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Abstract

Membrane tubes are structures ubiquitous in cells, and understanding their dy-

namics and morphology is of vital importance for cellular biophysics. This thesis

will discuss several aspects of the dynamics of membrane tubes in situations where

they are driven out of equilibrium by various biologically inspired processes. We

analyse the inflation of membrane tubes and their subsequent instability due to ion

pumps driving an osmotic pressure difference. This is inspired by the structure of

an organelle called the contractile vacuole complex, and leads to a new instability

with a much longer natural wavelength than a typical Pearling instability. The

stability of membrane tubes with a shear in the membrane flow is analysed and a

novel helical instability which acts to amplify the fluctuations is found. We discuss

the relevance of this instability in the process of Dynamin mediated tube scission.

Finally we consider the dynamics and fluctuations of a membrane tube with active

forces acting on it.
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Chapter 1

Introduction

From the perspective of a physicist, biology is difficult. Living systems are driven

far out of equilibrium by the energy consumed in the chemical reactions necessary to

sustain life, meaning these systems are well beyond the paradigm of classical statist-

ical physics which assumes equilibrium or close to equilibrium systems [Landau and

Lifshitz, 1951; Onsager, 1931a,b]. Molecular specificity is also of vital importance in

many biological systems, so coarse graining systems is incredibly challenging. Fur-

ther to this, biological systems are rarely specified simply in terms of their present

form and function, but often depend on the systems entire evolutionary history.

Despite this physicists have made significant progress in recent years applying

ideas from soft matter, statistical mechanics and information theory to problems in

biology, including gene regulation [Petkova et al., 2019], evolution as an emergent

phenomenon [Goldenfeld and Woese, 2011] and developmental mechanics of simple

organisms [Haas and Goldstein, 2015; Höhn et al., 2015]. The success of soft matter

physics based approaches comes largely from the fact that both fields share similar

energy scales (such that deformations can occur due to thermal fluctuations), length

and time-scales, along with biological materials having similar mechanical properties

to many substances found in equilibrium soft matter physics [Doi, 2013].

This thesis will make use of ideas from soft matter physics to understand

the dynamics of lipid membrane tubes. These are structures found in a variety of

contexts inside the cell, and can be formed by the exertion of a localised force on a flat

membrane [Derényi et al., 2002]. We will examine a variety of situations designed to

capture important features of different cellular processes, typically driven by energy

consuming active processes.

1



1.1 A short history of mechanics in cell biology

Compared with classical physics and chemistry, the study of mechano-biology is a

relatively recent one. The first major attempt to describe the form and morpho-

genesis of living organisms using mathematics and the laws of physics was made by

D’Arcy Thompson in his book “On Growth and Form” published in 1917 (and a

second edition in 1942) [Thompson, 1917]. Although many of the mechanisms pro-

posed for different morphologies have since been proven wrong, the central idea that

all organisms must obey the laws of physics is quite an attractive one (particularly

in light of the development of modern genetic and cell biology and the difficulties

relating genotype to phenotype [Lecuit and Mahadevan, 2017]). As Thompson put

it:

Cell and tissue, shell and bone, leaf and flower, are so many portions of

matter, and it is in obedience to the laws of physics that their particles

have been moved, moulded and confirmed. They are no exception to the

rule that God always geometrizes. Their problems of form are in the first

instance mathematical problems, their problems of growth are essentially

physical problems, and the morphologist is, ipso facto, a student of phys-

ical science.

A particularly famous idea from Thompson comes from the final chapter

called “Theory of Transformations or the comparison of related forms” which dis-

cusses how mathematical transformations can be used to compare seemingly distinct

morphological aspects of animals, Fig. 1.1a. Although many of Thompsons conjec-

tures about how this could be used to find relations between species have been proven

false (a point which may seem obvious to a modern reader when viewed from the

paradigm of evolution by natural selection), the chapter is almost solely responsible

for the foundation of the field of morphometrics and the development of pattern the-

ory and statistical shape analysis [Lecuit and Mahadevan, 2017]. Moreover, more

general geometric ideas similar to those used by Thompson have become more pop-

ular in recent years particularly when describing the growth of elastic sheets and

rods in biological morphology [Moulton and Goriely, 2014; Goriely, 2017], Fig. 1.1b.

On the scale of cells, mechanical theories really began to take off in the

1970s with the pioneering work of Helfrich, Canham and Evans providing an elastic

model of the cell membrane based on curvature energies [Helfrich, 1973; Canham,

1970; Evans, 1973a]. This energy could not only explain basic morphology, such

as the bi-concave shape of a red blood cell [Canham, 1970], but also more complex

2



(a)

(b)

(c)

Figure 1.1: Mechanics and morphology in biology: (a) figure adapted from
[Thompson, 1917], from the chapter on the “Theory of Transformations” between
different forms, in this case various fish. (b) figure adapted from [Moulton and Gor-
iely, 2014], showing different solutions to simple surface accumulative growth equa-
tions (starting from the same initial conditions but with a different “growth vector”)
as compared to real biological forms. Reprinted by permission from Springer Nature:
Springer Nature, Journal of Mathematical Biology, Surface growth kinematics via
local curve evolution - Moulton & Goriely, c©(2012)
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phenomena such as red blood cell flicker [Brochard and Lennon, 1975]. It will be

this energy, and its dynamical variants that will be the main subject of this thesis.

Around the same time came the work of Purcell on fluid dynamics at low

Reynolds number and its implications for organisms life on the micron scale [Purcell,

1977].

Further developments in theoretical mechanics in cell biology include the

viscous dynamics of rods and filaments, particularly in the context of flagella and

bacteria with solenoidal and super-coiled morphologies [Goldstein et al., 1998, 2000],

and the paradigm for viewing the actomyosin cytoskeleton as an “active” liquid

crystalline gel where detailed balance breaking stresses act along the direction of

the nematic director [Kruse et al., 2005; Prost et al., 2015].

Recently there has been a focus on active interfaces which couple the ideas of

geometry and elasticity with active forces. These have been studied in the context of

general formulations coupling chemical reactions to stresses and torques [Salbreux

and Jülicher, 2017], more specific models for processes in morphogenesis [Morris

and Rao, 2017] and in terms of practical numerical methods for solving the full

non-linear equations [Torres-Sánchez et al., 2019]. It is hoped that such models may

provide insight into the detailed mechanisms behind force generation and shine a

light on the interplay between signalling, geometry and mechanics in biology.

1.2 Lipid molecules and their self-assembly

Living cells are complex heterogeneous structures which have evolved over millions

of years to perform an enormous range of complex tasks. In order to segregate parts

of the cell and compartmentalize different bio-chemical reactions, cells make use of

organic molecules called lipids [Alberts et al., 2002; Phillips et al., 2010]. Lipids are

thin organic molecules consisting of a head group that is hydrophilic and tail groups

that are hydrophobic and hence such molecules are often called amphiphilic. By

far the most common type of lipid molecules are Phospholipids consisting of a head

group; made of Choline, Phosphate and Glycerol, and two tail groups comprised of

fatty acids (often one of the tails contains a double bond making it unsaturated),

see Fig. 1.2 Left Panel. The amphiphilic property enables lipids to self assembly

into a complex array of phases depending on temperature, chemical composition,

density and the solvent they are in, see Fig. 1.2 Right Panel [Koynova and Tenchov,

2013]. The self assembly into these phases is driven by the minimisation of the

thermodynamic free energy of the combined water-lipid system [Safran, 1994].

A particularly important phase for cells is that of the bilayer, which in water

4
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Figure 1.2: Left Panel: (A) Shows the general structure of a lipid molecule, (B)
Specific chemical structure of Phosphatidylcholine, (C) Hydrophilic head and hy-
drophobic tail representation. Figure is a reproduction of a similar figure in [Alberts
et al., 2002]. Right Panel: Figure taken from [Koynova and Tenchov, 2013] show-
ing the vast phase space lipid membranes can occupy; I. Lamelar phases, II. Micelles
and Lipsomes & III. Non-lamellar liquid-crystalline phases.
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Figure 1.3: Schematic of a symmetric lipid bilayer in the fluid phase. S denotes the
mid-plane of the bilayer.

consists of two layers of lipids with heads facing outwards and tails inwards, Fig. 1.2

B(I,II). Below a critical temperature, Tm, these bilayers can be found in the gel

phase (Lβ, Fig. 1.2 B(I-D)) and above this temperature in the fluid phase (Lα,

Fig. 1.2 B(I-F,II-L)) [Kranenburg and Smit, 2005]. For most biologically relevant

scenarios we will assume we are above the critical temperature and in the fluid phase

[Simons and Vaz, 2004]. This phase has been shown to behave laterally as a 2D fluid

at physiological temperatures allowing for the free diffusion of lipids [Phillips et al.,

2010; Simons and Vaz, 2004].

These fluid bilayers are the membranes which bound most of the cell’s in-

ternal compartments, called organelles. In Eukaryotic cells most of the lipids are

produced in a large membrane bound organelle called the Endoplasmic Reticulum

(ER) [Alberts et al., 2002; Nixon-Abell et al., 2016]. The ER is made up of two

main sections; the rough ER is a high surface area region consisting of many folds

surrounding the nucleus and the peripheral ER is a dense tubular network which is

spread throughout the cell [Nixon-Abell et al., 2016]. From the ER, membrane and

proteins are fissioned off in vesicles and transported to the Golgi (an organelle con-

sisting of layers of dynamic cisternae) which, through complex interactions, sorts

the composition of membranes and proteins [Mironov and Pavelka, 2009]. From

here vesicular transport takes the sorted membrane/proteins to various organelles,

often called post-Golgi compartments [Alberts et al., 2002; Mullins, 2005]. These

processes are illustrated in Fig. 1.4.

Of course real cell membranes are made up of many more components than

just pure lipids (of which there are hundreds of species), most notably trans-membrane

proteins which are vital to many cellular functions. The idea of the 2D fluid acting

as a matrix in which proteins can freely diffuse was first formalised in the description

of the “fluid mosaic” model of cell membranes [Singer and Nicolson, 1972; Alberts

6



Figure 1.4: Schematic the endomembrane system in a eukaryotic cell (trans-golgi
network and endosomal network) showing membrane transport from the Endoplas-
mic Reticulum (ER) to the plasma membrane (and vice versa). Image from [Xu
and Esko, 2009]. Reprinted by permission from Springer Nature: Springer Nature,
Nature Chemical Biology, A Golgi-on-a-chip for glycan synthesis - Xu & Esko,
c©(2009)
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et al., 2002]. This is still a significant simplification of the real picture though. In

reality proteins do not simply freely diffuse in the bilayer, but in many cases actively

consume energy via the hydrolysis of Adenosine triphosphate or Guanosine triphos-

phate to undergo mechanical/conformational changes [Phillips et al., 2010]. This

activity is believed to play a key role in cell membrane organisation, in particular

forming domains needed in a huge variety of biological processes. This heterogen-

eous picture of the cell membrane developed mainly due to the advancement of single

molecule tracking techniques, and such ideas were formalised in what is called the

“pickets and fences” model where the cytoskeleton and trans-membrane proteins

actively interplay with the membrane to organise domains [Kusumi et al., 2005].

In-vitro systems

In recent years many techniques have been developed to probe the physical prop-

erties of lipids in simplified biomimetic systems. Such systems have the benefit

of containing only a few components, removing much of the added complexity of

real biological membranes. These systems have allowed detailed measurements to

be made of many specific physical properties of lipids and their associated trans-

membrane protein complexes. These properties include, but are not limited to,

diffusion of proteins [Quemeneur et al., 2014], membrane viscosity [Hormel et al.,

2014], shape fluctuations [Girard et al., 2005] and phase separation/domain forma-

tion [Sackmann and Feder, 1995].

One such system which we will regularly refer to in this thesis is that of

Giant Unilamellar Vesicles or GUVs. These are large bilayer vesicles often formed

by electro-formation whose composition and size can be well controlled [Angelova

et al., 1992; Mathivet et al., 1996]. A schematic of this process is shown in Fig. 1.5.

Another in-vitro system often used to measure physical properties of lipids and

trans-membrane proteins is is that of a supported lipid bilayer, which we will not

discuss in detail here [Richter et al., 2006].

1.3 Geometry of surfaces

For the remainder of this thesis we will exploit the fact that lipid membranes self

assemble into large-scale structures whose thickness is much smaller than the lateral

size of the membrane [Phillips et al., 2010; Safran, 1994]. As such it will be con-

venient to treat the membrane as a smooth 2D surface which can deform due to the

exertion of forces and torques, in more mathematical language we call this surface

a manifold. In order to describe such a manifold one can make use of the extensive
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Figure 1.5: Formation of Giant Unilamellar Vesicles (GUV) by electro-formation,
figure adapted from [Mertins et al., 2009]. Reprinted by permission from Elsevier:
Elsevier, Biophysical Journal, Electroformation of Giant Vesicles from an Inverse
Phase Precursor - Mertins, da Silveira, Pohlmann, Schröder & Marques c©(2009)

formalism that has been developed by mathematicians in the field of differential geo-

metry. Differential geometry is a branch of mathematics that extends the notion of

calculus in n-dimensional real space (Rn) to more general curved spaces [Willmore,

2012; Frankel, 2011].

For simplicity we will restrict ourselves to discussing 2D surfaces embedded

in R3 as this will be sufficient for the topics discussed in this thesis, for a detailed

mathematical exposition of these ideas for n-dimensional surfaces see [Lee, 1997]. We

will assume a basic knowledge of differential geometry and tensor calculus through-

out (e.g. Einstein summation convention and how to raise and lower indices with

the metric) but more advanced ideas such as exterior calculus will be introduced as

needed.

Each point on the manifold, p ∈ M, is labelled by a vector in the ambient

space (R3) which we denote ~Xp ∈ R3. Locally we can write ~X as a function of two

coordinates which we denote xi where i = 1, 2. We can use this to define some basis

vectors to the tangent space, T (M) of the manifold

~ei =
∂ ~X

∂xi
for i = 1, 2 (1.1)

from here we can define a bilinear form called the metric which enables us to ascribe

a distance between points on the manifold. The metric is given by

dS2 = 〈~ei, ~ej〉dxi ⊗ dxj = gijdx
i ⊗ dxj (1.2)
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where 〈·, ·〉 is the inner product in R3, dxi,j are the basis of the cotangent space

T ∗ (M) and ⊗ is a tensor product1 [Frankel, 2011].

The unit normal vector to the surface is given by ~n = ~e1×~e2
|~e1×~e2| . The way the

normal changes along a particular direction on the manifold gives a measure of the

extrinsic curvature and can be quantified in the bilinear form given by

b = 〈~n, ∂j~ei〉dxi ⊗ dxj = bijdx
i ⊗ dxj (1.3)

which is often called the second fundamental form. Because b is a self adjoint

operator, we can diagonalise it along the two axes of principal normal curvature

where it takes the form

[b]ij =

(
1
R1

0

0 1
R2

)
(1.4)

where R1 and R2 are the principal radii of curvature (and eigenvalues of b) [Frankel,

2011].

The trace and determinant of b are given by the sum and product of these

eigenvalues and define the mean curvature, H, and Gaussian curvature, K, in the

following way

2H = tr (b) = bi
i =

1

R1
+

1

R2

K = det b = det bi
j =

1

R1R2
.

(1.5)

A schematic of these curvatures is shown in Fig. 1.6.

The mean curvature is a purely extrinsic quantity, in that it describes how

the 2D surface curves in R3. The Gaussian curvature, perhaps surprisingly, is purely

intrinsic, in that it can be completely specified by just the metric and its derivatives

(specifically the Riemann curvature tensor, Rijkl, by the equation K = R12
12). The

relationship between intrinsic and extrinsic curvature is summarised by a set of

equations called the Gauss-Codazzi-Mainardi equations which are a major result

from differential geometry [Frankel, 2011] and have found applications recently in

soft matter physics in the metric formulation of elasticity theory [Efrati et al., 2013].

1.4 The Helfrich-Canham energy

For a thin elastic medium there are two contributions to the elastic energy of the

material; stretching and bending [Landau et al., 1986]. Since the compressional

1The tensor product of two vectors v, w is the second rank tensor with components (v ⊗w)ij =
viwj .
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Figure 1.6: Schematic of principal radii of curvature, R1 and R2, on a 2D manifold
M embedded in R3.

modulus for lipid bilayers is very large it is sufficient to consider the mechanics

purely in terms of bending energy [Boal, 2002].

One way to derive the bending energy of a fluid membrane would be to do

a formal thin film expansion of the 3D free energy, however the correct functional

form can be inferred from simple arguments which we will describe here. This form

of the free energy is an expansion in curvature to lowest order and was first proposed

by [Helfrich, 1973; Canham, 1970; Evans, 1973b] in order to explain the shapes of

red blood cells and artificial vesicles.

We know that the bending energy should depend on the curvature of the

membrane, so must couple to the second fundamental form b, and should also be in-

dependent of local coordinate parameterizations. This means it should only depend

on the trace and determinant of b, i.e. the mean and Gaussian curvature, H and K.

If the bilayer is symmetric the energy should be symmetric on sending the normal

~n → −~n so it can only depend on H2 not H. This leads us to write the following

energy for the membrane

F =

∫
S

[κ
2

(2H)2 + κ̄K
]

dAS (1.6)

where κ and κ̄ are the splay and saddle-splay moduli respectively. This can be gen-

eralised to include an asymmetry between the leaflets of the bilayer by introducing
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some spontaneous curvature C0

F =

∫
S

[κ
2

(2H − C0)2 + κ̄K
]

dAS . (1.7)

We will refer to this energy as the Helfrich-Canham energy (or sometimes just

Helfrich for conciseness).

Other contributions to the energy can also be considered, for example surface

tension, σ and, if the membrane is closed, a pressure jump across the membrane,

∆P . Including both of these contributions, the full free energy reads

F =

∫
S

[κ
2

(2H − C0)2 + κ̄K + σ
]

dAS −
∫

∆PdV (1.8)

where S = ∂V .

We can make use of a theorem from differential geometry, called the Gauss-

Bonnet theorem, to simply the energy further in some cases [Frankel, 2011]. The

Gauss-Bonnet theorem states that for some 2D differentiable manifold M with

boundary ∂M ∫
M
KdA = 2πχ (M)−

∫
∂M

kgds (1.9)

where χ (M) is the Euler characteristic of the manifold and kg is the geodesic

curvature at the boundary. This result is surprising as it states that, for a closed

manifold, the integral of the Gaussian curvature over the manifold is a constant

that only depends on topology. This means that for cell membranes the saddle-

splay moduli only enters the energy at the boundary, and that if we consider a

closed membrane or membranes of infinite extent then we can neglect the contri-

bution of Gaussian curvature to the free energy (as long as we have no changes in

topology).

1.4.1 Some simple minimisers

To gain help gain an understanding of the Helfrich Energy we will consider some

simple geometrically constrained minimisers (the simplest example of which is a flat

membrane).

The first non-trivial surface we will consider is that of a sphere of radius R.

The free energy for this is given by

Fsphere = 2πκ

(
2

R
− C0

)2

R2 + 4πσR2 − 4

3
∆PR3 (1.10)
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which when minimised for variations in R gives the following relation

κC2
0 + 2σ

R
= ∆P +

2κC0

R2
0

(1.11)

which reduces to

∆P =
2σ

R
(1.12)

when C0 = 0, which is just the Laplace law for a spherical soap film. This tells us

something quite remarkable, the bending energy of the membrane does not give any

contribution to the optimal radius of a sphere. The radius here is just set by the

length-scale given by σ
∆P , the only length-scale in the Helfrich Energy which does

not involve the bending rigidity, κ.

The second case we will consider, and which is highly relevant for the rest of

this thesis, is that of a tube of radius R. The free energy per unit length is given by

Ftube = 2πR

[(
1

R
− C0

)2

+ σ

]
− πR2∆P . (1.13)

Minimising with respect to variations in R leads to the relation

− κ

2R2
+
κC2

0

2
+ σ −∆PR = 0 (1.14)

which reduces to

R =

√
κ

2σ
(1.15)

when C0 = 0 and ∆P = 0. This means that the natural size of a tube is set by the

natural length-scale of the membrane ε =
√

κ
σ . ε is the scale over which deformations

persist in a close to flat membrane. This scale is set due to the balance between

forces from the bending energy wanting to expand the radius of the tube and those

from surface tension which attempt to minimise the surface area of the membrane.

1.4.2 Shape equation for a general surface

In the previous section we made use of geometric simplifications to gain some intu-

ition about the forces which govern membrane shape. Here we consider the more

general problem of the shape equation for an arbitrary surface. The partial differ-

ential equation whose solutions describe the minimisers of the Helfrich energy can

be found by setting the first variation of the energy with respect to perturbations

in the shape to zero. To derive this rigorously, one must make use of some rather
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(A) (B)

Figure 1.7: Simple surfaces that minimise the Helfrich energy, (A) a tube of radius
R =

√
κ
2σ (with no pressure jump or spontaneous curvature) and (B) a sphere of

radius R = 2σ
∆P (with no spontaneous curvature).

messy differential geometry to account for the variations in the metric etc.. For

simplicity we will only state the results here, but details of the full calculation can

be found in [Zhong-Can and Helfrich, 1989].

The full shape equation for a membrane which minimises the Helfrich energy

is given by

κ

[
2∆LBH − (4H + C0)

(
H2 −K − C0

2
H

)]
+ 2Hσ = ∆P (1.16)

where ∆LB = − 1√
|g|
∂i

(√
|g|gij∂j(·)

)
is the Laplace-Beltrami operator for a scalar

field on the manifold (defined with the same sign convention as in Ref. [Arroyo

and DeSimone, 2009]). This is a 4th-order non-linear PDE in the “height” of the

membrane and in general there are no analytical solutions to the full equation,

except in some simplified cases, for example [Rautu, 2018] and references therein.

Full solutions to the general problem are usually found via either gradient

descent methods, e.g. Surface Evolver [Brakke, 1992], or using more sophisticated

finite element methods to solve the shape equation via Willmore flow [Elliott and

Stinner, 2010; Barrett et al., 2016]. We will not present a full account of these

methods here as they will not be used in this thesis.
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Figure 1.8: Figure showing the numerical solutions to the axis-symmetric shape
equations for a tube pulled from a ring with hinge boundary conditions. Details of
the boundary conditions and method are given in the main text. Inset showing the
angle, ψ, arclength, S, parametrization of surfaces axis-symmetric about the Z axis.
Figure adapted from [Derényi et al., 2002].

1.4.3 Shape equation for axis-symmetric surfaces and formation of

membrane tubes

A simplified case that is useful to consider is that of axis-symmetric surfaces as, not

only does the shape equation reduce to a boundary value ODE problem, but it turns

out that many membrane shapes found in nature are approximately axis-symmetric

(for example red blood cells) [Jülicher and Seifert, 1994; Seifert, 1997]. Here we will

label the axis of symmetry Z and parametrize the surface in terms of angle from

the normal, ψ(S), where S is the arclength, see Fig. 1.8 inset.

The radial and and symmetry axis coordinates are given by

∂SR = cosψ; ∂SZ = − sinψ, (1.17)
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and the shape equation becomes [Jülicher and Seifert, 1994; Derényi et al., 2002]

∂3
Sψ =− 1

2
(∂Sψ)3 − 2 cosψ

R
∂2
Sψ +

3 sinψ

2R
(∂Sψ)2 +

3 cos2 ψ − 1

2R2
∂Sψ

+
σ

κ
∂Sψ −

cos2 ψ + 1

2R3
sinψ +

σ

κR
sinψ − ∆P

κ
.

(1.18)

In practice this equation is difficult to integrate numerically due to being very

unstable and computationally intensive semi-implicit methods are often required

[Rahimi and Arroyo, 2012]. It is often easier to solve the first integral of this equation

numerically [Derényi et al., 2002], which is given by

∂2
Sψ cosψ =− 1

2
(∂Sψ)2 sinψ − cos2 ψ

R
∂Sψ +

cos2 ψ + 1

2R2
sinψ

+
σ

κ
sinψ − ∆P

2κ
R− f

2πκR

(1.19)

where f is a constant of integration that can be associated with a point force acting

along the Z axis at R = 0. An alternative way of deriving this equation is to use a

Hamiltonian field theory formulation of the Helfrich energy by introducing conjugate

momenta. In that case the first integral of the shape equation is found as one of

Hamilton’s field equations [Jülicher and Seifert, 1994].

Solving Eq. 1.19 for a close to flat membrane (ψ � 1) gives the Green’s

function for the shape at linear order in the shape perturbation

Zlin (R) = Z0 −
2f

2π
√

2σκ

√
κ

2σ

[
log

(
R√
2R

)
+K0

(
R√
2R

)]
− ∆PR2

2σ
. (1.20)

Note that, for large distances away from the point force, the shape depends

logarithmically on R [Derényi et al., 2002].

The full non-linear equation can be solved numerically, either with a shooting

methods [Derényi et al., 2002] or a relaxation scheme [Powers et al., 2002]. In the

case of the shooting method with boundary conditions at zeros given by a ring

(R = Rring) and zero curvature (∂Sψ = − sinψ/R), the shape is found by shooting

in ψ (essentially shooting for the value of the force) and setting the ∂SSψ just using

Eq. 1.19, then finding the curve that crosses the Z axis. The solutions to this are

shown in Fig. 1.8.

Using these numerics it is possible to find the force needed to pull a tube

and even study the equilibrium interaction between two tubes [Derényi et al., 2002].

To understand the force needed to pull a tube we will use a simpler model which,

neglects the energy of the neck and cap of the tube, which gives the correct result
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for long tubes (as the energy of the base and cap are negligible as L → ∞). The

free energy of a membrane tube of length L is given by

Ftube = FtubeL =
(πκ
R

+ 2πσR
)
L− fL, (1.21)

taking the derivative with respect to the tube length, L, setting to zero and making

use of the expression for the equilibrium radius of a pressure-less tube (Eq. 1.15),

gives the force needed to hold a tube at length L

f =
2πκ

R
= 2π

√
2σκ, (1.22)

which agrees with numerical solutions for long tubes found in [Derényi et al., 2002;

Powers et al., 2002]. This corresponds to the interesting fact that, beyond some

critical threshold in the small deformation regime, the force required to pull a tube

is independent of its length.

1.4.4 Shape instability of a membrane tube

An interesting question to ask is the following; for what values of bending energy,

κ, and surface tension, σ, is a tube of radius, R, stable to small undulations in its

shape.

If we parametrize the radius of a tube as r(θ, z) = R + u(θ, z) we can write

the free energy as an expansion in u and its derivatives. We can choose to write u

in terms of its Fourier modes as follows

u(θ, z) =
∑
q,m

ūq,me
iqz+imθ, (1.23)

where q = 2πn
L (where n ∈ Z) and m are the Fourier variables conjugate to z and θ

respectively.

If we assume all undulations preserve the volume of the tube we can show

that ū0,0 = − 1
2R

∑
q,m |ūq,m|2, and the free energy of the membrane tube can be

written in the following way [Gurin et al., 1996; Komura and Lipowsky, 1992]

F = Ftube + F (2), (1.24)
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where

F (2) =∑
q,m

|ūq,m|2
κ

2R2

((
q̃2 +m2

)2 − 1

2
q̃2 − 5

2
m2 +

3

2
− R2σ

κ

(
1− q̃2 −m2

)) (1.25)

where q̃ = qR.

For m ≥ 1 this is always stable, however for the m = 0 modes there is a

possible instability. For zero bending energy this instability would simply correspond

to the classical Rayleigh-Plateau instability [Rayleigh, 1892; Tomotika, 1935], and

the second variation in the free energy would be negative for all q̃ = qR < 1 and for

any a value surface tension. In the case of a membrane tube with bending rigidity

the criterion for this instability becomes

σ > σc =
3κ

2R2
(1.26)

which we will generally refer to as the criterion for a Pearling instability on a mem-

brane tube throughout this thesis [Bar-Ziv and Moses, 1994; Nelson et al., 1995;

Gurin et al., 1996]. When the full fluid dynamical problem is treated it can be

shown that the fastest growing wavelength of the instability has the universal beha-

viour of q̃max ∼ 0.6 for any surface tension sufficiently past the instability threshold

(σ & σc) [Nelson et al., 1995] (although the exact number does depend on the

relative viscosity between inside and outside [Boedec et al., 2014]).

1.4.5 Shape fluctuations of membrane tubes

The bending energy for a lipid bilayer has a rigidity comparable to the energy scale

of thermal fluctuations, typically κ ∼ 10kBT where kB is Boltzmann’s constant and

T is temperature [Boal, 2002]. Because of this the bilayer is highly susceptible to

thermal fluctuations. As the free energy expansion in the previous section is Gaus-

sian, we can compute the fluctuation spectrum in Fourier space exactly by making

use of the equipartition result from statistical mechanics [Landau and Lifshitz, 1951;

Safran, 1994]

〈|ūq,m|2〉 =
1

Z

∫
Dūq,mūq,mū∗q,me−F

(2)/(kBT ) (1.27)

where Dūq,m =
∏
q,m dūq,m and Z is the partition function given by

Z =

∫
Dūq,me−F

(2)/(kBT ) (1.28)
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which gives the result

〈|ūq,m|2〉 =
kBTR

2

κ
(

(q̃2 +m2)2 − 1
2 q̃

2 − 5
2m

2 + 3
2

)
−R2σ (1− q̃2 −m2)

. (1.29)

It is interesting to note that the m = 1 modes diverge in the small q̃ limit as in

this limit the fluctuations are essentially just a local translation of the cross section,

thus the energy they cost tends to zero as q̃ goes to zero. An in depth discussion

of the critical fluctuations of membrane tubes can be found in Ref. [Fournier and

Galatola, 2007].

1.5 Fluid dynamics at cellular scales

Here we will present a brief discussion of fluid dynamics at the scale of cell biology,

this subject is vast so we will not attempt to discuss many of the subtleties in depth,

but refer the reader to other resources e.g. [Happel and Brenner, 1983; Purcell, 1977].

The equations of fluid dynamics are generally specified in terms of a con-

tinuity equation and momentum rate equation [Landau and Lifshitz, 1959]. The

continuity equation is given in terms of the velocity, ~v, and density, ρ, of a fluid

∂tρ+ ~∇ · (ρ~v) = J (1.30)

where J is a source/sink of mass in the fluid. In the case where the fluid is incom-

pressible ρ = Const., and has no sources or sinks, this reduces to the incompressib-

ility condition

~∇ · ~v = 0. (1.31)

The rate of change of momentum is given in terms of velocity ~v, density ρ,

fluid stress tensor T = T ij~ei ⊗ ~ej and external force per unit volume ~f which are

related by the Navier-Stokes equation

ρ
(
∂t~v + ~v · ~∇~v

)
= ~∇ · T + ~f . (1.32)

In the case of an incompressible Newtonian fluid the stress tensor is given by

T ij = η
(
∇ivj +∇jvi

)
− Pgij (1.33)

where η is the viscosity, and P the pressure. We can write the equation in dimension-

less form by making use of the viscosity and density along with some characteristic
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length-scale L and velocity v0,

∂t̃~u+ ~u · ~∇~u =
η

Lv0ρ

(
~∇ · T̃ + ~f

)
=

1

Re

(
~∇ · T̃ + ~f

)
(1.34)

where ~u is dimensionless velocity, t̃ dimensionless time, T̃ dimensionless stress and

Re = ρv0L/η is the Reynolds number of the flow. The Reynolds number is a

dimensionless number which can be viewed as the ratio of viscous to inertial forces

in the fluid; for large Reynolds number inertial forces dominate and the fluid is often

in a highly non-linear regime. For small Reynolds numbers viscous forces dominate

and the system can be viewed as over-damped. If we consider some estimates of

these parameters at the scale of cells we might choose the following [Purcell, 1977;

Milo and Phillips, 2015]

η ∼ 10−3Pa s

ρ ∼ 103Pa s2 m−2

L ∼ 10−6m

v0 ∼ 10−6m s−1

=⇒ Re ∼ 10−6.

(1.35)

In this limit the equations of motion reduce to the Steady Stokes equations

along with incompressibility

η∇2~v = ~∇P − ~f ; ~∇ · ~v = 0 (1.36)

which will be used throughout the rest of this thesis.

1.6 Overview of thesis

In this thesis we will aim to examine the dynamics of membrane tubes driven by

various out of equilibrium processes designed to mimic situations in cell biology.

The goal is to understand the physics underlying cellular processes with minimal

models that capture the important biology and mechanics.

Chapter 2 deals with the shape instability of membrane tubes due to an

osmotic pressure difference driven by ion pumps. These ion pumps consume ATP

to actively move ions across the membrane against their concentration gradient.

When oriented inwards we show that the increase in osmotic pressure causes the

tube to swell, eventually leading to a Pearling-like instability, but with a much
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longer wavelength. This problem is inspired by the Contractile Vacuole Complex

found in many single-celled freshwater organisms [Allen, 2000]. This organelle is

responsible for regulating the osmotic pressure inside the cell by acting as a pump

to remove excess water, and thus maintain cell volume. This tubular instability

forms a vital part of the pumping cycle as the bulges collect water to be emptied

into the main vesicle of the pump.

Chapter 3 focuses on the dynamics of membrane tubes where there is a shear

gradient in the azimuthal fluid flow of the membrane, in part inspired by the action

of Dynamin in fissioning membrane tubes and necks of vesicles [Roux et al., 2006;

Roux, 2014]. By employing the methods of covariant hydrodynamics we analyse the

stability of perturbations to the membrane tube’s shape under this shear rate. We

find a helical instability in the membrane tube shape whose handedness is set by

the shear rate. Because of advection with the ground-state flow, the pitch length

of the instability decreases until the shape eventually becomes stable, however we

show that this instability provides significant amplification to the fluctuation spectra

of the tube. This amplification gives rise to large non-equilibrium fluctuations of

the tube that may play an important role in the, as yet, ill understood process

of Dynamin mediated scission (perhaps via friction mediated scission similar to

Ref. [Simunovic et al., 2017]).

The final section, Chapter 4, considers the full relaxation dynamics of mem-

brane tubes (with variable surface tension) and their statistical mechanics under

passive and active fluctuations. Here we consider a simple model of generic active

fluctuations which break detailed balance in the system [Gov, 2004]. We compute

the fluctuation spectra for these stochastic processes acting on the tube and the

“effective temperature” of the Fourier modes of the tube shape. We discuss possible

experiments to measure these fluctuations and how varying the viscosity could be

used to quantify the activity in the system.
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Chapter 2

Hydro-osmotic Instabilities in

Active Membrane Tubes

In this chapter we study a membrane tube with unidirectional ion pumps driving

an osmotic pressure difference. A pressure driven peristaltic instability is identi-

fied, qualitatively distinct from similar tension-driven Rayleigh type instabilities on

membrane tubes. We discuss how this instability could be related to the function

and biogenesis of membrane bound organelles, in particular the contractile vacuole

complex. The unusually long natural wavelength of this instability is in agreement

with that observed in cells. The analysis also provides a more general framework

with which to approach hydrodynamic instabilities where slow driving is dominant.

2.1 Introduction

The “blueprint” for internal structures in living cells is genetically encoded but their

spatio-temporal organisation ultimately rely on physical mechanisms.

A key contemporary challenge in cellular biophysics is to understand the

physical self-organization and regulation of organelles [Mullins, 2005; Chan and Mar-

shall, 2012]. Eukaryotic organelles bound by lipid membranes perform a variety of

mechanical and chemical functions inside the cell, and range in size, construction,

and complexity [Alberts et al., 2002]. A quantitative understanding of how such

membrane bound organelles function have applications in bioengineering, synthetic

biology and medicine. Most models of the shape regulation of membrane bound

organelles invoke local driving forces, e.g. membrane proteins that alter the mor-

phology (often curvature) [Heald and Cohen-Fix, 2014; Shibata et al., 2009; Jelerčič

and Gov, 2015]. However other mechanisms, such as osmotic pressure, could play
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an important role [Gonzalez-Rodriguez et al., 2015].

Membrane tubes are ubiquitous in cells, being found in organelles such as

the endoplasmic reticulum and various post-Golgi compartments [Alberts et al.,

2002]. Models for their formation typically involve the spontaneous curvature of

membrane proteins [Shibata et al., 2009] or forces arising from molecular motors

attached to the membrane that pull tubular tethers as they move along microtubules

[Yamada et al., 2014]. Many of these tubules may contain trans-membrane proteins

that can alter the osmotic pressure by active transport of ions. Most work on the

biogenesis of cellular organelles has focused on their static morphology and generally

not on their non-equilibrium dynamics. In what follows we consider an example in

which the out-of-equilibrium dynamics drives the morphology, Fig. 2.1. Our study

is inspired by the biophysics of an organelle called the Contractile Vacuole Complex

but additionally reveals a new class of instabilities not previously studied that are

of broad, perhaps even universal, physiological relevance.

The Contractile Vacuole Complex (CVC) is an organelle found in most fresh-

water protists and algae that regulates osmotic pressure by expelling excess water

[Komsic-Buchmann et al., 2014; Stock et al., 2002; Allen, 2000; Naitoh et al., 1997;

Docampo et al., 2013]. Its primary features are a main vesicle (CV) that is in-

flated by osmosis and periodically expels its contents through the opening of a

large pore - probably in response to membrane tension - connecting it to the ex-

tracellular environment, thereby regulating cell volume [Patterson, 1980; Docampo

et al., 2013]. Water influx into the CVC is due to an osmotic gradient generated by

ATP-hydrolysing proton pumps in the membrane that move protons into the CVC

[Stock et al., 2002; Heuser et al., 1993; Nishi and Forgac, 2002; Fok et al., 1995].

In many organisms such as Paramecium multimicronucleatum, the CVC includes

several membrane tubular arms connected to the main vesicles, which are thought

to be associated with the primary sites of proton pumping and water influx activity

[Tominaga et al., 1998]. The tubular arms do not swell homogeneously in response

to water influx, but rather show large undulatory bulges with a size comparable to

the size of the main CV, leading us to speculate that this might even play a role in

CV formation de novo. These tubular arms appear to be undergoing a process sim-

ilar to the Pearling or Rayleigh instability of a membrane tube under high tension

[Rayleigh, 1892; Tomotika, 1935; Powers and Goldstein, 1997; Bar-Ziv and Moses,

1994; Bar-Ziv et al., 1997; Gurin et al., 1996; Nelson et al., 1995; Boedec et al.,

2014] or an axon under osmotic shock [Pullarkat et al., 2006], but with a much

longer natural wavelength: Rayleigh instabilities have a natural wave length λ ∼ R
where R is the tube radius. Here we derive the dynamical evolution of a membrane
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Figure 2.1: (a) Microscopy image of the contractile vacuole in paramecium mul-
timicronucleatum adapted from [Tani et al., 2000]. (b) Diagram of the contractile
vacuole complex. The tube is shown connected to the main body of the CV (left).
As ions are pumped in, increasing the osmotic pressure, the tube undergoes a swell-
ing instability and undulations develop with some wavelength λ. This phenomenon
is observed in the contractile vacuoles of many protists, e.g. paramecium multimi-
cronucleatum [Patterson, 1980; Allen, 2000]. (c) Schematic of a membrane tube
with ion pumps and surface undulations. A cartoon of a representative ion pump is
shown in the top right.
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tube driven out-of-equilibrium by osmotic pumping, which results in a much longer

natural wavelength for the instability.

In the CVC, the tubular arms are surrounded by a membrane structure

resembling a bicontinuous phase made up of a labyrinthine tubular network called

the smooth spongiome (SS). We assume this to represent a reservoir of membrane

keeping membrane tension constant and uniform during tube inflation.

2.2 Membrane Mechanics

The CVC is comprised of a phospholipid bilayer membrane. This bilayer behaves

in an elastic manner [Helfrich, 1973; Phillips et al., 2010]. At physiological temper-

atures these lipids are in the fluid phase [Alberts et al., 2002; Phillips et al., 2010].

For simplicity we will treat the bilayer as a purely elastic, fluid membrane in the

constant tension regime, neglecting the separate dynamics of each leaflet. The mem-

brane free energy involves the mean curvature H and surface tension σ [Helfrich,

1973; Safran, 1994; Nelson et al., 2004] and is given by

F =

∫
S

dA
(κ

2
(2H)2 + σ

)
−
∫

∆PdV , (2.1)

where dA and dV are the area and volume elements on S, κ is the bending rigidity,

and ∆P is the pressure difference between the fluid inside and outside the tube (see

also Eq. 1.7).

2.2.1 Differential geometry of the membrane

For the membrane tubes in which we are interested we parametrise the bilayer as

an embedding in R3. Utilising the cylindrical symmetry of the membrane tube we

write this as a surface of revolution about the z axis with radius r(z, t). This means

that we will only consider squeezing (peristaltic) modes in our analysis. In Cartesian

coordinates this surface is parametrised by the vector ~R = (r cos θ, r sin θ, z), i.e. by

the normal cylindrical polar coordinates. From this we can induce coordinates on

the manifold as

~e1 =
∂ ~R

∂θ
= (−r sin θ, r cos θ, 0) (2.2)

~e2 =
∂ ~R

∂z
= (∂zr cos θ, ∂zr sin θ, 1) . (2.3)
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This allows for the definition of a Riemannian metric as

gij = ~ei · ~ej for i, j = {1, 2}, (2.4)

Hence the metric and its inverse are

g =

[
r2 0

0 1 + (∂zr)
2

]
, g−1 =

[
1
r2 0

0 1
1+(∂zr)

2

]
. (2.5)

To find the curvature of S we need to know how the normal vector, ~n, to the

surface S varies. We can write this normal vector as

~n =
~e1 × ~e2

|~e1 × ~e2|
=

1√
1 + (∂zr)

2
(cos θ, sin θ,−∂zr) . (2.6)

From this we can find the second fundamental form bij = ~n · ~ei,j where the

comma denotes a partial derivative. Taking the determinant and trace of

b ji =
1√

1 + (∂zr)
2

[
−1
r 0

0 ∂zzr
1+(∂zr)

2

]
, (2.7)

we find the mean and Gaussian curvatures

2H =
1√

1 + (∂zr)
2

(
∂zzr

1 + (∂zr)
2 −

1

r

)
(2.8)

K =
−∂zzr

r
(

1 + (∂zr)
2
)2 . (2.9)

Assuming radial symmetry and integrating over the volume of the tube we

obtain

F = 2π

∫ ∞
−∞

dz

κ
2
r

1√
1 + (∂zr)

2

(
∂zzr

1 + (∂zr)
2 −

1

r

)2

+γr

√
1 + (∂zr)

2 − 1

2
r2∆P

]
(2.10)

where r(z, t) is the radial distance of the axisymmetric membrane from the cyl-

indrical symmetry axis and z measures the coordinate along that axis.

We use Eq. 2.10 as a model for the free energy of a radial arm of the CVC. Ion

pumps create an osmotic pressure difference that drive a flux of water to permeate
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through the membrane. We calculate the dominant mode of the hydro-osmotic

instability resulting from the volume increase of the tube lumen. We write the

radius of the tube as r(z, t) = R + u(z, t), with u assumed small, and make use

of the Fourier representation u(z, t) =
∑

q ūqe
ı̇qz. Absorbing the q = 0 mode into

R = R(t) allows us to write
∫
u dz = 0. The free-energy per unit length can be

written at leading order as

F = F (0) +
π

R

∑
q

α(q)|ūq|2 (2.11)

where

α(q) =
κ

R2

(
(qR)4 − (qR)2

2
+ 1

)
+ γ(qR)2 −∆PR (2.12)

and

F (0) = 2π

(
κ

2R
+ γR− 1

2
∆PR2

)
(2.13)

Identifying the static pressure difference ∆P with the Laplace pressure PL =

−κ/(2R3)+γ/R, the point at which the q = 0 mode goes unstable can be identified:

the membrane tube is unstable for tube radii R >
√

3Req where Req =
√

κ
2γ is the

equilibrium radius of a tube with ∆P = 0. This criterion for the onset of the

instability is the same as the Rayleigh instability on a membrane tube [Gurin et al.,

1996], however the instability is now driven by pressure not surface tension. This is

a crucial difference. It leads to a qualitatively different evolution of the instability,

as we now show. In what follows we are interested in the dynamics of the growth of

unstable modes after the cylinder has reached radius
√

3Req. Our initial condition

is a tube under zero net pressure, although the choice of initial condition is not

crucial.

2.3 Dynamics of Active Ion Pumps

We assume that the number of proton pumps moving ions from the cytosol into

the tubular arm depends only on the initial surface area, i.e. it is fixed as the tube

volume (and surface) varies.

We denote the number of ions per unit length in the tube as n and write an

equation for the growth of n as

dn

dt
=

0, t ∈ (−∞, 0)

2πβReq, t ∈ [0,∞)
(2.14)
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where β is a constant equal to the pumping rate of a single pump multiplied by

the initial area density of pumps. This assumes that the ion pumps are diffusing

sufficiently fast so as to be homogeneously distributed, this assumption is chosen so

as to simplify the calculations. The ion pumps are assumed to switch on at t = 0

and that the tube was in thermal equilibrium prior to that time.

The density of ions, ρI , can be obtained by solving Eq. 2.14 and dividing by

volume per unit length, v(t),

ρI =
n(t)

v(t)
=

n0

v(t)
+

2πβReqt

v(t)
. (2.15)

The growth of the tube radius is driven by a difference between osmotic

and Laplace pressure [Chabanon et al., 2017]. This means the rate equation for

the increase in volume can be written in terms of the membrane permeability to

water. Assuming that the water permeability (number of water permeable pores)

is constant during tube inflation, we write the volume permeability per unit tube

length µ′ = 2πReqµ, where µ is the (initial) permeability of the membrane. Thus

dv

dt
= µ′ (kBT (ρI − ρI (t = 0))−∆P ) (2.16)

where the osmotic pressure is approximated by an ideal gas law. This can be trans-

formed into an equation for R(t) on the time interval t ∈ [0,∞). We identify ∆P

with the Laplace pressure. This leads to

dR̃

dt̃
=
τpump

τµ

1

R̃

(
t̃

R̃2
+

(
1 +

σ̃

R̃

)(
1

R̃2
− 1

))
(2.17)

where σ̃ = σ
kBTReqρI(t=0) , τpump =

ReqρI(t=0)
2β , t̃ = t

τpump
, R̃ = R

Req
and τµ =

Req
µ′kBTρI(t=0) . τpump and τµ represent the time-scales of pumping and permeation

of water respectively. The experimental time-scale for radial arm inflation is con-

sistent with a value of τpump ∼ 1 − 10−1s. These dynamics assume our ensemble

conserves surface tension, not volume (as in the usual Rayleigh instability). This

proves to be a crucial difference.

Values of Req = 25nm, σ = 10−4N m−1 and hence κ are estimated using

experimentally measured values from [Zimmerberg and Kozlov, 2006; Koster et al.,

2003]. We take a typical ionic concentration in the cytosol of a protist for ρI(t =

0) = 3.0 × 108µm−3 (around 10 mMol) [Stock et al., 2002; Phillips et al., 2010;

Jackson, 2006]. Making an order of magnitude estimate of β from the literature on

the CVC [Stock et al., 2002; Allen and Fok, 1988; Tani et al., 2000] leads to estimates
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of β ∼ 106-109µm−2s−1. Temperature is taken as T = 310K. The permeability of

polyunstaurated lipid membranes is thought to be around µ = 10−4µm Pa−1s−1

[Olbrich et al., 2000]. This permeability could be much larger in the presence of

water channels but we find that our results are rather insensitive to increasing the

value of µ because, for physiological parameter values, our model remains in the

rapid permeation regime, i.e. τµ/τpump � 1. This permits a multiple time-scales

expansion [Murray, 1992] of Eq. 2.17. With γ̃ ∼ 10−3 � 1 we find the approximate

asymptotic solution

R̃(t) =

(
t

τpump
+ 1

)1/2

+O
(

τµ
τpump

)
. (2.18)

This solution agrees well with numerical solutions to Eq. 2.17, see Appendix A for

more details.

2.3.1 Case of an osmotic shock

We can consider a tube with a fast-acting tension reservoir (something similar to

the smooth spongiome), undergoing osmotic shock. It is interesting to understand

the dominant wavelength selection in such a case as the system may be easier to

implement in vitro than systems involving unidirectional ion pumps. If the radial

expansion of the membrane is driven by a hypo-osmotic shock, the radial dynamics

are governed by the following growth equation

dR̃

dt̃
=

1

R̃

(
1

R̃2

∆ρ

ρ0
+

(
1 +

σ̃

R̃

)(
1

R̃2
− 1

))
(2.19)

where t̃ = t
τµ

, σ̃ = σ
kBTReqρ0

, R̃ = R
Req

, τµ =
Req

µkBTρ0
and ∆ρ = ρ0 − ρshock is the

change in ionic density of the outside medium due to osmotic shock. Note that the

normalisation chosen here is different from the one used for ion pumps.

2.4 Dynamical instability in the axis-symmetric shape

perturbation

We now proceed to deriving the dynamical equations for the Fourier modes. The

equations governing the solvent flow are just the standard inertia free fluid equations

for velocity field ~v. These are the continuity and Stokes equations for incompressible
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flow

~∇ · ~v = 0; ~∇P = η∇2~v (2.20)

where P is the hydrodynamic pressure and η = 10−3Pa · s the viscosity. The lin-

earised boundary conditions are: vr|r=R = u̇ + vp, where vp is the permeation

velocity (proportional to the hydrodynamic pressure jump across the membrane:

vp = µ∆P |r=R), and vz|r=R = 0. The second condition is justified by invoking the

membrane reservoir as a mechanism for area exchange.

If we write the velocity field in terms of a stream function ψ as

~v =
1

r
(∂zψ~er − ∂rψ~ez) (2.21)

the continuity equation is automatically satisfied, and the Stokes equations can be

solved to give

ψ =


∑

q A1qrI1(qr) +B1(qr)2I0(qr) r < R∑
q A2qrK1(qr) +B2(qr)2K0(qr) r > R

(2.22)

in the interior of the tube, where A1,2 and B1,2 are found from the boundary con-

ditions. Iν(x) and Kν(x) are modified Bessel functions of the first and second kind

respectively.

From here we use the equation vp = µ(∆P )|r=R, where ∆P |r=R is the hy-

drodynamic pressure jump across the tube membrane, and use the solution of the

interior and exterior hydrodynamic pressure from the Stokes equations to find a

value of vp. In Fourier space this gives

v̄p = ˙̄uq

(
1

2qηχ(q)µ
− 1

)−1

(2.23)

where

χ(q) =
I0 (I0 − 1)

qRI2
0 − 2I0I1 − qRI2

1

− K2
0

qRK2
0 + 2K0K1 − qRK2

1

.

The force balance equation at the membrane reads

(P − 2η∂rvr) |r=R = f (2.24)

where f is the force required to displace the membrane to u and can be found from

the free energy. Substituting the velocity and pressure fields into this gives the
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dynamic equation for the modes ūq

˙̄uq = −αL (q)

2ηR

1

X (q)
(1− 2qµχ(q)) ūq (2.25)

X(q) =
I0 (qRI0 − I1)

qR
(
I2

1 − I2
0

)
+ 2I1I0

+
K0 (qRK0 −K1)

qR
(
K2

1 −K2
0

)
+ 2K1K0

(2.26)

with the shorthand Iν = Iν(qR) and Kν = Kν(qR) [Gurin et al., 1996]. The elastic

response function αL(q) is obtained by replacing the pressure ∆P by the Laplace

presure ∆PL = γ/R− κ/(2R3), which gives

αL(q) =
κ

R2

(
(qR)4 − 1

2
(qR)2 +

3

2

)
+ γ

(
(qR)2 − 1

)
. (2.27)

Eq. 2.25 can be used to describe the dynamical instability of a membrane

tube subjected to different driving mechanisms; an increase of membrane tension

(Rayleigh instability), an osmotic shock, or the slow active pumping mechanism we

are primarily interested in. In the limit qR� 1 this gives

˙̄uq = −αL(q)

(
q2R(t)

8η
+

2µR(t)

R3
eq

)
ūq (2.28)

where ūq is the Fourier representation of u in the z direction. The response function

αL is obtained by replacing the static pressure difference by the Laplace pressure

∆PL in Eq. 2.12. Note that the term involving µ, capturing mode growth due to

permeation, is only relevant for wavelengths λ > 100Req, hence we will discard it

in our analysis for simplicity (but retain it in the numerics for completeness). The

growth rate for a given mode is now time dependent, hence the mode amplitude

cannot be obtained from the maximum of the growth rate, but depends on the

growth history and must be obtained by solving the full, time-dependent problem.

We identify the instability as being fully developed when our linearised theory breaks

down. We define the dominant mode of the instability, called q̂, as the first mode

with an amplitude reaching
√
〈|ūq̂|2〉 = Req (a choice that does not influence our

results, see Appendix A). We define the time when this occurs as t = tfinal.

We define the instantaneous growth rate G(q̃) =
˙̄uq
ūq

from Eq. 2.25. This

growth rate shows a peak as a function of q. The location of the peak depends on

how the instability is driven. Starting with a stable tube under zero pressure with

radius R0 and membrane tension σ0, the instability can be driven by an increase of

tension σ > σ∗ = 3σ0 (see Eq. 1.26) at constant volume (Rayleigh instability), or

by an increase in volume (or radius) R > R∗ =
√

3R0 at constant tension (Osmotic
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Figure 2.2: Location of the peak of the growth rate (q̃∗ ≡ Reqq∗) for a tube under
constant tension, as a function of the tube radius. The initial tube radius Req
corresponds to the equilibrium radius of a tube under zero pressure.

instability). In the former case, and in the limit σ � σ∗, the growth rate reaches a

universal shape with a peak at R0q
∗ ' 0.6. The most unstable wavelength is thus

entirely set by the initial tube geometry (its radius R0). In the latter, the peak of

the growth rate depends on the time-dependent radius and does not reach any sort

of universal behaviour. In fact the location of the peak is a non-monotonic function

of the radius, first increasing, then decreasing with increasing radius. Its largest

possible value is R0q
∗ ' 0.2 and occurs for R ' 2.35R0, see Fig. 2.2.

The growth rate relation is quantitatively different from a Rayleigh instability

due to the driving mechanism. The functional dependence of the growth rate relation

depends on the polynomial αL(q) describing the membrane mechanics in q space,

Eq. 2.27. The Rayleigh instability is driven by a surface tension σ > 3κ/(2R2
0) at

constant volume (R(t) = R0), so that the magnitude of the q4 term in Eq. 2.27

doesn’t change. In the case of osmotic pressure however, the instability is driven

by a change in volume caused by the osmotic pressure, i.e. R >
√

3κ/(2σ). This

increases the prefactor to the q4 term which means that the higher q modes are

stabilised compared to the Rayleigh case. This means that the dominant wavelength

is skewed towards smaller q, Fig. 2.3.

As the fastest growing mode changes in time, it is the cumulative growth

that is important. This means we must integrate the growth of each q̃ mode over

time, accounting for fluctuations.
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Figure 2.3: Normalized growth rate relation for a membrane tube undergoing
a Rayleigh instability (R0 ∼ 10−2µm, µ = 0, κ = 10kBT , σ = 89σ0, where
σ0 = κ/(2R2

0)) or responding to an osmotic shock under constant membrane tension
(R(t = 0) = Req = 10−2µm, µ = 10−4µm Pa−1s−1, κ = 10kBT , R̃(t) = 2.35). These
parameters are chosen such that they illustrate the growth rate relations in the high
tension limit for the Rayleigh instability (blue curve), or correspond to the maximal
peak wavelength in the case of osmotic shock (orange curve). The dispersion relation
for the Rayleigh instability is obtained from Eq. 2.25, with constant radius and the
limit µ → 0. For comparison the typical growth rate for physiological parameters
in the case of slow pumping (with R̃ =

√
3 + 0.05) is also shown (green curve).

The fluctuations of modes with wavenumber q about the radius R(t) follow

the dynamics of the Langevin equation based on Eq. 2.28

˙̄uq = −αL(q)

η(q)
ūq + ζq (2.29)

where η(q) = 8η/(Rq2) and ζq, the thermal noise, has the following statistical prop-

erties

〈ζq〉 = 0 (2.30)

〈ζq(t1)ζq′(t2)〉 = δqq′δ (t1 − t2)
kBTR

πη(q)
. (2.31)

Here the thermal noise is found using the equipartition theorem, and thus only gives

the fluctuations of the m = 0 mode.

Solving this Langevin equation for 〈|ūq|2〉, using an initial condition of an
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equilibrium tube and the approximate form of R̃(t) =
√

1 + t̃ (Eq. 2.18) we find an

integral equation for the mode growth by using the standard methods of Itô calculus

[Särkkä and Solin, 2019]

〈|ūq|2〉
R2

eq

=
kBT

2κπ(1 + q̃4)
e(F (0)−F (t̃)) + e−F (t̃)

∫ t̃

0

kBT q̃
2(t̃′ + 1)

κπ

τpump

τη
eF (t̃′)dt̃′ (2.32)

where t′ is a time variable integrating over the noise kernel (in units of τpump),

τη = 8R3
eqη/κ, q̃ = qReq and

F (t) =
2τpumpq̃

2R̃(t)

15τη

(
40− 5t̃+ q̃2R̃(t)2

(
3t̃− 2 + 6q̃2R̃(t)2

))
. (2.33)

Integrating this numerically, together with Eq. 2.18, we can find the dynamics

of the modes. The distribution of mode amplitude against q is shown in Fig. 2.4.

Although the smallest q modes go unstable first, they have very slow growth and

so the mode that dominates the instability arises from the balance between going

unstable early (favouring low q) and growing fast (favouring higher values of q).

We can compute numerically the natural wavelength associated with the

dominant mode, q̂, the first to reach
√
〈|ūq|2〉 = Req, see Fig. 2.5. This gives

a dominant wavelength λ ∼ 100 Req ∼ 2µm for parameters consistent with the

CVC, much larger than that found in the Rayleigh instability, but consistent with

observations of the CVC [Allen, 2000]. Understanding why this is the case is not

straightforward by inspection of the growth equation Eq. 2.32, but is more easily

done by considering the time-dependent growth rate Eq. 2.28. Indeed, at the time

t = tfinal, the dominant mode q̂ whose amplitude reaches
√
〈|ūq̂|2〉 = Req is very

close in value to the fastest growing mode (the peak of the instantaneous growth

rate) at that particular time, written q∗, which can be derived analytically as a

function of the tube radius from Eq. 2.28. As a result of the quasi-static driving of

the instability by the ion pumps, the final radius is always only marginally above

the critical radius
√

3Req.

The fastest growing mode can be expressed in terms of δR̃(tfinal) = δR
Req

=

R̃(tfinal)−
√

3, Fig. 2.6. It is important to note that whilst the growth rate relation

does give a good approximation to the dominant wavelength, there is a difference

due to the history encoded in the full dynamical description.

The peak of the growth rate relation can be found analytically (dG
dq̃ |q̃∗ = 0),
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Figure 2.4: Plot of the distibution of mode amplitude
√
〈ū2
q〉 against scaled

wavenumber q̃ = qReq for t̃ = 2.0 (solid), 2.04 (dashed) and 2.08 (dash-dotted,

the time when the first mode reaches
√
〈ū2
q〉 = Req), τη/τpump ∼ 10−6. Req = 25nm,

σ = 10−4N m−1 and ρI(t = 0) = 3.0× 108µm−3

and in the small q̃ limit is

(q̃∗)2 =− 1

6
− 16ηµ

3Req
+

1

6R̃2

+

√
−17 + 4R̃2(1 + 8 ηµ

Req
) + R̃4(1 + 32 ηµ

Req
(−1 + 32 ηµ

Req
))

6R̃2

(2.34)

to leading order in δR̃(tfinal), in the µ → 0 limit, this can be expressed as q̃∗ =

(δR̃(tfinal))
1/2

√
2(3)1/4 .

This is the main factor contributing to the long wavelength/small q instabil-

ity. While a qualitatively similar regime exists for tension driven instabilities, it is

only valid very close to the instability threshold and its observation would require
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Figure 2.5: Plot of dominant wavenumber q̂ = q∗Req of the instability against ratio of
viscous to pumping timescales τη/τpump and ratio of viscous to permeable timescales,
τη/τµ. All other parameters are the same as in Fig. 2.4. The blue rectangle indicates
typical physiological parameters.

a very precise tuning of the tension. Far from threshold, the Rayleigh or Pearling

instability shows a universal relationship q̃∗ ∼ 0.6Req [Bar-Ziv et al., 1997; Powers

and Goldstein, 1997; Bar-Ziv and Moses, 1994; Boedec et al., 2014].

A related limit is that of an osmotic shock (which we detail in Appendix A).

The difference between the Rayleigh and osmotic shock instabilities is due to the

growth rate having a different response when driven by a volume change compared

to surface tension. The constant volume (Rayleigh) instability might be of lim-

ited relevance for the morphological changes of cellular membrane tubes, as cellular

membranes typically contains a host of membrane channels, including water chan-

nels, which allow fairly rapid water transport across the membrane. The osmotic

instability that we analyse here recognises the presence of active pumps in the or-

ganelle membrane, which can drive osmotic changes in the organelle lumen [Allen,

2000]. There is some correspondence between the fast pumping limit in Fig. 2.5

(τη/τpump large) and the osmotic shock situation. The instantaneous growth rates

have the same dependence in the tube radius, but have a different time dependences
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Figure 2.6: Dominant wave-number squared, (q̃∗)2, plotted against final radius
minus critical radius δR̃(tfinal) = R̃(tfinal) −

√
3, the solid line corresponds to the

peak of the growth rate as a function of wavenumber and points represent the peak
found by numerically solving the full dynamics.

as the dynamics of tube inflation is different in both cases. The osmotic shock limit

is most likely not physiologically accessible to ion pumps. Crucially, one can see in

Fig. 2.5 that the instability length scale is set by dynamical parameters, most im-

portantly the ratio of the viscosity and pumping time-scales. Varying τη/τpump has

the effect of changing the time-scale over which the modes go unstable. It is fortu-

itous that the dominant wavelength does not depend strongly on the pumping rate,

the parameter we can estimate least accurately (see Appendix A). This suggests a

robustness to the wavelength selection that may have important implications for the

CVC’s biological function. In the physiologically accessible range of parameters for

pumping and permeation, this length scale is much larger than the asymptotic limit

for either the Rayleigh instability or the osmotic shock instability.

2.5 Conclusion

We have developed a model for a water-permeable membrane containing uni-directional

ion pumps. Hydro-osmotic instabilities realised in cells may be expected to usually

lie in this class. Deriving dynamical equations for a membrane tube, we identify an

instability driven by this osmotic imbalance. This has a natural wavelength that

is set by dynamical parameters, specifically the ratio of the pumping time-scale to

viscous time-scale, and is significantly longer than a Rayleigh or Pearling instability.

Interestingly it is of the same order as seen in the CVC radial arm suggesting that
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this is a possible mechanism behind the radial arm morphology. It is also interesting

to note that the size of the bulge formed by the instability is of a similar order of

magnitude to the size of the main CVC vesicle. We speculate that this instability

may provide a mechanism for biogenesis of the CV from a featureless active tube.

We intend to further address the question of this organellogenesis in future work

along with implementing more realistic area-tension relations [Boedec et al., 2014].
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Chapter 3

Shear-driven Instabilities on

Membrane Tubes

Motivated by the mechanics of Dynamin-mediated membrane tube scission we use

covariant hydrodynamics to analyse the stability of fluid membrane tubes subjected

to shear flow in azimuthal direction. We find a novel helical instability driven by the

membrane shear flow which has its onset at shear rates that may be physiologically

accessible under the action of Dynamin and could also be probed using in-vitro

experiments on membrane nanotubes, e.g. using magnetic tweezers. We discuss

how such an instability may play a role in the mechanism for Dynamin-mediated

membrane tube scission.

3.1 Introduction

The covariant hydrodynamics of fluid membranes has been a subject of much interest

in the soft matter and biological physics community in recent years, both for the

general theoretical features of such systems [Cai and Lubensky, 1994, 1995; Fournier,

2015] and their application to biologically relevant processes [Sens, 2004; Arroyo and

DeSimone, 2009; Brochard-Wyart et al., 2006; Morris and Turner, 2015; Morris,

2017]. Such systems couple membrane hydrodynamics with bending elasticity and

have been shown to display complex visco-elastic behaviour in geometries with high

curvature [Rahimi et al., 2013].

Membrane tubes are highly curved and are found in many contexts in cell

biology, including the endoplasmic reticulum and the necks of budding vesicles [Kak-

sonen and Roux, 2018]. Such tubes can be pulled from a membrane under the action

of a localized force (such as from molecular motors) [Derényi et al., 2002; Yamada
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et al., 2014; Cuvelier et al., 2005]. They are stable due to a balance between the

forces from bending energy, involving the bending rigidity κ, and from the surface

tension σ and have equilibrium radius r0 =
√

κ
2σ [Zhong-Can and Helfrich, 1989].

One of the simplest ways to drive flows on the surface of these tubes is to

impose a velocity in the azimuthal direction. The analysis of shape changes induced

by such flows is the subject of this chapter. Two possible mechanisms for realizing

such flows via in-vitro and in-vivo experiments are shown in Fig. 3.1.

The fission of membrane tubes plays an important role in many cellular

processes, ranging from endocytosis to mitochondria fission [McClure and Robinson,

1996; Frank et al., 2001]. The key component of the biological machinery required to

induce membrane fission is a family of proteins called Dynamin which hydrolyse GTP

into GDP [Antonny et al., 2016; Roux et al., 2006]. Dynamin is a protein complex

that oligomerizes to form polymers which wrap helically around membrane tubes

[Antonny et al., 2016; Roux et al., 2010; Shlomovitz et al., 2011]. Although there is

clear evidence that Dynamin undergoes a conformational change when it hydrolyses

GTP, there is not yet a consensus on the exact method of fission [Roux, 2014; Kozlov,

1999, 2001; McDargh et al., 2016; McDargh and Deserno, 2018], although recent

coarse-grained simulations have shed some light on the possible role of constriction

and de-polymerisation [Pannuzzo et al., 2018]. It has been shown experimentally

that, upon hydrolysis of GTP, Dynamin (counter)rotates rapidly whilst constricting

[Roux et al., 2006]. The rotation frequency can be of order 10Hz [Roux et al., 2006],

giving a mechanism for the generation of flows in the azimuthal direction.

Another possible way of driving such flows is by pulling a small tube from a

Giant Unilamellar Vesicle (GUV) or cell with magnetic tweezers and using magnetic

field oscillations to spin an attached bead [Crick and Hughes, 1950; Hosu et al., 2007;

Monticelli et al., 2016].

3.2 Covariant fluid dynamics of membranes

The membrane behaves as a viscous fluid with 2D viscosity ηm. The ratio of this

viscosity over the viscosity of the bulk aqueous fluid, η, gives a length scale, LSD =
ηm
η , called the Saffman-Delbrück length [Saffman and Delbruck, 1975; Saffman, 1976;

Henle and Levine, 2010]. This is the distance over which bulk hydrodynamics screens

membrane flows in planar geometry. In the case of a membrane tube, the screening

length is modified due to geometric effects and becomes
√
LSDr0 [Henle and Levine,

2010]. We will consider dynamics on a scale less than this, such that the dominant

dissipation mechanism involves the membrane flows. This means that we can neglect
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Figure 3.1: Possible realizations of shear driven instabilities on membrane tubes
(shown in orange throughout). a) Dynamin on the neck of a budding vesicle. Under
hydrolysis of GTP the protein constricts and (counter)rotates, prior to fission of the
tube. This rotation drives a significant shear flow on the neck of the vesicle. b)
A GUV with membrane tube pulled by magnetic tweezers; the magnetic bead can
be spun in order to drive flows in the azimuthal direction on the tube. c) Sketch
of the growth of the helical instability described in this letter, the final stage is a
possible pathway to tube fission due to non-linear effects. The basis vectors on the
membrane ~ei where i = r, θ, z, length of tube, L, and equilibrium radius, r0, are
labelled. Middle panel shows shear direction.

bulk flows on sufficiently short length-scales (sufficiently short tubes), so long as we

match to physically appropriate conditions at the tube ends. Such approaches have

been used to great effect in understanding membrane dynamics on scales shorter
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than the screening length [Morris and Turner, 2015; Morris, 2017; Bahmani et al.,

2016]. For further details see Appendix B.

We need to construct force balance and mass conservation equations on a

moving membrane which we will denote by a 2D Riemannian manifold Γ. As Γ will

be embedded in R3 we denote vector fields living in R3 with an arrow above them,

for example ~x, and vector fields living in the tangent bundle of Γ by bold typeface,

e.g. x.

The position of Γ will be denoted by ~XΓ(x1, x2), which depends locally on

two coordinates of R3. This allows for the definition of a basis on Γ, ~ei = ∂i ~X.

The surface has velocity, ~V = v + w~n where v = vi~ei. Γ is equipped with a

metric ds2 = gijdx
idxj , where gij = ~ei · ~ej , this and its inverse act to raise and

lower indices respectively (the action by the metric of raising and lower of indices

will sometimes be denoted by the ] and [ signs respectively, see Appendix B). The

triad (~e1, ~e2, ~n = ~e1×~e2
|~e1×~e2|) forms a local frame on Γ. We also denote the second

fundamental form on Γ as dB = bijdx
idxj where bij = ~n · (∂j~ei). The connections

along the tangent and normal bundles are defined in the following way

∂i~ej = Ckij~ek; ∂i~n = −bij ~ej (3.1)

where Cijk = 1
2g
im (∂jgmk + ∂kgjm − ∂mgjk) are Christoffel symbols [Frankel, 2011].

We will also define the mean curvature, H, and Gaussian curvature, K, in the

following manner

2H = bi
i; K = det

(
bi
j
)

. (3.2)

We assume the membrane behaves like a zero-Reynolds number fluid in the

tangential direction [Happel and Brenner, 1983] and has bending energy given by

the usual Helfrich energy [Helfrich, 1973].

Formally, the rate-of-deformation tensor for a manifold is defined as the Lie-

Derivative of the metric along the velocity field (~V = v +w~n), which can be shown

to be equal to [Marsden and Hughes, 1994; Arroyo and DeSimone, 2009]

d = L~V (g) =
1

2

(
∇v[ +

(
∇v[

)T)
− bw (3.3)

where ∇ is the covariant derivative and [ denotes the action of the metric to

“lower” the index. The first two terms are covariant versions of the standard

rate-of-deformation tensor, whereas the third term describes the coupling between

curvature, b, and the velocity normal to the membrane, w. See Appendix B for a

brief heuristic derivation of this using local constructions.
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We can find the continuity equation (incompressibility condition) for the

membrane by taking the trace of the rate-of-deformation tensor, d. This gives

∇ · v = 2Hw, (3.4)

which is simply the Euclidean continuity equation modified to account for the normal

motion of the membrane.

The membrane also has associated curvature energies given by the Helfrich

energy [Helfrich, 1973]

EHel =

∫
Γ

dAΓ2κH2 (3.5)

the time derivative of which depends only on w and is given by [Rahimi et al., 2013]

∂tEHel = Ė[w] =

∫
Γ
w
(
κ
[
−2∆LBH + 4H

(
H2 −K

)])
dAΓ. (3.6)

Defining the Rayleigh dissipation functional for the membrane in the following way

WΓ =

∫
Γ
ηmd : ddAΓ (3.7)

describes the fluid behaviour of the membrane by accounting for the energy dissip-

ation in the fluid due to the viscosity. From this a complete dissipation functional

for the system can be defined as

G = WΓ + Ė +

∫
Γ
σ (∇ · v − 2Hw) dAΓ (3.8)

imposing incompressibility of membrane with Lagrange multiplier, σ, which cor-

responds to surface tension. Performing functional variation with respect to the

components of the surface velocity yields the force balance equations for the mem-

brane, see Ref. [Arroyo and DeSimone, 2009] for details.

Force balance normal to the membrane means the normal elastic and viscous

forces must sum to zero, leading to the following

κ
[
2∆LBH − 4H

(
H2 −K

)]
+ 2σH + 2ηm

[
bij∇ivj − 2

(
2H2 −K

)
w
]

= 0. (3.9)

Here κ is the bending rigidity of the membrane and ∆LB = − ?d ?d is the Laplace-

Beltrami operator (where ? is the Hodge star and d is the exterior derivative, for

definitions of these see Appendix B). Note that we are using a geometrical definition

of ∆LB that is analogous to a curl-curl operator on a manifold, hence the sign dif-
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ference with the usual Laplacian operator in the shape equation. This is a modified

form of the shape equation first derived by Zhong-Can & Helfrich [Zhong-Can and

Helfrich, 1989], but with the addition of viscous normal forces given by fluid flow

on the membrane. The term coupling the second fundamental form and gradients

in tangential velocity can be thought of as the normal force induced by fluid flow-

ing over an intrinsically curved manifold. This term is of fundamental importance

in the present study as it drives a shape instability. The other non-standard term

∼
(
2H2 −K

)
w is the dissipative force associated with the normal velocity, inducing

flows in the tangential direction on a curved surface.

Force balance in the tangential direction gives

ηm
[
∆LBv

i − 2Kvi + 2
(
bij − 2Hgij

)
∇jw

]
−∇iσ = 0 (3.10)

which is the modified form of the 2D Stokes equations. The new terms, coupling

Gaussian curvature with tangential velocity, and curvature components with the

gradients in normal velocity, come from the modified form of the rate-of-deformation

tensor which accounts for the curved and changing geometry of the membrane.

The term ∼ Kvi describes the convergence/divergence of streamlines on a curved

surface. The term ∼
(
bij − 2Hgij

)
∇jw describes the forces induced tangentially by

the dynamics of the membrane.

3.3 The Shear-driven Instability of Membrane Tubes

We consider a ground-state membrane tube (w = 0) of length L in cylindrical

coordinates (r, θ, z) with radius r0 =
√

κ
2σ0

and impose a velocity v = v0~eθ at z = 0

(which can be interpreted as the edge of an active Dynamin ring, for example).

Making use of the azimuthal symmetry the continuity and Stokes equations reduce

to an ODE that admits the solution

v(0) = (v0 − Ωz)~eθ (3.11)

where the exact value of Ω depends on the boundary condition at z = L.

We consider a problem of a membrane tube attached to a flat membrane at

z = L where L � LSD. We treat this flat membrane as an effective “impedance”

acting at the end of the tube, as such we do not balance the shape equations at

z = L.

We may want to consider a tube attached to a sheet of membrane that has

some friction associated to some underlying molecular interactions. For example,
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consider that the tube has been pulled from the plasma membrane which is at-

tached to the acto-myosin network [Kaksonen and Roux, 2018]. We model this

using D’arcy’s equation on the sheet

1

r
∂r (r∂rv)− v

r2
− λ

ηm
v = 0 (3.12)

where λ is a friction coefficient associated with the adhesions and v is the velocity

in the θ direction on the sheet (in standard planar polar coordinates). The solution

to this equation is of the form v = AK1

(√
λ
ηm
r
)

, where Ki(x) is a modified Bessel

equation of the second kind of order i. We solve both geometries for some velocity

vL and then balance torques to find the ground-state velocity of the tube.

This leads a velocity profile on the tube (where the flow just follows the

standard Stokes equations) of the form Eq. 3.11 where Ω =
v0

√
λ
ηm

K2
K1

1+L
√

λ
ηm

K2
K1

where Ki =

Ki

(√
λ
ηm
r0

)
.

In the limit λ→ 0 we recover the solution with no friction, where Ω = 2v0
2L+r0

.

In both of this and the λ→∞ limit the shear rate is of a similar order of magnitude,

scaling like Ω ∼ v0/L.

We can now make a perturbation about this ground state in r(z, θ, t) =

r0 + u(θ, z, t), v = v(0) + δvθ(θ, z, t)~eθ + δvz(θ, z, t)~ez, σ = σ0 + δσ(θ, z, t) and

w = ∂tu. Note that all components of differential forms are given in the basis

dθ, dz hence the different dimensions in components. We will also make use of

the discrete Fourier transform, f(θ, z, t) =
∑

q,m f̄q,m(t)eı̇qz+ı̇mθ, where f̄q,m is the

discrete Fourier Transform of f(θ, z) with m ∈ Z. We will use this to write Eqs. 3.4,

3.9, 3.10 in Fourier space up to linear order in the perturbations.

To linear order the metric and its inverse on the membrane are

[gij ] =

[
r2

0 + 2r0u 0

0 1

]
; g−1 = [gij ] =

[
1
r2
0
− 2u

r3
0

0

0 1

]
(3.13)

The second fundamental form (and its mixed index version) are given by the follow-

ing at linear order

[bij ] =

[
∂2
θu− r0 − u ∂zθu

∂zθu ∂2
zu

]
; [bi

j ] =

[
∂2
θu

r2
0
− 1

r0
− u

r2
0

∂zθu
r2
0

∂zθu ∂2
zu

]
; (3.14)
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which gives mean and Gaussian curvature

2H = bi
i = bijg

ji =
∂2
θu

r2
0

− 1

r0
+
u

r2
0

+ ∂2
zu

K = det
(
bji

)
= det

(
bikg

kj
)

= −∂
2
zu

r0

. (3.15)

The Christoffel symbols are the following

Cθij =

[
∂θu
r0

∂zu
r0

∂zu
r0

0

]
; Czij =

[
−r0∂zu 0

0 0

]
(3.16)

which can be used to find the covariant derivative of the velocity field on the mem-

brane v = (v + δvθ)~eθ + δvz~ez

∇v =

[
1
r0
∂θδv

θ ∂θδv
z

− Ω
r0

+ 1
r0
∂zδv

θ ∂zδv
z

]
. (3.17)

We will make use of this to calculate the viscous part of the normal membrane

response in the shape equation

b] : ∇v = − 1

r2
0

∂θδv
θ − Ω

r0
∂zθu. (3.18)

We also note here the Hodge duals of the fundamental forms as this provides

a natural way to compute Laplacians on manifolds (see Appendix B for general

expressions of Hodge stars)

? vol2 = 1; ?1 = vol2

? dθ =

(
1

r0
− u

r2
0

)
dz ? dz = −(r0 + u)dθ

(3.19)

where vol2 is the volume 2-form on the surface. From this we find the Laplacian of

the mean curvature − ? d ? dH in order to derive the bending rigidity dominated

response. After some lengthy algebra and taking the Fourier representation u =∑
q,m ūq,me

ı̇qz+ı̇mθ with similar transforms for σ = σ0 + δσ and the surface velocity

components, we can write the shape equation as a linear response theory. This gives

the linear response of the normal force balance is the following

Fuq,mūq,m + Fσq,mδ̄σq,m + Fθq,m ¯δvθq,m + Fzq,m ¯δvzq,m + Gq,mδ̄wq,m = 0 (3.20)
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Figure 3.2: Surface plot showing the normal component of the viscous force per unit
area on the m = 1, q̃ = 1 mode according to Eq. 3.20. This shows the helical nature
of this growth rate. fmax is the maximum force per unit area which scales with the
size of the undulation. Arrows indicate the direction of shear flow.

where Fuq,m =
4σ2

0
κ

[
q̃4 +m4 + 2q̃2m2− 2m2 + 1

]
− 2ηmmq̃Ω

r2
0

, Fσq,m = 1
r0

, Fθq,m = 2ı̇mηm
r2
0

,

Fzq,m = 0 and Gq,m = 2ηm
r2
0

where q̃ = qr0.

Note the sign of the final term in the Fuq,m coefficient suggests that the shear

flow could lead to an instability in the m 6= 0 modes. The force distribution on the

tube is shown in Fig. 3.2. Note that the (m→ −m, q̃ → −q̃) symmetry of the force

defines a “handedness” which changes upon reversing the direction of the shear rate.

In order to find the 2D Stokes equations to linear order we need to calculate

the Laplace-Beltrami operator of the velocity field v =
(v0(z)+δvθ)

r(θ,z)

(
∂
∂θ

)
+ δvz

(
∂
∂z

)
.

First we lower the velocity with the metric and act on it with the exterior derivative

giving (to linear order)

dv[ =
[
−r0Ω + ∂zuv0 − uΩ + r0∂zδv

θ
]

dz ∧ dθ + ∂θδv
zdθ ∧ dz (3.21)

next, taking the Hodge star of this and using the asymmetry of the wedge product

and the fact that vol =
√
|g|dθ ∧ dz we find

? dv[ = Ω− ∂zu

r0
v0 − ∂zδvθ +

∂θδv
z

r0
. (3.22)
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Taking the exterior derivative of this gives

d ? dv[ =

[
−∂zzuv0

r0
− ∂zzδvθ +

∂zθδv
z

r0
− ∂zuΩ

r0

]
dz

+

[
−∂zθu

r0
v0 − ∂zθδvθ +

∂θθδv
z

r0

]
dθ

(3.23)

taking the Hodge star of this and applying the inverse metric leads to(
− ? d ? dv[

)]
=

1

r2
0

[
−∂zzuv0 − r0∂zzδv

θ + ∂zθδv
z − ∂zuΩ

]( ∂

∂θ

)
+

[
∂zθuv0

r2
0

+
1

r0
∂zθδv

θ − 1

r2
0

∂θθδv
z

](
∂

∂z

)
.

(3.24)

The contribution to the Stokes equations from the Gaussian curvature is

given by

− 2Kv =
2∂2

zu

r2
0

v0

(
∂

∂θ

)
(3.25)

and from the gradient in the normal velocity we have

2(b− 2Hg) ·∇w = 2

[(
− 1
r3
0

0

0 0

)
+

1

r0

(
1
r2
0

0

0 1

)](
∂θw
r0

∂zw

)
=

2

r0
∂zw

(
∂

∂z

)
. (3.26)

Taking Fourier transforms of these we can find the 2D Stokes equations in

Fourier spaceηm [−mq̃
r2
0
δ̄v
z
q,m −

ı̇q̃Ω
r2
0
ūq,m + q̃2

r2
0
δ̄v
θ
q,m − 1

r3
0
v̄0 ~

[
q̃2ūq,m

]]
− ı̇m

r0
δ̄σq,m

ηm

[
m2

r2
0
δ̄v
z
q,m − 1

r3
0
v̄0 ~ [mq̃ūq,m]− mq̃

r2
0
δ̄v
θ
q,m + 2ı̇q̃

r2
0
δ̄wq,m

]
− ı̇q̃

r0
δ̄σq,m


=

(
0

0

) (3.27)

where ~ denotes convolution between the two Fourier transforms in q space. This

comes from using the convolution theorem F(f · g) = F(f) ~ F(g). The continuity

equation reads

ı̇mδ̄v
θ
q,m + ı̇q̃δ̄v

z
q,m + δ̄wq,m = 0. (3.28)

From this point it is just a matter of algebra to find the response functions

δ̄v
θ
q,m, δ̄v

z
q,m and δ̄σq,m in terms of ūq,m and δ̄wq,m.
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δ̄v
θ
q,m =

ı̇m
(
m2 + 3q̃2

)
δ̄wq,m + ı̇Ω̃q̃3ūq,m + q̃2

r0
v̄0 ~

(
q̃2ūq,m

)
− mq̃

r0
v̄0 ~ (mq̃ūq,m)

(m2 + q̃2)2

(3.29)

δ̄v
z
q,m =

ı̇q̃
((
q̃2 −m2

)
δ̄wq,m −mq̃Ωūq,m

)
+ m2

r0
v̄0 ~ (mq̃ūq,m)− mq̃

r0
v̄0 ~

(
q̃2ūq,m

)
(m2 + q̃2)2

(3.30)

δ̄σq,m =
ηm

[
ı̇m
r0
v̄0 ~

(
q̃2ūq,m

)
+ ı̇q̃

r0
v̄0 ~ (q̃mūq,m) + 2q̃2δ̄wq,m −mq̃Ωūq,m

]
(m2 + q̃2) r0

. (3.31)

We can now make use of the fact that the Fourier transform of the ground-

state velocity convolved with some function is given by v̄0 ~ (·) = v0 − ı̇Ωr0∂q̃ (·).
Thus we have the following identity

v̄0 ~ [f(q̃)ūq,m] = f (q̃) v̄0 ~ (ūq,m)− ı̇Ωr0ūq,m∂q̃f (q̃) (3.32)

Writing δ̄wq,m = ∂tūq,m+O(u2) we can find a growth rate equation for ūq,m,

where time is normalised according to t = t̃τ with τ = ηm
σ0

,

∂t̃ūq,m = −ı̇mṽ0ūq,m − Ω̃m∂q̃ūq,m + F (q,m)ūq,m (3.33)

where

F (q,m) =[
mq̃
((
m2 + q̃2

)2 − 2q̃2
)

Ω̃−
(
m2 + q̃2

)2 (
1 +m4 + q̃4 + 2m2

(
q̃2 − 1

)) ]
2q̃4

,

(3.34)

Ω̃ = ηmΩ
σ0

is the dimensionless shear rate and ṽ0 = v0ηm/(r0σ0).

The modes become unstable when the real part of the growth rate changes

sign to <{F (m, q)} > 0, which occurs for

|Ω̃| >
(
m2 + q̃2

)2 (
1 +m4 + q̃4 + 2m2

(
q̃2 − 1

))
|mq̃|

(
(m2 + q̃2)2 − 2q̃2

) . (3.35)

We note that <{F (0, q)} < 0 for all q̃, meaning that the m = 0 peristaltic

mode is always linearly stable. This is not the case for the |m| = 1 mode, which is

the first to be driven unstable. The stability diagram for the |m| = 1 mode is plotted
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in Fig. 3.4 with the black line in both the main figure and the inset. This means

that, beyond a certain rotation speed, a helical mode will grow, with pitch length

initially set by the length of the tube. The divergence of the growth rate for small q̃

is removed by the bulk hydrodynamics, however this is at a length scale much longer

than the tube length. This helical instability is a new type of membrane instability,

distinct from the usual peristaltic (Pearling) instabilities found in membrane tubes

[Nelson et al., 1995].

This analysis neglects the advection in q̃ given by Eq. 3.33. This corresponds

to the m 6= 0 modes being advected with the ground-state flow and adding more

turns to the helices, thus increasing q̃. As this advection will eventually stabilise

the mode, what really matters is the maximum size the fluctuation reaches before

it is damped. To calculate this we solve Eq. 3.33 with the initial condition ūq,1 =

u0δ(q − q0), which can then be used to calculate the amplification of a given mode,
ūq,1
u0

. The solution to Eq. 3.33 is given by the method of characteristics as

ūq,m(t) = u0δ(q̃ − q̃0 −mΩ̃t̃)ef(q,m) (3.36)

where

f(q,m) =
1

60

[
− 20m2(2 + 3q̃2)t̃3Ω̃2 + 30m3q̃t̃4Ω̃3 − 6m4t̃5Ω̃4

− 30t̃(5 + 4q̃2 + q̃4 − q̃Ω̃) + 15mt̃(−4
ı̇v0ηm
r0σ0

+ t(8q̃ + 4q̃3 − Ω̃)Ω̃)

− 60

mq̃Ω̃−m2t̃Ω̃2
+

15

m
(−q̃−2 +

4

q̃Ω̃
+

1

(q̃ −mt̃Ω̃)2
)
]
.

(3.37)

and includes the advection of the undulation by the ground-state flow, thus short-

ening the wavelength of the undulation, i.e. q̃ = q̃(t̃) = q̃0 + mΩ̃t̃. Because of this

advection any q̃ mode which is initially unstable will be advected to stability and

the mode will eventually decay. If our system was purely deterministic this would

kill the instability in the long time limit, however as the bending rigidity of the

membrane has comparable energy to the thermal energy (κ ∼ 10kBT where kB is

Boltzmann’s constant and T is the temperature) the q̃ spectrum is constantly fed

by thermal fluctuations. This means that, to understand the full dynamics of the

system we should solve Eq. 3.33 with the addition of a stochastic term describing

thermal noise.
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3.3.1 Solution to the fluctuation spectrum with thermal noise

Adding a thermal noise term to Eq. 3.33 we get a Stochastic Partial Differential

Equation (SPDE) in (t̃, q̃) given by

∂t̃ūq,m = −Ω̃m∂q̃ūq,m + F ′(q,m)ūq,m + ∂t̃ζt,q,m (3.38)

where

〈∂t̃ζt,q,m∂t̃′ζt′,q′,m′〉 =
2kBT

κ

(
m2 + q̃2

)2
2q̃4

δq,q′δm,m′δ
(
t̃− t̃′

)
(3.39)

is chosen such that we recover the equipartition result of equilibrium statistical

mechanics when Ω̃ = ṽ0 = 0. We define F ′(q,m) = F (q,m)− ı̇mṽ0. Eq. 3.38, with

initial data ūq,m(0) = u0(q,m), is the stochastic version of a Cauchy problem [Chow,

2014].

In order to solve this SPDE we make use of the method of Stochastic Char-

acteristics [Chow, 2014]. In Itô form the thermal noise is written as

ζt,q,m =
√
B(q̃,m)dWt,q,m (3.40)

where 〈dWt,q,mdWt′,q′,m′〉 = δm,m′δq,q′dt and B(q̃,m) =
(
m2 + q̃2

)2
/q̃4.

Eq. 3.38 is equivalent to the Itô integral

ūq,m(t̃) = u0(q̃,m)−mΩ̃

∫ t̃

0
∂q̃ūq,m(s)ds+

∫ t̃

0

[
F ′(q,m)ūq,m(s)ds+ ζs,q,m

]
. (3.41)

In order to solve this we introduce the following characteristics

φt(q) = q̃ +mΩ̃

∫ t̃

0
ds = q̃ +mΩ̃t̃

ηt(q, r) = r +

∫ t̃

0
ηs (q, r)F ′ (φs(q),m) ds+

∫ t̃

0

√
B(φs(q),m)dWt,m,q

(3.42)

for certain regularity conditions on the noise these stochastic integral equations have

a unique solution that defines a stochastic flow of diffeomorphism. This leads to the

solution to the stochastic Cauchy problem, posed by Eq. 3.38 and its initial data,

which is given by

ūq,m =u0

(
φ−1
t (q),m

)
exp

[∫ t̃

0
F ′(φs(y),m)ds

]
|y=φ−1

t (q)

+

∫ t̃

0
exp

[∫ t̃

τ
F ′(φs(y),m)ds

]√
B(φτ (y),m)dWτ |y=φ−1

t (q).

(3.43)
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Evaluating the integrals in the exponentials we find

f ′(q,m, t) =

∫
F ′(φt(y),m)dt

=

[
− 15m5Ω(mtΩ + q)− 40m2(mtΩ + q)6

+ 60m
(
m2 − 1

)
Ω(mtΩ + q)3 log(mtΩ + q)− 30

(
6m4 − 2m2 + 1

)
(mtΩ + q)4

+ 10m4
(
m2 − 1

)2
+ 60

(
2m6 − 2m4 +m2

)
(mtΩ + q)2 − 6(mtΩ + q)8

+ 15mΩ(mtΩ + q)5

](
60mΩ(mtΩ + q)3

)−1

− ı̇mṽ0t

= f(q,m, t)− ı̇mṽ0t.

(3.44)

We want to consider the steady state of the fluctuations at a time when any

dependence on this initial data has decayed so, by taking the complex conjugate of

Eq. 3.43 squared and averaging we find

〈|ūq,m|2(t̃)〉 = e2f(q̃−mΩ̃t̃,m,t̃)

∫ t̃

0
B
(
q̃ +mΩ̃

(
τ ′ − t̃

)
,m
)
e−2f(q̃−mΩ̃t̃,m,τ ′)dτ ′ (3.45)

where we have input the characteristic curves and their inputs explicitly and neg-

lected the term describing the dynamics of the initial data as we are only interested

in the steady state.

If we consider the case of the m = 1 mode then the equilibrium fluctuations

are known to be critical in the q̃ → 0 limit [Fournier and Galatola, 2007]. Because

of this we introduce a cut of wavenumber q̃0 that corresponds to the length-scale of

the longest fluctuation on the finite tube. This implies that the noise kernel of our

system has only localized support on the interval τ ′− t̃ ∈ [ q̃0−q̃Ω , 0], so we can change

variables to integrate over this interval. Thus, the m = 1 steady state fluctuations

are given by

〈|ūq,1|2(0)〉 = e2f(q̃,1,0)

∫ 0

q̃0−q̃
Ω

B
(
q̃ + Ω̃τ ′, 1

)
e−2f(q̃,1,τ ′)dτ ′. (3.46)

The steady states of 〈|ūq,1|2〉 and the z part of their spacial gradients in

Fourier space q̃2〈|ūq,1|2〉 are plotted in Fig. 3.3 for Ω̃ = 1 and q̃0 = 0.2. We also plot

the equivalent thermal fluctuations given by Eq. 1.29 with m = 1

〈|ūq,1|2〉 =
kBT

κq̃2 (q̃2 + 2)
. (3.47)
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Figure 3.3: The steady state fluctuations for a sheared tube (Eq. 3.46) and their
Fourier “gradients” in the z direction (|F (~ez · ∇u) |2 = q̃2〈|ūq,1|2〉) with shear rate,
Ω̃ = 1, and long wavelength cut-off, q̃0 = 0.2. We choose the bending rigidity to be
κ = 10kBT . The dashed red line shows the equivalent thermal fluctuations.
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Figure 3.4: Figure showing the zero of F (q,m = 1) as a function of q̃ and Ω̃
(Eq. 3.35). The region above the black line is unstable. The blue dot-dashed line
shows the value of Ω̃ for which the steady state becomes non-linear as a function
of q̃0, which we denote the region above this line as “Non-linear deformation”. The
inset shows the same plot on a linear scale, with the red dashed line showing the
low q̃ expansion of the stability criterion.

which we plot as a red dashed line.

In fact it is the gradient terms which break the linearisation conditions due

to the advection and amplification increasing the gradients. To find a criterion for

“Non-linear deformation” (and hence very large fluctuations), we can find where the

gradients become of ∼ O(1) by solving (1 + q̃2
max)〈|ūq,1|2〉|q̃→q̃max = 1 for Ω̃ given

q̃0, where q̃max is the q̃ value for the peak of the steady state fluctuations, Eq. 3.46.

This gives us a line on the (q̃0, Ω̃) plane that gives a conservative estimate of when

non-linear effects become important. A stability diagram for the m = 1 mode in

(q̃, Ω̃)-space is plotted in Fig. 3.4 along with the criterion for non-linear deformation

(blue dot-dashed).
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3.4 Discussion

In the small q̃ limit, the threshold shear (Eq. 3.35) is Ω̃ ≈ 2q̃, see S.I.). The shear

rate is Ω ∼ 2πr0ν
L , where ν is the spinning frequency. Assuming that the cut-off

wavenumber of the tube is associated with a fundamental mode q̃0 = 2πr0
L , gives the

critical spinning frequency for the onset of instability as

νcrit '
2σ0

ηm
(3.48)

The functional form of the critical frequency can be explained using a scaling analysis

of Eq. 3.9. For q ∼ 1/L, the first order correction to the curvature scales like H ∼ u
L2

so that the elastic force-per-unit-area scales like fel ∼ uσ0
L2 , while the off-diagonal

components of the second fundamental form scale like b ∼ u
r0L

and hence the viscous

force-per-unit-area scale like fvis ∼ ηmΩu
r0L

∼ uηmν
L2 . Balancing these forces gives a

critical frequency νcrit ∼ σ0
ηm

.

Typical membranes in the fluid (liquid disordered) phase have viscosities

ηm ∼ 10−8 − 10−7 Pa m s [Hormel et al., 2014] (higher in the liquid ordered phase).

However, much higher values have been associated with tubes pulled from living

cells, ηm ∼ 10−7−10−5Pams [Brochard-Wyart et al., 2006]. Effective viscosities may

be higher still if the neck is crowded with proteins. If we assume the surface tension

takes a physiologically typical value of σ0 ∼ 10−5 Nm−1 [Roux, 2014; Antonny et al.,

2016], this gives a critical frequency of νcrit ∼ 1 − 100Hz in the small q̃ limit. It is

more likely that Dynamin will be found on short tubes with q̃0 ∼ 1 so, reading off

from Fig. 3.4 we find Ω̃ ∼ 5 for the stability criterion and Ω̃ ∼ 50 for the non-linearity

criterion which corresponds to frequencies of 5− 500Hz and 50− 5000Hz. Dynamin

has been measured to have rotational frequencies ν ∼ 10Hz [Roux et al., 2006],

suggesting the instability could be accessible to Dynamin for the higher values of

viscosity found in cells [Brochard-Wyart et al., 2006]. The criterion for non-linearity

is rather conservative as it is based on the variance of the fluctuations (one third

of the fluctuations will be breaking the linearity condition at this point). It is also

likely to significantly underestimate the size of fluctuations, which, in the case of

Dynamin, are likely to be dominated by active processes rather than thermal noise

(see Chapter 4), and is further damped by the hard cut-off at q̃0.

A natural way for the instability/fluctuations to progress in the non-linear

regime is fission of the tube, which is of particular significance given that the exact

mechanism for Dynamin mediated fission is unknown. This effect may be ampli-

fied due to friction with the cytoskeleton [Brochard-Wyart et al., 2006; Simunovic

et al., 2017] impeding the supply of membrane to the growing fluctuations. As
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the instability/fluctuations grow the surface tension will increase, either narrowing

the tube or causing Pearling [Nelson et al., 1995]. An increase in tension has been

shown to accelerate spontaneous tube fission [Morlot et al., 2012] and friction im-

peding membrane flow has been shown experimentally to scission tubes [Simunovic

et al., 2017]. The increase in fluctuations is also likely to promote the formation

of hemi-fused states, which can be an important intermediate for fission [Pannuzzo

et al., 2018]. This picture of fission, promoted by membrane hydrodynamics just

outside the active Dynamin site, is consistent with the experimental observation

that the location of fission is near the edge of the active Dynamin site rather than

directly under it [Morlot et al., 2012]. The time-scale over which the instability

grows is of the order of τ =∼ 10−2 − 1 s, which is sufficiently fast to be consistent

with the Dynamin-induced fission process [Dar et al., 2015].

Although we have provided evidence that a membrane instability can be

driven by the rotation of Dynamin, our study is based on the simplified geometry

of a cylindrical tube, rather than the neck of a budding vesicle, a location where

Dynamin might typically act in-vivo. While our approach becomes analytically

intractable for such complex membrane geometries we can gain some intuition into

how the driving force per unit area of the instability changes with the geometry of

the neck region. We do this by considering the term in the normal force balance

equation that is responsible for driving the instability. Given the helical symmetry

of the instability we infer that this driving force-per-unit-area goes like the mixed

derivative in the shape, fdriving ∼ ηmbij∇ivj . The term which acts like the shear rate

on the tube now depends on z and we must calculate it numerically, see Appendix

B. In the case of a catenoid neck this leads to an amplification of the driving force

by (only) a factor of 2 near the active site (z = 0), for details see Appendix B.

Whilst a relatively small effect, this is qualitatively consistent with the experimental

observation that Dynamin fission of a tube in-vitro often occurs near the GUV neck

[Morlot et al., 2012] and that fission on the necks of a budding vesicles in-vivo occurs

faster than it does on long tubes [Morlot et al., 2010; Roux, 2014].

A second possibility for the non-linear growth is a stable non-equilibrium

shape driven by the membrane flow. In this case it is worth noting an analogy

between the membrane tube instability that we discuss here and elastic rods un-

der torsion that deform nonlinearly into plectonemes [Audoly and Pomeau, 2010].

We suggest that it may also be possible (under some conditions) for the unstable

membrane tube to develop fluid plectonemes, similar to those actually seen in ex-

periments on long tubes covered in Dynamin [Roux et al., 2006; Morlot et al., 2010].

A possible experiment to better understand the non-linear evolution of the
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fluctuations and determine whether these hydrodynamic effects alone are sufficient

to induce fission would involve a short tube pulled from a GUV or cell by magnetic

tweezers that then spin its end, Fig. 3.1b. This would also enable experimentalists

to test our predictions more quantitatively. The instability should also arise in a

longer tube, however the quantitative nature of our predictions would likely require

modifications due to screening of membrane flow by the ambient fluid. In this case

we expect that the unstable wavelength would then be set by the screening length
√
LSDr0 rather than the tube length [Henle and Levine, 2010; Ferziger and Peric,

2002] and that our results would continue to hold at the scaling level.

In summary, we have developed a hydrodynamic theory that predicts an

instability on fluid membrane tubes that is driven purely by a shear in the membrane

flow. Such flows are shown to first drive a helical instability, which is quite distinct

from any previously identified instabilities of fluid membrane tubes. This instability,

although eventually advected to stability by the flow is shown to be able to produce

a significant increase in the fluctuation spectra of a membrane tube. We predict that

this instability is physiologically accessible to Dynamin but has not previously been

considered in models of its function [Lenz et al., 2008; Morlot et al., 2010]. This

instability may provide a mechanism for Dynamin-mediated tube fission mechanism,

e.g. due to increasing tension in the amplified steady state or in the subsequent non-

linear deformation regime.
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Chapter 4

Dynamics of Passive and Active

Membrane Tubes

Utilising the Onsager formulation, we derive dynamical equations for the small

deformation limit relaxation of a fluid membrane tube allowing for a contrast of

ambient viscosity and variations in surface tension due to the deformations. Com-

puting the relaxation rates, we recover results previously found in the case of purely

axis-symmetric perturbations along with new results for higher order angular (m)

modes. We explain the long and short wavelength limits of these modes making

use of various asymptotic arguments. Adding stochastic terms to our dynamical

equations which describe passive thermal forces and “active” forces, we compute

expressions for the mean-square fluctuations and effective temperature associated

with the addition of active fluctuations. Finally we discuss how one might measure

these fluctuations in experiment and infer the properties of the active forces.

4.1 Introduction

Membrane tubes, formed by bilayers of phospholipid molecules, are structures ubi-

quitous in cells. They are vital to the function of many organelles including the

peripheral Endoplasmic Reticulum (ER) [Nixon-Abell et al., 2016] and membrane

nanotubes, which have been implicated as an important pathway in inter-cellular

signalling [Abounit and Zurzolo, 2012]. Membrane tubes can be formed from a flat

membrane by the action of a local force normal to the membrane (such as molecu-

lar motors, actin or curved proteins coating the membrane) [Derényi et al., 2002;

Cuvelier et al., 2005; Yamada et al., 2014].

From a statistical mechanics perspective there has been significant work on
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the thermal fluctuations of membrane tubes [Fournier and Galatola, 2007; Komura

and Lipowsky, 1992]. A striking prediction from these theories is that the bending

modes of the tube are critical in the long wavelength limit and it would be expected

that an-harmonic terms in the free energy will dominate the excess area and length

fluctuations [Fournier and Galatola, 2007]. This has become relevant recently as it

was shown that optical tweezers techniques can be used to infer the power spec-

tral density of such fluctuations on tubes pulled from Giant Uni-Lamelar Vesicles

(GUVs) [Valentino et al., 2016]. A related topic of interest is the statistical mech-

anics of tubular networks [Tlusty and Safran, 2000; Tlusty et al., 2000] and on the

length fluctuations of tubes held by a fixed force [Barbetta and Fournier, 2009].

Work on the dynamics of membrane tubes has focused on the simplified

axisymmetric case, in particular the dynamics of the Pearling instability of mem-

brane tubes [Bar-Ziv and Moses, 1994; Boedec et al., 2014; Nelson et al., 1995;

Gurin et al., 1996], and the dynamics of tether pulling from a GUV or cell [Evans

and Yeung, 1994; Nassoy et al., 2008; Brochard-Wyart et al., 2006]. A further

area of study is that of particle mobility laterally within the membrane [Henle and

Levine, 2010; Rahimi et al., 2013]. These examples provide insight into how the

curved geometry of the membrane tube can lead to interesting physics, in the form

of visco-elastic couplings [Rahimi et al., 2013] and non-Newtonian rheological beha-

viour [Brochard-Wyart et al., 2006; Evans and Yeung, 1994].

In this chapter we will focus on the dynamics of membrane tubes, deriv-

ing equations of motion from an Onsager framework (in the manner of [Fournier,

2015; Sachin Krishnan et al., 2016, 2018]) and analysing the relaxation behaviour

in Fourier space. We then consider the case where stochastic forces act on the

membrane and derive the statistical behaviour of the shape undulations, in par-

ticular focusing on the case where active noise dominates. Here the term active

refers to a noise term which breaks the fluctuation dissipation theorem. Such active

membrane systems have been theoretically studied extensively in the case of flat

membranes [Prost and Bruinsma, 1996; Ramaswamy et al., 2000; Gov, 2004] and

spherical vesicles [Sachin Krishnan et al., 2018; Turlier et al., 2016]. These descrip-

tions have also proved useful when compared to experiments with active proteins in

GUVs [Manneville et al., 2001] and in the analysis of red blood cell flicker [Turlier

et al., 2016; Gov and Safran, 2005].

We derive the fluctuation spectra for active tubes and calculate the effect-

ive temperature of such fluctuations. We then discuss possible ways to quantify

the parameters in our active fluctuations model from experiment. Finally we dis-

cuss some open problems in the study of membrane tubes and the study of active
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membranes more generally.

4.2 Membrane tube dynamics

4.2.1 Geometry

We take the membrane to be a manifold, Γ ⊂ R3, locally equivalent to R2. Vectors

in the ambient space will be notated at ~x ∈ R3 and vectors in the tangent bundle

to the manifold as x ∈ T (Γ).

We parametrise the manifold, Γ, with the vector

~r = (r (θ, z, t) cos θ, r (θ, z, t) sin θ, z) (4.1)

where r(θ, z, t) = r0 [1 + u (θ, z, t)], see Fig. 4.1(a). We will consider the small

deformation limit where u� 1. Local coordinates can be induced on the surface by

taking derivatives with respect to θ and z, giving ~eθ = ∂θ~r and ~ez = ∂z~r, respectively.

A complete triad can be defined by {~eθ, ~ez, ~n} where ~n = (~eθ × ~ez)/|~eθ × ~ez| is the

normal vector to the surface. The metric and second fundamental (bilinear) forms

are then defined as g = gijdX
idXj = ~ei · ~ejdXidXj and b = bijdX

idXj where

bij = ~n · ∂j~ei. This can be used to define the mean curvature, H = bi
i/2, and

Gaussian curvature, K = det bi
j .

The membrane is assumed to behave as a fluid in the tangential direction so

we define a vector field, v ∈ T (Γ), as the flow velocity of lipids in the membrane.

We assume v is of the same order as u and perturb around a ground-state with no

flow.

4.2.2 Free energy

The free energy of an incompressible fluid membrane can be written using the

Helfrich-Canham-Willmore energy [Helfrich, 1973; Canham, 1970] (Eq. 1.7)

Fel =

∫
dA
[
σ +

κ

2
(2H)2

]
, (4.2)

where σ is surface tension, κ the bending rigidity and the area element is given

by dA =
√
|g|dθdz. We have integrated out the contribution from the Gaussian

curvature and saddle splay modulus by assuming no changes in topology and a tube

of infinite length. We also neglect spontaneous curvature for simplicity (C0 = 0).

The area element and the mean curvature squared are given, up to second
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order by,

dA ≈ r0

[
1 + u+

1

2

(
r2

0∂
2
zu+ ∂2

θu
)]

dθdz, (4.3)

H2 ≈ 1

r2
0

[
1

2
− r2

0∂
2
zu+ ∂2

θu+ u+
1

2

{
2u(r2

0∂
2
zu+ 3∂2

θu)− r2
0(∂zu)2

+ (r2
0∂

2
zu+ ∂θu)2 + (∂θu)2 + 3u2

}]
. (4.4)

If we take the full free energy F = Fel −
∫

dV ∆P , where ∆P = P− − P+

is the the hydrostatic pressure jump across the membrane, then the ground-state

r = r0 must satisfy the modified Laplace equation

σ

r0
− κ

2r3
0

−∆P = 0, (4.5)

in order to minimise the free energy.

For the Onsager formulation of membrane dynamics, we need to know the

rate of change of the free energy. This is given by

Ḟ =

∫
dθdz

[
κ

r2
0

(3

2
u+ r2

0∂
2
zu+ r4

0∂
4
zu+

5

2
∂2
θu+ 2r2

0∂
2
θ∂

2
zu+ ∂4

θu
)

− σ(u+ r2
0∂

2
zu+ ∂2

θu)

]
r0u̇, (4.6)

where dot indicates time derivative and we have made use of Eq. 4.5 (or equivalently

the constraint that total volume is preserved
∫

dθdz u = −(1/2)
∫

dθdz u2). Note

that Ḟ is a functional only of the normal velocity vn = r0u̇ + O(u2) and not the

tangential components of membrane velocity, v.

4.2.3 Dissipation and constraints

We will consider only the dissipation due to the ambient fluid as this is the dominant

dissipative mechanism at large length-scales [Seifert and Langer, 1994]. We define

the velocity in the ambient fluid as ~V = V α~eα where we use Greek indices to denote

summation over coordinates in R3. The dissipation functional for the bulk fluid is

given by [Landau and Lifshitz, 1959]

P± =

∫
V±

dV ± η±D±αβD
αβ±, (4.7)
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Figure 4.1: (a) Cross section of a membrane tube with some undulation r0u(θ, z, t)
about the radius r0. Here η± label the viscosity of the exterior and interior am-
bient fluid respectively. (b) Surface plots of the Fourier decompositions, u =∑

q,m uqme
iqz+imθ for q = 1.
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where η± is the viscosity of the exterior and interior regions respectively (and sim-

ilarly for the other ± superscripts), as shown in Fig. 4.1(a), and D±αβ = (∇αV ±β +

∇βV ±α )/2 is the rate-of-deformation tensor.

At the scale of cell membranes (10 nm–100 µm) viscous dissipation dominates

the energy dissipation in the fluid, hence we neglect the contribution from inertia

and assume zero Reynolds number [Happel and Brenner, 1983].

Our system has several constraints which, in the Onsager formulation, will be

imposed using Lagrange multipliers [Doi, 2013]. Firstly, the membrane and ambient

fluid are incompressible so must satisfy the following conditions

∇αV α± = 0, (4.8)

for the bulk fluid (where ± correspond to the exterior and interior velocities respect-

ively) and

∇ivi − 2vnH = 0, (4.9)

for the membrane, where vn = r0u̇+O(u2) is the normal velocity of the surface. Fur-

ther constrains come in the form of no slip and no permeation boundary conditions

on the bulk fluid at the membrane

(V α±|r0)i = vi, V r±|r0 = r0u̇. (4.10)

4.2.4 Rayleigian and equations of motion

To derive the full equations of motion using the Onsager formulation, we must first

write down the Rayleighian [Doi, 2011; Landau and Lifshitz, 1959; Fournier, 2015;

Sachin Krishnan et al., 2016]. The full Rayleighian for the system is found by

taking the sum of the rate-of-change of free energy for the system, Eq. 4.6, and

the energy dissipations (half the work done on the system), Eq. 4.7, and adding in

the constraints on the system using using Lagrange multipliers. This formulation is

equivalent to Onsagers kinetic equation with reciprocal coefficients, but recast as a

variational formalism, with the advantage that finding the correct pairs of fluxes and

forces is now trivial as they are obtained by the variational principle automatically
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[Onsager, 1931a,b; Doi, 2011]. Thus our Rayleighian reads

R =P+ + P− + Ḟ +

∫
∂V

dAζ(∇ivi + u̇)−
∫
V+

dV + P+∇αV α+

−
∫
V−

dV − P−∇αV α− +

∫
∂V

dA
[
µ+
i

[
(V α+|r0)i − vi

]
+ µ−i

[
(V α−|r0)i − vi

]
+ λ+

(
V r+|r0 − r0u̇

)
+ λ−

(
V r−|r0 − r0u̇

) ]
, (4.11)

where ζ, P±, µ±i and λ± are Lagrange multipliers imposing the constraints of con-

stant area, constant volume, no slip and no permeation respectively. Note that we

choose the signs of ζ and P± so that they correspond to pressure and surface tension

variation respectively (however this is arbitrary).

We now proceed to use Onsager’s principle and minimise the Rayleighian to

find the equations of motion for the membrane [Doi, 2013]. Taking variations of

Eq. 4.11 with respect to V α±|r0 yields

∓ η±D±ri|r0 − µ
±
i = 0, (4.12)

∓ η±D±rr ± P± − λ± = 0, (4.13)

showing that µ±i and λ± correspond to the traction forces acting on the membrane.

Extremising with respect to vi gives

∇iζ − µ+
i − µ

−
i = 0, (4.14)

or eliminating the Lagrange multipliers

∇iζ + η+D+
ri − η

−D−ri = 0, (4.15)

which is simply tangential force balance on the membrane.

Taking variations with respect to r0u̇ and eliminating λ± gives normal force

balance on the membrane as

κ

r3
0

(
3

2
u+ r2

0∂
2
zu+ r4

0∂
4
zu+

5

2
∂2
θu+ 2r2

0∂
2
θ∂

2
zu+ ∂4

θu

)
− σ

r0
(u+ r2

0∂
2
zu+ ∂2

θu) +
ζ

r0
− η+D+

rr + P+ + η−D−rr − P− = 0. (4.16)

Varying with respect to ζ gives the membrane incompressibility condition, Eq. 4.9.

Varying with respect to P± and V ±α gives the usual Stokes equations and
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incompressibility condition

η±∇2V α± = ∇αP±, ∇αV α± = 0. (4.17)

This approach has allowed us to derive the fully coupled equations of motion

for the system by just considering the relevant dissipation functionals and system

constraints and deriving everything from a variational principle.

4.2.5 Fourier space decomposition

Next we solve the bulk fluid dynamics equations and thus calculate their traction

forces on the membrane. To do this we make use of the known solution to the Stokes

equations in cylindrical coordinates given by [Happel and Brenner, 1983]

~V ± = ∇φ± +∇×
(
ψ±~ez

)
+ r∂r∇ξ± + ∂zξ

±~ez, (4.18)

P± = −2η±∂2
zξ
±, (4.19)

where (φ±, ψ±, ξ±) are scalar functions that each satisfy the Laplace equation. We

decompose these functions in Fourier space in θ and z in terms of the coordinate

systems harmonic basis
φ±

ψ±

ξ±

 =
∑
q,m


Φ±qm

Ψ±qm

Ξ±qm

Π±qm(r)eiqz+imθ, (4.20)

with

Π±qm(r) =

Π+
qm(r) = Km(qr),

Π−qm(r) = Im(qr),
(4.21)

where Im(qr) and Km(qr) are modified Bessel functions of the first and second kind,

respectively.

We now take the Fourier transform of our equations where we define the

Fourier transform as f(θ, z) =
∑

q,m fqme
iqz+imθ, the form of surfaces given by the

m mode perturbations is shown in Fig. 4.1(b).

Applying the boundary conditions on the bulk flow in Fourier space allows

us to find (Φ±qm,Ψ
±
qm,Ξ

±
qm) in terms of our variables (vθ, vz, u̇). The boundary con-
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ditions in Fourier space read
r0u̇qm

vθqm

vzqm

 =


Φ±qm∂rΠ

±
qm + (im/r)Ψ±qmΠ±qm + Ξ±qm∂

2
rΠ±qm

(im/r)Φ±qmΠ±qm −Ψ±qm∂rΠ
±
qm + imΞ±qm

[
∂rΠ

±
qm −Π±qm/r

]
iqΦ±qmΠ±qm + irqΞ±qm

[
∂rΠ

±
qm + Π±qm/r

]

∣∣∣∣∣
r=r0

. (4.22)

We can make use of the continuity equation to eliminate vθqm = r0(qvzqm −
iu̇qm)/m and find (Φ±qm,Ψ

±
qm,Ξ

±
qm) in terms of u̇qm and vzqm, which are given in

Appendix C.

In Fourier space, the components of the tangential force balance equation

read

θ :
im

r0
ζqm + η+

[
r∂r(V

θ+
qm /r) +

im

r
V r+
qm

] ∣∣∣∣
r=r0

− η−
[
r∂r(V

θ−
qm /r) +

im

r
V r−
qm

] ∣∣∣∣
r=r0

= 0, (4.23)

z : iqζqm + η+
(
iqV r+

qm + ∂rV
z+
qm

) ∣∣
r=r0

− η−
(
iqV r−

qm + ∂rV
z−
qm

) ∣∣
r=r0

= 0. (4.24)

Solving for vzqm and ζqm allows us to write (Φ±qm,Ψ
±
qm,Ξ

±
qm) in terms of u̇qm. Hence

we can now write the normal force balance equation in Fourier space (in dimension-

less units) as

Bu̇qm = −Auqm, (4.25)

where

A(q̃,m) =
(
q̃2 +m2

)2 − 1

2
q̃2 − 5

2
m2 +

3

2
− σ̃

(
1− q̃2 −m2

)
, (4.26)

B(q̃,m) =

ζqm
r0

+

(
P+
qm − η (χ+ 1) ∂rV

r+
qm + η (χ− 1) ∂rV

r−
qm − P−qm

)∣∣∣∣∣
r=r0

u̇qm
, (4.27)

where σ̃ = σr2
0/κ, η = η+ + η−, χ = (η+ − η−)/η and q̃ = qr0.

The exact form of B is in general too complex to write down except for the
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m = 0 case where it is

B(q̃, 0) = η(1 + q̃2)

[
(χ− 1) I2

1

2q̃I1I0 − q̃2
(
I2

0 − I2
1

) +
(χ+ 1)K2

1

2q̃K1K2 − q̃2
(
K2

1 −K2
0

)], (4.28)

where the modified Bessel functions are evaluated at r = r0. For larger values of m,

we will evaluate B numerically using Mathematica.

It is interesting to note that, compared with the spherical case, there are

more degrees of freedom for the tube as the m and q̃ modes are not coupled as they

are in the case of spherical harmonics [Sachin Krishnan et al., 2016].

4.3 Relaxation dynamics

Here we will consider the relaxation dynamics for all the modes, in particular ex-

amining their asymptotic behaviour. We will make use of these results later when

analysing the active fluctuations of a membrane tube in Sec. 4.5.

For some initial condition at t = 0, the solution to Eq. 4.25 is given by

uqm(t) = uqm(0)e−λt, where λ = A/B. In this section we will analyse the form

of λ to understand the stability and relaxation dynamics of the Fourier modes in

membrane tube’s shape. The relaxation rate for each (q̃,m) mode is given by λ.

This describes the rate at which an undulation in the tube’s radius decays back

to the ground-state. These rates are plotted as a function of wave-number in the

z direction, q̃, in Figs. 4.2 and 4.3. Throughout we will fix the total viscosity η

and vary the relative viscosity χ = (η+ − η−)/η so the plots are shown in units of

associated with the time-scale of the total viscosity given by τ = ηr3
0/κ.

First, we discuss m = 0 modes. For values of σ = κ/(2r2
0), corresponding to

an equilibrium ground-state with no net pressure, the undulations are always stable

so λ ≥ 0. The scaling behaviour of λ in the small q̃ regime (q̃ � 1) is computed for

the m = 0 mode, where we find

B(q̃, 0) ≈ η

q̃2

[
2(χ− 1) +

χ+ 1

2 log(2/q̃)− 1− 2γ

]
, (4.29)

where γ = 0.577 . . . is the Euler-Mascheroni constant. This gives the scaling beha-

viour λ ∼ q̃2 in the small q̃ regime, see Fig. 4.2(a).

As would be expected, in the large q̃ limit the scaling behaviour is like that

of a flat membrane where λ ∼ q̃3 and all relative viscosities converge to a universal

relaxation rate (a consequence of the approximate symmetry between the interior

and exterior at such small length scales), see Fig. 4.2(a).
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The scaling behaviour for m = 1 is evaluated numerically and shown in

Fig. 4.2(b). For large values of q̃ the relaxation rate scales like that of a flat mem-

brane (for the same reason as the m = 0 modes). However, at small values of q̃,

some interesting behaviour is encountered which is strongly dependent on the rel-

ative viscosity. As q̃ → 0, the external dissipation due to the tube being dragged

through the fluid dominates the relaxation rate (the internal motion simply corres-

ponds to locally translating the cross section of the tube so gradients in velocity, and

hence dissipation, become small). In this limit the tube behaves like an elastic rod

in terms of its relaxation and tends slowly towards λ ∼ − (γ + log q̃) q̃2 in the long

wavelength limit. This scaling behaviour for a continuous Zimm model of an elastic

rod under tension in the long wavelength limit with small deflections is discussed in

Appendix C.

The case χ = −1 corresponds to η+ = 0, hence in the long wavelength limit

there is essentially no friction, and the m = 1 mode relaxation rate diverges as

q̃ → 0. The crossover between interior to exterior dominant dissipation means that

in the η+ � η− limit, the relaxation rate can be non-monotonic in q̃, increasing at

intermediate q̃ before being screened by the exterior viscosity at long wavelengths,

as seen in the case χ = −0.95 in Fig. 4.2(b).

For higher modes of |m| ≥ 2, the dissipation is dominated in the long

wavelength regime by the gradients in velocity induced by the cross sectional de-

formations of the tube. Thus, as q̃ decreases, the relaxation rate becomes constant,

see Fig. 4.3. This constant increases with m as each successive mode costs more

bending energy to excite, so will relax faster. The high q̃ limit again behaves like a

flat membrane with λ ∼ q̃3 for all m.

4.4 Pearling instability

For the m = 0 mode, there is an instability when the tube is placed under high

surface tension [Boedec et al., 2014]. The growth rate or dispersion relation of such

an instability is given by

−λ = −A(q̃, 0)

B(q̃, 0)

= −
q̃4 − 1

2 q̃
2 + 3

2 − σ̃(1− q̃2)

η(1 + q̃2)

(
(χ−1)I2

1

2q̃I1I0−q̃2(I2
0−I2

1)
+

(χ+1)K2
1

2q̃K1K2−q̃2(K2
1−K2

0)

) , (4.30)
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Figure 4.2: Plot of decay rate, λ, against wavenumber, q̃ for uqm (a) m = 0 and (b)
m = 1 for varying relative viscosity χ = (η+ − η−)/η (keeping η fixed as the rate λ
has been non-dimensionalized by the viscous time associated with the total viscosity,
τ = ηr3

0/κ). Surface tension is given by σ̃ = 1/2 such that the ground-state has no
hydrostatic pressure jump.
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Figure 4.3: Plot of decay rate, λ, against wavenumber, q̃ for the modes uqm (m =
2, 3, 4, 5) where λ has been non-dimensionalized by the viscous time, τη = ηr3

0/κ).
Surface tension is given by σ̃ = 1/2 such that the ground-state has no hydrostatic
pressure jump. Changing χ does not change the form of the relaxation rate for these
modes.

where, again, the modified Bessel functions are evaluated at r = r0. The threshold

for the instability at q̃ = 0 is given by σ̃ > 3/2 or σ > 3κ/(2r2
0), which corresponds

to the point when A(0, 0) changes sign [Nelson et al., 1995; Gurin et al., 1996].

This instability is analogous to the Rayleigh-Plateau instability in a column

of fluid [Tomotika, 1935; Rayleigh, 1892], where forces arising from the interface

surface tension, σ act to minimise the total interface area-to-volume ratio, and thus

the fluid breaks up into spherical droplets. Similar forces arise in the case of mem-

brane tubes although these are counteracted by the presence of membrane bending

rigidity, κ. The exact form of this instability growth-rate was found previously in

Ref. [Boedec et al., 2014], where only axisymmetric perturbations were considered,

and was shown to converge with earlier works when variations in surface tension

were neglected [Nelson et al., 1995; Gurin et al., 1996; Powers, 2010].

For large surface tension σ̃ and similar values of viscosity (χ ∼ 0), the max-

imum of the growth rate, −λ, rapidly converges to the wave-number q̃∗ ≈ 0.6. The

growth rate, −λ, is plotted in Fig. 4.4 for different values of relative viscosity χ.

Note that short wavelength perturbations, q̃ ≥ 1, are always stable as the surface

tension terms in A(q̃, 0) are always positive for q̃ ≥ 1.
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Figure 4.4: Plot of the growth rate for the pearling instability on a membrane
tube, −λ, against wavenumber, q̃, for varying values of relative viscosity χ. The
dimensionless surface tension is set to σ̃ = σr2

0/κ = 100.

4.5 Fluctuations of membrane tubes

We now consider the relaxation dynamics of the tube under thermal and active

fluctuations, this is given by adding thermal and active forces to the force balance

equation

Bu̇qm = −Auqm + ξth
qm + ξac

qm, (4.31)

where ξth and ξac denote the passive and active forces respectively. The statistical

properties of the thermal noise are given in the standard way

〈ξth
qm(t)〉 = 0, (4.32)

〈ξth
qm(t)ξth

q′m′(t
′)〉 =

2kBT

κ
Bδqq′δmm′δ(t− t′), (4.33)

where kB is Boltzmann’s constant and T is the temperature. For the active fluctu-

ations we write

〈ξac
qm(t)〉 = 0,

〈ξac
qm(t)ξac

q′m′(t
′)〉 =

F (q,m)2

2
e−|t−t

′|/τ∗δqq′δmm′ ,
(4.34)
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where τ∗ is the correlation time of the active forces and the physics of the active

processes will be captured in our choice of active force density, F (q,m) [Gov, 2004].

We will consider only the simplest case where for direct forces acting on the mem-

brane, F (q,m) = F = Const., although in principle more realistic models could be

considered [Turlier et al., 2016; Manneville et al., 2001].

4.5.1 Thermal fluctuations

First we consider the case when there are no active fluctuations, ξac
qm = 0. Solving

Eq. 4.31 by Fourier transform in time (assuming any initial conditions have decayed

away) yields the following covariance

〈uqm (t)u∗q′m′
(
t′
)
〉th =

kBT

κA
e−|t−t

′|A/Bδqq′δmm′ , (4.35)

and the equal time covariance is given by

〈|uqm|2〉th =
kBT

κ

[
(q̃2 +m2)2 − 1

2 q̃
2 − 5

2m
2 + 3

2 − σ̃(1− q̃2 −m2)

] , (4.36)

which is the standard result of the equipartition theorem [Fournier and Galatola,

2007], also given in Eq. 1.29. The equal time covariance is plotted against q̃ in

Fig. 4.5 for m = 0, 1, 2, 3. Here the surface tension is chosen to be commensurate

with the equilibrium tube radius with no hydrostatic pressure.

A striking prediction given by this theory is the divergence of the m = 1,

i.e., criticality, in the long wavelength limit. This criticality is due to the m = ±1

modes being one-dimensional Goldstone modes (they only locally translate the cross-

section of the tube which does not alter the energy in the long wavelength limit).

The equilibrium properties of such fluctuations, such as excess area and length

fluctuations, are discussed in detail in Ref. [Fournier and Galatola, 2007]. It is

expected that due to the uni-dimensional character of these modes that the criticality

will be preserved, even in the anharmonic regime [Fournier and Galatola, 2007].

4.5.2 Active fluctuations

Turning our attention to the case of active fluctuations, we will find the statistical

properties of the shape fluctuations due to purely active noise. We assume that the

active and thermal noise terms are uncorrolated, hence the total shape fluctuations

can be found by simply adding the active and passive contributions.
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Figure 4.5: Equal time covariance for thermal fluctuations plotted against wave-
number q̃ for modes m = 0, 1, 2, 3. We choose σ = κ/(2r2

0) or σ̃ = 1/2.

To find the covariance we Fourier transform in time with the convention

u(t) =
∫

dω/(2π)u(ω)eiωt, and find the covariance

〈uqm(ω)u∗q′m′(−ω′)〉ac =
F 2τ∗δqq′δmm′δ(ω − ω′)
(A2 +B2ω2)(1 + τ2

∗ω
2)
. (4.37)

Inverting the Fourier transform for ω and ω′ gives the covariance in time,

which after some algebra gives

〈uqm (t)u∗q′m′
(
t′
)
〉ac =

F 2τ∗
2A

Aτe−|t−t
′|/τ∗ −Be−|t−t′|A/B

A2τ2
∗ −B2

δqq′δmm′ , (4.38)

which gives the variance

〈|uqm|2〉ac =
F 2τ∗

2A(Aτ∗ +B)
. (4.39)

As this depends on the dissipation in the system (through the presence of B),

it is immediately obvious that the fluctuations are non-equilibrium. If we assume

that the activity correlation time is an order of magnitude more than the viscous

time-scale, τ∗ ∼ 10τ = 10ηr3
0/κ, and that the forces exerted to the membrane is

f ∼ 1pN over an area r2
0, then F ∼ 0.1 − 1 [Sachin Krishnan et al., 2018]. Using

these parameters along with χ = 0, F = 0.5 we can plot the active fluctuations,
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Figure 4.6: Equal time covariance for active fluctuations of the membrane tube
plotted against wave-number q̃ for modes m = 0, 1, 2, 3. We choose σ = κ/(2r2

0),
χ = 0, F = 0.5 and τ∗ = 10τ = 10ηr3

0/κ.

Eq. 4.39, in Fig. 4.6.

The same divergence at small q̃ is observed in the m = 1 modes (with the

same exponent as in the thermal case). The m = 0 mode shows a peak, the position

of which can be shifted by changing the value of the active time-scale, τ∗, (relative

to the viscous time-scale, τ = ηr3
0/κ). The decay in active fluctuations of the

m = 0 mode as q̃ → 0 is due to the viscous damping making such non-equilibrium

fluctuations unfavourable.

A simple observable to calculate is the effective temperature as a function of

Fourier parameters, this is given by

Teff (q̃,m)

T
= 1 +

〈|uqm|2〉ac

〈|uqm|2〉th
. (4.40)

This is plotted in Fig. 4.7 for the same parameters of F = 0.5, τ∗ = 10τ = 10ηr3
0/κ,

χ = 0 and σ̃ = 1/2. This shows that for long tubes the highest effective temperature

is found in the m = 1 modes and that these are likely to dominate the spectrum.

Measuring the temperature of fluctuations of long tubes, for example those

pulled from GUVs [Valentino et al., 2016], and varying the viscosity of the exterior

fluid may provide a way to quantify the magnitude and time constant of such active

correlations in experiment. Figure 4.8 shows the effective temperature of the m = 1

74



0.01 0.05 0.10 0.50 1 5 10

1

5

10

Figure 4.7: Effective temperature of the membrane tube with both thermal and
active fluctuations, Eq. 4.40, plotted against wave-number q̃ for modes m = 0, 1, 2, 3.
We choose σ = κ/(2r2

0), χ = 0, F = 0.5 and τ∗ = 10τ = 10ηr3
0/κ.

modes for varying relative viscosity χ, along with the asymptotic result predicted

using a Zimm model for such modes, see Appendix C.

4.6 Discussion

In this chapter we have investigated the active and passive dynamics of fluid mem-

brane tubes. Using Onsager’s variational formalism we have calculated the full

relaxation dynamics for the Fourier modes in the shape of the membrane tube,

assuming a small deformation limit, and analysed the asymptotic limits of the re-

laxation rates. This work accounts for variations in surface tension, previously only

considered in the axis-symmetric case [Boedec et al., 2014], and also viscosity con-

trast between the interior and exterior ambient fluid.

The scaling behaviour of the relaxation modes is analysed and characterised

in both the long and short wavelength limits. Unsurprisingly, in the short wavelength

limit we recover the scaling behaviour of a flat membrane for all angular modes.

More interesting behaviour is found in the long wavelength limit, particularly in the

case of the bending modes (m = ±1), where we find a relaxation rate that scales

like that of the normal modes of an elastic rod in a viscous fluid. We can also

reproduce the Pearling instability growth rate found in Ref. [Boedec et al., 2014]
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Figure 4.8: Effective temperature of the membrane tube with both thermal and
active fluctuations, Eq. 4.40, plotted against wave-number q̃ for modes m = 1 for
different values of relative viscosity χ. All other parameters are chosen as follows σ =
κ/(2r2

0), F = 0.5 and τ∗ = 10τ = 10ηr3
0/κ. The dotted line shows the asymptotic

approximation found by using a Zimm model for a rod in a viscous fluid.
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which is recovered when we set m = 0 and choose a sufficiently high value of surface

tension (σ > 3κ/(2r2
0)). These relaxation dynamics are significantly different from

those found for flat membranes [Fournier, 2015; Seifert and Langer, 1994] or for

spherical vesicles [Sachin Krishnan et al., 2016]. In the case of the spherical vesicles

the system can be written purely in terms of a sum over one Fourier variable due

to the coupling imposed by spherical symmetry. This does not happen in the case

of the tube as q̃ and m are independent of one another.

We then make use of these relaxation equations to compute the fluctuation

spectra for passive thermal fluctuations and a simple minimal model of active fluc-

tuations [Sachin Krishnan et al., 2018; Gov, 2004]. The active noise clearly breaks

the fluctuation dissipation theorem, due to the presence of dissipative terms in the

mean-square fluctuations, see Eq. 4.39. The active noise also shows the same critic-

ality of the bending modes (m = 1) in the long wavelength limit found in thermal

fluctuations [Fournier and Galatola, 2007].

We compute the effective temperature of the system with both thermal and

active fluctuations and show that, for long tubes, the clearest signature of this active

noise is in the bending modes (m = 1). This should be a measurable prediction

with current experimental setups, e.g. using a similar approach seen in Valentino

el. al. [Valentino et al., 2016] and changing the external viscosity. This could be used

to infer information about the size of forces and activity time-scales for different

sources of activity (assuming they can be reconstituted in-vitro). Perhaps the most

pressing open question in the field of active membranes is what functional form is

best used to represent the active fluctuations. The simple model of a direct force

used in this paper, though used successfully throughout the literature to describe real

systems [Gov, 2004; Prost and Bruinsma, 1996; Sachin Krishnan et al., 2018], does

not respect force balance at the level of an individual fluctuation. More complex

models of activity have been proposed for specific situations, for example using

dipole forces and allowing fluid permeation of the membrane [Manneville et al.,

2001], however a general framework is lacking and the effect of different models of

active noise on observable phenomena is not yet well understood.

For future work, it would be interesting to consider the effects of different

formulations of activity (both in tubes and other scenarios). It would also be in-

teresting to consider the effect of a visco-elastic ambient fluid as this may give a

better approximation to the cytoplasm in cells. Not only would this give potentially

richer dynamics, due to the presence of of an additional time-scale, but it could also

be useful in understanding more realistic biological processes [Komura et al., 2015;

Nixon-Abell et al., 2016; Abounit and Zurzolo, 2012].
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Chapter 5

Discussion & Outlook

Lipid membrane tubes are abundant inside cells and their dynamics have been im-

plicated in many important processes. In this thesis we have considered some theor-

etical models of simple situations, designed to mimic important processes in biology,

in an attempt to elucidate the underlying physics. Here we briefly outline some pos-

sible future directions of research and extensions to the work in the three main

chapters of the thesis.

5.1 Hydro-osmotic instabilities

The main key extension to this work would be considering the effects of a finite

length tube, e.g. a finite tube surrounded by a “cytosol” opening into a reservoir at

lower osmotic pressure. This would lead to gradients in the concentration of ions

inside the tube, and hence a gradient in pressure which could then drive flows. This

model with small perturbations to the radius (or a sphere/tube geometry if beyond

the threshold for a hydro-osmotic instability) could be used to compute a steady

state of flux into the tube across the membrane and out into the exterior reservoir.

It would be instructive to use such a simple model to analyse whether it can be used

for osmoregulation and what constraints are set on the system.

Beyond simple tubes there is significant biological motivation to study the

behaviour of such instabilities in tubular networks, both from the contractile vacuole

literature [Allen, 2000] and the peripheral endoplasmic reticulum [Nixon-Abell et al.,

2016]. Such an investigation would likely require numerical approaches either using

surface evolver for the statics [Brakke, 1992] or more sophisticated finite element

methods for the full dynamics [Elliott and Stinner, 2010; Barrett et al., 2016].
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5.2 Shear-driven instabilities

In the case of the shear-driven instability the main result is an amplification of

the fluctuations due to shear in the azimuthal flow field on the membrane tube.

Again finite element simulations might provide one route to better understanding

this problem. However this could be might prove difficult as most current methods

for covariant hydrodynamics do not incorporate fluctuations, which are vital to this

phenomenon.

Perhaps the most promising future direction would be to consider experi-

ments similar to the magnetic tweezers setup proposed in Chapter 3. This would

give some indication as to how important these shear effects are for real systems,

particularly for parameters when the fluctuation amplification is beyond linear ana-

lysis. This experiment may prove difficult as oscillations may be introduced to the

tube from the magnetic trap so shape undulations may not be purely caused by the

shear rate.

The helical geometry of Dynamin could also be considered in more detail and

we could also look at the effect of hydrodynamics on other similar proteins (ESCRT

for example) [McDargh and Deserno, 2018; Lenz et al., 2008; De Franceschi et al.,

2019]. This work would most likely have to be performed numerically or with coarse

grained hydrodynamic models as the complex geometry of the ground-state would

make the full covariant hydrodynamics intractable [Arroyo and DeSimone, 2009].

5.3 Dynamics of active membrane tubes

In the case of more general theories of active membranes it may be instructive, in the

first instance, to consider close to flat membranes (Monge gauge). It would be worth

developing a simple model of active fluctuations which does not break force balance

locally. One way to do this might be to consider fluctuating quadrapoles acting

normal to the membrane and to see if this makes any difference in the fluctuation

spectra when compared with the simple direct force model used in Chapter 4 and

much of the literature [Gov, 2004]. This would also differ from some of the more

physically realistic models of active membranes by having true active fluctuations as

opposed to thermal fluctuations coupling to dipole fields which cause the fluctuation

dissipation theorem to break down [Manneville et al., 2001].

In terms of experimental verification for membrane tubes it appears that

in-vitro experiments on tubes pulled from GUVs might soon have the resolution

required to measure active fluctuations [Valentino et al., 2016]. In order to be

79



able to compare the experiments meaningfully with theory it would be necessary

to calculate how the fluctuation spectrum is modified by a finite length tube and

how length fluctuations come into play [Barbetta and Fournier, 2009]. This would

be important so as to know exactly which modes should be fitted with the power

spectral density inferred from experiment (in the current experimental paper only

axis-symmetric modes are considered).

5.4 Conclusion

In conclusion, we have developed several theoretical models of dynamical processes

in lipid membrane tubes. These models have been heavily inspired by real processes

in cell biology, and our analysis has allowed us to understand some of the physics

underlying these processes. There are still many outstanding questions in both

theory and experiment, with the interplay between the two makes this an exciting

area to work as a theorist.
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Appendix A

Additional details for Chapter 2

A.1 Approximate solution for slow pumping

Fig. A.1 shows the agreement between the asymptotic solution to the radial dynam-

ics: R̃(t) = (1 + t/τpump)1/2 (Eq. 2.18) and the full numerical solution of Eq. 2.17.

We can find the radius R(q) at which the mode q first goes unstable by

finding the zero of the α(q) polynomial, Eq. 2.12, defining R(q) =
√

3Req + δR(q).

For the small q limit and assuming δR(q)
Req

is small we find

δR(q)

Req
≈
√

3 (Reqq)
2 . (A.1)

Using Eq. A.1 with the approximate solution for R(t) gives a formula for the time

the mode q first goes unstable

t∗q ≈ τpump

(
2 + 6q̃2

)
(A.2)

where q̃ = qReq.

A.2 Defining the dominant wavelength

Defining the dominant wavelength of a time dependent growth rate is in general

a difficult task; as the peak of the dispersion relation is time dependent we must

instead consider the full growth history of each mode. We define the dominant mode

at linear order to be the first one to have 〈|ūq|2〉 = CR2
eq where C = 1. It is therefore

a sensible thing to check that the chosen value of the cutoff, C, has a minimal effect

on our results, i.e. the dominant wavelength at linear order should be constant for

C ∼ 1. Plotting q̃∗ against C, Fig. A.2, shows a weak logarithmic dependence of the
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Figure A.1: Top: plot showing approximate solution (dots, Eq. 2.18) and full nu-
merical solution (solid line, Eq. 2.17) for radius growth due to ion pump osmotic
pressure. Bottom: plot showing the absolute error between the approximate solu-
tion and numerical solution.

dominant wavenumber on C. The only pronounced effect for a cutoff around linear

(C ∼ 1) order might be to shift the values in the fast pumping limit by < 5%, the

values for physiological parameters remain virtually unaffected.
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Figure A.2: Plot of dominant wavenumber, q̂, against cut-off criterion, C. Crucially
any dependence on C is very weak. The values of τpump and τµ have been chosen
to correspond with the four corners of the surface plot shown in Fig. 2.5. All times
are in units of seconds.

A.3 Weak dependence of dominant wavelength on the

pumping rate in the physiological range

The asymptotic solution presented in the main paper is valid for parameter estimates

consistent with the CVC. It is of interest to see how the wavelength of the instability

varies with pumping rate in this limit. The wavelength of the instability varies with

pumping rate but very weakly (slower than logarithmically). The wavelength for

time-scales consistent with the CV pumping is λ ∼ 1µm which is of the correct

order of magnitude for the CV and much larger than the tube radius. The weak

dependence of the wavelength on the pumping provides a robust mechanism of size

regulation, Fig. A.3.

A.4 Osmotic shock

Inserting the time-dependent solution of Eq. 2.19 in the growth equation Eq. 2.25

(including thermal noise, as in Eq. 2.29) gives access to the evolution of the amp-

litude of the different modes. The exact value of the dominant q̃ depends on the

permeability µ (or the time-scale τµ) and the magnitude of the shock ∆ρ/ρ0. A 3D

plot of how this varies is shown in Fig. A.4. Comparison with the behaviour that
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Figure A.4: Surface plot showing the dominant wave-number of an instability driven
by osmotic shock when varying permeation time-scale, τµ, and shock magnitude
∆ρ/ρ0.

arises in the presence of ion pumps (Fig. 2.5) shows that the peak value of the dom-

inant mode is the same in both case, and corresponds by the peak of Fig. 2.2. This

peak occurs for fast pumping (τη/τµ > 10−2 - Fig. 2.5) or for strong osmotic shock

(∆ρ/ρ0 > 10 - Fig. A.4), showing that these two situations are somewhat similar.

However the details are different due to the different dynamics of tube inflation in
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both cases.

The drop off in dominant wavelength of the osmotic shock instability when

permeability and shock magnitude are very large is caused by the decrease of the

peak of the growth rate relation at very large radii (Fig. 2.2). This happens because

of a decrease in the contribution of the bending rigidity to the energy at large radii

and small q̃. The surface tension contribution to the energy remains, hence the

instability starts to be dominated by surface tension. The only contribution of the

bending terms is to increasingly stabilise the larger values of q̃, thus pushing the

peak wavelength to lower q̃. Interestingly the bending rigidity in this limit acts in

a qualitatively similar manner to a large difference in viscosities discussed in the

original fluid jet papers [Rayleigh, 1892; Tomotika, 1935].

A.5 Note on numerical implementation

All the numerics shown in Fig. 2.4 and Fig. 2.5 of the main paper are implemented

using a discrete Fourier transform, as such the autocorrolation function, 〈|ūq|2〉 has

units of [Length]2, this choice of implementation is used to simplify the criterion

for the fully developed instability. The longest mode in real space is chosen to be

104Req, this corresponds to a small enough spacing for the q space to approximate

a continuum.
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Appendix B

Additional details for Chapter 3

B.1 Differential Geometry and Exterior Calculus

Here we present a “users guide” to the style of geometric notation used in the main

paper. We do not focus on mathematical rigour here, for a more formal treatment

see [Frankel, 2011].

If we define a manifoldMn where the derivative of a curve at point p ∈Mn

gives an element of the tangent space Xp ∈ Tp (Mn), we can express this in terms

of a coordinate basis

Xp = Xi

(
∂

∂xi

)
p

= Xi (~ei)p (B.1)

where Einstein summation over mixed indices is implicit.

If we choose a family of curves on Mn with continuous derivatives we can

extend the definition of the tangent space to the tangent bundle onMn, T (Mn) =

∪pTp (Mn). This extends the definition of a vector to a vector field on the the

manifold, X ∈ T (Mn).

The dual of T (Mn) can be defined as the cotangent space T ∗ (Mn). An

element of this space, a 1-form, is defined in the following way ω ∈ T ∗ (Mn)

ω (X)→ R. (B.2)

In coordinate notation

ω (X) = ωiX
jdxi

∂

∂xj
= ωiX

jδij = ωiX
i. (B.3)

In general a type (p, q) tensor field, T is defined in the following way

T (X1, ..., Xp, ω1, ..., ωq)→ R (B.4)
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where X1, ..., Xp ∈ T (Mn) and ω1, ..., ωq ∈ T ∗ (Mn).

We can define a type (2, 0) metric tensor on the manifold as

g(·, ·) : g (X,Y )→ R (B.5)

where X,Y ∈ T (Mn).

g(·, ·) = ds2 = gijdx
idxj = ~ei · ~ejdxidxj (B.6)

which allows a mapping between vectors and 1-forms.

The exterior or wedge product between two 1-forms is defined as the totally

asymmetric tensor product

ω1 ∧ ω2 = ω1 ⊗ ω2 − ω2 ⊗ ω1. (B.7)

A p-form, α, can be defined from p 1-forms as

α = ω1 ∧ ... ∧ ωp. (B.8)

This has the following property

ω1 ∧ ... ∧ ωr ∧ ... ∧ ωs ∧ ...ωp = −ω1 ∧ ... ∧ ωs ∧ ... ∧ ωr ∧ ...ωp (B.9)

for any two s, r. Or in coordinate notation

ai...r...s...j = −αi...s...r...j (B.10)

where α = αi...jdx
i ∧ ... ∧ dxj .

This along with the metric leads to the natural geometric definition of the

volume form voln :=
√
gdx1 ∧ ... ∧ dxn, where g := det(gij).

The exterior derivative, d, of a smooth function f is just its differential

df = ∂f
∂xi

dxi. The exterior derivative, d, of a p form is a p+ 1 form

dα = dαi...j ∧ dxi ∧ ... ∧ dxj . (B.11)

The Hodge star operator, ? : τ∗(M)(k) → τ∗(M)(n−k), is defined by the

Hodge inner product of two differential forms α and β

α ∧ ?β = (α · β) voln (B.12)
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in coordinate notation we have

? α = εi1...in
√

det gαj1...jkg
i1j1 . . . gikjkdxik+1 ∧ · · · ∧ dxin (B.13)

where ε is the totally asymmetric tensor.

A diffeomorphism is a map between two manifolds that is smooth, one-to-

one, onto and has a smooth inverse. The Lie derivative is a natural object to use

in continuum mechanics as it describes how a vector field Y changes along the

flow generated by a vector field X. If φ(t) = φt is a diffeomorphism parametrised

by t and describing the local flow generated by X, where t is defined such that

limt→0 φt(X) = X, then we define the Lie derivative of a vector field Y with respect

to a vector field X as follows

[LXY ]x = lim
t→0

[φ−t∗Yφtx − Yx]

t
= X(Y )− Y (X) (B.14)

as such LXY is a vector field on Mn. Similar identities can be derived for more

general tensors [Frankel, 2011].

We will define the Laplace-Beltrami operator as

∆LB = − ? d ? d (B.15)

which for scalar φ and vector v is the following in index notation

∆LBφ = − 1√
|g|
∂i

(√
|g|gij∂jφ

)
∆LBv

q = −
√
|g|εnpεklgpqgnm∂m

(√
|g|gkjgli∂j (vrgri)

) (B.16)

where the later formula is not usually given in the literature as it is simpler to work

with exterior calculus identities (which is how we will proceed).

One final point of note is that we will use the [, ] notation to denote raising

and lowering of indices for conciseness. For example, if v ∈ T (Mn) and ω ∈
T ∗ (Mn), then

v[ = gijv
jdxi = vidx

i

ω] = gijωj~ei = ωi~ei.
(B.17)
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B.2 Screening of membrane flows by bulk fluid mech-

anics

We will consider hydrodynamics on a static membrane tube (i.e. we assume that

the cylindrical geometry is stable to perturbations in shape). In the limit of small

inertia the 3D velocity field, ~u, satisfies the continuity and Stokes equations

~∇ · ~u = 0; η∇2~u = ~∇P (B.18)

where P is the pressure and η the viscosity. This is coupled to the membrane velocity

at the boundary with a no-slip condition.

Stress balance at the membrane is imposed by the 2D continuity and Stokes

equations and, for surfaces of zero Gaussian curvature, can be written as

∇ivi = 0; ηm∆LBvi −∇iσ = t+i + t−i (B.19)

where ηm is the (2D) membrane viscosity, σ is the surface tension, v = viei is

the tangential membrane velocity and ∆LB is the Laplace-Beltrami operator (form-

ally this corresponds to ∆LB = δd where d is the exterior derivative and δ is the

co-differential). The combined operator δd is the generalization of the curl-curl

operator to a manifold and acts like a Laplacian [Rahimi et al., 2013; Arroyo and

DeSimone, 2009]. The symbols t±i are the traction forces from the bulk fluid act-

ing on the membrane (± denoting interior and exterior respectively)[Arroyo and

DeSimone, 2009; Fournier, 2015].

We will consider a system of a membrane tube with radius r0 =
√

κ
2σ0

, where

κ is the bending rigidity of the membrane and σ0 is the equilibrium surface tension.

This is the radius which minimizes the Helfrich Hamiltonian for a fluid membrane

F =

∫
Γ

dAΓ

(
2κH2 + σ0

)
(B.20)

where Γ and dAΓ denote the manifold describing the neutral surface of the membrane

and its associated area element, and H is the mean curvature [Zhong-Can and

Helfrich, 1989]. For typical membrane tubes fissioned by Dynamin r0 ≈ 10nm

[Roux, 2014].

We use standard cylindrical coordinates (r, θ, z) and take the boundary condi-

tion for flow on the membrane to be v|z=0 = v0~eθ, we treat this as an approximation

to the flow induced by Dynamin.

We can then solve Eq. B.18 & Eq. B.19, making use of symmetry v = v(z)~eθ,
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Figure B.1: Flow field for the ground-state of the spinning membrane tube with
radius r0 = 1.0, and Saffman-Delbrück length LSD

r0
= ηm

ηr0
= 104. The boundary

condition on the tube at z = 0 is v(0) = v0 where v0
r0

= 103s−1.

~u = u(r, z)~eθ they reduce to

1

r
∂r (r∂ruθ) + ∂2

zuθ −
uθ
r2

= 0

ηM∂
2
zv + t+θ + t−θ = 0

(B.21)

where t±θ = limr→r0 ηr∂r

(
∂ru±

r

)
. We can now solve this numerically by direct

methods (taking a Neumann boundary condition for the bulk flow at z = 0 and

u = 0 at large distance and r = 0) [Ferziger and Peric, 2002]. The flow field

computed by this method can be seen in Fig. B.1.

To understand how the flow field on the membrane varies with Saffman-

Delbrück length it is helpful to examine the analytic solutions to the coupled mem-

brane bulk system in Fourier space. The flow field on the membrane in response

to a point force in the θ direction, Fθ, was found analytically in Ref. [Henle and

Levine, 2010], and in the limit r0 � LSD this gives

v ≈ v0~eθ exp

[
−
√

2|z|√
LSDr0

]
. (B.22)
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Figure B.2: Flow-field decay rate, λ (with units Length−1) against Saffman-Delbrück
length LSD for tube spinning velocity at z = 0 given by v0

r0
= 103s−1.

In the original paper our boundary condition corresponds to v0 = Fθ
4πηm

√
LSD
2r0

. Note

that this is θ independent as the m = 0 Fourier mode dominates the bulk dynamics

in this limit, so each cross-section of the tube rotates with a constant velocity. This

means that the flow on a tube is screened like v ∼ e−λ|z| where λ =
√

2√
LSDr0

. This

approximate analytical expression can be compared to numerical solutions where

we find that it reproduces the correct power law relation between λ and LSD, see

Fig. B.2.

For flows with large LSD/r0 ∼ 103−104 this gives a screening length of order

100r0 so as long as we consider flows where L . 10r0 then membrane dissipation

should dominate.

B.3 Effects of geometry on driving force

To try and understand the effect of the instability in more complex geometry (in

particular with non-zero Gaussian curvature in the ground state), we need to con-

sider the term driving the instability as the full calculation becomes intractable very

quickly. All the forces acting normal to the membrane which drive the instability are

due to the term bij∇ivj , in particular the driving force (per area) is set by the linear
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response coefficient of the mixed second derivative of the shape, kθz(z) which is now

a function of z due to change in geometry (specifically the non-constant gradient in

the flow field ground state). The driving force per unit area scales like

fdriving ∼ 2ηmkθz(z)
∂2u

∂θ∂z
(B.23)

so we will consider how kθz(z) changes as we change the geometry of our ground-

state.

For some general axisymmertic ground-state parametrized by the vector ~X =

(r(z) cos θ, r(z) sin θ, z) with ground-state flow field v0(z)~eθ we find (up to linear

order in perturbations)

bij∇ivj = az0θ0δvz + az1θ0∂zδvz + kθz
∂2u

∂θ∂z
+ bz0θ1∂θδvθ + kθ∂θu (B.24)

where

az0θ0 =
−r′(z)− 2r′(z)3 − r′(z)5 + r(z)2r′(z)r′′(z)2

r(z)2(1 + r′(z)2)5/2

az1θ0 =
r′′(z)

(1 + r′(z)2)3/2

kθz =[
− v0(z)r′(z)− v0(z)r′(z)3 + r(z)v0′(z) + r(z)r′(z)2v′(z) + r(z)v0(z)r′(z)r′′(z)

]
×
(
r(z)2(1 + r′(z)2)5/2

)−1

bz0θ1 =
1

r(z)2
√

1 + r′(z)2

kθ =
v0(z)

r(z)3
√

1 + r′(z)2

(B.25)

B.3.1 Neck (Catenoid)

To consider the effect of the instability in a more realistic in-vivo situation, for

example on the neck of a budding vesicle, we look at the ground state flows and

kθz on a catenoid, r(z) = r0 cosh
(
z
r0

)
. The ground state surface flow is solved

numerically with boundary conditions v(0) = 1, v(2) = 0 taking r0 = 1 and L = 2

for simplicity. From this we can evaluate kθz and compare to the case of a tube.

This is shown in Fig. B.3. Note the amplification of kθz by a factor of 2 near the

centre of the catenoid when compared to the tube. The consequences of this for
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Figure B.3: Left: plot of the catenoid with radius r0 = 1. Right: Plot of the
force linear response coefficient for the mixed shape derivative (i.e. the term in the
normal force that goes like f ∼ kθz∂θzu) for the helical shape perturbations on such
a surface.

dynamin are discussed in the main paper.

B.4 Derivation of rate-of-deformation tensor using local

constructions

If we consider a membrane which when un-deformed, M, and is approximately flat

then its line element (metric) can be written

ds2 = dx2 + dy2. (B.26)

If we deform this manifold by the vector (φx, φy, ψ) to a new manifold M′ and

choose coordinates x, y such that the second fundamental form of ofM′ is given by

b =
(

dx dy
)(k1 0

0 k2

)(
dx

dy

)
. (B.27)

The new metric on the surface M′ is given by ds′2 = (dx′)2 + (dy′)2 where,

to lowest order,

dx′ = (1− k1ψ) (1 + ∂xφx) dx+ ∂yφxdy

dy′ = (1− k2ψ) (1 + ∂yφy) dy + ∂xφydx.
(B.28)
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so the new metric is given by

ds′2 = (1− 2k1ψ − 2∂xφx) dx2 + 2 (∂xφy + ∂yφx) dxdy

+ (1− 2k2ψ − 2∂yφy) dy2
(B.29)

up to linear order in the variables (φx, φy, ψ) and their derivatives.

If we assume (φx, φy, ψ) = ∆t (vx, vy, w) = ∆t~V , where ~V is the membrane

velocity then we can write

L =
1

2

[
ds′2 − ds2

]
= ∆t

[
(∂xvx − k1w) dx2 + (∂xvy + ∂yvx) dxdy + (∂yvy − k2w) dy2

] (B.30)

and dividing by ∆t and taking the limit ∆t→ 0 gives the rate of deformation tensor

d =

[
1

2
(∇ivj +∇jvi)− wbij

]
dxi ⊗ dxj . (B.31)
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Appendix C

Additional details for Chapter 4

C.1 Expressions for Φ±qm, Ψ±qm, Ξ±qm

Here we give expressions for the scalar Laplace function decompositions for the

Stokes equations after imposing the boundary condition, Eq. 4.22 and making use

of the continuity equation to eliminate vθqm. This gives

Φ+
qm = 2r0

[
q̃
(
4ivzqm − 3q̃r0u̇qm

)
K2
m−1 − 4m

(
q̃r0u̇qm − 2ivzqm

)
Km−1Km

+ 4
(
r0u̇qm + ivzqm

)
K2
m,−q̃2r0u̇qmK

2
m+1

]
×
[
7q̃3K3

m−1

+ 2 (9m− 8) q̃2K2
m−1Km + 4q̃

(
m (m− 8)− 2q̃2

)
Km−1K

2
m

− 8m
(
m2 + q̃2

)
K3
m + q̃3K3

m+1

]−1

, (C.1)

Ψ+
qm = r0

[
− 8K2

m

(
vzqm

(
m4 + 2(m+ 1)mq̃2 + q̃4

)
− iq̃r0u̇qm

(
m(3m+ 2) + q̃2

))
+ 8q̃Km−1Km

((
m3 + (m− 2)q̃2

)
vzqm − i(m− 2)q̃r0u̇qm

)
+ 2q̃2

(
3K2

m−1 +K2
m+1

) ((
m2 + q̃2

)
vzqm − iq̃r0u̇qm

) ]
×
[
mq̃
(

8
(
m3 +mq̃2

)
K3
m − 7q̃3K3

m−1 − q̃3K3
m+1

+ 2(8− 9m)q̃2KmK
2
m−1 + 4q̃

(
2q̃2 − (m− 8)m

)
K2
mKm−1

)]−1

, (C.2)

95



Ξ+
qm = r0

[
− 8iK2

m

(
vzqm

(
m2 + q̃2

)
− i(m+ 1)q̃r0u̇qm

)
+
(
6iq̃2K2

m−1 + 2iq̃2K2
m+1

)
vzqm − 8q̃KmKm−1

(
q̃r2

0u̇qm − imvzqm
) ]

×
[
q̃
(
− 8

(
m3 +mq̃2

)
K3
m + 7q̃3K3

m−1 + q̃3K3
m+1

+ 2(9m− 8)q̃2KmK
2
m−1 + 4q̃

(
(m− 8)m− 2q̃2

)
K2
mKm−1

)]−1

, (C.3)

Φ−qm = r0

[
I2
m

((
m2 − 1

)
r0u̇qm − iq̃vzqm

)
+ q̃I2

m−1

(
q̃r0∂uqm − ivzqm

)
− 2mImIm−1

(
q̃r0u̇qm − ivzqm

) ]
×
[
q̃
(
q̃2I3

m−1

+
(
2(m− 2)m− q̃2

)
I2
mIm−1 + (2− 3m)q̃ImI

2
m−1 +mq̃I3

m

)]−1

, (C.4)

Ψ−qm = r0

[
− 2ImIm−1

(
m3vzqm + (m− 1)q̃2vzqm − i(m− 1)q̃r0u̇qm

)
+ q̃I2

m−1

((
m2 + q̃2

)
vzqm − q̃ir0u̇qm)

)
+ iI2

m

(
r0u̇qm

(
2m(m+ 1) + q̃2

)
+ iq̃vzqm

(
m(m+ 2) + q̃2

)) ]
×
[
mq̃
(
q̃2I3

m−1 +
(
2(m− 2)m− q̃2

)
I2
mIm−1

+ (2− 3m)q̃ImI
2
m−1 +mq̃I3

m

)]−1

, (C.5)

Ξ−qm = r0

[
ImIm−1

(
−q̃r2

0u̇qm + 2imvzqm
)

+ I2
m

(
(m+ 1) r0u̇qm + iq̃vzqm

)
− iq̃vzqmI2

m−1

]
×
[
q̃
(
q̃2I3

m−1 +
(
2(m− 2)m− q̃2

)
I2
mIm−1

+ (2− 3m)q̃ImI
2
m−1 +mq̃I3

m

)]−1

, (C.6)

where the modified Bessel functions Kν , Iν are evaluated at r = r0.
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C.2 Relaxation dynamics of linear Zimm model

Here we consider the relaxation dynamics of small planar normal perturbations to

a thin elastic rod whose position is given by

~r = (x(t) cos qz, 0, z) , (C.7)

and has geodesic curvature kg = −q2x cos qz.

We will assume x(t) is small compared with the scales we are considering

such that the elastic force-per-unit length on the rod is given by

~f =
(
−A∇2kg + Tkg, 0, 0

)
=
(
−Aq4x cos qz − Tq2x cos qz, 0, 0

)
, (C.8)

where A is the bending rigidity of the rod and T is the tension [Audoly and Pomeau,

2010].

We can now write the dynamics of this rod as a continuous Zimm model

~̇r = −
∫

d~sΛ (~r − ~s) ~f (~s) , (C.9)

where

Λ (~r − ~s) =
1

8πη|~r − ~s|

[
I− (~r − ~s)⊗ (~r − ~s)

|~r − ~s|2

]
(C.10)

is the Oseen tensor [Doi and Edwards, 1986].

At linear order and in the long wavelength limit (we choose a short wavelength

cut-off of the rod radius, r0) this gives

ẋ ≈ (Aq4 + Tq2)Ci(qr0)

4πη
x, (C.11)

where Ci (qr0) = −
∫∞
r0

dx′ cos(qx′)/x′. This gives a relaxation rate that scales like

−λ ∼ − (γ + log q̃) q̃2 in the small q̃ limit, where γ is the Euler constant. This agrees

with the scaling of a membrane tubes bending mode in the long wavelength limit.
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Appendix D

Résumé de thèse en français

Les tubes membranaires sont des structures omniprésentes dans les cellules, et la

compréhension de leur dynamique et de leur morphologie est d’une importance cru-

ciale pour la biophysique cellulaire. Cette thèse aborde plusieurs aspects de la dyna-

mique des tubes membranaires dans des situations où ils sont déséquilibrés par divers

processus inspirés par des phénomènes biologiques. Nous analysons le gonflement de

tubes due à des pompes ioniques entrâınant une différence de pression osmotique,

ainsi que les instabilités qui en résultent. Ceci est inspiré par la structure d’un or-

ganelle appelé le vacuole contractile, et conduit à une nouvelle instabilité avec une

longueur d’onde naturelle beaucoup plus longue que celle résultant d’une instabilité

de type pearling. La stabilité des tubes membranaires présentant un écoulement de

cisaillement à leur surface est également analysée. Nous avons découvert et analysé

une nouvelle instabilité hélicöıdale qui conduit à l’amplifications des fluctuations

du tube. Nous discutons de la pertinence de cette instabilité dans le processus de

scission des tubes induite par la dynamine. Enfin, nous considérons la dynamique

et les fluctuations d’un tube membranaire sur lequel agissent des forces actives.

D.1 Introduction

Nous commençons par esquisser une brève histoire de la mécanique en biologie

cellulaire. Nous discutons des travaux de D’Arcy Thompson qui, pour la première

fois, appliqua des idées issues des mathématiques et de la physique à l’étude des

organismes en 1917. Nous passons ensuite à une vue d’ensemble des développements

les plus récents, notamment la nage à faible nombre de Reynolds, les études sur les

globules rouges, les cristaux liquides actifs et la dynamique des tiges et des filaments

visqueux.
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Ensuite, nous décrivons plus en détail l’auto-assemblage des lipides en struc-

tures en bicouches membranaires (en particulier dans la phase désordonnée des

liquides) et discutons de l’importance de ces membranes comme interfaces entre

différents compartiments cellulaires dans les cellules eukaryotes. Étant donné que

ces structures sont généralement très minces, elles peuvent être considérées comme

des structures 2D entourées par un environnement 3D. Nous introduisons quelques

outils de géométrie différentielle pour décrire de telles surfaces (variétés). À partir de

là, nous discutons des travaux fondamentaux de Helfrich, Evans et Canham qui ont

menés à la définition d’une énergie de courbure pouvant être utilisée pour décrire

les formes des bicouches lipidiques.

Nous discutons des formes simples d’énergie minimale, telles que des sphères

et des tubes, avant d’énoncer l’équation de forme complète pour décrire une surface

arbitraire. En nous limitant aux surfaces possédant une symétrie axiale, nous discu-

tons des solutions qui correspondent à une membrane soumise à force ponctuelle, Fig.

1.8. Nous discutons les considération énergétiques expliquant l’instabilité classique

de perlage d’un tube membranaire, qui est observée lorsque la tension superficielle

dépasse un seuil critique.

Nous discutons la mécanique statistique de la membrane soumise aux fluc-

tuations thermiques et obtenons le résultat de l’équipartition pour les ondulations

quadratiques moyennes d’un tube membranaire. Enfin, nous fournissons une brève

discussion de la dynamique des fluides aux échelles cellulaires, en particulier de la

façon dont les termes inertiels dans les équations hydrodynamiques peuvent être

négligés à cette échelle.

D.2 Instabilités hydro-osmotiques dans les tubes mem-

branaire actifs

Dans ce chapitre, nous étudions un tube membranaire doté de pompes ioniques

unidirectionnelles entrâınant une différence de pression osmotique. Ceci est inspiré

d’un organelle trouvé dans de nombreux protistes d’eau douce (organismes euca-

ryotes unicellulaires) appelé le complexe vacuole contractile, Fig. 2.1a. Cet organelle

agit comme une pompe pour éliminer l’excès d’eau des cellules et constitue ainsi un

mécanisme d’osmorégulation. Le vacuole contractile est dotée de pompes à protons

unidirectionnelles sur toute sa surface qui consomment de l’ATP pour transporter

des protons contre leur gradient de concentration, ce qui entrâıne une différence de

pression osmotique qui permet à la vésicule principale de se remplir d’eau. Un pore

ancre cette vésicule à la membrane plasmique. Lorsque la vésicule est complètement
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gonflée, ce pore s’ouvre et la pression de Laplace expulse l’eau.

La vésicule principale est entourée de 5 à 10 bras en forme de tubes mem-

branaires, eux aussi recouverts de pompes à ions, qui se gonflent sous l’effet de

la différence de pression osmotique et semblent ensuite subir une instabilité mon-

trant un gonflement hétérogène, Fig. 2.1a, b. Ces protubérances ont des tailles ca-

ractéristiques bien supérieures à celles d’une instabilité typique de Pearling.

Nous étudions ce mécanisme en considérant un tube membranaire infini re-

couvert de pompes à ions qui transportent des ions à travers la membrane à un taux

constant par unité de surface. Nous calculons la croissance du tube en raison de cette

augmentation de la pression osmotique, Eq. 2.18, et considérons les perturbations

linéaires sur cet état fondamental en évolution constante. Parce que le tube est ini-

tialement stable, toutes les ondulations initiales seront amorties. Nous incluons donc

un terme de forçage stochastique choisi qui conduirait aux fluctuations thermiques si

le tube était en équilibre. La résolution de la dynamique stochastique complète pour

le déplacement quadratique moyen des ondulations conduit une instabilité avec un

nombre d’onde naturel q̃ = qr0 ∼ 0.05− 0.1 (où r0 est le rayon d’équilibre du tube)

pour des valeurs de paramètres compatibles avec des expériences d’électrophysiologie

sur le vacuole contractile. Cela correspond à une longueur d’onde d’environ 1 à 10

microns, ce qui est du même ordre de grandeur que celle des protubérances observées

dans le vacuole contractile.

La raison de cette grande longueur d’onde est que le fonctionnement lent des

pompes à ions conduit à une dynamique qui reste à tout moment très proche du seuil

d’instabilité, de sorte que seules les longueurs d’onde élevés sont rendues instables.

Cela est également dû au fait que le taux de croissance des différents modes possède

un pic pour un vecteur d’onde q̃ qui est une fonction non monotone de rayon du tube,

avec un maximum pour q̃ = 0.2. Pour l’instabilité classique du perlage, le taux de

croissance possède un pic pour un vecteur d’onde q̃ = 0.6 entièrement déterminé par

la géométrie du tube. Ce qui contribue également à expliquer la longueur d’onde

plus élevée de notre instabilité, voir Fig. 2.2, 2.3. Il s’avère également que cette

sélection de longueur d’onde est très robuste aux modifications de nos paramètres.

La longueur d’onde exacte est définie par le rapport des temps caractéristiques

de pompage ionique et de dissipation visqueuse. Cependant, une modification de

plusieurs ordres de grandeur de ce paramètre ne conduit qu’à une variation un

facteur de deux de la longueur d’onde.

Nous avons développé un modèle de membrane perméable à l’eau contenant

des pompes à ions unidirectionnelles. Les instabilités hydro-osmotiques observées

devraient appartenir à cette classe d’instabilités. En dérivant des équations dyna-
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miques pour un tube membranaire, nous identifions une instabilité provoquée par ce

déséquilibre osmotique. Cela à une longueur d’onde naturelle qui est définie par les

paramètres dynamiques, en particulier le rapport entre l’échelle de temps de pom-

page et l’échelle de temps visqueuse, et qui est nettement plus longue que celle de

l’instabilité de Rayleigh ou de Pearling. Il est intéressant de noter que la longueur

d’onde obtenue est du même ordre que celle observée dans les bras radiaux du com-

plexe vacuole contractile, ce qui suggère qu’il s’agit d’un mécanisme possible pour

expliquer la morphologie de ces bras. Il est également intéressant de noter que la

taille latérale des excroissances formées par l’instabilité est du même ordre de gran-

deur que la taille de la vésicule principale du complexe vacuole contractile. Nous

supposons que cette instabilité peut fournir un mécanisme pour la biogenèse du va-

cuole contractile à partir d’un tube actif sans particularité. Nous avons l’intention

d’aborder plus avant la question de cette organellogénèse dans nos travaux futurs.

D.3 Instabilités par cisaillement sur tubes membranaires

Motivés par la mécanique de la scission des tubes membranaires induite par la

dynamine, nous utilisons l’hydrodynamique covariante pour analyser la stabilité des

tubes membranaires soumis à un flux de cisaillement dans la direction azimutale.

L’hydrodynamique covariante des membranes de fluide a suscité un vif intérêt au sein

de la communauté des spécialistes de la matière molle et de la physique biologique au

cours des dernières années, tant pour les caractéristiques théoriques générales de tels

systèmes que pour leur application à des processus biologiquement pertinents. Ces

systèmes associent l’hydrodynamique des membranes à l’élasticité de courbure et se

sont révélés présenter un comportement viscoélastique complexe dans les géométries

à forte courbure.

L’un des moyens les plus simples de décrire les écoulements à la surface de

ces tubes consiste à imposer une vitesse dans la direction azimutale. L’analyse des

modifications de forme induites par de tels écoulements est le sujet de ce chapitre. La

Fig. 3.1 illustre deux mécanismes possibles pour réaliser de tels écoulements via des

expériences in vitro et in vivo. La fission des tubes membranaires joue un rôle impor-

tant dans de nombreux processus cellulaires, allant de l’endocytose à la fission des

mitochondries. Le composant clé de la machinerie biologique nécessaire pour induire

la fission membranaire est une famille de protéines appelée Dynamin, qui hydrolyse le

GTP en GDP. La dynamine est un complexe protéique qui s’oligomérise pour former

des polymères qui s’enroulent en hélice autour des tubes membranaires. Il est claire-

ment établi que Dynamin subit un changement de conformation suite à l’hydrolyse
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du GTP. Cependant, il n’existe pas encore de consensus sur la méthode exacte de fis-

sion, bien que des simulations numériques récentes aient montrées le rôle probable de

la constriction et de la dépolymérisation. Il a été démontré expérimentalement que,

lors de l’hydrolyse du GTP, la dynamine tourne rapidement tout en se rétrécissant.

La fréquence de rotation peut être de l’ordre de 10Hz, donnant un mécanisme pour

la génération de flux de membrane dans la direction azimutale. Un autre moyen pos-

sible de générer de tels écoulements consiste à extraire un petit tube d’une vésicule

unilamellaire géante (GUV) ou d’une cellule avec des pinces magnétiques appliquant

une force sur une bille magnétique fixée à la membrane et à utiliser des oscillations

de champ magnétique pour faire tourner la bille.

Nous analysons la stabilité d’un tube membranaire soumis à un taux de ci-

saillement Ω aux perturbations de la forme, de la vitesse de surface et de la tension

de surface. En résolvant les équations hydrodynamiques à la surface, nous pouvons

écrire une équation dynamique pour les perturbations du rayon en fonction des

modes de Fourier. Cela montre qu’il existe une instabilité hélicöıdale entrâınée par

le cisaillement avec une longueur de pas définie par la taille du tube. Ceci est ana-

logue à une instabilité similaire dans une tige élastique torsadée à chaque extrémité.

Cependant, en raison de la nature fluide de la surface, la forme est modifiée par

l’écoulement de l’état fondamental, ce qui entrâıne l’ajout de spires supplémentaires

à l’hélice à chaque tour. Cette advection stabilise finalement la croissance de l’hélice

et conquit à un état stationnaire hors d’équilibre. Pour comprendre les implications

de ce mécanisme d’amplification, nous résolvons la l’équation différentielle stochas-

tique dans la forme afin de tenir compte des fluctuations thermiques Eq. 3.38. Ceci

nous permet de calculer les fluctuations quadratiques moyennes de l’état station-

naire, Fig. 3.3. Nous estimons la vitesse de rotation nécessaire pour obtenir des

déformations non-linéaires et discutons des implications possibles de ce mécanisme

d’amplification de la fluctuation sur la scission du tube par la Dynamin, Fig. 3.4.

En résumé, nous avons développé une théorie hydrodynamique qui prédit

une instabilité sur des tubes membranaires fluides qui est uniquement provoquée

par un cisaillement constant de la membrane. On montre que de tels écoulements

provoquent d’abord une instabilité hélicöıdale, ce qui est tout à fait distinct de toute

instabilité précédemment identifiée des tubes membranaires fluides. Cette instabilité

conduit à un état stationnaire associé à une augmentation significative du spectre

de fluctuation d’un tube membranaire. Nous prédisons que cette instabilité est phy-

siologiquement accessible à la Dynamin, bien que ce phénomène n’ait encore jamais

associé à la fonction de la Dynamin. Cette instabilité constitue mécanisme qui pour-

rait conduire à la scission des tubes, par ex. suite à une augmentation de tension
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membranaire dans l’état hors d’équilibre, où à l’évolution non-linéaire de la forme

d’un tube sous cisaillement.

D.4 Dynamiques passives et actives des tubes membra-

naires

Le but de ce travail est d’obtenir des équations générales d’évolution d’un tube

membranaire soumis à une distribution de forces fluctuantes arbitraire due à des

phénomènes actifs. En utilisant la formulation Onsager, nous dérivons des équations

dynamiques pour la relaxation de la déformation d’un tube membranaire fluide per-

mettant un contraste de viscosité entre l’intérieur et l’extérieur du tube, ainsi que des

variations de tension superficielle dues aux écoulements de membrane. Pour obtenir

les équations complètes du mouvement en utilisant la formulation de Onsager, nous

devons d’abord écrire le Rayleighian. Le Rayleighian complet pour le système est

obtenu à partir de la somme du taux de changement d’énergie libre pour le système,

Eq. 4.6, et des dissipations d’énergie (la moitié du travail effectué sur le système),

Eq. 4.7, et en ajoutant les contraintes sur le système en utilisant des multiplicateurs

de Lagrange. Cette formulation équivaut à l’équation cinétique de Onsager avec des

coefficients réciproques, mais est obtenu par formalisme variationnel, avec l’avantage

que la recherche des couples de flux et de forces corrects est maintenant triviale puis-

qu’elle dérive directement du principe variationnel. Cette approche nous a permis

d’obtenir les équations de mouvement couplées pour le système en prenant simple-

ment en considération les fonctions de dissipation pertinentes et les contraintes du

système et en tirant toutes les conséquences d’un principe variationnel.

En utilisant la transformée de Fourier et la solution connue aux équations

de Stokes en 3D, nous pouvons trouver une équation de relaxation pour les per-

turbations de forme, équation 4.25. Nous considérons la dynamique de relaxation

pour tous les modes, en examinant en particulier leur comportement asymptotique.

Nous montrons que le mode m = 0 donne le même comportement de relaxation

et l’instabilité de Pearling que l’on trouve dans d’autres articles qui ne prennent

en compte que les perturbations à symétrie axiale, Fig. 4.2a, 4.3. Nous analysons

également le comportement de mise à l’échelle pour des valeurs plus élevées de m.

Le mode m = 1 a un comportement intéressant dans la limite des grandes longueurs

d’onde, où il se comporte comme une tige élastique, Fig. 4.2b. Les valeurs les plus

élevées m = 2, 3, 4... ont toutes un comportement de relaxation similaire, résumé à

la Fig. 4.4.

Sur la base de ces tax de relaxation, nous examinons la dynamique des fluc-
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tuations thermiques passives et des fluctuations actives. Dans ce cas, “actif” fait

référence aux fluctuations ne satisfaisant pas le théorème de fluctuation-dissipation.

Nous calculons les fluctuations quadratiques moyennes pour les fluctuations passives

et actives et calculons la “température effective” de chaque mode m en fonction de q̃,

Fig. 4.7. Nous discutons de la façon dont la variation de la viscosité externe pourrait

permettre de mesurer la contribution des fluctuations actives dans une expérience

sur un tube extrait d’un GUV. Pour les travaux futurs, il serait intéressant d’exami-

ner les effets de différentes formulations d’activités (à la fois dans les tubes et dans

d’autres scénarios). Il serait également intéressant de considérer l’effet d’un fluide

ambiant visco-élastique, car cela pourrait donner une meilleure approximation du

cytoplasme dans les cellules. Cela donnerait non seulement une dynamique poten-

tiellement plus riche, en raison de la présence d’une échelle de temps supplémentaire,

mais pourrait également être utile pour comprendre des processus biologiques plus

réalistes.

D.5 Discussion et perspectives

Les tubes membranaires lipidiques sont abondants à l’intérieur des cellules et leur

dynamique a été impliquée dans de nombreux processus importants. Dans cette

thèse, nous avons examiné quelques modèles théoriques de situations simples conçus

pour imiter des processus importants en biologie, l’objectif étant de les utiliser pour

élucider la physique sous-jacente. Dans ce chapitre, nous décrivons brièvement cer-

taines orientations futures possibles de la recherche et des extensions du travail dans

les trois chapitres principaux de la thèse.
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Roux. Deformation of dynamin helices damped by membrane friction. Biophysical

Journal, 99(11):3580–3588, 2010.

Sandrine Morlot, Valentina Galli, Marius Klein, Nicolas Chiaruttini, John Manzi,

Frédéric Humbert, Luis Dinis, Martin Lenz, Giovanni Cappello, and Aurélien
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