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Abstract 
Recurrent neuronal networks exhibit diverse types of collective dynamics, from stable network 
states and long timescales subserved by bursting or persistent neuronal activity, to dynamic 
trajectories resulting from transient sequential neuronal activity. This dynamical diversity 
contributes to the array of complex and flexible cognitive functions of the frontal cortex. 
Describing these dynamics in the language of dynamical systems as static stable or dynamical 
attractors is relevant, since attractors have the desirable property of being robust to the synaptic 
noise and chaotic activity regime characteristic of awake cortex. Through biologically-detailed 
descriptions of neural networks – necessary to account for these real cortical conditions –, the 
present thesis aims at identifying the biophysical determinants allowing for the emergence of 
stable and dynamic attractors robust to these destabilizing influences. 

Stable attractors, such as peregrination between quasi-stable network states during working 
memory within the monkey prefrontal cortex (PFC) or temporal information integration within 
the monkey midcingulate cortex (MCC), arises from bursting or persistent activity within 
neurons. Chapter 2 proposes intrinsic conditional bistability, in which neuronal bistable activity 
is conditional upon subthreshold input after the initial trigger, as an important underpinning of 
flexible PFC working memory. In a complementary fashion, Chapter 3 and 4 identify strong 
intrinsic hyperpolarizing and slow synaptic inhibitory currents as being responsible for longer 
MCC neuronal timescales (compared to PFC), i.e. long-lasting bursts of neuronal activity. These 
slow neuronal responses amplify into stable network states at the behavioral timescale, allowing 
for the temporal integration of information, e.g. building an action-reward outcome history for 
behavioral adaptation and exploration. 

Further results in Chapter 4 indicate these MCC network states are actually sequentially 
organized within macroscopic meta-states, within which each state contains persistent activity 
or neural activity sequences subserving stable or dynamic representations. Indeed, recent 
evidence suggests that MCC and PFC show stable and dynamic network encoding during 
temporal integration and working memory respectively, with sequences of transient sparse 
neural activity typically observed during rat working memory (“relay race”). Such sequences are 
also often observed in rat PFC and hippocampus (HP) in navigational tasks, being replayed at 
various speeds during sleep and immobility. Such behavior-independent replays require the 
formation of synaptic chains (pathways), e.g. via STDP and homeostatic meta-plasticity. 
Chapter 5 models the replay of previously learned dynamic attractors within chaotic synaptic 
noise after an external triggering cue, and identifies biophysical mechanisms increasing the 
reliability and robustness of such sequence replays. Furthermore, the model and its mechanisms 
are generically applicable to many stable/dynamic and discrete/continuous attractor types. 
Chapter 6 builds on the previous model by studying in depth the “online” learning of such 
trajectories during noisy network dynamics (rather than trajectories being phenomenologically 
“previously learned” in Chapter 5). It also studies their replay at different speeds (as for 
navigation), and capacity for simultaneous dynamic and stable coding. Finally, Chapter 7 goes 
further, describing the dual effect of dopaminergic modulation on 1) online learning of 
navigational trajectories toward a rewarding goal by building dynamic and stable neuronal 
assemblies, and 2) intrinsically-generated motivation-driven behaviors (without an external 
triggering cue) by unveiling the learned attractor through synaptic reverberation.  
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Chapter 1. Introduction 
Recurrent neuronal networks exhibit an array of population and neuronal dynamics, from stable 
network states and long timescales subserved by persistent or bursts of neuronal activity, to 
dynamic trajectories of population activity through underlying heterogeneous or transient 
sequential neuronal activity. It is assumed that the dynamical diversity that population and 
neuronal activity exhibit is necessary for successful execution of the large assortment of complex 
and flexible cognitive operations performed within biological recurrent neuronal networks. One 
way to mathematically describe these dynamics is through the language of dynamical systems 
as attractors, where population or neuronal dynamics converge to – or reside at – stationary (e.g. 
point, line, ring or plane) attractors, follow regular time-varying dynamics (such as limit cycle or 
quasi-periodic attractors), or peregrinate along chaotic attractors (irregular dynamics). This 
description is relevant, since attractors have the desirable property of describing reproducible 
activity patterns which are robust to thermal intrinsic and synaptic noise, as observed in cortical 
neuronal networks. Actually, in behaving animals, complex electrophysiological, plastic and 
neuromodulatory interactions generate neural dynamics that follow complex and ever changing 
combinations of all of these attractor archetypes.  

à That being the case, what biophysical determinants within biological recurrent 
neuronal networks allow the emergence of stable and dynamic attractors? 

The study of such determinants requires a biophysically-detailed model, in which the 
temporal properties of synaptic and intrinsic currents, whose neurons are embedded within 
synaptic architectures learned via plasticity, result in network and neuronal attractor dynamics. 

 

1.1. Stable network dynamics in frontal circuits 

1.1.1. Long frontal timescales and stable population 
states 

Several lines of evidence indicate that cortical activity displays marked patterns of stability 
reminiscent of stable attractors. Indeed, cortical areas are organized within an anatomical 
(Felleman and Van Essen, 1991; Markov et al., 2013) and temporal (Murray et al., 2014) hierarchy, 
with increasingly longer population (Murray et al., 2014) and neuronal (Wasmuht et al., 2018) 
activity timescales from fast posterior sensory to slow anterior associative cortical areas. Longer 
frontal timescales allow integration of information over longer durations, subserving higher 
cognitive functions such as working memory and decision-making (Cavanagh et al., 2018; 
Wasmuht et al., 2018), as well as evaluation of behavioral strategies by monitoring the recent 
history of reward integration (Bernacchia et al., 2011). 

In the same vein, Hidden Markov Models (HMM) analyses, which model time series data as 
probabilistic transitions between few static hidden states, suggest network activity switches 
between stable discrete states in frontal cortices. Such behavior has been observed during 
sustained attentional states (Engel et al., 2016), in relation to the encoding of animals’ position 
(Maboudi et al., 2018), working memory (Gat and Tishby, 1992; Batuev, 1994; Abeles et al., 1995; 
Seidemann et al., 1996; Rainer and Miller, 2000; La Camera et al., 2019), the maintenance of 



9 
 

behavioral rules (Durstewitz et al., 2010) and during extended periods of deliberation preceding 
the formation of behavioral decisions (Rich and Wallis, 2016; Taghia et al., 2018). 

Both of these long population timescales and discrete states emerge from neuronal activity 
with long timescales (i.e. stable attractors or slow dynamics), corresponding to persistent or 
long bursts of neuronal activity such as that underlying working memory in primate PFC, e.g. 
during delayed response tasks (Funahashi et al., 1989; Goldman-Rakic, 1995; Shafi et al., 2007; 
Constantinidis et al., 2018; Leavitt et al., 2018). 

à What biophysical mechanisms allow the emergence of persistent or bursting 
neuronal activity underlying stable states and long timescales, i.e. stable attractors? 

 

1.1.2. Synaptic reverberation within Hebbian 
assemblies 

A proposed mechanistic explanation for the timescale hierarchy is the existence of gradients of 
synaptic local and long-range excitation (Chaudhuri et al., 2015), corresponding to increasing 
numbers of dendritic spines on pyramidal neurons (Elston, 2007; Wang, 2020) as well as slower 
NMDA currents along the hierarchy (Wang, 2020). This is notable, since stronger and slower 
excitatory NMDA currents naturally lead to the maintenance of persistent activity when 
combined with synaptic learning of Hebbian neuronal assemblies (Wang, 1999). Indeed, NMDA 
channels induce depolarizing currents most strongly when both pre-synaptic and post-synaptic 
neurons are simultaneously active. In the Hebbian framework (Hebb, 1949), synapses between 
excitatory neurons with coincident activity are potentiated, leading to the emergence of strong 
bidirectional connections between neurons and thus an assembly of strongly interconnected 
excitatory neurons. As such, high spiking frequency in a subset of the assembly induces strong 
excitatory currents, and thus high frequency, within the rest of the assembly. This positive 
feedback loop or reverberation of synaptic excitation, a.k.a. “synaptic reverberation”, thus 
results in persistent neuronal and assembly activity (Brunel and Wang, 2001; Wang, 2001; 
Compte, 2006). The effect is mostly mediated by the slow decay of NMDA currents, maintaining 
excitation through temporal summation of excitatory post-synaptic potentials (EPSPs) in the 
absence of inputs, and is reinforced when NMDA currents are stronger and slower (Compte et 
al., 2000; Tegnér et al., 2002; Ermentrout, 2003; Wang et al., 2013). Assembly activity is then 
defined as one of 2 possible states, quiescent or high frequency, i.e. with bistable dynamics. 
When inscribing the bistable dynamics of each cortical area within the cortical hierarchy, this 
results in a multi-stable system composed of many bistable sub-systems with multiple distinct 
stable attractors, i.e. distributed working memory (Mejias and Wang, 2020). 

However, alongside the gradient of increasing pyramidal spine counts and slower NMDA, 
also exists a systematic gradient of changing PV+, SST+/CB+ and VIP+/CR+ interneuron 
proportions (Torres-Gomez et al., 2020; Wang, 2020) along the hierarchy, alluding to an 
important functional role for inhibition (Wang and Yang, 2018). Indeed, it has been observed 
that MCC is subject to stronger & slower inhibitory currents compared to LFPC (lower in the 
temporal hierarchy, Medalla et al., 2017). The potentially important role of inhibition is further 
supported by theoretical analyses, showing that strong excitatory currents need to be balanced 
with strong inhibitory currents in order to avoid excitatory activity saturation or silencing, which 
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in turns counterintuitively allows more robust bistability (Joglekar et al., 2018). Additionally, 
modulating inhibitory activity and connectivity leads to greater effects upon model networks 
compared to modulation of their excitatory equivalent (Mongillo et al., 2018), since inhibitory 
neurons and connections are less numerous.  

à This being the case, what role do inhibitory synaptic currents hold in establishing 
long population timescales and states through bursting and persistent activity? 

Biophysical modeling at the level of currents, which the aforementioned inter-areal 
excitatory gradient models (Chaudhuri et al., 2015) lack, would allow to disambiguate 
contributions of faster or slower excitatory and inhibitory currents. 

 

1.1.3. Bistability through intrinsic currents 
In addition to synaptic reverberation, intrinsic currents can lead to the emergence of persistent 
or bursts of neuronal activity, notably in the context of working memory tasks (e.g. object 
(Compte, 2006), spatial (Camperi and Wang, 1998), and parametric (Koulakov et al., 2002; 
Goldman et al., 2003) working memory), within cortical structures (Krnjević et al., 1971; 
Schwindt et al., 1988; Silva et al., 1991; Tahvildari et al., 2007; Zhang and Séguéla, 2010) and PFC 
(Haj-Dahmane and Andrade, 1997; Dembrow et al., 2010; Gee et al., 2012; Thuault et al., 2013). 
Intrinsic bistability originates from calcium-dependent depolarizing currents, which open due to 
spike-mediated calcium intake, and in turn bring about more spikes. This positive feedback loop 
results in a bistable system with two fixed points, one at low frequency or quiescence and the 
other at high frequency, allowing to maintain past information but this time in individual 
neurons (Booth and Rinzel, 1995; Delord, 1996; Marder and Calabrese, 1996; Delord et al., 1997; 
Shouval and Gavornik, 2011). 

However, such forms of strongly stereotyped “absolute” bistability in vitro require strong 
levels of pharmacological manipulations (e.g. neuromodulation) and display extremely long 
highly regular spike trains, which are not observed in behaving animals (Haj-Dahmane and 
Andrade, 1997; Egorov et al., 2002; Tahvildari et al., 2007; Zhang and Séguéla, 2010; Gee et al., 
2012). Furthermore, the rigidity of such bistability does not allow to account for the relative 
lability of stable attractors, e.g. transitions between stable network states (Abeles et al., 1995; 
Seidemann et al., 1996; Rainer and Miller, 2000). 

à As a result, do less stereotyped and more biophysically plausible forms of intrinsic 
bistability exist, and if so, what intrinsic currents are responsible of their emergence ? 

 

1.2. Sequences of transient sparse neural activity 
As mentioned before, network activity peregrinates between distinct states (Mazzucato et al., 
2015). Indeed, other than the previous examples, sequences of assembly activations are 
observed in adult rat somatosensory and visual cortex and HP during wake, SWS and REM sleep 
(Almeida-Filho et al., 2014). Furthermore, rapid series of state transitions are observed before 
network activity settles into a stable state in monkey PFC during working memory tasks after 
cue onset (Abeles et al., 1995; Seidemann et al., 1996; Stokes et al., 2013), and alternating states 
are observed during spontaneous activity (Kenet et al., 2003; Mazzucato et al., 2015), although 
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it is not clear to which extent these network states are organized into repeating sequences 
(Abeles et al., 1995; Seidemann et al., 1996; Mazzucato et al., 2015; La Camera et al., 2019). 
Conversely, states themselves can contain sequences of neuronal activity, since propagation of 
neuronal activity sequences depends upon current network state in rat dissociated cortical 
neurons (Yada et al., 2016). 

à Therefore, to what extent do stable network states actually exhibit neural sequences 
within them ? Are these states themselves organized into repeatable sequences? And what 
biophysical mechanisms allow the replicable propagation of sequences? 

 

1.2.1. Working memory 
1.2.1.1 Dynamic vs persistent coding in monkey PFC 

More generally, there has been debate recently over the extent of persistent activity – and thus 
stable attractors – in monkey PFC during working memory delay (Stokes and Spaak, 2016; 
Lundqvist et al., 2018a), in favor of more transient activity – and thus dynamic attractors. 
Lundqvist and colleagues argue instead for sparse transient activations within single trials, 
persistent activity being artificially caused by averaging sparse activity across trials or single-trial 
persistent activity only shown in cherry-picked example neurons. Indeed, while certain neurons 
do indeed show sustained firing during the delay period, they can also exhibit complex 
heterogeneous activity during working memory (Rainer and Miller, 2002; Brody et al., 2003; 
Shafi et al., 2007; Meyers et al., 2008). This complex heterogeneous activity can even strongly 
resemble transient dynamics (Meyers et al., 2008). 

When reinterpreted within the context of population dynamics, PFC networks encode task-
relevant variables dynamically, be it via changing population activity or neural tuning (Barak et 
al., 2010; Stokes et al., 2013; Sreenivasan et al., 2014). Stable representations can then result 
from the combination of changing neural activity and selectivity, with alternation between 
dynamic and stable coding epochs (Spaak et al., 2017) or stable coding dynamically morphed by 
distractors (Parthasarathy et al., 2017). Dynamic and stable coding can also simultaneously 
coexist, where stable representations emerge from a subpopulation of neurons with slow 
timescales and dynamic representations from the fast timescale neural subpopulation, 
Cavanagh et al., 2018; Wasmuht et al., 2018). Even without considering distinct neuronal 
subpopulations, such coexistence has been described at the network activity level as orthogonal 
stable and dynamic low-dimensional subspaces, network activity being stable along certain 
subspace dimensions and dynamic along others (Machens et al., 2010; Murray et al., 2017). 

The aforementioned mixtures of dynamic coding schemes show repeated trajectories of 
network activity in low-dimensional subspaces (within the larger N-dimensional space spanning 
the activity of every neuron). The underlying pattern of neuronal activity can take many different 
forms, being at least necessarily heterogeneous and time-varying for a subset of neurons. Of the 
numerous possibilities, network activity can take the shape of an underlying sequence of 
transient neural activity during the cue, delay and response periods of working memory tasks. 
Theoretically, sequences of transient sparse neural activity naturally offer a framework able to 
reconcile (i.e. account for both) stable and dynamic coding. Indeed, persistent population-
averaged frequency allows a downstream neuron receiving synapses from all neurons in the 
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population to decode categorical sustained information (i.e. is the population active or not). 
Simultaneously, time-varying individual neural frequency may allow other downstream 
neurons, receiving synapses from well-chosen subsets of the population, to decode temporal 
information (i.e. how much time has elapsed, or at what part is the sequence currently at, 
Goldman, 2009). 

Are such sequences truly observed? They can be indirectly observed via large repeatable 
neural latency distributions (Zaksas and Pasternak, 2006) and sequences of neural selectivity 
(measured as strong activity differences between two conditions), which last 0.5-4s in monkey 
LPFC (Cromer et al., 2010; Hussar and Pasternak, 2012; Lara and Wallis, 2014; Spaak et al., 2017; 
Cavanagh et al., 2018; Lundqvist et al., 2018b), or more directly via delay-selective neurons 
(Batuev, 1994). In areas with activity associated to the PFC during working memory, such as the 
parietal cortex, long (3 s) sequences of transient activity can be observed (Crowe et al., 2010), 
with dynamic task-relevant and persistent task-irrelevant neural coding. Observations of 
neuronal activity sequences take many different forms (with different recorded observables, at 
different temporal scales) due to the lack of a unifying descriptive framework, although the 
following experimental literatures have prominently observed them directly. 

 

1.2.1.2 Tiling the working memory delay period in rat with 
transient sparse neural sequences 

Compelling evidence of neuronal activity sequences comes from rodent PFC, in which 
sequences of repeatable transient neuronal activity, a.k.a. “relay races”, can be observed during 
the working memory delay period. Repeated sequences of transient sparse neural activity have 
been observed during working memory delays in PFC (Bakhurin et al., 2017; Bolkan et al., 2017; 
Schmitt et al., 2017; Rikhye et al., 2018) and associated areas such as dorsomedial thalamus 
(Rikhye et al., 2018) and striatum (Mello et al., 2015; Akhlaghpour et al., 2016; Bakhurin et al., 
2016, 2017), as well as posterior parietal cortex (Harvey et al., 2012; Runyan et al., 2017) and 
auditory cortex (Runyan et al., 2017). The sequences can be of arbitrary length, spanning tens of 
seconds (up to 60 s, Mello et al., 2015; Bolkan et al., 2017; 2.5-10 s, Akhlaghpour et al., 2016), 
seconds (~5 s, Harvey et al., 2012; Yang et al., 2014; Bakhurin et al., 2016; 2.5s, Bakhurin et al., 
2017) or hundreds of milliseconds (900ms, Rikhye et al., 2018; 400ms Schmitt et al., 2017). They 
are functionally relevant, supporting retrospective working memory of spatial (Yang et al., 2014) 
and behavioral rules (Schmitt et al., 2017), as well as prospective working memory by 
transforming previously encoded information, such as the representation of elapsed time 
(Tiganj et al., 2017) or encoding of forthcoming behaviors (Nakajima et al., 2019; Passecker et 
al., 2019). 

Of particular interest is the observation that these sequences are intrinsically generated, 
since they are not continuously driven by sensory inputs or motor outputs during the working 
memory delay period. This suggests the existence of underlying synaptic chains (pathways) 
within the respective cerebral structures, which allow for the propagation of neural activity 
packets in reliable temporal order after an initial trigger (e.g. the cue onset). Several lines of 
evidence further hint at this idea, such as the observation that increased thalamocortical input 
leads to stronger sequences in PFC and better working memory performance by increasing 
functional connectivity between PFC pyramidal cells (Schmitt et al., 2017). Furthermore, the fact 



13 
 

that working memory performance increases with repetition, combined with the fact that task-
related sequences are specific to different task cues (Schmitt et al., 2017), and that PFC is 
implicated in learning arbitrary associations rapidly (Asaad et al., 1998), suggests cue-specific 
learning of synaptic chains in PFC. Finally, neurons active at different time delays during 
sequences in parietal cortex are anatomically intermixed at the ~200µm scale (Harvey et al., 
2012), alluding to local network synaptic plasticity mechanisms. 

à In this context, what local synaptic plasticity rule could allow the emergence of 
synaptic chains and propagation of neuronal activity sequences? 
 

1.2.2. Prefrontal cortex and hippocampal replay during 
navigation 

Nonetheless, the most conclusive evidence concerning sequence learning and replay comes 
from replay of spatial trajectories during navigational tasks in rodent PFC and HP. During 
navigational behavior, sequences of activity emerge within neurons spatially selective to the 
animal’s position due to the animal’s displacement across time (O’Keefe and Dostrovsky, 1971; 
Fujisawa et al., 2008; Ito et al., 2015; Zielinski et al., 2019). These behaviorally-driven sequences 
are then replayed at faster timescales within theta cycles in HP during awake (Skaggs et al., 
1996) quiet wakefulness, such as during immobility (Kudrimoti et al., 1999; Diba and Buzsáki, 
2007; Davidson et al., 2009; Jadhav et al., 2016) or consummatory behavior (Nádasdy et al., 
1999), as well as wheel running (Nádasdy et al., 1999). Compressed sequences recapitulating 
sequences encountered during awake behavior also occur during SWS (Skaggs and 
McNaughton, 1996; Kudrimoti et al., 1999; Nádasdy et al., 1999; Lee and Wilson, 2002; Ji and 
Wilson, 2007; Peyrache et al., 2009; Mizuseki et al., 2012). The very existence of fast replays of 
sequences, previously observed during behavior, requires the formation of synaptic chains. 
Furthermore, these fast replays are generally associated with HP SWR events during wake 
(Nádasdy et al., 1999; Diba and Buzsáki, 2007; Davidson et al., 2009; Jadhav et al., 2016) and 
sleep (Kudrimoti et al., 1999; Nádasdy et al., 1999; Lee and Wilson, 2002; Ji and Wilson, 2007; 
Peyrache et al., 2009). HP SWR events have been shown to be necessary for memory formation 
and subsequent behavioral performance (Girardeau et al., 2009), further reinforcing the notion 
that sequences are learned. 

Other than fast sequences, intrinsically-generated sequences at slow behavioral timescales 
can also be learned and replayed without being driven by motor or sensory components, such 
as during awake wheel running delay (Pastalkova et al., 2008; Itskov et al., 2011) predicting 
future navigational trajectory (Pastalkova et al., 2008), as well as during REM sleep following 
behavior, replaying behavioral sequences at equivalent or slower speeds (Louie and Wilson, 
2001; Mizuseki et al., 2012). 

Sequence learning and replay occur not only in HP but also within other areas involved in 
spatial navigational tasks. PFC replays are generally linked to HP SWR events during awake 
immobility (Jadhav et al., 2016; Kaefer et al., 2020), with spontaneous reactivations during SWS 
of patterns learned during behavior (Euston et al., 2007; Peyrache et al., 2009; Johnson et al., 
2010b) linked to DOWN-UP state transitions (Peyrache et al., 2009; Johnson et al., 2010b). PFC-
HP interactions are mediated by thalamic NR (Ito et al., 2015; Angulo-Garcia et al., 2018) which 
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also shows fast sequences during anesthesia-induced slow oscillations (Angulo-Garcia et al., 
2018). Similarly to the PFC, visual cortex sequences are coordinated with HP sequences during 
SWS (Ji and Wilson, 2007). Moreover, superficial layers of medial entorhinal cortex replay fast 
sequences but independently of HP SWR (O’Neill et al., 2017). More generally, temporal biases 
throughout neocortex (PFC, motor, posterior parietal, and somatosensory cortex) are linked 
together after learning (Hoffman and McNaughton, 2002). 

Learning fast and regular timescale replays holds functional relevance. Indeed, fast replays 
during awake immobility span both forward and backward directions in PFC (Kaefer et al., 2020) 
and HP (Diba and Buzsáki, 2007), which has been interpreted as prospective and retrospective 
planning with forward anticipation at the run start and backward retrospection at the run end 
(Diba and Buzsáki, 2007). However, due to the fact that replay starting points are not 
systematically tied to the animal’s current position (Davidson et al., 2009), other interpretations 
have been proposed, e.g. PFC theta sequences encode the upcoming behavioral choice while 
CA1 theta sequences encode actual & alternative paths (Tang et al., 2021). More generally, the 
functional coordination of HP metric and PFC task-related spatial (Yu et al., 2018) 
representations (Pfeiffer and Foster, 2013; Zielinski et al., 2019) results in navigational 
trajectory-dependent firing in HP CA1, thus allowing prediction of upcoming and recent 
behavioral trajectory choices from regular timescale trajectory replays (Frank et al., 2000; 
Ferbinteanu and Shapiro, 2003; Fujisawa et al., 2008; Ito et al., 2015; Kaefer et al., 2020). 

In summary, the prominence of functionally relevant sequences of transient sparse neural 
activity, which are replayed after successful behavioral learning across cortices, notably during 
working memory and navigational contexts, suggests that sequence learning and replay is a 
generic phenomenon. 

à To what extent is sequence learning and replay generic, e.g. can sequences emerge 
in a self-organized manner? And what are their structural properties, e.g. the temporal scale 
at which they emerge ? 

 

1.2.3. Temporally precise motifs in vivo and in vitro 
Working memory and navigational sequence replays are characterized by transient (~100-5s) 
increase in firing within neurons, suggesting information within sequences is conveyed solely 
through average firing frequency rather than the precise temporality of spikes. However, 
repeating precisely timed (~1ms) spike patterns have been observed across cortices in awake 
animals, be it in monkey frontal cortex during a delayed-response task (Abeles et al., 1993; Prut 
et al., 1998) and motor and premotor cortex during drawing (Shmiel et al., 2006), in head-fixed 
or anesthetized mouse somatosensory (Luczak et al., 2007, 2009) and auditory (Luczak et al., 
2009) cortex, or in anesthetized cat V1 (Ikegaya et al., 2004). These precisely timed patterns can 
be observed even within cultured slices of rodent visual (Mao et al., 2001; Cossart et al., 2003; 
Ikegaya et al., 2004), somatosensory (Beggs and Plenz, 2003; MacLean et al., 2005; Tang et al., 
2008; Kruskal et al., 2013) and auditory cortex (Buonomano, 2003) and hippocampus (Tang et 
al., 2008), as well as human cortex (Tang et al., 2008). 

Poly-synaptic responses up to 300ms can be observed (Buonomano, 2003), once again 
suggesting the existence of underlying synaptic chains involving multiple synapses. Of particular 
interest is the observation that neuronal avalanches (repeated spontaneous events of spreading 
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activity) emerge within dissociated cultures of rat cortex after three to four weeks of self-
organization (Pasquale et al., 2008), leading to a repertoire of sequences replayed according to 
specific network states (Yada et al., 2016), indicating the spontaneous formation of synaptic 
chains. Accordingly, chronic stimulation leads to precisely timed spike patterns in 
thalamocortical slices (Kruskal et al., 2013), organotypic cortical slices (Johnson et al., 2010a) 
and dissociated cortical cultures (Rolston et al., 2007; Pasquale et al., 2017), confirming that 
synaptic chains are learned through synaptic plasticity and serve as the substrate of precisely 
timed sequence propagation. 

Correspondingly, initial observations of precisely timed spike patterns were motivated by 
the theoretical proposal of the existence of “synfire chains” (Abeles et al., 1993), i.e. fully 
feedforward synaptic chains organized in layers with all-to-all unidirectional connections of 
neurons from a previous layer projecting onto neurons of the next layer. However, insistence 
upon the precise timing of such spike patterns, and the underlying synfire chain theoretical 
proposition – necessitating strongly synchronous activity –, has received much criticism 
(Gerstein, 2004; McLelland and Paulsen, 2007; Mokeichev et al., 2007; Roxin et al., 2008). 
Indeed, detecting repeating precisely timed spiking patterns above chance level requires the 
adequate description of such null chance statistics. Most notably, when calculating the null 
probability of repeating temporally precise patterns against which observations are compared, 
taking into account firing rate modulation altogether removes the statistical significance of 
short patterns beyond chance, or renders it anecdotal (Oram et al., 1999; Baker and Lemon, 
2000; McLelland and Paulsen, 2007). Consequently, the temporal modulation of firing rate is 
important in predicting precisely timed spike patterns, which has led to their reinterpretation as 
sequences of UP-state onsets (Luczak et al., 2007), closely resembling the sequences of sparse 
transient activations mentioned above. 

Taken together, these results suggest that the precisely timed spike patterns observed 
across intact or sliced cortices are actually sequences of transient activity, subserved by synaptic 
chains which emerge either spontaneously or following stimulation through synaptic plasticity. 

à In this context, what generic synaptic plasticity rules could allow the emergence of 
transient neuronal activity sequences across cortices, and even within dissociated cultures? 
 

1.3. Learning and replay of sequences of transient 
neural activity 

1.3.1. Spike-Timing Dependent Plasticity 
As stated before, replay of sequences during awake working memory and navigation 
immobility, SWS SWR, REM sleep or in slices, as well as self-organization within dissociated 
cultures, strongly suggests sequences are learned via synaptic plasticity. The observation of 
sequences across cerebral structures, be it prefrontal, parietal, auditory, visual and entorhinal 
cortex, or hippocampus, thalamus, and striatum, or even dissociated cultures, indicates the 
learning rule must be generic. Furthermore, this learning rule must allow the formation of 
unidirectional synaptic chains in an activity-dependent manner. As such, Hebbian plasticity, 
promoting the emergence of bidirectional connections between neurons with coincident firing, 
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cannot result in unidirectional synaptic chains, as it does not impose a temporal order upon 
spiking (instead favoring simultaneous firing). 

A natural candidate for such learning is spike-timing dependent plasticity (STDP) (Bi and 
Poo, 1998) observed across structures (Abbott and Nelson, 2000). With STDP, synaptic strength 
is adjusted based upon the relative timing of pre- and post-synaptic action potentials, where 
pre-synaptic spike followed by post-synaptic spike arrival induces Long-Term Potentiation 
(LTP), and the reverse (post- before pre-) induces Long-Term Depression (LTD) (although other 
associative schemes are possible, c.f. Abbott and Nelson, 2000). The calcium hypothesis 
postulates that LTP is triggered by strong calcium entry mostly due to the detection of 
coincident pre-synaptic spike-induced glutamate release and post-synaptic spike-induced 
backpropagating dendritic depolarization by NMDA receptors, whereas LTD is caused by weak 
calcium entry on account of asynchrony and NMDA receptors staying closed, although recent 
evidence suggests otherwise (Sjöström et al., 2003). In particular, STDP is a strong candidate for 
learning navigational hippocampal sequences, since fast replay of trajectories at theta- or SWR-
scale allows pre-post association within the optimal STDP learning temporal window of 
hundreds of milliseconds (Diba and Buzsáki, 2008). Furthermore, modeling studies have shown 
that STDP does induce synaptic chains after temporally-structured stimuli (Liu and Buonomano, 
2009; Clopath et al., 2010; Fiete et al., 2010) 

Additionally, STDP is neuromodulated by dopamine (He et al., 2015), with strong plasticity 
during reward delivery or anticipation. Since working memory and navigational sequences are 
reinforced by reward delivery, dopaminergic signaling allows the learning of sequences towards 
the rewarded objective. The temporal linkage of spikes and dopamine signaling, a.k.a. the distal 
reward problem, would arise from synaptic eligibility traces (Izhikevich, 2007), e.g. activation of 
an enzyme important for plasticity. 
 

1.3.2. Homeostatic meta-plasticity 
Yet, as with Hebbian learning, STDP models suffer from synaptic runaway, where synapse 
potentiation results in more pre-post spike association and thus synapse potentiation. A 
homeostatic form of meta-plasticity is necessary to keep neuronal parameters within 
reasonable physiological boundaries (Zenke et al., 2013). Synaptic scaling, i.e. the scaling of 
synaptic strengths according to network frequency, is one of different theoretical propositions 
of meta-plasticity (e.g. BCM, Bienenstock et al., 1982), which is ubiquitously observed across 
cortices (Turrigiano et al., 1998; Keck et al., 2017). However, synaptic scaling needs to act at an 
equal or faster pace than plasticity in order to ensure synaptic stability (Zenke et al., 2017), 
suggesting the existence of as yet unidentified rapid compensatory processes (e.g. 
heterosynaptic plasticity, implication of astrocytes, etc.). 
 

1.3.3. Sequence learning and replay within synaptic 
noise 

Learning synaptic chains via STDP requires relatively precise timing between spikes. 
However, it is well known that network activity is globally disorganized in the awake cortex of 
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active attentive animals. The irregularity of neural activity is measured via the coefficient of 
variation (CV) of inter-spike intervals (ISI). Purely random neural activity, where each spike 
occurs with a small random probability at each instant independently of past spikes, a.k.a. a 
Poisson point process, defines an ISI distribution with a CV of 1. Accordingly, ISI distributions 
within awake cortex also have a CV of 1 or above (Compte, 2003), suggesting they are as or more 
irregular than a random process (Shinomoto et al., 2005). This is thought to be caused by 
neurons being in a high conductance state (Destexhe et al., 2003), in which strong and tightly 
balanced excitatory and inhibitory currents lead to a sustained depolarized membrane potential. 
As such, small (relative to the total sum) current fluctuations are sufficient to induce spiking, 
allowing faster temporal integration of faint pre-synaptic spiking correlation signals and 
resulting in irregular activity. Cortical activity during wake is furthermore typically asynchronous 
(Brunel, 2000) during active behavioral states, showing desynchronized local field potentials 
(Poulet and Petersen, 2008) and only synchronizing with external or internal events (Riehle et 
al., 1997), which has been interpreted as a desirably energy-efficient neural code (only a single 
neuron’s spike being required vs. many neurons simultaneously spiking, Denève and Machens, 
2016). Finally, activity in vivo is sensitive to slight perturbations, i.e. cortical activity is chaotic 
(London et al., 2010). 

It is unclear how synaptic chains can be learned and replayed within the globally disorganized 
chaotic activity of cortical networks during awake behavior. Indeed, the noisy activity regime 
can disrupt spike-induced sequence learning within individual synapses, since spike temporal 
jitter perturbs precise temporal spike differences and thus can cause accidental switches 
between LTP and LTD. At the network level, erratic spikes can recruit irrelevant synapses while 
randomly absent spikes fragilize the resulting dynamic engram. After learning, accumulation of 
non-specific plasticity resulting from noisy spike activity, counterbalanced by homeostatic 
meta-plasticity, can lead to engram forgetting. Furthermore, noisy excitatory activity can 
destabilize evoked replay by recruiting inhibitory interneurons, while also inducing spontaneous 
replays at pathological levels of repetition (i.e. incessantly). When considering the network as a 
chaotic dynamical system, noisy perturbations lead to exponential divergence in network 
activity which can lead to replay failure. Finally, sequence replay can further reinforce the 
synaptic engram via STDP, resulting in synaptic runaway starting with spontaneous replays and 
ending in paroxysmal epileptic activity. 

à In summary, can plastic synaptic and homeostatic meta-plastic processes, in 
combination with intrinsic bistability properties and slow synaptic currents, guarantee 
robust sequence learning and replay within the noisy dynamics characterizing of awake 
cortex? 

A potential solution to the problems induced by synapse-activity interactions addressed 
above is to consider STDP learning within the context of dopaminergic neuromodulation. 
Indeed, learning is restricted to the time window immediately following a phasic dopaminergic 
signal caused by reward acquisition, prohibiting slow forgetting due to non-specific spiking 
outside of reward collection. However, dopamine-mediated STDP learning similarly suffers 
from the other aforementioned undesirable interactions between erratic activity and  sequence 
learning. 
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à This being the case, what mechanistic description of dopaminergic neuromodulation 
of STDP allows the learning of neuronal sequences towards an objective within noisy 
networks? 

 

1.4. Theoretical background for attractor 
dynamics 

1.4.1. Hebbian Assembly 
A well-studied framework describing the learning of stable network activity attractors within 

noisy activity is the emergence of Hebbian assemblies encoding auto-associative memories via 
Hebbian synaptic plasticity, as mentioned above. While this framework allows for stable 
attractors within noisy networks, the resulting attractor is static rather than dynamic. 
Furthermore, the dynamic nature of sequential attractors leads to different challenges. Indeed, 
the propagation of neural sequences depends upon the unidirectional nature of synaptic 
weights, such that their stability cannot be mainly based upon the positive feedback loop of 
NMDA-mediated synaptic reverberation within bidirectional weights (Hebb, 1949; Brunel and 
Wang, 2001). Similarly, mechanisms which help stabilize bistable frequency in assemblies (e.g. 
strong intrinsic or dendritic bistability, Camperi and Wang, 1998; Koulakov et al., 2002; Goldman 
et al., 2003; Compte, 2006) may not apply to sequences of transient sparse neuronal activity. 

 

1.4.2. Synfire chain 
On the other end of the spectrum, synfire chains (Abeles et al., 1993) lead to unidirectional 
propagation of synchronous activity across neural layers, corresponding to dynamic engrams 
underlying dynamic attractors. While the existence of temporally precise sequences is 
debatable, synfire chains can result in unstable or uncontrolled sequential propagation (Mehring 
et al., 2003). Furthermore, synfire chains describe feedforward synaptic chains, whereas the 
aforementioned sequence-prone cortices have strongly recurrent synaptic architectures. 
Finally, they are organized into distinct layers, whereas unidirectional connections could overlap 
across neurons, forming more complex structures such as synfire braids (Izhikevich et al., 2004; 
Izhikevich, 2006). In summary, the stability issue, lack of recurrence and layer organization of 
synfire chains make them unlikely candidates for the emergence of stable repeatable sequences 
within local networks on many different timescales (0.5-60s). 
 

1.4.3. Hebbian phase sequences 
In between Hebbian assemblies and synfire chain, the hybrid model of Hebbian phase 

sequences offers the advantages of both, allowing stable propagation of dynamic attractors 
within recurrent synaptic structures (Kumar et al., 2008; Duarte and Morrison, 2014; Chenkov et 
al., 2017). However, the neural sequence is composed of discrete assemblies rather than 
continuous overlapping connections across neurons, which is difficult to verify experimentally 
and thus up to interpretation. Furthermore, it is unclear whether and how Hebbian phase 
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sequences are formed through uni- and bi-directional STDP, whereas the formation of 
unidirectional synaptic chains is more straightforward. Finally, the existence of neural activity 
sequences at the micro-column ~200µm scale (Harvey et al., 2012), combined with the fact that 
subnetworks in V1 layer 2/3 share interneurons (Yoshimura et al., 2005; Itskov et al., 2011), 
suggests propagation is not induced by inhibition local to each assembly, as shown in (Chenkov 
et al., 2017). Putting continuous sequences aside, the sequential activation of neuronal 
assemblies might account for the previously mentioned sequential transitions between discrete 
network states modeled as HMMs. 

 

1.4.4. Continuous dynamic engrams 
Models learning sequences through unidirectional STDP exist, although none satisfyingly 

answer all aspects of the problem introduced by learning and replay of sequences within noisy 
networks as mentioned above (namely noise-perturbed learning, non-specific plasticity-induced 
forgetting, synaptic runaway-induced paroxysmal epileptic activity, as well as incessant or 
unstable replay and chaotic divergence after initial triggering stimuli). Indeed, some studies do 
not study trajectory replay after learning (Clopath et al., 2010) or the trajectory cannot be 
replayed from an initial trigger (Klampfl and Maass, 2013). In others, trajectory learning is either 
absent (Chenkov et al., 2017), based on artificial learning rules (Sussillo and Abbott, 2009; Laje 
and Buonomano, 2013; Xue et al., 2021) or biologically unrealistic neuronal activity and synaptic 
plasticity (Liu and Buonomano, 2009; Fiete et al., 2010; Klampfl and Maass, 2013), or unrelated 
to external stimuli (Fiete et al., 2010). Additionally, certain models lack the asynchronous 
irregular regime of neuronal activity altogether (Liu and Buonomano, 2009; Fiete et al., 2010), 
removing the necessity for attractors robust to synaptic noise. Finally, none dissect how 
biophysical mechanisms can support the reliability and stability of neural sequence replay, nor 
study its maintenance in long-term memory. 
 

1.5. Thesis outline 
This thesis consists in trying to understand which biophysical determinants, such as intrinsic 

and synaptic currents, network architecture or plasticity rules, are essential to emergence of 
stable and dynamic attractors, which are repeatable across trials and robust to synaptic noise. 

What intrinsic currents allow the emergence of stable yet labile network states and 
robust neuronal activity sequences? Chapter 2 studies a conditional form of robust and generic 
spike-mediated bistability subserved by high-threshold L-type calcium (CaL) and calcium-
activated non-specific (CAN) ionic currents within a model of layer 5 PFC pyramidal neuron. In 
this context, intermediate CAN conductance levels result in the maintenance of activity induced 
by a supraliminal phasic depolarizing current input, but conditional to the presence of a tonic 
subliminal depolarizing current input. This tonic input could originate from other excitatory 
neurons within an excitatory assembly, thus facilitating transitions between labile network 
states defined by neuronal assemblies. Such conditional bistability could also help stabilize 
neural activity sequences, where the subliminal input originates from previous neurons of the 
sequence. 
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While persistent activity within monkey PFC allows stable network states during working 
memory, the MCC is at the pinnacle of the cortical hierarchy with the longest neuronal activity 
timescales (twice those of lateral PFC; LPFC). Do the same intrinsic mechanisms subserve 
these long timescales, and to what end? Starting from a biophysical neural network model 
closely replicating monkey LPFC working memory data, Chapter 3 shows that plausible strong 
inhibitory after-hyperpolarization (AHP) ionic and slow GABA-B synaptic currents account for 
the longer neuronal timescales within MCC compared to LPFC. These neuronal timescales 
escalate at the network level into the metastable peregrination of network activity across much 
longer quasi-stable discrete network states, whose maintenance and transitions are controlled 
by synaptic inhibition. Chapter 4 replaces these findings within the MCC’s proposed central 
function, i.e. temporal integration of diverse multimodal inputs, allowing to construct an action-
reward outcome history for behavioral adaptation and exploration. Additional results in Chapter 
4 then revealed the sequential organization of MCC network state peregrination within two 
larger pseudo-attractor spaces, where each network state could be defined by persistent activity 
or neural activity sequences. 

While GABA-B conductance can be neuromodulated to generate the timescales necessary 
for task demands, these network states and sequences originate from the random architecture 
of the synaptic matrix, and are thus not learned nor related to external stimuli and task variables. 
How can intrinsic and inhibitory synaptic currents stabilize and allow controlled replay of 
learned sequences within synaptic noise? Chapter 5 shows that strong tonic or slower 
inhibitory currents coupled with increased excitatory functional connectivity, as well as intrinsic 
CAN and AHP currents mediating transient bistability, increases the stability and controllability 
of learned sequence replay when faced with synaptic noise. Furthermore, the model is robust to 
variability in the biophysical parameters, and represents a common framework for many types 
of static or dynamic and discrete or continuous attractors (e.g. Hebbian assemblies, phase 
sequence, synfire chain, ring attractor, and bidirectional sequences). 

Whereas the previous chapter studies mechanisms allowing robust replay within synaptic 
noise, STDP learning occurs before the network simulation, outside of the asynchronous 
irregular regime. As such, what mechanisms allow the learning and maintenance in memory 
of the synaptic engram within noisy network activity, and can the resulting engrams be 
replayed? Building upon the previous chapter’s knowledge by instantiating a model network 
capable of stable and controllable replays, Chapter 6 shows that STDP modeled as calcium-
based activation of kinase and phosphatase couples (aKP) allows minimal interference between 
trajectory learning or replay and the asynchronous irregular regime. This results from the very 
slow aKP kinetics at low frequency, coupled with the network’s low frequency during resting 
state activity. This model further describes how sequences can be learned through the 
presentation of discrete fragments, how they can be replayed at fast or regular timescales (such 
as for navigational trajectories) according to neuromodulated NMDA channel opening 
dynamics, and confirms that such sequences can reconcile simultaneous stable and dynamic 
coding. However, runaway synapse-activity interactions due to repeated sequence replays lead 
to paroxysmal network activity and engram forgetting, requiring slower plasticity and multiple 
stimulus presentations. 

The previous two chapters describe learning of presented stimulus sequences within synaptic 
noise which are replayed after an external triggering cue. However, they do not describe how 
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sequences can be learned toward a rewarding goal (instead of replicating an external stimulus), 
nor do they not explain intrinsically-generated and motivated decisions in the absence of 
triggering cues, both effects which have been attributed to dopaminergic neuromodulation. 
How can dopaminergic neuromodulation account for both the learning of, and motivation 
to retrieve, rewarded goals? Chapter 7 shows that multiplicative gating of online synaptic 
plasticity eligibility traces and synaptic excitability by phasic dopamine (DA) signals allows 1) the 
learning of rewarded locations as static neuronal assemblies dynamically oriented toward the 
reward location, as well as 2) their successful recall after an internally-generated motivational 
DA impulse, inducing slow excitatory NMDA-mediated synaptic reverberation within the 
assemblies learned through DA and subsequent mouse behavioral convergence toward them. 
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Chapter 2. PFC working memory persistent activity via 
intrinsic conditional bistability 

2.1. Summary 
Working memory is commonly believed to be supported by persistent neural activity within 
monkey PFC. Two non-mutually exclusive mechanistic origins of persistent neural activity have 
been proposed: synaptic network reverberation, and intrinsic cellular bistability. Network 
reverberation models have been criticized, notably since they lack the spiking irregularity and 
quasi-stationary state transitions observed experimentally. On the other hand, intrinsic cellular 
absolute bistability (AB) models require long onset and offset stimuli and strong levels of 
pharmacological neuromodulation, which result in long (~10s) high frequency regular discharges 
lacking the spiking irregularity and flexibility necessary for adaptive working memory cognitive 
processes. An intermediate proposal exists, a.k.a. conditional bistability (CB), in which 
persistent activity after an initial stimulus is conditional on subthreshold input current during the 
delay period. CB is notably found within layer 5 PFC pyramidal neurons, and has been 
overlooked in classical bistability protocols, as they test neuronal responses to an initial stimulus 
only (event), without the additional subthreshold input or depolarized membrane potential 
required during the delay period (event/delay). 

As such, we present a mechanistic account of spike-induced CB in a Hodgkin-Huxley neuronal 
model of iso-potential PFC layer 5 pyramidal neuron. In this model, CB is implemented by spike-
mediated high-threshold L-type calcium (CaL) and calcium-activated non-specific cationic 
(CAN) currents. The voltage-dependent CaL current induces after-depolarization potentials 
(ADP) and calcium entry during action potentials. This calcium then opens CAN channels, 
inducing further ADP and thus potentially action potentials. High CaL and CAN maximal 
conductances result in this positive feedback loop being sufficiently strong to sustain itself after 
the initial event stimulus without delay input (AB), while weaker conductance levels require a 
delay input current for the loop to sustain itself (CB). 

However, the weak positive feedback of CB precisely leads to a richer diversity of behaviors, 
with varying moderate frequency and a repertoire of responses depending on the amplitude of 
the delay input current (from memoryless discharge to stable memory via various transient 
memory durations). The parametric region of maximal conductances characterizing CB is wide 
and within physiological neuromodulatory levels, and only the CaL asymmetric opening and 
closing dynamics are necessary and sufficient for CB, both elements suggesting this 
mechanism’s genericity within PFC (and other) networks. 

Considering in vivo asynchronous synaptic inputs, CB neurons alternate between bursting 
and non-bursting episodes, inducing higher CV and CV2 during the delay compared to without 
CB (though an after-hyperpolarization potential (AHP) current was necessary). As such, within a 
network, CB may underpin transitions between stable collective states of quasi-stationary firing 
at the second timescale, such as mental states during exploration of computational solutions 
promoting adaptive cognitive processes. Furthermore, the weak positive CB spike feedback 
loops could help stabilize sequences of neural activity, with stable firing being conditional on 
subliminal input from vanishing activities of previous neurons in the sequence. 
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2.1.1. Contributions 
I helped develop the bistability assessment protocol code and analyze corresponding data, and 
reviewed the article during writing. 
 

2.2. Article 
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Chapter 3. Temporal signatures of cognition from 
LPFC to MCC controlled by inhibition 

3.1. Summary 
The previous chapter has showed that persistent activity within monkey PFC, subserved by CaL- 
and CAN-mediated intrinsic conditional bistability, allows stable yet labile network states during 
working memory. However, among frontal areas, the MCC presents activity timescales twice 
those of the LPFC. Moreover, MCC has stronger and slower synaptic inhibition impinging upon 
pyramidal neurons, suggesting a link between spiking timescales and synaptic inhibition. What 
are the exact nature of differences in timescales between LPFC and MCC? And are these 
timescales underpinned by the aforementioned intrinsic currents or by other mechanisms? 
Finally, how do these mechanisms result in temporally-extended MCC behaviors? 

To answer these questions, Vincent Fontanier and Emmanuel Procyk (SBRI, Lyon) recorded 
within monkey LPFC and MCC, capturing the finer temporal dynamics of neuronal activity 
timescales by developing individual unit spike autocorrelograms. When extracting the peak 
latency (LAT) and time constant (TAU) from the autocorrelograms, we confirmed that MCC TAU 
was higher than LPFC TAU across cell-types (regular spiking RS and fast spiking FS, putatively 
pyramidal cells and interneurons respectively). Furthermore, LAT was similar across cell-types 
and areas except for longer LAT in MCC RS neurons. 

TAU was modulated by cognitive involvement, with MCC RS TAU increasing during task 
engagement. Furthermore, neuronal activity timescales were correlated with task variable 
timescales, as generalized mixed linear model showed LPFC RS and MCC RS short TAU encoded 
short-term feedback within the inter-trial period, while MCC RS long TAU encoded long-term 
gauge size information throughout trials. These TAU differences were anatomically organized 
within an antero-posterior gradient in MCC, with higher TAU in posterior neurons encoding 
long-term gauge size information. Behavioral switching was potentially induced by MCC FS 
units, as they were most engaged in encoding negative feedback in the first second after 
feedback onset.  

Starting from a detailed biophysical recurrent network model of LPFC, we identified AHP 
and GABA-B conductances as crucial determinants for varying neuronal activity timescales from 
LPFC to MCC, with AHP increasing excitatory (RS) LAT and GABA-B increasing TAU. These 
elements were consistent with experimental observations of lower MCC frequency-current gain 
in RS cells (consistent with stronger AHP), as well as stronger and slower inhibition in MCC 
(consistent with stronger GABA-B). Furthermore, increase in GABA-B conductance led to 
collective transitions between quasi-stationary metastable states, where spiking timescales 
were amplified into functionally-relevant network states of several seconds in MCC and 
hundreds of milliseconds in LPFC, while increase of gAHP decreased probabilities of short 
states. Finally, maintenance of and transitions between states was controlled by inhibitory 
neurons, predicting MCC state transitions when MCC FS neurons encoded negative feedback. 
Importantly, these states emerged without learning, inhibitory subnetworks naturally emerging 
from the synaptic weight’s variability being increasingly contrasted by stronger slow synaptic 
GABA-B currents. 
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3.1.1. Contributions 
I developed the biophysical neural network model, the autocorrelogram analysis and all analyses 
on model data (HMM, PCA, etc.), created the figures 5-7, wrote the first draft of the 
corresponding results text, figure legends, and methods, and reviewed all parts of the text. 
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Chapter 4. Temporal integration within the MCC 

4.1. Summary 
The previous chapter has identified strong and slow synaptic inhibition as being responsible for 
the long neuronal activity timescales and quasi-stable network states within the MCC. What are 
the functions subserved by MCC, and how do these mechanisms contribute to them? We 
proposed that the MCC’s central function is temporal integration of diverse information at 
multiple timescales required for adaptive behavior, such as integrating outcome history for 
behavioral planning, due to converging evidence from its anatomical, intrinsic network, 
neurophysiological, and behavioral properties. 

The MCC was defined here as the region of the medial wall dorsal to the corpus callosum 
(also referred as dACC). The MCC lies at the core of a densely connected network, receiving a 
rich diversity of cognitive cortical feedback, domain-specific posterior to anterior somato-motor 
inputs and para- and ortho-sympathetic autonomic information. This convergence of 
multimodal excitatory inputs was proposed to be gated by frequent, strong and slow local 
network inhibition, with an increasing GABA-B anteroposterior gradient in MCC. Inhibition is 
indeed important to temporal information integration, as evidenced by the latter’s link with 
MCC GABA/glutamate concentrations, and the previous chapter’s model findings that strong 
and slow inhibition resulted in long neuronal timescales and network states peregrinating within 
discrete quasi-stationary states (i.e. metastability). 

These timescales and network states were proposed to form the basis of the MCC’s capacity 
to encode the history of expected and actual outcomes and feedback values in terms of 
behavioral adaptation and future strategy shifts, regulating decisions according to the action-
reward feedback history and providing the motivation for temporally-extended behaviors. 
Indeed, individual neurons encode the history of reward magnitude through intrinsic activity 
timescales of varying lengths (particularly inhibitory neurons). Accordingly, MCC deactivation 
and lesion leads to loss of adaptation when facing diminishing reward through shorter reward 
history, loss of exploratory behavior, and of motivation for time-extended behaviors. 
Conversely, MCC stimulation induces the incentive for – and realization of – behaviors directed 
toward information search, as well as faster learning rates. Furthermore, MCC network state 
switches are shown to be concomitant with switches between exploration and exploitative 
strategies, where network activity is proposed to alternate between two pseudo-attractor 
spaces of exploration and exploitation composed of dynamic and stable subspaces. 

Continuing research on the MCC model of the last chapter, additional results showed the 
complementary roles of fast GABA-A and slow GABA-B in defining these transitions, with 
GABA-A predicting the timing and GABA-B the nature of transitions. Investigating the synaptic 
matrix more closely revealed depressed inhibitory assemblies (inhibitory neurons least 
connected to each other fire together) underpinning persistent activity associated with certain 
network states, as well as depressed synaptic chains (or pathways; inhibitory neurons least 
inhibited next neurons in the sequence) underpinning neural activity sequences associated with 
other states. At the network level, these led to alternation between dynamic and stable coding, 
as well as sequential peregrination of network activity between states within two larger pseudo-
attractor spaces (putatively exploration and exploitation). 
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I reviewed the Procyk et al., 2021 article’s text; and performed the research for the additional 
results, and wrote the corresponding text. 
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4.3. Linking states and sequences 
The last chapter proposed that transitioning network states subserve peregrination of network 
activity between and within two pseudo-attractor domains of exploration and exploitation, with 
respectively dynamic and stable behaviors (Enel et al., 2016; Stoll et al., 2016). 

In Chapter 3 Fig. 8, we have shown that states are maintained, and transitions induced, by 
inhibitory currents and neurons in the MCC model. But how exactly do these inhibitory currents 
maintain network states and induce transitions? More precisely, what is the role of both GABA-
A and GABA-B currents in inducing transitions, and how are network states maintained through 
GABA-B currents? Furthermore, does MCC collective activity show network dynamic and stable 
coding, as well as two pseudo-attractor spaces (putatively for exploration and exploitation), as 
observed experimentally? 
 
Dual contribution of inhibitory currents to transitions 
To understand network dynamics more clearly, we grouped neurons according to the HMM 
state in which they fire the most, defined as the state 𝑠 for which the emission of neuron 𝑛 is 
maximal in the HMM emission matrix 𝐸(𝑠, 𝑛), i.e. argmax

!
𝐸(𝑠, 𝑛). This allowed us to define 4 

mixed (excitatory and inhibitory) subpopulations, one for each state, where each neuron 
belonged to one state only. In the following, we defined excitatory and inhibitory 
subpopulations as the excitatory and inhibitory neurons of each subpopulation. As such, when 
referring to an excitatory or inhibitory subpopulation, there is a corresponding inhibitory or 
excitatory subpopulation, respectively. 

We found that major variations of averaged inhibitory currents received by each inhibitory 
subpopulation (inhibitory neurons underlying a given state, i.e. having their largest mean firing 
frequency in that state) actually correlate with transition times between two states (Fig. 1), and 
that GABA-A and B showed complementary roles of the 2 inhibitory currents. 

On the one hand, we found that the GABA-B current impinging on the subpopulation 
underlying the next state (Fig. 1a) decreases long before the transition (~500ms). Because no 
other synaptic current showed such anticipatory variation (not shown), this GABA-B decrease 
most likely caused the transition to the next state. Actually, the higher frequency defining the 
current (e.g. previous or following) inhibitory subpopulation was causally accounted for by the 
lower amount of received GABA-B currents (Fig. 1a, see below). 

On the other hand, the GABA-A current (Fig. 1b) decreased just before the transition 
(~10ms), with a larger decrease in the subpopulation underlying the next state, defining the 
precise moment when the transition, gated by GABA-B dynamics, took place.  

Altogether, these data indicated that collective network dynamics were essentially 
determined by competitive cross-inhibition between inhibitory subpopulations, which was 
central in setting state maintenance and transitions. Specifically, 1) the least inhibited (most 
disinhibited) inhibitory subpopulation induced the current network state, 2) transition to a new 
state occurred through the conjunction of a slow and progressive GABA-B disinhibition 
terminated by an additional fast GABA-A disinhibition triggering of the next subpopulation. 
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A rich repertoire of static and dynamic attractors in synaptic engrams 
underlying stable and dynamic coding 
The question arises: how do inhibitory neurons associated with the current state receive less 
inhibitory currents? We reasoned that inhibitory subpopulations should project weaker 
inhibitory synapses onto themselves, and stronger synapses onto other subpopulations. To 
assess this hypothesis, we measured the average synaptic weights between and within each 
subpopulation (Fig. 2a) and found that weights were indeed weaker within each inhibitory 
subpopulation, compared to between them (Fig. 2a, Inh→Inh., blue within vs. orange between 
subpopulations), resulting in “anti-” or “negative” assemblies of inhibitory neurons, with strong 
synaptic cross-inhibition between them. This synaptic structure accounted for the dynamical 
properties (states, transitions) observed in these assemblies (see above). Contrary to the 
classical notion of (e.g. Hebbian) neural assemblies (defined by excitatory neurons being more 
connected with each other among the assembly than with neurons outside of the assembly), 
“anti-assemblies” are defined here by how weakly neurons connect to other neurons in the 
assembly, compared to the rest of the network (i.e. other assemblies).  

Furthermore, inhibitory subpopulations projected weaker weights onto their corresponding 
excitatory subpopulations (Fig. 2a, Inh.→Exc., blue vs. orange). Combined with the fact that 
excitatory subpopulations projected similar weights to all excitatory and inhibitory 
subpopulations (Fig. 2a, Exc.→Exc. and Exc.→Inh., blue vs. orange), this confirmed that 
excitatory subpopulations are defined by inhibitory projections, i.e. namely, weaker inhibitory 
connections to inhibitory neurons and stronger inhibitory connections to excitatory neurons 
within each subpopulation. 

In summary, the network dynamics analyzed through HMM allowed us to define neuronal 
subpopulations, from which we were able to backtrack organized structure in the form of 
inhibitory anti-assemblies, within the randomly initialized synaptic weight matrix. Note here 
that no form of learning was present in defining assemblies and that they purely emerged from 
structural and synaptic heterogeneity, i.e. randomness of connection sparsity and weights. The 
principal factor at play here was that strong and slow synaptic GABA-B currents amplified the 
effect of the synaptic weight matrix’s random structure on network dynamics. 

In principle, HMMs assume stationary data, thus the synaptic structure we could unveil 
through them is limited to stationary activity, and not dynamic sequences of neural activity. 
These sequences might nevertheless exist, emerging through GABA-B slow currents 
propagating along synaptic chains (pathways) within the unveiled assemblies of the synaptic 
weight matrix. 

To address this possibility, we reordered neurons within each subpopulation according to 
their average median activation times (Fig. 2b top). Within the time period when the network is 
in a given state, the median activation time of a neuron of the corresponding state’s 
subpopulation was taken as the timing of the neuron’s median spike (for a neuron firing 5 spikes, 
the timing of the 3rd spike). Median activation times were then averaged across all time periods 
when the network was in the associated state (i.e. all green time periods for a neuron within the 
green state’s subpopulation, Fig. 2b bottom). When doing so, we could observe a rich repertoire 
of dynamic and static attractors in MCC simulations, with repeating sequences of activity of 
neurons activating successively within states/subpopulations (Fig. 2b bottom, green, orange, 
and red bottom states) and systematic persistent activities in others (Fig. 2b bottom, purple top 
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state). The slopes of correlations between neural index and timing of spikes within HMM state 
subpopulations confirmed this analysis, with horizontal slopes for static attractor states and 
diagonal slopes for dynamic attractor states (Fig. 2b bottom, essentially horizontal slopes for 
purple top state, and diagonal slopes for green, orange and red bottom states). 

Sequences of neural activity should be accompanied by a directed synaptic chain in the 
synaptic weight matrix. Within the synaptic matrix connecting pre- and post-synaptic excitatory 
neurons ordered according to their activation times, a synaptic chain would correspond to 1) 
stronger synapses in the forward direction, i.e. on diagonals below the main diagonal (Fig. 2c, 
yellow band below the red main diagonal), from pre-synaptic to post-synaptic neurons situated 
further along the sequence, and 2) weaker synapses in the backward direction, i.e. on diagonals 
above the main diagonal (Fig. 2c, dark blue band above the red main diagonal). We studied the 
average difference between forward and backward weight diagonals (i.e. below and above the 
main diagonal) for each synaptic type within subpopulations. We found significantly weaker 
forward (stronger backward) synapses for Inh.→Inh. and Inh.→Exc. connections only (Fig. 2d, 
blue and purple curves and shaded areas below zero, respectively), by opposition to Exc.→Exc. 
and Exc.→Inh. connections, which displayed no specific trend (Fig. 2d, red and green curves and 
shaded areas centered on zero). Thus, within each subpopulation, inhibitory neurons were 
connected through forward weaker synapses, with each inhibitory neuron inhibiting the 
following neurons less, forming an “anti-synaptic chain”. Such disinhibition would result in 
higher frequency in subsequent neurons, propagating the sequence of neural activity. This effect 
was found when averaging across all states (even those resulting in persistent neural activity), 
suggesting that the synaptic chains of states resulting in sequences were more pronounced than 
the shown average (across states displaying static activity and sequences) shown in Fig. 2d. 

At the network level, these sequential or persistent activities in subpopulations impacted 
network activity, resulting in alternation between dynamic (Fig.2e, yellow diagonals) and stable 
(Fig.2e, yellow squares) network activity. 
 
Sequential peregrination of network state within two meta-states 
The presence of a temporal structure of network activity at the 100ms-1s HMM state temporal 
scale suggests that there might be a structure at larger temporal scales, i.e. the peregrination 
between network states itself could be structured. This structure could be static, e.g. correspond 
to a random alternation between two-macroscopic static attractors, each of which including one 
or several similar states with underlying persistent activity. Such a possibility could for example 
putatively correspond to a dichotomy between exploratory and exploitative strategies. 
Alternatively, this structure could be sequential, i.e. displaying reoccurring specific sequences of 
states, as during the successive evaluation of network states, putatively encoding different 
behavioral strategies. Both possibilities may even co-exist in the same network. 

Simple visual inspection seemed to suggest that network states were indeed organized in 
sequences of N-states (Fig. 2b, green-orange-red 3-state sequences). We assessed whether 
network state transitions solely depended upon the previous state (i.e. were Markovian), or 
organized into longer sequences, with certain sequences of N states (N > 2) more probable than 
others. To answer this question, we calculated the Shannon entropy of the probability of N-state 
sequences in the simulation data (Fig. 3a, red curve), and compared this number to a control 
condition where N-state sequences were solely derived from information about 2-state 
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sequences (a.k.a. the HMM transition matrix), i.e. purely Markovian sequences of 2 states (where 
the probability of the next state depended exclusively upon the current state, Fig. 3a, black line). 
We observed that the longer sequences were, the more the Shannon entropy of N-state 
sequence probabilities decreased compared to those of Markovian sequences. This indicated 
that there was temporal dependence of states to the history of states beyond simply the 
previous state, with certain sequences of N-states more probable than others, i.e. states were 
sequentially organized at a longer timescale. 

In the example considered, visual inspection of the cross-temporal similarity of network 
activity vectors at each time step (Fig. 2e and Fig. 3b) also suggested that the network 
alternated between two macroscopic meta-states, one being stable (large yellow squares, e.g. 
26-33 seconds) and the other dynamic (yellow diagonals grouped together, e.g. 10-17 seconds). 
Coloring the similarity matrix according to previously established HMM network states (Fig. 3b 
left, bottom right triangle, cyan rectangles corresponding to green and orange HMM states, 
orange rectangles corresponding to the red and purple HMM states) matched this macroscopic 
structure well, suggesting two macroscopic meta-states existed and each corresponded to two 
combined HMM states. Visualizing network activity in a reduced dimensionality (PCA) space 
(colored as above, Fig. 3b right) also revealed two separated macroscopic meta-states, with 
orbits peregrinating between meta-states, as well as within them between their constitutive 
states. 

In conclusion, peregrination of network states was organized according to alternations 
between two macroscopic meta-states. These two meta-states could putatively subserve 
exploratory and exploitative regions, i.e. with respectively dynamic (cyan meta-state) vs static 
(orange meta-state) global behavior, as unraveled experimentally (Enel et al., 2016; Stoll et al., 
2016). Network trajectory orbits sequentially visited underlying HMM states within these meta-
states (putatively encoding different exploratory and exploitative strategies). At a lower 
temporal scale, each network state itself contained neural sequences or persistent activity, 
subserving dynamic and stable coding. Together, this opened the possibility to encode 
information at different timescales in the network (states with sequences for short information 
and persistent activity for intermediate durations, as well as dynamic and stable macroscopic 
meta-states for longer and longest information timescales respectively).  

Such a dynamical richness could form the neural substrate allowing the temporal 
integration of information at multiple timescales and behavioral switches necessary to MCC 
function. Furthermore, it shows the promising potential of GABA-B neuromodulation in actual 
monkeys learning behavioral tasks which induce synaptic plasticity within MCC networks. 
Indeed, such a large dynamical repertoire was obtained simply through GABA-B-mediated 
amplification of the effects of the synaptic matrix’s randomized heterogeneity on network 
dynamics. As GABA-B temporally amplifies even minute differences in synaptic structure, it 
should increase the impact of synaptic plasticity and resulting synaptic structures on behaviors, 
thus making learning more effective. This hypothesis deserves future exploration. 
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Figure legends 

 
Figure 1. Dual contribution of inhibitory currents to transitions. GABA-B (a) and GABA-A (b) currents 
received by each inhibitory subpopulation (i.e. neurons of each state), around transitions between two 
states. Only transitions between 2 states that last more than 100ms are included. 
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Figure 2. Rich repertoire of static and dynamic attractors and synaptic engrams underlying stable 
and dynamic coding. (a) Average weights between and within neurons associated with a state, averaged 
over all couples of states for 100 MCC network simulations. Green lines indicated expected average 
weights, taking into account synapse sparsity (Inh.→Exc. weights are more probable, since p!→! =
p!→# = p#→# = 0.3 and p#→! = 0.55, see Chapter 3 Methods). (b) Raster plot (top), and identical raster 
plot with colored HMM state periods (bottom) of a MCC simulation lasting 50s. Thin white horizontal 
lines delimit subpopulations of each HMM state (from bottom to top, states 1 to 4 are the green, orange, 
red, and purple states respectively). Black horizontal lines separate state periods. Large white diagonal 
lines within state periods indicate strong correlations between neural identity and timing of spikes within 
the subpopulation of the current HMM state period (only 𝑝 < 0.05 are shown). (c) Synaptic weight matrix 
describing how the synaptic weights of a synaptic chain would connect excitatory pre-synaptic and post-
synaptic neurons, when neurons are ordered according to their activation time in the resulting sequence. 
Red diagonal line is drawn across synapses of neurons onto themselves (i.e. autapses). Synaptic matrix 
taken from an example network simulation in the Chapter 5 article. (d) Average value of synaptic matrix 
diagonals, for diagonals progressively further away from the middle diagonal. Shown are mean +/- 95% 
confidence intervals of the standard error of the mean over 100 MCC network simulations. Purple curve 
(Inh.→Exc.) is farther from 0 than the blue curve (Inh.→Inh.) for the same reasons as in (a). (e) Cosine 
similarity between network activity vectors at different timepoints. Neural frequency was estimated 
through 100ms bins of spike data. 
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Figure 3. Sequential peregrination of network states within two macroscopic meta-states. (a) 
Shannon entropy of the probability of N-state sequences (during the 600s of the MCC simulation shown 
in Fig. 2b,d and Fig. 3b), compared to that of purely Markovian sequences of N-states (where N-state 
sequences are derived from 2-state sequences, a.k.a. the HMM transition matrix). Other MCC 
simulations exhibited similar results (not shown). (b) (Left) Same as Fig. 2d, but with a superposed 
coloring scheme in the bottom right triangle reflecting macroscopic attractors. In this second coloring 
scheme, the 1st macroscopic (orange) meta-state is constituted of the green and orange HMM states 
(from Fig. 2b bottom), and the 2nd macroscopic meta-state (cyan) of the red and purple HMM states 
(from Fig. 2b bottom). The intersections between meta-states is colored in black. (Right) Network 
activity during 200s colored as above within a reduced dimensionality space estimated via PCA (principal 
component analysis) of neural frequency (estimated as the convolution of spikes with a Gaussian 
temporal window where 𝜎 = 100	𝑚𝑠) across 600s. 
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Chapter 5. Mechanistic origin of robust neural 
trajectory replay within synaptic noise 

5.1. Summary 
In the previous chapters, strong and slow inhibitory GABA-B currents induced long-lasting labile 
network states with neural activity sequences within them. However, these network states and 
sequences originate from the synaptic matrix’s random structure amplified by slow GABA-B 
synaptic currents, and are thus not learned nor related to external stimuli in the models. In 
contrast, neural trajectories, i.e. sequences of transient sparse neural activity, prominently 
observed for working memory and navigation in rodent PFC and hippocampus (HP) respectively, 
propagate during behavior and are intrinsically generated during subsequent sleep and awake 
immobility without external stimuli. This hints at the existence of underlying synaptic chains 
(pathways) learned through spike-timing dependent plasticity (STDP), being subsequently 
triggered through an internal or external trigger. However, the asynchronous irregular (AI) and 
even chaotic activity regime of awake cortex can result in incessant spontaneous replays and 
destabilized sequence propagation when triggering synaptic chains, hindering behavioral 
performance. Conversely, pack propagation may perturb global AI network activity, e.g. 
prohibiting other concurrent network computations and trajectory replays, hindering other 
behaviors. What biophysical mechanisms allow sequences to be reliably evoked when necessary 
(controllability), and steadily propagate (stability), without significantly altering network activity 
(independence), within potentially jeopardizing chaotic synaptic noise? 

We modeled a biophysically constrained recurrent network of conductance-based Integrate-
and-Fire neurons, whose balanced excitatory and inhibitory currents led to AI chaotic dynamics. 
Presentation of a trajectory stimulus led to the learning of synaptic chains through STDP and 
synaptic scaling, inducing replays after a triggering stimulus or spontaneously (due to AI 
dynamics) with varying degrees of propagation stability, as mentioned above. Spiking was 
driven by inhibitory GABA-A current fluctuations outside of trajectory replay, and strong 
excitatory NMDA current average within trajectory replay. This allowed us to predict that an 
excitatory frequency threshold separated both activity regimes in a reduced model, and model 
transitions between them as bistable excitatory frequency dynamics with added random noise. 

Armed with this knowledge, we identified three biophysical mechanisms which can increase 
trajectory replay controllability and stability: 1) slow inhibitory currents, 2) combining tonic 
frequency-independent inhibition with stronger recurrent excitatory functional connectivity, 
and 3) spike-mediated CAN and AHP ionic currents promoting intrinsic, transient (i.e. weaker 
than conditional) bistability. We found that, while increased controllability and stability 
generally decreased independence, CAN and AHP preserved trajectory independence, intrinsic 
transient bistability alleviating constraints on synapse-mediated pack propagation. Reliable 
replay with the aforementioned mechanisms was robust to variation of model parameters, and 
modulating the STDP temporal window and trajectory stimulus allowed reliable replay of many 
different attractor types (i.e. Hebbian assemblies, synfire chains, Hebbian phase sequences, ring 
attractors, as well as possible uni-/bi-directional propagation), reinforcing the genericity of the 
model and its mechanisms across cerebral structures and species. 
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Chapter 6. “Online” STDP learning and replay of 
neural trajectories in synaptic noise 

6.1. Summary 
The previous chapter evaluated the conditions under which controllable, stable and 
independent trajectory replay can emerge within AI chaotic awake cortical activity. However, 
trajectory learning and replay phases were separated, with learning occurring “offline” 
beforehand via phenomenological STDP and network simulations of trajectory replay studied 
afterwards without synaptic plasticity, even though noisy activity affects both trajectory replay 
and learning. Indeed, activity-dependent synaptic plasticity with noisy activity can add erratic 
synaptic modifications within and outside the synaptic engram during trajectory presentation, 
as well as gradually erase the learned synaptic engram through non-specific plasticity. 
Conversely, trajectory stimuli and replay activity can disrupt the stationary AI regime via 
runaway activity-plasticity interactions. Even without synaptic engrams, the complexity of AI 
dynamics undergoing STDP might drastically decrease from chaos to limit cycle (e.g. saturation) 
or even fixed points (e.g. silence). 

We addressed these issues in a PFC neural network model capable of stable and controllable 
replays (building upon the previous chapter), and studied trajectory learning, replay, and 
memory maintenance, with calcium-based “online” STDP learning and instantaneous scaling of 
excitatory synapses occurring within the AI regime of awake cortex. We found that calcium-
based STDP preserved AI dynamics due to the faint activation of kinase/phosphatase cycles at 
near-basal synaptic calcium during rest stationary activity. Massive calcium inputs during 
trajectory learning stimulus led to rapid learning of the synaptic chain (pathway). The existence 
of a dynamic engram didn’t affect AI dynamics during rest activity, and stimulating the starting 
neurons allowed successful trajectory replay. 

Weak non-specific plasticity induced by low-frequency noisy activity led to slow forgetting of 
the dynamic engram (~2h) and faster forgetting of trajectory replay (~15min). To compensate 
engram erasure, repeating trajectory replays led to positive activity-plasticity feedback loops, 
resulting in paroxysmal activity and catastrophic forgetting. Slowing down plasticity in 
response, combined with multiple learning stimuli, led to proportionally slower engram erasure 
and less likely paroxysmal activity. Trajectory replay was consequently maintained ~3x longer 
than expected, since repeating learning stimuli simultaneously replayed the trajectory, 
recruiting more neurons and further stabilizing the engram. As such, slower plasticity allowed a 
greater (~3x) physiological range between stable and paroxysmal replay. 

Furthermore, the model offered answers concerning the underpinnings of regular vs. fast 
timescale navigational trajectory replays, modeled as putative rapid reversible dopaminergic 
neuromodulation of NMDA opening dynamics. Similarly, it offered a framework for 
simultaneous dynamic and stable coding, where individual neurons displayed relay race 
dynamic coding (~200ms) while average population frequency displayed decaying persistent 
coding (~1s). Finally, the model accounted for part-based learning in PFC and chunking of HP 
navigational trajectories, as trajectories could be successfully replayed even when presented as 
disjointed (slightly overlapping) fragments in any arbitrary order. 
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I developed the biophysical neural network model and STDP rule, supervised Julie Victor’s 
master thesis work, converting certain figures to article format, and produced other results and 
figures (figure 1, AI nature of activity across time, chunking, regular/fast replay, dynamic / 
persistent coding, multiple replays with slower plasticity, time constant analysis), and entirely 
reviewed and finalized all texts. 
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Chapter 7. Dopamine builds and reveals reward-
associated attractors 

7.1. Summary 
The previous chapter described the learning of presented stimulus sequences within synaptic 

noise and subsequent replay by an external triggering cue. However, it does not account for 
sequence learning toward a rewarding goal, rather solely replicating presented external stimulus 
sequences, even though sequences are commonly observed within the context of reward-
assigning tasks. Furthermore, they do not consider how motivated intrinsically-generated 
decisions are taken, in the absence of external triggering cues. Dopamine (DA) neuromodulation 
is key to both answers, and no theory currently accounts for both of its effects on learning and 
motivation. The machine learning theory of reinforcement learning interprets phasic DA as a 
reward teaching signal for learning the values of reward-inducing actions, but doesn’t explain 
DA’s online motivational effect during behavior, with phasic release at the initiation of self-
paced movements. The neuroscientific literature suggests for motivation either a directional 
effect, where stimulus-driven DA increases the salience and directs behavior toward the 
currently processed cue, or an activational effect, where DA increases the probability or vigor of 
all motor actions. While the directional account doesn’t explain external cue-independent 
internally-generated behaviors, the activational account doesn’t explain why DA specifically 
impacts non-stereotyped effortful behavior toward a goal far away in physical or task space. 

As such, we proposed a double effect for DA, tested both within a recurrent neural network 
emulating frontal decision-making and through DA electrode stimulation and optogenetics in 
behaving mice. In the model, DA modulated online synaptic STDP, inducing the emergence of 
Hebbian assemblies oriented toward the goal within neurons encoding a repeatedly rewarded 
spatial location. This STDP learning rule (based on the previous chapter’s) was supplemented 
with decaying early LTP/LTD synaptic eligibility traces, which were transformed into synaptic 
changes through DA impulse at rewarded locations. This assembly attracted network dynamics 
within its basin of attraction, whereas convergence of network activity from outside the basin 
was solely driven by noise or an external cue stimulus. Hence, internally-generated motivational 
DA impulse also multiplicatively gated synaptic NMDA excitability, inducing stronger synaptic 
reverberation and neural activity within the attractor. This attracted far-away resting-state 
network activity within behavioral timescales by effectively widening the basin of attraction of 
the goal-encoding assembly. 

This double effect was tested experimentally, with DA-induced learning through medial 
forebrain bundle (MFB) electrode rewarding stimulations at the goal location, and DA-induced 
motivation through VTA photostimulation at random times in far-away locations. After mice 
learned the rewarding goal through uncued MFB electrode stimulation (discarding directional 
accounts), VTA photostimulation decreased the delay to reward and increased animal speed, as 
predicted. The mice also converged straight to the goal, showcasing the specific (vs. 
activational) effect of DA on behavior. This was confirmed through VTA photostimulation 
without MFB learning, which showed the delay to center or global speed didn’t change, 
discrediting the global energizing of undirected actions predicted by the activational account. 
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Our experimentally-tested theory thus proposes motivational effects of DA as the revealing of 
an (otherwise covert) attractor previously learned by the reinforcing effects of DA. 

7.1.1. Contributions 
I developed the biophysical neural network model and calcium-based kinase-phosphatase  
couples-mediated eligibility traces and dopamine-based STDP rule, produced all model-related 
results as well as main and supplementary figures, and reviewed all text. 
 

7.2. Article 
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Chapter 8. Discussion 
This thesis has demonstrated how conditionally bistable intrinsic currents, slow or tonic 
inhibition and slow excitation increase the reliability of stable and dynamic attractors (or 
mixtures of both) at the neuronal and network level in frontal circuits, in the context of chaotic 
noise that characterizes awake cortical dynamics. These attractors emerge from non-learned 
random synaptic connectivity matrices, inhibitory anti-Hebbian assemblies and anti-synaptic 
chains (pathways), or excitatory Hebbian assemblies and synaptic chains learned through 
detailed biophysical models of  calcium-mediated and dopaminergic-gated STDP. 
 

8.1. Mechanisms promoting the emergence of 
reliable attractors 

8.1.1. Macroscopic gradients of interneuron 
proportions 

Based upon experimental observations of an increasing gradient of dendritic spines numbers on 
pyramidal neurons (Elston, 2007; Wang, 2020) and slower NMDA currents (Wang, 2020), 
previous research has modeled longer neuronal timescales within the cortical hierarchy as 
stronger and slower excitation (Chaudhuri et al., 2015), even though proportionally stronger 
inhibitory currents are required to balance the effects of excitation positive feedback loops (i.e. 
extinction or saturation of activity) and reinforce physiological bistability (Joglekar et al., 2018). 
Accordingly, they do not account for the macroscopic gradient of interneuron proportions (i.e. 
more SST+/CB+ and VIP+/CR+ interneurons in frontal areas; Torres-Gomez et al., 2020; Wang, 
2020), nor the stronger and slower inhibitory currents in MCC (vs. LPFC lower in the cortical 
hierarchy, Medalla et al., 2017). Chapter 3 and 4 give meaning to these observations, by 
proposing that long neuronal timescales or bursting neural activity, peregrination between 
stable discrete states, and even neural sequences – which are all essential for the operation of 
executive functions in frontal circuits – emerge through inhibitory intrinsic (AHP) and strong 
slow synaptic (GABA-B) currents, the latter amplifying the effect of synaptic heterogeneity on 
global network activity. Such amplification could notably implement the temporal integration 
of reward-action outcome history at multiple timescales, as well as evaluation of and switches 
between behavioral strategies, both functions associated with the MCC. 

Excitatory- or inhibitory-based gradient alternatives are not exclusive, as they concern 
distinct synapses (𝐸𝑥𝑐.→ 𝐸𝑥𝑐. vs. 𝐼𝑛ℎ.→ 𝐸𝑥𝑐./𝐼𝑛ℎ.), the combination of both allowing 
maximum expression of network dynamics and storage capacity (Mongillo et al., 2018). These 
hypotheses seem actually rather complementary, as strong inhibition may gate multimodal 
integration of diverse information provided through excitatory inputs (proposed in Chapter 4). 
Indeed, VIP+/CR+ interneurons are known to inhibit specific SST+/CB+ neurons, which 
themselves selectively inhibit pyramidal dendrites, allowing flexible pathway gating of 
excitatory inputs through disinhibitory motifs (Wang and Yang, 2018). Furthermore, activation 
of VIP cells in dorsomedial frontal cortex has been shown to enhance working memory retention 
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and selectivity of pyramidal cell activity to specific stimuli (Kamigaki and Dan, 2017). This tells 
us that disinhibition is crucial in separating pyramidal sustained delay activity to different 
stimuli, and more generally that inhibitory to inhibitory connectivity contributes to 
disentangling activity of assemblies. 

Nonetheless, the aforementioned macroscopic gradients do not specify the proportions of 
neurogliaform (NGF) cells (5HT3aR+ but VIP-, Rudy et al., 2011), which connect to different types 
of interneurons and are an important locus of GABA-Bergic synaptic transmission in mouse 
primary somatosensory cortex (S1) (Rudy et al., 2011). Furthermore, the MCC model in Chapter 
3 assumes all interneurons have strong GABA-B synaptic transmission, whereas NGF cells 
represent 15% of neurons in mouse S1 (Rudy et al., 2011). As such, further modeling work is 
required to confirm whether small proportions of neurons projecting strong GABA-B currents 
can similarly result in long timescales, network states and neuronal sequences. Injecting a 
GABA-B antagonist during tasks requiring temporal integration of reward outcomes over long 
periods of time while recording MCC neural activity would also help confirm the role of GABA-B 
currents in generating long neuronal autocorrelogram timescales. 
 

8.1.2. Inhibitory currents, assemblies and sequences 
We were surprised to discover in Chapter 4’s additional results indicating that slow GABA-B 
inhibition amplified the effect of synaptic heterogeneity on network activity such that we could 
backtrack unprecedented synaptic architectures in the cortex (inhibitory anti-assemblies and 
synaptic chains; but see Ponzi and Wickens, 2010, in a very different anatomical (striatum) and 
functional context), from their resulting network dynamics (persistent activity and sequence 
propagation, respectively) in randomly organized synaptic matrices. To our knowledge, such a 
level of organizational complexity of network dynamics is without equivalent, with network 
collective activity peregrinating according to three nested levels of dynamical organization : 1) 
meta-states combining states, 2) elementary states themselves, and 3) persistent or sequential 
spatiotemporal spiking patterns within states. Remarkably, this highly structured dynamics 
emerged without any form of artificial or realistic plasticity rule, whether at the intrinsic or 
synaptic level. 
 Retrospectively, such a powerful role of GABA-B makes sense, since the lower number 
of inhibitory neurons and projecting synapses result in more pronounced effects of interneuron 
activity on network dynamics (comparatively to 4x more numerous and thus diffuse effect of 
excitatory neurons and synapses on network activity). This hints at the idea that the less 
investigated and theoretically described inhibitory synaptic plasticity, beyond simply a 
balancing role (Vogels et al., 2013; Froemke, 2015; Hennequin et al., 2017), might underpin 
network attractor behavior. 

Inhibitory currents can also promote reliable attractors emerging through excitatory 
synaptic engrams. Indeed, Chapter 5 demonstrates that tonic increase of inhibitory frequency 
or slower inhibitory currents onto excitatory neurons (when paired with stronger excitatory 
connectivity) increases the stability and controllability (i.e. the capacity to replay sequences only 
after an initial trigger) of learned excitatory sequences, thus representing biophysical 
mechanisms that increase reliable attractor emergence. The identification of these mechanisms 
comes from a theoretical understanding of the two activity regimes defining pack propagation 
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and resting-state activity, namely strong excitatory NMDA average-driven spiking and 
disinhibitory GABA-A current fluctuations-driven spiking respectively. Theoretically, this can be 
simply understood as bistable frequency dynamics, where excitatory frequency amplifies into 
pack propagation above a frequency threshold and decreases until it reaches resting-state 
activity below the threshold. In conjunction with STDP modulation and discrete or static 
presentation stimuli, these mechanisms allow reliable emergence of many different types of 
attractors, be they static/dynamic, discrete/continuous and uni-bidirectional (e.g. Hebbian 
assembly, synfire chain, Hebbian phase sequence, ring attractors). As such, inhibitory currents 
represent a generic mechanism promoting reliable emergence of a wide spectrum of attractor 
types, potentially present across cognitive structures and functions. 

While it is tempting to conclude that the generic inhibition-based mechanisms of Chapter 5 
and slow GABA-B inhibition of Chapter 3-4 bear the same consequences, the tonic increase of 
inhibition acts to stabilize and decrease excitatory activity outside of pack propagation, whereas 
slow GABA-B inhibition precisely induces temporally-heterogeneous high frequency activity 
such as inhibitory sequences. In other words, while assembly activation or sequence propagation 
is supported by slow NMDA currents in excitatory assemblies or synaptic chains and dampened 
by tonic inhibition, assembly activation or sequence propagation results from slow GABA-B 
current disinhibition in inhibitory anti-assemblies or -synaptic chains. Both thus have similar 
effects in fine but by different means, the control of excitatory synaptic structures vs inhibitory-
based synaptic structures. As such, strong GABA-B-induced currents precisely leads to 
spontaneous sequence replay, drastically decreasing controllability of trajectory replay without 
biophysical mechanisms to dampen such uncontrolled replay. 

Accordingly, transitions between stable network states in monkey frontal areas (putatively 
GABA-B-mediated, as suggested in Chapter 3), and dynamic network states containing RS 
activity sequences in mouse mPFC (putatively NMDA-mediated) during working memory might 
be similarly inhibition-induced. Indeed, interneuron spike bursts (LFP beta-band) occur briefly 
before those of pyramidal neurons in LPFC and ACC when macaques shift from non-selective to 
selective attentional stable states during a working memory task (~10ms before, Womelsdorf et 
al., 2014). This is reminiscent of context switching between different RS neuronal sequences 
(possibly each contained within a network state) during working memory in mouse mPFC, 
promoted by mediodorsal thalamic activation of cortical inhibition (Rikhye et al., 2018). This 
suggests a common role for inhibition as inducing transitions between network states, 
potentially via GABA-B also in mouse mPFC. 
 

8.1.3. Generic role of intrinsic bistability in prefrontal 
dynamics 

Chapter 2 shows that in a layer 5 PFC pyramidal neuron model, spike-mediated CAN and CaL 
intrinsic currents promote conditional bistability (CB), i.e. where persistent activity after an 
initial cue event is conditional upon depolarizing current (or, more directly, depolarized 
membrane potential) during the delay period. This is in contrast to absolute bistability (AB), in 
which persistent activity only requires the initial cue and is strongly stereotyped (highly regular 
spiking). CB, representing a weaker form of bistability compared to AB, paradoxically allows a 
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richer dynamical repertoire, with persistent activity being stable yet sufficiently labile to support 
PFC network states transitions for elaborating adaptive working memory-related cognitive 
processes (Abeles et al., 1995; Seidemann et al., 1996; Cossart et al., 2003). 

This same weak bistability could also help temporarily stabilize sequences of neural activity, 
with stable firing being conditional on subliminal input from vanishing activities of previous 
neurons in the sequence. Indeed, Chapter 5 shows that, in addition to slow synaptic current 
dynamics (NMDA, GABA-B) and tonic inhibition, sequence propagation is stabilized through 
intrinsic currents promoting intrinsic transient bistability (i.e. intrinsic bistability induced 
transiently, during the hundreds of milliseconds in which the previous excitatory neurons of the 
sequence fire many action potentials at the next neurons). Furthermore, amongst the other 
mechanisms, CAN and AHP currents was the only mechanism allowing excitatory network 
activity to be unaffected by trajectory replay (independence), allowing parallel computations 
(e.g. multiple simultaneous trajectory replay). 

Finally, the LPFC and MCC models of Chapter 3-4 also required AHP currents, supporting 
GABA-B currents by decreasing short states (and thus increasing the duration of network 
states), and CAN currents, counterbalancing the strong GABA-B- and AHP-mediated frequency 
decrease. Such versatile functionality hints at the importance of assessing the interaction 
between intrinsic and synaptic properties for reliable emergence of attractors, alleviating the 
constraints ensuring attractor stability from depending solely on synaptic currents and engrams 
(Compte, 2006), ultimately enriching the computational capacities of neurons and networks. 
 

8.1.4. Alternative mechanisms and improvements 
Beyond inhibitory and intrinsic currents, what other mechanisms promote reliability and 
stability of static or dynamic attractors within synaptic noise? One of the shortcomings of the 
current model is the lack of description of dendritic compartments. Computations using 
dendritic compartments have been shown to allow supra-linear integration of synaptic inputs 
(Cazé et al., 2013; Tran-Van-Minh et al., 2015), amplifying EPSPs evoked by action potential 
coincidence, thus further separating the low frequency asynchronous irregular regime and high 
frequency synchronous activity induced by sequence stimulus and replay. Furthermore, 
dendritic membrane potential inflections due to backward-propagating dendritic spikes (such 
as in HP, Jarsky et al., 2005) represent a more direct biophysical substrate for STDP (instead of 
calcium, Graupner and Brunel, 2012), removing the magnesium block in NMDA receptors via 
strong depolarization and thus inducing LTP. The thesis neuronal model is iso-potential, 
potentially cutting short dendritic membrane potential and NMDA depolarization. Finally, 
recruitment of distinct dendrites performing spatial summation of synaptic inputs may allow 
further discrimination between multiple sequences or more complex population trajectories, 
potentially solving the question raised above. 

Additionally, short-term plasticity, in which synapses connecting bursting neurons undergo 
facilitation, can promote more reliable network states and sequences. Similar to before, short-
term facilitation potentiates synapses on a short timescale (hundreds of milliseconds), allowing 
supra-linear EPSP temporal summation during high frequency pre-synaptic activity. In line with 
this idea, reliable reactivation of stable representations stored within short-term plasticity 
hidden variables during dynamic neural activity has been proposed (Barak et al., 2010; Stokes et 
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al., 2013; Stokes, 2015), and observed for rat mPFC neural activity sequences (Fujisawa et al., 
2008). 
 

8.2. Learning reliable attractors 

8.2.1. Learning working memory and navigational 
sequences 

While the aforementioned mechanisms explain how attractors can be replayed in the absence 
of learning or once learned, they do not describe the conditions underlying reliable learning of 
such attractors during noisy synaptic activity. Chapter 6 describes how neural activity sequences 
are learned through STDP and replay during network AI activity, whose disordering influence 
potentially jeopardizes learning, replay and memory maintenance of trajectories (in contrast to 
Chapter 5, which used a phenomenological STDP rule “offline”, i.e. not during network AI 
activity). STDP results from non-linear spike-mediated calcium-based activation of kinase-
phosphatase couples, the non-linear activation dynamics inducing rapid learning of the 
sequence through a single stimulus presentation while guaranteeing slow synaptic chain 
forgetting (~2h) during network resting-state activity (preserving AI dynamics). Furthermore, 
the stimulus could be iteratively learned through overlapping fragmented chunks (as for 
navigational HP trajectories, Buzsáki and Moser, 2013). 

However, while the current thesis focuses on learned neuronal sequences, several lines of 
evidence point to navigational sequences pre-existing and being repurposed by behavior (Buhry 
et al., 2011), with sequential activity during SWS or awake rest occurring before animals are 
exposed to novel environments or representing trajectories never experienced by the animal. It 
is possible that the former sequences subserve other representations than navigational 
trajectories but co-occur with them, while the latter sequences might correspond to trajectories 
learned outside of the experimental setup, questioning the exact nature of navigational 
trajectory learning. Interestingly, the sequences arising within states (additional results of 
Chapter 4) could form the neural basis of such pre-existing trajectories (as a form of “dynamical 
whiteboard”) that can be repurposed by learning. Furthermore, while navigational sequences 
are characterized by straightforward sequential stimuli during behavioral runs, i.e. presentation-
based learning which we extensively model in Chapter 5 and 6, working memory and cortical 
slice sequences might arise simply from repetition of the initial trigger, where the synaptic chain 
beyond the initial neurons is iteratively built through repeated stimulation of initial neurons, i.e. 
trigger-based learning, questioning the exact nature of working memory sequence learning. 

It is less clear how STDP rules during AI network activity could induce synaptic chains based 
upon multiple repetitions of an initial trigger stimulus. Models that have achieved trigger-based 
learning lack AI activity (Liu and Buonomano, 2009). In contrast, within the calcium-based STDP 
concomitant to AI activity of Chapter 6, such repetition of high frequency stimuli can simply lead 
to paroxysmal activity. However, even with slower plasticity, the unidirectional plasticity rule 
would need to associate pre-synaptic high-frequency with post-synaptic low-frequency neurons 
(instead of high-frequency neurons together only). Each trigger repetition of the initial neurons 
would induce potentiation in a large proportion of outgoing synapses, affecting different 
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proportions of synapses according to which post-synaptic neurons happen to fire. Competition 
of outgoing synapses, e.g. via synaptic scaling of outgoing synapses, would allow progressive 
selection of specific neurons as the next steps of the synaptic chain (Liu and Buonomano, 2009; 
Fiete et al., 2010), although the biological realism of such meta-plasticity remains to be 
determined. The chosen parameters for the calcium-based learning rule of Chapter 6 do not 
allow such learning, due to its strongly non-linear hetero-associative nature, guaranteeing 
strong potentiation of synapses only between neurons strongly co-active. Going further, such a 
learning rule should instead solely potentiate synapses between a neuron with high and another 
with low frequency – which is non-sensical since NMDA-mediated LTP detects coincident strong 
firing –, or include stronger multiplicative LTD, in order to avoid paroxysmal activity. Finally, the 
resulting synaptic chain might be much more complex than a sequence, potentially leading to 
tree-like synaptic structures, i.e. multiple progressively diverging synaptic chains, each activated 
in turn due to inhibitory retroaction-based competition between sequences. 
 

8.2.2. Dopaminergic neuromodulation of sequences 
While it is unclear how STDP could promote sequence learning based on a repeated trigger, 
Chapter 6 does not describe how sequence are learned toward a rewarding goal, even though 
these navigational and working memory sequences are precisely observed within the context of 
rewarding tasks. Furthermore, they cannot explain how internally-generated decisions are 
taken in the absence of external triggering cues, even though animals can freely navigate. 
Chapter 7 proposes an answer to these questions by assessing the interaction between two 
biophysical effects of DA, 1) gating STDP eligibility traces such that a Hebbian assembly oriented 
toward the repeatedly-rewarded goal emerges, and 2) gating synaptic NMDA excitability 
(conductance strength), inducing strong synaptic reverberation and neural activity within the 
assembly of neurons encoding the rewarded goal location, the mouse thus converging toward 
the reward. 

The current thesis further unravels a third biophysical role to dopaminergic 
neuromodulation, that of modulating synaptic excitability by slowing NMDA channel closing 
dynamics (Chen et al., 2004; Onn and Wang, 2005; Onn et al., 2006). Since excitatory sequences 
are mostly mediated by NMDA currents, such neuromodulation has been shown in Chapter 6 to 
underpin the fast and regular timescale navigational trajectory replays (Skaggs and 
McNaughton, 1996). 

 

8.2.3. States and sequences in the larger context of 
complex temporal computations 

It has been proposed that working memory delay activity translates into transient sequential 
activity in rodent mPFC, whereas it translates into predominantly persistent activity in monkey 
LPFC, due to the expansion of prefrontal microcircuits and their interconnectedness in primates 
(Constantinidis et al., 2018). While the present thesis separately models these two as dynamic 
and stable attractors respectively, both are in reality simultaneously observed in animal cortices. 
Indeed, observations of dynamic coding subserved by transient or sequential neuronal activity 
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profiles are becoming more common in monkey prefrontal cortex, as previously mentioned 
(Rainer and Miller, 2002; Brody et al., 2003; Shafi et al., 2007; Meyers et al., 2008, 2008; Barak et 
al., 2010; Machens et al., 2010; Stokes et al., 2013; Sreenivasan et al., 2014; Stokes and Spaak, 
2016; Murray et al., 2017; Parthasarathy et al., 2017; Spaak et al., 2017; Cavanagh et al., 2018; 
Lundqvist et al., 2018a; Wasmuht et al., 2018). Conversely, persistent RS activity profiles are 
observed alongside transient RS activity profiles in equal proportions in rodent mPFC (Rikhye et 
al., 2018), blurring the distinction between persistent and dynamic activity. This further 
reinforces the plausibility of mechanisms promoting reliability of both types of attractors (e.g. 
aforementioned CAN and AHP intrinsic bistability). 

More generally, the recent advent of massive multi-unit recording techniques coupled with 
the development of dimensionality reduction techniques (Churchland et al., 2007; Cunningham 
and Yu, 2014) allows the reinterpretation of complex single neuron coding schemes within 
population activity repeatable trajectory single-trial coding schemes, such as for motor cortex 
during reaching (Churchland et al., 2012), olfactory cortex during olfaction (Mazor and Laurent, 
2005; Bathellier et al., 2008), and prefrontal cortex during working memory (Lundqvist et al., 
2018a). One might be tempted to interpret these as sequences of neural activity. However, 
although repeated neural activity sequences do lead to repeated trajectories in the population 
activity space, the inverse is not necessarily true, i.e. that repeated trajectories of population 
activity necessarily translate to sequences of neural activity. Indeed, population trajectories in 
motor and olfactory cortex can potentially emerge from any temporally heterogeneous neural 
activity profiles repeated across trials, not just transient sequential activity. In summary, all 
neuronal sequences describe population trajectories, but not all population trajectories 
correspond to neuronal sequences. Only the observation of raster plots of many simultaneously 
recorded neurons may validate such conclusions, as is the case for rodent navigational and 
working memory neural activity sequences. 

In this context, it remains an open question whether the thesis model, or STDP-based 
learning within asynchronous irregular (AI) activity in general, can generalize to population 
activity trajectories with more complex neuronal temporal activity profiles. Indeed, models have 
shown learning of multiple population trajectories within temporally complex activity (Laje and 
Buonomano, 2013), but via non-STDP based learning rules, or have shown learning of multiple 
sequences (Liu and Buonomano, 2009) but without AI network activity. A starting point for 
learning multiple sequences through STDP within AI activity would be learning several (e.g. two) 
transient bumps of neuronal activity (instead of only one) at different times within a sequence 
replay. In such a case, synapses from two different sets of neurons (each representing a different 
time in the sequence) will strongly project onto a given neuron. If both sets of neurons do not 
strongly overlap, the given neuron will be able to differentiate between both sequence contexts, 
leading to sequential replay where neurons strongly fire twice. This question is closely linked to 
that of the maximum number of separate sequences a given network can learn and successfully 
replay, in which some models have shown learning of such double sequences, although they lack 
AI network activity (Liu and Buonomano, 2009). 

For increasing heterogeneity of neural frequency temporal profiles (beyond simply two or 
even N bumps), phenomenological frequency-based or biophysical calcium-based STDP might 
not suffice. Indeed, temporal relationships between neurons would change across time, leading 
to learning and unlearning of specific temporal relationships. Artificial learning rules, with 
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synapses updated according to the distance between stimulus-induced and replay-induced 
frequency temporal profiles, have been shown to allow robust learning of population trajectories 
(Laje and Buonomano, 2013). 

Theoretically, sequences of transient neuronal activity have the disadvantage of requiring 
many more neurons to encode elapsed time (Goldman, 2009) compared to orthogonal 
subspaces of stable and dynamic coding (Machens et al., 2010; Murray et al., 2017). Indeed, 
sequences require more neurons to encode greater elapsed times, whereas no additional 
neurons are required within dynamic subspaces as it would be encoded through time-varying 
activity (i.e. changing neural frequency). However, recent evidence suggests that representation 
of time elapsed in neural sequences is scalable in rat dorsal striatum, adapting to the required 
time duration (Mello et al., 2015), the mechanisms of which are yet to be determined (as well as 
resolved with contradicting evidence of non-scalable rat dorsal striatum sequences, 
Akhlaghpour et al., 2016).  
 

8.3. Multi-areal collaboration 
The model explored in the thesis is a local recurrent neural network without distance-dependent 
connectivity between pyramidal cells and interneurons, potentially corresponding to a cortical 
column. Indeed, it has been shown that temporal sequences of neuronal activity are 
anatomically intermixed at the ~200µm scale in mouse PPC (Harvey et al., 2012), i.e. an order of 
distance compatible with within columnar organization. Furthermore, subnetworks in V1 layer 
2/3 share interneurons (Yoshimura et al., 2005; Itskov et al., 2011), such that mechanisms for 
reliable attractor replay based on local inhibition (although effective) may not be appropriate 
(e.g. Hebbian phase sequence with multiple distinct excitatory and inhibitory neuronal 
assemblies, Chenkov et al., 2017). However, it is not always clear at what spatial scale sequences 
and assemblies are defined, and whether they truly do spatially extend beyond the confines of 
the recording technique (e.g. ~1-2mm of multi-electrode array). 

Such local networks are inscribed within larger interconnected brain areas, as can be 
observed during navigational PFC-thalamic nucleus reuniens (NR)-HP and working memory 
PFC-mediodorsal thalamus (MD) sequences, and proposed in the cortical hierarchy distributed 
working memory theory (Mejias and Wang, 2020). It is not always clear whether synaptic chains 
reflecting the same dynamic stimulus exist within each area, whether the synaptic chain is 
distributed across areas, or whether the synaptic chain exists in only one area and neuronal 
activity sequences are projected onto other areas. The trace-reactivation theory of memory 
consolidation stipulates that hippocampal one-shot learned episodic memories are replayed 
during SWR and gradually consolidated within PFC (Peyrache et al., 2009). The coordination of 
sequence replays in HP and PFC generally linked to SWR events suggests synaptic chain 
formation in both structures, whereas the proposed relay-function of NR thalamus could signify 
an absence of synaptic chains within NR thalamus (Ito et al., 2015), although NR sequences 
preceding PFC sequences could signify the opposite (Angulo-Garcia et al., 2018). 

Furthermore, proposed models of multi-areal emergence of timescales within the cortical 
hierarchy show how time-varying external inputs due to long-range projections originating from 
other cortical areas are necessary to correctly capture local area timescales (Chaudhuri et al., 
2015). In the present model, external feedforward input does not vary across time. This 
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assumption arises from its historical use guaranteeing AI dynamics (Brunel, 2000), as well as the 
desire to capture how local (and not external) network synaptic mechanisms allow robust states 
and sequences within chaotic dynamics and synaptic noise (itself arising from local synapses). 
However, future work could investigate how time-varying or rhythmic external feedforward 
input, e.g. originating from hippocampal theta (Siapas et al., 2005; Benchenane et al., 2011; 
Zielinski et al., 2019) and olfactory delta (Moberly et al., 2018) rhythmic activity, modulates state 
transitions and sequence propagation. Probably, strong rhythmic feedforward input would 
disrupt stable sequence propagation at timescales above the rhythm’s duration (as previously 
mentioned), as well as induce repeated sequences of state transitions, in a similar vein to cortical 
oscillation gating working memory persistent activity (Dipoppa and Gutkin, 2013). The effect of 
time-varying inputs would depend on their neuronal targets and specific temporal profile, where 
ramping-up and -down inputs onto pyramidal cells would lead to more and less frequent 
sequence replay respectively, as well as erasure of network states driven by inhibition. 
 

8.4. Biophysical models 
Throughout the thesis, biophysically detailed models, with excitatory and inhibitory populations 
within recurrent synaptic matrices, synaptic and intrinsic current dynamics, and biophysical 
learning rules are prioritized instead of artificial or phenomenological models. Indeed, most of 
the answers found require comprehensive descriptions of intrinsic and synaptic current 
dynamics, particularly the slow NMDA and GABA-B current dynamics inducing bursts of 
neuronal activity and long-lasting collective dynamics. Furthermore, the origin of synaptic noise 
itself, i.e. the high conductance state (Destexhe et al., 2003), is best described by detailed 
biophysical descriptions of membrane potential, tight average balance of excitatory and 
inhibitory currents, and current fluctuations. Simulating Poisson spike trains or noisy injected 
currents to emulate synaptic noise does not allow to fully analyze interactions between reliable 
attractors and synaptic noise. Indeed, both arise from similar mechanisms in the brain, i.e. 
synaptic currents, resulting in complex interactions that cannot be modeled by separate 
formalisms. In a similar fashion, assessing the physiological basis of plastic processes allowing 
functional dynamics and representations in frontal cortices obviously requires to consider 
biologically validated intrinsic and synaptic rules, rather than engineer-based artificial rules 
targeted at efficiency rather than plausibility. 

While most of the model’s biophysical properties are derived from previous experimental 
literature, some aspects have been informed by active dialogue with experimentalists, notably 
Jérémie Naudé’s team in Paris and Emmanuel Procyk’s team in Lyon. These exchanges have 
been extremely productive, the former collaboration contributing, e.g. to correctly describing 
GABA-B dynamics, which in turn allowed for the discovery of GABA-B currents being relevant in 
capturing autocorrelogram timescales in the latter collaboration. 

In this context, most of the conclusions are backed up by systematic parametric 
explorations, checking whether articles’ conclusions hold when strongly varying model 
parameters. This is important because biological systems present large variability at different 
levels, and phenomena are observed across cortical structures with varying properties, such that 
parametric analyses reinforce the plausibility of the models’ results. Nonetheless, testing 
whether the results hold when removing different elemental model bricks would strengthen 
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their plausibility across structures and contexts, and allow further identification of its minimal 
set of necessary and sufficient constituents. Moreover, the currents described and which are 
required in accounting for the studied network behaviors are ubiquitous across neurons (NMDA, 
calcium-activated potassium channels inducing AHP and non-specific cationic channels or CAN) 
and neocortices (GABA-B, Tamás et al., 2003; Oláh et al., 2007), thus representing parsimonious 
model choices which reinforce the genericity of the resulting network behaviors across cortical 
structures. 

In conclusion, we have studied the mechanistic underpinnings of reliable and emerging 
static and dynamic attractorial collective forms of activity within noisy frontal networks in the 
awaken state, be it at the levels of 1) individual neurons (intrinsic CAN/AHP conditional 
bistability), 2) inhibitory networks (GABA-B-mediated sequential peregrination between 
discrete states, composed of anti-assembly-based persistent activity and anti-synaptic chain-
based neural activity sequences) or 3) excitatory networks (NMDA-mediated sequences, 
controlled and stabilized through slow or tonic inhibition and intrinsic CAN/AHP transient 
bistability). We have also described how these attractors are learned (through 
phenomenological and calcium-mediated STDP, or dopaminergic-gated eligibility-trace-based 
STDP toward a reward) or not (GABA-B amplification of synaptic random heterogeneity). 
Finally, we have described their successful recall (spontaneous or cue-based sequences and 
states, as well as intrinsic dopamine-induced motivated recall). 

As shown in this thesis, a description of neuronal and network dynamics through the 
attractorial grammar of dynamical systems allows us to more easily understand the role of low-
level biophysical determinants, e.g. opening dynamics of specific channels, in the context of 
functional properties of cortical networks, and by extension, of entire cortical areal networks 
determining animal behaviors. This offers the neuroscientific community a better constrained 
methodological paradigm in order to test hypotheses for the effect of local biophysical 
determinants on behavior through biologically realistic models (e.g. GABA-A and autism, 
Coghlan et al., 2012). 
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