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Recurrent neuronal networks exhibit an array of population and neuronal dynamics, from stable network states and long timescales subserved by persistent or bursts of neuronal activity, to dynamic trajectories of population activity through underlying heterogeneous or transient sequential neuronal activity. It is assumed that the dynamical diversity that population and neuronal activity exhibit is necessary for successful execution of the large assortment of complex and flexible cognitive operations performed within biological recurrent neuronal networks. One way to mathematically describe these dynamics is through the language of dynamical systems as attractors, where population or neuronal dynamics converge to -or reside at -stationary (e.g. point, line, ring or plane) attractors, follow regular time-varying dynamics (such as limit cycle or quasi-periodic attractors), or peregrinate along chaotic attractors (irregular dynamics). This description is relevant, since attractors have the desirable property of describing reproducible activity patterns which are robust to thermal intrinsic and synaptic noise, as observed in cortical neuronal networks. Actually, in behaving animals, complex electrophysiological, plastic and neuromodulatory interactions generate neural dynamics that follow complex and ever changing combinations of all of these attractor archetypes.

à That being the case, what biophysical determinants within biological recurrent neuronal networks allow the emergence of stable and dynamic attractors?

The study of such determinants requires a biophysically-detailed model, in which the temporal properties of synaptic and intrinsic currents, whose neurons are embedded within synaptic architectures learned via plasticity, result in network and neuronal attractor dynamics.

Stable network dynamics in frontal circuits

1.1.1.

Long frontal timescales and stable population states

Several lines of evidence indicate that cortical activity displays marked patterns of stability reminiscent of stable attractors. Indeed, cortical areas are organized within an anatomical [START_REF] Felleman | Distributed hierarchical processing in the primate cerebral cortex[END_REF][START_REF] Markov | Cortical High-Density Counterstream Architectures[END_REF] and temporal [START_REF] Murray | A hierarchy of intrinsic timescales across primate cortex[END_REF] hierarchy, with increasingly longer population [START_REF] Murray | A hierarchy of intrinsic timescales across primate cortex[END_REF] and neuronal [START_REF] Wasmuht | Intrinsic neuronal dynamics predict distinct functional roles during working memory[END_REF] activity timescales from fast posterior sensory to slow anterior associative cortical areas. Longer frontal timescales allow integration of information over longer durations, subserving higher cognitive functions such as working memory and decision-making [START_REF] Cavanagh | Reconciling persistent and dynamic hypotheses of working memory coding in prefrontal cortex[END_REF][START_REF] Wasmuht | Intrinsic neuronal dynamics predict distinct functional roles during working memory[END_REF], as well as evaluation of behavioral strategies by monitoring the recent history of reward integration [START_REF] Bernacchia | A reservoir of time constants for memory traces in cortical neurons[END_REF].

In the same vein, Hidden Markov Models (HMM) analyses, which model time series data as probabilistic transitions between few static hidden states, suggest network activity switches between stable discrete states in frontal cortices. Such behavior has been observed during sustained attentional states [START_REF] Engel | Selective modulation of cortical state during spatial attention[END_REF], in relation to the encoding of animals' position [START_REF] Maboudi | Uncovering temporal structure in hippocampal output patterns[END_REF], working memory [START_REF] Gat | Statistical Modeling of Cell Assemblies Activities in Associative Cortex of Behaving Monkeys[END_REF][START_REF] Batuev | Two neuronal systems involved in short-term spatial memory in monkeys[END_REF][START_REF] Abeles | Cortical activity flips among quasi-stationary states[END_REF][START_REF] Seidemann | Simultaneously recorded single units in the frontal cortex go through sequences of discrete and stable states in monkeys performing a delayed localization task[END_REF][START_REF] Rainer | Neural Ensemble States in Perfrontal Cortex Identified Using a Hidden Markov Model with a Modified Em Algorithm[END_REF][START_REF] Camera | Cortical computations via metastable activity[END_REF], the maintenance of behavioral rules [START_REF] Durstewitz | Abrupt Transitions between Prefrontal Neural Ensemble States Accompany Behavioral Transitions during Rule Learning[END_REF] and during extended periods of deliberation preceding the formation of behavioral decisions [START_REF] Rich | Decoding subjective decisions from orbitofrontal cortex[END_REF][START_REF] Taghia | Uncovering hidden brain state dynamics that regulate performance and decision-making during cognition[END_REF].

Both of these long population timescales and discrete states emerge from neuronal activity with long timescales (i.e. stable attractors or slow dynamics), corresponding to persistent or long bursts of neuronal activity such as that underlying working memory in primate PFC, e.g. during delayed response tasks [START_REF] Funahashi | Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex[END_REF][START_REF] Goldman-Rakic | Cellular basis of working memory[END_REF][START_REF] Shafi | Variability in neuronal activity in primate cortex during working memory tasks[END_REF][START_REF] Constantinidis | Persistent Spiking Activity Underlies Working Memory[END_REF][START_REF] Leavitt | A Quadrantic Bias in Prefrontal Representation of Visual-Mnemonic Space[END_REF].

à What biophysical mechanisms allow the emergence of persistent or bursting neuronal activity underlying stable states and long timescales, i.e. stable attractors?

Synaptic reverberation within Hebbian assemblies

A proposed mechanistic explanation for the timescale hierarchy is the existence of gradients of synaptic local and long-range excitation [START_REF] Chaudhuri | A Large-Scale Circuit Mechanism for Hierarchical Dynamical Processing in the Primate Cortex[END_REF], corresponding to increasing numbers of dendritic spines on pyramidal neurons [START_REF] Elston | 4.13 -Specialization of the Neocortical Pyramidal Cell during Primate Evolution[END_REF][START_REF] Wang | Macroscopic gradients of synaptic excitation and inhibition in the neocortex[END_REF] as well as slower NMDA currents along the hierarchy [START_REF] Wang | Macroscopic gradients of synaptic excitation and inhibition in the neocortex[END_REF]. This is notable, since stronger and slower excitatory NMDA currents naturally lead to the maintenance of persistent activity when combined with synaptic learning of Hebbian neuronal assemblies [START_REF] Wang | Synaptic Basis of Cortical Persistent Activity: the Importance of NMDA Receptors to Working Memory[END_REF]. Indeed, NMDA channels induce depolarizing currents most strongly when both pre-synaptic and post-synaptic neurons are simultaneously active. In the Hebbian framework [START_REF] Hebb | The organization of behavior; a neuropsycholocigal theory[END_REF], synapses between excitatory neurons with coincident activity are potentiated, leading to the emergence of strong bidirectional connections between neurons and thus an assembly of strongly interconnected excitatory neurons. As such, high spiking frequency in a subset of the assembly induces strong excitatory currents, and thus high frequency, within the rest of the assembly. This positive feedback loop or reverberation of synaptic excitation, a.k.a. "synaptic reverberation", thus results in persistent neuronal and assembly activity [START_REF] Brunel | Effects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition[END_REF][START_REF] Wang | Synaptic reverberation underlying mnemonic persistent activity[END_REF][START_REF] Compte | Computational and in vitro studies of persistent activity: Edging towards cellular and synaptic mechanisms of working memory[END_REF]. The effect is mostly mediated by the slow decay of NMDA currents, maintaining excitation through temporal summation of excitatory post-synaptic potentials (EPSPs) in the absence of inputs, and is reinforced when NMDA currents are stronger and slower [START_REF] Compte | Synaptic Mechanisms and Network Dynamics Underlying Spatial Working Memory in a Cortical Network Model[END_REF][START_REF] Tegnér | The dynamical stability of reverberatory neural circuits[END_REF][START_REF] Ermentrout | Dynamical Consequences of Fast-Rising, Slow-Decaying Synapses in Neuronal Networks[END_REF][START_REF] Wang | NMDA Receptors Subserve Persistent Neuronal Firing during Working Memory in Dorsolateral Prefrontal Cortex[END_REF]. Assembly activity is then defined as one of 2 possible states, quiescent or high frequency, i.e. with bistable dynamics. When inscribing the bistable dynamics of each cortical area within the cortical hierarchy, this results in a multi-stable system composed of many bistable sub-systems with multiple distinct stable attractors, i.e. distributed working memory [START_REF] Mejias | Mechanisms of distributed working memory in a large-scale model of macaque neocortex[END_REF].

However, alongside the gradient of increasing pyramidal spine counts and slower NMDA, also exists a systematic gradient of changing PV+, SST+/CB+ and VIP+/CR+ interneuron proportions [START_REF] Torres-Gomez | Changes in the Proportion of Inhibitory Interneuron Types from Sensory to Executive Areas of the Primate Neocortex: Implications for the Origins of Working Memory Representations[END_REF][START_REF] Wang | Macroscopic gradients of synaptic excitation and inhibition in the neocortex[END_REF] along the hierarchy, alluding to an important functional role for inhibition [START_REF] Wang | A disinhibitory circuit motif and flexible information routing in the brain[END_REF]. Indeed, it has been observed that MCC is subject to stronger & slower inhibitory currents compared to LFPC (lower in the temporal hierarchy, [START_REF] Medalla | Strength and Diversity of Inhibitory Signaling Differentiates Primate Anterior Cingulate from Lateral Prefrontal Cortex[END_REF]. The potentially important role of inhibition is further supported by theoretical analyses, showing that strong excitatory currents need to be balanced with strong inhibitory currents in order to avoid excitatory activity saturation or silencing, which in turns counterintuitively allows more robust bistability [START_REF] Joglekar | Inter-areal Balanced Amplification Enhances Signal Propagation in a Large-Scale Circuit Model of the Primate Cortex[END_REF]. Additionally, modulating inhibitory activity and connectivity leads to greater effects upon model networks compared to modulation of their excitatory equivalent [START_REF] Mongillo | Inhibitory connectivity defines the realm of excitatory plasticity[END_REF], since inhibitory neurons and connections are less numerous.

à This being the case, what role do inhibitory synaptic currents hold in establishing long population timescales and states through bursting and persistent activity?

Biophysical modeling at the level of currents, which the aforementioned inter-areal excitatory gradient models [START_REF] Chaudhuri | A Large-Scale Circuit Mechanism for Hierarchical Dynamical Processing in the Primate Cortex[END_REF] lack, would allow to disambiguate contributions of faster or slower excitatory and inhibitory currents.

Bistability through intrinsic currents

In addition to synaptic reverberation, intrinsic currents can lead to the emergence of persistent or bursts of neuronal activity, notably in the context of working memory tasks (e.g. object [START_REF] Compte | Computational and in vitro studies of persistent activity: Edging towards cellular and synaptic mechanisms of working memory[END_REF], spatial [START_REF] Camperi | A Model of Visuospatial Working Memory in Prefrontal Cortex: Recurrent Network and Cellular Bistability[END_REF], and parametric [START_REF] Koulakov | Model for a robust neural integrator[END_REF][START_REF] Goldman | Robust Persistent Neural Activity in a Model Integrator with Multiple Hysteretic Dendrites per Neuron[END_REF] working memory), within cortical structures [START_REF] Krnjević | The mechanism of excitation by acetylcholine in the cerebral cortex[END_REF][START_REF] Schwindt | Slow conductances in neurons from cat sensorimotor cortex in vitro and their role in slow excitability changes[END_REF][START_REF] Silva | Intrinsic Oscillations of Neocortex Generated by Layer 5 Pyramidal Neurons[END_REF][START_REF] Tahvildari | Switching between "On" and "Off" states of persistent activity in lateral entorhinal layer III neurons[END_REF][START_REF] Zhang | Metabotropic Induction of Persistent Activity in Layers II/III of Anterior Cingulate Cortex[END_REF] and PFC [START_REF] Haj-Dahmane | Calcium-Activated Cation Nonselective Current Contributes to the Fast Afterdepolarization in Rat Prefrontal Cortex Neurons[END_REF][START_REF] Dembrow | Projection-Specific Neuromodulation of Medial Prefrontal Cortex Neurons[END_REF][START_REF] Gee | Synaptic Activity Unmasks Dopamine D2 Receptor Modulation of a Specific Class of Layer V Pyramidal Neurons in Prefrontal Cortex[END_REF][START_REF] Thuault | Prefrontal Cortex HCN1 Channels Enable Intrinsic Persistent Neural Firing and Executive Memory Function[END_REF]. Intrinsic bistability originates from calcium-dependent depolarizing currents, which open due to spike-mediated calcium intake, and in turn bring about more spikes. This positive feedback loop results in a bistable system with two fixed points, one at low frequency or quiescence and the other at high frequency, allowing to maintain past information but this time in individual neurons [START_REF] Booth | A minimal, compartmental model for a dendritic origin of bistability of motoneuron firing patterns[END_REF][START_REF] Delord | An intrinsic bistable mechanism in neocortical pyramidal neurons might be involved in the generation of sustained discharge patterns related to working memory[END_REF][START_REF] Marder | Principles of rhythmic motor pattern generation[END_REF][START_REF] Delord | Bistable behaviour in a neocortical neurone model[END_REF][START_REF] Shouval | A single spiking neuron that can represent interval timing: analysis, plasticity and multi-stability[END_REF]. However, such forms of strongly stereotyped "absolute" bistability in vitro require strong levels of pharmacological manipulations (e.g. neuromodulation) and display extremely long highly regular spike trains, which are not observed in behaving animals [START_REF] Haj-Dahmane | Calcium-Activated Cation Nonselective Current Contributes to the Fast Afterdepolarization in Rat Prefrontal Cortex Neurons[END_REF][START_REF] Egorov | Graded persistent activity in entorhinal cortex neurons[END_REF][START_REF] Tahvildari | Switching between "On" and "Off" states of persistent activity in lateral entorhinal layer III neurons[END_REF][START_REF] Zhang | Metabotropic Induction of Persistent Activity in Layers II/III of Anterior Cingulate Cortex[END_REF][START_REF] Gee | Synaptic Activity Unmasks Dopamine D2 Receptor Modulation of a Specific Class of Layer V Pyramidal Neurons in Prefrontal Cortex[END_REF]. Furthermore, the rigidity of such bistability does not allow to account for the relative lability of stable attractors, e.g. transitions between stable network states [START_REF] Abeles | Cortical activity flips among quasi-stationary states[END_REF][START_REF] Seidemann | Simultaneously recorded single units in the frontal cortex go through sequences of discrete and stable states in monkeys performing a delayed localization task[END_REF][START_REF] Rainer | Neural Ensemble States in Perfrontal Cortex Identified Using a Hidden Markov Model with a Modified Em Algorithm[END_REF].

à As a result, do less stereotyped and more biophysically plausible forms of intrinsic bistability exist, and if so, what intrinsic currents are responsible of their emergence ?

Sequences of transient sparse neural activity

As mentioned before, network activity peregrinates between distinct states [START_REF] Mazzucato | Dynamics of Multistable States during Ongoing and Evoked Cortical Activity[END_REF]. Indeed, other than the previous examples, sequences of assembly activations are observed in adult rat somatosensory and visual cortex and HP during wake, SWS and REM sleep [START_REF] Almeida-Filho | An investigation of Hebbian phase sequences as assembly graphs[END_REF]. Furthermore, rapid series of state transitions are observed before network activity settles into a stable state in monkey PFC during working memory tasks after cue onset [START_REF] Abeles | Cortical activity flips among quasi-stationary states[END_REF][START_REF] Seidemann | Simultaneously recorded single units in the frontal cortex go through sequences of discrete and stable states in monkeys performing a delayed localization task[END_REF][START_REF] Stokes | Dynamic Coding for Cognitive Control in Prefrontal Cortex[END_REF], and alternating states are observed during spontaneous activity [START_REF] Kenet | Spontaneously emerging cortical representations of visual attributes[END_REF][START_REF] Mazzucato | Dynamics of Multistable States during Ongoing and Evoked Cortical Activity[END_REF], although it is not clear to which extent these network states are organized into repeating sequences [START_REF] Abeles | Cortical activity flips among quasi-stationary states[END_REF][START_REF] Seidemann | Simultaneously recorded single units in the frontal cortex go through sequences of discrete and stable states in monkeys performing a delayed localization task[END_REF][START_REF] Mazzucato | Dynamics of Multistable States during Ongoing and Evoked Cortical Activity[END_REF][START_REF] Camera | Cortical computations via metastable activity[END_REF]. Conversely, states themselves can contain sequences of neuronal activity, since propagation of neuronal activity sequences depends upon current network state in rat dissociated cortical neurons [START_REF] Yada | State-Dependent Propagation of Neuronal Sub-Population in Spontaneous Synchronized Bursts[END_REF] [START_REF] Stokes | The Importance of Single-Trial Analyses in Cognitive Neuroscience[END_REF]Lundqvist et al., 2018a), in favor of more transient activity -and thus dynamic attractors.

Lundqvist and colleagues argue instead for sparse transient activations within single trials, persistent activity being artificially caused by averaging sparse activity across trials or single-trial persistent activity only shown in cherry-picked example neurons. Indeed, while certain neurons do indeed show sustained firing during the delay period, they can also exhibit complex heterogeneous activity during working memory [START_REF] Rainer | Timecourse of object-related neural activity in the primate prefrontal cortex during a short-term memory task[END_REF][START_REF] Brody | Timing and Neural Encoding of Somatosensory Parametric Working Memory in Macaque Prefrontal Cortex[END_REF][START_REF] Shafi | Variability in neuronal activity in primate cortex during working memory tasks[END_REF][START_REF] Meyers | Dynamic Population Coding of Category Information in Inferior Temporal and Prefrontal Cortex[END_REF]. This complex heterogeneous activity can even strongly resemble transient dynamics [START_REF] Meyers | Dynamic Population Coding of Category Information in Inferior Temporal and Prefrontal Cortex[END_REF]. When reinterpreted within the context of population dynamics, PFC networks encode taskrelevant variables dynamically, be it via changing population activity or neural tuning [START_REF] Barak | Neuronal Population Coding of Parametric Working Memory[END_REF][START_REF] Stokes | Dynamic Coding for Cognitive Control in Prefrontal Cortex[END_REF][START_REF] Sreenivasan | Revisiting the role of persistent neural activity during working memory[END_REF]. Stable representations can then result from the combination of changing neural activity and selectivity, with alternation between dynamic and stable coding epochs [START_REF] Skaggs | Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences[END_REF] or stable coding dynamically morphed by distractors [START_REF] Parthasarathy | Mixed selectivity morphs population codes in prefrontal cortex[END_REF]. Dynamic and stable coding can also simultaneously coexist, where stable representations emerge from a subpopulation of neurons with slow timescales and dynamic representations from the fast timescale neural subpopulation, [START_REF] Cavanagh | Reconciling persistent and dynamic hypotheses of working memory coding in prefrontal cortex[END_REF][START_REF] Wasmuht | Intrinsic neuronal dynamics predict distinct functional roles during working memory[END_REF]. Even without considering distinct neuronal subpopulations, such coexistence has been described at the network activity level as orthogonal stable and dynamic low-dimensional subspaces, network activity being stable along certain subspace dimensions and dynamic along others [START_REF] Machens | Functional, But Not Anatomical, Separation of "What" and "When" in Prefrontal Cortex[END_REF][START_REF] Murray | Stable population coding for working memory coexists with heterogeneous neural dynamics in prefrontal cortex[END_REF].

The aforementioned mixtures of dynamic coding schemes show repeated trajectories of network activity in low-dimensional subspaces (within the larger N-dimensional space spanning the activity of every neuron). The underlying pattern of neuronal activity can take many different forms, being at least necessarily heterogeneous and time-varying for a subset of neurons. Of the numerous possibilities, network activity can take the shape of an underlying sequence of transient neural activity during the cue, delay and response periods of working memory tasks. Theoretically, sequences of transient sparse neural activity naturally offer a framework able to reconcile (i.e. account for both) stable and dynamic coding. Indeed, persistent populationaveraged frequency allows a downstream neuron receiving synapses from all neurons in the population to decode categorical sustained information (i.e. is the population active or not). Simultaneously, time-varying individual neural frequency may allow other downstream neurons, receiving synapses from well-chosen subsets of the population, to decode temporal information (i.e. how much time has elapsed, or at what part is the sequence currently at, [START_REF] Goldman | Memory without Feedback in a Neural Network[END_REF].

Are such sequences truly observed? They can be indirectly observed via large repeatable neural latency distributions [START_REF] Zaksas | Directional Signals in the Prefrontal Cortex and in Area MT during a Working Memory for Visual Motion Task[END_REF] and sequences of neural selectivity (measured as strong activity differences between two conditions), which last 0.5-4s in monkey LPFC [START_REF] Cromer | Representation of Multiple, Independent Categories in the Primate Prefrontal Cortex[END_REF][START_REF] Hussar | Memory-Guided Sensory Comparisons in the Prefrontal Cortex: Contribution of Putative Pyramidal Cells and Interneurons[END_REF][START_REF] Lara | Executive control processes underlying multi-item working memory[END_REF][START_REF] Skaggs | Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences[END_REF][START_REF] Cavanagh | Reconciling persistent and dynamic hypotheses of working memory coding in prefrontal cortex[END_REF]Lundqvist et al., 2018b), or more directly via delay-selective neurons [START_REF] Batuev | Two neuronal systems involved in short-term spatial memory in monkeys[END_REF]. In areas with activity associated to the PFC during working memory, such as the parietal cortex, long (3 s) sequences of transient activity can be observed [START_REF] Crowe | Rapid Sequences of Population Activity Patterns Dynamically Encode Task-Critical Spatial Information in Parietal Cortex[END_REF], with dynamic task-relevant and persistent task-irrelevant neural coding. Observations of neuronal activity sequences take many different forms (with different recorded observables, at different temporal scales) due to the lack of a unifying descriptive framework, although the following experimental literatures have prominently observed them directly.

Tiling the working memory delay period in rat with transient sparse neural sequences

Compelling evidence of neuronal activity sequences comes from rodent PFC, in which sequences of repeatable transient neuronal activity, a.k.a. "relay races", can be observed during the working memory delay period. Repeated sequences of transient sparse neural activity have been observed during working memory delays in PFC [START_REF] Bakhurin | Differential Encoding of Time by Prefrontal and Striatal Network Dynamics[END_REF][START_REF] Bolkan | Thalamic projections sustain prefrontal activity during working memory maintenance[END_REF][START_REF] Schmitt | Thalamic amplification of cortical connectivity sustains attentional control[END_REF][START_REF] Rikhye | Thalamic regulation of switching between cortical representations enables cognitive flexibility[END_REF] and associated areas such as dorsomedial thalamus [START_REF] Rikhye | Thalamic regulation of switching between cortical representations enables cognitive flexibility[END_REF] and striatum [START_REF] Mello | A Scalable Population Code for Time in the Striatum[END_REF][START_REF] Akhlaghpour | Dissociated sequential activity and stimulus encoding in the dorsomedial striatum during spatial working memory[END_REF][START_REF] Bakhurin | Temporal correlations among functionally specialized striatal neural ensembles in reward-conditioned mice[END_REF][START_REF] Bakhurin | Differential Encoding of Time by Prefrontal and Striatal Network Dynamics[END_REF], as well as posterior parietal cortex [START_REF] Harvey | Choice-specific sequences in parietal cortex during a virtual-navigation decision task[END_REF][START_REF] Runyan | Distinct timescales of population coding across cortex[END_REF] and auditory cortex [START_REF] Runyan | Distinct timescales of population coding across cortex[END_REF]. The sequences can be of arbitrary length, spanning tens of seconds (up to 60 s, [START_REF] Mello | A Scalable Population Code for Time in the Striatum[END_REF][START_REF] Bolkan | Thalamic projections sustain prefrontal activity during working memory maintenance[END_REF]2.5-10 s, Akhlaghpour et al., 2016), seconds (~5 s, [START_REF] Harvey | Choice-specific sequences in parietal cortex during a virtual-navigation decision task[END_REF][START_REF] Yang | Neuronal representation of working memory in the medial prefrontal cortex of rats[END_REF][START_REF] Bakhurin | Temporal correlations among functionally specialized striatal neural ensembles in reward-conditioned mice[END_REF]2.5s, Bakhurin et al., 2017) or hundreds of milliseconds (900ms, [START_REF] Rikhye | Thalamic regulation of switching between cortical representations enables cognitive flexibility[END_REF]400ms Schmitt et al., 2017). They are functionally relevant, supporting retrospective working memory of spatial [START_REF] Yang | Neuronal representation of working memory in the medial prefrontal cortex of rats[END_REF] and behavioral rules [START_REF] Schmitt | Thalamic amplification of cortical connectivity sustains attentional control[END_REF], as well as prospective working memory by transforming previously encoded information, such as the representation of elapsed time [START_REF] Tiganj | Sequential Firing Codes for Time in Rodent Medial Prefrontal Cortex[END_REF] or encoding of forthcoming behaviors [START_REF] Nakajima | Prefrontal Cortex Regulates Sensory Filtering through a Basal Ganglia-to-Thalamus Pathway[END_REF][START_REF] Passecker | Activity of Prefrontal Neurons Predict Future Choices during Gambling[END_REF].

Of particular interest is the observation that these sequences are intrinsically generated, since they are not continuously driven by sensory inputs or motor outputs during the working memory delay period. This suggests the existence of underlying synaptic chains (pathways) within the respective cerebral structures, which allow for the propagation of neural activity packets in reliable temporal order after an initial trigger (e.g. the cue onset). Several lines of evidence further hint at this idea, such as the observation that increased thalamocortical input leads to stronger sequences in PFC and better working memory performance by increasing functional connectivity between PFC pyramidal cells [START_REF] Schmitt | Thalamic amplification of cortical connectivity sustains attentional control[END_REF]. Furthermore, the fact that working memory performance increases with repetition, combined with the fact that taskrelated sequences are specific to different task cues [START_REF] Schmitt | Thalamic amplification of cortical connectivity sustains attentional control[END_REF], and that PFC is implicated in learning arbitrary associations rapidly [START_REF] Asaad | Neural Activity in the Primate Prefrontal Cortex during Associative Learning[END_REF], suggests cue-specific learning of synaptic chains in PFC. Finally, neurons active at different time delays during sequences in parietal cortex are anatomically intermixed at the ~200µm scale [START_REF] Harvey | Choice-specific sequences in parietal cortex during a virtual-navigation decision task[END_REF], alluding to local network synaptic plasticity mechanisms.

à In this context, what local synaptic plasticity rule could allow the emergence of synaptic chains and propagation of neuronal activity sequences?

Prefrontal cortex and hippocampal replay during navigation

Nonetheless, the most conclusive evidence concerning sequence learning and replay comes from replay of spatial trajectories during navigational tasks in rodent PFC and HP. During navigational behavior, sequences of activity emerge within neurons spatially selective to the animal's position due to the animal's displacement across time [START_REF] O'keefe | The hippocampus as a spatial map: Preliminary evidence from unit activity in the freely-moving rat[END_REF][START_REF] Fujisawa | Behavior-dependent short-term assembly dynamics in the medial prefrontal cortex[END_REF][START_REF] Ito | A prefrontalthalamo-hippocampal circuit for goal-directed spatial navigation[END_REF][START_REF] Zielinski | Coherent Coding of Spatial Position Mediated by Theta Oscillations in the Hippocampus and Prefrontal Cortex[END_REF]. These behaviorally-driven sequences are then replayed at faster timescales within theta cycles in HP during awake (Skaggs et al., 1996) quiet wakefulness, such as during immobility [START_REF] Kudrimoti | Reactivation of Hippocampal Cell Assemblies: Effects of Behavioral State, Experience, and EEG Dynamics[END_REF][START_REF] Diba | Forward and reverse hippocampal place-cell sequences during ripples[END_REF][START_REF] Davidson | Hippocampal Replay of Extended Experience[END_REF][START_REF] Jadhav | Coordinated Excitation and Inhibition of Prefrontal Ensembles during Awake Hippocampal Sharp-Wave Ripple Events[END_REF] or consummatory behavior [START_REF] Nádasdy | Replay and Time Compression of Recurring Spike Sequences in the Hippocampus[END_REF], as well as wheel running [START_REF] Nádasdy | Replay and Time Compression of Recurring Spike Sequences in the Hippocampus[END_REF]. Compressed sequences recapitulating sequences encountered during awake behavior also occur during SWS (Skaggs and McNaughton, 1996;[START_REF] Kudrimoti | Reactivation of Hippocampal Cell Assemblies: Effects of Behavioral State, Experience, and EEG Dynamics[END_REF][START_REF] Nádasdy | Replay and Time Compression of Recurring Spike Sequences in the Hippocampus[END_REF][START_REF] Lee | Memory of Sequential Experience in the Hippocampus during Slow Wave Sleep[END_REF][START_REF] Ji | Coordinated memory replay in the visual cortex and hippocampus during sleep[END_REF][START_REF] Peyrache | Replay of rule-learning related neural patterns in the prefrontal cortex during sleep[END_REF][START_REF] Mizuseki | Activity dynamics and behavioral correlates of CA3 and CA1 hippocampal pyramidal neurons[END_REF]. The very existence of fast replays of sequences, previously observed during behavior, requires the formation of synaptic chains. Furthermore, these fast replays are generally associated with HP SWR events during wake [START_REF] Nádasdy | Replay and Time Compression of Recurring Spike Sequences in the Hippocampus[END_REF][START_REF] Diba | Forward and reverse hippocampal place-cell sequences during ripples[END_REF][START_REF] Davidson | Hippocampal Replay of Extended Experience[END_REF][START_REF] Jadhav | Coordinated Excitation and Inhibition of Prefrontal Ensembles during Awake Hippocampal Sharp-Wave Ripple Events[END_REF] and sleep [START_REF] Kudrimoti | Reactivation of Hippocampal Cell Assemblies: Effects of Behavioral State, Experience, and EEG Dynamics[END_REF][START_REF] Nádasdy | Replay and Time Compression of Recurring Spike Sequences in the Hippocampus[END_REF][START_REF] Lee | Memory of Sequential Experience in the Hippocampus during Slow Wave Sleep[END_REF][START_REF] Ji | Coordinated memory replay in the visual cortex and hippocampus during sleep[END_REF][START_REF] Peyrache | Replay of rule-learning related neural patterns in the prefrontal cortex during sleep[END_REF]. HP SWR events have been shown to be necessary for memory formation and subsequent behavioral performance [START_REF] Girardeau | Selective suppression of hippocampal ripples impairs spatial memory[END_REF], further reinforcing the notion that sequences are learned.

Other than fast sequences, intrinsically-generated sequences at slow behavioral timescales can also be learned and replayed without being driven by motor or sensory components, such as during awake wheel running delay [START_REF] Pastalkova | Internally Generated Cell Assembly Sequences in the Rat Hippocampus[END_REF][START_REF] Itskov | Cell Assembly Sequences Arising from Spike Threshold Adaptation Keep Track of Time in the Hippocampus[END_REF] predicting future navigational trajectory [START_REF] Pastalkova | Internally Generated Cell Assembly Sequences in the Rat Hippocampus[END_REF], as well as during REM sleep following behavior, replaying behavioral sequences at equivalent or slower speeds [START_REF] Louie | Temporally structured replay of awake hippocampal ensemble activity during rapid eye movement sleep[END_REF][START_REF] Mizuseki | Activity dynamics and behavioral correlates of CA3 and CA1 hippocampal pyramidal neurons[END_REF].

Sequence learning and replay occur not only in HP but also within other areas involved in spatial navigational tasks. PFC replays are generally linked to HP SWR events during awake immobility [START_REF] Jadhav | Coordinated Excitation and Inhibition of Prefrontal Ensembles during Awake Hippocampal Sharp-Wave Ripple Events[END_REF][START_REF] Kaefer | Replay of Behavioral Sequences in the Medial Prefrontal Cortex during Rule Switching[END_REF], with spontaneous reactivations during SWS of patterns learned during behavior [START_REF] Euston | Fast-Forward Playback of Recent Memory Sequences in Prefrontal Cortex During Sleep[END_REF][START_REF] Peyrache | Replay of rule-learning related neural patterns in the prefrontal cortex during sleep[END_REF]Johnson et al., 2010b) linked to DOWN-UP state transitions [START_REF] Peyrache | Replay of rule-learning related neural patterns in the prefrontal cortex during sleep[END_REF]Johnson et al., 2010b). PFC-HP interactions are mediated by thalamic NR [START_REF] Ito | A prefrontalthalamo-hippocampal circuit for goal-directed spatial navigation[END_REF][START_REF] Angulo-Garcia | Spatiotemporal organization of cell assemblies in Nucleus Reuniens during slow oscillations[END_REF] which also shows fast sequences during anesthesia-induced slow oscillations [START_REF] Angulo-Garcia | Spatiotemporal organization of cell assemblies in Nucleus Reuniens during slow oscillations[END_REF]. Similarly to the PFC, visual cortex sequences are coordinated with HP sequences during SWS [START_REF] Ji | Coordinated memory replay in the visual cortex and hippocampus during sleep[END_REF]. Moreover, superficial layers of medial entorhinal cortex replay fast sequences but independently of HP SWR [START_REF] O'neill | Superficial layers of the medial entorhinal cortex replay independently of the hippocampus[END_REF]. More generally, temporal biases throughout neocortex (PFC, motor, posterior parietal, and somatosensory cortex) are linked together after learning [START_REF] Hoffman | Coordinated Reactivation of Distributed Memory Traces in Primate Neocortex[END_REF].

Learning fast and regular timescale replays holds functional relevance. Indeed, fast replays during awake immobility span both forward and backward directions in PFC [START_REF] Kaefer | Replay of Behavioral Sequences in the Medial Prefrontal Cortex during Rule Switching[END_REF] and HP [START_REF] Diba | Forward and reverse hippocampal place-cell sequences during ripples[END_REF], which has been interpreted as prospective and retrospective planning with forward anticipation at the run start and backward retrospection at the run end [START_REF] Diba | Forward and reverse hippocampal place-cell sequences during ripples[END_REF]. However, due to the fact that replay starting points are not systematically tied to the animal's current position [START_REF] Davidson | Hippocampal Replay of Extended Experience[END_REF], other interpretations have been proposed, e.g. PFC theta sequences encode the upcoming behavioral choice while CA1 theta sequences encode actual & alternative paths [START_REF] Tang | Multiple time-scales of decision-making in the hippocampus and prefrontal cortex[END_REF]. More generally, the functional coordination of HP metric and PFC task-related spatial [START_REF] Yu | Specific hippocampal representations are linked to generalized cortical representations in memory[END_REF] representations [START_REF] Pfeiffer | Hippocampal place-cell sequences depict future paths to remembered goals[END_REF][START_REF] Zielinski | Coherent Coding of Spatial Position Mediated by Theta Oscillations in the Hippocampus and Prefrontal Cortex[END_REF] results in navigational trajectory-dependent firing in HP CA1, thus allowing prediction of upcoming and recent behavioral trajectory choices from regular timescale trajectory replays [START_REF] Frank | Trajectory Encoding in the Hippocampus and Entorhinal Cortex[END_REF][START_REF] Ferbinteanu | Prospective and Retrospective Memory Coding in the Hippocampus[END_REF][START_REF] Fujisawa | Behavior-dependent short-term assembly dynamics in the medial prefrontal cortex[END_REF][START_REF] Ito | A prefrontalthalamo-hippocampal circuit for goal-directed spatial navigation[END_REF][START_REF] Kaefer | Replay of Behavioral Sequences in the Medial Prefrontal Cortex during Rule Switching[END_REF].

In summary, the prominence of functionally relevant sequences of transient sparse neural activity, which are replayed after successful behavioral learning across cortices, notably during working memory and navigational contexts, suggests that sequence learning and replay is a generic phenomenon.

à To what extent is sequence learning and replay generic, e.g. can sequences emerge in a self-organized manner? And what are their structural properties, e.g. the temporal scale at which they emerge ?

1.2.3.

Temporally precise motifs in vivo and in vitro

Working memory and navigational sequence replays are characterized by transient (~100-5s) increase in firing within neurons, suggesting information within sequences is conveyed solely through average firing frequency rather than the precise temporality of spikes. However, repeating precisely timed (~1ms) spike patterns have been observed across cortices in awake animals, be it in monkey frontal cortex during a delayed-response task [START_REF] Abeles | Spatiotemporal firing patterns in the frontal cortex of behaving monkeys[END_REF][START_REF] Prut | Spatiotemporal Structure of Cortical Activity: Properties and Behavioral Relevance[END_REF] and motor and premotor cortex during drawing [START_REF] Shmiel | Temporally Precise Cortical Firing Patterns Are Associated With Distinct Action Segments[END_REF], in head-fixed or anesthetized mouse somatosensory [START_REF] Luczak | Sequential structure of neocortical spontaneous activity in vivo[END_REF][START_REF] Luczak | Spontaneous Events Outline the Realm of Possible Sensory Responses in Neocortical Populations[END_REF] and auditory [START_REF] Luczak | Spontaneous Events Outline the Realm of Possible Sensory Responses in Neocortical Populations[END_REF] cortex, or in anesthetized cat V1 [START_REF] Ikegaya | Synfire Chains and Cortical Songs: Temporal Modules of Cortical Activity[END_REF]. These precisely timed patterns can be observed even within cultured slices of rodent visual [START_REF] Mao | Dynamics of spontaneous activity in neocortical slices[END_REF][START_REF] Cossart | Attractor dynamics of network UP states in the neocortex[END_REF][START_REF] Ikegaya | Synfire Chains and Cortical Songs: Temporal Modules of Cortical Activity[END_REF], somatosensory [START_REF] Beggs | Neuronal Avalanches in Neocortical Circuits[END_REF][START_REF] Maclean | Internal dynamics determine the cortical response to thalamic stimulation[END_REF][START_REF] Tang | A Maximum Entropy Model Applied to Spatial and Temporal Correlations from Cortical Networks In Vitro[END_REF][START_REF] Kruskal | Circuit reactivation dynamically regulates synaptic plasticity in neocortex[END_REF] and auditory cortex [START_REF] Buonomano | Timing of neural responses in cortical organotypic slices[END_REF] and hippocampus [START_REF] Tang | A Maximum Entropy Model Applied to Spatial and Temporal Correlations from Cortical Networks In Vitro[END_REF], as well as human cortex [START_REF] Tang | A Maximum Entropy Model Applied to Spatial and Temporal Correlations from Cortical Networks In Vitro[END_REF].

Poly-synaptic responses up to 300ms can be observed [START_REF] Buonomano | Timing of neural responses in cortical organotypic slices[END_REF], once again suggesting the existence of underlying synaptic chains involving multiple synapses. Of particular interest is the observation that neuronal avalanches (repeated spontaneous events of spreading activity) emerge within dissociated cultures of rat cortex after three to four weeks of selforganization [START_REF] Pasquale | Selforganization and neuronal avalanches in networks of dissociated cortical neurons[END_REF], leading to a repertoire of sequences replayed according to specific network states [START_REF] Yada | State-Dependent Propagation of Neuronal Sub-Population in Spontaneous Synchronized Bursts[END_REF], indicating the spontaneous formation of synaptic chains. Accordingly, chronic stimulation leads to precisely timed spike patterns in thalamocortical slices [START_REF] Kruskal | Circuit reactivation dynamically regulates synaptic plasticity in neocortex[END_REF], organotypic cortical slices (Johnson et al., 2010a) and dissociated cortical cultures [START_REF] Rolston | Precisely timed spatiotemporal patterns of neural activity in dissociated cortical cultures[END_REF][START_REF] Pasquale | Stimulation triggers endogenous activity patterns in cultured cortical networks[END_REF], confirming that synaptic chains are learned through synaptic plasticity and serve as the substrate of precisely timed sequence propagation.

Correspondingly, initial observations of precisely timed spike patterns were motivated by the theoretical proposal of the existence of "synfire chains" [START_REF] Abeles | Spatiotemporal firing patterns in the frontal cortex of behaving monkeys[END_REF], i.e. fully feedforward synaptic chains organized in layers with all-to-all unidirectional connections of neurons from a previous layer projecting onto neurons of the next layer. However, insistence upon the precise timing of such spike patterns, and the underlying synfire chain theoretical proposition -necessitating strongly synchronous activity -, has received much criticism [START_REF] Gerstein | Searching for significance in spatio-temporal firing patterns[END_REF][START_REF] Mclelland | Cortical Songs Revisited: A Lesson in Statistics[END_REF][START_REF] Mokeichev | Stochastic Emergence of Repeating Cortical Motifs in Spontaneous Membrane Potential Fluctuations In Vivo[END_REF][START_REF] Roxin | The Statistics of Repeating Patterns of Cortical Activity Can Be Reproduced by a Model Network of Stochastic Binary Neurons[END_REF]. Indeed, detecting repeating precisely timed spiking patterns above chance level requires the adequate description of such null chance statistics. Most notably, when calculating the null probability of repeating temporally precise patterns against which observations are compared, taking into account firing rate modulation altogether removes the statistical significance of short patterns beyond chance, or renders it anecdotal [START_REF] Oram | Stochastic nature of precisely timed spike patterns in visual system neuronal responses[END_REF][START_REF] Baker | Precise spatiotemporal repeating patterns in monkey primary and supplementary motor areas occur at chance levels[END_REF][START_REF] Mclelland | Cortical Songs Revisited: A Lesson in Statistics[END_REF]. Consequently, the temporal modulation of firing rate is important in predicting precisely timed spike patterns, which has led to their reinterpretation as sequences of UP-state onsets [START_REF] Luczak | Sequential structure of neocortical spontaneous activity in vivo[END_REF], closely resembling the sequences of sparse transient activations mentioned above.

Taken together, these results suggest that the precisely timed spike patterns observed across intact or sliced cortices are actually sequences of transient activity, subserved by synaptic chains which emerge either spontaneously or following stimulation through synaptic plasticity.

à In this context, what generic synaptic plasticity rules could allow the emergence of transient neuronal activity sequences across cortices, and even within dissociated cultures?

Learning and replay of sequences of transient neural activity

1.3.1.

Spike-Timing Dependent Plasticity

As stated before, replay of sequences during awake working memory and navigation immobility, SWS SWR, REM sleep or in slices, as well as self-organization within dissociated cultures, strongly suggests sequences are learned via synaptic plasticity. The observation of sequences across cerebral structures, be it prefrontal, parietal, auditory, visual and entorhinal cortex, or hippocampus, thalamus, and striatum, or even dissociated cultures, indicates the learning rule must be generic. Furthermore, this learning rule must allow the formation of unidirectional synaptic chains in an activity-dependent manner. As such, Hebbian plasticity, promoting the emergence of bidirectional connections between neurons with coincident firing, cannot result in unidirectional synaptic chains, as it does not impose a temporal order upon spiking (instead favoring simultaneous firing).

A natural candidate for such learning is spike-timing dependent plasticity (STDP) [START_REF] Bi | Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type[END_REF] observed across structures [START_REF] Abbott | Synaptic plasticity: taming the beast[END_REF]. With STDP, synaptic strength is adjusted based upon the relative timing of pre-and post-synaptic action potentials, where pre-synaptic spike followed by post-synaptic spike arrival induces Long-Term Potentiation (LTP), and the reverse (post-before pre-) induces Long-Term Depression (LTD) (although other associative schemes are possible, c.f. [START_REF] Abbott | Synaptic plasticity: taming the beast[END_REF]. The calcium hypothesis postulates that LTP is triggered by strong calcium entry mostly due to the detection of coincident pre-synaptic spike-induced glutamate release and post-synaptic spike-induced backpropagating dendritic depolarization by NMDA receptors, whereas LTD is caused by weak calcium entry on account of asynchrony and NMDA receptors staying closed, although recent evidence suggests otherwise [START_REF] Sjöström | Neocortical LTD via Coincident Activation of Presynaptic NMDA and Cannabinoid Receptors[END_REF]. In particular, STDP is a strong candidate for learning navigational hippocampal sequences, since fast replay of trajectories at theta-or SWRscale allows pre-post association within the optimal STDP learning temporal window of hundreds of milliseconds [START_REF] Diba | Hippocampal Network Dynamics Constrain the Time Lag between Pyramidal Cells across Modified Environments[END_REF]. Furthermore, modeling studies have shown that STDP does induce synaptic chains after temporally-structured stimuli [START_REF] Liu | Embedding Multiple Trajectories in Simulated Recurrent Neural Networks in a Self-Organizing Manner[END_REF][START_REF] Clopath | Connectivity reflects coding: a model of voltage-based STDP with homeostasis[END_REF][START_REF] Fiete | Spike-Time-Dependent Plasticity and Heterosynaptic Competition Organize Networks to Produce Long Scale-Free Sequences of Neural Activity[END_REF] Additionally, STDP is neuromodulated by dopamine [START_REF] He | Distinct Eligibility Traces for LTP and LTD in Cortical Synapses[END_REF], with strong plasticity during reward delivery or anticipation. Since working memory and navigational sequences are reinforced by reward delivery, dopaminergic signaling allows the learning of sequences towards the rewarded objective. The temporal linkage of spikes and dopamine signaling, a.k.a. the distal reward problem, would arise from synaptic eligibility traces [START_REF] Izhikevich | Solving the distal reward problem through linkage of STDP and dopamine signaling[END_REF], e.g. activation of an enzyme important for plasticity.

Homeostatic meta-plasticity

Yet, as with Hebbian learning, STDP models suffer from synaptic runaway, where synapse potentiation results in more pre-post spike association and thus synapse potentiation. A homeostatic form of meta-plasticity is necessary to keep neuronal parameters within reasonable physiological boundaries [START_REF] Zenke | Synaptic Plasticity in Neural Networks Needs Homeostasis with a Fast Rate Detector[END_REF]. Synaptic scaling, i.e. the scaling of synaptic strengths according to network frequency, is one of different theoretical propositions of meta-plasticity (e.g. BCM, [START_REF] Bienenstock | Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex[END_REF], which is ubiquitously observed across cortices [START_REF] Turrigiano | Activitydependent scaling of quantal amplitude in neocortical neurons[END_REF][START_REF] Keck | Integrating Hebbian and homeostatic plasticity: the current state of the field and future research directions[END_REF]. However, synaptic scaling needs to act at an equal or faster pace than plasticity in order to ensure synaptic stability [START_REF] Zenke | The temporal paradox of Hebbian learning and homeostatic plasticity[END_REF], suggesting the existence of as yet unidentified rapid compensatory processes (e.g. heterosynaptic plasticity, implication of astrocytes, etc.).

Sequence learning and replay within synaptic noise

Learning synaptic chains via STDP requires relatively precise timing between spikes. However, it is well known that network activity is globally disorganized in the awake cortex of active attentive animals. The irregularity of neural activity is measured via the coefficient of variation (CV) of inter-spike intervals (ISI). Purely random neural activity, where each spike occurs with a small random probability at each instant independently of past spikes, a.k.a. a Poisson point process, defines an ISI distribution with a CV of 1. Accordingly, ISI distributions within awake cortex also have a CV of 1 or above [START_REF] Compte | Temporally Irregular Mnemonic Persistent Activity in Prefrontal Neurons of Monkeys During a Delayed Response Task[END_REF], suggesting they are as or more irregular than a random process [START_REF] Shinomoto | Regional and Laminar Differences in In Vivo Firing Patterns of Primate Cortical Neurons[END_REF]. This is thought to be caused by neurons being in a high conductance state [START_REF] Destexhe | The high-conductance state of neocortical neurons in vivo[END_REF], in which strong and tightly balanced excitatory and inhibitory currents lead to a sustained depolarized membrane potential. As such, small (relative to the total sum) current fluctuations are sufficient to induce spiking, allowing faster temporal integration of faint pre-synaptic spiking correlation signals and resulting in irregular activity. Cortical activity during wake is furthermore typically asynchronous [START_REF] Brunel | Dynamics of Sparsely Connected Networks of Excitatory and Inhibitory Spiking Neurons[END_REF] during active behavioral states, showing desynchronized local field potentials [START_REF] Poulet | Internal brain state regulates membrane potential synchrony in barrel cortex of behaving mice[END_REF] and only synchronizing with external or internal events [START_REF] Riehle | Spike Synchronization and Rate Modulation Differentially Involved in Motor Cortical Function[END_REF], which has been interpreted as a desirably energy-efficient neural code (only a single neuron's spike being required vs. many neurons simultaneously spiking, [START_REF] Denève | Efficient codes and balanced networks[END_REF]. Finally, activity in vivo is sensitive to slight perturbations, i.e. cortical activity is chaotic [START_REF] London | Sensitivity to perturbations in vivo implies high noise and suggests rate coding in cortex[END_REF].

It is unclear how synaptic chains can be learned and replayed within the globally disorganized chaotic activity of cortical networks during awake behavior. Indeed, the noisy activity regime can disrupt spike-induced sequence learning within individual synapses, since spike temporal jitter perturbs precise temporal spike differences and thus can cause accidental switches between LTP and LTD. At the network level, erratic spikes can recruit irrelevant synapses while randomly absent spikes fragilize the resulting dynamic engram. After learning, accumulation of non-specific plasticity resulting from noisy spike activity, counterbalanced by homeostatic meta-plasticity, can lead to engram forgetting. Furthermore, noisy excitatory activity can destabilize evoked replay by recruiting inhibitory interneurons, while also inducing spontaneous replays at pathological levels of repetition (i.e. incessantly). When considering the network as a chaotic dynamical system, noisy perturbations lead to exponential divergence in network activity which can lead to replay failure. Finally, sequence replay can further reinforce the synaptic engram via STDP, resulting in synaptic runaway starting with spontaneous replays and ending in paroxysmal epileptic activity.

à In summary, can plastic synaptic and homeostatic meta-plastic processes, in combination with intrinsic bistability properties and slow synaptic currents, guarantee robust sequence learning and replay within the noisy dynamics characterizing of awake cortex?

A potential solution to the problems induced by synapse-activity interactions addressed above is to consider STDP learning within the context of dopaminergic neuromodulation. Indeed, learning is restricted to the time window immediately following a phasic dopaminergic signal caused by reward acquisition, prohibiting slow forgetting due to non-specific spiking outside of reward collection. However, dopamine-mediated STDP learning similarly suffers from the other aforementioned undesirable interactions between erratic activity and sequence learning.

à This being the case, what mechanistic description of dopaminergic neuromodulation of STDP allows the learning of neuronal sequences towards an objective within noisy networks?

Theoretical background for attractor dynamics

Hebbian Assembly

A well-studied framework describing the learning of stable network activity attractors within noisy activity is the emergence of Hebbian assemblies encoding auto-associative memories via Hebbian synaptic plasticity, as mentioned above. While this framework allows for stable attractors within noisy networks, the resulting attractor is static rather than dynamic. Furthermore, the dynamic nature of sequential attractors leads to different challenges. Indeed, the propagation of neural sequences depends upon the unidirectional nature of synaptic weights, such that their stability cannot be mainly based upon the positive feedback loop of NMDA-mediated synaptic reverberation within bidirectional weights [START_REF] Hebb | The organization of behavior; a neuropsycholocigal theory[END_REF][START_REF] Brunel | Effects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition[END_REF]. Similarly, mechanisms which help stabilize bistable frequency in assemblies (e.g. strong intrinsic or dendritic bistability, [START_REF] Camperi | A Model of Visuospatial Working Memory in Prefrontal Cortex: Recurrent Network and Cellular Bistability[END_REF][START_REF] Koulakov | Model for a robust neural integrator[END_REF][START_REF] Goldman | Robust Persistent Neural Activity in a Model Integrator with Multiple Hysteretic Dendrites per Neuron[END_REF][START_REF] Compte | Computational and in vitro studies of persistent activity: Edging towards cellular and synaptic mechanisms of working memory[END_REF] may not apply to sequences of transient sparse neuronal activity.

Synfire chain

On the other end of the spectrum, synfire chains [START_REF] Abeles | Spatiotemporal firing patterns in the frontal cortex of behaving monkeys[END_REF] lead to unidirectional propagation of synchronous activity across neural layers, corresponding to dynamic engrams underlying dynamic attractors. While the existence of temporally precise sequences is debatable, synfire chains can result in unstable or uncontrolled sequential propagation [START_REF] Mehring | Activity dynamics and propagation of synchronous spiking in locally connected random networks[END_REF]. Furthermore, synfire chains describe feedforward synaptic chains, whereas the aforementioned sequence-prone cortices have strongly recurrent synaptic architectures. Finally, they are organized into distinct layers, whereas unidirectional connections could overlap across neurons, forming more complex structures such as synfire braids [START_REF] Izhikevich | Spike-timing dynamics of neuronal groups[END_REF][START_REF] Izhikevich | Polychronization: Computation with Spikes[END_REF]. In summary, the stability issue, lack of recurrence and layer organization of synfire chains make them unlikely candidates for the emergence of stable repeatable sequences within local networks on many different timescales (0.5-60s).

Hebbian phase sequences

In between Hebbian assemblies and synfire chain, the hybrid model of Hebbian phase sequences offers the advantages of both, allowing stable propagation of dynamic attractors within recurrent synaptic structures [START_REF] Kumar | Conditions for Propagating Synchronous Spiking and Asynchronous Firing Rates in a Cortical Network Model[END_REF][START_REF] Duarte | Dynamic stability of sequential stimulus representations in adapting neuronal networks[END_REF][START_REF] Chenkov | Memory replay in balanced recurrent networks[END_REF]. However, the neural sequence is composed of discrete assemblies rather than continuous overlapping connections across neurons, which is difficult to verify experimentally and thus up to interpretation. Furthermore, it is unclear whether and how Hebbian phase sequences are formed through uni-and bi-directional STDP, whereas the formation of unidirectional synaptic chains is more straightforward. Finally, the existence of neural activity sequences at the micro-column ~200µm scale [START_REF] Harvey | Choice-specific sequences in parietal cortex during a virtual-navigation decision task[END_REF], combined with the fact that subnetworks in V1 layer 2/3 share interneurons [START_REF] Yoshimura | Excitatory cortical neurons form fine-scale functional networks[END_REF][START_REF] Itskov | Cell Assembly Sequences Arising from Spike Threshold Adaptation Keep Track of Time in the Hippocampus[END_REF], suggests propagation is not induced by inhibition local to each assembly, as shown in [START_REF] Chenkov | Memory replay in balanced recurrent networks[END_REF]. Putting continuous sequences aside, the sequential activation of neuronal assemblies might account for the previously mentioned sequential transitions between discrete network states modeled as HMMs.

Continuous dynamic engrams

Models learning sequences through unidirectional STDP exist, although none satisfyingly answer all aspects of the problem introduced by learning and replay of sequences within noisy networks as mentioned above (namely noise-perturbed learning, non-specific plasticity-induced forgetting, synaptic runaway-induced paroxysmal epileptic activity, as well as incessant or unstable replay and chaotic divergence after initial triggering stimuli). Indeed, some studies do not study trajectory replay after learning [START_REF] Clopath | Connectivity reflects coding: a model of voltage-based STDP with homeostasis[END_REF] or the trajectory cannot be replayed from an initial trigger [START_REF] Klampfl | Emergence of Dynamic Memory Traces in Cortical Microcircuit Models through STDP[END_REF]. In others, trajectory learning is either absent [START_REF] Chenkov | Memory replay in balanced recurrent networks[END_REF], based on artificial learning rules [START_REF] Sussillo | Generating Coherent Patterns of Activity from Chaotic Neural Networks[END_REF][START_REF] Laje | Robust timing and motor patterns by taming chaos in recurrent neural networks[END_REF][START_REF] Xue | Spiking recurrent neural networks represent taskrelevant neural sequences in rule-dependent computation[END_REF] or biologically unrealistic neuronal activity and synaptic plasticity [START_REF] Liu | Embedding Multiple Trajectories in Simulated Recurrent Neural Networks in a Self-Organizing Manner[END_REF][START_REF] Fiete | Spike-Time-Dependent Plasticity and Heterosynaptic Competition Organize Networks to Produce Long Scale-Free Sequences of Neural Activity[END_REF][START_REF] Klampfl | Emergence of Dynamic Memory Traces in Cortical Microcircuit Models through STDP[END_REF], or unrelated to external stimuli [START_REF] Fiete | Spike-Time-Dependent Plasticity and Heterosynaptic Competition Organize Networks to Produce Long Scale-Free Sequences of Neural Activity[END_REF]. Additionally, certain models lack the asynchronous irregular regime of neuronal activity altogether [START_REF] Liu | Embedding Multiple Trajectories in Simulated Recurrent Neural Networks in a Self-Organizing Manner[END_REF][START_REF] Fiete | Spike-Time-Dependent Plasticity and Heterosynaptic Competition Organize Networks to Produce Long Scale-Free Sequences of Neural Activity[END_REF], removing the necessity for attractors robust to synaptic noise. Finally, none dissect how biophysical mechanisms can support the reliability and stability of neural sequence replay, nor study its maintenance in long-term memory.

Thesis outline

This thesis consists in trying to understand which biophysical determinants, such as intrinsic and synaptic currents, network architecture or plasticity rules, are essential to emergence of stable and dynamic attractors, which are repeatable across trials and robust to synaptic noise.

What intrinsic currents allow the emergence of stable yet labile network states and robust neuronal activity sequences? Chapter 2 studies a conditional form of robust and generic spike-mediated bistability subserved by high-threshold L-type calcium (CaL) and calciumactivated non-specific (CAN) ionic currents within a model of layer 5 PFC pyramidal neuron. In this context, intermediate CAN conductance levels result in the maintenance of activity induced by a supraliminal phasic depolarizing current input, but conditional to the presence of a tonic subliminal depolarizing current input. This tonic input could originate from other excitatory neurons within an excitatory assembly, thus facilitating transitions between labile network states defined by neuronal assemblies. Such conditional bistability could also help stabilize neural activity sequences, where the subliminal input originates from previous neurons of the sequence.

While persistent activity within monkey PFC allows stable network states during working memory, the MCC is at the pinnacle of the cortical hierarchy with the longest neuronal activity timescales (twice those of lateral PFC; LPFC). Do the same intrinsic mechanisms subserve these long timescales, and to what end? Starting from a biophysical neural network model closely replicating monkey LPFC working memory data, Chapter 3 shows that plausible strong inhibitory after-hyperpolarization (AHP) ionic and slow GABA-B synaptic currents account for the longer neuronal timescales within MCC compared to LPFC. These neuronal timescales escalate at the network level into the metastable peregrination of network activity across much longer quasi-stable discrete network states, whose maintenance and transitions are controlled by synaptic inhibition. Chapter 4 replaces these findings within the MCC's proposed central function, i.e. temporal integration of diverse multimodal inputs, allowing to construct an actionreward outcome history for behavioral adaptation and exploration. Additional results in Chapter 4 then revealed the sequential organization of MCC network state peregrination within two larger pseudo-attractor spaces, where each network state could be defined by persistent activity or neural activity sequences.

While GABA-B conductance can be neuromodulated to generate the timescales necessary for task demands, these network states and sequences originate from the random architecture of the synaptic matrix, and are thus not learned nor related to external stimuli and task variables. How can intrinsic and inhibitory synaptic currents stabilize and allow controlled replay of learned sequences within synaptic noise? Chapter 5 shows that strong tonic or slower inhibitory currents coupled with increased excitatory functional connectivity, as well as intrinsic CAN and AHP currents mediating transient bistability, increases the stability and controllability of learned sequence replay when faced with synaptic noise. Furthermore, the model is robust to variability in the biophysical parameters, and represents a common framework for many types of static or dynamic and discrete or continuous attractors (e.g. Hebbian assemblies, phase sequence, synfire chain, ring attractor, and bidirectional sequences).

Whereas the previous chapter studies mechanisms allowing robust replay within synaptic noise, STDP learning occurs before the network simulation, outside of the asynchronous irregular regime. As such, what mechanisms allow the learning and maintenance in memory of the synaptic engram within noisy network activity, and can the resulting engrams be replayed? Building upon the previous chapter's knowledge by instantiating a model network capable of stable and controllable replays, Chapter 6 shows that STDP modeled as calciumbased activation of kinase and phosphatase couples (aKP) allows minimal interference between trajectory learning or replay and the asynchronous irregular regime. This results from the very slow aKP kinetics at low frequency, coupled with the network's low frequency during resting state activity. This model further describes how sequences can be learned through the presentation of discrete fragments, how they can be replayed at fast or regular timescales (such as for navigational trajectories) according to neuromodulated NMDA channel opening dynamics, and confirms that such sequences can reconcile simultaneous stable and dynamic coding. However, runaway synapse-activity interactions due to repeated sequence replays lead to paroxysmal network activity and engram forgetting, requiring slower plasticity and multiple stimulus presentations.

The previous two chapters describe learning of presented stimulus sequences within synaptic noise which are replayed after an external triggering cue. However, they do not describe how sequences can be learned toward a rewarding goal (instead of replicating an external stimulus), nor do they not explain intrinsically-generated and motivated decisions in the absence of triggering cues, both effects which have been attributed to dopaminergic neuromodulation. How can dopaminergic neuromodulation account for both the learning of, and motivation to retrieve, rewarded goals? Chapter 7 shows that multiplicative gating of online synaptic plasticity eligibility traces and synaptic excitability by phasic dopamine (DA) signals allows 1) the learning of rewarded locations as static neuronal assemblies dynamically oriented toward the reward location, as well as 2) their successful recall after an internally-generated motivational DA impulse, inducing slow excitatory NMDA-mediated synaptic reverberation within the assemblies learned through DA and subsequent mouse behavioral convergence toward them.

Chapter 2. PFC working memory persistent activity via intrinsic conditional bistability

Summary

Working memory is commonly believed to be supported by persistent neural activity within monkey PFC. Two non-mutually exclusive mechanistic origins of persistent neural activity have been proposed: synaptic network reverberation, and intrinsic cellular bistability. Network reverberation models have been criticized, notably since they lack the spiking irregularity and quasi-stationary state transitions observed experimentally. On the other hand, intrinsic cellular absolute bistability (AB) models require long onset and offset stimuli and strong levels of pharmacological neuromodulation, which result in long (~10s) high frequency regular discharges lacking the spiking irregularity and flexibility necessary for adaptive working memory cognitive processes. An intermediate proposal exists, a.k.a. conditional bistability (CB), in which persistent activity after an initial stimulus is conditional on subthreshold input current during the delay period. CB is notably found within layer 5 PFC pyramidal neurons, and has been overlooked in classical bistability protocols, as they test neuronal responses to an initial stimulus only (event), without the additional subthreshold input or depolarized membrane potential required during the delay period (event/delay).

As such, we present a mechanistic account of spike-induced CB in a Hodgkin-Huxley neuronal model of iso-potential PFC layer 5 pyramidal neuron. In this model, CB is implemented by spikemediated high-threshold L-type calcium (CaL) and calcium-activated non-specific cationic (CAN) currents. The voltage-dependent CaL current induces after-depolarization potentials (ADP) and calcium entry during action potentials. This calcium then opens CAN channels, inducing further ADP and thus potentially action potentials. High CaL and CAN maximal conductances result in this positive feedback loop being sufficiently strong to sustain itself after the initial event stimulus without delay input (AB), while weaker conductance levels require a delay input current for the loop to sustain itself (CB).

However, the weak positive feedback of CB precisely leads to a richer diversity of behaviors, with varying moderate frequency and a repertoire of responses depending on the amplitude of the delay input current (from memoryless discharge to stable memory via various transient memory durations). The parametric region of maximal conductances characterizing CB is wide and within physiological neuromodulatory levels, and only the CaL asymmetric opening and closing dynamics are necessary and sufficient for CB, both elements suggesting this mechanism's genericity within PFC (and other) networks.

Considering in vivo asynchronous synaptic inputs, CB neurons alternate between bursting and non-bursting episodes, inducing higher CV and CV2 during the delay compared to without CB (though an after-hyperpolarization potential (AHP) current was necessary). As such, within a network, CB may underpin transitions between stable collective states of quasi-stationary firing at the second timescale, such as mental states during exploration of computational solutions promoting adaptive cognitive processes. Furthermore, the weak positive CB spike feedback loops could help stabilize sequences of neural activity, with stable firing being conditional on subliminal input from vanishing activities of previous neurons in the sequence.

Contributions

I helped develop the bistability assessment protocol code and analyze corresponding data, and reviewed the article during writing.
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Chapter 3. Temporal signatures of cognition from LPFC to MCC controlled by inhibition

Summary

The previous chapter has showed that persistent activity within monkey PFC, subserved by CaLand CAN-mediated intrinsic conditional bistability, allows stable yet labile network states during working memory. However, among frontal areas, the MCC presents activity timescales twice those of the LPFC. Moreover, MCC has stronger and slower synaptic inhibition impinging upon pyramidal neurons, suggesting a link between spiking timescales and synaptic inhibition. What are the exact nature of differences in timescales between LPFC and MCC? And are these timescales underpinned by the aforementioned intrinsic currents or by other mechanisms? Finally, how do these mechanisms result in temporally-extended MCC behaviors?

To answer these questions, Vincent Fontanier and Emmanuel Procyk (SBRI, Lyon) recorded within monkey LPFC and MCC, capturing the finer temporal dynamics of neuronal activity timescales by developing individual unit spike autocorrelograms. When extracting the peak latency (LAT) and time constant (TAU) from the autocorrelograms, we confirmed that MCC TAU was higher than LPFC TAU across cell-types (regular spiking RS and fast spiking FS, putatively pyramidal cells and interneurons respectively). Furthermore, LAT was similar across cell-types and areas except for longer LAT in MCC RS neurons.

TAU was modulated by cognitive involvement, with MCC RS TAU increasing during task engagement. Furthermore, neuronal activity timescales were correlated with task variable timescales, as generalized mixed linear model showed LPFC RS and MCC RS short TAU encoded short-term feedback within the inter-trial period, while MCC RS long TAU encoded long-term gauge size information throughout trials. These TAU differences were anatomically organized within an antero-posterior gradient in MCC, with higher TAU in posterior neurons encoding long-term gauge size information. Behavioral switching was potentially induced by MCC FS units, as they were most engaged in encoding negative feedback in the first second after feedback onset.

Starting from a detailed biophysical recurrent network model of LPFC, we identified AHP and GABA-B conductances as crucial determinants for varying neuronal activity timescales from LPFC to MCC, with AHP increasing excitatory (RS) LAT and GABA-B increasing TAU. These elements were consistent with experimental observations of lower MCC frequency-current gain in RS cells (consistent with stronger AHP), as well as stronger and slower inhibition in MCC (consistent with stronger GABA-B). Furthermore, increase in GABA-B conductance led to collective transitions between quasi-stationary metastable states, where spiking timescales were amplified into functionally-relevant network states of several seconds in MCC and hundreds of milliseconds in LPFC, while increase of gAHP decreased probabilities of short states. Finally, maintenance of and transitions between states was controlled by inhibitory neurons, predicting MCC state transitions when MCC FS neurons encoded negative feedback. Importantly, these states emerged without learning, inhibitory subnetworks naturally emerging from the synaptic weight's variability being increasingly contrasted by stronger slow synaptic GABA-B currents.

Contributions

I developed the biophysical neural network model, the autocorrelogram analysis and all analyses on model data (HMM, PCA, etc.), created the figures 5-7, wrote the first draft of the corresponding results text, figure legends, and methods, and reviewed all parts of the text.
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Chapter 4. Temporal integration within the MCC

Summary

The previous chapter has identified strong and slow synaptic inhibition as being responsible for the long neuronal activity timescales and quasi-stable network states within the MCC. What are the functions subserved by MCC, and how do these mechanisms contribute to them? We proposed that the MCC's central function is temporal integration of diverse information at multiple timescales required for adaptive behavior, such as integrating outcome history for behavioral planning, due to converging evidence from its anatomical, intrinsic network, neurophysiological, and behavioral properties.

The MCC was defined here as the region of the medial wall dorsal to the corpus callosum (also referred as dACC). The MCC lies at the core of a densely connected network, receiving a rich diversity of cognitive cortical feedback, domain-specific posterior to anterior somato-motor inputs and para-and ortho-sympathetic autonomic information. This convergence of multimodal excitatory inputs was proposed to be gated by frequent, strong and slow local network inhibition, with an increasing GABA-B anteroposterior gradient in MCC. Inhibition is indeed important to temporal information integration, as evidenced by the latter's link with MCC GABA/glutamate concentrations, and the previous chapter's model findings that strong and slow inhibition resulted in long neuronal timescales and network states peregrinating within discrete quasi-stationary states (i.e. metastability).

These timescales and network states were proposed to form the basis of the MCC's capacity to encode the history of expected and actual outcomes and feedback values in terms of behavioral adaptation and future strategy shifts, regulating decisions according to the actionreward feedback history and providing the motivation for temporally-extended behaviors. Indeed, individual neurons encode the history of reward magnitude through intrinsic activity timescales of varying lengths (particularly inhibitory neurons). Accordingly, MCC deactivation and lesion leads to loss of adaptation when facing diminishing reward through shorter reward history, loss of exploratory behavior, and of motivation for time-extended behaviors. Conversely, MCC stimulation induces the incentive for -and realization of -behaviors directed toward information search, as well as faster learning rates. Furthermore, MCC network state switches are shown to be concomitant with switches between exploration and exploitative strategies, where network activity is proposed to alternate between two pseudo-attractor spaces of exploration and exploitation composed of dynamic and stable subspaces.

Continuing research on the MCC model of the last chapter, additional results showed the complementary roles of fast GABA-A and slow GABA-B in defining these transitions, with GABA-A predicting the timing and GABA-B the nature of transitions. Investigating the synaptic matrix more closely revealed depressed inhibitory assemblies (inhibitory neurons least connected to each other fire together) underpinning persistent activity associated with certain network states, as well as depressed synaptic chains (or pathways; inhibitory neurons least inhibited next neurons in the sequence) underpinning neural activity sequences associated with other states. At the network level, these led to alternation between dynamic and stable coding, as well as sequential peregrination of network activity between states within two larger pseudoattractor spaces (putatively exploration and exploitation). 
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Linking states and sequences

The last chapter proposed that transitioning network states subserve peregrination of network activity between and within two pseudo-attractor domains of exploration and exploitation, with respectively dynamic and stable behaviors (Enel et al., 2016;Stoll et al., 2016).

In Chapter 3 Fig. 8, we have shown that states are maintained, and transitions induced, by inhibitory currents and neurons in the MCC model. But how exactly do these inhibitory currents maintain network states and induce transitions? More precisely, what is the role of both GABA-A and GABA-B currents in inducing transitions, and how are network states maintained through GABA-B currents? Furthermore, does MCC collective activity show network dynamic and stable coding, as well as two pseudo-attractor spaces (putatively for exploration and exploitation), as observed experimentally?

Dual contribution of inhibitory currents to transitions

To understand network dynamics more clearly, we grouped neurons according to the HMM state in which they fire the most, defined as the state 𝑠 for which the emission of neuron 𝑛 is maximal in the HMM emission matrix 𝐸(𝑠, 𝑛), i.e. argmax ! 𝐸(𝑠, 𝑛). This allowed us to define 4 mixed (excitatory and inhibitory) subpopulations, one for each state, where each neuron belonged to one state only. In the following, we defined excitatory and inhibitory subpopulations as the excitatory and inhibitory neurons of each subpopulation. As such, when referring to an excitatory or inhibitory subpopulation, there is a corresponding inhibitory or excitatory subpopulation, respectively.

We found that major variations of averaged inhibitory currents received by each inhibitory subpopulation (inhibitory neurons underlying a given state, i.e. having their largest mean firing frequency in that state) actually correlate with transition times between two states (Fig. 1), and that GABA-A and B showed complementary roles of the 2 inhibitory currents.

On the one hand, we found that the GABA-B current impinging on the subpopulation underlying the next state (Fig. 1a) decreases long before the transition (~500ms). Because no other synaptic current showed such anticipatory variation (not shown), this GABA-B decrease most likely caused the transition to the next state. Actually, the higher frequency defining the current (e.g. previous or following) inhibitory subpopulation was causally accounted for by the lower amount of received GABA-B currents (Fig. 1a, see below).

On the other hand, the GABA-A current (Fig. 1b) decreased just before the transition (~10ms), with a larger decrease in the subpopulation underlying the next state, defining the precise moment when the transition, gated by GABA-B dynamics, took place.

Altogether, these data indicated that collective network dynamics were essentially determined by competitive cross-inhibition between inhibitory subpopulations, which was central in setting state maintenance and transitions. Specifically, 1) the least inhibited (most disinhibited) inhibitory subpopulation induced the current network state, 2) transition to a new state occurred through the conjunction of a slow and progressive GABA-B disinhibition terminated by an additional fast GABA-A disinhibition triggering of the next subpopulation.

A rich repertoire of static and dynamic attractors in synaptic engrams underlying stable and dynamic coding

The question arises: how do inhibitory neurons associated with the current state receive less inhibitory currents? We reasoned that inhibitory subpopulations should project weaker inhibitory synapses onto themselves, and stronger synapses onto other subpopulations. To assess this hypothesis, we measured the average synaptic weights between and within each subpopulation (Fig. 2a) and found that weights were indeed weaker within each inhibitory subpopulation, compared to between them (Fig. 2a, Inh→Inh., blue within vs. orange between subpopulations), resulting in "anti-" or "negative" assemblies of inhibitory neurons, with strong synaptic cross-inhibition between them. This synaptic structure accounted for the dynamical properties (states, transitions) observed in these assemblies (see above). Contrary to the classical notion of (e.g. Hebbian) neural assemblies (defined by excitatory neurons being more connected with each other among the assembly than with neurons outside of the assembly), "anti-assemblies" are defined here by how weakly neurons connect to other neurons in the assembly, compared to the rest of the network (i.e. other assemblies).

Furthermore, inhibitory subpopulations projected weaker weights onto their corresponding excitatory subpopulations (Fig. 2a, Inh.→Exc., blue vs. orange). Combined with the fact that excitatory subpopulations projected similar weights to all excitatory and inhibitory subpopulations (Fig. 2a, Exc.→Exc. and Exc.→Inh., blue vs. orange), this confirmed that excitatory subpopulations are defined by inhibitory projections, i.e. namely, weaker inhibitory connections to inhibitory neurons and stronger inhibitory connections to excitatory neurons within each subpopulation.

In summary, the network dynamics analyzed through HMM allowed us to define neuronal subpopulations, from which we were able to backtrack organized structure in the form of inhibitory anti-assemblies, within the randomly initialized synaptic weight matrix. Note here that no form of learning was present in defining assemblies and that they purely emerged from structural and synaptic heterogeneity, i.e. randomness of connection sparsity and weights. The principal factor at play here was that strong and slow synaptic GABA-B currents amplified the effect of the synaptic weight matrix's random structure on network dynamics.

In principle, HMMs assume stationary data, thus the synaptic structure we could unveil through them is limited to stationary activity, and not dynamic sequences of neural activity. These sequences might nevertheless exist, emerging through GABA-B slow currents propagating along synaptic chains (pathways) within the unveiled assemblies of the synaptic weight matrix.

To address this possibility, we reordered neurons within each subpopulation according to their average median activation times (Fig. 2b top). Within the time period when the network is in a given state, the median activation time of a neuron of the corresponding state's subpopulation was taken as the timing of the neuron's median spike (for a neuron firing 5 spikes, the timing of the 3 rd spike). Median activation times were then averaged across all time periods when the network was in the associated state (i.e. all green time periods for a neuron within the green state's subpopulation, Fig. 2b bottom). When doing so, we could observe a rich repertoire of dynamic and static attractors in MCC simulations, with repeating sequences of activity of neurons activating successively within states/subpopulations (Fig. 2b bottom, green, orange, and red bottom states) and systematic persistent activities in others (Fig. 2b bottom, purple top state). The slopes of correlations between neural index and timing of spikes within HMM state subpopulations confirmed this analysis, with horizontal slopes for static attractor states and diagonal slopes for dynamic attractor states (Fig. 2b bottom, essentially horizontal slopes for purple top state, and diagonal slopes for green, orange and red bottom states).

Sequences of neural activity should be accompanied by a directed synaptic chain in the synaptic weight matrix. Within the synaptic matrix connecting pre-and post-synaptic excitatory neurons ordered according to their activation times, a synaptic chain would correspond to 1) stronger synapses in the forward direction, i.e. on diagonals below the main diagonal (Fig. 2c, yellow band below the red main diagonal), from pre-synaptic to post-synaptic neurons situated further along the sequence, and 2) weaker synapses in the backward direction, i.e. on diagonals above the main diagonal (Fig. 2c, dark blue band above the red main diagonal). We studied the average difference between forward and backward weight diagonals (i.e. below and above the main diagonal) for each synaptic type within subpopulations. We found significantly weaker forward (stronger backward) synapses for Inh.→Inh. and Inh.→Exc. connections only (Fig. 2d, blue and purple curves and shaded areas below zero, respectively), by opposition to Exc.→Exc. and Exc.→Inh. connections, which displayed no specific trend (Fig. 2d, red and green curves and shaded areas centered on zero). Thus, within each subpopulation, inhibitory neurons were connected through forward weaker synapses, with each inhibitory neuron inhibiting the following neurons less, forming an "anti-synaptic chain". Such disinhibition would result in higher frequency in subsequent neurons, propagating the sequence of neural activity. This effect was found when averaging across all states (even those resulting in persistent neural activity), suggesting that the synaptic chains of states resulting in sequences were more pronounced than the shown average (across states displaying static activity and sequences) shown in Fig. 2d.

At the network level, these sequential or persistent activities in subpopulations impacted network activity, resulting in alternation between dynamic (Fig. 2e, yellow diagonals) and stable (Fig. 2e, yellow squares) network activity.

Sequential peregrination of network state within two meta-states

The presence of a temporal structure of network activity at the 100ms-1s HMM state temporal scale suggests that there might be a structure at larger temporal scales, i.e. the peregrination between network states itself could be structured. This structure could be static, e.g. correspond to a random alternation between two-macroscopic static attractors, each of which including one or several similar states with underlying persistent activity. Such a possibility could for example putatively correspond to a dichotomy between exploratory and exploitative strategies. Alternatively, this structure could be sequential, i.e. displaying reoccurring specific sequences of states, as during the successive evaluation of network states, putatively encoding different behavioral strategies. Both possibilities may even co-exist in the same network.

Simple visual inspection seemed to suggest that network states were indeed organized in sequences of N-states (Fig. 2b, green-orange-red 3-state sequences). We assessed whether network state transitions solely depended upon the previous state (i.e. were Markovian), or organized into longer sequences, with certain sequences of N states (N > 2) more probable than others. To answer this question, we calculated the Shannon entropy of the probability of N-state sequences in the simulation data (Fig. 3a, red curve), and compared this number to a control condition where N-state sequences were solely derived from information about 2-state sequences (a.k.a. the HMM transition matrix), i.e. purely Markovian sequences of 2 states (where the probability of the next state depended exclusively upon the current state, Fig. 3a, black line). We observed that the longer sequences were, the more the Shannon entropy of N-state sequence probabilities decreased compared to those of Markovian sequences. This indicated that there was temporal dependence of states to the history of states beyond simply the previous state, with certain sequences of N-states more probable than others, i.e. states were sequentially organized at a longer timescale.

In the example considered, visual inspection of the cross-temporal similarity of network activity vectors at each time step (Fig. 2e and Fig. 3b) also suggested that the network alternated between two macroscopic meta-states, one being stable (large yellow squares, e.g. 26-33 seconds) and the other dynamic (yellow diagonals grouped together, e.g. 10-17 seconds).

Coloring the similarity matrix according to previously established HMM network states (Fig. 3b left, bottom right triangle, cyan rectangles corresponding to green and orange HMM states, orange rectangles corresponding to the red and purple HMM states) matched this macroscopic structure well, suggesting two macroscopic meta-states existed and each corresponded to two combined HMM states. Visualizing network activity in a reduced dimensionality (PCA) space (colored as above, Fig. 3b right) also revealed two separated macroscopic meta-states, with orbits peregrinating between meta-states, as well as within them between their constitutive states.

In conclusion, peregrination of network states was organized according to alternations between two macroscopic meta-states. These two meta-states could putatively subserve exploratory and exploitative regions, i.e. with respectively dynamic (cyan meta-state) vs static (orange meta-state) global behavior, as unraveled experimentally (Enel et al., 2016;Stoll et al., 2016). Network trajectory orbits sequentially visited underlying HMM states within these metastates (putatively encoding different exploratory and exploitative strategies). At a lower temporal scale, each network state itself contained neural sequences or persistent activity, subserving dynamic and stable coding. Together, this opened the possibility to encode information at different timescales in the network (states with sequences for short information and persistent activity for intermediate durations, as well as dynamic and stable macroscopic meta-states for longer and longest information timescales respectively).

Such a dynamical richness could form the neural substrate allowing the temporal integration of information at multiple timescales and behavioral switches necessary to MCC function. Furthermore, it shows the promising potential of GABA-B neuromodulation in actual monkeys learning behavioral tasks which induce synaptic plasticity within MCC networks. Indeed, such a large dynamical repertoire was obtained simply through GABA-B-mediated amplification of the effects of the synaptic matrix's randomized heterogeneity on network dynamics. As GABA-B temporally amplifies even minute differences in synaptic structure, it should increase the impact of synaptic plasticity and resulting synaptic structures on behaviors, thus making learning more effective. This hypothesis deserves future exploration. Chapter 5. Mechanistic origin of robust neural trajectory replay within synaptic noise

Figure legends

Summary

In the previous chapters, strong and slow inhibitory GABA-B currents induced long-lasting labile network states with neural activity sequences within them. However, these network states and sequences originate from the synaptic matrix's random structure amplified by slow GABA-B synaptic currents, and are thus not learned nor related to external stimuli in the models. In contrast, neural trajectories, i.e. sequences of transient sparse neural activity, prominently observed for working memory and navigation in rodent PFC and hippocampus (HP) respectively, propagate during behavior and are intrinsically generated during subsequent sleep and awake immobility without external stimuli. This hints at the existence of underlying synaptic chains (pathways) learned through spike-timing dependent plasticity (STDP), being subsequently triggered through an internal or external trigger. However, the asynchronous irregular (AI) and even chaotic activity regime of awake cortex can result in incessant spontaneous replays and destabilized sequence propagation when triggering synaptic chains, hindering behavioral performance. Conversely, pack propagation may perturb global AI network activity, e.g. prohibiting other concurrent network computations and trajectory replays, hindering other behaviors. What biophysical mechanisms allow sequences to be reliably evoked when necessary (controllability), and steadily propagate (stability), without significantly altering network activity (independence), within potentially jeopardizing chaotic synaptic noise?

We modeled a biophysically constrained recurrent network of conductance-based Integrateand-Fire neurons, whose balanced excitatory and inhibitory currents led to AI chaotic dynamics. Presentation of a trajectory stimulus led to the learning of synaptic chains through STDP and synaptic scaling, inducing replays after a triggering stimulus or spontaneously (due to AI dynamics) with varying degrees of propagation stability, as mentioned above. Spiking was driven by inhibitory GABA-A current fluctuations outside of trajectory replay, and strong excitatory NMDA current average within trajectory replay. This allowed us to predict that an excitatory frequency threshold separated both activity regimes in a reduced model, and model transitions between them as bistable excitatory frequency dynamics with added random noise.

Armed with this knowledge, we identified three biophysical mechanisms which can increase trajectory replay controllability and stability: 1) slow inhibitory currents, 2) combining tonic frequency-independent inhibition with stronger recurrent excitatory functional connectivity, and 3) spike-mediated CAN and AHP ionic currents promoting intrinsic, transient (i.e. weaker than conditional) bistability. We found that, while increased controllability and stability generally decreased independence, CAN and AHP preserved trajectory independence, intrinsic transient bistability alleviating constraints on synapse-mediated pack propagation. Reliable replay with the aforementioned mechanisms was robust to variation of model parameters, and modulating the STDP temporal window and trajectory stimulus allowed reliable replay of many different attractor types (i.e. Hebbian assemblies, synfire chains, Hebbian phase sequences, ring attractors, as well as possible uni-/bi-directional propagation), reinforcing the genericity of the model and its mechanisms across cerebral structures and species.

Contributions

I developed the biophysical neural network model and all analyses, participated to the elaboration of reduced models, wrote the first draft of the article and subsequently reviewed it entirely, and produced all figures.
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168 Chapter 6. "Online" STDP learning and replay of neural trajectories in synaptic noise

Summary

The previous chapter evaluated the conditions under which controllable, stable and independent trajectory replay can emerge within AI chaotic awake cortical activity. However, trajectory learning and replay phases were separated, with learning occurring "offline" beforehand via phenomenological STDP and network simulations of trajectory replay studied afterwards without synaptic plasticity, even though noisy activity affects both trajectory replay and learning. Indeed, activity-dependent synaptic plasticity with noisy activity can add erratic synaptic modifications within and outside the synaptic engram during trajectory presentation, as well as gradually erase the learned synaptic engram through non-specific plasticity.

Conversely, trajectory stimuli and replay activity can disrupt the stationary AI regime via runaway activity-plasticity interactions. Even without synaptic engrams, the complexity of AI dynamics undergoing STDP might drastically decrease from chaos to limit cycle (e.g. saturation) or even fixed points (e.g. silence).

We addressed these issues in a PFC neural network model capable of stable and controllable replays (building upon the previous chapter), and studied trajectory learning, replay, and memory maintenance, with calcium-based "online" STDP learning and instantaneous scaling of excitatory synapses occurring within the AI regime of awake cortex. We found that calciumbased STDP preserved AI dynamics due to the faint activation of kinase/phosphatase cycles at near-basal synaptic calcium during rest stationary activity. Massive calcium inputs during trajectory learning stimulus led to rapid learning of the synaptic chain (pathway). The existence of a dynamic engram didn't affect AI dynamics during rest activity, and stimulating the starting neurons allowed successful trajectory replay.

Weak non-specific plasticity induced by low-frequency noisy activity led to slow forgetting of the dynamic engram (~2h) and faster forgetting of trajectory replay (~15min). To compensate engram erasure, repeating trajectory replays led to positive activity-plasticity feedback loops, resulting in paroxysmal activity and catastrophic forgetting. Slowing down plasticity in response, combined with multiple learning stimuli, led to proportionally slower engram erasure and less likely paroxysmal activity. Trajectory replay was consequently maintained ~3x longer than expected, since repeating learning stimuli simultaneously replayed the trajectory, recruiting more neurons and further stabilizing the engram. As such, slower plasticity allowed a greater (~3x) physiological range between stable and paroxysmal replay.

Furthermore, the model offered answers concerning the underpinnings of regular vs. fast timescale navigational trajectory replays, modeled as putative rapid reversible dopaminergic neuromodulation of NMDA opening dynamics. Similarly, it offered a framework for simultaneous dynamic and stable coding, where individual neurons displayed relay race dynamic coding (~200ms) while average population frequency displayed decaying persistent coding (~1s). Finally, the model accounted for part-based learning in PFC and chunking of HP navigational trajectories, as trajectories could be successfully replayed even when presented as disjointed (slightly overlapping) fragments in any arbitrary order.

Contributions

I developed the biophysical neural network model and STDP rule, supervised Julie Victor's master thesis work, converting certain figures to article format, and produced other results and figures (figure 1, AI nature of activity across time, chunking, regular/fast replay, dynamic / persistent coding, multiple replays with slower plasticity, time constant analysis), and entirely reviewed and finalized all texts.
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Chapter 7. Dopamine builds and reveals rewardassociated attractors

Summary

The previous chapter described the learning of presented stimulus sequences within synaptic noise and subsequent replay by an external triggering cue. However, it does not account for sequence learning toward a rewarding goal, rather solely replicating presented external stimulus sequences, even though sequences are commonly observed within the context of rewardassigning tasks. Furthermore, they do not consider how motivated intrinsically-generated decisions are taken, in the absence of external triggering cues. Dopamine (DA) neuromodulation is key to both answers, and no theory currently accounts for both of its effects on learning and motivation. The machine learning theory of reinforcement learning interprets phasic DA as a reward teaching signal for learning the values of reward-inducing actions, but doesn't explain DA's online motivational effect during behavior, with phasic release at the initiation of selfpaced movements. The neuroscientific literature suggests for motivation either a directional effect, where stimulus-driven DA increases the salience and directs behavior toward the currently processed cue, or an activational effect, where DA increases the probability or vigor of all motor actions. While the directional account doesn't explain external cue-independent internally-generated behaviors, the activational account doesn't explain why DA specifically impacts non-stereotyped effortful behavior toward a goal far away in physical or task space.

As such, we proposed a double effect for DA, tested both within a recurrent neural network emulating frontal decision-making and through DA electrode stimulation and optogenetics in behaving mice. In the model, DA modulated online synaptic STDP, inducing the emergence of Hebbian assemblies oriented toward the goal within neurons encoding a repeatedly rewarded spatial location. This STDP learning rule (based on the previous chapter's) was supplemented with decaying early LTP/LTD synaptic eligibility traces, which were transformed into synaptic changes through DA impulse at rewarded locations. This assembly attracted network dynamics within its basin of attraction, whereas convergence of network activity from outside the basin was solely driven by noise or an external cue stimulus. Hence, internally-generated motivational DA impulse also multiplicatively gated synaptic NMDA excitability, inducing stronger synaptic reverberation and neural activity within the attractor. This attracted far-away resting-state network activity within behavioral timescales by effectively widening the basin of attraction of the goal-encoding assembly.

This double effect was tested experimentally, with DA-induced learning through medial forebrain bundle (MFB) electrode rewarding stimulations at the goal location, and DA-induced motivation through VTA photostimulation at random times in far-away locations. After mice learned the rewarding goal through uncued MFB electrode stimulation (discarding directional accounts), VTA photostimulation decreased the delay to reward and increased animal speed, as predicted. The mice also converged straight to the goal, showcasing the specific (vs. activational) effect of DA on behavior. This was confirmed through VTA photostimulation without MFB learning, which showed the delay to center or global speed didn't change, discrediting the global energizing of undirected actions predicted by the activational account.

Our experimentally-tested theory thus proposes motivational effects of DA as the revealing of an (otherwise covert) attractor previously learned by the reinforcing effects of DA.

Contributions

I developed the biophysical neural network model and calcium-based kinase-phosphatase couples-mediated eligibility traces and dopamine-based STDP rule, produced all model-related results as well as main and supplementary figures, and reviewed all text.
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Chapter 8. Discussion

This thesis has demonstrated how conditionally bistable intrinsic currents, slow or tonic inhibition and slow excitation increase the reliability of stable and dynamic attractors (or mixtures of both) at the neuronal and network level in frontal circuits, in the context of chaotic noise that characterizes awake cortical dynamics. These attractors emerge from non-learned random synaptic connectivity matrices, inhibitory anti-Hebbian assemblies and anti-synaptic chains (pathways), or excitatory Hebbian assemblies and synaptic chains learned through detailed biophysical models of calcium-mediated and dopaminergic-gated STDP.

Mechanisms promoting the emergence of reliable attractors

8.1.1.

Macroscopic gradients of interneuron proportions

Based upon experimental observations of an increasing gradient of dendritic spines numbers on pyramidal neurons [START_REF] Elston | 4.13 -Specialization of the Neocortical Pyramidal Cell during Primate Evolution[END_REF][START_REF] Wang | Macroscopic gradients of synaptic excitation and inhibition in the neocortex[END_REF] and slower NMDA currents [START_REF] Wang | Macroscopic gradients of synaptic excitation and inhibition in the neocortex[END_REF], previous research has modeled longer neuronal timescales within the cortical hierarchy as stronger and slower excitation [START_REF] Chaudhuri | A Large-Scale Circuit Mechanism for Hierarchical Dynamical Processing in the Primate Cortex[END_REF], even though proportionally stronger inhibitory currents are required to balance the effects of excitation positive feedback loops (i.e. extinction or saturation of activity) and reinforce physiological bistability [START_REF] Joglekar | Inter-areal Balanced Amplification Enhances Signal Propagation in a Large-Scale Circuit Model of the Primate Cortex[END_REF]. Accordingly, they do not account for the macroscopic gradient of interneuron proportions (i.e. more SST+/CB+ and VIP+/CR+ interneurons in frontal areas; [START_REF] Torres-Gomez | Changes in the Proportion of Inhibitory Interneuron Types from Sensory to Executive Areas of the Primate Neocortex: Implications for the Origins of Working Memory Representations[END_REF][START_REF] Wang | Macroscopic gradients of synaptic excitation and inhibition in the neocortex[END_REF], nor the stronger and slower inhibitory currents in MCC (vs. LPFC lower in the cortical hierarchy, [START_REF] Medalla | Strength and Diversity of Inhibitory Signaling Differentiates Primate Anterior Cingulate from Lateral Prefrontal Cortex[END_REF]. Chapter 3 and 4 give meaning to these observations, by proposing that long neuronal timescales or bursting neural activity, peregrination between stable discrete states, and even neural sequences -which are all essential for the operation of executive functions in frontal circuits -emerge through inhibitory intrinsic (AHP) and strong slow synaptic (GABA-B) currents, the latter amplifying the effect of synaptic heterogeneity on global network activity. Such amplification could notably implement the temporal integration of reward-action outcome history at multiple timescales, as well as evaluation of and switches between behavioral strategies, both functions associated with the MCC.

Excitatory-or inhibitory-based gradient alternatives are not exclusive, as they concern distinct synapses (𝐸𝑥𝑐. → 𝐸𝑥𝑐. vs. 𝐼𝑛ℎ. → 𝐸𝑥𝑐./𝐼𝑛ℎ.), the combination of both allowing maximum expression of network dynamics and storage capacity [START_REF] Mongillo | Inhibitory connectivity defines the realm of excitatory plasticity[END_REF]. These hypotheses seem actually rather complementary, as strong inhibition may gate multimodal integration of diverse information provided through excitatory inputs (proposed in Chapter 4). Indeed, VIP+/CR+ interneurons are known to inhibit specific SST+/CB+ neurons, which themselves selectively inhibit pyramidal dendrites, allowing flexible pathway gating of excitatory inputs through disinhibitory motifs [START_REF] Wang | A disinhibitory circuit motif and flexible information routing in the brain[END_REF]. Furthermore, activation of VIP cells in dorsomedial frontal cortex has been shown to enhance working memory retention and selectivity of pyramidal cell activity to specific stimuli [START_REF] Kamigaki | Delay activity of specific prefrontal interneuron subtypes modulates memory-guided behavior[END_REF]. This tells us that disinhibition is crucial in separating pyramidal sustained delay activity to different stimuli, and more generally that inhibitory to inhibitory connectivity contributes to disentangling activity of assemblies.

Nonetheless, the aforementioned macroscopic gradients do not specify the proportions of neurogliaform (NGF) cells (5HT3aR+ but VIP-, [START_REF] Rudy | Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons[END_REF], which connect to different types of interneurons and are an important locus of GABA-Bergic synaptic transmission in mouse primary somatosensory cortex (S1) [START_REF] Rudy | Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons[END_REF]. Furthermore, the MCC model in Chapter 3 assumes all interneurons have strong GABA-B synaptic transmission, whereas NGF cells represent 15% of neurons in mouse S1 [START_REF] Rudy | Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons[END_REF]. As such, further modeling work is required to confirm whether small proportions of neurons projecting strong GABA-B currents can similarly result in long timescales, network states and neuronal sequences. Injecting a GABA-B antagonist during tasks requiring temporal integration of reward outcomes over long periods of time while recording MCC neural activity would also help confirm the role of GABA-B currents in generating long neuronal autocorrelogram timescales.

Inhibitory currents, assemblies and sequences

We were surprised to discover in Chapter 4's additional results indicating that slow GABA-B inhibition amplified the effect of synaptic heterogeneity on network activity such that we could backtrack unprecedented synaptic architectures in the cortex (inhibitory anti-assemblies and synaptic chains; but see [START_REF] Ponzi | Sequentially Switching Cell Assemblies in Random Inhibitory Networks of Spiking Neurons in the Striatum[END_REF], in a very different anatomical (striatum) and functional context), from their resulting network dynamics (persistent activity and sequence propagation, respectively) in randomly organized synaptic matrices. To our knowledge, such a level of organizational complexity of network dynamics is without equivalent, with network collective activity peregrinating according to three nested levels of dynamical organization : 1) meta-states combining states, 2) elementary states themselves, and 3) persistent or sequential spatiotemporal spiking patterns within states. Remarkably, this highly structured dynamics emerged without any form of artificial or realistic plasticity rule, whether at the intrinsic or synaptic level. Retrospectively, such a powerful role of GABA-B makes sense, since the lower number of inhibitory neurons and projecting synapses result in more pronounced effects of interneuron activity on network dynamics (comparatively to 4x more numerous and thus diffuse effect of excitatory neurons and synapses on network activity). This hints at the idea that the less investigated and theoretically described inhibitory synaptic plasticity, beyond simply a balancing role [START_REF] Vogels | Inhibitory synaptic plasticity: spike timing-dependence and putative network function[END_REF][START_REF] Froemke | Plasticity of Cortical Excitatory-Inhibitory Balance[END_REF][START_REF] Hennequin | Inhibitory Plasticity: Balance, Control, and Codependence[END_REF], might underpin network attractor behavior.

Inhibitory currents can also promote reliable attractors emerging through excitatory synaptic engrams. Indeed, Chapter 5 demonstrates that tonic increase of inhibitory frequency or slower inhibitory currents onto excitatory neurons (when paired with stronger excitatory connectivity) increases the stability and controllability (i.e. the capacity to replay sequences only after an initial trigger) of learned excitatory sequences, thus representing biophysical mechanisms that increase reliable attractor emergence. The identification of these mechanisms comes from a theoretical understanding of the two activity regimes defining pack propagation and resting-state activity, namely strong excitatory NMDA average-driven spiking and disinhibitory GABA-A current fluctuations-driven spiking respectively. Theoretically, this can be simply understood as bistable frequency dynamics, where excitatory frequency amplifies into pack propagation above a frequency threshold and decreases until it reaches resting-state activity below the threshold. In conjunction with STDP modulation and discrete or static presentation stimuli, these mechanisms allow reliable emergence of many different types of attractors, be they static/dynamic, discrete/continuous and uni-bidirectional (e.g. Hebbian assembly, synfire chain, Hebbian phase sequence, ring attractors). As such, inhibitory currents represent a generic mechanism promoting reliable emergence of a wide spectrum of attractor types, potentially present across cognitive structures and functions.

While it is tempting to conclude that the generic inhibition-based mechanisms of Chapter 5 and slow GABA-B inhibition of Chapter 3-4 bear the same consequences, the tonic increase of inhibition acts to stabilize and decrease excitatory activity outside of pack propagation, whereas slow GABA-B inhibition precisely induces temporally-heterogeneous high frequency activity such as inhibitory sequences. In other words, while assembly activation or sequence propagation is supported by slow NMDA currents in excitatory assemblies or synaptic chains and dampened by tonic inhibition, assembly activation or sequence propagation results from slow GABA-B current disinhibition in inhibitory anti-assemblies or -synaptic chains. Both thus have similar effects in fine but by different means, the control of excitatory synaptic structures vs inhibitorybased synaptic structures. As such, strong GABA-B-induced currents precisely leads to spontaneous sequence replay, drastically decreasing controllability of trajectory replay without biophysical mechanisms to dampen such uncontrolled replay.

Accordingly, transitions between stable network states in monkey frontal areas (putatively GABA-B-mediated, as suggested in Chapter 3), and dynamic network states containing RS activity sequences in mouse mPFC (putatively NMDA-mediated) during working memory might be similarly inhibition-induced. Indeed, interneuron spike bursts (LFP beta-band) occur briefly before those of pyramidal neurons in LPFC and ACC when macaques shift from non-selective to selective attentional stable states during a working memory task (~10ms before, [START_REF] Womelsdorf | Burst Firing Synchronizes Prefrontal and Anterior Cingulate Cortex during Attentional Control[END_REF]. This is reminiscent of context switching between different RS neuronal sequences (possibly each contained within a network state) during working memory in mouse mPFC, promoted by mediodorsal thalamic activation of cortical inhibition [START_REF] Rikhye | Thalamic regulation of switching between cortical representations enables cognitive flexibility[END_REF]. This suggests a common role for inhibition as inducing transitions between network states, potentially via GABA-B also in mouse mPFC.

Generic role of intrinsic bistability in prefrontal dynamics

Chapter 2 shows that in a layer 5 PFC pyramidal neuron model, spike-mediated CAN and CaL intrinsic currents promote conditional bistability (CB), i.e. where persistent activity after an initial cue event is conditional upon depolarizing current (or, more directly, depolarized membrane potential) during the delay period. This is in contrast to absolute bistability (AB), in which persistent activity only requires the initial cue and is strongly stereotyped (highly regular spiking). CB, representing a weaker form of bistability compared to AB, paradoxically allows a richer dynamical repertoire, with persistent activity being stable yet sufficiently labile to support PFC network states transitions for elaborating adaptive working memory-related cognitive processes [START_REF] Abeles | Cortical activity flips among quasi-stationary states[END_REF][START_REF] Seidemann | Simultaneously recorded single units in the frontal cortex go through sequences of discrete and stable states in monkeys performing a delayed localization task[END_REF][START_REF] Cossart | Attractor dynamics of network UP states in the neocortex[END_REF].

This same weak bistability could also help temporarily stabilize sequences of neural activity, with stable firing being conditional on subliminal input from vanishing activities of previous neurons in the sequence. Indeed, Chapter 5 shows that, in addition to slow synaptic current dynamics (NMDA, GABA-B) and tonic inhibition, sequence propagation is stabilized through intrinsic currents promoting intrinsic transient bistability (i.e. intrinsic bistability induced transiently, during the hundreds of milliseconds in which the previous excitatory neurons of the sequence fire many action potentials at the next neurons). Furthermore, amongst the other mechanisms, CAN and AHP currents was the only mechanism allowing excitatory network activity to be unaffected by trajectory replay (independence), allowing parallel computations (e.g. multiple simultaneous trajectory replay).

Finally, the LPFC and MCC models of Chapter 3-4 also required AHP currents, supporting GABA-B currents by decreasing short states (and thus increasing the duration of network states), and CAN currents, counterbalancing the strong GABA-B-and AHP-mediated frequency decrease. Such versatile functionality hints at the importance of assessing the interaction between intrinsic and synaptic properties for reliable emergence of attractors, alleviating the constraints ensuring attractor stability from depending solely on synaptic currents and engrams [START_REF] Compte | Computational and in vitro studies of persistent activity: Edging towards cellular and synaptic mechanisms of working memory[END_REF], ultimately enriching the computational capacities of neurons and networks.

Alternative mechanisms and improvements

Beyond inhibitory and intrinsic currents, what other mechanisms promote reliability and stability of static or dynamic attractors within synaptic noise? One of the shortcomings of the current model is the lack of description of dendritic compartments. Computations using dendritic compartments have been shown to allow supra-linear integration of synaptic inputs [START_REF] Cazé | Passive Dendrites Enable Single Neurons to Compute Linearly Non-separable Functions[END_REF][START_REF] Tran-Van-Minh | Contribution of sublinear and supralinear dendritic integration to neuronal computations[END_REF], amplifying EPSPs evoked by action potential coincidence, thus further separating the low frequency asynchronous irregular regime and high frequency synchronous activity induced by sequence stimulus and replay. Furthermore, dendritic membrane potential inflections due to backward-propagating dendritic spikes (such as in HP, [START_REF] Jarsky | Conditional dendritic spike propagation following distal synaptic activation of hippocampal CA1 pyramidal neurons[END_REF] represent a more direct biophysical substrate for STDP (instead of calcium, [START_REF] Graupner | Calcium-based plasticity model explains sensitivity of synaptic changes to spike pattern, rate, and dendritic location[END_REF], removing the magnesium block in NMDA receptors via strong depolarization and thus inducing LTP. The thesis neuronal model is iso-potential, potentially cutting short dendritic membrane potential and NMDA depolarization. Finally, recruitment of distinct dendrites performing spatial summation of synaptic inputs may allow further discrimination between multiple sequences or more complex population trajectories, potentially solving the question raised above. Additionally, short-term plasticity, in which synapses connecting bursting neurons undergo facilitation, can promote more reliable network states and sequences. Similar to before, shortterm facilitation potentiates synapses on a short timescale (hundreds of milliseconds), allowing supra-linear EPSP temporal summation during high frequency pre-synaptic activity. In line with this idea, reliable reactivation of stable representations stored within short-term plasticity hidden variables during dynamic neural activity has been proposed [START_REF] Barak | Neuronal Population Coding of Parametric Working Memory[END_REF][START_REF] Stokes | Dynamic Coding for Cognitive Control in Prefrontal Cortex[END_REF][START_REF] Stokes | Activity-silent' working memory in prefrontal cortex: a dynamic coding framework[END_REF], and observed for rat mPFC neural activity sequences [START_REF] Fujisawa | Behavior-dependent short-term assembly dynamics in the medial prefrontal cortex[END_REF].

Learning reliable attractors

Learning working memory and navigational sequences

While the aforementioned mechanisms explain how attractors can be replayed in the absence of learning or once learned, they do not describe the conditions underlying reliable learning of such attractors during noisy synaptic activity. Chapter 6 describes how neural activity sequences are learned through STDP and replay during network AI activity, whose disordering influence potentially jeopardizes learning, replay and memory maintenance of trajectories (in contrast to Chapter 5, which used a phenomenological STDP rule "offline", i.e. not during network AI activity). STDP results from non-linear spike-mediated calcium-based activation of kinasephosphatase couples, the non-linear activation dynamics inducing rapid learning of the sequence through a single stimulus presentation while guaranteeing slow synaptic chain forgetting (~2h) during network resting-state activity (preserving AI dynamics). Furthermore, the stimulus could be iteratively learned through overlapping fragmented chunks (as for navigational HP trajectories, [START_REF] Buzsáki | Memory, navigation and theta rhythm in the hippocampalentorhinal system[END_REF].

However, while the current thesis focuses on learned neuronal sequences, several lines of evidence point to navigational sequences pre-existing and being repurposed by behavior [START_REF] Buhry | Reactivation, Replay, and Preplay: How It Might All Fit Together[END_REF], with sequential activity during SWS or awake rest occurring before animals are exposed to novel environments or representing trajectories never experienced by the animal. It is possible that the former sequences subserve other representations than navigational trajectories but co-occur with them, while the latter sequences might correspond to trajectories learned outside of the experimental setup, questioning the exact nature of navigational trajectory learning. Interestingly, the sequences arising within states (additional results of Chapter 4) could form the neural basis of such pre-existing trajectories (as a form of "dynamical whiteboard") that can be repurposed by learning. Furthermore, while navigational sequences are characterized by straightforward sequential stimuli during behavioral runs, i.e. presentationbased learning which we extensively model in Chapter 5 and 6, working memory and cortical slice sequences might arise simply from repetition of the initial trigger, where the synaptic chain beyond the initial neurons is iteratively built through repeated stimulation of initial neurons, i.e. trigger-based learning, questioning the exact nature of working memory sequence learning.

It is less clear how STDP rules during AI network activity could induce synaptic chains based upon multiple repetitions of an initial trigger stimulus. Models that have achieved trigger-based learning lack AI activity [START_REF] Liu | Embedding Multiple Trajectories in Simulated Recurrent Neural Networks in a Self-Organizing Manner[END_REF]. In contrast, within the calcium-based STDP concomitant to AI activity of Chapter 6, such repetition of high frequency stimuli can simply lead to paroxysmal activity. However, even with slower plasticity, the unidirectional plasticity rule would need to associate pre-synaptic high-frequency with post-synaptic low-frequency neurons (instead of high-frequency neurons together only). Each trigger repetition of the initial neurons would induce potentiation in a large proportion of outgoing synapses, affecting different proportions of synapses according to which post-synaptic neurons happen to fire. Competition of outgoing synapses, e.g. via synaptic scaling of outgoing synapses, would allow progressive selection of specific neurons as the next steps of the synaptic chain [START_REF] Liu | Embedding Multiple Trajectories in Simulated Recurrent Neural Networks in a Self-Organizing Manner[END_REF][START_REF] Fiete | Spike-Time-Dependent Plasticity and Heterosynaptic Competition Organize Networks to Produce Long Scale-Free Sequences of Neural Activity[END_REF], although the biological realism of such meta-plasticity remains to be determined. The chosen parameters for the calcium-based learning rule of Chapter 6 do not allow such learning, due to its strongly non-linear hetero-associative nature, guaranteeing strong potentiation of synapses only between neurons strongly co-active. Going further, such a learning rule should instead solely potentiate synapses between a neuron with high and another with low frequency -which is non-sensical since NMDA-mediated LTP detects coincident strong firing -, or include stronger multiplicative LTD, in order to avoid paroxysmal activity. Finally, the resulting synaptic chain might be much more complex than a sequence, potentially leading to tree-like synaptic structures, i.e. multiple progressively diverging synaptic chains, each activated in turn due to inhibitory retroaction-based competition between sequences.

Dopaminergic neuromodulation of sequences

While it is unclear how STDP could promote sequence learning based on a repeated trigger, Chapter 6 does not describe how sequence are learned toward a rewarding goal, even though these navigational and working memory sequences are precisely observed within the context of rewarding tasks. Furthermore, they cannot explain how internally-generated decisions are taken in the absence of external triggering cues, even though animals can freely navigate.

Chapter 7 proposes an answer to these questions by assessing the interaction between two biophysical effects of DA, 1) gating STDP eligibility traces such that a Hebbian assembly oriented toward the repeatedly-rewarded goal emerges, and 2) gating synaptic NMDA excitability (conductance strength), inducing strong synaptic reverberation and neural activity within the assembly of neurons encoding the rewarded goal location, the mouse thus converging toward the reward. The current thesis further unravels a third biophysical role to dopaminergic neuromodulation, that of modulating synaptic excitability by slowing NMDA channel closing dynamics [START_REF] Chen | Potentiation of NMDA receptor currents by dopamine D1 receptors in prefrontal cortex[END_REF][START_REF] Onn | Differential modulation of anterior cingulate cortical activity by afferents from ventral tegmental area and mediodorsal thalamus[END_REF][START_REF] Onn | Dopamine D1 and D4 Receptor Subtypes Differentially Modulate Recurrent Excitatory Synapses in Prefrontal Cortical Pyramidal Neurons[END_REF]. Since excitatory sequences are mostly mediated by NMDA currents, such neuromodulation has been shown in Chapter 6 to underpin the fast and regular timescale navigational trajectory replays (Skaggs and McNaughton, 1996).

8.2.3.

States and sequences in the larger context of complex temporal computations It has been proposed that working memory delay activity translates into transient sequential activity in rodent mPFC, whereas it translates into predominantly persistent activity in monkey LPFC, due to the expansion of prefrontal microcircuits and their interconnectedness in primates [START_REF] Constantinidis | Persistent Spiking Activity Underlies Working Memory[END_REF]. While the present thesis separately models these two as dynamic and stable attractors respectively, both are in reality simultaneously observed in animal cortices. Indeed, observations of dynamic coding subserved by transient or sequential neuronal activity profiles are becoming more common in monkey prefrontal cortex, as previously mentioned [START_REF] Rainer | Timecourse of object-related neural activity in the primate prefrontal cortex during a short-term memory task[END_REF][START_REF] Brody | Timing and Neural Encoding of Somatosensory Parametric Working Memory in Macaque Prefrontal Cortex[END_REF][START_REF] Shafi | Variability in neuronal activity in primate cortex during working memory tasks[END_REF][START_REF] Meyers | Dynamic Population Coding of Category Information in Inferior Temporal and Prefrontal Cortex[END_REF][START_REF] Meyers | Dynamic Population Coding of Category Information in Inferior Temporal and Prefrontal Cortex[END_REF][START_REF] Barak | Neuronal Population Coding of Parametric Working Memory[END_REF][START_REF] Machens | Functional, But Not Anatomical, Separation of "What" and "When" in Prefrontal Cortex[END_REF][START_REF] Stokes | Dynamic Coding for Cognitive Control in Prefrontal Cortex[END_REF][START_REF] Sreenivasan | Revisiting the role of persistent neural activity during working memory[END_REF][START_REF] Stokes | The Importance of Single-Trial Analyses in Cognitive Neuroscience[END_REF][START_REF] Murray | Stable population coding for working memory coexists with heterogeneous neural dynamics in prefrontal cortex[END_REF][START_REF] Parthasarathy | Mixed selectivity morphs population codes in prefrontal cortex[END_REF][START_REF] Skaggs | Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences[END_REF][START_REF] Cavanagh | Reconciling persistent and dynamic hypotheses of working memory coding in prefrontal cortex[END_REF]Lundqvist et al., 2018a;[START_REF] Wasmuht | Intrinsic neuronal dynamics predict distinct functional roles during working memory[END_REF]. Conversely, persistent RS activity profiles are observed alongside transient RS activity profiles in equal proportions in rodent mPFC [START_REF] Rikhye | Thalamic regulation of switching between cortical representations enables cognitive flexibility[END_REF], blurring the distinction between persistent and dynamic activity. This further reinforces the plausibility of mechanisms promoting reliability of both types of attractors (e.g. aforementioned CAN and AHP intrinsic bistability).

More generally, the recent advent of massive multi-unit recording techniques coupled with the development of dimensionality reduction techniques [START_REF] Churchland | Techniques for extracting single-trial activity patterns from large-scale neural recordings[END_REF][START_REF] Cunningham | Dimensionality reduction for large-scale neural recordings[END_REF] allows the reinterpretation of complex single neuron coding schemes within population activity repeatable trajectory single-trial coding schemes, such as for motor cortex during reaching [START_REF] Churchland | Neural population dynamics during reaching[END_REF], olfactory cortex during olfaction [START_REF] Mazor | Transient dynamics versus fixed points in odor representations by locust antennal lobe projection neurons[END_REF][START_REF] Bathellier | Dynamic Ensemble Odor Coding in the Mammalian Olfactory Bulb: Sensory Information at Different Timescales[END_REF], and prefrontal cortex during working memory (Lundqvist et al., 2018a). One might be tempted to interpret these as sequences of neural activity. However, although repeated neural activity sequences do lead to repeated trajectories in the population activity space, the inverse is not necessarily true, i.e. that repeated trajectories of population activity necessarily translate to sequences of neural activity. Indeed, population trajectories in motor and olfactory cortex can potentially emerge from any temporally heterogeneous neural activity profiles repeated across trials, not just transient sequential activity. In summary, all neuronal sequences describe population trajectories, but not all population trajectories correspond to neuronal sequences. Only the observation of raster plots of many simultaneously recorded neurons may validate such conclusions, as is the case for rodent navigational and working memory neural activity sequences.

In this context, it remains an open question whether the thesis model, or STDP-based learning within asynchronous irregular (AI) activity in general, can generalize to population activity trajectories with more complex neuronal temporal activity profiles. Indeed, models have shown learning of multiple population trajectories within temporally complex activity [START_REF] Laje | Robust timing and motor patterns by taming chaos in recurrent neural networks[END_REF], but via non-STDP based learning rules, or have shown learning of multiple sequences [START_REF] Liu | Embedding Multiple Trajectories in Simulated Recurrent Neural Networks in a Self-Organizing Manner[END_REF] but without AI network activity. A starting point for learning multiple sequences through STDP within AI activity would be learning several (e.g. two) transient bumps of neuronal activity (instead of only one) at different times within a sequence replay. In such a case, synapses from two different sets of neurons (each representing a different time in the sequence) will strongly project onto a given neuron. If both sets of neurons do not strongly overlap, the given neuron will be able to differentiate between both sequence contexts, leading to sequential replay where neurons strongly fire twice. This question is closely linked to that of the maximum number of separate sequences a given network can learn and successfully replay, in which some models have shown learning of such double sequences, although they lack AI network activity [START_REF] Liu | Embedding Multiple Trajectories in Simulated Recurrent Neural Networks in a Self-Organizing Manner[END_REF].

For increasing heterogeneity of neural frequency temporal profiles (beyond simply two or even N bumps), phenomenological frequency-based or biophysical calcium-based STDP might not suffice. Indeed, temporal relationships between neurons would change across time, leading to learning and unlearning of specific temporal relationships. Artificial learning rules, with synapses updated according to the distance between stimulus-induced and replay-induced frequency temporal profiles, have been shown to allow robust learning of population trajectories [START_REF] Laje | Robust timing and motor patterns by taming chaos in recurrent neural networks[END_REF].

Theoretically, sequences of transient neuronal activity have the disadvantage of requiring many more neurons to encode elapsed time [START_REF] Goldman | Memory without Feedback in a Neural Network[END_REF] compared to orthogonal subspaces of stable and dynamic coding [START_REF] Machens | Functional, But Not Anatomical, Separation of "What" and "When" in Prefrontal Cortex[END_REF][START_REF] Murray | Stable population coding for working memory coexists with heterogeneous neural dynamics in prefrontal cortex[END_REF]. Indeed, sequences require more neurons to encode greater elapsed times, whereas no additional neurons are required within dynamic subspaces as it would be encoded through time-varying activity (i.e. changing neural frequency). However, recent evidence suggests that representation of time elapsed in neural sequences is scalable in rat dorsal striatum, adapting to the required time duration [START_REF] Mello | A Scalable Population Code for Time in the Striatum[END_REF], the mechanisms of which are yet to be determined (as well as resolved with contradicting evidence of non-scalable rat dorsal striatum sequences, [START_REF] Akhlaghpour | Dissociated sequential activity and stimulus encoding in the dorsomedial striatum during spatial working memory[END_REF].

Multi-areal collaboration

The model explored in the thesis is a local recurrent neural network without distance-dependent connectivity between pyramidal cells and interneurons, potentially corresponding to a cortical column. Indeed, it has been shown that temporal sequences of neuronal activity are anatomically intermixed at the ~200µm scale in mouse PPC [START_REF] Harvey | Choice-specific sequences in parietal cortex during a virtual-navigation decision task[END_REF], i.e. an order of distance compatible with within columnar organization. Furthermore, subnetworks in V1 layer 2/3 share interneurons [START_REF] Yoshimura | Excitatory cortical neurons form fine-scale functional networks[END_REF][START_REF] Itskov | Cell Assembly Sequences Arising from Spike Threshold Adaptation Keep Track of Time in the Hippocampus[END_REF], such that mechanisms for reliable attractor replay based on local inhibition (although effective) may not be appropriate (e.g. Hebbian phase sequence with multiple distinct excitatory and inhibitory neuronal assemblies, [START_REF] Chenkov | Memory replay in balanced recurrent networks[END_REF]. However, it is not always clear at what spatial scale sequences and assemblies are defined, and whether they truly do spatially extend beyond the confines of the recording technique (e.g. ~1-2mm of multi-electrode array).

Such local networks are inscribed within larger interconnected brain areas, as can be observed during navigational PFC-thalamic nucleus reuniens (NR)-HP and working memory PFC-mediodorsal thalamus (MD) sequences, and proposed in the cortical hierarchy distributed working memory theory [START_REF] Mejias | Mechanisms of distributed working memory in a large-scale model of macaque neocortex[END_REF]. It is not always clear whether synaptic chains reflecting the same dynamic stimulus exist within each area, whether the synaptic chain is distributed across areas, or whether the synaptic chain exists in only one area and neuronal activity sequences are projected onto other areas. The trace-reactivation theory of memory consolidation stipulates that hippocampal one-shot learned episodic memories are replayed during SWR and gradually consolidated within PFC [START_REF] Peyrache | Replay of rule-learning related neural patterns in the prefrontal cortex during sleep[END_REF]. The coordination of sequence replays in HP and PFC generally linked to SWR events suggests synaptic chain formation in both structures, whereas the proposed relay-function of NR thalamus could signify an absence of synaptic chains within NR thalamus [START_REF] Ito | A prefrontalthalamo-hippocampal circuit for goal-directed spatial navigation[END_REF], although NR sequences preceding PFC sequences could signify the opposite [START_REF] Angulo-Garcia | Spatiotemporal organization of cell assemblies in Nucleus Reuniens during slow oscillations[END_REF].

Furthermore, proposed models of multi-areal emergence of timescales within the cortical hierarchy show how time-varying external inputs due to long-range projections originating from other cortical areas are necessary to correctly capture local area timescales [START_REF] Chaudhuri | A Large-Scale Circuit Mechanism for Hierarchical Dynamical Processing in the Primate Cortex[END_REF]. In the present model, external feedforward input does not vary across time. This assumption arises from its historical use guaranteeing AI dynamics [START_REF] Brunel | Dynamics of Sparsely Connected Networks of Excitatory and Inhibitory Spiking Neurons[END_REF], as well as the desire to capture how local (and not external) network synaptic mechanisms allow robust states and sequences within chaotic dynamics and synaptic noise (itself arising from local synapses). However, future work could investigate how time-varying or rhythmic external feedforward input, e.g. originating from hippocampal theta [START_REF] Siapas | Prefrontal Phase Locking to Hippocampal Theta Oscillations[END_REF][START_REF] Benchenane | Oscillations in the prefrontal cortex: a gateway to memory and attention[END_REF][START_REF] Zielinski | Coherent Coding of Spatial Position Mediated by Theta Oscillations in the Hippocampus and Prefrontal Cortex[END_REF] and olfactory delta [START_REF] Moberly | Olfactory inputs modulate respiration-related rhythmic activity in the prefrontal cortex and freezing behavior[END_REF] rhythmic activity, modulates state transitions and sequence propagation. Probably, strong rhythmic feedforward input would disrupt stable sequence propagation at timescales above the rhythm's duration (as previously mentioned), as well as induce repeated sequences of state transitions, in a similar vein to cortical oscillation gating working memory persistent activity [START_REF] Dipoppa | Flexible frequency control of cortical oscillations enables computations required for working memory[END_REF]. The effect of time-varying inputs would depend on their neuronal targets and specific temporal profile, where ramping-up and -down inputs onto pyramidal cells would lead to more and less frequent sequence replay respectively, as well as erasure of network states driven by inhibition.

Biophysical models

Throughout the thesis, biophysically detailed models, with excitatory and inhibitory populations within recurrent synaptic matrices, synaptic and intrinsic current dynamics, and biophysical learning rules are prioritized instead of artificial or phenomenological models. Indeed, most of the answers found require comprehensive descriptions of intrinsic and synaptic current dynamics, particularly the slow NMDA and GABA-B current dynamics inducing bursts of neuronal activity and long-lasting collective dynamics. Furthermore, the origin of synaptic noise itself, i.e. the high conductance state [START_REF] Destexhe | The high-conductance state of neocortical neurons in vivo[END_REF], is best described by detailed biophysical descriptions of membrane potential, tight average balance of excitatory and inhibitory currents, and current fluctuations. Simulating Poisson spike trains or noisy injected currents to emulate synaptic noise does not allow to fully analyze interactions between reliable attractors and synaptic noise. Indeed, both arise from similar mechanisms in the brain, i.e. synaptic currents, resulting in complex interactions that cannot be modeled by separate formalisms. In a similar fashion, assessing the physiological basis of plastic processes allowing functional dynamics and representations in frontal cortices obviously requires to consider biologically validated intrinsic and synaptic rules, rather than engineer-based artificial rules targeted at efficiency rather than plausibility.

While most of the model's biophysical properties are derived from previous experimental literature, some aspects have been informed by active dialogue with experimentalists, notably Jérémie Naudé's team in Paris and Emmanuel Procyk's team in Lyon. These exchanges have been extremely productive, the former collaboration contributing, e.g. to correctly describing GABA-B dynamics, which in turn allowed for the discovery of GABA-B currents being relevant in capturing autocorrelogram timescales in the latter collaboration.

In this context, most of the conclusions are backed up by systematic parametric explorations, checking whether articles' conclusions hold when strongly varying model parameters. This is important because biological systems present large variability at different levels, and phenomena are observed across cortical structures with varying properties, such that parametric analyses reinforce the plausibility of the models' results. Nonetheless, testing whether the results hold when removing different elemental model bricks would strengthen their plausibility across structures and contexts, and allow further identification of its minimal set of necessary and sufficient constituents. Moreover, the currents described and which are required in accounting for the studied network behaviors are ubiquitous across neurons (NMDA, calcium-activated potassium channels inducing AHP and non-specific cationic channels or CAN) and neocortices (GABA-B, [START_REF] Tamás | Identified Sources and Targets of Slow Inhibition in the Neocortex[END_REF][START_REF] Oláh | Output of neurogliaform cells to various neuron types in the human and rat cerebral cortex[END_REF], thus representing parsimonious model choices which reinforce the genericity of the resulting network behaviors across cortical structures.

In conclusion, we have studied the mechanistic underpinnings of reliable and emerging static and dynamic attractorial collective forms of activity within noisy frontal networks in the awaken state, be it at the levels of 1) individual neurons (intrinsic CAN/AHP conditional bistability), 2) inhibitory networks (GABA-B-mediated sequential peregrination between discrete states, composed of anti-assembly-based persistent activity and anti-synaptic chainbased neural activity sequences) or 3) excitatory networks (NMDA-mediated sequences, controlled and stabilized through slow or tonic inhibition and intrinsic CAN/AHP transient bistability). We have also described how these attractors are learned (through phenomenological and calcium-mediated STDP, or dopaminergic-gated eligibility-trace-based STDP toward a reward) or not (GABA-B amplification of synaptic random heterogeneity). Finally, we have described their successful recall (spontaneous or cue-based sequences and states, as well as intrinsic dopamine-induced motivated recall).

As shown in this thesis, a description of neuronal and network dynamics through the attractorial grammar of dynamical systems allows us to more easily understand the role of lowlevel biophysical determinants, e.g. opening dynamics of specific channels, in the context of functional properties of cortical networks, and by extension, of entire cortical areal networks determining animal behaviors. This offers the neuroscientific community a better constrained methodological paradigm in order to test hypotheses for the effect of local biophysical determinants on behavior through biologically realistic models (e.g. GABA-A and autism, [START_REF] Coghlan | GABA system dysfunction in autism and related disorders: From synapse to symptoms[END_REF].
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 1 Figure 1. Dual contribution of inhibitory currents to transitions. GABA-B (a) and GABA-A (b) currents received by each inhibitory subpopulation (i.e. neurons of each state), around transitions between two states. Only transitions between 2 states that last more than 100ms are included.
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 2 Figure 2. Rich repertoire of static and dynamic attractors and synaptic engrams underlying stable and dynamic coding. (a) Average weights between and within neurons associated with a state, averaged over all couples of states for 100 MCC network simulations. Green lines indicated expected average weights, taking into account synapse sparsity (Inh.→Exc. weights are more probable, since p !→! = p !→# = p #→# = 0.3 and p #→! = 0.55, see Chapter 3 Methods). (b) Raster plot (top), and identical raster plot with colored HMM state periods (bottom) of a MCC simulation lasting 50s. Thin white horizontal lines delimit subpopulations of each HMM state (from bottom to top, states 1 to 4 are the green, orange, red, and purple states respectively). Black horizontal lines separate state periods. Large white diagonal lines within state periods indicate strong correlations between neural identity and timing of spikes within the subpopulation of the current HMM state period (only 𝑝 < 0.05 are shown). (c) Synaptic weight matrix describing how the synaptic weights of a synaptic chain would connect excitatory pre-synaptic and postsynaptic neurons, when neurons are ordered according to their activation time in the resulting sequence. Red diagonal line is drawn across synapses of neurons onto themselves (i.e. autapses). Synaptic matrix taken from an example network simulation in the Chapter 5 article. (d) Average value of synaptic matrix diagonals, for diagonals progressively further away from the middle diagonal. Shown are mean +/-95% confidence intervals of the standard error of the mean over 100 MCC network simulations. Purple curve (Inh.→Exc.) is farther from 0 than the blue curve (Inh.→Inh.) for the same reasons as in (a). (e) Cosine similarity between network activity vectors at different timepoints. Neural frequency was estimated through 100ms bins of spike data.
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 3 Figure 3. Sequential peregrination of network states within two macroscopic meta-states. (a) Shannon entropy of the probability of N-state sequences (during the 600s of the MCC simulation shown in Fig. 2b,d and Fig. 3b), compared to that of purely Markovian sequences of N-states (where N-state sequences are derived from 2-state sequences, a.k.a. the HMM transition matrix). Other MCC simulations exhibited similar results (not shown). (b) (Left) Same as Fig. 2d, but with a superposed coloring scheme in the bottom right triangle reflecting macroscopic attractors. In this second coloring scheme, the 1 st macroscopic (orange) meta-state is constituted of the green and orange HMM states (from Fig. 2b bottom), and the 2 nd macroscopic meta-state (cyan) of the red and purple HMM states (from Fig. 2b bottom). The intersections between meta-states is colored in black. (Right) Network activity during 200s colored as above within a reduced dimensionality space estimated via PCA (principal component analysis) of neural frequency (estimated as the convolution of spikes with a Gaussian temporal window where 𝜎 = 100 𝑚𝑠) across 600s.
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"Dopamine builds and unveils reward-associated attractors", in writing

to what extent do stable network states actually exhibit neural sequences within them ? Are these states themselves organized into repeatable sequences? And what biophysical mechanisms allow the replicable propagation of sequences?

  More generally, there has been debate recently over the extent of persistent activity -and thus stable attractors -in monkey PFC during working memory delay
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). à Therefore,
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