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Résumé de la Thèse

Titre : Communications Faster-Than-Nyquist : Des liaisons mono-porteuse Aux liaisons
multi-porteuses

Mot-clés : Faster-Than-Nyquist (FTN), FTN Multi-Porteuses, FTN Circulaire-
ment convolué, FTN Linéairement Convolué, Peak-to-Average Power Ratio (PAPR),
Instantaneous-to-Average Power Ratio (IAPR), Factorisation Graphique (FG), In-
terférence Entre Symboles (IES), Interférence Entre Porteuses (IEP), Égalisation,
Turbo-égalisation, Expectation Propagation (EP), Bahl-Cocke-Jelinek-Raviv (BCJR),
Minimum Mean Square Error (MMSE), Linéaire au Sens Large (LSL).

Résumé : Les liaisons FTN ont été formellement proposées pour la première fois en
1975 pour augmenter l’efficacité spectrale des communications. En effet, J. Mazo a mis
en exergue une sous-utilisation des ressources temps/fréquence lorsque l’on emploie une
communication Nyquist sur un canal à Bruit Additif Blanc Gaussien (BABG), sous réserve
de disposer d’un récepteur optimal en réception, particulièrement complexe. Il a alors été
prouvé qu’un gain en débit de 25 % est possible en augmentant le débit symbole, sans
dégradation du Taux d’Erreurs Binaire (TEB). Le facteur de compression τ = 0.802 asso-
cié a cette augmentation des débits est communément appelé borne de Mazo. Cependant,
la contrainte de complexité calculatoire étant trop forte, la technique a été mise de côté
jusqu’au début des années 2000, après la découverte des procédés de turbo-égalisation
ainsi qu’une capacité calculatoire plus importante dont disposent les appareils communi-
cants. C’est dans ce mouvement de regain d’intérêt pour les communications FTN que
s’inscrit cette thèse de doctorat.

Afin d’évaluer l’intérêt pratique des communications FTN, nous avons souhaité
intégrer des contraintes multiples provenant de différents éléments d’une chaîne de com-
munication. Au-delà de l’augmentation de l’efficacité spectrale proposée par le FTN,
nous nous sommes intéressés à l’efficacité énergétique et la complexité calculatoire en ré-
ception pour rendre possible un traitement temps-réel. La contrainte énergétique a été
comprise au travers d’une approche multi-critères qui s’intéresse à l’amplificateur de puis-
sance de l’émetteur, car il s’agit du principal élément responsable de la consommation
énergétique. L’intérêt de la technique du FTN pour augmenter l’efficacité spectrale est
justifié au travers d’une analyse de capacité. En effet, on peut démontrer que l’efficacité
spectrale atteignable par des schémas FTN est plus élevée que pour les schémas Nyquist
dès lors que le facteur de retombée du filtre est non nul. Nous proposons ensuite une
nouvelle métrique de comparaison des communications. Cette métrique a pour objectif
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de pénaliser les formes d’onde à fort PAPR car elles nécessitent un recul important par
rapport à la puissance de saturation de l’amplificateur de puissance. Or, c’est justement
cette puissance de saturation qui détermine l’énergie effectivement consommée. Cette
pénalisation permet donc d’évaluer l’intérêt du FTN plus efficacement. Les comparaisons
effectuées démontrent que le FTN à une tendance à réduire le PAPR des communications
pour une efficacité spectrale cible. Cette métrique a ainsi été utilisée tout au long de la
thèse pour évaluer l’intérêt du FTN d’un point de vue multi-critères.

Suite aux premières études sur le FTN, des auteurs ont étendu les résultats à
d’autres filtres de Nyquist et des constellations plus riches, et avec du codage canal.
Pour cela, des récepteurs optimaux ont été envisagés sur canal à BABG et montrent une
nouvelle fois, dans un contexte plus large, une sous-utilisation des ressources au prix d’un
traitement complexe en réception. En effet, pour récupérer l’information des symboles
en présence d’IES, les traitements mettent en jeu un algorithme de Viterbi ou BCJR
pour optimiser le critère du Maximum de Vraisemblance (MV) ou Maximum A Posteriori
(MAP). Suite à cela, des solutions à complexité réduite ont été étudiées.

Afin de proposer des traitements utilisables en temps-réel, il a été envisagé
d’utiliser des approximations de l’algorithme BCJR (RS-BCJR, M*-BCJR). Néanmoins,
leur complexité reste exponentielle avec l’ordre de la constellation, et ne permet donc
pas d’atteindre les efficacités spectrales souhaitées. Des approches par filtrage comme
le MMSE ont donc été envisagées, que ce soit par traitement temporel ou fréquentiel
(FD-MMSE). Ces solutions ont l’intérêt de nécessiter une faible complexité, indépendante
de la constellation. Cette méconnaissance de la distribution des symboles entraîne
cependant une perte d’information qui ne permet pas au récepteur de rivaliser avec les
approches MV ou MAP en terme de TEB. Ainsi, pour des efficacité spectrales élevées,
il n’existait pas de solution de traitement de l’IES générée par le FTN, qui soit à la fois
efficace et à faible complexité.

Une des contributions principales de cette thèse porte donc sur la conception et le
développement de récepteurs permettant de combler ces lacunes. Pour cela, nous avons
étudié le concept d’EP et adoptons une approche visuelle fondée sur la FG afin de présenter
de façon didactique ce formalisme. L’algorithme régissant le récepteur est alors obtenu en
calculant les messages échangés au travers du graphe, et dépend de plusieurs hypothèses
initiales pour leur calcul. En effet, il convient tout d’abord de choisir une famille de distri-
bution contraignant les messages, ainsi qu’un ordonnancement de ces messages. Ces choix
conduisent à différents algorithmes, certains ayant déjà été proposés pour l’égalisation
d’un canal sélectif en fréquence. Nous avons par la suite introduit de nouvelles familles
de distributions donnant lieu à des récepteurs LSL. Par ailleurs, nous avons combiné un
modèle d’émission CCFTN avec une famille particulière de distributions gaussiennes pour
laquelle toute la matrice de covariance de la distribution des symboles est contrainte à être
proportionnelle à la matrice identité. Ces deux hypothèses donnent lieu à un traitement
pouvant être effectué dans le domaine fréquentiel sans préfixe cyclique, de façon efficace
et offrant des performances très compétitives. Les différents récepteurs développés pour
le FTN se trouvent être complémentaires, atteignant de hautes efficacités spectrales et
nécessitant des complexités différentes. Par ailleurs, quelque soit le récepteur EP utilisé,
les communications FTN peuvent alors proposer des gains en rapport signal à bruit très
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significatifs par rapport aux communications Nyquist. Ce gain vient notamment d’un
schéma itératif entre un égaliseur MMSE, et un bloc que nous appelons Constellation
Matcher en charge de réaligner l’estimée d’un symbole en sortie de filtrage avec la con-
stellation. Cette prise en compte de la constellation fait que les récepteurs EP sont à
mi-chemin entre les approches MAP et MMSE. Ils combinent alors la faible complexité
du filtrage, et l’importante capacité de traitement de l’IES des récepteurs MAP. De plus,
ces gains sont d’autant plus importants que l’efficacité spectrale visée est élevée (jusqu’à
5 bits/s/Hz).

À la suite de cela, il a été envisagé de complexifier le modèle du canal en consid-
érant une communication avec des trajets multiples. Pour cela, la technique du FTN a
été étendue au contexte multi-porteuses, faisant apparaître une compression fréquentielle
générant de l’IEP en plus de l’IES. Cette compression temps/fréquence permet théorique-
ment un doublement de l’efficacité spectrale par rapport aux communications orthogo-
nales pour des faibles constellations (BPSK, QPSK). Le modèle couramment utilisé pour
le MFTN dans la littérature est donc présenté, ainsi que les récepteurs existants. Afin
de limiter la complexité en réception, il est couramment envisagé de traiter de façon dis-
jointe l’IES et l’IEP. Les premières études ont alors mis en place un algorithme de BCJR
pour traiter l’IES, après avoir utilisé une suppression successive de l’interférence pour
traiter l’IEP. Dans un souci de limiter la complexité, il a ensuite été envisagé d’égaliser
l’IES à l’aide de traitements MMSE par filtrage en temps, puis en fréquence. Cependant,
l’inconvénient de l’égalisation fréquentielle tient du fait qu’elle nécessite l’introduction du
préfixe cyclique pour circulariser la convolution au récepteur. Nous avons donc proposé
un nouveau modèle de mise en forme du signal MFTN, fondé sur une double circularité à
l’émission. Ceci permet notamment de s’affranchir du préfixe cyclique, et offre également
l’avantage d’être mis en œvre en fréquence à l’émission pour diminuer la complexité. Au
récepteur, le signal est ensuite traité en fréquence au travers du récepteur EP, similaire à
celui proposé pour les communications mono-porteuse. Le schéma résultant offre des per-
formances supérieures aux récepteurs à faible complexité existants. Avec le codage canal
utilisé, on retrouve alors la possibilité de doubler l’efficacité spectrale avec une constella-
tion QPSK. Pour les constellations plus riches (jusqu’à la 256-QAM), le récepteur proposé
permet également une augmentation significative de la compression temps/fréquence sans
dégradation du TEB. Ainsi, le schéma proposé offre des gains importants par rapport aux
communications orthogonales multi-porteuses.

Enfin, les schéma mono et multi-porteuses développés sont comparés aux schémas
orthogonaux en présence de canal sélectif en fréquence. Pour cela, nous utilisons un canal
Proakis B, particulièrement sélectif. Nous montrons alors que le schéma MFTN est plus
performant qu’un schéma multi-porteuses orthogonal. De même, le schéma FTN mono-
porteuse se trouve être plus performant que le schéma Nyquist. Il apparaît finalement
que le MFTN n’est pas aussi efficace du point de vue multi-critères que la communi-
cation mono-porteuse FTN. Cependant, l’écart tend à diminuer avec l’augmentation de
l’efficacité spectrale. Par ailleurs, ces résultats sont obtenus sous des hypothèses bien
précises de modèle de canal, de codage et de filtre utilisés. Il serait alors intéressant de
poursuivre l’étude en généralisant les conclusions à des modèles plus réalistes, en inté-
grant des contraintes opérationnelles telles que la synchronisation temps/fréquence, et en
combinant les récepteurs proposés avec des filtres optimisés.



Abstract of the Thesis

Title: Faster-Than-Nyquist Communications: From Single-Carrier to Multi-Carrier Sig-
naling

Keywords: Faster-Than-Nyquist (FTN), Multi-Carrier Faster-Than-Nyquist (MFTN),
Circularly Convolved FTN (CCFTN), Linearly Convolved FTN (LCFTN), Peak-to-
Average Power Ratio (PAPR), Instantaneous-to-Average Power Ratio (IAPR), Factor
Graph (FG), Inter-Symbol Interference (ISI), Inter-Carrier Interference (ICI), Equal-
ization, Turbo-equalization, Expectation Propagation (EP), Bahl-Cocke-Jelinek-Raviv
(BCJR), Minimum Mean Square Error (MMSE), Widely Linear (WL).

Abstract: This thesis is a multi-criteria study of the Faster-Than-Nyquist (FTN) tech-
nique. We first consider the context of single-carrier communications without propagation
channel. We assume two types of FTN signal shaping: the linear FTN classically studied,
and the circular FTN which has the advantage of simplifying the filtering process that can
be performed in the frequency domain. Under these assumptions, we define different cri-
teria of interest: spectral efficiency, energy efficiency through the Peak-to-Average Power
Ratio (PAPR), computational complexity of the reception algorithms. Then we show
that the potential of FTN is higher than the one of Nyquist communications because it
allows the PAPR to be optimized. However, FTN signaling is not currently used because
of the computational complexity required by the reception algorithms for Inter-Symbol
Interference (ISI) processing. Indeed, Minimum Mean-Square-Error (MMSE) filtering ap-
proaches offer substantial gains at low spectral efficiency, but there is a need to switch to
Maximum A Posteriori (MAP) detectors, which are more efficient in terms of error rate
when the ISI is too powerful. However, these MAP approaches require computational
complexity that is prohibitively high for rich constellations. Thus, we are interested in
passing message algorithms to reduce the computational cost of interference processing.
To do so, we propose to use Expectation Propagation (EP) which aims at filtering the
ISI just like MMSE algorithms, while constraining the constellation of symbols. This
constraint is imposed by a processing block called "Constellation Matcher" which is re-
sponsible for realigning the MMSE estimate of the symbols with the known constellation.
Hence, an iterative symbol processing appears between a filter and this Constellation
Matcher block. In order to extend the capabilities of the EP to FTN signals, we propose
different distributions families in which EP messages are exchanged. We study three fam-
ilies that give rise to the time-domain EP processing for the most classical family, the
frequency-domain EP processing subject to the use of the circular shaping of the FTN,
and the Widely Linear (WL) approach which processes separately the I and Q parts of the
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received signal. These different EP receivers for FTN are then used in the multi-criteria
study and we show SNR gains up to 8 dB compared to Nyquist communications, while
limiting the computational complexity. The different types of EP receivers then allow a
trade-off between computational complexity and error rate. The last application frame-
work of this study is the multi-carrier context of the FTN signaling. Given the benefits of
EP approaches for the multi-criteria study, we adapt these algorithms to the multi-carrier
case and show significant gains compared to the literature, but also compared to Nyquist
communications.
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Definitions

Column vectors are represented using lowercase bold letters while matrices are
written with uppercase bold characters. For any vector a with length Na, the scalar
ai, i ∈ [1, Na] corresponds to its ith element and ai:j denotes the subset of a from ai
to aj (i ≤ j). Similarly, the element of a matrix A at position (i, j) is referred by
(A)i,j. Moreover, AT denotes the transpose matrix of A and A† its transpose conjugate.
en ≜ [0 ... 0 1 0 ... 0]T refers to the vector having 1 at position n.

For a multivariate distribution, p(a) represents the joint distribution while p(ai)
stands for the ith marginal distribution. Note that p(ai) can be a probability density
function (pdf) if ai lies in a continuous set A or a probability mass function (pmf) if A
is a discrete set. The expectation operator is defined as Ep[ai] ≜

∑
ai∈A ai · p(ai) if p(ai)

is a pmf or Ep[ai] ≜
∫
ai · p(ai) dai if p(ai) is a pdf. Similarly, the variance operator is

defined as Vp[ai] ≜
∑
a∈A |ai|2 · p(ai) − |Ep[ai]|2 or Vp[ai] ≜

∫
|ai|2 · p(ai) dai − |Ep[ai]|2.

The operator ∝ stands for a proportionality link between two quantities. Furthermore, if
p is the distribution of the random variable ai, and q is an integrable positive function, we
write p(ai) ∝ q(ai) which should be understood as: p(ai) = λ−1

q q(ai) where λq =
∫
q(ai) dai

if A is a continuous set or λq = ∑
ai∈A q(ai) if A is a discrete set.

The set of the Second Order (SO) circular multivariate complex Gaussian distribu-
tions is denoted by NC. An element of NC is a complex multivariate distribution denoted
by NC(s : µ,V) ∝ exp(−(s − µ)†V−1(s − µ)) with mean µ = E[s] and covariance ma-
trix V = V[s]. Moreover, we extend the family NC to form NNC the subset of the SO
non-circular multivariate complex Gaussian distributions with independent real (I) and
imaginary (Q) parts. We denote an element of NNC: NNC(s : µ,VI ,VQ) = NR(sI :
µI ,VI)NR(sQ : µQ,VQ) with the random vectors s = sI + jsQ and µ = µI + jµQ,
sI , sQ,µI ,µQ ∈ RN of N elements, VI represents the covariance matrix of sI , VQ the
covariance matrix of sQ. The function NR(sI : µI ,VI) ∝ exp(−1

2(sI −µI)†V−1
I (sI −µI))

characterizes a Gaussian distribution of a real random variable and similarly for NR(sQ :
µQ,VQ). For the sake of simplicity, we assimilate in the following the circularity of a
random variable to the SO circularity.



Notations

Variables

• Nb: number of information bits

• Nc: number of channel coded bits

• Ns: number of transmitted symbols

• Nv: number of channel paths

• Nw: window semi-length

• R: channel code-rate

• T : orthogonality time of h(t)

• β: excess bandwidth factor of h(t)

• W : bandwidth of h(t)

• τ : FTN time compression factor

• ν: frequency compression parameter

• F : frequency space between two adjacent sub-carriers

• Ω: frequency overlap between the sub-carriers

• Ts: symbol time

• L: truncation parameter of h(t) yielding h(t) = 0 for t /∈ [−LT,LT ]

• Lτ : truncation parameter of h(t) yielding h(t) = 0 for t /∈ [−LτTs, LτTs]

• N−
x
: length of −x

• Nẋ: length of ẋ

• Nx: length of x

• N0: PSD of w(t)

• Nr: length of r



Notations xx

• C: Shannon capacity

• η: achievable spectral efficiency

• ρ: spectral efficiency

• IAPR(θ): backoff ensuring a saturation probability θ for x(t)

• Psat: saturation power of the PA

• Px: average power of x(t)

• Eb: useful bits average energy

• I: number of EP iterations

• Te: sampling-time

Time-continuous Signals

• h(t): shaping filter

• H(f): FT of h(t)

• −
x(t): LCFTN transmitted signal

• ḣ(t): periodized shaping filter with period NsTs

• Ḣ(f): FT of ḣ(t)

• γ(t): unitary low-pass filter

• Γ(f): FT of γ(t)

• ẋ(t): CCFTN transmitted signal

• v(t): propagation channel filter

• V (f): FT of v(t)

• w(t): AWGN noise

• W (f): FT of w(t)

• h′(t): matched filter

• g(t): global filter

• G(f): FT of g(t)

• r(t): received signal



Notations xxi

• p(t): pulse shape of the MFTN model

• pl(t): pulse shape of the MFTN model lth sub-carrier

• P (f): FT of p(t)

• Pl(f): FT of pl(t)

• Γ(f): FT of γ(t)

• ṗ(t): periodized pulse shape of the MFTN model

• ṗl(t): periodized pulse shape of the MFTN model lth sub-carrier

• ẋ(t): transmit signal of the circular MFTN model

• ẍ(t): transmit signal of the doubly-circular MFTN model

• r̈(t): received signal of the doubly-circular MFTN model

Vectors

• b: information bit sequence

• c: channel coded bit sequence

• d: interleaved channel coded bit sequence

• s: transmitted symbol sequence

• sl: lth sub-carrier of s

• s⃗: rotated signal s

• s⃗l: lth sub-carrier of s⃗

• −x: LCFTN transmitted signal

• ẋ: CCFTN transmitted signal

• ŝ: FT of s

• w: filtered and sampled AWGN noise

• r: filtered and sampled received signal

• y: received signal after matched filter and down-sampling

• y⃗: rotated signal y

• y⃗l: lth sub-carrier of y⃗
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• w′: matched filtered noise

• w⃗′: rotated matched filtered noise

• z⃗l: rotated signal y⃗ after IC for ICI

• w⃗: rotated filtered and sampled noise

• ẍ: transmit signal of the doubly-circular MFTN model

• r̈: filtered and sampled received signal of the doubly-circular MFTN model

• dn: sub-vector of d which bits correspond to the nth symbol sn

• ŷ: DFT of y

• ŝ: DFT of s

• ˆ̈x: DFT of ẍ

• La: prior LLRs of the symbol-stage process

• Le: extrinsic LLRs of the symbol-stage process

Matrices

• Π: permutation matrix of the interleaver

• U: up-sampling matrix with a factor 2

• H: convolution matrix of h(t)

• Ḣ: circulant matrix associated to ḣ(t)

• FN : normalized DFT matrix of size (N ×N)

• ˆ̇H: DFT of H

• V: convolution matrix of v(t)

• D: down-sampling matrix

• G: convolution matrix of the aliased Nyquist filter g(t)

• Gl′,l: sub-matrix of G representing the interference of the transmit sub-carrier l to
the received sub-carrier l′

• W: window matrix

• V: channel filter convolution matrix

• P: MFTN pulse shape convolution matrix
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• R: matrix for the symbols rotation

• Σ: MMSE inverse matrix

• P̈: doubly-circular convolution matrix associated to p(t)

• P̈l: doubly-circular convolution matrix associated to pl(t)

• G̈: doubly-circular convolution matrix associated to the global filter g(t)

• G̈l′,l: sub-matrix of G̈ representing the interference of the transmit sub-carrier l to
the received sub-carrier l′

• Σ̂: DFT of Σ

• Ĝ: DFT of G̈

• ˆ̇P: DFT of P̈

Functions & Operators

• C: channel code

• M: digital modulation (same notation as the symbols’ constellation)

• F(·): time-continuous Fourier Transform

• ⋆: convolution product

• δ(t): Dirac delta function

• δ(t): Kronecker delta function

Sets

• F2 = {0, 1}: binary set

• M: symbols’ constellation (same notation as the digital modulation)

• NC: set of Gaussian distributions of circular complex random variables

• NNC: set of Gaussian distributions of SO non-circular complex random variables
without I/Q cross-correlations

• NR: set of Gaussian distributions of real-valued random variables



Introduction

The development of digital communications is in constant progress, pushed by the
user needs and the plurality of their applications. From the first analogical telegraph
system to the actual standards embodied by the 5th generation of mobile communica-
tions, decades of scientific researches gave rise to optimized waveforms for a constrained
environment. The time and frequency domains are more and more exploited requiring
the next solutions to propose higher spectral efficiencies. Moreover, the communicating
devices require a real-time and low complexity processing at receiver with high decod-
ing performance. Finally, the mobility offered by mobile communications comes with
high constraints on the power efficiency. In order to optimize the energy consumption,
waveforms characterized by low Peak-to-Average Power Ratio (PAPR) are favored.

The multi-factorial context yielded H. Nyquist to propose a century ago a type
of signaling which symbol-rate is bounded by the bandwidth occupancy [Nyq24]. For
non-frequency selective channels, this allows an easy processing at receiver and is referred
as Nyquist signaling. Hence, some decades ago in 1973, J. Salz proposed to overcome
such a limitation [Sal73]. This new concept suffers from deterministic and invariant Inter-
Symbol Interference (ISI) at receiver because the symbol-rate is higher than the Nyquist
rate. Nevertheless, J. Mazo proved in 1975 [Maz75] that the induced ISI does not affect
the Bit Error Rate (BER) up to a compression rate of 25 % if it is processed by a
Maximum Likelihood (ML) receiver when using a Binary PSK (BPSK) modulation and
cardinal sine shaping filter. This counter-intuitive and promising result is now referred as
the Mazo bound. Furthermore, this technique taking benefit of the compression factor as
a supplementary freedom degree is named Faster-Than-Nyquist (FTN) signaling.

More recently, Rusek and Anderson [RA09a], as well as Colavolpe [Col11] showed
that for a given performance level, FTN communications achieve higher information rates
than Nyquist ones. Some papers also extended the first results of Mazo to higher constel-
lation orders, other shaping filters and turbo-equalization schemes [PAR08; AR07; LG03]
since their introduction in 1995 [Dou+95b]. The ML receiver minimizing the Frame Er-
ror Rate (FER) with the Viterbi algorithm [Vit67a; For73] has been replaced by the Soft
Output Viterbi Algorithm [HH89], or even by the Bahl Cocke Jelinek Raviv (BCJR) algo-
rithm [Bah+74] which optimizes the symbol-wise Maximum A Posteriori (MAP) criterion
and minimizes the Symbol Error Rate (SER) when considering channel coding. However,
the spectral efficiency increase comes with an exponential complexity growth of such types
of receivers.

Various reception strategies for reducing the state space of the BCJR algorithm
have been proposed: Reduce State BCJR (RS-BCJR), M-BCJR or M*-BCJR [CFR01;
RLP07; Fra+02; FA97; FM76], where M is related to the number of considered states.
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However, these approximations come with Signal-to-Noise Ratio (SNR) loss especially for
high modulation orders. Alternatively, linear Minimum MSE (MMSE) receivers with
Interference Cancellation (IC) have been studied, in time domain [JY04; Yu+14] to
tackle the equalization problem while considering prior information. Frequency-Domain
(FD) equalization operating with a lower-complexity has also been studied in [Sug13] and
[TPB16] which developed a Circularly Convolved FTN (CCFTN) for avoiding any cyclic
prefix by performing a circular shaping filtering at the transmitter. While being less com-
plex than MAP based receivers, MMSE based receivers also offer poor performance when
increasing the spectral efficiency due to their lack of knowledge about the constellation.

In order to combine the benefits of both the MAP and MMSE receivers, more recent
studies propose iterative algorithms based on the concept of turbo-equalization. Instead
of solving the joint problem of symbol processing and bit decoding, the groundbreak-
ing paper [Dou+95b] separates this process in two sub-processes exchanging information
iteratively. On a similar way, other works apply the emerging technique of Expectation
Propagation (EP) [MP01] to ISI processing. Indeed, the concept of EP can be employed to
approximate optimal MAP receivers by assuming Gaussianly distributed symbol informa-
tion. It yields a low complexity iterative receiver [SA11] called EP-MMSE by [SMFO15;
San+18], recently enhanced by the EP-MMSE-DFE of [Şa+18]. The EP concept can
be illustrated as a message passing algorithm using a factor graph formalism [KFL01;
Şa+18]. Nevertheless, most of available EP receivers have been developed in a context of
Nyquist signaling with frequency selective channels and then are not directly suitable for
FTN signaling. The use of EP algorithm for FTN signaling in turbo-equalization has been
proposed in [Wu+17] but they only use it for approximating the prior information from
the decoder which amounts to performing a classical turbo-equalization scheme operating
with a MMSE equalizer [TSK02].

Finally, by increasing the communication data rate, the propagation channels be-
come more and more frequency selective. In order to tackle this problem, actual stan-
dards make use of multi-carrier signaling for by-passing a complex equalization. This led
us to extend the previous results, by building a new doubly-circular Multi-Carrier FTN
(MFTN) model allowing a low-complexity processing at reception. From this formalism,
we adapted the concept of EP to estimate and mitigate the induced interference, composed
of ISI as well as Inter-Carrier Interference (ICI) coming from adjacent sub-carriers. The
proposed transceiver is able to target very high spectral efficiencies with MFTN signal-
ing. Its performance are finally compared to single-carrier FTN signaling and orthogonal
schemes in the presence of a multipaths propogation channel.

Beyond the spectral efficiency increase, some studies take advantage of the perfect
ISI knowledge from the receiver and apply precoding at the transmitter’s level to FTN
signaling [Cha+15; Jan+17; Wan+17]. However, this is known to damage the transmitted
signal’s spectral containment while increasing the PAPR, which yet can be lowered by
non-precoded FTN signaling [Le+14; Luc+16; Pet+18]. Moreover, the compression factor
of FTN signaling can also be used to lower the PAPR of Nyquist signaling [Luc+16].
Nevertheless, few multi-criteria studies taking into account both transmitter and receiver
constraints exist in the literature. For this reason, we propose to evaluate the overall
benefit of FTN signaling with a metric presented in the thesis.
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This thesis is organized as follows. Chapter I is dedicated to a brief historical re-
minder until nowadays leading FTN signaling to be a trendy topic of research. First, we
present how H. Nyquist developed a criteria allowing a low-complexity receiver deprived
of ISI when considering an Additive White Gaussian Noise (AWGN) channel. Very soon,
J. Mazo proved that such a criteria limits the spectral efficiency [Maz75] and he proposed
to use the FTN in the 70’s. Hence, various receiver strategies have been considered in or-
der to propose realistic ISI processing algorithm in terms of computational complexity. In
chapter II we present the main single-carrier FTN receivers of the literature, after recalling
the mathematical system model of FTN signaling. Despite the numerous papers about
FTN receivers which performance are mainly evaluated through one particular criterion
(FER, BER, PAPR...), we still do not know whether, for a given high spectral efficiency
and a reasonable complexity, it always exists a combination of FTN parameters (com-
pression factor, shaping filter, constellation) achieving a lower error rate than its Nyquist
counterpart. Consequently, the question raised by the interest of FTN signaling operat-
ing with reasonable complexity receivers and achieving high spectral efficiencies without
increasing the PAPR and maintaining good spectral containment is still open [ARO13].
In other words, FTN signaling has not been yet attested to be a serious candidate for
future waveforms [AMJ14] compared to Nyquist signaling. This multi-criteria analysis
of single-carrier FTN signaling is conducted in chapter III. Then, we propose to fill the
previously mentioned gap by showing that for high spectral efficiency and under complex-
ity constraints, FTN signaling may still be better than Nyquist communications. The
solution we propose involves the emerging technique of EP which is presented in chapter
IV. Finally, this technique is extended in chapter V to a multi-carrier context, after devel-
oping a new doubly-circular MFTN system model allowing a low-complexity processing
at reception. The proposed single-carrier and multi-carrier are finally evaluated through
a multi-criteria comparison in the presence of a multipaths propagation channel.
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The 19th was a phase of industrialization and saw the Technological Revolution
which carried on until the early 20th century. It is marked in the occidental countries
by the development of standardization, a growing population, the globalized production
pushed by the means of transportation, but also the first telecommunication technologies.
These progresses were allowed by a change of paradigm, we acknowledged that Science
serves the technological progress. Pushed by those developments, and following the World
War I of the early 20th century, we understood that rapid exchange of information is
furthermore essential for succeeding against the enemy. We did not mistake given the
crucial role played by Enigma some years later. In this context, the Bell Telephone
Laboratories are founded in 1925 where H. Nyquist, among others, was able to develop
the first theoretical concepts of Telegraph signaling.

A Nyquist Signaling

The first point of interest of Nyquist, was to increase the rate of information (called
intelligence before the paper [Har28] of Hartley who introduced the Information Theory
in 1928) by means of coding and signal shaping. From this consideration, he suggested
to use shaping filters rectangular in the time-domain for Telegram transmissions in 1924
[Nyq24]. Indeed, he highlights that such a simple filter does not induce interference,
adversely to any arbitrary band-limited filter. The cardinal sine Power Spectral Density
(PSD) of such a rectangular filter constitutes a drawback for a wireless communication
in terms of bandwidth containment. Consequently, its paper illustrates for the first time
the adversity between quantity of interference, and frequency occupancy: "the greatest
amount of currents of higher frequencies [...], the poorest from the standpoint of interfer-
ence" [Nyq24]. Note that, in this paper, the notion of interference is not the same as the
ISI for two reasons:

1. Nyquist does not consider any matched filter at receiver,

2. he defines as an interference the overlapping area between two successive shaped
symbols instead of considering the sampled filter coefficients at the symbol-time.

The idea of the spectral efficiency maximization, i.e. bandwidth reduction and data rate
increase, remains today a special area of interest and constitutes the first elements of our
multi-criteria analysis.

Some years later in 1928, Nyquist went much further by introducing multiple as-
pects of a communication described hereafter [Nyq28]. First, he mentioned the idea
of practical implementation for equalization: "While signal shaping and equalizing are
equivalent it does not follow that they are equally practicable" [Nyq28]. At that time,
the communication technologies were mainly composed of analog processing which is ob-
viously not the case nowadays. However, the idea of practicable implementation remains
an actual constraint and is now limited by the computational complexity of the processes
which constitutes the second criterion of our analysis.
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Secondly, Nyquist defined precisely the concept of interference: the term inter-
symbol interference was already introduced but Nyquist preferred naming it character-
istic interference. He also noted that such an undesirable term in the communication
is "closely related to characteristic distortion", where the characteristic distortion stands
for an uncorrelated noise coming from the electronic components today modeled by an
AWGN.

Then, Nyquist introduced the sampling operation and the importance of limiting
numerically the interference only for the signal sampled at the symbol-time: "No notice
will be taken of the wave at any other point in the time unit, and consequently defor-
mations of the wave at other points will not matter". This important concept in fact
relaxes the problem of limiting the interference corresponding to the ISI. Indeed, the only
optimal solution for limiting the interference while maximizing the information rate was,
before that, to use a rectangle filter. After this finding, we moved to a whole filter family
satisfying this criterion named the Nyquist filters.

Finally, always in the same paper [Nyq28], Nyquist defined what is called today the
Nyquist frequency, corresponding to the half of the signaling speed under the constraint
of limiting the ISI: "a frequency range numerically equal to the speed of signaling is
necessary". He proved that the data rate increases proportionally with the bandwidth
occupancy.

Consequently, Nyquist proposed to maximize the received signal’s power after
matched filter and down-sampling. He also showed the necessity of using the Nyquist
filters in order to limit the ISI mainly because of the inability of performing an analog
equalization. Actually, such a reason does not hold anymore and the technique of FTN
signaling could arise.

B Genesis of Faster-Than-Nyquist signaling

The concept of FTN signaling has first been published in a short letter by Donald
W. Tufts in 1968 [Tuf68] who mentioned the idea of transmitting "any finite number of
data elements at rates faster than the Nyquist rate". Such a suggestion has never been
explored until a pessimistic paper published by J. Salz in 1973 [Sal73].

B.1 Nyquist signaling for MSE minimization

The previously mentioned paper [Sal73] showed that Nyquist signaling offers always
better performance in terms of Mean-Square Error (MSE) compared to FTN signaling
at fixed spectral efficiency with Pulse-Amplitude Modulation (PAM) constellations over
an AWGN channel, even when considering Decision Feedback Equalization (DFE) with
perfect decisions. Note that no channel coding was introduced in the waveform and
these results can be easily extended to any Quadrature Amplitude Modulation (QAM)
constellations. Hence, this study gave a preliminary negative answer about the interest of
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FTN signaling because, at that time, most of the considered reception techniques where
performed with MMSE-based strategies which perform filtering operations with a limited
complexity. Consequently, Salz demonstrated mathematically the interest of the Nyquist
criterion: it optimizes the MSE at fixed spectral efficiency. However, as its name suggests,
the MSE does not consider the estimate distributions, i.e. the symbols constellation.

While J. Salz conducted a study based on MSE optimization, a new algorithm
developed by A. Viterbi in 1967 [Vit67b] allowed new types of estimation problems to
be handled with limited computational complexities. Indeed, A. Viterbi developed an
algorithm which reduces the set of sequences to explore when solving a ML estimation.
To do so, the proposed solution takes benefit of the finite memory length of the filter
applied to the symbols. Such a ML problem is detailed in [For73] and amounts to evaluate
the more likely sequence from the observation signal. Consequently and conversely to the
MMSE criterion, the ML strategy takes into account the symbols constellation. In order
to apply the Viterbi algorithm, an element of the signal of interest needs to be formed
by a combination of its neighboring elements. Hence, the convolution effect of a Nyquist
filter at a rate higher than the Nyquist rate falls within the scope of this algorithm.

B.2 The Mazo bound

The introduction of the Viterbi algorithm shed a new light on ML problems and G.
Forney saw its potential for signals suffering from ISI [For72] in 1972, closely followed by G.
Ungerboeck [Ung74] in 1974. More precisely, G. Forney and G. Ungerboeck proposed two
different theoretical approaches yielding distinct implementations with similar complexity
and same performance. However, these two types of ML receivers are not equivalent
anymore when developing sub-optimal ML-based receivers [RLP07; RCS15], as detailed
in Sec. B.

In this context, J. E. Mazo in 1975 [Maz75] introduced the term of FTN signaling
and demonstrated the first unexpected and optimistic result of this technique. Indeed, he
showed that compressing the symbol-time by a factor down to τ = 0.802 does not reduce
the minimum inter-sequence distance when considering a BPSK constellation with a time-
domain cardinal sine Nyquist filter. In other words, the resulting FTN signal increases
the spectral efficiency by τ−1 − 1 ≈ 25% without damaging the error rate, if the ISI is
handled by a Viterbi algorithm in a channel with high SNR. This counter-intuitive result
gave a particular place to FTN signaling and the factor τ = 0.802 was named the "Mazo
bound". Nevertheless, almost fifteen years of silence on the FTN technique followed this
conceptual starting point.

Later on, some studies tried to mathematically compute and extend the Mazo
bound to other constellations such as D. Hajela [Haj90] in 1990 and to other filters as
C.K. Wang [CL91] in 1995. Indeed, the cardinal sine filter is not usable for practical
implementations as it comes with an infinite PAPR. But the difficulty of this problem
and the required computational complexity of the receiver did not allow any performance
simulations until 2003 [LG03]. These first operational results have been enabled by turbo
reception techniques developed in 1995 and approaching the Shannon capacity.
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C Shannon Capacity & Turbo receivers

Following the technical works of Nyquist and theoretical studies of H. Hartley on
Information Theory, C. Shannon proposed a general formalism under a theory of com-
munication in 1948 [Sha48]. This new subject area gathers mathematics for measuring,
electronic for operational systems and statistics to anticipate every situation. In its study,
C. Shannon formalized the conception of a communication system. Moreover, he detailed
and exploited the concept of Entropy as a measure of information before introducing the
notion of Capacity which measures the maximum achievable information rate when com-
municating over a noisy channel. However, this theoretical bound remained unreachable
in practice during decades because it assumes a Gaussian distribution of the symbols.

Simultaneously to the theoretical studies for FTN signaling, a research team com-
posed of C. Berrou, A. Glavieux and P. Thitimajshima proposed an unprecedented method
for channel coding and decoding [BGT93]. This new class of codes are named Turbo-Codes
and approach the Shannon Capacity for the first time. At reception, a turbo-decoder is
based on an iterative exchange of information between two decoders, each taking benefit
of different coded bits. This principle of iterative information exchange has then been
applied to channel equalization two years later [Dou+95a] by C. Douillard, M Jézéquel,
C. Berrou, A. Picart, P. Didier and A. Glavieux. Those major findings allowed a joint
decoding and channel equalization under computational complexity constraints. They
had a major impact on the field of digital communications, and also renewed the interest
of FTN signaling.

D Practical benefits of FTN systems

Compared to Nyquist signaling, the FTN technique offers the compression factor
τ as a supplementary degree of freedom for a waveform design. Hence, we can wonder if
this supplementary setting allows practical benefits for operational communications.

D. Liveris proposed the first performance simulations of a FTN signaling commu-
nication with Raised-Cosine (RC) filters and a BPSK modulation [LG03]. To do so, he
assumed both uncoded and channel coded schemes. The ISI is processed by a Viterbi-
based algorithm with soft output for channel coding, combined with an iterative decoder.
He pointed out the complexity of this reception technique, and confirmed the theoretical
studies previously lead by J. Mazo.

On the following chapter, we present the mathematical derivation and a state of
the art of single-carrier FTN signaling. We recall the background yielding Linear MMSE
and BCJR algorithms developed to process the ISI of FTN signaling [TSK02; Bah+74;
Rus07]. Moreover, sub-optimal receivers of the literature able to achieve higher spectral
efficiencies are also presented before proposing new receivers dedicated to FTN signaling.
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C Π M h(t)b c d s x(t)

Figure II.1: System model of a FTN transmitter

This chapter presents a state-of-the-art of ISI processing for single-carrier FTN
signaling. A FTN system model is presented in Sec. A assuming two types of FTN
signaling with different properties. The characteristic of FTN holds in the introduction
of the time compression factor τ applied to the symbol-time. This compression allows
increasing the symbol-rate without changing the communication bandwidth of Nyquist
signaling. Sec. B shows that the side-effect of the time compression factor is to generate
ISI after matched-filtering and down-sampling. In order to address this issue, an iterative
joint decoding and equalization process is considered at the receiver. For the symbol-stage
processing, BCJR-based as well as MMSE-based strategies are detailed, offering different
error rate and complexity trade-offs.

A System model

This section is devoted to the mathematical definition of a baseband FTN com-
munication. A channel code is supposed in sub-Sec. A.1 and two ways of performing the
FTN modulation are presented. Those two methods are referred to as Linearly Convolved
FTN (LCFTN) in sub-Sec. A.3 for the linear convolution of the symbol sequence with
the shaping filter, while CCFTN in sub-Sec. A.4 operates a frequency-domain circular
convolution. A comparison between the two types of FTN signaling is then conducted in
sub-Sec. A.5, before introducing the AWGN channel model in sub-Sec. A.6.

A.1 Bit stream processing

We suppose a general communication chain in which the transmitter depicted in
Fig. II.1 generates Nb information bits stored in the random vector b = [b1, b2, ..., bNb

]T .
The elements of b are supposed to be independant and identically distributed (iid) as well
as uniformly distributed within the field F2 = {0, 1}. If considering any channel code C
with associated rate R, then the resulting coded bits are given by c = C(b) composed of
Nc = NbR

−1 elements. Those bits are interleaved with a permutation matrix Π resulting
in the interleaved coded bits d = Πc.

The resulting random bits are then mapped into a complex constellation M. To
do so, we define the linear modulation forming one complex symbol from each group of
log2 |M| bits. Hence, the resulting random symbol vector s = [s1, s2, ..., sNs ]T =M(d) is
composed of Ns = Nc

log2 |M| elements. In the following, we will assume a normalized and
centered constellation yielding E[sn] = 0 and E|sn|2 = 1 and we denote Eb the useful bit
energy.
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A.2 The Nyquist criterion

In order to control the spectrum of the communication, the symbol sequence is
convolved with a continuous-time shaping filter h(t). This filter is supposed to be a
square-root-Nyquist filter, as it ensures the following time-domain Nyquist criterion:

∃T > 0 : g(t)
∑
n∈Z

δ(t− nT ) = g(0)δ(t) (II.1)

where δ(t) is the Dirac delta function, g(t) = (h ⋆ h′)(t) is called the Nyquist filter with
h′(t) = h∗(−t) the matched filter. The smallest T value satisfying the criteria of (II.1) is
named the orthogonality time associated to the filter g(t) (or h(t)). From (II.1), one can
derive the equivalent frequency-domain Nyquist condition expressed as follows:

∃T > 0 :
∑
k∈Z

G

(
f − k

T

)
= g(0)T (II.2)

where G(f) = F(g(t)) = |H(f)|2 is the Fourier Transform (FT) of the filter g(t) and
H(f) is the FT of h(t).

A direct consequence of (II.2) is that the bandwidth of a Nyquist communication
for a band-limited filter g(t) is necessarily equal or wider than the symbol-rate T−1. Hence,
the draw-back of the Nyquist criterion is to limit the achievable information rate Db in
bits/s as we have: Db ≤ log2 |M|W . From this observation, we call rolloff or excess
bandwidth the factor denoted by β ≥ 0 satisfying β = TW − 1. In this thesis, we restrict
the Nyquist filters family to the symmetric and real filters whose excess bandwidth factor
is limited as follows: β ∈ [0, 1]. Furthermore, for β = 0 the filter h(t) as well as g(t)
coincide to a cardinal sine. In this particular case, one can show that the inverse of the
orthogonality time of a Nyquist filter g(t) also corresponds to its -3 dB bandwidth. For
the particular case of a cardinal sine filter RC(0), T−1 represents the full bandwidth. An
illustration of the considered RC Nyquist filters is depicted in Fig. II.2 in time domain
and Fig. II.3 in frequency domain. In the following we consider that h(t) is normalized,
i.e.

∫
|H(f)|2 df = g(0) = 1.

The different rolloff filters are useful when designing a communication. At fixed
symbol-rate, while filters with low rolloff limit the spectral occupation, filters with high
rolloff are more tolerant to a timing synchronization offset and can be preferred to mini-
mize the PAPR. Whichever the rolloff is, we present two different approaches for shaping
the symbols by the filter h(t): the Linearly and Circularly Convolved FTN, denoted re-
spectively by LCFTN and CCFTN. While LCFTN is generally used in the literature, we
show in the following chapters some benefits brought by CCFTN for frequency-domain
receiver processing. Hence, both the filtering methods are detailed hereafter.
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A.3 Linearly Convolved Faster-Than-Nyquist

The filtering operation of the symbols composing the vector s is generally performed
by a linear convolution [Maz75]. We propose to call this model LCFTN. Hence, the
continuous-time transmitted signal is given by:

−
x(t) =

Ns−1∑
n=0

sn+1h(t− nTs) (II.3)

where Ts = τT represents the symbol duration, and τ ∈ (0, 1] is the FTN time compression
factor. For τ = 1, the Nyquist criterion (II.1) or (II.2) is ensured and the reception is not
affected by ISI if correctly processed (see sub-Sec. B.1).

We propose to represent equivalently the signal −
x(t) over the bandwidth W with

a discrete-time formalism. To do so, we assume that:

1. the bandwidth of −
x(t) coincide with the bandwidth of h(t)1.

2. the time support of −
x(t) is limited.

The first assumption comes from the Nyquist-Shannon sampling theorem giving
that we need to represent −

x(t) with a sampling-rate equal or wider than W . One can
verify that an over-sampling rate of 2 yielding a sampling-time of Ts

2 meets this condition
∀β ∈ [0, 1] and ∀τ ∈ (0, 1] as we have:

2
Ts
≥ W ⇐⇒ τ(1 + β) ≤ 2 (II.4)

The second assumption can be satisfied if the shaping filter is a Finite Impulse
Response (FIR) filter as proposed by [Tra16], i.e. ∃L > 0 : h(t) = 0 for t /∈ [−LT,LT ]
or t /∈ [−LτTs, LτTs] where Lτ = L

τ
. However, we generally use root-RC (rRC) filters

which concentrate most of their energy around t = 0 (see Fig. II.2). In practice, they
are truncated for some L > 0, but this can damage the spectral bandwidth occupancy
especially for low values of L and β. Fig. II.4 shows this effect in terms of out-of-band
energy when truncating a rRC filter. Filters with low rolloff values require long impulse
response coming with high memory usage and latency. As an example, the DVB-S2X
standard for satellite communications implements rolloff factors down to β = 0.05 [ETS].
This strong constraint could be relaxed by means of FTN signaling at the price of ISI to
process at reception [Luc+16].

Hence, the signal −
x(t) defined in (II.3) is equivalent to the discrete signal −x =

[−x1,
−
x2, ...,

−
xNx ]T where N−

x
= 2(Ns + Lτ ) and −

xi = −
x
(
(i− 1− 2Lτ )Ts

2

)
. It is important

that Lτ depends on τ in order to ensure that the time support of h(t) remains the same
1This hypothesis tends to be true for large values of Ns and iid symbols
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Figure II.4: Out-of-band energy ratio against the truncation setting for RC filters

regardless of the value of τ . With a matrix formalism, we have:

−x = HUs (II.5)

where U represents the (2Ns ×Ns) up-sampling matrix by a factor 2 defined as:

U =



1 0 0 . . . 0

0 0 0 . . . 0

0 1 0 . . . 0

0 0 0 . . . 0
... ... ...

0 0 0 . . . 0

0 0 0 . . . 1

0 0 0 . . . 0



(II.6)

yielding Us = [s1, 0, s2, 0, ..., sNs , 0] and H is the (N−
x
×2Ns) convolution matrix associated
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to the filter h(t) sampled at time Ts

2 :

H =



h(LτTs) 0 . . . . . . . . . . . . 0

h(LτTs − Ts

2 ) h(LτTs) 0 . . . . . . . . . 0
... . . . 0 . . . . . . 0

h(−LτTs) h(−LτTs + Ts

2 ) . . . h(LτTs) 0 . . . 0

0 h(−LτTs)
. . . . . . 0

0 0 . . . . . . 0

0 . . . . . . . . . h(LτTs)
... . . . . . . . . . . . . ...

0 . . . . . . . . . 0 h(−LτTs) h(−LτTs + Ts

2 )

0 . . . . . . . . . 0 0 h(−LτTs)


(II.7)

The matrix H is rectangular and Toeplitz. In the following, we will use equivalently (II.3)
and (II.5) for referring to the LCFTN transmitted signal.

Fig. II.5 and Fig. II.6 depict the signals considering a BPSK modulation and a
Nyquist filter RC(0.5) for both Nyquist and FTN signaling. The colored signals corre-
sponds the different filters associated to each symbol. The main problematic about FTN
signaling appears clearly: for a given communication bandwidth fixed by the filter, the
FTN signal offers a higher data-rate. However, this potential interest of the FTN tech-
nique has to be balanced: at reception, the signal suffers from ISI after matched-filter.
This ISI has to be handled by a receiver strategy as presented in Sec. B.

A.4 Circularly Convolved Faster-Than-Nyquist

A different way of filtering the symbols has been proposed in [TPB16] referred as
CCFTN. It consists in performing a circular convolution between the symbol sequence s
and the filter h(t). A circular convolution is obtained by convolving two functions, after
periodizing them. It results in a periodic function, but we keep only one period being
the useful information we transmit and the period length is chosen to be the sequence
length NsTs. Such a convolution of periodized signals can equivalently be performed
in the frequency domain by multiplying the discrete signals’ spectra. In that case, the
frequency discretization step corresponds to the inverse period 1

NsTs
. We first present

the time-domain circular convolution using continuous-time signals, before presenting the
equivalent discrete frequency approach with a matrix formalism.

We define the periodized filter ḣ(t) for transmitting a sequence of Ns symbols as
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follows:

ḣ(t) =
∑
m∈Z

h(t−mNsTs) (II.8)

The filter ḣ(t) is then periodic with period the sequence duration NsTs. Note that (II.8)
can be written in the frequency-domain to show that h(t) and ḣ(t) share the same Fourier
coefficients at frequencies { m

NsTs
}m∈Z, up to a scaling factor, as we have:

Ḣ(f) = 1
NsTs

∑
m∈Z

H
(

m

NsTs

)
δ
(
f − m

NsTs

)
(II.9)

where Ḣ(f) corresponds to the FT of ḣ(t). In order to use a matrix formalism, we define
the (2Ns × 2Ns) convolution matrix Ḣ representing a period of ḣ(t) at a sampling-time
Ts

2 . Such a matrix is expressed by:

(Ḣ)a,b = ḣ
(

(b− a)Ts2

)
(II.10)

where a, b ∈ J1, 2NsK. Moreover, shifting by any c ∈ Z the two indices (a, b) does not
change the value of the matrix element with shifted indices (modulo the matrix size 2Ns).
Indeed, defining a′ = [(a+ c− 1) mod 2Ns] + 1 and b′ = [(b+ c− 1) mod 2Ns] + 1, we
have:

(Ḣ)a′,b′ = ḣ
(

([(b+ c− 1) mod 2Ns]− [(a+ c− 1) mod 2Ns])
Ts
2

)
= ḣ

(
((b+ c− 1)− (a+ c− 1))Ts2

)
= (Ḣ)a,b

where the second equality is due to the NsTs-periodicity of ḣ(t). Hence, (Ḣ)a,b is invariant
by shifting the indices modulo 2Ns, proving that Ḣ is not only Toeplitz but also circulant.
This is in fact a direct consequence of the circular convolution.

The filtering operation is then applied to the symbol sequence at the sampling-rate
to form the discrete-time transmitted sequence ẋ:

ẋ = ḢUs (II.11)

However, it is possible to lower the computational complexity of ẋ using the Discrete FT
(DFT). To do so, we define the unitary (N ×N) DFT Matrix FN as follows:

(FN)a,b = 1√
N

e−j2π (a−1)(b−1)
N ∀a, b ∈ J1, NK (II.12)

The vectors composing FN are known to form a basis diagonalizing any circulant matrix.
Hence, we rewrite the CCFTN transmitted sequence as follows:

ẋ = F†
2Ns

ˆ̇Hŝ′ (II.13)



Chapter II – Single-Carrier Faster-Than-Nyquist Signaling 20

having ˆ̇H = F2NsḢF†
2Ns

the DFT of Ḣ. The matrix Ḣ being circulant, ˆ̇H is then diagonal
and can be expressed as: ( ˆ̇H)a,a = H

(
T−1
s

(
1 + a−1

Ns
mod 2

)
− T−1

s

)
, and ŝ′ = F2NsUs.

The vector s′ is the DFT of the up-sampled sequence by a factor 2. From the FT prop-
erties, we know that such a the time-domain up-sampling is equivalent to a frequency-
domain duplication. More precisely, we note ŝ = FNss the DFT of the symbol sequence
s and we have:

ŝ′ = F2NsUs =

ŝ

ŝ

 (II.14)

Hence, the computation complexity of ŝ reduces to O(Ns log2 Ns) the complexity of a
Ns-long DFT.

The computational complexity benefits come from two tricks:

• the application of FN or F†
N to a vector or a circulant matrix can be performed in

O(N log(N)) using the Fast FT (FFT) algorithm,

• the product ˆ̇Hŝ′ in (II.13) can be performed in O(Ns) because ˆ̇H is diagonal.

Consequently, the sequence ẋ can be efficiently computed with a complexityO(Ns log(Ns))
using the definition of (II.13).

Finally, we need to form a continuous-time vector ẋ(t) from the discrete sequence ẋ.
The frequency spectrum of these two signals are required to coincide over the bandwidth
2
Ts

. Hence, we use an ideal and unitary low-pass filter γ(t) which FT is defined as follows:

Γ(f) =


Ts

2 if f ∈ [− 1
Ts

; 1
Ts

]

0 else
(II.15)

and we obtain the continuous-time transmitted signal:

ẋ(t) =
2Ns−1∑
m=0

ẋm+1Γ
(
t−mTs

2

)
(II.16)

=
Ns−1∑
n=0

sm+1ḣ(t−mTs) (II.17)

where the (m+1) component of ẋ satisfies ẋm+1 = ẋ
(
mTs

2

)
. Note that any low-pass filter

which replicas frequency shifted by 2m
Ts
,m ∈ Z form an orthonormal basis could have been

used instead of γ(t). The candidate filters for γ(t) coincide with the Nyquist filters with
orthogonality time 2

Ts
.
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Figure II.7: Nyquist filters of LFTN signaling with τ = 0.8 and β = 0.5

−4 −2 0 2 4 6 8 10 12 14−0.2

0

0.2

0.4

0.6

0.8

1

Time (Ts)

M
ag

ni
tu

de

Figure II.8: Nyquist filters of CCFTN signaling with τ = 0.8 and β = 0.5
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Figure II.9: Transmitted signals in a frame of Ns = 100 symbols considering a BPSK
modulation shaped with a cardinal sine filter and τ = 0.3

A.5 Comparison between LCFTN and CCFTN

Fig. II.7 and Fig. II.8 show a comparison between LCFTN and CCFTN filters
associated to Ns = 10 symbols for τ = 0.8. For CCFTN, dotted lines stand for the
periodic shaping filters, while plain lines corresponds to filters on the time support of
interest. Regarding the ISI, the firsts and lasts symbols of the CCFTN signal defined
in (II.16) strongly interfere because of the filters replicas, as if they were neighboring
symbols. However, apart from the transmitted signal edges, the transmitted signal using
CCFTN coincide with the LCFTN technique. This difference is illustrated in Fig. II.9
where we show that CCFTN offers latency savings as well as a spectral efficiency gains
because the time support of the transmitted signal is smaller. However, this benefit comes
at the price of spectrum damages due to the strong transitions at the beginning and the
ending CCFTN frame. In practice, these transitions can be smoothened by windowing.

On the computational complexity side, CCFTN offers some advantages because the
filtering can be applied in the frequency-domain without approximation. In addition to the
computational complexity aspects, the interest of CCFTN lies in the circulant structure of
ˆ̇H which can be exploited by FD-based receiver processing for example. A similar result
can be obtained by adding a cyclic prefix to the LCFTN waveform as in [Sug13] in the
same way as Orthogonal Frequency-Division Multiplexing (OFDM). However, this cyclic
prefix damages the spectral efficiency and CCFTN should be preferred.

In the following, we note x(t), x and Nx standing for either −
x(t), −x and N−

x
when

considering LCFTN, or ẋ(t), ẋ and Nẋ = 2Ns for CCFTN signaling. Moreover, we will
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use the general term of FTN signaling for either LCFTN or CCFTN signaling.

A.6 Ideal model of a wireless communication propagation chan-
nel

In this thesis, we focus on propagation channels supposed to be time-invariant
compared to a sequence duration. In the following and up to the end of Chap. IV, we
suppose an ideal AWGN propagation channel without multipath. This model considers
a random noise gathering some undesired impacts of the analog components involved in
the communication. This AWGN component denoted by w(t) is supposed to be complex,
circular and centered with PSD E|W (f)|2 = N0 where W (f) is the FT of w(t).

The received signal after the channel model is then defined as follows:

r(t) = x(t) + w(t) (II.18)

We can also use a matrix formalism equivalent to the definition of r(t) over the communi-
cation time and frequency supports. To do so, we define the discrete-time received vector
r = [r1, r2, ..., rNr ]T where rm = (r ⋆ γ)

(
mTs

2

)
yielding:

r = x + w (II.19)

where w = [w1, w2, ..., wNr ]T having wm = (w ⋆ γ)
(
mTs

2

)
and Nr = Nx. The filter γ(t)

applied to r(t) is used to preserve the noise whiteness and energy over the communication
bandwidth. Moreover, one can show that a noise component of the vector w follows
wm ∼ NC(0, σ2

w) where σ2
w = N0 and we have E[wmw∗

m′ ] = 0 if m ̸= m′. This noise
damages the transmitted signal, and the vector r has to be properly processed to retrieve
the information as presented in next section.

B Introduction to different demodulation strategies

The main contributions in the literature of FTN signaling focus on the receiver. In-
deed, Nyquist signaling avoids ISI at reception after matched-filtering and down-sampling
at time Ts = T but FTN does not benefit from this advantage as presented in sub-Sec
B.1. Another difficulty comes from the sampled noise after matched-filtering which looses
its whiteness. In order to overcome these issues, different strategies are considered in the
following sub-sections.

B.1 Nyquist receiver applied to FTN

The optimal symbol-level Nyquist receiver consists in different operations depicted
in Fig. II.10. The first one is the filtering process by the matched-filter h′(t) which aims
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h∗(−t)
Ts

r(t) y

Figure II.10: Nyquist receiver

at maximizing the SNR after down-sampling. This filter is followed by a down-sampling
operation at the symbol-rate before estimating the symbols. Hence, the resulting sequence
y = [y1, y2, ..., yNs ]T where yn+1 = (h′ ⋆ r ⋆ γ)(nTs) is defined as follows:

y = DH†r (II.20)

where H† is the convolution matrix associated to the matched-filter h′(t) and D = U† is
the (Ns × 2Ns) down-sampling matrix by a factor 2. Consequently, we have:

y = Gs + w′ (II.21)

where w′ = DH†w is the down-sampled matched-filtered noise defined by w′
n+1 = (h′ ⋆

w ⋆ γ)(nTs) and we have:
G = DH†HU (II.22)

represents the (Ns ×Ns) convolution matrix of the sampled Nyquist filter g(t) expressed
as (G)a,b = g ((b− a)Ts).

In the particular case of Nyquist signaling, we notice that G = INs because
g(nTs) = δn with δn the Kronecker delta function. Moreover, the down-sampled noise w′

in the signal y remains white and its PSD Γw′(f) is expressed as follows:

Γw′(f) = N0

Ts

∑
k∈Z

G

(
f − k

Ts

)
(II.23)

= N0 only for τ = 1 (II.24)

Hence, if no channel coding is considered, the optimal Nyquist receiver returning the
estimated symbols ŝ = [ŝ1, ŝ2, ..., ŝNs ]T is the following:

ŝn = argmin
sn∈M

|yn − sn|2 (II.25)

However, if considering FTN signaling, an element yn of the signal y can be decomposed
as follows:

yn = sn +
Ns∑
m=1
m̸=n

g ((m− n)Ts) sm + w′
n (II.26)

where the term ∑Ns
m=1
m ̸=n

g ((m− n)Ts) sm is called the ISI and the noise term w′
n is no longer

white as expressed in (II.23) and depicted in Fig. II.6. Moreover, the interference power
contained in the signal y does not change much for LCFTN or CCFTN. This is depicted
in Fig. II.11. Indeed, the ISI contribution is the same unless at the edges of the signal y.
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Figure II.11: Interference power against the symbol position within the frame of Ns = 100
symbols considering a BPSK modulation shaped by a RC(β = 0.3) filter and τ = 0.1

The first (resp. last) symbol of LCFTN signaling is only subject to future (resp. past)
ISI and then it is corrupted by a twice less powerful interference. For large frames, the
two types of FTN signaling are almost equivalently interfered.

Consequently, the correlation of w′
n and the ISI term are not addressed by the

Nyquist estimator (II.25). Hence, specific strategies have been developed as detailed in
the following.

B.2 Iterative joint equalization and decoding for bit-wise MAP
estimation

Since the encouraging work of J. Mazo [Maz75; ML88] represented in Fig. II.12 for
uncoded communications, FTN signaling has been considered as a candidate waveform
for future communication standards [CL91]. Different rolloff values and constellations
have also been explored [LG03; Rus07]. By extension, for a given rolloff β, we call the
Mazo bound the lowest value of τ yielding no SNR loss when the ISI is processed by a
MAP receiver. In the following, we focus on block estimations meaning that we suppose
the whole received signal r to be known as well as the noise PSD N0 which needs to be
estimated in practical implementations. Moreover, the modulation, the shaping filter and
any kind of waveforms parameters are also supposed to be known.
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Figure II.12: The Mazo bound: FTN signaling achieves a 25% higher spectral efficiency
without BER loss at high SNR with BPSK symbols shaped with a RC(0) filter processed
by a ML receiver
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MAP receiver M−1 Π−1 C−1

ΠM

y ∀n : p(sn|r) b̂

∀n : p(sn)

Figure II.13: Turbo-equalization receiver

In order to make the communication reliable, channel coding is generally considered
with FTN signaling [Rus07; PAR08; PA12]. Hence, a joint equalization and decoding re-
ceiver with iterative processing referred as turbo-equalization [Dou+95a; TKS02; LGL01]
can be considered. This type of iterative receivers depicted in Fig. II.13 allows huge
computational complexity savings compared to the optimal joint receiver, while offering
good performance and convergence properties [TKS02; TS11].

The MAP estimation of the sequence b aims at taking the following decision:

b̂ = argmax
b∈FNb

2

p(b|r) (II.27)

where the posterior probability mass function (pmf) p(b|r) can be written:

p(b|r) ∝ p(r|s)p(s|d)p(d|b)p(b) (II.28)

∝ p(r|s)
Ns∏
n=1

p(sn|dn)p(dn|b)p(b) (II.29)

where dn corresponds to the elements of the coded bits d mapped to the symbol sn.

The pmf p(d|b) is computed by means of an interleaver and a BCJR algorithm
whose complexity depends on the considered code. The symbol estimation process ex-
changes a sequence of Log Likelihood Ratio (LLR) with a decoder representing the
Bernoulli distribution of the Nc coded bits d. These LLRs coming from the decoder
are denoted La and are converted by the Soft-Mapper into distributions on the symbols:

p(sn) ≈ p(sn|dn)p(dn) (II.30)

Conversely, the Soft-Demapper translates the symbol posterior distribution p(sn|r) into
LLRs on the coded bits denoted by Le assuming:

p(sn|r) ≈ p(r|sn)p(sn) (II.31)

A LLR of the mth bit of d is defined as follows:

Lm = log p(dm = 0|r)
p(dm = 1|r) (II.32)

where Lm represents the mth component of La or Le.
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Soft-Mapper

The prior pmf p(sn), sn ∈ M of the nth symbol can be derived from the decoder
LLRs La = [La1, ..., LaNc

]T :

p(sn) ∝
nb∏
i=1

e
−Di(sn)La

n·nb+i , sn ∈M (II.33)

where Di(sn) represents the ith bit of the symbol sn.

Soft-Demapper

The Soft-Demapper is in charge of computing the LLRs from a given symbol pos-
terior distribution p(sn|r). The posterior LLRs Lp = [Lp1, ..., LpNc

]T are then given by:

Lpm = log
∑
sn∈M:Di(sn)=0 p(sn|r)∑
sn∈M:Di(sn)=1 p(sn|r) where m = n · nb + i, 1 ≤ i ≤ nb (II.34)

Once Lp is computed, the Soft-Demapper returns an extrinsic information Le = Lp − La

for removing any correlation with respect to the prior information.

In the following, we focus on the posterior distribution p(sn|r) of the transmitted
symbols.

B.3 Posterior estimation with BCJR

In order to compute the posterior pmf p(sn|r), a BCJR algorithm has been proposed
by [CB05]. To do so, we rewrite the posterior pmf expression yielding:

p(sn|r) ∝ p(sn)p(r|sn) ∝
∑

s∼n∈MNs−1

p(r|s)
Ns∏
i=1

p(si) (II.35)

where we used the approximation p(s) = ∏Ns
i=1 p(si). The AWGN channel assumption

gives the following derivation proposed by Ungerboeck for its Viterbi algorithm [Ung74]:

p(r|s) = NC(r : HUs, σ2
w) (II.36)

∝
Ns∏
n=1

exp
(

2sn
σ2
w

(
yn −

g0s
∗
n

2 −
Lτ∑
l=1

glsn−l

))
(II.37)

where LCFTN signaling is considered and we supposed that sn = 0 for n < 1. The
likelihood expression (II.37) is called the Ungerboeck model [Ung74]. It should be noted
that the optimization is performed on the received signal r before any processing at
reception. Nevertheless, (II.37) involves the elements of the received signal after matched-
filtering and down-sampling y.
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Another alternative consists in filtering the received signal r by a Whitening
Matched Filter (WMF) yielding the so-called Forney model [For72]. Both models have
been extensively used in the literature. However, when FTN signaling is considered, such
a WMF does not always exist especially when targeting high spectral efficiencies. Indeed,
as soon as τ < (1 + β)−1 the filter g(t) has ranges of zeros in its spectrum and the matrix
G turns out to be hardly invertible and the WMF is not stable. For this reason, we focus
on the Ungerboeck model in this thesis. It should be noted that some manipulations can
be used to approximate the WMF [Rus07].

Using the supposedly finite memory length of the Nyquist filter, the posterior pmf
p(sn|r) can be computed:

p(sn|r) =
∑

σn,σn+1

αn(σn)γn(σn, σn+1)βn+1(σn+1) (II.38)

where σn = [sn−2Lτ , sn−2Lτ +1, ..., sn−1]T characterizes a trellis state, αn(σn) is the forward
metric and βn(σn) the backward metric. These metrics can be efficiently computed in a
recursive way [CFR01; CB05]:

αn(σn) =
∑
σn−1

αn−1(σn−1)γn−1(σn−1, σn) (II.39)

βn(σn+1) =
∑
σn

βn+1(σn+1)γn(σn, σn+1) (II.40)

γn(σn−1, σn) = p(sn)exp
(

2sn
N0

(
yn −

g0s
∗
n

2 −
Lτ∑
l=1

glsn−l

))
(II.41)

The computation of the BCJR metrics is then efficient as it takes benefit of the
finite memory of the filter g(t) truncated to ±2LτTs. Indeed, for each symbol index
n, their exists |M|2Lτ different states σn and then |M|2Lτ metrics αn(σn) and βn(σn).
Then, the computation of p(sn|r) requires |M|th more branch metrics to compute. Con-
sequently, the resulting algorithm requires |M|2Lτ +1 branch metric computations for each
transmitted symbol.

B.4 Posterior estimation with Widely-Linear BP for FTN sig-
naling with QAM modulations

A simple way to reduce the BCJR complexity consists in using a Widely-Linear
(WL) BCJR [PC95] expressing the posterior pmf as follows:

p(sn|r) = p(sn,I |rI)p(sn,Q|rQ) (II.42)

where the indices I (resp. Q) refer to the real (resp. imaginary) part of its associated
vector. However, (II.42) only holds for QAM constellations and for real-valued Nyquist
filters. Indeed, these two conditions guarantee the independence between the real and
imaginary parts of a symbol sn. It does not hold for any complex channel filter for instance.
The computation of p(sn,I |rI) or p(sn,I |rI) amounts to considering a PAM constellation
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with
√
|M| symbols. Hence, the BCJR computation of a LCFTN communication with a

QAM constellation can be handled in 2|M|Lτ branch metric computations per transmitted
symbol. This drastically simpler yet optimal alternative has been presented in [CF14].

Apart from this optimal proposition, some BCJR approximations have been pro-
posed to limit the exponential computation complexity. They are detailed in the following.

B.5 Approximate Posterior estimation algorithms

In order to reduce the computational complexity, the firstly proposed sub-optimal
BCJR algorithms are the M-BCJR and T-BCJR algorithms [FA97]. The main idea con-
sists in keeping a limited number of states for every symbol to estimate. However, they
differ in their state discrimination strategies.

The T-BCJR keeps only the metrics αn(σn) and βn(σn) higher than a given thresh-
old, and sets to 0 the others. The advantage of the T-BCJR come from its very simple
approach which, however, does not guaranty any complexity nor memory consumption
for practical implementation because the number of kept metrics αn(σn) and βn(σn) can
be arbitrarily high. In order to overcome this issue, the M-BCJR only keeps M remaining
states corresponding to the higher metrics. In terms of implementation, this algorithm
then operates at fixed complexity, at the price of a partial sort of the metrics. This
algorithm is known to offer a good performance-complexity trade-off.

Apart from these strategies, the RS-BCJR does not limit the number of states but
rather reduces the states space [CFR01]. To do so, the states σn are reduced to a given
number of components µ. Moreover, the branch metric computation needs to preserve
its expression and hence determines the missing symbols sn−2Lτ , sn−2Lτ +1, ..., sn−µ−1 by
taking anticipated decisions for each survivor state. The resulting algorithm also offers
good convergence properties and is easier to implement compared to the M-BCJR.

Nowadays, the M*-BCJR which combines both the RS-BCJR and the M-BCJR is
a reference for BCJR-based algorithms [SC05]. It consists in keeping a reduced number
of survivors as the M-BCJR, but the non-survivor states are merged with survivor ones,
rather than nullified as in the RS-BCJR and M-BCJR. To do so, each non-survivor path
is redirected to a given state and the metrics are summed up. Then arises the question
of the state merging strategy, which is fully explored in [AR07]. Note that other BCJR-
based algorithms not presented here have been proposed in combination with channel
shortening as in [RP12].

Hence, these approximate-based BCJR offer the ability to estimate the ISI while
controlling the computational complexity. Even though the value of M or µ can be
arbitrarily low, the complexity is still intractable for rich constellations. For this reason,
we explore in the following sub-section MMSE-based techniques for iterative decoding.
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B.6 Time-domain MMSE equalization with prior information

The concept of turbo-equalization with a Viterbi-based algorithm handling the
ISI has been proposed for the first time in [Dou+95a]. Nevertheless, we can consider a
MMSE equalizer for the symbol-level processing stage which aims at minimizing the MSE
criterion expressed as follows:

∀n ∈ J1, NsK : ŝn = q†
nr + pn with (qn, pn) = argmin

(q,p)
vΨ̃
n (II.43)

where vΨ̃
n = E|sΨ̃ − s|2 represents the MSE of the estimate sΨ̃

n = q†r + p of sn, having
qn a filter and pn a scalar. Moreover, we suppose having a Gaussian prior information on
the symbols s:

∀n ∈ J1, NsK : p(sn) = NC(sn : sΦ
n , v

Φ
n ) (II.44)

where sΦ
n represents the prior soft estimation of sn and vΦ

n its MSE.

The optimization (II.43) yields [TSK02]:

qn = vΦ
n f †

nDH† (II.45)
pn = sΦ

n + vΦ
n f †

nGsΦ (II.46)

where fn = Σ−1en represents the MMSE filter, Σ = GVΦ + σ2
wINs the MMSE matrix

and VΦ = diag([vΦ
1 , v

Φ
2 , ..., v

Φ
Ns

]) the prior covariance matrix. Injecting the analytical
expression of qn and pn into the definition of sΨ̃

n yields:

sΨ̃
n = sΦ

n + vΦ
n f †

n(y−GsΦ) (II.47)

It should be noted that we retrieve the expression of the received signal after matched
filtering and up-sampling y as well as the aliased Nyquist filter G. The resulting posterior
MSE vΨ̃

n is given by:
vΨ̃
n = vΦ

n (1− vΦ
n ξn) (II.48)

where ξn = fnGen.

The MMSE equalization can be used for both LCFTN and CCFTN, its complexity
is majored by the filtering operation in (II.47). To solve this issue, different approaches
detailed hereafter can be considered.

For LCFTN signaling, the filtering complexity can be lowered by assuming that
most of the energy of sn is contained within yn = Wny = [yn−Nw , yn−Nw+1, ..., yn+Nw ]T
where Nw is a trade-off value between the complexity and the equalizer performance, and
Wn = is a ((2Nw + 1)×Ns) window matrix defined as:

Wn =


0n−1−Nw

I2Nw+1

0Ns−n−Nw

 (II.49)
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The estimation of sn becomes the same as given (II.47) where we replace y by yn and
the (Ns × Ns) matrix G by the ((2Nw + 1) × Ns) matrix Gn = WnG. It follows that
Σ becomes Σn ≈ GnVΦ

n + σ2
wI2Nw+1 which is now a ((2Nw + 1) × (2Nw + 1)) matrix as

well as VΦ
n = WnVΦ, and the filter fn = Σ−1

n eNw+1 has 2Nw + 1 coefficients. We will not
detail the approximation leading to Σn because it goes beyond the scope of this thesis.

A frequency-domain approximation for LFTN signaling has also been proposed by
[Sug13] based on a frequency-domain filtering to reduce the complexity. This approxima-
tion results on small performance losses but it requires a cyclic prefix known to damage
the spectral efficiency. In order to remove the cyclic prefix constraint, [TPB16] proposed
to use the CCFTN shaping method yielding the equalizer presented hereafter.

B.7 Frequency-domain MMSE equalization with prior informa-
tion for CCFTN

The frequency-domain approach denoted FD-MMSE requires to approximate the
prior MSE by their average value (II.46):

vΦ
n ≈ vΦ (II.50)

where vΦ = N−1
s

∑
n v

Φ
n is the averaged prior MSE. Injecting this approximated prior MSE

into the expressions of sΨ̃
n and vΨ̃

n yields:

sΨ̃
n = sΦ

n + vΦf †
n(y−GsΦ) (II.51)

vΨ̃ = vΦ(1− vΦξ) (II.52)

where ξ = f1Ge1 and vΨ̃ do not depend on n anymore, having Σ = vΦG + σ2
wINs .

The frequency-domain equalization then arises naturally: the approximate estima-
tion sΨ̃

n can be re-written as follows:

sΨ̃
n = sΦ

n + vΦe†
nF†

Ns
Σ̂−1(ŷ− ĜŝΦ) (II.53)

where we replace all the vΦ
n by vΦ yielding Σ̂ = FNsΣF†

Ns
the DFT of Σ to be diago-

nal, the vector ŷ = FNsy represents the frequency-domain received signal after matched
filtering and up-sampling, and ŝ = FNss is the DFT of the prior soft estimates. The
complexity reduction comes from the diagonal structure of both Σ̂ and Ĝ because Σ
and G are circulant matrices when using CCFTN and the approximation (II.50). Hence,
the computational complexity of sΨ̃

n is majored by the FFT complexity performed in
O(Ns log2(Ns)).

Consequently, both the time-domain and frequency-domain MMSE equalizers op-
erate without knowledge on the constellation. This is a major difference compared to
BCJR techniques. It results in algorithms performing a linear filter whose complexity
does not depend on the constellation. The FD-MMSE approach goes further in the com-
plexity reduction by performing a DFT at the price of small performance losses. Hence,
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MMSE equalizers operate even with high order constellations, but their performance are
promptly outperformed in case of severe ISI.

Based on these existing receivers of the literature, we propose in the following
chapter a first contribution consisting in a multi-criteria analysis of single-carrier FTN
signaling.
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This chapter is devoted to a multi-criteria analysis of FTN signaling with receivers
of the literature. First, in Sec. A the different criteria involved in the comparison are pre-
sented, taking into account both transmitter and receiver constraints such as the spectral
efficiency, the energy efficiency at transmission through the PAPR, but also the compu-
tational complexity. The analysis of these different criteria reveals significant difference
between Nyquist and FTN signaling. For instance, FTN signaling can be used to im-
prove the overall link budget of the communication. Therefore, the question raised by the
interest of FTN signaling on a multi-criteria basis is not simple.

In order to evaluate the overall performance while taking benefits of FTN signaling
improvements, we introduce a metric we call Effective SNR (ESNR). Then, we compare
different FTN and Nyquist communications at fixed spectral efficiency using this metric
with and without channel coding in Sec. B. The results have been published in a confer-
ence paper [Pet+18] and reveal a great interest to use FTN rather than Nyquist signaling
when considering an AWGN channel model, up to a spectral efficiency of 2.5 bits/s/Hz.
Higher spectral efficiencies are addressed further, in chapter IV with channel coding.

A Criteria of interest

In this section we detail the different criteria for the multi-criteria analysis of FTN
signaling. The criteria are the following:

• spectral efficiency in sub-Sec A.1: in order to fairly evaluate the interest of FTN
against Nyquist signaling, we present comparisons at fixed spectral efficiency. For
this reason, we focus on the achievable spectral efficiency of a FTN communication
and compare with Nyquist signaling.

• energy efficiency in sub-Sec A.2: the transmitter dedicates most of its energy to the
power amplifier. Furthermore, the power amplifier efficiency is mostly determined
by the PAPR of the communication which depends on the compression factor τ ,
among other parameters. This yielded us to develop a metric called ESNR aiming
at penalizing waveforms with high PAPR.

• computational complexity in sub-Sec A.3: in order to be embedded in real devices,
the receiver handling the ISI in real-time has stringent complexity constraints.

These different criteria are used further in the multi-criteria comparisons of Sec. B.

A.1 Achievable Spectral efficiency of FTN signaling

In this sub-section, we focus on the achievable spectral efficiency without trans-
mission errors as described by C. Shannon [Sha48], which can be reached using gaussianly
distributed symbols. This general model is then particularized to a FTN communication
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by constraining the shaping filter. Then, we restrict the symbols distribution to the dis-
crete set of the constellation using the Shamai Laroia Conjecture (SLC). This yields us
to highlight the interest of the FTN technique in terms of spectral efficiency compared to
Nyquist signaling.

Optimal communication: the Shannon capacity

The Shannon capacity represents the higher data-rate for an errorless communi-
cation of bandwidth W over an AWGN channel. This capacity does not presuppose any
particular modulation, channel coding, constellation nor symbols correlation. In other
words, the capacity quantifies the achievable spectral efficiency assuming optimally mod-
ulated bits for an errorless communication. One way to achieve the capacity C expressed
as follows would be to assume Gaussian iid symbols [Sha48]:

C = W log2

(
1 + Px

N0W

)
in bits/s (III.1)

This bound can also be expressed in bits/s/Hz as a spectral efficiency η1 = C
W

. We use
the letter η here to characterize the achievable spectral efficiency bound of an errorless
communication, while the spectral efficiency of a practical communication scheme is de-
noted hereafter ρ. Indeed, the achievable spectral efficiency is limited by operational
considerations: the shaping filters, symbol-rates, application to FTN and Nyquist sig-
naling, constrained symbol distributions and channel codes. In the following, we present
this step-by-step analysis of the achievable spectral efficiency for both FTN and Nyquist
signaling.

Constrained filter: the generalized Shannon capacity

Consider the case of a particular shaping or deterministic and time invariant chan-
nel filter h(t) with frequency spectrum H(f) over the bandwidth W instead of a constant
magnitude. Assuming that the filter is normalized, i.e.

∫ W
2

− W
2
|H (f) |2 df = 1, the expres-

sion of the capacity generalizes to:

η2 = 1
W

∫ W
2

− W
2

log2

(
1 + Px

N0
G(f)

)
df (III.2)

where G(f) = |H(f)|2.

In practice, samples of information called symbols are transmitted at a discrete
time Ts. The derivation of the achievable spectral efficiency under this assumption is
addressed hereafter.
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Constrained symbol-rate: the constrained capacity

We assume now a transmission of an infinite sequence of iid symbols separated by
Ts through the filter h(t) of bandwidth W . The resulting ISI after matched-filtering and
up-sampling yields the information η3 obtained by replacing G(f) by its folded version:

η3 = 1
W

∫ 1
2Ts

− 1
2Ts

log2

1 + Px
N0

∑
k∈Z

G

(
f − k

Ts

) df (III.3)

and η3 is necessarily limited by the less constrained spectral efficiency η2, itself lower than
η1 for the same reason. Hence, we obtain:

η3 ≤ η2 ≤ η1 (III.4)

where the right inequality can also be obtained using the Jensen inequality with the
concave function log2(1 + ·). F. Rusek carried out the main results on capacity under the
term Constrained Capacity [RA07] for FTN signaling presented in the following.

Achievable spectral efficiency of Nyquist and FTN signaling

In FTN signaling, the achievable spectral efficiency ηFTN has the same expression as
η3 with a filter G(f) chosen to be a Nyquist filter with orthogonality time T = 1+β

W
, β ∈

[0, 1], and the symbol duration is assumed to be smaller that the orthogonality time:
Ts = τT, τ ∈ (0, 1]. Under these considerations, (III.4) yields:

∀(τ, β) : ηFTN ≤ η2 ≤ log2

(
1 + Px

N0W

)
(III.5)

Moreover, Nyquist signaling being a particular case of FTN signaling, its spectral
efficiency ηNy is obtained from (III.5) considering the case τ = 1. G(f) being a Nyquist
filter, we have ∑k∈ZG(f − k

Ts
) = Ts = T and ηFTN reduces to:

ηNy = (1 + β)−1 log2

(
1 + Px(1 + β)

N0W

)
(III.6)

and (III.5) becomes:

∀β : ηNy ≤ η2 ≤ log2

(
1 + Px

N0W

)
(III.7)

Note that if g(t) is a RC(0), the three terms are equal: ηNy = log2

(
1 + Px

N0W

)
.

From the inequalities (III.5) and (III.7), we know that the achievable spectral
efficiencies ηFTN and ηNy are limited by the same quantity given in η2 with G(f) a Nyquist
filter. However, we do not have any order relation between ηFTN and ηNy at this point.
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If g(t) is not a cardinal sine RC(0), it has been demonstrated in [RA09a] that FTN
signaling can achieve higher spectral efficiencies than Nyquist signaling:

∃τ < 1 : ηFTN > ηNy (III.8)

and particularly for τ = (1 + β)−1 which in fact maximizes ηFTN. This can be shown
by the left inequality of (III.5) becoming an equality for τ = (1 + β)−1. Indeed, the
compression τ = (1 +β)−1 is the limit for which zeros appear in the aliased Nyquist filter
PSD. Hence, the expression ∑k∈ZG

(
f − k

Ts

)
of (III.3) can be replaced by G(f) yielding

ηFTN = η2.

To sum-up, we have the following inequalities:

∀β > 0, ∃τ < 1 : ηNy < ηFTN ≤ log2

(
1 + Px

N0W

)
(III.9)

This expression is very meaningful because it suggests that:

• there is always a FTN compression factor τ for which FTN signaling achieves a
higher spectral efficiency than Nyquist signaling,

• constraining the shaping filter decreases the achievable spectral efficiency of Nyquist
signaling, this is not necessarily the case for FTN.

In the following, we call SNR the following ratio:

SNR = Px
N0W

(III.10)

The evolution of ηFTN and ηNy against the SNR is illustrated in Fig. III.1 for different
RC filters and τ = 0.5. The spectral efficiency gain provided by FTN signaling achieves
η1 = log2

(
1 + Px

N0W

)
and growths with the SNR. For β = 1, the spectral efficiency of

FTN signaling approaches 3 bits/s/Hz while Nyquist signaling achieves 2.2 bits/s/Hz for
a SNR of 10 dB. On the SNR, FTN signaling achieves 2.2 bits/s/Hz at 7 dB and then
performs 3 dB better than Nyquist signaling.

Fig. III.2 is obtained considering a fixed SNR set to 10 dB for different values of
τ . At fixed rolloff (i.e. at fixed color), the difference between the plain and dashed lines
corresponds to the achievable spectral efficiency gain brought by FTN signaling, growing
with the time compression. This gain is maximized for τ = (1 + β)−1. Moreover, a FTN
communication with τ = 0.5 and RC(0.3) is shown to reach the same achievable spectral
efficiency as a Nyquist communication with β = 1.

These results show the gain brought by FTN signaling on the achievable spectral ef-
ficiency compared to Nyquist signaling. It offers an additional parameter for the waveform
design which can be tuned depending on the considered filter. The value τ = (1 + β)−1

achieves the higher spectral efficiency. However, the concept of achievable spectral effi-
ciency remains a theoretical bound reachable by gaussianly distributed symbols for in-
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Figure III.1: Spectral efficiency against the SNR for τ = 0.5, RC filters
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Figure III.3: Spectral efficiency against the SNR for τ = 0.5, RC filters and a QPSK

stance. In practice, the symbols are distributed in a discrete set. Hence, we propose to
go further by evaluating the impact of the symbols distribution on the spectral efficiency.

Constrained symbols distribution

For practical implementations, we assume a linear modulation of symbols dis-
tributed in a finite complex alphabet called constellation. This supplementary constraint
makes the spectral efficiency analysis more difficult. Indeed, there exists no analytical
expression of the achievable spectral efficiency for a given constellation.

Fortunately, Shamai Laroia proposed in [SL96] a good and easy to compute con-
jecture of the highest spectral efficiency at fixed constellation. In fact, this SLC does not
bound the spectral efficiency but it represents a good approximation, especially at high
SNR. We can compute its expression for FTN signaling, we note the resulting spectral
efficiencies ηFTN,SL for FTN and ηNy,SL for Nyquist signaling.

The SLC spectral efficiencies are depicted in Fig. III.3 and III.4 considering a
Quadrature PSK (QPSK) constellation. The results are very different compared to the
previous comments with gaussianly distributed symbols. First, the spectral efficiency
appears clearly to be bounded at high SNR, this is a direct consequence of the constellation
discretization. We can only transmit a finite number of information bits at each symbol-
rate. Moreover, at high SNR we have: ηFTN,SLC = τ−1ηNy,SLC where ηFTN,SLC and ηNy,SLC
are computed with the same rolloff. In other words, with an optimal channel code, FTN
signaling increases the symbol-rate by the factor τ without transmission error at high
SNR.
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Figure III.4: Spectral efficiency against τ at SNR = 10 dB, RC filters and a QPSK

Although these results suggest high benefits in favor of FTN signaling, it should
be noted that the SLC is an approximation rather than a real bound for the achievable
spectral efficiency. Hence, more accurate simulations can be performed assuming practical
low-complexity receivers adapted to the considered channel: see [BFC09] for AWGN
channel assumption, but also [Pie+13] for the case of nonlinear satellite channels and
[CF14] for the case of nonlinear optical channels. Conclusion is that, under the assumption
of considering low-complexity receivers and discrete constellations, values of τ lower than
(1 + β)−1 allow even higher achievable spectral efficiencies than Nyquist signaling.

More recently, [Jan+17] showed that using a particular linear precoding combined
with a rRC(β) shaping filter is equivalent to leaving out the pre-coding if the shaping is
performed with a new rRC(β′) filter where β′ = τ(1 + β) − 1. In this case, the received
filter is then matched to the new rRC(β′) and the equalization process can be adapted
accordingly. Nevertheless, using directly this new filter instead of performing linear pre-
coding implies a more difficult timing synchronization process. Furthermore, the newly
defined filter rRC(β′) has a lower rolloff β′ ≤ β yielding a larger time support requiring
more taps for a given out-of-band power leakage. Hence, FTN signaling with rRC(β) with
linear pre-coding should be preferred and achieves the same spectral efficiency than a
Nyquist signaling scheme with a rRC(β′) shaping filter (for τ ≥ (1+β)−1). Consequently,
FTN signaling not only compensate the excess-bandwidth loss, but also improves the
spectral efficiency if τ < (1 + β)−1 compared to Nyquist signaling.

Hence, FTN signaling appears to be a very promising technique on the spectral
efficiency point of view. However, at this point, we assumed an optimal communication
coding scheme. We propose now to work with a given channel code and study its impact
on the spectral efficiency.



Chapter III – Faster-Than-Nyquist Signaling: A multi-criteria
Analysis

42

Constrained coding: comparisons at fixed spectral efficiency

For a given code with coderate R, a FTN communication achieves a useful bit-rate
of R log2 |M|

Ts
over the communication bandwidth W = 1+β

T
. Hence, the spectral efficiency

defined as the ratio between those two quantities is expressed as:

ρ = R log2 |M|
Ts

T

1 + β
= R log2 |M|

τ(1 + β) (III.11)

In fact, the definition of ρ reveals the challenge of FTN signaling: it offers a supplementary
freedom degree with the compression factor τ . This additional parameter can compensate
a higher rolloff β or a lower constellation order log2 |M| than Nyquist signaling to achieve
a same spectral efficiency. Hence, at fixed channel code, spectral efficiency ρ and constel-
lation, FTN signaling can decrease the rolloff β of Nyquist signaling while compensating
with τ . This can help minimizing the PAPR in single-carrier signaling for instance (see
sub-Sec. A.2). Another way of fixing the spectral efficiency ρ with FTN signaling is to
decrease the constellation order log2 |M| and compensate with τ . This spreads out the
constellation elements, while suffering from ISI produced by τ < 1.

The comparison between Nyquist and FTN signaling at fixed bandwidth and spec-
tral efficiency is scarcely considered in the literature. In the following, we evaluate the
performance of FTN and Nyquist signaling with different values of R, |M|, β and τ
allowing to achieve a same spectral efficiency ρ.

This analysis yields encouraging conclusions because FTN signaling achieves higher
spectral efficiencies than Nyquist signaling at fixed SNR. Also, the SLC shows that con-
straining the constellation drastically limits the achievable spectral efficiency. However,
this assumption is necessary for energy efficiency purposes of the transmitter as detailed
hereafter.

A.2 PAPR & IAPR for energy efficiency

The energy efficiency at the transmitter side is an important point of interest for
embedded devices. Furthermore, the power amplifier at transmitter plays a major role but
spends about 70 % of the overall energy. Generally, its consumption mainly depends on
its output saturation power Psat regardless of the transmitted instantaneous power |x(t)|2.
Nevertheless, power amplifiers saturate over a given power, which damages the signal’s
spectrum and decreases the demodulation performance at reception. In order to avoid this
saturation at transmission, the average power Px has to be penalized by a factor called
the output backoff. This effect is represented in Fig. III.5 where the non linear power
amplifier response has been modeled with the commonly used Rapp model [Rap91]. We
can observe that the power amplifier characteristic function can be decomposed in three
regimes:

• the linear regime: the output power is proportional to the input power.
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• the compression regime: the output power is not proportional anymore to the input
power. This regime can be linearized with pre-distorsion techniques if knowing the
transfer function. We make this assumption in the following.

• the saturation regime: the output power is Psat whatever the input power value
above a given input power threshold.

The instantaneous power |x(t)|2 of a transmitted signal is a continuous-time wide-
sense first-order cyclostationary random process with period Ts and a function depending
on the modulation, the transmitted sequence, and the shaping filter. With FTN signaling,
the time-compression factor τ also plays a major role as presented hereafter. For the sake
of simplicity, we generally omit the channel code dependency for backoff analysis, i.e. we
assume iid symbols. We suppose an infinite number of transmitted symbols: Ns −→ +∞
and we consider the instantaneous power |x(t)|2 in the stationary regime by omitting
the edge effects of the shaping filter operation. Hence, as shown in Chap. II, we can
assume that both LCFTN and CCFTN generate signals with similar instantaneous power
statistics. In the following, we present how the output backoff value is determined.

Peak-to-Average Power Ratio

In order to evaluate the required output backoff for a communication, we are
interesting in characterizing the waveform dependent PAPR defined as follows [GP93]:

PAPR = max
t,(sn)

|x(t)|2
Px

(III.12)
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For a given transmitted signal, the PAPR corresponds to the required input backoff to
avoid any saturation on the transmitted signal x(t).

Hence, the PAPR has a negative impact on the budget as it decreases the effective
energy from the consumed energy. In order to tackle this problem, Continuous Phase
Modulation (CPM) waveforms are interesting for their PAPR of 0 dB when the energy
consumption is a critical aspect of the targeted application. However, this type of signaling
goes beyond the scope of this thesis. Other studies devoted to FTN signaling also propose
to reduce the PAPR of FTN signaling [Cai+19; Liu+18].

The PAPR is not usually considered as it is for practical applications. Indeed,
the maximum power of a waveform maxt,(sn)n |x(t)|2 could be scarcely achieved by the
instantaneous power. Hence, instead of ensuring no saturation, we prefer controlling the
probability θ ∈ [0, 1] of the instantaneous input power to exceed a given threshold γPx.
This problem is addressed in the following.

Instantaneous-to-Average Power Ratio

The Complementary Cumulative Distribution Function (CCDF) Υ̃x(t, γ) of the
Instantaneous-to-average Power Ratio (IAPR) is defined by [Med+17] as follows:

Υ̃x(t, γ) = P
(
|x(t)|2
Px

> γ

)
(III.13)

where the probability set corresponds to the possible bit sequences for a given compression
factor τ and RC filter h(t) characterized by its rolloff β. The time dependency of Υx(t, γ)
does not suit our needs, more precisely, we define Υx(γ) as the timing ratio for which
|x(t)|2 is higher than a threshold γPx. This can be formalized as follows:

Υx(γ) = lim
T0→+∞

1
T0

∫ T0
2

T0
2

1(|x(t)|2 > γPx)dt (III.14)

where 1(|x(t)|2 > γPx) equals 1 if |x(t)|2 > γPx and 0 else. We show in App. A that
Υx(γ) corresponds to the averaged IAPR CCDF over a cyclostationarity period:

Υx(γ) = 1
Ts

∫ Ts

0
Υ̃x(t, γ)dt (III.15)

From this definition, we define the IAPR of x(t) associated to the probability θ as:

IAPR(θ) = min{γ : Υ(γ) ≤ θ} (III.16)

It follows that an output backoff set to IAPR(θ) ensures a saturation probability of θ
for the transmitted signal x(t). Note that this holds for low values of θ (< 10−2) which
ensures that the input backoff is similar to the output backoff as presented in Tab. III.1.
A graphical representation of Υ(γ) and IAPR(θ) is given in Fig. III.6. It should be noted
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Figure III.6: IAPR CCDF for a QPSK Nyquist signal shaped with a cardinal sine filter

that the IAPR is linked to the PAPR as we have:

PAPR = lim
θ→0+

IAPR(θ) (III.17)

The average power of x(t) ensuring a saturation probability of θ is also related to the
effective power required by the signal transmission Psat:

Px = Psat
IAPR(θ) (III.18)

where θ is a trade-off parameter between the energy efficiency and the distortion of x(t)
due to its saturation. In Fig. III.7 and Fig. III.8 we assume a Nyquist QPSK signal x(t)
passing through a power amplifier with a perfectly linear regime up to a saturation power
Psat|dB = IBO|dB + Px|dB where the input backoff denoted IBO is set to a given value.
It results in a saturated signal with a lower average power P ′

x, and the output backoff
OBO can then been measured as: OBO|dB = Psat|dB − P ′

x|dB. The considered backoff
values and saturation probabilities θ are given in Tab. III.1 where we can see that the
input and output backoffs are similar for low saturation probabilities. Consequently, in
the following we assimilate the input to the output backoff, and we assume that Px = P ′

x.
Furthermore, we observe that the distortion causes an error rate deterioration but also
damages the transmitted signal PSD.



Chapter III – Faster-Than-Nyquist Signaling: A multi-criteria
Analysis

46

0 1 2 3 4 5 6 7 8 9 10 11 1210−5

10−4

10−3

10−2

10−1

100

Eb

N0

∣∣∣
dB

BE
R

QPSK
Input Backoff 0 dB
Input Backoff 1 dB
Input Backoff 2 dB
Input Backoff 3 dB
Input Backoff 4 dB
Input Backoff 5 dB

Figure III.7: BER of a QPSK Nyquist comm. with a rRC(0.3) for different input backoffs

−5 −4 −3 −2 −1 0 1 2 3 4 5−50

−40

−30

−20

−10

0

10

Frequency f
T

|X
(f

)|2 dB

RC(0.3)
Input Backoff 0 dB
Input Backoff 1 dB
Input Backoff 2 dB
Input Backoff 3 dB
Input Backoff 4 dB
Input Backoff 5 dB

Figure III.8: Periodogram of a QPSK Nyquist signal with a rRC(0.3) for different input
backoffs



Chapter III – Faster-Than-Nyquist Signaling: A multi-criteria
Analysis

47

Table III.1: Backoffs of QPSK Nyquist with a rRC(0.3) for different values of θ

Input Backoff 0 dB 1 dB 2 dB 3 dB 4 dB 5 dB

Output Backoff 0.87 dB 1.35 dB 2.09 dB 3.01 dB 4.00 dB 5.00 dB

Sat. proba. θ 5 · 10−1 3 · 10−1 9 · 10−2 2 · 10−2 6 · 10−4 < 10−5

Effective SNR

In order to evaluate the performance of the proposed reception techniques, error
rates are usually represented as a function of the received SNR. The received SNR is
defined as the ratio between the received signal’s power and the white Gaussian noise
power over the bandwidth W :

SNR = Px
N0W

= Eb
N0

ρ (III.19)

where the average power is given by:

Px = 1
Ts

∫ Ts

0
E|x(t)|2dt (III.20)

= EbR log2 |M|
Ts

(III.21)

assuming that g(0) = 1. The relation (III.19) shows that, for a fixed spectral efficiency
ρ, comparing error rates as a function of the received SNR is equivalent to representing
against Eb

N0
.

In order to fairly compare different waveforms, we propose to take into account the
energy efficiency of their transmitted signal. The idea is to assimilate the effective power of
the communication to the saturation power, instead of the signal’s average power. Indeed,
for a given power amplifier, a waveform requiring a higher backoff will need to decrease its
average power resulting in a lower effective SNR. For this reason, the effectively consumed
energy does not depends on Px but rather on Psat. To do so, we replace Px in (III.19) by
the saturation power Psat in the expression (III.19) of the SNR. This yields a metric we
propose to call the ESNR defined as follows:

ESNR = Psat
N0W

= IAPR(θ) · SNR (III.22)

where we used (III.18) to recover the expression involving the SNR. Hence, the ESNR
amounts to penalizing the commonly used SNR metric by the IAPR(θ) of the waveform.
Up to the author knowledge, the definition we propose for the ESNR formalized from
our definition of IAPR(θ) has never been used to represent error rates. Note that similar
metrics have been proposed as in [Pie+13].

Hence, the ESNR metric enables to take into account the link budget as well as
the energy consumption of a communication. Moreover, it offers a comparison of different
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Table III.2: Real-valued multiplications of the proposed receivers for one symbol, and
their ability to be symbol level parallelized

Receiver Number of multiplications parallel.

FD-MMSE-IC 8 log2(Ns) + 3|M|+ 4 yes

MMSE-IC 8 log2(2Nw + 1) + 8N2
w + 16Nw + 3|M|+ 8 yes

RS-BCJR 2log2 |M|µ(µ+ 3× 2log2 |M|) no

M*-BCJR 3|M|2log2 |M| no

waveforms for a given power amplifier. At reception, the major constraint is to limit the
computational complexity of the signal’s processing. This requirement is addressed in the
following sub-section.

A.3 Computational complexity

The receiver of a digital communication has strong complexity constraints because
it performs a real-time processing of the information. The interest of FTN signaling
is then conditioned by the overall performance, including the complexity efficiency. In
practice, such a complexity evaluation is difficult as it highly depends on the targeted
application, the implementation, the ability for parallelism. In the following, we assimilate
the complexity of a receiver to its number of multiplication given in Tab. III.2. We also
provide the ability of each receiver to be symbol level parallelized which yet does not
impact the complexity, but could be decisive in real-time applications as the parallelization
allows a lower latency.

In the following, we present Nyquist and FTN signaling error rate comparisons at
fixed spectral efficiencies using the proposed ESNR metric.

B Multi-criteria evaluation of FTN signaling

This section is devoted to multi-criteria comparisons between FTN and Nyquist
signaling. We conduct IAPR comparisons for different rolloff values and compression
factors at fixed spectral efficiencies. But also, we show that the cases with τ = 1 are
never the optimal choices in terms of the IAPR metric. Moreover, we know since the
work of Mazo that choosing τ < 1 does not necessarily induce SNR losses. This suggests
an interest for FTN signaling at fixed spectral efficiency.

In order to go further, we propose in a second sub-section to take into account
the performance of the different waveforms considering both the SNR and the IAPR
metrics. This is possible by comparing the performance against the previously introduced
ESNR metric. To do so we consider commonly used receivers of the literature described
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Figure III.9: IAPR(10−4) of a QPSK with rRC filters Lτ = 30 for different values of τ
and β

in Chap. II. This second analysis corroborates the same hypothesis: FTN signaling has
more potential than Nyquist signaling at fixed spectral efficiency.

B.1 IAPR of FTN Signaling

The IAPR metrics are computed assuming a low saturation probability of θ = 10−4

and rRC filters truncated to L = 30. As represented in Fig. III.8, these values have almost
no impact on the transmitted signal spectrum.

The resulting IAPR(10−4) for different values of τ and α are represented in Fig.
III.9 considering a QPSK constellation. We do not consider here other constellation
orders, but the trends remain the same. The Nyquist cases maintain competitive IAPR
but do not always achieve minimal values. This is especially true for low and high excess
bandwidth factors. Indeed, the compression factor of τ = 0.8 generally optimizes the
IAPR while achieving a 20% spectral efficiency increase compared to Nyquist signaling.
The IAPR gain can go up to 1 dB for β = 1.

At fixed spectral efficiency, FTN signaling can also optimize the IAPR at the price
of ISI [Luc+16]. This is illustrated in Fig. III.10 for ρ = 2 bits/s/Hz and Fig. III.11 for
ρ = 3 bits/s/Hz where the rolloff factor β is determined by the corresponding values of
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ρ, τ and log2 |M |. Several observations can be made:

• PSK modulations offer 2 dB better IAPR compared to QAM ones, even for FTN
signaling (unless for BPSK and QPSK).

• the combinations which optimizes the IAPR are scarcely achieved by Nyquist sig-
naling but rather by FTN signaling. They provide up to 0.5 dB gain at ρ = 2
bits/s/Hz (see the 8-PSK/8-QAM of Fig. III.10) and 0.8 dB at ρ = 3 bits/s/Hz
(see the 32-PSK/32-QAM of Fig. III.11). However, these moderated gains are not
the most profitable ones as they assume high order constellations which perform
worst in terms of SNR. Consequently, we will rather focus on lower order constella-
tions offering higher gains while targeting the same spectral efficiencies as explained
in the following point.

• At fixed spectral efficiency and modulation, FTN signaling can decrease by 2 dB
the IAPR compared to Nyquist signaling (see the QPSK of Fig. III.10, and the
8-PSK/8-QAM of Fig. III.11). This is particularly interesting for combinations of
τ and β above the Mazo bound, which is the case here. Indeed, these waveforms
are not penalized by SNR losses if the ISI is handled by a ML detector.

It appears clearly that Nyquist signaling is never the best way to improve the
IAPR as FTN signaling allows several dB gains. This makes the FTN technique a seri-
ous candidature for satellite communication standards for instance, where the very high
constraint on the rolloff in DVB-S2X could be relaxed by slightly compressing the sym-
bols as claimed in [Pie+13]. These optimistic results have yet to be combined with SNR
performance in order to draw a multi-criteria conclusion of its potential interest. This is
conducted in sub-Sec. B.2 for uncoded signaling and sub-Sec. B.3 with channel coding.

B.2 Error rate using the Effective SNR for uncoded signaling

This sub-section constitutes the main contribution of the following paper [Pet+18].
As a first step, we consider uncoded communications evaluated through the Binary Error
Rate (BER) at reception using both the SNR and ESNR metrics. In order to reveal the
potential of FTN signaling, we do not limit the computational complexity. Hence, the ISI
is handled by a Viterbi algorithm which optimizes the ML criterion.

The resulting BER are represented in Fig. III.12 against SNR and in Fig. III.13
against ESNR for ρ = 2 bits/s/Hz. For each constellation order, the FTN compression
factor chosen is the one which best minimizes the BER against ESNR. The SNR repre-
sentation shows no gain brought by FTN signaling because it introduces ISI and is always
outperformed by its Nyquist counterpart. However, when considering the IAPR through
the ESNR representation, FTN signaling appears to perform 1.3 dB better than Nyquist
signaling. Moreover, this conclusion holds for any constellation order.

Fig. III.14 and III.15 illustrate similar comparisons for a higher spectral efficiency
set to ρ = 2.5 bits/s/Hz. For such a spectral efficiency, the poorest constellation achieved
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Figure III.10: IAPR(θ) against τ for different constellations achieving ρ = 2 bits/s/Hz
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Table III.3: Gain using FTN rather than Nyquist signaling for BER = 10−4 and θ = 10−4

processed by a ML receiver

Spectral efficiency (bits/s/Hz)

1.5 2 2.5 3

(log2 |M|, τ , β) (2, 0.67, 1) (2, 0.67, 0.5) (2, 0.8, 0) (2, 0.67, 0)

SNR gain 0 dB 0 dB 2.8 dB 1.2 dB

ESNR gain 0.4 dB 1.3 dB 2.5 dB 1.9 dB

by Nyquist signaling are 8-PSK and 8-QAM. For this reason, its is outperformed with
a QPSK FTN communication by almost 3 dB, even using a SNR comparison. When
considering the ESNR representation, the IAPR contribution yields a total gain of 2.5
dB.

Further spectral efficiencies have been considered and the SNR and ESNR gains
are summed-up in Tab. III.3. It appears that high spectral efficiencies benefit to FTN
signaling with a SNR comparison. However, when considering the ESNR, FTN signaling
always offer significant gains compared to Nyquist signaling, up to 2.5 dB for ρ = 2.5
bits/s/Hz.

Finally, it should be recalled that we obtained these conclusions with a high com-
plexity ML receiver. When considering an MMSE equalization, low gains are brought by
FTN signaling without channel coding. Hence, we present in the following sub-section
channel coded results with MMSE-based strategies for turbo-equalization.

B.3 Error rate using the Effective SNR for channel coded sig-
naling

We suppose a communication composed of Nb = 8192 information bits coded with
a (7, 5)8 convolutional Recursive Systematic Code (RSC) with coderate R = 1

2 . The
considered modulations are a QPSK and a 8-PSK for FTN and Nyquist signaling due to
their low IAPR and BER. The shaping operation is performed with a rRC filter which
rolloff values are adjusted to fit the targeted spectral efficiencies. At receiver, we perform
a FD-MMSE turbo-equalizer with 8 iterations [TSK02].

A spectral efficiency of ρ = 1 bits/s/Hz has been considered, and the corresponding
IAPR values are given in III.10. We represented in Fig. III.16 the error rates for Nyquist
signaling and the best FTN communications using the SNR metric and in Fig. III.17
using the ESNR one. From the SNR representation, it appears clearly that the FD-
MMSE equalizer combined with the decoder removes the ISI. The ESNR representation
shows a gain of 1 dB provided by FTN signaling compared to Nyquist signaling. The best
performing combination is a QPSK modulation with τ = 0.7 and β = 0.4.
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Figure III.14: BER against SNR for different FTN (solid) and Nyquist (dashed) waveforms
achieving ρ = 2.5 bits/s/Hz
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Similar comparisons are provided for ρ = 1.5 bits/s/Hz in Fig. III.17 and III.17
using τ = 2

3 for both the FTN communications. No Nyquist QPSK modulation can
achieve such a spectral efficiency. Hence, the SNR gain goes up to 2 dB while the ESNR
gain outperforms Nyquist signaling by almost 2.5 dB.

C Conclusion

FTN signaling can offer significant ESNR gains with channel coding up to 2
bits/s/Hz. For higher spectral efficiencies, the MMSE based equalizers cannot handle
the ISI anymore and BCJR based receivers are necessary. However, for such high spec-
tral efficiencies, BCJR algorithms are intractable and cannot be implemented. Therefore,
there is a need to explore new reception strategies able to process the ISI coming from
FTN signaling, while keeping strong constraints on the computational complexity. This
is addressed in next chapter by means of a message-passing algorithm called Expectation
Propagation.
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Figure III.16: BER against SNR for different FTN (solid) and Nyquist (dashed) waveforms
achieving ρ = 1 bits/s/Hz
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Figure III.17: BER against ESNR for different FTN (solid) and Nyquist (dashed) wave-
forms achieving ρ = 1 bits/s/Hz
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Figure III.18: BER against SNR for different FTN (solid) and Nyquist (dashed) waveforms
achieving ρ = 1.5 bits/s/Hz
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Figure III.19: BER against ESNR for different FTN (solid) and Nyquist (dashed) wave-
forms achieving ρ = 1.5 bits/s/Hz
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This chapter is devoted to a new class of receivers we developed to process the
ISI induced by FTN signaling at reception. Its content was partly patented [Pet+19b]
and published in two conference papers [Pet+19; Pet+20] as well as a journal paper
[Pet+21]. The proposed receivers are based on an iterative message passing formalism
called EP [MP01] which finds its applications in various fields. The concept of EP can
be employed to approximate optimal MAP receivers by assuming Gaussianly distributed
symbol information. It can be illustrated as a message passing algorithm using a Factor
Graph (FG) formalism [KFL01; Şa+18]. It yields a low complexity iterative receiver
[SA11] combining the benefits of both the MAP and MMSE receivers, called EP-MMSE by
[SMFO15; San+18], recently enhanced by the EP-MMSE-DFE of [Şa+18]. Nevertheless,
most of available EP receivers have been developed in a context of Nyquist signaling
with frequency selective channels and then are not directly suitable for FTN signaling.
The use of EP algorithm for FTN signaling in turbo-equalization has been proposed
in [Wu+17] but they only approximate the prior information from the decoder which
amounts to performing a classical turbo-equalization scheme operating with a MMSE
equalizer [TSK02].

In order to adapt and extend these receivers to FTN signaling, we change in the
EP process the message scheduling as in [Şa+18] and the Gaussian distributions family
generating unprecedented EP-based receivers for FTN:

1. we propose a new family of non-circular Gaussian distributions, taking into account
the potential non-circularity of soft decisions on the symbols giving rise to WL
receivers [PC95; XCW09],

2. we use a Gaussian family which consists in considering Gaussian distributions whose
covariance matrices are restricted to be proportional to the identity.

Combining this second family with the circulant hypothesis of our CCFTN model allows
an optimal FD-EP based receiver with unprecedented performance while remaining very
competitive from the computational complexity point of view, even for high spectral
efficiencies (≥ 3 bits/s/Hz). Moreover, the first WL generalization yields a new WL-EP
receiver achieving 5 bits/s/Hz with more than 6 dB gain on the SNR compared to Nyquist
signaling. As a summary, the contributions of the chapter are the following:

1. we provide a didactic approach of the EP technique and a common framework for
all our EP-based receivers for FTN signaling.

2. we consider three different Gaussian families combined with different types of
scheduling. This yields distinct algorithms: EP, EP-DFE, WL-EP, WL-EP-DFE,
FD-EP which we partially published in [Pet+19] and in [Pet+20].

3. we use a circular shaping filter at transmission as proposed by [TPB16] for MMSE-
IC. Combined with a particular Gaussian family yields the FD-EP receiver benefit-
ing from an efficiency FD implementation.
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4. the resulting receivers reach 5 bits/s/Hz with a limited complexity and almost no
performance loss. This has never been achieved with FTN signaling, up to our
knowledge.

Sec. A presents a didactic rethinking of the EP technique leading to the well-known
EP receivers of [SMFO15; San+18; Şa+18] adapted to CFTN signaling and considering
the noise coloration after matched filtering. In Sec. B, we propose to explore all the
potential of EP for FTN signaling by changing the scheduling and the considered Gaus-
sian family. Finally, comparisons with existing FTN receivers of the literature and with
Nyquist communications in Sec. C enlighten the great interest of the proposed EP-based
FTN receivers for different spectral efficiencies. To the best of our knowledge, the overall
performance of our receivers have never been achieved at high spectral efficiencies and
definitely proves the interest of FTN compared to Nyquist signaling.

A Symbol-wise posterior distribution: from BP to
EP

The first part of this section shows that the symbol-wise posterior distribution
p(sn|r) can be computed using the BP algorithm on the FG given in Fig. IV.1. From
this optimal but computationally complex procedure, a lower complexity message passing
strategy called EP is presented in the second part of this section.

A.1 Principle of Belief Propagation

In order to address the computation of p(sn|r), the dependencies between hidden
variables are revealed by expressing p(sn|r) as the nth marginal distribution of p(s|r).
Furthermore, using the Bayes formula and the symbols independence yields:

p(sn|r) = p(sn)
p(r) p(r|sn) = p(r)−1 ∑

s∼n∈MNs−1

p(r|s)
Ns∏
i=1

p(si) (IV.1)

where s∼n ≜ [s1:n−1, sn+1:Ns ]T refers to the vector s deprived of sn. The expression of the
posterior distribution of sn given in (IV.1) involves the prior distribution p(sn) but also
the likelihood p(r|sn) ∝ p(sn|r)

p(sn) .

The joint distribution which is marginalized in (IV.1) can be represented as the FG
given in Fig. IV.1, where the Variable Node (VN) illustrated by the circles, represent the
symbols s1, ..., sNs while the Factor Node (FN) represent either p(r|s), or p(s1), ..., p(sNs).
Next, an edge from a FN p to a VN si exists if and only if si appears in the expression
of p [KFL01]. In our case, the top FN p(r|s) covers all the different VNs s1, ..., sNs

whereas a bottom FN p(sn) is only connected to the VN sn. The nth marginal can
then be computed using the belief propagation algorithm where FNs exchange extrinsic
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p(r|s)

sn sNss1

p(sn) ... p(sNs)...p(s1)

p(sn)p(r|sn) p(sNs)p(r|sNs)p(s1)p(r|s1)

Figure IV.1: Factor graph of IV.1 under BP algorithm

distributions or messages given by the output or posterior distribution deprived of (or
divided by) its incoming message called prior. This allows avoiding a self-confirmation
effect by removing correlation with respect to its prior information. Consequently, the
extrinsic information of a FN is a message becoming the prior information of another FN
linked to it. For more details, the reader is invited to read [KFL01] where a detailed
explanation of both the message passing process and the FG representation are provided.

The posterior distribution (IV.1) is computed at the VN sn using the BP algorithm
described hereafter:

1. Every bottom FN delivers an upward message to the top FN representing the pmf
p(si) where we suppose that p(si) > 0 for each si lying in M.

2. Knowing the different p(si) and r, the top FN evaluates the likelihood distribution
p(r|sn) using (IV.1) with |M|Ns−1 products for every n ∈ J1, NsK.

Finally, the posterior distribution on the VN sn is given by (IV.1) using its incoming
messages p(r|sn) and p(sn). It should be noted that no more iterations between the FNs
are required for the messages to converge.

Consequently, without any further assumptions on H, the BP algorithm requires
Ns|M|Ns products which is overly complex. In the particular case where H represents
a convolution channel matrix with (2Lτ + 1) paths, such a complexity can be reduced
to O(|M|2Lτ + 1) with a BCJR algorithm [Bah+74] without any approximation. In
both cases, the computation complexity of the MAP symbol estimations still remains
exponential with respect to the constellation order. Hence, when considering high spectral
efficiency schemes with rich constellations, lower complexity strategies have to be explored.
The EP technique has been developed to solve this issue as explained in next section.

A.2 Principle of Expectation Propagation

The EP principle is based on an iterative message passing method which can be
applied to the same FG as for the BP technique, except that messages are enforced to
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p(r|s)

p(sn) ... p(sNs)...p(s1)

↑ Φ(sn)Ψ(sn) ↓ ↑ Φ(sNs)Ψ(sNs) ↓↑ Φ(s1)Ψ(s1) ↓

Figure IV.2: Schematic of the EP problem decomposition

represent circular complex Gaussian pdfs. Hence, while the BP technique exchanges
the true pmf of the symbols, the EP process propagates approximated pdfs that will
be iteratively refined. The FG of BP in Fig. IV.1 should then be slightly adapted by
replacing the BP messages by the EP ones depicted in Fig. IV.2. In particular, the
upward messages Φl(si) (resp. downward messages Ψl(si)) at iteration l are the Gaussian
pdfs approximating p(si) (resp. p(r|si)) given by:

Φl(sn) ≜ NC(sn : sΦl
n , v

Φl
n ) ∝ Φ̃l(sn)

Ψl(sn) = NC(sn : sΦ̃l
n , v

Φ̃l
n )

NC(sn : sΨl
n , v

Ψl
n )

(IV.2)

Ψl(sn) ≜ NC(sn : sΨl
n , v

Ψl
n ) ∝ Ψ̃l(sn)

Φl−1(sn) = NC(sn : sΨ̃l
n , v

Ψ̃l
n )

NC(sn : sΦl−1
n , v

Φl−1
n )

(IV.3)

where:

• Φ̃l(sn): the posterior Gaussian pdf of sn of the bottom FN at iteration l,

• Φl(sn): the extrinsic Gaussian pdf of sn of the bottom FN at iteration l,

• Ψ̃l(sn): the posterior Gaussian pdf of sn of the top FN at iteration l,

• Ψl(sn): the extrinsic Gaussian pdf of sn of the top FN at iteration l.

In order to enforce the messages to be Gaussian pdfs, exact posterior distributions
of each FN are projected on the chosen Gaussian family. This projection can be considered
as a Gaussian approximation where only the two first moments of the true distribution
are kept as depicted in Fig. IV.3. In practice, the approximate posterior distribution
of the bottom FN is given by Φ̃l(sn) = NC(sn : sΦ̃l

n , v
Φ̃l
n ) having: sΦ̃l

n = Eϕ̃l
[sn] and

vΦ̃l
n = Vϕ̃l

[sn] where ϕ̃l(sn) is the true posterior distribution before projection. Similarly,
Ψ̃l(sn) = NC(sn : sΨ̃l

n , v
Ψ̃l
n ) is the Gaussian projection of the exact distribution ψ̃l(sn)

where sΨ̃l
n = Eψ̃l

[sn] and vΨ̃l
n = Vψ̃l

[sn]. Such a Gaussian approximation imposed by the
EP technique can be seen as a reduction of the number of moments.

As we will show in the next subsections, the messages representing extrinsic pdfs
in (IV.2) and (IV.3) are directly Gaussian pdfs and their moments sΦl

n , v
Φl
n (resp. sΨl

n , v
Ψl
n )

are easy to compute. More precisely, we present in the following the computation of the
downward messages Ψl(sn) before introducing the upward ones Φl(sn).
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Figure IV.3: Gaussian projection with moment-matching of a pmf on a BPSK and uniform
(left) or unbalanced (right) probabilities

Computation of Ψl(sn) at top FN

The downward message Ψl(sn) is obtained by computing the posterior distribution
as in BP technique, assuming however that the upward messages Φl−1(si) are Gaussian
pdfs instead of the true pmfs p(si). Consequently, the posterior distribution Ψ̃l(sn) does
not coincide anymore with p(sn|r). Also, since Φl−1(si) are pdfs, the summation ∑s∼n

in
(IV.1) is replaced by the following continuous integration over s∼n

Ψ̃l(sn) ∝
∫

s∼n

p(r|s)
Ns∏
i=1

Φl−1(si) ds∼n (IV.4)

The main advantage of (IV.4) compared to (IV.1) is that the posterior distribution
Ψ̃l(sn) can now be computed analytically. Indeed, since H is deterministic, we have
p(r|s) = NC(r : Hs, σ2

wI2Ns). Some developments detailed in App. C lead to Ψ̃l(sn) =
NC(sn : sΨ̃l

n , v
Ψ̃l
n ) with:  s

Ψ̃l
n = sΦl−1

n + vΦl−1
n f †

n,l(y−GsΦl−1)
vΨ̃l
n = vΦl−1

n (1− vΦl−1
n ξn,l)

(IV.5a)
(IV.5b)

where fn,l = Σ−1
l en, ξn,l = f †

n,lGen and Σl = GVΦl−1 + σ2
wINs using G = DH†HU.

The vector y = DH†r represents the received signal after matched filtering and down-
sampling, and the matrix G corresponds to the circulant convolution matrix of the aliased
Nyquist filter. This posterior estimation sΨ̃l

n of the EP technique can be interpreted as a
well known linear MMSE-IC equalizer [TSK02] which is a biased estimator of sn [Şa+18].

The extrinsic Gaussian pdf Ψl(sn) ∝ Ψ̃l(sn)
Φl−1(sn) returned to the bottom FN is then

obtained by Gaussian division, leading to the Gaussian distribution Ψl(sn) = NC(sn :



Chapter IV – Expectation Propagation for Faster-Than-
Nyquist Signaling

64

sΨl
n , v

Ψl
n ) where:

sΨl
n = sΨ̃l

n v
Φl−1
n − sΦl−1

n vΨ̃l
n

v
Φl−1
n − vΨ̃l

n

= sΦl−1
n + ξ−1

n,l f
†
n,l(y−GsΦl−1)

vΨl
n = vΦl−1

n vΨ̃l

v
Φl−1
n − vΨ̃l

n

= ξ−1
n,l − vΦl−1

n

(IV.6a)

(IV.6b)

This extrinsic estimation of sn also corresponds to the unbiased MMSE-IC equalizer
output sΨl

n with MSE vΨl
n . Note that the computation of y −GsΦl−1 in (IV.6a) can be

computed in the FD for complexity savings. Nevertheless, the main complexity challenge
of the MMSE-IC relies on the computation of the inverse matrix Σ−1

l because Σl is not
circulant and then cannot be easily invertible in the FD at this point.

Remark

At the initial step, we have sΦ0 = 0Ns , VΦ0
n = INs and (IV.6) amounts to performing

a linear MMSE without IC: sΨ1
n = ξ−1

n,1f
†
n,1y

vΨ1
n = ξ−1

n,1 − 1
(IV.7)

At convergence after I iterations and assuming the perfect prior information sΦI = s and
VΦI = ϵINs where ϵ→ 0+, the linear MMSE-IC equalizer yields:sΨI+1

n = sn + w′
n

vΨI+1
n = σ2

w

(IV.8)

where w′
n is the up-sampled matched filtered noise, a circular and centered AWGN. Still at

convergence, (vΨI+1
n )−1 represents the SNR. Such a result can be useful for evaluating the

performance of the equalizer given that it corresponds to a theoretical bound assuming a
perfect ISI cancellation in the equalization process. It is usually called the Matched-Filter
Bound (MFB) (see the chapter "Equalization" of [LM12] on page 448) and we make use
of this model in our simulations.

Following the top FN processing, the EP receiver computes the bottom FN p(sn)
derived in next sub-section. It results in a less usual operation making the specificity
of the EP processing that we call a Constellation Matcher1. It aims at bringing the
constellation knowledge to the equalization process.
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Figure IV.4: Constellation Matcher inner operations

Computation of Φl(sn) at bottom FN

As for the top FN, the true posterior pmf ϕ̃l(sn) is given by the product between
the bottom FN pmf p(sn) and the downward message Ψl(sn) coming from the top FN
evaluated at each element of the constellation:

ϕ̃l(sn) ∝ p(sn)Ψl(sn)
∝ p(sn)NC(sn : sΨl

n , v
Ψl
n ), sn ∈M (IV.9)

The value of p(sn) allows the EP receiver to be linked to a decoder to form an iterative
turbo-receiver. At the first turbo-iteration or if no channel coding is considered, we have
p(sn) = 1

|M| , ∀sn ∈M.

In order to enforce the posterior to be Gaussian, EP performs a Gaussian approxi-
mation of ϕ̃l(sn) by moment matching. Thus, the moments of Φ̃l(sn) are obtained by the
ones of the true posterior pmf ϕ̃l(sn):

sΦ̃l
n = Eϕ̃l

[sn] =
∑
sn∈M

sn · ϕ̃l(sn)

vΦ̃l
n = Vϕ̃l

[sn] =
∑
sn∈M

|sn|2 · ϕ̃l(sn)− |sΦ̃l
n |2

(IV.10a)

(IV.10b)

The final step consists in a Gaussian division in order to retrieve the extrinsic pdf
Φl(sn) of (IV.2):

Φl(sn) = NC(sn : sΦl
n , v

Φl
n ) where


sΦl
n = sΦ̃l

n v
Ψl
n − sΨl

n v
Φ̃l
n

vΨl
n − vΦ̃l

n

vΦl
n = vΨl

n v
Φ̃l
n

vΨl
n − vΦ̃l

n

(IV.11a)

(IV.11b)

1It should be noted that the Constellation Matcher is sometimes considered as a demapper [SA11]. We
prefer to consider a complete separation between the demapper and the Constellation Matcher given that
the demapper computes bit distributions whereas the Constellation Matcher stays at the symbol-level.
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pdf Ψ(sn)

pmf p(sn)

Post. pmf ϕ̃(sn) Post. pdf Φ̃(sn)

Figure IV.5: Constellation Matcher inner distribution: illustration with a QPSK

In practice, the computation of the extrinsic variance vΦl
n could result in a negative value.

This phenomenon appears generally at convergence, when the prior distribution Ψl(sn) is
already a good estimation of sn. Consequently, a common way of ensuring the positivity
of the distribution’s variance sent to the equalizer is to return the posterior pdf Φ̃l(sn)
instead of the extrinsic one when vΦl

n is negative.

Consequently, by evaluating the pdf Ψl(sn) at each element of M in (IV.9), the
bottom FN brings the knowledge of the symbols alphabet to the equalization process. As
depicted in Fig. IV.4, it combines the equalizer’s message with the initial information
and realigns the estimation of sn with respect to M. Indeed, we observe on Fig. IV.5
that even if the MMSE estimation sΨl

n is far from the constellation, the bottom FN
ensures the refined posterior estimate to lie inside the convex shape delimited by the
constellation elements. Indeed, sΦ̃l

n is defined as a barycenter of positive weights ϕ̃l(sn)
over the constellation M.

The next section is devoted to our contribution based on the framework of EP. Up
to now, we computed the messages exchanged in the FG considering circular Gaussian
pdfs. In the following, we schedule differently the message computation, and we also
change the Gaussian distribution family. Each Gaussian distribution combined with a
specific scheduling yields a distinct receiver. Based on this principle, we developed new
receivers for FTN presented hereafter.

B Proposed FTN receivers based on Expectation
Propagation

This section corresponds to the main contribution of the chapter. It consists in the
development and optimization of receivers for FTN based on EP. Our receiver propositions
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are the following:

• we focus on the message scheduling in sub-Sec. B.1 combined with the commonly
used Gaussian family of the previous section. This yields two new receivers for FTN:
the EP and EP-DFE,

• we consider in sub-Sec. B.2 a particular subset of the non-circular Gaussian family
yielding new WL receivers [PC95] only valid for FTN. Depending on the scheduling
considered, this particular family results in two unprecedented receivers: WL-EP
and WL-EP-DFE for FTN,

• we change in sub-Sec. B.3 the Gaussian family and restrict the family to Gaussian
pdfs with identity covariance matrix. Combined with CCFTN, this specific family
allows a low-complexity FD processing of the MMSE-IC equalizer without requiring
any cyclic prefix. Hence, we propose to call this unprecedented receiver FD-EP.

B.1 Scheduling strategy: EP and EP-DFE receivers for FTN

For solving the complex posterior estimation problem, the EP technique exchanges
messages between the top and bottom FNs playing complementary roles and computing
approximate extrinsic information. The computation of those exchanged messages may
be scheduled by two different procedures, giving rise to two different receivers called
respectively EP and EP-DFE receivers [Pet+19].

Both the MMSE-IC equalizer of the top FN and the Constellation Matcher of
the bottom FN are to be performed for each symbol index n ∈ J1, NsK at each iteration
l until convergence. In other words, we iterate over n fixing l, but one may wonder
whether iterating over l fixing n may be better. More precisely, until here, the MMSE
equalizer is implemented over the whole sequence followed by the Constellation Matcher
for each symbol. Then, we run this double process again, and iterating over l results in
a block algorithm we propose to call EP algorithm instead of EP-MMSE algorithm as
in [SMFO15; San+18] because it is theoretically closer to the MAP estimator than the
MMSE equalizer as detailed in Sec. A.

Let us now consider the case where we iterate over l before iterating over n. For
instance, after the processing of s1 by the MMSE-IC equalizer at iteration l, the Con-
stellation Matcher may also act on s1 at this iteration to generate an output which will
be processed by the MMSE-IC equalizer at iteration l to process s2. This scheduling is
usually referred as EP-DFE processing. More generally, for computing Ψl(sn), the last
refinements of si available is Φl(si) for i < n and Φl−1(si) for i ≥ n. This amounts to com-
puting sΨl

n using sΦl−1,DFE = [sΦl
1:n−1, s

Φl−1
n:Ns

]T and similarly for vΦl−1,DFE = [vΦl
1:n−1, v

Φl−1
n:Ns

]T in
(IV.6). A graphical explanation of the two types of scheduling as well as the message pass-
ing of their equalization step is depicted in Fig. IV.6 for EP and Fig. IV.7 for EP-DFE
respectively. In this second case, the scheduling leads to the EP-DFE receiver in reference
to [Şa+18] which refers it as EP-MMSE-DFE. Note that this receiver do not work with
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p(r|s)

p(sn) ... p(sNs)...p(s1)

↑ 21 ↓ ↑ 21 ↓↑ 21 ↓
p(r|s)

p(sn) ... p(sNs)...p(s1)

↑ Φl−1

Ψl ↓
↑ Φl−1↑ Φl−1

Figure IV.6: Scheduling of EP (left) and (right) message passing for computing a down-
ward message Ψl(sn)

p(r|s)

p(s2) ...p(s1)

↑ 43 ↓↑ 21 ↓
p(r|s)

p(sn) p(sn+1) ... p(sNs)p(sn−1)...p(s1)

↑ Φl−1

Ψl ↓
↑ Φl−1 ↑ Φl−1↑ Φl↑ Φl

Figure IV.7: Scheduling of EP-DFE (left) and message passing for computing a downward
message Ψl(sn) (right)

the same kind of feedback as the common MMSE-DFE equalizer, see the introduction of
[Şa+18] for an overview of the different types of DFE.

Algorithm 1 EP and EP-DFE receivers
Require: r,H,∀n : p(sn)
∀n : sΦ0

n = ∑
sn
sn · p(sn) and vΦ0

n = ∑
sn
|sn|2 · p(sn)− |sΦ0

n |2
for l = 1, ..., I + 1 do

for n = 1, ..., Ns do
sΨl
n , v

Ψl
n ← (IV.6), using sΦl−1,DFE,vΦl−1,DFE instead of sΦl−1 ,vΦl−1 for EP-DFE

sΦ̃l
n , v

Φ̃l
n ← (IV.10)

if vΨl
n −vΦ̃l

n < γ ⇐ convergence reached (We set γ = 10−6 in our simulations) then
sΦl
n , v

Φl
n ← [sΦ̃l

n , v
Φ̃l
n or sΨl

n , v
Ψl
n ]

else
sΦl
n , v

Φl
n ← (IV.11)

end if
end for

end for
return ∀n : ϕ̃I+1(sn)

Alg. 1 depicts an implementation of both the EP and EP-DFE receivers where the
output ϕ̃I+1(sn) corresponds to the approximation of p(sn|r). We detail in the following
different Gaussian families aiming at optimizing the trade-off between complexity and
performance of EP-based receivers.
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B.2 EP with non-circular Gaussian distributions: WL-EP and
WL-EP-DFE receivers for FTN

Up to now, messages in EP receivers have been enforced to belong to the set of
SO circular complex Gaussian distributions NC. However, the MSE characterizing the I
and Q parts of a complex estimate have no reason to be equal. Hence, instead of NC, we
consider a subset of non-circular Gaussian distributions characterized by:

NNC (sn : s, vI , vQ) ≜ NR(sn,I : sI , vI)NR (sn,Q : sQ, vQ) (IV.12)

where sn = sn,I + jsn,Q, s ≜ E[sn] = sI + jsQ, vI ≜ E
[
s2
n,I

]
− s2

I and vQ ≜ E
[
s2
n,Q

]
−

s2
Q. vI characterizes the variance of the real part of sn, while vQ denotes the variance

of its imaginary part. Based on this new distribution assumption, the equalizer and
Constellation Matcher equations must be updated as in [Pet+19].

Equalizer update based on the new non-circular distribution assumption

The shaping filter h(t) is real valued and so is the matrix G = DH†HU. Therefore,
one can show that working with distributions in the family NNC leads to the following
WL equalizer which do not apply the same filters to the I and Q parts of the received
signal [Pet+19]:s

Ψl
n = sΦl−1

n + ξ−1
n,l,I f̃

†
n,l,I

(
yI −GsΦl−1

I

)
+ jξ−1

n,l,Qf̃ †
n,l,Q

(
yQ −GsΦl−1

Q

)
vΨl

n,I/Q = ξ−1
n,l,I/Q − v

Φl−1
n,I/Q

(IV.13)

where ξn,l,I/Q = f †
n,l,I/QGen having the MMSE filters fn,l,I/Q = (GVΦl−1

I/Q + σ2
w

2 INs)−1en
and VΦl−1

I/Q = diag([v1,Φl−1
I/Q , v

2,Φl−1
I/Q , ..., v

Ns,Φl−1
I/Q ]T ) using the notation I/Q meaning that the

given expression is defined twice: once using the character I and the other one with Q.
Hence, the WL equalizer is slightly modified from its circular version and requires twice
more matrix inversions.

Constellation Matcher update based on the non-circular distribution assump-
tion

The Constellation Matcher can then be expressed as follows:s
Φ̃l

n,I/Q = ∑
sn,I/Q∈MI/Q

sn,I/Q · ϕl(sn,I/Q)
vΦ̃l

n,I/Q = ∑
sn,I/Q∈MI/Q

|sn,I/Q| · ϕl(sn,I/Q)− |sΦ̃l

n,I/Q|2
(IV.14)

where sΦ̃l
n = sΦ̃l

n,I + jsΦ̃l
n,Q and MI/Q = {sI/Q : s ∈M}.

The expression of the Constellation Matcher does not change much from the cir-
cular receiver. The main difference is that I and Q parts must be computed separately.



Chapter IV – Expectation Propagation for Faster-Than-
Nyquist Signaling

70

Moreover, if considering square or rectangular QAM constellations, processing separately
I and Q parts leads to a simpler Constellation Matcher. Indeed, in these cases exploring
independently MI and MQ is quicker than exploring the complete alphabet M.

Discussion: This WL equalization extension can be applied on the EP receiver
with or without DFE. Nevertheless, we must note that equation (IV.13) is not valid in
the general case of a communication with a complex frequency selective channel since the
I and Q parts of the MMSE-IC cannot be processed separately anymore. As a general-
ization of the circular EP process, it offers a better model fitting at the price of a slight
computational overhead. Consequently, it comes with enhanced performance as presented
in sub-Sec. B.3.

B.3 EP receiver with equal variance circular Gaussian distribu-
tions: FD-EP receiver for CCFTN

In the previous EP-based receivers, the MMSE-IC equalization step performed at
the top FN is quite complex due to the inversion of the matrix Σl = GVΦl−1 + σ2

wINs . In
order to simplify such a computation, we propose an alternative consisting in changing
the considered Gaussian family.

More precisely, we assume now that the messages Φl(sn) (respectively Ψl(sn))
have a common variance parameter as in [Pet+20]. Hence, ∀n ∈ J1, NsK, we will consider
that vΦl

n = vΦl (resp. vΨl
n = vΨl). This amounts to considering the messages Φl(s) =∏Ns

n=1 Φl(sn) and Ψl(s) = ∏Ns
n=1 Ψl(sn) representing circular multivariate complex Gaussian

distribution with VΦl = vΦlINs and VΨl = vΨlINs . Again, under this new assumption,
the equalizer and the Constellation Matcher must be updated. Furthermore, the CCFTN
model is considered for this section.

MMSE-IC equalizer

Under the previous assumptions, the MMSE-IC equalizer of (IV.6) becomes: s
Ψl
n = sΦl−1

n + ξ−1
l e†

nΣ−1
l (y−GsΦl−1)

vΨl = ξ−1
l − vΦl−1

(IV.15a)
(IV.15b)

where ξl = (Σ−1
l G)1,1 does not depend on n anymore, having Σl = vΦl−1G + σ2

wINs .
Moreover, the CCFTN model yields a circulant matrix G, and Ĝ = FGF† is a di-
agonal matrix as well as Σ̂l = FΣlF† = vΦl−1Ĝ + σ2

wINs . Hence, we obtain: ξl =∑Ns
k=1(Ĝ)k,k/(vΦl−1(Ĝ)k,k + σ2

w) and (IV.6) can be computed in the FD as follows: sΨl = sΦl−1 + ξ−1
l F†Σ̂−1

l (ŷ− ĜŝΦl−1)
vΨl = ξ−1

l − vΦl−1

(IV.16a)
(IV.16b)
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where ŷ = Fy represents the FD received signal after matched filtering and down-
sampling, and ŝΦl−1 = FsΦl−1 is the DFT of sΦl−1 .

Constellation Matcher

For computing the Constellation Matcher message, we first need to introduce the
projection of EP messages in the precise case of the Gaussian family we consider. This
derivation is detailed in App. B and leads to averaging the posterior variance terms.
Hence, (IV.10) becomes:

sΦ̃l
n =

∑
sn∈M

sn · ϕ̃l(sn)

vΦ̃l = 1
Ns

Ns∑
n=1

 ∑
sn∈M

|sn|2 · ϕ̃l(sn)− |sΦ̃l
n |2


(IV.17a)

(IV.17b)

and the resulting extrinsic distribution is given by:

Φl(sn) = NC(sn : sΦl
n , v

Φl
n ) where


sΦl
n = sΦ̃l

n v
Ψl − sΨl

n v
Φ̃l

vΨl − vΦ̃l

vΦl = vΨlvΦ̃l

vΨl − vΦ̃l

(IV.18a)

(IV.18b)

Such a Gaussian division only requires one computation for the variance term instead of
Ns for the time-domain EP receivers.

Discussion: The proposed family restriction yields significant complexity reduc-
tions. More particularly, the FD computation of (IV.16) is much more simpler than the
one performed in the time domain as it can be efficiently computed in O(Ns log2(Ns)) for
the whole symbol sequence. Note that such an efficient result has been obtained with-
out any approximation and needs both the CCFTN model and the particular Gaussian
family with covariance matrices proportional to INs . With LCFTN signaling, a similar
result could be obtained by introducing a cyclic prefix of length the shaping filter delay
as in [Sug13], but it would have damaged the spectral efficiency. However, this more
constrained distribution family will need more inner EP iterations to converge, and the
complexity reduction has to be balanced with the overall complexity and performance
trade-off at convergence. We propose to call the resulting receiver FD-EP as it allows a
FD processing for the equalizer.

The following section evaluates the performance of the proposed receivers and
draws a comparison with existing techniques under computational complexity constraints.
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C Simulation results and comparisons

In order to enlighten the relevance of the proposed receivers, we evaluate the per-
formance of the latter in comparison with both the reference receivers of the literature
and the best Nyquist receivers for several values of spectral efficiencies and under com-
plexity constraints. The reference receivers of the literature correspond to the well-known
MMSE-IC equalizer of [TSK02], the FD-MMSE-IC of [TPB16], but also BCJR based re-
ceivers such as the RS-BCJR of [CFR01] and the M*-BCJR of [RLP07]. We did consider
other message passing algorithms based on Approximate Message Passing (AMP) which
turns out to have a similar implementation with our EP-based receivers. These receivers
are presented at the end of this section in sub-Section C.3. Numerical complexities of the
considered receivers is first evaluated before the BER performance analysis.

C.1 Receivers computational complexity

For MMSE-IC and EP based receivers, the computational complexity is domi-
nated by the MMSE filtering operation of (IV.6). From this consideration, we propose
to parameterize the MMSE filter length with 2Nw + 1 coefficients using the method pre-
sented in sub-Sec B.6 yielding a complexity per symbol in O((2Nw + 1)2). Considering
the RS-BCJR, its complexity is tuned by the memory length µ, while the factor M of
the M*-BCJR is related to the retained states number. Note that we did not considered
channel shortening as proposed in [RP12] to optimize the performance of BCJR-based
algorithms at fixed complexity.

In the following, we assimilate the receivers complexity to their number of mul-
tiplications. The overall EP equalizer’s operations are presented in Tab. IV.1. Note
that the newly proposed non-circular generalization, which is only valid in FTN sig-
naling with AWGN channel, comes with a small computational increase given that the
MMSE filters have to be computed twice. Moreover, depending on the scheduling that we
consider for the EP process, the symbol’s equalization can be parallelized. More specif-
ically, the MMSE-IC equalization operation using (IV.5b) can be performed in parallel
for n ∈ J1, NsK. However, if considering the DFE extension, the equalization of a symbol
sn in (IV.5b) depends on the equalization of s1, ..., sn−1 which prevents from equalizing
the whole sequence in parallel. Moreover, the DFE extension comes with a significant
complexity growth. Finally, the WL generalization only requires a slight computational
complexity increase, with depends on the value of 2Nw + 1.

C.2 BER analysis for a given complexity and fixed spectral ef-
ficiencies

In order to compare the performance of the receivers listed in Tab. IV.1, we use
a standard (7,5) convolutional code with rate R = 1

2 . Monte-Carlo simulations have
been performed considering Nb = 4096 information bits mapped in Gray coding for each
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Table IV.1: Real-valued multiplications of the proposed receivers for one symbol, and
their ability to be symbol level parallelized

Receiver Number of multiplications parallel.

FD-MMSE-IC 8 log2(Ns) + 3|M|+ 4 yes

MMSE-IC 8 log2(2Nw + 1) + 8N2
w + 16Nw + 3|M|+ 8 yes

RS-BCJR 2log2 |M|µ(µ+ 3× 2log2 |M|) no

M*-BCJR 3|M|2log2 |M| no

Proposed EP (I + 1)(8N2
w + 8 log2(Ns) + 12Nw + 3|M|+ 10) yes

Proposed WL-EP (I + 1)(16N2
w + 8 log2(Ns) + 24Nw + 4|M|+ 12) yes

Proposed EP-DFE (I + 1)(16N2
w + 8Ns log2(Ns) + 24Nw + 3|M|+ 12) no

Proposed WL-EP-DFE (I + 1)(32N2
w + 8Ns log2(Ns) + 40Nw + 4|M|+ 16) no

Proposed FD-EP (I + 1)(8 log2(Ns) + 3|M|+ 4) yes

modulation. The shaping filter is a rRC filter with rolloff β = 0.3. The compression
factors are set depending on the targeted spectral efficiency, and we chose not to consider
values below τ = 0.5 to limit the ISI. We compare the different receivers at fixed spectral
efficiencies, from ρ = 2.3 bits/s/Hz (moderate) to ρ = 5 bits/s/Hz (very high). Such high
spectral efficiencies are scarcely achieved in the literature with FTN signaling.

MMSE-IC and EP receivers are evaluated at fixed spectral efficiencies with LCFTN
using a window filter parameter set to Nw = 7 symbols, unless the FD-MMSE and FD-EP
which assume the CCFTN model. As far as possible, the receivers of the literature are
tuned to have a same order of magnitude in terms of computational complexity compared
to the proposed EP-based receivers whose complexities are presented in Tab. IV.1. Also,
the FTN signaling performance simulations are compared to the associated MFB which is
represented by the Nyquist communication with the same modulation achieving a spectral
efficiency of ρMFB = ρτ . The number of EP iterations for EP receivers goes from I = 0
to I = 1 or I = 3 depending on the spectral efficiency. Finally, the results have been
obtained after 8 turbo-iterations with the decoder, and we clipped the LLRs to 8 for
avoiding very confident probabilities [San+17].

Moderate spectral efficiency

We use a 8-PSK modulation and FTN signaling achieving ρ ≈ 2.3 bits/s/Hz with
τ = 1

2 , and we compare it with a 64-QAM Nyquist achieving a similar spectral efficiency.
Fig. IV.8 shows, for several FTN receivers (FD-MMSE-IC, MMSE-IC, RS-BCJR, M-
BCJR, EP, FD-EP, WL-EP, EP-DFE-WL-EP-DFE) and for the best Nyquist scheme,
the BER as a function of Eb

N0
at ρ = 2.3 bits/s/Hz.
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Figure IV.8: BER as a function of Eb
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for several FTN receivers and the best Nyquist

scheme at ρ = 2.3 bits/s/Hz

The FD-MMSE-IC of [TPB16] is equivalent to the FD-EP for I = 0 and requires
a lower complexity compared to the MMSE-IC. It achieves 1 dB less than its MFB then
does not completely tackle the effect of the ISI. Similarly, the classical MMSE-IC equalizer
of [TSK02] coincides with the EP by setting I = 0 and performs 4 dB better than a 64-
QAM Nyquist communication with same spectral efficiency for a BER of 10−5 while
requiring a moderate complexity. The convergence can be quicker with our proposed WL
extension (WL-EP), the DFE scheduling (EP-DFE), or both (WL-EP-DFE). When no
EP iterations are considered, BCJR-based receivers perform better. However, by allowing
EP iterations, the proposed receivers are very competitive, especially FD-EP which has
a lower complexity.

High spectral efficiency

We propose here to use a 16-QAM modulation leading to a spectral efficiency
of ρ = 3 bits/s/Hz for the compression factor τ = 1

2 . Hence, the proposed receiver
performance are compared to a 64-QAM Nyquist signaling with same spectral efficiency.
Fig. IV.9 shows, for several FTN receivers and for the best Nyquist scheme, the BER as a
function of Eb

N0
at ρ = 3 bits/s/Hz. Moreover, due to their intractable complexities, BCJR

based receivers are omitted. Also, given the complexity growth coming with the DFE
extension for negligible gains at convergence, we do not consider the EP-DFE receiver.

The considered reception techniques of the literature are not able to handle the ISI
nor to compete with Nyquist signaling. The WL extension allows a slight SNR benefit
of 1 dB without iterations. Nevertheless, EP receivers offer significant enhancements
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when considering EP iterations in a high spectral efficiency scheme. In any case, all the
proposed EP based receivers for FTN signaling almost achieve the MFB leading to 8 dB
gain compared to Nyquist signaling for a BER of 10−5. Up to the authors knowledge,
this new result for FTN signaling has never been achieved for such a spectral efficiency.
Moreover, the FD-EP receiver completely removes the ISI and hence should be preferred
due to its limited computational complexity.

Very high spectral efficiency

We consider a spectral efficiency of ρ = 5 bits/s/Hz. This is obtained by choosing a
2048-QAM constellation with a rRC β = 0.1 filter for a Nyquist link, and setting τ = 0.6
with a 256-QAM constellation for FTN signaling and a rRC β = 0.3 filter. Moreover, due
to their intractable complexities, BCJR based receivers are omitted.

Fig. IV.10 reveals that the MMSE-IC and FD-MMSE-IC equalizers do not decode
at all in the considered region of Eb

N0
while the proposed WL-EP allows performing signifi-

cantly better especially for a small number of iterations at the cost of a slight complexity
increase. Moreover, at such a spectral efficiency, the low complexity FD-EP receiver is
not able to remove the ISI. Once again, such a spectral efficiency of 5 bits/s/Hz has
never been considered with single-carrier signaling and the interest of FTN is now clearly
demonstrated at such a spectral efficiency with EP reception techniques. The gain in
SNR is higher than 6 dB for a BER of 10−5.

In the following, we consider other strategies based on different message passing
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algorithms applied to our CCFTN system model.

C.3 EP-based receivers compared to other message passing al-
gorithms

Following the emergence of the machine learning, a consequent number of message
passing methods have been studied. We propose to recall the most important ones, and
put them in relation with the EP-based receivers for developed for FTN signaling.

Following the complexity issue of BP, AMP has been proposed in [DMM09]. It
consists in applying first an arbitrary denoising function computing a denoised soft esti-
mate of a symbol as well as its MSE, from a prior symbol distribution. For instance, the
unbiased MMSE estimate used in EP falls within the scope of such a denoising function.
In that case, AMP then performs a similar Constellation Matcher as EP, but does not re-
turn an extrinsic distribution. Instead of that, it replaces the extrinsic mean and variance
of the Constellation Matcher extrinsic distribution:

VΦl = VΦ̃l

sΦl = sΦ̃l − ξlVΦ̃l(sΨl − sΦ̃l−1)

We see that the posterior variance is returned instead of the extrinsic one, while the
extrinsic symbol estimate is replaced by the posterior one deprived of the correction
term ξlVΦ̃l(sΨl − sΦ̃l−1). This term barely removes the prior information in order to
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minimize the correlation between the input and the output of the Constellation Matcher.
Compared to EP, it offers the guaranty of returning positive variances VΦl . The rest of
the implementation remains the same as EP. We propose to call the AMP algorithm for
CCFTN signaling FD-AMP when considering the same Gaussian family as our FD-EP.

One can see a very close relation between the extrinsic version used by AMP and
the posterior distribution of the Constellation Matcher. Indeed, up to the correction term
on the mean vector, the Constellation Matcher returns its posterior distribution:

VΦl = VΦ̃l

sΦl = sΦ̃l

The strategy does not handle the correlation between the Constellation Matcher input
and output. We call the resulting receiver FD-APP when using the same Gaussian family
as our FD-EP.

An extension to AMP has been proposed by [RSF19] under the term AMP. It
assumes a FG with vector variable nodes which, therefore, cannot be applied to our FG.
However, an equivalent factorization can be considered as in [Pet+20] for our system
model. It yields an FD-EP receiver which turns out to be exactly the same as the VAMP
algorithm. We prefer the name FD-EP given that EP can be applied to a wider set of
FGs.

Fig. IV.11 shows a comparison between the three FD receivers for the high spectral
efficiency configuration described in the journal proposal. We clearly see the superiority
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of the EP solution. Indeed, the FD-APP does not remove the correlation between its
prior an extrinsic distribution. The FD-AMP handles this correlation and then performs
better, but does not use a Gaussian division as EP. Hence, the Gaussian division – also
called Onsager correction [RSF19] – seems to be preferable, even if it does not guaranty
the positivity of the extrinsic variance. Note that those conclusions remain the same for
different constellations, Gaussian families, scheduling and ISI.

Several damping methods have been proposed in the literature to enhance the
convergence of EP. We mainly focused on the following strategy proposed in [Min+05]:

xΦl
n,damped = vΦl

n

(1− α)xΦl
n

vΦl
n

+
αx

Φl−1
n,damped

v
Φl−1
n,damped


vΦl
n,damped =

1− α
vΦl
n

+ α

v
Φl−1
n,damped

−1

where α ∈ [0, 1] is a damping factor which can vary along the iteration index l. However,
we did not observed any major improvement, but rather some small benefits for particular
combinations of τ, α, l at the price of a slower convergence. Hence, we preferred removing
this damping strategy and we replaced it by clipping (i.e. upper and lower bounding)
the LLRs exchanged with the decoder as proposed by [San+17]. Moreover, EP does not
always guaranty the positivity of the extrinsic variance, especially at the output of the
Constellation Matcher when computing vΦ̃l

n . The case of a negative variance often arises
at convergence, and then we chose to replace the extrinsic distribution by the posterior
one as detailed in Alg. 1.

C.4 Synthesis of simulation results at fixed spectral efficiencies
and computational complexity

As a summary, the reception technique to prefer depends on the targeted spectral
efficiency. The best performing receivers are given in Tab. IV.2 associated to their SNR
and ESNR gain brought by FTN compared to Nyquist signaling. The ESNR is measured
by penalizing the SNR with the IAPR for a saturation probability set to θ = 10−4.
For spectral efficiencies below 2.3 bits/s/Hz, the existing BCJR based and (FD-)MMSE-
IC receivers perform well with FTN signaling, and EP based receivers do not need any
EP iteration to achieve the MFB. At moderate spectral efficiency, the DFE extension
allows a quicker convergence at fixed complexity since we do not need to iterate. At 3
bits/s/Hz, EP iterations are necessary for FTN signaling to converge toward the MFB,
and the FD-EP offers the best trade-off by lowering the complexity. Finally, for very high
spectral efficiencies up to 5 bits/s/Hz, time domain reception techniques are the only way
to almost handle the ISI at the price of more turbo-iterations. The WL generalization
allows a quicker convergence and represents the best solution.

In any case, if we can afford some complexity to implement a turbo-equalization
scheme at reception, FTN signaling is more profitable than Nyquist signaling over an
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Table IV.2: SNR and ESNR gain of FTN compared to Nyquist signaling of the best
performing receiver for different spectral efficiencies

Spectral
Efficiency Receiver Processing

Domain SNR gain ESNR gain

2.3 bits/s/Hz EP-DFE I = 0 Time 3.4 dB 4.0 dB

3 bits/s/Hz FD-EP I = 1 Frequency 8.1 dB 7.0 dB

5 bits/s/Hz WL-DFE I = 3 Time 6.9 dB 6.4 dB

AWGN channel. This holds whatever the targeted spectral efficiency with the operational
considerations we used: channel code, MMSE filter length, symbol sequence length, etc...
Nevertheless, these unprecedented results for high spectral efficiencies reveals the potential
of FTN signaling and is achievable by the mean of EP based receivers for FTN signaling.

D Conclusion

The concept of EP receiver definitely allows FTN signaling to be a serious candidate
for future communication standards. Indeed, EP enables approaching a MAP solution
while remaining computationally affordable especially for high spectral efficiencies. By
making use of different existing scheduling with and without DFE, and adapting the
resulting algorithms to our system model, we benefit from limited computation complexity.
Also, our WL extension enabled by the real-valued nature of the Nyquist filter results in a
best model fitting. We finally introduced a FD-EP solution operating with a very limited
complexity.

While classical receivers do not allow FTN to achieve its MFB at spectral efficiency
above 2.3 bits/s/Hz, our EP based receivers clearly outperforms them by bringing FTN
up to 5 bits/s/Hz with almost no performance deterioration with respect to the MFB.
Also, we showed that the DFE extension is relevant for moderate spectral efficiencies but
it does not perform better while requiring more complexity for higher spectral efficiencies.
Furthermore, while the FD-EP should be preferred for high spectral efficiencies due to
its low complexity, the proposed WL generalization appears to be profitable for reaching
very high spectral efficiencies. These unprecedented results demonstrate the benefit of
FTN compared to Nyquist signaling even for high spectral efficiencies.

At this point, we considered an ideal AWGN channel model which characterizes
particular applications such as satellite communications for instance. In order to handle a
frequency selectivity induced by a multipath channel, we explore in the following chapter
the extension of FTN to multi-carrier signaling.



Chapter V

Multi-Carrier FTN and Frequency
selective Channels

Outline

A Motivation of Multi-Carrier FTN signaling . . . . . . . . . . . . . . . . 81

A.1 Propagation channel of a wireless communication . . . . . . . . . . . . . . . 81
A.2 Limitations of Single-Carrier FTN signaling with Frequency selective Channels 82
B Multi-Carrier FTN signaling for Frequency selective Channels . . . . 84

B.1 Background of Multi-Carrier FTN signaling . . . . . . . . . . . . . . . . . . 84
B.2 System model of MFTN signaling of the literature . . . . . . . . . . . . . . 86
B.3 Proposed Doubly-Circular MFTN signaling system model . . . . . . . . . . 90
C Single and Multi-Carrier comparisons with Frequency selective

channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
C.1 Comparison results for different spectral efficiencies . . . . . . . . . . . . . . 102
C.2 General conclusions with a frequency selective channel . . . . . . . . . . . . 104
D Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104



Chapter V – Multi-Carrier FTN and Frequency selective
Channels

81

The interest of EP for handling ISI induced by FTN signaling has been motivated
in the previous chapters over an AWGN propagation channel model. The need to extend
these previous results to more complex channel models appears naturally; this is the aim
of the chapter.

We start by showing that single-carrier FTN signaling studied so far shows some
limits in the presence of strong frequency selectivity induced by the propagation channel.
In order to facilitate the channel equalization, MFTN signaling has been proposed in the
previous years. Its interest lies in the control we have on the interference induced by the
shaping filters, in a similar way as for single-carrier FTN signaling. Moreover, we can
use different filters and tune the frequency space separating them in order to enhance
the spectral efficiency at the price of some ICI if the sub-carriers are chosen to be not
orthogonal. For this reason, MFTN signaling could be a promising candidate for future
standards in a complex environment. Consequently, we adapt the system model and
develop a low complexity receiver based on EP. This yields a new doubly-circular MFTN
system model combined with a FD-EP receiver adapted to this waveform. The resulting
model is able to target spectral efficiencies unachieved so far, while maintaining a low
processing complexity. The content presented in this chapter will be shortly submitted
for publication in a journal paper.

A Motivation of Multi-Carrier FTN signaling

This section shows the limitations of single-carrier FTN signaling in presence of a
multipath propagation channel. We first derive the model of a frequency-selective channel
over the communication bandwidth. The resulting ISI combines both the FTN and the
channel effects. Provided that the selectivity is sufficient, this interference becomes too
severe to be properly handled by the EP receivers. Consequently, in this setup, FTN
often yields poorer performance than Nyquist signaling.

A.1 Propagation channel of a wireless communication

We focus on propagation channels considered as time-invariant compared to the
sequence duration. The modelization of a channel should represent all the effects of a
wireless communication between two antennas. Depending on the environment of the
communication, the transmitted waves are diffracted, reflected or refracted. Moreover,
the different paths yield different delays at reception, each associated to an amplitude
tending to decrease when the delay increases. Consequently, the modelization of a channel
composed of Nv paths is a (linear) convolution of a causal filter v(t) whose impulse
response is defined as follows:

v(t) =
Nv∑
n=1

αnδ(t− tn) (V.1)
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where any path n ∈ J1, NvK is characterized by its delay tn ≥ 0 and complex amplitude
αn. Without loss of generality, the channel filter v(t) is shifted by the shortest path delay
and we assume that the delays are ordered according to their indices yielding t1 = 0,
|α1| > 0 and ∀n ∈ J1, Nv − 1K : tn < tn+1.

Moreover, we consider a random noise gathering some undesired impacts of the
analog components involved in the communication. This AWGN component denoted
w(t) is supposed to be complex, circular and centered with PSD E|W (f)|2 = N0 where
W (f) is the FT of w(t).

The received signal after the channel model is then defined as follows:

r(t) = (x ⋆ v)(t) + w(t) (V.2)

We can also use a matrix formalism equivalent to the definition of r(t) over the com-
munication frequency supports. To do so, we define the discrete-time received vector
r = [r1, r2, ..., rNr ]T sampled at rate T−1

e over its time support as in [MOP94] where
rm = (r ⋆ γ) (mTe) yielding:

r = VPUx + w (V.3)

with w = [w1, w2, ..., wNr ]T having wm = (w⋆γ) (mTe), and V is the (Nr×Nx) convolution
matrix associated to v(t) sampled at rate T−1

e over its time support, where Nr = Nx +⌈
tNv

Te

⌉
. The filter γ(t) applied to r(t) is used to preserve the noise whiteness and energy

within the communication bandwidth. Moreover, one can show that a noise component
of the vector w follows wm ∼ NC(0, σ2

w) where σ2
w = N0 and we have E[wmw∗

m′ ] = 0 if
m ̸= m′.

A.2 Limitations of Single-Carrier FTN signaling with Fre-
quency selective Channels

We propose to evaluate FTN signaling in presence of a deterministic and invariant
multipath channel. To do so, we assume that the communication is performed over a
theoretical frequency-selective Proakis C channel vC(t) composed of five paths separated
by T . Hence, the impulse response of vC(t) is expressed as follows:

vC(t) = 1√
19

(δ(t− 2T ) + 2δ(t− T ) + 3δ(t) + 2δ(t+ T ) + δ(t+ 2T )) (V.4)

The frequency response |VC(f)|2 of this channel is represented in Fig. V.1.

The global filter now defined as g(t) = (h⋆vC)(t) is sampled every symbol duration
Ts = τT to obtain the matrix G representing the aliased Nyquist filter. For this reason,
the more we compress in FTN signaling with a low value of τ , the longer is the ISI induced
by the propagation channel. Hence, the Ts-sampled delay spread is higher by a factor τ−1

in FTN signaling compared to Nyquist signaling. For this reason, the resulting ISI is more
powerful and so FTN signaling is more sensitive to a multipath channel.
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Figure V.1: Frequency response of the channel vC(t) and RC(0.33) filter

We concentrate on the EP receivers developed in Chap. IV applied to the global
filter g(t) grouping both the Nyquist filter and the frequency-selective channel impulse
responses. From this observation, the EP receivers are naturally extended when the
channel filter is invariant, deterministic and known from the receiver. Moreover, we recall
that the WL extension we proposed for EP receivers does not hold in the general case
of a complex channel. For this reason, such an extension is voluntarily omitted in the
following.

We evaluated in Fig. V.2 the performance of the FD-EP receiver with both CCFTN
and Nyquist signaling at a fixed spectral efficiency of 1.5 bits/s/Hz and a given rolloff
β = 0.33. Such a spectral efficiency is achieved by a QPSK FTN waveform setting
τ = 0.5 and a 16-QAM Nyquist communication. In Fig. V.2, Nb = 4096 information bits
are encoded using a (7, 5)8 convolutional code with rate R = 1

2 . At reception, we perform
8 turbo-iterations and 3 EP iterations. Although we showed in Chap. IV that EP is able
to handle strong interference, the global ISI is here to severe to be properly mitigated
by this receiver. Indeed, the QPSK FTN communication performs worse than the 16-
QAM Nyquist alternative, and losses 8 dB from its MFB. Consequently, in a multipath
context with high frequency selectivity, the Nyquist communication can achieve similar
or better performance than FTN signaling. Therefore, we propose to extend the EP
receivers we developed to multi-carrier FTN communications in order to overcome the
channel propagation frequency selectivity.
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Figure V.2: BER of FTN τ = 0.5 and Nyquist communications achieving 1.5 bits/s/Hz
over the channel vC(t) processed by the FD-EP receiver

B Multi-Carrier FTN signaling for Frequency selec-
tive Channels

We saw that severe ISI coming from the channel combined with FTN signaling
approaches the EP receivers limits. For this reason, MFTN signaling has been proposed
to simplify the equalization step. This concept is based on transmitting the symbols over
different sub-carriers, on which the channel can be considered as relatively flat in the
frequency domain. The shaping filters, as well as the time and frequency separations can
then be tuned to limit the induced interference while achieving high spectral efficiencies.

We start this section by developing the background of MFTN signaling, before
presenting a classical MFTN transmitter and the existing receivers of the literature. Af-
ter that, we propose a new doubly-circular MFTN system model combined with a low
complexity EP-based receiver able to target high spectral efficiencies.

B.1 Background of Multi-Carrier FTN signaling

The actual standards of communications faced the frequency selectivity issue of
the propagation channel coming with high data rates. While channel equalization was
implemented in 3G, new standards such as DVB-T, 4G, 5G and WiFi use multi-carrier
signaling to handle the multipath effect of the channel. This technique aims at carrying
multiple data in parallel on closely spaced sub-carriers. The frequency space F between
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two adjacent sub-carriers, the symbol’s constellation and the prototype filter p(t) of each
sub-carrier are chosen to optimize different criteria such as the spectral efficiency, the
time and frequency localization, the PAPR, the ease of synchronization and the capac-
ity of interference processing. If there are enough sub-carriers over the communication
bandwidth, the channel filter perceived by each sub-carrier turns out to be frequency
flat. Moreover, the delay spread of the channel filter generates interference at the ending
frames which could be handled by introducing a cyclic-prefix.

The most simple example of a multi-carrier scheme is the OFDM technique, achiev-
ing high data rates while keeping orthogonal sub-carriers by setting p(t) as a frequency
cardinal sine filter at the price of high out-of-band power. Moreover, the transceiver
complexity turns out to be very low because the transmitter performs a simple IFFT
operation and the receiver implements a FFT after leaving the cyclic prefix out. For its
advantages, OFDM based systems are now widely used and this technique is at the origin
of most of the multi-carrier waveforms.

Derived from OFDM, the concept of Multi-Carrier FTN signaling has been intro-
duced by John B. Anderson and F. Rusek in 2006 under the name MFTN [AR06] and
detailed in 2009 [RA09b]. They proposed to extend OFDM to other Nyquist pulses such
as rRC filters with bandwidth W = (1 + β)T−1. In order to compensate the spectral
efficiency damage introduced by the rolloff, they compress in time and also in frequency
domains setting Ts = τT and F = νT−1 where ν ∈ (0, 1+β] is the frequency compression
factor. Hence, as soon as we have ν < 1 + β, the sub-carriers are not orthogonal any-
more. This MFTN model combines two types of interference: ISI coming from the time
compression and channel filter, and ICI generated by the frequency compression.

The first works on MFTN aimed at estimating the bi-dimensional Mazo bound,
i.e. the lower compression products τν yielding the same BER performance at high SNR
as OFDM for a given Nyquist pulse p(t) and constellation when optimally processing the
interference [RA09b]. Surprisingly, it appeared that the time and frequency compression
factors are almost independent. While the time-domain Mazo bound is τ = 0.802 for
a cardinal sine filter, the bi-dimensional compression product can be decreased down to
τν = 0.54 for β = 0.1. This theoritical and optimistic result revealed a potential spectral
efficiency gain of 85% compared to the best orthogonal scheme. Hence, MFTN signaling
is nowadays a cutting edge research area and is sometimes proposed for next generation
standards of digital communications [Lee+19].

Following the first propositions of MFTN signaling, some studies extended the re-
sults of other pulse shapes such as Isotropic Orthogonal Transform Algorithm (IOTA)
proposing optimal time and frequency localization [DMO11]. Multiple studies also drop
out the Nyquist constraint imposed to the filter such as [Pie+13; Sec+15; Mar17] yield-
ing small improvements. Other authors try to limit the interference by optimizing the
symbols’ constellation as proposed in [Bei+14], or [SIN17] which uses index modulations
at the price of a higher PAPR. Offset constellations can also be used to limit the inter-
ference and slightly decrease the PAPR as proposed by [Lah+17] with precoding as in
[JLM19]. Nevertheless, the gain decreases when considering rich constellations, and pre-
coding techniques suffer from high PAPR or spectrum damages. Filter optimization is a
wide area of research, but its impact on the interference power at fixed spectral efficiency
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is also limited. For this reason, different propositions surged to process the interference
of MFTN signaling. We dig into them in the following sub-section.

B.2 System model of MFTN signaling of the literature

The MFTN system model follows the same symbol generation process as single-
carrier FTN signaling. Hence, we generate iid bits b which are encoded and interleaved.
These bits are then converted to Ns symbols s given a complex constellation M.

MFTN signal shaping

We assume a MFTN signal composed of N sub-carriers separated by F = νT−1

Hz, carrying K symbols per sub-carrier with duration Ts = τT where T−1 represents the
-3 dB bandwidth of the Nyquist filter p(t). The numbers N and K satisfy Ns = NK
where Ns can be adjusted by padding the vector s. The transmitted signal is expressed
as follows:

x(t) =
K∑
k=1

N∑
l=1

skl p(t− (k − 1)Ts) ej2π(l−1)Ft (V.5)

=
K∑
k=1

N∑
l=1

s⃗kl pl(t− (k − 1)Ts) (V.6)

where skl is the kth symbol of the lth sub-carrier, s⃗kl = skl e−j2πτν(l−1)(k−1) corresponds to
the rotated symbol skl , and pl(t) = p(t) ej2π(l−1)Ft is the filter associated to the lth sub-
carrier. Using a matrix formalism is easier with the rewritten expression (V.6) instead of
(V.5), and we define the (Ns × 1) symbols vector s organized as follows:

s =



s1

s2
...

sN


(V.7)

where each sub-vector sl = [s1
l , s

2
l , .., s

K
l ]T corresponds to the symbols of the lth sub-

carrier. We define the rotated symbols vectors s⃗ and s⃗l organized similarly as s and sl,
and we have:

s⃗ = Rs (V.8)

with R = (ej2πτν(l−1)(k−1) δi−j)i=(l−1)K+k,j the (Ns×Ns) diagonal matrix aiming at rotating
the symbols s.

Following the same methods as single-carrier signaling, we consider equivalently
the discrete version of x(t). To do so, the signal x(t) is sampled at a rate T−1

e chosen to
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be wider than the communication bandwidth. It yields the vector x = [x1, x2, ..., xNx ]T
whose elements are expressed as:

xi = x((i− 1)Te − LτTs) (V.9)

=
K∑
k=1

N∑
l=1

s⃗kl pl((i− 1)Te − (Lτ + k − 1)Ts) (V.10)

Using a matrix formalism, we define the vector x whose expression is similar as single-
carrier FTN signaling:

x = PUs⃗ (V.11)

where U is a (Ts

Te
Ns ×Ns) matrix up-sampling s⃗ by a factor Ts

Te
. The (Nx × Ts

Te
Ns) matrix

P expressed as:

P =
(

P1 P2 . . . PN

)
(V.12)

where each Pl is a (Nr× Ts

Te
K) matrix generating the lth sub-carrier shaping filter defined

as:

(Pl)i,j = pl((i+ j − 2)Te − LτTs) (V.13)

At reception, we retrieve the continuous-time signal r(t) subject to the AWGN
component and the multipath channel. Hence, its expression is given by:

r(t) = (x ∗ v)(t) + w(t) (V.14)

which can be translated in discrete-time. For the sake of simplicity, we omit a normalized
ideal anti-aliasing filter of bandwidth T−1

e . The expression of the discrete-time received
signal becomes:

r = HUs⃗ + w (V.15)

where H = VP is a (Nr × Ts

Te
Ns) convolution matrix associated with h(t) = (v ∗ p)(t)

representing the effects of the transmit filters and the multipath channel. In a similar
way, the matrix V represents the (Nr × Nx) convolution matrix associated to the filter
v(t) over the communication bandwidth, sampled at rate T−1

e .

At reception, we assume a perfect knowledge of the multipath channel coefficients.
The observation model given in (V.15) is similar as the single-carrier FTN signaling one.
Hence, we can directly apply the MAP, MMSE and EP receivers starting by matched
filtering and down-sampling at time Ts. It yields the following signal:

y = R†DH†r (V.16)

where D = U† is a (Ns × Ts

Te
Ns) down-sampling matrix. Note that w′ = R†DH†w is a

colored noise if τ ̸= 1 or ν ̸= 1, and G = DH†HU is the ambiguity function sampled at



Chapter V – Multi-Carrier FTN and Frequency selective
Channels

88

the symbol-time Ts and frequency space F . This (Ns × Ns) matrix G is structured as
follows:

G =



G1,1 G1,2 ... G1,N

G2,1 G2,2 ... G2,N
... ... . . . ...

GN,1 GN,N−1 ... GN,N


(V.17)

where Gl′,l = U′†H†
l′HlU′ can be expressed as:

(Gl′,l)i,j =
∫
h∗
l′(t)hl(t− (j − i)Ts) dt (V.18)

with U′ is a (Ts

Te
K ×K) sub-matrix of U and hl(t) = h(t) ej2π(l−1)Ft. Defining the rotated

signal y⃗ = Ry and noise w⃗ = Rw, (V.16) becomes:

y⃗ = Gs⃗ + w⃗′ (V.19)

The matrix G characterizes the transformation applied to every rotated symbol
s⃗kl on the vector y⃗. More precisely, a coefficient (Gl′,l)i,j represents the quantity of s⃗kl
(the kth symbol of sub-carrier l) at the jth symbol time in the l′th sub-carrier of the
vector y⃗. For orthogonal communications, we have (Gl−l′)i,j ∝ δi−jδl−l′ where the term
δi−j characterizes the absence of ISI and the term δl′,l stands for no ICI. When we have
ν = 1 + β, the communication does not generate any ICI and G turns out to be a block-
diagonal matrix because Gl′,l = 0K for l ̸= l′. For τ = 1, their is no ISI and the diagonal
sub-matrices Gl,l of G become diagonal matrices, i.e. we have ∀l : Gl,l ∝ IK . The spectral
efficiency of such a system is the following:

ρ = R log2 |M|
τν

(V.20)

MFTN receivers of the literature

After matched-filter and down-sampling, different options are offered to retrieve
the symbols information before decoding. The joint symbol estimation problem of the
whole symbol vector can be theoretically handled by the MAP estimator, or the MMSE
equalization. In both cases, the problem aims at maximizing the posterior distribution
p(⃗s|y⃗) where s⃗ is supposed to be a sequence of rotated symbols (MAP) or gaussianly
distributed random variables (MMSE). However, the complexity of such algorithms is
not affordable because the interference applied to each symbol depends on K − 1 others
symbols if their is no ICI and Ns− 1 symbols else. The corresponding FG is given in Fig.
V.3.

An alternative to the MAP sequence computation is a sub-carrier MAP-based es-
timation which minimizes each rotated sub-sequence s⃗l′ probability of error instead of the
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p(y⃗|⃗s) s⃗ p(⃗s)
p(⃗s)

p(y⃗|⃗s)

Figure V.3: Factor Graph of the sequence MAP factorization

full symbol sequence. Considering a time-domain MMSE-based equalizer, the complexity
decreases from O(N3

s ) to O(N [(2L+1)K]3) while remaining optimal. A common approxi-
mation proposed by [RA09b] consists in performing IC of the adjacent sub-carriers before
estimating a sub-carrier l′. This amounts to consider that the observation of y⃗l with l ̸= l′

is not informative for s⃗l′ : p(⃗sl′|y⃗l) ∝ 1 where y⃗l is the lth sub-vector with length N of
y⃗. Hence, the sub-carrier posterior distribution is approximated to the computation of
p(⃗sl′ |y⃗l′) which factorizes as follows:

p(⃗sl′|y⃗l′) =
∑
s⃗∼l′

p(⃗s|y⃗l′) (V.21)

∝
∑
s⃗∼l′

p(y⃗l′ |⃗sl′−L, s⃗l′−L+1, ..., s⃗l′+L)
N∏
m=1

p(⃗sm) (V.22)

The factorization (V.22) is depicted in the FG of Fig. V.4 where the dashed diagonal
downard messages p(⃗sl′ |y⃗l), l ̸= l′ have been ignored due to the approximation p(⃗sl′ |y⃗l) ∝
1. The posterior sub-carrier distribution leads to computing z⃗l′ the l′th sub-carrier of y⃗
deprived of ICI as follows:

z⃗l′ = y⃗l′ −
L∑

i=−L,i ̸=0
Gl′,l′+i⃗sl′+i (V.23)

This simplifies the estimation of the full sequence with length Ns to N estimations of
sub-sequences with length K. However, it requires to compute z⃗l with the knowledge of
the adjacent sub-carrier rotated symbols s⃗l+i. In practice, this rotated symbols’ informa-
tion is brought by the prior information of the decoder making this IC subject to error
propagation. In order to limit this phenomenon, the scheduling for IC should start with
processing the first and last sub-carriers before progressing toward the central sub-carriers.
However, with an iterative receiver, the scheduling strategy has almost no impact on the
overall performance.

The paper [RA09b] uses IC for ICI cancellation combined with N BCJR algorithms
achieving a product τν ≈ 0.43 yielding a spectral efficiency more than twice better than
Nyquist signaling with almost no BER degradation. However, the huge complexity of N
BCJR estimators make this solution quickly intractable for rich constellations and high
spectral efficiencies. To tackle this problem, a low complexity symbol-by-symbol receiver
is exposed in [BFC09] based on modeling the interference as a gaussianly distributed
variable. A two-dimensional MMSE equalizer has also been proposed in [Pen+18] but it
requires to inverse a (Ns × Ns) matrix, making this solution out of the low-complexity
scope of this thesis. Hence, an alternative solution aiming at lowering the complexity has
been proposed in [Ma+20] with similar performance, but the complexity savings are not
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p(y⃗l |⃗sl−1, s⃗l, s⃗l+1) p(y⃗l+1|⃗sl, s⃗l+1, s⃗l+2)p(y⃗l−1 |⃗sl−2, s⃗l−1, s⃗l)

s⃗ls⃗l−1 s⃗l+1

p(⃗sl)

p(⃗sl|y⃗l) ↓ ↑ p(⃗sl)

p(⃗sl|y⃗l) ↓ ↑ p(⃗sl)

↗ p(⃗sl−1) p(⃗sl+1)↖

Figure V.4: Factor Graph of the approximate sub-carrier MAP factorization for sl assum-
ing L = 1

significant enough to be seriously considered in practice. The one dimensional MMSE
equalization taking benefit of the sub-optimal IC elimination for ICI has been explored
in [Tia+18] with even more performance degradation. Another algorithm based on a FG
formalism has also been developed in [CFP11] with a linear complexity for single or multi-
dimensional interference. Finally, a FD-MMSE equalization with cyclic-prefix insertion
is considered in [Pen+17] for MFTN yielding a low-complexity algorithm, yet unable to
achieve high spectral efficiencies. Following the same perspective, we propose to go further
the FD-MMSE equalization by combining it with EP. This yields us to propose a new
EP-based receiver combined with a new doubly-circular MFTN model, able to achieve
high spectral efficiencies while maintaining a limited complexity.

B.3 Proposed Doubly-Circular MFTN signaling system model

In order to target a FD processing at reception, we adapt the commonly used
MFTN system model by introducing two circularities: one in the time-domain, and an-
other in the frequency domain.

The FD circularity is similar as in single-carrier FTN signaling. Each sub-carrier
is shaped by the periodized shaping filter ṗ(t) defined as:

ṗ(t) =
∑
m∈Z

p(t−mNTs) (V.24)

Hence, replacing p(t) by ṗ(t) in (V.6) yields:

ẋ(t) =
K∑
k=1

N∑
l=1

s⃗kl ṗl(t− (k − 1)Ts) (V.25)
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where ṗl(t) = ṗ(t) ej2π(l−1)Ft is the periodized shaping filter frequency-shifted by (l− 1)F
Hz. As presented hereafter, convolution with the shaping filter can then be applied in the
FD with a lower complexity.

The time-domain circularity is analogous to the FD one, but performed in the time-
domain. As presented before, the circularity in a given domain is obtained by sampling
the corresponding signal in the dual domain, or equivalently by periodizing the signal
in the actual domain. Following this logic, we chose to build the discrete signal ẍ by
sampling ẋ(t) at rate T−1

e = NF . Such a sampling yields aliasing as represented in Fig.
V.6 compared to the classical linear MFTN signaling represented in Fig. V.5. Note that
the frequency centers have been shifted to the signal’s center frequency in these figures.
In doubly-circular MFTN signaling, the first sub-carrier interferes with the last one, as
if they where neighbors sub-carriers. The first effect is a bandwidth reduction of the full
signal, and hence a spectral efficiency increase for low values of N . The second effect is
that each sub-carrier is subject to the same distribution of interference, even the first and
last ones.

These two circularities allow an easy and low-complexity construction of the trans-
mitted signal ẍ in the frequency domain. Hence, it has a length Nẍ = Nsτν and can be
expressed as:

ẍ = P̈Us⃗ (V.26)

where P̈ is the (Nẍ×NNsτν) shaping matrix described hereafter, and U is the (NNsτν×
Ns) up-sampling matrix by a factor Ts

Te
= Nτν. The sampling rate yields a first operational

requirement of the proposed doubly-circular MFTN signaling: the factor Nτν is required
to be an integer, which is not very restrictive in practice. The shaping matrix P̈ is
composed as follows:

P̈ =
(

P̈1 P̈2 . . . P̈N

)
(V.27)

where each (Nsτν × Nsτν) sub-matrix P̈l defined as (P̈l)i,j = ṗ((j − i)Te) is not only
Hermitian but also circulant to produce the FD circularity.

The construction of ẍ can be performed in the FD because it can be decomposed
as follows:

ẍ =
N∑
l=1

F†
Nẍ

ˆ̈xl (V.28)

where ˆ̈xl is the FD lth sub-carrier of ẍ which can be obtained following the process
depicted in Fig. V.7. From a mathematical point of view, ˆ̈xl can be expressed as:

ˆ̈xl = FNẍP̈lU′⃗sl (V.29)

= ˆ̈PlFNẍU′⃗sl (V.30)

with U′ the (Nẍ ×K) up-sampling matrix and ˆ̈Pl = FNẍP̈lF†
Nẍ

a diagonal matrix com-
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Figure V.5: FD shaping filters of linear MFTN signaling with β = 1 and ν = 1
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Figure V.6: FD shaping filters of doubly-circular MFTN signaling with β = 1 and ν = 1



Chapter V – Multi-Carrier FTN and Frequency selective
Channels

93

posed of the Fourier coefficients of pl(t). These Fourier coefficients are the same as those
of p(t), shifted by (l − 1)F because Pl(f) = P (f − (l − 1)F ). Consequently, each vector
ˆ̈xl is obtained by multiplying the discrete shifted frequency response {Pl(n−1

KTs
)}n∈J1,NẍK of

the filter p(t) with FNẍU′⃗sl. Moreover, FNẍU′⃗sl is nothing more than the periodization
of FN s⃗l the FT of s⃗l. The transmitted signal ẍ is then obtained by adding up the inverse
FT of each elements ˆ̈xl as given in (V.28). Finally, its continuous-time version ẍ(t) is
defined as follows:

ẍ(t) =
Nẍ∑
m=1

ẍmΓ (t− (m− 1)Te) (V.31)

where Γ(t) is an ideal and normalized filter with bandwidth T−1
e .

From this general doubly-circular MFTN signaling model, we propose to limit
the frequency compression factor ν. More precisely, we do not want each sub-carrier
to be interfered by more than its two adjacent sub-carriers. Each sub-carrier having a
bandwidth W = 1+β

T
, we must ensure that:

W

2 ≤ F ≤ W ⇐⇒ 1 ≥ 2− 2ν
1 + β

≥ 0 (V.32)

and we define Ω ∈ [0, 1] the frequency overlap factor as follows:

Ω = 2− 2ν
1 + β

(V.33)

For Ω = 1 each sub-carrier is fully overlapped by its adjacent sub-carriers, and for Ω = 0
the system model is orthogonal. A FD representation of the shaping filters for different
values of Ω is given in V.8. Note that the signals are shifted by half the communication
bandwidth for symmetry reasons. The spectral efficiency becomes:

ρ = 2R log2 |M|
τ(1 + β)(2− Ω) (V.34)

In the following, we use either the factor ν or Ω depending on the context, but the two
notations are completely equivalent.

A multipath channel is then applied to the transmitted signal, as well as an AWGN
component. Hence, the received signal is expressed as:

r̈(t) = (ẍ ∗ v)(t) + w(t) (V.35)

where we omit the expression of a cyclic prefix longer the channel delay spread appended
to the transmit signal in order to conserve the circular property of the convolution between
the global filter ḣ(t) = (ṗ ⋆ v)(t) and the symbols. At reception, the cyclic prefix is left
out after a perfect synchronization and before any further processing. We developed an
iterative receiver based on EP aiming at retrieving the symbols information described
hereafter.
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Figure V.7: FD construction of ˆ̈xl
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(a) Ω = 0%

−25 −20 −15 −10 −5 0 5 10 15 20 25−40

−30

−20

−10

0

M
ag

ni
tu

de
(d

B)

(b) Ω = 50%

−25 −20 −15 −10 −5 0 5 10 15 20 25−40

−30

−20

−10

0

Frequencies (T−1 Hz)

M
ag

ni
tu

de
(d

B)

(c) Ω = 100%

Figure V.8: Shaping filters of doubly-circular MFTN signaling for β = 1 and different
values of Ω
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Proposed EP-based receiver for Doubly-Circular MFTN signaling

As presented previously, the discrete-time received signal sampled at rate T−1
e =

NF is expressed as follows:

r̈ = ḦUs⃗ + w (V.36)

where Ḧ = V̈P̈ is the (Nẍ×NsNτν) convolution matrix associated to the transmit filters
and the multipath channel. In a similar way, the matrix V represents the (Nẍ × Nẍ)
circular matrix associated to the filter v(t) sampled at rate T−1

e . The discrete signal r is
then processed by an EP-based iterative algorithm.

The matched-filtering and down-sampling operations yields:

ÿ = R†DḦ†r̈ (V.37)

where w′ = R†DḦ†w is a colored noise if τ ̸= 1 or ν ̸= 1. The frequency shifted signals
are denoted ⃗̈y = Ry and w⃗ = Rw, and we have:

⃗̈y = G̈s⃗ + w⃗′ (V.38)

where the (Ns ×Ns) matrix G̈ a has three block diagonals with circulant blocks:

G̈ =



G̈1,1 G̈1,2 0K 0K 0K . . . . . . 0K G̈1,N

G̈2,1 G̈2,2 G̈2,3 0K 0K . . . . . . 0K 0K
0K G̈3,2 G̈3,3 G̈3,4 0K . . . . . . 0K 0K
... . . . . . . . . . . . . . . . ...
... . . . . . . . . . . . . ...

0K 0K . . . . . . 0K G̈N−2,N−3 G̈N−2,N−2 G̈N−2,N−1 0K
0K 0K . . . . . . 0K 0K G̈N−1,N−2 G̈N−1,N−1 G̈N−1,N

G̈N,1 0K . . . . . . 0K 0K 0K G̈N−1,N G̈N,N


(V.39)

where each G̈l′,l = U′†Ḧ†
l′ḦlU′ is a circulant matrix representing the ICI or the ISI on

sub-carrier l if l = l′. The effect of the ICI limitation with Ω ∈ [0, 1] yields the sub-
matrices G̈l′,l composing the matrix G̈ to be null as soon as |l − l′| > 1. If there is
no multipath channel, we have G̈l′,l = G̈l−l′ = U′†P†

l′PlU′ and the matrix G̈ becomes
additionally block circulant (always with circulant blocks). Such a structured matrix is
diagonal in the two-dimensional Fourier domain, and the proposed waveform becomes
close to Orthogonal Time Frequency and Space (OTFS) signaling [Had+17].

In the general case of a multipath channel, we could apply EP with a two-
dimensional equalization for both ICI and ISI processing. However, this would require
the inversion of a (Ns × Ns), far beyond the targeted complexity. Hence, we apply the
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FD-EP equalization on each sub-carrier after IC for ICI processing. This amounts to
performing N single-carrier EP algorithms. The scheduling strategy for the sub-carrier
processing has no impact on the performance, and the N sub-carriers can be computed
in parallel using the symbol estimation of the previous EP iteration. This ability to
process the whole sub-carriers in parallel is an important benefit offered by the EP
receiver compared to the MMSE-IC equalizer. The equalization step is performed on the
signals z⃗l′ = y⃗l′ − G̈l′,l′−1⃗sl′−1 − G̈l′,l′+1⃗sl′+1 yielding:

s⃗Ψ
l′ = s⃗Φ

l′ + ξ−1
l′ Σ̈−1

l′ (⃗zl′ − G̈l′,l′ s⃗Φ
l′ ) (V.40)

with the (K × K) MMSE matrix Σ̈l′ = vΦ
l′ G̈l′,l′ + σ2

wIK and ξl′ = (Σ̈−1
l′ G̈l′,l′)1,1. The

AWGN component can also be empowered to take into account the error coming from
the IC when computing z⃗′

l. This would result in considering that the ICI contribution is
a circular AWGN with same variance as proposed by [CFP11].

In order to lower the computational complexity, the IC step can be performed in
the FD using frequency shifts and product of diagonal matrices as presented in sub-Sec
B.3. Once the ICI is removed, a single-carrier FD-EP process described in sub-Sec B.3
can be performed on z⃗l′ for each sub-carrier l′. It consists in performing the equalization
given in (V.40) in the FD followed by a Constellation Matcher step for each symbol of
the considered sub-carrier.

The proposed receiver called FD-EP for MFTN signaling has a complexity in
O(INs log2(K)) where I represents the number of EP iterations. Such a low-complexity
process outperforms existing MFTN receivers as presented in the following sub-section.

Performance of EP-based receiver for MFTN signaling

Before evaluating the performance of the proposed EP-based receiver for MFTN
signaling, we propose to present the results of existing low-complexity receivers over an
AWGN channel. To do so, we consider a doubly-circular MFTN system transmitting
Nb = 4000 useful bits. These bits are coded by a with a (7,5) convolutional code with
rate R = 1

2 . After a random interleaver, the symbols are transmitted over N = 10 sub-
carriers considering different constellations. The filter parameter β, the time compression
factor τ and frequency overlap factor Ω are chosen to minimize the interference (ISI + ICI)
on the signal ÿ at a given τν value, i.e. at fixed spectral efficiency if the constellation does
not change. The minimization is performed by exploring the values τ ∈ {0.1, 0.2, ..., 0.9}
and β ∈ {0, 0.1, ..., 1}. The resulting parameters are summed-up in Tab. V.1.

At the receiver, we process the received signal by the proposed FD-EP receiver
and 8 turbo-iterations. Due to their intractable complexities, we did not explored the
performance obtained with a BCJR for symbol processing, nor a two-dimensional MMSE
equalizer processing jointly the ISI and ICI. Consequently, we compare our results to the
FD-MMSE receiver developed in [Pen+17] with IC for ICI processing and cyclic prefix
insertion.

Fig. V.9 shows the BER obtained considering different constellations and spectral
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Figure V.9: BER of MFTN signaling for different constellations and τν values
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Table V.1: MFTN waveform parameters for different τν values

Compression factor τν 1 0.9 0.8 0.7 0.6 0.5 0.4

Frequency space factor ν 1.25 1 1 1 1.2 1 0.8

Time compression factor τ 0.8 0.9 0.8 0.7 0.5 0.5 0.5

Filter rolloff β 1 0.3 0.7 1 0.9 0.7 0.5

Frequency overlap Ω 75 % 46 % 82 % 100 % 74 % 82 % 93 %

efficiencies of the existing FD-MMSE receiver. With a QPSK, the receiver completely
handles the interference down to τν = 0.6, and shows a loss of 2 dB compared to its
MFB for τν = 0.5. When compressing even more, it cannot remove the interference. We
recall that the two-dimensional Mazo bound of such a model is τν = 0.43. Hence, the
existing FD-MMSE for MFTN comes with a 70 % spectral efficiency gain compared to the
best Nyquist scheme, but does not reach the BCJR performance. Regarding the 16-QAM
constellation, the FD-MMSE removes the interference down to τν = 0.8 without BER
damage. It represents a spectral efficiency increase of 25 % compared to Nyquist signaling.
Nevertheless, for the 256-QAM the FD-MMSE is not able to handle any interference and
thus does not propose any benefit compared to Nyquist signaling. To conclude, the richer
the constellation, the less we can compress and the FD-MMSE offers significant spectral
efficiency gains up to 3 bits/s/Hz.

In Fig. V.10 we compare the performance between Nyquist signaling, the existing
FD-MMSE and the proposed FD-EP receiver at given spectral efficiencies over an AWGN
channel. Considering ρ = 2.5 bits/s/Hz, the QPSK MFTN waveform with τν = 0.5 can be
compared to the 64-QAM Nyquist communication. While the FD-MMSE receiver achieves
1.5 dB better than the Nyquist counterpart, the proposed FD-EP receiver performs 3.5
dB better by handling the whole interference after 3 EP iterations. In the following
figure, we consider a 16-QAM MFTN signal with τν = 0.7, and a 64-QAM Nyquist
waveform achieving ρ = 3 bits/s/Hz. The FD-MMSE receiver does not estimate at all
the interference while our FD-EP receiver completely removes it, performing 4 dB better
than Nyquist signaling. The conclusion is similar for a 256-QAM constellation achieving
ρ = 4.5 bits/s/Hz with τν = 0.9. At such a very high spectral efficiency, this MFTN
signaling can be compared to a 512-QAM Nyquist signal. Consequently, our EP-based
receiver outperform existing solutions while maintaining a low complexity, even at very
high spectral efficiencies.

Regarding the IAPR depicted in Fig. V.11, the compared waveforms are almost
equivalent with IAPR(10−5) ≈ 10 dB. Hence, we did not considered the ESNR metric
because it would lead to similar results as SNR comparisons.

In the following sub-section, we confront the proposed single-carrier and multi-
carrier system models to a frequency selective propagation channel.



Chapter V – Multi-Carrier FTN and Frequency selective
Channels

100

0 2 4 6 8 1010−5

10−4

10−3

10−2

10−1

100

Eb

N0

∣∣∣
dB

BE
R

QPSK Nyquist
16-QAM Nyquist
τ ν = 0.5 FD-MMSE
τ ν = 0.5 FD-EP I = 1
τ ν = 0.5 FD-EP I = 2
τ ν = 0.5 FD-EP I = 3

(a) ρ = 2.5 bits/s/Hz

0 2 4 6 8 10 12 1410−5

10−4

10−3

10−2

10−1

100

Eb

N0

∣∣∣
dB

BE
R

16-QAM MFB
64-QAM Nyquist
τ ν = 0.7 FD-MMSE
τ ν = 0.7 FD-EP I = 1
τ ν = 0.7 FD-EP I = 2
τ ν = 0.7 FD-EP I = 3

(b) ρ = 3 bits/s/Hz

6 8 10 12 14 16 18 2010−5

10−4

10−3

10−2

10−1

100

Eb

N0

∣∣∣
dB

BE
R

256-QAM MFB
512-QAM Nyquist
τ ν = 0.9 FD-MMSE
τ ν = 0.9 FD-EP I = 1
τ ν = 0.9 FD-EP I = 2
τ ν = 0.9 FD-EP I = 3

(c) ρ = 4.5 bits/s/Hz

Figure V.10: BER of MFTN signaling for different constellations at fixed spectral effi-
ciency



Chapter V – Multi-Carrier FTN and Frequency selective
Channels

101

0 2 4 6 8 10 1210−5

10−4

10−3

10−2

10−1

100

IAPR(θ)|dB

θ

QPSK MFTN τν = 0.5
16-QAM Nyquist τ = ν = 1

(a) ρ = 1.5 bits/s/Hz

0 2 4 6 8 10 1210−5

10−4

10−3

10−2

10−1

100

IAPR(θ)|dB

θ

16-QAM MFTN τν = 0.7
64-QAM Nyquist τ = ν = 1

(b) ρ = 3 bits/s/Hz

0 2 4 6 8 10 1210−5

10−4

10−3

10−2

10−1

100

IAPR(θ)|dB

θ

256-QAM MFTN τν = 0.9
512-QAM Nyquist τ = ν = 1

(c) ρ = 4.5 bits/s/Hz

Figure V.11: IAPR of MFTN signaling for different constellations at fixed spectral effi-
ciency



Chapter V – Multi-Carrier FTN and Frequency selective
Channels

102

C Single and Multi-Carrier comparisons with Fre-
quency selective channels

This final sub-section is devoted to performance evaluation of Nyquist and FTN
signaling with EP-based receivers in a multipath channel context. We explore different
strategies, from single-carrier to multi-carrier signaling, for Nyquist and FTN signaling.

The comparisons are performed at fixed spectral efficiencies, and fixed −3 dB
bandwidth over a Proakis B channel filter [Pro01] depicted in Fig. V.12 and expressed
as:

vB(t) = 1√
6

(δ(t− T ) + 2δ(t) + δ(t+ T )) (V.41)

Fixing the −3 dB bandwidth of the communication instead of the full bandwidth allows
a fair comparison in the sense that the received SNR of single-carrier signaling is not
impacted by a frequency shift of the channel filter. Indeed, if we had fixed the full
bandwidth communication, we could have located the high selectivity of the Proakis B
channel filter at the high frequencies of the communication benefiting to single-carrier
signaling because it transmits almost no energy their.

We transmit Nb = 8192 useful bits encoded with a (7,5) code with rate R = 1
2 . The

rolloff is set to β = 0.33 for single-carrier signaling, and β = 1 for multi-carrier signaling
with N = 128 sub-carriers separated by F = T−1 Hz (i.e. ν = 1). The considered system
model is CCFTN for single-carrier and doubly-circular MFTN signaling for multi-carrier.
The time compression factor and constellations are given hereafter, they depend on the
targeted spectral efficiency. The signals are processed at reception by the proposed FD-EP
receivers with I = 3 EP iterations and 8 turbo-iterations. The channel filter is supposed
to be perfectly known.

C.1 Comparison results for different spectral efficiencies

Fig. V.13a reveals the performance obtained at ρ = 1.5 bits/s/Hz achieved by the
colored curved. Black curves represent bounds and then do not achieve the same spectral
efficiency. The time compression factor is set to τ = 0.5 for CCFTN signaling, and we have
τν = 2

3 for MFTN. FTN signaling achieves the targeted spectral efficiency with a QPSK
while Nyquist signaling achieves it with a 16-QAM. With the considered channel, MFTN
signaling performs 1.5 dB better than the best multi-carrier orthogonal scheme τν = 1
which is, in fact, more a bound than a real scheme due to the filter side lobes. Considering
single-carrier signaling, FTN signaling also outperforms the Nyquist communication by
3 dB at high SNR. Moreover, if taking into account the IAPR, the two single-carrier
scheme have a IAPR 4 dB better than the multi-carrier schemes for θ = 10−5. Hence,
single-carrier signaling outperforms multi-carrier signaling in this context.

In Fig. V.13b the spectral efficiency is set to ρ = 3 bits/s/Hz. For single-carrier
signaling, we use a 256-QAM Nyquist and a 64-QAM FTN τ = 0.75 CCFTN communica-
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Figure V.12: Proakis B frequency representation

tions. Regarding multi-carrier schemes, the compression is set to τν = 2
3 combined with

a 16-QAM MFTN communication, and the orthogonal scheme uses a 64-QAM constella-
tion. Similar conclusions can be drawn, MFTN signaling achieves 2 dB better than its
orthogonal counterpart, and single-carrier CCFTN outperforms 4 dB better than single-
carrier Nyquist signaling. In terms of IAPR for single-carrier, CCFTN achieves 7.5 dB
while Nyquist signaling offers 7 dB. These values remain below the 10 dB of multi-carrier
signaling. Moreover, multi-carrier signaling performance are below single-carrier ones.

A very high spectral efficiency of ρ = 4 bits/s/Hz is targeted in Fig. V.13c.
The rolloff of the single-carrier 2048-QAM Nyquist communication modulation has been
slightly modified from β = 0.33 to β = 0.375 in order have an integer value of bits per sym-
bol. The single-carrier CCFTN communication uses a 256-QAM compressed by τ = 0.75.
For multi-carrier signaling, the orthogonal scheme supposes a 256-QAM constellation,
and the MFTN signal achieves the spectral efficiency with a 64-QAM constellation com-
pressed by τν = 0.75. At moderate SNR, multi-carrier performs better than single-carrier
signaling. However, at high SNR, multi-carrier schemes achieve similar performance as
single-carrier Nyquist signaling but worst than CCFTN. MFTN signaling shows 3 dB bet-
ter than its orthogonal counterpart. The IAPR, not represented in the figure, benefits to
the Nyquist single-carrier communication with 6 dB, followed by the single-carrier FTN
signaling with 7.5 dB. Consequently, even at very high spectral efficiencies, single-carrier
FTN signaling achieves better results than multi-carrier signaling.



Chapter V – Multi-Carrier FTN and Frequency selective
Channels

104

C.2 General conclusions with a frequency selective channel

From the previous figures, different conclusions can be drawn. Regarding multi-
carrier signaling, the proposed EP-based receiver allows MFTN to achieve better per-
formance than an orthogonal multi-carrier scheme. The SNR gain increases with the
targeted spectral efficiency even if the compression factor τν comes closer to 1 due to the
higher constellation density. Due to the channel frequency selectivity, the sub-carriers are
subject to different gains, and the overall performance are comparable to a single-carrier
communication over a Rayleigh channel yielding a lack of diversity. Moreover, the IAPR
of the multi-carrier schemes is very similar and achieves 10 dB for θ = 10−5.

Considering single-carrier communications, even with a frequency-selective channel
as the Proakis B, CCFTN is preferable than Nyquist signaling with the FD-EP receiver.
At fixed spectral efficiency, the IAPR can be lowered by FTN signaling, even if it is
scarcely the case for the combinations we chose in Fig. V.13.

Finally, comparing single-carrier to multi-carrier signaling demonstrates the supe-
riority of single-carrier CCFTN signaling even if the multi-criteria benefit reduces when
the targeted spectral efficiency increases. This result assumes processing the interference
with EP-based receivers under complexity constraints. Furthermore, these conclusions re-
main subject to the considered channel code, suppose a perfect knowledge of the channel
filter, and a fine time and frequency synchronization at reception.

D Conclusion

In this chapter, we exhibited the limits of EP-based receivers for single-carrier
FTN communications in the presence of a Proakis C channel with very high frequency
selectivity. It led us to explore different strategies based on multi-carrier signaling aiming
at simplifying the equalization step of the channel filter. Moreover, MFTN signaling can
also be a mean for increasing the spectral efficiency by compressing in time and frequency
domains. This technique has already been studied in the literature, with different propo-
sition at reception to handle the interference. While BCJR-based and two-dimensional
MMSE equalizers are very complex, the combination of IC for ICI processing and a FD-
MMSE for ISI mitigation is a low-complexity alternative which, however, require a long
cyclic prefix damaging the spectral efficiency. In order to bypass this major issue, we
proposed a doubly-circular system model designed based on a circular convolution with-
out cyclic prefix. Moreover, we extended the proposed FD-EP receivers for CCFTN to
our multi-carrier model. Confronting our receiver to the existing FD-MMSE solution
demonstrates important benefits compared to existing solutions, and high spectral effi-
ciency gains. After that, we introduced a frequency selective Proakis B channel filter, and
compared the proposed single-carrier and multi-carrier receivers. Our simulations reveal
that MFTN signaling outperforms multi-carrier orthogonal schemes, and single-carrier
CCFTN offer better results than multi-carrier signaling even at high spectral efficiency
for the considered channel.
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In this thesis, we conducted a multi-criteria analysis of FTN signaling for single-
carrier and multi-carrier signaling. We presented a brief historical review of various con-
tributions which led to the actual emergence of the FTN technique, driven by the user
needs and allowed by higher computational capacities. A heuristic version of the FTN
technique has been introduced in DVB-S2X, where ISI is voluntarily introduced by slightly
reducing the transponder bandwidth. Nevertheless, embedding FTN signaling in future
communication standards struggles to convince at this point.

From this consideration, we presented two different types of single-carrier FTN
signaling: linear and circular shaping. While LCFTN is widely used in the literature,
CCFTN offers several important advantages: slightly higher spectral efficiency due to its
lower time support, an efficient frequency-domain processing at emission, a lower latency,
and it is naturally compatible with frequency-domain processings at reception without
requiring any cyclic prefix. As a first step, we supposed an AWGN model to evaluate
the potential of FTN signaling with an ideal model. At reception, we explored different
techniques of the literature dedicated to handle the ISI with or without a channel code
scheme.

The interest of FTN signaling has been then motivated with an analysis of the
Shannon capacity constraining the Nyquist filters with and without time compression
factor. This study shows the interest of FTN signaling as it achieves higher spectral effi-
ciencies. Then, we focused on operational constraints and more specifically on the IAPR
of Nyquist and FTN signaling. Depending on the compression factor, among others, the
IAPR can vary significantly and then would lead to different power amplifier constraints
at fixed transmitted average power. Hence, we proposed the ESNR metric aiming at pe-
nalizing each waveform by its associated IAPR for a given saturation probability. More-
over, comparing the IAPR at fixed spectral efficiency sometimes shows significant benefits
brought by FTN compared to Nyquist signaling. Using this new metric, different commu-
nications at fixed spectral efficiencies have been compared. From a multi-criteria point of
view, this evaluation benefits to FTN signaling with MMSE-based receivers if considering
low order constellations (BPSK, QPSK). However, when constraining the computational
complexity at reception and targeting higher spectral efficiencies, FTN signaling reaches
the limits of the ISI equalization and do not offer benefits compared to Nyquist signaling.
Consequently, we explored different reception strategies based on EP.

Before applying EP to the MAP optimization of the symbol sequence, we intro-
duced EP as a general framework and we proposed a didactic rethinking of the technique.
Then, we extended existing results of the literature and proposed new EP-based receiver
to mitigate the ISI induced by FTN signaling. We proposed three distribution families
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and different types of scheduling yielding to distinct receivers. Moreover, combining the
CCFTN model with a particular Gaussian family yields an efficient frequency-domain
equalization without cyclic prefix. The proposed receivers turns out to be complementary
in the sense that they do not achieve the same performance nor require the same complex-
ities. Moreover, the resulting receivers perform particularly well with rich constellations
such as 16-QAM, 64-QAM and 256-QAM, and allow FTN signaling to achieve up to 5
bits/s/Hz while offering significant gains compared to Nyquist signaling.

Based on the previous works, we extended the framework of EP receivers to MFTN
signaling. This is motivated by the limitations of ISI mitigation in a frequency-selective
channel context combined with single-carrier FTN signaling. After presenting the com-
monly used MFTN system model of the literature, we studied the existing receivers. The
IC for ICI processing is motivated with a bayesian approached based on FG. The ISI can
then be processed by different types of receivers, such as a FD-MMSE which offers a good
trade-off between BER performance and computational complexity. Nevertheless, this
receiver requires a circulant shaping at emission achieved by means of a long cyclic prefix.
To tackle this important drawback, we proposed a doubly-circular MFTN model benefit-
ing from an efficient FD shaping at transmission. Moreover, we extended the concept of
EP and applied it to MFTN signaling. The resulting model outperforms existing MFTN
models of the literature and increases the spectral efficiency of orthogonal schemes even
with rich constellations.

Finally, we confronted both single-carrier and multi-carrier FTN signaling to a
multipath propagation channel, and compared it to Nyquist signaling. Considering a
Proakis B channel, the proposed EP-based receivers allow FTN signaling to achieve better
performance than Nyquist signaling. Nevertheless, single-carrier FTN signaling seems to
be more promising than MFTN signaling, even though the difference tends to decrease at
high spectral efficiencies. The benefit of single-carrier FTN is moreover empathized when
considering IAPR gains yielding a multi-criteria point of view.

Multiple studies can be conducted to push further the analysis and the potential
of FTN signaling. A non-exhaustive list is given hereafter:

1. Convergence analysis of EP receivers for FTN signaling: we started a study to
understand and predict the convergence of EP receivers in a similar way as EXIT
charts or MSE charts [TBH02; AAND09].

2. Extension to (MU-)MIMO: MIMO systems are at the heart of several wireless com-
munication standards. The extension of FTN signaling have already been proposed
[Lee+19; Guo+19], the addition of EP-based receivers could be particularly inter-
esting.

3. Given that FTN signaling does not take advantage of the Nyquist criterion, non-
Nyquist low-pass filters can be used for signal shaping. Several studies evaluated the
performance of FTN signaling with existing filters [Le+14]. Moreover, filters max-
imizing the achievable spectral efficiency under complexity constraints for BCJR-
based receivers have been proposed [MRC13], while other authors developed filters
minimizing the MSE at reception after matched-filter and down-sampling [Mar17].
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Combining these filters with the proposed EP-based receiver could yield higher
spectral efficiency gains. Nevertheless, the non-linear structure of EP makes the
optimization criteria for the filter design particularly complex. Hence, this study
partially cross-matches the first enumerated point.

4. In the multi-criteria study based on the ESNR metric, we measured the IAPR at
the power-amplifier output. Hoewever, we did not assume any technique to lower
the IAPR. Taking into account such techniques could benefit to FTN signaling
[Wen+19].

5. Extension of the results to different channel codes, non time and frequency syn-
chronized signals, miss-estimated channel models. Even though our conclusions are
optimistic for FTN to achievement high spectral efficiencies, the results are subject
to the particular models and idealistic assumptions we made so far. Extending the
results to other channel models, with longer delay spread, time-variant filters with
time selectivity should be addressed to draw firmer conclusions. Moreover, multiple
operational constraints need to be introduced in the communication, each of them
representing a wide area of research.



Appendix A

Derivation of the averaged CCDF
of the IAPR

The definition of x(t) yields the following expression of Υx(γ):

Υx(γ) = lim
Ns→+∞

1
Ns

Ns∑
n=1

R((sn)n) (A.1)

where R((sn)n) = 1
Ts

∫ (n+1)Ts

nTs
1(|x(t)|2 > γPx)dt. The ergodicity theorem for Markov

chains gives:

Υx(γ) = Eσ [R(σ)] (A.2)

where σ is a state composed of 2(Lτ + 1) symbols which fully characterize x(t) for
t ∈ [nTs, (n+ 1)Ts]. The expression of Υx(γ) becomes:

Υx(γ) = (log2 |M|)−2(Lτ +1) ∑
σ∈M2(Lτ +1)

R(σ) (A.3)

= (log2 |M|)−2(Lτ +1) ∑
σ∈M2(Lτ +1)

1
Ts

∫ Ts

0
1(|x(t)|2 > γPx)dt (A.4)

= 1
Ts

∫ Ts

0
P(|x(t)|2 > γPx)dt (A.5)

= 1
Ts

∫ Ts

0
Υ̃x(t, γ)dt (A.6)

Therefore, Υx(γ) corresponds to the averaged IAPR CCDF over a cyclostationarity pe-
riod.
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KL Divergence minimization for
the FD-EP receiver

We suppose a multivariate distribution p(s) on a (N × 1) random vector s with mean
vector x and covariance matrix V = (vi,j)i,j∈J1,NK. The projection of p(s) on NC yields
the pdf q(s) = NC(s : µ, vIN) minimizing the KL divergence:

DKL(p||q) =
∫
p(s) log (p(s)) ds + N

2 log(2πv) + 1
2v

N∑
i=1

(
|µi|2 − 2ℜ(µ∗

ixi) + vi,i + |xi|2
)

The minimization of DKL(p||q) is performed by computing its first derivatives:

∀i ∈ J1, NK :∂DKL(p||q)
∂µi

= 0⇔ µi = xi

∂DKL(p||q)
∂v

= 0⇔ v = 1
N

N∑
i=1

vi,i

Consequently, the KL minimization of p(s) with respect to q(s) leads to a
moment-matching for the mean vector µ, and v is given by averaging the diagonal
variance terms of s. Hence we have:

q(s) = NC

(
s : x, ( 1

N

N∑
i=1

vi,i)IN
)

(B.1)



Appendix C

MAP estimation with Gaussian
prior estimates leads to a MMSE

equalizer

The expression of the Gaussian priors pdfs Φl(si) are expressed as follows:

Ns∏
i=1

Φl(si) =
Ns∏
i=1
NC(si : sΦl−1

i , v
Φl−1
i ) = NC(s : sΦl−1 ,VΦl−1) (C.1)

where sΦl−1 = [sΦl−1
1 , ..., s

Φl−1
Ns

]T and VΦl−1 = diag([vΦl−1
1 , ..., v

Φl−1
Ns

]) is a diagonal
covariance matrix reflecting an independence assumption on the symbols. The channel
model expression gives:

Ψ̃(sn) ∝
∫

s∼n∈CNs−1
p(r|s)

Ns∏
i=1

Φl−1(si) ds∼n

∝
∫

s∼n

NC(r : HUs, σ2
wINr)NC(s : sΦl−1 ,VΦl−1) ds∼n (C.2)

Using the analytical expressions of the involved Gaussian distributions, (C.2) becomes

Ψ̃l(sn) ∝
∫

s∼n

exp
(
−σ−2

w (r−HUs)†(r−HUs)− (s− sΦl−1)†(VΦl−1)−1(s− sΦl−1)
)

ds∼n

∝
∫

s∼n

exp
(
−s†(σ−2

w G + (VΦl−1)−1)s + 2ℜ(s†[σ−2
w y + (VΦl−1)−1sΦl−1 ])

)
ds∼n

(C.3)

where y = DH†r is the received signal after matched filtering and down-sampling, and
G = DH†HU is the aliased and down-sampled Nyquist filter. The integrand of (C.3)
can now easily be identified to a new Gaussian distribution:

Ψ̃l(sn) ∝
∫

s∼n

NC(s : sΨ̃l ,VΨ̃l) ds∼n (C.4)
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where sΨ̃l and VΨ̃l are given by:

sΨ̃l = VΨ̃l(σ−2
w y + (VΦl−1)−1sΦl−1)

VΨ̃l = (σ−2
w G + (VΦl−1)−1)−1

Some mathematical developments give:

VΨ̃l = σ2
w(VΦl−1G + σ2

wINs)−1VΦl−1

Using A(BA + IN2)−1 = (AB + IN1)−1A for any (N1 ×N2) matrix A and (N2 ×N1)
matrix B (the proof is trivial if A is invertible and N1 = N2, for a more general case see
the Woodburry Identity) and setting A = VΦl−1 and B = (VΦl−1G + σ2

wINs)−1, we have:

VΨ̃l = σ2
wVΦl−1Σ−1

l

where Σl = GVΦl−1 + σ2
wINs is the MMSE matrix. The expression of sΨ̃l is the following:

sΨ̃l = σ2
wVΦl−1Σ−1

l (σ−2
w y + (VΦl−1)−1sΦl−1)

= VΦl−1Σ−1
l (y + σ2

w(VΦl−1)−1sΦl−1)
= VΦl−1Σ−1

l (y + (Σl(VΦl−1)−1 −G)sΦl−1)
= sΦl−1 + VΦl−1Σ−1

l (y−GsΦl−1)

The multivariate distribution NC(s : sΨ̃l ,VΨ̃l) is then characterized by: sΨ̃l = sΦl−1 + VΦl−1Σ−1
l (y−GsΦl−1)

VΨ̃l = σ2
wVΦl−1Σ−1

l

Finally, the marginalization of (C.4) gives:

Ψ̃l(sn) ∝
∫

s∼n

NC(s : sΨ̃l ,VΨ̃l) ds∼n = NC(sn : sΨ̃l
n , v

Ψ̃l
n ) (C.6)

where we recall that VΦl−1 is a diagonal matrix and the distribution Ψ̃l(sn) is given by: s
Ψ̃l
n = e†

nsΨ̃l = sΦl−1
n + vΦl−1

n f †
n,l(y−GsΦl−1)

vΨ̃l
n = e†

nVΨ̃len = vΦl−1
n (1− vΦl−1

n ξn,l)
(C.7a)
(C.7b)

where fn,l = Σl
−1en represents the MMSE filter, and ξn,l = f †

n,lGen.
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