates of (DualX) run with a decreas-
ing learning rate γt. Then, for all x ∈ X , the following "regret" estimation holds:

T

∑
t=1
〈Vt+1/2, Xt+1/2 − x〉 ≤ h(x)−min h

γT+1
+

T

∑
t=1
〈Vt+1/2 −Vt, Q(γtYt+1)− Xt+1/2〉

−
T

∑
t=1

1
γt

D(Q(γtYt+1), Xt+1/2)−
T

∑
t=1

1
γt

D(Xt+1/2, Xt) (7.154)

Proof. By setting Et =
1
γt

F(x, γtYt), we have:

Et+1 − Et =
1

γt+1
F(x, γt+1Yt+1)−

1
γt

F(x, γtYt)

=

[
1

γt+1
F(x, γt+1Yt+1)−

1
γt

F(x, γtYt+1)

]
+

[
1
γt

F(x, γtYt+1)−
1
γt

F(x, γtYt)

]
Now let us deal with each bracket individually.

• For the first term
[

1
γt+1

F(x, γt+1Yt+1)− 1
γt

F(x, γtYt+1)
]

we have:

1
γt+1

F(x, γt+1Yt+1)−
1
γt

F(x, γtYt+1) =
1

γt+1
h(x) +

1
γt+1

h∗(γt+1Yt+1)− 〈Yt+1, x〉

− 1
γt

h(x)− 1
γt

h∗(γtYt+1) + 〈Yt+1, x〉

and hence we have:

1
γt+1

F(x, γt+1Yt+1)−
1
γt

F(x, γtYt+1) =

[
1

γt+1
− 1

γt

]
h(x)+

1
γt+1

h∗(γt+1Yt+1)

− 1
γt

h∗(γtYt+1) (7.155)
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Now, considering the function:

φ(γ) =
1
γ
[h∗(γw) + min h] (7.156)

By taking the derivative (with respect to γ) we get:

φ′(γ) =
1
γ
〈w, Q(γw)〉 − 1

γ2 [h∗(γw) + min h]

=
1

γ2 [〈γw, Q(γw)〉 − h∗(γw) + min h]

=
1

γ2 [h(Q(γw))−min h]

≥ 0

Therefore, we get that φ is non-decreasing function and since γt+1 ≤ γt we
have φ(γt+1) ≤ φ(γt), i.e.,:

1
γt+1

[h∗(γt+1Yt+1) + min h] ≤ 1
γt

[h∗(γtYt+1) + min h] (7.157)

where after rearranging we obtain:

1
γt+1

h∗(γt+1Yt+1)−
1
γt

h∗(γtYt+1) ≤
[

1
γt
− 1

γt+1

]
min h (7.158)

Hence, by combining all the above we get:

1
γt+1

F(x, γt+1Yt+1)−
1
γt

F(x, γtYt+1) ≤
[

1
γt+1

− 1
γt

]
h(x)−min h (7.159)

• For the second term
[

1
γt

F(x, γtYt+1)− 1
γt

F(x, γtYt)
]

we readily get by Lemma 7.12:

1
γt

F(x, γtYt+1)−
1
γt

F(x, γtYt) ≤ 〈Vt+1/2, Xt+1/2 − x〉

+ 〈Vt+1/2−Vt, Q(γtYt+1)−Xt+1/2〉−
1
γt

D(Q(γtYt+1), Xt+1/2)−
1
γt

D(Xt+1/2, Xt)

(7.160)

Hence, combining all this and after telescoping through t = 1, . . . , T we get:

T

∑
t=1
〈Vt+1/2, Xt+1/2 − x〉 ≤ 1

γ1
F(x, Y1) +

[
1

γT+1
− 1

γ1

]
(h(x)−min h)

+
T

∑
t=1
〈Vt+1/2−Vt, Q(γtYt+1)−Xt+1/2〉−

T

∑
t=1

1
γt

D(Q(γtYt+1), Xt+1/2)−
T

∑
t=1

1
γt

D(Xt+1/2, Xt)

(7.161)
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Moreover, by setting Y1 = 0 we get:

1
γ1

F(x, Y1) =
1

γ1
h(x) +

1
γ1

h∗(0) =
1

γ1
[h(x)−min h] (7.162)

So, finally we get:

T

∑
t=1
〈Vt+1/2, Xt+1/2 − x〉 ≤ h(x)−min h

γT+1
+

T

∑
t=1
〈Vt+1/2 −Vt, Q(γtYt+1)− Xt+1/2〉

−
T

∑
t=1

1
γt

D(Q(γtYt+1), Xt+1/2)−
T

∑
t=1

1
γt

D(Xt+1/2, Xt) (7.163)

and the result follows.

7.4.2 Optimal rate interpolation analysis

In order to proceed to the particular analysis of Theorem 7.11 we shall some
additional results. The first concerns the almost sure boundedness of ‖Vt+1/2 −
Vt‖2

Xt+1/2,∗ which is vital for establishing the stochastic rates under (MB). Formally,
we. have the following result.Almost Sure

Boundedness of the
Residual Lemma 7.14 (Antonakopoulos and Mertikopoulos [5]). Assume that Xt, Xt+1/2 are

the iterates of (DualX) run with a non-increasing step-size γt. Moreover, assume that the
oracle satisfies the mean square boundedness condition:

E
[
‖V(x; ω)‖2

x,∗

]
≤ G2 (7.164)

Then, the sequence ‖Vt+1/2 − Vt‖2
Xt+1/2,∗ is bounded almost surely. In particular, the

following inequality holds with probability 1:

‖Vt+1/2−Vt‖2
Xt+1/2,∗ ≤ 4

[
G2 + µ2σ2

]
+ 2

[√
2G2 + 2µ2σ2 +

2βγ1

K

[
2G2 + 2µ2σ2

]]2

(7.165)

Proof. We have:

‖Vt+1/2 −Vt‖2
Xt+1/2,∗ ≤ 2‖Vt+1/2‖2

Xt+1/2,∗ + 2‖Vt‖2
Xt+1/2,∗ (7.166)

Now, let us bound each term of the above individually. For the term ‖Vt+1/2‖2
Xt+1/2,∗

we have:

‖Vt+1/2‖2
Xt+1/2,∗ = ‖A(Xt+1/2) + Ut+1/2‖2

Xt+1/2,∗

≤ 2‖A(Xt+1/2)‖2
Xt+1/2,∗ + 2‖Ut+1/2‖2

Xt+1/2,∗

≤ 2‖A(Xt+1/2)‖2
Xt+1/2,∗ + 2µ2‖Ut+1/2‖2

∗

≤ 2‖A(Xt+1/2)‖2
Xt+1/2,∗ + 2µ2σ2

Moreover, we have:

‖A(Xt+1/2)‖2
Xt+1/2,∗ = ‖E [A(Xt+1/2)|Ft+1/2]‖2

Xt+1/2,∗
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= ‖E [A(Xt+1/2)|Ft+1/2] + E [Ut+1/2|Ft+1/2]‖2
Xt+1/2,∗

= ‖E [Vt+1/2|Ft+1/2]‖2
Xt+1/2,∗

≤ E
[
‖Vt+1/2‖2

Xt+1/2,∗|Ft+1/2

]
with the last inequality being obtained by applying Jensen’s inequality. Hence,
since the oracle satisfies the mean square boundedness condition we get:

‖A(Xt+1/2)‖2
Xt+1/2,∗ ≤ G2 (7.167)

Therefore, summarizing: ‖Vt+1/2‖2
Xt+1/2,∗ is upper bounded almost surely by:

‖Vt+1/2‖2
Xt+1/2,∗ ≤ 2G2 + 2µ2σ2 (7.168)

Now, we turn our attention to ‖Vt‖2
Xt+1/2,∗, recalling the regularity of X we have

for some β ≥ 0 such that:

‖Vt‖Xt+/2,∗
‖Vt‖Xt ,∗

≤ 1 + β‖Xt − Xt+1/2‖Xt (7.169)

or equivalently:

‖Vt‖Xt+1/2,∗ ≤ ‖Vt‖Xt ,∗ + β‖Vt‖Xt ,∗‖Xt − Xt+1/2‖Xt (7.170)

Now, by the definition of (DualX) we have:

γt〈Vt, Xt − Xt+1/2〉 ≥ D(Xt, Xt+1/2) + D(Xt+1/2, Xt)

≥ K
2
‖Xt − Xt+1/2‖2

Xt

with the last inequality being obtained by applying Definition 3.3. So, by applying
Cauchy-Shwartz inequality on the (LHS) we get:

K
2
‖Xt − Xt+1/2‖2

Xt
≤ γt〈Vt, Xt − Xt+1/2〉

≤ γt‖Vt‖Xt ,∗‖Xt+1/2 − Xt‖Xt

and so,

‖Xt − Xt+1/2‖Xt ≤
2βγ1

K
‖Vt‖Xt ,∗ (7.171)

So, combining (7.170) and (7.171) we get:

‖Vt‖Xt+1/2,∗ ≤ ‖Vt‖Xt ,∗ +
2βγ1

K
‖Vt‖2

Xt ,∗ (7.172)

Thus, what is left is to upper bound ‖Vt‖t,∗. Working in the same spirit as above,
we get that:

‖Vt‖2
Xt ,∗ ≤ 2G2 + 2µ2σ2 (7.173)

Hence, combining (7.172) with (7.173) we get:

‖Vt‖Xt+1/2,∗ ≤
√

2G2 + 2µ2σ2 +
2βγ1

K

[
2G2 + 2µ2σ2

]
(7.174)
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Finally, by combining (7.166) with (7.168) and (7.174) we get:

‖Vt −Vt+1/2‖2
Xt+1/2

≤ 4
[

G2 + µ2σ2
]
+ 2

[√
2G2 + 2µ2σ2 +

2βγ1

K

[
2G2 + 2µ2σ2

]]2

(7.175)
and the proof is complete.

Moving forward, the second crucial ingredient for establishing our main result
we will need a result for martingale differences, introduced by [14, 57].

Proposition 7.15 (Bach and Levy [14], Kakade [57]). Let C ⊂ Rn and h : X → R be
a Bregman function. Also assume that for all x ∈ C we have:

h(x)−min
x∈C

h(x) ≤ 1
2

D2 (7.176)

Then, for any martingale difference sequence (ζt) ∈ Rn and any random vector x definedMartingale Difference
Estimation over C, we have:

E

[
〈

T

∑
t=1

ζt, x〉
]
≤ D

2

√√√√ T

∑
t=1

E [‖ζt‖2∗] (7.177)

Armed with these tools we are in position to prove Theorem 7.11.

Proof of Theorem 7.11. For the sake of convenience we shall present the analysis
under (MB) and (MS) separately.

1. For the (MB) case we have the following: By recalling Proposition 7.13 we
have for all x ∈ X :Analysis Under (MB)

T

∑
t=1
〈Vt+1/2, Xt+1/2 − x〉 ≤ h(x)−min h

γT+1
+

1
2K

T

∑
t=1

γt‖Vt+1/2 −Vt‖2
Xt+1/2,∗

+
K
2

T

∑
t=1

1
γt
‖Q(γtYt+1)− Xt+1/2‖2

Xt+1/2
− K

2

T

∑
t=1

1
γt
‖Xt+1/2 − Xt‖2

Xt

−
T

∑
t=1

D(Q(γtYt+1), Xt+1/2) (7.178)

Thus by applying Definition 3.3 the above becomes:

T

∑
t=1
〈Vt+1/2, Xt+1/2 − x〉 ≤ h(x)−min h

γT+1
+

1
2K

T

∑
t=1

γt‖Vt+1/2 −Vt‖2
Xt+1/2,∗

− K
2

T

∑
t=1

1
γt
‖Xt+1/2 − Xt‖2

Xt
(7.179)

Now by the definition of the oracle’s feedback, we have:

T

∑
t=1
〈A(Xt+1/2), Xt+1/2− x〉 ≤ h(x)−min h

γT+1
+

1
2K

T

∑
t=1

γt‖Vt+1/2−Vt‖2
Xt+1/2,∗
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+
T

∑
t=1
〈Ut+1/2, x− Xt+1/2〉 −

K
2

T

∑
t=1

1
γt
‖Xt+1/2 − Xt‖2

Xt
(7.180)

Moreover, since A is monotone we have for all x ∈ X :

〈A(x), Xt+1/2 − x〉 ≤ 〈A(Xt+1/2), Xt+1/2 − x〉 (7.181)

which in turn yields:

T

∑
t=1
〈A(x), Xt+1/2 − x〉 ≤ h(x)−min h

γT+1
+

1
2K

T

∑
t=1

γt‖Vt+1/2 −Vt‖2
Xt+1/2,∗

+
T

∑
t=1
〈Ut+1/2, x− Xt+1/2〉 −

K
2

T

∑
t=1

1
γt
‖Xt+1/2 − Xt‖2

Xt
(7.182)

and so, by dividing both sides by T and exploiting convexity we have:

〈A(x), XT − x〉 ≤ 1
T

(
h(x)−min h

γT+1
+

1
2K

T

∑
t=1

γt‖Vt+1/2 −Vt‖2
Xt+1/2,∗

+
T

∑
t=1
〈Ut+1/2, x− Xt+1/2〉 −

K
2

T

∑
t=1

1
γt
‖Xt+1/2 − Xt‖2

Xt

)
(7.183)

Now, by considering a compact neighbourhood C of a solution and taking
suprema we have:

GapC(XT) ≤
1
T

(
D

γT+1
+

1
2K

T

∑
t=1

γt‖Vt+1/2 −Vt‖2
Xt+1/2,∗

+
T

∑
t=1
〈Ut+1/2, x− Xt+1/2〉 −

K
2

T

∑
t=1

1
γt
‖Xt+1/2 − Xt‖2

Xt

)
(7.184)

where after taking expectations on both sides we get:

E
[
GapC(XT)

]
≤ 1

T

(
D E

[
1

γT+1

]
+

1
2K

E

[
T

∑
t=1

γt‖Vt+1/2 −Vt‖2
Xt+1/2,∗

]

+ sup
x∈C

E

[
T

∑
t=1
〈Ut+1/2, x− Xt+1/2〉

]
− K

2
E

[
T

∑
t=1

1
γt
‖Xt+1/2 − Xt‖2

Xt

])
(7.185)

Now, we shall bound from above each (RHS) term individually:

• For the term D E
[

1
γT+1

]
we have:

D E

[
1

γT+1

]
= D E


√√√√1 +

T

∑
t=1
‖Vt+1/2 −Vt‖2

Xt+1/2,∗


≤ D

√√√√1 +
T

∑
t=1

E
[
‖Vt+1/2 −Vt‖2

Xt+1/2,∗

]
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and hence by applying Lemma 7.14 we get:

D E

[
1

γT+1

]
≤ D

√
1 + C2T (7.186)

with C2 being the constant obtained in Lemma 7.14.

• For the term 1
2K E

[
∑T

t=1 γt‖Vt+1/2 −Vt‖2
Xt+1/2,∗

]
:

1
2K

E

[
T

∑
t=1

γt‖Vt+1/2 −Vt‖2
Xt+1/2,∗

]
=

1
2K

E

[
T

∑
t=1

(γt − γt+1)‖Vt+1/2 −Vt‖2
Xt+1/2,∗

]

+
1

2K
E

[
T

∑
t=1

γt+1‖Vt+1/2 −Vt‖2
Xt+1/2,∗

]
(7.187)

Now, we have by applying Lemma 7.14:

1
2K

E

[
T

∑
t=1

(γt − γt+1)‖Vt+1/2 −Vt‖2
Xt+1/2,∗

]
≤ 1

2K
C2 (7.188)

• For the term supx∈C E
[
∑T

t=1〈Ut+1/2, x− Xt+1/2〉
]

we have:

sup
x∈C

E

[
T

∑
t=1
〈Ut+1/2, x− Xt+1/2〉

]
= sup

x∈C
E

[
T

∑
t=1
〈Ut+1/2, x〉

]

−E

[
T

∑
t=1
〈Ut+1/2, Xt+1/2〉

]
(7.189)

For the second term of the expression we have:

E

[
T

∑
t=1
〈Ut+1/2, Xt+1/2〉

]
=

T

∑
t=1

E [〈E [Ut+1/2|Ft+1/2] , Xt+1/2〉]

= 0

with the last equality being obtained by the zero mean assumption for
the noise Ut for t = 1, 1/2, . . . Now, the tricky part is dealing with the
first term; at this point we shall apply Proposition 7.15. In particular, we
have:

sup
x∈C

E

[
T

∑
t=1
〈Ut, x〉

]
= max

x∈C
E

[
〈

T

∑
t=1

Ut, x〉
]

≤ D
2

√√√√ T

∑
t=1

E [‖Ut+1/2‖2∗]

≤ Dσ
√

T
2

with the last inequality obtained by the (almost sure) boundedness of
the noise.
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Therefore, summarizing we get that:

E
[
GapC(XT)

]
= O(1/

√
T) (7.190)

and hence the first result follows.

2. Now we turn our attention towards the (MS) case. In particular, working in
the same spirit as in (MB) we have: Analysis Under (MS)

E
[
GapC(XT)

]
≤ 1

T

(
D E

[
1

γT+1

]
+

1
2K

E

[
T

∑
t=1

γt‖Vt+1/2 −Vt‖2
Xt+1/2,∗

]

+ sup
x∈C

E

[
T

∑
t=1
〈Ut+1/2, x− Xt+1/2〉

]
− K

2
E

[
T

∑
t=1

1
β2γt
‖A(Xt+1/2)− A(Xt)‖2

Xt+1/2,∗

])
(7.191)

Now, set:

B2
t = min{‖A(Xt)− A(Xt+1/2)‖2

Xt+1/2,∗, ‖Vt+1/2 −Vt‖2
Xt+1/2,∗} (7.192)

and the respective auxiliary learning rate:

γ̃t =
1√

1 + ∑t−1
j=1 B2

j

(7.193)

By definition of B2
t , we have 1

γ̃t
≤ 1

γt
and hence:

− 1
γt
‖A(Xt+1/2)− A(Xt)‖2

Xt+1/2,∗ ≤ −
1
γ̃t

B2
t (7.194)

Moreover by denoting ξt = [Vt+1/2 −Vt]− [A(Xt+1/2)− A(Xt)] we have:

‖Vt+1/2 −Vt‖2
Xt+1/2,∗ ≤ 2‖A(Xt+1/2)− A(Xt)‖2

Xt+1/2,∗ + 2‖ξt‖2
Xt ,∗

≤ 2‖A(Xt+1/2)− A(Xt)‖2
Xt+1/2,∗ + 2µ‖ξt‖2

∗

Moreover, we have:

‖Vt+1/2 −Vt‖2
Xt+1/2,∗ ≤ B2

t + ‖Vt+1/2 −Vt‖2
Xt+1/2,∗

−min{‖A(Xt+1/2)− A(Xt)‖2
Xt+1/2,∗, ‖Vt+1/2 −Vt‖2

Xt+1/2,∗} (7.195)

which in turn yields:

‖Vt+1/2 −Vt‖2
Xt+1/2,∗ ≤ B2

t + max{0, ‖Vt+1/2 −Vt‖2
Xt+1/2,∗ − ‖A(Xt+1/2)− A(Xt)‖2

Xt+1/2,∗}

≤ B2
t + B2

t + 2µ‖ξt‖2
∗

= 2B2
t + 2‖ξt‖2

∗

≤ B2
t + max{0, ‖Vt+1/2 −Vt‖2

Xt+1/2,∗ − ‖A(Xt+1/2)− A(Xt)‖2
Xt+1/2,∗}

≤ B2
t + B2

t + 2µ‖ξt‖2
∗

= 2B2
t + 2µ‖ξt‖2

∗
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with the last inequality being obtained by the fact that if

‖Vt+1/2 −Vt‖2
Xt+1/2,∗ ≥ ‖A(Xt+1/2)− A(Xt)‖2

Xt+1/2,∗ (7.196)

then it yields:

‖Vt+1/2−Vt‖2
Xt+1/2,∗−‖A(Xt+1/2)− A(Xt)‖2

Xt+1/2,∗ ≤ B2
t + 2µ‖ξt‖2

∗ (7.197)

Having all this at hand, we revisit (7.199). In particular, we have:

E

[
T

∑
t=1

γt‖Vt+1/2 −Vt‖2
Xt+1/2,∗

]
≤ C2 +E


√√√√1 +

T

∑
t=1
‖Vt+1/2 −Vt‖2

Xt+1/2,∗


(7.198)

with C2 denoting the constant derived in Lemma 7.14. Now by combining
the inequalities we have:

E

[
T

∑
t=1

γt‖Vt+1/2 −Vt‖2
Xt+1/2,∗

]
≤ C2 + E


√√√√1 + 2

T

∑
t=1

B2
t + 2

T

∑
t=1

α2
t ‖ξt‖2∗


≤ C2 + E


√√√√1 + 2

T

∑
t=1

B2
t +

√√√√2µ
T

∑
t=1
‖ξt‖2∗


≤ C2 + E

 T

∑
t=1

γ̃tB2
t + 2

√√√√2
T

∑
t=1

µ‖ξt‖2∗


So, (7.199) becomes:

E
[
GapC(XT)

]
≤ 1

T

(
D E

[
1

γT+1

]
+ sup

x∈C
E

[
T

∑
t=1
〈Ut+1/2, x− Xt+1/2〉

]

+ E

[
T

∑
t=1

( 1
2K

γ̃t −
K

2β2γ̃t

)
B2

t

]
+

1
K

E


√√√√2µ

T

∑
t=1
‖ξt‖2∗

+ C2
)

(7.199)

Now let us bound each term individually:

• For the term D E
[

1
γT+1

]
we have by Lemma 7.14:

D E

[
1

γT+1

]
≤ D

√
1 + C2T (7.200)

• For the term supx∈C E
[
∑T

t=1〈Ut+1/2, x− Xt+1/2〉
]

working in the same
spirit as in we have:

sup
x∈C

E

[
T

∑
t=1
〈Ut+1/2, x− Xt+1/2〉

]
≤ Dσ

√
T

2
(7.201)
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• For the term 1
K E

[√
2µ ∑T

t=1‖ξt‖2∗

]
we have by Jensen’s inequality:

1
K

E


√√√√2µ

T

∑
t=1
‖ξt‖2∗

 ≤ 1
K

√√√√2µ
T

∑
t=1

E [‖ξt‖2∗] (7.202)

Moreover we have that:

E[‖ξt‖2
∗] = E[‖Ut+1/2 −Ut‖2

∗]

≤ 2 E[‖ξt+1/2‖2
∗] + 2 E[‖ξt‖2

∗]

≤ 4σ2

which in turn implies:

1
K

E


√√√√2µ

T

∑
t=1
‖ξt‖2∗

 ≤ 2σ

K
√

2µT (7.203)

• For the term E
[
∑T

t=1
( 1

2K γ̃t − K
2β2γ̃t

)
B2

t

]
we have: First we set:

t0 = max{1 ≤ t ≤ T : γ̃t ≥
K
β
} (7.204)

This yields:

E

[
T

∑
t=1

( 1
2K

γ̃t −
K

2β2γ̃t

)
B2

t

]
= E

[
t0

∑
t=1

( 1
2K

γ̃t −
K

2β2γ̃t

)
B2

t

]
+ E

[
T

∑
t=t0+1

( 1
2K

γ̃t −
K

2β2γ̃t

)
B2

t

]

≤ E

[
t0

∑
t=1

( 1
2K

γ̃t −
K

2β2γ̃t

)
B2

t

]

with the last inequality being obtained by the definition of t0. Moreover,
we have:

E

[
T

∑
t=1

( 1
2K

γ̃t −
K

2β2γ̃t

)
B2

t

]
≤ 1

2K
E

[
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γ̃tB2
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1
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E

[
t0
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(γ̃t − γ̃t+1)B2
t
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+

1
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γ̃t+1B2
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≤ C2

2K
+

1
2K
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1
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1
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≤ C2

2K
+

C
2K

+
β

2K2

Hence summarizing the above bounds, we conclude that:

E
[
GapC((X)T)

]
= O

(A
T
+

Bσ√
T

)
(7.205)

and so the result follows.



8
P E R S P E C T I V E S

We conclude this thesis by providing some research perspectives for future work.
These directions concern the two key optimization scenarios treated in this

thesis. We shall illustrate these for each framework individually.

8.1 minimization settings

Our theoretical analysis confirms that Mirror Descent methods concurrently achieve
optimal rates of convergence in relatively continuous and relatively smooth prob-
lems, both stochastic or deterministic, constrained or unconstrained, and without
requiring any prior knowledge of the problem’s smoothness/continuity parame-
ters. These appealing properties open the door to the following future research
directions:

• NoLips Acceleration:

One important question that remains is whether the O(1/T) rate can be
improved to O(1/T2) for relative smooth problems. Assuming boundedness,
we know that this is possible in the Euclidean case: AcceleGrad and UnixGrad
already achieve an accelerated rate [60, 67]. On the other hand, for problems
that are h-smooth in the sense of [19], the very recent paper of [38] showed
that the O(1/T) rate is, in general, unimprovable.

One idea is to substitute relative smoothness by (MS) conditions. In particular,
as we discussed above, one may show that metrically smooth problems are
also h-smooth for a suitable choice of h, suggesting that the O(1/T) rate may
also be optimal in this problem class. We conjecture that this indeed the case;
at the same time, there is no evidence to suggest that an accelerated rate
cannot be obtained for real-world singular problems like D-optimal design or
PIP.

• Adaptation between smooth and relative smooth objectives:

Another linked question is whether we could design a method which is
able to adapt its performance optimally between the classes of smooth and
relative smooth functions. More precisely, is it possible to have a method
which exhibits a generic rate of O(1/T) for relative smooth objectives and
automatically adjusts its performance to O(1/T2) if the respective function is
smooth in the ordinary sense. An intuitive approach is to examine whether a
Bregman based variant of AcceleGrad can satisfy this type of adaptivity.

We defer both these questions to future work.

127



128 perspectives

8.2 variational inequality setting

Our main goal in Chapter 7 was to design a universal, regime-agnostic first-order
method for variational inequality problems with possibly unbounded domains
and/or divergent operators for both deterministic and stochastic settings. By
leveraging a suitable Finsler regularity framework and a compatible Bregman
toolkit, adaptive Mirror-Prox/ Dual Extrapolation algorithms achieve the above
desiderata, and their rates interpolates sharply between O(1/

√
T) and O(1/T)

for metrically bounded/ stochastic and smooth problems respectively. This leaves
open several questions such as:

• (VI) to (Opt) adaptation:

As we already described throughout there is a convergence rate discrepancy
between min-min and min-max problems: if the underlying operator is
smooth, it is possible to achieve a O(1/T2) value convergence rate for (Opt);
by contrast for (VI) the best attainable rate is O(1/T). However, in order
to apply the appropriate algorithm the optimizer should know in advance
whether the associated operator is a smooth gradient field or not. Therefore,
a natural open question which arises in this context is whether it is possible
to design an accelerated regime-agnostic method that achieves a O(1/T) rate
for general variational inequalities – i.e., those for which A is not a gradient
field – and a O(1/T2) when the underlying operator is a gradient. The
key difficulty in order to establish such a method is to be able to provide
simultaneously:

1. an acceleration mechanism which is activated whenever the operator is
a gradient field.

2. An extra-gradient type template to ensure optimal rates for (VI)

An obvious candidate seems to be UniXGrad; however it remains unclear
whether it exhibits such a behavior.

• Last iterate convergence rates for adaptive methods convergence rate for (VI):

As we already mentioned the best attainable rate for (VI) relative to the
restricted merit function is O(1/T); as we discussed this rate is achieved
by the ergodic and/or time average of extra-gradient methods. This rises
the question of what is the asymptotic behaviour of the last iterate of (MP)
method, i.e., before any type of average occurs. In a recent paper, Golowich
et al. [45] showed that the last iterate of (MP) is actually slower, if run with
a constant step-size ≤ 1/β, showing that it exhibits a rate of the order
O(1/

√
T). Furthermore, Yoon and Ryu [117] showed that O(1/T) can be

recovered for the last iterate of a (MP) variants which incorporates a so-called
anchoring mechanism. That said, their still requires a prior knowledge of the
Lipschitz constant. Thus, the question of what is performance of (MP) run
with an adaptive step-size remains open. More precisely, can an adaptive step-
size ensure that the last iterate of (MP) exhibits optimal speed of convergence?
We defer this question for future work.
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A
L E M M A S O N N U M E R I C A L I N E Q U A L I T I E S

In this appendix, we provide some necessary inequalities on numerical sequences
that we require for the convergence rate analysis of the previous sections. Most
of the lemmas presented below already exist in the literature, and go as far back
as Auer et al. [10] and McMahan and Streeter [76]; when appropriate, we note
next to each lemma the references with the statement closest to the precise version
we are using in our analysis. These lemmas can also be proved by the general
methodology outlined in Gaillard et al. [42, Lem. 14], so we only provide a proof for
two ancillary results that would otherwise require some more menial bookkeeping.

Lemma A.1 (76, 67). For all non-negative numbers α1, . . . αt, the following inequality
holds: √√√√ T

∑
t=1

αt ≤
T

∑
t=1

αt√
∑t

i=1 αi

≤ 2

√√√√ T

∑
t=1

αt (A.1)

Lemma A.2 (67). For all non-negative numbers α1, . . . αt, the following inequality holds:

T

∑
t=1

αt

1 + ∑t
i=1 αi

≤ 1 + log(1 +
T

∑
t=1

αt) (A.2)

Lemma A.3. Let b1, . . . , bt a sequence of non-negative numbers with b1 > 0. Then, the
following inequality holds:

T

∑
t=1

bt

∑t
i=1 bi

≤ 2 + log

(
∑T

t=1 bt

b1

)
(A.3)

Proof. It is directly obtained by applying Lemma A.2 for the sequence αt = bt/b1.

The following set of inequalities are due to [14]. For completeness, we provide a
sketch of their proof.

Lemma A.4 (14). For all non-negative numbers: α1, . . . αt ∈ [0, α], α0 ≥ 0, the following
inequality holds:√√√√α0 +

T−1

∑
t=1

αi −
√

α0 ≤
T

∑
t=1

αt√
α0 + ∑t−1

i=1 αj

≤ 2α√
α0

+ 3
√

α + 3

√√√√α0 +
T−1

∑
t=1

αt (A.4)

139



140 bibliography

Lemma A.5. For all non-negative numbers: α1, . . . αt ∈ [0, α], α0 ≥ 0, we have:

T

∑
t=1

αt

α0 + ∑t−1
i=1 αi

≤ 2 +
4α

α0
+ 2 log

(
1 +

T−1

∑
t=1

αt

α0

)
(A.5)

Proof. Let us denote

T0 = min
{

t ∈ [T] : ∑t−1
j=1 αj ≥ α

}
(A.6)

Then, dividing the sum by T0, we get:

T

∑
t=1

αt

α0 + ∑t−1
i=1 αi

≤
T0−1

∑
t=1

αt

α0 + ∑t−1
i=1 αi
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T

∑
t=T0

αt
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i=1 αi

≤ 1
α0

T0−1

∑
t=1

αt +
T

∑
t=T0

αt

1/2α0 + 1/2α + 1/2 ∑t−1
j=1 αj

≤ α

α0
+ 2

T

∑
t=T0

αi/α0

1 + ∑t
j=T0

αj/α0

≤ 2α

α0
+ 2 + 2 log

(
1 +

T

∑
t=T0

αi/α0

)

≤ 2α

α0
+ 2 + 2 log

(
1 +

T

∑
t=1

αi/α0

)
(A.7)

where we used the fact that ∑T0−2
j=1 αj ≤ α as well as for all t ≥ T0, ∑t−1

j=1 αj ≥ α (both
follow from the definition of T0) and Lemma A.2.
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