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So there you sit. And how much blood was shed
That you might sit there. Do such stories bore you ?

Well, don’t forget that others sat before you
who later sat on people. Keep your head!

Your science will be valueless, you'll find
And learning will be sterile, if inviting
Unless you pledge your intellect to fighting
Against all enemies of all mankind.

Never forget that men like you got hurt
That you might sit here, not the other lot.

And now don’t shut your eyes, and don’t desert
But learn to learn, and try to learn for what.

— Bertolt Brecht, To The Students Of The Workers” And Peasants’ Faculty






ABSTRACT

EVERAL important problems in learning theory and data science involve high-

dimensional optimization objectives that transcend the Lipschitz regularity con-
ditions that are standard in the field. This absence of Lipschitz regularity — smooth-
ness or continuity — poses significant challenges to the convergence analysis of
most optimization algorithms and, in many cases, it requires the introduction of
novel analytical and algorithmic tools. In this thesis, we aim to partially fill this
gap via the design and analysis of universal first-order methods in two general
optimization frameworks: (1) online convex optimization (which contains as special
cases deterministic and stochastic convex optimization problems); and (b) abstract
variational inequalities (which contain as special cases min-max problems and
games) both without global Lipschitz continuity /smoothness conditions.

In this “NoLips” setting, we take a geometric approach — Riemannian, Finslerian,
or Bregman-based — that allows us to handle vector fields and functions whose
norm or variation becomes infinite at the boundary of the problem’s domain.
Using these non-Euclidean surrogates for Lipschitz continuity and smoothness,
we propose a range of adaptive first-order methods that concurrently achieve
order-optimal convergence rates in different problem classes, without any prior
knowledge of the class or the problem’s (relative) smoothness parameters. These
methods are based on a suitable mirror descent or mirror-prox template (for convex
minimization and monotone variational inequalities respectively), and they revolve
around adaptive step-size policies that exploit the geometry of the gradient data
observed at earlier iterations to perform more informative (extra-)gradient steps
in later ones. Our results do not always coincide with what one would expect in
standard Lipschitz problems, and serve to further highlight the differences between
the “Lispschitz” and “NoLips” frameworks.
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RESUME

LUSIEURS problemes importants issus de 1’apprentissage statistique et de la sci-
P ence des données concernen des objectifs d’optimisation a trés haute dimension
qui vont au dela des hypotheses de régularité de Lipschitziennes. L’absence de
régularité de Lipschitz — continuité ou lissitude — pose des défis importants a
’analyse de convergence des algorithmes existants d’optimisation et nécessite sou-
vent de nouveaux outils analytiques et algorithmiques pour étre traitée de maniére
efficace. Dans cette these, nous visons a combler partiellement cette lacune en
proposant de nouvelles méthodes universelles du premier ordre dans deux cadres
généraux : (a) I'optimisation convexe en ligne (qui contient comme cas particuliers
les problemes d’optimisation convexe déterministes et stochastiques) ; et (b) les
inégalités variationnelles (qui contiennent comme cas particulier les problemes de
point-selle et les jeux).

Nous étudions ces deux problemes génériques dans un "NoLips" et nous adop-
tons une approche géométrique - Riemannienne ou Bregmanienne - qui nous
permet de traiter des champs vectoriels et/ou des fonctions dont la norme ou
la variation explose vers le bord du domaine du probléme. En utilisant ces sub-
stituts non-euclidiens, nous proposons des nouvelles méthodes adaptatives du
premier ordre qui atteignent simultanément des taux de convergence optimaux
dans différentes classes de problemes, sans aucune connaissance préalable des
parametres de régularité du probleme. Nos méthodes sont basées sur un template
"mirror descent” ou "mirror-prox” (pour les probléemes de minimisation convexe
et les inégalités variationnelles monotones respectivement), et elles se basent sur
des politiques adaptatives de pas qui exploitent I'historique des gradients observés
afin d’effectuer des pas de gradient mieux adaptés a la régularité du probleme.
Nos résultats ne coincident pas toujours avec ce que 'on attendrait dans le cadre
Lipschitz, et ainsi apportent une intuition tres utile pour comprendre les différences
fondamentales entre les problemes "Lispschitz" et "NoLips".
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INTRODUCTION

THE rise of machine learning protocols has reaffirmed the interest in the theory
of optimization problems. To that end, two important settings stand out, that of
online convex optimization and (monotone) variational inequality problems.

The first framework refers to a scenario where the optimizer faces a (possibly
adversarial) sequence of time-varying loss functions f;, t = 1,2,..., one at a time
— for instance, when drawing different sample points from a large training set
[31, 105]. Specifically, if the optimizer faces a sequence of G-Lipschitz convex
losses, the incurred min-max regret, a standard performance criterion that will
be discussed in detail later, is Q(GT'/?) after T rounds and this bound can be
achieved by inexpensive first-order methods — such as online mirror descent and
its variants [31, 105, 106, 122].

This setting properly includes (static) convex minimization problems, but the
situation in this case changes dramatically. The analysis of static minimization
problems typically revolves around two main regularity conditions for the problem
at hand: (a) Lipschitz continuity of the problem’s objective function and/or (b) Lipschitz
continuity of its gradient (also referred to as Lipschitz smoothness). Depending on which
of these conditions holds, the lower bounds for first-order methods with perfect
gradient input are ©(1/+/T) and ©(1/T?) after T gradient queries, and they are
achieved by gradient descent and Nesterov’s fast gradient algorithm respectively
[88, 89]. By contrast, if the optimizer only has access to stochastic gradients (as
is often the case in machine learning and distributed control), the corresponding
lower bound is ®@(1/+/T) for both problem classes [30, 86, 89].

On the other hand, the surge of recent breakthroughs in generative adversarial
networks (GANSs) [46], robust reinforcement learning [97], and other adversarial
learning models [73] has sparked renewed interest in the theory of min-max
optimization problems and games. In this broad setting, it has become empirically
clear that, ceteris paribus, the simultaneous training of two (or more) antagonistic
models faces drastically new challenges relative to the training of a single one.
Perhaps the most prominent of these challenges is the appearance of cycles and
recurrent (or even chaotic) behavior in min-max games. This has been studied
extensively in the context of learning in bilinear games, in both continuous [41,
80, 96] and discrete time [37, 43, 44, 81], and the methods proposed to overcome
recurrence typically focus on mitigating the rotational component of min-max
games.

The method with the richest history in this context is the extra-gradient (EG)
algorithm of Korpelevich (1976) and its variants. The EG algorithm exploits the



INTRODUCTION

Lipschitz smoothness of the problem and, if coupled with a Polyak-Ruppert
averaging scheme, it achieves an O(1/T) rate of convergence in smooth, convex-
concave min-max problems [85]. This rate is known to be tight [84, 95] but, in order
to achieve it, the original method requires the problem’s Lipschitz constant to be
known in advance. If the problem is not Lipschitz smooth (or the algorithm is run
with a vanishing step-size schedule), the method’s rate of convergence drops to

O(1/VT).

From the above, one may directly observe that from a practical perspective the
challenging part in order to apply the respective optimal solution method to the
problem at hand is to able to identify which regularity condition and/or oracle
feedback she has at hand. Therefore, a question that naturally arises in this context
is the following;:

Is it possible to design methods that simultaneously achieve optimal convergence rates
without any prior knowledge of the problem’s regqularity features ?

The positive answer to the above question gives rise to the so-called adaptive methods.
In its general context, adaptivity of a method may refer to (at least) two different
things:

1. Automatic adjustment to the function’s regularity parameters within a fixed
problem class (Lipschitz continuous, Lipschitz smooth, etc.).

2. Interpolation of convergence rates between different problem classes (e.g.,
O(1/+/T) for non-smooth vs. O(1/T) or O(1/T?) for smooth, etc.).

In what follows we treat both questions in tandem.

1.1 RELATED WORK

MINIMIZATION PROBLEMS. There is an extensive corpus of literature concerning
the convex minimization framework. To name out the methods of [54] and [65]
successfully interpolate between the stochastic and smooth deterministic regimes
achieving a O(1/+/T) convergence rate for the former and an O(1/T?) rate for
the latter; however, their interpolation guarantees require prior knowledge of the
function’s smoothness parameter. More recently, [92] proposed a method that
adjusts automatically to the Lipschitz (or Holder) modulus of the function based
on line-search queries of the objective’; in the Lipschitz smooth case, the method
of Nesterov [92] attains an accelerated rate of convergence of the. order O(1/T?).
However, in order to establish an implementable stopping criterion, said method
requires as an input parameter an estimate of the distance between the algorithm’s
initial state to the problem’s solution set (i.e., this upper bound should be known
to the optimizer a priori).

Such an estimate is difficult to come by in problems with unbounded domains,
so the performance of the method is unclear in this case.

By contrast, the AcceleGrad method of [67] and the more recent UnixGrad
algorithm of [60] successfully interpolate between the O(1/+/T) and O(1/T?)

1 Non smooth and smooth objectives are included as extreme cases for the Holderian exponent g4 = 0, 1.
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rates for the Lipschitz continuous and/or stochastic settings and smooth regimes
respectively without requiring a line search — but the boundedness caveat is still
present. Finally, beyond the minimization framework, [14] proposed a universal
mirror-prox method for solving (stochastic) variational inequalities, with or without
smoothness requirements. When applied to function minimization, the algorithm
of [14] interpolates between the O(1/+/T) and an unaccelerated O(1/T) rate.
What makes this particularly interesting for our purposes is that this scheme does
not require vanishing gradients near a minimizer.

VARIATIONAL INEQUALITIES. There have been several works focusing on the
convergence guarantees of the original EG / mirror-prox (MP) template. We review
the most relevant of these works below. In unconstrained problems with an
operator that is locally Lipschitz continuous (but not necessarily globally so), the
golden ratio algorithm (GraatL) of [75] achieves convergence without requiring
prior knowledge of the problem’s Lipschitz parameter. However, GRAAL provides
no rate guarantees for non-smooth problems — and hence, a fortiori, no interpolation
guarantees either. By contrast, such guarantees are provided in problems with a
bounded domain by the generalized mirror-prox (GMP) algorithm of [109] under
the umbrella of Holder continuity.

Another method that simultaneously achieves an O(1/+/T) rate in non-smooth
problems and an O(1/T) rate in smooth ones is the recent algorithm of Bach and
Levy (2019). The BL algorithm employs an adaptive, AdaGrad-like step-size policy
which allows the method to interpolate between the two regimes — and this, even
with noisy gradient feedback. On the negative side, the BL algorithm requires a
bounded domain with a (Bregman) diameter that is known in advance; as a result,
its theoretical guarantees do not apply to unbounded problems.

BEYOND LIPSCHITZ REGULARITY. Despite the fact that the (Euclidean-based)
Lipschitz regularity conditions appear quite generic there exists a whole set of real
life situations where both of these conditions fail, either because the loss profile
of the problem grows too rapidly (e.g., as in support vector machines or GAN
models with Kullback-Leibler losses), or because the problem exhibits singularities
near the boundary of the feasible region (e.g., as in resource allocation and inverse
problems). A prominent example that will serve as motivation for the NoLips
setting is that of Poisson Inverse Problems. We examine this in detail below.

Example 1.1 (Poisson Inverse Problems). Poisson inverse problem (PIP) arise in
various practical problems stemming from image sciences and machine learning
problems. Informally, this consists of two components: a matrix A € R™*" which
models the experimental protocol and a vector b € R’/ represents the measurements
made by the optimizer. With all this in hand, the objective would be to recover the
signal or image x € R", from the noisy measurements b such that:

Ax ~b (1.1)
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A natural measure that evaluates the proximity of these two vectors is that of the
Kullback-Leibler (KL) divergence. Namely, we are facing the following convex
minimization problem:

m

minimize d(b, Ax) =) _ |b; log + (Ax); — b;
i=1 )z (1.2)

subject to x € R’}

As one may recognize the above minimization objective is neither Lipschitz contiu-
ous nor smooth due to the singular behaviour of the logarithm near the origin.

The above schemes all rely intrinsically on Lipschitz/Holder continuity and/or
smoothness. Achieving convergence beyond the Lipschitz framework has been the
focal point of a recent strand in the literature, starting with the work of [19] and the
concurrent paper of [72]. More recent works have provided different extensions to
non-convex [25] and stochastic optimization [48], including a tentative path towards
acceleration [49]; however, these methods are neither universal nor adaptive.

In more detail Bauschke et al. [19] introduced a “Lipschitz-like” smoothness
condition for convex minimization problems and used it to establish a O(1/T)
value convergence rate for mirror descent methods (as opposed to mirror-prox).
Always in the context of loss minimization problems, Bolte et al. [25] subsequently
extended the results of Bauschke et al. [19] to non-convex problems that satisfy
the Kurdyka-Lojasiewicz (KL) inequality, while Lu et al. [72] considered functions
that are also relatively strongly convex and showed that mirror descent achieves a
geometric convergence rate in this context.

The condition of Bauschke et al. [19] is remarkably simple as it only posits that
the problem’s loss function f is such that :

Bh — f is convex (RS)

for some reference Bregman function / and some B > 0. A straightforward exten-
sion of this condition to an operator setting would be to require the monotonicity
of BVh — A, where A is the operator defining the variational inequality under
study. However, the cornerstone of this “Lipschitz-like” condition is a descent
lemma which does not carry over to variational inequalities, so it does not seem
possible to extend the analysis of Bauschke et al. [19] to an operator setting at least
not directly.

Insofar as Lipschitz continuity of the objective is concerned, Lu [71] also consid-
ered a “relative continuity” condition for loss minimization problems positing that

IVf(x)] < Ginf/2D(x’, x)/ [l = | (1.3)

(where f is the problem’s objective and D is the Bregman divergence of /). Written
this way, the condition of Lu [71] can also be extended to an operator setting, but
this would provide a surrogate for operator boundedness, not Lipschitz continuity
(since A = Vf in minimization problems). Extending the above definition Zhou
et al. [119] proposed a similar notion, i.e.,

(Vf(x),x—x") < Gy/2D(x/,x) (RC)
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and applied it for the context of online convex optimization problems. Finally, in
Teboulle [111] the notion of W[h]-continuity is proposed by singling out particular
properties of Bregman divergences; formally, given an appropriate regularizer /1 an
operator A is called to be W[h]- continuous:
12
t(A(x),x —x') — D(x',x) < EG2 for all ¥’ € dom#h, x € domdh. (W)

In the sequel, we shall introduce an alternative way that will allow us to extend
the Lipschitz continuity conditions in a unified manner for both minimization and
(VI) problems.

1.2 MAIN OBJECTIVE AND CONTRIBUTIONS OF THIS THESIS
In view of the above, the objective of this thesis is twofold:

1. Introduce novel regularity conditions, which are able to include variational in-
equality problems whose associated operator exhibits a "singular" behaviour.

2. Bridge the gap between the development of general Lipschitz continuity
conditions on the one hand and the lack of respective adaptive methods on
the other.

Tackling each objective separately, we begin by introducing two novel classes of
operators. In particular inspired by the idea that Lipschitz continuity is first and
foremost a metric space property we use the notion of local norms extensively as a
primal geometrical tool in order to capture finer geometrical aspects of the problem.
More precisely, in contrast to the traditional setting, local norms dependent on
the point where it is evaluated, i.e., we have a continuous assignment ||-|| for all
x € X. This in turn defines the associated dual norm in the standard way, i.e., for
allw € V*,

]l = max{ (w, ') : ]} = 1} (1.4

Armed with this geometry-aware local norm machinery we revisit the Euclidean
based regularity conditions. In particular, we define two new operator classes
that of metrical boundedness and metrical smoothness (see [6, 8]). Formally, an
operator A is called metrically bounded when:

[AG)[|x < G (MB)
and metrically smooth whenever the following inequality holds:
IAGx) = A < Bllx — x|l (MS)

In this context, the adaptivity results evolve throughout this thesis gradually. More
precisely, our contributions can be summarized as follows:

* We begin gently by investigating online convex optimization (OCO) problems
by recovering optimal regret minimization upper bounds under (MB).

* We proceed by taking a closer look at static/ stochastic convex minimization
problems. More precisely we establish optimal interpolation guarantees
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for both stochastic and/or deterministic oracle feedback under the blanket
assumptions of (RS) and (RC).

¢ In the last part of this thesis, we focus on the generic framework of variational
inequalities. To that end, for this setting we provide convergence rates starting
from non-adaptive to adaptive to the "Lipschitz"-like modulus and finally
regime-agnostic order optimal interpolation guarantees for both deterministic
and stochastic (VI)’s under (MB) and/or (MS).

In what follows we present the content of each chapter in a more detailed manner.

1.3 DIAGRAMMATIC OUTLINE

This thesis consists of two parts. In Part 1 the general theoretical setup is pre-
sented, while Part 11 examines the particular algorithmic guarantees achieved in
each setting. We now provide a quick overview of the content of each chapter
individually.

¢ Chapter 2 contains the main ingredients of this thesis; the particular problem
set-ups along with the state of the art first order methods and the respective
convergence rate guarantees. An important part of this chapter is devoted
to the pivotal role that Lipschitz continuity plays in all these optimization
scenarios.

e Chapter 3 introduces and examines in detail the NoLips conditions discussed
above. In doing, we distinguish our presentation for the different optmization
frameworks.

* Chapter 4 provides concrete definitions of the main algorithmic schemes
which will be of interest throughout the sequel. More precisely, we start
with the basic mathematical toolkit of Bregman divergences which serves as
the key ingredient for generalizing the standard Euclidean based projection
operators. Based on this machinery, we describe a set of Bregman driven
iterative methods for both optimization scenarios.

¢ Chapter 5 Motivated by applications to machine learning and imaging sci-
ence, we study a class of online and stochastic optimization problems with
loss functions that are not Lipschitz continuous; in particular, the loss func-
tions encountered by the optimizer could exhibit gradient singularities or be
singular themselves. Drawing on tools and techniques from Finsler geometry,
we examine the (MB) continuity condition which is tailored to the singularity
landscape of the problem’s loss functions. In this way, we are able to tackle
cases beyond the Lipschitz framework provided by a global norm, and we
derive optimal regret bounds and last iterate convergence results through the
use of regularized learning methods (such as online mirror descent).

¢ Chapter 6 We propose a new family of adaptive first-order methods for a class
of convex minimization problems that may fail to be Lipschitz continuous
or smooth in the standard sense. Specifically, we consider problems that are
continuous or smooth relative to a reference Bregman function — as opposed
to a global, ambient norm (Euclidean or otherwise). In this setting, the
application of existing order-optimal adaptive methods — like UNIXGRAD
or ACCELEGRAD- is not possible, especially in the presence of randomness



1.4 NOTATIONAL CONVENTIONS

and uncertainty. The proposed method, adaptive mirror descent (ADAMIR),
aims to close this gap by concurrently achieving min-max optimal rates in
problems that are relatively continuous or smooth, including stochastic ones.

¢ Chapter 7 We present a new family of min-max optimization algorithms that
automatically exploit the geometry of the gradient data observed at earlier
iterations to perform more informative extra-gradient steps in later ones.

Thanks to this adaptation mechanism, our proposed method, adaptive mirror-
prox (ApaProx) automatically detects whether the problem is smooth or not,
without requiring any prior tuning by the optimizer. As a result, ADAPrROX
simultaneously achieves order-optimal convergence rates, i.e., it converges
with a rate of O(1/T) iterations in smooth problems, and O(1/+/T) in non-
smooth ones. Importantly, these guarantees do not require any of the standard
boundedness or Lipschitz continuity conditions that are typically assumed in
the literature; in particular, they apply even to problems with singularities
(such as resource allocation problems and the like). This adaptation is
achieved through the use of a geometric apparatus based on Finsler metrics
and a suitably chosen mirror-prox template that allows us to derive sharp
convergence rates for the methods at hand.

Moving forward, we finally illustrate the full potential of our results. Namely,
by employing the dual extrapolation (DualX) template run with a similar
adaptive learning as is ADAPROX, we are able to show optimal convergence
rates for both deterministic and stochastic oracles and smooth and non-
smooth settings.

1.4 NOTATIONAL CONVENTIONS

Throughout the sequel, V = R" will denote an n-dimensional space with norm ||-|
and V* will denote its (algebraic) dual. We will also write (w, x) for the canonical
pairing between w € V* and x € V, and ||w||« = max{(w,x) : ||x| < 1} for the
associated dual norm on V*. We also use the notation O(-) to dismiss logarithmic
factors.

Variational
Inequalities
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PRELIMINARIES

HE main objective of this introductory chapter is to present the basic concepts of
Ttwo general optimization scenarios: a) the time-varying setting of online convex
optimization (OCO); and b) the operator-based setting of variational inequalities (V1s).
In both frameworks, we seek to briefly review the main definitions, applications,
and state-of-the-art solution methods.

To begin with, the online convex optimization setting — presented in detail in
Section 2.1 — concerns decision-making processes that unfold in an otherwise
unknown and time-varying environment. More precisely, the optimizer is assumed
to be facing a sequence of convex losses f; which evolves from round to round,
possibly in an adversarial manner. This framework properly includes as special
cases the class of convex minimization problems, deterministic and/or stochastic;
these problems will be of individual interest throughout as well.

Moving forward, Section 2.2 provides a detailed description of an optimization
framework that goes beyond ordinary minimization problems — the general setting
of variational inequalities. This setup serves as a unifying framework for various
“convex-structured” optimization problems so, in addition to standard minimization
problems, it allows us to put under the same umbrella cases such as saddle-point,
fixed-point and Nash equilibrium problems.

Having described these two settings of interest, in Section 2.3 we discuss two
generic regularity conditions — boundedness and Lipschitz continuity of the defin-
ing operators of each problem class. Subsequently, in Section 2.4 we present the
general framework of first-order methods which will be our main candidate so-
lution methods. Moreover, we illustrate how the performance of these methods
is influenced under each specific regularity condition, by providing “worst-case”
optimal lower bounds. Finally, in Section 2.5 and Section 2.6 we present the state-
of-the-art first-order methods that match the optimal lower bounds along with
their adaptive counterparts.

2.1 ONLINE CONVEX OPTIMIZATION
2.1.1  Problem setup and examples
We begin by presenting the core protocol of online convex optimization (OCO), i.e.,

when the optimizer faces a sequence of time-varying loss functions f;, t =1,2,...,
one at a time. Formally, this can be described by the following sequence of events:

11
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1. Ateachround t =1,2,..., the optimizer chooses an action X; from a convex
— but not necessarily closed or compact — subset X of an ambient normed
space V = R".

2. The optimizer incurs a loss f;(X;) based on some (a priori unknown) loss
function fi: X — (—o0,400] which is assumed to be proper, lower semi-
continuous (L.s.c.) and convex.

3. The optimizer updates their action and the process repeats.

This broad setting captures a wide range of convex problems, for instance, when
drawing different sample points from a large training set [31, 105]. To that end, we
distinguish below two iconic examples of OCO problems which are going to be of
individual interest in the sequel.

Example 2.1 (Static convex minimization). Consider a convex minimization prob-
lem of the general form:
minimize f(x) ©Opt)
subjectto x € X P
where f: X — R is a convex function. The notion of “stationarity” refers here to
the fact that (Opt) is obtained by the online protocol by assuming that the optimizer
faces at each round the same convex loss function, i.e., f; = f.

Example 2.2 (Stochastic convex minimization). A variant of (Opt) with important
applications to machine learning, distributed control and data science is the so-
called stochastic optimization problem:

minimize f(x) = E [F(x;w)]

StochOpt
subjectto x € X. (StochOpt)

where F: X x () — R is a stochastic objective defined over a (complete) probability
space (), F,IP) and F(+;w) is assumed convex for all w € Q. Clearly, (StochOpt)
can be seen as a special case of an OCO protocol where the optimizer faces at each
round the convex loss function f; = F(+;wy) with w; drawn i.i.d. from Q) at each
round.

2.1.2  Performance evaluation and merit functions

The most widely used figure of merit in OCO problems is the optimizer’s regret.
Intuitively, this notion compares the average loss incurred by the agent to the
minimum loss they could have incurred in hindsight by playing a fixed x € X
Formally, the regret of a policy X; € X, t=1,2,..., against a “benchmark action”

x € X is defined as .

Reg (T) = Y [fi(Xs) — fi(x)] (2.1)

t=1
and we define the optimizer’s static (or external) regret (without any benchmark
quantifiers) as

T
Reg(T) = supReg, (T) = sup } [fi(X) — fi(x)]. (22)

xeX xXeX t=1
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With all this in hand, a natural property that the optimizer would like to attain is
for their regret to remain “small” over time; this amounts to the requirement:

Reg (T) =o(T) forallx € X. (2.3)

This, in turn, yields that on average the cumulative loss compared to the best
action in hindsight becomes asymptotically non-positive.

For concreteness, we discuss below the implications of attaining no regret in the
special cases of static and stochastic minimization problems discussed above. To

begin with, if the optimizer is facing (Opt) while deploying an iterative method
generating the sequence of actions X;, t = 1,2, ..., the regret given by (2.2) becomes

T
Reg(T) = Reg,.(T) = Zlf (Xe) = Tf(x") (2.4)
t=

with x* € argmin, _, f (assumed here to be nonempty). Now, since f is assumed
to be convex, Jensen’s inequality shows that the performance (in terms of function
values) of the time-averaged sequence

- 1&
X7 = T Z Xy (2.5)
=1
is bounded by the optimizer’s regret as

f(Xr) = f(x*) < Re‘cf;(T) (2.6)

In a similar fashion, if the optimizer is facing (StochOpt), we get

E [f(%r) — f(x)] < R0 @)

As a result, in view of (2.6) and (2.7), no-regret policies clearly guarantee an
“optimality gap” f(-) — minyc y f(x) that vanishes asymptotically for the associated
time-average sequence X;.

2.2 VARIATIONAL INEQUALITIES
2.2.1  Problem setup and examples

Despite the generality of OCO protocols, there are relevant instances that arise in
practice and which necessitate a framework for “optimization beyond minimiza-
tion”. A large class of such problems can be captured by the variational inequality
(VI) framework:

Find x* € X such that (A(x*),x —x*) > 0forallx € X (VI)

where A: X — V* is a single-valued operator, which we call the problem’s defining
vector field. Moreover, for the time being we shall assume that the feasible region X’
is a convex and closed subset of IR". Following [40], we will refer to this problem as
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Figure 2.1: Schematic representation of a variational inequality problem: the defining vector
field A at a solution x* of (VI) belongs to the polar cone PC(x*) to X at x*.

VI(X, A) and we will write X* = Sol(X, A) for its set of solutions." Moreover, to
avoid trivialities, we will also assume that the solution set X* of (VI) is nonempty
and we will reserve the notation x* for solutions thereof.

In terms of blanket requirements, we will assume throughout that A is continu-
ous and monotone, i.e.,

(A(x) — A(x'),x —=x') >0 forallx,x' € X. (Mon)

This condition translates the notion of convexity to the language of operators:
indeed, if A = Vf for some smooth function f, then A satisfies (Mon). For a
panoramic overview of monotone operators we refer the reader to Bauschke and
Combettes [18]

For illustration purposes, we present some archetypal examples of such problems
below:

Example 2.3 (Function minimization). If A = V f for some smooth convex function
f on X =", solutions of (VI) coincide with the global minimizers of f, i.e., the
solutions of (Opt).

Example 2.4 (Min-max optimization). Suppose that A = (Vy, f, =V, f) for some
real-valued function f(x1,xp) with x; € A}, xp € A, and &, X, convex. If f is
convex-concave (i.e., convex in xq and concave in x;), any solution x* = (x},x3) of
(VI) is a global saddle-point of f, i.e.,

f(x1,0) < flx,3) and f(xg,%3) > f(xq,%2) (28)

for all x; € &, xp € X,. Problems of this type have attracted considerable interest
in the fields of machine learning and artificial intelligence because they constitute
the basic optimization framework for GANs [46]. For a series of recent papers
focusing on this interplay, see [37, 43, 69, 81, 116] and references therein.

Example 2.5 (Convex Games). A continuous game in normal form is defined as
follows: Consider a finite set of players N = {1,...,N}, each with their own

1 In the literature, this formulation of the problem is sometimes referred to as a Stampacchia [40] or

“strong” variational inequality [56, 9o]. This is to distinguish with the Minty or “weak” variational
inequality; these two formulations are equivalent when A is monotone, so we will not distinguish
between them in the sequel.
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action space &; C R" (convex but possibly not closed). During play, each player
selects an action x; from &; with the aim of minimizing a loss determined by the
ensemble x = (x;x_;) = (x1,...,xy) of all players” actions. In more detail, writing
X =TI; &; for the game’s total action space, we assume that the loss incurred by
the i-th player is ¢;(x;; x_;), where ¢;: X — R is the player’s loss function.

In this context, a Nash equilibrium is any action profile x* € X that is unilaterally
stable, i.e.,

Oi(xf;xr ;) < li(xj;x*;) forallx; € Xyand alli e N. (NE)

In most cases of interest, the players’ loss functions are individually subdifferentiable
on a subset X’ of X withri X C X’ C X [51, 102]. This means that there exists a
(possibly discontinuous) vector field A;: X — IR" such that

G(xix_i) > Li(xix_i) + (Ai(x), x| — x;) (2.9)

forallx € X/, x' € X and all i € N [51]. In the simplest case, if ¢; is differentiable
at x, then A;(x) can be interpreted as the gradient of ¢; with respect to x;. In turn,
this means that Nash equilibria of the game are solutions of VI(&X, A).

2.2.2  Merit functions

Due to the lack of a single objective function the quality of a candidate solution of
(VI) becomes much trickier to assess compared to the minimization case. To that
end, we start with the unconstrained case, i.e., when X = R". Then (VI) is reduced
to the zero-finding problem: Stationarity Problem

Find x* € R" such that A(x*) =0 (Zer)

Therefore, a natural performance criterion of a given policy X; for this case would
be to examine how fast || A(X;)||« converges to 0. >

However, if X' is a strict subset of IR", i.e., when we are facing a genuine
constrained problem, then the operator may not necessarily vanish at a solution
of (VI). Therefore, we shall need a more general measure in order to be able to
capture cases where the solution lies on the border of the domain X

A popular performance criterion in this context is that of the restricted merit
function, first introduced in [11, 12]: Gap Function

A

Gap, (%) = sup, o (A(x), £ — x), (2.10)

where the “test domain” C is a nonempty convex subset of X [40, 56, 90]. The
following proposition generalizes earlier characterizations by [11, 9o] and justifies
the use of Gap,(x) as a merit function for (VI); since every solution of (VI) is a
zero of (2.10) and vice versa.

Proposition 2.1 (6). Let C be a nonempty convex subset of X. Then: a) Gap,(%) > 0
whenever £ € C; and b) if Gap,(£) = 0 and C contains a neighborhood of £, then % is a
solution of (VI).

2 Recent developments on convergence results and rates can be found in [45, 117] and references therein.
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Proof. Let x* € X be a solution of (VI) so (A(x*),x —x*) > 0 for all x € X'. Then,
by monotonicity, we get:

(A(x),x* —x) < (A(x) — A(x™),x" —x) + (A(x™), x* — x)
=—(A(x") —A(x),x" —x) — (A(x"),x —x") <0, (2.11)

so Gap, (x*) < 0. On the other hand, if x* € C, we also get Gap(x*) > (A(x*),x* —
x*) = 0, so we conclude that Gap,(x*) = 0.

For the converse statement, assume that Gap,(£) = 0 for some £ € C and
suppose that C contains a neighborhood of £ in &. First, we claim that the
following inequality holds:

(A(x),x—2%) >0 forallx €C. (2.12)
Indeed, assume to the contrary that there exists some x; € C such that
(A(x1),x1 — %) <0. (2.13)
This would then give
0 = Gap, (%) > (A(x1), £ —x1) >0, (2.14)
which is a contradiction. Now, we further claim that £ is a solution of (VI),i.e.:
(A(%),x—%) > 0forall x € X. (2.15)

If we suppose that there exists some z; € X such that (A(%),z; — £) < 0, then, by
the continuity of A, there exists a neighborhood U’ of # in X such that

(A(x),z1 —x) <0 forallx e U (2.16)

Hence, assuming without loss of generality that U’ C U C C (the latter assumption
due to the assumption that C contains a neighborhood of £), and taking A > 0
sufficiently small so that x = £+ A(z; — %) € U’, we get that (A(x),x — %) =
AMA(x),z1 — £) <0, in contradiction to (2.12). We conclude that % is a solution of
(VI), as claimed. O

2.3 LIPSCHITZ REGULARITY

Having described the problems of interest, besides the structural assumption of
convexity (or monotonicity for the (VI) context) there are two additional regular-
ity conditions which heavily determine the performance of the respective merit
functions of each framework. In what follows, we shall present them in a nutshell.
More precisely, given an operator A : X — IR” we have the following definitions:

1. A is bounded, i.e., there exists some positive constant G > 0 such that :

|A(x)[|« < G forall x € X (Bd)

2. A is Lipschitz continous, i.e., there exists some positive constant g > 0 such
that :



2.4 FIRST-ORDER METHODS 17

|A(x) — A(x")||« < Bl]x — x| forall x,x" € X (LC)
As said these conditions play a crucial role in determining the performance of the
various algorithmic methods at play; this fact will become apparent in Section 2.4.

Now, when A = Vf for some convex objective f, (Bd), (LC) give rise to a series
of explicit properties for f. Starting with (Bd) one can straightforwardly derive

that said property essentially boils to Lipschitz continuity of f,i.e., : Lipschitz Objectives
If(x) — f(x")] < G|lx —«'|| forall x,x" € X (2.17)
On the other hand under (LC), f satisfies the descent inequality Descent Inequality
f(x") < f(x) +(Vf(x),x' —x) + ng’ —x||? forall x,x' € X, (2.18)

which lies at the core of the success of first order "descent” methods. In particular,
we have the following proposition: Smoothness Properties

Proposition 2.2. Assume that X is a convex and closed subset of R" and f : X — Risa
continuously differentiable convex function on int X. Then, the following statements are
equivalent:

1. V£ satisfies (LC)
2. f satisfies (2.18)
3. gHH2 — f is a convex function

4. (Vf(x) = VF(x),x—x') < Bllx —'||? forall x,x" € X

Finally, a quite interesting equivalence holds whenever X = R"” which is known
as the Baillon-Haddad theorem [15]. In particular, we have: Baillon-Haddad Theorem

Theorem 2.3. Assume that f : R" — R is a continuously differentiable convex function.
Then, the following statements are equivalent:

1. Vf satisfies (LC)

2. Vfis 1/p- cocoercive’:

;IIVf(X) = V)2 S (Vf(x) = Vf(x'),x =) forall x,2' € R" (2.19)

2.4 FIRST-ORDER METHODS

Now we turn our attention towards the respective iterative solution methods. In
particular, our focal point would be the so-called first-order methods, i.e., methods
that require at each iteration access on a first order/ gradient feedback. The
surge of recent breakthroughs in machine learning and artificial intelligence has
reaffirmed the prominence of these methods in solving large-scale optimization

3 For a panoramic overview of cocoercive operators we refer the reader to [18]
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problems. One of the main reasons for this is that the computation of higher-order
derivatives of functions with thousands — if not millions — of variables quickly
becomes prohibitive; another is that gradient calculations are typically easier to
distribute and parallelize, especially in large-scale problems. In view of this, first-
order methods have met with prolific success in many diverse fields, from machine
learning and signal processing to wireless communications, nuclear medicine, and
many others [30, 103, 108]. In what follows, we present the main structure of these
methods combined with the respective optimal lower bounds.

2.4.1  Oracle mechanism and feedback

From an algorithmic point of view, we aim to solve (Opt) and/or (VI) by using
iterative methods that require access to a stochastic first-order oracle (SFO) [89]. This
means that, at each stage of the process, the optimizer can query a black-box
mechanism that returns an estimate of the objective’s gradient (or subgradient)
at the queried point. Formally, when called at x € &, an SFO is assumed to
return a random (dual) vector V(x;w) € V* where w belongs to some (complete)
probability space (Q), F,P). In practice, the oracle will be called repeatedly at a
(possibly) random sequence of points X; € X generated by the algorithm under
study. Thus, once X; has been generated at stage ¢, the oracle draws an i.i.d. sample
sample w; € () and returns the dual vector:

Vi=V(Xpwr) = AXe) + U (SFO)

with Uy = U(Xywy) € V* denoting the “measurement error” of the oracle. In
terms of measurability, we will write F; for the history (natural filtration) of X;; in
particular, X; is F;-adapted, but w;, V; and U; are not.

Finally, we will also make the following statistical assumptions. First, we shall
assume that (SFO) is an unbiased estimator:

E[U; | F:] =0 (2.20)
Moreover, we shall assume that for some (known) g € (2, +co| we have:

Ul go» = B[|U]|1)VT < 0? forallt =1,2,... (2.21)

For concreteness, we will refer to the oracles with o = 0 as "perfect" — since, in
that case, U; = 0 for all + almost surely. Otherwise, if ||U¢|| 2 . > 0 the noise will
be called persistent and the model will be called stochastic.

2.4.2  Lower bounds

With all this in hand, the first question that arises is what is the worst perfor-
mance that the optimizer may expect and how is this influenced by the different
feedback and regularity conditions at play. The answer to the above question is
formally stated by the notion of worst-case lower bounds and differs depending on
the respective setting. So, we shall investigate each setting individually.
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* Online Convex Optimization/ Stochastic Minimization: We begin with the on-
line convex optimization framework. More precisely, under (Bd) the regret
optimal lower bound is

Reg(T) = ©(1/VT) (2.22)

Moreover, (LC) does not help the optimizer to improve upon this lower
bound [1].

e Static Convex Minimization: Now, we turn our attention towards the particular
case of (Opt). We distinguish the deterministic (¢ = 0) and the (purely)
stochastic (o > 0) instances of (SFO). Starting with the deterministic one,
the sub-optimality gap for first-order methods with perfect gradient input
possesses a "worst-case" guarantee

f(Xr) = f(x*) = Q(1/VT) (2:23)
under (Bd). This guarantee is improved significantly, i.e.,

f(Xr) = f(x*) = Q(1/T?) (2.24)

whenever (LC) kicks in [89]. On the other hand, if the optimizer has only
access to stochastic gradients (as is often the case in machine learning and
distributed control), the corresponding lower bound for the expected sub-
optimality gap is

E[f(Xr) - f(x")] = Q(1/VT) (2.25)

For details we refer the reader to [30, 86, 89].

e Variational inequalities: Finally, we describe the worst case guarantees for the
generic framework of (VI). In doing so, if the optimizer has access to a perfect
(SFO) oracle then the respective optimal lower bound for the restricted merit
function (2.10) under (Bd) is:

Gap.(X7) = Q(1/VT), (2.26)

while under (LC) a lower bound of ®(1/T) is achievable [83, 84]; the latter
illustrates also a significant gap between VI's and the static smooth minimiza-
tion setting. Finally, for a purely stochastic (SFO) the respective lower bound
relative to the restricted merit function (2.10) would be that of ®(1/+/T)
under (Bd).

2.5 FIRST-ORDER METHODS FOR ONLINE CONVEX OPTIMIZATION
2.5.1  Gradient descent and its primal-dual variant

For OCO, the most popular first order methods are the so called greedy/lazy (pro-
jected) gradient descent algorithms. In what follows, we describe these methods in
detail.

To start with, the greedy version is defined formally as:

Xiy1 = pry(Xe — Vi) (GD)
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Figure 2.3: Lazy vs. ordinary gradient descent.

In the above pry(x) = argmin,,_ y||x’ — x|| denotes the euclidean projection onto
the convex and closed feasible domain X, 7; > 0 is the method’s step-size and
Vi is the (SFO) feedback at X;. We refer to (GD) also as greedy gradient descent in
order to distinguish it from the so-called lazy variant [105] which is defined by the
following recursion:

Yiri =Y — Vi

(LGD)
Xiv1 =pry(Yis1)
A different perspective of the above method is given by the so-called dual
averaging scheme, originally introduced by Nesterov in [91] and further developed
in [115]. This is formally given by the following recursion:

Yiii=Y—V;

(DA)
X1 = pry (41 Yes1)

More precisely, the critical difference between (LGD) and (DA) is that in the latter
the learning rate #; changes its role. In particular, in (DA) #; acts as a post-multiplier
over the ensemble aggregation of V; instead of allocating a specific weight on each
individual V;. As we discuss in the sequel this key feature of (DA) would enable
us to deal with unbounded feasible domains &'.

2.5.2  Performance guarantees

We now proceed to describe the regret minimization guarantees of the family of
algorithms presented in Section 2.5.1. More precisely, if (GD)/(LGD) are run with
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a "horizon"-dependent step-size policy 7 = 1/v/T* we have the following the
proposition [105, 122]:

Proposition 2.4. Assume that X; are the iterates of (GD) or (LGD) run with a step-
size vy = 1/+/T and a "perfect” oracle feedback. Then, if f; satisfies (2.17). for all
t=1,2,..., T with sup,||V fi(x)||2 < G, we have:

1 = _T )| = 1% = x| + G2 orall x 2.2
F | S A0 t_zlfm]—O( TEE) praxex (aa)

Some comments concerning the particular step-size are in order. More precisely,
this step-size policy is based on the idea on dividing the infinite play into epochs
(or time-windows) of length T. Hence, the optimizer practically applies a constant,
within the time window [1, T] and then repeats the same idea for the next window
[T,2T] and the procedure repeats to infinity. Moreover, if the feasible domain X’
is a compact set, one may apply a "dynamic" step-size v;  1/+/t and derive an
"any-time" regret bound in contrast to that of Proposition 2.4. This is described by
the following proposition.

Proposition 2.5. Assume that X is a compact set and let X; be the iterates of (GD) or
(LGD) run with y; o« 1/+/t and a "perfect” oracle feedback. Then, if f; satisfy (2.17) with
sup, ||V fi(x) |2 < G?, we have:

1| T B diam X + G?
T t;ft(Xt) - Zlft(x)] = O<ﬁ) forall xe X (2.28)

t=

where diam X = sup,, ¢y [lx — x'||.

Moving forward our next step is to illustrate the respective regret guarantees
for (DA). Similarly with the above guarantees we have the following result for the
(DA) [115]:

Proposition 2.6. Assume that Xy are the iterates of (DA) run with a learning rate yy
1/+/tand a "perfect” oracle feedback. Then, if f; satisfy (2.17) with sup,||V f;(x) |2 < G2,
we have:

% tift(xt) - tift(x)] =0 <||x||2\/%LGZ> forall x € X (2.29)

An important difference between Proposition 2.5 and Proposition 2.6 is that in
the latter no compactness-or rather boundedness- assumption for the domain X is
required.

2.5.3 Sub-optimality for smooth minimization and accelerated methods

In this section we shall investigate the particular case of (Opt) in a more detailed
manner in accordance to the optimal worst case lower bounds (cf. Section 2.4.2).

The choice of such a step-size assumes a prior knowledge of the horizon of the process and is also
referred to as "doubling" trick [105]
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In doing so, the first candidate would be the (GD) methods presented in Sec-
tion 2.5.1. More precisely, we first describe their performance under the different
regularity conditions (Bd) and (LC). A preliminary result under (Bd) can be ob-
tained via a straightforward adaptation of Propositions 2.5 and 2.6; more precisely
this yields that under (Bd):

f(Xi) = f(x*) = O(1/VT) (2.30)

with X7 denoting the time average of the (GD)/(LGD) and (DA) iterates run with a
step-size policy 7; « 1/+/t. Hence, the generic (GD) algorithms exhibit an optimal
convergence rate within this class of objectives.

That said, the situation changes drastically under (LC). For that particular
case, (GD) and (LGD) run with a constant step-size 7; = v < 1/ guarantees
a performance rate of order O(1/T). This result confirms the sub-optimality of
(GD) family of methods for smooth deterministic minimization problems, since its
performance does not match the iconic 1/T? lower bound. This 1/T? rate was first
achieved by Nesterov in his seminal paper [88]. This algorithm has since generated
an immense literature with several hallmark contributions like the fast iterative
shrinkage-thresholding algorithm (FISTA) method,[21], for composite minimiza-
tion problems and many others. More precisely, following [13] we consider the
improved interior gradient algorithm (IGA) algorithm:

Yt = (1 — )\t)Xt + )\tZt
A
Zyia = pry(Zi — Etv» (IGA)
X1 = (1= A)Xe + MZpq

with the weight sequence A; being defined recursively as follows:

1-A 1
A2 == P (2-31)
t+1 t

The crucial difference of (IGA) is the particular averaging part that serves as an
acceleration mechanism of the (GD) template. This is described formally by the
following proposition.

Proposition 2.7. Assume that X; are the iterates of (IGA) run with a step-size given by
(2.31). Then, if f satisfies (LC) we have:

_2B1% — P

- (232)

f(Xe) = f(x7)

Variants of this method can be also found in [49].

2.6 OPTIMAL METHODS: THE VARIATIONAL INEQUALITY CASE
2.6.1 Extra-Gradient method and its primal-dual variant

Now we turn our attention towards defining optimal iterative methods for (VI).
Perhaps the most widely used solution method for VIs is the EG algorithm of
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Figure 2.4: Schematic representation of the extra-gradient algorithm.

Korpelevich (1976) and its variants [74, 99, 100]. This algorithm has a rich history
in optimization, and it has recently attracted considerable interest in the fields of

machine learning and Al, see e.g., [33, 37, 43, 52, 53, 81, 82] and references therein.

In its simplest form, for problems with closed and convex domains, the algorithm
proceeds recursively as

Xiv1/2 = pro(Xe — 1 Vi)

(EG)
Xiv1 = pra(Xe — 1tViy1/2)

In a nutshell (EG) suggests first to generate a leading state X;,,, by taking a
"gradient" step as usual. Then, instead of continuing from X;,1,,, (EG) samples
Vi+1/2 and goes back to the original state X; in order to generate a new state X;;4
via a "gradient" step along the direction of V} ;.

Let us now present its primal-dual counterpart, firstly introduced by Nesterov
in [90]. In particular, the (euclidean based) dual extrapolation (DualX) method is
given via the following recursive formula:

Xi11/2 = pry(Xe — Vi)
Yiri =Y — Vg2 (DualX)

Xi41 = pry(ve+1Yis1)

In turn, the (DualX) template hinges on a combination of the (GD) and (DA)
methods. In particular, it suggests the following updating rule: first generate
a leading state X;,1,, by taking a "gradient" step as in (EG) and again samples
Vit1/2. Then, the method aggregates these feedbacks and finally the method’s
update is obtained by applying a dual averaging step.

2.6.2  Performance guarantees

Building on the templates of (EG) and (DualX) in this section we present the
performance guarantees (in terms of the restricted merit function (2.10)) under the
light of the different regularity conditions (Bd) and/or (LC). Starting with the (EG)
template, we have the proposition for the case where A is not necessarily Lipschitz
continuous:
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Proposition 2.8 (Juditsky et al. [56]). Assume that X;,t =1,1/2,... are the iterates
of (EG) with an oracle satisfying (SFO) with ¢ > 0 and A satisfies (Bd). Moreover, let

— -1
Xt = [Zthl 'yt} I 1 7t X112, let C be a compact neighbourhood of a solution of the

(V1) and set D> = sup,,.||x — X1||>. Then, if (EG) run with a decreasing (deterministic)
step-size <y satisfies the following estimate:

D+ 62+ £y o2

E [Gap-(X7)] < (2.33)
[ Pe( T)] Zthl - 33

In particular, if (EG) is run with v <1/ V1, then
E [Gap,(X1)] = O(1/VT) (2.34)

We distinguish the "perfect" (SFO) case, i.e., 0% = 0, where the particular influ-
ence of the respective regularity conditions becomes more apparent. In particular,
this is illustrated by the following result.

Proposition 2.9 (Nemirovski [85]). Assume that X;, Xy /o are the iterates of (EG) with

— -1
a "perfect” (SFO) and A satisfies (Bd). Let us denote X1 = {ZL 'yt] Zthl YieXi11/2,

C is a compact neighbourhood of a solution of the (V1) and D = sup,..||x — X1||. Then,
the following hold:

1. Under (Bd) then,
D+G Yl

Gape (Xr) < o (2.35)
In particular, if i o< 1//t, then Gap,(Xr1) = O(1/V/T)
2. Under (LC) and 0 < inf; y¢ < ¢ < 1/ then,
Gape (Xr) < s (2:36)
2T inf; 4

On the other the hand, for the (DualX) template we may obtain similar con-
vergence rate guarantees by consider the time average, 1/TY.[_; X; 1,2, as the
method’s output. Formally, we have the following proposition.>

Proposition 2.10. Assume that X;, X; 1/, are the iterates of (DualX) with an oracle
satisfying (SFO) with o> > 0. Moreover, Xt = 1/ thTzl Xi1+1/2 and C is a compact
neighbourhood of a solution of the (V1) and D* = sup,.||x — X1 ||*. Then, if (DualX) is
run with a (deterministic) decreasing step-size <y the following holds:

- D GZ 2 T_
E [Gap(X71)] < * | +TU [ X e (2.37)

In particular, if (DualX) is run with ¢ & 1/+/t then

E [Gap¢(X1)] = O(1/VT). (2:38)

Proposition 2.10 hinges on the methodology of. the Dual-Extapolation method of [91]. However, we are
not aware of a specific paper which provides a proof for it. We revisit this from a more general point of
view in Chapter 7.
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Now in the same spirit as for the (EG) for the deterministic case we obtain the

respective range of rates as in Proposition 2.11: Dual- Extrapolation
Guarantees

Proposition 2.11 (Nesterov [91]). Assume that X;, X; 1, are the iterates of (DualX) (Deterministic)

with a "perfect” (SFO). Moreover, let us denote X1 =1/ TZthl Xi11/2, C is a compact
neighbourhood of a solution of the (V1) and D* = sup,,.||x — X1 ||>. Then, the following
hold:

1. Under (Bd) then,
D+Gyl v

Gape (Xr) < T (2.39)
In particular, if and vy < 1/+/t then Gap,(X1) = O(1/V/T).
2. Under (LC) and ¢ < 1/p then,
Gape(Xr) < 2 (2.40)

As one may observe the set of results presented above rely their success on prior
knowledge of the Lipschitz modulus of the associated operator. In what follows,
we describe the state-of-the-art methods which transcend this restriction.

2.7 ADAPTIVE METHODS

Having described the performance guarantees under different regularity conditions
and step-sizes, we move forward by introducing a range of "adaptive" methods
that automatically detect the level of regularity in the problem and the quality of
the oracle. In particular, adaptivity of a method refers (at least) to two different
scenarios:

* The method automatically adjusts its performance to parameters within a
fixed operator class (Lipschitz/Ho6lder smoothness and the like).

* The method automatically detects the respective Lipschitz modulus at hand
and exhibits (optimal) rate interpolation guarantees between different classes-
for example between non-smooth and smooth objectives etc.®

Of course, one may straightforwardly recognize the fact that the second type
properly includes the other two. In Section 2.7.1 and Section 2.7.2, we squarely
focus on the latter. Moreover, in what will follow we address each framework
individually.

2.7.1 The minimization case

We assume first that the optimizer is facing an unconstrained (Opt) version and/or
(StochOpt). For this particular framework one may show that the (GD) template
run with the adaptive step-size of the form: AdaGrad Step-Size

1
L > (2.41)
AE

6 The methods that satisfy this property are also denoted in the literature as universal.
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achieve the following convergence rate:

* For the deterministic case, (GD) run with the step-size policy (2.41) interpo-
lates between O(1/+/T) for non-smooth and stochastic regimes and O(1/T)
whenever smoothness kicks in.

e For the stochastic case, guarantees an O(1/+/T) under (Bd) and O(% + %)
under (LC).

Remark 2.1. This iterative scheme is often refered as adaptive inverse-norm-squared
(ADANORM) and is a simplified variant of the general ADAGRAD firstly introduced

in [39, 76].

More precisely, the following result describes formally the above properties for
AdaGrad Guarantees (GD). For detailed proof we defer the reader to [67].

Proposition 2.12 (Levy et al. [67]). Assume X are the iterates of (GD) run with adaptive
step-size policy (2.41) and an oracle feedback of the form (SFO) and X7 = 1/T Y, X;.
Moreover we assume that sup, || Xt — x*|| < D. Then the following hold:

1. Under (Bd) we have:

2 o
E [f(Xr) - f()] < Lo @42
2. Under (LC) we have:
2
E /(%) - fx)] < B+ 22 (243)

The above result indicates that even if (GD) is run with an adaptive step-size
this does not seem to match the worst-case 1/T? lower bound remaining sub-
optimal for smooth objectives. In order to overcome this and achieve an adaptive
optimal rate interpolation from O(1/+/T) to O(1/T?), more elaborate schemes are
required.

The first result of this kind is done by Nesterov in [92]; in particular it shown
that under "perfect" oracle feedback an optimal rate interpolation for objectives
with gradient whose variance satisfy: For some 8 > 0 and g € [0,1]:

IVf(x) = V)]« < Bllx = x'[[7 forall x,x" € R" (2.44)

That said, since this result requires a perfect oracle feedback in an essential man-

ner er we shall not dive into more detail. A different approach which captures

adaptivity even for noisy settings is to mimic the idea of (2.41); a step-size that is

updated "on the fly". That idea is incarnated by AcceleGrad [67] and Unixgrad [60]

methods for the unconstrained and the constrained case. In particular, for X = R"
AcceleGrad Scheme the Accelegrad method suggests:

Xir1 = MZe + (1= M) Vs
Ziy1 = prc(Ze — aryi Vi) (AcceleGrad)
Yip1 = X1 — Vi

7 Of course (2.44) includes the classes of (Bd) and (LC) as extreme cases for 4 = 0 and g = 1 respectively.
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Some notational comments are here in order to describe each part of the method.
In particular, K is a convex and compact subset of R” and denotes a "domain of
interest'",i.e., an initial speculation of a subset where the global minimizer lives.
Moreover, D denotes the diameter of K. In terms of the weighting sequences we
set oy = t, Ay = 1/a;. Having all this in hand, the method’s step-size step-size is
defined:

-1

(2.45)

t
vi=2D \l92+ X%WfIIWIIE
]:

The following result describes the precise convergence rates of (AcceleGrad); for
details we refer the reader to [67].

Proposition 2.13 (Levy et al. [67]). Assume that Y; are the iterates of (AcceleGrad)

— -1
and let Y1 = {ZL Dét} Yy ayY; with oracle feedback satisfying (SFO). Then, the
following hold:

1. If o =0, then
o Under (Bd) we have:

F(Tr) = fla) < SOV 246

o Under (LC) we have:

- < DG? + BD?1og(BD/G)

F(¥r) - fx") - (.47)

2. If 0 >0, then

E [f(Vr) - f(x)] < ZPVI8T %gT (2.48)

Now, we turn our attention towards the constrained setting and the (UniXGrad)
method, which hinges on the (EG) template. More precisely, this is given by the
following:

Xir1/2 = pry(Xe — Vi)
Xip1 = pry(Xe — a7t Vii1/2)
The crucial difference with generic (EG) is that V; and V; 1, are the oracle queries
for the gradient evaluated at the averaged points:

(UniXGrad)

t—1
ar Xy + Zj:l chX]'+1/2 — Z};l D‘ij+1/2

; and Xt+1/2 = T < . (2-49)
j=1% j=1%

Xi =

with a; = t. Having induced this acceleration mechanism in the (EG) routine, one
may obtain the first result concerning the universal properties of (UniXGrad) for
the deterministic framework.

Proposition 2.14 (Kavis et al. [60]). Assume that Xy t =1,1/2,... are the iterates of
(UniXGrad) under an oracle of the form (SFO). Then, we have the following:
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1. If f satisfies (Bd), then,

6D 140D

E[f(Xr12) = f(3)] < 75 + T (2.50)
2. If f satisfies (LC), then,
2
E [f(Xr11/2) = f(x7)] < 224\/31) =gt 14\/\/5%713 (2.51)

An important remark concerning Proposition 2.14 is that the compactness as-
sumption for the feasible region X is crucial for establishing the desired agnostic
rate interpolation.

2.7.2  The variational inequality case

Now we move forward towards adaptive methods for (VI). To that end a reasonable
candidate would be that of the (EG). Indeed, in [14] a novel adaptive step-size is
proposed for constrained (VI) problems in the following manner: If X" is convex

Universal and compact with diam & = D, then, Bach-Levy in [14] propose:
Extra-Gradient

2D
Tt = ﬁ (2.52)
\/0%+ ijl Zj

with 6 > 0 being an arbitrarily chosen positive constant and ZJZ:

22 _ 1X41/2 = X1 + 11 Xj41/2 = Xjall?
/A 2
g

(2.53)

As it becomes apparent the (2.53) is the crucial ingredient of the adaptive step-size
(2.52). In terms of convergence rate guarantees for the stochastic case [14] provides

Universal ~ us the following result:
Extra-Gradient
Guarantees

Proposition 2.15 (Bach and Levy [14]). Assume that X;, X;1 /o are the iterates of
(EG) un with the adaptive step-size policy (2.52) and an oracle feedback of the form
(SFO). Moreover, assume that X7 = 1/ TZthl Xi+1/2 and C is a convex and compact
neighbourhood of a solution x* of the (V1). Then, the following hold:

1. If A satisfies (Bd), then

E [Gape(Xr)] < “2LCF j%v log T (2.54)

2. If A satisfies (Bd) and (LC), then

- aGD + a?BD? + BD?*log BD /6y = «
E [Gap.(X7)] < T + Nii (2:55)

The analysis of Proposition 2.15 is that in order to achieve rate adaptivity, even
for the case of perfect oracle feedback hinges on the following limitations:
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* Compactness of the feasible domain &'.
* The associated operator A should satisfy simultaneously both (Bd) and (LC).

As a prelude of our contributions our general beyond Lipschitz analysis will allow
us to drop both these restrictions.






BEYOND LIPSCHITZ REGULARITY

#This section incorporates material from the papers [6-8]

THROUGHOUT this chapter we focus on extending the Lipschitz regularity condi-

R

tions presented in Section 2.3. Even though boundedness and Lipschitz continuity
conditions (Bd) and (LC) appear to be fairly mild, they may fail to hold in a wide
array of practical applications. These unboundedness issues also arise for the
case of bounded domains. Indeed, consider as a toy example the 1- dimensional
minimization objective:

f(x) = —logx for x > 0. (3.1)
In that case, since Vf(x) = — %, one may straightforwardly verify that V f remains

unbounded for all positive intervals that include the origin; so it fails to satisfy both
(Bd) and (LC). The main objective would be to design efficient definitions which
are able to account for possible "blow ups" of the associated operators. In doing
so, one should apply more "geometry aware" toolkits than the standard geometry-
blind Euclidean setup of the previous chapter. Therefore in Section 3.2 we present
two frameworks of that kind. We first describe the notion of a regularization
function (or regularizer for short) along with the associated Bregman divergence.
The Bregman divergence will serve in the sequel as a generalized distance function
surrogate; despite the fact that it is not a distance function per se (it does not satisfy
neither symmetry nor the triangle inequality). Moreover, drawing arguments from
differential geometry we provide an alternative approach based on the notion of
a Finsler metric. This framework allows us to induce families of local" norms
over the ambient space which are able to capture the geometry of the feasible
region in a more efficient way. Armed with these mathematical tools, we introduce
in Section 3.3 and Section 3.4 the main classes of objectives that transcend the
traditional Lipschitz regularity conditions. To motivate all the above, we first
present some prominent examples of widely studied problems with "gradient
singularities” in Section 3.1.

3.1 MOTIVATING EXAMPLES

3.1.1 Poisson Inverse Problems

Many problems in machine learning and the imaging sciences focus on the recon-
struction of an unknown object from a set of imperfect observations (e.g., noisy 2D

Local for this context refers to the fact that the said family of norms dependents on the point upon
which it is evaluated.
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cross-sections of a 3D object). This is especially true in the fields of emission to-
mography and optical/infrared astronomy, where images are obtained by counting
particles (usually photons) reaching a detector. In this case, factors such as fluores-
cence emissions, radioactive decay and thermal noise can severely affect particle
counts, typically by introducing Poisson-distributed errors in the measurement
process [22].

Mathematically, inverse problems of this kind boil down to solving linear systems
of the form
y=Hx+z (3.2)

where:
¢ x € R7 is the object under study (a signal, image, ...).

* y € R is the observed data (usually m < n).

* The kernel matrix H € R"*" is a representation of the data-gathering protocol
and is typically ill-conditioned (e.g., a Toeplitz matrix in the case of image
deconvolution problems).

e z € R" is the noise affecting the measurements.

When data points are obtained by means of a counting process, measurements
can be modeled as Poisson random variables of the form y; ~ Pois(Hx);. * Then,
up to an additive constant, the log-likelihood of x € R" given an observation
y € R™ will be

; yjlog )] + (Hx)j —yj|- (3:3)

Hence, obtaining a maximum likelihood estimate for x leads to the archetypal
Poisson inverse problem:

min’imize f(x) = Dkr(y, Hx), (PIP)
subject to x € R,

where Dkr(p,q) = 1L, [pjlog(p;/q;) + q; — pj] denotes the generalized KL diver-

gence on R’/

In many cases of practical interest, measurements arrive in distinct batches over
time — e.g., as sequential optical sections in microscopy and tomography. Moreover,
due to the large numbers of pixels/voxels involved (a typical range of values for
m is between 10° and 107), gradients of f are very costly to compute; as such,
optimization methods that rely on accurate gradient data are difficult to apply in
this setting. Accordingly, a natural workaround to this obstacle is to exploit the
online nature of the measurement process, model (PIP) as an online optimization
problem, and then to use an online-to-batch conversion to get a candidate solution

[105].

On the downside, this online optimization analysis crucially requires the loss
functions faced by the optimizer to be Lipschitz continuous, and this assumption

2 In the above, we are ignoring background emission noise which, in many applications, can be eliminated

by pre-processing the detected image [22].
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does not hold for (PIP): Indeed, if f;(x) = —y;log(y;/(Hx);) denotes the singular
part of the KL divergence for the j-th sample, we readily get

o _ Yl (3.4)
0x j (H X ) j
This shows that the gradient of f; exhibits an O(1/x) singularity at the boundary
of R, so f cannot be Lipschitz under any global norm on R". The same of course
holds for (LC).

3.1.2  Resource sharing problems

Consider a set of resources r € R = {1,...,R} serving a stream of demands that

arrive at a rate of p per unit of time (for instance, a GPU cluster or a computing

grid processing a stream of jobs). If the load on the r-th resource is x;, the expected ~ Resource Sharing
service time in the standard Kleinrock model [62] is given by the M/M/1 loss Formulation

function )
br(xr) = , (3.5)

Cr — Xy

where ¢, denotes the capacity of the resource. In this setting, the set of feasible
resource allocations is X = {(x1,...,%,) : 0 < x, < ¢, x1 + -+ -+ xg = p},? and we
say that a resource allocation profile x* € x* is at Nash/Wardrop equilibrium [94, 113]
if

O (x7) < 4(xy) forall x € X and all ¥ € R such that x; >0 (3.6)

i.e., when no job would be better served by transferring it to a different priority
queue. In this case, if we let A(x) = (¢1(x1),...,lr(xRr)), a standard calculation
shows that x* is an equilibrium allocation if and only if it solves the associated
variational inequality problem for A.

3.1.3 Fisher market model

Following [94], a Fisher market consists of a set N ={1,...,N} of N buyers — or

players — that seek to share a set A = {1,...,n} of n perfectly divisible goods (ad

space, CPU/GPU runtime, bandwidth, etc.). The allocation mechanism for these Fisher Model
goods follows a proportionally fair price-setting rule that is sometimes referred to Formulation
as a Kelly auction [61]: each player i = 1,..., N bids x;, per unit of the a-th good,

up the player’s individual budget; for the sake of simplicity, we assume that this

budget is equal to 1 for all players, so Y ; xj; < 1foralli=1,...,N. The price

of the p-th good is then set to be the sum of the players’ bids, i.e., ps = Yicn Xias

then, each player gets a prorated fraction of each good, namely w;, = x,/pa.

Now, if the marginal utility of the i-th player per unit of the a-th good is 6;,, the
agent’s total utility will be

0iax;
wi(x;x_i) = Y Oiwig = Y, = (3-7)

acA acA 2f€N Xja

3 For posterity, note here that X’ is convex but it is not necessarily closed.
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where x; = (xj;),c4 denotes the bid profile of the i-th player, and we use the
shorthand (x;;x_;) = (x1,...,Xj,...,xN). A Fisher equilibrium is then reached when
the players’ prices bids follow a profile x* = (x7,..., x};) such that

wi (x5 6 ) = wi(xi; %) (Eq)
foralli € N and all x; = (xj;)ze4 such that x;;, > 0and Y ,c 4 x;y = 1.4

As was observed by Shmyrev [107], the equilibrium problem (Eq) can be rewrit-
ten equivalently as

minimize F(x;0) = ) palogp,— Y Y xizlogbi,
aeA iEN aeA
subjectto ps= Y X5 Y, X =1, and xj;, > 0forallac A ie N,
ieN aeA

(Opt)

with the standard continuity convention 0log0 = 0. In the above, the agents’
marginal utilities are implicitly assumed fixed throughout the duration of the
game. On the other hand, if these utilities fluctuate stochastically over time, the
corresponding reformulation instead involves the mean objective

f(x) = E[F(x;w)]. (3-8)

Because of the logarithmic terms involved, F (and, a fortiori, f) cannot be Lipschitz
continuous or smooth in the standard sense.

3.2 TOOLS FOR TRANSCENDING THE EUCLIDEAN FRAMEWORK

In this section we present the necessary mathematical machinery that will allow
us to generalize the notions of (Bd) and (LC). In doing so, we shall use two key
notions. The first is that of the so-called Bregman divergence, whereas the second
consists of the geometrical tool of a local norm, i.e., a norm that depends on the
point upon which it is calculated.

3.2.1 Bregman functions and divergences

The notion of a Bregman divergence was first introduced by Bregman [29]. The
building block for this pseudo-distance function is that of a suitable “reference”
Bregman function. This is defined as follows:

Definition 3.1. A convex Ls.c. function h: V — R U {oo} is a Bregman function on
X, if

1. The subdifferential of & admits a continuous selection, i.e., there exists a
continuous mapping

V : domoh — Vh(x) € oh(x) (3-9)

for all x € dom oh.

4 It is trivial to see that, in this market problem, all users would saturate their budget constraints at

equilibrium, i.e., Y ,c 4 xi; = 1 for all i € N.
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2. h is strongly convex, i.e., there exists some K > 0 such that
/ / K 2
h(x") = h(x) + (Vh(x), &' = x) + Z [ = x| (3.10)

for all x € domdh, x' € dom dh.

The induced Bregman divergence of h is then defined for all x € domdh, x’ € domh
as
D(x',x) = h(x') — h(x) — (Vh(x),x" — x). (3.11)

Remark. Our definition follows [56, 87, 91], but there are variant definitions where

h is not necessarily assumed strongly convex, cf. [7, 32, 34] and references therein.

Some standard examples of Bregman functions are as follows:

Example 3.1. Euclidean regularizer: Let X be a convex subset of R" endowed
with the Euclidean norm ||-|,. Then, the Euclidean regularizer on X is defined
as h(x) = ||x||5/2 and the induced Bregman divergence is the standard square
distance D(x/,x) = ||x’ — x||5 for all x,x’ € X

Example 3.2. Entropic regularizer: Let X = {x € R} : Y, x; = 1} be the
unit simplex of R endowed with the L'-norm ||-||;. Then, the entropic reqularizer
on X is h(x) = Y, x;logx; and the induced divergence is the relative entropy
D(x',x) = ¥ xilog(x!/x;) for all X' € X x € riX. In particular, & is 1- strongly
convex with respect to ||-||;.

Example 3.3. Log-barrier: Let X = Rl | denote the (open) positive orthant of
R". Then, the log-barrier regularizer on X is defined as h(x) = — Y/ ; log x; for all
x € R’ ,. The corresponding divergence is known as the Itakura-Saito divergence
and is given by D(x,x’) = Y1 1 (x;/x} —log(x;/x}) — 1) [34].

We conclude this presentation by providing some elementary properties of a
Bregman [56].

Lemma 3.1. Let h be a Bregman function on X with associated divergence D. Then:
1. D(X/, x) is convex with respect to X' (but not necessarily with respect to x).

2. D(x,x') > K|lx — x||2 for all x € domh, x’ € dom 9h.
2

Remark. In a nutshell, the first part of Lemma 3.1 is directly derived by the convexity
of h, whereas the second is obtained by collecting the terms that constitute the
Bregman divergence in (3.16). In the sequel we shall revisit Lemma 3.1 under the
light of the notion of local norms.

3.2.2  Finsler geometry and local norms
Following [17, 35] a Finsler metric [17, 35] is described as follows:
Definition 3.2. A Finsler metric on a convex subset X' of V is a continuous function

®: X x V — R, which satisfies the following properties for all x € A and all
z,zl € V:

35

Bregman Divergence

Finsler Metrics
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1. Subadditivity: ®(x;z +2') < ®(x;z) + D(x;2').
2. Absolute homogeneity: ®(x; Az) = |A|®(x;z) for all A € R.
3. Positive-definiteness: ®(x;z) > 0 with equality if and only if z = 0.

Given a Finsler metric on &, the induced primal /dual local norms on X are respec-
tively defined as

Iz|lx = ©(x;z) and ||w]/x« = max{{w,z) : P(x;z) = 1} (3.12)

forall x € X and all z,w € V. We will also say that a Finsler metric on & is
regular when ||w|| s ./ ||w]|x« =14+ O(||x" — x||x) for all x,x" € X, w € V*. Finally,
for simplicity, we will also assume in the sequel that ||-||x > v||-|| for some v > 0
and all x € A (this last assumption is for convenience only, as the norm could be
redefined to ||-||x < ||-||x + v||-|| without affecting our theoretical analysis).

When X is equipped with a regular Finsler metric as above, we will say that it is
a Finsler space.

Example 3.4. Let ®(x;z) = ||z|| where ||-|| denotes the reference norm of X = V.
Then the properties of Definition 3.2 are satisfied trivially.

Example 3.5. For a more interesting example of a Finsler structure, consider the
set X = (0,1]" and the metric ||z||y = max;|z;|/x;, z € R", x € X. In this case
|lwllx« = Xiq xi|w;| for all w € R", and the only property of Definition 3.2 that
remains to be proved is that of regularity. To that end, we have

0l = lleollcpe < T [wil - [ = xi| = Xl xifwil - [x; = xil /i < [l - [[ 6" =]l

(3.13)
o <1+ |x— x|y ie.,

Hence, by dividing by ||w||,«, we readily get ||w|
||-|lx is regular in the sense of Definition 3.2.

x/,*/Hw

Example 3.6 (Riemannian metrics). In its simplest form, a Riemannian metric on
C C R" is a field of positive-definite matrices g(x) > 0, x € C; for a panoramic
view of the subject we refer the reader to [9, 66]. This defines a local norm as

|lzllx = 1/z " g(x)z, and a dual local norm as ||w||y« = /w ' g(x)~lw. In this way,
Riemannian metrics can be seen as special cases of Finsler metrics; the converse

however is not true (35; see also Example 3.7 below).

Example 3.7 (Shahshahani p-norm). Consider the Finsler metric on C = IR’} , given
by
®(x;2) = (T2 /x) " (3.14)

By a straightforward application of Holder’s inequality, the associated dual norm
is given by

_ 1/q
ol = (Zpy 2 eolf) (3.15)

with the convention p~! +g~! = 1. This metric is known as the Shahshahani
p-norm [104] and it plays an important role in game theory, optimal transport,
evolutionary biology, and many other fields — see e.g., [2, 3, 58, 108], and references
therein. The Shahshahani p-norm comes from a Riemannian metric if p = 2 but
not otherwise (since it does not satisfy the parallelogram law for p # 2).
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We are now in the position to revisit Definition 3.1 under the light of the local
norms. More precisely, we may assume that the respective Bregman function is
compatible with the said norm, resulting to the new notion of a Bregman-Finsler
regularizer. In particular, we propose the following definition firstly introduced in
Antonakopoulos et al. (2019):

Definition 3.3 (Antonakopoulos et al. [6, 7, 8]). Let ||-||x be a local norm. We say
that h: V — R is a Bregman-Finsler function on X if: h is a Bregman function in the
sense of Definition 3.1 and & is strongly convex relative to the underlying local
norm, i.e.,

h(p) = h(x) + (Vh(x),p — x) + zallp — x|I3 (3.16)
for some a > 0and all p € X, x € domoh.

As a consequence of the above, we have:

Lemma 3.2. A Bregman function h is a-strongly convex relative to ||-|| if and only if

D(p,x) > %a|p—x||2 forall p € X and all x € dom oh. (3.17)

Proof. The result follows by rearranging (3.16) along with the definition of the
Bregman divergence described in (3.11). O

The main difference between Definition 3.3 and Definition 3.1 or the standard
assumptions in the literature [19, 27, 28, 56, 77-79, 87, 90, 91] is the strong convexity
requirement relative to the local norm ||-||x (whose choice, in turn, is aimed to
capture the singularity landscape of the operator). We illustrate this with two
examples of Bregman-Finsler functions below:

Example 3.8. Suppose that X = IR" is endowed with the Euclidean norm. Then,
setting 1(x) = (1/2)]|x||3, we get the standard expression D(p, x) = (1/2)||p — x||3
for the associated Bregman divergence. Obviously, & is 1-strongly convex relative
to [[-[l2-

Example 3.9. Let X = [0,1)" (so X is neither open nor closed), and consider the
local norm ||z[|2 = ¥} 4 ]z|2/(1 — x;)? for x € X, z € R" (cf. Example 3.7 above). If
we set

h(x) =Y111/(1 —x)) (3.18)

a straightforward calculation gives

n )2 n w2
D) = L e 2 i (r ~IP 69

i.e., h is strongly convex relative to ||-||x. Importantly, since ||-||x > ||-||2, this

Bregman function is also strongly convex relative to the standard Euclidean norm.

However, even though the Euclidean regularizer of Example 3.8 is strongly convex
relative to any global norm on &, it cannot be strongly convex relative to the local
norm |- ||y because of the singularity of the latter when x; — 17
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3.3 SURROGATES FOR OPERATOR BOUNDEDNESS

Having described this background material, we now proceed to discuss the partic-
ular generalizations of Section 2.3 in order to account for problems with singular
objective functions. We divide our presentation into two parts. The first concerns
these notions that are based on the Bregman divergence, whereas the second part
considers the notions based on Finsler induced norms.

The first extension of (LC) is due to [111].

Definition 3.4 (Teboulle [111]). An operator A is said to be W[h]-continuous relative
to h on X if there exists some G > 0 such that, for all £ > 0, we have

2
HA(x),x —x") = D(x,x) < %G2 for all X’ € domh, x € domoh. (W)

As a prelude we mention that (W) notion intends to single out sufficient con-
ditions for the convergence of “proximal-like” methods like mirror descent. The
standard Euclidean (Bd) condition satisfies Definition 3.4. Indeed, if one chooses
h(x) = 1/2||x||? and its respective Bregman divergence D(x,x') = 1/2||x — x'||?
then by applying Fenchel-Young inequality we get:

1 V)2 1
KV £ (), x - ) — 2 — 2 < VL ]

2032
<tG
-2

1
" = x| = Sl — x]®

which yields that f is weakly continuous. Moreover, another related notion is that
of (RC), as introduced by [71] and extended further in a recent paper by [119]:

Definition 3.5 (Zhou et al. [119]). An operator A : X — R" is said to be relatively
continuous if there exists some G > 0 such that

(A(x),x —x') < G4{/2D(«x/,x) forall x € domh,x" € dom dh. (RC)

The two notions above are linked in the following manner: Consider an objective
f which satisfies Definition 3.4. Then, we have:

2
HVf(x),x—x') —D(x',x) < %GZ for all x' € dom#h, x € dom oh. (W)

By rearranging the above quadratic polynomial in ¢, we note that its discriminant is
A=[(Vf(x),x— x’>]2 —2G?D(x’, x), so it is immediate to check that (RC) holds.

Let us now turn our attention towards the Finsler driven generalized notion of
(Bd). In order to give some intuition, let us recall the toy-example presented in
Section 3.1. In particular, the 1— dimensional logistic regression f(x) = —logx
for x > 0 one may straightforwardly detect that the optimizer is dealing with a
gradient "singularity" of order O(1/x). T