
HAL Id: tel-03717431
https://theses.hal.science/tel-03717431

Submitted on 8 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning Majority-Rule models with partially monotone
data

Pegdwendé Minoungou

To cite this version:
Pegdwendé Minoungou. Learning Majority-Rule models with partially monotone data. Automatic
Control Engineering. Université Paris-Saclay, 2022. English. �NNT : 2022UPAST058�. �tel-03717431�

https://theses.hal.science/tel-03717431
https://hal.archives-ouvertes.fr

T
H

E
SE

D
E

D
O

C
T

O
R

A
T

N
N
T

:2
02

2U
PA

ST
05

8

Learning Majority-Rule models
with partially monotone data

Apprentissage de modèles à règle majoritaire
à partir de données partiellement monotones

Thèse de doctorat de l’université Paris-Saclay

École doctorale n◦ 573 :
Interfaces : matériaux, systèmes, usages (INTERFACES)

Spécialité de doctorat : Informatique
Graduate School : Sciences de l’ingénierie et des systèmes,

Référent : CentraleSupélec

Thèse préparée dans l’unité de recherche Mathématiques et Informatique pour
la Complexité et les Systèmes (Université Paris-Saclay, CentraleSupélec), sous

la direction de Vincent MOUSSEAU, Professeur,
le co-encadrement de Wassila OUERDANE, Maîtresse de Conférences

et de Paolo Scotton, Docteur, tuteur industriel (IBM)

Thèse soutenue à Paris-Saclay, le 13 Mai 2022, par

Pegdwendé MINOUNGOU

Composition du jury
Patrick Meyer Président & Examinateur
Professeur, IMT Atlantique, Brest
Meltem Oztürk Rapportrice & Examinatrice
Maîtresse de Conférences HDR, PSL, Université Paris-
Dauphine
Marc Pirlot Rapporteur & Examinateur
Professeur, Université de Mons, Belgique
Miguel Couceiro Examinateur
Professeur, Université de Lorraine, Nancy
Vincent Mousseau Directeur de thèse
Professeur, CentraleSupélec, Université Paris-Saclay
Wassila Ouerdane Co-encadrante de thèse
Maîtresse de Conférences, CentraleSupélec, Université Paris-
Saclay

Remerciements

Cela a été une expérience très intéressante et enrichissante de mener ces travaux de
recherche. Trois ans plus tôt, je n’aurais jamais pu imaginer le parcours de cette
thèse qui peut s’apparenter à la fois à un marathon - tant il m’a fallu composer
avec le temps et la persévérence - et à une exploration minière, où la curiosité
intellectuelle a nourrit ma motivation pour toujours aller plus loin dans ces travaux.
Pegdwendé ! Que je suis reconnaissant d’avoir atteint cet objectif !

Je tiens à remercier tout ceux qui m’ont soutenu durant ces années, en particulier
mon équipe encadrante. Je remercie tout d’abord mon directeur de thèse Vincent
Mousseau pour son encadrement, sa bienveillance et sa disponibilité. Je suis
reconnaissant à Wassila Ouerdane pour ses conseils, notamment sa bienveillance
et sa rigueur. Je tiens à dire un grand merci à Paolo Scotton pour son aide et
ses encouragements tout le long de la thèse. Vous avez contribué à faire de ces
moments, des moments agréables et j’ai beaucoup appris à vos côtés. Merci pour
votre confiance !

Je veux aussi remercier les rapporteurs de la thèse, Meltem Oztürk et Marc
Pirlot d’avoir accepté la tâche qui a été la leur. Merci d’avoir pris le temps de relire
de bout en bout la thèse, d’avoir apporté des corrections et émis des commentaires
très pertinents sur mon travail. J’exprime ma gratitude envers les examinateurs de
ma thèse, Miguel Couceiro, et en particulier Patrick Meyer (président du jury) qui
a aussi évalué mon travail à mi-parcours de la thèse. Une fois encore merci pour
vos remarques instructives et l’intérêt porté à mon sujet de thèse.

Je suis reconnaissant à Christian de Sainte Marie qui m’a toujours apporté son
regard éclairé sur mes travaux. Merci pour ta disponibilité et ta bienveillance.

Merci à mes collègues de CentraleSupelec Ali, Yassine, Manuel, Matthieu pour
leur présence, les bons moments partagés ensemble et leur soutien multiforme.

Je remercie également l’équipe de IBM Research Paris, Marine, Maxence,
Shubham, Yusik et Remy pour les conseils, les corrections sur le manuscrit et pour
la sympathie manifestée à mon égard. Merci à Lex (on doit "jouer la belle" au
scrabble :-)) , Nicolas, Thomas et Yunpeng d’IBM pour votre sympathie et nos
différents échanges sur ma thèse et surtout en dehors.

Je conclus mon propos en remerciant toute ma famille (ma mère, mes frères

3

et soeurs, et ma famille élargie :-)) qui a m’a encouragé et soutenu de manière
multiforme durant ces années de thèse.

Merci à tous !

4

Abstract

The field of Multiple Criteria Decision Analysis (MCDA) deals with alternatives
evaluated by several criteria, aiming to recommend the “best” decision to the
decision-maker (DM). In this context, we are interested in the indirect learning
paradigm which is comparable to machine learning tasks as it consists of inferring
from past observations of the DM, the model parameters that suit the DM’s
preferences. Our model (MR-Sort) stems from the MCDA family of outranking
models, where an alternative a outranks another alternative b if there is a strong
support of criteria (a majority in MR-Sort) that favors a compared to b. In the
literature, methods and algorithms used for sorting problems - classification into
predefined and ordered categories - always infer MR-Sort models with known
criteria preference directions and monotone (increasing or decreasing) preferences.
In this thesis, we extend the state-of-the-art to single-peaked (and single-valley)
criteria which improves the expressivity of MR-Sort models. A single-peaked
criterion relates to two successive monotonicities (increasing then decreasing).
Therefore we investigate the problem of learning the MR-Sort parameters from
monotone and single-peaked preferences regardless of the knowledge of preference
directions of criteria. We propose an exact method and heuristics, and conducted
experiments to assess and compare our algorithms regarding the computational
cost, the classification accuracy and the preference directions retrieval.

5

Résumé

Le domaine de l’Aide à la Décision Multicritère (ADMC), s’interesse à évaluer des
alternatives suivant des critères dans le but de recommander la “meilleure” solution
au décideur. Dans ce contexte, nous considerons le paradigme d’apprentissage
de préférences - comparable à l’approche en Machine Learning - qui consiste à
déduire à partir des observations passées du décideur, les paramètres du modèle
qui correspondent au mieux à ses préférences. Notre modèle (MR-Sort) est issu de
la famille des modèles de surclassement, dans lequel une alternative a surclasse une
autre alternative b s’il existe une forte coalition de critères (majorité) favorable au
surclassement de a par rapport à b. Dans la littérature de l’ADMC, les méthodes
et algorithmes étudiés pour les problèmes de tri - classification dans des catégories
prédéfinies et ordonnées - ont toujours eu pour but l’inférence de modèles MR-Sort
connaissant le sens de préférence des critères et à partir de préférences monotones
(croissantes ou décroissantes). Dans cette thèse, nous étendons l’état de l’art à
l’étude des préférences dites "single-peaked" (resp. "single-valley"), qui améliorent
l’expressivité des modèles MR-Sort. Un critère single-peaked est caractérisé par
deux monotonies successives (croissante puis décroissante). Ainsi, nous étudions
des problèmes d’apprentissage des paramètres de MR-Sort à partir de préférences
monotones et single-peaked, quelle que soit la connaissance à priori des sens de
préférences des critères. Nous proposons une méthode exacte, des heuristiques et
des tests pour évaluer et comparer nos algorithmes suivant le temps de calcul, le
taux de classification et de restitution des sens de préferences.

7

9

List of Notations

MCDA Generalities
n Number of criteria

m Number of alternatives

p Number of categories

N = {1, .., i, .., n} Set of criteria

Xi Evaluation scale of the criterion i

%i Preference order on Xi

<i Order on R of the values of Xi

X =
∏n

i=1Xi Cartesian product of criteria scales

A? ⊆ X Set of reference alternatives

Atest ⊆ X Set of generated alternatives for tests (test set)

aji Evaluation of alternative aj on criterion i

aj = (aj1, ..., a
j
n) ∈ X Alternative aj

X?
i = {aji ;∀aj ∈ A?} Evaluation scale of the criterion i

induced by the reference alternatives

X? =
∏n

i=1X
?
i Cartesian product of criteria scales

induced by the reference alternatives

c(aj) ∈ {C1, .., Ch, .., Cp} Desired category for alternative aj

C = (c(aj), ∀aj ∈ A?) Set of desired categories for alternatives in A?

. Order on categories

L = (A?, C) Learning set

10

MR-Sort

wi Weight of criterion i

w = (w1, ..., wn) Vector of criteria weights

λ ∈]0, 1] Majority threshold

bhi Frontier value on criteria i delimiting

approved values in Ch from the ones in Ch+1

bh = (bh0 , .., b
h
n) ∈ X Limit profile delimiting category Ch from Ch+1

〈b〉 = (b0, .., bp) Limit profile vector

Ahi ∈ Xi Approved set of values on criterion i

in favor to an assignment to category Ch+1

Fh ⊆ 2N Set of sufficiently strong subsets of criteria related to category Ch

M MR-Sort model (initial)

Preference directions

di Preference direction of criterion i

d = (d1, .., dn) Vector of preference directions

q, q ≤ n Number of criteria with unknown preference directions

Q, Q ⊆ N Set of criteria with unknown preference directions

Q′ Duplicated set of criteria with

opposite preference directions to those in Q

(i, i′), i ∈ Q, i′ ∈ Q′ Associated couple of a duplicated criterion i and its duplicate i′

AC Set of the q associated couples of criteria (i, i′)

IMSq|n Inverse MR-Sort problem with

q unknown preference directions over n criteria

IMSi0|1 Inverse MR-Sort problem where

the unique criterion in the model is i

11

Single-peaked criteria

s, s ≤ n Number of single-peaked criteria

S, S ⊆ N Set of single-peaked and single-valley criteria

pi Peak value of the single-peaked criterion i

bhi Top frontier value of the single-peaked criterion i delimiting

approved values in Ch from the ones in Ch+1

bhi Bottom frontier value of the single-peaked criterion i

delimiting approved values in Ch from the ones in Ch+1

b⊥hi Middle value of the interval [bhi , bhi]

MSP MR-Sort model including some single peaked/valley criteria

IMSSPs|n Inverse MR-Sort problem with s single-peaked criteria

over n criteria

12

Algorithms parameters and metrics

µ Threshold rate on the scale Xi

CAi Restoration rate of the learned model on
the restricted problem IMSi0|1

rr Renewal rate
σ Coefficient of renewal

CA Average restoration rate
Nmod Number of models in the population
fw Function of the readapted metaheuristic that matches

each iteration to a minimum weight value
fϕ Function that matches each iteration

to the desired order of interquantile range
for the generation of profiles values

π+
i , π

−
i For a given model, the probability of generating

resp. a gain criterion, cost criterion for i
πi = [π+

i , π
−
i] For a given model, the probability distribution of generating

monotone preference directions for criterion i
w∗ The minimal value used as a limit on the criteria weights

in the readapted formulation
ϕth Maximum order of interquantile range of Xi

No Number of iterations of the outer loop
Nit Number of iterations of the inner loop
it The current iteration of the metaheuristic
ρ Percentage of noise in the model (i.e. percentage of alternatives

that are purposely misclassified to introduce noise)
CAv Restoration rate (validation)
CAg Restoration rate (generalization)

PDRall Preference direction restoration rate considering the probability
to restore all preference directions in Q

PDRone Preference direction restoration rate
of a preference direction on average in Q

13

Contents

List of Figures iv

List of Tables vi

1 Introduction 1

2 Background 7
2.1 Introduction . 8
2.2 Main concepts in MCDA . 8

2.2.1 Basic tools of the MCDA . 8
2.2.2 Preference information and preference relations 9
2.2.3 Types of problems in MCDA 10
2.2.4 Aggregation and disaggregation paradigms in MCDA 11

2.3 Methodologies in MCDA . 12
2.3.1 Additive models . 12
2.3.2 Outranking models . 14
2.3.3 Rule-based models . 19

2.4 Preference Learning . 21
2.4.1 Classification problems in Preference Learning 21
2.4.2 At the crossroad between MCDA and PL 22

2.5 Conclusion . 23

3 Related work 25
3.1 Introduction . 26

3.1.1 Ordinal classification . 26
3.2 Monotonicity-related preferences . 27

3.2.1 Monotonicity in Multiple Criteria Decision Analysis 29
3.2.2 Monotonicity in data mining and supervised learning fields . 32

3.3 Problems and algorithms around MR-Sort 33
3.3.1 MR-Sort related works . 34
3.3.2 Description of the existing metaheuristic 35

15

3.4 Conclusion . 37

4 Latent preference directions 39
4.1 Introduction . 40
4.2 Basic notations and reminder . 41
4.3 The duplication-based approach . 43

4.3.1 Motivations and guiding principles for the learning of prefer-
ence directions . 43

4.3.2 The duplicated-based algorithm 44
4.3.3 First stage . 44
4.3.4 Second stage . 49

4.4 The mixed-based algorithm . 50
4.4.1 Motivation . 50
4.4.2 Definitions and overview on the approach 51
4.4.3 Initialization of the population (Step I) 53
4.4.4 Update of models parameters 54
4.4.5 Renewal of the population (Step IV) 56
4.4.6 Final step (Step V) . 57

4.5 Experimentations and results . 57
4.5.1 Experimental protocol . 58
4.5.2 Experimental study for the duplicated-based approach . . . 60
4.5.3 Results of the mixed-based algorithm 66
4.5.4 Comparing the two approaches 72

4.6 Conclusion . 74

5 MR-Sort with Single-peaked preferences 75
5.1 Introduction and motivation . 76
5.2 Characterization of single-peaked preferences 78

5.2.1 Rewriting MR-Sort with approved sets 78
5.2.2 Single-peaked and single-valley preferences 79

5.3 Single-peaked and monotone preferences 82
5.3.1 Transformation of a single-peaked criterion to a monotone

criterion with 2 categories 82
5.3.2 Transformation of single-peaked preference to monotone pref-

erences with more than 2 categories 85
5.4 Conclusion . 87

6 An exact approach for Inverse MR-Sort-SP 89
6.1 Introduction and reminder . 90

6.1.1 Single-peaked preferences and the Inverse MR-Sort-SP problem 90
6.2 The MIP formulation . 91

16

6.2.1 Variables and constraints related to approved sets and profiles 92
6.2.2 Variables and constraints related to weights 95
6.2.3 Variables and constraints related to the assignment examples 95
6.2.4 Objective function and the complete MIP formulation 96
6.2.5 Interpretation of the optimal solution 98
6.2.6 General case . 99
6.2.7 Extension to more than two categories 100

6.3 Experiments with artificial data . 102
6.3.1 Experimental design . 102
6.3.2 Results . 104
6.3.3 Computing time performance 104

6.4 Tests on a real-world data: the ASA dataset 107
6.5 Conclusion . 112

7 An heuristic for Inverse MR-Sort-SP 113
7.1 Introduction and reminder . 114

7.1.1 Motivations and specificity of the approach 114
7.2 The heuristic-based method . 114

7.2.1 The Sobrie heuristic for the learning of profiles 115
7.2.2 Initialization of single-peaked profiles 119
7.2.3 First strategy for learning of single-peaked profiles 120
7.2.4 Second strategy for learning of single-peaked profiles 120

7.3 Numerical tests and discussion . 123
7.3.1 Tests and comparisons between the two variants 123
7.3.2 Advanced tests with the first variant on synthetic data . . . 125
7.3.3 Tests on ASA dataset . 129
7.3.4 Tests on public repository datasets 130
7.3.5 Discussion . 133

7.4 Conclusion . 134

8 Conclusion 135

A Comparative results on UCI instances 139

B Synthèse de la thèse en Français 143

Bibliography 156

i

List of Figures

1.1 Overview illustrating the space of problems and our contributions
in this thesis . 4

2.1 Graphical representation of profiles and alternatives 19
2.2 Lattice representing sufficient coalitions of criteria 19

4.1 Learning process of the Sobrie’s metaheuristic 42
4.2 Learning process of the approach based on the duplication of criteria 45
4.3 Learning process of the approach with mixed models in the population 52
4.4 Experimental workflow . 59
4.5 Results of the first approach regarding the execution time influenced

by the problem parameters . 61
4.6 Results of the first approach for problems involving one latent crite-

rion, 2 categories and noise-free learning sets per number of criteria
(n) and learning set size . 62

4.7 Results of the first approach for problems involving 7 criteria, 2
categories and noise-free learning sets per number of latent criteria
q and learning set size . 63

4.8 Results of the first approach for problems involving 7 criteria, 7
latent criteria and noise-free learning sets per number of categories
p and learning set size . 65

4.9 Results of the first approach for a problem involving 7 criteria, 7
latent criteria, 2 categories per noise percentage in the learning set
and learning set size . 66

4.10 Time execution of the second algorithm for a problem involving 7
criteria, 5 latent criteria, and noise-free learning sets per number of
categories and learning set size . 67

4.11 Results of the first approach for problems involving 1 latent criterion,
2 categories and noise-free learning sets per number of criteria (n)
and learning set size . 68

iii

4.12 Results of the first approach for problems involving 7 criteria, 2
categories and noise-free learning sets per number of latent criteria
q and learning set size . 69

4.13 Results of the first approach for problems involving 7 criteria, 7
latent criteria and noise-free learning sets per number of categories
p and learning set size . 70

4.14 Results of the first approach for a problem involving 7 criteria, 7
latent criteria, 2 categories per noise percentage of the learning set
and learning set size . 71

6.1 Three cases for single-peaked criteria 99
6.2 Three cases for single-valley criteria 100
6.3 Preference direction restoration rate (PDR) considering 1 to 4 criteria

with unknown preference direction (q) (average performance over
terminated instances) . 106

6.4 Distribution of patients’ glycemia in the first dataset 109
6.5 Distribution of patients’ glycemia in the second dataset 110
6.6 Patients’ glycemia in the third dataset 111

7.1 Computation time (seconds) for the learning of problems involving
7 criteria, 2 categories and 2 levels of noise, per number of single
criteria (s) and learning set size . 126

7.2 Computation time (seconds) for the learning of problems involving
7 criteria, 2 categories per level of noise and learning set size 126

7.3 Classification accuracy (CA) of the learning set : for problems
involving 7 criteria, 2 categories and noisy-free learning sets per
number of single-peaked criteria (s) and learning set size 127

7.4 Classification accuracy in validation (CAv) of the learning set : for
problems involving 7 criteria, 2 categories per level of noise and
learning set size . 127

7.5 Classification accuracy (CA) of the test set : for problems involving
7 criteria, 2 categories and 2 noise levels (ρ = 0 and ρ = 0.2) per
number of single-peaked criteria (s) and learning set size 128

iv

List of Tables

2.1 Assignment examples : dataset of 8 students and 3 subjects 11
2.2 Assignment examples : dataset of 8 students and 3 subjects 18

4.1 Assignment examples: dataset of 5 clients and 4 criteria 41

5.1 Performance table of flat proposals 77
5.2 The MR-Sort model parameters of the real estate agent for Bob’s

decision problem . 77
5.3 Performance table with the parameters of the MR-Sort model. λ = 2

3
84

5.4 Performance table with the parameters of the MR-Sort model with
c3 converted in c3′ . λ = 2

3
. 84

5.5 Initial performance table with the parameters of the MR-Sort. λ = 2
3

85
5.6 Performance table, assignments and parameters of the 2 resulted

MR-Sort models : (a) model using the formulation of φ3 with b⊥1,
(b) model using the formulation of φ3 with b⊥2. λ = 2

3
. 86

6.1 Description of decision variables . 98
6.2 Median CPU Time (sec.) of instances solved in 1h, and number of

terminated instances in parentheses, with 4 to 9 criteria (n), and 0
to 4 criteria with unknown preference directions (q) 105

6.3 PDR averaged over n (n varying from 4 to 9), according to the range
of weight of criterion c1 . 106

6.4 Original criteria in the ASA dataset 108
6.5 Inferred model with the first dataset (898 assignment examples) . . 109
6.6 Inferred model with the second dataset (801 assignment examples) . 111
6.7 Inferred model with the third dataset (624 assignment examples) . . 112

7.1 Results of MR-Sort learning algorithm when varying the preference
direction of one criterion (5 criteria, 2 categories, 500 alternatives).
Tests on variant 2 carried out with only 10 problem instances because
of the computation burden . 124

7.2 Original criteria in the ASA dataset 129

v

7.3 Inferred model with the ASA dataset (898 assignment examples) . . 130
7.4 Criteria of both datasets (Red Wine Quality and White Wine Qual-

ity) : 11 criteria . 131
7.5 Comparative table of the performance on classification accuracy in

validation of the SVM algorithm [29] and the metaheuristic 132
7.6 Inferred model from 1599 assignment examples. CA = 73.2% Exe-

cution time : 3m55s. 133

A.1 Data sets of UCI and WEKA repositories 139
A.2 0/1 Loss and standard deviations results of 5 algorithms on 8 datasets141

vi

Chapter 1

Introduction

The field of Multi-Criteria Decision Analysis (MCDA) stems from the broader area
of Decision Theory. It takes advantage of the existence of multiple viewpoints
(which we designate by criteria) on objects (which we refer as alternatives) to make
a holistic decision. The main actor concerned by this decision is the Decision Maker
(DM), whose role is to take the best decision according to his or her preferences.
The second actor is the Decision Analyst (DA), who interacts with the DM, provides
his expertise in the domain of the decision and guides the DM throughout the
decision process. Therefore the DM helped by the DA are both part of the decision
process, which can be summarized in three steps : identifying and formulating the
problem, choosing the appropriate resolution tool, evaluating and recommending
the best decision [95].

Decision problems may refer to performing one of three possible tasks, as
introduced by [80] : choosing among a set of alternatives, ranking alternatives, or
sorting alternatives into categories (which are predefined and ordered).

Over time, several approaches about the rationale behind the decision and
its aim have emerged [34]. This has given birth to four approaches : normative,
descriptive, prescriptive and constructive approaches. The normative approach
relates to the universal and rational behaviour typically adopted by the DM. The
descriptive approach puts an emphasis on how the DM makes the decision. The
prescriptive approach aims to sketch the model that describes the DM preferences
in order to properly suggest relevant alternatives. Finally, the constructive approach
consists of building progressively a representation of the DM preferences with the
help of the DM himself.

We ground our work within the constructive approach with the objective of
learning new preference structures in the presence of partially monotone data. As
we operate in the context of classification problems [76], we adopt the following
definition of partially monotone data. We consider data where relationships be-
tween the criteria evaluations (inputs) and the assignments into categories (output

1

decisions) are either monotone or non monotone (with local monotone relationships)
[14]. In other words, the latter relationship is monotone by pieces.

The level of glycemia in brittle diabetes diagnosis, the tire pressure of a car
in assessing the road safety, the amount of money to engage into risky prize
games, the range of skills required in order to be hired for a specific job are all
relationship examples illustrating criteria values that do not only increase (or only
decrease) with the decision ; they are also characterized by at least one change of
monotonicity relationship. In this thesis, we will focus on criteria with a single
change of monotonicity, that is single-peaked criteria (increasing then decreasing, i.e
the optimum is the maximum) and single-valley criteria (decreasing then increasing,
i.e the optimum is the minimum) .

The handling of monotonicity features in classification tasks is a current subject
of research in disciplines such as Machine Learning or Data mining [102, 100, 25]. In
MCDA, this topic has been discussed when considering additive models [64, 53, 58]
- which refer to models that aggregate alternatives into a single value - but not yet
with outranking models in particular the Majority Rule Sorting method (MR-Sort)
[63].

The main idea of outranking models for sorting tasks is to assign alternatives to
a predefined and ordered set of categories in accordance to preferences conditions
for some given criteria coalitions based on the relative importance of these criteria.
MR-Sort stems from the ELECTRE TRI method [104], which is known as a method
that enables the expression of uncertainty on comparisons between alternatives
and to a certain extent, avoids compensation effects. Such effects are typically
encountered in additive models [61, 65]. The MR-Sort method is a reduced model
of the ELECTRE TRI method and has an intuitive and descriptive power - the
parameters of the model make it easy to interpret decisions formulated by the
model. Sobrie et al. [89] used this model for two applications in the area of
anesthesia and intensive care. They used a dataset containing 898 patients clinical
details (age, diabetic status, respiratory failure, etc). These health parameters were
used as criteria in a MR-Sort model using as categories four ASA1 scores ; each
score indicates the risk level undergone by a given patient while receiving anesthesia.
The ASA score is an indicator of a patient’s health. Subsequently, Sobrie et al.
used the ASA score as a criterion with two other criteria for another MR-Sort
model to predict the acceptance or refusal of patients for surgery. The authors
showed that the results were better than those from machine learning algorithms
such as SVM, KNN and MLP [62, 3]. Moreover, the MR-Sort algorithm provides
an interpretation of the recommendations. MR-Sort parameters can be expressed
by simple rules as “if (condition 1) and (condition 2) and . . ., then decision 1 ”,
which are comprehensible by the DM like physicians in [89].

1American Association of Anesthesiologists

2

In this work, we adopt the Majority Rule Sorting method (MR-Sort) [63] as the
framework of choice to learn the preference features with partially monotone data.
One advantage of the MR-Sort is its flexibility on the use of resolution algorithms to
handle various dataset sizes : exact methods for small dataset sizes, and heuristics
for large dataset sizes. Furthermore, addressing this inference problem with MR-
Sort in such context is challenging since learning NCS - a model that generalizes
MR-Sort - parameters have been proved as NP-hard [8].

In this thesis, we have based our work on MR-Sort as it is a promising technique
to generate recommendations considering large alternative datasets. MR-Sort,
however, requires the criteria preference direction to be (i) known and (ii) monotone.
The main contributions are:

1. Extension of MR-Sort to deal with unknown monotone preferences directions.

2. An exact method to detect and learn both monotone and single-peaked or
single-valley preferences.

3. Extension of MR-Sort to deal with single-peaked or single-valley preferences.

To provide a visual representation of the contributions of this thesis, Figure 1.1
provides an illustration of where the three main contributions are situated. The
nature of our problems are of two kinds : either preference directions are known or
unknown (horizontal axis) and either preferences are monotone or single-peaked.

The north west side quarter represents the state-of-the-art with problems related
to the learning of MR-Sort parameters with monotone preferences and knowing
the preferences directions. Resolution methods have been implemented for such
problems : a Mixed Integer Programming (MIP) [63], an evolutionary algorithm
(a metaheuristic) [88] and a Boolean Satisfaction formulation (SAT) [10]. The
north east side quarter represents problems related to the learning of MR-Sort
parameters with monotone preferences with unknown preference directions for
criteria (discussed in Chapter 4). The south west and east side quarters illustrate
MR-Sort learning problems dealing with single-peaked preferences with known
and unknown preference directions. They are discussed in Chapter 6 and partially
covered in Chapter 7.

This thesis is organized as follows.

In chapter 2, we establish the Multi-Criteria Decision Analysis (MCDA) founda-
tions of our work by giving the main concepts and definitions used in this document,
as we contextualize our work which is the study of partially monotone preferences
with a majority rule model (MR-Sort) for sorting problems. Then we explore
the principal MCDA methodologies. Finally, we connect the MCDA field with

3

Figure 1.1: Overview illustrating the space of problems and our contributions in
this thesis

Preference Learning, an emerging sub-field of Machine Learning which inspires us
to tackle new problems with outranking models in particular MR-Sort.

Chapter 3 refers to the literature pertaining to our work which concerns two
aspects : partially-monotone preferences and the Majority Rule sorting model,
which is an outranking method. Therefore, we first explore related works on ordinal
and monotone classification problems and algorithms. Subsequently we investigate
existing research in the area of MR-Sort models. Finally, we describe more precisely
an algorithm [92] used to learn monotone preferences with MR-Sort models (a
metaheuristic algorithm which is an evolutionary algorithm) since two of the main
contributions of this thesis are based on this algorithm.

In Chapter 4, we present the problem of learning MR-Sort parameters with
latent preferences directions, which are preferences orders that are unknown to the
decision actors. Yet the preferences are considered to be monotone. We propose
two approaches for solving this problem : the first is a duplicated-based method
that learns the preference directions apart from the rest of the MR-Sort parameters,
the second one is a mixed-based method that takes into account both increasing
and decreasing criteria preference directions in the MR-Sort resolution method.
Lastly, we carried out some empirical experiments to assess the performance of our
algorithms and to compare the approaches proposed.

In Chapter 5, we introduce a type of preference directions that has not yet
been discussed for Non Compensatory Sorting (NCS) - a submodel of ELECTRE
TRI - and MR-Sort models : single-peaked and single-valley preferences. First, we

4

formally describe single-peaked preferences and how they relate to MR-Sort models.
Second, we establish bridges between this type of non monotone preferences and
monotone preferences for MR-Sort models and illustrate them with examples.

Equipped with the characterization of single-peaked criteria in MR-Sort models,
we study in Chapter 6 an exact method for learning MR-Sort models with those
types of preferences, even without knowing the preference directions of criteria.
We formulate a Mixed Integer Program (MIP) to solve this problem. Finally, we
run both empirical and real-case experiments (ASA dataset). The results of this
chapter teach us that even if the algorithm can be used in the problem of Chapter
4, the scalability of the method is limited (some instances even with four criteria
do not terminate before one hour).

To circumvent this difficulty, we present in Chapter 7 a metaheuristic algorithm
that is inspired by [90] - for the learning of monotone preferences - in order to learn
MR-Sort models with single-peaked preferences. First, we propose two variants :
one that learns simultaneously and the other successively the two specific values of
single-peaked criteria. Second, we carry out some experiments with synthetic data
and datasets from a well-known repository (UCI repository). The latter enables us
to easily compare our proposals with existing algorithms (in particular, machine
learning algorithms).

We conclude the document with Chapter 8 by summarizing our contributions.
We recall the proposed algorithms, the results obtained, and the connections
between them. Also, we give some relevant perspectives to our work.

5

Chapter 2

Background

Contents
2.1 Introduction . 8
2.2 Main concepts in MCDA 8

2.2.1 Basic tools of the MCDA 8
2.2.2 Preference information and preference relations 9
2.2.3 Types of problems in MCDA 10
2.2.4 Aggregation and disaggregation paradigms in MCDA . . 11

2.3 Methodologies in MCDA 12
2.3.1 Additive models . 12
2.3.2 Outranking models . 14
2.3.3 Rule-based models . 19

2.4 Preference Learning . 21
2.4.1 Classification problems in Preference Learning 21
2.4.2 At the crossroad between MCDA and PL 22

2.5 Conclusion . 23

7

2.1 Introduction

In this chapter, we give to the reader the prerequisites in the Multiple Criteria
Decision Analysis (MCDA) field, which are useful to apprehend our contributions
in the following chapters.

First, we give the definitions of the main concepts in MCDA tackled in this
thesis (Section 2.2). Then, we explore the methodologies related to the field of
MCDA, and particularly sorting models (Section 2.3). Finally we briefly focus on
the field of Preference learning (PL) (Section 2.4) and its links with MCDA in the
context of learning MR-Sort parameters with non monotone data.

2.2 Main concepts in MCDA

As the name evokes, Multiple Criteria Decision Analysis involves many criteria, and
can be described as different mechanisms for making “the best” possible decision
regarding a compromise between various criteria. A Multiple Criteria decision
problem generally involves 2 main types of stakeholders :

• the Decision Maker (DM) : he is the central actor in a decision process, since
he is the person who is confronted with a decision. As the response to his
problem must be personalized, the DM has to provide at least some hints
about his preferences.

• the Decision analyst (DA) : he is the guide of the DM. Not only he helps
the DM in expressing appropriately his preferences, but he also helps him in
making the best decision.

In some case, there are several DMs instead of one [27, 43] ; therefore the DA has
some options in order to probe the opinions of the DMs as a single interlocutor :
for instance getting a consensus for each preference expression, or consulting each
stakeholder throughout the decision process. However, in our work, we consider
the case with only one DM.

In the following section, we describe some fundamentals of MCDA. First we
describe alternatives and criteria. Then we define preference information and
preferences relations. After that, we explore the types of problems in MCDA.
Finally, we describe aggregation and disaggregation paradigms.

2.2.1 Basic tools of the MCDA

In the MCDA field, an alternative refers to actions or options available for the DM
given a decision to make. Each alternative is distinct from others and is assessed
on several criteria.

8

A criterion represents a point of view of the alternatives. It can be seen as the
judgement or the performance of an alternative focusing on a single aspect. There
are generally two types of criteria regarding the measurement used : quantitative
criteria (based on numerical values) or qualitative criteria (based on non-numerical
values).

An alternative a is evaluated by a value ai with ai ∈ Xi, where Xi is called the
evaluation scale of criterion i.

The set of criteria is N = {1, ..., i,n}. An alternative a can be represented
as a vector of evaluations of a on criteria, i.e. a = (a1,, ai,, an). Alternatives
can also be expressed without explicit evaluations, i.e. expressed with pairwise
comparisons of alternatives values.

In our context, alternatives are assessed by several criteria, where each criterion
corresponds to a value in the criterion’s evaluation scale. We note the Cartesian prod-
uct of evaluation scales as X =

∏
i∈N Xi. We also denote A = {a1, ..., aj, ..., am}

the set of alternatives. Therefore A is the set of alternatives on which the DM
expresses his preferences.

2.2.2 Preference information and preference relations

In order to aid the DM, the DA probes useful information to build a representation
of the DM’s preferences. These preferences can be expressed in one of the following
ways :

• pairwise comparisons : there are four types of binary relations for comparing
alternatives between themselves.

1. The weak preference (%) is an preorder on A (which is a reflexive and
transitive binary relation).

2. The strict preference (�) which is the asymmetric part of %.

3. The indifference relation (∼) which is the symmetric part of %.

4. The incomparability relation (#).

• evaluation of alternatives : either qualitative values, quantitative values or
alternatives assignments into categories.

• sets of constraints formulated in human language : for instance taking the
form of conditions on criteria values, etc.

In order to achieve such a task, the DM needs to provide a set of information by
means of historical preferences or on-purpose collected data that is called “reference
set” (or learning set). Indeed, the elicitation process consists of the DA collecting
these DM’s preferences information.

9

2.2.3 Types of problems in MCDA

Roy [80] introduced essentially three types of decision problems that one can deal
with in Multiple Criteria Decision Analysis.

1. Choice problem : given a list of objects (alternatives) the goal is to select
an alternative or a group of alternatives that suits the best to the DM’s
preferences (see the first problem in Example 2.1).

2. Sorting problem : this problem considers a set of ordered and predefined
categories. The aim is to classify alternatives into these categories with
respect to the preferences of the DM (see the second problem in Example
2.1). We note c(a) the category of alternative a.

3. Ranking problem : this problem consists in constructing an order on the
alternatives such that it reflects the preferences of the DM (see the third
problem in Example 2.1).

Example 2.1 A teacher of 8 students in final year of the high school is confronted
with three problems.

The first problem is a choice problem. The teacher wants to select two skilled
students in order to attend to an olympiad contest in mathematics. In order to
build the team, he relies on three requirements : proficiency in Maths, but also in
Language - because he thinks that language skills are necessary - and the cohesion
of the two students.

The second problem is a ranking problem. As a form tutor (a teacher in charge
of a class), he has to establish a ranking of the students for the end of the academic
year which is expected by students as they are rewarded according to their worth.
Moreover, students like comparing between themselves.

The third problem is a sorting problem. The final exam is close, the teacher
did a mock exam in order to foresee the readiness of students for the exam. As he
intends to plan some tutoring for needy students, he decides to break students in
three categories : good students (G) - good student that need no help because they
are well-prepared for the exam - , average students (A) who need a light tutoring
and bad students (B) who need intensive tutoring.

The following Table 2.1 summarizes the marks of students obtained at the mock
exam. We consider marks (graded between 0 and 20) attributed to the 8 students
(alternatives) in three subjects (criteria) "Language", "Maths", and "History".

Our work concerns sorting problems. More precisely we consider the inverse
sorting problem, where a set of alternatives sorted by the DM is given as an input
of the problem. Following the aggregation and disaggregation methodologies, we
can efficiently process the information in order to infer models that represents of
the DM’s preferences.

10

Maths Language History c(a)
a1 11 17 9 G
a2 18 14 7 G
a3 8 15 10 A
a4 6 10 13 A
a5 9 7 20 A
a6 15 4 10 A
a7 5 10 9 B
a8 9 7 5 B

Table 2.1: Assignment examples : dataset of 8 students and 3 subjects

2.2.4 Aggregation and disaggregation paradigms in MCDA

In MCDA, the aggregation of alternatives consists in representing an holistic
view of these alternatives. In other words, it consists of constructing a single
measure (which is a compromise of the evaluations on criteria) in order to evaluate
alternatives. By extension the aggregation of preferences enables to represent a
more compact expression of these preferences.

The disaggregation principle [57] is the reverse process of the aggregation. It
consists of inferring a representative model of the DM from examples of the DM
preferences. In others words, we aim at learning the model parameters that sketches
the preferences of the DM.

In the context of MCDA, we count two types of elicitation of decision model
parameters :

• Direct elicitation : it consists of asking the DM to express directly the
model parameters of his preferences in an interactive manner.

• Indirect elicitation: in this case, the DM does not need to provide himself
the parameters of the decision model. Instead, past preferences of the DM are
considered for the elicitation process. It aims at building the most appropriate
parameters of the DM decision model i.e the parameters that are compatible
with DM preferences. The indirect method was developed because of the
difficulties encountered with the direct elicitation (in case of direct elicitation,
it is very difficult for the DM to directly provide his preferential parameters)
[84, 83].

In our study, we work under the paradigm of indirect elicitation.

11

2.3 Methodologies in MCDA

The question of the choice of appropriate approaches draws some attention to the
MCDA community. In [103], the authors notice 56 models in MCDA, and propose
a selection tool to choose an appropriate method in order to solve a given problem.

They proposed a decision tree approach to guide someone who wants to choose
an appropriate model for his problem.

Among the plethora of methodologies in MCDA, we distinguish three main
families of methodologies [57] : additive models, outranking models and rule-based
models.

Additive models are based on the aggregation of alternatives into a score. Several
methods such as Utilité Additive (UTA) [56], Analytic Hierarchy Process (AHP)
[82], and others use this principle.

Outranking models were introduced by Roy [80]. They are based on pairwise
comparisons between alternatives. These models are more recent; we can cite
PROMETHEE [21] and ELECTRE [104], which have several variants.

The development of concepts such as Rough set and Fuzzy set theories, combined
with MCDA have lead to recent interesting family of models : rule-based decision
models [48].

2.3.1 Additive models

There exist several additive models such as UTA [56], MACBETH [5, 6], and AHP
[82].

In the following, we choose to describe UTA since a majority of models come
from UTA and some existing works on the matter are related to sorting problems.
We also describe the MACBETH model. As we are interested in partially monotone
preferences, MACBETH has been studied in the context of monotone preferences
[7, 77] and UTA with both monotone and non monotone preferences [31, 60, 35].

Utilité Additive (UTA)

The UTA (which takes its name from the french noun “UTilité Additive”) method
was first introduced by Jacquet-Lagrèze [56] where it was used in ranking problems.
UTA in the context of MCDA originates from the theory of multi-attribute value
function (also called MAVT). Commonly illustrated as a simple weighted sum, this
concept aims at aggregating several view points into a single evaluation.

On each criterion i, a performance score ai is attributed to an alternative a
and used to compute a marginal value through a function called marginal value
function or the utility function of the criterion i noted ui.

12

Marginal values function ui is akin to a mapping from a real scale measurement
to a simple, anonymized scale which is often the unit interval.

Assuming that ui is monotone non-decreasing, thus for a criterion i, if an
alternative a is preferred over (better than) an alternative b, then ai is greater or
equal than bi.

The UTA method uses a global utility which is a weighted sum of the criteria
marginal values. Thus, the global utility function is :

u(a) =
n∑
i=1

wiui(a) (2.1)

Let us note that wi is the weight of criterion i and that the global value function
is a monotone function.

The method is defined on a preorder (<) of a set of alternatives. Therefore, the
UTA model makes it simple to compare alternatives between them. We have the
following equivalences :{

aj � aj
′ ⇐⇒ ui(a

j) > ui(a
j′),∀aj, aj′ ∈ A

aj ∼ aj
′ ⇐⇒ ui(a

j) = ui(a
j′),∀aj, aj′ ∈ A (2.2)

The UTA method as described above presents various extensions. We can cite
some : UTASTAR [87], ACUTA [16, 86], and a stochastic version of UTA in [85].

An adaptation of UTA to sorting alternatives named UTADIS has also been
developed by [32].

The aim of UTADIS is to construct linear interpolations of the marginal
utility values by minimizing the misclassification rate (difference between the DM
assignments and the categories inferred by the model).

Considering the global utility function u, an alternative a, the marginal values
uh, h ∈ {1, ..., p} (p the number of categories), the classification rule takes the
following form : 

uh ≤ u(a) ≤ uh−1 =⇒ a ∈ Ch

u(a) ≤ u1 =⇒ a ∈ C1

u(a) ≥ up−1 =⇒ a ∈ Cp

(2.3)

MACBETH

In the MACBETH approach [5, 6], the DM is asked to provide qualitative and
quantitative information concerning his preferences. On the one hand, with quali-
tative information, we can loosely compare the alternatives with each other. On
the other hand with quantitative information, it is possible to express the intensity
of differences between preferences. The principle of the method is grounded on

13

6 degrees of pairwise comparisons called difference of attractiveness : very weak,
weak, moderate, strong, very strong, extreme. Each pair of alternatives compared
by the DM is evaluated with one of the degrees. These degrees are reported on
a scale and represents contiguous intervals. Six numeric values called thresholds
separate these intervals from each other and are determined during the construction
of the MACBETH model.

Therefore, as in the case of UTASTAR, MACBETH models are constructed with
subintervals of evaluation scales. In addition, the approach aims at approximating
by piecewise linear functions, the global additive function of the model. The
marginal function values can be retrieved thanks to some reference points. These
reference points are given by the DM and represent alternatives the DM judges
absolutely satisfying, unsatisfying or neutral. In the MACBETH approach, the
knowledge of only two reference points can help to build the marginal values.

The MACBETH approach is also known as an interactive approach and very
suitable to real-world application, not only because the DM can possibly revise its
judgments, but also the layman can easily understand the difference of attractive-
ness.

2.3.2 Outranking models

The outranking models are based on pairwise comparisons of alternatives, where
alternatives are sorted in p predefined and ordered categories, i.e. Cp C2 .C1

(with Cp the best category and C1 the worst category, . that denotes the order
between categories). In our work, we are interested by this sort of models.

ELECTRE TRI method

ELECTRE TRI was introduced by Yu [104]. It is based on the comparison of
alternatives with fictitious alternatives called profiles which delimit the categories.
More formally, we describe an evaluation scale Xi for each criterion i. Therefore the
global domain of evaluations is the Cartesian product of Xi which is X =

∏
i∈N Xi

with N the set of criteria. ELECTRE TRI considers p predefined and ordered
categories, and the profiles (bp−1, ..., b1) that delimits the frontiers of the categories
Cp, . . . , C1.

In order to assess the comparisons between alternatives, the method refers
to scores called credibility indices. This index is made of two components : the
concordance index and the discordance index.

First, the concordance index characterizes the strength in accord with the
statement to be evaluated. For instance C(a, b) is the concordance index for the
statement “a is preferred to b”. This index is an aggregation of the concordance

14

index of each criterion noted Ci(a, b). In order to introduce the expression of Ci(a, b)
we introduce the following parameters :

• the indifference threshold, which is qhi , with qhi ≥ 0, h ∈ {1, . . . , p}, i ∈ N .

• the preference threshold, which is rhi , with rhi ≥ qhi , h ∈ {1, . . . , p}, i ∈ N .

We can express Ci(a, b), which is a value in [0,1] as the following :
If ai ≤ bi − rhi , then Ci(a, b) = 0,
If ai ≥ bi − qhi , then Ci(a, b) = 1,

Otherwise, Ci(a, b) = ai−bi+rhi
rhi −qhi

(2.4)

The concordance index reads as follows :

C(a, b) =
∑
i∈N

Ci(a, b) (2.5)

On the other side, the discordance index (noted D(a, b)) plays a counter effect
regarding the role of concordance index. It consists of characterizing coalitions of
criteria that are opposed to the preference statement. For instance D(a, b) which is
the discordance index between a and b describes the strength of arguments against
the statement “a is preferred to b”. In order to compute this value, we need to
calculate Di(a, b) for a given criterion i. An additional parameter which is vhi ,
h ∈ {1, . . . , p}, the veto threshold is used. We can compute the values of Di(a, b)
as follows : 

If ai ≥ bi − rhi , then Di(a, b) = 0,
If ai ≤ bi − vhi , then Di(a, b) = 1,

Otherwise, Di(a, b) = bi−rhi −ai
vhi −rhi

(2.6)

Finally we express the credibility index as the following product :

σi(a, b) = C(a, b)
∏

i∈N :Di(a,b)>Ci(a,b)

1−Di(a, b)
C(a, b)

(2.7)

Thanks to the value obtained with σi(a, b), it is possible to compare a and b
using a given majority threshold λ. Therefore, if σi(a, b) > λ, we deduce that a is
preferred to b.

In order to sort an alternative a in the appropriate category, a is compared
successively with limit profiles. Therefore, two orders of pairwise comparisons are
possible leading to two types of procedures : the optimistic procedure and the
pessimistic procedure (which is the most commonly used). The latter procedure
is the following, assuming we desire to sort an alternative a. First, we consider

15

the decreasing order of profiles i.e (bp−1, . . ., b1). By comparing successively the
alternative a with each profile of this order, we stop at the first comparison such
that this alternative is preferred to the current profile, (let’s say bk). Therefore
a is assigned to Ck+1. If such case does not happen throughout the comparisons,
then the alternative a is assigned to category C1. The optimistic rule adopts the
opposite order of pairwise comparisons and the rule is different : the alternative a
is assigned to a category of which a does not strictly outrank the lower limit profile
of the category.

There are several variants of the ELECTRE TRI method. We can cite ELEC-
TRE TRI-C [81], which differs from ELECTRE TRI in the fact that central profiles
are used instead of limit profiles.

The Stochastic Multicriteria Acceptability Analysis (SMAA) method, initially
reserved to ranking problems, has also been adapted to ELECTRE TRI giving birth
to SMAA TRI [45]. The principle is to assess the sensitivity of an MCDA method
through a Monte Carlo simulation based on finite spaces of arbitrarily distributed
parameter values. Thus, SMAA TRI computes the category acceptability - which
is the chance for an alternative to be assigned to a category given a possible set of
ELECTRE TRI parameters.

The Non-Compensatory Sorting (NCS) model

The Non-compensatory Sorting (NCS) [17, 18] model is an MCDA outranking model
that stems from the ELECTRE TRI method [44]. It aims at sorting alternatives
into p predefined ordered categories Cp C2 . C1 (with Cp the best category
and C1 the worst category).

We briefly recall that a = (a1, . . . , an) ∈ X =
∏

i∈N Xi with Xi the evaluation
scale of criterion i. The outranking relation between alternatives is defined by a
preference order <i⊂ Xi × Xi for each criterion i ∈ N . It is defined - from the
viewpoint of monotone preferences - as the following :

• i is a “profit” criterion if : ai <i a
′
i iff ai ≥ a′i, ai, a′i ∈ Xi,

• i is a “cost” criterion if : ai <i a
′
i iff ai ≤ a′i, ai, a′i ∈ Xi,

The NCS model incorporates p − 1 limit profiles (b1, . . . , bp−1) which delimit
the categories between them. We have bh = (bh1 , ..., b

h
n), ∀h ∈ {1, ..., p − 1}. We

additionally consider two fictive profiles b0, the lower limit of category C1 and bp
the upper limit of category Cp.

Therefore, the NCS method is the following : an alternative a belongs to the
category Ch if (i) it is better than the lower limit of the category on a sufficiently
strong subset of criteria, and (ii) this is not the case when comparing the alternative
to the upper limit of the category.

16

In other words, in order to be sorted in category Ch, the set {∀i ∈ N : ai <i

bh−1i } must form a “majority” whereas {∀i ∈ N : bh−1i <i ai} does not form a
“majority”. We describe more in details the NCS method in the two cases.

Sorting with two categories. Let us focus first on a simple case which is the
sorting of alternatives into 2 categories : Good (G) and Bad (B). We denote
Ai ⊆ Xi the set of approved values on criterion i ∈ N .

An approved value ai on criterion i (ai ∈ Ai) is a value that counts in the
assignment of the alternative a to category G. In order to assign alternative a to
category G, the alternative a should have approved values on a subset of criteria
which forms a “majority”. The set of “majorities” is also called the family of
“sufficiently strong” subsets of criteria denoted by F ⊆ 2N . Therefore, we write the
NCS assignment rule using the previous notations :

x ∈ G iff {i ∈ N : xi ∈ Ai} ∈ F , ∀x ∈ X (2.8)

Sorting with more than two categories. In this setting, we consider an
ordered set of p categories. The sets of approved values represents Ahi ⊆ Xi

with (h = 1, . . . , p − 1) such that A1
i ⊇ A2

i ⊇ ... ⊇ Ap−1i ⊇ Api , with A1
i = Xi.

Families of “sufficiently strong” subsets of criteria are also nested ; we have :
F1 ⊇ F2 ⊇ ... ⊇ Fp−1 ⊇ Fp, where Fh is the set of majorities pertaining to the
sorting of alternatives into the category Ch. In particular, we have F1 = P(N), the
set of the subsets of N . Taking into account multiple categories, the assignment
rule is the following for all x ∈ X:

x ∈ Ch iff {i ∈ N : xi ∈ Ahi } ∈ Fh and {i ∈ N : xi ∈ Ah+1
i } /∈ Fh+1,

∀h ∈ {1, ..., p− 1}
(2.9)

x ∈ Cp iff {i ∈ N : xi ∈ Api } ∈ Fp (2.10)

Majority Rule Sorting (MR-Sort)

The aim of the Majority Rule Sorting method (MR-Sort) is still to assign alternatives
into a predefined order of categories.

MR-Sort is a special case of NCS, where the majorities are only additive.
In fact, the notion of majority is formalized using weights (w1, ..., wn) attached

to criteria (with wi ≥ 0, ∀i, and
∑

i∈N wi = 1), and a majority threshold λ ∈]0.5; 1].
The subset of criteria I ⊆ N is a majority iff

∑
i∈I wi ≥ λ. I is also called a

17

winning coalition of criteria. Finally, the MR-Sort rule can be expressed as follows:

c(a) = Ch ⇔
∑

i:ai<ib
h−1
i

wi ≥ λ and
∑

i:ai<ibhi

wi < λ (2.11)

In other words, MR-Sort assigns alternative a ∈ X to a category Ch, h ∈
{1, . . . , p} (denoted c(a) = Ch), when the set of criteria for which ai is better than
the lower profile of Ch (ai <i b

h−1
i) forms a majority, but the set of criteria for

which ai is better than the upper profile of Ch (ai <i b
h
i) is not a majority.

Example 2.2 Let us consider the Example 2.1. Now, we want to represent the
model underlying the sorting problem. We recall the table of assignment examples
in Table 2.1. Let us assume in Figure 2.1 the graphical representation of the model
describing the preference of the teacher. The three vertical axes represent the three
criteria ; each is graduated from 0 to 20 which is the limits of the evaluation scales
of criteria. Let us consider the model defined by b = (b1, b2) (pictured in Figure
2.1 with blue lines) and the triplet of weights w = (w1, w2, w3), and the majority
threshold λ. We choose to draw only four alternatives (a1,a4,a6,a8) in Figure 2.1
; each alternative is represented by a color that represents its category (green for
category G, orange for category A and red for category B).

In Figure 2.2, we show another representation of the model based on coalitions
of criteria. Yellow nodes are sufficient coalitions of criteria whereas the others are
not. In other words, in order to classify an alternative in a category, this alternative
must be preferred to the lower limit profile of such category on coalitions of criteria
represented here with yellow nodes (i.e {c1, c2}, {c1, c3} and {c1, c2, c3}).

Maths(c1) Language(c2) History(c3) c(a)
a1 11 17 9 G
a2 18 14 7 G
a3 8 15 10 A
a4 6 10 13 A
a5 9 7 19 A
a6 15 4 10 A
a7 5 10 9 B
a8 10 6 5 B

Table 2.2: Assignment examples : dataset of 8 students and 3 subjects

18

Figure 2.1: Graphical representation of profiles and alternatives

Figure 2.2: Lattice representing sufficient coalitions of criteria

2.3.3 Rule-based models

This domain deals with decision models that can be represented following the
scheme of a decision rule. In this context, a decision rule can be formulated
in the following manner : If ... Then A well known method using rules is
the Dominance-based Rough Set approach (DRSA) [48] that is used for multiple
criteria models. This approach was inspired by the field of Rough Set analysis
which tends to establish some dependencies between attributes in multiple criteria
sorting problems.

One advantage of this Rough Set method resides in its ability to capture some

19

hesitations of the DM thanks to its structure. DRSA can be summarized as an
approach that separates assignments into two groups, consistent ones (with regards
to the DM preferences) and inconsistent assignments (which can be considered as
DM’s hesitations).

DRSA approach

There are some analogies between terms generally used in the literature for the
DRSA approach and MCDA terms - that we highlight in the following. Let us
consider an information table which is expressed with 4 tuples < A, Q, V, f >,
where A is the set of objects (alternatives in MCDA), Q the set of attributes.
The set of attributes is divided into two disjoint non-empty sets N , the set of
condition attributes (criteria in MCDA) and D, the set of decision variables (only
one decision variable in MCDA whose values match categories). The value set of
attribute q, q ∈ Q, is represented by Vq and we have V = ∪q∈QVq. Here, sets of
evaluations (∀i ∈ N) are similar to evaluation scales in MCDA. In the table, the
alternatives are in rows, and the attributes are in columns. Finally the information
function refers to the function f that maps the tuple of value (x, q) to a value in
Vq (i.e f(x, q) ∈ Vq).

In order to compare objects, let us assume that each attribute is endowed with
a preference relation <q which is a complete preorder. The relation x <q y means
that x is at least as good as y regarding attribute q, thus we have f(x, q) ≥ f(y, q)
.

For the sake of simplicity and in order to relate to our work, we consider only
one decision attribute that determine predefined and ordered classes of objects,
that are {C1, ...Ch, ..., Cp} (which are categories in MCDA).

The DRSA approach integrates the dominance principle (also known as Pareto
principle) [48, 49], as defined in the following :

Definition 2.1 The principle of dominance implies that if an object x dominates
y on all the attributes, then x should be classified in a class that is at least as good
as the class of y.

The concept of Rough Set enables to build sets of classes that are considered
as upward and downward approximations of alternative classes. Therefore in the
DRSA approach, assignment rules of alternatives can be formulated on the basis of
approximation sets. Typically, each alternative x is assigned to set of contiguous
categories [C l, ..., Cu], where C l (resp. Cu) is the lower (resp. higher) category of
the set. An alternative can possibly be assigned to a single category (i.e C l = Cu).

Several induction algorithms can be applied in order to generate rules, and
thereby alternative assignments. We can cite DOMLEM [50], MODLEM [50], and
LEM2 [52].

20

In the next section, we talk about Preference learning (PL) which is a field
that has relevant links with the MCDA field, especially in the context of learning
decision models. We shortly describe the field, establish the relations between
MCDA and PL, especially some motivations inspired by PL to tackle the learning
of MR-Sort models with non monotone data (see Chapter 5).

2.4 Preference Learning

The field of Preference Learning (PL) is a subfield of Machine Learning [47]. It
aims at learning preference models from empirical data in order to predict user
preferences. Originally, PL was mostly studied for ranking tasks.

Nevertheless this interdisciplinary field has several links with other fields such as
Knowledge representation [2], Data mining [101], Recommender Systems [47], and
more generally Operations Research [28] and MCDA [28]. In the next subsections,
we briefly describe some sorting problems in this field. Then, we show the links
with MCDA and how that lines up in our work. In fact in [88], Sobrie used some PL
practices in order to design an experimental setting for learning MR-Sort models.

2.4.1 Classification problems in Preference Learning

There are several types of classification problems in this field. We can cite two of
them : multi-label classification problems [96] and graded multi-label classification
problems [26]. The former problem deals with classification of instances into
unordered labels (categories). In addition each instance can be assigned to several
labels. The graded multi-label classification is a generalization of the multi-label
classification where each assignment is attached to a grade, which is a degree of
membership of an instance to a label. Tehrani et al. [42] consider the use of discrete
Choquet integral (mostly used in MCDA) as an component for machine learning
tasks in classification problems.

Hullermeier. et al [47] describe four paradigms when tackling these problems
which mainly depend on the structure of the data : utility functions, preference
relations, specific preference models and local aggregation of preferences.

Several other problems can be counted as Preference Learning problems such
as : (multi) label ranking, instance ranking, object ranking, (graded) multi-label
ranking, collaborative filtering. The field of Preference Learning (or more broadly
Machine Learning) provides interesting practices to assess the performance of the
learning algorithms used to solve MCDA problems particularly sorting problems.

21

Classification accuracy and evaluation process of learning algorithms

Let us consider a set of alternatives A assigned to some categories. A modelM
represents the ground truth, i.eM is an “oracle” used to assign the elements of A
into their respective categories. A learned modelM′ is an approximation ofM
obtained through a learning process. The category stemming from the decision rule
applied to an alternative a, a ∈ A with the modelM (resp. M′) is represented by
(cat(a,M)) (resp. (cat(a,M′))).

We describe the Classification Accuracy (CA) as the following :

CA =
|a ∈ A : cat(a,M) = cat(a,M′)|

|A|
. (2.12)

The classification accuracy is the rate of restoration of assignment examples from a
learned model.

Unlike in PL, where the evaluation of models are based on three phases (training,
validation and test phases), in our work as we deal with MCDA models, we consider
training and validation phases as a single phase and called it validation phase
(through misuse of language). Therefore, we distinguish two rates : CAv which
is the classification rate in validation phase and CAg the classification rate in
generalization. The difference resides in the type of dataset used to calculate the
score. For CAv, the set A is the learning set, whereas for CAg, A represents the
test set. In the Machine Learning literature, the classification error (also called the
0/1 loss) generally denotes the rate obtained by 1− CA.

2.4.2 At the crossroad between MCDA and PL

We highlight some useful connections and differences between MCDA and PL in the
following. First, the size of the problems in PL is generally larger than in MCDA.
Nevertheless, the ability to handle large datasets comes with a computational cost.
The expressivity of models in MCDA offers more tools for the interpretability of
the learned models [70, 89, 9].

Second, MCDA methodology is more user-oriented than preference learning
tools. The interactions between the Decision Maker (DM) and the Decision Analyst
(DA) are encouraged, and the MCDA literature has tackled various problems related
to interactions during the learning process [73, 33]. On the contrary, PL is more
focused on the performance of learning tasks as in [38].

Finally, PL tackles a broader spectrum of problems, thanks to its capability
to deal with non monotone and unknown data structures [25, 102]. Up to now,
MCDA methods like NCS and MR-Sort used to treat problems assuming that the
attributes of the data are monotone.

22

Inspired by problems encountered in PL, we intend to push the limits of these
models by tackling the learning of sorting models with non monotone data (in
chapters 5, 6 and 7). Moreover, as in PL [42] we investigate MR-Sort learning
problems with large dataset sizes.

2.5 Conclusion

In this chapter, we introduced the main principles of MCDA. We discussed problems
and models in this field. In the remaining of our work, our interest is oriented
towards sorting problems in MCDA, in particular learning MR-Sort models from
“large” datasets and non monotone data inspired by the Preference Learning field.

In the next chapter, we review the literature related to monotone, partially
monotone, and non-monotone preferences in the context of ordinal classification.
We also discuss some sorting problems with MR-Sort models.

23

Chapter 3

Related work

Contents
3.1 Introduction . 26

3.1.1 Ordinal classification . 26
3.2 Monotonicity-related preferences 27

3.2.1 Monotonicity in Multiple Criteria Decision Analysis . . 29
3.2.2 Monotonicity in data mining and supervised learning fields 32

3.3 Problems and algorithms around MR-Sort 33
3.3.1 MR-Sort related works 34
3.3.2 Description of the existing metaheuristic 35

3.4 Conclusion . 37

25

3.1 Introduction

In this chapter, we aim at reviewing the literature but particularly problems and
algorithms concerning different aspects of our work.

First, we do a brief introduction on ordinal classification in the next subsection
3.1.1.

Secondly in Section 3.2, we explore existing problems and algorithms related to
monotonicity on preferences in Multicriteria Decision Analysis (MCDA), Preference
Learning and related fields.

The last part, Section 3.3 is dedicated to the related work around MR-Sort; we
show the different problems and approaches based on models close to MR-Sort. We
also review different works done in the context of the inference of MR-Sort models
and present the algorithm on which some of our contributions are based.

3.1.1 Ordinal classification

In decision problems, classification is the generic term used to refer to the assignment
of alternatives into predefined categories (not necessarily ordered).

However, sorting - mostly used in the MCDA community - generally denotes
the assignment of alternatives in predefined and ordered categories. The term
used beyond the field of MCDA is ordinal classification (also known as ordinal
regression), which describes the task of assigning objects into ordered classes (which
are equivalent to categories in MCDA).

The question of ordinal classification has interested the artificial intelligence
and expert systems communities since their early days [66, 4].

There exists different taxonomies for ordinal classification problems regarding
several features [54, 55, 93] : the type of the problem, the nature of the input
data, the type of model and the type of algorithm used to solve the problem.
Inevitably, all these characteristics are intimately connected. On the one hand, the
problem defines the types of data handled, the outputs expected by the problem,
and therefore the specific metrics in order to evaluate the solutions of the problem.
On the other hand, the type of model chosen in order to solve the problem implies
the use of restrained resolution methods and techniques.

In the next section, we deal with the specificity of monotone and non-monotone
classifications. We talk about ordinal classification problems in a large sense
including not only the fields of MCDA and Preference Learning but also other
related fields.

26

3.2 Monotone, partially monotone and non-monotone
preferences

With monotone preferences, the improvement of a performance of an alternative
does not contribute to a worse assignment of this alternative into the categories ;
this is not always the case with other types of monotonicities.

In this section, we explore the literature related to monotone, partially monotone
and non-monotone preferences in MCDA. We briefly review some works in data
mining and some supervised learning fields.

In their review works, [24, 54, 55] outlined the connections between ordinal and
monotone classification. Indeed, monotone classification is a special case of ordinal
classification and it has been a growing body of research on this topic.

Monotone classification relates to the monotone dependency between the values
of attributes and classes : either the increase of attributes values contribute to an
assignment in the same or an upper class (monotonically increasing relationship)
or contribute to assignment in the same or a lower class (monotonically decreasing
relationship). We call a preference direction, that relationship (monotonicity) with
regards to a given attribute and the classification : either increasing or decreasing.
Formally, we introduce the following definition regarding multicriteria sorting
problems [92]:

Definition 3.1 A sorting function is monotone if an alternative x cannot be
assigned to a less preferred category than an alternative y whenever x is at least
as good as y on all attributes. In other words, given <i the preference order on
attribute i, for all x, y ∈ A, with xi <i yi, ∀i ∈ N , we have c(x).c(y) or c(x) = c(y).

Therefore monotone preferences are characterized by alternatives assigned by
such a monotone sorting function.

Unfortunately, it is not obvious to straightforwardly describe non-monotone
preferences. They relate to a spectrum of kind of preferences, from partially mono-
tone preferences to totally non-monotone preferences. In [76], partial monotonicity
is described as a monotonicity restrained to a subset of N .

Definition 3.2 Given, B ⊆ N , and two alternatives x and y, the partial ordering
<B is defined as x <B y ⇔ xi <i yi, ∀i ∈ B. Partial monotonicity constraints are
defined as : if the alternative x is not worse than y regarding B (or x <B y), then
c(x) . c(y) or c(x) = c(y).

In partially monotone classification, only attributes of the subset B have
monotone relationships with classes.

27

In MCDA, the question of order is important. The evaluation scales Xi, (i ∈ N)
are set of values, which are performances that are necessarily ordered. Therefore,
criteria are considered as ordinal attributes.

In [14], monotonicity is tackled in terms of ordinal attributes and non-ordinal
attributes. They distinguish five types of classification problems depending on the
presence or absence of monotonicity relationships between attribute values and
assignments classes. Two of the five problems are ordinal problems and deal with
ordinal attributes. They can be summarized in the following two groups :

• (i) monotone classification : (which includes both Definition 3.1 and Definition
3.2) where at least one attribute is ordinal, classes are ordered, and there is a
monotone relationship between values of ordinal attributes and classes.

• (ii) non-monotone classification : (which also includes Definition 3.2) where
at least one attribute is ordinal, classes are ordered, but there is no monotone
relationship between values of ordinal attributes and classes.

In our work, we are interested in both cases, but in particular in the latter
case. As mentioned in [14], for (ii), although no global monotone relationship can
be found between values of ordinal attributes and classes in this case, this type
of classification can suggest local monotonicity relationships. In the following we
formally describe the single-peaked principle and conclude that ordinal attributes
endowed with this principle express two different local monotonicity relationships.

The single-peaked principle

Single-peaked preferences were introduced first by Black in 1948 [12, 13]. He
used this type of preference in economy to describe an idiosyncratic behaviour of
committee members desiring to adopt a resolution in front of several motions. He
illustrated this through a single-peaked curve which is a curve that changes its
direction at most once, from up to down.

Nowadays, the notion is still abundantly studied in several domains, mainly in
Social Choice field. We consider the following definition according to Escoffier et
al. [41] (we only use these notations for only this part to recall the definition of the
single-peakedness in it original field, which is Social Choice):

Let us consider a set of voters V = {1, . . . ,m}, and a set of candidates X =
{x1, . . . , xn} with n ≥ 3. A preference relation (noted �) on X is a linear order on
X. The peak of the preference relation � is the candidate x? = peak(�) such that
x? � x for all x ∈ X\ {x?}.

Definition 3.3 A preference relation � is considered as single-peaked with respect
to a given axis if and only if for all xi, xj ∈ X such that xi and xj are on the same

28

side of the peak x? of �, one has xi � xj if and only if xi is closer to the peak than
xj, that is, if x? > xi > xj or xj > xi > x?, [41].

Therefore, single-peaked preferences as mentioned in [14] can be seen as a
combination of two successive local monotonicities : an increasing order up to a
certain peak, and from that peak a decreasing order. In Chapter 5, we elaborate
more about single-peaked preferences and how we define single-peaked criteria for
MR-Sort models.

3.2.1 Monotonicity in Multiple Criteria Decision Analysis

We briefly discuss the first works on monotonicity in MCDA based on additive
models which are most often related to ranking problems.

Early in 1995, Despotis and Zopounidis [31] were the first to consider single
peaked value functions with an additive piece-wise linear model for ranking problems.
Indeed, they positioned their method as an extension of the UTA method following
the principle developed in [59] for decomposition of non-monotone preferences into
small attributes ranges where the monotonicity is guaranteed.

Inferring UTA parameters with the consideration of this type of non-monotonicity
(single-peaked) is really an asset when knowing the most preferred criteria value of
the DM.

Following on from this method, some proposed more elaborated methods such
as UTA-NM [60] to allow utility functions with multiple peaked without any
beforehand details on the shape of these functions, or a preprocessing heuristic
[39] to transform nominal and cardinal attributes inputs into criteria, yielding
better results for additive ranking problems. Nevertheless, one of the limit of [60]
is their inability to deal with large real-world problems; [39] also failed to capture
single-peaked features of cardinal attributes because of their linear regression
approach.

In the rest of this section, we investigate the literature related to classification
tasks, based on additive, outranking and rule-based models.

Additive models for Multicriteria Sorting problems

In [22], the authors studied non-monotone utility functions with quadratic utility
functions for an additive model. They applied their model to a bank credit loan
use case. For this application, they characterized the criteria “age” as a quadratic
utility function. Indeed considering their use case, young and old people are less
inclined to benefit from loans than the rest of the age classes. Therefore the DM
preferences decreases when this attribute value gets closer to the endpoints of the

29

evaluation scale. This type of criteria equates to a single-peaked criterion in our
contribution (chapter 5).

Liu et al. [64] proposed an approach using a regularization framework - which
is known as a tool for addressing trade-offs between the model complexity and
the generalization performance (overfitting) [99] - in order to learn the parameters
of an additive sorting model. Their disaggregation process uses piecewise linear
functions that is beneficial in order to shape precisely the true marginal value
function, including monotone and non-monotone from a reference set of alternatives.
This approach which learns has the advantage of detecting non-monotone criteria
over the algorithm described in [36] for learning UTADIS models used for similar
problems.

Guo et al. [53] proposed a progressive preference elicitation for multicriteria sort-
ing using a utility model with non-monotone (including multiple-peaked) attributes.
They were interested in circumventing the difficulty of learning a representative
model given a set of reference alternatives. Therefore inspired by the works from
Robust Ordinal Regression (ROR) field [28, 51], they considered the 2 known cases
of assignments : possible and necessary assignments. Their algorithm essentially
resolves inconsistencies and assigns non-reference alternatives in an iterative and
progressive process.

Some recent works of Kadzinski et al. [58] addressed the inference of specific
parameters of a designed additive sorting model from assignment examples that
include diverse forms of marginal values function on non strictly monotone criteria.

They covered 10 types of shapes of monotonicity such as monotonically increas-
ing/decreasing and non-monotone (single peaked, single caved) marginal value
functions. The formulated model of Kadzinski et al. takes advantage of subinterval-
based construction of marginal functions during the learning process to better fit
the marginal functions shapes. Based on their method that uses subinterval-based
construction of marginal functions, they were able to retrieve the model parameters
(thresholds and functions values) through a Mixed integer linear programming
technique. As they inferred shapes of functions that characterizes criteria with
their model, we also are interested in learning the preference directions of criteria
of MR-Sort models (chapters 4, 6 and 7).

All in all, additive models were predominantly used throughout the past studies.
Our studied model (MR-Sort) is rather in the scope of outranking methods. In
this area, the preference directions on criteria was always assumed to be part
of prior knowledge. In our first contribution (Chapter 4), we focus on inferring
from assignment examples, MR-Sort models in the context of partial information
on preference directions of criteria (i.e. we assume that preference directions are
monotone, but we ignore the direction of such monotonicities).

30

Outranking models for Multicriteria Sorting problems

As the most known outranking model, ELECTRE TRI has been studied by
Mousseau and Słowiński [71]. They proposed a MIP-based algorithm for the
inference of ELECTRE TRI models. Due to high effort on the computation of all
the ELECTRE TRI parameters in [71], Mousseau et al. [70] developed a Linear
Program (LP) for learning weights and thresholds with fixed profiles. Conversely,
Ngo The and Mousseau [73] proposed a MIP to learn profiles with fixed weights
and threshold and presented a global procedure to learn all the parameters.

Doumpos et al. in [35] talked about a differential evolutionary algorithm for
learning ELECTRE TRI models from assignment examples considering sorting
problems. Their method learns all the model parameters and can deal with
large dataset sizes, which is an improvement of previous proposals based on MIP
algorithm.

To the best of our knowledge, the work proposed for the inferring of outranking
models from assignment examples always assumed monotone preference directions
of the criteria. Preference directions are also assumed to be known in advance
(either increasing or decreasing). In this thesis, we consider a simplified version of
ELECTRE TRI and extend this inference problem to unknown preference directions
and single-peaked preferences (chapters 4, 6 and 7). We review separately related
works of the two outranking models (NCS and MR-Sort) in section 3.3.1.

Dominance-based Rough Set Approach for Multicriteria sorting prob-
lems

Among rule-based models and as a MCDA model, Dominance-based Rough Set Ap-
proach (DRSA) is not disconnected from the subject of monotonicity of preferences
for sorting problems [15, 50].

In [19], the author suggested three ways to deal with the learning of non
monotone data, given monotone classification functions :

• enforcing the learning of non monotone data with monotone functions by
minimizing the classification error (which is common in Machine Learning),

• transforming non monotone data into monotone data as a preprocessing
phase. In [20], Brabant et al. proposed the use of fuzzy (Sugeno) integrals to
deal with monotone classification problems using the framework of rule-based
models. They suggest a monotone relabeling method - which consists of
modifying alternatives classes - as a preprocess to deal with non monotone
data.

• translating non-monotone data as uncertainty in the data (which is the scope
of approaches such as DRSA).

31

In [14], the authors deal with the induction of decision rules using the DRSA
paradigm (introduced in Chapter 2). As we introduce at the beginning of the
section 3.2, [14] presented five types of classification problems (including those
described as problems (i) and (ii) in 3.2) depending on the presence or absence of
monotonicity relationships between attribute values and assignment classes and
present methods to solve them.

They presented a non-invasive transformation (i.e. no interference in the
discovering of relationships) to induce monotonicity relationships between condition
and decision variables, without knowing a priori the type of monotonicity. They
propose to clone non-ordinal condition attributes which results in two attributes
- where one represents a positive monotonicity relation and the other a negative
monotonicity relation - then apply a DRSA method, which induces decision rules.

Thus, these rules are used to deduce relationships between condition attributes
and the decision attribute (globally non monotone with local monotonicities, globally
positively monotone or globally negatively monotone).

In the context of MR-Sort, the classification rule is always monotone, while the
values order of some criteria may reveal single-peaked preferences, which amounts
to two local monotonicity relationships (first an increasing preference relation up
to a most preferred point, and after a decreasing preference relation).

In the end, in both contexts (DRSA and MR-Sort), the interpretation of the
relationships between such condition variables (single-peaked criteria) and decision
variables (categories) is similar. Compared to Brabant et al. [20] (previously
mentionned), in one of our contributions we transform non-monotone criteria
to monotone criteria, except our transformation process is part of the learning
approach itself. In Chapter 5 and 6 we leverage the transformation of single-peaked
criteria to monotone criteria - which is formulated as a mathematical program - to
learn MR-Sort parameters.

3.2.2 Monotonicity in data mining and supervised learning
fields

In data mining, the aim of ordinal classification is to assign patterns to classes
(each pattern being a tuple of values).

Following the type of data considered (monotone or non monotone), the resolu-
tion methods are abundant in the literature. Cano et al. [24] reported the evolution
of the growing research proposals in the realm of monotone classification.

In [24, 54, 55, 93], they give an overview of ordinal and monotone classification
concerning models, methodologies, algorithms, and metrics used. In particular,
[24] presented a taxonomy of algorithms for monotone classification. According
to their non-exhaustive hierarchy of algorithms, the stakes of the problem we are

32

dealing with is quite close to the scope of monotone classifier and classification
rules algorithms.

The authors also gathered the metrics generally used to evaluate the perfor-
mances of algorithms as well as datasets involved in the literature for these type of
problems. In our work, we use some of them such as UCI and KEEL [1] repositories
in order to compare our algorithms with others.

Decision trees

Early in 1999, Potharst and Bioch [78] tackled the learning problem of binary
decision trees from monotone data while [79] extend the latter proposal by presenting
an algorithm that can handle possibly non-monotone data. Pei and Hu [76]
tackled ordinal classification with partially monotone decision trees. They use rank-
inconsistent measurements to differentiate attributes from criteria (criteria being
usually defined as attributes that are monotone with regard to the decision). Thanks
to several entropy measures, they establish some measurements that discriminate
not only monotonically increasing (or decreasing) relationships between attributes
and the decision, but also determine true criteria from regular attributes.

In Chapter 4 we investigate a similar question that is the inference of criteria
preference directions (gain or cost criteria) of MR-Sort models from a priori
monotone data.

Regression problems

Tehrani et al. [42] presented a choquistic regression based on a gradient-based
optimization technique to infer the parameters of the model (i.e. the Choquet
Integral parameters). They were inspired by principles behind logistic regression
which always requires monotone attributes.

In machine learning, ordinal classification problems have mostly been used to
translate into regression problems, whose common drawback is the imprecision
when corresponding numerical scale and ordinal one. In addition, most traditional
machine learning algorithms have been stamped as “black box” models - despite
the emerging of the issue of interpretability in the Machine Learning community - ,
whereas ours (MR-Sort) has been proved to be easily interpretable [89].

3.3 Problems and algorithms for learning MR-Sort
models

In this section, we focus on the outranking method MR-Sort. We have already
described in details the MR-Sort model in the previous chapter.

33

First and briefly, we recall some facts related to MR-Sort and it associated
inverse learning problem. Then, we review the existing work related to the other
problems related to MR-Sort models, as well as proposed learning algorithms.
Finally, we describe the algorithm which is a base for some of our contributions.

Briefly, the aim of the Majority Rule Sorting method (MR-Sort) is to assign
the alternatives into a predefined order of categories Cp B . . . B C1 (Cp and C1

are respectively the best and worst category). The MR-Sort parameters are the
following : weights (wi,∀i ∈ N), majority level (λ), and limit profiles (〈b〉). In
order to set appropriate values for these parameters, we consider the Inv-MR-Sort
problem, which consists in searching for the MR-Sort parameters that match the
best the set of assignment examples provided by the DM.

3.3.1 MR-Sort related works

The MR-Sort method is a sub-case of the Non-Compensatory Sorting (NCS) method.
NCS was axiomatized in [17, 18]. Compared to the MR-Sort, it generalizes the set
of winning coalitions of criteria taking into account non additive majorities.

Thus, individual weights are extended to capacities of subsets of criteria, then
allowing more characterizations of the interactions between criteria. NCS itself
stems from the ELECTRE TRI sorting method in its pessimistic version. Previous
works such as [71] proposed a nonlinear integer programming (NLIP) formulation
to learn the parameters for the ELECTRE TRI sorting method (see also [44, 37]).

Later on, Leroy et al. [63] used a mixed-integer linear program (MILP) to solve
the Inv-MR-Sort problem. These two techniques (NLIP and MILP) only allow for
solving instances of small size due to computational difficulty.

Meyer and Olteanu studied MR-Sort models by proposing an approach based
on an LP formulation and a simulated annealing algorithm to infer MR-Sort
parameters under imprecise and missing evaluations [68]. They also established
MR-Sort variants based on dominance, dictator and veto principles and proposed
exact approaches (MILP) to solve them [67].

Nefla et al. [72] presented an interactive elicitation based on the learning of
MR-Sort parameters knowing beforehand the profiles values. They used a max-
margin optimization technique for the elicitation of the parameters of an MR-Sort
model. Assuming that the profiles values are known, their goal was to estimate
the remaining MR-Sort parameters, and determine uncertainties associated with
DM’s questions during the elicitation process. For this purpose, they use a shared
non-negative margin as a decision variable that is maximized in the objective
function of the optimization phase using a LP. The noise is captured by slack
variables. At each iteration, the DM is asked to sort the unassigned alternatives.

Based on an interactive framework, Ozpeynirci et al. [74] developed an interac-
tive method for learning a different Inv-MR-Sort problem consisting of determining

34

a set of actions that improves objects scores and promotes better alternatives assign-
ments while minimizing the cost of such actions. In [75], the same authors consider
MR-Sort for assigning alternatives into sorted categories with size restrictions [75].

In [98], they propose an extension of MR-Sort taking into account multiple
contexts. This model called MR-Sort-C aggregates the alternatives assignments of
multiple MR-Sort "sub-models" depending to their context into a unique MR-Sort.
This newly hierarchical model have the potential to enrich the interpretability of
those kinds of models. A very similar rationale is also proposed in [97], where the
context consists of different time-series.

Recently, efficient Boolean Satisfiability formulations for learning NCS models
from data have been proposed [94, 10, 8]. These SAT/MaxSAT formulations makes
it possible to handle larger datasets. Belahcene proved in [8] that the (Inverse-
NCS) problem - which is the inference problem of NCS parameters from assignment
examples - is an NP-hard problem even with two categories.

Recently, an evolutionary population-based heuristic has been proposed to solve
Inv-MR-Sort, see [90, 88]. This heuristic is indeed computationally limited ; the
execution time is dependant on a setting defined beforehand. Considering our
first research question - which is to learn MR-Sort models where the preference
order on some criteria is unknown - we need to learn additional information in
comparison to the standard MR-Sort learning problem. As a metaheuristic, the
Sobrie’s algorithm [90] is flexible and naturally offers the possibility to introduce
this additional setting for addressing our new problem (chapters 4 and 7).

Before detailing our methods in next chapters, we provide a description of this
metaheuristic, since two contributions are directly inspired by this algorithm.

3.3.2 Description of the existing metaheuristic

The heuristic proposed in [88, 90] is an evolutionary population-based algorithm. It
learns an MR-Sort model that best matches a learning set composed of assignment
examples.

As an evolutionary algorithm, each individual (denoted by (〈b〉, w, λ)) is an
MR-Sort model. The first population generation is initialized with Nmod models
(Algorithm 1, line 2). Random weights and thresholds are generated for each model
while their profiles are generated following a specific heuristic (described in [90])
that takes into account the representativeness of alternatives in the categories.

After the initialization step, models in the population are subject to two
successive improvement steps (Algorithm 1, line 5 and 6) in their ability to correctly
restore the assignment examples. These two steps are repeated for as many
iterations as needed to reach the ideal model within a prefixed number of iterations
No (Algorithm 1, line 3). An ideal model in a population - which is not always
retrieved since the heuristic is an approximate method - is the model that restores

35

entirely the assignment examples. In that case, the fitness score (which corresponds
to classification accuracy (CA)) equals 1. The fitness is computed at the end of
each iteration (Algorithm 1, line 8). Then, the population renewal is carried out
by replacing the worst half models - based on their fitness - in the population by
new randomly generated models (Algorithm 1, line 9).

Algorithm 1: Inv-MR-Sort heuristic, [90]
Input: L: learning set
Output: model (〈b〉, w, λ) that best match L in the population

1 it← 1
2 Initialize POP , a population of Nmod models
3 while (it ≤ No) and (no model in POP fully restores L) do
4 foreach model (〈b〉, w, λ) ∈ POP do
5 Optimize weights w and threshold λ using LP
6 Improve profiles 〈b〉 heuristically Nit times
7 end
8 Compute the fitness of models
9 Renew the bNmod/2c worst models in POP

10 it← it+ 1

11 end
12 return (〈b〉, w, λ) that best match L in POP

The first improvement step (Algorithm 1, line 5) of an individual relates to the
optimization of weights w and the majority threshold λ whereas profiles are fixed.
This part is solved with a Linear Programming (LP) algorithm. In this program,
the constraints account for the characterization of w and λ as MR-Sort parameters,
and for the compatibility of these parameters to assignments examples. The weight
wi,∀i ∈ N is bounded below by 0 and above by 1. The objective function accounts
for the correctness of parameters according to assignments examples through the
minimization of the sum of slack variables (which expresses inaccuracies).

The second improvement step (Algorithm 1, line 6) is dedicated to the adjust-
ment of profiles given optimized values of w and λ obtained at the previous step. It
uses a well-elaborated heuristic for choosing appropriate profiles values bhi (i ∈ N ,
h ∈ {1, . . . , p}) that optimize the restoration of assignment examples.

It associates both an iterative process and a randomized selection of candidates
values for profiles [90]. The number of iteration (Nit) of this process is known a
priori. The search range of profiles values bhi ,∀i ∈ N , h ∈ {1, . . . , p} is Xi.

These two components used alternately have proved their effectiveness in the
restoration of assignment examples, taking into account of artificial instances. For

36

instance, on only the first component, experiments in [88] shows that CAg exceeds
98% for an MR-Sort model with 10 criteria, 3 categories and only 200 alternatives
in the learning set and 10000 alternatives in the test set (randomly generated
instances without noise). With the same settings, the CAg reaches to 95% based
only on the execution of the second component. The reader can refer to [90, 88]
for more details on those experiments.

3.4 Conclusion

In this chapter, we reviewed the literature related to monotone , partially monotone
and non monotone classification. Then, we gave an overview of existing problems
and algorithms for sorting problems in MCDA as well as classification on fields
such as Preference Learning, Data mining and some supervised learning domains.

Towards the end of our chapter, we made an inventory of some approaches
developed to tackle MR-Sort-related problems. In particular, we introduced the
metaheuristic proposed by [90] to infer MR-Sort parameters from monotone data.
This algorithm paves the way to our following chapter on the learning of MR-Sort
models with unknown criteria preference directions.

37

Chapter 4

Learning MR-Sort models with
unknown preference directions

Contents
4.1 Introduction . 40
4.2 Basic notations and reminder 41
4.3 The duplication-based approach 43

4.3.1 Motivations and guiding principles for the learning of
preference directions . 43

4.3.2 The duplicated-based algorithm 44
4.3.3 First stage . 44
4.3.4 Second stage . 49

4.4 The mixed-based algorithm 50
4.4.1 Motivation . 50
4.4.2 Definitions and overview on the approach 51
4.4.3 Initialization of the population (Step I) 53
4.4.4 Update of models parameters 54
4.4.5 Renewal of the population (Step IV) 56
4.4.6 Final step (Step V) . 57

4.5 Experimentations and results 57
4.5.1 Experimental protocol 58
4.5.2 Experimental study for the duplicated-based approach . 60
4.5.3 Results of the mixed-based algorithm 66
4.5.4 Comparing the two approaches 72

4.6 Conclusion . 74

39

4.1 Introduction

In Multiple Criteria Decision Analysis (MCDA), the disaggregation process consists
in reconstructing the model features that characterize the Decision Maker (DM)
preferences. It has been applied with MR-Sort models in order to learn the standard
MR-Sort parameters (profiles values, criteria weights and majority threshold),
assuming that the preference directions of criteria were given [63, 90, 88]. The
preference directions refer to the preference order introduced in the Chapter 2
(Section 2.3.2).

In this chapter, we investigate the learning problem that pertains to the case
where the preference directions are not known in advance. However, the Decision
Analyst (DA) (with regards to the context, and having discussed with the DM)
presumes to deal with monotone preferences (gain or cost criterion, see Section
2.3.2).

We explore mainly two approaches, both based on the metaheuristic algorithm
proposed in [90] in order to learn MR-Sort models in the case where preference
directions are unknown. The first approach (duplicated-based approach discussed
in Section 4.3) consists in two distinct steps (determining preference directions,
then retrieving the standard MR-Sort parameters); this work was also proposed
in [69]. The second approach (mixed-based approach in Section 4.4) consists of
evolving models with both gain and cost criteria in the population of models during
the learning process. We end our chapter with some experiments and concluding
remarks in Section 4.5.

First of all, we introduce in the following example, the research question of this
chapter.

An illustrative example

A company wants to launch an advertisement campaign whose goal is to send
targeted emails to clients interested by their new product : a Windows tablet. The
marketing team first aims at building a recommendation tool in order to sort clients
into two groups : those who are supposedly interested in buying the new product
(I), and those who are not interested (N). To achieve this task, the team wants
to use historical purchases of clients in terms of revenues per type of products in
order to build a decision model. Thus, they consider the following :

• the Windows PC turnover (in e) noted c1

• the Pack Office turnover (in e) noted c2

• the Linux PC turnover (in e) noted c3

40

c1 (↑) c2 (↑) c3 (↓) c4 (?) c(a)
a1 500 ke 20 ke 300 ke 150 ke N
a2 200 ke 10 ke 350 ke 130 ke N
a3 800 ke 90 ke 150 ke 100 ke I
a4 600 ke 50 ke 300 ke 100 ke I
a5 900 ke 70 ke 250 ke 100 ke I

Table 4.1: Assignment examples: dataset of 5 clients and 4 criteria

• the Dual boot PC turnover (in e) noted c4

Given that the company wants to commercialize a Windows device, the Windows
PC and Pack Office criteria are gain criteria i.e. the more the client buys Windows
PCs and Pack Office, the more he/she is inclined to purchase Windows devices. On
the opposite the criterion Linux PC is a cost criterion, i.e the more a client buys a
Linux PC, the less he/she is inclined to purchase Windows devices. In order to
leverage all the data at disposal, the manager of the team suggests to also consider
clients’ revenues on Dual Boot PC, even if he does not know whether it is a gain
or a cost criterion regarding to the recommendation task. We present in the Table
4.1, a sample of five clients (a1 to a5) that have been assigned to the two categories
: I and N , with I B N , where B indicates the order between categories (in our
case I is the best category and N the worst one).

In the MR-Sort method, Windows PC and Pack office purchases indicate an
interest in a Windows environment, hence should be maximized whereas purchases
of Linux PCs indicates disinterest for Windows product and should be minimized.
The purchase of Dual boot PC does not induce a priori any particular optimization
direction regarding the interest for Windows environment. Considering this dataset
(Table 4.1), our research question consists in determining a method to retrieve the
preference direction of criteria like c4 together with the other parameters (weights,
limit threshold and limit profiles) of the MR-Sort decision model.

4.2 Basic notations and reminder

Let recall N the set of criteria. The evaluation scale Xi, for i ∈ N represents
the set of possible performances on the criterion i. The preference direction di
describes how the preference relation <i on criterion i relates to the evaluations on
Xi. Criterion i has an increasing (decreasing, resp.) preference direction, noted d+i
(d−i , resp.), when criterion i is a gain (cost, resp.) criterion. The vector of criteria
preference directions is noted : d = (d1, ..., dn); d can be considered as an additional

41

parameter of the MR-Sort model, whose original parameters are : 〈b〉 = 〈b1, ..., dp〉
the evaluation profile, w the criteria weight vector, and λ the majority threshold.

The Inv-MR-Sort problem consists of retrieving the parameters of the MR-Sort
model parameters that best match assignment examples. In this chapter, we are
interested in extending the Inv-MR-Sort problem to a broader problem that also
comprises the learning of the preference directions of criteria. We note Q the set of
unknown preference directions criteria (Q ⊆ N and |Q| = q). Therefore we denote
IMSq|n, the Inv-MR-Sort problem that aims at learning q preference directions
over n criteria in the model (q ≤ n). In the following, we consider the IMSq|n
problem, that aims at inferring the tuple of parameters (〈b〉, w, λ, {di : ∀i ∈ Q}).

Figure 4.1: Learning process of the Sobrie’s metaheuristic

Remarks

We sometimes refer to unknown preference directions as latent preference

42

directions since the preference directions - that are inherent to the criteria - exist
but are not revealed yet. In the rest of the chapter for simplicity and without
loss of generality, when the preference direction is known, without indication, we
assume that the criterion is a gain criterion.

Finally, for the sake of readability of our proposals, we recall the procedure of
the original metaheuristic for learning MR-Sort models from monotone data [90]
(see Figure 4.1). In a nutshell, the algorithm is an evolutionary method which aims
at evolving a population of models. The improvement phase of parameters relies on
two successive optimization phases : update of weights and the majority threshold,
and the refinement of profile values. The reader can refer to the Section 3.3.2 for
an in-depth presentation of the algorithm.

We summarize in Figure 4.1 the main components of the metaheuristic as well
as inputs/outputs of the algorithm.

4.3 The duplication-based approach

4.3.1 Motivations and guiding principles for the learning of
preference directions

Let us consider an MR-Sort learning problem in which all criteria directions are
known except for criterion i. We can use the procedure of Figure 4.1 to learn an
MR-Sort model (〈b〉, w, λ) from a dataset, hypothesizing incorrectly the preference
direction for criterion i (i.e. i is considered as a gain criterion while in the ground
truth, i is a cost criterion). In this case, the behaviour of the procedure (Figure
4.1) is singular; it strives to best restore the learning set at the risk of inhibiting
criterion i.

Let h, h ∈ {1, ..., p − 1} the index of the category Ch. Thus, bhi denotes the
profile value that separates Ch+1 from Ch on criterion i. We consider a reference
set of alternatives A?, and we denote by ai the evaluation of an alternative a on
criterion i. In this context, models that inhibit criterion i are those for which
wi = 0, or those for which bhi > Maxa∈A∗{ai}, ∀h or bhi < Mina∈A∗{ai}, ∀h.

The rendered values (〈b〉, w, λ) of the procedure (Figure 4.1) can be informative
regarding two aspects. For instance, a very small weight wi could result in a
criterion i that cannot be part of any minimal sufficient coalition of criteria. Also,
the profile 〈b〉 could be such that bhi values are close to the endpoints of the scale
Xi, meaning that bhi is not discriminating enough. When these behaviours occur, it
could be interpreted as an inhibition of i due to the fact that i was assigned to a
wrong preference direction.

With these observations, we propose in the following an algorithm that learns
the MR-Sort parameters in two steps.

43

4.3.2 The duplicated-based algorithm

In this section, we describe the duplicated-based algorithm which is a two-stages
method based on the duplication of criteria to solve the IMSq|n problem (the
inverse MR-Sort problem with q latent criteria preference directions or q unknown
preferences directions). The two stages correspond to (i) learning the unknown
preference directions ({di : ∀i ∈ Q}), and then (ii) learning the other parameters
(〈b〉, w, λ).

Schema of the approach based on duplicated criteria

We describe in Figure 4.2 the main components of the approach as well as in-
puts/outputs of the algorithm. We enumerate 6 inputs : the size of the learning set
m, the number of criteria n, the number of categories p, the number of models in
the population Nmod, the number of iterations of the outer loop No and the number
of iterations of the inner loop of the metaheuristic Nit.

The differences with the Sobrie’s heuristic [90] are mentioned in red.

The first stage of the approach (Figure 4.2) consists of three steps. First, the
initial problem is modified to obtain an IMS0|n+q problem in which the q latent
criteria are duplicated (Step I). Then, the procedure of Figure 4.1 is executed on
IMS0|n+q (Step II). This leads to a problem that takes into account two types
of preference directions (profit and cost criterion) for the q latent criteria. At the
end of the first stage, we induce the plausible preference directions of the q latent
criteria (Step III). In the second stage, the procedure of Figure 4.1 is performed
with the q preference directions that have been fixed (Step IV). Finally we choose
the right model which will give the remaining parameters of the learned model
(Step V). Let us now present the details of each step.

4.3.3 First stage

The first stage of the proposed approach performs consecutively three steps:

• the transformation of IMSq|n to an intermediate problem (IMS0|n+q) ob-
tained through the duplication of criteria with unknown preference directions
(see Figure 4.2, Step I),

• the resolution of IMS0|n+q with the procedure of Figure 4.1 (see Figure 4.2,
Step II),

• the deduction of the q preference directions of the initial problem from the
output of IMS0|n+q (see Figure 4.2, Step III)

44

Figure 4.2: Learning process of the approach based on the duplication of criteria

45

Step I : From IMSq|n to IMS0|n+q:

The intuition behind the duplication criteria is to explore the combinations of
preference directions over criteria with unknown preference directions. Then, it
is possible to foster the learned model to distinguish between criteria with wrong
preference directions from those with true preference directions.

The duplication principle is the following. Considering IMSq|n, it consists
in duplicating the subset Q, Q ⊂ N into a similar set Q′ except that preference
directions of elements of Q′ and the ones in Q are opposite. More precisely, without
loss of generality, we choose to assign to elements of Q the increasing preference
direction (di = 1, i.e i, i ∈ Q is considered as a gain criterion), and to the elements
of Q′ the decreasing preference direction (di = −1, i.e , i ∈ Q is considered as a
cost criterion). The duplication also consists in the copy of the sub-matrix of the
performance table underlying Q over the alternatives towards the one that matches
with Q′.

Thus, we associate to each criterion i ∈ Q to the criterion τ(i) ∈ Q′ that
shares the same performances values over the alternatives : they both account
for the same initial criterion whose preference direction is unknown. Let us
assume that Q = {1, ..., q} and Q′ = {n + 1, ..., n + q}, considering N ∩ Q′ =
{1, ..., q, ..., n, n+ 1, ..., n+ q}. There is a correspondence between Q and Q′ since
τ(i) ∈ Q′ is the copy of i ∈ Q. We call AC the set of couples of criteria (i, τ(i))
of this sort. This modified problem can be read as IMS0|n+q, since there is no
more unknown preference directions and the total number of criteria rises to n+ q.
Thus, through the duplication of i to τ(i), we foster the learned model to inhibit
the criterion that carries a wrong preference direction (i or τ(i)), while making the
other criterion more influential. For the sake of simplicity, we name i′ = τ(i) the
duplicate of i in the remaining of the document.

Step II : Resolution of IMS0|n+q:

At this step, we solve IMS0|n+q using the procedure described in Figure 4.1. The
problem comprises n+q criteria which implies the learning of n+q weights, profiles
〈b〉 of dimension n+ q, as well as a threshold λ. These temporary outputs are only
used to induce the q desired preference directions in the next step.

Step III : Deduction of q preference directions and the construction of
IMS0|n:

After the resolution of IMS0|n+q, we now interpret the preference directions of the
q latent criteria.

Our reasoning is the following. Considering the resulted parameters (〈b〉, w, λ)
of IMS0|n+q obtained in the previous step :

46

1. ∀ (i, i′) ∈ AC , if wi = 0 and wi′ 6= 0 then we derive that the correct criterion
is the cost criterion i′, since i is inhibited in the model (wi = 0).

2. ∀ (i, i′) ∈ AC , if wi 6= 0 and wi′ = 0 then we derive that the correct criterion
is the profit criterion i, since i′ is inhibited in the model (wi′ = 0).

3. ∀ (i, i′) ∈ AC , if wi 6= 0 and wi′ 6= 0, thus we cannot immediately derive
the correct preference direction on the basis of weight values. We ground
our analysis on the position of profiles 〈b〉 on criteria i and i′. As mentioned
above, profiles on criterion i (or i′) close to the endpoints of the scale Xi (or
Xi′) indicates that criterion i (or i′) is almost “inhibited”. Therefore, we select
the preference direction corresponding to criterion i or i′ as the one for which
the profile is the further away from the endpoints of the scales Xi and Xi′ .

In order to measure how close a profile can be regarding to the endpoints
of the evaluation scale Xi, we introduce X?

i ⊆ Xi which is the evaluation
scale induced by the reference set A?. We partition X?

i into p disjoint sets i.e.
X?
i =

⋃
h∈{1,...,p}X

?h
i . For each set, with h the index of the category Ch+1,

we have : X?h
i = {xi ∈ X?

i : bh−1i ≤ xi < bhi } .

We then introduce a measure µi ∈ [0, 1] - which evaluates the proportion of
the largest set among {X?1

i , ..., X
?p
i } - with the following formula :

µi =
Max{|X?h

i | : ∀h ∈ {1, ..., p}}
|X?

i |
(4.1)

Our intuition is that a high value of µi is an indicator of an unbalanced
distribution of X?1

i , ..., X
?p
i . At the extreme case, the largest set tends to

cover X?
i which results in profile values bhi that stack at the endpoints of X?

i .
As we conclude previously, this is a sign that i is “inhibited”. Let us define a
decision threshold µ, µ ∈ [0, 1]. We consider three configurations, regarding
how µi and µi′ compare to µ (µi, resp. µi′ stands for the measure computed
in Equation 4.1 considering criteria i resp. i′):

• If µi > µ and µi′ ≤ µ then we derive that the right criterion is the cost
criterion i′. This case translates a situation where the criterion i is less
discriminating than i′. In fact, if bhi values are extreme, then i has a low
discriminating power. Therefore, the more extreme µ is, the more strict
is this rule. In our tests, we fix µ = 0.9.

• If µi′ > µ and µi ≤ µ then we derive that the right criterion is the profit
criterion i. In this case, the criterion i′ is less discriminating than i.

47

• Otherwise, we call an ad hoc heuristic (see Algorithm 2) considering
the problem IMS1|1 (which involves only one criterion whose preference
direction is unknown) with the following inputs : (i, i′) ∈ AC, L, Xi and
expect as an output the right preference direction of i.

4. ∀ (i, i′) ∈ AC , if wi = 0 and wi′ = 0, we refer to an ad hoc heuristic (see
Algorithm 2) considering the problem IMS1|1 with the following inputs :
(i, i′) ∈ AC, L, Xi and expect as an output the right preference direction of i.

Remark

One can consider in the case where wi = 0 and wi′ = 0, ∀ (i, i′) ∈ AC removing
both i and i′. Learned models in such a case do not involve i and i′ in the
classification rule. However, it is not accurate to remove them since the computed
weights depend on the considered learning set. Having wi = 0 and wi′ = 0 as
outputs of the Sobrie heuristic does not necessary mean that the ground truth
model possesses such weight values.

The ad hoc heuristic:

We describe a heuristic that aims at estimating the preference direction of a
criterion whose preference direction is a priori unknown. Let us consider the original
problem IMSq|n and its restriction to one of the unknown preference direction
criteria, called IMS1|1 (with AC = {(i, i′)}). The resolution of this new problem
takes into account the evaluation performance of the unknown preference direction
criterion and the learning set.

Solving IMS1|1 is less complex than solving IMSq|n since we have only one
criterion in the model that plays a dictatorship role. In fact, the resolution of IMS1|1
amounts to heuristically compute the profiles of the model 〈b〉 = bh, ∀h ∈ {1, ..., p}
that optimize the restoration of assignments examples (see Algorithm 2).

In the heuristic (Algorithm 2), the set B is kept updated by new constructed
values profiles as it will contain the learned profiles values 〈b〉. In order to build B,
we first initialize B with b0 and bp which are respectively the minimum value of Xi

and the maximum value of Xi (lines 1-3 of Algorithm 2). Then, for each profile bh
- randomly chosen among those that are not constructed yet (line 4 of Algorithm
2) - we compute the interval [by, bz] that can be seen as the search area. bh should
belong to [by, bz], which is the narrowest interval whose interval bounds are known
at the moment of the process (see lines 5-6 of Algorithm 2 for the construction of
the interval). B is the set of profiles known or already constructed at the current
state of the process. We introduce two functions : emax(x) and emin(x). Let x ∈ Xi

48

such that x be a potential candidate value for bh. The function emax() (resp. emin())
associates to x, the number of alternatives in accordance with the choice of x as bh
in case i is a gain (resp. cost) criterion. In order words, assuming that i is a gain,
∀a ∈ A? and cat(a) the category of a, emax(x) is the number of alternatives such
that :

• the evaluation (ai) is included in [by, x] and the assignment category cat(a)
belongs to the set of categories induced by [by, x] i.e cat(a) ∈ {Cy+1, . . . , Ch}

• the evaluation (ai) is included in [x, bz] and the assignment category cat(a) is
in the set of categories induced by [x, bz] i.e. cat(a) ∈ {Ch+1, . . . , Cz}

An analogue reasoning can be done with emin(x) considering the case where i is
a cost criterion. Therefore, max(emax) (resp. max(emin)) indicates the maximum
number of correctly assigned alternatives involving profile bh when i is a gain
criterion (resp. cost criterion). argmax(emax) (resp. argmax(emin)) is the optimal
position for bh when i is a gain criterion (resp. cost criterion) (lines 11-12 of
Algorithm 2).

Once profiles are heuristically constructed, we are interested in the classification
accuracy obtained when considering both possible preference directions for this
criterion with unknown preference direction (lines 16-17 of Algorithm 2). We note
them CAi and respectively CAi′ , the classification accuracy when the unknown
preference is considered as a gain criterion i and respectively the one when considered
as a cost criterion i′.

We advocate that the correct criterion (i or i′) corresponds to the one whose
classification accuracy (CAi or CAi′) is the greatest (lines 18-19 of Algorithm 2)
since the classification supposedly is more favorable for one case rather than the
other.

4.3.4 Second stage

Once the q preference directions have been determined, we can reduce IMS0|n+q
to IMS0|n by preserving the right q criteria previously derived and by removing
their associated criteria. Next, we solve the standard IMS0|n problem with the
procedure described in Figure 4.1 (see Figure 4.2, IV).

The resulting parameters of this last process give the remaining part of the
solution to the initial problem IMSq|n. In this way, we are able to retrieve the
four parameters (w, b, λ, {di : ∀i ∈ Q}) of the Inv-MR-Sort problem with latent
preference direction criteria.

49

Algorithm 2: Heuristic for selecting the right preference direction given
(i, i′) ∈ AC and IMS1|1

Input: IMS1|1, A?, {C1, ..., Cp}, (i, i′) ∈ AC, L, Xi the evaluation scale of
i

Output: di or di′ : the right criterion preference direction in IMS1|1
1 b0 = min{∀x ∈ Xi} ;
2 bp = max{∀x ∈ Xi} ;
3 B = {b0, bp} ;
4 foreach profile bh ∈ {b1, ..., bp−1} randomly chosen and bh /∈ B do
5 by = max{b ∈ B; b < bh} ;
6 bz = min{b ∈ B; b > bh} ;
7 foreach x ∈ X and x ∈ [by, bz] do
8 emax(x) = |{∀a ∈ A?; (cat(a) ∈ {Cy+1, ..., Ch} and ai ∈ [by, x]) or

(cat(a) ∈ {Ch+1, ..., Cz} and ai ∈ [x, bz])}| ;
9 emin(x) = |{∀a ∈ A?; (cat(a) ∈ {Ch+1, ..., Cy} and ai ∈ [by, x]) or

(cat(a) ∈ {Cz+1, ..., Ch} and ai ∈ [x, bz])}| ;
10 end
11 if max(emin) > max(emax) then bh ← argmax

x
emin ;

12 else bh ← argmax
x

emax ;

13 B ← B ∪ {bh} ;
14 end
15 〈b〉 ← B ;

16 CAi =
∑p−1

h=1 |{∀a∈A
?;a∈X?h and cat(a)=Ch}|
|A?| ;

17 CAi
′ =

∑p−1
h=1 |{∀a∈A

?;a∈X?h and cat(a)=Cp−h+1}|
|A?| ;

18 if CAi > CAi
′ then return di ;

19 else return di′ ;

4.4 The mixed-based algorithm

4.4.1 Motivation

We present in this section another contribution for learning MR-Sort models with
latent preference directions from assignment examples. This method is inspired by
some facts regarding the original metaheuristic [90]. In the original metaheuristic,
the addressed models were homogeneous from the point of view of preference
directions of criteria. The models in population were endowed with the same
preference directions for all criteria, that were gain criteria. However, it was

50

possible to express a cost criterion for instance by converting the performance
values of a gain criterion to their opposite values - which therefore reverses the
preference order of that criterion.

As we are dealing with the Inv-MR-Sort problem with latent criteria preference
directions, it makes sense to relax the assumption of the homogeneity of the
population. This is the fundammental idea behind our second approach.

Our proposal consists in enabling models with increasing preference directions
alongside models with decreasing preference directions in the same population to
evolve during the resolution process. We recall that this variation of preference
direction occurs only on latent criteria preference directions. The remaining criteria
are not subject to this variation since their preference directions are already known.

With this approach, the number of combinations of preference directions over Q
- that could be considered in the population - grows exponentially with the increase
of |Q|. Therefore, it is essential to master this phenomenon, and our goal consists
of fostering the evolution of models that possess correct preference directions.

Nevertheless, the constant objective is the learning of models whose restoration
rate of the learning set (CAv) is the greatest.

In summary, we simultaneously perform 2 goals : the retrieval of the q correct
preference directions, and the parameters of the MR-Sort model that best restore
the learning set.

4.4.2 Definitions and overview on the approach

Our proposal is based on the adaptation of the metaheuristic [90] considering three
aspects : heterogeneous models, the use of additional parameters, and a modified
metaheuristic oriented towards the resolution of our specific problem (which is to
simultaneously handle gain and cost criteria, in the model).

We summarize in Figure 4.3 the main components of the approach as well as
inputs/outputs of the algorithm. The differences with the Sobrie’s metaheuristic
are mentioned in red.

The resolution of the IMSq|n problem requires 5 steps (see Figure 4.3):

• Step I: Population Initialization. We initialize the population of models
according to a renewal rate and/or a renewal coefficient (that are described
below).

• Step II: Update of models (individuals) parameters (weights). Dur-
ing this step, we apply one of the core strategies of this approach. It consists
of penalizing criteria in Q by narrowing the scale of their weight value
throughout the optimization phase.

51

Figure 4.3: Learning process of the approach with mixed models in the population

• Step III: Update of models (individuals) parameters (profiles). We
apply the other main strategy of this approach. It consists of penalizing
criteria in Q by narrowing the scale of their profile.

• Step IV: Renewal of the population. Reaching this point, we examine
the satisfaction of the stopping condition. Either the condition is fulfilled
then we move to the next step (Step V); otherwise, we renew the population
and return to Step II, thus restarting an other iteration of the metaheuristic.

• Step V: Final step. At this phase, we conclude this algorithm by selecting
the appropriate model with the help of a decision rule.

In order to configure and control the evolutionary process of the novel approach,
we need to define 5 parameters - in addition to the accustomed parameters Nmod,
No, Nit described in [88] :

52

• the renewal rate (noted rr): this rate refers to the proportion of renewal
of the population based on the fitness score of models (CA). For example,
rr = 0.5 means that the renewal pertains to half of the bad models (in terms
of their fitness) in the population. The settings of the original metaheuristic
[88] equate to the case where this parameter is fixed to 0.5.

• the renewal coefficient σ: this parameter refines the renewal rate rr through-
out the process of the evolutionary algorithm. This parameter is dependant
of rr and the quality of the models in the population expressed by CA, which
is the average fitness score of the models in the population.

Here, the rationale of σ is to renew models more frequently when the average
fitness score of models is low and therefore boost a significant renewal of the
population.

From another viewpoint, σ is a metaparameter of rr ; it controls the variation
of rr. The formula of the renewal coefficient is the following :

rr = 1−CA
σ

.

With a constant CA and for small (resp. high) values of σ, rr rises (resp.
falls) which increases (resp. decreases) the number of renewed models in the
next generation.

• the distribution of the preference directions πi = [π+
i , π

−
i] of the criterion i,

i ∈ Q : where π+
i (respectively π−i) is the probability of assigning a gain

criterion (respectively cost criterion) to i, given a model in the population.
We have π+

i + π−i = 1, ∀i ∈ Q.

• the maximum weight lower bound w∗ of criteria with latent preference direc-
tions : this value is the minimum value that can take wi, i ∈ Q.

• the maximum order ϕ (0 < ϕ < 50) of the interquantile of Xi, i ∈ Q : this
parameter defines a new domain of variation of profiles : the interquantile
range of order ϕ (i.e the interval between the value of the ϕth quantile and
the value of the (100− ϕ)th quantile of the interval of ordered values of Xi).

The details of the steps of our approach are described in what follows.

4.4.3 Initialization of the population (Step I)

First, we generate Nmod models. For each model, we generate random profiles
values bhi , h ∈ {1, ..., p}, i /∈ Q within [0,1] using the same heuristic described in
[90]. We randomly draw bhi , i ∈ Q, h ∈ {1, ..., p}, within the interquantile range of

53

order ϕ of Xi (which is fixed to Xi at the initialization phase) such that bhi < bh+1
i ,

i ∈ Q, h ∈ {0, ..., p− 1}.
At the beginning of the process, we do not have any hint regarding the preference

directions of criteria in Q, namely the values of πi, i ∈ Q. Therefore, it appears
fair to assign to each criterion i, i ∈ Q, a gain or a cost criterion with an equal
chance to be chosen (i.e πi = [0.5, 0.5]). More precisely, we randomly choose a real
in [0;1[; if this real is greater than 0.5, then i is a gain criterion (d+i), otherwise i
is a cost criterion (d−i).

At this point, the population is generated and ready for the evolution process.

4.4.4 Update of models parameters

In the following, we describe how the models parameters are built. On the one
hand, we optimize weights and thresholds with a Linear Program (LP), and on the
other hand we adjust profiles with a dedicated heuristic.

We choose to examine the key factors (weights and profiles) that influence the
choice of the preference direction of models while minimizing the loss of efficiency
and effectiveness of the computation of the parameters. Our contribution is divided
into two successive stages: first, during the optimization of weights and then during
the readjustment of profiles.

Optimization of weights (Step II)

The weight intensity of a criterion determines its influence in the restoration of
assignment examples, indirectly the restoration of preference direction.

Therefore, we choose to constrain the construction of weights. The rationale
is to prevent the inhibition of criterion i, i ∈ Q by forcing wi > 0 in order to
make i influential. Therefore, we consider the LP formulation with the constraints
pertaining to the optimization of weights as in [90]. We also add to these constraints,
for each criterion i, a constraint that shrinks the definition domain of wi to [w∗,1],
w∗ being the lower bound of wi (with 0 ≤ w∗ < 1). The constraint is the following :

wi ≥ w∗,∀i ∈ Q (4.2)

This equation aims at penalizing models that do not have the correct preference
directions in the population. We observe through experiments that for such models,
imposing a significant weight to i (i.e. a significant value for w∗), mostly deteriorates
their CA score. Thanks to this strategy, we intend to keep good models (models
in which criteria in Q possess the correct preference directions) in the population,
while pushing out the bad models (models in which criteria in Q possess the wrong
preference directions).

54

In order to ensure this intention throughout the process, we define a function
fw dependent on the number of iterations of the outer loop (No):

fw : [1, No] −→ [0, w∗]

it −→ w∗
No − 1

(No − it)
(4.3)

with it the current iteration, No the maximum number of iterations, and w∗
(w∗ ∈ [0; 1[) the predefined lower bound weight.

We assign the value fw(it) at each iteration to the lower bound of wi, i ∈ Q in
the LP formulation (i.e. at the iteration it, wi ∈ [fw(it), 1]). fw(it) is decreasing
throughout iterations, but imposes a strong constraint on the weights of criteria
in Q at the first iterations. Thus, we relax this constraint progressively with the
decrease of fw(it). Hopefully after restoring the correct preference directions, we
do not hinder the algorithm to reach the optimal CA at the end of the learning
process.

Otherwise, the same constraint could continuously penalize some good models.
Finally, we obtain fw(it) = 0 at the last iteration (when it = No), which corresponds
to the lower bound of wi in the original setting [90, 88].

Readjustment of profiles (Step III)

A specific heuristic was developed in [90] for this purpose. This heuristic is well-
designed for choosing appropriate profiles values bhi that optimize the restoration
of assignment examples. We ground our approach in constraining the construction
of those profiles.

The principle is to forcefully restrain first, and then progressively enlarge the
scope of profiles values throughout the iterations of the outer loop. In the same
spirit as in the previous part (optimization of weights), we operate a restriction by
shrinking the evaluation scale Xi, i ∈ Q to the interval defined by interquantile
ranges on Xi throughout the iterations. We define a function that illustrates the
refinement operated throughout the process :

fϕ : [1, No] −→ [0, ϕ]

it −→ ϕ

No − 1
(No − it)

(4.4)

with it the current iteration, No the maximum number of iterations, ϕ the
maximum interquantile order (predefined) and fϕ a function that updates the order
of the interquantile range of Xi at each iteration.

The predefined value ϕ accounts for the order of the interquantile range on
Xi. At the first iteration, fϕ(it) = ϕ. Profiles are constructed similarly as in [90] -

55

namely in a random manner and by fostering discriminating values - except that
they are chosen inside the interquantile range instead of Xi.

Throughout the refinement process, the interquantile range of order fϕ(it)
stretches incrementally. We aim at forcing the profile bhi , ∀i ∈ Q to be discriminant
enough by restraining the interval at the first iterations.

In such a situation, the preference direction of i plays a crucial role since it
could degrade the restoration rate of the learning set of models on which di is
wrongly assigned. Therefore, we expect these models (with di wrongly assigned)
to be removed from the population. Thus, we would contribute to preserve good
models in the population. At the last iteration, fϕ(it) = 0, then the construction
space of bhi amounts to Xi, which is faithful to the original setting [90, 88].

4.4.5 Renewal of the population (Step IV)

At this step, we reach the end of an iteration (of the outer loop) of the metaheuristic
[90]. First, we evaluate models by calculating their fitness. We use the same fitness
score as described in [90] : CA which is the restoration rate of the learning set.
Then, we verify the satisfaction of the stopping condition : there are 2 cases :

• the stopping condition is fulfilled : in the initial algorithm ([90]), this state
occurs either at the last iteration (the N th

o iteration) or whenever an optimal
model (with CA = 100%) is found. In our approach, we end the process only
at the last iteration, even if an optimal model has been found before. This
decision enables to increase the confidence in the restoration of preference
directions which globally increases incrementally.

After this step, we reach the final step.

• the stopping condition is not fulfilled : therefore, the current iteration is not
the last, so we renew the population. The objective of this renewal is not only
to increase the probability of obtaining better models (in terms of fitness)
but also to get rid of wrong models (models where preference directions are
wrongly assigned to criteria in Q).
Given the renewal coefficient σ (predefined), we calculate the rate of renewal
rr (see the definition in Section 4.4.2). Here, the course of action differs
from the original heuristic that constantly consists in renewing half of the
population (i.e. with rr a priori fixed to 0.5).

Thereafter, we proceed to the renewal of rr ∗Nmod models in the population
through a renewal procedure. This procedure consists in generating randomly
new models by assigning preference directions according to the distribution
on the preference directions of the remaining models in the population. In

56

other words, the new distribution of preference directions π+
i (respectively

π−i), ∀i ∈ Q, equals the proportion of remaining models for which i has an
increasing (resp. decreasing) preference direction. After the update of the
new population, the process restarts with a new iteration of the metaheuristic
(outer loop).

4.4.6 Final step (Step V)

This step consists in retrieving the learned model by using a decision rule. Our goal
is to choose a model that optimizes the CA rate and retrieves the right preference
directions of criteria in Q all at once.

Therefore, we return the first learned model that is the best one in terms of
CA rate (with the appropriate parameters: weights, threshold and profiles), and
its corresponding preference directions on criteria in Q.

All the strategies operated in step II, and step III (contributing to keep in the
population models having potentially accurate preference directions) reasonably
justify the choice of the best model in terms of CA as the one that carries the right
preference directions.

Hence, this model gives the solution of the IMSq|n problem : (w, b, λ, {di : ∀i ∈
Q}). This ends our second approach for the IMSq|n problem.

In conclusion, the two last sections were dedicated to our contributions for the
resolution of the Inv-MR-Sort problem with two different methods. The first one
(approach based on duplication of criteria) consists of the duplication of criteria into
their opposite preference directions in order to select the right preference directions
and finally solve the problem with known preference directions ([90]). The second
(approach based on the mixed preference directions in the population) enables to
handle both gain and cost criteria types in the models population of the initial
metaheuristic ([90]). Both approaches allow to learn the preference directions of
all the criteria in the model. The duplicated-based approach necessitates two runs
of the initial metaheuristic [90] in order to determine first the preference directions,
and then the other parameters. The mixed-based approach learns simultaneously
the preference directions and the other parameters. In the next section, we examine
the performances of both methods with empirical results.

4.5 Experimentations and results

In this section, we present some numerical results to analyze the behaviour of the
two proposed algorithms. Thanks to the experiments, we aim at answering the
following questions:

57

• Regarding the computing time, how do the algorithms cope with large
datasets ?

• What is the ability of the algorithms to restore an existing dataset when
criteria preference directions are latent ?

• How many assignment examples should the learning set contain so that
learned models accurately classify new alternatives ?

• How do the algorithms cope with noisy datasets ?

4.5.1 Experimental protocol

We run our experiments on a machine endowed with Ubuntu 18.04.4 LTS (64 bits)
with an Intel(R) Xeon(R) Gold 6248 CPU @ 2.5GHz and 376 GB of RAM.

Our tests are characterized by two specific random datasets generated in accor-
dance with a pre-constructed MR-Sort model : datasets with noise and noise-free
datasets. The noise introduced in the datasets consists of alternatives falsely
assigned to wrong categories. Therefore, datasets with noise could be assimilated
to real preferences data because real data are subject to flaws. The workflow of
the experiments is illustrated below (see Figure 4.4).

At the beginning, the triplet (n, q, p) defines the first set of inputs of the process,
such that n is the number of criteria, q the number of criteria with unknown
preference directions and p the number of categories. These entries are used to
construct an MR-Sort model thanks to the Generator of MR-Sort models (see
Figure 4.4).

The generation of models works as follows. We uniformly generate p−1 random
values in [0,1] for the profiles values of each criterion and order them as the following
: b1i ≤ b2i ... ≤ bp−1i ,∀i ∈ N . In order to assign values to weights, we first draw
|N | − 1 numbers in [0,1]. These numbers added to 0 and 1 are ranked in ascending
order. The difference between each successive pairs in the ranking forms the values
of criteria weights. We randomly generate λ in]0.5,1[. Therefore we have created a
modelM0 with (〈b〉, w, λ), that is the ground truth. With the ground truth, we
can judge the learning abilities of our algorithms on a reliable basis.

Then, we create a set of randomly generated alternatives A? ; each generated
alternative is a tuple of n values uniformly drawn from [0.05;0.95]. We classify such
alternatives according toM0 in such a manner to obtain a balanced distribution
of alternatives over categories. The set of the obtained assignments is called the
learning set L. Similarly, we also generate directly a set of randomly generated
alternatives Atests (generally larger than A?) and classify alternatives according to
M0 : the resulted assignments represent the test set. We are then able to induce
noisy learning set using L. The process is the following. Considering L = (A?, f),

58

Figure 4.4: Experimental workflow

f : A? −→ C (with C the set of categories) the learning set generated fromM0,
we randomly choose ρ× |A∗| examples of the learning set that will be subject to
error. For these alternatives, we change their assignment to an adjacent category.

Once M0 and L are well defined, we choose not to disclose the preference
directions of q out of n criteria in order to formulate the problem IMSq|n. Without
loss of generality, we consider all n criteria as gain criteria and q criteria out of
n whose preference directions are considered as hidden. Therefore, each criterion
of the q criteria is potentially a gain or a cost criterion. Then, the learning set is
used as input for the learning algorithm. The algorithm output an MR-Sort model
learned that is used both as input for the validation and the generalization process.

The validation process aims at confronting the learning set L = (A?, C) and
the assignments obtained by classifying A? with the new learned model. Thus,
the classification accuracy in validation (CAv) is computed : this is the rate of
the correctly assigned alternatives by the new learned model compared to the
assignments obtained with M0 on A?. The generalization process enables to

59

compare the assignments obtained on Atests (the test set) with M0 and those
obtained with the new learned model. Thus, we compute the classification accuracy
in generalization that is the rate of the correctly assigned alternatives by the new
learned model compared to the assignments obtained withM0 on Atests.

The experimental parameters and the values taken into account for gener-
ating a dataset are : the number of criteria |N | ∈ {5, 7, 9, 11}, the number of
latent criteria q ∈ {1, 2, . . . , |N |}, the number of categories p ∈ {2, 3, 4, 5}, the
learning set size |A∗| in {100, 250, 500, 750, 1000, 1250, 1500}, and noise rate ρ in
{0, 0.05, 0.1, 0.15, 0.2, 0.25}. The test set size is 10000 alternatives.

The value ρ represents the percentage of alternatives whose assignment are
subject to errors. In order to build learning sets with noise, we assign the erroneous
alternatives to an adjacent category of the true category. For instance, considering
three categories, if the true category of the alternative a is C2, the erroneous
category can be C1 or C3. If the true category of a is C3, the erroneous category
is C2.

We execute the two approaches as described in this chapter for the resolution of
the IMSq|n. M0 represents a ground truth on which the learned models (with the
algorithms) are validated. We expect a good rendering of solutions since M0 comes
from a real MR-Sort model, at least with noise-free datasets. In our experiments,
we use 100 samples of MR-SortM0 in order to obtain mean values as performances
of learned models in terms of computation time, restoration rate of the learning set
(CAv), restoration rate of the test set (CAg), and restoration rate of the preference
directions. We express the latter rate with two metrics in order to appreciate in
detail the restoration of preference directions : PDRall which is the rate of restoring
all the preference directions at once, while PDRone is the proportion of restoring
one preference direction on average.

4.5.2 Experimental study for the duplicated-based approach

Execution time and memory requirements

The execution time of this approach increases in function of the increase of
the 5 parameters : the learning set size, the number of criteria n, the number of
latent criteria q, the number of categories p and the level of noise ρ. Figure 4.5a
shows a linear trend of the evolution of the time when the number of criteria varies
in the considered problems. The time is affordable ; it takes less than 100s to
solve IMS3|11 with 2 categories. When the number of latent criteria varies (see
Figure 4.5b) with different learning set sizes (from 250 to 1500), we also observe a
linear shape of the evolution of execution time. The problem IMS11|11 involving 2
categories requires almost 200s of execution time.

60

(a) Impact on the number of criteria :
MR-Sort model with 3 latent criteria,
2 categories and noise-free learning sets
per number of criteria (n) and learning
set size

(b) Impact on the number of latent cri-
teria : MR-Sort model with 11 criteria,
2 categories and noise-free learning sets
per number of latent criteria (q) and
learning set size

(c) Impact on the noise percentage : MR-
Sort model with 7 latent criteria, 7 crite-
ria and 2 categories per noise percentage
in the learning set and learning set size

Figure 4.5: Results of the first approach regarding the execution time influenced
by the problem parameters

The impact of the noise on the execution time is noticeable. On the one hand,
the presence of noise considerably increases the execution time (see Figure 4.5c).
The gap between the two situations is widening all the more with large learning set
sizes (the gap rises from 10s with 250 alternatives to 125s with 1500 alternatives in
the learning set). On the other hand, the increase of the noise is not a disadvantage
regarding the execution time since the Figure 4.5c shows very similar behaviours
as soon as the noise percentage is over 5%.

61

To conclude this analysis, let us notice that the execution time on a laptop rises
to 545 seconds when considering the problem IMS1|11, with 5 categories and 1500
alternatives in the learning set without noise. However, the required memory space
is less than 50MB.

Varying the number of criteria (n)

(a) Classification accuracy (CA) of the
learning set (validation)

(b) Classification accuracy (CA) of the
test set (generalization)

(c) Preference direction restoration
(PDRone)

Figure 4.6: Results of the first approach for problems involving one latent criterion,
2 categories and noise-free learning sets per number of criteria (n) and learning set
size

First, the duplicated-based approach was executed for a series of problems
involving different number of criteria with 1 latent criterion, 2 categories and
considering noise-free datasets. These executions were performed on increasing
learning set sizes. The classification accuracy of the learning set is excellent

62

(between 0.99 and 1) regardless the number of criteria in the problem (see 4.6a).
The ability of the algorithm to restore assignment examples decreases with the
increase of the number of criteria in the problem (see Figure 4.6b). However the
classification accuracy surges to 95% with 500 alternatives in the learning set and
then converges towards 1, considering the problem IMS1|11. The behaviour of the
algorithm is less obvious regarding the preference direction rate (PDRone) (see
Figure 4.6c). Nevertheless, the PDRone exceeds 0.9 with at least 250 alternatives
in the learning set.

Varying the number of criteria with latent preference directions (q)

(a) Classification accuracy (CA) of the
learning set (validation)

(b) Classification accuracy (CA) of the
test set (generalization)

(c) Preference direction restoration
(PDRall)

Figure 4.7: Results of the first approach for problems involving 7 criteria, 2
categories and noise-free learning sets per number of latent criteria q and learning
set size

63

Second, we test the first approach on instances involving 7 criteria, 2 categories,
with noise-free and increasing datasets sizes. We vary the number of latent criteria.
The classification accuracy of the learning set is flawless (ranges between 99% and
100%) regardless the number of latent criteria and the learning set size (see Figure
4.7a). The classification accuracy in generalization converges towards 1 regardless
the number of latent criteria (see Figure 4.7b). The algorithm behaves exactly in
the same manner independently of the number of latent criteria. In order words,
the increase of unknown preference directions does not bring additional difficulties
in restoring of assignments. With only 250 alternatives in the learning set, 96% of
new assignments are restored. The PDRall increases with the size of the learning
set and converges differently depending on the number of latent criteria, towards 1
(see Figure 4.7c). Globally, the algorithm behaves in general better with less latent
criteria. With 750 alternatives in the learning set, the algorithm performs with a
PDRall more than 0.85 considering 7 latent criteria. This is by far better than the
random probability of retrieving the preference directions of 7 latent criteria that
is 1/27 (≈ 0.008).

Varying the number of categories p

Third, we test the first approach on instances with 7 criteria, 7 latent criteria,
with noise-free and increasing datasets sizes, and different number of categories.
The CA of the learning set is satisfactory since it improves with the increase of the
learning set size and reaches at least 0.98 with at least 500 assignment examples
independently of the number of categories (see Figure 4.8a). The classification
accuracy (in generalization) decreases progressively according to the increase of
the number of categories in the problem (Figure 4.8b). Despite this, the CAg still
increases when the learning size set becomes greater and greater. With 5 categories,
and 500 assignment examples in the learning set, the algorithm is able to restore
more than 90% of new assignment examples.

The preference direction restoration (PDRall) degrades moderately with more
than 2 categories, but increases with the size of the learning set (Figure 4.8c). The
PDRall reaches at least 0.8 with more than 500 alternatives in the learning set
regardless the number of categories.

Considering noisy learning sets ρ

The fourth test of the first approach concerns the case with 7 criteria, 7 latent
criteria, 2 categories and considering the presence of noise (ρ) in the learning set.

Figures 4.9a and 4.9b teach us the ability of our approach to restore more than
100*(1 − ρ)% of new assignments examples, which means that the algorithm is

64

(a) Classification accuracy (CA) of the
learning set (validation)

(b) Classification accuracy (CA) of the
test set (generalization)

(c) Preference direction restoration
(PDRall)

Figure 4.8: Results of the first approach for problems involving 7 criteria, 7 latent
criteria and noise-free learning sets per number of categories p and learning set size

fairly robust. As an example, the CAv attained 85% with 25% of noise when the
learning set size is 500, which means that the algorithm is able to find the true
assignments of some wrongly assigned alternatives (at least 10% of the learning
set).

The CA of the learning set still increases proportionally to the presence of
error when the learning set size increases. In addition, the CA (in generalization)
preserves a similar proportionality.

Figures 4.9c and 4.9d show that the impact of more noise (ρ > 0) is not so
strong on the ability of the algorithm to restore preference directions. The PDRone

increases with difficulty along with the learning set size once in the presence of
noise.

65

(a) Classification Accuracy (CA) of the
test learning (validation)

(b) Classification Accuracy (CA) of the
test set (generalization)

(c) Preference direction restoration
(PDRall)

(d) Preference direction restoration
(PDRone)

Figure 4.9: Results of the first approach for a problem involving 7 criteria, 7 latent
criteria, 2 categories per noise percentage in the learning set and learning set size

4.5.3 Results of the mixed-based algorithm

Execution time

Here again, the execution time of the approach increases in function of 5
parameters : the learning set size, the number of criteria n, the number of latent
criteria q, the number of categories p and the level of noise. As an example, Figure
4.10 shows us one of the highest execution time recorded in our tests. It concerns
the learning problem IMS5|7 with p = 5 involving a noise-free learning set of 1500
entries : the execution rises to 957s.

66

Figure 4.10: Time execution of the second algorithm for a problem involving 7
criteria, 5 latent criteria, and noise-free learning sets per number of categories and
learning set size

Varying the number of criteria (n)

First, we executed this approach for a series of problems involving different
criteria with 1 latent criterion, 2 categories and considering noise-free datasets and
multiple criteria (n ∈ {5, 7, 9, 11}).

We note in Figure 4.11a a perfect restoration of the learning set (CA=1)
regardless the number of criteria considered in the problem. However, for small
learning set size (for example 100 alternatives) we cannot hasten to deduce a similar
case in generalization (see Figure 4.11b). As a matter of fact, regardless the number
of criteria n, the lowest CA score is recorded with small learning sets size (with
n = 11 and 100 alternatives in the learning set, CAv ≈ 0.81). As the assignment
examples in the learning set increase, this score converges towards 1, and the less
criteria in the problem, the better the CA is.

The results of Figure 4.11c show a general upward trend of the preference
direction rate (PDRone) (in particular for n = 11). Indeed with at least 750 alterna-
tives in the learning set, the preference direction is perfectly restored (PDRone=1)
in IMS1|11. Let us notice that PDRone is similar in this case to PDRall since
there is only one latent criteria considered here. The algorithm performs globally
better with more than 5 criteria and with at least 250 assignment examples in the
learning set. It seems that few criteria in the model (considering this configuration)
implies a less constrained model, which is subject to more uncertainty on preference
directions.

Varying the number of criteria with latent preference directions (q)

67

(a) Classification accuracy (CA) of the
learning set (validation)

(b) Classification accuracy (CA) of the
test set (generalization)

(c) Preference direction restoration
(PDRone)

Figure 4.11: Results of the first approach for problems involving 1 latent criterion,
2 categories and noise-free learning sets per number of criteria (n) and learning set
size

Our second series of test concerns instances of 7 criteria, 2 categories, with
noise-free datasets and varied the number of latent criteria, tested on increasing
learning set sizes. The classification accuracy of the learning set clearly degrades
when the number of latent criteria is greater then 6 (q ≥ 6) while the remaining
(q < 6) stays constant (between 0.99 and 1) when the learning set size increases
(Figure 4.12a). Interestingly, this tendency is not followed in the generalization
case (see Figure 4.12b), where we do not observe such degradation of the CA score
for q ≥ 6, but rather a constant trend (≈ 0.95 for q = 6 and ≈ 0.9 for q = 7). The
remaining increases slightly and converges towards 1.

Concerning the preference direction rate (PDRall) (see Figure 4.12c), the
algorithm behaves with some difficulties when q ≥ 5 : the PDRall approximates 0.8

68

(a) Classification accuracy (CA) of the
learning set (validation)

(b) Classification accuracy (CA) of the
test set (generalization)

(c) Preference direction restoration
(PDRall)

(d) Preference direction restoration
(PDRone)

Figure 4.12: Results of the first approach for problems involving 7 criteria, 2
categories and noise-free learning sets per number of latent criteria q and learning
set size

on average for q = 5 ; it declines from 0.6 to less than 0.4 for q = 6 and stabilizes
around 0.2 for q = 7. In contrast, for q ≤ 5 PDRall the preference direction
restoration is more satisfactory (globally above 0.9 with at least 250 assignment
examples in the learning set).

The PDRone reads as an optimistic view on the preference direction rate. As
a matter of fact, the result in Figure 4.12d is quite different from the previous
Figure particularly for q = 7 where PDRone approximates 0.8. It indicates that
the algorithm restores on average more than 5 preference directions out of 7 (since
0.8 > 5

7
) on average and succeeds only in 20% (PDRall = 0.2) of cases to restore

all the 7 preference directions of the latent criteria.

69

Varying the number of categories

(a) Classification accuracy (CA) of the
learning set (validation)

(b) Classification accuracy (CA) of the
test set (generalization)

(c) Preference direction restoration
(PDRall)

(d) Preference direction restoration
(PDRone)

Figure 4.13: Results of the first approach for problems involving 7 criteria, 7 latent
criteria and noise-free learning sets per number of categories p and learning set size

Third, we tested the second approach on instances of 7 criteria, 7 latent criteria,
with noise-free datasets and varied number of categories. The classification accuracy
of the learning set (see Figure 4.13a) decreases moderately with the increase of
the learning set size. There is a noticeable performance gap of 0.15 between the
case with 2 categories (p = 2), which averages 0.95 and the three other cases
(p ∈ {3, 4, 5}) which are close (their CAv score are below 0.8 on average). This
gap is preserved even in generalization (see Figure 4.13b). However the CA in
generalization weakly improves as the learning set size increases.

Regarding Figure 4.13c, the PDRall is very low and globally averages 0.2 for
p = 2 and worsen with p > 2 (the PDRall is globally below 0.1). The algorithm

70

behave better regarding the PDRone rate (around 0.85 and 0.65, see Figure 4.13d).

Considering noisy learning sets

(a) Classification Accuracy (CA) of the
learning set (validation)

(b) Classification Accuracy (CA) of the
test set (generalization)

(c) Preference direction restoration
(PDRall)

(d) Preference direction restoration
(PDRone)

Figure 4.14: Results of the first approach for a problem involving 7 criteria, 7 latent
criteria, 2 categories per noise percentage of the learning set and learning set size

The fourth test of the second approach concerns the case with 7 criteria, 7
latent criteria, 2 categories and considering the presence of the noise (represented
by the percentage of erroneous alternatives ρ) in the learning set. Figure 4.14a
shows us slight decreases of the CA (of the learning set) when ρ < 0.15 while
slight increases when ρ > 0.15. Globally the CA score ranges between 0.95 and
0.8 with at least 250 alternatives in the learning set. In generalization, the CA
slowly rises with the increase of the learning set size and lowers with the increase
of noise in the learning set (Figure 4.14b). With 500 alternatives in the learning

71

set, the classification accuracy is quite satisfactory even with 25% of noise with
CA ≥ 0.8. With more ρ ≥ 0.10, the influence of the noise becomes minor for large
dataset sizes. This is emphasized with the PDRone (see Figure 4.14d) where the
restoration of preference directions are close to each other for ρ ≥ 0.10. Alike the
bad performance in PDRall obtained by this algorithm for multiple categories, the
situation is quite similar in the presence of noise (see Figure 4.14c). The preference
direction rate roughly ranges between 0 and 0.2.

4.5.4 Comparing the two approaches

Useful insights have been found through the experiments of the two approaches.

Execution time

First, the comparison of the two approaches gives the advantage to the first
approach for the execution time. Indeed, the first approach only requires ≈ 55s
while the second method requires ≈ 150s in order to solve the problem IMS5|7 with
2 categories, and 1000 noise-free alternatives in the learning set. This significant
difference resides in the difference in the settings of the two algorithms parameters.
Indeed, the second approach takes into account 50 models in the population instead
of 10 for the first approach. In addition, the number of iterations No is forcefully
attained in the second method while in the first method, as soon as a model with
optimal restoration of the learning set was found, the iterations stopped.

Although the first method involves two runs of the Sobrie’s metaheuristic [90],
the computational time is fairly affordable.

Concerning this method, the worst-case scenario considered in our tests (which
is the learning of IMS7|7 with |A?| = 1500 and 4 categories considering 25% of
noise in the learning set) indicates that the algorithm runs less than 15 minutes
and the memory space needed is less than 50MB (using a machine endowed with
2,3 GHz Intel Core i5 and 8Go of RAM). In any case, the execution time strongly
depends on the number of iterations of the outer loop of the algorithm (No).

Classification Accuracy and preference direction restoration when
varying the number of criteria, latent criteria and categories

First, globally the first method is better than the second method. It seems
counter-intuitive with respect to the results (comparing for instance Figure 4.6a
against Figure 4.11a, Figure 4.6c against Figure 4.11c). However, not only the
advantage of the second method over the first method is minor, but also when q is
great in the considered problem, the advantage goes for the first method.

72

Concerning the variation of the number of latent criteria, the advantage goes
to the first method. It is apparent that the first method improves the CAv/CAg
and PDRone/PDRall regardless of the number of latent criteria while the second
method degrades the CA and the PDRone/PDRall when the number of latent
criteria become large.

Regarding the variation of number of the categories, the first approach clearly
behaves better than the second in terms of classification accuracy (with at least
1000 alternatives in the learning set, the minimum CA score of the learning set
exceeds 0.95 in the first method, while the maximum score never exceeds 0.95 in
the second method). In addition, in terms of preference direction rate (PDRall),
while the first method reaches 0.8 with at least 500 alternatives, the second method
never exceeds 0.3.

Considering the first method, the algorithm succeeds in retrieving preference
directions as well as the other MR-Sort parameters of our problem, with noise-free
learning sets and 2 categories. Indeed, the classification accuracy of the learning set
is excellent (≈ 99%) regardless of the number of latent criteria and the number of
criteria considered in our tests (n ∈ {5, 7, 9, 11}). In generalization, the behaviour
of the algorithm is similar. As a matter of fact, the restoration of new assignments is
as good as the restoration of the Sobrie’s problem (which is IMS0|n) independently
of the number of latent criteria and the learning set size. The approach also
succeeds in restoring preference directions since the restoration converges quite
quickly towards 1 (with |A?| = 1500). Moreover, additional results show that
PDRone - which considers the restoration of one preference direction on average -
reaches 95% for IMSq|7, with 0 ≤ q ≤ 7 with only 250 assignment examples in the
learning set.

Classification Accuracy and preference direction restoration with
noisy learning datasets

The ability to restore assignments examples as well as latent preference directions
is greater with the first method than with the second method. The CA (both in
validation and generalization) as well as the PDRone/PDRall increase regardless
the noise percentage in the first method and therefore outperforms the second
method, on which these indicators often decrease.

Regarding the first method and as expected, in the presence of noisy data in
the learning set, the classification accuracy in generalization is reduced in function
of the increase of the noise introduced in the learning set. This is all the more
linked with the difficulty to learn the preference direction as soon as we deal with
noisy data in comparison to the case without noise (true for both approaches).
Nevertheless, the first approach takes advantage of the increase of the learning set

73

size since it still succeeds at restoring more assignments (CA in generalization)
with more assignment examples in the learning set.

4.6 Conclusion

We have considered the MR-Sort model in the case where the direction of preference
of criteria is unknown. We have proposed a solution which extends the heuristic
method introduced by Sobrie [90] to this case. For a given learning set, our
algorithm estimates the unknown preference directions as well as the parameters of
the MR-Sort model.

Our contribution is in line with [90, 92], which concerns the learning MR-Sort
models from monotone data. Indeed, we took advantage of this work and bring
some adaptations in order to deal with our problem. We proposed two approaches
for the resolution of the problem. Although each of them have advantages and
shortcomings, the first method appears to be the most effective. The experiments
results of our approaches on noisy data justifies its suitability for real-world learning
problems, where sometimes gain and cost criteria are insufficient to describe precisely
the type of preference order. In our next chapter, we deal with the learning of
MR-Sort models with single peaked preferences.

74

Chapter 5

The MR-Sort model with
single-peaked preferences

Contents
5.1 Introduction and motivation 76
5.2 Characterization of single-peaked preferences 78

5.2.1 Rewriting MR-Sort with approved sets 78
5.2.2 Single-peaked and single-valley preferences 79

5.3 Single-peaked and monotone preferences 82
5.3.1 Transformation of a single-peaked criterion to a monotone

criterion with 2 categories 82
5.3.2 Transformation of single-peaked preference to monotone

preferences with more than 2 categories 85
5.4 Conclusion . 87

75

5.1 Introduction and motivation

In this chapter, we investigate a new preference feature for the learning of partially
monotone data : single-peaked preferences. Single-peaked preferences have not been
considered yet in the previous works concerning outranking models in particular
MR-Sort models. In the following, we illustrate through an example how single-
peaked is expressed. The Section 5.2 describes formally the characterization of
single-peaked preferences through the lens of the Non Compensatory Sorting
(NCS), and therefore with MR-Sort since MR-Sort is a sub-case of NCS. Finally, in
the Section 5.3, we give some connections between single-peaked preferences and
monotone preferences.

Motivating example : Renting a new apartment

Bob got a new job in a new city and is looking for renting an apartment there. The
real estate agent is determined to help him in his choice ; so he presents to Bob 6
proposals (a1 to a6). It is not convenient for him to visit all the houses, so he must
select the most relevant proposals for a visit. Therefore, Bob and the real estate
agent agree to sort the proposals into two groups : interesting ones that will be
granted a visit (I), and rejected proposals (R). The real estate agent probes Bob
for discerning the criteria upon which the sorting must be done. Four criteria are
considered:

• the price (e) of the apartment noted c1. The criterion c1 is a cost criterion
(↓) i.e. for Bob, the lower the price the better is his preferences,

• the surface (m2) of the house noted c2. The criterion c2 is a gain criterion (↑)
i.e. for Bob, the greater the surface, the better is his preferences,

• the energy class noted c3 (expressed by 7 letters from A the best category
to G the worst one). The criterion c3 is a cost criterion (↓) considering the
following order the the evaluation scale : A < B < C < D < E < F < G.

• the distance (in km) between his future house and his future workplace, noted
c4.

Regarding the last criterion, for some reason, Bob does not want to live too
close to his working place ; neither does he want to live far from his workplace.

Therefore there exist an ideal distance for which, a lesser or a greater distance
would decrease Bob’s preference. We call this type of criterion (c4) a single-peaked
criterion (↗↖) regarding the ideal distance, which represents the peak - his most
preferred value in this criterion. Here is the performance table :

76

ci c1 (e) c2 (m2) c3 c4 (km) cat(a)
a1 500 40 F 7 km I
a2 700 20 C 5 km I
a3 900 30 D 12 km I
a4 1000 50 B 3 km R
a5 600 40 E 10 km R
a6 800 60 A 15 km R

Table 5.1: Performance table of flat proposals

The real estate, who is a budding decision analyst, uses the majority sorting rule
(MR-Sort) to model the preferences of Bob. Therefore, he scribbled the following
table. More precisely, he determined the profile values (b1,b2,b3,b4), the weight
values (w1,w2,w3,w4) and the threshold majority λ.

ci c1 (e) c2 (m2) c3 c4 (km) cat(a)
a1 500 40 F 7 km I
a2 700 20 C 5 km I
a3 900 30 D 12 km I
a4 1000 50 B 3 km R
a5 800 40 E 10 km R
a6 600 20 A 15 km R
di ↓ ↑ ↓ ↗↖
bi 700 30 D [5-12]
wi 0.3 0.2 0.2 0.3

λ = 0.8

Table 5.2: The MR-Sort model parameters of the real estate agent for Bob’s decision
problem

The model assumed by the real estate agent is an example among many that
describes the preferences of Bob. In this modelling, he determined the profile b4 as
the interval [5km− 12km], which is compatible with Bob’s preferences. He finally
thinks that the Bob’s ideal distance between his home and his workplace ranges
between 5 and 12 km. Therefore, values comprised inside this interval, contribute
positively to his preferences and are accountable for the sorting of proposals in
the MR-Sort rule. We describe more formally how single-peaked preferences are
formalized in NCS and MR-Sort models in the Section 5.2.

77

Remark

The assumption of monotonicity made on some criteria could even be relaxed
under some situations. We could assume that the DM (the buyer) ignores the
environment where he is looking for a house. Therefore, he is not sure that a lower
price would guarantee a pleasing environment; neither a greater surface would be
an ideal choice since a small one makes it easy to clean. In this case, it could be
more accurate to consider the price and surface criteria as single-peaked criteria.
Therefore, for the buyer, a higher price is prohibitive, and a lower price is suspicious.
In the same manner, he is neither comfortable with a small surface nor a gigantic
house surface.

Constructing the preferences in this way enables us to consider hidden fea-
tures (here, living environment and household labors) that could not be perceived
otherwise, especially when the buyer does not have any additional information.

Single-peaked preferences have been largely studied in the field of Decision
Theory, and in particular voting systems. In the next section, we ground our
formalization development of single-peaked preferences regarding our context, on
the definition of single-peaked given by Escoffier et al. [41] (see Chapter3).

5.2 Characterization of single-peaked preferences
for MR-Sort models

5.2.1 Rewriting MR-Sort with approved sets

As we mention before, MR-Sort is a variant of NCS, where the majorities are
necessarily additive. Indeed, we can use NCS notations, particularly the notion of
criteria subsets families (F) to formulate the MR-Sort rule.

In order to achieve this task, let us notice that the families of sufficient coalitions
of criteria become all equal F2 = ... = Fp = F as soon as we deal with MR-Sort.
The majority is now defined through the sum of weights attached to criteria, and
a threshold λ ∈ [0, 1]. We have F = {F ⊆ N :

∑
i∈F wi ≥ λ}, with wi ≥ 0,∑

iwi = 1.
In addition, as the finite set of possible values on criterion i, Xi = [mini,maxi] ⊂

R, the order on R induces a complete preorder <i onXi. Hence, the sets of approved
values on criterion i, Ahi ⊆ Xi (i ∈ N , h = 2...p) are defined by <i and bhi ∈ Xi

the minimal approved value in Xi at level h: Ahi = {xi ∈ Xi : xi <i b
h
i }. In this

way, bh = (bh1 , . . . , b
h
n) is interpreted as the frontier between categories Ch−1 and

Ch; b1 = (min1, ...,minn) and bp+1 = (max1, ...,maxn) are the lower frontier of C1

and the upper frontier of Cp. The assignment rule is defined bellow, for all x ∈ X,
where A1

i = Xi, Ap+1
i = ∅, F1 = P(N), and Fp+1 = ∅.

78

x ∈ Ch iff {i ∈ N : xi ∈ Ahi } ∈ Fh and {i ∈ N : xi ∈ Ah+1
i } /∈ Fh+1

h ∈ {2, . . . , p}
(5.1)

x ∈ Cp, iff {i ∈ N : xi ∈ Api } ∈ Fp (5.2)

This formula holds because criteria are either a gain or a cost criterion (i.e
monotone criteria).

Considering the preorder ≥i that induces the order in R, and as a result of the
monotonicity, ∀h ∈ {1, ..., p}, we have :

• when i is a gain criterion :

– xi ∈ Ahi and x′i ≥i xi ⇒ x′i ∈ Ahi ,
– xi /∈ Ahi and xi ≥i x′i ⇒ x′i /∈ Ahi .

Therefore Ahi is specified by bhi ∈ Xi: Ahi = {xi ∈ Xi : xi ≥ bhi }.

• when i is a cost criterion :

– xi ∈ Ahi and xi ≥i x′i ⇒ x′i ∈ Ahi ,
– xi /∈ Ahi and x′i ≥i xi ⇒ x′i /∈ Ahi .

Therefore Ahi is specified by bi ∈ Xi: Ahi = {xi ∈ Xi : xi ≤ bhi }. We study
hereafter the MR-Sort rule in the case of single-peaked preferences [12].

5.2.2 Single-peaked and single-valley preferences

In this part, we define single-peaked preferences and describe its formulations using
the set of approved values for MR-Sort models.

Let us note more specifically Xi as the finite set of possible values of i that
is covered by [mini,maxi] ⊂ R, with mini (resp. maxi) the minimum (resp.
maximum) of Xi. Before defining single-peaked and single-valley preferences, we
consider the following assumptions :

• Xi ⊂ R ;

• the preorder relation <i (the preorder ≥i) that induces the order on R.

Definition 5.1 A preference is single-peaked with respect to ≥i iff there exist
pi ∈ Xi such that:

• xi ≤ yi ≤ pi ⇒ pi <i yi <i xi, and

79

• pi ≤ xi ≤ yi ⇒ pi <i xi <i yi.

Definition 5.2 A preference is single-valley with respect to ≥ iff there exist pi ∈ Xi

such that:
• xi ≤ yi ≤ pi ⇒ pi <i xi <i yi, and

• pi ≤ xi ≤ yi ⇒ pi <i yi <i xi.

Considering these definitions, on the left of the peak pi we can interpret single-
peaked preferences as a gain criterion to be maximized, or a single-valley preferences
as a cost criterion to be minimized. Similarly, on the right of the peak pi, we
can interpret single-peaked preferences as a cost criterion to be minimized, or
single-valley preferences as a gain criterion to be maximized.

Interestingly, single-peaked and single-valley preferences are equivalent to gain
and cost criteria in some situations. In fact, when pi = maxi, single-peaked
preferences match with gain criteria whereas single-valley preferences match with
cost criteria. Conversely, when pi = mini, single-peaked preferences match with
cost criteria whereas single-valley preferences match with gain criteria.

In order to use MR-Sort with single-peaked preferences, we need to consider
how the approved values sets are constructed.

Case with 2 categories

Regarding the case of 2 categories, we only consider the set of approved values A1
i

in order to sort alternatives into categories. In this case, if i is a single-peaked
criterion with the peak pi and xi, x′i ∈ Xi , we deduce the following assertions :

xi ∈ A1
i and pi ≥i x′i ≥i xi ⇒ x′i ∈ A1

i

xi ∈ A1
i and xi ≥i x′i ≥i pi ⇒ x′i ∈ A1

i

xi /∈ A1
i and pi ≥i xi ≥i x′i ⇒ x′i /∈ A1

i

xi /∈ A1
i and x′i ≥i xi ≥i pi ⇒ x′i /∈ A1

i

(5.3)

We note that the approved values (i.e the elements of A1
i) are spread around the

peak pi. Thus, we deduce that A1
i can be expressed with two thresholds b1i , b

1
i ∈ Xi

such that b1i ≥i pi ≥i b1i . Therefore, A1
i is covered by an interval (of minimum

range) of approved values. This interval is [b1i , b
1

i] since pi ∈ A1
i .

Similarly, considering i a single-valley criterion, the peak pi (here, pi is down-
wards) and x, x′i ∈ Xi, we have :

xi ∈ A1
i and pi ≥i xi ≥i x′i ⇒ x′i ∈ A1

i

xi ∈ A1
i and x′i ≥i xi ≥i pi ⇒ x′i ∈ A1

i

xi /∈ A1
i and pi ≥i x′i ≥i xi ⇒ x′i /∈ A1

i

xi /∈ A1
i and xi ≥i x′i ≥i pi ⇒ x′i /∈ A1

i

(5.4)

80

In this case, the same reasoning applies here. The approved set A1
i is determined

by two thresholds b1i , b
1
i ∈ Xi and b

1

i ≥i pi ≥i b1i . Therefore, A1
i is covered by

[mini; b
1
i] ∪ [b

1

i ;maxi] since pi /∈ A1
i .

Case with more than 2 categories

Let i ∈ N be a single-peaked or a single-valley criterion. With several categories
(p > 2), the approved sets are represented by couples of intervals that are interleaved
between each other throughout the categories.

Then in the case where i is a single-peaked criterion with the peak pi, we can
note that : 

xi ∈ Ahi and pi ≥i x′i ≥i xi ⇒ x′i ∈ Ahi
xi ∈ Ahi and xi ≥i x′i ≥i pi ⇒ x′i ∈ Ahi
xi /∈ A≥hi and pi ≥i xi ≥i x′i ⇒ x′i /∈ Ahi
xi /∈ A≥hi and x′i ≥i xi ≥i pi ⇒ x′i /∈ Ahi

(5.5)

We deduce that the approved sets are the following (for i a single-peaked
criterion):

• Api is covered by the interval [bp−1i , b
p−1
i].

• ∀h ∈ {2, ..., p− 1}, Ahi is covered by intervals [bh−1i , bhi] and [b
h

i , b
h−1
i]

• A1
i is covered by [mini, b

1
i] ∪ [b

1

i ,maxi].

Conversely, in the case where i is a single-valley criterion with the hollow or
the peak (by abuse of language) pi , we can note that :

xi ∈ Ahi and pi ≥i xi ≥i x′i ⇒ x′i ∈ Ahi
xi ∈ Ahi and x′i ≥i xi ≥i pi ⇒ x′i ∈ Ahi
xi /∈ A≥hi and pi ≥i x′i ≥i xi ⇒ x′i /∈ Ahi
xi /∈ A≥hi and xi ≥i x′i ≥i pi ⇒ x′i /∈ Ahi

(5.6)

We deduce that the approved sets are the following (for i a single-valley criterion):

• Api is covered by intervals [mini, bp−1i] and [b
p−1
i ,maxi].

• ∀h ∈ {2, ..., p− 1}, Ahi is covered by intervals [bhi , b
h−1
i] and [b

h−1
i , b

h

i]

• A1
i is covered by [b1i , b

1

i] .

81

Having weights w1, ..., wn attached to criteria (with wi ≥ 0, ∀i, and
∑

i∈N wi =
1), and a majority threshold λ ∈ [0.5; 1], we can express more generally the MR-Sort
rule as follows :

∀h ∈ {1, ..., p−1}, c(a) = h ⇔
∑

i∈N :ai∈Ah
i

wi ≥ λ and
∑

i∈N :ai∈Ah+1
i

wi < λ (5.7)

c(a) = p, ⇔
∑

i∈N :ai∈Ap−1
i

wi ≥ λ (5.8)

In the next section, we explore the bridges between single-peaked preferences
and monotone preferences which enables us to understand more the structure of
these preferences as we are interested in learning single-peaked preferences.

In the remaining of this chapter, for the sake of readability, we replace ≤i (resp.
≥i) with ≤ (resp. ≥) regarding the comparison between evaluations criteria.

5.3 Relations between single-peaked preferences and
monotone preferences

In the previous section, we reformulated an MR-Sort rule that is agnostic of the type
of criteria i.e the rule encompassed all types of criteria (gain, cost, single-peaked and
single-valley criteria). Despite the differences between single-peaked/single valley
preferences and monotone criteria, we can convert a single-peaked/single-valley
criterion into a monotone criterion at the cost of some re-encodings.

In this section, we show a procedure to transform a single-peaked/single-valley
criterion into a monotone criterion. First, we detail the steps and illustrate this
transformation with a simple example considering 2 categories. Then we give some
insights on how we can apply the transformation with more than 2 categories.

5.3.1 Transformation of a single-peaked criterion to a mono-
tone criterion with 2 categories

Our procedure consists in converting a single-peaked (resp. single-valley) criterion
i into a cost (resp. gain) criterion i′.

Let i a single-peaked criterion (w.l.o.g) and [bi, bi] its profile interval ; since
there are only 2 categories, it is the unique profile of criterion i. We denote the
middle of the interval [bi, bi] by b⊥i =

bi+bi
2

.
We set a re-encoding function that calculates for a given criterion evaluation,

the absolute value of its distance with the middle of the interval. Therefore this
function (φi) is defined as follows :

82

φi : Xi −→ Xi

xi −→ |xi − b⊥i |
(5.9)

Hence, the new evaluation value xi′ = |xi − b⊥i |. The construction of the cost
criterion i′ consists of calculating, a new value profile, defining a new criterion
evaluation scale, as well as a set of approved values :

1. The profile of the cost criterion i′ is the half distance interval [bi, bi] of the
single-peaked criterion. Therefore bi′ =

bi−bi
2

.

2. The evaluation scale is : Xi′ = {φi(xi) : xi ∈ Xi}.

3. Therefore, the approved set of the cost criterion is Ai′ = {xi ∈ Xi : φi(xi) ≤
bi−bi
2
}. In other words, Ai′ = {xi′ ∈ Xi : xi′ ≤ bi′}, which corresponds to the

definition of the approved set a cost criterion.

Analogously, given a single-valley criterion i and its approved set Ai (covered by
the interval [mini; bi] ∪ [bi,maxi]), we can convert i into i′, a gain criterion. Using
the same definitions of b⊥i and φi, we can deduce the following transformations:

1. The profile of the gain criterion i′ is the half distance interval [bi, bi] of the
single-valley criterion. Therefore bi′ =

bi−bi
2

.

2. The evaluation scale is : Xi′ = {φi(xi) : xi ∈ Xi}.

3. The approved set of the gain criterion is Ai′ = {xi ∈ Xi : φi(xi) ≥ bi−bi
2
}. In

other words, Ai′ = {xi′ ∈ Xi : xi′ ≥ bi′}, which corresponds to the definition
of the approved set a gain criterion.

In the following example, we perform a transformation of a single-peaked
criterion to a cost criterion.

Example 5.1 Let consider the following MR-Sort model with 2 monotone criteria
and one single-peaked criterion, and a set of 5 alternatives. These alternatives are
sorted into two categories : C2 the best category and C1 the worst one. We intend
to transform the single-peaked criterion c3 into a cost criterion c3′.

83

ci c1 c2 c3 c(a)
a1 0.2 0.1 0.3 C1

a2 0.4 0.6 0.6 C1

a3 0.7 0.7 0.4 C2

a4 0.8 0.9 0.5 C2

a5 0.9 0.2 0.8 C2

di ↑ ↓ ↗↖
bi 0.5 0.5 [0.4,0.6]
wi

1
3

1
3

1
3

λ = 2
3

Table 5.3: Performance table with the parameters of the MR-Sort model. λ = 2
3

Regarding our transformation procedure, we construct c3′ as follows :

• b⊥3 = 0.6+0.4
2

= 0.5

• ∀x3 ∈ X3, x3′ = φ3(x3) = |x3 − 0.5|

• The profile of the cost criterion c3′ is b3′ = 0.6−0.4
2

= 0.1

• The evaluation scale is : X3′ = {φ3(x3) : x3 ∈ X3}

• Therefore, the approved set of the cost criterion is
A3′ = {x3′ ∈ X3′ : b3′ ≤ 0.1}.

ci c1 c2 c′3 c(a)
a1 0.2 0.1 0.2 C1

a2 0.4 0.6 0.1 C1

a3 0.7 0.7 0.1 C2

a4 0.8 0.9 0 C2

a5 0.9 0.2 0.3 C2

di ↑ ↓ ↓
bi 0.5 0.5 0.1
wi

1
3

1
3

1
3

λ = 2
3

Table 5.4: Performance table with the parameters of the MR-Sort model with c3
converted in c3′ . λ = 2

3

We note that the transformation is consistent with regards to the assignments
of the 5 alternatives.

84

We highlight that whenever we evaluate a new alternative with the new model
(obtained after the transformation of single-peaked/valley criteria into monotone
criteria), the appropriate criteria values of this alternative must also be re-encoded
(using functions φi).

In the next part, we investigate to extend our analysis - of the conversion
of single-peaked criteria into monotone criteria - to the case with more than 2
categories.

5.3.2 Transformation of single-peaked preference to mono-
tone preferences with more than 2 categories

In this subsection, we investigate the transformation of single-peaked/single-valley
criteria in the presence of more than two categories. In this case, more than one
interval profile defines the profile of the considered criterion.

Example 5.2 Given, this example of MR-Sort model with 3 categories, we attempt
to convert the criterion c3 into a cost criterion c3′. We can base our reasoning on
the same principle of transformation made in the previous part, in order to re-write
c3.

ci c1 c2 c3 c(a)
a1 0.1 0.1 0.2 C1

a2 0.5 0.6 0.6 C2

a3 0.9 0.6 0.6 C2

a4 0.7 0.8 0.4 C3

a5 0.8 0.2 0.7 C3

di ↑ ↓ ↗↖
b1i 0.5 0.7 [0.3,0.8]
b2i 0.7 0.5 [0.4,0.5]
wi

1
3

1
3

1
3

λ = 2
3

Table 5.5: Initial performance table with the parameters of the MR-Sort. λ = 2
3

With 3 categories in the MR-Sort model, we have two different single-peaked
intervals. Therefore we can investigate 2 cases in order to apply the transformation
procedure depending on how is built φ3:

85

ci c1 c2 c3′ c(a)
a1 0.1 0.1 0.35 C1

a2 0.5 0.6 0.05 C2

a3 0.9 0.6 0.05 C3

a4 0.7 0.8 0.15 C2

a5 0.8 0.2 0.15 C3

di ↑ ↓ ↓
b1i 0.5 0.7 0.25
b2i 0.7 0.5 0.05
wi

1
3

1
3

1
3

λ = 2
3

(a) Case 1

ci c1 c2 c3′ c(a)
a1 0.1 0.1 0.25 C2

a2 0.5 0.6 0.15 C2

a3 0.9 0.6 0.15 C2

a4 0.7 0.8 0.05 C3

a5 0.8 0.2 0.25 C3

di ↑ ↓ ↓
b1i 0.5 0.7 0.25
b2i 0.7 0.5 0.05
wi

1
3

1
3

1
3

λ = 2
3

(b) Case 2

Table 5.6: Performance table, assignments and parameters of the 2 resulted MR-
Sort models : (a) model using the formulation of φ3 with b⊥1, (b) model using the
formulation of φ3 with b⊥2. λ = 2

3

Depending on the 2 cases, we compute the profiles of the cost criterion c3′ :
Case 1: φ3(x3) = |x3 − b⊥13 | (φ3 is defined with b⊥13)

• b⊥13 = 0.8+0.3
2

= 0.55

• ∀x3 ∈ X3, φ3(x3) = |x3 − 0.55|

• b13′ =
0.8−0.3

2
= 0.25

• b23′ =
0.6−0.4

2
= 0.05

Case 2: φ3(x3) = |x3 − b⊥23 | (φ3 is defined with b⊥23)

• b⊥23 = 0.5+0.4
2

= 0.45

• ∀x3 ∈ X3, φ3(x3) = |x3 − 0.45|

• b13′ =
0.8−0.3

2
= 0.25

• b23′ =
0.5−0.4

2
= 0.05

In both scenarios, the resulting MR-Sort models are not equivalent to the initial
MR-Sort model since the assignments are not consistent with the initial assignments.
Therefore our transformation procedure cannot be applied when considering at
least 3 categories in the model.

86

In fact, with more than two categories, this transformation may not work since
the middle of intervals are not necessarily the same (as in our previous example). It
results in two distinct middles of intervals that leads to two potential transformed
models that are not equivalent to the initial one.

In conclusion, as a rule of thumb, for more than 2 categories, we must first
of all ensure that profiles intervals are centred around the same middle value. If
it is the case, we can apply our transformation procedure detailed previously. If
not, we must make more changes. One course of action is to set the middle of the
most embedded profile interval, (e.g. b⊥1i , the middle of [b1i , b

1

i] if i is a single-valley
criterion) as the middle on which all others profiles intervals must be centred around.
This implies to elaborate a transformation application in order to transform the
other intervals such that b⊥hi becomes the middle of those intervals.

5.4 Conclusion

In this chapter, we introduced the single-peaked preferences for MR-Sort models.
The construction of these preferences makes it possible to be expressed in the
MR-Sort settings. We also investigate the transformation of single-peaked (resp.
single-valley) criteria into cost (resp. gain) criteria (in the case of two categories).
In the next two chapters, we leverage these results in order to learn MR-Sort models
taking into account single-peaked (single-valley) criteria.

87

Chapter 6

An exact approach for the resolution
of the Inverse MR-Sort problem
with single-peaked preferences

Contents
6.1 Introduction and reminder 90

6.1.1 Single-peaked preferences and the Inverse MR-Sort-SP
problem . 90

6.2 The MIP formulation . 91
6.2.1 Variables and constraints related to approved sets and

profiles . 92
6.2.2 Variables and constraints related to weights 95
6.2.3 Variables and constraints related to the assignment ex-

amples . 95
6.2.4 Objective function and the complete MIP formulation . 96
6.2.5 Interpretation of the optimal solution 98
6.2.6 General case . 99
6.2.7 Extension to more than two categories 100

6.3 Experiments with artificial data 102
6.3.1 Experimental design . 102
6.3.2 Results . 104
6.3.3 Computing time performance 104

6.4 Tests on a real-world data: the ASA dataset 107
6.5 Conclusion . 112

89

6.1 Introduction and reminder

In Chapter 5, we defined single-peaked criteria as criteria which preference order is
twofold : the preferences increase before the most preferred value (the peak) and
decrease after. We also characterized single-peaked preferences and elaborated how
it can be handled as criteria in MR-Sort models.

In this chapter, we present an approach based on a Mixed Integer Program-
ming (MIP) for the resolution of the Inverse MR-Sort problem with single-peaked
preferences. First, in this section, we recall some notions of our context. Second,
we detail our method which uses single-peaked expressions established in Chapter
5 in order to embrace as well as possible the decision maker (DM) preferences.
In Section 6.3 and Section 6.4, we run some experiments. Our algorithm was
challenged both with customized datasets and real-case data. We discuss about
advantages and disadvantages of the approach.

6.1.1 Single-peaked preferences and the Inverse MR-Sort-
SP problem

We aim at learning the parameters of an MR-Sort model with potentially single-
peaked criteria from assignment examples. LetX, the cardinal product of evaluation
scales Xi, i ∈ N , that are finite sets. We denote an assignment example by a couple
(a, c(a)), with the alternative a ∈ A? ⊂ X and its category c(a) ∈ {C1, . . . , Cp},
the set of categories. Our learning process consists of the resolution of a MIP
program based on L, the set of assignment examples (the learning set). Therefore
we call the new Inverse MR-Sort problem, Inv-MR-Sort-SP problem since we take
into account single-peaked/single-valley criteria. This problem takes a learning set
L as input, and calculates the optimal tuple of MR-Sort parameters (in terms of
the maximization of the classification accuracy). The parameters are : the set of
preference directions, the set of criteria weights, the majority threshold, and the
profile vector.

In this problem, we assume not knowing in advance the type of preferences of
criteria involved in the learning process. In addition as said previously, we take
into consideration single-peaked and single-valley criteria. We denote by S the
set of single-peaked and single-valley criteria, and s, s = |S| ≤ n the number of
single peaked and single-valley criteria. We also denote by Q the set of criteria
with unknown preference directions, and q, q = |Q| ≤ n the cardinal of this set.
We note IMSSq|n the Inv-MR-Sort-SP problem with q, the number of criteria
with unknown preferences directions, and n the number of criteria which possibly
contains some single-peaked/single-valley criteria.

90

6.2 The MIP formulation

In the present section, we formulate the Inv-MR-Sort-SP problem as a MIP. The
aim of this section is to describe and explain this formulation. First we detail some
general setting of our approach by considering two categories. Before presenting the
complete mathematical program, we explain the different variables and constraints
pertaining to the Inv-MR-Sort-SP problem. Then we formulate the problem and
interpret the results given by the MIP. Finally, we give some insights on the
Inv-MR-Sort-SP problem with more than two categories.

We recall in the following the three main parameters that we expect to learn
with this approach:

• the preference direction of each criterion di (cost (↓), gain (↑), single-peaked
(↗↖), or single-valley (↘↙) criterion), i ∈ N

• the weights of criteria wi, i ∈ N and the majority threshold λ,

• the limit profiles values bhi for cost or gain criteria, and the interval [bhi , b
h

i]
for single-peaked or single-valley criteria, i ∈ N , h ∈ {1, . . . , p}.

The input of our algorithm is the learning set L which represents a set of
assignment examples. We consider two categories : C2 and C1, with C2 B C1 (B
describes the order between categories, here C2 is better than C1). Let us note
by A? the set of reference alternatives and a partition of this set into 2 subsets
A? = A?1 ∪ A?2. Let j be the index of alternatives, with A? = {a1, ..., aj, ..., a|A?|}.
Therefore, we have : A?1 = {aj ∈ A? : c(aj) = C1} and A?2 = {aj ∈ A? : c(aj) =
C2}. We call J?, J?1, and J?2 the indices j of alternatives contained in A?, A?1, and
A?2, respectively. We recall Xi the set of possible evaluations of i that is included
in [mini;maxi], with mini (resp. maxi) the minimum (resp. maximum) of Xi.

In this MIP formulation, we propose an implementation that is restrained to the
expression of only two types of preferences : single-peaked or single-valley criteria.
We opt for this configuration to avoid redundancy. As we showed in Chapter 5, we
can express a single-peaked criteria as a gain criterion if the peak is equal to maxi
or as a cost criterion if the peak is equal to mini. Similarly, we can derive both
a gain and a cost criterion from a single-valley criterion : if the peak is “strictly
lower” than mini, then we have a gain criterion ; if the peak is “strictly higher”
than maxi, we have a cost criterion. In these cases, we can consider the peak as a
fictitious one since Xi is bounded by [mini;maxi].

Therefore, our rationale is the following :

1. Given the Inv-MR-Sort-SP problem, we assume all criteria as either single-
peaked or single-valley,

91

2. We formulate the MIP by fixing all the criteria as either single-peaked or
single-valley, and solve it.

3. Finally, once the resolution of the MIP, we attempt to retrieve the true
preference directions of criteria.

As previously mentioned, for simplicity reasons, we illustrate our mathematical
formulation with two categories (p = 2); thus Ai is A2

i and we omit the cate-
gory index on the profile notation. At the end of the section, we describe the
supplementary requirements in the case of more than two categories.

In the following, first we express decision variables and constraints, then we
expose the complete formulation and lastly we derive the learned parameters.

6.2.1 Variables and constraints related to approved sets and
profiles

We consider i a single-peaked criterion. Its corresponding set of approved values
noted Ai is covered by the interval [bi, bi] (see Chapter 5.2). We recall Xi the
evaluation scale of i, with i ∈ N = {1, . . . , n} . Let denote by b⊥i =

bi+bi
2

, the
middle of the interval of approved values which is a variable of the MIP. We note
aj ∈ A?, an alternative in the reference set and its evaluation on criterion i, aji .
Therefore, aji is part of the approved set (i.e, aji ∈ Ai) if a

j
i ∈ [bi, bi].

Let us recall some facts and expressions deduced in Chapter 5.
We have noted that : φi(aji) = |a

j
i − b⊥i | ≤

bi−bi
2

if aji ∈ [bi, bi]. It can be read as
the following : the value aji belongs to [bi, bi] if the distance of the value aji from
the middle of the interval [bi, bi] does not exceed half the range of the interval.

This condition enables us to write the definition of the approved set Ai as
{xi ∈ Xi : |xi − b⊥i | ≤

bi−bi
2
}, which captures the variables we desire to retrieve, i.e

bi, bi and b⊥i .
In the following, we introduce the decision variables and the constraints per-

taining to approved sets and profiles.

Decision variables

We describe the following decision variables of the MIP :

• αji , i ∈ N , j ∈ J?: in order to test whether the alternative evaluation aji
belongs to Ai, we introduce αji = aji − b⊥i such that aji ∈ Ai ⇔ |α

j
i | ≤

bi−bi
2

.
By introducing this new notation, we re-encode criterion i as a cost criterion
i′. In particular, |αji | is the evaluation of this cost criterion, and reads as the

92

distance between aji and b⊥i ; the limit profile of this criterion is bi′ =
bi−bi
2

,
which is half the interval [bi, bi].

• b⊥i , i ∈ N : which is the middle of the interval [bi, bi],

• bi, i ∈ N : the limit profile of the transformed criterion i (which is a cost
criterion). Thus, we can write Ai as Ai = {xi ∈ Xi : |xi − b⊥i | ≤ bi}.

• αj+i and αj−i , i ∈ N , j ∈ J?: the two positive variables such that αji =
αj+i − α

j−
i , which enable to linearize the use of absolute value of αji in the

MIP.

• βji , i ∈ N , j ∈ J? : a binary variable that helps to properly restrain the
domains of αj+i and αj−i .

• δij ∈ {0, 1}, i ∈ N , j ∈ J? : a binary variable expressing the membership of
evaluation aji in the approved set Ai (δij = 1⇔ aji ∈ Ai).

• σi, i ∈ N : a binary variable which indicates whether the criterion i is a
single-peaked (σi = 1) or single-valley criterion (σi = 0).

Next, we describe and explain the MIP constraints based on these decision
variables.

Constraints

In the MIP formulation, we need to characterize the constraints into linear
expressions. In order to achieve that for the expression |αji | = |a

j
i − b⊥i |, we need

the variables αj+i , αj−i and binary variables βji verifying the following constraints
(6.1a)-(6.1c) :

αji = aji − b⊥i = αj+i − α
j−
i (6.1a)

0 ≤ αj+i ≤ βjiM (6.1b)

0 ≤ αj−i ≤ (1− βji)M (6.1c)

M is an arbitrary large positive value. The constraints (6.1b) and (6.1c) ensure
that at least one variable among αj+i and αj−i is null. Thus, |αji | = αj+i + αj−i
remains positive as an absolute value.

In the following we describe constraints pertaining to the nature of criteria. For
that purpose, we use the variable δij that plays the same role as the one defined
in [63]. It enables to determine the relative position of the alternative evaluation
aji compared to bi. This is a useful indication for tuning the appropriate value of bi
in order to remain consistent with the assignment of the alternative aj.

93

We distinguish two cases depending on the nature of the preference direction of
i :

• If i is a single-peaked criterion :

In this case, we convert the single-peaked criterion into a cost criterion (with
|αji |, the new evaluation of alternative aj on i and bi the new profile value).
Therefore the following constraints hold, ∀i ∈ N , j ∈ J? :

δij = 1⇐⇒ |αji | ≤ bi =⇒M(δij − 1) ≤ bi − (αj+i + αj−i) (6.2a)

δij = 0⇐⇒ |αji | > bi =⇒ bi − (αj+i + αj−i) < M δij (6.2b)
δij ∈ {0, 1} (6.2c)

• If i is a single-valley criterion :

Conversely in the case where i is a single-valley criterion, it is transformed
into a gain criterion (considering |αji |, the new evaluation of alternative aj on
i and bi the new profile value). Therefore we have, ∀i ∈ N , j ∈ J? :

δij = 1⇐⇒ |αji | ≥ bi =⇒M(δij − 1) ≤ (αj+i + αj−i)− bi (6.3a)

δij = 0⇐⇒ |αji | < bi =⇒ (αj+i + αj−i)− bi < M δij (6.3b)
δij ∈ {0, 1} (6.2c)

As we do not know a priori the preference direction of i, we have to take into
account both cases in the MIP. In order to do that, we introduce a binary variable
σi, i ∈ N which indicates whether criterion i is a single-peaked (σi = 1) or a
single-valley criterion (σi = 0). When σi = 1, the constraints (6.4c) and (6.4d)
pertaining to the single-peaked criteria are active while the constraints (6.4a) and
(6.4b) for single-valley criteria are inactive, and conversely when σi = 0.

−M σi +M(δij − 1) ≤ αj+i + αj−i − bi (6.4a)

αj+i + αj−i − bi < M δij +M σi (6.4b)

M(σi − 1) +M(δij − 1) ≤ bi − αj+i − α
j−
i (6.4c)

bi − αj+i − α
j−
i < M δij +M (1− σi) (6.4d)

δij ∈ {0, 1} (6.2c)
σi ∈ {0, 1} (6.4e)

Finally, we enforce the bounds of the single-peaked/single-valley interval to be
comprised within [mini− ε,maxi+ ε] (where ε is a small positive value), by adding

94

the 2 following constraints :

b⊥i − bi ≥ mini − ε (6.5a)
b⊥i + bi ≤ maxi + ε (6.5b)

By restraining the search of profile within a slightly larger interval than the
evaluation scale [mini,maxi], we enable the MIP to fully embrace all types of
preference directions. In particular, it enables to encapsulate cost or gain criteria
expressed when σi = 0. The reader can refer to Section 6.2.5 on the interpretation
of the resulting preference directions in order to grasp the rationale.

6.2.2 Variables and constraints related to weights

The variables pertaining to weights are wi, i ∈ N and their corresponding constraint
is wi ≥ 0, i ∈ N where wi represents the weight of criterion i. We normalize weights
with the following constraint :

∑
i∈N wi = 1.

In order to link weights with other decisions variables, we introduce in the MIP
formulation, another variable (also described in [63]) : cij, i ∈ N , j ∈ J?.

We define these continuous variables cij, i ∈ N , j ∈ J? such that δij = 0 ⇔
cij = 0 and δij = 1⇔ cij = wi.

The variable cij value depends on the consideration of wi in the weighted sum
that contributes to the correct assignment of aj. For instance, if δij = 0, then
cij = 0 and the constraint 6.6b is inactive. We also have δij = 1⇔ cij = wi. The
criterion i does not contribute to the assignment of aj whenever cij = 0. To ensure
the correct definition of cij, we enforce the following constraints, ∀i ∈ N , j ∈ J?:

cij ≤ δij (6.6a)
δij − 1 + wi ≤ cij (6.6b)
cij ≤ wi (6.6c)
0 ≤ cij (6.6d)

6.2.3 Variables and constraints related to the assignment
examples

Here we introduce some constraints concerning the restoration of assignment
examples with the MR-Sort rule. We define binary variables γj ∈ {0, 1}, j ∈ J? to
denote the number of correctly assigned alternatives. If γj = 1, then the alternative
aj is correctly assigned, otherwise γj = 0. The following constraints ensure the

95

correct definition of γj and λ ∈ [0.5, 1] represents the MR-Sort majority threshold.∑
i∈N

cij ≥ λ+M(γj − 1),∀j ∈ J?2 (6.7a)∑
i∈N

cij < λ−M(γj − 1),∀j ∈ J?1 (6.7b)

6.2.4 Objective function and the complete MIP formulation

The objective for the Inv-MR-Sort-SP problem is to learn the MR-Sort model that
best matches the learning set, and consequently restore the unknown preferences
directions, which possibly involve single-peaked/single-valley criteria. Therefore,
in order to maximize the number of correctly restored assignment examples, we
formulate the objective function as the following : Max

∑
j∈J? γj.

Finally, the MIP formulation for the Inv-MR-Sort-SP problem with single-
peaked and single-valley criteria is given below. We fix M to an arbitrary large
positive value, and ε an arbitrary small positive value. The table 6.1 synthesizes
the variables involved in this mathematical program.

Refinement of the objective function

In practice, the expression of the objective function (6.8a) is insufficient to fully
restore both MR-Sort usual parameters and the unknown preference directions.
More precisely, we frequently fail to diagnose gain and cost criteria since the results
indicate single-peaked/single-valley criteria instead. In fact, with this objective
function 6.8a, the MIP ignores how to discriminate between single-peaked/single-
valley criteria and monotone criteria.

In order to solve this issue, we add another term to the objective function :∑
i∈N bi (to be maximized). The rationale behind the maximization of this term

is to foster bi (which is half of the width of [bi, bi]) to extend [bi, bi] as much as
possible. This would enable to easily deduce a gain or a cost criterion if one of the
bounds reaches mini or maxi.

This term should not be optimized at the cost of the number of correctly
restored assignments; for this reason, we set to 1∑

i∈N maxi
the coefficient of this new

term of the objective function.
Therefore the new version of the objective of the MIP is the following :

max
∑
j∈J?

γj +
1∑

i∈N maxi

∑
i∈N

bi (6.9)

Obviously, the first term maximizes the number of correctly assigned alternatives

96

max
∑
j∈J?

γj (6.8a)∑
i∈N

cij ≥ λ+M(γj − 1) ∀j ∈ J?2 (6.7a)∑
i∈N

cij + ε ≤ λ−M(γj − 1) ∀j ∈ J?1 (6.7b)∑
i∈N

wi = 1 (6.8b)

cij ≤ δij ∀j ∈ J?,∀i ∈ N (6.6a)
cij ≥ δij − 1 + wi ∀j ∈ J?,∀i ∈ N (6.6b)
cij ≤ wi ∀j ∈ J?,∀i ∈ N (6.6c)

b⊥i − a
j
i = αj+i − α

j−
i ∀j ∈ J?,∀i ∈ N (6.1a)

αj+i ≤ βjiM ∀j ∈ J?,∀i ∈ N (6.1b)

αj−i ≤ (1− βji)M ∀j ∈ J?,∀i ∈ N (6.1c)

−Mσi +M(δij − 1) ≤ αj+i + αj−i − bi ∀j ∈ J?,∀i ∈ N (6.4a)

αj+i + αj−i − bi + ε ≤M.δij +M.σi ∀j ∈ J?,∀i ∈ N (6.4b)

M(σi − 1) +M(δij − 1) ≤ bi − αj+i − α
j−
i ∀j ∈ J?,∀i ∈ N (6.4c)

bi − αj+i − α
j−
i + ε ≤M.δij +M.(1− σi) ∀j ∈ J?,∀i ∈ N (6.4d)

b⊥i − bi ≥ mini − ε ∀i ∈ N (6.5a)
b⊥i + bi ≤ maxi + ε ∀i ∈ N (6.5b)
cij ∈ [0, 1], δij ∈ {0, 1} ∀j ∈ J?,∀i ∈ N (6.8c)

αj+i , αj−i ∈ R+ ∀j ∈ J?,∀i ∈ N (6.8d)

βji ∈ {0, 1} ∀j ∈ J?,∀i ∈ N (6.8e)
bi ∈ R, wi ∈ [0, 1], b⊥i ∈ R, σi ∈ {0, 1} ∀i ∈ N (6.8f)
γj ∈ {0, 1} ∀j ∈ J? (6.8g)
λ ∈ [0.5, 1] (6.8h)

and the second term fosters the restoration of monotone preference direction of
criteria.

97

Variable Domain Number of variables Definition
αj+i R+ n× |A?| First component of the absolute value |aji − b⊥i |

αj−i R+ n× |A?| Second component of the absolute value of |aji − b⊥i |

βji {0, 1} n× |A?| Binary variable indicating the sign of aji − b⊥i

σi {0,1} n
σi = 1 if criterion i is single-peaked,
σi = 0 if i is single-valley

γj {0,1} |A?| γj = 1 if alternative aj is correctly assigned
by the model, γj = 0 if not

δij {0,1} n× |A?| δij = 1 if aji ∈ Ai, δij = 0 if aji /∈ Ai

cij [0,1] n× |A?| cij = wi iff aji ∈ Ai (i.e, iff δij = 1),
cij = 0 if aji /∈ Ai (i.e, if δij = 0)

b⊥i R n Middle of the interval [bi, bi]

bi R n
Value of half the width of the
interval [bi, bi] on criterion i

wi [0,1] n Weight of a criterion i

λ [0,1] 1 Majority threshold

Table 6.1: Description of decision variables

6.2.5 Interpretation of the optimal solution

Once the above mathematical program is solved, the last remaining step is to derive
the MR-Sort learned parameters : ({di, i ∈ N ;wi, i ∈ N ;λ; 〈b〉 = (bh, h ∈ {1, ..., p}}.
We directly obtain weights values over criteria (wi, i ∈ N) and the associated
majority threshold λ from the corresponding variables in the optimal solution.

Here below, we illustrate how to infer the type of the criterion (gain, cost,
single-peaked, or single-valley) and the corresponding profile value by relying on
the variable σi :

Case σi = 1

This case means that the MIP identifies a single-peaked criterion for i. Therefore
we distinguish 3 cases :

• if b⊥i − bi ≤ minj∈J?{aji}, then criterion i is a cost criterion, and the profile
value is b⊥i + bi, i.e. Ai is covered by]−∞, b⊥i + bi], see Figure 6.1 case 3,

98

• if b⊥i + bi ≥ maxj∈J?{aji}, then criterion i is a gain criterion, and the profile
value is b⊥i − bi, i.e. Ai is covered by [b⊥i − bi,∞[, see Figure 6.1) case 2,

• otherwise, i is a single-peaked criterion, and Ai is covered by [b⊥i − bi, b⊥i + bi]
that is the interval profile, see Figure 6.1 case 1

Figure 6.1: Three cases for single-peaked criteria

Case σi = 0

This case means that the MIP identifies a single-valley criterion for i. Therefore
we distinguish 3 cases :

• if b⊥i − bi < minj∈J?{aji}, then criterion i is a gain criterion, and the profile
value is b⊥i + bi, i.e. Ai is covered by [b⊥i + bi,∞[, see Figure 6.2 case 3,

• if b⊥i + bi > maxj∈J?{aji}, then criterion i is a cost criterion, and the profile
value is b⊥i − bi, i.e. Ai is covered by [−∞, b⊥i − bi], see Figure 6.2 case 2,

• otherwise, i is a single-valley criterion, and Ai is covered by [−∞, b⊥i − bi] ∪
[b⊥i + bi,∞[that is the interval profile, see Figure 6.2 case 1.

6.2.6 General case

The MIP implementation previously given, is designed to retrieve the preference
directions of the whole set of criteria. However, in the general case, one can deal

99

Figure 6.2: Three cases for single-valley criteria

with some criteria whose preference directions are already known. It is possible to
translate such knowledge in the MIP formulation. We recall Q, with Q ⊆ N , the
set of criteria with unknown preference directions.

In order to bring additional information on preference directions to the imple-
mentation, we apply the following changes:

• Regarding the objective function 6.9, we need to replace
∑

i∈N bi by
∑

i∈Q bi,
since this term - that involves bi, the half width of [bi, bi] - pertains to criteria
in Q.

• Regarding the preference direction of a criterion i ∈ N rQ, we distinguish 4
cases:

– If i is a gain criterion, w.l.o.g. we add the constraint σi = 1. Moreover,
the constraint 6.5b becomes b⊥i + bi ≥ maxi.

– If i is a cost criterion, w.l.o.g. we add the constraint σi = 0. Moreover,
considering ε a small positive value, the constraint 6.5a becomes b⊥i −bi ≤
mini − ε.

– If i is a single-peaked criterion, we add the constraint σi = 1.
– If i is a single-valley criterion, we add the constraint σi = 0.

6.2.7 Extension to more than two categories

Our implementation can be extended to more than two categories by adding
supplementary variables and constraints to the mathematical program.

100

We introduce the following variables δhij, chij, α
jh+
i , αjh−i , βjhi , bhi , and b⊥hi ,

∀h ∈ {1, 2, . . . , p− 1}, which extend respectively the variables δij , cij , αj+i , αj−i , βji ,
bi, and b⊥i to take into account the multiple categories aspect.

In order to operate the extension, we must keep in mind how profiles that
delimits categories Ch, h = {1, 2, . . . , p− 1} are related to the approved sets which
are embedded : Api ⊆ A

p−1
i ⊆ Ap−2i ⊆ ... ⊆ A1

i = Xi.
More precisely, if i is a single-peaked criterion, we must ensure the inclusion of

the following intervals :

[b⊥p−1i − bp−1i , b⊥p−1i + bp−1i] ⊆ [b⊥p−2i − bp−2i , b⊥p−2i + bp−2i]

⊆ . . .

⊆ [b⊥1i − b1i , b⊥1i + b1i]

⊆ [minxi,maxi]

Conversely, if i is a single-valley criterion, we must ensure the inclusion of the
following intervals :

[mini, b
⊥p−1
i − bp−1i] ∪ [b⊥p−1i + bp−1i ,maxi]

⊆ [mini, b
⊥p−2
i − bp−2i] ∪ [b⊥p−2i + bp−2i ,maxi]

⊆ . . .

⊆ [mini, b
⊥1
i − b1i] ∪ [b⊥1i + b1i ,maxi]

⊆ [minxi,maxi]

We reformulate constraints 6.7a and 6.7b by taking into account more than two
categories. Regarding the extreme categories C1 and Cp, we must ensure these two
following constraints :

•
∑

i∈N c
1
ij + ε ≤ λ−M(γj − 1), ∀aj ∈ C1

•
∑

i∈N c
p−1
ij ≥ λ+M(γj − 1), ∀aj ∈ Cp

The first one is the constraint that enables the sorting of alternatives into C1,
whereas the second equation pertains to the sorting of alternatives into Cp.

In the general case (i.e. ∀aj ∈ Ch ⊂ [C2, Cp−1]), the two following constraints
must hold :

•
∑

i∈N c
h−1
ij ≥ λ+M(γj − 1), ∀aj ∈ Ch, h ∈ [2, p− 1]

•
∑

i∈N c
h
ij + ε ≤ λ−M(γj − 1), ∀aj ∈ Ch, h ∈ [2, p− 1]

101

In this case, the first constraint qualifies winning coalitions (or sufficient coali-
tions) of criteria in favor of the assignment of alternatives in Ch, while the second
constraint prevents these coalitions from being in favor of the assignment of alter-
natives in Ch+1.

To sum up, in this section, we presented a MIP implementation for the resolution
of the Inv-MR-Sort-SP. In next sections, we apply this method to artificial and
real data. We therefore discuss the performance of the method.

6.3 Experiments with artificial data

In this section, we study the performance of our proposed algorithm in terms of
three indicators : the computing time, the classification accuracy in generalization,
and the ability to restore MR-Sort models with correct preference directions (gain,
cost, single-peaked or single-valley). The experiments concern artificially generated
datasets.

6.3.1 Experimental design

In this part, we follow a similar experiment designed as in Chapter 4, except that
we consider two categories in our experiments. We recall the main steps.

Let consider a generated MR-Sort modelM0 representing the Decision Maker
preferences. Alternatives are randomly generated and correspond to n-tuples of
values (each tuple corresponding to n criteria evaluations). In order to form the
learning set L, used as input to our MIP algorithm, we apply the MR-Sort rule
with the modelM0 on these alternatives, and thus derive their assignments.

Alternatives are carefully generated so that we arrange balanced datasets (i.e.
equal number of assignments in each category). Therefore we solve the Inv-MR-
Sort-SP problem using the proposed algorithm and generate a learned model noted
M′, an optimal model in terms of the classification accuracy (CAv).

Generation of instances and model parameters

In our experiments, we consider a learning set of 200 assignment examples.
We draw a vector of performance values of alternatives in an independent and

identically distributed manner, such that the performance values are contained in
the unit interval discretized by tenths. In a similar manner, we randomly generate
profile values (either bi for monotone criteria or bi and bi with bi ≤ bi for single-
peaked/single-valley criteria). These values are chosen within the interval [0,1]
discretized by tenths (which gives in total 11 possible values).

102

To draw uniformly distributed weight vectors [23], we uniformly generate |N |−1
random values in [0, 1] sorted in ascending order. We then prepend 0 and append 1
to this set of values obtaining a sorted set of |N |+ 1 values. Finally, we calculate
the difference between each successive pair of values resulting in a set of |N | weights.
Therefore, their sum is equal to 1. We randomly draw the majority threshold λ in
[0,1].

To assess the ability of the algorithm to restore preference directions, we
randomly assign to q criteria over n, a preference direction among the four (gain,
cost, single-peaked and single-valley). For instance, for each criterion i ∈ Q, we
have 1 chance over 4 to assign to i a gain criterion, and the same chance for the
other preference directions. Thereby, the preference directions of these criteria are
assumed to be unknown in the learning set, meanwhile the remaining n− q criteria
are considered as gain criteria.

Performance metrics and tests parameters

We consider three main metrics in order to assess the performance of our method.
First, we consider computing time, which is the time (CPU) necessary to solve the
MIP algorithm.

Second, we compute the restoration rate of assignment examples. Our MIP
algorithm is an exact method, thus, we expect to restore the entire learning set L
withM′, the resulted model. Therefore, we assess the restoration performance on
test sets which are run throughM0 andM′. Test sets comprise newly and randomly
generated alternatives whose evaluations are drawn uniformly in [0.05,0.95]. This
allows us to compute the restoration rate (also called classification accuracy in
generalization noted CAg). As described in Chapter 2, CAg is the ratio between
the number of alternatives identically assigned in categories by bothM0 andM′,
and the number of alternatives.

Finally, we introduce the preference direction restoration rate (PDR). This
metric is the ratio between the number of criteria where preference directions
have been correctly restored inM′ and the cardinality of the set of criteria with
unknown preference directions (i.e. q).

In order to account for the statistical distribution of all the randomly selected
values, we independently select 100 different learning sets (each set is associated
to an individualM0) and apply our experimental design on each. Therefore we
obtain 100 results per metric that are aggregated. The series of tests consider the
following parameters. The number of criteria n varies in {4, 5, 6, 7, 8, 9}, q varies
in {0, 1, 2, 3, 4}, and the number of categories is set to 2. Test sets sizes contain
10000 alternatives. We executed experiments on a server endowed with an Intel
Xeon 1 Gold 6248 CPU @ 2.50GHz, 80 cores and 384 GB RAM. CPLEX 20.1 [30]

1Intel, and Intel Xeon are trademarks or registered trademarks of Intel Corporation or its

103

was used for the MIP resolution. In terms of CPU, we run our experiments using
10 reserved threads and adopt a timeout of one hour.

6.3.2 Results

In the following, we present the results of the randomly generated tests.

6.3.3 Computing time performance

Table 6.2 presents the median CPU time of the terminated instances (timeout
fixed to 1 hour). The execution time grows with the number of criteria and with
the number of criteria with unknown preference direction up to n = 7 and q = 2.
Beyond this limit, the execution time fluctuates. This behaviour can be explained
by the fact that it is influenced by irregularities on the number of terminated
instances which are considered for the median time computation.

In addition, Table 6.2 shows for each setting (n and q fixed), the percentage of
instances - over 100 - that terminated within the time limit, set to 1 hour.

Unsurprisingly, the number of terminated instances diminishes with both the
number of criteria and the number of criteria with unknown preference directions.
In particular, the rate falls from 95% with n = 4 to 31% with 9 criteria in the
model when q = 3.

Restoration rate in generalization

Concerning the classification accuracy (CAg) of the learned models (involving 4
to 9 criteria in the model and 0 to 4 criteria with unknown preference directions),
the performance values are globally comprised between 0.9 and 0.95 with 0.93 on
average. We do not notice a major trend over both the number of criteria and
the number of criteria with unknown preference directions. However, the results
obtained correspond to the performances of only terminated instances. Therefore,
we predict that the CAg rate would possibly degrade when executions above the
timeout are considered. Logically, the latter are the most difficult instances to
learn.

Preference direction restoration rate

Figure 6.3 shows the evolution of the preference direction restoration rate (PDR).
Globally, the PDR decreases with the increase of number of criteria in the model.

In addition, this indicator degrades moderately with q, the number of criteria with

subsidiaries in the United States and other countries.

104

unknown Number of criteria (n)

direction (q) 4 5 6 7 8 9

0 0.34 0.56 0.84 2.38 2.61 3.37

(100) (100) (100) (100) (100) (100)

1 1.51 3.23 4.53 7.22 19.15 18.68

(100) (100) (100) (100) (100) (91)

2 6.12 12.97 30.06 54.38 43.19 58.03

(100) (100) (94) (90) (72) (59)

3 37.48 76.68 72.46 76.29 59.32 25.91

(95) (89) (80) (54) (47) (31)

4 96.34 129.49 61.01 108.25 22.17 23.63

(59) (57) (52) (42) (27) (28)

Table 6.2: Median CPU Time (sec.) of instances solved in 1h, and number of
terminated instances in parentheses, with 4 to 9 criteria (n), and 0 to 4 criteria
with unknown preference directions (q)

105

unknown preference directions with respectively 55% and 35% for q = 1 and q = 4
considering 9 criteria in the model.

The results illustrated in the Table 6.3 give more insights into the behaviour
of the algorithm regarding PDR. We consider instances (with n varying from 4 to
9) involving one criterion with unknown preference direction, q = 1 (w.l.o.g. c1 is
assumed to be this criterion).

Figure 6.3: Preference direction restoration rate (PDR) considering 1 to 4 crite-
ria with unknown preference direction (q) (average performance over terminated
instances)

w1 ≤ 1
2n

1
2n
< w1 <

2
n

w1 ≥ 2
n

PDR 0.44 0.74 0.78

Table 6.3: PDR averaged over n (n varying from 4 to 9), according to the range of
weight of criterion c1

We analyze the impact of the weight of this criterion (w1) on the preference
direction restoration rate. The PDR rate is averaged over the number of criteria
(n) in the model (n ∈ {4, .., 9}) and distributed over three intervals:

[0, 1
2n
] ,] 1

2n
, 2
n
[, [2

n
, 1]. We interpreted these three intervals as three levels of

importance of w1 (respectively low level for [0, 1
2n
], medium level for] 1

2n
, 2
n
[, and

high level for [2
n
, 1]). As expected, the average PDR rises with the level of w1; we

have PDR = 44% for low level of importance, whereas 74% and 78% correspond
respectively to medium and high levels of importance of w1. It appears that the

106

MIP has more difficulty in correctly detecting the preference direction of a criterion
when this criterion has low importance.

Discussion

The experiments carried out on randomly generated instances give us an overview
of the performance of our method.

First, in terms of computation time, the MIP is affordable with medium-sized
models (less than 3 minutes for 200 alternatives in the learning set and up to n = 9
and q = 4). Furthermore, it is expected to perform better with more CPU threads
per run.

Second, regarding to the restoration of new assignment examples, our MIP
is quite accurate (with CAg = 0.93 on average, up to 9 criteria). It could be
interesting to allow all instances to terminate so we could have a more precise
judgment.

Third, our algorithm struggles to restore preference directions with large di-
mension of the problem (high values of n, q). But it still performs better than the
random choice that is 25% (that is one chance over four types of criteria).

Fourth, we observe a correlation between the PDR of criteria and the importance
of such criteria in the model. It is very difficult to restore the preference directions of
criteria with low importance (with weights less than 1

2n
). Obviously this behaviour

opens questions on the overfitting of parameters, which requires further studies.
Finally, it would be interesting to further investigate experimentally whether

larger learning sets, and more categories would impact the learning process.

6.4 Tests on a real-world data: the ASA dataset

The ASA2 dataset [62] constitutes a list of 898 patients evaluated on 14 medical
indicators (see Table 6.4). Indicators enable to assign patients into 4 ordered
categories (ASA1, ASA2, ASA3, ASA4). These categories are 4 different scores that
reveal the patient health. Based on the score of a given patient, anesthesiologists
decide whether or not to admit such a patient to surgery. This dataset is relevant
for our studies since it encompasses a criterion with single-peaked preference, which
is “Blood glucose level" (i.e. glycemia). For scalability reasons, our experiments
rely on the ASA dataset with the 8 most relevant criteria. They are presented in
bold in Table 6.4.

In order to construct two categories, we divide the dataset into two parts: Cate-
gory 2 representing patients in categories ASA1 and ASA2 (67% of the population,

2ASA stands for “American Society of Anesthesiologists”.

107

which represents the healthiest) and Category 1 representing those in categories
ASA3 and ASA4 (33% of the population, which are the sickest).

In the following, we construct three scenarios with three different sets of
assignment examples. Thus, we intend to learn the preference type of the criterion
“Glycemia” which is assumed to be unknown and yet to be “discovered” as a
single-peaked criterion.

For each experiment we report the number of distinct performances (values)
considered per criterion.

Attribute Domain (Unit) Direction
Age [0− 105] (year) cost
Diabetic {0,1} cost
Hypertension {0,1} cost
Respiratory failure {0,1} cost
Heart failure {0,1} cost
Heart rate [55− 123] (bpm) SP
Heart rate steadiness {0,1} gain
Pacemaker {0,1} cost
Atrioventricular block {0,1} cost
Left ventricular hypertrophy {0,1} min .
Oxygen saturation [43− 100](%) gain
Blood glucose level (glycemia) [0.5− 3.8](g/l) SP
Systolic blood pressure [9− 20.5](cmHg) cost
Diastolic blood pressure [5− 13](cmHg) cost

Table 6.4: Original criteria in the ASA dataset

First Dataset

First, the whole original dataset is considered with all 898 assignment examples
in the learning set. With this dataset as input to the MIP, we infer the type of
criterion of “Glycemia” and the MR-Sort parameters.

The resulting model given in Table 6.5 is computed in 40h33mn (≈ 145,980s)
execution time. The restoration rate of the assignment examples in the learning set
is CA = 99.4%. However, in the inferred model, the glycemia criterion is detected
as a cost criterion. Let us note that the inferred value for the limit profile on the
glycemia criterion (1.18 g/l) enables us to distinguish patients with hyperglycemia
from the others, but does not distinguish hypoglycemia from normal glycemia
(normal glycemia roughly corresponds to [0.9,1.2]). This is due to the distribution
of the glycemia values over the patients shown in Figure 6.4. This distribution
gives use the following observations :

108

• All patients with glycemia higher than 1.2g/l (hyperglycemia) are assigned
to Category 1.

• Some patients with normal glycemia [0.9, 1.2] g/l are also assigned to Category
1,

• Some patients with glycemia equal to 0.8 g/l or less (hypoglycemia) are
assigned to Category 2.

Instance settings Model parameters learned
Attributes #values Direction pref. dir. bi wi pref.

dir.
Age 103 (origin) cost known 72.9 0.01 _

Diabetic 2 (origin) cost known 0.99 0 _
Hypertension 2 (origin) cost known 0 0.01 _
Respiratory F 2 (origin) cost known 0.99 0.88 _
Pacemaker 2 (origin) cost known 0 0.02 _
Systolic BP 24 (origin) cost known 15 0.03 _
Diastolic BP 17 (origin) cost known 8.92 0.02 _
Glycemia 82 (origin) SP unknown 1.18 0.03 cost

λ = 0.98

Table 6.5: Inferred model with the first dataset (898 assignment examples)

Figure 6.4: Distribution of patients’ glycemia in the first dataset

109

Second Dataset

Continuing our study, we investigate on ways to restore the “correct” preference
direction (i.e. single-peaked) of “Glycemia” with a subset of carefully selected
patients. Thus, in the second step, we choose to remove from the first dataset the
97 patients assigned to Category 1 and whose glycemia values is within [0.9, 1.2] g/l
(i.e., with normal glycemia). We aim at retrieving a single-peaked preference for
the “Glycemia” criterion. The distribution of glycemia values in the new learning
set of the remaining 801 patients is provided in Figure 6.5.

Figure 6.5: Distribution of patients’ glycemia in the second dataset

We solve the inference problem with the MIP algorithm using this second
learning set. The computation time falls to 56mn (≈ 3360s), and the inferred model
(see Table 6.6) restores 99.8% of the learning set. Once again, the restoration rate is
high, but the algorithm still detects a cost criterion for the glycemia criterion. The
outputted model does not make any difference between patients with hypoglycemia
and those with normal glycemia.

Third Dataset

At the final step, we remove from the second dataset, patients in Category 2 for
which the glycemia value is less than 0.9 (hypoglycemia). This new configuration
leads to a dataset of 624 patients. In this last dataset, patients suffering from
hypoglycemia or hyperglycemia are both assigned to Category 1 while patients
with normal glycemia are assigned to Category 2. This illustration is depicted by
the histogram in Figure 6.6.

110

Instance settings Model parameters learned
Attributes #values Direction pref. dir. bi wi pref.

dir.
Age 103 (origin) cost known 5.9 0 _

Diabetic 2 (origin) cost known 0.99 0 _
Hypertension 2 (origin) cost known 0 0.01 _
Respiratory F 2 (origin) cost known 0 0.01 _
Pacemaker 2 (origin) cost known -0.01 0 _
Systolic BP 23 cost known 15 0.01 _
Diastolic BP 15 cost known 8.5 0.01 _
Glycemia 82 (origin) SP unknown 1.18 0.96 cost

λ = 0.99

Table 6.6: Inferred model with the second dataset (801 assignment examples)

With this dataset, the MIP algorithm runs in 4mn30s (≈ 270s) and results
are given in Table 6.7. The computed model restores all the assignment examples,
and the MIP finally identifies glycemia as single-peaked criterion. In addition, the
approved values [0.93, 1.18] can be reasonably interpreted as normal glycemia.

Figure 6.6: Patients’ glycemia in the third dataset

This illustrative example shows that our model is able to infer an MR-Sort
model and to retrieve single-peaked criteria. However, the learning set should be
sufficiently informative i.e should encompass more assignment examples that are
not redundant.

111

Instance settings Model parameters learned
Attributes #values Direction pref. dir. bi wi pref.

dir.
Age 103 (origin) cost known 3.3 0 _

Diabetic 2 (origin) cost known 0 0 _
Hypertension 2 (origin) cost known 0 0 _
Respiratory F 2 (origin) cost known 0.99 0 _
Pacemaker 2 (origin) cost known 0 0 _
Systolic BP 23 cost known 12.88 0.01 _
Diastolic BP 15 cost known 9 0.01 _
Glycemia 73 (origin) SP unknown [0.93,1.18] 0.99 SP

λ = 1

Table 6.7: Inferred model with the third dataset (624 assignment examples)

Typically, a carefully crafted set of assignment examples which takes into
account all the combinations of alternatives values (e.g. values randomly drawn
from each approved values sets of criteria) is useful for these learning tasks.

6.5 Conclusion

As a conclusion to our chapter, we proposed a MIP-based method to infer an MR-
Sort model from a set of assignment examples when considering single-peaked/single-
valley preferences. Our inference procedure enables simultaneously to retrieve
from the dataset, an MR-Sort model and preference directions of criteria. Our
experiments give good results, except it is limited by the size of the model which
becomes rapidly intractable (200 alternatives, 4 criteria). Experiments suggest
that the correct restoration of criteria preference directions requires datasets of
significant size. The design of an efficient heuristic which is tractable with large
datasets is the subject of the next chapter.

112

Chapter 7

An heuristic algorithm for the
resolution of the Inverse MR-Sort
problem with single-peaked
preferences

Contents
7.1 Introduction and reminder 114

7.1.1 Motivations and specificity of the approach 114
7.2 The heuristic-based method 114

7.2.1 The Sobrie heuristic for the learning of profiles 115
7.2.2 Initialization of single-peaked profiles 119
7.2.3 First strategy for learning of single-peaked profiles . . . 120
7.2.4 Second strategy for learning of single-peaked profiles . . 120

7.3 Numerical tests and discussion 123
7.3.1 Tests and comparisons between the two variants 123
7.3.2 Advanced tests with the first variant on synthetic data . 125
7.3.3 Tests on ASA dataset 129
7.3.4 Tests on public repository datasets 130
7.3.5 Discussion . 133

7.4 Conclusion . 134

113

7.1 Introduction and reminder

This chapter is about the implementation of an heuristic for the Inverse-MR-Sort
problem with single-peaked preferences. In this chapter, we assume that the
preference directions are known in advance including single-peaked/single-valley
preferences. First, we prepare the ground for our proposal by introducing the
principle. Second, we fully describe our approach which comprises two variants
for the learning of MR-Sort parameters with single-peaked preferences in Section
7.2. In the third section, we carry out some experiments on both artificial data
and real case instances. We analyse our results and compare them in Section 7.3.

7.1.1 Motivations and specificity of the approach

In the last chapter, we studied how to discover a single-peaked pattern on criteria
given a learning set. On the one hand, the method performs two tasks : retrieving
appropriate preference directions (i), and the rest of the MR-Sort parameters (ii).
On the other hand, we show that experiments are not sustainable at large scale.

From these lessons, a compromise resides on focusing on a single task (learning
MR-Sort parameters) while using an algorithm that is more scalable. Thus, we
consider for this goal an heuristic-based approach. By doing that, we expect to
reduce considerably the computation burden. In addition, we ground our method
on the Sobrie’s metaheuristic, which has been tested and proved to be efficient [90].

Therefore, we are interested in investigating an heuristic for the learning of
MR-Sort models with single-peaked preferences (knowing in advance the preference
directions of criteria).

Considering a learning set L = {(a, c(a));∀a ∈ A? ⊂ X}, we intend to learn
the following parameters : ({wi : i ∈ N}, λ, 〈b〉). Thus, we call this problem
IMSS (Inverse-MR-Sort-SP) which consists to retrieve the MR-Sort parameters -
including single-peaked preferences - that best restore the assignment examples.

7.2 The heuristic-based method

The core of our contribution resides on the learning of single-peaked profiles (in
order words, the values of the profile intervals [bi, bi]). The optimization of the
weights is similar to that in Sobrie’s metaheuristic [90].

Therefore in the following, we recall briefly and specifically the heuristic of
Sobrie [90] that pertains to the learning of profiles. Then, we expose our heuristic
in two variants. The first one consists to randomly and successively learn a first
then a second interval value of the profiles of single-peaked criteria. Our second

114

variant consists in learning simultaneously both interval values of single-peaked
criteria.

7.2.1 The Sobrie heuristic for the learning of profiles

The Sobrie’s metaheuristic [90] processes profiles in two phases : the initialization
phase and the optimization phase.

Therefore, we propose to detail these two phases which are useful for their
adaptation to single-peaked criteria.

Initialization of profiles

First, we recall the initialization algorithm described in [90] (see Algorithm 3). The
goal of this phase is to construct heuristically profiles values i.e by leveraging the
information contained in the learning set.

Let us define by A?hi , the set of evaluations on criterion i of alternatives assigned
in category Ch, ∀i ∈ N , ∀h ∈ {1, ..., p}. In other words, A?hi = {∀aji ∈ A? : c(aj) =
Ch}. The rationale of Algorithm 3, is to allocate to bhi a value that plays the
most discriminating role in assigning alternatives into categories (i.e. optimizes the
classification accuracy).

The construction of bhi takes into account only 2 sets A?hi and A?h+1
i , ∀h ∈

{1, ..., p− 1}. Thus, the set of candidate values is A?hi ∪ A?h+1
i .

Assuming w.l.o.g. that i is a gain criterion, ideal values for bhi are alternative
evaluations aji such that alternatives assigned to Ch or above (resp. strictly below
Ch) , are those whose evaluations on i are greater (resp. lower) than aji . In addition,
the disproportion between the size of the sets A?hi and A?h+1

i is also taken into
account for the choice of bhi .

Therefore, the candidate values b ∈ A?hi ∪ A?h+1
i for bhi are assessed according

to the following score [90]:

score(b) = (|{ai ∈ A?h+1
i ; ai ≥ b}| − |{ai ∈ A?h+1

i ; ai < b}|)× (1− |A
?h+1
i |
|Ai|

)

+ (|{ai ∈ A?hi ; ai < b}| − |{ai ∈ A?hi ; ai ≥ b}|)× (1− |A
?h
i |
|Ai|

),

b ∈ A?hi ∪ A?h+1
i

(7.1)
To sum up, the choice of bhi depends on three factors :

• the maximum and the gap between the number of alternatives whose evalua-
tions are greater than bhi and those whose evaluation are lower than bhi .

115

Algorithm 3: Initialization of profile values (Sobrie’s algorithm [90])
Input: Subsets of the evaluations (on criterion i) of alternatives (assigned

to category Ch) : A?hi , ∀i ∈ N , ∀h ∈ {1, ..., p}
1 foreach profile bh ∈ {b1, ..., bp−1} do
2 foreach criterion i randomly chosen do
3 bhi = argmax

b∈A?h
i ∪A

?h+1
i

score(b) ;

4 end
5 end

• the representativeness over A?i of A?hi (|A
?h
i |
|Ai|) or A

?h+1
i (|A

?h+1
i |
|Ai|). In the score,

this factor is used in order to balance under-represented or over-represented
sets A?hi and A?h+1

i .

The same score is used in Algorithm 3 line 3. The final value of bhi is the
candidate value b ∈ A?hi ∪ A?h+1

i whose score is the maximum.

Optimization of profiles

Here, we first give some details about the optimization of a single value bhi (described
in Algorithm 4) before exposing the complete heuristic for the entire profile 〈b〉
(described in Algorithm 5).

The objective of the optimization of profiles is to readjust them after possible
changes occurred during the optimization of weights and the majority threshold.
First, the procedure of Algorithm 4 takes as input : A∗i , the set of alternatives
evaluations on criterion i, and I = [bh−1i , bh+1

i], the interval of moves of bhi .
Then, we define Bh

i = {ai ∈ A∗i : bh−1i < ai < bh+1
i } as the set of possible moves

of bhi (Algorithm 4 line 1). To evaluate the quality of each move m, the choice of
m is made as a compromise between the two following measures :

1. the desirability ratio of the move, noted rm, which is an evaluation of the
gain of better assignments obtained by the move (Algorithm 4 line 4).

2. the distance between the current profile value bhi and the next move m :
d(bhi ,m) = |bhi − m|. The goal of this measure is to encourage extreme
moves (moves with a high d(bhi ,m) value) which helps to avoid local optima
(Algorithm 4 line 5).

We introduce the following sets in order to compute the desirability ratio. It
is the same sets as described in [90] in which we use m as indices instead of δ
(δ = bhi −m) :

116

Algorithm 4: Improvement of the profile value given the criterion i, and
category h
Input: Current profile value : bhi
The interval of moves of bhi : I = [bh−1i , bh+1

i]
The set of alternatives evaluations on criterion i : A∗i
Output: New profile value bhi

1 Construct Bh
i = {ai ∈ A∗i : bh−1i < ai < bh+1

i }, the set of possible moves of
bhi ;

2 m = bhi , rm = 0;
3 foreach move m′ randomly chosen in Bh

i do
4 Compute rm′ , the desirability ratio of the move m′ ;
5 Compute the d(bhi ,m′) = |bhi −m′|, the distance between bhi and m′;
6 if rm′ ≥ rm and d(bhi ,m′) ≥ d(bhi ,m) then
7 m = m′ ;
8 rm = rm′ ;
9 end

10 end
11 Draw a random number ε ∈ [0, 1] ;
12 if ε ≤ rm then
13 bhi = m;
14 Update the alternatives assignments ;
15 end

• V h
i,m : the set of alternatives misclassified in Ch+1 instead of Ch (or Ch

instead of Ch+1), for which the move m on the criterion i leads to a correct
assignment.

• Qh
i,m : the sets of alternatives correctly classified in Ch+1 (or Ch) for which

the move m on the criterion i leads to a misclassification.

• W h
i,m : the set of alternatives misclassified in Ch+1 instead of Ch (or Ch

instead of Ch+1), for which the move m on the criterion i does not lead to a
correct assignment, but strengthens the criteria coalition in favor of a correct
classification.

• Rh
i,m: the sets of alternatives misclassified in Ch+1 instead of Ch (or Ch

instead of Ch+1), for which the move m on the criterion i does not lead to a
correct assignment, but weakens the criteria coalition in favor of the correct
classification.

• T hi,m: the sets of alternatives misclassified in a category higher than Ch+1

117

(or in a category lower than Ch) for which the move m on the criterion i
strengthens the criteria coalition in favor of a classification that comes closer
to the correct one.

The rationale of the desirability score is to foster the choice of values that
optimize the classification accuracy (CA). Therefore the desirability ratio is :

rm =
kV |V h

i,m|+ kW |W h
i,m|+ kT |T hi,m|+ kQ|Qh

i,m|+ kR|Rh
i,m|

dV |V h
i,m|+ dW |W h

i,m|+ dT |T hi,m|+ dQ|Qh
i,m|+ dR|Rh

i,m|
(7.2)

In this equation, kV ,kW ,kT ,kQ,dV ,dW ,dT ,dQ and kV represent empiric coefficients
(set in [90, 88]) that enable to stress the importance of some sets in comparison to
others.

The algorithm of [90] considers the optimal move m in Bh
i as the one that

maximizes the desirability score while also maximizing the distance between the
move and the current profile value bhi (Algorithm 4: lines 6 to 9).

Once such move m has been preselected, the achievement of m is conditioned by
a random factor, which prevents bad moves (for instance moves with very small rm)
to be achieved (Algorithm 4 lines 11-12). Finally, if the move m has been achieved,
the assignment examples are also updated, as well as the CA score (Algorithm 4
line 14).

After the improvement of a single value bhi , it is trivial to achieve the update of
the complete profile 〈b〉.

As shown in Algorithm 5, it consists in readjusting one after the other, each
frontier profile bh, h ∈ {1, ..., p − 1} that delimits categories . For each frontier
bh = (bh1 , ..., b

h
i , ..., b

h
n), the update of profiles values bhi (performed by Algorithm 4)

is random with regards to criteria. This is key since it randomizes the construction
order of the components of profiles (Algorithm 5).

Algorithm 5: Initial algorithm of Sobrie [90] for the update of profiles
Input: Current profile b
Output: The improved profile b

1 foreach profile bh ∈ {b1, ..., bp−1} do
2 foreach criterion i randomly chosen do
3 Run Algorithm 2 on bhi with the parameters I = [bh−1i , bh+1

i], A∗i ;
4 end
5 end

In the next subsections, we introduce the adaptations of the learning of profiles
when the learning set reflects single-peaked preferences. We explain how to initialize
and learn the profiles of single-peaked criteria.

118

7.2.2 Initialization of single-peaked profiles

In order to heuristically compute initial values of the single-peaked profiles, we
describe the following algorithm (Algorithm 6). Let us reconsider the sets A?hi ,
∀i ∈ N , ∀h ∈ {1, ..., p}, described previously as A?hi = {∀aji ∈ A? : c(aj) = Ch}.
Let us assume w.l.o.g. that i is a single-peaked criterion. Here, we consider the
initialization of profile intervals values bhi , b

h

i , ∀h ∈ {1, ..., p− 1}, ∀i ∈ N .
The construction of the profiles begins with inner intervals (i.e. [bp−1i , bp−1i]).

Let b⊥p−1i =

∑
a
j
i
∈A?p

i

aji

|A?p
i |

, the mean value of evaluations comprised in [bp−1i , b
p−1
i], which

is an estimation of the middle of the interval profile [bp−1i , b
p−1
i] (Algorithm 6 line

2).
Then, we approximate bp−1i (resp. bp−1i) by averaging evaluations aji ∈ A

?p−1
i

that are lower (resp. greater) than b⊥p−1i (Algorithm 6 lines 3-4).
We iterate the same reasoning throughout the categories until the last iteration

which pertains to the construction of b1i and b
1

i

Algorithm 6: Initialization algorithm for single-peaked profiles
Input: Single-peaked criterion i,
A?hi ,∀h ∈ {1, ..., p}
Output: The initial value of profile bhi , ∀h ∈ {1, ..., p− 1}

1 foreach category h ∈ {p− 1, ..., 1} do

2 b⊥hi =
∑

a
j
i
∈A?h+1

i

aji

|A?h+1
i |

;

3 bhi =
∑

a
j
i
∈A?h:a

j
i
<b⊥h

i

aji

|A?h
i |

;

4 b
h

i =
∑

a
j
i
∈A?h:a

j
i
>b⊥h

i

aji

|A?h
i |

;
5 end
6 foreach category h ∈ {p− 1, ..., 2} do
7 if bh−1i ≥ bhi then bh−1i = bhi ;
8 if b

h

i ≥ b
h−1
i then b

h−1
i = b

h

i ;
9 end

At the end of Algorithm 6, it is not guaranteed that profiles intervals are
properly embedded. Therefore, lines 6-9 of Algorithm 6 enable to meet the following
conditions : bh−1i ≤ bhi and bhi ≤ b

h−1
i , ∀h ∈ {p− 1, ..., 2}

In the following we expose our two variants of the heuristic for the optimization
of single-peaked profiles. The first one consists in updating both values of the

119

profile intervals successively, and the second consists in updating both values
simultaneously.

7.2.3 First strategy for learning of single-peaked profiles

With single-peaked criteria, the Sobrie heuristic for learning profiles in [90] is no
more applicable since there are two profile values per single-peaked criterion, per
category.

Our first strategy consists of learning successively and randomly the two intervals
bounds of single-peaked profiles (see Algorithm 7).

Let us assume w.l.o.g. that i is a single-peaked criterion.
First, the interval bounds are chosen randomly (Algorithm 7 lines 6-7). Lines 8-9

and lines 11-12 of Algorithm 7 show two orders of learning the bounds : whenever
we learn bhi (with Algorithm 4), bhi is fixed, and vice-versa. The optimization run
of both bounds is performed in one iteration of the inner loop of Sobrie algorithm
[90].

7.2.4 Second strategy for learning of single-peaked profiles

Assuming i a single-peaked criterion, our goal is to learn the lower bound bhi and the
upper bound bhi , which are the interval profiles of i. Our second strategy consists
in simultaneously learning bhi and bhi of this criterion (see Algorithm 8).

At each iteration for the optimization of the profiles, we enumerate all the
possible moves of both bounds namely Bh

i = Bh
i × B

h

i , the Cartesian product of
the set of moves of each bound (see Algorithm 8 line 7).

Similarly to the case of monotone criteria, we evaluate a couple of moves (m,m′)
(m for the lower bound and m′ for the upper bound of the interval profile) regarding
two aspects :

• the desirability ratio r(m,m′) of the couple (m,m′), which indicates the level of
improvement in the classification accuracy. It is computed with the formula
of Equation 7.2, except that the sets of possible moves are constructed in
accordance with the single-peaked construction (see Algorithm 8 line 11).

• the distance between the two intervals [bhi , b
h

i] and [m,m′] (see Algorithm 8
line 12). In our case with single-peaked criteria, we adapt this measure by
considering the following distance between two intervals of profiles :

d([bi, bi], [b
′
i, b
′
i]) = |b′i − bi|+ |b′i − bi| (7.3)

with [bi, bi] the current interval profile, [b′i, b′i] the new interval profile.

120

Algorithm 7: Reformulation of Sobrie’s algorithm for the learning of
profiles with SP/SV criteria (variant 1)
Input: Current profile b
Output: The improved profile b

1 foreach profile bh ∈ {b1, ..., bp−1} randomly chosen do
2 foreach criterion i randomly chosen do
3 if i is a gain or a cost criterion then
4 Run Algorithm 2 on bhi with the parameters I = [bh−1i , bh+1

i], A∗i ;
5 else
6 Draw a random number ε ∈ [0, 1] ;
7 if ε < 0.5 then
8 Run Algorithm 2 on bhi with the parameters I = [bh−1i , bh+1

i],

A∗i considering b
h

i fixed ;
9 Run Algorithm 2 on bhi with the parameters I = [bh−1i , bh+1

i],
A∗i considering b

h
i fixed ;

10 else
11 Run Algorithm 2 on bhi with the parameters I = [bh−1i , bh+1

i],
A∗i considering b

h
i fixed ;

12 Run Algorithm 2 on bhi with the parameters I = [bh−1i , bh+1
i],

A∗i considering b
h

i fixed ;
13 end
14 end
15 end
16 end

After the evaluation of the quality of the couple of moves, we select the optimal
couple : the one that maximizes the desirability score r(m,m′) and the distance
measure regarding the current position (i.e. [b′i, b′i]) (see Algorithm 8 lines 13-16).
Once again, we achieve the move if r(m,m′) is be sufficiently strong, and also update
the resulting changes in assignment examples (see Algorithm 8 lines 18-22).

Strategy for the selection process of the profile moves

For both variants, we describe in the following a local heuristic for the selection
process of the profiles moves. In the previous versions, the selection of move occurs
only when a better score is simultaneously found in terms of desirability score
(r(m,m′)) and distance (d([bi, bi], [b′i, b′i])).

A slightly different selection strategy consists in calculating a score, which is a

121

Algorithm 8: Sobrie’s algorithm for the learning of profiles adapted to
SP/SV criteria (variant 2)
Input: Current profile b
Output: The improved profile b

1 foreach profile bh ∈ {b1, ..., bp−1} randomly chosen do
2 foreach criterion i randomly chosen do
3 if i is a gain or a cost criterion then
4 Run Algorithm 2 on bhi with the parameters bh−1i , bh+1

i , A∗i ;
5 else
6 I = [bh−1i , bh+1

i], I = [bh−1i , bh+1
i] ;

7 Define Bh
i = {ai ∈ A∗i : bh−1i < ai < bh+1

i },
B
h

i = {ai ∈ A∗i : bh−1i < ai < bh+1
i } ;

8 Build Bh
i = {(m,m′) : ∀m ∈ Bh

i ,∀m′ ∈ B
h

i }, the set of couple of
moves ;

9 (m,m′) = (bhi , b
h

i), r(m,m′) = 0;
10 foreach couple of moves (m′′,m′′′) randomly chosen in Bh

i do
11 Compute r(m′′,m′′′), the desirability ratio of the couple

(m′′,m′′′) ;
12 Compute the d([bhi , b

h

i], [m
′′,m′′′]) = |bhi −m′′|+ |b

h

i −m′′′|,
the distance between the two intervals [bhi , b

h

i] and [m′′,m′′′];
13 if r(m′′,m′′′) ≥ r(m,m′) and

d([bhi , b
h

i], [m
′′,m′′′]) ≥ d([bhi , b

h

i], [m,m
′]) then

14 (m,m′) = (m′′,m′′′) ;
15 r(m,m′) = r(m′′,m′′′) ;
16 end
17 end
18 Draw a random number ε ∈ [0, 1] ;
19 if ε ≤ r(m,m′) then
20 (bhi , b

h

i) = (m,m′) ;
21 Update of the alternatives assignments ;
22 end
23 end
24 end
25 end

weighted sum of the two measures :
it ∗ ω1

No
r(m,m′) +

(No − it) ∗ ω2

No
d([bi, bi], [b

′
i, b
′
i])

122

, with ω1, ω2 two appropriate coefficients. Thus, the coefficients it∗ω1

No
and (No−it)∗ω2

No

are function of the current iteration. On the one hand, the rationale is to se-
lect moves with large amplitude, which promote diversification of moves at the
beginning of iterations. On the other hand, we choose moves with higher score
of desirability, which foster the precision, near the end of iterations (maximum
number of iterations).

In this section, we learn how to take into account single-peaked criteria in the Inv-
MR-Sort-SP problem with two variants of the component of Sobrie’s metaheuristic
that learns profiles. For the sake of simplicity and readability, we specifically
consider the case of single-peaked criteria on these proposals. Nevertheless, the
same rationale can be applied in the case of single-valley criteria. As previously
mentioned, the remaining of the algorithm (learning of weights and majority
threshold, renewal process of the evolutionary algorithm) does not differ from the
initial algorithm. In the rest of the chapter, we investigate the performance of our
contributions through some numerical experiments.

7.3 Numerical tests and discussion

We detail in this section some experiments carried out in order to assess our
algorithms. First, we present some results on the comparison between the two
variants of our contribution : we compare and discuss on the advantages and
disadvantages of our variants. As we solve the MR-Sort-Inv-SP problem, we are
interested to evaluate the performance of our approaches in terms of computation
time, classification accuracy in validation (CAv) and the classification accuracy in
generalization (CAg) of the MR-Sort models learned.

Secondly, we extend our tests to larger datasets sizes and noisy data using the
most appropriate variant. We consider large learning sets with 2000 assignment
examples and noisy datasets (10%, 20% of erroneous data). We also conduct some
experiments on real case datasets (ASA dataset [62] and instances from the UCI
repository [29]).

7.3.1 Tests and comparisons between the two variants

In the following experiments, we consider the complete metaheuristic in order
to learn the MR-Sort parameters (weights and profiles) including single-peaked
criteria. Here is the following settings of this experiment. We consider 2 categories
and 5 criteria in the models, including 4 gain criteria, and the last criterion that
varies between gain, cost, single-peaked, and single-valley criterion. The learning
set size is fixed to |L| = 500.

123

In order to generate the instances and the model parameters, we randomly
draw alternative evaluations in [0.05, 0.95]. In addition, profiles evaluations were
drawn in [0.1, 0.9] for gain criteria, while for single-peaked criteria, bi and bi are
randomly chosen in [0.1,0.9], with bi < bi. Weights are randomly distributed wi in
[0,1], ∀i ∈ N and λ ∈ [0.5, 1].

To assess the performance of our algorithm in generalization, we run our method
with 10000 alternatives as a test set. We also repeat our experiments 100 times in
order to have a meaningful estimation of our metrics.

The algorithm parameters opted for this experiment are the same as the
parameters chosen in the initial algorithm (i.e 20 iterations for the heuristic that
updates the profiles, 30 iterations for the whole optimization of weights and profiles,
and 10 models in the population)

We consider our two resolution strategies :

1. the first variant (successive update of the 2 limits profiles of the single-peaked
interval) and the improvement for the selection of good moves.

2. the second variant (simultaneous update of the 2 limits profiles of the single-
peaked interval) and the improvement for the selection of good moves.

Crit. type Strategy Time CAv (validation) CAg (generalization)

Gain crit. _ 15s 99% 98%

Cost crit. _ 16s 99% 98%

SP crit. variant 1 24s 99% 98%

SV crit. variant 1 33s 99% 98%

SP crit. variant 2 > 1h 99% (10 instances) 98% (10 instances)

SV crit. variant 2 > 1h 99% (10 instances) 98% (10 instances)

Table 7.1: Results of MR-Sort learning algorithm when varying the preference
direction of one criterion (5 criteria, 2 categories, 500 alternatives). Tests on variant
2 carried out with only 10 problem instances because of the computation burden

The experiments results of Table 7.1 show that the variant 2 struggles to learn
models in a reasonable time (more than 1 hour run) compared to the version 1.

124

This can be explained by the behaviour of variant 2 which is a greedy algorithm
since it computes and compares at each iteration, all the possible moves which
represent a cartesian product of two sets. The classification accuracy (CAv and
CAg) is almost perfect (≈ 99.9%), whenever the last criterion preference direction
is single-peaked (SP) or single-valley (SV) and whatever the chosen method.

Despite the good results in classification accuracy of the second variant, the
first variant outranks the second one in most of the cases because of its efficiency in
terms of computation time. Nevertheless, the second variant could be an equally-
ranked competitor to the first one if the evaluation set is small (i.e. small |Xi| for
single-peaked criteria i).

In the remaining of the experiments, we only use the first variant (and not the
second variant for the sake of reducing computational burden) to solve Inv-MR-
Sort-SP problems.

7.3.2 Advanced tests with the first variant on synthetic data

In this part, we extend our tests to more alternatives in the learning set and noisy
datasets. We follow the analogous experimental protocol as in the previous tests,
except some particularities.

Here, we consider in the MR-Sort models 7 criteria and 2 categories. We vary
the following parameters :

• the number of single-peaked criteria : |S| ∈ {0, ..., 7}. Other criteria are gain
criteria by default.

• the learning set size : |L| ∈ {250, 500, 750, 1000, 2000}

• the noise level : ρ ∈ {0, 0.1, 0.2}

In order to properly illustrate single-peaked criteria, we randomly generate
alternatives but constrain the values in such a way to have a minimum of 20% of
alternatives (L) in each category. The profiles values of gain criteria are randomly
drawn in [0.1,0.9], whereas bi is randomly chosen between the 2nd and 4th decile,
and bi is randomly chosen between the 6th and 8th decile of the evaluation scale Xi

for single-peaked/single-valley criteria.

Results on computation time

We carried out some experiments related to computational time involving 7 criteria,
2 categories, and two degrees of noise in the dataset (ρ ∈ {0, 0.2}).

We first varied the number of single-peaked criteria in the model (see Figure
7.1a). We clearly observe a linear trend of the curves, and a slope that increase

125

(a) Noise free datasets (ρ = 0) (b) Noisy datasets (ρ = 0.2)

Figure 7.1: Computation time (seconds) for the learning of problems involving 7
criteria, 2 categories and 2 levels of noise, per number of single criteria (s) and
learning set size

(a) Case with 1 single-peaked criterion (b) Case with 7 single-peaked criteria

Figure 7.2: Computation time (seconds) for the learning of problems involving 7
criteria, 2 categories per level of noise and learning set size

with to the number of single-peaked criteria. Obviously, it demands more time to
retrieve the parameters of more single-peaked criteria in the model since there are
more profile values to learn. However, the algorithm requires only 300s (less than 5
minutes) for learning an instance of 2000 alternatives, which is fairly satisfactory.
Besides, we still observe a linear curve (Figure 7.1b) on the computation time for
instances with noisy datasets.

Furthermore, when contrasting the noisy free datasets (ρ = 0) and noisy
datasets (ρ = 0.1 or ρ = 0.2) results (see Figure 7.2a and Figure 7.2b), there are
two distinct curve slopes. This denotes a higher computation time for noisy datasets
(independently of the level of noise) compared to the one with noise-free datasets.
Seemingly, this behaviour does not depend on the number of single-peaked criteria

126

in the model.

Results on classification accuracy in validation (learning phase)

(a) Classification accuracy in validation
(with ρ = 0)

(b) Classification accuracy in validation
(with ρ = 0.2)

Figure 7.3: Classification accuracy (CA) of the learning set : for problems involving
7 criteria, 2 categories and noisy-free learning sets per number of single-peaked
criteria (s) and learning set size

(a) Classification accuracy in validation
(with one single-peaked criterion)

(b) Classification accuracy in validation
(with 7 single-peaked criteria)

Figure 7.4: Classification accuracy in validation (CAv) of the learning set : for
problems involving 7 criteria, 2 categories per level of noise and learning set size

We test our algorithm on Inv-MR-Sort-SP problems with the same parameters
as the latter experiments in order to assess classification accuracy of the learning
set (CAv) (see Figure 7.3a and Figure 7.3b). We clearly observe a difference of
performance between noisy datasets (CAv ranges between 0.825 and 0.925) and free

127

noise datasets (CAv > 0.95). With noisy datasets, we remark a slight increase of
the CAv throughout the rise of assignment examples in learning sets. It is also more
difficult to restore assignment examples with instances with more single-peaked
criteria.

More generally, the results in Figure 7.4a and Figure 7.4b showed that the
algorithm restores more than a 80% of assignment examples even with 20% of noise
and 7 single-peaked criteria.

Results on classification accuracy in generalization

(a) Classification of the test set (ρ = 0) (b) Classification of the test set (ρ = 0.2)

Figure 7.5: Classification accuracy (CA) of the test set : for problems involving
7 criteria, 2 categories and 2 noise levels (ρ = 0 and ρ = 0.2) per number of
single-peaked criteria (s) and learning set size

The last series of tests enables us to evaluate the algorithm in terms of classifi-
cation accuracy in generalization (CAg). We can observe a similar trend as the
performance regarding CAv.

In particular, the generalization CAg ranges between 0.88 and 0.97 with noise
free datasets while with noisy datasets, it ranges between 0.75 and 0.88, with a
level of noise of 20%. We also notice an upward trend regardless the number of
single-peaked criteria throughout the increase of the learning set.

In conclusion, results obtained through our algorithms with artificial data are
instructive. Extended experiments shows that the gain obtained with large learning
sets is moderate in terms of classification accuracy, and profitable in terms of
computation time (compared to the execution time obtained with the exact method
in Chapter 6). It could be informative to pursue some experiments regarding
the learning performance with more than two categories, and different number of

128

criteria in the model. This would give us more insights on our approach and either
confirm or not our present results.

7.3.3 Tests on ASA dataset

In this section, we run our algorithm on the ASA dataset (an extended presentation
of the dataset is already given in Chapter 6). Briefly speaking, the ASA dataset is
made of 898 patients considered as alternatives and 14 medical indicators considered
as criteria. We choose to binarize this dataset into 2 categories : category 2
which represents healthiest patients and category 1, the remaining. We recall the
descriptive table of criteria of the dataset.

Attribute Domain (Unit) Direction
Age [0− 105] (year) cost
Diabetic {0,1} cost
Hypertension {0,1} cost
Respiratory failure {0,1} cost
Heart failure {0,1} cost
Heart rate [55− 123] (bpm) SP
Heart rate steadiness {0,1} gain
Pacemaker {0,1} cost
Atrioventricular block {0,1} cost
Left ventricular hypertrophy {0,1} min .
Oxygen saturation [43− 100](%) gain
Blood glucose level (glycemia) [0.5− 3.8](g/l) SP
Systolic blood pressure [9− 20.5](cmHg) cost
Diastolic blood pressure [5− 13](cmHg) cost

Table 7.2: Original criteria in the ASA dataset

For the sake of comparison with the exact method (the MIP) implemented in
Chapter 6, we performed our heuristic algorithm on the same dataset as in Chapter
6. Hence, we only consider 8 criteria for this test (in bold in Figure 7.2). In Table
7.3, we show the results obtained after the execution of the metaheuristic.

One advantage of this algorithm resides on its efficiency on computation time.
Compared to the exact method used to solve the problem in Chapter 6 (more than
40 hours of execution time), this metaheuristic runs in only 16min. In addition, we
obtain for both methods the same performance in classification accuracy : 99.4%.

Another advantage of the metaheuristic is that it outputs not only the best
model in terms of CA, but it also outputs the remaining models of the population.

129

Instance settings Model parameters learned
Attributes #values Direction pref. dir. bi wi pref.

dir.
Age 103 (origin) cost known 78.96.3 0.0001 _

Diabetic 2 (origin) cost known 1 0 _
Hypertension 2 (origin) cost known 0.99 0.0001 _
Respiratory F 2 (origin) cost known 0.6 0.9993 _
Pacemaker 2 (origin) cost known 0.99 0.0001 _
Systolic BP 23 cost known 15.99 0.0001 _
Diastolic BP 15 cost known 8.5 0.0001 _
Glycemia 73 (origin) SP known [0.7,1.1] 0.0002 _

λ = 0.9999

Table 7.3: Inferred model with the ASA dataset (898 assignment examples)

Therefore, it is possible to choose among “optimal models”, the one whose parameters
are the most instructive.

7.3.4 Tests on public repository datasets

Wine Quality

For these experiments, we dispose of 2 datasets (Red Wine Quality and White Wine
Quality) from the UCI Repository 1 [29]. As their names evokes, these datasets
are about the classification made of a large set of wines. The first dataset contains
1599 red wines and the second 4898 white wines ; all are assessed on their qualities
regarding 11 physicochemical properties considered as criteria.

We summarize in Table 7.4, the description of the criteria in our tests.
The considered categories varies from 3 (for poor quality) to level 9 (for excellent

quality) with 6 levels for Red Wine Quality dataset and 7 levels White Wine Quality
dataset.

We assume the criteria are single-peaked. One advantage of this assumption
is to be able to capture even gain and cost criteria, in addition to single-peaked
preferences.

Indeed, if the lower (resp. upper) bound of the learned profile interval is smaller
(resp. greater) than the minimum (resp. maximum) value of the evaluation scale of
the single-peaked criterion, we can easily deduce a cost (resp. gain) criterion since
only the upper (resp. lower) bound of the learned profile interval is discriminating.

Unfortunately, it is impossible to capture single-valley preferences with a similar
deduction. Reciprocally, if the criteria were single-valley criteria at the beginning,
we could have deduced gain, cost criteria, but not single-peaked criteria.

1https://archive.ics.uci.edu/ml/datasets/wine

130

Attribute Domain (Unit) Direction
Fixed acidity [3.8− 14.2] (g/dm3) SP
Volatile acidity [0.1− 1.1] (g/dm3) SP
Citric acid [0− 1.7] (g/dm3) SP
Residual sugar [0.6− 65.8] (g/dm3) SP
Chlorides [0.01− 0.35] (g/dm3) SP
Free sulfur dioxide [2− 289] (mg/dm3) SP
Total sulfur dioxide [9− 440] (mg/dm3) SP
Density [0.987− 1.039] (g/cm3) SP
Ph [2.7− 3.8] SP
Sulphates [0.2− 1.1] (g/dm3) SP
Alcohol [8− 14.2] (%) SP

Table 7.4: Criteria of both datasets (Red Wine Quality and White Wine Quality) :
11 criteria

Firstly, we run our algorithm on both Red Wine Quality and White Wine
Quality datasets in order to make a comparison with the algorithms tested in [29].
In order to compare our results, we perform 3 binary classifications, that result
from three bi-partition of wine qualities :

1. Experiment 1 : Category 1 = qualities {3,4,5}. Category 2 = qualities
{6,7,8}.

2. Experiment 2 : Category 1 = qualities {3,4}, Category 2 = qualities
{5,6,7,8}.

3. Experiment 3 : Category 1 = qualities {3,4,5,6}, Category 2 = qualities
{7,8}.

Therefore, we run the metaheuristic on these 3 experiments
In [29], the authors achieved learning tasks on both datasets with an SVM

algorithm.
First, we aggregate the entries of the confusion matrix of SVM (obtained in

the paper), into three 2 × 2 confusion matrices following the three considered
binary classifications. Therefore we deduce the three classification accuracy of the
SVM from these 2 × 2 confusion matrices which correspond to the three binary
classifications.

We report in Table 7.5) the summary of the classification accuracy obtained
for SVM algorithm and our metaheuristic, for both (Red Wine Quality and White
Wine Quality datasets considering the three binary classifications.

We observe that the classification accuracy obtained with both SVM and the
metaheuristic are relatively close.

131

SVM Metaheuristic

Red Wine
Dataset

Experiment 1
cat 1 : 744, cat 2 : 855 75.92% 73.54%

Experiment 2
cat 1 : 63, cat 2 : 1536 95.93% 96.24%

Experiment 3
cat 1 : 1382, cat 2 : 217 88.23% 88.99%

White Wine
Dataset

Experiment 1
cat 1 : 3258 , cat 2 : 1640 79.93% 74.9%

Experiment 2
cat 1 : 183, cat 2 : 4715 96.46% 96.36%

Experiment 3
cat 1 : 3838 , cat 2 : 1060 74.92% 80.66%

Table 7.5: Comparative table of the performance on classification accuracy in
validation of the SVM algorithm [29] and the metaheuristic

More specifically, the metaheuristic performs slightly better than the SVM
algorithm in experiments 2 and 3 (which correspond to those with the most
unbalanced datasets) in both datasets. Nevertheless, we advocate that MR-Sort is
more interpretable than traditional machine learning models, particularly SVM.

Interpretability of MR-Sort models with single-peaked preferences

In the following, we give an illustration of how MR-Sort inferred models can be
interpreted in the context of Inv-MR-Sort-SP problem.

For the sake of simplicity, we consider Experiment 1, the binary classification
previously defined, and the Red Wine Quality dataset restricted to the seven most
important attributes according to [29] as learning set. Criteria were assumed as
single-peaked.

We reported in the Table 7.6, a learned model that involves only 5 criteria
(since the weight of two criteria are 0). However, let us notice that CAv = 73.2%
for this model, which is close to the case with 11 criteria (CAv = 73.54%).

Given the profiles learned for single-peaked criteria, we discover these following
preference directions :

• Sulfate, Alcohol, and Fixed acidity are single-peaked criteria.

• Ph is a gain criterion.

• Total sulfur dioxide is a cost criterion.

132

Instance settings Model parameters learned
Attributes #values Direction pref. dir. bi wi pref.

dir.
Sulphates 96 (origin) SP unknown [0.53,1.95] 0.0001 SP
Ph 89 (origin) SP unknown [3.752,4.01] 0.4998 gain
Total sulfur dioxide 144 (origin) SP unknown [6,88.8] 0.0001 cost
Alcohol 65 (origin) SP unknown [9.81,14] 0.0001 SP
Volatile acidity 143 (origin) SP unknown [0.21,0.55] 0 _
Free sulfur dioxide 60 (origin) SP unknown [4.96,72] 0 _
Fixed acidity 96 (origin) SP unknown [4.696,15] 0.4999 SP

λ = 0.5002

Table 7.6: Inferred model from 1599 assignment examples. CA = 73.2% Execution
time : 3m55s.

• The criteria types of Free sulfur dioxide and Volatile acidity cannot be directly
determined since they do not count in this particular model (their weights
are 0).

According to the model, we can determine the list of Minimal Sufficient Coali-
tions (MSC) that make it possible an interpretation of the model.

For instance, thanks to the two MSCs of the model, we can provide these simple
decision rules :

• With the first MSC ({Ph,Fixed acidity}) : a wine is qualified as Good if the
fixed acidity is between 4.696 g/dm3 and 15 g/dm3 and its Ph higher than
3.752.

• With the second MSC ({Sulfate, Total sulfur dioxide, Alcohol, Fixed acidity})
: a wine is qualified as Good if these conditions are fulfilled at the same
time :

– its sulftate content is between 0.53 g/dm3 and 1.95 g/dm3,
– its content in total sulfur dioxide is lower than 88.8 mg/dm3,
– its alcohol content is between than 9.81 % and 14 %,
– its fixed acidity is between 4.696 g/dm3 and 15 g/dm3.

7.3.5 Discussion

The experiments carried out in the previous sections are edifying and gives us
more insights on single-peaked preferences on the scope of the learning of MR-Sort
models.

133

First, we validated our two algorithm versions through the experiments with
hand-made instances. Version 2 is suited for small instances (<50 alternatives),
but can be helpful for an exhaustive search of compatible models. However, we
focused on version 1, which is more practical (we use it in the other experiments).

Second, this algorithm was tested with large artificial data to evaluate its
scalability (less than 5min for a dataset of 2000 alternatives and 7 criteria), and
with noisy data to assess its robustness.

Learning single-peaked preferences with MR-Sort models does not influence
importantly the CAv and CAg, and does not add large computational burden, even
with noisy datasets.

The results showed that our algorithm still fairly learns in the presence of the
noise.

Finally our experiments with real-world datasets are informative because it
shows the practical aspect of our work. We are able to retrieve a good model
(CAv = 99.4%) with ASA dataset in a limited time (16min). Regarding the
instances related to wines, we are able to deal with large datasets and learn
several single-peaked criteria. In addition, our algorithm is capable of learning
simultaneously some preference directions and the usual parameters of MR-Sort.
As our algorithm extends the metaheuristic developed for the learning of monotone
preferences, we challenged our algorithm on several datasets from the UCI repository
in the same spirit as [88].

Although the considered datasets were assumed to be monotone as mentioned
in [42], the results obtained with our algorithm are fairly similar to the most related
algorithms [42, 63, 88], and could lead to more investigations on relations between
monotone and single-peaked preferences.

We refer the reader in the Appendices A for the details of these studies.

7.4 Conclusion

In this chapter, we presented an algorithm in order to solve the inverse-MR-Sort
problem with single-peaked preferences, which consists in learning the parameters
of an MR-Sort model from data with single-peaked preferences. Our method is
based on the metaheuristic proposed by [90, 88]. We presented two variants, which
adapt the learning of profiles. The experiments on synthesized data reveal good
behaviours of our algorithm even with noisy learning sets. The extended tests
carried out with real data, show that our algorithm is advantageous in terms of
computational time and can compete with machine learning algorithms.

134

Chapter 8

Conclusion

In this thesis we have investigated how unknown monotone preference directions
and unknown non monotone preferences – more precisely, single-peaked and single-
valley – can be handled within an MR-Sort algorithmic framework. We have focused
on MR-Sort as this model is interpretable.

Optimization techniques are often subject to a tradeoff between optimality and
execution time. This is a natural compromise when dealing with large datasets. In
this work, we have considered both aspects: we proposed exact solutions that are
workable for “small” datasets and heuristic based methods to address the problem
of “large” datasets. On the one hand, heuristics provide an approximated solution
(more than 90% on classification accuracy for average instances) but allow to
handle large learning set ; that is, in our case, over 1500 alternatives. On the other
hand, exact methods give the optimal solution but their execution time becomes
prohibitive as the dataset size increases.

The experimental study of the proposed methods stresses the importance of the
quality of the learning sets. This quality can be quantified using two indicators : the
representativeness (in percentage) of alternatives into categories and the choice of
balanced parameters (i.e., model parameters with non-extreme values). Obviously,
datasets with more balanced alternatives over the categories and models with
balanced parameters lead to learn more accurate models.

The three main contributions of this thesis can be summarized as follows:

• Contribution I. We presented two heuristics to learn latent criteria prefer-
ences directions as well as the MR-Sort model parameters. These approaches
are workable on large datasets and are based on the metaheuristic proposed
in [90]: a duplicated-based approach (i) that globally outperforms the mixed-
based approach (ii) - although (ii) is barely better than (i) in some cases.
The main benefit is the ability of (i) to learn preference directions together
with the other parameters without adding any difficulty whatever the number

135

of unknown preference direction in the input instance.

• Contribution II. We proposed an exact method - the Mixed Integer Program
(MIP) - to detect and learn single-peaked and single-valley preferences. The
characterization of single-peaked preferences for NCS and MR-Sort models
that we establish suits with its use for retrieving gain, cost, single-peaked
and single-valley criteria together with the other MR-Sort parameters. The
method shows a good restoration rate comparable to those obtained in the
Contribution I. However, this method is suited only for relatively small
dataset as its computational complexity grows very quickly with the dataset
size. Our experiments showed that the method provides an acceptable
computation time for datasets up to 200 alternatives.

• Contribution III. We presented two heuristics to learn single-peaked pref-
erences in large datasets. These two heuristics, the two-steps method (iii)
and the brute force method (iv), produce comparable results. The brut force
method, however, has an exponential execution time with the number of
alternatives and is, therefore, not suitable for large datasets. Results obtained
on both synthetic and real datasets show that the two-step method produces
similar results to machine learning techniques (for instance, with SVM [29]
on the Wine dataset from UCI repository).

In the future, our contributions can be extended in multiple directions:

1. In order to pursue the work initiated with the learning of single-peaked
preferences in (Contribution III), we suggest to tackle the case where the
preference directions are not known in advance. The approach proposed
in Contribution III enables to detect either single-peaked or single-valley
criteria , depending on the algorithm’s settings. If it is accordingly configured,
it can learn monotone preferences; however it cannot learn single-peaked
and single-valley preferences at the same time. To be able to learn these
different types of preference, we can extend the mixed-based approach of
Contribution I to integrate the four types of criteria in the population
of models, and foster the evolution of models with the correct preference
directions. Such implementation would provide a method that can deal with
the learning of the four preference direction types from large datasets.

2. We propose to investigate the learning of single-peaked criteria through a
max-SAT formulation (generally known as the optimization version of the
Boolean Satisfaction problem). In fact, this method was used for the learning
of monotone preferences with MR-Sort and NCS models [8]. Contribution

136

II gave us not only the characterization of single-peaked criteria but also a
transformation technique (from single-peaked to monotone criteria) in order
to learn single-peaked criteria with the MIP algorithm. The use of binary
variables, for this purpose, in the MIP can certainly be adapted to a Boolean
formulation for a resolution with a Max-SAT algorithm. We expect that such
a method could bring a solution possibly being a compromise between the
evolutionary algorithm and the MIP algorithm. Hence, such a method could
increase the accuracy while limiting the execution time [10].

3. Another direction, is to explore how single-peaked preferences can be learned
in closer models. Such models can be, for example, MR-Sort with veto [91]
and MR-Sort variants considering concordance, veto and dictator relations
[67]. In the case of MR-Sort with veto, we could consider veto profiles as
intervals similar to limit profiles for single-peaked criteria. In this case, veto
profiles should be embedded in the limit profiles of a given single-peaked
criterion. For the purpose of introducing single-peaked preferences with NCS
models, an interesting starting point could be considering 2-additive MR-Sort
models. These models are more expressive than MR-Sort, and single-peaked
preferences could also improve the interpretability power of such models.

4. Finally, an interesting area is the study of preferences with multiple-peaked
in MR-Sort models. In practice, such models would embody several disjoint
intervals pertaining to values in favor of the same set of approved values. It
could be possible to generalize this concept into non-monotone preferences.
Therefore, such a criterion (a non-monotone criterion) could be composed of
multiple local monotonicities). An example of these types of preferences is
double-peaked preferences. In this context, two peaks are preferred instead of
a single-peaked. In some cases, double-peaked preferences better reflects the
reality e.g. for adopting public policies [40] where conservative and liberal
policies are both preferred to a moderate status quo, or for facility location
problems [46] where we may have two favorite places to build a primary
school along a street.

In this thesis, we have extended significantly the use of MR-Sort techniques to
be able to handle single-peaked and single valley criteria. We will soon apply these
techniques in the context of industrial applications which will greatly benefit from
these steps towards a generalization of criteria handling.

137

Appendix A

Comparative results of algorithms
for monotone sorting problems on
UCI instances

In this appendix, we present additional tests performed on the algorithm imple-
mented in Chapter 7 for learning MR-Sort models from single-peaked preferences.
We consider 8 data sets from the UCI machine learning repository and the WEKA
repository detailled in Table A.1.

Data set #instances #attributes #categories
DBS 120 8 2
CPU 209 6 4
BCC 286 7 2
MPG 392 7 36
ESL 488 4 9
MMG 961 5 2
ERA 1000 4 4
LEV 1000 4 5
CEV 1728 6 4

Table A.1: Data sets of UCI and WEKA repositories

In Table A.2, we give a comparative performance of the 0/1 loss measure
obtained after running 5 different algorithms :

• META-SP : represent our algorithm (Chapter 7) based for the learning of
MR-Sort models with single-peaked criteria.

• META is the original metaheuristic for the learning of MR-Sort models with
monotone criteria [90].

139

• MIP is the mathematical programming algorithm for learning MR-Sort with
monotone criteria in [63]. Some of these results have not been obtained
because of large size of instances.

• UTADIS is the algorithm implemented in [56] for learning additive-based
models with monotone criteria.

• CR refers the Choquistic Regression implemented for Preference Learning
problems in [42].

We choose to transform datasets in binary classification instances and operate
cross-validations for the learning process, considering 20%, 50% and 80% of each
dataset as learning sets and the rest as test sets. We consider 100 different
generations of these sets corresponding to 100 runs of META-SP. The setting of
META-SP is the following : 10 iterations of the outer loop, 20 iterations of the
inner loop, 10 models in the population. We reported from [88, 92], results of other
algorithms.

We present in table A.2, the mean value of the 0/1 loss (and standard deviations)
obtained when evaluating learned models on test sets. The size refers to the learning
set size percentage of the dataset. The first row shows algorithms we compare.
Some results have not been obtained with the MIP algorithm because of the large
size of instances (computational difficulty).

Overall, the performance of META-SP are slightly outranked on average by
others except for the instance MPG where META-SP is better than than META,
MIP and UTADIS (by 7% on average) but is worse than CR (by 7% on average). It
is interesting to note that in this case, META-SP can learn more complex features of
criteria than META, but is still limited since CR learns more interactions between
criteria. It is also worth to mention that on the instance ERA, our algorithm
outperform META and CR by more than 8%. Standard deviations decreases in
average with the learning set size. In addition, whenever the META-SP is worse
than another algorithm in terms of 0/1 loss, the deviation is all the more bigger,
which confirms that META-SP is not strictly outranked by others.

140

Size Data set META-SP META MIP UTADIS CR
DBS 24.7 ± 6.15 18.97 ± 4.23 19.77 ± 4.81 20.08 ± 5.33 17.13 ± 4.24

CPU 11.92 ± 5.12 9.94 ± 3.23 9.00 ± 3.45 6.52 ± 3.62 8.11 ± 1.03

BCC 29.52 ± 3.84 28.24 ± 2.73 26.78 ± 2.76 29.15 ± 3.07 27.75 ± 3.35

MPG 13.28 ± 2.4 20.25 ± 3.56 20.80 ± 3.26 22.25 ± 3.18 7.09 ± 1.93

20 % ESL 11.77 ± 1.96 10.42 ± 1.71 10.75 ± 1.58 8.89 ± 1.60 6.82 ± 1.29

MMG 18.45 ± 1.56 16.97 ± 0.87 17.16 ± 1.40 18.40 ± 1.84 17.25 ± 1.20

ERA 21.25 ± 1.56 21.36 ± 2.05 20.93 ± 1.74 23.68 ± 1.87 28.89 ± 2.73

LEV 17.5 ± 1.76 16.74 ± 1.87 16.08 ± 1.73 16.54 ± 1.60 14.99 ± 1.22

CEV 11.46 ± 2.24 9.37 ± 1.12 - 7.94 ± 0.59 4.48 ± 0.89

DBS 20.33 ± 5.45 16.23 ± 4.69 16.27 ± 4.26 14.80 ± 4.21 15.72 ± 4.16

CPU 7.74 ± 3.6 6.75 ± 2.37 6.40 ± 2.39 2.30 ± 2.38 4.64 ± 2.81

BCC 28.1 ± 3.17 27.50 ± 3.17 - 28.54 ± 2.46 26.87 ± 2.82

MPG 11.24 ± 1.84 17.81 ± 2.37 - 20.90 ± 2.36 5.77 ± 2.51

50 % ESL 10.88 ± 1.79 10.04 ± 1.86 10.18 ± 1.55 7.83 ± 1.63 6.01 ± 1.26

MMG 17.68 ± 1.66 17.32 ± 1.51 - 17.58 ± 1.52 16.67 ± 1.44

ERA 20.09 ± 1.26 20.56 ± 1.73 19.58 ± 1.37 23.42 ± 1.71 28.44 ± 3.06

LEV 15.36 ± 2. 15.92 ± 1.22 14.22 ± 1.54 15.56 ± 1.32 13.72 ± 1.25

CEV 10.74 ± 2.27 9.36 ± 1.19 - 7.99 ± 0.91 3.76 ± 0.59

DBS 16.16 ± 6.13 15.92 ± 6.98 14.80 ± 8.11 12.80 ± 5.01 14.16 ± 6.81

CPU 6.47 ± 3.85 6.40 ± 3.04 5.98 ± 3.15 1.52 ± 2.14 2.12 ± 3.01

BCC 26.28 ± 5.94 26.77 ± 5.47 - 29.13 ± 5.10 24.96 ± 4.85

MPG 11.13 ± 3.35 16.86 ± 3.69 - 20.80 ± 3.88 5.51 ± 1.60

80 % ESL 10.67 ± 2.65 10.01 ± 2.97 10.08 ± 2.47 7.44 ± 2.35 5.42 ± 2.18

MMG 17.39 ± 3.08 16.98 ± 2.79 - 17.34 ± 2.65 15.84 ± 2.51

ERA 19.9 ± 2.88 20.31 ± 2.50 18.56 ± 2.60 23.56 ± 2.92 28.13 ± 2.80

LEV 14.93 ± 2.66 16.16 ± 2.22 13.59 ± 1.85 15.72 ± 2.22 13.14 ± 1.76

CEV 10.94 ± 2.48 9.66 ± 1.74 - 7.99 ± 1.32 2.73 ± 0.89

Table A.2: 0/1 Loss and standard deviations results of 5 algorithms on 8 datasets

141

Appendix B

Synthèse de la thèse en Français

Dans les problèmes de décision, la classification est le terme générique utilisé
pour décrire l’affectation d’alternatives dans des catégories prédéfinies ; quand les
catégories sont ordonnées, on parle de classification ordinale. Il existe plusieurs
familles de classification ordinales repertoriées dans la littérature [54, 55, 93].
Cependant, nous nous interessons à la classification monotone un sous-cas de la
classification ordinale qui se définit par l’existence d’une dépendance monotone
entre les valeurs des critères et les classes d’affectation (catégories). En d’autres
termes, en augmentant (resp. diminuant) la valeur du critère d’une alternative a,
on contribue à affecter cette alternative dans une catégorie supérieure ou égale à a
dans le cas d’une monotonie croissante (resp. décroissante).

Nous définisons la classification partiellement monotone comme le cas où la
dépendance monotone entre critères et catégories est restreinte à un sous ensemble
de critères B de l’ensemble des critères N (B ⊂ N) [76]. Plus particulièrement les
critères de l’ensemble B admettent une relation de monotonie avec les categories
tandis que les critères N \ B établissent une relation non-monotone avec les
catégories. Dans notre cas, la non-monotonie est une monotonie par morceaux et
nous considérons particulièrement deux cas : soit une monotonie croissante puis
décroissante (appelée single-peaked) soit une monotonie décroissante puis croissante
(appelée single-valley). Dans ce contexte, nous désignons ainsi les critères B comme
des critères monotones et les critères N \B comme des critères single-peaked (ou
single-valley).

Plusieurs travaux dans la littérature de l’aide à la décision multicritère ont été
réalisés pour des problèmes de tri (classification ordinale) impliquant des critères
non monotones soit avec des modèles additifs [22, 64, 58, 58, 53] ou avec des modèles
à base de règles logiques [14].

Parmi les modèles de surclassement, ELECTRE TRI (Mousseau and Słowiński
[71]) demeure le modèle majoritairement étudié pour les problèmes d’inférence de
paramètres à partir d’exemples d’affectation [70, 73]. Le modèle considéré dans

143

notre travail est le modèle à règle majoritaire MR-Sort [63], un sous cas de NCS
[17, 18] (modèle de tri non compensatoire) qui est lui même un modèle réduit de
ELECTRE TRI [104, 44]. Le but de ces modèles, en particulier MR-Sort, est de
classer les alternatives dans des catégories prédéfinies et ordonnées CpC2 .C1

(avec Cp la meilleure catégorie et C1 la pire catégorie).
Le problème Inv-MR-Sort est celui de l’inférence des paramètres du modèle

MR-Sort à partir d’exemples d’affectation. Ce problème a été résolu avec une
programmation mathématique en nombres entiers par Leroy et al. [63], par une
métaheuristique évolutionnaire [92, 88], et par une formulation en problème de
satisfiabilité booléenne [11, 8].

Cependant, ces méthodes de résolution ne prennent en compte que des données
monotones. Dans notre travail, nous étendons cet existant pour prendre en compte
des données single-peaked. De plus, nous portons notre analyse sur l’inférence de
modèles MR-Sort dont les sens de préférences sur les critères ne sont pas connus
d’avance contrairement à l’état de l’art où les sens de préférence sont connus
d’avance. Comme point de départ pour deux de nos contributions, nous adaptons
et améliorons l’approche métaheuristique présentée par Sobrie et al. [92, 88] pour
résoudre nos deux principaux problèmes : le problème Inv-MR-Sort avec des
sens de préférences inconnus et le problème de Inv-MR-Sort avec des données
single-peaked/single-peaked (de petites ou grandes tailles).

Le plan de notre thèse se déroule comme suit.
Dans un premier temps, nous nous interessons à présenter brièvement des

définitions et quelques de notions de l’aide à la décision multicritère ainsi que l’état
de l’art - aussi bien sur l’inférence de modèles de surclassement comme MR-Sort,
que sur les problèmes de tri à partir de données partiellement monotones.

Dans un deuxième temps, nous abordons le problème d’inférence des paramètres
de modèles MR-Sort à partir de données dont les sens de préférences des critères
sont monotones mais inconnus d’avance. Nous nous interessons aussi à apprendre
les sens de préférences inconnus. Nous proposons deux approches de résolution :
une basée sur la duplication des critères des sens de préférences inconnus, et une
autre fondée sur l’introduction de modèles hétérogènes (c-à-d des modèles dont les
critères ont des sens de préference différents).

Dans un troisième temps, nous proposons une formulation sous forme d’un
programme mixte en nombres entiers pour apprendre des modèles MR-Sort à partir
de préférences monotones et single-peaked/single-valley. Cette proposition est basée
sur une transformation de critères single-peaked (resp. single-valley) en critères à
sens de préférence décroissant (resp. croissant). Cette méthode permet de trouver
des solutions optimales au problème d’inférence, mais est coûteuse en temps de
calcul.

Quatrièmement, nous proposons deux heuristiques (basées sur [92, 88]) pour

144

résoudre le problème d’inférence de paramètres de MR-Sort à partir de préférences
monotones et single-peaked/single-valley considérant des ensembles d’apprentissage
de grandes tailles.

En dernier lieu, nous concluons ce document en rappelant nos contributions et
en proposant des pistes de recherches découlant de notre travail.

145

Bibliography

[1] J. Alcala-Fdez, A. Fernández, J. Luengo, J. Derrac, S. Garc’ia, L. Sanchez,
and F. Herrera. KEEL data-mining software tool: Data set repository,
integration of algorithms and experimental analysis framework. Journal of
Multiple-Valued Logic and Soft Computing, 17:255–287, 2010.

[2] K. Amel. From shallow to deep interactions between knowledge representation,
reasoning and machine learning. In Proceedings 13th International Conference
Scalable Uncertainty Management (SUM 2019), Compiègne, LNCS, pages
16–18, 2019.

[3] M. Amine Lazouni, M. Habib Daho, N. Settouti, M. Chikh, and S. Mahmoudi.
Machine learning tool for automatic ASA detection. In Modeling Approaches
and Algorithms for Advanced Computer Applications, pages 9–16. Springer,
2013.

[4] J. Anderson. Regression and ordered categorical variables. Journal of the
Royal Statistical Society: Series B (Methodological), 46(1):1–22, 1984.

[5] C. Bana e Costa and J. Vansnick. MACBETH — an interactive path towards
the construction of cardinal value functions. International Transactions in
Operational Research, 1:489–500, 1994.

[6] C. Bana e Costa and J. Vansnick. General overview of the MACBETH
approach. Advances in multicriteria analysis, pages 93–100, 1995.

[7] C. Bana e Costa and J. Vansnick. Applications of the MACBETH approach
in the framework of an additive aggregation model. Journal of Multi-Criteria
Decision Analysis, 6(2):107–114, 1997.

[8] K. Belahcène. Towards accountable decision aiding : explanations for the
aggregation of preferences. PhD thesis, CentraleSupélec, Université Paris-
Saclay, 2018.

147

[9] K. Belahcene, C. Labreuche, N. Maudet, V. Mousseau, and W. Ouerdane.
Explaining robust additive utility models by sequences of preference swaps.
Theory and Decision, 82(2):151–183, 2017.

[10] K. Belahcene, C. Labreuche, N. Maudet, V. Mousseau, and W. Ouerdane.
An efficient SAT formulation for learning multiple criteria non-compensatory
sorting rules from examples. Computers and Operations Research, 97:58–71,
2018.

[11] K. Belahcène, C. Labreuche, N. Maudet, V. Mousseau, and W. Ouerdane.
An efficient SAT formulation for learning multiple criteria non-compensatory
sorting rules from examples. Computers & Operations Research, 97:58–71,
2018.

[12] D. Black. On the rationale of group decision-making. Journal of political
economy, 56(1):23–34, 1948.

[13] D. Black. The theory of committees and elections. University Press, Cam-
bridge, 1958.

[14] J. Blaszczynski, S. Greco, and R. Slowinski. Inductive discovery of laws
using monotonic rules. Engineering Applications of Artificial Intelligence,
25(2):284–294, 2012.

[15] J. Błaszczyński, S. Greco, R. Słowiński, and M. Szelag. Monotonic variable
consistency rough set approaches. International journal of approximate
reasoning, 50(7):979–999, 2009.

[16] G. Bous, P. Fortemps, F. Glineur, and M. Pirlot. ACUTA: A novel method for
eliciting additive value functions on the basis of holistic preference statements.
European Journal of Operational Research, 206(2):435–444, 2010.

[17] D. Bouyssou and T. Marchant. An axiomatic approach to noncompensatory
sorting methods in MCDM, I: The case of two categories. European Journal
of Operational Research, 178:217–245, 2007.

[18] D. Bouyssou and T. Marchant. An axiomatic approach to noncompensatory
sorting methods in MCDM, II: More than two categories. European Journal
of Operational Research, 178(1):246–276, 2007.

[19] Q. Brabant. Fonctions latticielles polynomiales pour l’interpolation et la
classification monotone. PhD thesis, Université de Lorraine, 2019.

148

[20] Q. Brabant, M. Couceiro, D. Dubois, H. Prade, and A. Rico. Learning rule
sets and Sugeno integrals for monotonic classification problems. Fuzzy Sets
and Systems, 401:4–37, 2020.

[21] J. Brans. L’ingénierie de la décision: l’élaboration d’instruments d’aide a la
décision. Université Laval, Faculté des sciences de l’administration, 1982.

[22] V. Bugera, H. Konno, and S. Uryasev. Credit cards scoring with quadratic
utility functions. Journal of Multi-Criteria Decision Analysis, 11(4-5):197–
211, 2002.

[23] J. Butler, J. Jia, and J. Dyer. Simulation techniques for the sensitivity
analysis of multi-criteria decision models. European Journal of Operational
Research, 103(3):531–546, 1997.

[24] J. R. Cano, P. A. Gutierrez, B. Krawczyk, M. Wozniak, and S. Garcia.
Monotonic classification: An overview on algorithms, performance measures
and data sets. Neurocomputing, 341:168–182, 2019.

[25] J. Chen, Z. Li, X. Wang, and J. Zhai. A hybrid monotone decision tree
model for interval-valued attributes. Advances in Computational Intelligence,
2(1):1–11, 2022.

[26] W. Cheng, K. Dembczynski, and E. Hüllermeier. Graded multilabel classifi-
cation: The ordinal case. In ICML, pages 223–230, 2010.

[27] M. Choulak, D. Marage, M. Gisbert, M. Paris, and Y. Meinard. A meta-
decision-analysis approach to structure operational and legitimate environ-
mental policies – With an application to wetland prioritization. Science of
the Total Environment, 655:384–394, 2019.

[28] S. Corrente, S. Greco, M. Kadziński, and R. Słowiński. Robust ordinal
regression in preference learning and ranking. Machine Learning, 93(2):381–
422, 2013.

[29] P. Cortez, A. L. Cerdeira, F. Almeida, T. Matos, and J. Reis. Modeling wine
preferences by data mining from physicochemical properties. Decis. Support
Syst., 47:547–553, 2009.

[30] IBM ILOG Cplex. IBM ILOG CPLEX Optimization Studio CPLEX User’s
Manual, Version 12, Release 8. IBM ILOG, 20.1.0 edition, 2017.

[31] D. K. Despotis and C. Zopounidis. Building Additive Utilities in the Pres-
ence of Non-Monotonic Preferences. In Advances in Multicriteria Analysis,

149

Nonconvex Optimization and Its Applications, pages 101–114. Springer US,
Boston, MA, 1995.

[32] J. M. Devaud, G. Groussaud, and E. Jacquet-Lagrèze. UTADIS: Une méthode
de construction de fonctions d’utilité additives rendant compte de jugements
globaux. European Working Group on Multicriteria Decision Aid, Bochum,
94, 1980.

[33] L. Dias, V. Mousseau, J. Figueira, and J. Clımaco. An aggrega-
tion/disaggregation approach to obtain robust conclusions with ELECTRE
TRI. European Journal of Operational Research, 138(2):332–348, 2002.

[34] L. Dias and A. Tsoukiàs. On the constructive and other approaches in decision
aiding. In Eds, Proceedings of the 56th meeting of the EURO MCDA working
group, pages 13–28, 2004.

[35] M. Doumpos, Y. Marinakis, M. Marinaki, and C. Zopounidis. An evolutionary
approach to construction of outranking models for multicriteria classification:
The case of the ELECTRE TRI method. European Journal of Operational
Research, 199(2):496–505, 2009.

[36] M. Doumpos and C. Zopounidis. Multicriteria decision aid classification
methods, volume 73. Springer Science and Business Media, 2002.

[37] M. Doumpos and C. Zopounidis. On the development of an outranking
relation for ordinal classification problems: An experimental investigation
of a new methodology. Optimization Methods and Software, 17(2):293–317,
2002.

[38] W. Duivesteijn and A. Feelders. Nearest neighbour classification with mono-
tonicity constraints. In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, pages 301–316. Springer, 2008.

[39] A. Eckhardt and T. Kliegr. Preprocessing algorithm for handling non-
monotone attributes in the UTA method. In Proceedings of the ECAI-12
Workshop on Preference Learning: Problems and Applications in AI (PL-12),
page 28–32, 2012.

[40] P. Egan. “Do something” politics and double-peaked policy preferences. The
Journal of Politics, 76(2):333–349, 2014.

[41] B. Escoffier, J. Lang, and M. Öztürk. Single-peaked consistency and its
complexity. In ECAI, volume 8, page 366–370, 2008.

150

[42] A. Fallah Tehrani, W. Cheng, K. Dembczyński, and E. Hüllermeier. Learning
monotone nonlinear models using the Choquet integral. Machine Learning,
89(1):183–211, 2012.

[43] V. Ferretti, L. Jinyan, V. Mousseau, and W. Ouerdane. Reference-based
ranking procedure for environmental decision making: Insights from an
ex-post analysis. Environmental Modelling and Software, 99:11–24, 2018.

[44] J. Figueira, V. Mousseau, and B. Roy. ELECTRE methods. In Multiple
criteria decision analysis: State of the art surveys, pages 133–153. Springer,
2005.

[45] J. Figueira, T. Tervonen, J. Almeida-Dias, R. Lahdelma, and P. Salmiken.
SMAA-TRI: a parameter stability analysis method for ELECTRE TRI. In
NATO advanced research workshop, pages 20–24, 2004.

[46] A. Filos-Ratsikas, M. Li, J. Zhang, and Q. Zhang. Facility location with
double-peaked preferences. Autonomous Agents and Multi-Agent Systems,
31(6):1209–1235, 2017.

[47] J. Fürnkranz and E. Hüllermeier. Preference Learning, pages 789–795.
Springer US, Boston, MA, 2010.

[48] S. Greco, B. Matarazzo, and R. Slowinski. Rough sets theory for multicriteria
decision analysis. European Journal of Operational Research, 129(1):1–47,
2001.

[49] S. Greco, B. Matarazzo, and R. Slowinski. Decision rule approach. Multiple
criteria decision analysis: state of the art surveys, pages 507–562, 2005.

[50] S. Greco, B. Matarazzo, R. Slowinski, and J. Stefanowski. An algorithm
for induction of decision rules consistent with the dominance principle. In
International Conference on Rough Sets and Current Trends in Computing,
pages 304–313. Springer, 2000.

[51] S. Greco, V. Mousseau, and R. Słowiński. Multiple criteria sorting with a
set of additive value functions. European Journal of Operational Research,
207(3):1455–1470, 2010.

[52] J. W. Grzymala-Busse. LERS - a system for learning from examples based
on rough sets. In Intelligent decision support, pages 3–18. Springer, 1992.

[53] M. Guo, X. Liao, and J. Liu. A progressive sorting approach for multiple
criteria decision aiding in the presence of non-monotonic preferences. Expert
Systems with Applications, 123:1–17, 2019.

151

[54] P. Gutiérrez and S. García. Current prospects on ordinal and monotonic
classification. Prog. Artif. Intell., 5(3):171–179, 2016.

[55] P. Gutiérrez, M. Pérez-Ortiz, J. Sánchez-Monedero, F. Fernandez-Navarro,
and C. Martínez. Ordinal regression methods: survey and experimental study.
IEEE Transactions on Knowledge and Data Engineering, 28(1):127–146, 2015.

[56] E. Jacquet-Lagreze and J. Siskos. Assessing a set of additive utility functions
for multicriteria decision-making, the UTA method. European Journal of
Operational Research, 10(2):151–164, 1982.

[57] E. Jacquet-Lagrèze and Y. Siskos. Preference disaggregation: 20 years of
MCDA experience. European Journal of Operational Research, 130(2):233–
245, 2001.

[58] M. Kadziński, K. Martyn, M. Cinelli, R. Słowiński, S. Corrente, and S. Greco.
Preference disaggregation for multiple criteria sorting with partial mono-
tonicity constraints: Application to exposure management of nanomaterials.
International Journal of Approximate Reasoning, 117:60–80, 2020.

[59] R. L. Keeney and H. Raiffa. Decisions with multiple objectives: preferences
and value trade-offs. Cambridge university press, 1993.

[60] T. Kliegr. UTA-NM: Explaining stated preferences with additive non-
monotonic utility functions. Preference Learning, page 56, 2009.

[61] E. Kujawski, E. Triantaphyllou, and J. Yanase. Additive multicriteria decision
analysis models: Misleading aids for life-critical shared decision making.
Medical Decision Making, 39(4):437–449, 2019.

[62] M. A. Lazouni, M. A. Chikh, and S. Mahmoudi. A new computer aided
diagnosis system for pre-anesthesia consultation. Journal of Medical Imaging
and Health Informatics, 3(4):471–479, 2013.

[63] A. Leroy, V. Mousseau, and M. Pirlot. Learning the parameters of a multiple
criteria sorting method. In International Conference on Algorithmic Decision
Theory, pages 219–233. Springer, 2011.

[64] J. Liu, X. Liao, M. Kadziński, and R. Słowiński. Preference disaggregation
within the regularization framework for sorting problems with multiple po-
tentially non-monotonic criteria. European Journal of Operational Research,
276(3):1071–1089, 2019.

152

[65] D. Martin and M. Mazzotta. Non-monetary valuation using multi-criteria
decision analysis: Sensitivity of additive aggregation methods to scaling and
compensation assumptions. Ecosystem Services, 29:13–22, 2018.

[66] P. McCullagh. Regression models for ordinal data. Journal of the Royal
Statistical Society: Series B (Methodological), 42(2):109–127, 1980.

[67] P. Meyer and A. Olteanu. Integrating large positive and negative performance
differences into multicriteria majority-rule sorting models. Computers and
Operations Research, 81:216–230, 2017.

[68] P. Meyer and A. Olteanu. Handling imprecise and missing evaluations
in multi-criteria majority-rule sorting. Computers & Operations Research,
110:135–147, 2019.

[69] P. Minoungou, V. Mousseau, W. Ouerdane, and P. Scotton. Learning an MR-
sort model from data with latent criteria preference direction. In DA2PL’2020,
from multiple criteria Decision Aid to Preference Learning, Trento, Italy,
2020.

[70] V. Mousseau, J. Figueira, and J. Naux. Using assignment examples to infer
weights for ELECTRE TRI method: Some experimental results. European
Journal of Operational Research, 130(2):263–275, 2001.

[71] V. Mousseau and R. Slowinski. Inferring an ELECTRE TRI model from
assignment examples. Journal of global optimization, 12(2):157–174, 1998.

[72] O. Nefla, M. Öztürk, P. Viappiani, and I. Brigui-Chtioui. Interactive elicita-
tion of a majority rule sorting model with maximum margin optimization.
In International Conference on Algorithmic DecisionTheory, pages 141–157.
Springer, 2019.

[73] A. Ngo The and V. Mousseau. Using assignment examples to infer category
limits for the ELECTRE TRI method. Journal of Multi-Criteria Decision
Analysis, 11(1):29–43, 2002.

[74] O. Özpeynirci, S. Özpeynirci, and V. Mousseau. An interactive approach for
inverse multiple criteria sorting problem. Journal of Multi-Criteria Decision
Analysis, 28(3-4):160–169, 2021.

[75] S. Özpeynirci, O. Özpeynirci, and V. Mousseau. An interactive algorithm for
multiple criteria constrained sorting problem. Annals of Operations Research,
267(1):447–466, 2018.

153

[76] S. Pei and Q. Hu. Partially monotonic decision trees. Information Sciences,
424:104–117, 2018.

[77] M. Pereira, E. Dias, and D. Fontes. A MCDA model for olive oil sup-
plier selection using MACBETH. International journal for quality research,
13(4):849–862, 2019.

[78] R. Potharst and J. Bioch. A decision tree algorithm for ordinal classification.
In International Symposium on Intelligent Data Analysis, pages 187–198.
Springer, 1999.

[79] R. Potharst and A. Feelders. Classification trees for problems with mono-
tonicity constraints. ACM SIGKDD Explorations Newsletter, 4:1–10, 2002.

[80] B. Roy. Méthodologie multicritère d’aide à la décision. Economica, 1985.

[81] B. Roy, J. Figueira, and J. Dias. ELECTRE TRI-C: A multiple criteria
sorting method based on characteristic reference actions. European Journal
of Operational Research, 204:565–580, 2010.

[82] T. Saaty. The analytic hierarchy process (AHP) for decision making. In Kobe,
Japan, pages 1–69, 1980.

[83] J. Simos. Évaluer l’impact sur l’environnement. une approche originale par
l’analyse multicritère et la négotiation. Géographie physique et Quaternaire,
1990.

[84] J. Simos. L’évaluation environnementale: Un processus cognitif négocié.
Lausanne. PhD thesis, Thèse, École Polytechnique Fédérale de Lausanne,
1990.

[85] Y. Siskos. Analyse de systèmes de décision multicritère en univers aléatoire.
Foundations of Control Engineering, 8(3-4):193–212, 1983.

[86] Y. Siskos, E. Grigoroudis, and N. F. Matsatsinis. UTA Methods. In Multiple
Criteria Decision Analysis, International Series in Operations Research and
Management Science, pages 315–362. Springer, 2016.

[87] Y. Siskos and D. Yannacopoulos. UTASTAR: An ordinal regression method
for building additive value functions. Investigaçao Operacional, 5(1):39–53,
1985.

[88] O. Sobrie. Learning preferences with multiple-criteria models. PhD thesis,
Université de Mons (Faculté Polytechnique) and Université Paris-Saclay
(CentraleSupélec), 2016.

154

[89] O. Sobrie, M. Lazouni, V. Mousseau, and M. Pirlot. A new decision support
model for preanesthetic evaluation. Computer Methods and Programs in
Biomedicine, 133:183–193, 2016.

[90] O. Sobrie, V. Mousseau, and M. Pirlot. Learning a Majority Rule Model
from Large Sets of Assignment Examples. In Algorithmic Decision Theory,
volume 8176, pages 336–350. Springer Berlin Heidelberg, Berlin, Heidelberg,
2013.

[91] O. Sobrie, V. Mousseau, and M. Pirlot. A population-based algorithm for
learning a majority rule sorting model with coalitional veto. In International
Conference on Evolutionary Multi-Criterion Optimization, pages 575–589.
Springer, 2017.

[92] O. Sobrie, V. Mousseau, and M. Pirlot. Learning monotone preferences using
a majority rule sorting model. International Transactions in Operational
Research, 26(5):1786–1809, 2019.

[93] R. Sousa, I. Yevseyeva, J. Costa, and J. Cardoso. Multicriteria models for
learning ordinal data: A literature review. Artificial Intelligence, Evolutionary
Computing and Metaheuristics, pages 109–138, 2013.

[94] A. Tlili, K. Belahcène, O. Khaled, V. Mousseau, and W. Ouerdane. Learning
non-compensatory sorting models using efficient SAT/MaxSAT formulations.
European Journal of Operational Research, 298(3):979–1006, 2022.

[95] A. Tsoukiàs. On the concept of decision aiding process: an operational
perspective. Annals of Operations Research, 154(1):3–27, 2007.

[96] G. Tsoumakas and I. Katakis. Multi-label classification: An overview. In-
ternational Journal of Data Warehousing and Mining (IJDWM), 3(3):1–13,
2007.

[97] A. Valko, A. Olteanu, D. Brosset, and P. Meyer. Integrating a temporal
component into multi-criteria majority-rule sorting models. In DA2PL’2018:
from Multiple Criteria Decision Aid to Preference Learning, 2018.

[98] A. Valko, A. Olteanu, and P. Meyer. Integrating multiple contexts into multi-
criteria majority-rule sorting. In ADT 2019: 6th International Conference
on Algorithmic Decision Theory, pages 177–179. Springer, 2019.

[99] V. Vapnik. Statistical learning theory. Wiley, 1998.

155

[100] W. Verbeke, D. Martens, and B. Baesens. RULEM: A novel heuristic rule
learning approach for ordinal classification with monotonicity constraints.
Applied Soft Computing, 60:858–873, 2017.

[101] P. Vojtas and A. Eckhardt. Considering data-mining techniques in user
preference learning. In 2008 IEEE/WIC/ACM International Conference on
Web Intelligence and Intelligent Agent Technology, volume 3, pages 33–36.
IEEE, 2008.

[102] H. Wang, M. Zhou, and K. She. Induction of ordinal classification rules from
decision tables with unknown monotonicity. European Journal of Operational
Research, 242(1):172–181, 2015.

[103] J. Wątróbski, J. Jankowski, P. Ziemba, A. Karczmarczyk, and M. Zioło.
Generalised framework for multi-criteria method selection. Omega, 86:107–124,
2019.

[104] W. Yu. Aide multicritère à la décision dans le cadre de la problématique
du tri: méthodes et applications. PhD thesis, LAMSADE, Université Paris
Dauphine, Paris, 1992.

Titre: Apprentissage de modèles à règle majoritaire à partir de données partiellement monotones
Mots clés: ADMC, MR-Sort, préférences single-peaked, apprentissage de préférences

Résumé:
Le domaine de l’Aide à la Décision Multicritère

(ADMC), s’interesse à évaluer des alternatives suiv-
ant des critères dans le but de recommander la
“meilleure” solution au décideur. Dans ce contexte,
nous considerons le paradigme d’apprentissage de
préférences - comparable à l’approche en Machine
Learning - qui consiste à déduire à partir des obser-
vations passées du décideur, les paramètres du mod-
èle qui correspondent au mieux à ses préférences.
Notre modèle (MR-Sort) est issu de la famille des
modèles de surclassement, dans lequel une alterna-
tive a surclasse une autre alternative b s’il existe
une forte coalition de critères (majorité) favorable
au surclassement de a par rapport à b. Dans la
littérature de l’ADMC, les méthodes et algorithmes
étudiés pour les problèmes de tri - classification
dans des catégories prédéfinies et ordonnées - ont

toujours eu pour but l’inférence de modèles MR-
Sort connaissant le sens de préférence des critères
et à partir de préférences monotones (croissantes
ou décroissantes). Dans cette thèse, nous étendons
l’état de l’art à l’étude des préférences dites "single-
peaked" (resp. "single-valley"), qui améliorent
l’expressivité des modèles MR-Sort. Un critère
single-peaked est caractérisé par deux monotonies
successives (croissante puis décroissante). Ainsi,
nous étudions des problèmes d’apprentissage des
paramètres de MR-Sort à partir de préférences
monotones et single-peaked, quelle que soit la
connaissance à priori des sens de préférences des
critères. Nous proposons une méthode exacte, des
heuristiques et des tests pour évaluer et comparer
nos algorithmes suivant le temps de calcul, le taux
de classification et de restitution des sens de préfer-
ences.

Title: Learning Majority-Rule models with partially monotone data
Keywords: MCDA, MR-Sort, single-peaked preferences, preference learning

Abstract:
The field of Multiple Criteria Decision Analy-

sis (MCDA) deals with alternatives evaluated by
several criteria, aiming to recommend the “best” de-
cision to the decision-maker (DM). In this context,
we are interested in the indirect learning paradigm
which is comparable to machine learning tasks as
it consists of inferring from past observations of
the DM, the model parameters that suit the DM’s
preferences. Our model (MR-Sort) stems from the
MCDA family of outranking models, where an al-
ternative a outranks another alternative b if there
is a strong support of criteria (a majority in MR-
Sort) that favors a compared to b. In the literature,
methods and algorithms used for sorting problems -
classification into predefined and ordered categories

- always infer MR-Sort models with known criteria
preference directions and monotone (increasing or
decreasing) preferences. In this thesis, we extend
the state-of-the-art to single-peaked (and single-
valley) criteria which improves the expressivity of
MR-Sort models. A single-peaked criterion relates
to two successive monotonicities (increasing then
decreasing). Therefore we investigate the problem
of learning the MR-Sort parameters from mono-
tone and single-peaked preferences regardless of
the knowledge of preference directions of criteria.
We propose an exact method and heuristics, and
conducted experiments to assess and compare our
algorithms regarding the computational cost, the
classification accuracy and the preference directions
retrieval.

157

	List of Figures
	List of Tables
	Introduction
	Background
	Introduction
	Main concepts in MCDA
	Basic tools of the MCDA
	Preference information and preference relations
	Types of problems in MCDA
	Aggregation and disaggregation paradigms in MCDA

	Methodologies in MCDA
	Additive models
	Outranking models
	Rule-based models

	Preference Learning
	Classification problems in Preference Learning
	At the crossroad between MCDA and PL

	Conclusion

	Related work
	Introduction
	Ordinal classification

	Monotonicity-related preferences
	Monotonicity in Multiple Criteria Decision Analysis
	Monotonicity in data mining and supervised learning fields

	Problems and algorithms around MR-Sort
	MR-Sort related works
	Description of the existing metaheuristic

	Conclusion

	Latent preference directions
	Introduction
	Basic notations and reminder
	The duplication-based approach
	Motivations and guiding principles for the learning of preference directions
	The duplicated-based algorithm
	First stage
	Second stage

	The mixed-based algorithm
	Motivation
	Definitions and overview on the approach
	Initialization of the population (Step I)
	Update of models parameters
	Renewal of the population (Step IV)
	Final step (Step V)

	Experimentations and results
	Experimental protocol
	Experimental study for the duplicated-based approach
	Results of the mixed-based algorithm
	Comparing the two approaches

	Conclusion

	MR-Sort with Single-peaked preferences
	Introduction and motivation
	Characterization of single-peaked preferences
	Rewriting MR-Sort with approved sets
	Single-peaked and single-valley preferences

	Single-peaked and monotone preferences
	Transformation of a single-peaked criterion to a monotone criterion with 2 categories
	Transformation of single-peaked preference to monotone preferences with more than 2 categories

	Conclusion

	An exact approach for Inverse MR-Sort-SP
	Introduction and reminder
	Single-peaked preferences and the Inverse MR-Sort-SP problem

	The MIP formulation
	Variables and constraints related to approved sets and profiles
	Variables and constraints related to weights
	Variables and constraints related to the assignment examples
	Objective function and the complete MIP formulation
	Interpretation of the optimal solution
	General case
	Extension to more than two categories

	Experiments with artificial data
	Experimental design
	Results
	Computing time performance

	Tests on a real-world data: the ASA dataset
	Conclusion

	An heuristic for Inverse MR-Sort-SP
	Introduction and reminder
	Motivations and specificity of the approach

	The heuristic-based method
	The Sobrie heuristic for the learning of profiles
	Initialization of single-peaked profiles
	First strategy for learning of single-peaked profiles
	Second strategy for learning of single-peaked profiles

	Numerical tests and discussion
	Tests and comparisons between the two variants
	Advanced tests with the first variant on synthetic data
	Tests on ASA dataset
	Tests on public repository datasets
	Discussion

	Conclusion

	Conclusion
	Comparative results on UCI instances
	Synthèse de la thèse en Français
	Bibliography

