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Abstract

Recurrent neuronal networks exhibit diverse types of collective dynamics, from stable network
states and long timescales subserved by bursting or persistent neuronal activity, to dynamic
trajectories resulting from transient sequential neuronal activity. This dynamical diversity
contributes to the array of complex and flexible cognitive functions of the frontal cortex.
Describing these dynamics in the language of dynamical systems as static stable or dynamical
attractors is relevant, since attractors have the desirable property of being robust to the synaptic
noise and chaotic activity regime characteristic of awake cortex. Through biologically-detailed
descriptions of neural networks — necessary to account for these real cortical conditions —, the
present thesis aims at identifying the biophysical determinants allowing for the emergence of
stable and dynamic attractors robust to these destabilizing influences.

Stable attractors, such as peregrination between quasi-stable network states during working
memory within the monkey prefrontal cortex (PFC) or temporal information integration within
the monkey midcingulate cortex (MCC), arises from bursting or persistent activity within
neurons. Chapter 2 proposes intrinsic conditional bistability, in which neuronal bistable activity
is conditional upon subthreshold input after the initial trigger, as an important underpinning of
flexible PFC working memory. In a complementary fashion, Chapter 3 and 4 identify strong
intrinsic hyperpolarizing and slow synaptic inhibitory currents as being responsible for longer
MCC neuronal timescales (compared to PFC), i.e. long-lasting bursts of neuronal activity. These
slow neuronal responses amplify into stable network states at the behavioral timescale, allowing
for the temporal integration of information, e.g. building an action-reward outcome history for
behavioral adaptation and exploration.

Further results in Chapter 4 indicate these MCC network states are actually sequentially
organized within macroscopic meta-states, within which each state contains persistent activity
or neural activity sequences subserving stable or dynamic representations. Indeed, recent
evidence suggests that MCC and PFC show stable and dynamic network encoding during
temporal integration and working memory respectively, with sequences of transient sparse
neural activity typically observed during rat working memory (“relay race”). Such sequences are
also often observed in rat PFC and hippocampus (HP) in navigational tasks, being replayed at
various speeds during sleep and immobility. Such behavior-independent replays require the
formation of synaptic chains (pathways), e.g. via STDP and homeostatic meta-plasticity.
Chapter 5 models the replay of previously learned dynamic attractors within chaotic synaptic
noise after an external triggering cue, and identifies biophysical mechanisms increasing the
reliability and robustness of such sequence replays. Furthermore, the model and its mechanisms
are generically applicable to many stable/dynamic and discrete/continuous attractor types.
Chapter 6 builds on the previous model by studying in depth the “online” learning of such
trajectories during noisy network dynamics (rather than trajectories being phenomenologically
“previously learned” in Chapter ). It also studies their replay at different speeds (as for
navigation), and capacity for simultaneous dynamic and stable coding. Finally, Chapter 7 goes
further, describing the dual effect of dopaminergic modulation on 1) online learning of
navigational trajectories toward a rewarding goal by building dynamic and stable neuronal
assemblies, and 2) intrinsically-generated motivation-driven behaviors (without an external
triggering cue) by unveiling the learned attractor through synaptic reverberation.



Contents

AcCKNOWIEAZMENTS....coiiiiireiiiiiiiiiiiiiiiiirrrsein st rrrssessssesressssssssssnesssssssssssnsnnsssssssssennnses 2
111 o 1 = of ST TIRN 3
L8031 =1 o | £ RPN 4
[T Ao il e JU] o] LT or= 1 4 o ]3£3t 6
Table Of abbreViations.......cciiieiieiiiiicicrrrrr e reeeree e reesereessensesensesensesenserenserensennes 7
Chapter 1. {3 4o To [T o o T 8
1.1. Stable network dynamics in frontal CirCUitS........ccceviiiiiiiiiiiiiiiiinininnnnnnnrssssss s ssssssssssnes 8
1.1.1. Long frontal timescales and stable population states..........cccceeceiieeieciiiee e, 8
1.1.2. Synaptic reverberation within Hebbian assemblies..........ccccoviiiiiiiiiiii e, 9
1.1.3. Bistability through intrinsic CUrrents........ueeveeiiii i 10

1.2. Sequences of transient sparse neural actiVity......cccccceeiiiiiiininiiiniiniiiininn. 10
1.2.1. LAY oY 10T = 0 g 1=T o T Y RPN 11
1.2.1.1 Dynamic vs persistent coding in Monkey PFC ..........cociiiiiiiii ettt 11

1.2.1.2 Tiling the working memory delay period in rat with transient sparse neural sequences ......... 12

1.2.2. Prefrontal cortex and hippocampal replay during navigation ...........ccccceeeeccieeeeeccnnneenn. 13
1.2.3. Temporally precise motifs in Vivo and in Vitro ..........ccceeoeccvieieecciiieeeecieee e 14

1.3. Learning and replay of sequences of transient neural activity ..........ccceerreeeeennceciierneeeennnn.. 15
1.3.1. Spike-Timing Dependent PIastiCity......ccccceeieeecciiiiiiieeee e 15
1.3.2. Homeostatic Meta-plastiCity ... 16
1.3.3. Sequence learning and replay within synaptic NOISE .........cccccviiiiiieeeee e, 16

14. Theoretical background for attractor dynamics........cccceeiieeeiiiieeciiiiemniiiieencceneenneennenneenne 18
1.4.1. [ L= o] oY = T o I XY =Y £ 0] o Y USRI 18
1.4.2. SYNFIFE CRAIN ..ot e e e et e e e e bb e e e e e e areeeaeenras 18
1.4.3. Hebbian phase SEQUENCES......cuui it e e e e e e e e anr e aae s 18
1.4.4. ContinUOUS AYNAMIC BNEIAMS ... .uuiiiiiiiieeeeeeeeeicitrrrrer e e e e e e e e eseerrrareeeeeeaeeeeeesannssrresaeeeeaaasens 19

1.5. THESIS OULIINE ...ieeiieeiieeiiieirti et reerereeereeeeeteeeteeserenserensesensssensssensseressessnsssensesensassnnsennns 19
Chapter 2. PFC working memory persistent activity via intrinsic conditional bistability....22
2.1. SUMIMIAIY .. ittt ittt traeesisrraassstraassstransssstrsssssstesssssstesssssstesnssssssnnssssssnnssssssnnsnsss 22
2.1.1. (00 Y 45101V 4 o] o LU R U PR PPRIR 23

2.2, Y ol [P 23
Chapter 3. Temporal signatures of cognition from LPFC to MCC controlled by inhibition..35
3.1. SUMIMIAIY .. iiieeiiiiieiiiiieeit ittt traeeistraasststeaassstransssstrsnsssstrsssssstrsssssstesnsssssrnnsssssssnssssssnnsnsss 35
3.1.1. (00 Y 45101V o] o F U TR PRI 36

3.2, Y o { ol [P 36
Chapter 4. Temporal integration within the MICC ... renanes 81
4.1. SUMIMIAIY .. ittt ittt treeetstraaststraassstranssstrsssssstrsssssstesssssstesnssssssnnsssssssnssssssnnsnsss 81
4,1.1. (00 Y 45101V 4 o] o LU RRRRRRR RPN 82

4.2. Y o { ol [P 82
4.3. Linking states and SEQUENCES .......ccceiiiiiiiiiiinniiiiiniiiiieiiiiiiiiinersssseesiiieessmsssessseessnes 108

Chapter 5. Mechanistic origin of robust neural trajectory replay within synaptic noise ..116

4



5.1. SUMIMIAIY .. iiieeiiiiieiiiiiieit ettt rraasetreaassesreaasssrenssssstensssssssssssssrsnsssssssnssssssenssssssennsns 116

5.1.1. CONEMDULIONS oo e e e s e e e s sbte e e e s satneeesssnbeeeessanns 117

5.2. LN ol 117
Chapter 6. “Online” STDP learning and replay of neural trajectories in synaptic noise....168
6.1. SUMIMIAIY .. iiiueiiiiieiiiiieit et rraee st reaesetreaassesrraassesreassssstesssssssssssssstensssssssnssssssennsssssennsns 168
6.1.1. CONEIDULIONS Leeiiiiiiie e e e s st e e e s sbee e e e s sateeeessanbeeeessanns 169

6.2. LN ol 169
Chapter 7. Dopamine builds and reveals reward-associated attractors ......cc.ccccceeveeanens 196
7.1. SUMIMIAIY .. iiieeiiiiieiiiiiieit ettt reaesetreaassesreaasssresssssstesssssstsnsssssnensssssssnssssssenssssssennsss 196
7.1.1. CONEMDULIONS Leeiiiiiee e e e e st e e e s sbee e e e s sbbaeeessanbeeeessanns 197

7.2, LN ol [ 197
Chapter 8. [0 T ol U1 ' o 251
8.1. Mechanisms promoting the emergence of reliable attractors........cccccevviiiiiiiiiiiiiiieiiiennnen, 251
8.1.1. Macroscopic gradients of interneuron proportions.........ccccueeeeeecieieeecciieeeeecieee e 251
8.1.2. Inhibitory currents, assemblies and SEQUENCES .........c.ccuvviiiieeeieeeee e 252
8.1.3. Generic role of intrinsic bistability in prefrontal dynamics........ccccccoveeiiiiiieciicciieeeeas 253
8.1.4. Alternative mechanisms and improvements .........ccccveeeeeeee e eccccciirieeeee e 254

8.2. Learning reliable attractors ........ccccceeiiiiiiiiiiiniiiiiiniiiiniieiieeesssssssssseessaes 255
8.2.1. Learning working memory and navigational SEqUENCES .......cceeeeeeeeiiciiiiiiieeeee e, 255
8.2.2. Dopaminergic neuromodulation of SEQUENCES........c.uuveeieiiiiiieceieee e 256
8.2.3. States and sequences in the larger context of complex temporal computations.......... 256

8.3. Multi-areal collaboration ...........ccceeeiiiiiiiiiiiiiiiiiiiiiieeeeerssssssssssssessnes 258
8.4. Biophysical MOdels........cceiiiiiiiiiimniiiiiiiiiiiiiieeeieesssseesiiseessssssssssasessnns 259
21 0 Lo T T o112 261



List of publications

Sarazin, Matthieu XB, Julie Victor, David Medernach, Jérémie Naudé, and Bruno Delord. "Online
Learning and Memory of Neural Trajectory Replays for Prefrontal Persistent and
Dynamic Representations in the Irregular Asynchronous State." Frontiers in Neural
Circuits (2021): 57.

Procyk, Emmanuel, Vincent Fontanier, Matthieu XB Sarazin, Bruno Delord, Clément Goussi, and
Charles RE Wilson. "The midcingulate cortex and temporal integration." What Does
Medial Frontal Cortex Signal During Behavior? Insights from Behavioral
Neurophysiology 158 (2021): 395.

Rodriguez, Guillaume, Matthieu XB Sarazin, Alexandra Clemente, Stephanie Holden, Jeanne T.
Paz, and Bruno Delord. "Conditional bistability, a generic cellular mnemonic mechanism
for robust and flexible working memory computations." Journal of Neuroscience 38, no.
22 (2018): 5209-5219.

Fontanier, Vincent, Matthieu XB Sarazin, Frederic Stoll, Bruno Delord, and Emmanuel Procyk.
"Inhibitory control of frontal metastability sets the temporal signature of cognition",
BioRXiv (under revision at eLife, 2021)

Sarazin, Matthieu XB, David Medernach, Jérémie Naudé, and Bruno Delord. "Biophysical
mechanistic account of functional ordered trajectories in the disordered neural regime."
in writing

Naudé, Jérémie, Matthieu XB Sarazin, Sarah Mondoloni, Bernadette Hanesse, Eléonore Vicq,
Fabrice Amegandjin, Ludovic Tricoire, Alexandre Mourot, Philippe Faure, Bruno Delord,
"Dopamine builds and unveils reward-associated attractors", in writing



Table of abbreviations

PFC: Prefrontal cortex

LPFC: Lateral prefrontal cortex

MCC: Midcingulate cortex

HP: Hippocampus

CAx: First region of the hippocampal circuit

NR: Nucleus reuniens

V1: Primary visual cortex

HMM: Hidden Markov Model

AMPA: a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
NMDA: N-methyl-D-aspartate acid

GABA-B: y-aminobutyric acid B

CaL: high-threshold L-type calcium current

CAN: Calcium-activated nonspecific cationic current
PV+: Parvalbumin expressing

SST+/CB+: Somatostatin or calbindin expressing
VIP+/CR+: Vasoactive-intestinal peptide or calretinin expressing
SWS: Slow wave sleep

REM: Rapid eye movement

SWR: Sharp wave ripple

STDP: Spike timing-dependent plasticity

LTP: Long-term potentiation

LTD: Long-term depression

aKP: kinase and phosphatase

BCM: Bienenstock Cooper Munro

CV: Coefficient of Variation

ISI: Inter-spike interval



Chapter1. Introduction

Recurrent neuronal networks exhibit an array of population and neuronal dynamics, from stable
network states and long timescales subserved by persistent or bursts of neuronal activity, to
dynamic trajectories of population activity through underlying heterogeneous or transient
sequential neuronal activity. It is assumed that the dynamical diversity that population and
neuronal activity exhibit is necessary for successful execution of the large assortment of complex
and flexible cognitive operations performed within biological recurrent neuronal networks. One
way to mathematically describe these dynamics is through the language of dynamical systems
as attractors, where population or neuronal dynamics converge to — or reside at — stationary (e.g.
point, line, ring or plane) attractors, follow regular time-varying dynamics (such as limit cycle or
quasi-periodic attractors), or peregrinate along chaotic attractors (irregular dynamics). This
description is relevant, since attractors have the desirable property of describing reproducible
activity patterns which are robust to thermal intrinsic and synaptic noise, as observed in cortical
neuronal networks. Actually, in behaving animals, complex electrophysiological, plastic and
neuromodulatory interactions generate neural dynamics that follow complex and ever changing
combinations of all of these attractor archetypes.

> That being the case, what biophysical determinants within biological recurrent
neuronal networks allow the emergence of stable and dynamic attractors?

The study of such determinants requires a biophysically-detailed model, in which the
temporal properties of synaptic and intrinsic currents, whose neurons are embedded within
synaptic architectures learned via plasticity, result in network and neuronal attractor dynamics.

1.1. Stable network dynamics in frontal circuits

1.1.1. Long frontal timescales and stable population
states

Several lines of evidence indicate that cortical activity displays marked patterns of stability
reminiscent of stable attractors. Indeed, cortical areas are organized within an anatomical
(Felleman and Van Essen, 1991; Markov et al., 2013) and temporal (Murray et al., 2014) hierarchy,
with increasingly longer population (Murray et al., 2014) and neuronal (Wasmuht et al., 2018)
activity timescales from fast posterior sensory to slow anterior associative cortical areas. Longer
frontal timescales allow integration of information over longer durations, subserving higher
cognitive functions such as working memory and decision-making (Cavanagh et al., 2018;
Wasmuht et al., 2018), as well as evaluation of behavioral strategies by monitoring the recent
history of reward integration (Bernacchia et al., 2011).

In the same vein, Hidden Markov Models (HMM) analyses, which model time series data as
probabilistic transitions between few static hidden states, suggest network activity switches
between stable discrete states in frontal cortices. Such behavior has been observed during
sustained attentional states (Engel et al., 2016), in relation to the encoding of animals’ position
(Maboudiet al., 2018), working memory (Gat and Tishby, 1992; Batuev, 1994; Abeles et al., 1995;
Seidemann et al., 1996; Rainer and Miller, 2000; La Camera et al., 2019), the maintenance of
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behavioral rules (Durstewitz et al., 2010) and during extended periods of deliberation preceding
the formation of behavioral decisions (Rich and Wallis, 2016; Taghia et al., 2018).

Both of these long population timescales and discrete states emerge from neuronal activity
with long timescales (i.e. stable attractors or slow dynamics), corresponding to persistent or
long bursts of neuronal activity such as that underlying working memory in primate PFC, e.g.
during delayed response tasks (Funahashi et al., 1989; Goldman-Rakic, 1995; Shafi et al., 2007;
Constantinidis et al., 2018; Leavitt et al., 2018).

- What biophysical mechanisms allow the emergence of persistent or bursting
neuronal activity underlying stable states and long timescales, i.e. stable attractors?

1.1.2. Synaptic reverberation within Hebbian
assemblies

A proposed mechanistic explanation for the timescale hierarchy is the existence of gradients of
synaptic local and long-range excitation (Chaudhuri et al., 2015), corresponding to increasing
numbers of dendritic spines on pyramidal neurons (Elston, 2007; Wang, 2020) as well as slower
NMDA currents along the hierarchy (Wang, 2020). This is notable, since stronger and slower
excitatory NMDA currents naturally lead to the maintenance of persistent activity when
combined with synaptic learning of Hebbian neuronal assemblies (Wang, 1999). Indeed, NMDA
channels induce depolarizing currents most strongly when both pre-synaptic and post-synaptic
neurons are simultaneously active. In the Hebbian framework (Hebb, 1949), synapses between
excitatory neurons with coincident activity are potentiated, leading to the emergence of strong
bidirectional connections between neurons and thus an assembly of strongly interconnected
excitatory neurons. As such, high spiking frequency in a subset of the assembly induces strong
excitatory currents, and thus high frequency, within the rest of the assembly. This positive
feedback loop or reverberation of synaptic excitation, a.k.a. “synaptic reverberation”, thus
results in persistent neuronal and assembly activity (Brunel and Wang, 2001; Wang, 2001;
Compte, 2006). The effect is mostly mediated by the slow decay of NMDA currents, maintaining
excitation through temporal summation of excitatory post-synaptic potentials (EPSPs) in the
absence of inputs, and is reinforced when NMDA currents are stronger and slower (Compte et
al., 2000; Tegnér et al., 2002; Ermentrout, 2003; Wang et al., 2013). Assembly activity is then
defined as one of 2 possible states, quiescent or high frequency, i.e. with bistable dynamics.
When inscribing the bistable dynamics of each cortical area within the cortical hierarchy, this
results in a multi-stable system composed of many bistable sub-systems with multiple distinct
stable attractors, i.e. distributed working memory (Mejias and Wang, 2020).

However, alongside the gradient of increasing pyramidal spine counts and slower NMDA,
also exists a systematic gradient of changing PV+, SST+/CB+ and VIP+/CR+ interneuron
proportions (Torres-Gomez et al., 2020; Wang, 2020) along the hierarchy, alluding to an
important functional role for inhibition (Wang and Yang, 2018). Indeed, it has been observed
that MCC is subject to stronger & slower inhibitory currents compared to LFPC (lower in the
temporal hierarchy, Medalla et al., 2017). The potentially important role of inhibition is further
supported by theoretical analyses, showing that strong excitatory currents need to be balanced
with strong inhibitory currents in order to avoid excitatory activity saturation or silencing, which



in turns counterintuitively allows more robust bistability (Joglekar et al., 2018). Additionally,
modulating inhibitory activity and connectivity leads to greater effects upon model networks
compared to modulation of their excitatory equivalent (Mongillo et al., 2018), since inhibitory
neurons and connections are less numerous.

-> This being the case, what role do inhibitory synaptic currents hold in establishing
long population timescales and states through bursting and persistent activity?

Biophysical modeling at the level of currents, which the aforementioned inter-areal
excitatory gradient models (Chaudhuri et al.,, 2015) lack, would allow to disambiguate
contributions of faster or slower excitatory and inhibitory currents.

1.1.3. Bistability through intrinsic currents

In addition to synaptic reverberation, intrinsic currents can lead to the emergence of persistent
or bursts of neuronal activity, notably in the context of working memory tasks (e.g. object
(Compte, 2006), spatial (Camperi and Wang, 1998), and parametric (Koulakov et al., 2002;
Goldman et al., 2003) working memory), within cortical structures (Krnjevi¢ et al., 1971;
Schwindt et al., 1988; Silva et al., 1991; Tahvildari et al., 2007; Zhang and Séguéla, 2010) and PFC
(Haj-Dahmane and Andrade, 1997; Dembrow et al., 2010; Gee et al., 2012; Thuault et al., 2013).
Intrinsic bistability originates from calcium-dependent depolarizing currents, which open due to
spike-mediated calcium intake, and in turn bring about more spikes. This positive feedback loop
results in a bistable system with two fixed points, one at low frequency or quiescence and the
other at high frequency, allowing to maintain past information but this time in individual
neurons (Booth and Rinzel, 1995; Delord, 1996; Marder and Calabrese, 1996; Delord et al., 1997;
Shouval and Gavornik, 2011).

However, such forms of strongly stereotyped “absolute” bistability in vitro require strong
levels of pharmacological manipulations (e.g. neuromodulation) and display extremely long
highly regular spike trains, which are not observed in behaving animals (Haj-Dahmane and
Andrade, 1997; Egorov et al., 2002; Tahvildari et al., 2007; Zhang and Séguéla, 2010; Gee et al,,
2012). Furthermore, the rigidity of such bistability does not allow to account for the relative
lability of stable attractors, e.g. transitions between stable network states (Abeles et al., 1995;
Seidemann et al., 1996; Rainer and Miller, 2000).

-> As a result, do less stereotyped and more biophysically plausible forms of intrinsic
bistability exist, and if so, what intrinsic currents are responsible of their emergence ?

1.2. Sequences of transient sparse neural activity

As mentioned before, network activity peregrinates between distinct states (Mazzucato et al.,
2015). Indeed, other than the previous examples, sequences of assembly activations are
observed in adult rat somatosensory and visual cortex and HP during wake, SWS and REM sleep
(Almeida-Filho et al., 2014). Furthermore, rapid series of state transitions are observed before
network activity settles into a stable state in monkey PFC during working memory tasks after
cue onset (Abeles et al., 1995; Seidemann et al., 1996; Stokes et al., 2013), and alternating states
are observed during spontaneous activity (Kenet et al., 2003; Mazzucato et al., 2015), although
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it is not clear to which extent these network states are organized into repeating sequences
(Abeles et al., 1995; Seidemann et al., 1996; Mazzucato et al., 2015; La Camera et al., 2019).
Conversely, states themselves can contain sequences of neuronal activity, since propagation of
neuronal activity sequences depends upon current network state in rat dissociated cortical
neurons (Yada et al., 2016).

-> Therefore, to what extent do stable network states actually exhibit neural sequences
within them ? Are these states themselves organized into repeatable sequences? And what
biophysical mechanisms allow the replicable propagation of sequences?

1.2.1. Working memory
1.2.1.12 Dynamic vs persistent coding in monkey PFC

More generally, there has been debate recently over the extent of persistent activity —and thus
stable attractors — in monkey PFC during working memory delay (Stokes and Spaak, 2016;
Lundqvist et al., 2018a), in favor of more transient activity — and thus dynamic attractors.
Lundqvist and colleagues argue instead for sparse transient activations within single trials,
persistent activity being artificially caused by averaging sparse activity across trials or single-trial
persistent activity only shown in cherry-picked example neurons. Indeed, while certain neurons
do indeed show sustained firing during the delay period, they can also exhibit complex
heterogeneous activity during working memory (Rainer and Miller, 2002; Brody et al., 2003;
Shafi et al., 2007; Meyers et al., 2008). This complex heterogeneous activity can even strongly
resemble transient dynamics (Meyers et al., 2008).

When reinterpreted within the context of population dynamics, PFC networks encode task-
relevant variables dynamically, be it via changing population activity or neural tuning (Barak et
al., 2010; Stokes et al., 2013; Sreenivasan et al., 2014). Stable representations can then result
from the combination of changing neural activity and selectivity, with alternation between
dynamic and stable coding epochs (Spaak et al., 2017) or stable coding dynamically morphed by
distractors (Parthasarathy et al., 2017). Dynamic and stable coding can also simultaneously
coexist, where stable representations emerge from a subpopulation of neurons with slow
timescales and dynamic representations from the fast timescale neural subpopulation,
Cavanagh et al., 2018; Wasmuht et al., 2018). Even without considering distinct neuronal
subpopulations, such coexistence has been described at the network activity level as orthogonal
stable and dynamic low-dimensional subspaces, network activity being stable along certain
subspace dimensions and dynamic along others (Machens et al., 2010; Murray et al., 2017).

The aforementioned mixtures of dynamic coding schemes show repeated trajectories of
network activity in low-dimensional subspaces (within the larger N-dimensional space spanning
the activity of every neuron). The underlying pattern of neuronal activity can take many different
forms, being at least necessarily heterogeneous and time-varying for a subset of neurons. Of the
numerous possibilities, network activity can take the shape of an underlying sequence of
transient neural activity during the cue, delay and response periods of working memory tasks.
Theoretically, sequences of transient sparse neural activity naturally offer a framework able to
reconcile (i.e. account for both) stable and dynamic coding. Indeed, persistent population-
averaged frequency allows a downstream neuron receiving synapses from all neurons in the
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population to decode categorical sustained information (i.e. is the population active or not).
Simultaneously, time-varying individual neural frequency may allow other downstream
neurons, receiving synapses from well-chosen subsets of the population, to decode temporal
information (i.e. how much time has elapsed, or at what part is the sequence currently at,
Goldman, 2009).

Are such sequences truly observed? They can be indirectly observed via large repeatable
neural latency distributions (Zaksas and Pasternak, 2006) and sequences of neural selectivity
(measured as strong activity differences between two conditions), which last 0.5-4s in monkey
LPFC (Cromer et al., 2010; Hussar and Pasternak, 2012; Lara and Wallis, 2014; Spaak et al., 2017;
Cavanagh et al., 2018; Lundqvist et al., 2018b), or more directly via delay-selective neurons
(Batuev, 1994). In areas with activity associated to the PFC during working memory, such as the
parietal cortex, long (3 s) sequences of transient activity can be observed (Crowe et al., 2010),
with dynamic task-relevant and persistent task-irrelevant neural coding. Observations of
neuronal activity sequences take many different forms (with different recorded observables, at
different temporal scales) due to the lack of a unifying descriptive framework, although the
following experimental literatures have prominently observed them directly.

1.2.1.2 Tiling the working memory delay period in rat with
transient sparse neural sequences

Compelling evidence of neuronal activity sequences comes from rodent PFC, in which
sequences of repeatable transient neuronal activity, a.k.a. “relay races”, can be observed during
the working memory delay period. Repeated sequences of transient sparse neural activity have
been observed during working memory delays in PFC (Bakhurin et al., 2017; Bolkan et al., 2017;
Schmitt et al., 2017; Rikhye et al., 2018) and associated areas such as dorsomedial thalamus
(Rikhye et al., 2018) and striatum (Mello et al., 2015; Akhlaghpour et al., 2016; Bakhurin et al.,
2016, 2017), as well as posterior parietal cortex (Harvey et al., 2012; Runyan et al., 2017) and
auditory cortex (Runyan et al., 2017). The sequences can be of arbitrary length, spanning tens of
seconds (up to 60 s, Mello et al., 2015; Bolkan et al., 2017; 2.5-10 s, Akhlaghpour et al., 2016),
seconds (~5 s, Harvey et al., 2012; Yang et al., 2014; Bakhurin et al., 2016; 2.5s, Bakhurin et al.,
2017) or hundreds of milliseconds (9gooms, Rikhye et al., 2018; 400ms Schmitt et al., 2017). They
are functionally relevant, supporting retrospective working memory of spatial (Yang et al., 2014)
and behavioral rules (Schmitt et al.,, 2017), as well as prospective working memory by
transforming previously encoded information, such as the representation of elapsed time
(Tiganj et al., 2017) or encoding of forthcoming behaviors (Nakajima et al., 2019; Passecker et
al., 2019).

Of particular interest is the observation that these sequences are intrinsically generated,
since they are not continuously driven by sensory inputs or motor outputs during the working
memory delay period. This suggests the existence of underlying synaptic chains (pathways)
within the respective cerebral structures, which allow for the propagation of neural activity
packets in reliable temporal order after an initial trigger (e.g. the cue onset). Several lines of
evidence further hint at this idea, such as the observation that increased thalamocortical input
leads to stronger sequences in PFC and better working memory performance by increasing
functional connectivity between PFC pyramidal cells (Schmitt et al., 2017). Furthermore, the fact
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that working memory performance increases with repetition, combined with the fact that task-
related sequences are specific to different task cues (Schmitt et al., 2017), and that PFC is
implicated in learning arbitrary associations rapidly (Asaad et al., 1998), suggests cue-specific
learning of synaptic chains in PFC. Finally, neurons active at different time delays during
sequences in parietal cortex are anatomically intermixed at the ~20o0um scale (Harvey et al.,
2012), alluding to local network synaptic plasticity mechanisms.

= In this context, what local synaptic plasticity rule could allow the emergence of
synaptic chains and propagation of neuronal activity sequences?

1.2.2. Prefrontal cortex and hippocampal replay during
navigation

Nonetheless, the most conclusive evidence concerning sequence learning and replay comes
from replay of spatial trajectories during navigational tasks in rodent PFC and HP. During
navigational behavior, sequences of activity emerge within neurons spatially selective to the
animal’s position due to the animal’s displacement across time (O’Keefe and Dostrovsky, 1971;
Fujisawa et al., 2008; Ito et al., 2015; Zielinski et al., 2019). These behaviorally-driven sequences
are then replayed at faster timescales within theta cycles in HP during awake (Skaggs et al.,
1996) quiet wakefulness, such as during immobility (Kudrimoti et al., 1999; Diba and Buzsaki,
2007; Davidson et al., 2009; Jadhav et al., 2016) or consummatory behavior (Nadasdy et al.,,
1999), as well as wheel running (Nadasdy et al., 1999). Compressed sequences recapitulating
sequences encountered during awake behavior also occur during SWS (Skaggs and
McNaughton, 1996; Kudrimoti et al., 1999; Nadasdy et al., 1999; Lee and Wilson, 2002; Ji and
Wilson, 2007; Peyrache et al., 2009; Mizuseki et al., 2012). The very existence of fast replays of
sequences, previously observed during behavior, requires the formation of synaptic chains.
Furthermore, these fast replays are generally associated with HP SWR events during wake
(Nadasdy et al., 1999; Diba and Buzsaki, 2007; Davidson et al., 2009; Jadhav et al., 2016) and
sleep (Kudrimoti et al., 1999; Nadasdy et al., 1999; Lee and Wilson, 2002; Ji and Wilson, 2007;
Peyrache et al., 2009). HP SWR events have been shown to be necessary for memory formation
and subsequent behavioral performance (Girardeau et al., 2009), further reinforcing the notion
that sequences are learned.

Other than fast sequences, intrinsically-generated sequences at slow behavioral timescales
can also be learned and replayed without being driven by motor or sensory components, such
as during awake wheel running delay (Pastalkova et al., 2008; Itskov et al., 2011) predicting
future navigational trajectory (Pastalkova et al., 2008), as well as during REM sleep following
behavior, replaying behavioral sequences at equivalent or slower speeds (Louie and Wilson,
2001; Mizuseki et al., 2012).

Sequence learning and replay occur not only in HP but also within other areas involved in
spatial navigational tasks. PFC replays are generally linked to HP SWR events during awake
immobility (Jadhav et al., 2016; Kaefer et al., 2020), with spontaneous reactivations during SWS
of patterns learned during behavior (Euston et al., 2007; Peyrache et al., 2009; Johnson et al.,
2010b) linked to DOWN-UP state transitions (Peyrache et al., 2009; Johnson et al., 2010b). PFC-
HP interactions are mediated by thalamic NR (Ito et al., 2015; Angulo-Garcia et al., 2018) which
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also shows fast sequences during anesthesia-induced slow oscillations (Angulo-Garcia et al.,
2018). Similarly to the PFC, visual cortex sequences are coordinated with HP sequences during
SWS (Ji and Wilson, 2007). Moreover, superficial layers of medial entorhinal cortex replay fast
sequences but independently of HP SWR (O’Neill et al., 2017). More generally, temporal biases
throughout neocortex (PFC, motor, posterior parietal, and somatosensory cortex) are linked
together after learning (Hoffman and McNaughton, 2002).

Learning fast and regular timescale replays holds functional relevance. Indeed, fast replays
during awake immobility span both forward and backward directions in PFC (Kaefer et al., 2020)
and HP (Diba and Buzsaki, 2007), which has been interpreted as prospective and retrospective
planning with forward anticipation at the run start and backward retrospection at the run end
(Diba and Buzsaki, 2007). However, due to the fact that replay starting points are not
systematically tied to the animal’s current position (Davidson et al., 2009), other interpretations
have been proposed, e.g. PFC theta sequences encode the upcoming behavioral choice while
CA1 theta sequences encode actual & alternative paths (Tang et al., 2021). More generally, the
functional coordination of HP metric and PFC task-related spatial (Yu et al., 2018)
representations (Pfeiffer and Foster, 2013; Zielinski et al., 2019) results in navigational
trajectory-dependent firing in HP CAz1, thus allowing prediction of upcoming and recent
behavioral trajectory choices from regular timescale trajectory replays (Frank et al., 2000;
Ferbinteanu and Shapiro, 2003; Fujisawa et al., 2008; Ito et al., 2015; Kaefer et al., 2020).

In summary, the prominence of functionally relevant sequences of transient sparse neural
activity, which are replayed after successful behavioral learning across cortices, notably during
working memory and navigational contexts, suggests that sequence learning and replay is a
generic phenomenon.

-> To what extent is sequence learning and replay generic, e.g. can sequences emerge
in a self-organized manner? And what are their structural properties, e.g. the temporal scale
at which they emerge ?

1.2.3. Temporally precise motifs in vivo and in vitro

Working memory and navigational sequence replays are characterized by transient (~100-55s)
increase in firing within neurons, suggesting information within sequences is conveyed solely
through average firing frequency rather than the precise temporality of spikes. However,
repeating precisely timed (~ams) spike patterns have been observed across cortices in awake
animals, be it in monkey frontal cortex during a delayed-response task (Abeles et al., 1993; Prut
et al., 1998) and motor and premotor cortex during drawing (Shmiel et al., 2006), in head-fixed
or anesthetized mouse somatosensory (Luczak et al., 2007, 2009) and auditory (Luczak et al.,
2009) cortex, or in anesthetized cat V1 (lkegaya et al., 2004). These precisely timed patterns can
be observed even within cultured slices of rodent visual (Mao et al., 2001; Cossart et al., 2003;
lkegaya et al., 2004), somatosensory (Beggs and Plenz, 2003; MacLean et al., 2005; Tang et al,,
2008; Kruskal et al., 2013) and auditory cortex (Buonomano, 2003) and hippocampus (Tang et
al., 2008), as well as human cortex (Tang et al., 2008).

Poly-synaptic responses up to 3ooms can be observed (Buonomano, 2003), once again
suggesting the existence of underlying synaptic chains involving multiple synapses. Of particular
interest is the observation that neuronal avalanches (repeated spontaneous events of spreading
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activity) emerge within dissociated cultures of rat cortex after three to four weeks of self-
organization (Pasquale et al., 2008), leading to a repertoire of sequences replayed according to
specific network states (Yada et al., 2016), indicating the spontaneous formation of synaptic
chains. Accordingly, chronic stimulation leads to precisely timed spike patterns in
thalamocortical slices (Kruskal et al., 2013), organotypic cortical slices (Johnson et al., 2010a)
and dissociated cortical cultures (Rolston et al., 2007; Pasquale et al., 2017), confirming that
synaptic chains are learned through synaptic plasticity and serve as the substrate of precisely
timed sequence propagation.

Correspondingly, initial observations of precisely timed spike patterns were motivated by
the theoretical proposal of the existence of “synfire chains” (Abeles et al., 1993), i.e. fully
feedforward synaptic chains organized in layers with all-to-all unidirectional connections of
neurons from a previous layer projecting onto neurons of the next layer. However, insistence
upon the precise timing of such spike patterns, and the underlying synfire chain theoretical
proposition — necessitating strongly synchronous activity —, has received much criticism
(Gerstein, 2004; McLelland and Paulsen, 2007; Mokeichev et al., 2007; Roxin et al., 2008).
Indeed, detecting repeating precisely timed spiking patterns above chance level requires the
adequate description of such null chance statistics. Most notably, when calculating the null
probability of repeating temporally precise patterns against which observations are compared,
taking into account firing rate modulation altogether removes the statistical significance of
short patterns beyond chance, or renders it anecdotal (Oram et al., 1999; Baker and Lemon,
2000; McLelland and Paulsen, 2007). Consequently, the temporal modulation of firing rate is
important in predicting precisely timed spike patterns, which has led to their reinterpretation as
sequences of UP-state onsets (Luczak et al., 2007), closely resembling the sequences of sparse
transient activations mentioned above.

Taken together, these results suggest that the precisely timed spike patterns observed
across intact or sliced cortices are actually sequences of transient activity, subserved by synaptic
chains which emerge either spontaneously or following stimulation through synaptic plasticity.

- In this context, what generic synaptic plasticity rules could allow the emergence of
transient neuronal activity sequences across cortices, and even within dissociated cultures?

1.3. Learning and replay of sequences of transient
neural activity

1.3.1. Spike-Timing Dependent Plasticity

As stated before, replay of sequences during awake working memory and navigation
immobility, SWS SWR, REM sleep or in slices, as well as self-organization within dissociated
cultures, strongly suggests sequences are learned via synaptic plasticity. The observation of
sequences across cerebral structures, be it prefrontal, parietal, auditory, visual and entorhinal
cortex, or hippocampus, thalamus, and striatum, or even dissociated cultures, indicates the
learning rule must be generic. Furthermore, this learning rule must allow the formation of
unidirectional synaptic chains in an activity-dependent manner. As such, Hebbian plasticity,
promoting the emergence of bidirectional connections between neurons with coincident firing,
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cannot result in unidirectional synaptic chains, as it does not impose a temporal order upon
spiking (instead favoring simultaneous firing).

A natural candidate for such learning is spike-timing dependent plasticity (STDP) (Bi and
Poo, 1998) observed across structures (Abbott and Nelson, 2000). With STDP, synaptic strength
is adjusted based upon the relative timing of pre- and post-synaptic action potentials, where
pre-synaptic spike followed by post-synaptic spike arrival induces Long-Term Potentiation
(LTP), and the reverse (post- before pre-) induces Long-Term Depression (LTD) (although other
associative schemes are possible, c.f. Abbott and Nelson, 2000). The calcium hypothesis
postulates that LTP is triggered by strong calcium entry mostly due to the detection of
coincident pre-synaptic spike-induced glutamate release and post-synaptic spike-induced
backpropagating dendritic depolarization by NMDA receptors, whereas LTD is caused by weak
calcium entry on account of asynchrony and NMDA receptors staying closed, although recent
evidence suggests otherwise (Sjostrom et al., 2003). In particular, STDP is a strong candidate for
learning navigational hippocampal sequences, since fast replay of trajectories at theta- or SWR-
scale allows pre-post association within the optimal STDP learning temporal window of
hundreds of milliseconds (Diba and Buzsaki, 2008). Furthermore, modeling studies have shown
that STDP does induce synaptic chains after temporally-structured stimuli (Liu and Buonomano,
2009; Clopath et al., 2010; Fiete et al., 2010)

Additionally, STDP is neuromodulated by dopamine (He et al., 2015), with strong plasticity
during reward delivery or anticipation. Since working memory and navigational sequences are
reinforced by reward delivery, dopaminergic signaling allows the learning of sequences towards
the rewarded objective. The temporal linkage of spikes and dopamine signaling, a.k.a. the distal
reward problem, would arise from synaptic eligibility traces (Izhikevich, 2007), e.g. activation of
an enzyme important for plasticity.

1.3.2. Homeostatic meta-plasticity

Yet, as with Hebbian learning, STDP models suffer from synaptic runaway, where synapse
potentiation results in more pre-post spike association and thus synapse potentiation. A
homeostatic form of meta-plasticity is necessary to keep neuronal parameters within
reasonable physiological boundaries (Zenke et al., 2013). Synaptic scaling, i.e. the scaling of
synaptic strengths according to network frequency, is one of different theoretical propositions
of meta-plasticity (e.g. BCM, Bienenstock et al., 1982), which is ubiquitously observed across
cortices (Turrigiano et al., 1998; Keck et al., 2017). However, synaptic scaling needs to act at an
equal or faster pace than plasticity in order to ensure synaptic stability (Zenke et al., 2017),
suggesting the existence of as yet unidentified rapid compensatory processes (e.g.
heterosynaptic plasticity, implication of astrocytes, etc.).

1.3.3. Sequence learning and replay within synaptic
noise

Learning synaptic chains via STDP requires relatively precise timing between spikes.
However, it is well known that network activity is globally disorganized in the awake cortex of
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active attentive animals. The irregularity of neural activity is measured via the coefficient of
variation (CV) of inter-spike intervals (ISI). Purely random neural activity, where each spike
occurs with a small random probability at each instant independently of past spikes, a.k.a. a
Poisson point process, defines an ISI distribution with a CV of 1. Accordingly, ISI distributions
within awake cortex also have a CV of 1 or above (Compte, 2003), suggesting they are as or more
irreqular than a random process (Shinomoto et al., 2005). This is thought to be caused by
neurons being in a high conductance state (Destexhe et al., 2003), in which strong and tightly
balanced excitatory and inhibitory currents lead to a sustained depolarized membrane potential.
As such, small (relative to the total sum) current fluctuations are sufficient to induce spiking,
allowing faster temporal integration of faint pre-synaptic spiking correlation signals and
resulting in irreqular activity. Cortical activity during wake is furthermore typically asynchronous
(Brunel, 2000) during active behavioral states, showing desynchronized local field potentials
(Poulet and Petersen, 2008) and only synchronizing with external or internal events (Riehle et
al., 1997), which has been interpreted as a desirably energy-efficient neural code (only a single
neuron’s spike being required vs. many neurons simultaneously spiking, Deneve and Machens,
2016). Finally, activity in vivo is sensitive to slight perturbations, i.e. cortical activity is chaotic
(London et al., 2010).

Itis unclear how synaptic chains can be learned and replayed within the globally disorganized
chaotic activity of cortical networks during awake behavior. Indeed, the noisy activity regime
can disrupt spike-induced sequence learning within individual synapses, since spike temporal
jitter perturbs precise temporal spike differences and thus can cause accidental switches
between LTP and LTD. At the network level, erratic spikes can recruit irrelevant synapses while
randomly absent spikes fragilize the resulting dynamic engram. After learning, accumulation of
non-specific plasticity resulting from noisy spike activity, counterbalanced by homeostatic
meta-plasticity, can lead to engram forgetting. Furthermore, noisy excitatory activity can
destabilize evoked replay by recruiting inhibitory interneurons, while also inducing spontaneous
replays at pathological levels of repetition (i.e. incessantly). When considering the network as a
chaotic dynamical system, noisy perturbations lead to exponential divergence in network
activity which can lead to replay failure. Finally, sequence replay can further reinforce the
synaptic engram via STDP, resulting in synaptic runaway starting with spontaneous replays and
ending in paroxysmal epileptic activity.

- In summary, can plastic synaptic and homeostatic meta-plastic processes, in
combination with intrinsic bistability properties and slow synaptic currents, guarantee
robust sequence learning and replay within the noisy dynamics characterizing of awake
cortex?

A potential solution to the problems induced by synapse-activity interactions addressed
above is to consider STDP learning within the context of dopaminergic neuromodulation.
Indeed, learning is restricted to the time window immediately following a phasic dopaminergic
signal caused by reward acquisition, prohibiting slow forgetting due to non-specific spiking
outside of reward collection. However, dopamine-mediated STDP learning similarly suffers
from the other aforementioned undesirable interactions between erratic activity and sequence
learning.
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- This being the case, what mechanistic description of dopaminergic neuromodulation
of STDP allows the learning of neuronal sequences towards an objective within noisy
networks?

1.4. Theoretical background for attractor
dynamics

1.4.1. Hebbian Assembly

A well-studied framework describing the learning of stable network activity attractors within
noisy activity is the emergence of Hebbian assemblies encoding auto-associative memories via
Hebbian synaptic plasticity, as mentioned above. While this framework allows for stable
attractors within noisy networks, the resulting attractor is static rather than dynamic.
Furthermore, the dynamic nature of sequential attractors leads to different challenges. Indeed,
the propagation of neural sequences depends upon the unidirectional nature of synaptic
weights, such that their stability cannot be mainly based upon the positive feedback loop of
NMDA-mediated synaptic reverberation within bidirectional weights (Hebb, 1949; Brunel and
Wang, 2001). Similarly, mechanisms which help stabilize bistable frequency in assemblies (e.g.
strong intrinsic or dendritic bistability, Camperiand Wang, 1998; Koulakov et al., 2002; Goldman
et al., 2003; Compte, 2006) may not apply to sequences of transient sparse neuronal activity.

1.4.2.  Synfire chain

On the other end of the spectrum, synfire chains (Abeles et al., 1993) lead to unidirectional
propagation of synchronous activity across neural layers, corresponding to dynamic engrams
underlying dynamic attractors. While the existence of temporally precise sequences is
debatable, synfire chains can result in unstable or uncontrolled sequential propagation (Mehring
et al., 2003). Furthermore, synfire chains describe feedforward synaptic chains, whereas the
aforementioned sequence-prone cortices have strongly recurrent synaptic architectures.
Finally, they are organized into distinct layers, whereas unidirectional connections could overlap
across neurons, forming more complex structures such as synfire braids (Izhikevich et al., 2004;
Izhikevich, 2006). In summary, the stability issue, lack of recurrence and layer organization of
synfire chains make them unlikely candidates for the emergence of stable repeatable sequences
within local networks on many different timescales (0.5-60s).

1.4.3. Hebbian phase sequences

In between Hebbian assemblies and synfire chain, the hybrid model of Hebbian phase
sequences offers the advantages of both, allowing stable propagation of dynamic attractors
within recurrent synaptic structures (Kumar et al., 2008; Duarte and Morrison, 2014; Chenkov et
al., 2017). However, the neural sequence is composed of discrete assemblies rather than
continuous overlapping connections across neurons, which is difficult to verify experimentally
and thus up to interpretation. Furthermore, it is unclear whether and how Hebbian phase
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sequences are formed through uni- and bi-directional STDP, whereas the formation of
unidirectional synaptic chains is more straightforward. Finally, the existence of neural activity
sequences at the micro-column ~200um scale (Harvey et al., 2012), combined with the fact that
subnetworks in Vi1 layer 2/3 share interneurons (Yoshimura et al., 2005; Itskov et al., 2011),
suggests propagation is not induced by inhibition local to each assembly, as shown in (Chenkov
et al.,, 2017). Putting continuous sequences aside, the sequential activation of neuronal
assemblies might account for the previously mentioned sequential transitions between discrete
network states modeled as HMMs.

1.4.4. Continuous dynamic engrams

Models learning sequences through unidirectional STDP exist, although none satisfyingly
answer all aspects of the problem introduced by learning and replay of sequences within noisy
networks as mentioned above (namely noise-perturbed learning, non-specific plasticity-induced
forgetting, synaptic runaway-induced paroxysmal epileptic activity, as well as incessant or
unstable replay and chaotic divergence after initial triggering stimuli). Indeed, some studies do
not study trajectory replay after learning (Clopath et al., 2010) or the trajectory cannot be
replayed from an initial trigger (Klampfl and Maass, 2013). In others, trajectory learning is either
absent (Chenkov et al., 2017), based on artificial learning rules (Sussillo and Abbott, 2009; Laje
and Buonomano, 2013; Xue et al., 2021) or biologically unrealistic neuronal activity and synaptic
plasticity (Liu and Buonomano, 2009; Fiete et al., 2010; Klampfl and Maass, 2013), or unrelated
to external stimuli (Fiete et al., 2010). Additionally, certain models lack the asynchronous
irregular regime of neuronal activity altogether (Liu and Buonomano, 2009; Fiete et al., 2010),
removing the necessity for attractors robust to synaptic noise. Finally, none dissect how
biophysical mechanisms can support the reliability and stability of neural sequence replay, nor
study its maintenance in long-term memory.

1.5. Thesis outline

This thesis consists in trying to understand which biophysical determinants, such as intrinsic
and synaptic currents, network architecture or plasticity rules, are essential to emergence of
stable and dynamic attractors, which are repeatable across trials and robust to synaptic noise.

What intrinsic currents allow the emergence of stable yet labile network states and
robust neuronal activity sequences? Chapter 2 studies a conditional form of robust and generic
spike-mediated bistability subserved by high-threshold L-type calcium (CaL) and calcium-
activated non-specific (CAN) ionic currents within a model of layer 5 PFC pyramidal neuron. In
this context, intermediate CAN conductance levels result in the maintenance of activity induced
by a supraliminal phasic depolarizing current input, but conditional to the presence of a tonic
subliminal depolarizing current input. This tonic input could originate from other excitatory
neurons within an excitatory assembly, thus facilitating transitions between labile network
states defined by neuronal assemblies. Such conditional bistability could also help stabilize
neural activity sequences, where the subliminal input originates from previous neurons of the
sequence.
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While persistent activity within monkey PFC allows stable network states during working
memory, the MCC is at the pinnacle of the cortical hierarchy with the longest neuronal activity
timescales (twice those of lateral PFC; LPFC). Do the same intrinsic mechanisms subserve
these long timescales, and to what end? Starting from a biophysical neural network model
closely replicating monkey LPFC working memory data, Chapter 3 shows that plausible strong
inhibitory after-hyperpolarization (AHP) ionic and slow GABA-B synaptic currents account for
the longer neuronal timescales within MCC compared to LPFC. These neuronal timescales
escalate at the network level into the metastable peregrination of network activity across much
longer quasi-stable discrete network states, whose maintenance and transitions are controlled
by synaptic inhibition. Chapter 4 replaces these findings within the MCC's proposed central
function, i.e. temporal integration of diverse multimodal inputs, allowing to construct an action-
reward outcome history for behavioral adaptation and exploration. Additional results in Chapter
4 then revealed the sequential organization of MCC network state peregrination within two
larger pseudo-attractor spaces, where each network state could be defined by persistent activity
or neural activity sequences.

While GABA-B conductance can be neuromodulated to generate the timescales necessary
for task demands, these network states and sequences originate from the random architecture
of the synaptic matrix, and are thus not learned nor related to external stimuli and task variables.
How can intrinsic and inhibitory synaptic currents stabilize and allow controlled replay of
learned sequences within synaptic noise? Chapter 5 shows that strong tonic or slower
inhibitory currents coupled with increased excitatory functional connectivity, as well as intrinsic
CAN and AHP currents mediating transient bistability, increases the stability and controllability
of learned sequence replay when faced with synaptic noise. Furthermore, the model is robust to
variability in the biophysical parameters, and represents a common framework for many types
of static or dynamic and discrete or continuous attractors (e.g. Hebbian assemblies, phase
sequence, synfire chain, ring attractor, and bidirectional sequences).

Whereas the previous chapter studies mechanisms allowing robust replay within synaptic
noise, STDP learning occurs before the network simulation, outside of the asynchronous
irregular regime. As such, what mechanisms allow the learning and maintenance in memory
of the synaptic engram within noisy network activity, and can the resulting engrams be
replayed? Building upon the previous chapter’s knowledge by instantiating a model network
capable of stable and controllable replays, Chapter 6 shows that STDP modeled as calcium-
based activation of kinase and phosphatase couples (aKP) allows minimal interference between
trajectory learning or replay and the asynchronous irregular regime. This results from the very
slow aKP kinetics at low frequency, coupled with the network’s low frequency during resting
state activity. This model further describes how sequences can be learned through the
presentation of discrete fragments, how they can be replayed at fast or regular timescales (such
as for navigational trajectories) according to neuromodulated NMDA channel opening
dynamics, and confirms that such sequences can reconcile simultaneous stable and dynamic
coding. However, runaway synapse-activity interactions due to repeated sequence replays lead
to paroxysmal network activity and engram forgetting, requiring slower plasticity and multiple
stimulus presentations.

The previous two chapters describe learning of presented stimulus sequences within synaptic
noise which are replayed after an external triggering cue. However, they do not describe how
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sequences can be learned toward a rewarding goal (instead of replicating an external stimulus),
nor do they not explain intrinsically-generated and motivated decisions in the absence of
triggering cues, both effects which have been attributed to dopaminergic neuromodulation.
How can dopaminergic neuromodulation account for both the learning of, and motivation
to retrieve, rewarded goals? Chapter 7 shows that multiplicative gating of online synaptic
plasticity eligibility traces and synaptic excitability by phasic dopamine (DA) signals allows 1) the
learning of rewarded locations as static neuronal assemblies dynamically oriented toward the
reward location, as well as 2) their successful recall after an internally-generated motivational
DA impulse, inducing slow excitatory NMDA-mediated synaptic reverberation within the
assemblies learned through DA and subsequent mouse behavioral convergence toward them.
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Chapter 2. PFCworking memory persistent activity via
intrinsic conditional bistability

2.1. Summary

Working memory is commonly believed to be supported by persistent neural activity within
monkey PFC. Two non-mutually exclusive mechanistic origins of persistent neural activity have
been proposed: synaptic network reverberation, and intrinsic cellular bistability. Network
reverberation models have been criticized, notably since they lack the spiking irregularity and
quasi-stationary state transitions observed experimentally. On the other hand, intrinsic cellular
absolute bistability (AB) models require long onset and offset stimuli and strong levels of
pharmacological neuromodulation, which resultin long (~10s) high frequency regular discharges
lacking the spiking irregularity and flexibility necessary for adaptive working memory cognitive
processes. An intermediate proposal exists, a.k.a. conditional bistability (CB), in which
persistent activity after an initial stimulus is conditional on subthreshold input current during the
delay period. CB is notably found within layer 5 PFC pyramidal neurons, and has been
overlooked in classical bistability protocols, as they test neuronal responses to an initial stimulus
only (event), without the additional subthreshold input or depolarized membrane potential
required during the delay period (event/delay).

As such, we present a mechanistic account of spike-induced CB in a Hodgkin-Huxley neuronal
model of iso-potential PFC layer 5 pyramidal neuron. In this model, CB is implemented by spike-
mediated high-threshold L-type calcium (CalL) and calcium-activated non-specific cationic
(CAN) currents. The voltage-dependent CalL current induces after-depolarization potentials
(ADP) and calcium entry during action potentials. This calcium then opens CAN channels,
inducing further ADP and thus potentially action potentials. High CaL and CAN maximal
conductances result in this positive feedback loop being sufficiently strong to sustain itself after
the initial event stimulus without delay input (AB), while weaker conductance levels require a
delay input current for the loop to sustain itself (CB).

However, the weak positive feedback of CB precisely leads to a richer diversity of behaviors,
with varying moderate frequency and a repertoire of responses depending on the amplitude of
the delay input current (from memoryless discharge to stable memory via various transient
memory durations). The parametric region of maximal conductances characterizing CB is wide
and within physiological neuromodulatory levels, and only the CaL asymmetric opening and
closing dynamics are necessary and sufficient for CB, both elements suggesting this
mechanism'’s genericity within PFC (and other) networks.

Considering in vivo asynchronous synaptic inputs, CB neurons alternate between bursting
and non-bursting episodes, inducing higher CV and CV2 during the delay compared to without
CB (though an after-hyperpolarization potential (AHP) current was necessary). As such, within a
network, CB may underpin transitions between stable collective states of quasi-stationary firing
at the second timescale, such as mental states during exploration of computational solutions
promoting adaptive cognitive processes. Furthermore, the weak positive CB spike feedback
loops could help stabilize sequences of neural activity, with stable firing being conditional on
subliminal input from vanishing activities of previous neurons in the sequence.
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2.1.1. Contributions

| helped develop the bistability assessment protocol code and analyze corresponding data, and
reviewed the article during writing.

2.2. Article
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Persistent neural activity, the substrate of working memory, is thought to emerge from synaptic reverberation within recurrent networks.
However, reverberation models do not robustly explain the fundamental dynamics of persistent activity, including high-spiking irregu-
larity, large intertrial variability, and state transitions. While cellular bistability may contribute to persistent activity, its rigidity appears
incompatible with persistent activity labile characteristics. Here, we unravel in a cellular model a form of spike-mediated conditional
bistability that is robust and generic. and provides a rich repertoire of mnemonic computations. Under asynchronous synaptic inputs of
the awakened state, conditional bistability generates spiking/bursting episodes, accounting for the irregularity, variability, and state
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Significance Statement

in a robust fashion by current models.

(&

This study unravels a novel form of intrinsic neuronal property: conditional bistability. We show that, thanks to its conditional
character, conditional bistability favors the emergence of flexible and robust forms of persistent activity in PFC neural networks,
in opposition to previously studied classical forms of absolute bistability. Specifically, we demonstrate for the first time that
conditional bistability (1) is a generic biophysical spike-dependent mechanism of layer V pyramidal neurons in the PFC and that
(2) it accounts for essential neurodynamical features for the organization and flexibility of PFC persistent activity (the large
irregularity and intertrial variability of the discharge and its organization under discrete stable states), which remain unexplained
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Introduction

Working memory (WM), the ability to maintain and manipulate
information within seconds, is essential to cardinal brain func-
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tions. Persistent neural activity represents a major neural corre-
late of WM, especially in the prefrontal cortex (PFC). The theory
postulates that once triggered, persistent activity self-sustains
through spiking reverberation in recurrent networks (Wang,
2001; Compte, 2006). Cortical architectures may provide suffi-
ciently positive and nonlinear feedback for network dynamics to
converge toward persistent activity (attractor dynamics; Cossart
et al., 2003; MacLean et al., 2005). However, network reverber-
ation as a unique causal origin remains controversial because
it fails to robustly account for fundamental aspects of persis-
tent activity such as the higher irregularity of spiking during
the delay period of WM tasks, the large intertrial variability of
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the discharge and its temporal structure under quasi-statio-
nary states, and the ability to encode parametric information
(Seidemann et al., 1996; Koulakov et al., 2002; Compte et al.,
2003; Goldman et al., 2003; Shafi et al., 2007; Barbieri and
Brunel, 2008).

As a non-mutually exclusive alternative, intrinsic properties
of neurons may underlie persistent activity, in interaction with
synaptic mechanisms, for object (Compte, 2006), spatial (Camperi
and Wang, 1998), and parametric (Koulakov et al., 2002; Goldman
etal., 2003) WM, and the interaction of WM with long-term mem-
ory (Egorov et al., 2002; Larimer and Strowbridge, 2010). The
intrinsic bistability of neurons (i.e., the coexistence of stable
states of quiescence and self-sustained spiking) is central to this
proposal because it allows memorizing transient inputs in indi-
vidual neurons (Booth and Rinzel, 1995; Delord et al., 1996, 1997;
Marder and Calabrese, 1996; Shouval and Gavornik, 2011). Bi-
stability is ubiquitous in peripheral (Lee and Heckman, 1998;
Perrier and Tresch, 2005), subcortical (Rekling and Feldman,
1997; Kawasaki et al., 1999), and cortical (Krnjevi¢ et al., 1971;
Schwindt et al., 1988; Silva et al., 1991; Tahvildari et al., 2007;
Zhang and Séguéla, 2010) structures, and in the PFC (Haj-
Dahmane and Andrade, 1997; Dembrow et al., 2010; Gee et al.,
2012; Thuault et al., 2013).

This hypothesis has been criticized because intrinsic bistabil-
ity is generally strongly stereotyped in vitro: it does not depend on
the level of background depolarization [absolute bistability (AB)],
requires long on- and off-stimuli (seconds), strong levels of phar-
macological manipulations (e.g., neuromodulation), and dis-
plays extremely long (tens of seconds), high-frequency, highly
regular discharges with partially inactivated spikes (Haj-Dahmane
and Andrade, 1997; Egorov et al., 2002; Tahvildari et al., 2007;
Zhang and Séguéla, 2010; Gee et al., 2012). These rigid features
contrast with the flexibility of WM-related computational pro-
cesses and persistent activity [e.g., high intertrial variability (Shafi
etal., 2007) and irregular spiking (Compte et al., 2003)].

However, nonstereotype, conditional forms of bistability, where
self-sustained spiking depends on background depolarization,
have been found in the cortex (Silva et al., 1991; Tahvildari et al.,
2007) and other structures (Bourque, 1986; Rekling and Feld-
man, 1997; Lee and Heckman, 1998; Kawasaki et al., 1999; Perrier
and Tresch, 2005). Conditional bistability (CB) has been ob-
served in layer V (L5) PFC pyramidal neurons (Thuault et al.,
2013), which is not surprising, since bistability is underlain in
these neurons by two spike-mediated (i.e., suprathreshold) cur-
rents—the high-threshold L-type calcium (CaL) and the calcium-
activated nonspecific cationic (CAN) current (Haj-Dahmane and
Andrade, 1997; Gee et al., 2012; Thuault et al., 2013)—that correlate
with CB in many other neuronal types (Bourque, 1986; Silva et al.,
1991; Rekling and Feldman, 1997; Lee and Heckman, 1998; Ka-
wasaki et al., 1999; Perrier and Tresch, 2005; Tahvildari et al.,
2007). A spike-mediated form of AB was previously studied
(Shouval and Gavornik, 2011), but spike-mediated CB remains
unexplored hitherto. Yet, its mechanism may depart from more
classical spiking-independent forms of bistability relying on den-
dritic calcium (Hounsgaard and Kiehn, 1993; Booth and Rinzel,
1995), NMDA (Milojkovic et al., 2005; Major et al., 2008; La-
rimer and Strowbridge, 2010), or subthreshold currents (De-
lord et al., 1996, 1997; Washburn et al., 2000; Genet and
Delord, 2002; Loewenstein et al., 2005; Carrillo-Reid et al.,
2009; Genet et al., 2010).

Here, we explore the computational and mnemonic conse-
quences of spike-dependent CB in a model of a L5 PFC pyramidal
neurons.

Rodriguez et al. @ Conditional Bistability for Flexible Memory

Materials and Methods

Design of the standard model. We consider an isopotential L5 PFC pyra-
midal neuron model that follows the Hodgkin-Huxley formalism. The
neuron model is endowed with the leak (I;) and action potential (AP)
currents (I, Iy) and a synaptic (Ig,,,, “in vivo condition”) or an injected
(I, “in vitro condition”) input current. Depending on the hypothesis
tested, the model also comprises one or more calcium- and/or voltage-
dependent suprathreshold currents, generically denoted I,,,. These
currents can be depolarizing (I, Io4n) or hyperpolarizing [afterhyper-
polarization potential potassium current (I,;;,)]. The standard version
of the model comprises the following three currents: I, | = I, + Ican +
Iyup, with parameters described in the Parameter section (see below).
The membrane potential evolves according to the following:

av
CE = —(I;+ Iy + g+ Ty + ISyn) + Ilnj- (1)

Leak current I, and action potential currents I, and Iy. Theleak current
is written as follows:

I = gL(V -V, (2

and AP currents are taken from a previous model we devised to repro-
duce spike currents of excitatory regular-spiking neocortical neurons
(Naudé et al., 2012).

High-threshold calcium current (I,;;p). The CaL current is derived from
Delord et al. (1997) and follows as:

I = gafo:aL(V = Ve (3)

where the activation x,; follows first-order kinetics:

dxca _ xea (V) = Xear

a (V) )
with a voltage-dependent time constant:
TCaL(V) = 10&QL+BQLV) (5)

with a¢, and B¢, adapted to fit the time constant observed in vitro
(Helton et al., 2005).
The activation follows:

_(V - VllZ,CaL)) !

xea(V) = <1 + exp Kow

(6)
where V, , -,; and K, respectively, denote the half-activation poten-
tial and the e-fold slope of Boltzmann activation voltage dependence, and
were estimated from the I-V curve obtained in vitro (Helton et al., 2005).

Calcium-activated nonspecific cation current (I ). The CAN current
obeys the following:

Ican = Zean xean(V — Vean)s (7)

where the activation x4 follows first-order kinetics depending on the
intracellular calcium concentration, as follows:

dxcax _ xean(Ca) — xcan

at — 1ean(Ca) (8)
with
Tean(Ca) = : » ©)
acanCa + Bean
and

acanCa

— 10
acanCa + Beax (10)

xcan(Ca) =
where o,y and Beans respectively, denote activation and deactivation
kinetic constants chosen to get significant activation in the micromolar
range with time constants fitting those observed in vitro after large cal-
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cium influx in L5 PFC pyramidal neurons (i.e., ~35 ms in the range 5-10
M in the model and up to ~100 ms at lower [Ca?*] during interspike
intervals (ISIs; Haj-Dahmane and Andrade, 1997)).

L, The AHP current modeled here corresponds to the SK potassium
channel type and obeys the following:

Tyup = Ganp x}\HP(V = Vamp)s (11)

where the activation x, ;p follows calcium-dependent first-order kinetics
as follows:

dxaup _ xanp(Ca) — Xppp

at  1gw(Ca) (12)
with
Tanp(Ca) = ;, (13)
e Ca + Bawp
and
Kin(Ca) = (14)

axppCa + BAHP’

where a,;;p and B, p, respectively, denote the activation and deactiva-
tion kinetic constants, fitted to account for the time constants of medium
AHPs observed in vitro in L5 PFC pyramidal neurons (Villalobos et al.,
2004; Faber and Sah, 2007).

Calcium concentration dynamics. In the model, calcium concentration
dynamics results from the inward influx due to I-,; and from first-order
buffering /extrusion (Haj-Dahmane and Andrade, 1997) as follows:

dCa 1 SurfI N Ca, — Ca )
dt = T 2F Vol lea T T (15)

where F is the Faraday constant, Ca, is the basal intracellular calcium

concentration, 7, is the buffering time constant, and the following:

Surf o r\!
Td=rl 1——+ - > (16)

2
ro 31,

is the surface area-to-volume ratio of an idealized intracellular shell com-
partment of thickness r, situated beneath the surface of a spherical neu-
ron soma of radius r,. Calcium dynamics possesses an intrinsic
asymmetry resulting from the inward influx due to rapid increases of I,
and the slower first-order buffering process.

Synaptic currents. In in vivo conditions (see Protocols), synaptic activ-
ity is simulated with fluctuating excitatory AMPA and inhibitory GABA ,
conductances as studied in L5 PFC pyramidal neurons (Destexhe and
Paré, 1999), and the synaptic current is modeled as follows:

Iy, = ge(V -V + gl(V -V, (17)

where V; and V; are the reversal potentials, and the fluctuating conduc-
tances g and g; are given by two Uhlenbeck—Ornstein processes, as fol-
lows:

d

% = (gr — &)/ 7s + opxs(t), (18)
dg;

a (g1 — g1/ 71+ o), (19)

where 7, and 7, are the respective time constants of the temporal evolu-
tion of conductances, g, and g, are the mean conductances (that depend
on the considered protocol), oz and o are the SDs, and x(¢) and x,(¢) are
Gaussian stochastic processes with zero mean and unit SDs.
Determination of afterdepolarization potential amplitudes. The ampli-
tude of afterdepolarization potentials (ADPs) is determined using a spe-
cific stimulation protocol composed of a 15 ms phasic current of fixed
amplitude set to elicit a single action potential. The ADP amplitude is
calculated as the maximal membrane potential difference between con-
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ditions in the presence and the absence of the tested supraliminar current
(Icar> Icanp O both). This difference was calculated in a window starting 10
ms after the action potential peak (to avoid the influence of different action
potential lengths due to the presence/absence of suprathreshold currents)
and ending 1 s later, far after complete relaxation to resting potential.

Standard model parameters. Unless indicated in figure legends, stan-
dard parameter values are as follows: for the leak current, g; = 0.05mS *
cm %, V, = —70 mV; AP current parameters are as in a previous model
that we developed of excitatory regular-spiking neocortical neurons (Naudé
et al., 2012), with gy, =24 mS-cm 2 Via = 50mV, g =3mS-cm 2
and Vi = —90 mV. For supraliminar ionic currents, parameters are g,; =
0.0045mS - cm 2, Vi, = 150 mV, V), o0 = —12mV, Ko = 7mV,
Qcar = 0.6, Bear = —0.02mV "1, gy = 0.025 mS - cm %, Va = 30
mV, acay = 0.0056 uM ! - ms ! and Beay = 0.0125 ms Y,
Zapp = 0.2mS cm "2, Vo = =90 mV, @,y = 0.05 uM "' - ms Y,
and B,p = 0.2 ms . Geometrical and intracellular calcium dynamics
parameters are as follows: F = 96,500 mol+s ' +A~',r, =4 um,r, =
0.25 um, Ca, = 0.1 uM, 7o, = 100 ms. Synaptic parameters are
8EgBACKGROUND — 0.0325mS - cm -2 8epevent — 0.065 mS:cm ~2
8k, pELAY = 0.040 mS - cm ~2, and independently of the period considered,
0 =00125mS-cm %, g =0.1mS-cm %, 0, =0.0075mS - cm %, 7
=25ms, 7, =10ms, V; = 0mV,and V; = =75 mV.

Numerical procedures. The models were numerically integrated using
the forward Euler method with a le ~? ms time step. Bifurcation dia-
grams were obtained using the XPP software for qualitative analysis
of dynamical systems (http://www.math.pitt.edu/~bard/xpp/xpp.html).
Spikes were detected as a maximum of the membrane potential above
—20mV.

In in vitro protocols, the behavior maps (see Figs. 2, 3) were built as
follows: the discharge during a 10 s delay period was classified as (1) memo-
ryless, when no spike occurred during the delay period or when one spike
occurred at <25 ms after the onset of the delay period; (2) transient memory,
when an unstable discharge occurred during the delay period and lasted
at least 25 ms after the delay period onset (to exclude cases where an
ultimate spike is blown just after the phasic current pulse due to the
activation of a fast sodium current in the last milliseconds of the phasic
current pulse); and (3) stable memory, when the last spike of the dis-
charge occurred after 9.5 s and the mean relative absolute difference
between successive ISIs was <5% during the last 2 s of the delay period.

In in vivo protocols, spikes were defined as belonging to a burst when
they were part of a succession of at least three spikes with all ISIs <100 ms
(instantaneous frequencies >10 Hz). Other spikes were defined as not
belonging to a burst [i.e., isolated spikes or doublet of spikes (with an
intradoublet ISI inferior to 100 ms) that were separated from the rest
of the spike train by ISIs >100 ms]. Bursting episodes were defined as
contiguous periods of time within which all spikes belonged to a burst.
Nonbursting episodes were defined as the periods outside the bursting
epidsodes. The choice of 100 ms as a cutoff ISI value was arbitrarily set to
separate periods with frequency inferior to 10 Hz, which are typical of the
spontaneous state of activity in the awake cortex from periods of activity
taking part in coding (Destexhe et al., 2001). This exact value is not
important to the conclusions drawn in the present study.

Statistical methods. We used a two-tailed Wilcoxon rank-sum test to
compare the medians of the CV distributions in the event and delay periods
of the event/delay protocol, because the CV distributions were not normal,
according to Kolmogorov—-Smirnov goodness-of-fit hypothesis tests. A sim-
ilar procedure was used to compare the medians of the CV,, distributions in
the event and delay periods of the event/delay protocol.

Results

Mimicking synaptic inputs during WM

Our main goal was to determine whether depolarizing spike-
mediated currents can maintain the memory of an event at the level
of the discharge of an individual neuron, while producing realistic
spiking patterns, as observed during WM. To that end, we designed
a realistic isopotential model of a L5 pyramidal PFC neuron en-
dowed with high-threshold CaL (I, ), calcium-activated nonspe-
cific cationic (I-,y), afterhyperpolarization potassium (Ip),
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event protocol

event/delay protocol
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Figure 1.  Conditional bistability is a hidden property in neurons endowed with a suprathreshold conductance in response to standard protocols applied in vitro. a1-c3, The response of
monostable (a7-a3; g, = 0.003 mS - cm ~2), absolute bistable (b7-b3; g, = 0.03 mS - cm ~2), and conditional bistable (¢7-¢3; g, = 0.02mS - cm ~2) neurons (standard model) to an
event protocol with a 0.2 s suprathreshold current step (a7, b1, ¢7) and to the event-delay protocol, in which the event is followed by a 1 subthreshold depolarizing current mimicking background
activity in PFC networks during the delay of a working memory task (a2, b2, 2). Note that the discharge is continuing after the delay stimulus in the absolute bistable neuron (b2, star symbol). Note
the ADP (c2, void symbol) following spiking in the conditional bistable neuron. The thresholds for initiating (6,) and terminating (6,) spiking are represented as green and red dotted lines,
respectively, and the bistability domains are shown in lavender. Red arrows denote the positive feedback loop among spiking, CaL activation (x,,,), increased [Ca*], and CAN activation (x,,). a3,
b3, ¢3, Right panels, Bifurcation diagrams illustrating the stable fixed point (resting potential, green solid curve) and the minimal/maximal potentials of action potentials during the limit cycle
(hythmic spiking, red solid curves), the thresholds for initiating (6, green doted lines) and terminating spiking (6, red doted lines), and the /,,; 4/, during the delay (black arrows). Bistability

domains are shown in lavender. Black dotted lines indicate unstable fixed points of the models.

action potential and leak currents, and intracellular calcium
([Ca*"]) linear dynamics (see Materials and Methods). In the
model, I,; and I, are spike mediated because I,; activates at
membrane potentials above the spike threshold and is the unique
source of intracellular calcium activating I, as found in PFC neu-
rons exhibiting spike-mediated bistability (Haj-Dahmane and An-
drade, 1997). Parameters were set such that I, was the sole spike-
mediated charge carrier between these two currents (Haj-Dahmane
and Andrade, 1997).

To test whether spike-mediated currents contribute to persis-
tent activity in the model, we used two stimulation protocols. The
event protocol, classically used to assess bistability, consisted of a
single, short (0.2 s) suprathreshold current pulse mimicking the
arrival of an input (e.g., perceptive or motor) event. In the event/
delay protocol, the event was followed by a longer (1 s) subthresh-
old depolarizing current mimicking background activity from
the PFC network to the neuron during the delay of a WM task.
This input may correspond to persistent activity reverberating
within local PFC recurrent connections to maintain information
about the event or to ongoing inputs related to motivational,
attentional, anticipatory, or executive aspects of WM processes.

Conditional bistability is invisible with classical protocols
At low levels of the maximal CAN conductance ( gcan), the neu-
ron discharged only during the event (Fig. 1al, event protocol),

even when the event was followed by a background subthreshold
delay current (Fig. 1a2, event/delay protocol). A bifurcation anal-
ysis as a function of the I;,,; indicated that the neuron was mono-
stable (M): it admitted either a stable fixed point corresponding
to the resting potential (Fig. 1a3, green solid curve) or, above the
spiking threshold 6oy, to a stable limit cycle corresponding to
rhythmic spiking (Fig. 1a3, red solid curves).

At large g4 values, the event induced a self-sustained dis-
charge that outlasted the triggering event, providing a cellular
form of memory, with both protocols (Fig. 1b1,b2). Mechanisti-
cally, self-sustained spiking arose from the positive feedback
among spiking, CaL activation, increased [Ca®"], and CAN acti-
vation (Fig. 1b1, red arrows), which did not operate at low goan
levels (compare with Fig. 1al). Here, the neuron was bistable: the
resting potential coexisted with rhythmic spiking in a bistability
domain situated between 0y, the threshold for initiating spik-
ing, and Oy, the threshold for terminating spiking (Fig. 1b3,
lavender domain). The bistability domain included I;,,; = 0 pA -
cm 2 (Oopr < 0 < Opy), s0 that cellular memory did not require
any background subthreshold input. Hence, the spike-mediated
bistability was absolute, as observed in a previous model (Shouval
and Gavornik, 2011) and in PFC neurons under pharmacological
manipulations (Dembrow et al., 2010; Gee et al., 2012). There-
fore, persistent activity outlasted the delay period (Fig. 1b2, star;
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Figure2. Existence and expression of conditional bistability in vitro. a, Discharge behaviors of the standard neuron model in response to the event/delay protocol (/;-¢yene = 0.6 A= cm ~ ?)as
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M, (B, and AB indicate the monostability, conditional bistability, and absolute bistability domains, respectively. The memoryless and transient memory, stable

conditional memory and stable absolute memory behaviors are indicated, respectively, as yellow, orange, lavender, and purple domains (bottom) and discharges (top panels). b, ¢, Heat maps of the

duration of memoryless and transient memory behaviors (b) and of the mean firing frequency of stable memory behaviors (c) during the delay period, as afunction of the g, and the ,

nj-delay” Note

thatabove 6, the tonic current s suprathreshold and the neuron fires even when no event precedes the delay period. Sawteeth at the border between memoryless and transient regions correspond
to the discharge of one spike occurring at >>25 ms after the onset of the delay period, while the main part of the transient memory region corresponds to the discharge of several spikes during the

delay period (see definition of transient memory behavior in Materials and Methods).

i.e., memory was infinite), unless a specific inhibitory input ter-
minated it.

At intermediate g, levels, we observed that bistability was
conditional: spiking during the delay depended on the level of
subthreshold depolarization, as found in several neural struc-
tures and in the PFC (Bourque, 1986; Silva et al., 1991; Rekling
and Feldman, 1997; Lee and Heckman, 1998; Kawasaki et al.,
1999; Perrier and Tresch, 2005; Tahvildari et al., 2007; Thuault et
al., 2013). After the event, spiking stopped in the event protocol
(Fig. 1clI) but persisted during the entire delay in the event/delay
protocol (Fig. 1¢2) even though the background delay current
(Itnj-detay) Was subthreshold (i.e., below 6y Fig. 1¢3, black ar-
row). This was possible because Iy,,;.ge1,, Was above 6o (ie., in
the bistability domain; 0 < 6oz < 0oy Fig. 1¢3). The back-
ground current was needed under CB, by contrast to AB, because
the spike-mediated positive feedback was not sufficient to sup-
port autonomous self-sustained spiking at moderate g, levels.
This explains why persistent activity terminated at the end of the
delay when I,,; values returned to zero, below g and the bista-
bility domain (Fig. 1¢2, void symbol), being followed by an ADP
(Fig. 1c2, black arrow), as found in PFC neurons expressing
spike-mediated currents and/or bistability (Haj-Dahmane and
Andrade, 1997; Dembrow et al., 2010; Gee et al., 2012). Thus,
under CB, the duration of cellular memory adapted to the dura-
tion of network memory (i.e., reverberation), alleviating the re-
quirement for a dedicated inhibitory stimulus to terminate
persistent activity. Note also that triggering spiking-dependent
bistability did not require long stimulations, because of the mod-
erate time constant of I,y (~100 ms; see Materials and Meth-
ods), as found in PFC neurons (Haj-Dahmane and Andrade,
1997).

CB is robust using the event/delay protocol
To assess the robustness of CB mnemonic properties, we para-
metrically explored the model in response to the event/delay

protocol (Fig. 2a), as a function of I 4.1,y and gcan, Which is

important because it reflects the regulation history of spike-
mediated excitability and dictates the possible existence of CB
(Fig. 1). We found that CB existed in a large range of g, values
(Fig. 2a, CB domain). Moreover, the ranges of CB and AB do-
mains were much wider than M domains, indicating the preva-
lence of mnemonic properties with spike-mediated excitability in
the model. We also found that cellular memory expressed differ-
entially, depending on delay stimulation conditions. In the gcan
range of CB, there was no firing during the delay at the lowest
I1nj_detay Vvalues (i.e., discharge was memoryless; Fig. 2a, yellow
domain and trace). In contrast, delay firing was slowly decaying
in a significant I ;;_4.1,, range below Oz, underlying a transient
memory (Fig. 2a, orange), whereas above 6oy a stable condi-
tional memory was observed (compare Figs. 2a, lavender, 1¢). In
addition, we observed a stable absolute memory (i.e., sustained
activity without self-termination) in the range of AB (compare
Figs. 2a, purple, 1b). Under CB, memory typically lasted hun-
dreds of milliseconds when transient (Fig. 2b) and firing fre-
quency was generally moderate (<50 Hz), in contrast to AB (Fig.
2c). These results indicated that spike-mediated CB is robust,
multiform, with long durations and low frequencies, which is
consistent with persistent activity in the PFC during WM tasks
(Compte, 2006). Moreover, parametrically, CB lies between M
and AB, which have both largely been observed (Haj-Dahmane
and Andrade, 1997; Dembrow et al., 2010; Gee et al., 2012). This
suggests that CB, although rarely observed in the PFC (Thuault et
al., 2013), may have been previously overlooked, because the
event/delay protocol, which is mandatory to reveal it, is almost
never used in intracellular recordings.

CB generically emerges from spike-mediated excitability

We wondered whether CB mnemonic properties were generic in
essence, or specific to the model considered. Spike-mediated bio-
physical determinants—CaL and CAN current gating variables
and the intracellular calcium [Ca**]—share a common dynamical
trait. Their spike-triggered activation operates faster, compared with
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Figure 3.

Conditional bistability is a generic mnemonic property of neurons endowed with depolarizing spike-mediated mechanisms. a— e, Thresholds for initiating (6),,, green lines) and

terminating spiking (6, red lines) for models with fixed (i.e., voltage- or calcium-independent) time constants suppressing the dynamic asymmetry of the Cal current (a), the CAN current (b), or
both (c), or for models endowed with the sole CaL current with a voltage-dependent (d) ora fixed (e) time constant as a function of the suprathreshold maximal conductance and background delay
current. f, ADP amplitudes of the five alternative models presented in a—e. Line colors match the respective panel titles, and the orange line applies to the standard model. Note that for ADP
amplitudes (f) suprathreshold maximal conductances were normalized by the boundary value defining the transition between conditional and absolute bistability for each model. M, (B, and AB
indicate the monostability, conditional bistability, and absolute bistability domains, respectively. Sawteeth at the border between memoryless and transient regions correspond to the discharge of
one spike occurring at =25 ms after the onset of the delay period, while the main part of the transient memory region corresponds to the discharge of several spikes during the delay period (see

definition of transient memory behavior in Materials and Methods).

their relaxation timescale during the ISL. This asymmetry produces
interspike traces that form a memory after each spike, favoring the
firing of the following spike and, in turn, self-sustained spiking.
We tested whether the dynamic asymmetry of these determinants
was essential to cellular memory. We found that considering fixed
(ie., voltage- or calcium-independent) time constants to suppress
the dynamic asymmetry of the CaL, the CAN, or both currents had
no effect on cellular memory (compare Figs. 3a—c, 2a), indicating
that [Ca**] dynamic asymmetry was sufficient to support cellu-
lar memory. We also found that, in the absence of both calcium
dynamics and the CAN current, CaL asymmetry alone was both
sufficient (Fig. 3d) and necessary (Fig. 3e). Therefore, while
cellular memory required the asymmetry between activation/re-
laxation time constants of a least one determinant, it was inde-
pendent of its exact nature. This demonstrated that dynamic
asymmetry was generic in underlying the positive feedback of
spike-mediated CB. Remarkably, we found that CB coexisted
with marked ADP amplitudes (~2.5 to 15mV) after spiking (Fig.
3f, above horizontal lines), contrasting with the smaller ADP of
monostable neurons (<2.5 mV).

CB mnemonic properties under in vivo conditions

In vivo, PFC neurons continuously receive asynchronous synap-
tic inputs inducing strong membrane-potential fluctuations.
These fluctuations may disrupt conditional memory, which relies
on a minimal subthreshold depolarization. Thus, we assessed
cellular memory with stochastic synaptic excitatory (AMPA) and
inhibitory (GABA,) inputs driving fluctuations as found in vivo
in the PFC (i.e., several millivolts; Fellous et al., 2003). Here, we
tested the response of the neuron to the protocols considered in
vitro and to a delay protocol (i.e., devoid of event). The latter was

used as a control, since stochasticity may induce spiking during
the subthreshold delay input. We found that at g, levels pro-
viding CB in vitro, the neuron responded in vivo to the event/
delay protocol with a persistent activity (Fig. 4a, right) that was
absent after the event protocol (left) and initially weaker during
the delay protocol (middle). As a general rule, activity included
episodes during which spikes clustered in bursts and spike-
mediated currents were significantly activated (Fig. 44, lavender).
During bursting episodes, the positive feedback characterizing
CB ensured self-sustained spiking, which was irregular and ter-
minated because of synaptic fluctuations. Bursting episodes al-
ternated with nonbursting episodes essentially characterized by
single spiking at lower frequency and smaller spike-mediated
current activation (Fig. 44, yellow; i.e., during which the positive
feedback was disengaged). A raster plot across trials (Fig. 4b)
illustrates stronger activity, a larger bursting propensity, and im-
portant variability in the temporal structure of the discharge dur-
ing the event/delay protocol.

While firing slowly increased during the delay protocol (Fig.
4c, fuschia) and rapidly decayed after the event protocol (Fig. 4c,
light blue), it persisted longer during the delay in the event/delay
protocol (Fig. 4c, lavender; 7,,,¢m0ry ~900 ms), with a frequency
exceeding the sum of firing frequencies triggered by event or
delay inputs alone (Fig. 4¢, salmon). Thus, persistent activity is an
emergent property arising from nonlinear interactions between
spike-mediated currents and the delay background input. Persis-
tent activity with 7,,...,,,,, in the range of hundreds of milliseconds
to seconds (i.e., consistent with WM) was robustly evoked for a
large domain of event input parameters (Fig. 4d) and a thinner
domain of the delay input parameters (Fig. 4e). Large Tiemory
values were observed when the event was stronger than the delay
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Figure4. Conditional bistability confers robust event memory under strongly fluctuating synaptic inputs in vivo. a, Membrane potential, Cal and CAN activation, calcium dynamics, and AHP
activation traces of the standard neuron model in response to the event, delay, and event/delay protocols for a realization of the excitatory (green) and inhibitory (red) synaptic fluctuating
conductances. Spikes belonging to bursting and nonbursting episodes are indicated in lavender and yellow, respectively. Small activation buildups of spike-mediated currents during nonbursting
episodes and larger buildups during bursting episodes are signaled by yellow and lavender stars, respectively. See Materials and Methods for criteria that define bursting episodes. b, Spike raster plot
for 250 trials of the protocol depicted in @, with different realizations of synaptic fluctuations. Color code as in a. ¢, Frequency poststimulus time histogram (PSTH) of the discharge (250 trials) after
the onset of event (light blue), delay (fuschia), and event/delay (lavender) protocols; difference between the PSTH during the event/delay protocol, and the sum of PSTHs during the event and delay
protocols (salmon). The mean = SEM frequency values are displayed. The memory time constant is defined as the time constant of firing frequency relaxation to its steady-state value in the
event/delay protocol. d, Memory time constant map of persistent activity, as a function of the mean and SD of the excitatory fluctuating conductance of the event input during the event/delay
protocol. The red dot indicates conductance parameters of the delay background input. When the event mean conductance is smaller than that of the delay input (left part of the map), the activity
builds up to the steady state during the delay from the lower event trigger nitial frequency (e.g., pink curve in ¢, for a null event mean conductance) and the time constant is smaller. e, Memory time
constant map of persistent activity, as a function of the mean and SD of the excitatory fluctuating conductance of the delay input during the event/delay protocol. d— e, Means across 100 trials; other
synaptic parameters as in the standard model (see Materials and Methods). f, Probability distribution of onset times of bursting episode as a function of their order of occurrence during the delay
period (20 s) of the event/delay protocol, across 250 trials. g, CAN conductance activation (g), mean duration (h), and mean spiking frequency (i) during bursting (lavender) and nonbursting
(yellow) episodes, as a function of their order of occurrence during a delay period (20 s) in the event/delay protocol. Mean = SEM values across 250 trials. j, Probability of being in a burst episode
during the delay period (2.55) in the event/delay protocol. k, Mean instantaneous spiking frequency as a function of the normalized time within bursting and nonbursting episodes (normalized time
equals 0 at the beginning of episodes, 1 at their end). Mean == SEM values across 100 trials.

(Fig. 4d, right part of the map), with persistent activity decaying  and an increased duration (Fig. 4h) and frequency (Fig. 41), com-

during the delay (Fig. 4c, lavender).

Mechanistically, the excitation provoked by the event favored
the rapid engagement of the positive feedback during the delay, as
reflected by the strong synchronization of the onset of the first
bursting episode across trials (Fig. 4f). This first episode dis-
played a larger recruitment of spike-mediated currents (Fig. 4¢)

pared with the following bursting episodes. As a result, the
probability of being in a bursting episode (i.e., at a higher firing
frequency) remained high at the beginning of the delay and pro-
gressively decreased toward its steady state (Fig. 4f), accounting
for the decreasing pattern of firing frequency (Fig. 4c, lavender).
Note that the instantaneous firing frequency remained globally
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x-axes) and frequencies of transitions between bursting and nonbursting episodes (color code). e, f, At moderate memory time constants (400 — 600 ms), the means of CV (e) and CV, () probability
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two-tailed Wilcoxon rank-sum tests for both the CV and CV, distributions (distributions were not normal, according to Kolmogorov—Smimov goodness-of-fit hypothesis tests; for the CV distribution:
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”evenl EVCIH) = 2y’ event event’ ) =

(CV, geiay) = 0.8043). g, h, Irregularity of the discharge plotted as a function of firing frequency for the conditionally bistable (lavender) and monostable neurons (black) in response to stationary

synaptic inputs, as measured by the CV (g) and the CV, (h).

constant within episodes (i.e., the discharge was quasi-stationary;
Fig. 4k).

CB promotes irregular discharge under in vivo conditions

In WM tasks, spiking irregularity is larger during the delay than
during stimulus presentation (i.e., event; Compte et al., 2003),
with a higher coefficient of variation (CV) of ISIs over 1 and a
CV, (a version of CV based on successive ISIs) of ~1, which has
been difficult to reproduce robustly in theoretical models (Bar-
bieri and Brunel, 2008). In our model, irregularity was generally
higher during the delay, compared with the event (Fig. 54,b, dots
above first bisector), independently of whether neurons were M
(Fig. 5a,b, no I,y black dots) or CB (Fig. 5a,b, colored dots).
Indeed, at a given similar firing mean frequency, the longer delay
(2.55) allowed longer ISIs that could not occur during the shorter
event (0.5 s). Thus, during the event, the sampling of the ISI
distribution was truncated at low frequencies, and the apparent
ISI variance was therefore decreased, compared with the delay.
This effect was moderate for M neurons (Fig. 5a,b, black dots),
but it dramatically increased for CB neurons firing at low fre-
quency (<15 Hz; Fig. 5a,b, colored dots), since, in the latter
neurons, alternations of bursting episodes (with smaller ISIs) and
nonbursting episodes (with larger ISIs) strongly increased the
variance of the ISI distribution during the delay. At such low-
frequency firing, the CV was largely >1 and the CV, was ~1, as
found during WM delays (Compte et al., 2003). Moreover, CV/
CV, culminated for inputs leading to intermediate memory time
constants in the range of ~400—600 ms (Fig. 5¢,d) and transition
frequencies between episodes at ~1 Hz (color code). In these

conditions, both the CV and CV, were significantly larger during
the delay (Fig. 5e,f, thick black trace), compared with the event
(Fig. 5e,f, thin black trace). Remarkably, consistent with data
(Compte et al., 2003), the CV distribution during the delay was
broadened, compared with that during the event, which did not
occur for the CV,.

To fully confirm the genuine effect of depolarizing spike-
mediated currents on spiking irregularity, we compared CV/CV,
with and without CB (1) upon stationary stimuli to avoid the
interference of frequency time variations due to the protocol and
(2) at identical mean firing frequencies to avoid the nontrivial
effects of frequency on these measures (Compte et al., 2003). In
these conditions, where computing these observables admits its
plain significance, we found that, compared with M neurons (Fig.
5g, black), the CV was systematically superior in CB neurons (Fig.
5g, lavender) < 20 Hz and was >1 below 10 Hz. In CB neurons,
the CV, was also superior below 2 Hz, situated at ~1, whereas it
was essentially similar to M neurons >2 Hz (Fig. 5h). Thus, al-
though the mean local irregularity measured by the CV, was the
same on average (because local increases of frequency regularity
within bursting episodes compensated for the local frequency
irregularities at transitions between bursting and nonbursting
episodes), we found that the global irregularity of the discharge
(measured by the CV; i.e., the normalized ISI SD) was increased
in CB neurons due to the presence of spike-mediated currents.

Discussion

Here, we show that spike-mediated CaL and CAN currents of L5
pyramidal PFC neurons (Haj-Dahmane and Andrade, 1997; Gee
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etal., 2012; Thuaultetal.,2013) support CB. Moreover, our study
suggests that CB is prevalent for several reasons. First, CB relies
on suprathreshold mechanisms that are ubiquitous in pyramidal
PFC neurons and operate robustly, independent of biophysical
details, which are generic. Second, CB parametrically situates be-
tween M and AB regimes, both extensively observed in the PFC
and other areas (Krnjevi¢ et al., 1971; Schwindt et al., 1988; Yang
et al., 1996; Haj-Dahmane and Andrade, 1997; Dembrow et al.,
2010; Zhang and Séguéla, 2010; Gee et al., 2012). AB is often
observed under strong neuromodulatory manipulation that
upregulates depolarizing spike-triggered conductances, yielding
unrealistic stereotyped discharges inconsistent with WM firing
patterns (Compte et al., 2003; Shafi et al., 2007). This suggests
that neuromodulation regulates conductances below the range
for AB in behaving animals. Below AB, the probability of being in
CB is largely predominant (a much wider range than M; Fig. 2a).
Moreover, minimal neuromodulation is crucial for optimal PFC
computations (Wang et al., 2007), whereas M lies at the lowest
neuromodulation (conductance) levels. Thus, CB is likely en-
countered in PFC pyramidal neurons under physiological neuro-
modulatory levels. Third, we show that ADP represents a generic
marker distinguishing CB from M neurons. ADPs are ubiquitous
across L5 PFC pyramidal types (Yang et al., 1996; Haj-Dahmane
and Andrade, 1997) and share specific common features with CB
neurons (>5 mV; durations up to ~100 ms, occurrence even at
low frequencies, CAN/calcium dependence; Yang et al., 1996;
Haj-Dahmane and Andrade, 1997; Boudewijns et al., 2013), sug-
gesting that PFC neurons displaying ADP are conditionally
bistable. Hence, CB was observed without artificial pharmaco-
logical activation in L5 PFC pyramidal neurons with promi-
nent ADPs (Thuault et al., 2013). Altogether, these lines of
evidence indicates that CB likely constitutes a prevalent prop-
erty in PFC L5 pyramidal neurons in physiological conditions
during WM tasks.

So, why has CB remained scarce in the PFC? CB requires a
triggering suprathreshold input followed by a subthreshold input
(or applied upon a depolarized subthreshold holding potential).
Therefore, CB neurons are undetectable using the classic proto-
col ubiquitously used, which consists of a single suprathreshold
input applied from the resting potential. Consequently, neurons
can be categorized as M (Fig. 1c1), while actually displaying gen-
uine CB (Fig. 1¢2). Such misclassification should be frequent
given the much larger CB domain (compared with M), and sys-
tematically applying event/delay protocols should unravel CB in
asignificant fraction of neurons. Remarkably, event/delay proto-
cols are meaningful physiologically, mimicking the temporal
profile of inputs during WM: a strong behaviorally relevant (e.g.,
perceptive) signal followed by a lower background input during
the delay (e.g., reverberating persistent activity or WM-related
feedforward inputs).

Information maintenance in CB neurons relies on the asym-
metry between fast buildup/activation and slower relaxation/
deactivation dynamics of spike-activated mechanisms. This
asymmetry maintains spike-to-spike excitability through the
positive feedback between depolarization and suprathreshold ac-
tivation. Noticeably, the slow CAN deactivation time constant of
~100 ms (Haj-Dahmane and Andrade, 1997) allows the mainte-
nance of self-sustained activity down to ~10 Hz. Slower CAN in
the PFC (Sidiropoulou et al., 2009) may support lower frequen-
cies, at some expense (see below). Under asynchronous inputs,
CB generates bursting/nonbursting episodes. Bursting episodes
can be triggered by—and form a memory of—incoming events,
when a background input follows the event. Statistically, this per-
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sistent activity fades at the second timescale across trials, consis-
tent with WM, reflecting the stochastic disruption of bursting
episodes due to synaptic fluctuations. By contrast, firing fre-
quency is steady within bursting episodes, so that information
maintenance is constant within individual trials for the duration
of the first bursting episode.

Overall, the spike-mediated mechanism we unravel is robust
to the exact nature and parameter values of the model and dis-
plays a much higher resistance to transient episodes of inhibition,
compared with subthreshold-based bistabilities (Washburn et
al., 2000; Loewenstein et al., 2005; Carrillo-Reid et al., 2009).
Sensitivity to inhibitory interference was used to discard the pos-
sible role of intrinsic bistability in maintaining persistent activity
(Sanchez-Vives and McCormick, 2000; McCormick et al., 2003).
Our results indicate that this reasoning does not apply to spike-
mediated mechanisms, because they preserve resistance to inhi-
bition, as does synaptic reverberation.

Previously described bistabilities are rigid, requiring strong/
long stimuli to be turned on/off and producing long, high-frequency
discharges primarily independent of the background input (Haj-
Dahmane and Andrade, 1997; Egorov et al., 2002; Tahvildari et
al., 2007; Zhang and Séguéla, 2010; Gee et al., 2012) By contrast,
CB exhibits a rich repertoire of computational operations. It ex-
presses as a memoryless discharge or subserve transient or stable
conditional memory, depending on input parameters. Moreover,
mnemonic activities can be initiated by short events because of
the moderate CAN activation time constant (Haj-Dahmane and
Andrade, 1997). Furthermore, the duration and frequency of
mnemonic discharges are controlled by the delay input at low
frequencies. Finally, under in vivo-like inputs, this diversity
expresses as bursting/nonbursting episodes with variable fre-
quencies and durations, resulting in a large variability of the
discharge structure across trials, as found during WM (Shafi et
al., 2007).

In response to asynchronous inputs, CB increases discharge
irregularity, because smaller ISIs during bursting episodes and
larger ISIs during nonbursting episodes increase the ISI distribu-
tion variance. The CV/CV, are highest at low firing frequencies
i.e., under excitation/inhibition balance, two factors increasing
irregularity; Compte et al., 2003. In such conditions, the CVis >1
and CV, ~1 in CB neurons during the delay, being higher than
during the event, as in WM (Compte et al., 2003), properties
previous models are unable to account for robustly (Barbieri and
Brunel, 2008). This effect happens in CB neurons, because burst-
ing/nonbursting episodes can alternate during delays of several
seconds, but not during shorter events (0.2 s).

Besides, while CB clearly increases the CV, its effect on the
CV, is mild. This results because whereas frequency changes at
the transitions of episodes increase CV,, the more regular dis-
charge within bursting episodes decreases it. Synaptic inputs are
not stationary in vivo (Shafi et al., 2007; Ostojic, 2014), which
could explain the slightly higher CV/CV,, observed experimen-
tally (Compte et al., 2003), compared with the situation reported
here. This could also explain the larger difference in CV, values
between the delay and the event (Compte et al., 2003), as changes
in the synaptic input rates have more time during the delay to
exert their effect on successive ISIs and thus on the CV,.

Interestingly, the overall increase in irregularity in CB neu-
rons required an AHP current, which balanced the CAN cur-
rent in the model (CAN alone decreased irregularity; data not
shown). Finally, our conclusion that busting/nonbursting al-
ternations underlie irregularity is additionally supported by
the finding that very slow CAN currents—driving very long
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bursts without alternations—decrease the CV (Sidiropoulou
et al., 2009).

What roles may CB play at the network scale during mainte-
nance? Here, CB requires a subthreshold constant background
input from the network to memorize a transient event. However,
inputs are not stationary in PFC networks and cellular CB should
affect, in turn, network dynamics. Therefore, interactions be-
tween local cellular CB and global network recurrence may pro-
vide a rich repertoire of dynamics.

Hence, following an event, bursting in CB neurons may be
sustained by the prolonged synaptic feedback due to bursting in
other CB neurons. Such synergistic CB bursting recruitment may
determine the extent to which activity is amplified and pro-
longed, possibly resulting in decaying, stable, or ramping tempo-
ral firing patterns of WM (Shafi et al., 2007). Synergy between CB
neurons may also provide a realistic biophysical basis for WM of
parametric information, which requires bistable elements to emerge
robustly (Koulakov et al., 2002; Goldman et al., 2003). Such collec-
tive dynamics are plausible because CB is gradual in essence, by
contrast to AB. WM-related drives during the delay and the reg-
ulation state of synaptic strengths and spike-mediated excitability
should be fundamental in setting the gradual synergetic recruit-
ment of CB neurons.

Within a recurrent network, CB neurons can discharge during
the delay even when they have not received the event input, be-
cause of the subthreshold recurrent input provided by other neu-
rons of the network actively maintaining the memory of that
event (Fig. 4c, fuschia curve). This could be problematic if pre-
synaptic and postsynaptic neurons belong to different popula-
tions encoding distinct memories (i.e., Hebbian assemblies), as
memory would “bleed over” across populations (i.e., memory
interference). This problem may arise even with monostable
postsynaptic neurons, although CB neurons would discharge at
higher rates for a similar recurrent delay input, enhancing inter-
ference. However, different mechanisms have been imagined that
may circumscribe interference between memory representations
[e.g., mutual (Miller and Wang, 2006) or global (Brunel and
Wang, 2001) inhibition between assemblies]. Besides, enhanced
“bleeding” due to CB could also improve pattern completion
within Hebbian assemblies, because the easier recruitment of CB
neurons not activated by the event (because of incomplete input
pattern presentation) would facilitate complete memory retrieval
through associative synaptic reverberation.

Besides, during WM delays, PFC networks encounter transi-
tions between stable collective states of quasi-stationary firing at
the second timescale, reflecting mental states during the explora-
tion of computational solutions, as cognitive processes wander
from stimulus encoding to decision-making and action (Seide-
mann et al., 1996; Cossart et al., 2003). Bursting/nonbursting
episodes in CB neurons share similar quasi-stationary firing and
generate maximal irregularity at this timescale. We suggest that
CB may promote the emergence of stable collective states and the
complexity of PFC neuronal operations, providing a basis for ex-
ploring computational solutions during WM. Intrinsic plasticity
and neuromodulation would represent strategic processes to regu-
late spike-mediated mechanisms for the emergence of adapted WM-
related cognitive processes.

While CB relies on a weak spike-mediated positive feedback, it
is precisely this “weakness” that underpins the computational
richness and flexibility it brings, compared with what was previ-
ously thought. We suggest that the traditional view should be
overcome in favor of a reconciling perspective whereby synaptic
reverberation and conditional bistability concur with the emer-
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gence of the highly flexible persistent activity required for elabo-
rating adaptive WM-related cognitive processes and intelligent
behavior.
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Chapter3. Temporal signatures of cognition from
LPFC to MCC controlled by inhibition

3.1. Summary

The previous chapter has showed that persistent activity within monkey PFC, subserved by CaL-
and CAN-mediated intrinsic conditional bistability, allows stable yet labile network states during
working memory. However, among frontal areas, the MCC presents activity timescales twice
those of the LPFC. Moreover, MCC has stronger and slower synaptic inhibition impinging upon
pyramidal neurons, suggesting a link between spiking timescales and synaptic inhibition. What
are the exact nature of differences in timescales between LPFC and MCC? And are these
timescales underpinned by the aforementioned intrinsic currents or by other mechanisms?
Finally, how do these mechanisms result in temporally-extended MCC behaviors?

To answer these questions, Vincent Fontanier and Emmanuel Procyk (SBRI, Lyon) recorded
within monkey LPFC and MCC, capturing the finer temporal dynamics of neuronal activity
timescales by developing individual unit spike autocorrelograms. When extracting the peak
latency (LAT) and time constant (TAU) from the autocorrelograms, we confirmed that MCC TAU
was higher than LPFC TAU across cell-types (regular spiking RS and fast spiking FS, putatively
pyramidal cells and interneurons respectively). Furthermore, LAT was similar across cell-types
and areas except for longer LAT in MCC RS neurons.

TAU was modulated by cognitive involvement, with MCC RS TAU increasing during task
engagement. Furthermore, neuronal activity timescales were correlated with task variable
timescales, as generalized mixed linear model showed LPFC RS and MCCRS short TAU encoded
short-term feedback within the inter-trial period, while MCC RS long TAU encoded long-term
gauge size information throughout trials. These TAU differences were anatomically organized
within an antero-posterior gradient in MCC, with higher TAU in posterior neurons encoding
long-term gauge size information. Behavioral switching was potentially induced by MCC FS
units, as they were most engaged in encoding negative feedback in the first second after
feedback onset.

Starting from a detailed biophysical recurrent network model of LPFC, we identified AHP
and GABA-B conductances as crucial determinants for varying neuronal activity timescales from
LPFC to MCC, with AHP increasing excitatory (RS) LAT and GABA-B increasing TAU. These
elements were consistent with experimental observations of lower MCC frequency-current gain
in RS cells (consistent with stronger AHP), as well as stronger and slower inhibition in MCC
(consistent with stronger GABA-B). Furthermore, increase in GABA-B conductance led to
collective transitions between quasi-stationary metastable states, where spiking timescales
were amplified into functionally-relevant network states of several seconds in MCC and
hundreds of milliseconds in LPFC, while increase of gAHP decreased probabilities of short
states. Finally, maintenance of and transitions between states was controlled by inhibitory
neurons, predicting MCC state transitions when MCC FS neurons encoded negative feedback.
Importantly, these states emerged without learning, inhibitory subnetworks naturally emerging
from the synaptic weight's variability being increasingly contrasted by stronger slow synaptic
GABA-B currents.
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3.1.1. Contributions

| developed the biophysical neural network model, the autocorrelogram analysis and all analyses
on model data (HMM, PCA, etc.), created the figures 5-7, wrote the first draft of the
corresponding results text, figure legends, and methods, and reviewed all parts of the text.

3.2. Article
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Abstract

Cortical neural dynamics organizes over multiple anatomical and temporal scales. The mechanistic
origin of the temporal organization and its contribution to cognition remain unknown. Here we
demonstrate the cause of this organization by studying a specific temporal signature
(autocorrelogram time constant and latency) of neural activity. In monkey frontal areas, recorded
during flexible cognitive decisions, temporal signatures display highly specific area-dependent
ranges, as well as anatomical and cell-type distributions. Moreover, temporal signatures are
functionally adapted to behaviorally relevant timescales. Fine-grained biophysical network models,
constrained to account for temporal signatures, reveal that after-hyperpolarization potassium and
inhibitory GABA-B conductances critically determine areas’ specificity. They mechanistically account
for temporal signatures by organizing activity into metastable states, with inhibition controlling state
stability and transitions. As predicted by models, state durations non-linearly scale with temporal
signatures in monkey, matching behavioral timescales. Thus, local inhibitory-controlled metastability
constitutes the dynamical core specifying the temporal organization of cognitive functions in frontal
areas.

Keywords:

cingulate, prefrontal cortex, AHP, GABA(B), timescale, primate, recurrent networks, inhibition,
attractor, metastable states

Introduction

Large scale cortical networks are anatomically organized in hierarchies of inter-connected areas,
following a core-periphery structure (Markov et al., 2013). Within this large scale organization, the
dynamical intrinsic properties of cortical areas seem to also form a hierarchy in the temporal domain
(Chaudhuri et al.,, 2014; Murray et al., 2014). The temporal hierarchy arises from increasing
timescales of spiking activity from posterior sensory areas to more integrative areas including notably
the lateral prefrontal and midcingulate cortex. Intrinsic areal spiking timescales are defined from
single unit activity autocorrelation (Murray et al., 2014). Long spiking timescales potentially allow
integration over longer durations, which seems crucial in the context of higher cognitive functions,
learning and reward-based decision-making (Bernacchia et al., 2011). Recent studies uncovered links
between single unit working memory and decision-related activity and spiking timescales in the
lateral prefrontal cortex (Cavanagh et al., 2018; Wasmuht et al., 2018). However, the mechanisms
that causally determine the timescale of cortical neuron firings and their role in the functional
specificity of areas remain to be described.

To address this question, we recorded in the midcingulate cortex (MCC) and lateral prefrontal
cortex (LPFC), because these two frontal areas both display particularly long spiking timescales and
are functionally implicated in cognitive processes operating over extended timescales. These
interconnected regions collaborate in monitoring performance and in integrating the history of
outcomes for flexible decisions (Kennerley et al., 2006; Khamassi et al., 2015; Kolling et al., 2018;
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Medalla and Barbas, 2009; Rothe et al., 2011; Seo and Lee, 2007; Womelsdorf et al., 2014a). Recent
anatomical and physiological investigations revealed that the cingulate region has relatively higher
levels of synaptic inhibition on pyramidal neurons than LPFC, with higher frequency and longer
duration of inhibitory synaptic currents (Medalla et al., 2017), suggesting that excitatory and
inhibitory cell types differentially contribute to the specific dynamics of distinct frontal areas.
Moreover, MCC also seems to have a longer spiking timescale than the LPFC (Cavanagh et al., 2018;
Murray et al., 2014).

In this context, we sought to understand the relationship between temporal features of spiking
activity, local neural network dynamics and the computations implemented by frontal neural
networks. We focused on whether and how different temporal features play distinct roles in
different frontal areas. To this aim, we addressed the following questions: what are the exact
differences in the temporal organization of spiking in the LPFC and MCC? How do they relate to the
distinct roles of excitation and inhibition? Do they reflect cognitive operations, and can they be
adjusted to current task demands? Can they be accounted for by local biophysical circuit
specificities? If so, do distinct collective network neurodynamics emerge from such areal biophysical
characteristics and what are their functional implications?

We examined the contribution of single unit temporal signatures to dynamical differences
between LPFC and MCC in monkeys. After clustering units based on spike shape (putative fast spiking
and regular spiking units) we computed spike autocorrelograms and their temporal signatures (time
constant and latency). We discovered that LPFC and MCC differed not only in average time constant,
but also specifically in the autocorrelogram latency of their regular spiking units.

Regular and fast spiking MCC neurons showed different temporal signatures. Remarkably,
through these signatures, neurons contributed to encoding information at different timescales, i.e.
information relevant between trials or across multiple trials. Exploring constrained biophysical
recurrent network models, we identified the ionic after-hyperpolarization potassium (AHP) and
inhibitory GABA-B receptor conductances as critical determinants mechanistically accounting for the
difference in spiking temporal signatures between LPFC and MCC. The models predicted how
differences in temporal signature amounts to the ability of networks to undergo metastable states
with different properties. Indeed, we found, in monkey data, long-lasting states in primate MCC
activity but not in the LPFC.

Critically, we show that by controlling states stability and transitions, local inhibition — rather than
synaptic excitation (Chaudhuri et al., 2015) — is the major factor setting temporal signatures.
Moreover, inhibitory-mediated temporal signatures did not require specific disinhibition between
molecularly identified subnetworks of interneurons but naturally emerged from inhibitory weight
variability (Wang, 2020).

Results

We analyzed population spiking timescales for units recorded in MCC and LPFC (140 and 159
units, respectively), using the autocorrelogram of spike counts (see Online Methods), and observed
population autocorrelograms similar to those obtained with other datasets (Cavanagh et al., 2018;
Murray et al., 2014; Wasmuht et al., 2018) (Fig. 1a). At the population level, the characteristic
timescale of spiking fluctuation over time, TAU (the time constant from the exponential fit), was
longer for MCC than for LPFC (MCC= 5194168 ms, LPFC= 19517 ms). In addition, MCC single units
exhibited longer individual TAUs than LPFC units (medians, MCC=553 ms, LPFC=293 ms; Two-sided
Wilcoxon signed rank test on log(TAU), W=15192, p<10?®), as in previous datasets (Fig. 1c in Cavanagh
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et al. (Cavanagh et al., 2018)). Aside from being characterized by a slow decay (long TAU), the MCC
population autocorrelation displayed a distinctive feature: a positive slope at the shortest time lags
equivalent to a latency in the autocorrelogram, that can be observed in previous publications (see
Figure 1c in Murray et al. (Murray et al., 2014), Figure 1d in Cavanagh et al. (Cavanagh et al., 2018)).
However, the method we employ above (derived from Murray et al.) cannot resolve the fine
dynamics of neuronal activity at short time lags. To improve upon this approach, we instead
developed a method based on the autocorrelogram of individual units from all spike times, that
provides high temporal precision in parameter estimation (see Online Methods).

One basic assumption to explain local dynamical properties is that interactions between cell types
(e.g. pyramidal cells and interneurons) might induce specific dynamics in different areas (Medalla et
al., 2017; Wang, 2020; Womelsdorf et al., 2014b). To separate putative cell populations in
extracellular recordings we clustered them using single unit waveform characteristics (Nowak et al.,
2003). Clustering discriminated 3 populations, with short, large and very large spikes (Fig. 1c). The
results below were obtained using 2 clusters (small, and large + very large), as detailed analyses
showed no clear difference between large and very large spike populations (see supplementary fig.
$1). We classified units as fast spiking (FS, short spikes; nycc=37, niprc=61 units) or regular spiking (RS,
long spikes; nyucc=257, npec=215 units) which, in previous studies, were associated to putative

interneurons and pyramidal cells respectively.
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Figure 1. Midcingulate cortex (MCC) and lateral prefrontal cortex (LPFC) spike count
autocorrelograms. (a) Population exponential fit: autocorrelograms were computed for each unit
and the fit was performed on all the units of each area (as in Murray et al. 2014). (b) Single unit fits
were used to capture individual spiking timescales and produce the distribution of TAU values for
each region. Dotted lines represent the median of TAU. (c) Clustering of spike shape. We extracted
spike width and valley to peak ratio (V2P) from each unit average waveform. A hierarchical
clustering led to 3 groups of units (colored groups RS1, RS2, FS). In the paper, units with narrow
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spike width were termed as fast spiking (FS), whereas units with broader waveform were marked as
regular spiking (RS: RS1 + RS2). The histogram indicates the number of MCC and LPFC units
belonging to each of the 3 clusters.

MCC temporal signatures differ for regular spiking units.

From spike autocorrelograms we extracted multiple metrics: the peak latency (LAT) and time
constant (TAU) (see Online Methods). Together, TAU and LAT constituted the temporal signature of
single neurons spiking dynamic. The success rate of fitting an exponential on spike autocorrelograms
was 91.9% and largely outperformed the alternative method (see Online Methods). Fig. 2a shows
comparative examples. Note that in the pool of neurons where TAU was successfully extracted using
both methods (see method for criteria), we found the two measures (Murray methods vs. spike
autocorrelograms) of TAU were correlated (Spearman correlation: rho(282) = 0.46,p<10™).
Importantly, TAU was not correlated with firing rate across units (supplementary fig. S2a).

TAU was higher on average in MCC than in LPFC for both regular and fast spiking cells (medians
+ sd: MCC FS= 284.7+132 ms, RS= 319.54199 ms , LPFC FS= 175.1+67 ms , RS= 191.6+116 ms; linear
model fit on Blom transformed TAU for normality, TAU = Area * Unit type, Area : F(1,520)=18.36,
p<10™, Unit type: F(1,520)=2.72, p=0.12, interaction: F(1,520)=0.19, p=0.79) (Fig. 2c).

In addition, LAT became a precise measure obtained for most autocorrelograms. Importantly, it
differed significantly between MCC and LPFC for RS but not for FS units, with MCC RS units having
particularly long latencies (median + sd: MCC FS = 48.5+30 ms, RS = 108.7+64 ms , LPFC FS = 48.5+35
ms , RS= 51.9+46 ms ; linear model fit on Blom transformed LAT for normality, LAT = Area * Unit type,
interaction: F(1,520) = 11.81, p<0.005) (Fig. 2c).

TAU and LAT both reflect temporal dynamics, but those measures were significantly correlated
only in LPFC RS units (Spearman correlations with Bonferroni correction, only significant in LPFC RS:
rho(203) = 0.29, p<10?)). The absence of correlation suggested TAU and LAT likely reflect different
properties of cortical dynamics. Moreover, the data suggested that and the different temporal
signatures of RS units could reflect differences in the physiology and/or local circuitry determining
the intrinsic dynamical properties of MCC and LPFC.

MCC temporal signatures are modulated by current behavioral state

A wide range of temporal signatures might reflect a basic feature of distributed neural processing
(Bernacchia et al., 2011). But do different temporal signatures play distinct roles in terms of neural
processing in different areas? And, are these signatures implicated differentially, depending on task
demands? As single units were recorded while monkeys performed a decision-making task (described
in Stoll et al., 2016; Fig. 3a), we extracted each unit’s temporal signature separately for periods in
which monkeys were either engaged in the cognitive task or were pausing from performing the task.
TAU extracted during engage and pause periods were significantly correlated across neural
populations (Pearson correlation: r(267)=0.24, p<10™), indicating that TAU reflects stable temporal
properties across conditions. The MCC RS population exhibited a significant modulation of TAU,
expressing longer TAU during engage periods compared to pause periods, suggesting that
engagement in cognitive performance was accompanied by a lengthening of temporal dynamics for
RS neurons in MCC (Fig. 3b left)(Wilcoxon signed-ranks test (Median=1) with Bonferroni correction,
only significant for MCC RS: Median=1.08 , V=4265, p<10”’). We observed no significant variation of
LAT with task demands.



bioRxiv preprint doi: https:/doi.org/10.1101/2020.08.20.259192; this version posted October 6, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

made available under aCC-BY-NC-ND 4.0 International license.

n=14750 spikes

n=24689 spikes

1 Unit#11 n=1804 spikes 1 AUnit#184 n=1964 spikes
c < TAU = 244.7
S TAU = 384.5 c -
& 100 TAU = 149.2 2 09 TAI= 2158
2 0.75 D
8 0.50 5 06
= 3
2025 3 03
of 0
0 200 400 600 0 200 400 600
Time (ms) b Time (ms)
Unit#115 g sphes 910001 oee o
e TU=3188 | 5 750] ¢« 3% o PT046
S e e
= ~ o® ) ¢
2 =) < 500 o 0, Be
5 2E | EM.
8 £ 2504 .,o@.w o te e
= a L3 °
5 n o oo 0 °
0 200 400 600 0 250 500 750 1000
Time (ms) TAU (ms)
Spike-count method
C - -
Fast Spiking Regular Spiking
0.201 I mcc n=39| o0l || n=227
i LPFC n=55 ’ | | n=203
§ 0.151 H 0.151 P
S ! |
g 0.10 i 0.101 |
w
0.057 ” 0.057
01 i I o I 01 - [ -
0 250 500 750 1000 0 250 500 750 1000
TAU (ms) TAU (ms)
Fast Spiking Regular Spiking
n=39 ! n=227
0.31 n=55 0.31 i n=203
)
& 0.2 0.2 |
S i
g i
w 0.1 0.11
0 i I I 0 : H -

T

0 100 200 300
LAT (ms)

0 100 200 300
LAT (ms)
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Figure 2. Spike autocorrelogram and
temporal signatures in MCC and LPFC. (a) 3
single examples of spike count (purple)
versus normalized spike autocorrelograms
(green) contrasting the outcome of the 2
methods. The measured time constant
(TAU) is indicated for both when possible.
Numbers of spikes used for each method is
also indicated. (b) TAU values extracted
from each methods are significantly
correlated (spearman rho(282) = 0.46,p<10-
15). (c) Distributions of TAUs (upper
histograms) and peak latencies (LAT - lower
histogram) for FS (left) and RS (right) units.
‘n’ indicates the number of units. TAU
values were longer in MCC than in LPFC for
both FS and RS (linear model fit on BLOM
transformed TAU for normality, TAU =
Region * Unit type, Region: t=-4.68, p<10-6,
Unit type: ns, interaction: ns). Peak latencies
significantly differed between MCC and
LPFC for RS but not for FS units (medians:
MCC FS= 48.5 ms, RS= 102.0 ms , LPFC FS=
48.5 ms , RS= 51.8 ms ; linear model fit on
BLOM transformed Latency for normality,
Latency = Region * Unit type, interaction: t-
value=-3.57, p< 10-3).

Contrary to MCC, LPFC temporal signatures were not modulated by engagement in the task.
Multiple cognitive models propose a functional dissociation between MCC and LPFC and indeed

empirical data reveal their relative contribution to feedback processing, shifting, and decision making
(Khamassi et al., 2015; Kolling et al., 2018; Stoll et al., 2016). One important question is thus whether
temporal signatures observed for a given area and/or cell type contribute to selected aspects of

cognitive processing. For example, temporal signatures might be adjusted to the current functional

context and time scale required to perform a task. In our experiment monkeys gained rewards by

performing trials correctly in a categorization task while each success (reward) also brought them
closer to obtaining a bonus reward (Fig. 3a, right panel, see Online Methods for task description). By
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touching a specific lever at trial start, animals could either enter a categorization trial or check the
status of a visual gauge indicating the proximity of the bonus reward availability. The number of
rewards (i.e. correct categorization trials) needed to get the bonus, and thus the speed of the gauge
increase, varied across blocks (i.e. either fast or slow). Previous analyses revealed that feedback
influenced the likelihood of checking in the following trial (Stoll et al., 2016). Thus, feedback can be
considered as information used on a short timescale (within the inter trial period). The animals also
built an estimation of the gauge size that was updated upon checking in order to regulate the
frequency of checks during blocks, allowing animals to seek and collect the bonus in a cost-efficient
manner (Stoll et al., 2016). Gauge size can thus be considered as information used and carried over
long timescales.

o Ej b s *k 1.8 B= MCC
 LPFC
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e 2 3
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‘ % s g
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Figure 3. Behavioral engagement in task and spiking timescale changes. (a) Schematic representation of the task. At the
start of each trial, animals can either initiate a delayed response task (WORK option) which can lead to 1 reward delivery, or
use the CHECK option to check the current size of the gauge (or collect the bonus reward). Each reward in the task
contributes to increase the gauge size and bring the bonus availability closer. The graph (right) schematized the speed of
increase of the gauge size which varies between blocks (fast or slow blocks). (b) Boxplots of indices for each unit type and
region calculated to estimate potential changes in TAU between Engage and Pause (left), and between empty and full gauge
(right). TAUs increased in Engage vs. Pause only for MCC RS units.

We first hypothesized that blocks of different speeds and/or gauge encoding could engage
neurons and modulate their spiking timescale. This was not the case. TAU values were not
significantly modulated depending on the state of the gauge (less vs. more than half full, fig. 3b
right), nor related to different speeds (Wilcoxon signed-ranks test (Median=1) with Bonferroni
correction, for gauge state and gauge speed, all p>0.6).

Conversely, we assessed whether temporal signatures observed for certain cell types contributed
to code specific aspects of the task. We used mixed effect models on groups of single units to test
the contribution of population activity to encoding task relevant information: feedback in
categorization trials (i.e. reward vs. no-reward), and gauge size. The rationale was that feedback
information was relevant within the intertrial period, whereas Gauge information was relevant
across trials between two successive checks. Previous analyses had revealed that both MCC and LPFC
units encode such information, although MCC units showed greater contributions(Stoll et al., 2016).
We classed both FS and RS units as either short or long TAU units using a median split. A time-
resolved generalized mixed linear models (g/mm) revealed notable dissociations between these
populations. During the intertrial period, the population of MCC RS units with short TAU was mostly
involved in encoding feedback information, which was relevant only for the current trial (Fig. 4a). By
contrast, RS units with long TAU were mostly involved in encoding gauge information, which
contributed to regulate decisions across trials (Stoll et al., 2016) (Fig. 4a, lower right). Long and short

7



bioRxiv preprint doi: https://doi.org/10.1101/2020.08.20.259192; this version posted October 6, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

TAU RS populations in LPFC contributed mostly to encode feedback during the intertrial period (Fig.
43, right).

Interestingly FS units in the MCC were mostly engaged in the first second after feedback onset,
with a strong bias toward encoding negative feedback (Fig. 4a, upper left, positive estimates). Effects
were more transient and involved short TAU units in the LPFC (Fig. 4a).

Spiking timescales are anatomically organized in MCC

Spiking timescales measured in MCC and LPFC covered several orders of magnitudes (10-1000 ms;
Fig. 2c). Because single unit recordings spanned large regions, such wide range could reflect
anatomical organization of segregated populations with distinct homogeneous intrinsic properties.
Such organization has been observed in MCC with human fMRI (Meder et al., 2017). We indeed
found that average TAU values in MCC were higher in more posterior parts, in particular for RS units
(ANOVA on Blom transformed TAU: MCC, monkey A: F(5,112)=2.8, p=0.041, monkey H: F(5,54)=3.09,
p=0.033, LPFC, monkey A: F(6,110)=0.34, p=1, monkey H: F(6,64)=2.49, p=0.066; linear regression on
Blom transformed TAU: MCC, monkey A: t(1,112)=8.99, p=0.0067, monkey H: t(1,54)=2.22, p=0.28,
LPFC, monkey A: t(1,110)=1.09, p=0.60, monkey H: t(1,64)=0.25, p=1 ; all p-values are FDR corrected
for n=2 comparison per monkey) (Fig 4b). This suggests an antero-posterior gradient of spiking
timescales. No such effect was observed in LPFC. Similar analyses for LAT revealed no consistent
inhomogeneity within MCC or LPFC (Fig. S2b).

The consequence of such an organization, knowing the respective functional involvement of units
with long and short TAU (Fig 4a), should be an antero-posterior functional gradient. We tested this
by separating MCC cells in posterior versus anterior subgroups and tested their contribution to
feedback and gauge encoding (Fig. 4b). Indeed, posterior RS units’ activity contributed to positive
encoding of gauge size, preceded in time by encoding of positive feedback (negative estimates) (Fig.
4c lower and upper right), while anterior RS units showed primarily a contribution to feedback
encoding (Fig. 4c upper right). Finally, anterior FS units were primarily (in time and in strength)
contributing to encoding negative feedback. This remarkable contribution of FS to feedback encoding
is studied and discussed further below.

In summary, MCC regular spiking units with relatively short or long TAU contributed to the
encoding of task elements relevant over short and long terms, respectively. The spiking timescales
seemed to be organized along the rostro caudal axis in MCC. This suggests a correspondence
between cell type, temporal signatures and their functional involvement in processing specific
aspects of cognitive information in different functional subdivisions of cortical regions. The crucial
questions thus remain of the mechanistic origin of temporal signatures and of how they relate to
cognitive functions.
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Figure 4. Encoding of feedback and gauge size for different unit types and spiking timescales and rostro-

caudal distribution. (a) Estimates (B-coefficients) obtained from the MCC (grey) and LPFC (blue) unit
populations obtained from time-resolved gimm for Feedback (reward vs no reward; top graphs) and Gauge
size (bottom) (see ‘Group analyses using g/mm’ in Methods). Estimates are obtained at successive time
points covering the entire inter-trial period between feedback onset and the lever onset in the following
trial. Significant effects are indicated by a red triangle (p<0.05 corrected), shadings indicate standard
deviations. Positive values depict a population activity bias towards negative feedback (top) and positive
slope of linear coding for gauge size (bottom). Data is presented for FS and RS units (left and right
respectively for each panel) and have been performed on subpopulation with short or long TAU values
(determined by a median split). Short and long TAU populations are represented by light and dark color
intensity. Note in particular the dissociation for RS MCC units with short and long TAU respectively coding
for feedback and gauge size. (b) Averaged TAU values along the postero-anterior axis in the MCC and LPFC,
for both monkeys. (c). Estimates reflecting coding strength of Feedback and Gauge size for MCC unit
populations separated by their rostro-caudal location.

Biophysical determinants of temporal signatures in frontal network models

To uncover the source and consequences of distinct temporal spiking signatures in the LPFC and
MCC, we designed a fine-grained model of local recurrent frontal networks. This model is unique in
combining 1) highly-detailed biophysical constraints on multiple ionic channels, synaptic receptors
and architectural frontal specificities, and 2) the cardinal realistic features of mammals cortical
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neurodynamics including the excitation/inhibition balance, high-conductance state of neuronal
activity and asynchronous irregular regime characterizing the awake state (Brunel, 2000; Destexhe et
al., 2003; Hennequin et al., 2017). Our specific goal was to evaluate whether biophysical circuit
specificities could mechanistically account for differences in LPFC and MCC temporal signatures. We
also assessed whether these specificities induce distinct collective network neurodynamics and
functional implications, possibly explaining the empirical relationships between temporal signatures,

cell type, and information processing.
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Figure 5. Temporal signature of LPFCm and MCCm recurrent network biophysical models. (a) Scheme of the frontal
recurrent networks modelled, with 80% excitatory (green) and 20% inhibitory (red) neurons and sparsity of synaptic
connections. (b) Membrane potential in the 484 excitatory (lower part) and 121 inhibitory (upper part) neurons of
example network models with parameter set to approximate LPFC dynamics (gCAN=0.025mS.cm'Z, gAHp=O.022mS.cm'2,
gGABAAB=0.0035mS.cm“2; see text and legend of Fig. 6b for the choice of LPFC and MCC standard gaup and ggasas
maximal conductances) and MCC dynamics (gcan=0.025mS.cm”, ganup=0.087mS.cm™”, goasas=0.0143mS.cm™). (c)
(upper left) Membrane potential of an example excitatory neuron in the LPFC model (LPFCm). Scaling bars 1s and
10mV (spikes truncated). (lower left) Autocorrelogram of this LPFCm example excitatory neuron (black) and its
exponential fit (red, see Online Methods). (right) Bivariate probability density distribution of autocorrelogram
parameters in LPFCm excitatory neurons. Contour lines at 50, 75 and 90% of the maximum of the bivariate probability
density distribution in LPFC monkey RS units. (d) Same as (c) for LPFCm inhibitory neurons, with contour lines from
the bivariate probability density distribution in LPFC monkey FS units. (e,f) Same as (c,d), for the MCCm and MCC.

We first explored, using Hodgkin-Huxley cellular models (see Online Methods), whether specific
frontal temporal signatures may arise from ionic or synaptic properties of individual neurons.
Extensive explorations of these models identified, among many ionic and synaptic conductances
tested, the maximal cationic non-specific (gcan) and potassium after-hyperpolarization (gawp)
conductances as the sole couple affecting both LAT and TAU. However, their regulation could not
fully reproduce the monkey data set (see Supplementary Fig. $4 and S5). Thus, we then assessed
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whether collective dynamics at the level of recurrent networks models could better account for
frontal temporal signatures (Fig. 5a, see Online Methods). One-dimensional explorations of the large
parameter space failed to identify single biophysical determinants accounting, alone, for differences
between LPFC and MCC (RS and FS) temporal signatures (Supplementary Fig. S6 and Table S1).
However, these explorations targeted four parameters of interest regulating either LAT or TAU
confirming those already revealed in cellular models (gcan and gawp) and uncovering, in addition,
NMDA and GABA-B maximal conductance (gnvoa and geasas) Whose slow time constants strongly
affected network dynamics.

Two-dimensional explorations using these key parameters (Fig. 5 and supplementary Fig. S7)
identified a single specific setup which demonstrated network dynamics that reproduced the shift
from the LPFC-like temporal signature to that resembling the MCC with striking precision. An
increase of both ganp and geapa-s, in the presence of gcay, drove the model from an LPFC-like temporal
signature (LPFCm model) (Fig. 5¢ & d; map and contours: bivariate probability density model and
monkeys’ distributions, respectively) towards that of the MCC (MCCm model, Fig. 5e-f). Specifically,
ganp increased LAT and decreased TAU in excitatory (likely equivalent to RS) neurons (Fig. 6a left) and
had no effect in inhibitory (likely FS) neurons (Fig. 6a right). Besides, geasa.s decreased LAT in both
excitatory and inhibitory neurons (Fig. 6a top) and increased TAU in an intermediate range (Fig. 6a
bottom). A bivariate probability density-based similarity measure (see Online Methods) revealed that
monkey temporal signatures were robustly reproduced by the model in two large contiguous regions
in the (gane, 8casa-s) Plane, with both conductances increased in the MCC (Fig. 6b).

Several lines of evidence further indicated the model’s relevance. First, the model properly
accounted for the larger LAT variability in monkey RS vs FS units (Fig. 5). Moreover, it reproduced the
complex relations between LAT and first-order latency (ISl distribution latency) remarkably well, in all
populations (Fig. 7c and Supplementary Fig. 7). Furthermore, both the firing frequency and input-
output gain were lower in MCCm excitatory neurons (Fig. 6d), because of its higher g,,» (Naudé et al.,
2012), as found experimentally(Medalla et al., 2017).

Metastable states underlie LPFC and MCC temporal signatures

The asynchronous irregular (presumably chaotic) dynamics of network models was highly
structured in time (Fig. 5b). Hidden Markov models (HMM) revealed that it organized through
collective transitions between so-called metastable (quasi-stationary) states in the models LPFCm
and MCCm (Fig. 7a), as found in frontal areas (Abeles et al., 1995; Seidemann et al., 1996; Xydas et
al., 2011). Moreover, while LPFCm states maximally lasted a few hundred milliseconds (Fig. 7b, left,
blue), MCCm states persisted up to several seconds (Fig. 7b, grey). This suggested that such a
difference in metastability may also parallel the difference of temporal signature in monkey LPFC and
MCC areas. Applying HMM to experimental data revealed that, as predicted by the model, neural
activity was organized as metastable states at slower timescales in the MCC (vs the LPFC, Fig. 7b,
right). State durations were globally shorter in models (compared to monkeys), as they contained
neither temporal task structure nor learning (see discussion) and were not optimized to fit data.
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Figure 6. Similarity to monkey LPFC and MCC temporal signatures critically depends on AHP and GABA;
conductance in the network model. (a) Mean population LAT (top) and TAU (bottom) in Exc (left) and Inh (right)
neurons, as a function of AHP and GABA-B maximal conductances. Blue and grey disks indicate the (gaup, 8casa-s)
parameter values of the LPFCm and MCCm models, respectively. (b) Similarity of the temporal signature between
the network model and monkey data in the LPFC (left) and MCC (right), as a function of AHP and GABA-B maximal
conductances (see Online Methods). In (a) and (b), the value for each (gaup, 8casa-s) iS averaged over 5 simulations.
Contour line at 80% of maximum similarity. LPFCm and MCCm (gaup, Scasa.s) Parameter values calculated as
coordinates of the contour delimited area’s weighted average. (c) Bivariate probability density distribution of the
autocorrelogram LAT and first- order latency (the latency of the ISI distribution) in RS units in monkey LPFC (left)
and excitatory neurons in the example LPFCm model (right). The model accounts for two distinct neuronal subsets
in RS neurons, where LAT is determined by first-order latency solely (due to gAHP-mediated
refractoriness; diagonal band), or in conjunction with other factors (ggaga.s Slow dynamics-mediated
burstiness and recurrent synaptic weight variability; horizontal band). (d) Single excitatory neuron
frequency/intensity relationship in the LPFCm (blue) and MCCm (grey) models in response to a constant
injected current.
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Long states essentially required high ggasas in the MCCm, as they disappeared when ggagas Was
lowered to its LPFCm value (MCCm pec gasa.s model, Fig. 7b left, orange curve). In contrast, they only
marginally depended on gu. MCCm and an MCCm model with the ga.» derived from that of LPFCm
(MCCmypec anp) showed state duration distributions that were essentially similar, although there was a
small increase in the probability of short states at lower gaup (pink vs gray curves). In the (gaup, casa-s)
space, gcapa-s Systematically proved to be essential in increasing the duration of states, with a border
region that clearly separated short states (<0.1s) from longer states (>1s) (Fig. 7c) At this
intermediate border, lower gu4 increased the probability of short states (grey vs pink dots;
distributions were even bimodal at lowest ga.p values, not shown), as witnessed by departure from
log-normality (Fig. 7c). As such, the temporal structure of states in the LPFCm was dominated by
short and unimodal state duration distributions (Fig. 7c and 7d, blue dots), as in monkeys (Fig. 7b,
right) and previous studies(Abeles et al., 1995; Seidemann et al., 1996). In the MCCm, by contrast,
the distribution displayed large durations and a slight departure from log-normality (Fig. 7c and 7d,
grey dots), resulting in a majority of long states (>1s) coexisting with short states, as found in data
(Fig. 7b).

State duration, i.e. stability, scaled with spatial separation in the neural space of activity (Fig.
7e, see Online Methods). Indeed, the shorter states of network models with lower ggaga-s (LPFCm and
MCCm pec gasas, blue and orange dots) were less distant, compared to those of networks models with
higher ggagas (MCCm and MCCm pec anp, grey and pink dots). While states were largely intermingled in
the LPFCm and MCCmpc gasas (Fig. 7f, upper & middle left), they clearly segregated in the MCC and
MCCmypec anp (Fig. 7f, upper & middle right). As predicted by the model, segregation between states
was indeed higher in the monkey MCC (Fig. 7e, large grey triangle, and Fig. 7f, lower right),
compared to the LPFC (Fig. 7e, large blue triangle, and Fig. 7f, lower left). This suggests that the
higher stability of states in monkey MCC arose from a larger segregation of representations in the
space of neural activity.

Altogether, these results suggested that itinerancy between metastable states constitutes a
core neurodynamical principle underlying the diversity of computational processes and functions
operated in primate frontal areas (Fig. 7g, see Discussion). From this perspective, the conditions
governing transitions between states is critical. We thus evaluated how perturbations of selective
neuronal populations would escape ongoing states and reach specified target states (Fig. 7h). In the
MCCm, we substituted the membrane potentials and synaptic opening probabilities of a fraction of
excitatory (vs inhibitory) neurons of the ongoing HMM state by those of a target state. This could
mimic the effect of internal chaotic fluctuations or external inputs aimed at reaching that target
state. Surprisingly, escaping the ongoing state or reaching the target state remained quite unlikely
when substituting excitatory neurons, whatever the fraction (Fig. 7h, left). By contrast, both
probabilities of escaping and reaching scaled with the fraction of substituted inhibitory neurons, with
high maximal probabilities (mean: 0.89 and 0.59 for escaping and reaching, respectively — Fig. 7h,
right panel). Interestingly, the probability of escaping a state could attained 0.24 even with as few as
2% of substituted inhibitory neurons, indicating the significant impact of single inhibitory neurons on
state itineracy.

Thus, inhibition is a major factor controlling targeted transitions between metastable states
in the MCC network model and is also crucial in determining their stability. Excitation had no such
role. This result is remarkable, especially considering that MCC FS neurons encoded negative
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outcomes immediately after feedback onset that triggered behavioral adaptive responses (Fig. 4).
This could reflect the involvement of MCC FS neurons in inducing state changes on feedback
associated to behavioral flexibility.
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Figure 7. Properties of metastable states in the LPFC and MCC (a) LPFCm and MCCm models spiking raster plots (black
dots), with Hidden Markov model states (HMM, colored bands) (b) State duration distributions: probability distributions
of being in states of given durations in LPFCm (blue), MCCm (grey), MCCm with LPFCm gaup (MCCm pec anp Pink) and
MCCm with LPFCM ggaga.s (MCCM pc gaga-s, Orange) models (left) and monkey LPFC (blue) and MCC (grey) areas (right).
Each model was simulated 100 times and analyzed via HMM, while monkey data was analyzed via HMM with 100
different initiation parameter states. Periods above 300s were excluded. (c, d) Regulation of state duration and short
states: median state duration (c) and Kolmogorov-Smirnov one-sample test statistic or maximal distance of state duration
probability distributions to log-normality, as a measure of the over-representation of short states (d), as a function of gaup
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and ggasa.s Maximal conductances. Colored disks indicate parameter values of LPFCm, MCCm, MCCm p¢c avp and MCCmpec
casa.g Models, respectively. Each point is the average of 5 simulations. (e) Separation between states: average distances
between HMM states (averaged pairwise distance between neural centered standardized frequency centroids (temporal
averages) of HMM states), as a function of median state durations. Distances calculated over 100 simulations in models
and once for monkey LPFC and MCC data. (f) State segregation: projection of neural activity on the principal components
of the PCA space of example model simulations and of monkey data. State colors as in (a). (g) Frontal processes and state
regulation: schematic attractor landscapes in the LPFC and MCC. Horizontal and vertical arrows indicate possible
regulations of AHP and GABAg conductance levels respectively by intrinsic/synaptic plastic processes or neuromodulation
in the LPFC and MCC. Likely functional processes operating in these landscapes are indicated in blue for the LPFC and grey
for the MCC. (h) Inhibitory control of state transitions: probability to escape an ongoing state (left) and to reach a target
state (right), when the ongoing state is perturbed by substituting a given proportion of its excitatory (vs inhibitory)
neurons’ activity by that of the same neurons in the (perturbing) target state (see Online Methods). Average (full line), +/-
s.e.m. (shaded areas, almost imperceptible).

Discussion

We showed LPFC and MCC displayed long population spiking timescales (TAU), with larger values in
MCC (TAU~500 vs 200 ms), consistent with previous observations (Chaudhuri et al., 2015; Murray et al., 2014).
In fact, LPFC and MCC express distinctive and complex temporal organizations of their activity, which
cannot be solely captured by the population spiking timescale. The spiking timescale has been used
as a measure characterizing intrinsic areal properties and an inter-area temporal hierarchy. However,
the spiking timescale of single units varied over two orders of magnitude within each area (Cavanagh
et al, 2018; Murray et al.,, 2014; Wasmuht et al., 2018). The latency of autocorrelogram also
demonstrate informative variability, which suggest important underlying functional richness. Our
study demonstrates that the temporal signature (TAU and LAT) of single units, measured through
spike autocorrelogram metrics and cell type segregation, can highlight specific local ionic and
synaptic mechanisms. Differences in temporal signatures, for instance between LAT of FS and RS in
MCC, and within regions, provide important information on the functional properties of the
underlying neural network.

Unravelling the multidimensional nature of LPFC and MCC temporal signatures at the level of
individual neurons enabled us to constrain refined biophysical recurrent network models and reveal
the local biophysical determinants mechanistically accounting for their specific temporal
organization. Moreover, we showed that these determinants control neurodynamical features that
constitute core computational foundations for the executive cognitive processes operated by these
frontal areas.

Functional spatio-temporal organization of temporal signatures in frontal areas

The correlation between temporal signatures and behavior suggests how such biophysical
properties could contribute to functional specificities. Spiking timescales distributions have been
related to persistent activity, choice value and reward history in the LPFC and MCC (Bernacchia et al.,
2011; Cavanagh et al., 2018; Meder et al., 2017; Wasmuht et al., 2018). Here, the spiking timescales
of MCC RS units increased on average during periods of engagement in cognitive performance, likely
reflecting the global implication of neural processes in task performance at long timescales. MCC
units with different temporal signatures differentially contributed to cognitive processes known to
engage MCC, namely feedback/outcome processing and outcome history representations (Kennerley
et al., 2009; Quilodran et al., 2008; Seo and Lee, 2007). Outcome processing generally enables rapid —
trial by trial — adaptation of control and decisions, while outcome history representations contribute
to the long-term — across trials — establishment of values guiding strategy adaptation (Behrens et al.,
2007; Karlsson et al., 2012).
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In our experiment, short spiking timescale units contributed to feedback processing, whereas
long spiking timescale units and especially RS units, contributed to encode gauge size, which linearly
increase with the accumulation of rewards across trials. In MCC, this temporal dissociation coincided
with a spatial organization along the antero-posterior axis: anterior units mainly encoded feedback
valence, more strongly and earlier than posterior units, whilst posterior units mostly encoded the
long-term information related to gauge size. This antero-posterior gradient strikingly resembles that
observed in humans (Meder et al., 2017).

Local molecular basis of frontal temporal signatures

Through extensive parameter exploration of constrained biophysical frontal network models, we
identified 2 conductances that precisely reproduced all monkey temporal signatures. In the model,
higher TAU (i.e. MCC vs LPFC, posterior vs anterior MCC) was accounted for by stronger synaptic
GABA-B levels, consistent with reported higher GABA-B receptor densities (Zilles and Palomero-
Gallagher, 2017), stronger and slower inhibitory currents in the MCC (vs LPFC) (Medalla et al., 2017),
and stronger GABA-B receptor densities in the posterior (vs anterior) MCC (Palomero-Gallagher et al.,
2009). Excitatory synaptic transmission has been proposed to be a crucial determinant of longer
spiking timescales in the temporal cortical hierarchy (Chaudhuri et al., 2015). We found that while
stronger excitatory transmission increases TAU (possibly accounting for longer MCC TAUs), it also
decreases LAT. LAT, however, was longer in the monkey MCC. This suggests that GABA-B inhibitory —
rather than excitatory — transmission is the causal determinant of longer spiking timescales, at least
in the LPFC and MCC. Noticeably, long timescales do not require specific disinhibition between
molecularly identified subnetworks of interneurons (Wang, 2020) but naturally emerge from
inhibitory weights variability (see below). The model also predicts that higher LAT in the MCC
originate from increased refractoriness through higher after-hyperpolarization potassium (AHP)
conductances in RS units. Higher AHP implies lower input-output gains in MCC RS units, compared to
the LPFC (Naudé et al.,, 2012), as found empirically (Medalla et al., 2017). Finally, reproducing
appropriate temporal signatures required the cationic non-specific (CAN) conductance in the areas’
RS units. This was observed in RS of rodent medial frontal areas (Haj-Dahmane and Andrade, 1997;
Ratté et al., 2018), where it regulates, together with AHP, cellular bistability and memory, network
persistent activity and computational flexibility (Compte, et al., 2003; Papoutsi et al., 2013; Rodriguez
et al., 2018; Thuault et al., 2013). Our conclusions do not preclude the contribution of other factors
to temporal signatures such as large-scale hierarchical gradients (Chaudhuri et al., 2015), distinct
neuromodulations (see below), or inputs with different spectral contents to LPFC and MCC.

Frontal temporal signatures uncover metastable dynamics

The LPFC and MCC activity, both in models and in monkeys’, was metastable, i.e. organized in
sequences of discrete, quasi-stationary states in which activity fluctuates around fixed-point
attractors (Abeles et al., 1995; La Camera et al., 2019; Rich and Wallis, 2016; Seidemann et al., 1996).
As a general rule, the duration of states increases with the stability of their attractor (i.e. the
depth/width of their basin of attraction) and decreases with spiking fluctuations. Fluctuations
originate from stochastic inputs or chaotic noise (as in our model), and they trigger state transitions.

States were longer in monkeys, likely because extensive training induced attractors that were
more stable, whereas models displayed less stable attractors that simply resulted from just random
connectivity without learning. Thus metastability genuinely emerged from synaptic heterogeneity
and did not require strong network clustering (La Camera et al., 2019). We showed that high GABA-B
levels are crucial to stabilize states because they amplify the heterogeneity of inhibition and widens
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attractors, as reflected by higher state separation in the MCC. In addition, GABA-B’s long time
constant naturally promotes burstiness, i.e. stable discharge episodes. Finally, higher AHP levels,
required for higher LAT in MCC RS units, limited the occurrence of the shortest states, limiting
frequent transitions between states.

In monkeys and biophysical models, temporal signatures, which correlate with state stability,
actually reflect the underlying temporal organization of neurodynamics into metastable states.
Interestingly, state durations (up to >10s) were longer than spiking timescales (<0.5s), reconciling the
apparent discrepancy between typical spiking timescales in frontal areas (<1s) and the functional
timescales at which those areas operate (up to tens of seconds, Bernacchia et al., 2011).

Functional significance of controlled metastable states in frontal areas

Metastable states can be linked to specific representations in the brain at a variety of levels of
abstraction, from stimuli to mental states (Engel et al., 2016; La Camera et al., 2019; Mazzucato et
al., 2015, 2019; Rich and Wallis, 2016; Taghia et al., 2018). In general, state transitions contain
appreciable randomness, with high transition rates signing internal deliberation, whilst more stable
states predicting forthcoming decisions (La Camera et al.,, 2019). We suggest that controlling
itinerancy among metastable states constitutes a core neurodynamical process supporting executive
functions in frontal areas, which allows to scan choices and strategies, generate deliberation and
solve on-going tasks.

Specifically, in the MCC (Fig. 7g, gray landscape) GABA-B-mediated long metastable states
underlying long spiking timescales may contribute to the maintenance of ongoing strategies
(Durstewitz et al., 2010; Enel et al., 2016; Stoll et al., 2016) and to the integration of outcome history
(Kennerley et al., 2006; Meder et al.,, 2017; Seo and Lee, 2007; Tervo et al., 2014). At shorter
timescales, short states might instantiate dynamic coding, flexible computations and rapid decision-
making in the LPFC (Fig. 7g, blue landscape) (Rich and Wallis, 2016; Rigotti et al., 2013; Stokes, 2015).
Short states may be lengthened in the LPFC when AHP is increased (Fig. 7g, orange landscape),
favoring longer timescales and a global stabilization of, for instance, working memory processes
(Cavanagh et al., 2018; Durstewitz and Seamans, 2008). Conversely, decreasing GABA-B destabilizes
all long states in the MCC model, globally favoring fast transitions (Fig. 7g, orange landscape). This
mechanism might contribute to abandon prior beliefs and to rapid search for adapted
representations, e.g. in uncertain environments (Karlsson et al., 2012; Quilodran et al., 2008; Stoll et
al., 2016). In the LPFC model with increased GABA-B or in the MCC model with decreased AHP,
activity destabilizes certain long states, favoring transitions to remaining long states (Fig. 7g, pink
landscape). Such a configuration might be relevant for flexible behaviors, directed exploration and
switching (Durstewitz et al., 2010; Pasupathy and Miller, 2005; Russo et al., 2020; Stoll et al., 2016).
Regulating GABA-B and AHP to dynamically adapt computations and temporal signatures could be
achieved through neuromodulatory or fast plastic processes (Froemke, 2015; Satake et al., 2008).

Macroscopic gradients of inhibitions and excitations appear as important determinants of the
large scale organization of cortical dynamics (Wang, 2020; Womelsdorf et al., 2014b). Our results
indicate a complementary fundamental dual role of local inhibition in regulating state durations and
stability on one hand, and setting the timing and direction of state transitions, on the other.
Moreover, transitions can be easily triggered using very few inhibitory neurons. Our study suggests
that interneurons and inhibition might be causal in error-driven state transitions in the MCC. Such
transitions, initiated by FS neurons immediately after feedback onset, would allow escaping currently
unsuccessful states, reaching alternatives or exploring new states.
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In conclusion, we showed that local ionic and synaptic determinants specify the scale of
temporal organization of activity in frontal cortical areas. These determinants might produce the
particularly long states observed in monkey MCC dynamics and could explain its contribution to
functions operating over extended behavioral periods. More generally, our results suggest that the
diversity of spiking timescales observed across the cortical hierarchy reflects the local excitability-
and synaptic inhibition-mediated regulation of metastability, which sets the temporal organization of
computational processes.
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Figure 1. Midcingulate cortex (MCC) and lateral prefrontal cortex (LPFC) spike count autocorrelograms. (a)
Population exponential fit: autocorrelograms were computed for each unit and the fit was performed on all the
units of each area (as in Murray et al. 2014). (b) Single unit fits were used to capture individual spiking
timescales and produce the distribution of TAU values for each region. Dotted lines represent the median of
TAU. (c) Clustering of spike shape. We extracted spike width and valley to peak ratio (V2P) from each unit
average waveform. A hierarchical clustering led to 3 groups of units (colored groups RS1, RS2, FS). In the paper,
units with narrow spike width were termed as fast spiking (FS), whereas units with broader waveform were
marked as regular spiking (RS: RS1 + RS2). The histogram indicates the number of MCC and LPFC units
belonging to each of the 3 clusters.
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Figure 2. Spike autocorrelogram and temporal signatures in MCC and LPFC. (a) 3 single
examples of spike count (purple) versus normalized spike autocorrelograms (green)
contrasting the outcome of the 2 methods. The measured time constant (TAU) is indicated for
both when possible. Numbers of spikes used for each method is also indicated. (b) TAU values
extracted from each methods are significantly correlated (spearman rho(282) = 0.46,p<10-
15). (c) Distributions of TAUs (upper histograms) and peak latencies (LAT - lower histogram)
for FS (left) and RS (right) units. ‘n’ indicates the number of units. TAU values were longer in
MCC than in LPFC for both FS and RS (linear model fit on BLOM transformed TAU for
normality, TAU = Region * Unit type, Region: t=-4.68, p<10-6, Unit type: ns, interaction: ns).
Peak latencies significantly differed between MCC and LPFC for RS but not for FS units
(medians: MCC FS= 48.5 ms, RS= 102.0 ms , LPFC FS= 48.5 ms, RS= 51.8 ms ; linear model fit
on BLOM transformed Latency for normality, Latency = Region * Unit type, interaction: t-
value=-3.57, p< 10-3).
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Figure 3. Behavioral engagement in task and spiking timescale changes. (a) Schematic representation of the
task. At the start of each trial, animals can either initiate a delayed response task (WORK option) which can
lead to 1 reward delivery, or use the CHECK option to check the current size of the gauge (or collect the bonus
reward). Each reward in the task contributes to increase the gauge size and bring the bonus availability closer.
The graph (right) schematized the speed of increase of the gauge size which varies between blocks (fast or slow
blocks). (b) Boxplots of indices for each unit type and region calculated to estimate potential changes in TAU
between Engage and Pause (left), and between empty and full gauge (right). TAUs increased in Engage vs.

Pause only for MCC RS units.
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Figure 4. Encoding of feedback and gauge size for different unit types and spiking timescales and
rostro-caudal distribution. (a) Estimates (B-coefficients) obtained from the MCC (grey) and LPFC (blue)
unit populations obtained from time-resolved gimm for Feedback (reward vs no reward; top graphs) and
Gauge size (bottom) (see ‘Group analyses using glmm’ in Methods). Estimates are obtained at successive
time points covering the entire inter-trial period between feedback onset and the lever onset in the
following trial. Significant effects are indicated by a red triangle (p<0.05 corrected), shadings indicate
standard deviations. Positive values depict a population activity bias towards negative feedback (top)
and positive slope of linear coding for gauge size (bottom). Data is presented for FS and RS units (left
and right respectively for each panel) and have been performed on subpopulation with short or long
TAU values (determined by a median split). Short and long TAU populations are represented by light and
dark color intensity. Note in particular the dissociation for RS MCC units with short and long TAU
respectively coding for feedback and gauge size. (b) Averaged TAU values along the postero-anterior axis
in the MCC and LPFC, for both monkeys. (c). Estimates reflecting coding strength of Feedback and Gauge
size for MCC unit populations separated by their rostro-caudal location.

22



bioRxiv preprint doi: https://doi.org/10.1101/2020.08.20.259192; this version posted October 6, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

a Network model b LPFCm  Membrane potential (mV) MCCm mv

20 30 40 30 40
Time (s) Time (s)

Neurons normalized e MCCm Neurons normalized

probability density MW" probability density
10mV|_‘ sk i o Y T qomv T 1 a1 700 1
$ LAT=57ms | £ 400 062 2% AT=105ms | £ 100 060
SENS TAU =200 ms| 2 S gls TAU=353ms | o IS
E 2 300 0.4 £ 300 0.4

Z2c 1 ~ Z2c 1 <

=5 200 =5 = 200

2205 100 02 8505 o2
gg ° F=178Hz 0 o %g o F =176 Hz 108 .
@™ 0 200 400 600 800 1000 100 200 300 @™ 0 200 400 600 800 1000 0 100 200 300

Time (ms) LAT (ms) Time (ms) LAT (ms)
d Neurons normalized f Neurons normalized

WWM probability density WMWW probability density
10my | PEIITIEE . 700 10mv 700 1

1
z_" 44> Inh. _. 600 08 o 18 °  Inh __600 08
2y 2 [AT=53ms | £ 200 o6z 2y 2 [AT=61ms | £ 200 06
& o - £ 400 8215 - = 400 =
$g1s TAU=184 ms{ = 04 SEN TAU = 369 ms| = p=
£ F | o 2
o= . 38
gE05 F=279Hz 100 8505 F=233Hz 100 02
22 %0 200 400 600 800 1000 05 0 22 %500 200 600 800 1000 % 0
o 100 200 300 a ( 100 200 300

Time (ms) LAT (ms) Time (ms) LAT (ms)

Figure 5. Temporal signature of LPFCm and MCCm recurrent network biophysical models. (a) Scheme of the
frontal recurrent networks modelled, with 80% excitatory (green) and 20% inhibitory (red) neurons and
sparsity of synaptic connections. (b) Membrane potential in the 484 excitatory (lower part) and 121 inhibitory
(upper part) neurons of example network models with parameter set to approximate LPFC dynamics
(gCAN=0.025mS.cm'2, gAHp=0.022mS.cm’Z, gGABA.B=0.0035mS.cm'2; see text and legend of Fig. 6b for the choice of
LPFC and MCC standard gasp and ggasas maximal conductances) and MCC dynamics (gCAN=O.025mS.cm'2,
gAHp=0.087mS.cm'Z, gGABA_B=0.0143mS.cm‘2). (c) (upper left) Membrane potential of an example excitatory
neuron in the LPFC model (LPFCm). Scaling bars 1s and 10mV (spikes truncated). (lower left) Autocorrelogram
of this LPFCm example excitatory neuron (black) and its exponential fit (red, see Online Methods). (right)
Bivariate probability density distribution of autocorrelogram parameters in LPFCm excitatory neurons. Contour
lines at 50, 75 and 90% of the maximum of the bivariate probability density distribution in LPFC monkey RS
units. (d) Same as (c) for LPFCm inhibitory neurons, with contour lines from the bivariate probability density
distribution in LPFC monkey FS units. (e,f) Same as (c,d), for the MCCm and MCC.
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Figure 6. Similarity to monkey LPFC and MCC temporal signatures critically depends on AHP and GABAg
conductance in the network model. (a) Mean population LAT (top) and TAU (bottom) in Exc (left) and Inh
(right) neurons, as a function of AHP and GABA-B maximal conductances. Blue and grey disks indicate the (gaup,
Beasa-s) Parameter values of the LPFCm and MCCm models, respectively. (b) Similarity of the temporal signature
between the network model and monkey data in the LPFC (left) and MCC (right), as a function of AHP and
GABA-B maximal conductances (see Online Methods). In (a) and (b), the value for each (gaup, Bcasas) IS
averaged over 5 simulations. Contour line at 80% of maximum similarity. LPFCm and MCCm (gaup, Scasa-s)
parameter values calculated as coordinates of the contour delimited area’s weighted average. (c) Bivariate
probability density distribution of the autocorrelogram LAT and first- order latency (the latency of the ISI
distribution) in RS units in monkey LPFC (left) and excitatory neurons in the example LPFCm model (right). The
model accounts for two distinct neuronal subsets in RS neurons, where LAT is determined by first-order latency
solely (due to gAHP-mediated refractoriness; diagonal band), or in conjunction with other factors (§GABA-B
slow dynamics-mediated burstiness and recurrent synaptic weight variability; horizontal band). (d) Single

excitatory neuron frequency/intensity relationship in the LPFCm (blue) and MCCm (grey) models in response to
a constant injected current.
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Figure 7. Properties of metastable states in the LPFC and MCC (a) LPFCm and MCCm models spiking raster
plots (black dots), with Hidden Markov model states (HMM, colored bands) (b) State duration distributions:
probability distributions of being in states of given durations in LPFCm (blue), MCCm (grey), MCCm with
LPFCM gaup (MCCmypec anp Pink) and MCCm with LPFCm gGABAB (MCCmM pec gasas, Orange) models (left) and
monkey LPFC (blue) and MCC (grey) areas (right). Each model was simulated 100 times and analyzed via
HMM, while monkey data was analyzed via HMM with 100 different initiation parameter states. Periods
above 300s were excluded. (c, d) Regulation of state duration and short states: median state duration (c) and
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Kolmogorov-Smirnov one-sample test statistic or maximal distance of state duration probability distributions
to log-normality, as a measure of the over-representation of short states (d), as a function of gayp and geaea-s
maximal conductances. Colored disks indicate parameter values of LPFCm, MCCm, MCCmpsc app and
MCCmypec cagas Models, respectively. Each point is the average of 5 simulations. (e) Separation between
states: average distances between HMM states (averaged pairwise distance between neural centered
standardized frequency centroids (temporal averages) of HMM states), as a function of median state
durations. Distances calculated over 100 simulations in models and once for monkey LPFC and MCC data. (f)
State segregation: projection of neural activity on the principal components of the PCA space of example
model simulations and of monkey data. State colors as in (a). (g) Frontal processes and state regulation:
schematic attractor landscapes in the LPFC and MCC. Horizontal and vertical arrows indicate possible
regulations of AHP and GABA conductance levels respectively by intrinsic/synaptic plastic processes or
neuromodulation in the LPFC and MCC. Likely functional processes operating in these landscapes are
indicated in blue for the LPFC and grey for the MCC. (h) Inhibitory control of state transitions: probability to
escape an ongoing state (left) and to reach a target state (right), when the ongoing state is perturbed by
substituting a given proportion of its excitatory (vs inhibitory) neurons’ activity by that of the same neurons in
the (perturbing) target state (see Online Methods). Average (full line), +/- s.e.m. (shaded areas, almost
imperceptible).
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Materials and methods

Subjects and materials

This project was conducted with two male rhesus monkeys (Macaca mulatta), monkey A and H.
All procedures followed the European Community Council Directive (2010) (Ministére de I’Agriculture
et de la Forét, Commission nationale de I'expérimentation animale) and were approved by the local
ethical committee (Comité d’Ethique Lyonnais pour les Neurosciences Expérimentales, CELYNE, C2EA
#42). Electrophysiological data were recorded using an Alpha-Omega multichannel system
(AlphaOmega Engineering, Israel).

Recording sites

Recording chambers (Gray Matter research, MT, USA) were centered on antero-posterior
coordinates of +34.4 and +33.6 relative to ear bars (for monkey A and H, respectively)(Stoll et al.,
2016). MCC recording sites covered an area extending over 10mm (anterior to posterior), and at
depths superior to 4mm from cortical surface (corresponding to the anatomically defined aMCC or
functionally defined dACC). Recording sites in LPFC were located between the principalis and arcuate
sulcus (areas 6DR, 8B, 8A and 9/46) and at depths inferior to 2mm from cortical surface.
Reconstructions of cortical surface, of MRI sections perpendicular to recording grids and of
microelectrode tracks were performed using neuronavigation. Locations were confirmed with MRI
reconstructions and stereotaxic measurements by keeping track of electrophysiological activity
during lowering of electrodes.

Single unit activity and spike shapes

Electrophysiological activity was recorded using epoxy-coated tungsten electrodes (1-2MOhm at
1 kHz; FHC Inc., USA) independently lowered using Microdrive guidance (AlphaOmega Engineering).
Neuronal activity was sampled at 22 kHz resolution. Single units were sorted offline using a specific
toolbox (UltraMegaSort2000, Matlab toolbox, Kleinfeld Lab(Hill et al., 2011), University of California,
San Diego, USA). Metrics served to verify the completeness and purity of single unit activity. Each
single unit activity was selected, recorded and included in analyses on the basis of the quality of
isolation only. We obtained 298 MCC units and 272 LPFC units while monkeys performed a checking
task(Stoll et al., 2016). A subset of these data has been used in a previous publication(Stoll et al.,
2016).

Spike shape clustering. Spike shapes can be clustered in different groups that might correspond to
different putative cell populations. For each single unit, we computed the average spike shape on
which we measured:

(1) Pre-valley (V1): the minimum value of the waveform prior to the peak

(2) Post-valley (V2): the minimum value of the waveform following the peak

(3) Spike width: the time between the occurrence of the peak and V2

(4) The ratio of V1 to V2 (V1/V2)

(5) The ratio of V2 to the spike peak (V2/PiK)

We clustered average units according to their spike width and V2/PiK. We first computed the
spike width vs. V2/PiK Euclidean distance matrix (dist function in R). Then we performed hierarchical
clustering using Ward’s method (hclust function in R). The number of retained clusters was
determined with the combination of data viewing, dendrogram examination and objective measures
of clustering quality (Elbow method, Average silhouette method and Gap statistic method). The
partitioning led to 3 clusters, one with narrow spike shapes, one with wide spikes and one with very
wide spikes. Narrow and wide spikes were considered FS and RS, respectively. Although clustering
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revealed 3 clusters, no differences were found between the 2 wide ones, both considered RS
neurons (see supplements).

Spiking timescales.

The primary analysis of timescales was based on Murray et al(Murray et al., 2014). Spike counts
were measured in 14 successive bins of 50ms from the pre-cue period (700ms) of each trial, when
the monkey is in a controlled, attentive state awaiting stimulus onset. We first calculated the cross-
trial bin cross-correlations. Each vector of spike counts from the 50ms bin t was correlated with
vectors of spike counts at subsequent bins (t+1, t+2, etc) generating an autocorrelation matrix. The
positive side of the autocorrelation was used to compute timescales. The autocorrelogram data was
then fitted using non-linear least square (nls function in R) to a function of the form:

-t
R~Ax* eTAU + B

where R is the correlation coefficient and t the bin time. TAU, representing the decay of the
exponential function and thus the intrinsic timescale, and A, a scaling constant, were obtained from
the fit. We computed TAU both at the population level, by using a global fit on all recorded units
from a given area (as in Murray et al(Murray et al., 2014)), and at the single unit level.

However, the above method cannot resolve the fine dynamics of neuronal activity at short time
lags because it is based on counts pooled across trials and from coarse-grained time bins (50ms).
Moreover, the large variability of unit discharge resulted in a high variability of autocorrelograms,
which could not be fitted in many cases (47.5% failures), as in other studies (52.1% and 48.4%
failures in Wasmuht et al. 2018 and Cavanagh et al. 2018(Cavanagh et al., 2018; Wasmuht et al.,
2018), respectively). Finally, tracking the causal determinants of LPFC and MCC temporal signatures
in terms of local cellular and/or network dynamics requires a high temporal precision, because they
rely on intrinsic and synaptic time constants, which often lie below the coarse time bin of the spike
count method. To prevent these shortcomings, we directly computed the autocorrelogram of
individual neurons from spike times, allowing for high temporal precision in parameter estimation.
For this we leveraged all the data recorded for each neuron to reduce the large noise present at the
level of individual neurons.

Autocorrelogram analysis

To capture the dynamics of neuronal activity, we computed autocorrelograms from individual unit
spike timeseries and extracted their latencies (LAT) and time constants (TAU). The same method was
applied to units from in vivo recordings and neurons from network models. To do so, we computed
the lagged differences between spike times up to the 100" order, i.e. the time differences between
any spike and its n successors (up to n = 100) at the unit level. The lagged differences were then
sorted in 3.33ms bins from 0 to 1000ms. The resulting counts, once normalized, allowed to build the
probability density function of the autocorrelogram, AC, which was smoothed by local non-linear
regression (loess method, with span 0.1; to filter high frequency noise and correctly detect the peaks,
see below) after removing its first 10ms, to eliminate source data contaminations, such as inter-spike
intervals (ISIs) shorter than the absolute refractory period. We defined the peak of the
autocorrelogram as its maximum, except when the maximum was the very first bin, in which case the
peak was defined as the first local maximum after the first bin. The latency of the peak, LAT, was
considered, for further analysis, as a structural parameter of the autocorrelogram characterizing the
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temporal signature of the neuron/unit spiking set. For each autocorrelogram, a global mono-
exponential fit (GLOBAL fit) was then performed on the part of the autocorrelogram situated after
the peak using the Levenberg-Marquardt algorithm (n/sLM function in R) for monkey data or von-
Neumann—Karmarkar interior-point algorithm (fmincon in Matlab) for network models (we checked
that either algorithm on the same spiking sets gave similar results), as following:

AC ~ Ae~t/TAU 4 p

TAU, the time constant of the autocorrelogram fit characterized the temporal signature of the
neuron. 4, the amplitude of the exponential, and B, the offset, are positive constants. Note that this
mono-exponential fitting equation is strictly equivalent to that of Murray et al.(Murray et al., 2014),
B here corresponding to AB in the Murray method. Choosing one or the other did not affect the
resulting fit and we kept the present form as it is easier to interpret. Fits on each autocorrelogram
were performed 50 times, with random initial guesses in the range [0, Z(max(AC) - min(AC))] for
A, [0,2min(AC)] for B, and [0, 1000]ms for TAU, from which the best fit was kept.

In a minority of cases (less than 3% of neurons), the autocorrelogram following the peak (as
defined above and denoted below the 1* peak) could present a shape that diverged from a simple
exponential decay, because of a fast and large dip, followed by a second local maximum, which
preceded the slower, final exponential decay. In this case, we developed a pipeline aiming at
consistently choosing the peak from which the fit started. To do so, we defined the autocorrelogram
as having a dip if the first local minimum in the 100ms after the 1° peak was below 75% of the global
range of the autocorrelogram, max(AC) — min(AC). In such cases, the second peak was defined as
the maximum of the autocorrelogram after the dip and two additional mono-exponential fits of the
autocorrelogram were performed, one from the first peak to the dip (FAST fit) and a second one from
the second peak to the end of the autocorrelogram (SLOW fit). To be valid, any individual fit had to
display positive 4, B and TAU values. When neurons had a valid GLOBAL fit, two possibilities were
considered. First, the valid GLOBAL fit was kept when at least one of the FAST and SLOW fits were
not valid. Second, the valid GLOBAL fit was also kept when it was the best (i.e. its root-mean-square
error was inferior to that of the sum of the valid FAST and SLOW fits) and excluded otherwise.
Neurons that did not have a valid GLOBAL fit were also excluded from further analysis. Thus, while
FAST and SLOW fits were de facto systematically excluded from further analysis, they were only used
to ensure the quality of GLOBAL exponential fits. Note again that excluding less than 3% of neurons,
this complex procedure was very conservative and designed for the sake of fitting performance.

Hidden Markov Model (HMM) analysis

We used HMM to map the spiking set of neural network models and unit populations in monkeys
onto discrete states of collective activity, based on previously established methods(Abeles et al.,
1995; Seidemann et al., 1996). HMM methods allow to determine the probability p(S,(t)) of the
network to be in state Sy, k € {1...ng} at time t. Typically, we found that, as previously shown in
frontal areas, population activity organized into periods that lasted in the range ~10ms — 10s, i.e.
transition probabilities were small and states were quasi-stationary. When all probabilities of being
in a state p(Sk) < 0.8, the network was considered to be in the null state S, signifying that the
network was not in any of the states. Periods in the S,state were typically short (mean:
LPFCm=16ms, MCCm=36ms, not shown). Thus, when immediately preceded and followed by two
periods in the same state Sj, periods in S, were attributed the state S;. For each network spiking set
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assessed, we pooled the durations of all periods in all the states of the HMM model, to build the
overall probability distribution of period durations p(d). We then used this probability distribution to
compute

i.e. the proportion of time spent in state periods of duration d, that is, the probability, at any
given instant in time, of being in state periods of duration d. We could not find any suitable method
of stably determining the number of states ng. However, as a low number of states is more
parsimonious in terms of data interpretation(Pohle et al., 2017) in general and because the task
structure contains a low number of possible states in terms of actions (four), reward on the last trial
(incorrect trial, first correct trial, correct trial after previous correct trials) and behavioral states
(exploration, exploitation), we arbitrarily fixed ng = 4. Each HMM model analysis was conducted on
a spiking set lasting 600 s, both in neural network models and unit populations in monkeys. For each
monkey area, the activity of all neurons was pooled, regardless of their recording session. This was
mandatory because the number of neurons simultaneously recorded in each session was typically
inferior to 5, so that HMM models were inefficient in detecting states. Pooling all neurons allowed
the detection of global states that corresponded to the combination of collective dynamics recorded
during distinct sessions, i.e. that were not time-locked together (phase information lost across
sessions) and causally independent. Although chimeric, these HMM states were nevertheless able to
indirectly capture the underlying temporal structure of collective spiking discharges in frontal areas
in a similar way and thus allowed comparing LPFC and MCC collective temporal structure. In control
HMM models, both the timing and neuron assignment of all spikes were randomly shuffled. The
initial estimation of the average state duration across all periods in a given state was taken at a high
value (300ms), which was suggested to give better log-likelihood scores and converge to similar
states across repetitions of the HMM (Seidemann et al., 1996). The time bin was At = 0.5ms.

Principal component analysis.

The principal component analysis (PCA) of LPFC and MCC of monkeys’ units and neural network
models’ neurons spiking activity was computed from firing frequencies, in order to better visualize
and characterize collective dynamics. PCA was achieved on the set of the spiking frequency vectors of
all units/neurons in each case. Spiking frequency was estimated through convolution of spiking
activity with a normalized Gaussian kernel with standard deviation ¢ = 100ms, as average
frequencies were typically < 10Hz in both areas. For each neuron, frequencies were then centered
and standardized for optimal PCA. Cells with average frequencies less than 0.5 Hz were removed for
the experimental data and for the model data, to avoid abnormal standardized frequencies when the
neuron’s average frequency was too low (at most 6 cells per area).

Perturbation protocol for state transitions

We assessed the contribution of excitatory and inhibitory neural populations to the stability of
HMM states. To do so, we estimated the probability to stay in a given ongoing (or perturbed, see
below) HMM state or to switch toward a distinct target (or perturbing) state in response to specified
perturbations. The perturbation was achieved by substituting the value of neural variables
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(membrane potential, spiking state, calcium concentration, downstream channel opening
probabilities) of a random subset of excitatory (respectively inhibitory) neurons of the ongoing state
by those of the same neurons taken from the (distinct) target state. Specifically, starting from an
initial (unperturbed) 600 s simulation, perturbations were achieved by substituting state variables
50ms after the onset of a randomly chosen period of a specified perturbed state by those taken
50ms after the onset of a randomly chosen period of a distinct perturbing state and the resulting
network states used as initial conditions for further “perturbation simulations”. For each
perturbation simulation, the network was simulated from the perturbation time to the end of the
period when the network was not perturbed and the HMM state was determined as the posterior
state probability based on HMM transition and emission matrices obtained from the entire initial
unperturbed simulation. The probability to escape the ongoing state (Fig. 8.h, left) and to reach the
target state (Fig. 8.h, right) were then computed as the proportion of time spent, during the ongoing
period, in a HMM state different from the ongoing perturbed state (escape ongoing state
probability), and in the target perturbing state (reach target state probability), respectively. The
effects of perturbations were tested by replacing either excitatory or inhibitory populations, where
proportions of replaced neurons systematically varied in the range 0-1. For each neuron type and
proportion tested, the perturbation protocol was applied and results averaged for 50 random
combinations of periods (with period durations > 100ms), for each of the 12 possible pairs of the 4
HMM states (excluding pairs of repeated states), over 20 different randomly initialized MCCs.
Probabilities were offset and normalized to remove the basal probability of escaping the ongoing
(0.09) and reaching the target (0.01) states when no perturbation was applied (such transitions were
due to random selection of simultaneous spikes when initiating the HMM analysis).

Behaviour and context-dependent modulations

Behavioural Task. Monkeys were trained to perform a dual task involving rule-based and
internally driven decisions(Stoll et al., 2016). Monkeys performed the task using a touch screen. In
each trial they could freely choose whether to perform a rewarded categorization task or to check
their progress toward a large bonus juice reward (Fig. 3a). Upon checking (selection of a disk-shaped
lever) progress was indicated by the onset of a visual ‘gauge’ (an evolving disk inside a fixed circle).
Choosing the categorization task (selection of an inverted triangle lever) started a delayed response
task in which an oriented white bar (cue) was briefly presented, followed by a delay at the end of
which 2 bars oriented 45° leftward and rightward where presented. Selecting the bar matching the
cue orientation led to a juice reward. An incorrect response led to no reward delivery. The gauge
increased based on correct performance in the categorization task following 7 steps to reach the
maximum size. If the animal checked while the gauge was full, the bonus reward was delivered, and
the gauge reset to step 1. The full gauge was reached after either 14, 21, 28 or 35 correct trials (=
number of trials to complete the 7 steps, pseudo-randomly chosen in each block). Thus, the gauge
could increase at one of 4 different speeds.

Pause vs. engage periods. As each trial was self-initiated by the animal, monkeys could decide to
take a break in their work. We defined pauses as periods of at least 60 seconds without trial
initialization. Monkeys made on average 3.4+2.57 pauses per session (meanitsd, monkey A:
3.44+2.55, monkey H: 3.34+2.63; see Fig. 3b). We extracted spike times during the defined pause and
engage time segments for each unit, and then extracted TAU using the method described above. We
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only kept units with successful TAU extraction for both periods (Nmccrs=19, Nmcc.rs=86, Niprc.rs=29,
Niprcrs =95).

Fast vs. slow-paced blocks. We defined 14 and 21 correct trials blocks to be fast blocks and 28 and
35 correct trials blocks as slow blocks. We considered neuronal activity from the first-time monkeys
checked in a block until the end of the block. We excluded pause periods from this analysis. We
extracted spike timing from the segments and computed timescales as previously, keeping only units
with successful timescale extraction for both periods (nmccrs=33, Nmccrs=165, Nipec.rs=46, Niprc.rs
=165).

Emptier vs. fuller gauge size seen. In each block, monkeys used the gauge size observed upon
checking to regulate their future decisions to check. The checking frequency increased with gauge
size with a marked increase at steps > 4. We thus compared neuronal activity in periods in which
monkeys saw gauges of size < 4, with periods in which they saw gauges > 4, excluding the very
beginning of blocks when monkeys have not seen the gauge yet, and pauses periods. We perform
this analysis on 430 units (Nycc.rs=30, Nvcc.rs=178, Niprcrs=47, Niprcrs =175).

To test whether current block speed had an influence on TAU at the unit level, we computed a
modulation index for each unit: log(TAUgow)/l0g(TAUs.s). Similarly, to test whether gauge filling state
had an influence on TAU at the unit level, we computed a modulation index for each unit:
l0g(TAUempty)/10g(TAUs) where TAUg, corresponds to TAU calculated on the spike data recorded
during the time in blocks where the gauge was superior of equal to the 4™ level.

Statistical analyses

All analyses were performed using R (version 3.6.1) with the RStudio environment(R_core_team,
2014).

BLOM transformation. As some timescale measures are non-normally distributed, analyses
required a robust non-parametric test. We opted for the BLOM transformation which is a subcase of
Rank-Based Inverse Normal Transformations(Beasley et al., 2009). Basically, the data is ranked and
then back transformed to approximate the expected normal scores of the normal distribution
according to the formula:

V= o1 r—c
- N-2c+1

where r; is the ordinary rank and Y; the BLOM transformed value of the ith case among the N
observations. ®-1 is the standard normal quantile (or probit) function and c a constant set to 3/8
according to Blom(Blom, 1958). Regular parametric analyses can then be performed on the
transformed data. Since z-scores of the transformed data are normally distributed and differences
are expressed in standard errors, main effects and interactions can easily and robustly be
interpreted. As sanity checks we also ran more classical non-parametric tests (Wilcoxon test) on non-
normally distributed data leading to the same conclusions.

Task-related analyses

Single unit activity. Each unit’s spikes were counted in sliding bins of 200ms overlapping by 50ms
from feedback onset to 800ms post-feedback and during the intertrial interval from 400ms before
the end of trial signal onset to 2000ms after its onset.
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Group analyses using a gimm. We used a glmm using a Poisson family. p-values were corrected
for multi-comparison with the false discovery rate algorithm with the number of comparisons being
the number of timebins (p.adjust function in R).

The mixed models used were of the form:

y = Bo + B1.CheckWork + 3,.Gauge + 33.Previousfeedback +y .Z + ¢

where y.Z is the random term, and CheckWork, Gauge and PreviousFeedback are the fixed effects
describing the Check versus Work decision (0/1), the gauge size (1-7) and the feedback in the
previous trial (0/1) with their respective parameters (B). In the gimm, the Single unit identity was
used as a random factor.

A persistent problem with Poisson models in biology is that they often exhibit overdispersion. Not
accounting for overdispersion can lead to biased parameter estimates. To deal with overdispersion
we used observation-level random effects (OLRE), which model the extra variation in the response
variable using a random effect with a unique level for every data point.

Median splits. To test the hypothesis that units with different timescales may encode feedback
differently we divided the units into two groups based on the median of the timescale metric. We
computed the median of the metric (e.g. peak latency or TAU) in all the units of a given cell type.
Then we put units with a metric value below the median into the ‘short’ group and units with a
metric value above the median into the ‘long’ group.

Timescale and coding variations along the antero-posterior axis

We considered the genu of the arcuate sulcus as an anatomical landmark from which we
computed distances of recording location along the anterior-posterior axis from MRI reconstructions.

We questioned TAU antero-posterior variability keeping recording locations covering the same
range in both monkeys. We ordered locations from the most posterior site for each area. We
excluded FS units from statistical analysis due to their disparateness (RS units, monkey A: nycc=112,
Nerc=110; monkey H: nycc=54, nyprc=64). This analysis was conducted separately between monkeys
to account for inter-subject anatomical variability.

To test variation in population coding along the antero-posterior axis we divided single-units into
a posterior and anterior group based on the range of locations of each area (MCCpost from 4.5 to
7mm, Nyccrspost=84, Nmccrspost=14 ; MCCant from 7 to 9.5mm, Nyccrsant=82, Nmccrspost=16 ; LPFCpost
from 2.5 to 6mm, Niprcrspost=77, Nipkcrspost=19 ; LPFCant from 6 to 8.5mm, Nniprcrsant=97, Niprcrsant=19).
Population coding analysis is described in Task-related analyses.

Cellular model of pyramidal neurons in frontal areas

We built a generic biophysical Hodgkin-Huxley model of the detailed dynamics of membrane
potential and of ionic and synaptic currents of individual pyramidal neurons in frontal areas. The
model was generic, being endowed with a large set of ionic voltage- and calcium-dependent
conductances, to encompass the wide possible repertoire of spiking discharge patterning

encountered in vivo. In the model, the membrane potential followed
dv

CE = —Lionic + ISyn)

where Cis the specific membrane capacity and the membrane ionic current writes
Lionic =1y + Ina + Ix + Icar + Ican + lanp + Icar + 1y
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in which the leak current is
IL=g,(V-V)
and action potential (AP) currents (Iy,, Ix) are taken from a previous model we devised to
reproduce spike currents of frontal pyramidal regular-spiking neurons(Naudé et al., 2012). The high-
threshold calcium current was
Icar = Gcar Péar(V = Vear)
where the activation followed first-order kinetics

d
anl‘ Wear V) —pcar)/tca (V)

with a voltage-dependent time constant
Tea,(V) = 10%cartBcarV
where ac,p, and Bcay, were fitted from in vitro data(Helton et al., 2005). The infinite activation
followed

pea(V) = 1/(1 + exp(—(V - V1/2,CaL)/kCaL))

where V5 cq1, and kcqy, respectively denote the half-activation potential and e-fold slope of the
Boltzmann activation voltage-dependence, estimated from in vitro data(Helton et al., 2005). The
cationic non-selective (I;4y) current and the medium after-hyperpolarization (I44p) current,
responsible for frequency adaptation in pyramidal neurons were taken as in Rodriguez et al., 2018,
with

Ican = Gcan Pecan(V — Vean)
and

Lip = Ganp Piup (V = Vanp)
The activation of both currents, p, (x € {CAN, AHP}) followed

P
T = (07 (Ca) — o)/ T (Ca)
with
7x(Ca) = 1/(axCa + By)
and

px (Ca) = ay/(axCa + By)

where a, and B, respectively denote activation and deactivation kinetic constants consistent with
experimental data in layer 5 PFC pyramidal neurons(Faber and Sah, 2007; Haj-Dahmane and
Andrade, 1997; Villalobos et al., 2004). The low-threshold calcium (Ic,7) and hyperpolarization-
activated (Iy) currents were from reference(Ritter-Makinson et al.,, 2019). To account for
autocorrelogram parameters, we employed different versions of the model that contained distinct
subsets of ionic currents, which have been implicated in adaptation and bursting (Ic4., Lagp),
rebound (I;,r, Iy), and regenerative and bistable discharge (I¢4., Ican, Lagp) in cortical pyramidal
neurons (see Results and Supplementary Material). Calcium concentration dynamics resulted from
the inward influx due to Icg and Ig,r and first-order buffering or extrusion(Rodriguez et al., 2018)
through:

dCa
— = ~(1/2F)(S/V)Ucar + Iear) + (Cao = €a)/7ca
where F is the Faraday constant, Ca, is the basal intracellular calcium concentration, ¢, is the
buffering time constant, and

S/V=r'A—r/ro+1E/BrE)™!
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is the surface area to volume ratio of an idealized intracellular shell compartment of thickness r;
situated beneath the surface of a spherical neuron soma of radius ry.

The synaptic current (5,,) mimicked in vivo conditions encountered by neurons in the
asynchronous irregular regime, summing random synaptic excitatory inputs, through AMPA and
NMDA receptors, and inhibitory inputs, through GABA, and GABA; receptors. Thus,

Isyn = Lampa + Inmpa + Igaa, + lcaag

For AMPA, GABA, and GABAg,

Iy = gxox (V= Vo)
where p, is the opening probability of channel-receptors and V, the reversal potential of the
current. The NMDA current followed
Inmpa = Gnmpa Pumpa Xvmpa(V)V — Vyypa)
incorporating the magnesium block voltage-dependence modeled(Jahr and Stevens, 1990) as
xympa(V) = (1 + [Mg?*]e00627 /3,57)71

To simulate fluctuations encountered in vivo, all opening probabilities followed Ornstein-

Uhlenbeck processes(Destexhe and Paré, 1999)

dﬂ _ (mx — px)

P rdecay + a,e(t)

where £(t) is a Gaussian stochastic process with zero mean and unit standard deviation and m,
and g, are the mean and standard deviation of the opening probabilities. For AMPA and GABA,, the
mean was taken as the steady-state value of first-order synaptic dynamics described in the network
model (see below):

(1 g decay A fSyn nSyn_l) !

with ng,,,, pre-synaptic neurons firing at a frequency fs,, (with Syn € {Exc, Inh}, depending on

the type of current considered), an instantaneous increase Ap, of opening probability upon each

pre-synaptic spike and first-order decay dynamics with time constant rx ‘4 petween spikes. For

NMDA and GABAg, the mean was taken as the steady-state value of second-order synaptic dynamics
described in the network model (see below):

-1
d ay 1 _ fen—1 - -1 _
(1 FTy ! (1 | T;lse Apy ! Jsyn TMsyn 1))

For all currents, standard deviations were taken as o, = 0.5m,. Feed-forward excitatory and
inhibitory currents were balanced (Xue et al.,, 2014), according to the driving forces and the
excitation/inhibition ratio, through

(Vmean VExc) NExc

JcaBa, = 96aBA,
(Vmean - VGABAA) Ninh

(Vmean VEXC) nEX,'C
Vimean — VGABAB) Nnh
Model of local recurrent neural networks in frontal areas
We built a biophysical model of a generic local frontal recurrent neural network, endowed with
detailed biological properties of its neurons and connections. The network model contained N
neurons that were either excitatory (E) or inhibitory (I) (neurons projecting only glutamate or GABA,
respectively(Dale, 1935)), with probabilities py and p, =1 —pg respectively, and pg/p; =4
(Beaulieu et al.,, 1992). Connectivity was sparse (i.e. only a fraction of all possible connections
existstho(Thomson, 2002)) with no autapses (self-connections) and EE connections (from E to E
neurons) drawn to insure the over-representation of bidirectional connections in cortical networks

9caBag = 9caBAg (
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(four times more than randomly drawn according to a Bernoulli scheme(Song et al., 2005)). The
synaptic weights w; ;y of existent connections were drawn identically and independently from a log-
normal distribution of parameters u,, and a,, (Song et al., 2005). To cope with simulation times
required for the massive explorations ran in the parameter space, neurons were modeled as leaky
integrate-and-fire (LIF) neurons, i.e. the AP mechanism was simplified, compared to the cellular
model (see above). Moreover, leveraging simulations at the cellular level, we only considered the
Icany and Iyp amongst the ionic currents of the cellular model (see above). Thus, the membrane
potential followed

dVO)
dt (Ilonu:(]) + ISyn Rec(j) + ISyn FF(}))

Vi) > 8 = Vi) = Vrest
where repolarization occurred after a refractory period At,p. The ionic current followed
Lionic(jy = Iugy + leang) + Lanp()
with parameters and gating dynamics of ionic currents identical to the cellular model. The intra-
somatic calcium concentration Ca evolved according to discrete spike-induced increments and first-
order exponential decay:
dCaU) Cao - Ca(j)
dt Tca
where té{i) is the time of the ky, spike in the spike train of neuron j, § the Dirac delta function, 7,

+ACa 8(t — tf5))

the time constant of calcium extrusion, Ca, the basal calcium and ACa a spike-induced increment of
calcium concentration. The recurrent synaptic current on post-synaptic neuron j, from — either
excitatory or inhibitory — pre-synaptic neurons (indexed by i), was

IsynRrec(jy = Z(IAMPA(i,j) + Inmpac,jyHeapa, i) + lcapag@)

i

The delay for synaptic conduction and transmission, At,,, was considered uniform

across the network(Brunel and Wang, 2001). Synaptic recurrent currents followed
Lxij) = 9x Wi P (Vo) = Vx)

where w(; j is the synaptic weight, py(;) the opening probability of channel-receptors and Vy the

reversal potential of the current. The NMDA current followed
Inmpad, 7 = Gnmpa W(i,j) PNMDA() XNMDA (V(j))(V(j) - VNMDA)

with xyuypa (V) the magnesium block voltage-dependence (see cellular model). AMPA and GABA,
rise times were approximated as instantaneous (Brunel and Wang, 2001) and bounded, with first-
order decay

dpyx(i) Px(i) k
dt == Tdecay + Apx(]‘ - px(i)) 6(t - t(i))
X

To take into account the longer NMDA (Wang et al., 2008) and GABA-B (Destexhe et al., 1998) rise

times, opening probabilities followed second-order dynamics (Brunel and Wang, 2001)

dq.
ﬂ qx(l) +Aqx(1 qx(l))a(t t(l))

dt T;lse
Apx (i Px(i)
dt == Tdecay + ax 4x) (1 - px(i))
X
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Recurrent excitatory and inhibitory currents were balanced in each post-synaptic neuron (Xue et
al., 2014), according to driving forces and excitation/inhibition weight ratio, through
(Vmean VExc) ZieExc Wi, j)
Vinean — VGABAA) Yiemn Wi,
(Vmean VExc) ZiEExc )

Vinean — Voapay) ZiemhW(j)

9caBA, = 9caBA, (

JcaBag = 9GABAR (

With Vpean = (0 + Viest)/2 approximating the average membrane potential.
The feed-forward synaptic current Iy, pr(j) (putatively arising from cortical and sub-cortical
inputs) consisted of an AMPA component
Isynrr(j) = Gampagy Pampage (Vi) — Vampa)
with a constant opening probability psyp ;.-

Numerical integration and parameters of the models

Models were simulated and explored using custom developed code under MATLAB and were
numerically integrated using the forward Euler method with time-steps At = 0.1ms in cellular
models and At = 0.5ms in network models.

Unless indicated in figure legends, standard cellular parameter values were as following.
Concerning ionic currents, C = 1uF.cm™2, g, = 0.05mS.cm™2,V, = —=70mV, gyq = 30mS.cm™2,
Ve = 50mV, gg = 2mS.cm™2, Vg = —=90mV, Jcq = 0.01mS.cm™2, Vg, = 150mV, Goan =
0.05mS.cm™2, Vg ay = 30mV, acay = 0.0015uM 2. ms™2, Bean = 0.005ms™2, Guaup =
0.1mS.cm™2, Vyyp = —90mV, ayyp = 0.025uM 1. ms™2, Byyp = 0.025ms™1, Geor =
0mS.cm™2, Veqr = 120mV, gy = 0mS.cm™2, Vy = —40mV, Voyy /2 = —105mV, kpy =
10mV, Ty pmin = 1000ms, Ty 10, = 6000ms, Cay = 0.1uM, 7¢, = 25ms, F =
96500 mol.s™1. A7, ry = 4-10~*cm, r; = 0.25- 10~*cm. Concerning synaptic currents, Gappa =
0.02mS.cm™2, T3 = 2.5ms, Gympa = 0.03mS.cm™2, ayyps = 0.275ms ™1, Ti5E 4 =

4.65ms, Tygips = 75mS, Vapa = Vmpa = OmV, goapa, = 0.0063mS.cm™2, 10457 =

10ms, Vgapa, = —70mV, goapa, = 3.125-107*mS.cm™2, agapa, = 0.015ms™?, rEf,ngB
d
90ms, TG.ZCB‘;); = 160ms, Vgapa, = —90mV, Axgppg = AXyypa = AXGapa, = AXgapag =

0.1, Vpean = —57.5mV, ngye = 484, Nypp = Ngxe/4 = 121, fgee = THZ, finn = 7Hz, [Mg?*] =
1.5mM.

Unless indicated in figure legends, standard parameter values in network models were identical to
cellular model parameters, except for the following. Concerning the network, N = ng,. + ny,, =
605 neurons, pgyxc = 0.8, so that ngy. = Npgyc = 484 and ny,p, = Nppn = 121. Concerning the
weight matrix, i, = 0.03, g,, = 0.02, pgg = pg; = Py = 0.3, p; = 0.55. Concerning Integrate-and-
Fire neuron properties and intrinsic currents, Voo = —65mV, 8 = =50mV, Vean = (Vyest +
0)/2 = =57.5mV, At,p =3ms, ACa = 0.2uM, Gcay = 0.025mS.cm™2. Concerning synaptic
currents, Atgy, = 0.5mS, Taympap, = 2.5MS, AxXappag, = 0.1, Gampa = Jampapy = 0.23mS.cm™2,
gnmpa = 0.35mS.cm™2, ggapa, = 0.4mS.cm™, pampa,, = 0.101 a.u.

Model similarity to monkey data
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The bivariate probability density distribution of neuronal TAU and LAT autocorrelogram
parameters was estimated in RS and FS units in monkey in both the LPFC and MCC, using bivariate
normal kernel density functions. For cellular models, similarity maps to monkey data was determined
as following: for each model parameter couple of the map, the similarity to the considered cortex
(PFC or MCC) was defined as the probability density of that cortex to display the TAU and LAT
parameters produced by the model. Cellular models with mean firing frequency superior to 20 Hz
were considered to discharge in an unrealistic fashion, compared to data, and were discarded. In
network models, for each parameter value (one-dimensional explorations) or model parameter
couples of the map (two-dimensional explorations), the similarity (S) was defined as the normalized
Frobenius inner product between the bivariate probability density distributions of units in monkeys
(U) and that of neurons in the network model (N), following

<U,N >p

S _
N NUNEINE

In order to account for the TAU and LAT autocorrelogram parameters for both RS and FS populations,
the similarity was calculated separately as RS with Exc and FS with Inh. Seeing as excitatory neurons
represent pg,. = 0.8 of the neurons in cortex (Beaulieu et al., 1992), the overall similarity was then
calculated as

S = PExc SRS,Exc + Dinh Sks,mn
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Chapter 4. Temporal integration within the MCC

4.1. Summary

The previous chapter has identified strong and slow synaptic inhibition as being responsible for
the long neuronal activity timescales and quasi-stable network states within the MCC. What are
the functions subserved by MCC, and how do these mechanisms contribute to them? We
proposed that the MCC's central function is temporal integration of diverse information at
multiple timescales required for adaptive behavior, such as integrating outcome history for
behavioral planning, due to converging evidence from its anatomical, intrinsic network,
neurophysiological, and behavioral properties.

The MCC was defined here as the region of the medial wall dorsal to the corpus callosum
(also referred as dACC). The MCC lies at the core of a densely connected network, receiving a
rich diversity of cognitive cortical feedback, domain-specific posterior to anterior somato-motor
inputs and para- and ortho-sympathetic autonomic information. This convergence of
multimodal excitatory inputs was proposed to be gated by frequent, strong and slow local
network inhibition, with an increasing GABA-B anteroposterior gradient in MCC. Inhibition is
indeed important to temporal information integration, as evidenced by the latter’s link with
MCC GABA/glutamate concentrations, and the previous chapter’'s model findings that strong
and slow inhibition resulted in long neuronal timescales and network states peregrinating within
discrete quasi-stationary states (i.e. metastability).

These timescales and network states were proposed to form the basis of the MCC’s capacity
to encode the history of expected and actual outcomes and feedback values in terms of
behavioral adaptation and future strategy shifts, regulating decisions according to the action-
reward feedback history and providing the motivation for temporally-extended behaviors.
Indeed, individual neurons encode the history of reward magnitude through intrinsic activity
timescales of varying lengths (particularly inhibitory neurons). Accordingly, MCC deactivation
and lesion leads to loss of adaptation when facing diminishing reward through shorter reward
history, loss of exploratory behavior, and of motivation for time-extended behaviors.
Conversely, MCC stimulation induces the incentive for — and realization of — behaviors directed
toward information search, as well as faster learning rates. Furthermore, MCC network state
switches are shown to be concomitant with switches between exploration and exploitative
strategies, where network activity is proposed to alternate between two pseudo-attractor
spaces of exploration and exploitation composed of dynamic and stable subspaces.

Continuing research on the MCC model of the last chapter, additional results showed the
complementary roles of fast GABA-A and slow GABA-B in defining these transitions, with
GABA-A predicting the timing and GABA-B the nature of transitions. Investigating the synaptic
matrix more closely revealed depressed inhibitory assemblies (inhibitory neurons least
connected to each other fire together) underpinning persistent activity associated with certain
network states, as well as depressed synaptic chains (or pathways; inhibitory neurons least
inhibited next neurons in the sequence) underpinning neural activity sequences associated with
other states. At the network level, these led to alternation between dynamic and stable coding,
as well as sequential peregrination of network activity between states within two larger pseudo-
attractor spaces (putatively exploration and exploitation).
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Abstract

The ability to integrate information across time at multiple timescales is a vital element
of adaptive behavior, because it provides the capacity to link events separated in time,
extract useful information from previous events and actions, and to construct plans for
behavior over time. Here we make the argument that this information integration
capacity is a central function of the midcingulate cortex (MCC), by reviewing the ana-
tomical, intrinsic network, neurophysiological, and behavioral properties of MCC. The
MCC is the region of the medial wall situated dorsal to the corpus callosum and some-
times referred to as dACC. It is positioned within the densely connected core network of
the primate brain, with a rich diversity of cognitive, somatomotor and autonomic con-
nections. Furthermore, the MCC shows strong local network inhibition which appears to
control the metastability of the region—an established feature of many cortical net-
works in which the neural dynamics move through a series of quasi-stationary states.
We propose that the strong local inhibition in MCC leads to particularly long dynamic
state durations, and so less frequent transitions. Apparently as a result of these anatom-
ical features and synaptic and ionic determinants, the MCC cells display the longest
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neuronal timescales among a range of recorded cortical areas. We conclude that the
anatomical position, intrinsic properties, and local network interactions of MCC make
it a uniquely positioned cortical area to perform the integration of diverse information
over time that is necessary for behavioral adaptation.

1. On time and behavior

Integrating information across time at multiple timescales is a key fea-
ture of higher order cognition. Information integration across time permits
us to link events and actions separated in time; to draw out useful evidence
from a history of behavioral and environmental reactions; and to construct
serial, time-extended plans that provide both retrospective and prospective
contexts to behavior. This capacity is thus linked to the fact that the envi-
ronment itself is structured along multiple timescales. This capacity appears
phenomenologically in the structure of behaviors of animal species that
have advanced adaptive abilities and problem-solving skills. Primates, for
instance, can plan extended routes to seek resources; and they can decide,
reorganize, and use detours in the face of intervening events and knowledge
acquired from past events (Janmaat, Byrne, & Zuberbuhler, 2006; Noser &
Byrne, 2007). Certain primates and birds also use the history of interactions
with objects to build tools (Gruber, Zuberbuhler, & Neumann, 2016). In
laboratory settings the ability of monkey species to extract adaptive perfor-
mance rules over a long task history is well established (Harlow, 1949).
These capacities can be considered together as capacities of behavioral
adaptation. In its essence, the adaptation of behavior requires integration of
multiple information sources over multiple time scales, to integrate action,
outcomes, and episodic information. Adapting to real life situations is mostly
non-Markovian because the history of behavioral interaction is crucial.

In a highly dynamical system like the brain, performing functions and
calculations at multiple concurrent timescales requires specialized algorithms
and machinery. This is therefore a difficult task requiring a complex neuro-
biological implementation, but in highly adaptive species the development
of such capacities is clearly worthwhile (Pearson, Watson, & Platt, 2014).
Several lines of research suggest that certain frontal areas have specific roles
in the elaboration of behaviors over long timescales (Passingham & Wise,
2012). In this chapter we collect evidence from multiple domains suggesting
that the midcingulate cortex (MCC) of primates contributes to the integra-
tion of information over long timescales. We propose that the physiological
properties of the MCC network provide the dynamical properties necessary
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for this temporal integration, and that in turn these properties permit the
multiple functions that have been ascribed to MCC, i.e., learning, feedback
adaptation, and regulation of exploratory behavior.

The first lines of evidence for a role of frontal medial cortex regions in
temporal integration come from studies focused on adaptive behavior.
Indeed, efficient adaptation relies on extracting knowledge, structures as
well as changes, from a series of interactions with the environment. In exper-
imental setups this corresponds to learning from outcomes and feedback
after a series of choices. In human and non-human primates a large-scale
network encompassing frontal and posterior associative cortical areas con-
tributes to adaptive behaviors (Duncan, 2010; Mitchell et al., 2016;
Premereur, Janssen, & Vanduffel, 2018). Moreover, fMRI consistently
reveals activations in one region in the medial wall in relation to outcome
monitoring and the apparent regulation of cognitive control (Amiez, Sallet,
Procyk, & Petrides, 2012; Bush et al., 2002; Jueptner et al., 1997; Kouneiher,
Charron, & Koechlin, 2009; Passingham, 1996). The region, often named
dACC in the primate literature, corresponds to the anatomically defined
midcingulate cortex (MCC, see Fig. 1). Studies sometimes show extensions
of activation into preSMA or SMA and in more or less anterior parts of the
MCC, and the dissociation of these activations remains an important task for
the field (Amiez et al., 2013). MCC activation is observed when subjects
actively seek information and/or rewards, for example, when they are
exploring or foraging. The MCC seems sensitive to the volatility of the
environment, for example, to the temporal stability of outcomes, as well

Fig. 1 Schematic representation of the cingulate regions MCC and ACC in human (left)
and monkey (right). In both species the MCC contains cingulate motor areas, CMAr,
CMAd and CMV in monkeys, and RCZa and RCZp in humans.
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as to the propensity of subjects to make choices based on information inte-
grated over multiple trials (Behrens, Woolrich, Walton, & Rushworth,
2007; Meder et al., 2017). The activation of this region in particular during
exploratory decisions reveals its particular role in encoding values and pro-
spective information relevant to adaptation (Kolling et al., 2016; Kolling,
Behrens, Mars, & Rushworth, 2012). Studies suggest, then, that evaluation
and temporal integration of information in or through the MCC might serve
to guide and sustain selected behaviors in the face of current and changing
features of the environment (Kolling, Wittmann, et al., 2016).

Testing in patients for clinical investigations has provided compelling
data on the behavioral effect but also on the subjective feeling induced by
electrical microstimulation of the MCC (Caruana et al., 2018; Parvizi,
Rangarajan, Shirer, Desai, & Greicius, 2013; Talairach et al., 1973). This
stimulation regularly leads to localized effects on natural goal-directed
behaviors like exploratory scanning of the environment with the eyes or
the head, tactile search, kneading or palpation directed toward the body
or toward nearby objects (Caruana et al.,, 2018; Talairach et al., 1973).
Patients also report general feelings of an urge to act. These results could
be interpreted as reflecting MCC'’s contribution to generate the incentive
for behaviors directed toward information search. The effects of micro-
stimulation on search-oriented behaviors concern mostly the anterior part
of the MCC, the equivalent of CMAr in monkeys.

Studies in human subjects reveal a wide array of correlative roles for the
MCC, but there is among these a clear case for a role for the MCC in the
temporal integration of diverse signals necessary for adaptive behavior. Our
proposition here is that the best way to understand this role, and the way
in which seemingly diverse responses emerge from the same region, is to
consider in detail the mechanisms within MCC and its position within
the anatomical hierarchy. The rest of this chapter therefore considers the
evidence, largely from animal studies, for mechanisms of temporal integra-
tion in MCC.

2. The neurobiological source of temporal integration
in MCC

Multiple neuroanatomical and physiological features suggest that the
MCC holds a special position within the executive and more global net-
works, and that it is well placed and constructed to integrate diverse infor-
mation in the temporal domain.
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2.1 Anatomical specificities of the MCC

In most monkey recording studies referred to in this chapter, the regions of
interest have been the cortex lying within the cingulate sulcus, most often
the dorsal bank, and at rostro-caudal levels anterior to the genu of the arcuate
sulcus (Procyk et al., 2016). We refer to this region as MCC. The entire
MCC region is subject to debate in part because of the multiple versions
of labeling used to describe its subdivisions. Regions’ names as well as
cytoarchitectonic labels are used in different ways across multiple papers,
reviews, and even brain atlases. Major labeling issues are the definitions of
“ACC” or “24c,” which have evolved. Here we provide a definition of
the term MCC we use.

The MCC is an anatomical entity defined by Vogt and colleagues, based
on connectivity, cytoarchitectonics, and receptor mappings. It is evidenced
in humans and monkeys, with putative equivalents in rodents, and it appears
to have a separate functional identity (Vogt, 2016; Vogt, Nimchinsky,
Vogt, & Hof, 1995; Vogt & Paxinos, 2012).

2.1.1 Cytoarchitecture

In humans, the MCC includes the functional subdivision frequently referred
to as dACC. It is positioned dorsal to the corpus callosum and, in humans,
posterior to the level of the genu of the corpus callosum. MCC cyto-
architecture can be contrasted to the cytoarchitecture of the ACC (anterior
cingulate cortex) which is rostral to MCC, and to the cytoarchitecture of the
PCC (posterior cingulate cortex). MCC is composed of agranular cortex,
which like ACC lacks a granular layer IV (Palomero-Gallagher, Vogt,
Schleicher, Mayberg, & Zilles, 2009). In Vogt’s nomenclature, MCC
includes cytoarchitectonic areas a24¢’, b’, and 2’ areas p24c’, b’ and a’ as well
as area 24d. The posterior part of MCC, containing area 24d, has the largest
pyramidal cells which contribute to cingulate spinal projections and form the
caudal cingulate motor areas in monkeys. Debates regarding comparative
assessments in monkeys and humans relate to the dorsal and anterior parts
of the MCC. Anteriorly, the limit with ACC is not clearly identified and
could contain an intermediate (rACC) region. The dorsal limit of the sulcus,
in terms of architecture and function is also debated (Sallet et al., 2011).
Histological work from multiple groups show that indeed the dorsal limit
position might vary along the rostral-caudal axis and potentially vary with
species and individuals. More precise work is required to solve these issues.
In this chapter we include the dorsal bank of the cingulate sulcus because the
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cytoarchitecture, the connectivity patterns and the extension of cingulate

motor areas (see below) suggest an anatomo-functional link to the rest of
MCC (Petrides & Pandya, 1994; Procyk et al., 2016; Sallet et al., 2011).

2.1.2 Receptor mapping

In humans and non-human primates, the MCC region and its subdivisions
are also characterized by specific patterns of receptor distributions. We cite
here two remarkable features. The anterior MCC contains higher levels of
dopamine receptor D1 binding in the superficial layers, whereas area 24d has
virtually none in superficial and deep layers. Also of note is the relative level
of GABAergic receptor mappings: anterior MCC contains relatively lower
levels of GABA-B receptors and slightly higher levels of GABA-A, com-
pared to posterior MCC. The distribution of GABA receptors differs also
clearly between anterior MCC and ACC (Bozkurt et al., 2005; Palomero-
Gallagher, Mohlberg, Zilles, & Vogt, 2008; Palomero-Gallagher et al,,
2009).

2.2 MCC in the anatomical hierarchy

The MCC also sits at a remarkable anatomical position, first within the large-
scale network formed by cortical areas, second within the somato-motor sys-
tems, and third in relation to the autonomic system. The large-scale cortical
network is, in primates, a system with heterogeneous densities of inter-area
connectivity (Markov etal., 2013). It forms a so-called bow-tie organization
including a core network with high density (>90%) of connections between
areas, linked to side systems by low density connectivity patterns (Markov
et al., 2013). The structure has some similarities with the early model of
global workspace architecture that contained a central general workspace
network connected to hierarchically distant modules processing specific
information (Dehaene, Kerszberg, & Changeux, 1998). Within the core
network lies the MCC and its interconnections with the lateral prefrontal
cortex, as well as other cortical regions that were shown to form the
Multiple-demand network (Duncan, 2013). As we shall see, MCC’s posi-
tion within this architecture, combined with more local intrinsic properties,
appears crucial for its functional identity.

The MCC displays other anatomical features that, we think, must be con-
sidered to comprehend its functional specificity and contributions to cogni-
tion. First the MCC has anatomical links with the sensorimotor system, and

contains, in monkeys and humans, two sensorimotor maps named CMAr and
CMACc in monkeys (M3 and M4 in Morecraft, Schroeder, & Keifer, 1996)
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and RCZa and RCZp in humans (Amiez & Petrides, 2014; Picard & Strick,
1996). These maps are somatotopically organized and are connected to
corresponding fields in supplementary premotor, lateral premotor, motor
and spinal regions, with a rostro-caudal gradient displaying more primary
and spinal connections posteriorly and more premotor and prefrontal connec-
tions anteriorly (Dum & Strick, 1991, 2002; He, Dum, & Strick, 1995; Loh,
Hadj-Bouziane, Petrides, Procyk, & Amiez, 2018). Face, eye, upper and
lower limbs seem to be represented, with one face representation positioned
at the most anterior limit of the MCC. The most rostral and dorsal MCC
region has been shown active in multiple studies involving behavioral adap-
tation in one way or another. The region mentioned in the human brain
imaging literature is often referred to as dACC or dmPFC, with terms asso-
ciated to significantly variable locations of activation within the human brain.
In fact, the anterior and posterior subdivisions of the MCC (aMCC and
pMCC) seem to be activated differently during cognitive tasks and more pre-
cise descriptions of brain activations, potentially on a subject by subject basis,
are required to really grasp the functional specificity within this region (Amiez
etal., 2013). We have suggested recently that the somatotopic organization of
MCC reflects fields devoted to the detection and evaluation of domain-
specific feedback relevant for adaptations (Loh et al., 2020; Procyk et al.,
2016). Because of the specificity of connectivity patterns of MCC maps it
is possible that they contribute to different functional uses of feedback, i.e.,
contributing to trigger different adaptive cognitive or behavioral reactions.

Finally, the MCC is, within the medial frontal cortex of primates, one
main source and target of connections with the autonomic system. Recent
investigations have shown that, contrary to rodents, the primate medial frontal
cortex is 3—4 synapses away from an organ like the adrenal medulla (Dum,
Levinthal, & Strick, 2016, 2019). Neurons trans-synaptically labeled after
injection in the adrenal medulla are notably located within the somato-motor
fields of the CMAr and CMAc. A review of human brain activations testing
covariations of brain activity with autonomic measures showed that the MCC
might have subdivisions related to the sympathetic and parasympathetic
systems respectively (Amiez & Procyk, 2019).

In sum, the most rostral subdivisions of MCC that contain somatomotor
fields also have connections with the lateral prefrontal cortex and with the
sympathetic system. Such overlap of cognitive, somatomotor and auto-
nomic connectivity is, we propose, a crucial property of the MCC. This
connectivity and position within the cortical core bring rich and diverse
inputs to the MCC, permitting it to perform functions that extend beyond
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any specific modality of information type, in particular favoring an integra-
tive function. Our argument here is that a particularly important part of this
role is the integration across time that can be carried out with this diversity of
information. Central to this claim is the idea that the intrinsic properties of
the cortical cells themselves, the construction of the local circuits, and in par-
ticular the nature of local inhibition, allow MCC to perform temporal inte-
gration over longer timescales than other cortical regions, and to do so with
diverse information provided by its position in the cortical hierarchy.

2.3 Intrinsic cortical features of MCC

The cell physiological properties of MCC can provide clues to its dynamical
specificities and position in the temporal hierarchy. Specific physiological
data in monkeys for a region at the border between ACC and MCC show
that the nature of local inhibition might be an important feature in MCC
(Medalla, Gilman, Wang, & Luebke, 2017). Spontaneous inhibitory post-
synaptic currents are more frequent, long and large in cingulate layer III neu-
rons compared to other prefrontal regions (Medalla et al., 2017). Data from
human MCC shows that GABA-B receptors are dense, especially in its pos-
terior part, pMCC (Zilles & Palomero-Gallagher, 2017). Robust inhibition
and long inhibitory time constants should contribute to the extension of the
time window for signal summation and thus extend local temporal receptive
fields. In artificial hierarchical networks, environmental uncertainty can
be dynamically captured by variations of the E/I tone (Pettine, Louie,
Murray, & Wang, 2020). In humans, dynamical integration of environmen-
tal uncertainty is circumscribed to the MCC (Behrens et al., 2007). A recent
study also linked subjects’ ability to integrate information in time and their
glutamate and GABA concentrations in the MCC (Scholl, Kolling,
Nelissen, Stagg, & Harmer, 2017). In general terms, inhibition is a strong
determinant of network activity (Mongillo, Rumpel, & Loewenstein,
2018). The diversity of synaptic inhibition can flexibly structure network
dynamics by gating pyramidal inputs depending on the current task demand
(Tremblay, Lee, & Rudy, 2016; Wang, 2020; Womelsdorf, Valiante, Sahin,
Miller, & Tiesinga, 2014). For example, MCC inhibitory activity has been
proposed as a mechanism for transient network disengagement in response
to errors (Rothé, Quilodran, Sallet, & Procyk, 2011; Shen et al., 2015).
Inhibitory controlled circuits are more robust to excitatory volatility
(Mongillo et al., 2018). This robustness might be particularly important
for areas receiving converging multimodal inputs, and that need to integrate
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that information across time. Indeed, there is a macroscopic gradient of syn-
aptic inhibition from sensory cortices to associative areas (Wang, 2020).
MCC slow inhibitory decay times generate low frequency rhythmic oscil-
latory activity (Kopell, Kramer, Malerba, & Whittington, 2010; Medalla
et al.,, 2017) supporting communication between distant cortical areas
(Hahn, Bujan, Frégnac, Aertsen, & Kumar, 2014). MCC excitatory and
inhibitory spike trains synchronize to different frequency bands (Voloh &
Womelsdorf, 2018). Such cell type specific oscillations could be a means
for flexible long-range tuning of coherent network activities according to
the current demand. A recent study reported that MCC stimulation elicits
recurrent activity in the LPFC (Nacher, Hassani, & Womelsdorf;, 2019), an
activity pattern that has been associated with working memory temporal
maintenance (Mongillo et al., 2018; Wasmuht, Spaak, Buschman, Miller, &
Stokes, 2018). In this framework, MCC activity and in particular inhibition
would contribute to network synchronization and structuration of local and
distant cortical areas.

We propose therefore that MCC inhibitory tone determines the activity
of local units and leads to more stable or slowly evolving network dynamics
favoring multimodal associations in the temporal domain. And these prop-
erties appear to be particularly exaggerated within MCC relative to other
areas of association cortex, placing MCC not just at the heart of the dense
core of associative cortical areas (Markov et al., 2013), but also as new ana-
lyses and modeling suggest, at the pinnacle of a hierarchy of cortical
timescales.

Based on anatomical data and large-scale network modeling, Wang and
colleagues have recently shown that the anatomical organization and hierar-
chies within the large-scale cortical network was accompanied by temporal
hierarchies (Chaudhuri, Knoblauch, Gariel, Kennedy, & Wang, 2015;
Murray et al., 2014). Individual neuron spiking shows some level of autocor-
relation that reflects its propensity to keep a firing mode. The autocorrelation
decay, referred to as spiking timescale (Murray et al., 2014), measured at the
population level in different areas increases from posterior (sensory) areas to
anterior frontal regions, forming a temporal hierarchy. Within the set of
areas investigated in this study MCC displayed the longest timescale (about
300ms), compared to LPFC (190ms) or area MT (65ms) (Cavanagh,
Towers, Wallis, Hunt, & Kennerley, 2018; Murray et al., 2014). Medial
frontal regions also show longer timescales in rats (Murakami, Shteingart,
Loewenstein, & Mainen, 2017). Such differences in timescale might pro-
vide areas with different information processing capability, and in particular
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the capacity to integrate information over long temporal scales, like rewards
or feedback encountered across trials of a cognitive task (Bernacchia, Seo,
Lee, & Wang, 2011). Indeed very recent work proposes that cortical
dynamics are modulated by a range of timescales, potentially generated
by independent mechanisms, some of which directly link to relevant task
parameters, while others like the general intrinsic timescale remain inde-
pendent (Spitmaan, Seo, Lee, & Soltani, 2020). Large scale modeling leads
to the proposition that the specific timescale of cortical areas emerges both
from the large-scale pattern of inter-areal connectivity and from intrinsic
properties of areas, including local recurrent excitatory connectivity which
was found to increase in density in parallel to the temporal hierarchy
(Chaudhuri et al., 2015). Other important features that appear to change
across the cortical hierarchy and may relate to these changes in timescale
include the ratio T1w/T2w in structural MR scans, and the level of tonic
inhibition (Wang, 2020). We explore the interplay between the macro-
scopic gradient of synaptic inhibition and timescale hierarchy (possibly
via disinhibition; Wang, 2020) in the final section.

The outcome of this work is that the MCC is situated at the core of a
cortical network, with the longest neuronal timescale of recorded cortical
areas, relatively strong local network inhibition, and a rich diversity of cog-
nitive, somatomotor and autonomic connections. We argue that these are
the building blocks for a system whose neurophysiological role will be to
integrate diverse signals over time, a role particularly relevant in the context
of behavioral adaptation. In the following sections we discuss the neuro-
physiological correlates of behavior in MCC and relate them to the prop-
erties described above. We propose that the diversity of neural responses
in MCC makes particular sense in the light of this overarching function
of temporal integration for adaptation.

3. Neurophysiological and causal correlates of temporal
integration in MCC

Neurophysiological studies in rodent and non-human primate models
provide details of the neural processes implemented by MCC and reveal
neural correlates of the history of outcomes and values in a task, as well as
the switching between behavioral states. These point to a role for MCC
neurons in functions dedicated to gathering information over time for sub-
sequent regulation of behavior, a role that a limited number of intervention
studies appear to confirm. Similar properties have been observed in the rat
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medial frontal cortex and while the anatomical correspondence in the rat
brain is still in discussion, we will refer here to relevant data from medial
frontal cortex (MFC) areas IL, PL and AC (Mars et al., 2018; Schaeffer
et al., 2020; Vogt & Paxinos, 2012).

3.1 History of outcomes and values

MCC and MFC single unit activity encodes for reward-based action selec-
tion in simple tasks in rats, monkeys and humans (Shima & Tanji, 1998; Sul,
Kim, Huh, Lee, & Jung, 2010; Williams, Bush, Rauch, Cosgrove, &
Eskandar, 2004), but also for the enactment of serial actions where each action
is coded relative to future outcomes (Procyk & Joseph, 2001; Procyk,
Tanaka, & Joseph, 2000; Shidara & Richmond, 2002). Intervention studies
in the MCC are rare, but those that exist confirm that MCC is directly con-
tributing to the regulation of decisions based on rewards (Amiez, Joseph, &
Procyk, 2006; Kennerley, Walton, Behrens, Buckley, & Rushworth, 2006;
Shima & Tanji, 1998). Shima and Tanji (1998), for example, showed that
neurons in the cingulate motor areas within MCC signaled a reduction of
reward that indicated that a change in action should be subsequently chosen,
but only when the action was indeed successfully changed. Such activity is
necessarily a response to a recent reward history over several trials, rather than
a single outcome. The alteration of this MCC activity by local muscimol
injection leads to a deterioration in the adaptation of action selection based
on the diminishing reward size (Shima & Tanji, 1998). These responses in
MCC are therefore driven by more information than the immediate action
to be committed—they include information about the temporal context of
that action. This temporal context is of course mostly of use to ensure that
the action is well adapted, and importantly MCC activity also encodes feed-
back of actions or choices that is relevant to adaptation, i.e., in situations where
action and feedback are the focus of attention and where it can reduce
uncertainty.

It is long established that cells in MCC respond to both rewards and
errors (Amiez, Joseph, & Procyk, 2005), and that responses to these events
are modulated by their predictability and potentially their behavioral rele-
vance (Quilodran, Rothé, & Procyk, 2008). In addition, MCC neurons rep-
resent the expected magnitude or the probability of an upcoming reward on
trial-and-error learning tasks (Kennerley, Behrens, & Wallis, 2011). While
initial reports made a straight link between immediate reward and cell activ-
ity, it is now clear that the recent history of reward alters the firing of these
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cells (Kawai, Yamada, Sato, Takada, & Matsumoto, 2015; Seo & Lee, 2007),
and that this effect will occur with varying timescales across neurons
(Bernacchia et al., 2011). For example, Kawai et al. (2015) showed that
MCC cells, and in particular putative inhibitory neurons (Kawai, Yamada,
Sato, Takada, & Matsumoto, 2019), not only maintained the information
about the last outcome but also stored outcome experiences from several past
trials. MCC cells in this protocol also signaled a subsequent shift in strategy,
activity that is discussed in more detail below.

The ability of MCC activity to reflect outcome history has an impact on
behavior. Monkeys with bilateral MCC sulcus lesions have difficulties in
integrating and building reward-action history in an uncertain context
and in adapting choice behavior (Kennerley et al., 2006). Effectively the
lesion appears to reduce the span over which recent outcomes are used to
adjust decisions. MCC appears to have a central role in updating action
values based on the outcome history, helping to improve behavioral perfor-
mance toward a specific goal (Kennerley et al., 2006; Seo, Barraclough, &
Lee, 2007). In general therefore these deficits seem to involve a loss of
exploratory behaviors—the observed effects appear to combine altered val-
uation of outcomes and a reduced capacity to integrate the implications of
those outcomes over time, the consequence on adaptive behavior being
quite consistent.

Rodent pharmacological inactivation and chemogenetic perturbation
also show that medial frontal regions in rats have a causal role in integrating
outcome history and in regulating explore/exploit behaviors (Tervo et al.,
2020). Indeed, the distributed ensemble dynamics might be tuned by mono-
aminergic afferents. Noradrenergic (NA) inputs are proposed to contribute
to abrupt network reconfiguration and to promote transitions between
exploitation and exploration (Bouret & Sara, 2005), and we discuss these
state transitions in more detail below. NA inputs to the MCC would allow
the dynamical modulation of learning rates (Silvetti, Vassena, Abrahamse, &
Verguts, 2018). Consistent with those views, selective NA input enhance-
ment in the rat MCC artificially increases behavioral stochasticity and leads
to an increase in response variability. In turn, NA input suppression restores
the ability to weight previously received feedback for choice regulation
(Tervo et al., 2014).

In addition rare studies can provide information on the effect of
cingulotomy in human patients, supporting a role for ongoing behavioral
adaptation based on context from prior trials, both in the context of decisions
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to act (Williams et al., 2004) and in more cognitive contexts where previous
trials might provide interfering information (Sheth et al., 2012). Wider lesions
to the cingulate region have been reported to lead to global reductions of
action and speech, often characterized as akinetic mutism (Devinsky,
Morrell, & Vogt, 1995; Németh, Hegedus, & Molnar, 1988). Such deficits
have been proposed consistent with much of the above evidence if we con-
sider the role of the MCC as acting to motivate time-extended behaviors,
rather than driving trial-by-trial adaptations (Holroyd & Yeung, 2012).
Recent work proposes how the MCC goes about using outcome history
to drive upcoming behavior: it is proposed that MCC neurons encode
expected outcomes as a latent state representation of actual outcomes
(Hyman, Holroyd, & Seamans, 2017). The interaction between expected
and actual outcome representations on trials where they do not match
may drive a dynamical shift that we often record as an error signal. MCC
cells certainly do show error signals—they respond to errors in the form
of absent rewards (Niki & Watanabe, 1979). Again this error activity is mod-
ulated in a manner that reflects the temporal context, for example, how
much or how close a reward was before the error (Amiez et al., 2005).
Cells in MCC also encode both the overall task value in terms of reward,
as well as the actual reward obtained (Amiez et al., 2006; Sallet et al.,
2007). This activity has a causal impact on behavior as alteration of local
MCC activity by local muscimol injection leads to a loss of efficiency in
exploration for more rewarded stimuli in a choice task (Amiez et al., 2006).
These comparative feedback responses translate to the population level,
where error- and feedback-related potentials (such as the error-related neg-
ativity [ERN] and feedback potentials [FR Ps]) have been widely shown to
differentiate outcome valences when recorded over the medial part of the
frontal lobe in electroencephalography (EEG) (Falkenstein et al., 2001;
Gehring, Goss, Coles, & Meyer, 1993; Miltner, Braun, & Coles, 2001), ele-
ctrocorticography (EcoG; Wilson et al., 2016), and the local field potential
(LFP) (Gemba, Sasaki, & Brooks, 1986). Of course these are not standalone
signals, rather they appear to provide information about the value of the
feedback in terms of behavioral adaptation, be it for directly driving adap-
tation on subsequent trials (Khamassi, Quilodran, Enel, Dominey, &
Procyk, 2015; Monosov, 2017; Quilodran et al., 2008; Shima & Tanji,
1998), or for motivating more extended behaviors beyond simple trial-to-
trial adaptation (Holroyd & Yeung, 2012; Walsh & Anderson, 2011). It is
this concept of time-extended behaviors that is of particular relevance here,
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therefore, and it is this time-extended information that is necessary to signal
the necessity to change state or strategy in a task.

3.2 Neural and behavioral state switches

Monkey MCC and rat MFC show phasic neural changes at behaviorally rel-
evant events together with global neural state changes between different
behavioral states or strategies separated by switches, like exploratory behav-
ior and repetitive behavior (Enel, Procyk, Quilodran, & Dominey, 2016;
Karlsson, Tervo, & Karpova, 2012). For example MCC neurons signal
behavioral shifts on subsequent trials (Kawai et al., 2015), while neural sig-
nals anticipating and signaling patch leaving or strategy switching in sequen-
tial foraging tasks are observed in phasic unitary and high-gamma activities in
both primates and rodents (Karlsson et al., 2012; Quilodran et al., 2008;
Rothé et al., 2011). Powell and Redish (2016) showed that on tasks where
areward criterion change was imposed, rats showed state transitions of MFC
activity after they had learned about that contingency change, but before
their behavior changed. In contrast, when rats were permitted to change
strategies themselves (i.e., without imposed criterion changes), similar state
transitions occurred before changes in behavior, therefore in a manner pre-
dictive of this un-imposed strategy switch (Powell & Redish, 2016). This
implies that the MFC is signaling the need for a change in strategy, rather
than passively reflecting such a change.

Across a range of studies, a picture emerges where the neural dynamics of
MCC correlate with the state of uncertainty inherent to exploratory situa-
tions and the control or monitoring of information seeking behavior (Stoll,
Fontanier, & Procyk, 2016; White et al., 2019). In addition, MCC activity
has strong correlation with valuation processes—a multiplicity of signals
reflect dynamical information accumulation in the MCC (Hunt et al,
2018; Kennerley et al., 2011). These signals are absent from OFC and
LPFC activities. This integrated information is therefore used to make
the decision to maintain or change the current course of action (Khamassi
et al., 2015; Mansouri, Tanaka, & Buckley, 2009; Quilodran et al., 2008;
Stoll et al., 2016).

Hayden, Pearson, and Platt (2011) found that neural activity during for-
aging scaled with the value of leaving the current exploited option and
reflected an integrate-to-threshold process built across trials and leading
to patch leaving (Hayden et al., 2011). Accumulation processes are observed
in other frontal areas such as the FEF but they are continuous and ramp
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within trials, i.e., over a short timescale (Hanes & Schall, 1996). It is tempt-
ing to think that the specific neural dynamics observed during exploration or
foraging provide the MCC with neural state properties that favor integration
of information across time, i.e., over long timescales.

The way these correlated activity states are expressed over time is an
important feature of encoding in MCC and across the frontal cortex. It
may be that the capacity to shift neural state is an intrinsic feature of these
cortical architectures, perhaps independent of external stimuli or constraints,
which is then tuned to the needs of any ongoing task. An interesting and
open question in the field is therefore how these properties are harnessed
for the functional uses we ascribe to them, and a starting point is to consider
how general this dynamic shifting of neural state is in MCC.

For example, we described above that information about feedback is
encoded in the MCC, but this encoding occurs dynamically within the time
course of a trial, starting just before outcome delivery until the next decision
is made (Hunt et al., 2018; Stoll et al., 2016). The term dynamic here refers
to the idea that information encoding changes over time, such that a decoder
that can decode some behavioral variable from neural data at one period in
time is no longer able to decode the same information later in time, while the
variable is still encoded by the neural activity. In this sense the encoding is
dynamic. The question of whether representations in MCC are dynamic or
stable over time depends on the timescale in question, but it is increasingly
clear that frontal cortical regions inherently combine elements of stable and
dynamic coding. For example values in MCC are represented by mixed
activity regimes composed of a stable subspace and a dynamic ensemble
(Enel, Wallis, & Rich, 2020). This configuration grants the system a level
of flexibility, i.e., a substrate of sustained information which can be com-
bined with time-sensitive representations. The combination of both repre-
sentations is likely crucial for the organization of behaviors in time and
resembles the properties of delay activity much discussed regarding lateral
prefrontal cortex (Cavanagh et al., 2018; Miller, Lundqvist, & Bastos, 2018).

It is becoming increasingly clear that there is a distinct organization in
this combination of stable and dynamic coding regimes. For example,
Stoll et al. (2016) used cross-temporal decoding of MCC activity to show
semi-stable codes of feedback and decisions that carry over inter-trial periods
during foraging tasks. This appears to be particularly the case when, as in this
study, decisions rely on the history of previous choices. MCC activity in this
case can be considered as a set of trajectories organized in a sequence of dis-
crete quasi-stationary states. This organization of activities in time is referred
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to as metastability (Durstewitz, Vittoz, Floresco, & Seamans, 2010; La
Camera, Fontanini, & Mazzucato, 2019). States can be organized around
key perceptual and motor events or structured by ensemble activity regimes
independently from external cues.

Metastability has been observed in other cortical areas and is proposed
to form a neuronal substrate for specific internal representations of the envi-
ronment (La Camera et al., 2019; Rich & Wallis, 2016). State stability is
believed to reflect internal representations and the deployment of selective
attention required for the current task demand (Engel et al., 2016).
Transitions are more frequent when representations of internal rules are sus-
ceptible to change and are marked by an abrupt shift of dynamics in distrib-
uted neuronal ensemble (Durstewitz et al., 2010).

How might these metastable states be used to promote the functions
of MCC? There are likely to be several answers to this question, again
depending on the temporal scale of investigation. Value signaling in the
MCC reflects temporal integration of experienced rewards (Amiez et al.,
2006; Hunt et al., 2018) while also monitoring counterfactual options
(Hayden, Pearson, & Platt, 2009; Kolling, Behrens, Wittmann, &
Rushworth, 2016), and network transitions occur in periods when internal
states are being updated and actively monitored. So, state transitions may
well represent shifts in belief based on the same weighting of prior evidence
and current outcomes. For example such state transitions would be signaling a
shift to a more exploratory strategy of choice (Karlsson etal., 2012). Indeed, in
foraging tasks, MCC trajectories describe two pseudo attractor spaces
reflecting the structure of the task that alternates between phases of behavioral
exploration and exploitation. Here state-space transitions are triggered by the
monitoring of specific events such as feedback that reflect the need to adapt
the current strategy (Enel et al., 2016; Quilodran et al., 2008).

3.3 Inhibitory control of MCC metastable states

Our most recent work provides direct evidence on how local intrinsic prop-
erties and timescales of MCC cells cause metastability, suggesting how such
dynamical properties contribute to the role of MCC in adaptive behavior
(Fontanier, Sarazin, Stoll, Delord, & Procyk, 2020). We studied the tempo-
ral signatures, specifically the spike auto-correlogram time constant and
latency, of single neurons in monkey MCC and lateral prefrontal cortex
(LPFC), recorded during a decision-making task. As suggested by Murray
et al. (2014), cells demonstrated a longer intrinsic timescale in the MCC than
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LPFC. We then showed that the temporal signatures were highly structured,
showing anatomical organization within the MCC, and specific cell-type
differences in the spike auto-correlogram features between fast and regular
spiking neurons.

Importantly the timescales of certain neurons showed functional adapta-
tion to the timescale of behaviorally relevant information in the task at hand.
In MCC and for regular spiking neurons only, we observed that on average
neuronal timescales lengthened when the monkeys were engaged in the task
compared to when they were pausing from the task. In addition, we showed
that both the neuron-type and the timescale of that neuron were determi-
nant of the contribution of that neuron to encoding important behavioral
features of the task, like reward feedback provided after choices (particularly
putative interneurons for negative feedback), or value-related information
used across multiple trials (Fontanier et al., 2020).

We then used these data to inform research using biophysically con-
strained network models to link back to the inhibitory properties discussed
above. This work revealed that specific cellular conductances in the modeled
cells (specifically intrinsic after-hyperpolarization (AHP) potassium and syn-
aptic inhibitory GABA-B conductances) were critical determinants of the
specificity of MCC and LPFC dynamics. These features were sufficient to
provide a causal account for temporal signatures. Intriguingly, these conduc-
tances drove the cells to the recorded timescales by organizing activity into
metastable states, with inhibition controlling state stability and transitions.
Our model predicted therefore that the state duration in this metastable sys-
tem would scale non-linearly with the timescales of different cortical
regions, and we provided strong evidence to support this prediction from
the monkey neurophysiological data, even reaching behavioral timescales.
Our proposition on the basis of this work, therefore, is that inhibitory-
controlled metastability constitutes the central dynamical process of MCC
network function, locally specifying the temporal organization underlying
cognitive processes operated by frontal areas.

4, Conclusion

The MCC, the region of the medial wall situated dorsal to the corpus
callosum and sometimes referred to as dACC, is positioned within the
densely connected core network of the primate brain, and has a rich diversity
of cognitive, somatomotor and autonomic connections. The MCC shows
strong local network inhibition in particular driven by GABA-B activity.
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This inhibition appears to control the metastability of the region—an
established feature of many cortical networks in which the neural dynamics
move through a series of quasi-stationary states with jump-like modulations
between them. In particular it is proposed that the strong local inhibition in
MCC leads to particularly long dynamic state durations, and so less frequent
transitions, with the duration of these states even approaching the timescale
of behavioral phenomena. Apparently as a result of these anatomical features
and synaptic and ionic determinants, the MCC cells display the longest
neuronal timescales among a range of recorded cortical areas.

We have argued that the anatomical position, intrinsic properties, and
local network interactions of MCC make it a uniquely positioned cortical
area to perform the integration of diverse information over time that is nec-
essary for behavioral adaptation. The functional role of the MCC is therefore
defined by these properties and we consider it a single central function. The
MCC will perform this integrative function on different information types
that arrive, given its rich connectivity. Performing the same integrative
function on different incoming types of information will lead to a diversity
of behavioral correlates. While one reading of the literature might be that
these diverse behavioral correlates mean that MCC has many different cog-
nitive functions, we underline that the evidence presented above suggests
that the operation performed by MCC itself is a single underlying function
common to different cognitive labels.

This proposal leaves of course many important questions to be addressed.
The neurobiological source of these temporal features, and the contribution
of the place within the cortical hierarchy remain to be further examined. We
also need to better understand the extent to which the variations in meta-
stability and timescale are causal of the functions of MCC and other regions,
or whether in fact those features result from adaptation to the context. Are
these intrinsic properties that are applied to different functional uses, or are
these properties tuned to fit the task in hand? Studies during task acquisition
will be crucial here. Regions like the MCC do not, of course, act indepen-
dently but as part of a densely connected network, for example, showing
interaction with LPFC. As such there remain questions to be answered
about how regions with differing timescales and differing dynamic regimes
can interact in a manner that permits computations that are relevant for
cognition.

The purpose of this chapter was to elaborate a synthesis of data from mul-
tiple levels of investigation, in order to seek a coherent multi-scale view of
the function of the midcingulate cortex. While many pieces of information
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are still required from anatomical, biophysical, neurophysiological and
behavioral experiments, the recent data suggest that the synaptic and cellular
properties, the local network configuration as well as the embedding of
MCC in specific large scale functional networks provide this region with
capabilities relevant to the regulation and adaptation of behavior over long
time scales.
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4.3. Linking states and sequences

The last chapter proposed that transitioning network states subserve peregrination of network
activity between and within two pseudo-attractor domains of exploration and exploitation, with
respectively dynamic and stable behaviors (Enel et al., 2016; Stoll et al., 2016).

In Chapter 3 Fig. 8, we have shown that states are maintained, and transitions induced, by
inhibitory currents and neurons in the MCC model. But how exactly do these inhibitory currents
maintain network states and induce transitions? More precisely, what is the role of both GABA-
A and GABA-B currents in inducing transitions, and how are network states maintained through
GABA-B currents? Furthermore, does MCC collective activity show network dynamic and stable
coding, as well as two pseudo-attractor spaces (putatively for exploration and exploitation), as
observed experimentally?

Dual contribution of inhibitory currents to transitions

To understand network dynamics more clearly, we grouped neurons according to the HMM

state in which they fire the most, defined as the state s for which the emission of neuron n is

maximal in the HMM emission matrix E (s, n), i.e. argmax E (s, n). This allowed us to define 4
S

mixed (excitatory and inhibitory) subpopulations, one for each state, where each neuron
belonged to one state only. In the following, we defined excitatory and inhibitory
subpopulations as the excitatory and inhibitory neurons of each subpopulation. As such, when
referring to an excitatory or inhibitory subpopulation, there is a corresponding inhibitory or
excitatory subpopulation, respectively.

We found that major variations of averaged inhibitory currents received by each inhibitory
subpopulation (inhibitory neurons underlying a given state, i.e. having their largest mean firing
frequency in that state) actually correlate with transition times between two states (Fig. 1), and
that GABA-A and B showed complementary roles of the 2 inhibitory currents.

On the one hand, we found that the GABA-B current impinging on the subpopulation
underlying the next state (Fig. 1a) decreases long before the transition (~5ooms). Because no
other synaptic current showed such anticipatory variation (not shown), this GABA-B decrease
most likely caused the transition to the next state. Actually, the higher frequency defining the
current (e.g. previous or following) inhibitory subpopulation was causally accounted for by the
lower amount of received GABA-B currents (Fig. 1a, see below).

On the other hand, the GABA-A current (Fig. 1b) decreased just before the transition
(~20ms), with a larger decrease in the subpopulation underlying the next state, defining the
precise moment when the transition, gated by GABA-B dynamics, took place.

Altogether, these data indicated that collective network dynamics were essentially
determined by competitive cross-inhibition between inhibitory subpopulations, which was
central in setting state maintenance and transitions. Specifically, 1) the least inhibited (most
disinhibited) inhibitory subpopulation induced the current network state, 2) transition to a new
state occurred through the conjunction of a slow and progressive GABA-B disinhibition
terminated by an additional fast GABA-A disinhibition triggering of the next subpopulation.
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A rich repertoire of static and dynamic attractors in synaptic engrams

underlying stable and dynamic coding

The question arises: how do inhibitory neurons associated with the current state receive less
inhibitory currents? We reasoned that inhibitory subpopulations should project weaker
inhibitory synapses onto themselves, and stronger synapses onto other subpopulations. To
assess this hypothesis, we measured the average synaptic weights between and within each
subpopulation (Fig. 2a) and found that weights were indeed weaker within each inhibitory
subpopulation, compared to between them (Fig. 2a, Inh—Inh., blue within vs. orange between
subpopulations), resulting in “anti-" or “negative” assemblies of inhibitory neurons, with strong
synaptic cross-inhibition between them. This synaptic structure accounted for the dynamical
properties (states, transitions) observed in these assemblies (see above). Contrary to the
classical notion of (e.g. Hebbian) neural assemblies (defined by excitatory neurons being more
connected with each other among the assembly than with neurons outside of the assembly),
“anti-assemblies” are defined here by how weakly neurons connect to other neurons in the
assembly, compared to the rest of the network (i.e. other assemblies).

Furthermore, inhibitory subpopulations projected weaker weights onto their corresponding
excitatory subpopulations (Fig. 2a, Inh.—Exc., blue vs. orange). Combined with the fact that
excitatory subpopulations projected similar weights to all excitatory and inhibitory
subpopulations (Fig. 2a, Exc.—Exc. and Exc.—Inh., blue vs. orange), this confirmed that
excitatory subpopulations are defined by inhibitory projections, i.e. namely, weaker inhibitory
connections to inhibitory neurons and stronger inhibitory connections to excitatory neurons
within each subpopulation.

In summary, the network dynamics analyzed through HMM allowed us to define neuronal
subpopulations, from which we were able to backtrack organized structure in the form of
inhibitory anti-assemblies, within the randomly initialized synaptic weight matrix. Note here
that no form of learning was present in defining assemblies and that they purely emerged from
structural and synaptic heterogeneity, i.e. randomness of connection sparsity and weights. The
principal factor at play here was that strong and slow synaptic GABA-B currents amplified the
effect of the synaptic weight matrix’s random structure on network dynamics.

In principle, HMMs assume stationary data, thus the synaptic structure we could unveil
through them is limited to stationary activity, and not dynamic sequences of neural activity.
These sequences might nevertheless exist, emerging through GABA-B slow currents
propagating along synaptic chains (pathways) within the unveiled assemblies of the synaptic
weight matrix.

To address this possibility, we reordered neurons within each subpopulation according to
their average median activation times (Fig. 2b top). Within the time period when the network is
in a given state, the median activation time of a neuron of the corresponding state’s
subpopulation was taken as the timing of the neuron’s median spike (for a neuron firing 5 spikes,
the timing of the 3™ spike). Median activation times were then averaged across all time periods
when the network was in the associated state (i.e. all green time periods for a neuron within the
green state’s subpopulation, Fig. 2b bottom). When doing so, we could observe arich repertoire
of dynamic and static attractors in MCC simulations, with repeating sequences of activity of
neurons activating successively within states/subpopulations (Fig. 2b bottom, green, orange,
and red bottom states) and systematic persistent activities in others (Fig. 2b bottom, purple top
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state). The slopes of correlations between neural index and timing of spikes within HMM state
subpopulations confirmed this analysis, with horizontal slopes for static attractor states and
diagonal slopes for dynamic attractor states (Fig. 2b bottom, essentially horizontal slopes for
purple top state, and diagonal slopes for green, orange and red bottom states).

Sequences of neural activity should be accompanied by a directed synaptic chain in the
synaptic weight matrix. Within the synaptic matrix connecting pre- and post-synaptic excitatory
neurons ordered according to their activation times, a synaptic chain would correspond to 1)
stronger synapses in the forward direction, i.e. on diagonals below the main diagonal (Fig. 2c,
yellow band below the red main diagonal), from pre-synaptic to post-synaptic neurons situated
further along the sequence, and 2) weaker synapses in the backward direction, i.e. on diagonals
above the main diagonal (Fig. 2¢, dark blue band above the red main diagonal). We studied the
average difference between forward and backward weight diagonals (i.e. below and above the
main diagonal) for each synaptic type within subpopulations. We found significantly weaker
forward (stronger backward) synapses for Inh.—Inh. and Inh.—Exc. connections only (Fig. 2d,
blue and purple curves and shaded areas below zero, respectively), by opposition to Exc.—Exc.
and Exc.—Inh. connections, which displayed no specific trend (Fig. 2d, red and green curves and
shaded areas centered on zero). Thus, within each subpopulation, inhibitory neurons were
connected through forward weaker synapses, with each inhibitory neuron inhibiting the
following neurons less, forming an “anti-synaptic chain”. Such disinhibition would result in
higher frequency in subsequent neurons, propagating the sequence of neural activity. This effect
was found when averaging across all states (even those resulting in persistent neural activity),
suggesting that the synaptic chains of states resulting in sequences were more pronounced than
the shown average (across states displaying static activity and sequences) shown in Fig. 2d.

At the network level, these sequential or persistent activities in subpopulations impacted
network activity, resulting in alternation between dynamic (Fig.2e, yellow diagonals) and stable
(Fig.2e, yellow squares) network activity.

Sequential peregrination of network state within two meta-states

The presence of a temporal structure of network activity at the 100ms-1s HMM state temporal
scale suggests that there might be a structure at larger temporal scales, i.e. the peregrination
between network states itself could be structured. This structure could be static, e.g. correspond
to arandom alternation between two-macroscopic static attractors, each of which including one
or several similar states with underlying persistent activity. Such a possibility could for example
putatively correspond to a dichotomy between exploratory and exploitative strategies.
Alternatively, this structure could be sequential, i.e. displaying reoccurring specific sequences of
states, as during the successive evaluation of network states, putatively encoding different
behavioral strategies. Both possibilities may even co-exist in the same network.

Simple visual inspection seemed to suggest that network states were indeed organized in
sequences of N-states (Fig. 2b, green-orange-red 3-state sequences). We assessed whether
network state transitions solely depended upon the previous state (i.e. were Markovian), or
organized into longer sequences, with certain sequences of N states (N > 2) more probable than
others. To answer this question, we calculated the Shannon entropy of the probability of N-state
sequences in the simulation data (Fig. 3a, red curve), and compared this number to a control
condition where N-state sequences were solely derived from information about 2-state
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sequences (a.k.a. the HMM transition matrix), i.e. purely Markovian sequences of 2 states (where
the probability of the next state depended exclusively upon the current state, Fig. 3a, black line).
We observed that the longer sequences were, the more the Shannon entropy of N-state
sequence probabilities decreased compared to those of Markovian sequences. This indicated
that there was temporal dependence of states to the history of states beyond simply the
previous state, with certain sequences of N-states more probable than others, i.e. states were
sequentially organized at a longer timescale.

In the example considered, visual inspection of the cross-temporal similarity of network
activity vectors at each time step (Fig. 2e and Fig. 3b) also suggested that the network
alternated between two macroscopic meta-states, one being stable (large yellow squares, e.g.
26-33 seconds) and the other dynamic (yellow diagonals grouped together, e.g. 10-17 seconds).
Coloring the similarity matrix according to previously established HMM network states (Fig. 3b
left, bottom right triangle, cyan rectangles corresponding to green and orange HMM states,
orange rectangles corresponding to the red and purple HMM states) matched this macroscopic
structure well, suggesting two macroscopic meta-states existed and each corresponded to two
combined HMM states. Visualizing network activity in a reduced dimensionality (PCA) space
(colored as above, Fig. 3b right) also revealed two separated macroscopic meta-states, with
orbits peregrinating between meta-states, as well as within them between their constitutive
states.

In conclusion, peregrination of network states was organized according to alternations
between two macroscopic meta-states. These two meta-states could putatively subserve
exploratory and exploitative regions, i.e. with respectively dynamic (cyan meta-state) vs static
(orange meta-state) global behavior, as unraveled experimentally (Enel et al., 2016; Stoll et al,,
2016). Network trajectory orbits sequentially visited underlying HMM states within these meta-
states (putatively encoding different exploratory and exploitative strategies). At a lower
temporal scale, each network state itself contained neural sequences or persistent activity,
subserving dynamic and stable coding. Together, this opened the possibility to encode
information at different timescales in the network (states with sequences for short information
and persistent activity for intermediate durations, as well as dynamic and stable macroscopic
meta-states for longer and longest information timescales respectively).

Such a dynamical richness could form the neural substrate allowing the temporal
integration of information at multiple timescales and behavioral switches necessary to MCC
function. Furthermore, it shows the promising potential of GABA-B neuromodulation in actual
monkeys learning behavioral tasks which induce synaptic plasticity within MCC networks.
Indeed, such a large dynamical repertoire was obtained simply through GABA-B-mediated
amplification of the effects of the synaptic matrix's randomized heterogeneity on network
dynamics. As GABA-B temporally amplifies even minute differences in synaptic structure, it
should increase the impact of synaptic plasticity and resulting synaptic structures on behaviors,
thus making learning more effective. This hypothesis deserves future exploration.
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and dynamic coding. (a) Average weights between and within neurons associated with a state, averaged
over all couples of states for 100 MCC network simulations. Green lines indicated expected average
weights, taking into account synapse sparsity (Inh.—Exc. weights are more probable, since pgLg =
PE-I = P11 = 0.3 and p;_g = 0.55, see Chapter 3 Methods). (b) Raster plot (top), and identical raster
plot with colored HMM state periods (bottom) of a MCC simulation lasting 5os. Thin white horizontal
lines delimit subpopulations of each HMM state (from bottom to top, states 1 to 4 are the green, orange,
red, and purple states respectively). Black horizontal lines separate state periods. Large white diagonal
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the subpopulation of the current HMM state period (only p < 0.05 are shown). (c) Synaptic weight matrix
describing how the synaptic weights of a synaptic chain would connect excitatory pre-synaptic and post-
synaptic neurons, when neurons are ordered according to their activation time in the resulting sequence.
Red diagonal line is drawn across synapses of neurons onto themselves (i.e. autapses). Synaptic matrix
taken from an example network simulation in the Chapter 5 article. (d) Average value of synaptic matrix
diagonals, for diagonals progressively further away from the middle diagonal. Shown are mean +/- 95%
confidence intervals of the standard error of the mean over 100 MCC network simulations. Purple curve
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Figure 3. Sequential peregrination of network states within two macroscopic meta-states. (a)
Shannon entropy of the probability of N-state sequences (during the 600s of the MCC simulation shown
in Fig. 2b,d and Fig. 3b), compared to that of purely Markovian sequences of N-states (where N-state
sequences are derived from 2-state sequences, a.k.a. the HMM transition matrix). Other MCC
simulations exhibited similar results (not shown). (b) (Left) Same as Fig. 2d, but with a superposed
coloring scheme in the bottom right triangle reflecting macroscopic attractors. In this second coloring
scheme, the 1* macroscopic (orange) meta-state is constituted of the green and orange HMM states
(from Fig. 2b bottom), and the 2™ macroscopic meta-state (cyan) of the red and purple HMM states
(from Fig. 2b bottom). The intersections between meta-states is colored in black. (Right) Network
activity during 200s colored as above within a reduced dimensionality space estimated via PCA (principal
component analysis) of neural frequency (estimated as the convolution of spikes with a Gaussian
temporal window where ¢ = 100 ms) across 600s.
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Chapter 5.  Mechanistic origin of robust neural
trajectory replay within synaptic noise

5.1. Summary

In the previous chapters, strong and slow inhibitory GABA-B currents induced long-lasting labile
network states with neural activity sequences within them. However, these network states and
sequences originate from the synaptic matrix's random structure amplified by slow GABA-B
synaptic currents, and are thus not learned nor related to external stimuli in the models. In
contrast, neural trajectories, i.e. sequences of transient sparse neural activity, prominently
observed for working memory and navigation in rodent PFC and hippocampus (HP) respectively,
propagate during behavior and are intrinsically generated during subsequent sleep and awake
immobility without external stimuli. This hints at the existence of underlying synaptic chains
(pathways) learned through spike-timing dependent plasticity (STDP), being subsequently
triggered through an internal or external trigger. However, the asynchronous irregular (Al) and
even chaotic activity regime of awake cortex can result in incessant spontaneous replays and
destabilized sequence propagation when triggering synaptic chains, hindering behavioral
performance. Conversely, pack propagation may perturb global Al network activity, e.g.
prohibiting other concurrent network computations and trajectory replays, hindering other
behaviors. What biophysical mechanisms allow sequences to be reliably evoked when necessary
(controllability), and steadily propagate (stability), without significantly altering network activity
(independence), within potentially jeopardizing chaotic synaptic noise?

We modeled a biophysically constrained recurrent network of conductance-based Integrate-
and-Fire neurons, whose balanced excitatory and inhibitory currents led to Al chaotic dynamics.
Presentation of a trajectory stimulus led to the learning of synaptic chains through STDP and
synaptic scaling, inducing replays after a triggering stimulus or spontaneously (due to Al
dynamics) with varying degrees of propagation stability, as mentioned above. Spiking was
driven by inhibitory GABA-A current fluctuations outside of trajectory replay, and strong
excitatory NMDA current average within trajectory replay. This allowed us to predict that an
excitatory frequency threshold separated both activity regimes in a reduced model, and model
transitions between them as bistable excitatory frequency dynamics with added random noise.

Armed with this knowledge, we identified three biophysical mechanisms which can increase
trajectory replay controllability and stability: 1) slow inhibitory currents, 2) combining tonic
frequency-independent inhibition with stronger recurrent excitatory functional connectivity,
and 3) spike-mediated CAN and AHP ionic currents promoting intrinsic, transient (i.e. weaker
than conditional) bistability. We found that, while increased controllability and stability
generally decreased independence, CAN and AHP preserved trajectory independence, intrinsic
transient bistability alleviating constraints on synapse-mediated pack propagation. Reliable
replay with the aforementioned mechanisms was robust to variation of model parameters, and
modulating the STDP temporal window and trajectory stimulus allowed reliable replay of many
different attractor types (i.e. Hebbian assemblies, synfire chains, Hebbian phase sequences, ring
attractors, as well as possible uni-/bi-directional propagation), reinforcing the genericity of the
model and its mechanisms across cerebral structures and species.
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5.1.1. Contributions

| developed the biophysical neural network model and all analyses, participated to the
elaboration of reduced models, wrote the first draft of the article and subsequently reviewed it
entirely, and produced all figures.
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Abstract

Neural trajectories propagate as activity packs on connective pathways embedded within
recurrent networks, subserving cognitive representations across structures and species. In
awake animals, asynchronous irregular network dynamics exert a profoundly disorganizing
influence that could either spuriously and incessantly induce neural trajectories, or jeopardize
ongoing ones. In biophysical recurrent network models endowed with plasticity, we assessed
which specific intrinsic and synaptic processes are required for functional trajectories under
neural noise. Theoretical analysis and simulations of the model unraveled that trajectory
replays organize around a frequency threshold. This threshold separates inhibitory
fluctuation-driven spontaneous spiking and a deterministic excitatory-driven active regime
of propagation along the learned connective pathway. More precisely, we identify three
specific processes — lowered inhibitory fluctuations, strong tonic inhibition and functional
excitatory connectivity, and increased CAN/AHP conductance — that increase regimes
separation and qualitative replays (i.e. reliably evoked and stably propagated). The latter one
further provides independence between replay and network activity, alleviating constraints
on synaptic-mediated propagation. Dual regime-based reliable replays proved robust in the
parameter space, suggesting its genericity across neural structures. Moreover, we find that
they generalize to a wide spectrum of known discrete and continuous attractors (Hebbian
assemblies, synfire chains, Hebbian phase sequence, ring attractors), with steady-state
dynamics or uni-/bi-directional propagation. The dual regime mechanism underlying reliable
neural trajectory replays therefore both constitutes an unprecedented generic biophysical
principle and provides a unified framework accounting for the generation of complex
dynamics robust to neural noise in the awake state required for cognition.
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Introduction

Neural trajectories, i.e. sequences of transient neural activity, subserve many brain functions
across species and cerebral structures. Neural trajectories are prevalent during working
memory, indirectly observed as sequences of neural selectivity (Cromer et al., 2010; Hussar
and Pasternak, 2012; Lara and Wallis, 2014; Lundqvist et al., 2018) or delay-selective neurons
(Batuev, 1994) in monkey prefrontal cortex (PFC), and directly observed as neural activity
sequences in rodent medial PFC (mPFC; Yang et al., 2014; Bakhurin et al., 2017; Bolkan et al.,
2017; Schmitt et al., 2017; Rikhye et al., 2018). These neural sequences are not exclusive to
PFC, also being observed in many other cortical and sub-cortical structures (Hoffman and
McNaughton, 2002; Crowe et al., 2010; Harvey et al., 2012; Mello et al., 2015; Akhlaghpour et
al., 2016; Bakhurin et al., 2016, 2017; Runyan et al., 2017; Rikhye et al., 2018). Notably,
navigational trajectories prevalently activate sequences of spatially selective neurons within
rodent hippocampus (HP; O’Keefe and Dostrovsky, 1971). Such neural trajectories are
subsequently replayed offline (e.g. during awake quiet immobility, consummatory behavior,
wheel running, and slow-wave or rapid eye-movement sleep) at fast (Skaggs and
McNaughton, 1996; Skaggs et al., 1996; Kudrimoti et al., 1999; Nadasdy et al., 1999; Lee and
Wilson, 2002; Diba and Buzsaki, 2007; Ji and Wilson, 2007; Davidson et al., 2009; Peyrache et
al., 2009; Mizuseki et al., 2012; Jadhav et al., 2016) or slower (behavioral) timescales (Louie
and Wilson, 2001; Pastalkova et al., 2008; Itskov et al., 2011; Mizuseki et al., 2012). Similar
navigational trajectory sequences experienced during behavior (Fujisawa et al., 2008; Ito et
al., 2015; Zielinski et al., 2019) and replayed offline during awake immobility (Jadhav et al.,
2016; Kaefer et al., 2020) and slow-wave sleep (Euston et al., 2007; Peyrache et al., 200g;
Johnson et al., 2010) have been observed in the mPFC, as well as other structures (Ji and
Wilson, 2007; O’Neill et al., 2017; Angulo-Garcia et al., 2018). Altogether, the existence of
sequences in different functional contexts and many cerebral structures hints at generic
mechanisms underlying their emergence and propagation.

Neural trajectories are intrinsically generated since they can occur offline, when sensory
inputs and motor outputs are absent, suggesting the existence of underlying learned synaptic
structures within these recurrent networks. A natural candidate for the biophysical learning
rule leading to the emergence of neural trajectories is the ubiquitous Spike-Timing
Dependent Plasticity (STDP) (Bi and Poo, 1998), in which pre- and post-synaptic potentials
lead to synaptic potentiation or depression according to the temporal difference between
them, potentially inducing the formation of synaptic chains (Clopath et al., 2010). STDP is
observed across structures (Abbott and Nelson, 2000), and can thus account for the ubiquity
of intrinsically-generated synaptic chain-induced trajectories.

However, a major issue concerns the ability to learn and express functional neural
trajectories within noisy brain dynamics during the awake state. It remains unclear how
neural trajectories can be learned, emerge and propagate within globally disorganized
neuronal activity in the awake state in e.g. cortical networks, which present asynchronous
(Riehle et al., 1997; Brunel, 2000; Poulet and Petersen, 2008) and irregular (CV~1, Compte,
2003; Shinomoto et al., 2005) activity characteristic of the high conductance state (Destexhe
et al., 2003). Their dynamics is furthermore chaotic (London et al., 2010), i.e. repeated
presentations of the same external stimulus lead to very different high-dimensional
responses due to internal cortical activity and the sensitivity to initial conditions. These
questions are particularly challenging for neural trajectories compared to standard, static
neural assemblies. Neural trajectories are dynamical representations likely based on
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unidirectional weights, being thus more fragile than static synaptic reverberation within
neuronal Hebbian assemblies with bidirectional weights (Hebb, 1949; Brunel and Wang,
2001). Moreover, stabilizing mechanisms of neuronal assemblies (e.g. intrinsic properties;
Camperi and Wang, 1998; Koulakov et al., 2002; Goldman et al., 2003; Compte, 2006) may
not identically apply to sequences, since activity is not maintained within a static — but rather
a continuously changing — pool of neurons.

Here we operationalize the constraints posed to sequence learning by chaotic dynamics.
First, chaotic and noisy synaptic transmission can hinder sequence replay by a trigger or
induce spontaneous replays, questioning the issue of controllability of learned replays (i.e. the
ability to trigger replays solely when required). Second, chaotic noise alter the stability of
sequence propagation once triggered. Third, trajectory replay could strongly modulate
network activity of neurons outside the trajectory, perturbing the independence of any other
concurrent computations within the local network considered (e.g. independent replay of
multiple sequences simultaneously). Most importantly, while neural trajectories are usually
learned with artificial learning rules (Sussillo and Abbott, 2009; Fiete et al., 2010; Laje and
Buonomano, 2013; Xue et al., 2021) or replayed in the absence of chaotic noisy dynamics (Liu
and Buonomano, 200g; Fiete et al., 2010), none dissect in detail how biophysical mechanisms
could allow these constraints (controllable triggering, stable propagation and network
independence) to be met. Here, we propose a detailed realistic biophysical model in which
continuous synaptic structures and reliable neural trajectories emerge from STDP in the
asynchronous irregular (Al) regime. The model presents most physiological properties of
local cortical recurrent networks, be it the synaptic architecture, conductance-based neural
model, or Al activity regime.

Using simulations and theoretical analyses, we discovered the intrinsic and synaptic
determinants of functionally reliable, robust and generic attractor dynamics, including neural
trajectories, despite the permanent disorganizing effects of chaotic asynchronous irregular
(Al) dynamics. We show that synaptic plasticity (STDP and synaptic scaling) can lead to a
diversity of replay types, from unstable to stable replays and from spontaneous incessant to
triggered-only replays. Neural trajectories consisted in the propagation of an activity pack
along the connective pathway through deterministic associative NMDA local transmission at
high frequencies, contrasting with spontaneous Al activity, which was based on GABA-A-
fluctuation at low frequencies. Our theoretical analyzes characterized a frequency threshold
separating spontaneous and pack propagation regimes, and point at mechanisms increasing
the separation between regimes as key to trajectory stability and controllability. We then
identify three classes of biophysical processes increasing such separation, being lowered
inhibitory fluctuations, strong tonic inhibition and excitatory connectivity, as well as intrinsic
(afterhyperpolarization/afterdepolarization) currents. The later intrinsic properties also grant
a relative independence between trajectory replay and network activity outside the
trajectory, alleviating constraints on synaptic pathways. Finally, we show that these results
are robust to model parameters and generalize to a spectrum of static, dynamic, discrete or
continuous attractor subserving cognitive representations. We thus unveil a generic principle
(dual dynamical regime) and biophysical solutions (inhibition or intrinsic properties) for
learning and replay of complex trajectories robust to neural noise.

Results

121



Robust STDP-induced neural trajectories in the asynchronous irregular (Al) regime

We designed a detailed physiologically-constrained biophysical model of a recurrent neural
network with random connectivity (Fig. 1.a, see Methods). Neuronal activity displayed low
frequencies typical of behaving mammals (Fig. 1.b, v < 10Hz; Fig. S1.a; Boudewijns et al.
2013; Shafi et al. 2007). Moreover, collective spiking showed levels of irregularity (coefficient
of variation of inter-spike intervals (ISIs) CV~1, CV,~0.8, Fig. S1.b-d; Compte, 2003;
Shinomoto et al., 2005) and asynchrony (pairwise correlation coefficient averaged over all
neurons < p > ~0.01, Fig. S1.e-g; Tchumatchenko et al., 2010) characteristic of the Al
regime (Brunel, 2000) observed in the cortex (Riehle et al., 1997; Poulet and Petersen, 2008),
and reflecting underlying low—order chaotic dynamics (A~0.01; Fig. Sa.h-j; London et al.
2010). This global disordered regime emerged from fluctuation-based spiking (Fig. 1.c top)
due to the balanced, strong total current generated by excitatory and inhibitory input
currents (Fig. 1.c bottom, and Fig. Sa.k; Renart et al., 2010; Xue et al., 2014), i.e. neurons
were in a high-conductance state (Destexhe et al., 2003).

The network was trained with an external circular trajectory stimulus (Fig. 1.d left)
inducing synaptic learning through biophysically plausible STDP and synaptic scaling rules
that are ubiquitous in the neocortex (see Methods, Turrigiano et al., 1998; Abbott and Nelson,
2000). Synapses were potentiated by STDP when post-synaptic followed pre-synaptic spikes
(Fig. 1.d center). Thus, neurons sequentially activated by the stimulus potentiated synapses
connecting neurons in the forward direction along the trajectory, forming an oriented
connective pathway that constituted the engram of the trajectory stimulus (arrows, Fig. 1.d
right). Instantaneous synaptic scaling homeostatically compensated for run-away effects of
Hebbian plasticity by regulating the sum of incoming synaptic weights onto neurons
(Turrigiano et al., 1998; Zenke et al., 2017; Sarazin et al., 2021). The sums of incoming weights
were thus similar for neurons inside and outside the oriented connective pathway
(homogeneous background map, Fig. 1.d right), the latter structure arising exclusively from
the direction in which outgoing synaptic weights were the most potentiated. In principle,
such a synaptic structure — a “connective pathway” — can propagate an activity packet of co-
active spiking neurons — hereafter denoted as a “pack” - downstream the trajectory because
of oriented synaptic weights, subserving trajectory "replays”, whether spontaneously or
when triggered by initiating stimuli.

In awake animals, connective pathways and propagating packs could respectively
constitute a likely biological basis for the learning and replay of neural trajectories. However,
this possibility may not be trivial in reality. The permanent disorganizing influence of chaotic
synaptic fluctuations in the Al state (London et al., 2010) and high conductance state
(Destexhe et al., 2003) may jeopardize and disrupt packs at any moment, forbidding faithful
propagation. To escape noise disorganization, a sufficient number of co-active neurons and
sufficiently strong connective pathway would be required for propagation. By contrast,
weights too strong may ignite packs in an uncontrolled fashion from a few spikes — or even a
single one —in neurons along the trajectory (i.e. in a similar fashion to the very low triggering
conditions of intrinsic- or synaptic-mediated persistent activity; Ratté et al., 2018; Carrillo-
Reid et al., 2019). Furthermore, packs may possibly propagate and perturb neural activity
outside the trajectory. We evaluated trajectory replay offline (with plasticity disabled) by
simulating the network after the learning procedure and found that replays emerged within
the disorganizing fluctuations of the Al regime, without necessarily affecting activity outside
the trajectory (Fig. 1.e-h). Replays could emerge spontaneously (Fig. 1.e, 1.g) or when
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triggered by an initiating stimulus on the trajectory (red rectangle, Fig. 1.f, 1.h). In all cases,
synchronized excitatory spiking rapidly amplified along the connective pathway, recruiting
more neurons and converging to a state of propagation implying around a hundred neurons.

However, different simulations of the same network yielded very diverse types of
replays, depending on the exact realization of random connectivity (prior to learning) or initial
conditions of activity (chaotic dynamics). In some cases, propagation appeared pathological
(Fig. 1.e-f). For instance, the trajectory could spontaneously, stably and permanently be
replayed, possibly overwhelming network dynamics, dampening the replay of other
trajectories and, in fine, of downstream decoding (Fig. 1.e). On the other hand, replays
triggered at the beginning of the trajectory could fail to propagate stably up to its end, rapidly
vanishing after a few hundred ms, due to Al fluctuations (Fig. 1.f). Nevertheless, trajectory
replays could also account for observations in physiological conditions (Fig. 1.g-h), leading
to sparse spontaneous replays (e.g. free recall, Fig. 1.g) or stable evoked-only replays (e.g.
correct task performance, Fig. 1.h). Thus, physiological replays, although possible, were not
systematically granted in our recurrent network model. To understand how physiological
replays emerge, we assessed the processes underlying the activity regimes where pack
propagates or not.

Pack propagation relies on a transition from inhibitory fluctuation- to excitatory mean
current-driven spiking

In order to unravel the mechanisms distinguishing regimes of pack propagation or non-
propagation, we first identified the causes of spiking in excitatory neurons situated within a
propagating pack (Pack neurons) or outside the pack (non-Pack neurons).

In non-Pack neurons, the membrane potential reached an average sub-threshold steady-
state plateau (~54mV, Fig. 2.a, top left), as the total current was essentially near-balanced on
average (Fig. 2.b, top left, star). Spiking arose from fast voltage transients (Fig. 2.a, top left,
star) caused by strong current fluctuations (Fig. 2.b, bottom left, star). More specifically,
GABAA fluctuations contributed the most among all individual currents (Fig. 2.b, bottom
middle, star) such that spiking was mostly caused by sudden GABAA transient decrease (Fig.
2.3, bottom left, star). Spiking in neurons outside the pack was thus mostly driven by
disinhibitory current fluctuations.

For pack neurons, the membrane potential rose to the spiking threshold without an
intermediate steady-state plateau (Fig. 2.a, top right), because of a strongly imbalanced
depolarizing total current (Fig. 2.b, top left, triangle). Rather than from a sudden GABA-A
decrease, spiking was principally caused by a strong tonic drive of the NMDA current (Fig.
2.b, top right, triangle, and Fig. 3.3, right). This drive was particularly massive because of 1)
the strong spiking frequency within the pack (fpqck~14.5Hz), 2) the large strength of
potentiated synaptic weights within the connective pathway, 3) pre-/post- coincident spiking
within the pack relieving Mg**-mediated NMDA blockade and inducing associative NMDA
activation, and 4) the slow time constant of NMDA channel opening dynamics favoring
temporal extended NMDA currents. Moreover, the pack was local (i.e. concerning only a
small group of high frequency excitatory neurons), while inhibition was global (synapses to
and from inhibitory neurons are non-specific in the network). As such, inhibitory population
frequency increased only slightly during local excitatory pack propagation (Fig. 1.h), which
further guaranteed strongly imbalanced depolarizing total current within local pack neurons.
Altogether, pack spiking was mostly driven by high pack frequency inducing strong hetero-
associative slow NMDA currents within potentiated synaptic weights, and allowed by the
insufficient increase in global inhibition in order to dampen local pack propagation.
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Thus, while spontaneous activity was fundamentally GABA-A-fluctuation-based at low
frequencies characterizing the Al regime, pack propagation along the connective pathway
revealed essentially deterministic associative NMDA local transmission at higher
frequencies. We wondered how this activity regime dichotomy constrained the physiological
characteristics of replays, by defining measures of plausibility and functionality.

We therefore assessed the biophysical mechanisms setting the controllability of replays,
i.e. the ability to reliably evoke replays with an input while limiting spontaneous replays. We
also assessed the biophysical parameters causally controlling the stability of replays, i.e. the
ability for trajectory representations to last in recurrent neural networks.

Theoretical predictions of transitions between spontaneous activity and pack
propagation

Answering these questions first required understanding the dynamical rules setting the
emergence and extinction of packs, i.e. transitions between spontaneous activity and pack
propagation regimes. Characterizing these transitions required to identify the frontier
separating regimes. Both regimes principally differed by their firing frequency (f), which
determined the magnitude and fluctuations of synaptic currents responsible for spiking
regimes (see above). Thus, we sought the frequency threshold separating regimes (Fig. 3.a)
in a reduced (one-dimensional) analytical model assessing conditions for propagation of
activity between preceding and succeeding neurons along the trajectory pathway, as a
function of f (see Methods). This propagation threshold theory predicted that a frequency
threshold fy separated both regimes in excitatory neurons (Fig. 3.a, left), as an unstable
fixed-point, with self-amplifying activity above fy and extinction below. The model was
validated by its ability to closely replicate current averages in spontaneous vs propagation
regimes in the network model (Fig. 3.3, right) and its prediction was qualitatively close —using
standard network model parameters fp ~10.8Hz — to an empirical estimation of fy~9.2Hz in
network model simulations (see Methods).

Based on this threshold, we next designed a regime transition theory (see Methods) to
predict noise-driven transitions between spontaneous and propagation regimes across their
common frontier. This model phenomenologically described firing frequency dynamics
through a deterministic differential equation accounting for the two stable fixed-points
characterizing spontaneous and propagation regimes (f,on—pack @and fpack) as well as the
unstable fixed-point threshold f, separating them (Fig. 3.b, left). It also incorporated a
stochastic component to account for frequency fluctuations due to the global Al regime and
regime transitions (example simulations in Fig. 3.b, right), with standard deviations
Onon—pack and Op,c €stimated from network simulations.

We quantified the behavior of this theoretical reduced model by computing the
probabilities for spontaneous p(Spont.) and triggered p(Evoked) transitions toward pack
propagation, giving the controllability measure p(Evoked) — (Spont.), as well as the
stability (duration) of evoked packs (see Methods). We found that low levels of firing
frequency or variability in the spontaneous regime (fhon—pack ©F Onon—pack) decreased
p(Spont.) but had no influence on p(Evoked), increasing pack controllability (Fig. 3.c, far
left and middle left, blue and red dashed and orange solid curves respectively). Conversely,
in the propagation regime, larger firing frequency (fpqcx) or lower frequency variability
(0pack) increased p(Evoked) but had no influence on p(Spont.), increasing pack
controllability (Fig. 3.c, middle and middle right). Finally, controllability displayed an
optimum as a function of the threshold f, (as increasing fy first decreased p(Spont.) then
p(Evoked), Fig. 3., far right).
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Altogether, the model predicted that biophysical factors promoting a larger separation
between spontaneous and propagation regimes (larger frequency distance or lower
frequency variability) would increase the controllability of trajectory replays. On the other
hand, the stability of replays increased with factors limiting downward transitions from the
propagation to the spontaneous regime (i.e. larger fpqcr or lower gpgc, Fig. 3.¢, middle and
middle right).

Biophysical mechanisms promoting trajectory stability and controllability

These theoretical predictions led us investigating biophysical determinants of propagation
behavior in the simulations. We searched, with large explorations of the parameter space,
biophysical determinants that allowed a clear separation between spontaneous and
propagation regimes, thus ensuring both pack stability and controllability. We found a very
restricted set of specific architectural, synaptic and ionic determinants, distinct from simply
strengthening the connective pathway underlying the replays.

Indeed, the straightforward solution of strengthening the connective pathway (i.e.
increasing the STDP amplitude Agrpp) enhanced stability. However, a strong connective
pathway also increased the probability of spontaneous pack emergence, thus having a
limited impact upon controllability (Fig. 4.a, middle). The increased stability was due to a
higher pack frequency (Fig. 4a, left) and the increased spontaneous pack probability arose
from a decreased fj (Fig. 4.3, left), both caused by stronger synaptic connections along the
pathway.

By contrast, we devised that decreasing the fluctuations of inhibitory currents onto
excitatory neurons (while keeping their mean value constant) should reduce f,on—pack and
p(Spont.) by rendering disinhibition scarce. As the spontaneous regime was mostly
disinhibitory fluctuation-driven, while the evoked regime was excitatory mean-driven, our
theory predicted that decreased I — E fluctuations should separate the two regimes. A larger
number of proportionally weaker synapses from inhibitory to excitatory neurons could
achieve this effect in the model (higher p;_ g, see Methods), i.e. it decreased GABAa current
fluctuations 0(Igapa-4) (Fig. S2.a, top). As predicted, lower o (Ig4p4-4) decreased fron—pack
(and thus 0pon—pack) (Fig. 4.b, left) and p(Spont.) (Fig. 4.b, middle), leading to more
controllable trajectories (surprisingly, fyqck increased because decreased fon—pack lowered
the excitatory drive to inhibitory neurons and, as a consequence, the inhibitory drive on Pack
neurons). Alternatively, slower but proportionally weaker GABA-A currents similarly
increased controllability (by decreasing fron-pack and spontaneous pack emergence; Fig.
S2.a, bottom and Fig. S2.b).

Combining tonic feedforward inhibition with stronger recurrent excitatory connectivity
also led to more controllability and stability. Indeed, strong recurrent excitatory connectivity
(e.g. strengthened STDP; Agrpp = 75) increased fpqcx and decreased fp without modifying
frnon-pack (Fig. 4c, left), as previously shown. This resulted in greater separation between
frack and fron—pack, i.€. between regimes, although fon—pack Was now much closer to fj,
inducing high p(Spont.) at low Vgg(nny (Fig. 4¢, left and middle). Therefore, at the same
time, we also increased tonic inhibition (i.e. increased feedforward excitation onto inhibitory
NeUrons, Veg(inn)), Which decreased f,on—pack and fpack by the same amount (while keeping
fo relatively constant; Fig. 4.c, left), and thus decreased both p(Spont.) and p(Evoked). The
net result of combining both effects was a higher f,,c, and lower f,,n_pack, resulting in
higher controllability and stability within an intermediate V() range (p(Evoked) and
thus controllability eventually decreasing at very high vgp(nn)). Intuitively, this could be
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understood as favoring inhibitory hyperpolarizing currents independent of network
frequency (i.e. stronger tonic inhibition), which decreased spontaneous frequency and
replays, while keeping excitatory depolarizing currents dependent upon network frequency
(through stronger excitatory recurrent connectivity-mediated amplification), increasing
evoked frequency and replays.

Favoring hyperpolarizing frequency-independent currents could be achieved in many
other different ways, reinforcing its validity as a general principle in real recurrent neural
networks. Indeed, decreasing the hyperpolarizing leak current of inhibitory neurons yielded
the same effect (g, (nn), Fig. S2.c). Also, decreasing recurrent currents impinging upon
inhibitory neurons led to comparatively stronger feedforward & leak currents in the
spontaneous regime, with similar effects (gx_,;, Fig. S2.d).

Besides synaptic and architectural parameters, we unraveled calcium-gated ionic
currents (CAN and AHP) as major determinants of controllability and stability. Both types of
conductances depend upon spike-driven calcium influx (through voltage-dependent calcium
channels) and, thus, spiking frequency. The saturation and time constant properties of these
currents define their frequency response profile. A slow rapidly-saturating AHP and a fast
slowly-saturating CAN induced hyperpolarization at low firing frequencies (AHP) and
depolarization at high frequencies (CAN). In individual neurons, CAN and AHP together
entailed a loosely defined unstable fixed point at f'g~12.7Hz (Fig. 4.e, left), inducing
hyperpolarization (favoring activity extinction) below f’, and depolarization (favoring self-
amplifying activity) above. This cellular effect added to that related to the separation
between spontaneous activity and pack propagation at the network level. As a consequence,
frnon-pack Was decreased and f,,cx Was increased (Fig. 4.d, left), increasing controllability
and stability (Fig. 4.d, middle). Interestingly, these results did not require strong
conductances promoting absolute intrinsic bistability (i.e. persistent activity following
transient input, Haj-Dahmane and Andrade, 1997). Rather, the weak CAN conductance,
yielding transient bistability, sufficed to promote controllability and stability of sparse
transient activity sequences (Fig. 4.e, middle and right; black vertical line, denoting the
current conductance parameter value, is within the blue transient bistability range; bistability
determined as in Rodriguez et al., 2018).

Independence of trajectory replay and outside network activity

Generally, increasing controllability and stability required decreased spontaneous network
activity. In such networks, trajectory replay increased frequency of excitatory (& inhibitory)
neurons not part of the trajectory, creating a sharp contrast between network dynamics
outside the trajectory neurons before and during replay (Fig. 4.b-d, right). Such strong
modulation of network activity outside the trajectory neurons might impede upon parallel
concurrent computations, e.g. the replay of several trajectories simultaneously. We assessed,
amongst the aforementioned mechanisms, those which allowed the best replay
independence, i.e. less neural dynamics perturbation outside the trajectory. To do so, we
measured the frequency of excitatory neurons outside the trajectory during evoked pack
propagation f,,+(Ev.) and during spontaneous pack absence f,,+(=Sp. ), with independence
being calculated as I =1 — |nr@wy~/nrasp) (Fig. 4.a-d, middle). I = 1 corresponded to

fnrEv)*faT(-sp)

perfectly equal frequency during evoked pack propagation and spontaneous pack absence
and thus unchanged network dynamics, decreasing I corresponded to increasingly different
frequencies, and I = 0 to either frequency being null. Increasing controllability and stability
generally decreased independence (~90% to ~50%). However, independence decreased less
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for CAN & AHP (~70%), being the only mechanism with an excitatory component increasing
spontaneous excitatory frequency (gcan). These results further support the merits of
interacting synaptic (STDP-based trajectory replay) and intrinsic (CAN & AHP) properties
(Rodriguez et al., 2018), as CAN and AHP components together led to transient bistability
within neurons (Fig. 4.e, middle and right), lessening the burden on synaptic properties
regarding the propagation of pack activity.

Robustness of controllable, stable and independent neural replays within the Al regime
While we deciphered a restricted set of biophysical determinants of controllable and stable
replays (low inhibitory fluctuations, frequency-independent inhibition, and frequency-
dependent intrinsic properties), we assessed the sensitivity of replays to parameter variations
with these biophysical determinants. For each mechanism, preservation of network behavior
to naturally occurring biophysical variability within and across cerebral structures (i.e.
parameter variation) would make the given class of model more biologically plausible.

To do so, we studied the parametric width of regions allowing controllable, stable and
independent replays and preserving asynchronous irregular network dynamics, by
systematically varying important parameters of the model, for each of the aforementioned
mechanisms (Fig. 4.f). To do so, we defined a set of criteria which were required to all be met,
indicating whether the network was plausible in terms of ionic current balance (via
conductance ratios), activity regime (via spiking activity measures), and trajectory quality (via
controllability, stability and independence measures) (see Methods and Fig. S3.a-c).

In the standard model (i.e. without the aforementioned synaptic and intrinsic current
mechanisms improving replay quality, see the two previous sections; Model &), controllable
and stable trajectories emerged for moderately large parametric regions (overall robustness
score of ~10%). They emerged for much larger regions with the additional mechanisms (~25-
45%), peaking with the gcan & gawe mechanism (Fig. 4.f, left). Although the Vep(inn)
mechanism demonstrated the largest parametric regions allowing controllable and stable
replays, the contribution of the independence criteria to overall robustness decreased with
0 (Igapa-4) and Vep(inn) (~60%), compared to Model . However, it remained at ~100% with
gcan & ganp, further supporting intrinsic currents as important candidates for alleviating
constraints on synaptic-based propagation (Fig. 4.f, right).

A common framework for generalized static and dynamical neural attractors

Another form of robustness lies in the functional versatility of the mechanisms supporting
controllable, stable and independent replays, i.e. whether they generalize to other forms of
neural representations. We found that, by applying one or several of the aforementioned
mechanisms, the network could learn and reliably replay attractors spanning a larger class of
models present in the theoretical literature, from discrete static (Hebbian assemblies) to
dynamic (synfire chain and Hebbian phase assemblies) attractors, as well as continuous static
(ring-like attractor) and dynamic (bidirectional ring) attractors (Fig. 5.a). Learning such
attractors required modulation of the STDP window asymmetry and shift (Fig. 5.b) — as is
observed across cerebral structures (Abbott & Nelson, 2000) and plausible under
neuromodulation (e.g. dopamine, Zhang et al., 2009) —, as well as differently timed trajectory
stimuli.

Symmetric STDP rules, combined with exposure to discrete stimuli, allowed for the
emergence of discrete static attractors. Exposure to a single discrete stimulus (Fig. 5.ca, far
left) with a symmetric STDP window (Fig. 5.c1-2, middle left) led to the formation of a
Hebbian assembly (Fig. 5.c1, middle right). Combined with the g; sy & gayp Mmechanism,

10

127



stimulating neurons resulted in the maintained activation (“replay”) of the Hebbian
assembly, with increased reliability (compared to the standard model; Fig. 5.ca, far right).
Similarly, exposure to a stimulus jumping between multiple successive discrete positions
(Fig. 5.c2, far left) led to the formation of multiple Hebbian assemblies (Fig. 5.c2, middle
right), which could be independently selected and replayed, with increased reliability
(compared to the standard model; gcan & ganp mechanism, Fig. 5.c2, far right).

By contrast, asymmetric STDP rules, combined with exposure to discrete stimuli, led to
discrete dynamical attractors. A discretely moving stimulus (Fig. 5.da, far left), with a
strongly asymmetric and shifted STDP temporal window (Fig. 5.d1, middle left), led to the
learning (Fig. 5.d1, middle right) and reliable replay (Fig. 5.d, far right) of a synfire chain,
with fast travelling of the spiking activity between successive neuron groups (o (Ig4z4-4) and
Vrr(inn) Mechanisms). This stimulus (Fig. 5.d2, far left), learned through a weakly asymmetric
STDP temporal window (Fig. 5.d2, middle left) led to assemblies connected through
feedforward connections (Fig. 5.d2, middle right) and replay of a so-called Hebbian phase
sequence, i.e. with successive slow (few hundred ms) recalls of Hebbian assemblies
(6(Igaa-4) mechanism, Fig. 5.d2, far right).

Besides, exposure to a stimulus moving in a continuous fashion (Fig. 5.e1, far left) with a
symmetric STDP temporal window (Fig. 5.e1, middle left) led to a ring-like attractor (Fig.
5.e1, middle right) supporting multiple simultaneous replays and extremely slow drift across
time (gcan & ganp mechanism, Fig. 5.ea, farright). Finally, a similar stimulus (Fig. 5.e2, far left)
with a larger STDP window (Fig. 5.e2, middle left) resulted in a large ring attractor (i.e. large
band in the synaptic matrix, Fig. 5.e2, middle right) allowing bidirectional trajectory replay
when combined with slowly-saturating g 45, Which activated at high frequency and induced
pack propagation in the direction of initial stimuli (see Methods, 6(Igap4-4) mechanism, Fig.
5.e2, farright).

Hence, we suggest the aforementioned mechanisms (low inhibitory fluctuations,
frequency-independent inhibition, and frequency-dependent intrinsic properties),
controlling transitions between fluctuation-driven to mean current-driven spiking, as generic
properties allowing controllable and stable replays of a wide array of dynamical
representations (static or dynamic, discrete or continuous). Together with the modulation of
STDP windows and of the discrete or continuous nature of stimuli, they appear as key
determinants of the functional expressivity of replays.
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Discussion

Using simulations and theoretical analyses of realistic biophysically constrained network
models, we show how interactions between intrinsic and synaptic properties of recurrent
neural networks grant a large set of functionally reliable, robust and generic attractor
dynamics including neural trajectories, despite the permanent disorganizing effects of
chaotic asynchronous irregular (Al) dynamics in which they occur during the awake state.

STDP learning of neural trajectories in the Al regime

Although neural trajectories display generic prevalence and functional significance in many
higher order behaviors and cognitive operations across numerous cerebral structures
(Batuev, 1994; Yang et al., 2014; Jadhav et al., 2016; Schmitt et al., 2017; Lundqvist et al.,
2018; Kaefer et al., 2020), current theoretical models have not explored the mechanisms
underlying their functional emergence and propagation under the jeopardizing conditions
encountered during awake cognition. Specifically, while Spike-Timing Dependent Plasticity
(STDP)-based learning is considered a natural candidate for the emergence of neural
trajectories, STDP-based models have not assessed how reliable and robust trajectories
could be achieved in real noisy physiological conditions. Indeed, certain studies simply do not
study trajectory replay in the Al state after learning (Hayashi and Igarashi, 2009; Clopath et
al.,, 2010). In others, trajectories cannot be replayed from an initial trigger (Klampfl and
Maass, 2013) or trajectory learning is either absent (Chenkov et al., 2017), based on artificial
learning rules (Sussillo and Abbott, 2009; Laje and Buonomano, 2013; Xue et al., 2021) or
biologically unrealistic neuronal activity and synaptic plasticity rules (Liu and Buonomano,
20009; Fiete et al., 2010; Klampfl and Maass, 2013), or even unrelated to external stimuli (Fiete
et al., 2010). Furthermore, certain models simply lack the Al regime of neuronal activity (Liu
and Buonomano, 2009; Fiete et al., 2010), removing the possibility to address sequence
reliability. Compared to existing models, here we operationalized the problematic of replays
in terms of stability and controllability of evoked replays, as well as the independence of
network dynamics outside the sequence. This allowed us to dissect biophysical mechanisms
that act as determinants of replays functionalities.

We found that the biophysical mechanisms considered (decreased disinhibitory
fluctuations, tonic inhibition or intrinsic CAN/JAHP conductances) were essential for the
expression of reliable replays, allowing synaptic plasticity rules to yield functional neural
trajectories. When varying the STDP temporal window and trajectory stimulus in the
presence of these mechanisms, STDP allowed controllable and stable replays of the
spectrum of principal known types of attractors, be they discrete static (Hebbian assemblies)
or dynamic (synfire chain, Hebbian phase sequence), as well as continuous static (ring-like
attractor) and dynamic (bidirectional ring attractor) attractors. Thus, the present model
offers a unified common framework for the learning and generation of reliable attractor
dynamicsin realistic, biophysical and physiological conditions, by contrast to previous studies
(e.g. Hayashi and Igarashi, 2009; Liu and Buonomano, 2009; Sussillo and Abbott, 2009;
Clopath et al., 2010; Fiete et al., 2010; Laje and Buonomano, 2013; Chenkov et al., 2017; Xue
et al.,, 2021). Hence, thanks to the interaction between STDP and the complementary
synaptic and intrinsic mechanisms unraveled here, stability and independence of discrete
static (Hebbian assemblies) attractors was increased. Dynamic attractors (synfire chain,
Hebbian phase sequence) could be reliably replayed, escaping the classical issue of
propagation failure or uncontrolled sequential propagation (Mehring et al., 2003; Chenkov et
al., 2017). Continuous static (ring-like attractor) presented virtually null levels of drift, a
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standard issue encountered in current models (Seeholzer et al., 2019). Finally continuous
dynamic attractors allowed bidirectional propagation of neural trajectories, which is novel
without a complex setup and hand-written synaptic matrices (Chenkov et al., 2017).

Here, we addressed the effect of chaotic Al network activity on trajectory replay with an
offline STDP learning procedure emulating a trajectory being learned before network
operation. In doing so, we did not assess the interactions between chaotic dynamics and
online STDP learning of the trajectory. Indeed, the possibility exists, e.g., of unstable activity-
connectivity runaway inducing over-strengthened connective pathway and incessant
replays, or of degraded Al dynamics. We have attempted to address these questions in a
similar model but with STDP operating online (Sarazin et al., 2021), although they remain to
be evaluated with all biophysical mechanisms and attractor types mentioned here (the
aforementioned article using the (I;454-4) Mmechanism with continuous uni-directional
neural trajectories only), and furthermore raises new questions (e.g. the biophysical
implementation of instantaneous or very fast synaptic scaling, Zenke et al., 2017).

Physiological consistency of the dual regime setting neural trajectory propagation
When investigating the underpinnings of network activity with and without activity packs
replaying the trajectory, we observed that spontaneous activity outside of packs was driven
by inhibitory current fluctuations (currents being balanced on average), while pack activity
was driven by strongly imbalanced excitatory NMDA currents. The GABA-A disinhibitory
fluctuation-driven spiking is consistent with cortical synaptic physiology. Indeed, inhibitory
neurons are ~4x less numerous than excitatory ones, thus the arrival of IPSPs is globally
sparser (i.e. at equivalent/slightly higher inhibitory firing frequency). Theoretical analyses
suggest that inhibitory currents need to be at least 4x stronger to compensate for the
difference in numbers to guarantee network stability (Brunel, 2000), so that individual spikes
lead to strong inhibitory currents. Lastly, GABA-A channel’s opening time constant is fast,
leading to high temporal variability, as evidenced in our results. Our study also unraveled the
crucial role of slow NMDA dynamics in increasing the reliability of trajectory propagation
(dynamic attractor), consistent with what is observed for object working memory subserved
by Hebbian assemblies (static attractor; Wang, 1999). Indeed, even though synaptic
reverberation plays a less important role in trajectory propagation compared to its role in
static neuronal assemblies, the slow and hetero-associative nature of NMDA dynamics
temporally helps bridging excitatory pack activity across potentially destabilizing inhibitory
current fluctuations as well as against weaknesses in transmission due to random sparsity-
inducing partial “holes” in the potentiated synaptic pathway.

Interactions of synaptic/intrinsic processes with plasticity for reliable trajectory replays
A theoretical analysis of network activity and pack propagation in a reduced (propagation
threshold theory) model allowed to predict that an excitatory frequency threshold existed
separating both inhibitory fluctuation (non pack) / excitatory deterministic (pack) regimes.
Modeling transitions between non-pack and pack activity as bistable excitatory frequency
dynamics with additive noise (regime transition theory) then permitted to estimate threshold
crossing probabilities and the way parameters affected the controllability and stability of
replays. Altogether, we found that factors promoting a larger separation between
spontaneous and propagation regimes (larger non-pack/pack frequency distance or lower
frequency variability) increases replay controllability. Also, replay stability increased with
factors limiting downward transitions from propagation to spontaneous activity (i.e. larger
mean and lower variability of pack frequency).
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Based on this knowledge , we have identified biophysical mechanisms increasing pack
controllability and stability in actual simulations of the whole network: 1) decreasing GABA-
A fluctuations (which decreased non-pack frequency and spontaneous replay probability), 2)
combining tonic frequency-independent inhibition with stronger recurrent excitatory
connectivity (which decreased non-pack frequency and increased pack frequency, increasing
controllability and stability), and 3) frequency-dependent CAN/AHP ionic currents (which
strengthened replays through transient bistability of individual neurons).

As a general rule, we found that a tradeoff dominated replay quality in that increased
controllability and stability generally decreased trajectory independence. This was a concern,
since independence represents the ability of a replayed trajectory to leave unchanged
network dynamics (outside the replay) and thus, in turn, the possibility for multiple
simultaneous independent trajectory replays. However, this question was partially alleviated
when neurons where endowed with CAN/AHP currents, hinting at the importance of the
interactions between synaptic and intrinsic properties in trajectory replay. Moreover, these
properties were robust to variations of model’s parameters up to 40% with the CAN/AHP
mechanism, reinforcing the biophysical plausibility and potential genericity of replays across
cerebral structures, since these currents are ubiquitous (Rodriguez et al., 2018).

Functionality of trajectory replays

An important aspect of our work concerned the reduction of the spontaneous occurrence of
trajectory replays. Indeed, obtaining spontaneous replays is trivial (requiring only strong
STDP), and does not explain the finer-tuned behavior of trajectories being reliably replayed
only when triggered. Furthermore, spontaneous replay can be detrimental when incessant or
overwhelming. However, spontaneous replays under certain contexts are observed
experimentally, such as in the cortex and hippocampus, when animals consolidate learnt
behaviors, evaluate past and future choices or switch to new behavioral rules (Jadhav et al.,
2012; Pfeiffer and Foster, 2013; Kaefer et al., 2020). Indeed, scarce spontaneous replay may
be functionally relevant, potentially anticipating future behavior (Diba and Buzsaki, 2007) and
consolidating memory during slow-wave sleep (Lee and Wilson, 2002; Euston et al., 2007)
and sharp-wave ripples (Girardeau et al., 2009), or potentially linking different sequences
(Buzsaki and Moser, 2013).

Similarly, very stable replays are not systematically required physiologically, as in the
case of transient dynamics, which have been theoretically described (Bondanelli and Ostojic,
2020) and experimentally observed (e.g. locust olfaction, Mazor and Laurent, 2005).
However, they clearly represent a strategic advantage for cognitive operations or temporally
complex behaviors, such as navigational trajectories and working memory delay period
sequences, which need to be reliably executed over several seconds or tens of seconds, as
when animals recall a navigation path, a movement or actively maintain a short-term
memory (Sreenivasan et al., 2014; Yang et al., 2014; Mello et al., 2015; Bolkan et al., 2017;
Schmitt et al., 2017; Spaak et al., 2017). It is to be noted that the longer the sequence, the
higher the probability of local excitation to gradually amplify along the connective pathway,
with a looped circular trajectory (Fig. 1) actually being of infinite-length, thus inducing higher
spontaneous replay probability than non-looped trajectories.

Besides, experimental data regarding the independence of trajectories is scarce, with
certain articles suggesting approximate independence of trajectory replay and network
activity in hippocampus and posterior parietal cortex (Pastalkova et al., 2008; Harvey et al.,
2012; Ito et al., 2015; Jadhav et al., 2016), whereas network activity is decreased in the PFC
(Jadhav et al., 2016) during trajectory replay. This independence, which is essential for the
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co-existence of parallel or distributed cognitive operations and alternative evaluations of
behavioral choice, deserves further experimental and theoretical investigation.

Biophysical plausibility of identified biophysical mechanisms

While we have characterized general biophysical mechanisms increasing controllability and
stability of trajectory replays through theoretical analysis, such mechanisms in the recurrent
networks of animals may vary among cortical and sub-cortical structures.

Amplified feedforward inputs onto inhibitory neurons combined with stronger excitatory
recurrent connections is reminiscent of mediodorsal thalamic activation, which increases FS
sustained frequency and amplifies local RS functional connectivity in rodent mPFC,
increasing the stability of sparse transient neural sequences and working memory
performance (Rikhye et al., 2018). The CAN and AHP mechanism appears prominent in layer
5 PFC pyramidal neurons (Haj-Dahmane and Andrade, 1997; Villalobos et al., 2004) and
ubiquitous among cortical and sub-cortical structures (Rodriguez et al., 2018).

Other mechanisms susceptible to improve quality of replays should be investigated. For
example, computations via dendritic compartments could allow non-linear integration of
synaptic inputs (Cazé et al., 2013; Tran-Van-Minh et al., 2015), e.g. by further amplifying
synchronous EPSPs or inducing backward-propagating dendritic spikes (such as in the
hippocampus, Jarsky et al., 2005), which could increase separation between spontaneous and
pack activity regimes. Similarly, short-term plasticity could help amplify EPSPs resulting from
coincident spikes through synaptic facilitation, as hinted to during PFC neural sequences of
rodents (Fujisawa et al., 2008) and monkeys (Barak et al., 2010; Stokes et al., 2013).

Non-stationary or noisy input from feedforward currents

Feedforward currents were considered constant in the present model, in order to isolate the
influence of network-generated synaptic-driven irregularity and chaotic dynamics onto
trajectory replay. However, temporally structured input from other areas, such as rhythmic
theta inputs from the hippocampus (Siapas et al., 2005; Benchenane et al., 2011) or delta
rhythms from the olfactory pathways (Moberly et al., 2018) onto the PFC, would strongly
affect trajectory replay. Indeed, oscillatory input induced spontaneous replays at each peak
of the oscillatory signal (not shown). We thus favored slow excitation and fast inhibition (as
the opposite fosters oscillations in any recurrent dynamical system) by increasing NMDA vs
AMPA and GABA-A vs GABA-B currents. Similarly, Poisson spike trains of neurons projecting
feedforward inputs onto the network introducing random noise into the feedforward
currents, or even more directly random noise onto synaptic currents, would destabilize pack
propagation and decrease trajectory controllability. Also, the role of inter-areal interactions
has not been explored here. The observation of coordinated trajectory replay between
structures (e.g. PFC — thalamus nucleus reuniens — hippocampus, Ito et al., 2015) deserves
further investigation, as it could arise from different distributed synaptic structures, i.e. a
connective pathway in only one structure which projects onto others, redundant connective
pathways learned in all structures, or distributed connective pathways spread across
structures.

Genericity of attractors

The biophysical mechanisms unraveled here allow controllable and stable replays of many
different types of attractors, critically depending on the modulation of the STDP temporal
window. Different STDP functions have been observed experimentally (Abbott and Nelson,
2000), and the LTP and LTD portions have been shown to respond to dopaminergic

15

132



neuromodulation (Zhang et al., 2009). We also found non-trivial interactions between the
static or dynamic structure of the stimuli and the temporal asymmetry or shift of the STDP
window, which constitute strong predictions to be verified experimentally in physiological
conditions. Another interesting avenue of future research would require evaluating whether
the identified mechanisms here allow independent replay of multiple trajectories in the same
network, depending on the degree of overlap between learned trajectories.

The present model accounts for neural activity underlying temporally complex
trajectories in explicit spaces (e.g. navigation), or in more implicit spaces (e.g. task space for
working memory). Such external or internal trajectories subserved by neural sequences
correspond to trajectories in the space of population activity (such as observed through
principal component analysis of network activity, Churchland et al., 2007; Cunningham and
Yu, 2014; Rubin et al., 2019). Population activity trajectories are prominently observed in
many cerebral structures and contexts, e.g. in primate motor cortex during reaching
(Churchland et al., 2012) and mammalian olfactory bulb or locust antennal lobe during
olfaction (Mazor and Laurent, 2005; Bathellier et al., 2008). However, the present model
cannot confidently account for all types of population trajectories. Indeed, while all neural
activity sequences result in population activity trajectories, all population activity trajectories
are not necessarily reflected by neural activity sequences. In other words, while we have
studied neural activity sequences where each neuron has clear separate sparse transient
activity bumps, it is less clear how synaptic learning rules could allow for the emergence of
more complex temporal signatures at the neuronal level, such as mixtures of neurons
ramping-up and down, or simply multiple activity bumps, which would also result in
population activity trajectories.
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Figure legends
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Figure 1. STDP-induced trajectory replay diversity within the balanced Al regime. (a) Randomly
connected recurrent neural network of 80% excitatory and 20% inhibitory neurons (14 neurons are
shown, whereas the model is composed of 605 neurons, i.e. 484 excitatory, 121 inhibitory). (b)
Asynchronous irregular network activity, with spikes (black dots) and membrane potential of neurons
across 4 seconds of simulation. (c) Subthreshold membrane potential and irregular spikes (top) driven
by current fluctuations, since excitatory and inhibitory currents are balanced on average (bottom). (d)
(Left) External circular trajectory stimulus (red circle), activating neurons through putative spatially-
organized receptive fields. Example activity of neurons (background colors) induced by the trajectory
stimulus at a given time point (black dot). (Middle) Temporal window of the STDP learning rule,
inducing LTP for positive time differences (pre- then post-synaptic spikes) and LTD for negative time
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differences (post- then pre-synaptic spikes). (Right) Resulting connective pathway, with normalized
arrows showing the direction in which outgoing weights are most potentiated (white to red arrow
color scheme with increasing arrow magnitude), and homogeneous background colors showing
similar sums of total incoming weights onto neurons (due to synaptic scaling) (e-h) Resulting
connective pathways induce a variety of different trajectory replays, which emerge spontaneously (e
& g) or can be evoked via a strong stimulus onto the first 25 neurons of the trajectory (red rectangle,
f& h).
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Figure 2. Pack propagation relies on a transition from GABA-A fluctuation- to NMDA mean
current-driven deterministic spiking. (a) Membrane potential (top) and GABA-A current (bottom) of
neurons when outside (left) and within (right) the trajectory activity pack, considered at the time scale
of an ISI or between two spikes. Data is aggregated by normalizing time between two spikes (no
matter the ISI duration). Background color shows the probability of individual membrane potentials
or GABA-A currents curves (sum normalized to 1in each time bin) across many ISl during one network
simulation of 4 seconds, with red curves showing the average (weighted according to the underlying
probabilities at each time bin). (b) Temporal average (top) and fluctuations (bottom) of total (left,
black), GABA-A (middle, blue) and NMDA (right, orange) currents onto neurons when outside (non-
Pack) or within (Pack) the trajectory activity pack, averaged across neurons.
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Figure 3. Theoretical account of the threshold separating, and transitions between, spontaneous
and propagation regimes (a) Propagation threshold theory. (Left) In a 1D reduced analytical model
(see Methods), frequency self-amplifies above fp and is extinguished below, i.e. as the membrane
potential reaches (AV > 0) or not (AV < 0) a fluctuation-based spiking threshold at time T = 1/f in
a post-synaptic neuron, given pre-synaptic spiking at frequency f. (Right) The theoretical model is
quantitatively consistent with network simulations at the fine-grain of ionic and synaptic currents in
both the low frequency spontaneous and the higher frequency pack regimes. (b) Regime transition
theory. (left) In a 1D reduced model of both regimes, frequency dynamics follows bistable dynamics
with added Gaussian noise. (Right) Example simulations of the regime transition theory. (c)
Probability of spontaneous and evoked transitions to the regime of pack propagation (dotted lines),
and of controllability and stability of the pack regime (solid lines) in the regime transition theory, as a
function of parameters (non-Pack and Pack mean frequencies and standard deviations, and the
threshold frequency).
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Figure 4. Modulation of controllability and stability by architectural, synaptic, and ionic
determinants. (a-d) Mechanisms for increasing trajectory replay controllability and stability, as seen
when varying different parameters, such as the GABA-A current fluctuations 6 (Ig 44— 4) (via a higher
number of inh. = exc. synapses, see Methods) (b), the frequency of external neurons sending AMPA
feedforward currents onto inhibitory neurons FFy,;, (c), and a multiplicative factor modulating CAN
and AHP conductances together gcan & ganp (d). STDP amplitude Asrpp was varied across the
different mechanisms (Asrpp = 47.5 for 6(Igaga—a), 75 for FF,p, and 50 for gcan & gaup), and is
shown as a control for comparison’s sake in (a). (Left) Non-pack and pack average frequency (+/-
fluctuations) and threshold frequency, when varying the aforementioned parameters (X-axis).
Normal parameter value (dotted vertical black line), and that chosen to illustrate the mechanism'’s
effects (solid vertical black line), are indicated. (Middle) Probability of spontaneous and evoked packs
(dotted lines), and pack controllability, propagation stability and independence (solid lines). (Right)
Example of trajectory replay with illustrative mechanism parameters. The (Asrpp, mMechanism
parameter) value couple of each mechanism was systematically determined as that maximizing the
product of controllability, stability and independence (all three being normalized between o and 1).
(e) (Left) Equilibrium values of CAN (red), AHP (blue) and total (CAN & AHP, black) currents of
excitatory neurons, when considering the time-averaged calcium concentration at different
frequencies. (Right) CAN and AHP conductances induced transient spiking bistability (rather than
mono-stability, conditional bistability or absolute bistability), as defined by the protocol in (Rodriguez
et al., 2018, see Methods). Solid vertical black lines indicate the chosen mechanism parameters. (f)
(Left) Average robustness of the physiological low-frequency asynchronous irregular network activity
with controllable, stable and independent trajectory replays, to the variation of 22 of the model's
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parameters (see Methods and Fig. S3). The different mechanisms, and the standard Model (@), are
compared. (Right) Contribution of the trajectory replay controllability, stability and independence
criteria to the overall robustness score.
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Figure 5. Acommon framework for attractor models. (a) Weight matrices underlying different types
of network attractors. White, grey and black colors indicate the strength of synaptic weights (white =
absence of synapses, grey = moderate weights, black = strong weights). (b) Modulation of the
asymmetric STDP window (black) when varying its symmetry (asrpp = 0, symmetric STDP window,
blue curve) and temporal shift (At = +50ms, red curve). (c-e) Altering the trajectory stimulus and
STDP learning rule, when combined with the aforementioned mechanisms allowing controllable and
stable trajectory replays, enabled the emergence of reliable attractors of different types, e.g. discrete
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vs. continuous and static vs. dynamic attractors, as in (a). (Left) External trajectory stimulus (as in Fig.
1.d left). Dotted red lines indicate a discontinuous trajectory, jumping from one black dot to the next
in a discrete manner (rather than continuously, as in (e)). (Middle left) STDP temporal window (as in
Fig. 1.d middle). (Middle right) Resulting synaptic weight matrices between pre-synaptic and post-
synaptic excitatory neurons on the Y- and X-axes respectively. Neurons affected by the trajectory are
regrouped and ordered according to their activation time within the trajectory. (Right) Examples of
resulting trajectory replay. The gcan & ganp mechanism was used forthe Hebbian assembly, multiple
Hebbian assemblies and ring-like attractors; the a(Ig4p4-4) mechanism was used for the synfire
chain, Hebbian phase sequence and bidirectional ring attractors; the Vprnn) mechanism was used
for the synfire chain. Additional modifications were necessary for the synfire chain (gampa =
0.5mS.cm™2, gympa = 0 mS.cm™2 instead of 0.2 mS.cm™2, gyypa = 0.3 mS.cm™2 for rapid pack
propagation) and bidirectional ring attractors (see Methods).
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Network statistics
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Figure Sa. Distributions of network statistics over many network simulations. (a-h) Probability
density functions of network spiking statistics, calculated on 100 network simulations of 1o0s.
Frequency (a), CV (b), CV2 (c), and Lv (d) of individual excitatory (red) and inhibitory (blue) neuronal
spiking activity. Synchrony measure (e), Fano factor (f), average pairwise correlation coefficient (g),
and Lyapunov exponent (h) of network spiking activity. (i) Chaotic network activity seen through
sensitivity to initial conditions. A network was simulated in identical initial conditions, until a single
randomly chosen spike at ~300ms (green cross) was either kept (red spikes) or removed (blue spikes).
Overlap in spikes between in both simulations are colored in black (notice that all spikes are identical
and thus black before the green cross). (j) Same as (i), but average network frequency of both
simulations (red & blue, overlap in black). (k) Stronger IPSC than EPSC, allowing balanced total
currents and thus fluctuation-based spiking. IPSC and EPSC are subdivided into their individual
(AMPA, NMDA, GABA-A, GABA-B) components.
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Figure S2. GABA-A fluctuations and alternative effects of lowering disinhibition on replay quality.
(@) 0(Igapa-a) asafunctionof fi_,g or Tgapa—aexc) (foreachvalue of these parameters, gcapa—-a(exc)
was compensated so as to get a constant mean GABA-A conductance). (b-d) Same as Fig. 4a-d, but
when varying the GABA-A current time constant of excitatory neurons Tgapa—a(exc) (Asrpp = 57.5)
(b), Leak conductance of inhibitory neurons g, nn) (Asrpp = 67.5) (c), and multiplicative factor of
recurrent current conductances impinging upon inhibitory neurons px_,; (Asrpp = 60) (d). For
TgaBa-A(Exc), Ap of inhibitory to excitatory neuron synapses were modulated in order for average
Pcapa-a to be kept approximately constant at v = 5.5 Hz, i.e. weakened for longer Tgapa—a(gxc)- TO
do so, Ap was multiplied by the estimated average pgapa—a value at v = 5.5 Hz for Tgapa—a(exc) =
10 ms (calculated as paypa,,) @nd divided by the same estimate but for the chosen value of

TGABA-A(Exc)-
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Robustness to each individual parameter
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Figure S3. Robustness to parameters. Computation of the robustness score, quantifying to what
extent the physiological low-frequency asynchronous irregular network activity with controllable,
stable and independent trajectory replays is robust to the variation of the model’s parameters. (a)
Parameters varied (see Methods). (b) List of criteria that need to be simultaneously met within a
model network simulation for it to be considered “correct”. (c) Detail of the robustness score for each
individual model parameter, for the different mechanisms and standard model (@).
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Methods

Model of biophysical local recurrent neural network

We built a biophysical model of a generic local recurrent neural network, endowed with
detailed biological properties of its neurons and connections, as in (Sarazin et al., 2021). The
network model contained N neurons that were either excitatory (E) or inhibitory (I) (neurons
projecting only glutamate or GABA, respectively; Dale, 1935), with probabilities pz and p; =
1 — pg respectively, and pg/p; = 4 (Beaulieu et al., 1992). Connectivity was sparse (i.e. only
a fraction of all possible connections exists, see pg_g, Pe—1, Pi-E, P11 Parameter values;
Thomson 2002) with no autapses (self-connections) and EE connections (from E to E neurons)
drawn to ensure the over-representation of bidirectional connections in cortical networks
(four times more than randomly drawn according to a Bernoulli scheme; Song et al., 2005).
The synaptic weights w; ;y of existent connections were drawn identically and independently
from a log-normal distribution of parameters u,, and o,, (Song et al., 2005). To cope with
simulation times required for the massive explorations ran in the parameter space, neurons
were modeled as leaky integrate-and-fire (LIF) neurons.

The membrane potential followed
o _ g +1 +1
dt - ( Ionic(j) Syn.Rec(j) Syn.FF(j))
Vi) > 8 = Vi) = Veest

where neurons spike when the membrane potential reached the threshold 6, and
repolarization to V,..; occurred after a refractory period At,p. Initial membrane potential of
neurons were randomly drawn from a uniform distribution between 68 and V,..;.

The ionic current followed

lionicj) = Iy + Icangy + lanr()
in which the leak current was
=g, (Vy— V1)

where g; was the maximal conductance and V;, the equilibrium potential of the leak current.

The cationic non-selective (I;4y) current and the medium after-hyperpolarization (I44p)

currents, responsible for frequency adaptation and bistable discharge in pyramidal neurons,
were taken as

L = g« px* (Vi — )
where p, (x € {CAN, AHP}) corresponded to the opening probability of both currents and

Yx the gating factor of opening probabilities. Denoting the intra-somatic calcium
concentration as Ca, p, followed
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apx
dt

= (py (Ca) — py)/7x(Ca)
with
1.(Ca) = 1/(ayCa + By)
and
px (Ca) = ayCa/(axCa + By)
where a, and B, respectively denoted activation and deactivation kinetic constants,
consistent with experimental data in layer 5 PFC pyramidal neurons (Haj-Dahmane and

Andrade, 1997; Villalobos et al., 2004; Faber and Sah, 2007).

The intra-somatic calcium concentration evolved according to discrete spike-induced
increments and first-order exponential decay

dCa(j) _ Cao - Ca(j)
dt Tca

+ACa &(t — tf5))

where té‘j) was the time of the kw spike in the spike train of neuron j, § the Dirac delta
function, 7., the time constant of calcium extrusion, Ca, the basal calcium and ACa a spike-
induced increment of calcium concentration.

The recurrent synaptic current on post-synaptic neuron j, from — either excitatory or
inhibitory — pre-synaptic neurons (indexed by i), was

Lsyn rec(j) = Z(IAMPA(i,j) + Inmpaci,j) Fleapaac,j) T IGABAB(i,j))
i

The delay for synaptic conduction and transmission, At;,,, was considered uniform across
the network (Brunel and Wang, 2001). Synaptic recurrent currents followed

L jy = Gx W jy Pxy (Vo) — Vo)

where w; j is the synaptic weight, p,(;) the opening probability of channel-receptors and Vi
the reversal potential of the current. The NMDA current followed

Inmpa(,j) = Gnmpa Wi, j) PNMDA(D) xNMDA(V(j))(V(j) — Vmpa)

incorporating the magnesium block voltage-dependence modeled (Jahr and Stevens, 1990)
as

xNMDA(V) = (1 + [Mg2+]e—0.062 V/3_57)—1
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AMPA and GABAA, rise times were approximated as instantaneous (Brunel and Wang,
2001) and bounded, with first-order decay

dpx(i) px(i)
dt - pdecay + Apx (1 - px(i)) 6(t - té‘i))

b

To take into account the longer NMDA (Wang et al., 2008) and GABA-B (Destexhe et al.,
1998) rise times, opening probabilities followed second-order dynamics (Brunel and Wang,
2001)

dgx i) __%0

+4q, (1 - qx) 8(t — 1)

dt T;ise
dpxi) Dx(i)
dt = _Tdecay T Ay 4w (1 - px(i))

X

Recurrent excitatory and inhibitory currents were balanced in each post-synaptic neuron
(Xue et al., 2014), according to driving forces and the excitation/inhibition weight ratio,
through

— _(Vmean B VExC) ZiEExC Wi )
9caBa, = 96aBa, (

Vinean — VGABAA) Liemn Wi, )

— _ _(Vmean - VExc) ZiEExc W(i,j)
9caBag = YcaBAg (

Vmean - VGABAB) ZiEInh Wi,

With Vpean = (0 + Vyest)/2 being an approximation of the average membrane potential. The
excitation/inhibition weight ratio notably balanced the currents coming from inhibitory
neurons with the 4x more numerous excitatory neurons (rendering inhibitory currents 4x
stronger on average). When specified (.e2 and Fig. S2.d), both excitatory and inhibitory
conductances onto excitatory neurons were multiplied by gx_, g, and onto inhibitory neurons

by gx-1-

The feed-forward synaptic current sy rr(j) (putatively arising from sub-cortical and
cortical inputs) consisted of an AMPA component

ISyn.FF(j) = JampA PAMPApg (V(j) - VAMPA)

with a constant opening probability psypa,., determined as the temporal average of AMPA
channel opening coming from ngr neurons of putatively sub-cortical and cortico-cortical
feedforward spiking at a given frequency v, thus following

1
ApAMPA (1 — e TAMPA nFFVFF)
Pampapr = Tampa MrF VFF 1
1+ (ApAMPA — 1) e TAMPAMFFVFF
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via integration (considering regular ISI for simplification during the integration). pspp 4, Was
considered constant so as to isolate the influence of deterministic chaos and spike irregularity
on trajectory replay. However, to guarantee an initial stimulation sufficiently strong to start
network activity, feedforward AMPA inputs were stronger at first (nzz = 200 neurons, Vgr =
3 Hz) and progressively decreased during 250 ms to their constant value (vgr = 2.315 Hz;
these initial 250 ms were cut from all figures and analyses). Trajectory replay was evoked at
2s (Fig. 1e-h, red square) when the first 25 neurons of the trajectory received a strong
feedforward AMPA stimulation (ngr = 20 neurons, Vgr = V. stim. = 50 Hz, emulating a
strong signal coming from few neurons). The epoch before this trajectory-evoking stimulus
was considered “Spontaneous” and the epoch after "Evoked”.

Learning protocol

The neural network was subjected to "offline" learning, i.e. before the network simulation,
during which the receptive fields of excitatory neurons were sequentially stimulated. The
resulting neural frequency conditioned learning of synaptic weights via STDP between
excitatory neurons. This “offline” learning procedure would correspond to the trajectory
stimulus being learned and memorized long before the time of simulation.

Neuronal receptor fields existed in a 2D spatial area (Fig. ad left) following non-
normalized bivariate Gaussian functions around their center points (x;, ;) organized along a
square grid. For a stimulation point s (x,(t;), ys(ts)) of intensity I; at moment t,, the
resulting neural frequency of the stimulation of the receptive field was

_<(x}'_xs(ts))z+(yj_YS(t3))2)
Z
Vj (ts)=1Ise OkE

This stimulation was part of a dynamic spatiotemporal trajectory moving as time went by.
The synaptic weights between neurons were then altered in proportion to their frequencies
according to a phenomenological STDP rule (see below). A circular trajectory was chosen in
order to study the sequence replay stability across multiple circle loops. The trajectory
stimulus advanced by 0.05 (in the spatial area reference) every dtr,,; = 20 ms time step,
with a small overlap between the trajectory start and end to ensure looping. For discrete
stimuli (Fig. 5), the trajectory cycled 10x through the shown sequence of black dots (with the
same trajectory time step). Neurons were considered as belonging to the trajectory when any
of their stimulation-induced v;(t;) > 5% of the maximum neuron frequency the trajectory
produced.

Spike-timing dependent plasticity

We assessed various STDP temporal windows, from entirely asymmetric (agrpp = 1) to
symmetric (asrpp = 0) and time-shifted (ATsrpp) functions. To modulate STDP symmetry,
we identified two STDP functions, an asymmetric and a symmetric one (whose integrals
equal o, so that LTP and LTD contributions are balanced), and then performed a linear
combination of both to obtain various degrees of STDP temporal asymmetry. However, even
though the integral stayed null, the integral of the positive part changed, which we corrected
by normalizing according to the asymmetric function’s integral’s positive part. As such, the
STDP function followed
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At — AT, _(At=ATsrpp)?
Fasym(At) = Asrpp V2e ———STPP ( )

TSTDP
Tstpp ,
At — AT, 2\ _(At—ATsrpp’
foym(4t) = Agrpp (1 -2 (i) )e ( TSTDP )
TsTpP

fmixed (A t) = aSTDPfasym (A t) + (1 — OsTDP )fsym (A t)

ff asym(4t)>0 f asym (A t)

fstop(At) = frixea(4)
STDP mixed ffmixed(At)>0 fmixed ( A t)

where At = t,,5 — tpre Was the temporal difference between pre- and post-synaptic spikes,
Agrpp the STDP amplitude and t57pp the STDP time constant. As such, taking into account
the frequencies of pre- and post-synaptic neurons and the time difference between
stimulation times, the weights were changed according to

Awij(tsﬂ tsz) = Z z Vi(tsl)vj (tsz) f:S‘TDP (At)

tsl tSZ

with At = t,, — t;,. A lower hardbound limit (w = 0) was imposed after STDP learning,
whereas no upper hardbound limit was imposed.

Synaptic scaling

In order to keep neuronal activity within certain putative homeostatic bounds (Turrigiano et
al., 1998), synaptic weights entering a postsynaptic neuron are subjected after STDP learning
to a simple multiplicative phenomenological form of synaptic scaling, potentially
representing hetero-synaptic LTD, where the sum of weights impinging upon a pyramidal
neuron is kept constant before and after STDP. This is written

_ i Wge fore STDP(i,j)
Wscaled(i,j) = Wafter STDP(i,j) 5y
i

Warter STDP(i,j)

Detection of packs

In order to detect propagating activity pulse packets along the synaptic pathway, we first
convolved neural spiking activity with a centered normalized Gaussian function where o =
30ms, to then spatially convolute it with the bivariate Gaussian receptive field function (see
above) centered on the discrete points of the spatiotemporal trajectory. Such smoothing
procedures allowed us to reliably choose a frequency threshold (12.5Hz) above which
trajectory point were considered “active”. Conversely, from these “active” trajectory points,
we considered trajectory neurons “active” when at least 40% of the trajectory points having
stimulated that neuron’s receptive field (weighted by the neural frequency resulting from
trajectory stimulation) were “active”. This allowed us to define pack emergence as when at
least 20 dynamically changing but consecutive trajectory neurons were “active” at any time
during 500 successive milliseconds (ensuring activity packets were strong enough, e.g. Fig.
1e-h white spikes).

Determining pack and non-pack frequency average, fluctuations or threshold

fap and o,p were determined as the frequency average and fluctuations of the
aforementioned spatially-convoluted trajectory points of neurons outside the pack during
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periods without packs, while fp and g, were similarly determined but for neurons within the
pack during packs. By manipulating the frequency of neurons along the trajectory f; through
different levels of feedforward AMPA currents, the frequency threshold fy was determined
as the minimal f,,p for which packs propagate constantly (= 1900 ms out of 2 s total, and
Pspont = 0.95). This understanding derived from the predictions of the bistable and noisy
regime transition model, mimicking the process where the non-pack frequency f,,» stable
fixed point increases until it annihilates with the threshold fy unstable fixed point (as in a
saddle-node bifurcation), in which case only the pack frequency f; stable fixed point remains
and packs thus propagate constantly.

Maximum Lyapunov Estimate

To quantify the chaotic nature of the network’s activity, we estimated the maximum
Lyapunov exponent A on the one-dimensional time series of the estimated instantaneous
spiking frequency (o = 30 ms) averaged across excitatory neurons, based on the MATLAB
program developed by Wolf and colleagues (Wolf et al., 1985). To do so, we reconstructed
the phase space through time-delay embedding with heuristics agreed upon in the literature
(Huffaker, 2010; Klikova and Raidl, 2011). The lag length was estimated as the first lag length
for which the autocorrelation coefficient AC < e® (Kantz and Schreiber, 2004). The
embedding dimension was estimated via a MATLAB program developed by “Mirwais”
Kizilkaya (Kennel et al., 1992) according to the false nearest neighbor method (Kennel et al.,
1992; Hegger and Kantz, 1999) as the minimal dimension with 0% false nearest neighbors as
determined by tolerance factors (R;,; = 10, 4;,; = 2, Kennel et al., 1992).

Spiking variability and synchrony

Spiking variability and synchrony measures are calculated as in (Sarazin et al., 2021). In an
effort to compare spike variability between our model and experimental data, we quantified
the coefficient of variation (CV) of the inter-spike interval (ISl) distribution of the spiking
trains of neurons in the network (Compte, 2003) according to

0,
cv=-—"

Mrst

However, the CV measure assumes stationarity of the data. Since this assumption isn’t
necessarily verified, we also computed the CV2 and Lv of the spike trains to evaluate the
variability of ISls at a local level, according to

|ISI 41 — IS |
Vo =< 2q  FIs1,
__(USL = ISIy4)?

Ly =<3 st ¥ 15T, )2 %

CV = CV, = Lv = 1 for an ISl distribution drawn from homogeneous Poisson spike trains
and = 0 for perfectly regular spike trains (all ISI are equal). CV typically stand around 1to 1.5
in vivo, while CV2 and Lv stand around 0.25 to 1.25 and o to 2 respectively in vivo (Compte,
2003; Shinomoto et al., 2005). CV was calculated on all ISI, while CV2 and Lv are calculated
for each neuron then averaged across neurons.
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Multiple synchrony measures were calculated, a synchrony measure S (Golomb et al.,
2001), pairwise correlation coefficient averaged over all pairs of neurons < p >
(Tchumatchenko et al., 2010), and Fano factor F, following

Var(< f >,)
< Var(f(n)) >,

1 cov(f(i).f(j))
SP>=vv 1
N(N - 1)/ZZ ]Z:‘ \/Var(f(i))var(f(i))

_ Var(X, sn)
< YnSp >t

F

where f was the estimated instantaneous neural spiking frequency via Gaussian convolution
(o0 = 30ms), n the neuron index, and s the population sum of spike counts, where S =
1
N
= 1 while F increased for perfectly synchronous network activity.

~0.041,< p >= 0and F = 1 for perfectly asynchronous network activity, and § =< p >

Protocol for assessing the nature of intrinsic bistability

The protocol for evaluating the nature of neural intrinsic bistability, taken from (Rodriguez et
al., 2018), consisted of a strong phasic input (of amplitude 26,,, during 200 ms) followed by
aweaker delay-period tonicinput (of amplitude I;,, ; during 10s), in order to reveal conditional
bistability activated by the phasic input but conditional on (i.e. requiring the) weaker delay-
period tonic input. 6, corresponded to the minimal delay-period tonicinput current required
to induce sustained firing during the delay without the strong initial phasic input, and 6,
the same but with the strong initial phasic input. 8;,4nsiene Was the same as 6,5 but
corresponded to the minimal delay-period tonic input required to induce unstable (rather

than sustained) firing. Firing was considered sustained when there were three or more spikes
IS4 —ISIg

ISIy
inferior to 0.05). Otherwise, firing was considered unstable for a single spike beyond 25ms
after the initial phasic input, or for two spikes or more during non-sustained firing.

When 6, = 6,¢¢ = Otransient, the neuron was considered monostable, i.e. the strong
initial input current did not activate any intrinsic mechanisms generating sustained firing.
When 68y, = 0555 > Otransient: the neuron was considered transiently bistable, the strong
initial input inducing weak mechanisms generating unstable (but not sustained) firing. When
Bon > O,5f, the neuron was considered conditionally bistable, since the delay-period input,
weaker than the initial phasic input but non-zero, could induce sustained firing, bistability
being thus conditional upon the delay-period input. Finally, if 6,, > 0 > 6,¢f, the neuron’s
bistability was considered absolute, i.e. sustained neuronal firing after an initial input lasts
until a hyperpolarizing current stops it.

during the last 2 s of the tonic input with stable ISIs (determined when < > was

Calculating robustness to variability of the model’s parameters

We studied how sensitive the phenomenon of interest (namely controlled, stable and
independent trajectory replay with asynchronous irregular network dynamics) was to the
variability of model parameters, since biological systems present strong variability. To do so,
we systematically varied important parameters, and defined a list of criteria which all need
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to be met (Fig. S3), encompassing physiological peak conductance ratios (top row), spiking
activity regime (middle row) and controllable stable independent trajectory replays (bottom
row). Sustained network activity (middle row) was determined when the maximal duration
without network spikes was 10oms, to exclude strongly oscillating networks prohibiting
controllable trajectory replay. Physiological neuronal activity was determined when neuronal
activity was 100Hz at most for 250ms (to exclude trivial cases where trajectory replay was
detected as a single neuron firing at 100Hz during sooms). CV and CV2 were determined
during the spontaneous epoch (before the trajectory replay evoking stimulus at 2s, Fig. 1e-
h).

Parameters were varied over a range of 40 equally-spaced values, generally spanning

G, 3)x the standard parameter value. Network simulations were repeated 5 times for each

value (due to the potential variability of trajectory replays), with each repetition being
evaluated independently concerning the criteria. The robustness score was calculated as

Ap
<p>

R =

where < p > represented the average correct parameter value (weighted by the proportion
of correct repetitions), and Ap the sum of correct parameter steps (once again weighted by

the proportion of correct repetitions) where a step was the difference between the next and

|Pk+1—DPr-1l

previous parameter value divided by 2, or (values being equally spaced).

This robustness score was conservative no matter the arbitrarily chosen range, to the
extent that all robustness scores are biased underestimations approaching their true maximal
limit value. Indeed, robustness was only limited by 1) how large the parameter range
considered was (for the maximal value) and 2) how close parameter steps were (for the
minimal value). The robustness score decreased from its true maximal value with ranges too
small and step values too large. Contributions of individual criteria (Fig. 4f, right) were
calculated as the Ap when considering only that one criteria (with the same < p > value
calculated over all criteria, for better comparison of individual contributions).

Numerical integration and parameters of the biophysical network model
Models were simulated and explored using custom developed code under MATLAB and were
numerically integrated using the forward Euler method with time-step At = 0.5ms in
network models.

Unless indicated in figure legends, standard parameter values were as following.
Concerning the network architecture, N = ng,. + n;,, = 605 neurons, pg,. = 0.8, so that

Ngxe = NPgyc = 484 neurons and n;,,, = Np;,, = 121 neurons. Concerning Integrate-and-
Fire neuron properties, C = 1 uF.cm™2, Vyo5e = —=65mV, 8 = =50 mV, Vypeqn = sztﬂ9 -

—57.5mV, Atsp = 3 ms. Concerning ionic currents, g, = 0.05mS.cm™2, V, = =70 mV,
Jean = 0mS.cm™2, Vpay = 30mV, acay = 0.03125 uM~t.ms™1, Boay = 0.025 ms™1,
Yean =1, Gaup = 0mS.cm™2, Vyyp = =90 mV, aypp = 0.125 uM =1 ms™, Bypp =
0.025ms™Y, yaup = 1,4Ca = 0.2 uM, Cay = 0.1 uM, 7., = 100 ms.  Concerning  the

weight matrix, u,, = 0.03, o0, = 0.015, pPg_g = Pg>; = P1>1 = Pi-g = 0.3. Concerning

synaptic  currents, Atgy, = 0.5ms, Gampa = 0.2 mS.cm™2, Toes? = 2.5ms, Gympa =

0.3 mS.cm™2, ayypa = 0.275 ms™2, Thiss 4 = 4.65 ms, Thony = 75ms, [Mg**] =

1.5mM, Vampa = Vampa = 0mV, geapa, = 0.35mS.cm™2, 15457, = 10ms, Voapa, =

44

161



— -4 -2 — -1 _rise _— decay _
—70mV, ggapa, = 5:107* mS.cm™%, agapay, = 0.015ms™, 1635, = 90 ms, TGABAR =

160 ms, VGABAB = _90 mV, ApAMPA = AqNMDA = ApGABAA = AqGABAB = 0.1 Concel’ning
the learning procedure and STDP, oz = 0.13, I; = 0.02925, t57pp = 100 ms, Asrpp = 50,
asrpp = 1, ATsrpp = 0O ms.

Parameters for the biophysical mechanisms (Fig. 4) were systematically determined as
the (Asrpp, mechanism parameter) value couple maximizing the product of controllability,
stability and independence (all three being normalized between o and 1).

For the bidirectional ring attractor (Fig. 5.e2), model parameters were as followed:
pi-g = 0.4, 9x-e = 1.5, 9x-1 = 0.5, Janp = 0.2mS.cm™?, Qaup =
0.001 [.tM_l.mS_l, ﬁAHP = 0.002 'm.S_l, Yaup = 2, IS = 0.03.

Propagation condition model

We evaluated conditions for propagation of a pack of activity between neurons along the
trajectory. Basically, propagation requires that, on average, spiking at frequency f in
(upstream) pre-synaptic neurons must induce spiking at a frequency superior or equal to f in
(down-stream) post-synaptic neurons. Therefore, we wrote a set of equations where pre-
synaptic AMPA and NMDA input currents to a post-synaptic neuron are scaled by the firing
frequency f of the pre-synaptic neuron and searched for frequency conditions where post-
synaptic neurons fire at a frequency at least f. This propagation condition model is an
extremely simplified one-dimensional reduced representation of pack propagation within
the local cortical recurrent network. This model is space-free and shall be considered as a
representation of internal dynamics within the pack during its propagation, i.e. in a referential
moving at the speed of pack propagation. Noticeably, the propagation condition model only
considers a pre-/post-synaptic feedforward interaction, but does not take into account
possible recurrent effects of the post-synaptic neuron on the pre-synaptic neurons or on the
network. The propagation condition model nevertheless considers incoming excitatory and
inhibitory inputs from the entire network onto the post-synaptic neuron. These inputs are
lumped together into common AMPA, NMDA and GABA-A terms that are quantitatively
fitted on average synaptic currents impinging pack neurons in network simulations. The
additional assumption is made that excitatory currents are essentially provided by upstream
neurons within the pack (vs from neurons outside the pack, whether inside or outside the
trajectory), so that AMPA and NMDA currents are scaled by f.

To tract the problem in a deterministic way, we leveraged from the observation that,
regardless of whether neurons spike in the spontaneous regime or within the pack, 1) ISls
generally terminate through rapid final depolarizing fluctuations, due to chaotic dynamics,
and that 2) these fluctuations start Ats,..~15ms before spiking. We numerically
determined, from all ISIs during pack activity in network simulations, the mean time-to-
spiking Atgpiking (V, f), as a function of the membrane potential and the firing frequency of
the current ISI. We found that Atsyiking(V, f) = Atgpce Was largely independent of firing
frequency, which allowed numerically estimating Vg (around -53 mV).

We also considered, based on neuronal dynamics in the network model, that the
membrane potential was essentially deterministically driven — before reaching V5 and the
final fluctuation to spiking— by average input and leak currents. Thus the membrane potential
converged exponentially to its steady state V* :

V() =V (f) + (Ve = V" ()exp (—=t/tm(f)),
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where VV*(f) was obtained from the equilibrium of ionic currents at steady-state:

Iampa®srgf (V' — Vampa) + Gnmpa®sg fm(V) (V" — Vimpa) + Geasa—a (V™ —
Veapa-a) + 9.V = V1) + Gamparr (V" — Vamparr)) = 0,

with a4 a conversion factor for dimensional compatibility and the non-linearity of the NMDA
approximated to its value V', so that one can solve explicitly in terms of V*:

* _I JAN -1
V() =+,
with

I =g,V + Gcapa-aVeapa-as

9 =91 * 9capa-a + Gamparr:

and

gan = Arg(Gampa + Gnmpa)

which could be linearized (g%f <K 1)to

V() =, (-2,

the membrane time-constant writing

C

Tm(f) =

JAMPAQfgf+GNMDAAfgfM(V')+GGABA-A+JL+TAMPAFF '

and

IPack
AMPA

gAMPA ufgfpack((VPaCk>_VAMPA) !

IPack
NMDA

gnmpa afgfpack(VP2K)—VNmpa) '

1§55
ABA-A =
ge (vPacky-Viapa-_a)'

Il}"ack

9o = Wrey—vyy

—_— IEI‘\IJCI;(A FF
9aAMPA-FF ((VPaKky—V gprpa—FF) '
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being estimated from pack mean membrane potential (V7%°*), mean currents (see below)
and mean firing frequency f,,4cx obtained from network simulations.

As a final step of the propagation condition model, we then computed:
AV =V (e=3) = Vi = V(D) + Ve = V' (exp (= tm(H™) — V5.

A negative AV (f) indicates that the potential has not yet reached, at time T = %, the

threshold Vg yielding rapid fluctuation-driven spiking so that post-synaptic frequency is lower
than f, the pre-synaptic firing frequency. Therefore, propagation will fail. Conversely, a
positive AV (f) indicates that the post-synaptic frequency exceeded the pre-synaptic one, so
that propagation continues downstream. Finding a critical frequency f, such that AV(fy) =
0 indicates that pre- and post-synaptic frequencies are equal and propagation of spiking
occurs a frequency fy. Moreover, the slope of AV(f) at f, determines the stability of the
propagation. A negative slope indicates a stable propagation at frequency f, as fluctuations
(due to chaotic network dynamics) will be quenched out by restoring forces driving back
frequency to fy (frequency increases below fp (AV(f) > 0) and decreases above it (AV(f) <
0)). A positive slope, to the contrary, indicates an unstable propagation with firing frequency
ineluctably diverging from fj.

Computing the model indicated that, under our simplifying hypotheses, a single
critical frequency f was found at which the slope of the AV(f) was positive (see Results).
Therefore, the propagation condition model suggested that f, corresponded to an unstable
fixed-point in the frequency dimension, acting as a threshold that separated, for trajectory
neurons, the spontaneous regime (no pack propagation) from the regime of pack
propagation. Actually, the propagation condition model predicted the value of fy quite well
(see Results), with a value very close to that directly estimated from network simulations (see
below). The quality of the propagation condition model was also evaluated by computing
mean currents and comparing them to those found in network simulations (see Results).
Currents were computed as:

Limpa(f) = gAMPAafgf((V)(f) — Vampa),

Inupar) = gNMDAafgf«V)(f) — Vmpa),

Igapa-a(f) = Geapa-aV)f) — Vapa-a),
L) =g,V — W),

Lampa-rr(r) = ampa—rr AVY() — Vampa—rr),

where

M) = V() = frmn (D Ve = V' (M) (exp(—f Tt (™) — 1),

Regime transition model
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Although well estimating fp and average currents (see Results) propagation condition, the
model was however unable to identify the two stable frequency fixed-points f;,,n—pack and
frack setting the average spiking frequency in the spontaneous regime and during pack
propagation in network simulations. This was because the simplifications regarding recurrent
interactions within the network between excitatory neurons within the pack and neurons
outside the pack (i.e. excitatory neurons inside and outside the trajectory and inhibitory
neurons) were too strong to account for the non-linearity ensuring negative feedbacks in the
vicinity of fron—pack and fpack stable fixed-point.

However, to better understand propagation of the pack within the network, we
considered the co-existence of the unstable f, fixed-point and of the two stable f,,,n_pack
and fpqck stable fixed-points to build a phenomenological one-dimensional reduced regime
transition model. Moreover, to evaluate the ability of this simplified model in explaining
complex propagation behavior in the whole network by a simple model based on an unstable
fixed-point separating two spontaneous and pack propagation regimes, we included a
stochastic component and determined to which extent the simplified propagation model was
able to evaluate transition rates between the spontaneous and propagation mode in
trajectory neurons. Specifically, the probability of the emergence of propagating packs from
the spontaneous regime, p(SpP)), the probability of propagating evoked packs p(EvP)) and
their duration (d (SpP))) were computed from the model.

In the model, the firing frequency of neurons within the trajectory followed:

df P

E = _af(f - fnon—pack)(f - fe)(f - fpack)/Tf + or dtx(t)

were ay is a scaling factor, 7,=T,, (fy), x(t) is a Gaussian stochastic variable with mean o and
standard deviation 1 and o = Gpon-pack for f < feriterion @and 0f = Opqer for f =
feriterion With Opon_pack and Opqcr estimated from network simulations. The empirical
estimation of fy in the network model was obtained by finding the frequency best separating
pack and non-pack frequency distributions (see above).

Parameters

ary =1mS.cm™2.Hz™', V5 = —53.05mV, (V%) = —-53.23mV, fuon-pack = 6.48 Hz,
foack = 14.34 Hz, fo = 9.7 Hz, ay = 1e — 352, Opon-pack = 1.96 Hz, 0pq = 3.55 Hz.
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Chapter 6. "“Online” STDP learning and replay of
neural trajectories in synaptic noise

6.1. Summary

The previous chapter evaluated the conditions under which controllable, stable and
independent trajectory replay can emerge within Al chaotic awake cortical activity. However,
trajectory learning and replay phases were separated, with learning occurring “offline”
beforehand via phenomenological STDP and network simulations of trajectory replay studied
afterwards without synaptic plasticity, even though noisy activity affects both trajectory replay
and learning. Indeed, activity-dependent synaptic plasticity with noisy activity can add erratic
synaptic modifications within and outside the synaptic engram during trajectory presentation,
as well as gradually erase the learned synaptic engram through non-specific plasticity.
Conversely, trajectory stimuli and replay activity can disrupt the stationary Al regime via
runaway activity-plasticity interactions. Even without synaptic engrams, the complexity of Al
dynamics undergoing STDP might drastically decrease from chaos to limit cycle (e.g. saturation)
or even fixed points (e.g. silence).

We addressed these issues in a PFC neural network model capable of stable and controllable
replays (building upon the previous chapter), and studied trajectory learning, replay, and
memory maintenance, with calcium-based “online” STDP learning and instantaneous scaling of
excitatory synapses occurring within the Al regime of awake cortex. We found that calcium-
based STDP preserved Al dynamics due to the faint activation of kinase/phosphatase cycles at
near-basal synaptic calcium during rest stationary activity. Massive calcium inputs during
trajectory learning stimulus led to rapid learning of the synaptic chain (pathway). The existence
of a dynamic engram didn’t affect Al dynamics during rest activity, and stimulating the starting
neurons allowed successful trajectory replay.

Weak non-specific plasticity induced by low-frequency noisy activity led to slow forgetting of
the dynamic engram (~2h) and faster forgetting of trajectory replay (~15min). To compensate
engram erasure, repeating trajectory replays led to positive activity-plasticity feedback loops,
resulting in paroxysmal activity and catastrophic forgetting. Slowing down plasticity in
response, combined with multiple learning stimuli, led to proportionally slower engram erasure
and less likely paroxysmal activity. Trajectory replay was consequently maintained ~3x longer
than expected, since repeating learning stimuli simultaneously replayed the trajectory,
recruiting more neurons and further stabilizing the engram. As such, slower plasticity allowed a
greater (~3x) physiological range between stable and paroxysmal replay.

Furthermore, the model offered answers concerning the underpinnings of regular vs. fast
timescale navigational trajectory replays, modeled as putative rapid reversible dopaminergic
neuromodulation of NMDA opening dynamics. Similarly, it offered a framework for
simultaneous dynamic and stable coding, where individual neurons displayed relay race
dynamic coding (~20o0ms) while average population frequency displayed decaying persistent
coding (~1s). Finally, the model accounted for part-based learning in PFC and chunking of HP
navigational trajectories, as trajectories could be successfully replayed even when presented as
disjointed (slightly overlapping) fragments in any arbitrary order.
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| developed the biophysical neural network model and STDP rule, supervised Julie Victor's
master thesis work, converting certain figures to article format, and produced other results and
figures (figure 1, Al nature of activity across time, chunking, regular/fast replay, dynamic /
persistent coding, multiple replays with slower plasticity, time constant analysis), and entirely
reviewed and finalized all texts.
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In the prefrontal cortex (PFC), higher-order cognitive functions and adaptive flexible
behaviors rely on continuous dynamical sequences of spiking activity that constitute
neural trajectories in the state space of activity. Neural trajectories subserve diverse
representations, from explicit mappings in physical spaces to generalized mappings in
the task space, and up to complex abstract transformations such as working memory;,
decision-making and behavioral planning. Computational models have separately
assessed learning and replay of neural trajectories, often using unrealistic learning rules
or decoupling simulations for learning from replay. Hence, the question remains open
of how neural trajectories are learned, memorized and replayed online, with permanently
acting biological plasticity rules. The asynchronous irregular regime characterizing cortical
dynamics in awake conditions exerts a major source of disorder that may jeopardize
plasticity and replay of locally ordered activity. Here, we show that a recurrent model of
local PFC circuitry endowed with realistic synaptic spike timing-dependent plasticity and
scaling processes can learn, memorize and replay large-size neural trajectories online
under asynchronous irregular dynamics, at regular or fast (sped-up) timescale. Presented
trajectories are quickly learned (within seconds) as synaptic engrams in the network,
and the model is able to chunk overlapping trajectories presented separately. These
trajectory engrams last long-term (dozen hours) and trajectory replays can be triggered
over an hour. In turn, we show the conditions under which trajectory engrams and
replays preserve asynchronous irregular dynamics in the network. Functionally, spiking
activity during trajectory replays at regular timescale accounts for both dynamical coding
with temporal tuning in individual neurons, persistent activity at the population level,
and large levels of variability consistent with observed cognitive-related PFC dynamics.
Together, these results offer a consistent theoretical framework accounting for how
neural trajectories can be learned, memorized and replayed in PFC networks circuits
to subserve flexible dynamic representations and adaptive behaviors.

Keywords: prefrontal cortex, neural trajectory, attractor, persistent and dynamical coding, working memory,
learning, replay, asynchronous irregular state
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INTRODUCTION

As when a few introductory notes recall a melody, in the
immense space of known melodies, cerebral networks are able
to memorize and replay complex temporal patterns in a flexible
way. Such temporal patterns rely on continuous dynamical
sequences of spiking activity, i.e., neural trajectories, that occur
in recurrent neural networks of the prefrontal cortex (PFC)
(Bakhurin et al., 2017; Paton and Buonomano, 2018; Wang et al.,
2018). These neural trajectories emerge with learning, relying
on dynamical engrams, which distinguish them from classical
static engrams underlying Hebbian neuronal assemblies. In turn,
these engrams likely arise through activity-dependent synaptic
plasticity (Goto et al., 2010; Bittner et al., 2017). Hence, a robust
understanding of the interplay between prefrontal dynamics
and biological plastic processes is necessary to understand the
emergence of functional neural trajectories and engrams. In the
PFC of behaving animals, neural trajectories are embedded in
an asynchronous and irregular background state activity that is
markedly disordered (Destexhe et al., 2003; London et al., 2010).
However, how synaptic plasticity builds engrams that are not
erased by spontaneous activity and yet are not strong enough to
alter irregular PFC dynamics remains an open question.

Neural trajectories correspond to organized spatio-temporal
representations that peregrinate within the neural space (Shenoy
et al, 2013). They are prominent in prefrontal cortices (Mante
et al, 2013), where they subserve higher-order cognitive
functions at diverse levels of abstraction (Wutz et al., 2018).
In prefrontal areas, at the lowest levels of abstraction, neural
trajectories can map the actual animal’s position during effective
trajectories within explicit spaces during visual perception
(Mante et al., 2013) or navigation (Fujisawa et al., 2008; Zielinski
etal., 2019). Beyond spatial mapping, neural trajectories can also
depict generalized topological locations that are isomorphic to
the task space, by multiplexing position, representation of goal
locations and choice-related information (Fujisawa et al., 2008;
Mashhoori et al., 2018; Yu et al, 2018; Kaefer et al., 2020).
Neural trajectories have also been shown to subserve dynamical
coding and manipulation of information during delay activities
in working memory tasks involving the PFC (Lundqvist et al.,
2018). In this context, neural trajectories do not represent explicit
trajectories in external spaces, but implicit representations—of
ongoing information and cognitive operations—that may prove
useful for the task.

Rather than static maintenance of persistent activity in a
group of cells, many working-memory representations unfold
in the space of neural activity under the form of continuous
trajectories, as neurons successively activate in “relay races”
sequences of transient activity (Batuev, 1994; Brody et al,
2003; Cromer et al, 2010; Yang et al, 2014; Schmitt et al.,
2017; Enel et al, 2020). In the PFC, neural trajectories can
form the substrate for dynamic (Sreenivasan et al., 2014) but
also, counterintuitively, for stable representations (Druckmann
and Chklovskii, 2012). Neural trajectory-mediated dynamical
representations can subserve the retrospective working memory
of spatial (Batuev, 1994; Yang et al., 2014) or quantitative (Brody
etal., 2003) cues, symbolic categories (Cromer et al., 2010), values
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(Enel et al., 2020), or behavioral rules (Schmitt et al., 2017). They
can also serve prospective working memory in computational
processes transforming previously encoded information, such as,
for e.g., in visuo-motor transformations (Spaak et al., 2017), in
the representation of elapsed time (Tiganj et al., 2017) or in the
encoding of forthcoming behaviors (Fujisawa et al., 2008; Ito
et al,, 2015; Nakajima et al., 2019; Passecker et al., 2019). Neural
trajectories in the neural space can also appear as sequences of
states that involve combinations of active neurons (Batuev, 1994;
Abeles et al., 1995; Seidemann et al., 1996; La Camera et al., 2019).
Thus, neural trajectories appear in diverse forms and in different
functional contexts where they can map actual trajectories in
external spaces, remember previously encountered trajectories,
or predict forthcoming trajectories during active computational
processes requiring dynamical representations.

Neural trajectories in the PFC are adaptive (Euston et al.,
2012; Mante et al, 2013): they are learned and memorized,
to be “replayed” later. The timescale of the replay depends
on the behavioral context. Regular timescale replays operate
at the behavioral timescale, lasting seconds (Batuev, 1994;
Fujisawa et al., 2008; Cromer et al., 2010; Mante et al., 2013;
Yang et al.,, 2014; Ito et al., 2015; Schmitt et al., 2017; Tiganj
et al, 2017; Nakajima et al, 2019; Passecker et al., 2019;
Enel et al., 2020). Thus, such replays unfold online as current
behavior is executed in interaction with the external world, to
subserve retrospective working memory of past information, on-
going dynamical computations, or prospective representation of
forthcoming behaviors. Typically, regular replays are triggered by
behaviorally-relevant external events (e.g., cues or go signals in
working memory tasks, or the current position in navigational
tasks). Some replays that may appear as spontaneous can be
presumably triggered by internal self-paced decision signals
within the PFC (e.g., choices). In all cases, such triggered regular
replays rely on internal mechanisms within PFC circuits allowing
for the autonomous propagation of proper sequences of activity,
once initial neurons of the neural trajectory have been triggered.
A major goal of the present study is to decipher how plastic
processes allow PFC circuits to learn and replay trajectories, i.e.,
autonomously generate neural trajectory completion, based on
an initial trigger.

Besides, fast timescale replays exist that last a few hundred
milliseconds during awake (Jadhav et al, 2016; Mashhoori
et al, 2018; Yu et al, 2018; Shin et al., 2019; Kaefer et al,
2020) and sleeping (Euston et al., 2007; Peyrache et al., 2009)
states. Beyond their much shorter duration, PFC fast replays
are distinct from regular ones, in that they typically operate
offline and often co-occur with fast replays in the hippocampal
CAL field (Jadhav et al., 2016). Replay activity in PFC and CA1
presents high degrees of task-dependent spatial and temporal
correlations (Jadhav et al.,, 2016; Yu et al.,, 2018; Shin et al.,
2019), subserving functional coordination combining metric
(hippocampus) and task-related (PFC) spatial representations
(Pfeiffer and Foster, 2013; Zielinski et al., 2019). These fast
replays occur during sharp-wave ripples (SWR) episodes (Jadhav
et al, 2016; Yu et al.,, 2018; Shin et al., 2019), which represent
critical events for behavioral learning (Jadhav et al., 2012) and
during which animals forge forthcoming decisions (choices,
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trajectories, for e.g., Jadhav et al., 2016; Mashhoori et al., 2018;
Kaefer et al., 2020), based on the recall of past experiences
(actions, trajectories, outcomes, for e.g., Jadhav et al, 2012;
Mashhoori et al., 2018). Such coordination across both structures
presumably emerges through their reciprocal, direct and indirect,
synaptic interactions (Witter and Amaral, 2004). Different
studies have pointed out information flow biases from CAl
to PFC (Jadhav et al,, 2016) or from PFC to CA1l (Ito et al,,
2015) directions, depending on behavioral contexts. However,
SWR-related replays in the hippocampus correlate with fast
replays in reduced subsets of PFC neurons (Jadhav et al., 2016;
Yu et al, 2018) that carry generalized spatial representations
but not specific trajectories (Yu et al., 2018). Moreover, fast
timescale PFC replays are independent of hippocampal replays
during computational processes inherent to the PFC, such as
rule switching tasks (Kaefer et al., 2020). Therefore, as for
regular replays, we examined how plastic processes allow for the
emergence of fast timescale replays autonomously within local
recurrent PFC circuits.

Neuronal trajectories consist of robust forms of ordered local
activity occurring within a disordered global activity, i.e., the
chaotic, asynchronous irregular (AI) state characteristic of the
prefrontal cortex in the waking state (Destexhe et al., 2003;
London et al, 2010). This coexistence poses a problem at
the plasticity level, because the noisy AI regime constitutes
a potential source of perturbation for synaptic engrams
(Boustani et al., 2012; Litwin-Kumar and Doiron, 2014), whereas
strengthened connectivity pathways may exert a synchronizing
influence on the network, dramatically altering the chaotic
nature of background activity. However, there is currently no
biophysically-grounded theoretical framework accounting for
the way neural trajectories are learned, memorized and replayed
within recurrent cortical networks. In principle, synaptic
plasticity, a major substrate of learning, may sculpt oriented
connective pathways promoting the propagation of neuronal
trajectories, because modifications of synaptic connections are
activity-dependent. Specifically, the sequential activation of
differentially tuned neurons during successively crossed spatial
positions (during navigational trajectories) or representational
states (during dynamical cognitive processes) could strengthen
connections between neurons, creating oriented pathways
(referred to as trajectory engrams hereafter) within recurrent
cortical networks. If sufficiently strengthened, engrams could
allow the propagation of packets of neuronal activity along them.
From an initial stimulation of neurons located at the beginning
of the engram, due to the strong connections linking them in the
direction of the trajectory, neurons could reactivate sequentially,
i.e., perform trajectory replay.

Recurrent neural network models have shown that activity-
dependent synaptic plasticity rules can enable the formation
of trajectory engrams due to long-term potentiation (LTP) and
depression (LTD) together with homeostatic scaling (Liu and
Buonomano, 2009; Clopath et al., 2010; Fiete et al., 2010;
Klampfl and Maass, 2013). Moreover, trajectory engrams can
propagate neuronal trajectories through sequential activation of
neurons in recurrent model networks (Liu and Buonomano,
2009; Fiete et al, 2010; Klampfl and Maass, 2013; Laje and
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Buonomano, 2013; Chenkov et al., 2017). However, the above
models of neural trajectories do not elucidate the biological
basis of learning and replay in neurophysiological situations
encountered by PFC networks for several reasons. First, in
these models, trajectory learning is either ignored (hard-written
trajectory engram; Chenkov et al., 2017), unrelated to behavior
(random formation of arbitrary trajectory; Liu and Buonomano,
2009; Fiete et al., 2010), based on artificial learning rules (Laje
and Buonomano, 2013) or on biophysically unrealistic rules in
terms of neuronal activity and synaptic plasticity constraints (Liu
and Buonomano, 2009; Fiete et al.,, 2010; Klampfl and Maass,
2013). Moreover, trajectory replay is absent (Clopath et al., 2010)
or unable to operate from an initial trigger (Klampfl and Maass,
2013), or the ability to memorize and replay trajectory engrams
and replays long-term is not tested (Liu and Buonomano, 2009;
Clopath et al., 2010; Fiete et al., 2010; Klampfl and Maass, 2013;
Laje and Buonomano, 2013; Chenkov et al., 2017). Finally, none
of these models evaluate the capacity for trajectory learning and
replay in the realistic context where network activity undergoes
Al dynamics, whereas it is characteristic of the awake state in
the cortex (Destexhe et al., 2003; London et al.,, 2010). The
interactions between synaptic plasticity and Al dynamics has so
far only been assessed for static Hebbian engrams (Morrison
et al., 2007; Boustani et al., 2012; Litwin-Kumar and Doiron,
2014) but not for dynamic trajectories.

The disordered activity of Al cortical dynamics represents
a potentially important source of disturbance at many stages.
Indeed, AI regime activity may spontaneously engage plastic
processes (before any trajectory presentation), affecting the
synaptic network matrix, and leading to altered network
dynamics with divergence toward silence or saturation (Siri et al.,
2007). Noisy activity may also interfere with the learning of
the trajectory engram, by adding erratic entries of calcium to
trajectory presentation-induced calcium, leading to jeopardized
downstream decoding of calcium as well as erratic switches
between long-term potentiation (LTP) and long-term depression
(LTD) of synaptic weights. After learning, the continuous effects
of Al regime activity-induced plastic processes (LTD or scaling)
might erase the trajectory engram during memorization and
jeopardize trajectory replay through the destabilizing influence
of activity noise. On the other side of the interaction, trajectory
learning through Hebbian synaptic plasticity may potentially,
in turn, seriously disrupt AI regime activity (Morrison et al.,
2007; Siri et al., 2007). Therefore, it remains uncertain whether
realistic biological synaptic plasticity rules are well-suited for
proper learning and memorizing of trajectory engrams as well as
replay of learned trajectories in PFC physiological conditions.

Here, we assessed how learning, memorization and replay of
trajectories can arise from biologically realistic synaptic learning
rules in physiological PFC networks displaying disordered AI
regime activity. To do so, we built a local recurrent biophysical
network model designed to capture replay events like those
observed in the PFC. Although designed to fit PFC collective
spontaneous and triggered neural dynamics, its intrinsic,
synaptic and architectural properties are shared across other
cortices, allowing for generalization of the results to other non-
PFEC cortical areas displaying replays. The model displayed AI
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dynamics and was endowed with realistic Hebbian (Hebb, 1949)
spike timing-dependent plasticity (STDP) of excitatory synapses
(Bi and Poo, 1998). Synaptic modifications operate through
calcium-signaling dynamics capturing NMDA-dependent non-
linear pre- to post-synaptic associativity (Graupner and Brunel,
2012) and calcium-dependent phosphorylation of synaptic
weights with realistic activity-dependent kinase/phosphatase
(aKP) dynamics, conferring a rapid, graded and bidirectional
induction together with slow maintenance, consistent with
learning and memory timescales observed in animal and human
(Delord et al., 2007). Moreover, the model incorporates synaptic
scaling, which ensures normalization of pre-synaptic weights, as
found in the cortex (Turrigiano et al., 1998; Wang and Gao, 2012;
Sweatt, 2016). We show, that, in this realistic model, presenting
a stimulus trajectory allowed for rapid learning of a trajectory
engram as well as long-term memorization of the trajectory
engram despite the disturbing influence of the Al regime. In turn,
the STDP learning rule and trajectory engram did not affect the
spontaneous Al regime despite their influence on all excitatory
neurons from the network. Moreover, we show that trajectory
replay accounted for essential aspects of information coding
in the PFC, including robustness of replays at the timescale
of seconds, fast and regular replays, chunking, large inter-trial
variability, and the ability to account for the dual dynamical and
persistent aspects of working memory representations.

MATERIALS AND METHODS

Model of Biophysical Local Recurrent

Neural Network

We built a biophysical model of a prefrontal local recurrent
neural network, endowed with detailed biological properties of
its neurons and connections. While the model is presented as
PFC, its synaptic and neural properties are generally preserved
across cortical areas, allowing for generalization of the results
to non-PFC cortical areas. The network model contained N
neurons that were either excitatory (E) or inhibitory (I) (neurons
projecting only glutamate or GABA, respectively; Dale, 1935),
with probabilities pr and py = 1 — pg, respectively, and
‘;—f = 4 (Beaulieu et al., 1992). Connectivity was sparse (i.e.,
only a fraction of all possible connections exists, see pg_,g,
PE—I> PI>E> P11 parameter values; Thomson, 2002) with no
autapses (self-connections) and EE connections (from E to E
neurons) drawn to insure the over-representation of bidirectional
connections in cortical networks (four times more than randomly
drawn according to a Bernoulli scheme; Song et al., 2005; Wang
et al., 2006). The synaptic weights w(;;) of existing connections
were drawn identically and independently from a log-normal
distribution of parameters u,, and o, (Song et al., 2005).

To cope with simulation times required for the massive
explorations ran in the parameter space, neurons were modeled
as leaky integrate-and-fire (LIF) neurons. The membrane
potential of neuron j followed

avi;
C —d,(ﬁ = —(Ir(j) + Isyn.Rec(j) + Isyn.FE(j))
V(l) >0 — V(]) = Viyest
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where neurons spike when the membrane potential reaches the
threshold 6, and repolarization to Vs occurred after a refractory
period A t4p.

The leak current followed

I =8 (Vo) — V1)

where g; is the maximal conductance and V the equilibrium
potential of the leak current.

The recurrent synaptic current on post-synaptic neuron
j, from—either excitatory or inhibitory—pre-synaptic neurons

(indexed by 1), was

Isynrect) = 3 (IAMPA () T Tnnpaij) HioaBaa (i)

+lGapay (i,j))

The delay for synaptic conduction and transmission, Atsy,, was
considered uniform across the network (Brunel and Wang, 2001).
Synaptic recurrent currents followed

Lyij) = & Wiij) Pxi) (V) — Vi)

where w(;;) is the synaptic weight, p,(; the opening probability
of channel-receptors and V the reversal potential of the current.
The NMDA current followed

INmDA(ij) = &nmpA Y (ij)

PNMDA(i) XNMDA (V(j)) (V) — Vnmpa)

incorporating the magnesium block voltage-dependence
modeled (Jahr and Stevens, 1990) as

xnmpa (V) = (1 + [Mg*t] e 0062V /3.57)_1

The channel rise times were approximated as instantaneous
(Brunel and Wang, 2001) and bounded, with first-order decay

dl;% = _w + px (1 —Px(i)) 8 (t — t(,'))

Tx

where § is the dirac function and f(;) the times of the pre-
synaptic action potentials (APs).

Recurrent excitatory and inhibitory currents were balanced
in each post-synaptic neuron (Shu et al, 2003; Haider et al,
2006; Xue et al, 2014), according to driving forces and
excitation/inhibition weight ratio, through

= (Vinean—Vampa) ZieExc Wiij)
(Vmerm - VGABAA ) Zielnh W(ij)

o — = (Vimean—Vampa) icExc W(iy)
8GABAy = 8GABAB (V,p0un—Vana B) Dicinh Wiij)

8GABA, = 8GABA,

with Vyean = (9"'; rest) being an approximation of the average

membrane potential.
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Furthermore, all recurrent maximal conductances were
multiplied by grec, and by gg—E,» ge—1, §1E Or gr—1 according
to the excitatory or inhibitory nature of pre- and post-
synaptic populations.

The feed-forward synaptic current Iy, prj) (putatively
arising from sub-cortical and cortical inputs) consisted of an
AMPA component.

Isyn.Fr(j) = EAnpa PAMPA.FF (V(,') — Vampa)
with a constant opening probability paarpa rr.

Synaptic Spike Timing-Dependent
Plasticity (STDP)

We used a biophysical model of spike timing-dependent
plasticity of excitatory synapses of the network. This rule
operated constantly on the weights of the excitatory synapses
during simulations. Synaptic weights evolved according to a first-
order dynamic (Shouval et al., 2002; Delord et al., 2007) under
the control of intra-synaptic calcium (Graupner and Brunel,
2012) through

Ca (H)"H
KCanH + Ca (t)"H
Ca (H)"™H

1"V(i,j)(t) = Kmax
_Pmax

where the plastic modifications of the synapses, i.e., the
phosphorylation and dephosphorylation processes of the
synaptic receptor channels, depended on a kinase (e.g.,
PKC type) and a phosphatase (e.g., calcineurin type) whose
allosteric activation was dependent on calcium. Here, Kpax
represents the maximum reaction rate of the kinase, P,y that
of the phosphatase, K¢, and Pg, the calcium half-activation
concentration, Ca the synaptic calcium concentration and nH
is the Hill's coefficient. The term t-LTP, kinase-related, was
independent of synaptic weight (“additive” t-LTP) while t-LTD,
phosphatase-related, was weight-proportional (“multiplicative”
t-LTD), consistent with the literature (Bi and Poo, 1998; van
Rossum et al., 2000). This model of STDP is extremely simple,
but a detailed implementation would be prohibitive in an RNN
of the order of a thousand neurons. There was no term related
to the auto-phosphorylation of CaMKII present in many models
to implement a form of molecular memory, because on one
hand it is not actually involved in the maintenance of memory
of synaptic modifications (Chen et al., 2001), and on the other
hand memory is ensured here by the dynamics of kinase and
phosphatase at low calcium concentration (Delord et al., 2007).

The time dependence of the APs (Bi and Poo, 1998; He
et al, 2015) came from calcium dynamics, according to the
model of Graupner and Brunel (2012). In this model, synaptic
calcium followed

Ca (t) = Caoy + Capre(t) + Capost (t)

where the total calcium concentration takes into account pre- and
post-synaptic calcium contributions.
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Pre-synaptic spiking mediated calcium dynamics followed

. Capre(t)
Capre(t) = — ;’L + ACapr, Y 8 (t—t — D)
i

Ca

where the first term corresponds to calcium extrusion/buffering
with time constant t¢, and the second term to voltage-dependent
calcium channels (VDCC)-mediated calcium entry due to pre-
synaptic spiking, with Ca,y. the amplitude of calcium entering
at each AP of the presynaptic neuron, f; the times of the
pre-synaptic APs, and D a delay modeling the time required
for the activation of AMPA channels, the depolarizing rise of
the associated excitatory post-synaptic potential (EPSP) and the
subsequent opening of VDCC that induces this calcium entry.

Post-synaptic spiking-mediated calcium dynamics evolved
according to

Capost ® n

Capost(t) = -
TCa

Acupost Z ) (t — t(j))
j

+ &prepost Z ) (t - t(j)) Capre(t)
j

and modeled extrusion/buffering (first-term) as well as calcium
entries due to post-synaptic, back-propagated spiking from the
post-synaptic soma along the dendritic tree to the synapse,
opening VDCC (central term) and NMDA channels (right term).
Eprepost 18 an interaction coefficient and tG) corresponds to the AP
time of the post-synaptic neuron. NMDA activation is non-linear
and depends on the product of a pre- and a post-synaptic term,
representing the dependence of NMDA channel openings on
the associative conjunction of pre-synaptic glutamate and post-
synaptic depolarization, which releases the magnesium blockade
of NMDA channels.

Synaptic Scaling

Synaptic weights were subjected to a homeostatic form of
synaptic normalization, present in the cortex (Turrigiano et al.,
1998; Wang and Gao, 2012; Sweatt, 2016), which was modeled in
a simplified, multiplicative and instantaneous form (Zenke et al.,
2013), following at each time step

2 wij(t =0)
2 wii(®)

This procedure ensured that the sum of the incoming weights
on a post-synaptic neuron remained constant despite the plastic
modifications due to STDP.

Estimation of the Time Constant of STDP
With Synaptic Scaling

Without synaptic scaling, w;; = wsrpp = K (Ca) — P (Ca) w.
However, synaptic scaling plays an important role in the slow
decay of weights, so to study the time constant of this decay we
needed to incorporate the effect of synaptic scaling. Considering
n weights of average value u,, incoming upon a post-synaptic
neuron, where a proportion p of weights undergo STDP of value

W(U) (t+dt) = W(U)(t)
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FIGURE 1 | Network structure and plastic properties. (A) Scheme of the recurrent network model of the local prefrontal cortex circuit with 484 excitatory (red) and 121
inhibitory (blue) integrate and fire (IAF) neurons. (B) Scheme of excitatory synaptic plastic processes. In the post-synaptic compartment, calcium dynamics originates
from two distinct sources (Capre and Capost), @s well as from extrusion/buffering (Graupner and Brunel, 2012). Capre arises from pre-synaptic spiking mediated through
a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) depolarization and the subsequent activation of voltage-dependent calcium (VDCC) channels. Capost
models calcium entries due to post-synaptic spiking back-propagated from the post-synaptic soma to the synapse, opening VDCC and N-methyl-D-aspartate
(NMDA) channels. NMDA activation is non-linear and depends on the interaction of pre- and post-synaptic spiking to account for the associative dependence of
NMDA channel openings on the conjunction of pre-synaptic glutamate and post-synaptic depolarization that releases magnesium blockade. Plastic modifications
operate through calcium-dependent phosphorylation and dephosphorylation of channel AMPA receptors that determine the synaptic weight (akKP model; Delord et al.,
2007). Synaptic scaling continuously normalizes weights so as to insure the homeostatic regulation of the sum of incoming (pre-synaptic) weights for each individual
neuron (Turrigiano et al., 1998). (C) Both long-term spike timing-dependent potentiation (t-LTP) and long-term spike timing-dependent depression (t-LTD) increase
non-linearly with pre- and post-synaptic spiking frequency (vere = vrost = v), due to the allosteric calcium-activation of both enzymes. Kinase-mediated t-LTP is
additive, i.e., independent of synaptic weight, while phosphatase-mediated t-LTD is multiplicative, i.e., weight-proportional (Bi and Poo, 1998; van Rossum et al.,
2000). (D) Because of the associative dependance of NMDA-mediated calcium entry to pre- and post-spiking, synaptic calcium depends multiplicatively on pre- and
post-synaptic spiking frequencies. (E) In the spontaneous Al regime, plastic modifications are virtually null because STDP plasticity occurs similarly at all synapses,
with synaptic scaling compensating STDP (see Results). (F). In synapses connecting neurons in the engram of a learned trajectory, where plasticity has occurred in a
subset of synapses, Hebbian t-LTP dominates at large multiplicative pre-/post- frequencies and Hebbian t-LTD at lower frequencies (separated by the red curve for
which plasticity is null, see Results).

wsrpp at time step ¢ followed by scaling, then for a given weightw  i.e.

within the proportion p, w
W= (1 —p—) (K(Ca) — P(Ca)w)
n
w(t+ Ab) = (w(t) + wsppAf) ( How X ) Hor
My + MPWSTDPAL To find an estimate of the time constant of plasticity, linearization
so that after algebra, one obtains aroundyu,, gives
- y . K(C
w+an—w) _ (1 - w) WsTDP W~ (P(Ca) p—1)— ﬂ) w+ K(Ca) — pP(Ca)puy
At WUw + pWsTpp AL Hw
Passing to the limit At — 0, one finds: so that
Mo
o w . T ~
W= (1 —pu—) WsTDP |pK (Ca) — (2p — 1) P (Ca) p|
w
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Theoretical Dependences Under

Asynchronous Irregular Dynamics

The steady-state theoretical concentration of calcium in
individual synapses was obtained from fixed-points of Capr, and
Capost, which yielded

*
Ca (Vpres Vpost) ~ Cag + tca(ACaprevpre

+ACapostVpost + Eprepost ACapreVpreVpost )

which was used to determine STDP modification rates
w=K(Ca') — P(Ca’)w

and to determine the time constant for plasticity, in the case of the
network asynchronous irregular regime at low frequency, where
p=1lie

- My
[K(Ca) — P (Ca") ]

Weights Within and Outside the Engram
Initial excitatory weights (before the 1h simulation) were
convolved with a centered normalized Gaussian function (o =
5 neurons). Convolved weights with values above 0.1 (times
PE—~E = 0.35 to take into account inexistent weights) were
considered within the engram, the other weights were considered
outside the engram. Both weight populations were kept constant
and their evolution was studied across time (see Figures 6, 7).

T

Trajectory Replay Detection

In order to detect coherent propagating activity pulse packets
along the synaptic pathway, we convolved spiking activity across
time and neurons with centered normalized Gaussian functions
(0 = 30 ms and o ~ 10 neurons). Neurons were considered
“active” when at least 40% of the convolved frequencies which
include them (>5% of normalized Gaussian function maximum)
are above 12.5Hz. We considered the emergence of an activity
packet when it contained more than 20 neurons.

Spiking Irregularity

To capture spiking irregularity, we quantified the CV (coefficient
of variation), CV2 and Lv (time-local variation) of the inter-spike
interval (ISI) distribution of the spiking trains of neurons in the
network (Compte, 2003; Shinomoto et al., 2005) according to

OS]
< ISI >

|IST41 — ISI]

CVy =<2
27 S IShe s + ISI

>k

, (ISI — ISiy1) .
(IS + ISL1 ),

V=<

where CV = CV, = Lv = 1 for a homogeneous Poisson spike
train and = 0 for a perfectly regular spike train where all ISI are
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equal. CV stands around 1 to 2 in vivo (Compte, 2003; Shinomoto
et al., 2005), representing the global variability of an entire ISI
sequence, but is sensitive to firing rate fluctuations. CV2 and Lv
stand around 0.25 to 1.25 and 0 to 2, respectively in vivo (Compte,
2003; Shinomoto et al., 2005), evaluating the ISI variability locally
in order to be less sensitive to firing rate fluctuations. The CV
was calculated on every ISI across neurons, while the CV2 and Lv
were calculated for each excitatory neuron and averaged across
the whole population.

Spiking Synchrony

Three measures of synchrony were adopted, a synchrony
measure S (Golomb et al., 2001), pairwise correlation coefficient
averaged over all pairs of excitatory neurons < p >
(Tchumatchenko et al., 2010), and Fano factor F. The first two
were calculated on the estimated instantaneous neural frequency
f (Gaussian convolution of spikes, o = 30ms), while the last was
calculated on the population sum of spike counts s, following

Var (< f >n)

§= [ A=) =)
< Var (fim)) >n

cov (fi» f)

1
<p>=
N(N —1)/2 XI: JXN: Var (fiy)) Var (fj)

P Var (3, s,,)

<Y . sn >t

These measures equal § = ﬁ ~ 0.0455, < p >=0and F =1

for perfectly asynchronous network activity, and § =< p >=1
while F increases for perfectly synchronous network activity.

Procedures and Parameters

Models were simulated and explored using custom developed
code (MATLAB) and were numerically integrated using the
forward Euler method with time-step At = 0.5ms in network
models. Unless indicated in the text, standard parameter values
were as following. Concerning the network architecture, N =
605 neurons, ng = 484 neurons, n = 121 neurons, pg_,g = 0.35,
PE>I = 0.2056, PI-E = 0.22, pr-1 = 0.25, Ky = 0.03,
oy = 0.02. Concerning the Integrate-and-Fire neural properties,
C=1uF.cm™2,0 = =52 mV, Vyoe = —67 mV, Atap = 3 ms.
Concerning currents, g; = 0.05 mS.cm™2, Vi = —70 mV,
Atgyn = 0.5ms, g4ppa = 0.23 mS.cm™2, gxppa = 0.9 mS.cm™2,
gGapa, = 0.3 mS.cm™2, g6aBay = 0.017 mS.cm™2, Vampa =
Vnmpa = 0 mV, Vgapa, = —70 mV, Vgagay = —90 mV,
[Mg2+] = 1.5 mM, tapmpa = 2.5 ms, TNMDA = 62 mS, TGABA, =
10 ms, TGABAy = 25 MS, PAMPA = PNMDA = PGaBA, = PGABA; =
0.1, grec = 0.65, g = gE—>1 = gI-E = 1, g1 = 0.7,
pamparr ~ 0.0951. Concerning synaptic properties, Kmax =
31073 ms™!, Kcu = 3 WM, Ppax = 3.1073 ms™1, Pg,
2 uM,nH = 4, Cag = 0.1 pM, tc, = 100 ms, ACapre =
0.02 wM, D = 10 ms, ACapost = 0.02 WM, Eprepost = 4 ms™".
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FIGURE 2 | Stability of spontaneous irregular asynchronous (Al) network dynamics under synaptic plasticity. (A1-A3) Membrane potential of network neurons during
3 s of spontaneous Al regime in the absence of plasticity (A1), after 1 h of plasticity (A2) and after full convergence of synaptic weights due to plasticity (A3). The same

weights. Shaded areas represent 95% confidence intervals of the mean.

initial random connectivity matrix is used for simulations in (A1-A3). Spikes indicated by black dots. Full convergence of the synaptic matrix was obtained by
simulating the networks with very fast kinetic constants. (B1-B3) Synaptic weights between excitatory neurons of the network at the end of each of simulations
presented in A1-A3. (C) Convergence of synaptic weights toward the mean weight of their post-synaptic neuron as a function of time, due to synaptic scaling
normalization (black curves, see Results). Time evolution of the mean (red curve) and standard deviation (blue curve) of synaptic weights. For sake of clarity, only a
random selection of synapses is shown. The mean is constant and the standard deviation decreases with time, due to scaling. (D). Average excitatory neural spiking
frequency (D1) and irregularity (D3) and excitatory population synchrony (D2) quantifiers, as a function of time, for five different simulations of the network with
different realizations of the initial random synaptic matrix. Dots on the right indicate values obtained from network simulations after full convergence of synaptic

RESULTS

Predicting Fundamental Plastic Properties
of PFC Recurrent Networks

To evaluate neural trajectory learning, memorization and replay,
we studied a local prefrontal cortex (PFC) recurrent network
model, with 484 excitatory and 121 inhibitory integrate and
fire (IAF) neurons with topographically tuned feed-forward
inputs. Synaptic connections were constrained by cortical
connectivity data, following Dale’s law, sparseness and log-
normal weight distributions, and o-amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate
(NMDA) excitatory and y-aminobutyric acid (GABA-A and
GABA-B) inhibitory synaptic currents (Figure 1A; see Materials
and Methods). Most synaptic and neural properties, while present
in PFC, are generic across cortex, such that the following results
can be generalized to non-PFC cortical areas.

Excitatory synapses were plastic, i.e., endowed with realistic
calcium dynamics (Graupner and Brunel, 2012) accounting for
linear voltage-dependent calcium channels (VDCC)-dependent
and non-linear NMDA calcium entries, as well as for linear
extrusion and buffering (Figure 1B). These calcium dynamics
are responsible for the temporal asymmetry of pre- and post-
synaptic spike-timing dependent (STDP) plastic modifications
(Bi and Poo, 1998; He et al., 2015). Note, however, that with
these realistic calcium dynamics, plasticity essentially depends
on firing frequency rather than on the precise timing of spikes,
because of the frequency and variability of in vivo-like spiking
(Graupner et al., 2016).

Plastic modifications operated through calcium-dependent
kinase-phosphatase kinetics (Delord et al., 2007), which accounts
for their fast induction and slower maintenance dynamics
(Figure 1B). No Ca’?*/calmodulin-dependent protein kinase
II (CaMKII) auto-phosphorylation was present because it
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FIGURE 3 | Learning a trajectory stimulus into a trajectory engram. (A). Synaptic matrix between excitatory neurons prior to stimulus presentation. (B). Membrane
potential of network neurons in response to the presentation of a trajectory stimulus (stimulus in red) that successively activates all excitatory neurons over a duration
of 1,350ms. Spikes indicated by black dots. (C). Synaptic matrix between excitatory neurons after stimulus presentation. (D1-D4). Weight modifications resulting,
after trajectory presentation, from t-LTP (D1), t-LTD (D2), scaling (D3), and their sum (D4). (E-H) Membrane potential (E), calcium (F), plastic rates (G) and synaptic
weight dynamics (H) during the passage of the trajectory stimulus in a pair of neurons with nearby topographical tuning #102 (E1) and #112 (E2) and their reciprocal
connections 102— 112 (F1-H1) and 112— 102 (F2-H2), and in a pair of neurons with more distant topographical tuning #102 (E3) and #202 (E4) and their reciprocal
connections 102— 202 (F3-H3) and 202— 102 (F4-H4).

is actually not involved in the maintenance of synaptic
modifications (Chen et al, 2001; Lengyel et al, 2004).
Rather, the long-term maintenance of plastic modifications
emerges from kinase and phosphatase dynamics at low calcium
concentrations (see below; Delord et al., 2007). Besides, synapses
underwent synaptic scaling (Figure 1B), which ensures total
weight normalization at the neuron level, as observed in the
cortex (Turrigiano et al., 1998; Wang and Gao, 2012; Sweatt,
2016) and, as a consequence, introduces competition between

synaptic weights within each neuron (intra-neuronal inter-
synaptic competition).

Most  importantly, plasticity ~operated online—i.e.,
permanently, without offline learning periods—on excitatory
synaptic weights, as a function of neuronal activity in
the network, whether it corresponds to the spontaneous,
asynchronous and irregular (AI) activity of the network, the
activity evoked by the feed-forward currents during the input
presentation of an example trajectory, or the replay activity
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after learning (see below). Both kinase-mediated long-term
spike timing-dependent potentiation (t-LTP) and phosphatase-
mediated long-term spike timing-dependent depression (t-LTD)
increased non-linearly with pre- and post-synaptic spiking
frequency, due to the allosteric activation of enzymes by
calcium (Figure 1C). However, they differed in that kinase-
mediated t-LTP was independent of synaptic weight (additive
or hard-bounded) while phosphatase-mediated t-LTD was
weight-proportional (multiplicative or soft-bounded), consistent
with the literature (Bi and Poo, 1998; van Rossum et al.,
2000; Figure 1C). In the model, the steady-state theoretical
concentration of calcium in individual synapses depended
multiplicatively upon pre-synaptic and post-synaptic spiking
activity (Figure 1D), from which one could compute the rate of
STDP as a function of pre- and post-synaptic spiking frequency
(Figures 1E,F) see Materials and Methods). In conditions
with weak synaptic weights, such as prior to learning, t-LTP
dominated at all frequencies because t-LTD is multiplicative
and thus scaled by, here, very low synaptic weights. Thus, STDP
effects were always positive and depended multiplicatively on
pre- and post-synaptic frequencies (Figure 1E). By contrast,
when plasticity had previously occurred (w = 0.2), such as in the
engram of a learned trajectory (see below), t-LTD was stronger
due to the stronger weights, and the model predicted Hebbian
t-LTP at large multiplicative pre-/post-frequencies and t-LTD at
lower frequencies (Figure 1F). In the following, we explore the
extent to which these predictions are correct in simulations of
the whole network model under spontaneous AI dynamics with
synaptic scaling, and when assessing learning and memorization
upon trajectory presentation.

Stability of Network Al Dynamics Under
Synaptic Plasticity
A potential issue of synaptic plasticity in network models remains
its sensitivity to spontaneous activity. Hence, before testing the
possible role of STDP in trajectory learning and replay, we first
studied the effect of STDP on the spontaneous regime, with
the aim of verifying that network activity remained stable over
the long term and that neurons always discharged in the AI
regime. Indeed, Hebbian or post-Hebbian rules of the STDP
type, by modifying the matrix of synaptic weights, may lead to
saturation of neuronal activity and a collapse of the complexity
of the dynamics, from initially AI chaotic activity characteristic
of the waking state (Destexhe et al., 2003; London et al., 2010), to
activity of the limit-cycle or fixed point type (Siri et al., 2007).
We considered here as long term the 1h time scale, which is
the scale classically used experimentally to test the memory of
synaptic plasticity modifications (Bi and Poo, 1998). Moreover,
a duration of 1h extends way beyond the classical time scales
used in models (Morrison et al., 2007; Boustani et al., 2012;
Litwin-Kumar and Doiron, 2014). For this purpose, we have
observed the activity (Figure 2A) and connectivity (Figure 2B)
of the network at different time scales, in order to reveal possible
modifications in the network behavior.

Simulations showed that the spontaneous activity of the
network was identical without plasticity (Figure2Al), after
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1h in the presence of plasticity (Figure2A2) and after full
convergence (Figure2A3) of weight matrix dynamics. This
observation is consistent with the absence of changes in the
connectivity matrix in the presence of STDP, even after 1h
of simulation (Figures2B2,B3), compared to the condition
without STDP (Figure 2B1). Mechanistically, the low spiking
frequency of neurons resulted in moderate average elevations of
calcium above its basal concentration in synapses, so that kinase
and phosphatase were only very weakly activated. Therefore,
weights underwent extremely slow plastic modifications where
additive t-LTP (which dominated the multiplicative t-LTD at
weak weights) was compensated by synaptic scaling. Due to
these effects, weights converged toward the mean initial weight
of their post-synaptic neuron (Figure2C) with an apparent
time constant of 2h, close to the theoretical estimation of the
time constant of plasticity (see Materials and Methods and
Discussion), which predicts a time constant of 1.95h during
learning at low spiking frequencies and calcium concentrations
(Ca ~ Cag) in the AI regime. These steady-state values were
normally distributed, with a constant mean value (due to the
synaptic scaling) and a decreasing standard deviation, due to
the homogenization of weights within each post-synaptic neuron
(Figure 2C). Even with this more homogeneous synaptic matrix
(Figure 2B3), Al dynamics were preserved (Figure 2A3). Indeed,
excitatory frequency was stable (Figure 2D1), as well as markers
of synchrony (Figure 2D2) and irregularity (Figure 2D3). Thus,
overall, the activity regime of the network was not altered
by the presence of plastic processes. Note that in PFC
circuits experiencing dynamically changing feed-forward inputs,
convergence of the synaptic matrix may be attenuated or
even non-existent.

Learning Trajectory Engrams Under Al

Dynamics

Trajectory learning during network activity has already been
investigated in the theoretical literature, but either without
chaotic dynamics or using biologically unrealistic learning
rules (see Introduction). To test for the possibility of learning
trajectories within physiologically irregular activity, we presented
to the network a moving stimulus (Figure 1A, feedforward
connections) that successively activated all the excitatory neurons
over 1,350 ms (Figure 3B). Such a stimulation corresponds to a
displacement speed of ~0.3 neurons/ms, where each excitatory
neuron was stimulated for ~100 ms and discharged at ~100 Hz.
This single stimulus presentation triggered neural activity much
stronger than the spontaneous activity, sufficient to modify
the matrix of synaptic weights. Indeed, whereas the synaptic
matrix was initially formed of low random weights (Figure 3A),
after presentation, the weights of synapses connecting neurons
activated by the stimulus at close successive times were increased
(Figure 3C). This diagonal band of increased weights formed
an oriented connectivity path along stimulus-activated neurons
and is referred to as the trajectory engram hereafter. Weight
modifications inside and outside this trajectory engram resulted
from increases due to t-LTP (Figure 3D1, Awrrp) and decreases
due to t-LTD (Figure 3D2, Awrrp). Moreover, the homeostatic
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process of synaptic scaling, which ensures the constancy of the
sum of the incoming weights of the cortical neurons, decreased
the total incoming synaptic weights on post-synaptic neurons,
in order to compensate for weight modifications due to STDP
(Figure 3D3, AWsc,ling)- In fine, STDP and scaling led together
to an increase in engram weights and a slight decrease in off-
engram weights (Figure 3D4, Awr,); also observe the darker
area in Figure 3C, compared to Figure 3A).

The observation, on a local scale, of the details of the
processes at work for the synapses linking the neurons of the
engram allowed for a better understanding of these network
effects. For illustration, neurons #102 and #112, with close
spatial topographical tuning, discharged one following the
other with partial overlap during the stimulus (Figure 3E).
At the level of the synapse between neurons #102 and #112
(102—112), whose orientation was that of the trajectory, the
arrival of pre-synaptic action potentials (APs) was followed by
that of postsynaptic APs (pre #102 then post #112 neuron,
Figures 3E1,E2), which triggered a massive input of calcium
via the VDCC channels and the NMDA receptor channels
(Figure 3F1). Conversely, in the synapse 112—102, for which
the sequence of arrival of the APs was reversed (pre #112
then post #102 neuron), NMDA channels did not open (see
above), such that the calcium input resulted only from the
VDCC channels and was thus moderate (Figure 3F2). These
calcium elevations activated the kinases and phosphatases, which,
respectively, phosphorylated and dephosphorylated AMPA
channels, increasing (t-LTP) and decreasing (t-LTD) synaptic
weights (only phosphorylated AMPA channels are functional and
ensure synaptic transmission). These kinase and phosphatase
activations were important for synapse 102— 112 (Figure 3G1),
but less so for the synapse 112— 102 (Figure 3G2). For both
synapses (Figures 3G1,G2), the phosphatase was more strongly
activated (lower half-activation; Delord et al., 2007), but the
resulting t-LTD modification rate was low, because it is
multiplicative, i.e., it scales with synaptic weight, which was low.
Conversely, the rate of modification due to t-LTP was higher
because it is additive and depends only on kinase activation
(van Rossum et al., 2000). These STDP effects, cumulated with
those of scaling, resulted in a positive speed (increase in weight),
which was strong for synapse 102—112 (Figure3G1) and
very weak for synapse 112—102 (Figure 3G2). Together, these
plastic processes increased the weight of the synapse oriented
in the same direction as the stimulus (Figure 3H1) leaving the
weight of the synapse of opposite orientation almost unchanged
(Figure 3H2).

For neurons whose receptive fields were more spatially distant,
activation by the stimulus occurred at more temporally distant
times (for example, neurons #102 and #202, Figures 3E3,E4). In
this case, regardless of the sequence of arrival of the APs in both
neurons, their succession was too distant in time to open NMDA
channels, so that incoming calcium came only from the VDCC
channels and was therefore low (Figures 3F3,F4). Consequently,
kinase and phosphatase were weakly activated, resulting in
virtually null STDP velocity (Figures 3G3,G4). Synaptic scaling
(Figures 3G3,G4), induced by the increase of weights in the
engram (Figures 3H1,H2), ultimately decreased synaptic weights
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(Figures 3H3,H4). As such, there was no learning of any
trajectory between distant neurons, contrary to what happened
between closer neurons.

Trajectory Replays From Learned
Trajectory Engrams

In behaving animals, learnt trajectories are replayed later
in appropriate behavioral conditions. In the model, we
assessed whether trajectories could be replayed, the dynamics
of trajectory replays and the way they affect the network
connectivity compared to before they occur (Figure4A).
Trajectory replay was defined as the reactivation of neurons
of the entire trajectory engram, after temporarily stimulating
only initial neurons at the beginning of the engram. To
assess trajectory replay in the network, we applied a stimulus
of 100ms to the first 50 neurons of the engram, 500ms
after trajectory learning was completed (Figure4B). We
found that the network was able to replay the trajectory
entirely after learning (Figure4B1). Fundamentally, the
replay emerged because neurons were linked by strong
synapses so that preceding neurons activated subsequent
neurons in the engram, forming an oriented propagating wave
(Figure 4B2).

Because it activated neurons at several tens of Hz, the
replay could have brought into play plastic processes at
the synapses forming the engram, and, in doing so, either
reinforce or diminish their weights, possibly disturbing or
even destroying the engram. To evaluate these possibilities,
we observed the variation of synaptic weights before and
after the replay. We found that after replay, the engram
was still present (Figure4C) and its structure identical to
that before replay (Figure4A). However, when dissecting
the effects at work, we found that the engram had slightly
thickened during the trajectory replay, due to the combined
effect of t-LTP (Figure4D1 Awryp), t-LTD (Figure 4D2
Awrrp) and  scaling  (Figure4D3  Awscaling). Weights
above and below the engram increased, whereas weights
slightly decreased within the engram (Figure 4D4, Awrg,,
red fringes).

Up to this point, the neural trajectory was presented as a
whole. However, whole trajectories are generally not accessible
directly to the PFC. Rather, PFC circuits generally encounter
elementary trajectory fragments at separate points in time to
produce prospective planning of future behaviors (Ito et al,
2015; Mashhoori et al., 2018; Kaefer et al., 2020), as well as
learn transitions between them and chunk fragments together
as whole trajectories independently of their presentation order
(ordinal knowledge) (Ostlund et al., 2009; Dehaene et al., 2015).
We trained the network with four fragments of the whole
trajectory, noted A-D, that overlapped at their extremities and
which were presented sequentially every 2s, so as to learn
separately different parts of the trajectory (Figure 4E). We found
that, once fragments were presented in forward order (ABCD),
stimulating neurons at the beginning of the A fragment induced
propagation of activity that recapitulated the whole trajectory,
by subsequently recalling ABCD fragments in the forward order
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(Figure 4E1). Therefore, the network was able to learn trajectory
fragments themselves and the transitions between fragments
so as to chunk them into a whole trajectory. Moreover, we
found that chunking was possible even when fragments had
been learned in reverse order (DCBA; Figure 4E2). Hence, the
network was able to replay a chunked trajectory based on the
presentation of overlapping stimuli, independently of their order
of presentation.

Functional Diversity of Trajectory Replays

Neural activity during the replay was less focused than the
stimulus trajectory (Figure 4B), i.e., it involved more (~90 vs.
35) neurons, spiking at a lower (~65 vs. 100 Hz) discharge
frequency. The replay also unfolded at a faster speed, lasting
~750 ms—for a stimulus of 1,350 ms—so that it exhibited a
temporal compression factor (tCF) of ~1.8, which is situated
between fast and regular timescale replays observed in animals.
Regular timescale replays operate at the timescale of behaviors
they were learnt from, ie., a few seconds (in navigation or
working memory tasks, e.g.), hence typically displaying tCF~1.
By contrast, fast timescale replays last several hundred ms in
the awake PFC (200-1,500 ms; Jadhav et al., 2016; Mashhoori
etal,, 2018; Kaefer et al., 2020), yielding several-fold compression
factors (tCF~2-15). We assessed whether varying biophysical
parameters of the network could account for durations and
tCF ranges characterizing regular and fast replays. As regular
and fast timescale replays frequently alternate within trials in
behavioral tasks, we discarded trivial replay speed control that
can be readily obtained by scaling structural parameters that
vary at extremely slow timescales (e.g., number of neurons
in the trajectory, synaptic delay, etc., not shown). Rather, we
focused on synaptic and intrinsic neuronal properties likely to
be rapidly regulated by ongoing neuromodulation in the PFC,
as attentional demands or reward outcomes vary at the trial
timescale. Among passive and synaptic neuronal parameters
tested, the NMDA conductance decay time constant (taypa)
emerged as a critical factor controlling the duration and tCF of
replays. Hence, the same network, taught with the same trajectory
and stimulated with the same initiation stimulus, could generate a
large range of replay timescales spanning from regular (duration
1,680ms, tCF = 0.8; Figure 5A1) to fast (duration 375ms,
CF~3.6; Figure 5A2) replays, when the decay time constant
of NMDA, tNmpa, was varied. Consistently, dopaminergic
neuromodulation, the major determinant of reward signaling,
rapidly slows the decaying dynamics of NMDA currents in
PFC circuits (Chen et al., 2004; Onn and Wang, 2005; Onn
et al,, 2006). Such neuromodulatory effects, as well as others
forms of neuromodulation of NMDA dynamics (Lutzu and
Castillo, 2021) may control the duration and compression
factor of trajectory replays, as well as the relative rate of
occurrence of regular vs. fast timescale replays. Inspecting
neuronal activity during replays in terms of firing frequency,
we found that in single replays individual neurons displayed
a sequence of overlapping transient bumps of activity of a
few hundred milliseconds (Figure 5B1) resembling “relay race”
of PFC individual activities during regular replays in working
memory tasks (Batuev, 1994; Brody et al., 2003; Cromer et al.,
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2010; Yang et al., 2014; Schmitt et al., 2017). By contrast, the
averaged frequency over the population of excitatory neurons
displayed a persistent decaying activity pattern that lasted at
the second time scale (Figure 5B2) and mimicked population-
level working memory maintenance in the PFC (Murray et al.,
2017; Cavanagh et al., 2018; Enel et al., 2020). This dichotomy
recalls that found in the PFC, whereby individual neurons
encode information at short timescale while the population
holds stabilized persistent representations on longer timescales
(Meyers et al., 2008; Murray et al., 2017; Cavanagh et al., 2018).
Moreover, we found that inter-trial variability for each neuron
was important, due to disordered network AI dynamics, and
that it increased as activity traveled later in the trajectory in
individual neurons (Figure 5B3) and at the population level
(Figure 5B4), as found experimentally (Compte, 2003; Shafi et al.,
2007; Tiganj et al., 2017).

Globally, the model thus not only indicated that it was
possible to learn trajectories online by creating synaptic engrams,
thanks to the STDP-type plasticity rule. It also showed that
learned trajectories were functional as a memory process, in
the sense that their replay was possible and globally preserved
the synaptic structure of the learned engram. Finally, the model
accounted for the large functional diversity of replays observed
in behaving animals, both with regard to the timescale (fast vs.
regular) they exhibit, as well as to the type of coding (dynamical
vs. stable) they may subserve in navigational or working
memory tasks.

Stability of Network Al Dynamics in the

Presence of Trajectory Engrams

After evaluating the stability of the learned trajectory in the
presence of Al network activity, we asked the symmetrical
question, i.e., whether the engram of a previously learned
trajectory could alter the irregular features of spontaneous
network dynamics. Indeed, the altered synaptic structure
(which implies large weights in all neurons of the recurrent
network) may induce correlated activations of neurons
(e.g., partial replays) resulting in runaway activity-plasticity
interactions and drifts in network activity and synaptic
structure. We monitored network connectivity (Figure 6A)
and activity dynamics (Figures 6B1-B3) for 1h to assess
the stability of the spontaneous AI regime in the presence
of the engram. We observed that following learning of the
engram, synaptic weights outside the engram (i.e., responsible
for the AI dynamics) increased exponentially toward their
new steady-state in a very slow manner (Figure 6A) with an
apparent time constant of 1.91 h, consistent with the theoretical
estimation of 1.95h (see above). This increase resulted from
the decrease of within-engram large synaptic weights via
synaptic scaling (Figure 6E1, see above). Despite this slow
and moderate structural reorganization, AI dynamics were
preserved with stable frequency (Figure 6B1), synchrony
(Figure 6B2), and irregularity (Figure 6B3). Thus, overall,
both the synaptic structure outside the engram as well as the
spontaneous Al regime remained stable in the presence of
the engram.
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Memory of Trajectory Engrams in the

Presence of Network Al Dynamics
We then studied whether the spontaneous Al activity could
disrupt the engram of the learned trajectory and the possibility

for trajectory replay. Indeed, the trajectory engram may be
gradually erased, due to AI activity at low frequency favoring
t-LTD, or even amplified, due to the activity in the trajectory
engram caused by plasticity (resulting in further plasticity
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runaway). To do so, we assessed the timescale of potential drifts
in engram connectivity and activity following learning, and of the
network ability to replay the engram. Intuitively, engram erasure,
runaway or stability probably depended on network dynamics
after learning: spontaneous Al regime, spontaneous replays, or
other forms of activity.

To address these questions, we simulated the network for
1h after trajectory learning and recorded “snapshots” of the
continuous evolution of the synaptic matrix every minute.
Using these successive recorded matrices as initial conditions
for independent simulations of replays, we were able to quantify
network ability for trajectory replay, at different times of the
evolution of the network. We found that while trajectory replay
occurred in full after 1, activating all neurons of the trajectory
(Figure 6C1), it was slightly attenuated after 1 min (last neurons

spiking at lower frequency; Figure 6C2) and failed after 1h
(Figure 6C3). Observing the synaptic matrix at these three
moments allowed us to understand the origin of this degradation
in replay ability. Indeed, whereas after 1 min (Figure 6D2), the
synaptic weights of the engram changed only a little compared
to 1s (Figure 6D1), the engram was narrowed and weights
attenuated after 1h (Figure 6D3). Such degradation of the
engram was probably the cause of the failure to replay the
trajectory 1 h after learning.

To more precisely monitor degradation of the trajectory
engram and replay, we measured averaged engram weights as
well as replay frequency and duration across time. We found
that the engram weights declined exponentially with a fitted time
constant of 1.91h (Figure 6E1), very close to that predicted by
the theory (1.95h). The measures of trajectory replay decreased
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faster than the engram weights, with time constants of ~54 min
for mean frequency during the replay (Figure 6E2) and ~13 min
for replay duration (Figure 6E3). Specifically, replay of the full
trajectory lasted 4 min. The degradation of trajectory replay was
mainly due to progressive replay failure in the neurons located
later in the trajectory engram. The faster decrease in trajectory
activity, compared to the average engram weights, was probably
a consequence of a cooperative mechanism of propagation in
the engram: the non-linearity in NMDA current activation,
requiring synergistic activation of pre- and post-synaptic neurons
in the engram, rendered the propagation of activity non-linearly
sensitive to decreases in engram weights.

Repeated Trajectory Replays Can
Destabilize Trajectory Engrams and
Replays

We have observed that a single replay of the trajectory only
marginally modified the engram (Figure4C vs. Figure4A).
However, we assessed whether replay repetitions could
strengthen the engram significantly further. Such strengthening
through repetition could compensate for the engram erasure
due to spontaneous activity after the learning (Figure 6E1) and
its functional consequence, the relatively rapid loss of replay
capacity (Figures 6E2,E3). Intuitively, the partial increase in
weight at the border of the trajectory engram after one replay
(Figure 4D4 Awr,, red fringes) could, after repeated replays,
be strong enough to counteract the decrease observed outside
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replays during memorization (Figure 6D3, light blue fringe).
To test this possibility, we repeated the replay stimulus every 3 s
for 30s after the presentation of the initial trajectory stimulus
(Figure 7A). We observed, from the very first seconds, and even
before we could test the effect of the protocol at larger timescales,
that these successive stimuli, initially triggering correct trajectory
replays, rapidly led to hyperactivity involving most of the
neurons in the network (Figure 7A1). Such paroxysmal activity
typically appeared via avalanche dynamics activating neurons at
the end of the trajectory (a fraction of the network, therefore),
which propagated to the whole network at increasingly higher
discharge frequencies (up to tens of Hz). Moreover, this activity
had an oscillatory component, visible on the time course of the
frequency of the excitatory and inhibitory neurons (Figure 7A2).
This paroxysmal activity partially erased the engram of the
learned trajectory via synaptic scaling (Figure 7B), making it
impossible to replay the trajectory following this seizure (see last
stimulus, Figure 7A1), consistent with similar effects found in
empirical observation during epileptic seizures (Hu et al., 2005;
Meador, 2007; Truccolo et al., 2011).

Slow Learning Stabilizes Trajectory
Engram and Replays

As the repetition of replay learning led to over-activation of the
trajectory with plasticity speed parameters sufficiently fast for
a single stimulus presentation to be learned and replayed, we
investigated how slower STDP kinetic coefficients could prevent
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paroxysmal activity during stimulus presentations and replays.
For this, we used smaller values of Ky.x and Pp.x, ie., here,
divided by a factor of 6. With these values, 4 presentations of
the trajectory stimulus were necessary for increasing the engram
weights enough to sustain trajectory replays (Figure 8A). After
such a learning protocol, the replay of the full trajectory was
possible even beyond 1h after learning (Figure 8B), whereas
replay ability lasted only a few minutes with previous parameters
(Figures 6E2,E3). This increase in replay memory timescale is
consistent with that of the engram time constant, which was
11.5h (Figure 8C), of the order of its theoretical estimation
~11.7h, ie., it was increased by a factor 6 compared to that
obtained with previous parameters (1.91 and 1.95h, respectively
Figure 6E1). Remarkably, the memory of trajectory replay was
increased by a factor >20 (trajectory completely replayed at
>1.4h vs. 4min with previous parameters), so that, relatively
to the timescale of the trajectory engram, the timescale for
trajectory replay was further increased by a factor 3.5. Indeed,
the presentation of several stimuli recruited a thicker-tailed
weight distribution, with higher probability of large weights
(blue curve above the red one in ~0.05-0.125; Figure 8D) but

Frontiers in Neural Circuits | www.frontiersin.org

16

successive trajectory stimuli simultaneously evoked progressively
stronger trajectory replays, recruiting more neurons at lower
frequencies (Figure 8A), therefore imprinting larger engrams.
Thus, slower plasticity kinetics required a larger number of
successive presentations to learn the trajectory, but ensured a
more robust engram involving more synapses, resulting in a
better resilience to forgetting, i.e., a better quality of learning.

Finally, we assessed whether slow plasticity with multiple
stimulus presentations also preserved network dynamics. Al
dynamics were preserved with stable frequency (Figure 8E1),
synchrony (Figure 8E2), and irregularity (Figure 8E3). We
then repeated the replay stimulus every 3s for 30s after the
presentation of the initial trajectory stimulus, a protocol which
led to paroxysmal activity when considering fast plasticity.
With slower kinetics, multiple replay stimuli triggered correct
trajectory replays for the whole duration of the simulation
(Figure 8F). We then asked whether a threshold of plasticity
speed exists above which paroxysmal activity is triggered, or,
conversely, the risk of paroxysmal activity linearly scales with
the ability to learn fast. To do so, we parametrically explored
simulations with plasticity rate divided by a slowdown factor in
the range 1-10. The minimal number of stimulus presentations
required to form a strong enough engram (i.e., allowing a replay)
increased slowly with slower plasticity kinetics (Figure 8G, red).
In parallel, the increase in the maximal number of replays
before turning network dynamics into paroxysmal activity
was much larger (Figure 8G, black), so that slowing plasticity
kinetics increased the physiological range allowing learning
while preserving network dynamics from paroxysmal activity.
Hence, plasticity slow enough to preserve healthy dynamics
may constitute a key constraint on the ability to learn rapidly.
Furthermore, if the product of plasticity speed with the number
of stimulus presentation was constant, it would indicate a linear
summation of plastic effects arising from each presentation. By
contrast, the number of stimulus presentations necessary for
replay was lower than the factor of plasticity slowdown (5 stimuli
for 10x plasticity slowdown instead of 10 stimuli, Figure 8G).
This is due to successive stimulations overlapping with replays
(i.e., stimulus presentations after the first one induce replays,
Figure 8A), suggesting progressive facilitation of learning at slow
plasticity speeds.

DISCUSSION

Here, we show that it is possible to learn neural trajectories
(dynamical representations) using a spike timing-dependent
plasticity (STDP) learning rule in local PFC circuits displaying
spontaneous activity in the asynchronous irregular (AI) regime.
We used a physiological model of plasticity (Delord et al,
2007; Graupner and Brunel, 2012; He et al., 2015) continuously
occurring online, i.e., without decoupling simulations of learning
and activity. Presentation of a dynamic stimulus, the trajectory,
resulted in the writing of a synaptic engram of the trajectory on
a rapid timescale (seconds), as well as its long-term storage at
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the timescale of the order of several hours. The network replayed  engram within network synapses was not found to alter the AI
the trajectory upon stimulation of a subset of the engram at the  characteristics of PFC activity. From a functional perspective,
timescale of the order of dozens of minutes. These results indicate ~ we show that trajectory activity accounted for both types of
that disordered AI activity does not necessarily jeopardize the  dynamics subserving working-memory in the PFC, i.e., persistent
encoding and replay of neural trajectories. Conversely, the activity (Constantinidis et al, 2018) and dynamical coding
weak but continuous plastic processes that noisy Al produces  (Lundgqvist et al., 2018), and help understanding how they can
did not erase the synaptic engram of neural trajectories, at  be reconciled (Murray et al., 2017; Cavanagh et al., 2018; Enel
least before several hours. In turn, the learning of a trajectory et al., 2020). Together, these results offer a consistent theoretical
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framework accounting for how dynamical representations can
be learned, memorized and replayed in PFC circuits in
physiological conditions.

This model was built to reproduce functional phenomenology
of the PFC (learning, replays at different timescales, dynamic or
persistent coding, see below), based on biophysical constraints
from the experimental literature at the molecular, cellular and
network levels, rather than by artificial training. If overall
architectural properties of the model are observed in the
PEC, such properties are also compatible with other non-
prefrontal cortices with trajectory replays, lending strength to
the genericity of the current study’s results. For example, the
excitatory/inhibitory network balance, observed in the PFC
(Shu et al., 2003; Haider et al., 2006), is also observed and
essential to computations across non-PFC structures (Isaacson
and Scanziani, 2011). Similarly, the over-representation of
bidirectional connections in the PFC (Wang et al, 2006) is
a general property in cortical networks (Song et al, 2005).
While the PFC has been less subject to the investigation of
synaptic scaling compared to other structures, its presence across
many non-PFC cortical structures (for e.g., sensory cortices,
hippocampus, motor cortex) and crucial role for synaptic
learning stabilization (Keck et al., 2017) makes it a plausible
mechanism in PEC. Certain lines of evidence suggest its presence
in PFC (Wang and Gao, 2012; Sweatt, 2016), although further
confirmation is needed.

In the model, external feedforward inputs are constant, as in
previous models of characteristic PFC activity (for e.g., Brunel,
2000). Therefore, the variability of neuronal discharge observed
in the network entirely arises from internal dynamics among
recurrent connections, as the network is in the asynchronous
irregular regime (Destexhe et al., 2003; London et al., 2010).
It would be interesting to study versions of the model with
feedforward inputs variability, as occurring in real PFC circuits.
However, this option was out of scope as we focused on
the internal interactions between the spontaneous Al regime,
learning processes affecting the synaptic matrix and trajectory
replays. As another potential extension to our study, one could
explore the influence of rhythmic inputs from the hippocampus
(theta rhythms, Siapas et al., 2005; Benchenane et al,, 2011) or
from the olfactory pathways (delta rhythms, Moberly et al., 2018),
which are known to be important for behaviorally-relevant neural
activity and memory replays.

Molecular Plasticity and Memory in the
PFC

In the PFC, e-STDP necessitates more than the pre-post
synaptic pairings used in spike-timing protocols, as long-term
potentiation (t-LTP) emerges in the presence of dopaminergic or
cholinergic tonic neuromodulation, or when inhibitory synaptic
transmission is decreased (Couey et al., 2007; Xu and Yao,
2010; Ruan et al., 2014). Moreover, Hebbian STDP (i.e., t-
LTP for pre-then-post and t-LTD for post-then-pre spiking) is
observed when followed by phasic noradrenergic, dopaminergic
or serotoninergic neuromodulation (He et al., 2015). Hence,
we assumed that t-LTP and t-LTD co-exist, and STDP is thus
Hebbian, in the PFC of behaving animals, where both phasic
and tonic neuromodulation are encountered during behaviorally
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relevant learning (Dembrow and Johnston, 2014). The present
study did not incorporate noradrenergic, serotoninergic and
dopaminergic transformation of eligibility traces into effective
plastic modifications found at PFC excitatory synapses (He
et al, 2015), a possible substrate of context- and reward-
modulated learning in PFC circuits (Ellwood et al, 2017).
The present work also did not consider alternative biophysical
processes that may participate to sculpt dynamical and flexible
neural representations in the PFC (Buonomano and Maass,
2009; Stokes, 2015). For instance, short-term synaptic plasticity
(Mongillo et al., 2008) may affect network dynamics through slow
hidden (e.g., biochemical) variables. Such a silent-based coding
of past activity could possibly account for the near-complete
disappearance of activity observed sometimes during working
memory (Stokes, 2015) and its interaction with activity-based
working-memory in the PFC (Barbosa et al., 2020) remains
to be elucidated. Similarly, inward current-mediated bistability
such as with persistent sodium, or calcium-activated non-
specific currents (Delord et al., 1997; Rodriguez et al., 2018),
can produce cellular forms of memory that may take part in
dynamic representations in the PFC, either through retrospective
memory of past information or in prospective computations of
forthcoming decisions and actions. Finally, the present study
did not consider anti-homeostatic forms of intrinsic plasticity
(i.e., the plasticity of intrinsic properties) which may represent
an essential mean to learn and regulate dynamic representations
(Zhang and Linden, 2003).

Stable Spontaneous Al Dynamics in the
PFC in the Presence of Plasticity and

Learning
Hebbian forms of plasticity (Abbott and Nelson, 2000), such as
the STDP of excitatory synapses (Markram et al., 2012) modeled
here, increase weights between neurons that are frequently
co-activated. Stronger synapses potentiated by STDP, in turn,
statistically increase the frequency of future co-activations. These
rules thus constitute positive feedback loops (anti-homeostatic)
between activity and connectivity. As a consequence, synaptic
runaway (Keck et al, 2017; Zenke et al., 2017) produces
network instability toward saturated or quiescent activity and
connectivity. In recurrent network models, synaptic plasticity
typically decreases the dynamics complexity toward regular
activity such as limit-cycle or quasi-periodic attractors (Morrison
et al., 2007; Siri et al., 2007; Litwin-Kumar and Doiron, 2014)
that resembles neural dynamics encountered during sleep or
paroxysmal crises. However, activity in the PFC and other
cortices during wakefulness is characterized by asynchronous
irregular spiking at low frequency (Ecker et al., 2010; Renart
et al, 2010), due to the balance between strong excitatory
and inhibitory synaptic currents (Destexhe et al, 2003). Al
spiking is compatible with critical or even chaotic dynamics
(Beggs and Plenz, 2003; Hahn et al., 2010; London et al,
2010), which may benefit temporally complex computations
(Bertschinger and Natschliger, 2004) believed to be performed by
the PFC (Compte, 2003).

Many studies show that e-STDP rules are deleterious to Al
dynamics such that compensating homeostatic mechanisms are
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required to control neuronal activity, for e.g., a metaplastic
e-STDP rule with sliding-threshold (Boustani et al., 2012),
synaptic scaling (which keeps the sum of pre-synaptic excitatory
weights constant, Zenke et al, 2013), STDP of inhibitory
synapses (i-STDP; ensuring excitation-inhibition balance, Vogels
et al, 2011) or intrinsic plasticity of ionic conductances
(regulating action potential threshold, Naudé et al., 2013).
In the present detailed biophysical model, we found that a
combination of e-STDP where all pre-/post- pairings were
taken into account (all-to-all STDP), together with synaptic
scaling, preserves Al dynamics. All-to-all e-STDP without
scaling can also preserve AI dynamics, but at the price of
unstable fluctuating synaptic weights (Morrison et al., 2007),
while weight distributions were stable here. Moreover, the
present study shows that network stability held not only with
random recurrent connections, but also in the presence of an
engram involving a significant fraction of strong, potentiated
synapses in all excitatory neurons. In the absence of synaptic
scaling, learning static patterns into synaptic engrams with e-
STDP disrupts AI dynamics toward pathological high-frequency
oscillations (Morrison et al., 2007; Litwin-Kumar and Doiron,
2014), or with i-STDP leads to AI activity with unrealistic
high firing frequency states and sharp state transitions (Litwin-
Kumar and Doiron, 2014), at odds with PFC dynamics in
awake animals (Compte, 2003). A metaplastic form of e-STDP
conserves Al dynamics on a short-timescale (one second) but
Al stability remains unchecked at longer timescales (Boustani
et al, 2012). This is only the case with static stimulus, as
learning receptive fields using dynamical stimulus leads to
a catastrophic decrease in the complexity of the AI regime
(Boustani et al., 2012). Altogether, our study thus suggests that
synaptic scaling represents a more efficient form of homeostatic
compensation (rather than metaplastic e-STDP, or i-STDP) for
learning trajectory engrams without the deleterious effects of
STDP disrupting AI dynamics. We used here an instantaneous
synaptic scaling, because our model, like most models, requires
synaptic scaling at faster or equal timescales than synaptic
plasticity for stable learning, far from the experimentally
observed homeostatic or metaplastic timescales of hours to
weeks (Zenke et al., 2017). This constraint suggests the existence
of as yet unidentified rapid compensatory processes, potential
candidates being heterosynaptic plasticity (Fiete et al., 2010),
intrinsic plasticity (Zhang and Linden, 2003; Naudé et al., 2013),
input normalization by feed-forward inhibition (Pouille et al.,
2009; Keck et al,, 2012), and the implication of astrocytes
(Papouin et al, 2017). Additionally, at slower timescales,
sleep-dependent consolidation mechanisms may provide global
compensatory synaptic down-scaling offline (Tononi and Cirelli,
2003).

Learning Dynamical Representations in the
PFC Under Al Dynamics

Phenomenological e-STDP models fail to learn engrams in
noisy Al states because of their sensitivity to spontaneous
activity. The absence of STDP weight-dependence forbids
learning and induces the direct loss of engrams (Boustani
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et al, 2012), while without synaptic scaling, learning fails
with catastrophic consequences in terms of network dynamics
(see above; Morrison et al, 2007). A weight-dependent e-
STDP rule endowed with homeostatic metaplasticity (instead
of synaptic scaling, as here) allowed learning the engram of a
presented stimulus while preserving AI dynamics, although it
unrealistically left neurons of the engram in a state of permanent
activity (Boustani et al., 2012). Likewise, i-STDP enables learning
of engrams, but with unrealistic Al activity (see above; Litwin-
Kumar and Doiron, 2014). Here, we find that the combination of
a weight-dependent Hebbian e-STDP rule and synaptic scaling
allows for the learning of engrams in local PFC recurrent
networks under conditions of AI dynamics, as found in
behaving mammals.

Phenomenological STDP models based on neighboring spike-
doublet or spike-triplet schemes often produce side effects (either
sensitivity to noisy activity, or runaway plasticity) due to the
temporal bounds of the pre- and post-couplings they consider
(Boustani et al., 2012). The present STDP model describes
continuous post-synaptic biophysical dynamics that account for
all pre-/post-pairings (all-to-all STDP) and is thus more realistic
than phenomenological STDP models. Here, the temporal
asymmetry of the spike-timing dependence of the e-STDP rule
arises from a detailed description of calcium dynamics. Calcium
arises from two different sources of calcium that originate from
the influence of AMPA, NMDA and VDCC channel activations
(see Materials and Methods; Graupner and Brunel, 2012),
which accounts for the relative influence of pre-synaptic evoked
excitatory post-synaptic potentials and of backpropagating post-
synaptic activity. However, this rule remains simple compared to
models describing more complete signaling scenarios (Manninen
etal., 2010), allowing simulation at the network scale.

In feed-forward networks endowed with this STDP rule,
and for conditions of spiking frequency and irregularity similar
to AI activity, plastic modifications essentially depend on
firing frequency rather than on the precise timing of spikes,
because equivalent probabilities of encountering pre-then-post
and post-then-pre spike pairs in conditions of stationary
spiking essentially blurs net spike-timing effects (Graupner
et al., 2016). Moreover, t-LTP dominates t-LTD, because t-
LTD is multiplicative (Bi and Poo, 1998; van Rossum et al.,
2000), i.e., scaled by weak weight values (Graupner et al,
2016). Consistent with these observations, in the present PFC
recurrent network model, plasticity was essentially frequency-
dependent under conditions of stationary spiking, and t-
LTP dominated t-LTD under spontaneous Al dynamics, being
principally compensated by synaptic scaling. However, during
trajectory presentation or trajectory replay, ie., when pre-
post spiking was enforced to be temporally asymmetric, t-LTD
nevertheless contributed to compensate t-LTP and determined
overall resulting modifications on the same order than scaling.

The previous studies that have addressed the possibility
of engram learning in recurrent networks with AI dynamics
focused on static stimuli (Morrison et al., 2007; Boustani et al.,
2012; Litwin-Kumar and Doiron, 2014). By contrast, our study
demonstrates engram learning and activity replay of dynamical
stimuli, such as the sequences or trajectories of activity that
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occur during cortical AI dynamics in behaving animals (Kaefer
et al., 2020). Standard static Hebbian assemblies, which learn
static stimuli through strong bidirectional connections between
neurons of the assembly and replay the static activity through
pattern completion, induce avalanche-like convergent dynamics
toward a static attractor, which are too low-dimensional to
account for physiological data. Remarkably, the present study
demonstrates the possibility for engrams of dynamic stimuli in
the disordered Al state, despite the fact that they relied on mono-
directional strengthening of synaptic connections, which favors
propagation of activity, but does not allow for the convergent
effect of static patterns and the positive feedback inherent to it.

Long-Term Memory of Dynamical
Representations in the PFC Under Al
Dynamics

The present study underlines the importance of slow plasticity
kinetics together with repeated presentations for learning
dynamic representations in PFC networks. Faster kinetics
allowed one-shot learning of trajectory engrams, but extensive
training could then induce paroxysmal activity during the
trajectory replays that partly erased the engram, which was
ultimately detrimental to the learning and replay process. This
synchronous increase in neuronal activity in the model is
reminiscent of epileptic seizures (Truccolo et al., 2011), which
have been found to cancel out the plasticity effects of synaptic
weights (Hu et al., 2005), and affect memory (Meador, 2007),
as we found here. By contrast, slower kinetics resulted in more
stable engrams, while highlighting the importance of repeated
presentations of the dynamic stimulus, similarly to observations
with static patterns (Boustani et al., 2012). Parametric exploration
of plasticity kinetics showed a tradeoff between the number
of stimulus repetitions required to form an engram and the
risk of paroxysmal activity. However, slowing down plasticity
decreased the risk of over-activation while preserving the ability
to learn fast (even though not through one-shot learning).
Consistent with our results, learning occurs gradually in the
PFC, and at a slower pace than in the hippocampus and basal
ganglia (Pasupathy and Miller, 2005; Buschman and Miller,
2014). The tradeoft between fast learning and paroxysmal risk
may constitute a constraint for the PFC, with the preservation of
asynchronous irregular dynamics preventing one-shot learning
based on synaptic plasticity alone. One-shot learning, which
occurs in well-trained animals, may thus require additional
mechanisms for structural learning (Gallistel and Matzel, 2013).

Fast learning together with stable memory is considered
in many synaptic plasticity models to rely on auto-
phosphorylation of the calmodulin-dependent protein kinase
II (CaMKII). CaMKII auto-phosphorylation is appealing
because it constitutes a positive-feedback loop (inducing
fast plasticity) underlying bistable dynamics (providing
infinite memory of a single potentiated synaptic state).
However, we did not consider CaMKII in the present model,
because CamKII is not necessary to the maintenance of
synaptic modifications (Chen et al., 2001; Lengyel et al,
2004). Moreover, activity-dependent synaptic modifications
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are not systematically bistable (i.e., they can be graded;
Montgomery and Madison, 2002; Tanaka et al., 2008; Enoki
et al,, 2009) and they can fade with time scales from seconds
to minutes (Hempel et al., 2000).

Here, the stability of molecular memory originated from
extremely slow synaptic weight dynamics, resulting in slow
exponential forgetting of the engram. Slow weight dynamics
arose from activity-dependent kinase and phosphatase (aKP,
Delord et al., 2007), which are weakly activated at near-basal
calcium concentrations associated with low spiking frequency
during AI dynamics. Such aKP signaling processes are ubiquitous
(e.g., PKA, PKC, calcineurin) and confer an activity-dependent
control over the rate of plasticity and memory (Delord et al.,
2007), which is essential for flexible learning in the PFC (Fusi
et al, 2005). Alternatively, when implemented with low copy
molecule numbers at individual synapses, bistable models faced
with noise also exhibit exponential forgetting of memory when
averaged over synapses and trials (Fusi et al., 2005). Here, the
memory of the trajectory engram admitted an effective time
constant of the order of 2h in network simulations, consistent
with its theoretical prediction (see Materials and Methods), but
longer memories could be expected for lower values of Ppax
and Kpay, the maximum phosphatase and kinase activations.
However, the time constant for plasticity would also increase,
slowing learning too, while its current value is compatible with
induction times of synaptic plasticity (Malenka et al., 1992).
Alternatively, a higher calcium phosphatase half-activation (Pc,),
which is physiologically possible (Delord et al., 2007), would
allow for a longer memory timescale while preserving rapid
learning (at large calcium, the time constant of plasticity is
independent of Pc,). Hence, specifying biophysical models
with precise kinetic parameters is essential because they have
huge consequences on the stability of network dynamics,
learning and the time scale of memory (Zenke et al., 2013).
Specifically, homeostatic scaling appeared important here as
for learning, since its absence was reported to forbid the
memory of static patterns in recurrent network models because
of catastrophic forgetting due to fluctuating synaptic weights
(Morrison et al., 2007).

The timescale of trajectory replay scaled with that of the
engram. This is because replay requires a sufficiently preserved
engram to emerge from synaptic interactions between neurons.
However, the lifetime of trajectory replay was an order of
magnitude smaller than that of the trajectory engram, because
replay requires neuronal interactions that are non-linear and
therefore sensitive to decreases in synaptic weights. Interestingly,
the long-term degradation of trajectory replay was due to
incomplete replay at the end of the trajectories learned, in a
manner consistent with the primacy effect of medium-term
learned sequences (Greene et al., 2000). Besides, the memory
of trajectory replay did not only rely on biophysical parameters
but also on the learning protocol. Indeed, slower learning
with repetitions increased the quality of engram by better
anchoring the learned trajectory, through a larger number of
synapses. Slow plasticity of a large number of synapses from
a recurrent network, through repetition, may thus underlie
the robustness of PFC-dependent memories (Buschman and
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Miller, 2014). In addition to extensive training, the maintenance
of trajectory engrams over longer timescales may be reached
by regular replays, as observed in PFC-dependent active
executive processes such as trajectory reactivations (Stokes,
2015), spontaneous replays (Kaefer et al., 2020), rehearsal and
refreshing (Raye et al., 2007), or consolidations (Dudai, 2012).
At the molecular scale, the possibility of synaptic tagging
could be incorporated in the model (Clopath et al., 2008)
in order to stabilize the engram and account for longer
memory timescales.

Humans or animals generally learn complex navigational
paths such as sensory, motor or behavioral sequences in a
progressive manner. Thus, PFC circuits are often challenged
with the necessity to process several parts of whole neural
trajectories that are discovered as sequences of elementary parts
encountered at separate points in time. Moreover, prospective
processes in the PFC require recombining elementary neural
trajectories into new trajectory representations serving the
planning of future actions, choices or navigational paths, for e.g.,
during rule switching and behavioral adaptation (Ito et al., 2015;
Mashhoori et al., 2018; Kaefer et al., 2020). Besides, sequences of
non-spatial items have been shown to be processed in a spatial
frame in primates (Jensen et al., 2013), likely involving neural
trajectories. We found that STDP-based trajectory learning and
replay in the network was able to learn trajectory fragments,
transitions between fragments, and to chunk them into a whole
trajectory, as found in the PFC (Ostlund et al., 2009; Dehaene
et al, 2015). Moreover, the network displayed the ability to
reconstitute a whole trajectory (i.e., a macroscopic sequence)
based on trajectory fragments (i.e., overlapping microscopic
sequences), independently of their order of presentation, i.e.,
to acquire ordinal knowledge about sequences of trajectory
fragments (Jensen et al.,, 2013; Dehaene et al., 2015). However,
STDP-based trajectory learning in our PFC network model
was unable to learn higher-order representations of algebraic
patterns or more complex nested structures (Dehaene et al.,
2015), or to categorize sequences into specific classes (Shima
et al,, 2007). Assessing such possibilities using more elaborated,
reward-dependent, forms of STDP learning rules might
deserve future explorations.

Multiple Functional Relevance of
STDP-Based Neural Trajectories in the PFC

We found in our model that the same network, taught with
the same stimulus, could generate a large range of replay
duration and compression factors, including those characterizing
regular (Batuev, 1994; Fujisawa et al., 2008; Cromer et al.,
2010; Mante et al., 2013; Yang et al., 2014; Ito et al., 2015;
Markowitz et al., 2015; Schmitt et al., 2017; Tiganj et al., 2017;
Nakajima et al., 2019; Passecker et al., 2019; Enel et al., 2020)
and fast (Jadhav et al., 2016; Tiganj et al, 2017; Mashhoori
et al, 2018; Yu et al, 2018; Shin et al., 2019; Kaefer et al,
2020) timescale replays in behaving animal. We found that
the time constant of NMDA decay dynamics was essential in
controlling the duration and compression factor of trajectory
replays. In PFC circuits, dopamine slows decaying dynamics

Frontiers in Neural Circuits | www.frontiersin.org

21

of NMDA-mediated EPSPs through D1-receptors (Chen et al.,
2004; Onn et al., 2006) in an almost instantaneous manner (Onn
and Wang, 2005). In addition to dopaminergic regulation, other
forms of neuromodulation affect NMDA dynamics (Lutzu and
Castillo, 2021). Our results suggest that rapid and bidirectional
regulation of biophysical parameters in PEC networks by ongoing
neuromodulation—as attentional demands and reward outcomes
vary at the trial timescale—may control replay duration,
compression factors, and the relative rate of regular vs. fast
timescale replays.

Besides, individual neuronal activity displayed lower firing
frequency during replay compared to the activity induced by
the stimulus, consistent with sparse coding of representations
after learning. Firing rates of individual neurons during stimuli
or delays in working memory tasks, as well as in navigation
tasks, vary considerably across species and behavioral contexts,
spanning two orders of magnitude from ~1 to ~100 Hz (Fuster
and Alexander, 1971; Batuev, 1994; Romo et al., 1999; Baeg
et al,, 2003; Yang et al, 2014; Markowitz et al., 2015; Tiganj
etal., 2017). Frequencies of dozens Hz are common in individual
PFC neurons (Funahashi et al., 1989; Romo et al., 1999; Brody
et al., 2003; Fujii and Graybiel, 2003; Shinomoto et al., 2003; Jun
et al., 2010; Tiganj et al., 2017; Enel et al., 2020). In the present
model, frequencies of individual neurons were actually ~100 Hz
during stimuli and presentations, and 20-60 Hz during replays
(Figures 5B1,B3). Thus, although larger than those observed
during stimuli, individual frequencies were globally of the order
of magnitude of those empirically observed. Mean frequencies
in our network ranged below 10Hz (Figures 5B1,B3), (7A2),
in accord with experimental literature (Funahashi et al., 1989;
Romo et al., 1999; Brody et al., 2003; Fujii and Graybiel, 2003;
Shinomoto et al., 2003; Jun et al., 2010; Tiganj et al., 2017; Enel
etal., 2020).

In the PFC, representations for executive functions and
cognition can present less explicit dynamic coding schemes
than regular timescale neural trajectories presented here. For
instance, working memory can display intricate patterns of
complex (heterogeneous but non-random) dynamic activities
that can hardly be disentangled into simpler well-separate
transient patterns of activity (Jun et al., 2010). However, during
working memory tasks, PFC persistent delay activity is selective
and maintains online content-specific representations. Working
memory does often, but not systematically, require underlying
persistent activities, often in a stable activity state (Goldman-
Rakic, 1995; Compte et al., 2000; Durstewitz et al., 2000; Wang,
2001; Constantinidis et al., 2018). It can also rely on dynamical
sequences of activities disappearing and reappearing, depending
on instantaneous computational task-relevant requirements
(Sreenivasan et al., 2014; Stokes, 2015; Lundqvist et al., 2018).
The coexistence of stable population coding together with
heterogeneous neural dynamics has been observed in the PFC
during working memory tasks (Murray et al., 2017).

Here, trajectory replays offer a possible unified framework
that can participate to reconcile opposite views regarding the
nature of information persistent vs. dynamic coding in the PFC
(Constantinidis et al., 2018; Lundqyvist et al., 2018). Indeed, we
find that while individual neurons displayed transient (hundreds
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of milliseconds) overlapping bumps of activity, implementing
a “relay race” form of explicit dynamic coding (Batuev, 1994;
Brody et al.,, 2003; Cromer et al., 2010; Yang et al., 2014; Schmitt
et al.,, 2017), their population activity persisted at the second
timescale, ensuring the maintenance of the representation across
time (Murray et al., 2017; Cavanagh et al., 2018; Enel et al., 2020).
Depending on the functional context, neural trajectories learned
here could be interpreted as the actual explicit representation
of a trajectory unfolding online, granted that the decoding
downstream neural structure can resolve individual activities
of the network. Alternatively, if the downstream decoding
neural structure only globally decodes the population average
of network dynamics, activity would then be interpreted as an
integrated and stable persistent representation of the trajectory as
a whole (i.e., as a symbolic entity). This dichotomy is congruent
with that found in the PFC, whereby individual neurons encode
information at short timescales while the population as a whole
persistently maintains information at longer time scales (Meyers
et al,, 2008). In this scheme, working memory representations
would rely on individual neurons collectively stabilizing a
dynamic population-level process (Murray et al., 2017; Cavanagh
et al,, 2018; Enel et al., 2020).

Interestingly, we found that the population activity of
trajectory replays accounted for the decreasing pattern of activity
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Chapter7. Dopamine builds and reveals reward-
associated attractors

7.1. Summary

The previous chapter described the learning of presented stimulus sequences within synaptic
noise and subsequent replay by an external triggering cue. However, it does not account for
sequence learning toward a rewarding goal, rather solely replicating presented external stimulus
sequences, even though sequences are commonly observed within the context of reward-
assigning tasks. Furthermore, they do not consider how motivated intrinsically-generated
decisions are taken, in the absence of external triggering cues. Dopamine (DA) neuromodulation
is key to both answers, and no theory currently accounts for both of its effects on learning and
motivation. The machine learning theory of reinforcement learning interprets phasic DA as a
reward teaching signal for learning the values of reward-inducing actions, but doesn’t explain
DA'’s online motivational effect during behavior, with phasic release at the initiation of self-
paced movements. The neuroscientific literature suggests for motivation either a directional
effect, where stimulus-driven DA increases the salience and directs behavior toward the
currently processed cue, or an activational effect, where DA increases the probability or vigor of
all motor actions. While the directional account doesn’t explain external cue-independent
internally-generated behaviors, the activational account doesn’t explain why DA specifically
impacts non-stereotyped effortful behavior toward a goal far away in physical or task space.

As such, we proposed a double effect for DA, tested both within a recurrent neural network
emulating frontal decision-making and through DA electrode stimulation and optogenetics in
behaving mice. In the model, DA modulated online synaptic STDP, inducing the emergence of
Hebbian assemblies oriented toward the goal within neurons encoding a repeatedly rewarded
spatial location. This STDP learning rule (based on the previous chapter’s) was supplemented
with decaying early LTP/LTD synaptic eligibility traces, which were transformed into synaptic
changes through DA impulse at rewarded locations. This assembly attracted network dynamics
within its basin of attraction, whereas convergence of network activity from outside the basin
was solely driven by noise or an external cue stimulus. Hence, internally-generated motivational
DA impulse also multiplicatively gated synaptic NMDA excitability, inducing stronger synaptic
reverberation and neural activity within the attractor. This attracted far-away resting-state
network activity within behavioral timescales by effectively widening the basin of attraction of
the goal-encoding assembly.

This double effect was tested experimentally, with DA-induced learning through medial
forebrain bundle (MFB) electrode rewarding stimulations at the goal location, and DA-induced
motivation through VTA photostimulation at random times in far-away locations. After mice
learned the rewarding goal through uncued MFB electrode stimulation (discarding directional
accounts), VTA photostimulation decreased the delay to reward and increased animal speed, as
predicted. The mice also converged straight to the goal, showcasing the specific (vs.
activational) effect of DA on behavior. This was confirmed through VTA photostimulation
without MFB learning, which showed the delay to center or global speed didn’t change,
discrediting the global energizing of undirected actions predicted by the activational account.
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Our experimentally-tested theory thus proposes motivational effects of DA as the revealing of
an (otherwise covert) attractor previously learned by the reinforcing effects of DA.

7.1.1. Contributions

| developed the biophysical neural network model and calcium-based kinase-phosphatase
couples-mediated eligibility traces and dopamine-based STDP rule, produced all model-related
results as well as main and supplementary figures, and reviewed all text.

7.2. Article
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ABSTRACT

Transient increase in ventral tegmental area (VTA) dopamine is interpreted as a valuation-
updating signal, increasing the frequency of rewarded behaviors. However, performance
also depends on the online, neuromodulatory effect of phasic dopamine. Here we develop
and test a new computational characterization of dopamine’s dual role. We considered mice
navigating between places reinforced by VTA optogenetics, modeled by a recurrent
network model of decision. Dopamine-modulated synaptic plasticity transformed neural
assemblies representing the rewarded places into stable states, but only attracting the
network dynamics locally. The online effect of phasic dopamine on synaptic excitability
made the goal-encoding assembly accessible from remote initial conditions. We verified the
model predictions that VTA photostimulation directs and energizes movements specifically
toward a rewarded place, without exerting any motor effects out of context. We thus
propose that the motivational role of VTA dopamine is to express a potential goal, by

widening the basin of a dopamine-built attractor.
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INTRODUCTION

Transient dopamine (DA) neuron activity contributes to both future decisions (learning) and
ongoing behavior (motivation), but reconciling these two roles remains challenging
(Schultz, 2007; Westbrook and Braver, 2016; Berke, 2018). The popular reinforcement
learning theory, inspired by computer science, interprets fast, phasic dopamine activity as a
reward-related teaching signal (Sutton and Barto, 1998; Schultz, 2007). At the neuronal
level, the role of dopamine in learning is thought to rely on the modulation of long-term
synaptic plasticity (Tritsch and Sabatini, 2012; He et al., 2015; Shindou et al., 2019),
effectively building neural representations of the value of actions leading to reward
(Izhikevich, 2007; Brzosko et al., 2015). Dopamine’s role in value learning was further
demonstrated by optogenetic stimulations of DA cells from the ventral tegmental area
(VTA), inducing a place preference (Steinberg et al., 2013; Hamid et al., 2016). By contrast, it
was presumed that slow, tonic variations in dopamine levels are needed for the generation
of movements (Niv et al., 2007). However, a body of evidence now suggest a role for phasic
dopamine in motivation (Berke, 2018; Coddington and Dudman, 2019; Klaus et al., 2019).
Phasic DA has been observed at the initiation of self-paced movements (Howe and
Dombeck, 2016; Syed et al., 2016; Coddington and Dudman, 2018; da Silva et al., 2018),
while optogenetic DA manipulation to induce movements has given mixed results
depending on the DA nuclei and the intensity of photostimulation (Coddington and
Dudman, 2018; da Silva et al., 2018). Dopamine roles on ongoing behavior have thus proven
hard to reconcile with learning accounts of dopamine (Berke, 2018; Klaus et al., 2019).
Reinforcement learning theories does not assign any effect to dopamine in ongoing
behavior, once the value of actions has been learned through dopamine modulation of

plasticity (Sutton and Barto, 1998; Schultz, 2007).

Accounts on the immediate effect of dopamine suggest either a “directional” role with
dopamine cells specifying the decision (Barter & Yin 2015) or an “activational” role with
dopamine determining the level of motor resources to engage in actions (Salamone and
Correa, 2012; Berke, 2018; Klaus et al., 2019). The limited encoding capacity of dopamine
cells (Engelhard 2019) and the larger impact of dopamine antagonists on action probability

and vigor than on preferences have argued in favor of an activational role (Salamone and
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Correa, 2012). In the activational framework, dopamine would gate decisions by lowering a
decision threshold, effectively increasing the probability, and reducing the latency, of all
actions. It is however unclear how decision-threshold models of dopamine explain its effects
of movement vigor. Most importantly, and contrary to decision-threshold models,
dopamine does not impact every actions equally. Dopamine is mostly associated with, and
necessary for, non-stereotyped, anticipatory, distal, or effortful behaviors, i.e. when some
physical or cognitive distance separate the animal from a reward (Nicola, 2010; Westbrook
and Braver, 2016; Walton and Bouret, 2019). Such dopamine role, neither purely
activational nor directional, does thus not fit in simple, phenomenological models of

decisions.

We instead considered the biophysical effects of DA and used dynamical system
theory to characterize the motivational role of DA. Dopamine modulation of synaptic
plasticity is believed to carve “Hebbian” (Hebb, 1949) assemblies of strongly interconnected
neurons, representing a decision that was repeatedly rewarded. Such a neural assembly can
constitute an attractor of the network dynamics (Hopfield, 1982), i.e. a particular state of
activity (e.g. sustained, reverberating activity among the neuronal assembly, Brunel and
Wang, 2001; Wang, 2002; Durstewitz and Seamans, 2008; Neiman and Loewenstein, 2013)
toward which the network activity converges. In standard models, convergence from a rest
state toward the decision-related attractor either requires a cue stimulus (Wang, 2002), oris
driven by noise (Neiman and Loewenstein, 2013), despite behaviors being also driven by
internally-generated motivated intentions (Balleine, 2019). Here we hypothesized that the
motivational role of phasic dopamine consists in favoring the switch from a rest state to a
decision-related attractor. To test this hypothesis, we achieved a specific control of VTA DA
with optogenetics, to test predictions derived from a dynamical model based on the
biophysical actions of DA on recurrent decision networks. We considered two DA effects, on
synaptic plasticity (long term) and synaptic excitability (short term) (Seamans and Yang,
2004; Durstewitz and Seamans, 2008; Tritsch and Sabatini, 2012). When phasic DA release
was systematically contingent with a particular decision, plasticity effects prevailed and
built a neural assembly representing the rewarded decision (Izhikevich, 2007; Brzosko et al.,
2015). Spontaneous-like phasic DA release (Patriarchi et al., 2018) at random times, by
modulating ongoing synaptic excitability, increased the convergence toward existing neural

assemblies. Our model thus predicted that motivational DA, rather than promoting every
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action, would energize specifically actions aimed at goals previously paired with DA.
Experimental test showed that phasic VTA photostimulation decreased the latency to travel
from random places toward a learned goal, by increasing the speed and reorienting the
animal, as predicted by the model. Furthermore, this effect of DA on movement was
specific to convergence toward a goal, as the same photostimulation did not promote
movements in a context without DA-associated goals. We thus propose that rather than
increasing the probability of every action (Berke, 2018; da Silva et al., 2018), phasic DA

specifically gates learned goals, by revealing attractors previously built by DA.

202



RESULTS

We sought a computational characterization of the dual role of dopamine in learning
and motivation based on dynamical systems, rather than on the reinforcement learning
field of computer science. In reinforcement learning (Figure 1a), reward (signaled by phasic
dopamine, Sutton and Barto, 1998; Schultz, 2007) modulates the (synaptic) weights that
link sensory states to rewarded actions, i.e. it teaches stimulus-action value, with decisions
stochastically following highest-valued actions. Hence, in the original theory, dopamine
only affects decisions indirectly through learning. How phasic dopamine also affects actions
at the time of decision-making is however unclear in the reinforcement learning framework
(Berke, 2018; Klaus et al., 2019). In the dynamical system framework, decisions correspond
to an attractor, i.e. an activity state of the network that is stable. Possible states of the
network map to an energy landscape, in which a decision may be seen as a ball rolling
downhill to the nearest minimum, if initial activity lies within its basin of attraction (Figure
1b). Reinforcement can be seen as the carving of such a minimum (Wang, 2002; Neiman and
Loewenstein, 2013). However, if the rest state is stable and outside the attractor’s basin of
attraction, an event (in most models, a stimulus, Wang, 2002; or a strong noise, Neiman and
Loewenstein, 2013) is required to push the dynamics toward the basin. Here we propose and
test the hypothesis that the online motivational effect of phasic dopamine participates in

making goal-related attractors (previously learned by reward DA) accessible.

To test this hypothesis, we achieved selective manipulation of dopamine neurons, by
expressing ChR2 in the ventral tegmental area (VTA) from dopamine transporter (DAT)-Cre
mice (Figure 1c) and assessed that 500 ms photostimulation at 20 Hz drove bursting in
dopamine cells (see Methods, Figure 1d). To test for the role of phasic dopamine neuron
activity in place-reward association, we used an optogenetic conditioning procedure (see
Methods, Figure 1e). Similar to a classical place preference conditioning, this task requires
the animals to learn internal representations of the task space (i.e. an explicit memory of
the reward location) rather than the association of a discrete sensory stimulus with reward,
as in pavlovian conditioning. We paired three locations of a circular open-field with 5oo ms,
20hz VTA photostimulation (Figure 1e). As mice freely explored the open field, DA cells
were activated when the animals were detected on one of the locations. Following

consecutive visits of the same location were not paired with photostimulation. Mice learned
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to alternate between the rewarded locations (Figure 1e) and increased the number of
photostimulations earned with learning sessions (Figure 1f, two-way ANOVA, condition:
Fu,9=135.6, p=0, learning sessions: F(,9)=4.7, p=0, condition x sessions: F(,¢=4.0, p=0.0001),
which validated that phasic bursting in VTA DA neurons constitutes a teaching signal for

place-reward association (Tsai et al., 2009).

We modeled the decision process in this setup as a recurrent network coding for the
desired position of the animal in task space, and in which the rewarded goal is represented
by a neural "Hebbian"” assembly of interconnected neurons (see Methods, Figure 1g). We
modeled how dopamine may build the representation of a reward-associated place in the
task space (Frémaux and Gerstner, 2016). In this task, there is no discrete sensory stimulus
that would trigger the action as in stimulus-action models, but an internal representation
that a particular location of the environment is rewarding (Balleine, 2019; Coddington and
Dudman, 2019; Klaus et al., 2019). We thus modeled a topological decision network, in
which each neuron biases the animal’s decision toward a point in space (see Methods,
Figure 1g). We considered a recurrent network of integrate-and-fire neurons with
connectivity derived from frontal cortical areas. The prefrontal cortex is implicated in value-
based and space-based decision-making, learning and memory of reward-associated
actions and stimuli (Cisek, 2007; Euston et al., 2012). PFC cells present mixed selectivity for
space and reward, i.e. cells are activated by both the representation of the outcome and its
location (Euston et al., 2012; Rigotti et al., 2013). We thus validated that DA terminals were
infected in mice that underwent the place conditioning procedure (Figure 1c). Nevertheless,
this model does not imply a reductionist view that place-reward association solely occurs in
the PFC, but aims instead at capturing the core computation realized by a more distributed
network of value- and space-based decisions (Penner and Mizumori, 2012; Hunt and
Hayden, 2017), encompassing the basal ganglia (Supplementary Figure 1), thalamus,
hippocampus and amygdala. In the model, neurons receive an input representing the
current position of the animal (putatively by the hippocampus). The bump of neuronal
activity resulting from network recurrent dynamics is read out as the desired position of the
animal (Figure 1g), toward which its actual position converges (through motor cortex and
basal ganglia processes, lumped here as simple first order dynamics), and so on. Recurrent
dynamics ensures that the network has spontaneous activity which is only biased by the

input activity, differing from passive, feedforward stimulus-action mapping. Recurrent
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dynamics are also ideally suited to perform decisions based on internal representations,
with recurrent connections hypothesized to form interconnected neuronal assemblies
(Hebbian assemblies) memorizing a goal (Hopfield, 1982). In this model, we observed that
considering the effects of DA on both synaptic plasticity and excitability (see Methods)
(Seamans and Yang, 2004; Tritsch and Sabatini, 2012) resulted in a high rate of visits of
rewarded locations after learning, similar to experiments, in opposition to considering
dopamine-modulated plasticity alone (Figure 1h). We analyze the requirements for
implementing the two effects of dopamine in the next section, in order to extract from the
model the dynamical interpretation of the learning and decision processes in the
experimental setup (Figure 1i). Dopamine modulation of long-term synaptic plasticity
results in carving energy minima, i.e. transforming network states corresponding to an
action into attractors (Figure 1i). Attractors, while being stable states, only constitute
potential goals. If initial conditions are far from the basin of attraction, or in near-stable
states (e.g. rest states) in which the speed of evolution is significantly slow, decisions cannot
be made on behavioral timescales (as in Figure 1h). In this framework, the online effect of
dopamine consists in widening the basins of attraction, so that the rest state disappears and
neural dynamics converge toward the attractor representing the goal, corresponding to the

motivational role of dopamine (Figure 1i).

We next present the biophysical and biochemical conditions upon which such a dual
effect of dopamine is possible. Standard Hebbian synaptic plasticity alone, in which the
coincidence of presynaptic and postsynaptic plasticity results in synaptic potentiation,
would strengthen any behavioral trajectory associated with a chain of neuronal activation
that occurred by chance. By contrast, synapses from the decision network should only be
modified (e.g. potentiated) if they participated in a rewarded trajectory. However, each
neuron is myopic: it only fires at a particular point of space, and the reward arrives long after
the synapse was activated. How local synaptic plasticity learns global trajectories, from
distant points of the open-field to the reward-associated locations, constitutes a “distal
credit assignment” problem. Here we propose a constrained, biochemical model of the
intracellular pathways implicated in synaptic plasticity that performs distal credit
assignment through eligibility traces (Figure 2a, Supplementary Figure 2, see Methods). In
the model, DA both regulates long-term plasticity, and also directly increases the effective

level of NMDA conductance online (Seamans and Yang, 2004; Tritsch and Sabatini, 2012)
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(Figure 2b). Coincident presynaptic and postsynaptic activities (Figure 2c) are detected by
NMDA receptors (NMDA-R), which are activated by concomitant presynaptic glutamate
release and postsynaptic depolarization. Calcium flow from opened NMDAR (and voltage-
dependent calcium channels, Graupner and Brunel, 2012) activates activity-dependent
kinases and phosphatases (putatively, CaMKIl and Calcineurin) that compete to form early
long-term potentiation (eLTP) or depression (eLTD) (Figure 2c) (He et al., 2015; Shindou et
al., 2019; Magee and Grienberger, 2020). eLTP and eLTD constitute synaptic tags called
eligibility traces (Izhikevich, 2007; Frémaux and Gerstner, 2016; Magee and Grienberger,
2020). These synaptic tags (e.g. phospho-ERK, Zhang et al., 2018; Okuda et al., 2020) decay
to a non-phosphorylated state (Figure 2c) if not consolidated by neuromodulators into
effective changes in glutamate receptors (e.g. through CREB-induced protein synthesis,
Zhang et al., 2018; Okuda et al., 2020). In the model, dopamine, through D1 receptors
(D1R), increases cAMP levels and consequently protein kinase A (PKA) activity (Tritsch and
Sabatini, 2012; Zhang et al., 2018; Magee and Grienberger, 2020), resulting in the
transformation of eligibility traces into synaptic changes (Figure 2¢, Supplementary Figure

2) (Izhikevich, 2007; Brzosko et al., 2015).

In a recurrent network equipped with this plasticity pathway, a neuronal sequence of
activity corresponding to a trajectory from a random initial point to a dopamine-paired
location results in potentiation of the synapses between the neurons coding along the
trajectory, i.e. the model correctly solves the distal credit assignment problem (Figure 2d).
After repetition of such learning procedure from different initial points, dopamine-
modulated synaptic plasticity has built a neuronal assembly of strongly connected neurons
coding for the dopamine-paired location (Figure 2d). As a consequence of the learning
mechanism based on eligibility, synapses onto neurons which represent points of space
nearest to the rewarded location were the strongest, and incoming synaptic weights slowly
decreased along neurons representing locations further and further from the rewarded
location (Figure 2e). Standard Hebbian assemblies are composed of strongly interconnected
neurons with often symmetrical connections, resulting in stable, reverberating activity, but
not necessarily more connections with the rest of the network than the average. Here, the
rest of the network also “points” toward the goal-encoding assembly, with both strong
symmetrical weights between the neurons of the assembly and medium asymmetrical

weights from outside neurons toward assembly neurons (Supplementary Figure 2). These
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features suggest that the assembly was both stable and also attracting trajectories from

outside.

We thus assessed which parts of the space trajectories were indeed attracted toward
the goal assembly. We observed that the attractor corresponding to the neuronal assembly
built by dopamine-modulated synaptic plasticity had a very restricted basin of attraction:
starting from an initial condition of the network activity outside the neuronal assembly, we
did not observe any convergence at the behavioral timescale (Figure 2f). We thus
considered the second effect of dopamine: besides its modulation of synaptic plasticity,
dopamine is a neuromodulator, affecting synaptic excitability online (Seamans and Yang,
2004; Tritsch and Sabatini, 2012). We simulated a phasic release of dopamine, with
temporal dynamics compatible with existing PFC and striatum data (Patriarchi et al., 2018),
exerting an immediate, rather than plastic, effect on NMDA currents. With the dopamine
effect on synaptic excitability, the network dynamics converged toward the assembly from
every point in the space, corresponding to a large widening of the basin of attraction (Figure
2f). In summary, the Hebbian assembly learned with dopamine (i.e. reinforcement signal,
Figure 2d) defined a restricted attractor basin. The assembly was then revealed with
dopamine (i.e. motivational signal) as high spike frequency in assembly neurons (Figure 2G).
This widened the attractor basin (Figure 2f), resulting in mouse convergence toward the

previously rewarded location (Figure 2g).

We thus derived behavioral predictions from this dynamical model rooted in actual
biophysical and biochemical mechanisms. Considering the presence or the absence of an
assembly coding for the goal, a pulse of dopamine did not exert the same effect in the
model. First, stimulating VTA DA neurons when the animal is outside of a previously
rewarded location, should favor the convergence of the animal toward this location (Figure
2g), compared to situations with low or infrequent spontaneous DA pulses (Figure 2g). This
would translate into an immediate effect of DA on movement and direction toward the
goal. Second, in the absence of a goal-encoding assembly, the immediate effect of DA on
synaptic excitability did not change much the network dynamics (Figure 2g). This
corresponds to a context unpaired to reward, in which no goal-encoding assembly has been
formed, and stimulating VTA DA neurons would not trigger any movement or

reorientations.
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To test this prediction, we implanted animals with two distinct sources of dopamine
reward: an electrode in the medial forebrain bundle (MFB) and an optic fiber (after a Chr2-
expressing viral injection) in the VTA (Figure 3a). Electrical stimulation of the MFB has long
been considered as a potent substrate for brain stimulation reward (Gallistel et al., 1981). As
it is not purely dopaminergic, we used MFB stimulation to build the reward-place
association in a round open-field context, as was performed with VTA DA specific
stimulation in Figure 1. Once the association was learned, we used VTA photostimulation
(which the animals never encountered before, controlling that the LED light was not being
used as a cue) to test for the motivational effect of phasic dopamine, by providing random
stimulations when the animal was outside the location in the same, round open-field

context, and in another context unpaired with MFB reward (square open-field, Figure 3a).

We expressed ChR2 in the VTA from DAT-Cre mice (Supplementary Figure 3) and
trained the mice in a simplified version of the task from Figure 1. We paired one central
location of a circular open-field with 20, 0.5ms electrical pulses at 100Hz in the MFB,
requiring mice to leave the location before being stimulated again upon reentry. This led to
strong reinforcement of the central place preference, so that current intensity was adjusted
in order to achieve a moderate rate of visits (Supplementary Figure 3). After this electrical
conditioning, VTA photostimulation (which mice never received in the first step) was
delivered to animals when they were at the periphery of the open-field (see Methods, Figure
3b). VTA photostimulation decreased the delay to the reward location compared to control
times (paired t-test: T(.0)= -3.75, p=0.0038, KS test on all trials from all mice: p=1.107), an
effect not observed in YFP expressing animals (Figure 3c-d, paired t-test: T(;= 0.96, p=0.37,
KS test on all trials from all mice: p=0.97), comparable to a faster convergence of decision
dynamics toward the goal assembly (Figure 2g). We investigated whether the reduced delay
following peripheral VTA stimulation reflected an increase in speed, i.e. an energizing effect
rather than an increase in the overall pace of behavior (Niv et al., 2007). VTA stimulation
resulted in a fast increase of animal speed (paired t-test on acceleration after stimulation vs
control: Tuo)=3.64, p=0.0046, see Methods), not observed in YFP controls (paired t-test on
acceleration after stimulation vs control: T(;=-0.11, p=0.92, unpaired t-test on acceleration:

Tay=-2.83,p=0.012, Figure 3e), excluding a global effect on the pace of the behavior.
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We next investigated other alternative interpretations such as increased probability
of performing any action (i.e. a decreased decision threshold) or an energizing effect
induced by dopamine (Berke, 2018; Klaus et al., 2019), which would result in undirected
increases in speed (da Silva et al., 2018). We thus computed the sum of successive angles
between the animal and the goal, which is low if the animal goes straight to the location,
but high if the animal simply goes faster in any direction before visiting the location. This
angle error decreased following stimulation in Chr2 expressing animals (paired t-test
stimulation vs control: Tuo)=5.0, p = 5.120™*), but not in YFP expressing animals (paired t-test
stimulation vs control: T(.0)=-0.24, p = 0.82; unpaired t-test Chr2 vs YFP: T(,;)=-3.16,
p=0.0058, Figure 3f). Hence, the increase in animal speed following VTA stimulation was
directed toward the central location, suggesting that the action induced by DA stimulation
had a specific content: retrieving the goal learned under DA. This pattern of results is also
consistent with the model, which predicted that DA photostimulation would exert a

directed energizing effect in the context of a goal.

We thus challenged the same animals, conditioned in a circular open-field, by
photostimulating the VTA in the different context of a square open-field in which animals
never received any MFB rewards (Figure 3g). In this context, the animals did not express any
tendency to visit the center of the open-field (Figure 3g) and VTA photostimulation did not
affect the delay to visit the center (KS test on all trials from all mice: p=0.82, Figure 3h).
Hence, VTA stimulation did not affect the animals speed outside the context of a rewarding
goal (Figure 3i), contrary to SNc stimulation with the same parameters (da Silva et al.,
2018). This result is consistent with the model prediction in the absence of dopamine-
induced movements when no neural assembly representing a potential goal is present
(Figure 2g). Overall, these results indicate that motivational effects of the VTA stimulation
consist in the expression of a content-specific and context-dependent goal, rather than an

aimless action.
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DISCUSSION

Our biophysical theory interprets goal-directed actions as a two-step process: neural
assemblies representing a potential goal are learned through DA-regulated synaptic
plasticity, but not automatically expressed, i.e. they are “covert” in terms of behavior
(Spence and Lippitt, 1946; Balleine, 2019). Then, phasic DA signaling has the ability to
reveal these hidden attractors by widening its basin of attraction. We propose that short-
term biophysical effects of DA, by affecting the NMDA receptors already upregulated by
previous DA-dependent plasticity, implement a multiplicative logic able to support the DA-
dependent expression of DA-built memory. We tested this theory using optogenetics,
showing that short-term DA directs the animal and energize specifically actions previously
learned by long-term DA, preferentially to other actions, and in a context-dependent

manner.

Biophysical network modeling of behavior

Contrary to reinforcement learning models that focus on the phenomenology of behavior
rather than on biological implementation, our model constitutes an attempt to root a
dynamical theory on biophysical and biochemical properties, relying on three key features.
First, we considered a recurrent network, because it links attractor dynamics to elemental
computations of decisions (Wang, 2002). Even if inspired by the cortical stage of decision-
making (Cisek, 2007; Euston et al., 2012), our model does not exclude other parts of the
mesocorticolimbic loop from the decision process (Penner and Mizumori, 2012; Hunt and
Hayden, 2017). In particular, striatal dopamine is needed for approaching rewards (Nicola,
2010; Salamone and Correa, 2012), and our theoretical proposal that online dopamine
affects the energy levels of decision networks encompasses the striatal neurons in the
definition of network states. Deciphering the respective effects of dopamine on
corticostriatal NMDAR and on the intrinsic excitability of medium spiny neurons compared
to NMDAR from recurrent connections would refine the link between the model predictions
and the neurobiology literature. However, DA is likely to also affect online the amygdala,
thalamus and hippocampus, as well as the connections between these structures and the
cortex and basal ganglia (Penner and Mizumori, 2012; Tritsch and Sabatini, 2012), and such

full-scale modeling was out of scope. We thus lumped some of the decisions processes, e.g.
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space coding and motor convergence, as simple equations (feed-forward excitation and
first-order convergence, respectively). We considered a coding of space in prefrontal
neurons, which present mixed selectivity (Euston et al., 2012; Rigotti et al., 2013) that
include space together with other task features. Even if the experimental test considered
the physical space of the open-field as the task space, the conceptual consequences of our
model extends to non-physical spaces. Indeed, dopamine is needed for approaching
rewards when the animal is far both in terms of physical space or task state (Nicola, 2010;
Westbrook and Braver, 2016). Our model, while predicting prefrontal sequences of activity
during choice and navigation (Figure 2), would thus benefit from further testing and
refining, by recording in the PFC in the present task as well as in tasks with more abstract

states.

The second important feature of our model is the plasticity pathways implementing
eligibility traces with synaptic tags. We followed the recent literature describing two distinct
eligibility traces for LTP and LTD (He et al., 2015), but this separation leaves holes in the
implementation by intracellular pathways. Indeed, early LTP and LTD are believed to
depend on CaMKIl and calcineurin, respectively, while in our model a different couple of
kinase and a phosphatase is needed for LTP and LTP. This may be implemented by
compartmentalization via synaptic scaffolds linking different forms of CaMKII with different
phosphatases (Cai et al., 2021). Likewise, downstream decoding of early LTP/D may be
realized by ERK and CREB (Zhang et al., 2018; Okuda et al., 2020), although they may not
be specific to increases in the number of glutamate receptors and a refined model would
need to include other DA regulations (Tritsch and Sabatini, 2012; Magee and Grienberger,
2020) such as intrinsic and structural plasticity. In the model, dopamine is key to transform
eligibility traces into effective plasticity, but other neuromodulators such as noradrenaline
(NE), serotonine (5HT) and acetycholine (ACh) seem to exert differential effects on the
read-out of LTP and LTD (He et al., 2015). Linking these neuromodulators, i.e. the
behavioral events they are triggered by, with the precise form of eligibility mechanism they
implement, would enrich our comprehension of reward (or other outcomes) -gated
plasticity. The third key feature is the online modulation exerted by DA. Here we focused on
NMDA effects for DA, whereas it can affect a vast diversity of receptors and ionic channels
depending on the structure and the subtype of DA receptors (Seamans and Yang, 2004;

Tritsch and Sabatini, 2012). Here we mainly modeled D1R effects, but D2R may not be as
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antagonistic as previously believed. D1R and D2R are actually synergistic when considering
the cAMP-PKA pathway that we modeled (Tritsch and Sabatini, 2012). Even the regulation
of intrinsic excitability of medium spiny neurons is more complex than D1R-mediated
increases in excitability and D2R-mediated decreases: D2R may exert destabilizing
influences (rather than inhibitory) that promote or oppose D1R effects depending on down
or up-states, respectively (Tritsch and Sabatini, 2012). These interactions hint at

complementary roles in our dynamical framework, that we discuss below.

Relations to other theories of dopamine function

Reinforcement learning theories do not assign any effect to dopamine during
ongoing behavior, once the value of actions has been learned through DA modulation of
plasticity (Sutton and Barto, 1998; Schultz, 2007). In alternative views to RL, dopamine has
been suggested to exert either directional effects, i.e. stimulus-driven dopamine release
directs the behavior toward the cue (Berridge and Robinson, 1998; Steinberg et al., 2013) or
activational effects, i.e. dopamine increases the probability and vigor of any motor behavior
(Berke, 2018; Klaus et al., 2019). Both views explain subparts of the vast literature on phasic
dopamine. DA nuclei do not have enough encoding capacity and DA projections are not
selective enough (Berke, 2018; Klaus et al., 2019) to precisely represent the goal toward
which the animal should be directed. As such, in the directional account of dopamine, DA is
proposed to add incentive motivation or salience to the cue being currently processed,
promoting approach through yet-unknown mechanisms. The DA-associated cue is
described in incentive-salience accounts as becoming "magnetic” (Berridge and Robinson,
1998; Steinberg et al., 2013), which is exactly what is expected in our model for a state
suddenly attracting the decision network’s dynamics. However, actions that are not cue-
driven but self-generated rely on internal representations, in which case the role of DA in
incentive-salience is less specified. Our proposal is based on contextual decisions, in which
animals rely on learned internal representations to approach reward. It reinterprets
incentive motivation as making attractors representing potential goals, either sensory or

internal, accessible for the network dynamics.

Activational accounts assign a general role to phasic dopamine in gating decisions

(increasing DA makes all decisions more probable) and energizing actions. Incentive
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motivation models, in which decisions are sequentially evaluated, i.e. accepted or not based
on the intensity of phasic DA (McClure et al., 2003), would predict undirected increase in the
probability of every action following VTA photostimulation, in opposition to our
experimental data showing a reduced angle to reward, and with the absence of DA effects
outside the reward context. Furthermore, we show that speed profiles, not just latency or
average speed, are affected by phasic DA, which go beyond the scope of discrete-time
models (McClure et al., 2003). Phasic DA has also been suggested to move the threshold for
decisions in drift-diffusion models (Berke, 2018; Klaus et al., 2019) predicting context-
independent increase in undirected actions, which is also inconsistent with our observations
on context-dependent directed energization of actions. Widening the basin of attraction in
our model naturally increases both the likelihood, directness and speed of actionsin a
reward context-dependent fashion. Finally, in time-processing accounts, dopamine affects
the sense of time: under high DA time goes fast, while under low DA time is felt as slower
(Soares et al., 2016). We would interpret this as the speeding up of neuronal dynamics upon
attractor unveiling. In the context of working memory, prefrontal DA has been related to
the gating and maintenance of persistent activity encoding a goal (Seamans and Yang,
2004; Durstewitz and Seamans, 2008). This account, in which D2R-mediated gating allows
for stimulus-driven transition toward a goal stabilized by D1R-mediated deepening of its
basin of attraction, however differs from ours, in which D1R activation widens the basins of
attraction of underlying goals. These roles are not necessarily opposite, and DA may do a
“double duty” in cognitive motivation (Westbrook and Braver, 2016). The theory closest to
ours is the “flexible approach” hypothesis: online DA is needed to approach reward in non-
habitual situations, when the animal is disengaged from its goal, or when there is a motor
cost and that DA is needed to travel some distance (in either physical or task space)

specifically to retrieve DA-associated goals.

In the experimental literature, exogenous stimulation of phasic DA has provided
conflicting results, with context-independent (da Silva et al., 2018) and context-dependent
(Howe and Dombeck, 2016) movement following SNc/dorsal striatum stimulation (Howe
and Dombeck, 2016; da Silva et al., 2018), but only when the animal is preparing to move
(Coddington and Dudman, 2019). Stimulation of VTA DA (Hamid et al., 2016) exerts either
context-dependent effects, or fails to affect online behavior (Coddington and Dudman,

2018). Our theory reconciles these conflicting results: when the animal is head fixed, already
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close to a rewarded state (Coddington and Dudman, 2018), DA is unneeded and its
stimulation does not change behavior, while for situations in which animals have to perform
some displacement in a physical space or in task space, DA increases the likelihood and
speed of convergence toward the goal (Hamid et al., 2016; Howe and Dombeck, 2016; da
Silva et al., 2018). Our model also explains why no dopamine is needed for no-go
conditioning, as the rest state is the goal state, while it is associated with go conditioning
(Syed et al., 2016). Alternatively, the dichotomy between SNc and VTA may be based on
the type of attractor these nuclei affect. VTA would build and express high level goals (deep,
well separated wells in the energy landscape), and SNc low level, context-independent
goals (i.e. locomotor actions) corresponding to multiple nearby attractors, explaining
context-independent locomotion upon SNc stimulation. In either case, the motivational
effect of DA has been described as gating or energizing decisions taken elsewhere (Berke,
2018; Coddington and Dudman, 2019; Klaus et al., 2019), while pharmacological
manipulations can affect decision-making and the reward features being favored (e.g. high-
effort high-gain). By hypothesizing and testing that the neuromodulatory effect of DA is to
alter the network energy landscape on a fast timescale, we suggest the opposite view that

DA would bias how ongoing decisions are being made.
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Figure 1. A new paradigm to study the dual role of dopamine in reinforcement and

motivation.

a. Inreinforcement learning models, dopamine reinforces synaptic weights used for
decision-making, but the motivational role of dopamine is unclear.

b. Decision-making can also be seen as the convergence of neural dynamics to stable
energy states. We ask how dopamine affects energy landscapes in reinforcement
and motivation.

c. Left, schematics of virus injection in the ventral tegmental area (VTA). Right, ChR2
was expressed in VTA DAT+ (dopamine) neurons in DAT-Cre mice.

d. Example voltage trace from slice recordings, showing dopamine neuron bursting
upon photostimulation in DAT-Cre mice.

e. Left, schematic of the task design. Three explicit circle locations were placed in the
open field, forming an equilateral triangle. VTA photostimulation was delivered
when mice were detected within one of the location circles, but mice could not
receive two consecutive photostimulations at the same location. Middle to right:
trajectories (10 min) of one mouse expressing ChR2 in the VTA (blue) and on
expressing YFP (black), at the beginning (middle) and at the end (right) of the
learning sessions.

f.  Number of photostimulations against session number for Chr2-expressing (blue) and
YFP-expressing (black) animals.

g. Left: schematics of the biophysical network model. A recurrent network of
integrate-and-fire neurons receives the current position of the animals as an
excitatory input, transformed by recurrent dynamics into a bump of neuronal activity
(right) that encodes the goal position of the animal.

h. Inthe model (see Methods), dopamine modulation of both synaptic plasticity and
synaptic excitability produced greater performance, similar to experiments, than
dopamine modulation of synaptic plasticity alone. Animal learning was divided into
300 learning trials of 2 seconds each, where the mouse converged towards the
dopamine-releasing reward and learned a neuronal assembly through dopaminergic
neuromodulation of STDP. 20 test trials of 3 seconds each were conducted every 15
learning trials, either with (plasticity + excitability) or without (plasticity only) an

initial release of dopamine inducing online neuromodulation of NMDAR.
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i. The model interprets dopamine reinforcement as building neuronal assemblies
forming attractors that are attained by the network dynamics (“unveiled”) through

the online motivational effect of dopamine.
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Detailed schematics of the plasticity model. Synaptic calcium (red), depending on
pre- and post-synaptic activity, activated kinases and phosphatases (green) forming
eligibility traces (synaptic tags). At the time of dopamine (DA, purple) release (e.qg.
during reward), eligibility traces were translated into actual synaptic modification
(blue).

DA acted on NMDA receptors at two timescales: at a learning timescale, through
DA-modulated synaptic plasticity increasing the total number of glutamate
receptors, but also in the ongoing behavior via the online modulation of NMDAR.
These two roles acted in synergy: neurons previously interconnected through DA-
modulated plasticity will be reactivated by the online modulation of NMDAR.
During navigation, the neural sequence leading to reward may be separated by
several seconds from the DA signal. In a toy neural network model of 4 neurons with
simulated spike trains (~4Hz) testing STDP dynamics, strong coincident neural
activity (putatively arising from mouse locomotion toward the reward, neuron 1 (o-
0.5s) -> neuron 2 (0.5s-1s) at 40Hz) induced a calcium entry resulting in eLTP/eLTD
(green panels), whose respective levels maintain a trace of potential weight change,
finally translating into actual weight change at the time of DA release (blue panels)
and modifying only synapses activated during the sequence to reward.

Mean of synaptic connections received by the neurons, ordered by their topologic
encoding (the position in space they bias for, equivalent to spatial receptive fields).
Before learning, the mean synaptic weights received by neurons of the network
followed a gaussian distribution. Middle panel shows the synaptic plasticity induced
by a single learning trial. After learning, the sum of plastic changes, induced by
repeated dopamine paired with a location in task space over 300 learning trials,
formed a Hebbian assembly of strongly interconnected neurons coding for the
reward location.

Mean synaptic weights as a function of the distance of locations encoded by the
neurons from the reward center.

Probability to converge toward the goal (in less than 3s, averaged over 200 trials)
after neural assembly learning, as a function of the distance to the goal, with and

without DA’s effect on ongoing synaptic excitability. DA increased the distance for
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which there is a significant probability to converge toward the goal, i.e. DA widened
the basin of attraction of goal-encoding attractor.

Raster plots with one example of network activity (bottom) and all the behavioral
trajectories in the open-field (top). Left: without ongoing dopamine, activity in the
neuronal assembly encoding for the goal does not differ from background. Middle:
upon dopamine release outside the location, the neuronal assembly is strongly
activated and the trajectories converge toward the reward location. Right: before
learning, without any neural assembly, dopamine does not affect the network

activity nor the behavioral trajectory.
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Figure 3. Testing the prediction that VTA photostimulation-induced movements are

goal-specific and context-dependent.

a. Schematics of the experimental test of the model predictions.

b. Left: all the trajectories from one example session, after VTA photostimulations in
the periphery (purple) and after control (surrogate) times (black).

c. Individual differences between stimulation-location delays (ON) and surrogate time-
location delays (OFF), for ChR2-expressing (left, purple) and YFP (right, green)
animals.

d. Cumulative distribution of the duration between VTA DA stimulation (purple) and
surrogate time points (black) and visit of the rewarded location, for ChR2-expressing
animals.

e. Speed around the time of random VTA photostimulation in the periphery for ChR2-
expressing (purple) and YFP (green) animals.

f. Left: same trajectories as in a, realigned to the same line relative to the rewarded
location, showing straight trajectories stimulation times (purple) and more indirect
trajectories with pauses for surrogate times (black). Right: difference in angle error
(sum of angles from stimulation to reward) for ChR2-expressing (left, purple) and
YFP (right, green) animals.

g. Experimental test of context-dependance: after learning, photostimulation of VTA
DA neurons at random times in a different, square open-field.

h. Cumulative distribution of the duration between VTA DA stimulation (brown) and
surrogate time points (black) and visit of the rewarded location, for ChR2-expressing
animals.

i. Speed around the time of random VTA photostimulation in the periphery (brown),

for Chr2 expressing animals.
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AAV5-DIO-YFP

Supplementary Figure 1: Specificity of dopamine control by optogenetics

a. ChR2was expressed in VTA DAT+ (dopamine) neurons in slices from DAT-Cre mice

used for ex-vivo recording.

b. Zoomin the example neuron recorded, expressing TH, YFP and filled with biocytin

(blue).

c. Example of current induced by a one second-pulse (left) and average currents from n

cells (right), induced by the 10 5ms pulses at 20Hz from n cells.

d. YFP was also expressed in VTA DAT+ (dopamine) neurons in slices from DAT-Cre

mice used as controls.
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Supplementary Figure 2: Plasticity dynamics in the model.

a.

Kinase and phosphatase rates for early LTP (left), LTD (middle) and weight (right) as
a function of synaptic calcium concentration. Eligibility traces were considered at
their equilibrium value at any given calcium concentration for the right subpanel
(same for b).

Eligibility trace dynamics as a function of the current level of the trace (e, left) or
weight (w, right) and of synaptic calcium concentration.

Left : synaptic weights between pre- and post-synaptic neurons after learning.
Neurons are ordered from top to bottom according to their proximity with the arena
center (top = close, bottom = far). Right : synaptic weight differences after vs. before
learning, multiplied by how much the synaptic weight is oriented toward the reward
(defined as the cosine similarity between the pre-post vector, a.k.a. the vector from
the pre- to post-synaptic receptive field center, and the pre-reward vector, a.k.a. the
vector from the pre-synaptic receptive field center and the reward location).
Neurons are ordered as in the left subpanel.
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Supplementary Figure 3: control experiments for Figure 3
a. ChR2was expressed in VTA DAT+ (dopamine) neurons in animals used in Figure 3
experiments.

b. Example trajectories at the end of MFB reward learning.
c. Number of location visits across sessions of MFB reward learning.

d. Distribution of stimulation-reward delays in YFP animals.
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METHODS

Animals

Experiments were performed on DAT'RE female (N) and male (N) mice, from 8 to 16
weeks old, weighing 25-35 grams. Mice were housed in cages in an animal facility where the
temperature (21+/- 1°C) and a 12h light/dark cycle were automatically monitored with food
and water available ad libitum. DAT'®®* mice were provided by Ludovic Tricoire (local
breeding). All experiments were performed in accordance with the recommendations for
animal experiments issued by the European Commission directives 219/1990, 220/1990 and

2010/63, approved by Sorbonne University, and n® 014378.01 supervised by the CEEA - 0os.

Viruses production

AAV vectors were produced as previously described (Khabou et al., 2018) using the co-
transfection method, and purified by iodixanol gradient ultracentrifugation (Choi et al.,
2007). AAV vector stocks were titrated by quantitative PCR (qPCR) (Aurnhammer et al., 2012)
using SYBR Green (Thermo Fischer Scientific).

Virus injections

Mice were anaesthetized with a gas mixture of oxygen (1 L/min) and 1-3 % of isoflurane
(Piramal Healthcare, UK), then placed into a stereotaxic frame (Kopf Instruments, CA, USA).
After the administration of an analgesic (Buprecare 0,12 mL at 0,015 mg/L) and of a local
anesthetic (Lurocain, 0.1 mL at 0.67 mg/kg), a median incision revealed the skull which was
drilled at the level of the VTA. Mice were then injected unilaterally in the VTA (1 pL,
coordinates from bregma: AP -3.1 mm; ML *0.5 mm; DV -4.5 mm from the skull) with an
adeno-associated virus (AAV5.EF1-a.DIO.Chr2.YFP 6.8g9e13 ng/uL or AAV5.EF1a.DIO.YFP or
9.10e13 ng/uL). A double-floxed inverse open reading frame (DIO) allowed to restrain the
expression of ChR2 opsins to VTA dopaminergic neurons. After stitching and administration
of a dermal antiseptic, mice were then placed back in their home-cage and had 14 days to

recover from su rgery.
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Fibers and electrodes implantations

Two weeks after the virus injection, mice were anaesthetized similar as above. After the
administration of the analgesic and local anesthetic, skin was incised, the skull was drilled at
the level of the VTA. An optical fiber (200 um core, NA=0.39, Thor Labs) coupled to a ferule
(1.25 mm) was implanted just above the VTA ipsilateral to the viral injection (coordinates
from bregma: AP -3.2 mm, ML +0.5 mm, DV 4.4 mm), and fixed to the skull with dental

cement (SuperBond, Sun Medical).

For dual implantation experiments, the skull was also drilled at the level of the Median
Forebrain Bundle (MFB). A bipolar stimulating electrode for ICSS was then implanted
unilaterally (ipsilateral to the optic fiber in the VTA) in the brain (stereotaxic coordinates from

bregma according to Paxinos atlas: AP -1.4 mm, ML +1.2 mm, DV -4.8 mm from the brain).

After stitching and administration of a dermal antiseptic, mice were then placed back in
their home-cage and had 14 days to recover from surgery. The behavioral task thus began 4
weeks after virus injection to allow the transgene to be expressed in the target dopamine

cells.

Ex vivo patch-clamp recordings of VTA DA neurons

To verify the functional expression of the excitatory opsin ChR2, 8-12 week-old male and
female DATICRE mice were injected with the ChR2-expressing virus as described above. 4
weeks after infection, mice were deeply anesthetized with an intraperitoneal (IP) injection of
a mix of ketamine/xylazine. Coronal midbrain sections (250 pm) were sliced using a
Compresstome (VF-200; Precisionary Instruments) after intracardial perfusion of cold (4°C)
sucrose-based artificial cerebrospinal fluid (SB-aCSF) containing (in mM): 125 NaCl, 2.5 KCl,
1.25 NaH2POg, 5.9 MgCl2, 26 NaHCO3, 25 Sucrose, 2.5 Glucose, 1 Kynurenate (pH 7.2, 325
mOsm). After 10-60 min at 35°C for recovery, slices were transferred into oxygenated aCSF
containing (in mM): 125 NaCl, 2.5 KCl, 1.25 NaH2PO4, 2 CaCl2, 1 MgCl2, 26 NaHCO3, 15
Sucrose, 10 Glucose (pH 7.2, 325 mOsm) at room temperature for the rest of the day and

individually transferred to a recording chamber continuously perfused at 2 ml/min with
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oxygenated aCSF. Patch pipettes (4—8 MQ) were pulled from thin wall borosilicate glass
(G150TF-3, Warner Instruments) using a micropipette puller (P-87, Sutter Instruments,
Novato, CA) and filled with a KGlu based intra-pipette solution containing (in mM): 116 K-
gluconate, 10-20 HEPES, 0.5 EGTA, 6 KCl, 2 NaCl, 4 ATP, 0.3 GTP and 2 mg/mL biocytin (pH
adjusted to 7.2). Transfected VTA DA cells were visualized using an upright microscope
coupled with a Dodt contrast lens and illuminated with a white light source (Scientifica). A
460 nm LED (Cooled) was used both for visualizing YFP positive cells (using a bandpass filter
cube) and for optical stimulation through the microscope (with same parameters used for
behavioral experiments: ten 5 ms pulses at 20Hz). Whole-cell recordings were performed
using a patch-clamp amplifier (Axoclamp 200B, Molecular Devices) connected to a Digidata
(1550 LowNoise acquisition system, Molecular Devices). Signals were low pass filtered
(Bessel, 2 kHz) and collected at 10 kHz using the data acquisition software pClamp 10.5
(Molecular Devices). All the electrophysiological recordings were extracted using Clampfit

(Molecular Devices) and analyzed with R.

Behavior acquisition and conditioning procedures

Experiments were performed using a video camera connected to a video-track system, out
of sight of the experimenter. A home-made software (Labview National instrument) tracked
the animal, recorded its trajectory (20 frames per s) for 10 min and sent TTL pulses to the

electrical stimulator or LED device when appropriate.

Conditioning procedure with VTA DA photostimulation: three explicit square locations,
marked on the floor, were placed in a circular open-field (67 cm diameter), forming an
equilateral triangle (side = 35 cm). Each time a mouse was detected (by its centroid) in the
area of one of the rewarding locations (area radius = 3 cm), a 5ooms train of ten sms pulses at
20Hz was delivered to the LED device. An ultra-high-power LED (470 nm, Prizmatix) coupled
to a patch cord (500 pm core, NA=o.5, Prizmatix) plugged onto the ferrule was used for
optical stimulation (output intensity of 10 mW). Animals could not receive two consecutive

stimulations on a same location.

Conditioning procedure with MFB electrical stimulation: only one explicit location was

marked onthe floor, at the center of the open-field. Each time a mouse centroid was detected
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in the area (radius=5cm) of the location, a 200-ms train of twenty o0.5-ms biphasic square
waves pulsed at 100 Hz was delivered to the electrical stimulator. Mice were required to leave
the location (i.e. to be detected at least 10cm from the central point) so that stimulation was
made available again. The training consisted of a block of 5 daily sessions of 10 min at 8o pA,
followed by 5 daily sessions of 10 min in which ICSS intensity was adjusted (in a range of 20-
200 pA) so that mice visited the central location between 20 and 5o times at the end of the

training.

Test sessions with VTA DA photostimulation: after the end of the MFB electrical
conditioning procedure, the optical stimulation patch cord was plugged onto the ferrule
during at least one OFF day (maximum=5) to habituate the animals, until the criterion
(between 20 and 5o locations visits in 210 min) was reached again. On ON test day,
photostimulation was delivered by the experimenter when the animal was outside of the
reinforced location (at least 20cm from the central point). When the experimenter clicked to
stimulate, it had a 50% probability to deliver an actual TTL pulse leading to photostimulation,
otherwise this control time point was recorded as a control. In the square open-field test,
occurring after the test session in the circular open-field, the procedure was exactly similar,

except that it took place in square open-field (side = 70 cm) without any mark on the center.

Behavioral analyses

Stimulation-reward duration was computed as the time between the start of the
photostimulation (or of the control time) and the first detection of the animal in the central
location. Durations greater than 6os were excluded from the analysis for the sake of
representations, but did not affect the statistical significance of the tests. Cumulative
distributions of durations were computed by pooling stimulation-reward and control time-
reward from all animals in one condition (e.g. ChR2 or YFP), with a 3s time bin. Average delays
to rewards were also computed for each animal. For all groups of mice, the trajectory was
smoothed using a triangular filter before computing the instantaneous speed, which
corresponds to the distance traveled by the animal between two video frames (every 5oms)
as a function of time. Mean acceleration following stimulation was taken as the time
derivative of speed during the first second after stimulation. Angles to reward were

computed as the angles between each successive positions of the animal relative to the initial
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angle (at photostimulation of control time). Angle error was taken as the mean of || ), e ||

where 8 are the successive angles to reward.

Immunochemistry

After euthanasia, brains were rapidly removed and fixed in 4% paraformaldehyde (PFA).
After a period of at least three days of fixation at 4°C, serial 60-um sections were cut with a
vibratome (Leica). Immunostaining experiments were performed as follows: VTA brain
sections were incubated for 1 hour at 4°C in a blocking solution of phosphate-buffered saline
(PBS) containing 3% bovine serum albumin (BSA, Sigma; A4503) (vol/vol) and 0.2% Triton X-
100 (vol/vol), and then incubated overnight at 4 °C with a mouse anti-tyrosine hydroxylase
antibody (anti-TH, Sigma, T1299) at 1:500 dilution, in PBS containing 1.5% BSA and 0.2%
Triton X-100. The following day, sections were rinsed with PBS, and then incubated for 3
hours at 22-25 °C with Cy3-conjugated anti-mouse and secondary antibodies (Jackson
ImmunoResearch, 715-165-150) at 1:500 in a solution of 1.5% BSA in PBS, respectively. After
three rinses in PBS, slices were wet-mounted using Prolong Gold Antifade Reagent
(Invitrogen, P36930). Microscopy was carried out with a fluorescent microscope, and images

captured using a camera and analyzed with ImageJ.

Identification of the transfected neurons on DAT'RE

mice by immunohistofluorescence
was performed as described above, with the addition of 1:500 Chicken-anti-GFP primary IgG
(aba3zg70, Abcam) in the solution. A Goat-anti-chicken AlexaFluor 488 (1:500, Life
Technologies) was then used as secondary IgG. Neurons labelled for TH in the VTA allowed
to confirm their neurochemical phenotype, and those labelled for GFP to confirm the

transfection success.

Model of mouse locomotion

In the present model, mouse navigation was modeled as a process where orientation and
speed were governed by a convergence toward either a default objective that consisted in
approaching and aligning with the arena wall (answering to a need for security), or a goal-

directed objective (answering to a need for exploration and reward retrieval). While the
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default behavior was set according to ballistic laws in the model, goals were driven by

population dynamics of the recurrent neural network.

In the model, the mouse position was denoted P = {X;, Yp}, with X, and Y} its cartesian

coordinates. The position vector was
= (Xp\ _ cos(Bp))
b= (Yp) = dp (sin(ep)
with dp = ||P|| the distance to the center of the arena and 8, = (P,?) the directional angle

of the position vector (where 7 represents the unit vector (1, 0)). The mouse navigated in the

environment according to

_ /dXp

> dP [ Tae ) cos(6y

V=alay, |=" (sm(ev))
dt

where Vp was the linear speed and 8, = (17, f) the direction of movement, i.e. the directional

angle of the mouse speed vector, termed hereafter the speed angle.
Mouse speed evolution

The mouse linear speed evolved according to

dVp
Qarra Fy, +Fy,
wherethetermsFy =V, — Vpand Fy, = V; — Vp modeled the contributions of default and
goal behaviors to the linear speed. Briefly, F;, ) described the mouse’s propensity to converge
toward the nearest point on the wall and then run alongside it, whereas Fy, . defined the
mouse’s drive to converge towards an internally-generated goal when far from it and then

escape recently visited rewards.

On the one hand, the contribution of the default behavior, governed by Fy, , drove the

mouse linear speed toward the default speed V,, which was expressed as

Vp = VmaxL(dD; O'D)A(AGD)
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2
where V,,,, was the mouse’s maximal speed, L(d,o) = exp (— ;7) and A(0) = Lrcos®)

respectively denoted exponential colinear and cosine angular tuning functions for motor
command (Todorov, 2002), dp, was the distance between the mouse center and the default
objective point D, and A8, = 8y — 0 the angular difference between the speed and default
objective angles. At each time, the default objective point D was defined as the projection of

the animal’s position onto the nearest point of the circular arena wall at a radius

Ta = Tarena — Tmouse

from the center, with ;¢4 the arena radius and 7,,,,5. the mouse body’s half width, i.e. at
the nearest possible distance from the wall, considering the physical dimension of the mouse
body (the mouse was not allowed to exceed that distance from the arena center). The default

objective angle was computed as
6p = (1 —L(dp,0p))0p + L(dp,0p)0r

where 0, was the directional angle of the animal position P and its projection onto the wall
D, and 6, was the directional angle tangential to the arena circular wall at point D and in the

direction of mouse movement.

Overall, the term F,, modeled the propensity of the mouse to be driven by the default
command speed when 1) approaching the arena wall, due to both L(dp,ap) which was
stronger when approaching the wall, and (1 — L(dp, 0p))8p which set a default direction
toward the nearest position on the wall (i.e. D) when at distance from it, and 2) aligning
parallel to the arena wall, due to A(A6,) and L(dp, 6) 60+ which induced convergence of the
speed angle 8, toward 8; when approaching the wall. Conversely, the contribution of the
default behavior to the mouse overall speed vanished when the mouse was far from, or not

aligned with, the arena wall.

On the other hand, the contribution of the goal behavior to the linear speed, governed
by Fy,, drove the mouse linear speed toward the goal command speed V;, which was

expressed as
VG = Vmin + (Vmax - Vmin)[(l - L(dG' O'TG))A(ABG) + L(dG' GFG)A(ABG + ”)]

where V,,;, was the mouse’s minimal speed, d; was the distance between the mouse’s center

and the goal objective point G,
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AHG - GV - GG

—

the angular difference between the speed angle and 6; = (Fé, 7) the directional angle from

the mouse to the goal objective.

Altogether, the term Fy,. modeled the propensity of the mouse to be driven by the goal
command speed when 1) far from the goal objective position and facing it due to the (1 —
L(dg, 07¢))A(AB;) term, or 2) near to and moving from it due to the L(dg, 07¢)A(AO; + )
term. The scaling of linear tuning functions, when moving toward or away from the goal
objective point, were determined by the o;; and gz; parameters, with o7 < gz so that
navigation was faster when escaping a recently visited rewarded point. This hypothesis was
necessary to escape repeating navigational loops of the mouse around (to and from)

rewarded points in the arena.

The goal objective position G was determined through first-order dynamics of an
instantaneous goal objective position G;, the latter resulting from population coding of
topographically-tuned excitatory neurons activity. Excitatory neurons each had a spatial
receptive field (putatively arising from hippocampal place-cell inputs), the centers of the
receptive fields being arranged along a 2D square grid (as in Figure 2d). G; was then
determined by each excitatory neuron voting for the distance from the center and the angle
coordinates (within the unit circle) of its own spatial receptive field, their contributions being
summed in proportion to a softmax function (with inverse temperature ) of the neurons’

spiking frequencies (estimated through an exponential function with T, = 100ms). The goal

objective vector G thus followed

ié G-é
dt 1,

with 7; the time constant of goal objective position convergence to its instantaneous

counterpart.
Evolution of mouse angular direction

The angular direction of the mouse evolved according to

de,
Yoy Tqr

v
)(Fo,, + Fo,)

Vm ax

=(1-
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where (1 — ) expressed the fact that animals rotate slower when moving faster, and Fg |

max

and Fy . represented the contributions of default and goal behaviors to the orientation of the

mouse.
Rotation toward the default objective was governed by
FBD = L(dD, GD)AGD

so that rotational speed toward the default objective was larger when approaching the arena
walls. This term ensured a progressive rotation of the mouse angle toward 6, i.e. the mouse
aligned with the arena wall when it approached it (as L(dp, op) increased to 1). Rotation of
the mouse was essentially independent of the default behavior far from the wall, being

instead mostly goal-directed with rotation toward the goal objective governed by
Fg, = A(A65)A0,

so that rotational speed toward the goal objective vanished for a speed angle far away from
(i.e. typically on the opposite direction of) 8, i.e. the mouse was essentially influenced by
goals situated in its visual foreground landscape. This hypothesis, which expressed a visual
gating of internally-guided behaviors, reduced the noise of goal-directed navigation but was

not essential to the results.
Pause and redirection behaviors

The mouse had pause and redirection behaviors, occurring spontaneously (mostly at
arena borders) and upon reward delivery, as observed empirically (Naudé et al., 2016). The

time at which the mouse started a spontaneous pause was drawn at each time step dt with

a d—P, the latter term inducing higher pause probabilities

TPause Tarena

probability with ppgyuse =

when closer to the arena borders. Redirections of the mouse occurred at the end of pause
episodes, by setting the new direction at an angle drawn from a von Mises distribution with

mean 6, and concentration Kpgyse reair = 0-83 (i.e. with a circular standard deviation of %).

In order to bias redirections towards the center of the arena when at the edges, directions
were redrawn if they were not included within the half-circle centered on the arena center
with random probability preqrqw = L(dp, 0p) (closerto1asthe mouse is closer to the edges).

Reward delivery similarly induced a pause and redirection, but with a new direction at an
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angle drawn from a von Mises distribution with mean 6, +  (i.e. turning around) and

concentration Kpgyuse rewara = 3.6 (i.e. with a circular standard deviation ofg). Mouse linear

Vm ax

speed Vp was set at at the moment of redirection, simulating a strong starting speed

impulse.

Spontaneous pauses and redirections, as well as reward redirections, occurred only
during test trials (in order to allow a linear approach of the reward during learning trials, see
below). Pauses were considered instantaneous in test trials (since they didn’t meaningfully
affect the results and allowed to save computational resources). However, reward pauses
lasted sooms during learning trials as observed experimentally (Naudé et al., 2016) since they
did affect the results, allowing synaptic plasticity to affect mostly synapses in the vicinity of

the reward in order for a local neuronal assembly to emerge.

Model of biophysical local recurrent neural network

We built a biophysical model of a prefrontal local recurrent neural network, endowed with

detailed biological properties of its neurons and connections, based on (Sarazin et al., 2021).

The network model contained N neurons that were either excitatory (E) or inhibitory (l)
(neurons projecting only glutamate or GABA, respectively; Dale, 1935), with probabilities pg
and p; = 1 — pg respectively, and pg/p; = 4 (Beaulieu et al., 1992). Connectivity was sparse
(i.e. only a random fraction of all possible connections exists, see pr_g, Pe1, Pi~E Pisi
parameter values; Thomson 2002) with no autapses (self-connections). The synaptic weights
w(; jy of existing connections were drawn identically and independently from a log-normal

distribution of parameters u,, and a,, (Song et al., 2005).

To cope with simulation times required for the massive explorations ran in the parameter
space, neurons were modeled as leaky integrate-and-fire (LIF) neurons. The membrane
potential of neuron j followed

dVi) _
C dt - _(IL(j) + ISyn.Rec(j) + ISyn.FF(j))

Vir > 8y = Vi = Vrest
where neurons spike when the membrane potential reaches the threshold 6;, and

repolarization to V,..s; occurred after a refractory period At,p.
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The membrane potential threshold leading to action potential was adaptive in excitatory
neurons, with a spike-induced instantaneous increase and exponential decrease between
spikes, following

a8y _ 80— b
dt T

+46 8(t — t())

where § was the Dirac function and t; the times of APs (action potentials).
The leak current followed
Lgy = G (V) = V1)
where g; was the maximal conductance and V; the equilibrium potential of the leak current.

The recurrent synaptic current on post-synaptic neuron j, from either excitatory or

inhibitory pre-synaptic neurons (indexed by i), was

Isyn rec(j) = Z(IAMPA(L',]) + Inmpac,jytleaasijy + IGABAB(i,j))

12
The delay for synaptic conduction and transmission, 4t;,,,, was considered uniform across
the network (Brunel and Wang, 2001). Synaptic recurrent currents followed
Ly = G Wai) Pxy (Vi) — )
where w(; j) was the synaptic weight, p, ;) the opening probability of channel-receptors and
V, the reversal potential of the current. The NMDA current followed

Inmpad, ) = Gnmpa W(i,j) PNMpAG) XNMDA (V(j))(V(j) - VNMDA)fL%MDA

incorporating the magnesium block voltage-dependence modeled (Jahr and Stevens, 1990)

as
xNMDA(V) = (1 + [Mgz+]e—0.062 V/3'57)—1

while fYMPA represented the dopamine-dependent gating of NMDA conductance (see

below).

AMPA and GABAA channel rise times were approximated as instantaneous (Brunel and

Wang, 2001) and bounded, with first-order decay
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APy i Px(i
dxto) __ szgy +Ap, (1= pay) 8(t — t)

b

where t ;) represented the times of the pre-synaptic APs.

To take into account the longer NMDA (Wang et al., 2008) and GABAB (Destexhe et al., 1998)
channel rise times, opening probabilities followed second-order dynamics (Brunel and Wang,

2001)

d9xiy _ _ D

k
dt Trise + 44, (1 - qx(i)) 6(t - t(i))
x
dpx(iy Px(i)
dt = _Tdecay + ay qx(i) (1 - px(i))
x

Recurrent excitatory and inhibitory currents were balanced on average in post-synaptic
neurons (Xue et al., 2014) according to driving forces and excitation/inhibition weight ratio,

through

Genna. = Goana —(Vmean = Vampa) Pe-x N pg

4 4 (Vmean - VGABAA) Pr-x N br
_ _ —(Vnean — Vampa) Pe-x N e
9caBAg = 9caBAg (Vmean — VGABAB) prox N Py

With Viean = (B + Viest) /2 being an approximation of the average membrane potential,
and X the excitatory or inhibitory identity of the post-synaptic neuron receiving the inhibitory

current.

The feed-forward synaptic current sy, rr(jy (putatively arising from sub-cortical and
cortical inputs) consisted of an AMPA component
Isynrr(j) = Gampa.rr PaMPAFF (V(j) - VAMPA)

where pyparr Was the sum of two components,

Pamparr = Pext + PrB

The first, pgye, corresponded to network-wide AMPA input from external sources, and was
described by the convolution of a normalized exponential kernel kg, with random variables

drawn from the normal distribution ~N (mg,;, 0g:) for every neuron and time bin, following

Mext = APamparr Next XExt
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Opxt = APamparr \/ Ngxe Xpxt (1 — Xgxt)

t
e TAMPA
kExt = t

oo ————
fo e TAMPA

Pext = N (Mpxr, Opxe ) * Kpye

where ng,, corresponded to the number of external neurons projecting onto the decision

network and xg,; the probability of them spiking within a given time bin.

The second, pgg, corresponded to the (putatively hippocampal) position feedback (Fig.2a),
with each neuron j receiving AMPA input proportional to the activation kg (j) of their spatial
receptive field equivalent. Receptive fields’ activation function are modeled as bivariate
normal distributions centered on the receptive field center (Xgr (jy, Yrr (j))- As such, pgp

followed

1
keg () = \/Z_FURF

Prp = Kpp Xrpp

2 2
1 (Xp=Xgr () +(Yp=YRrF(j)
e 2 UIZQF

where g represents the spatial width of receptive fields, (Xp, Yp) the spatial position of the

mouse in the arena at time t, and x5 a constant factor.

Spike Timing-Dependent Plasticity (STDP) plasticity

In this model, the excitatory synapses were subjected to a dopamine-modulated spike
timing-dependent (STDP) plasticity rule, where potentiation and depression depends upon
the relative timing of pre- and post-synaptic activity, with pre-then-post (post-then-pre)
activity leading to potentiation (depression). Coincident spiking activity did not not
immediately translate into synaptic changes, but rather into synaptic tags, called eligibility
traces (Sutton and Barto, 1998), which were read out at the time of dopamine release
(Izhikevich, 2007). Eligibility traces are known to perform distal-credit assignment: only
connections between neurons that were activated when the animal aimed for reward are
modified, and coincident activity outside the reward aiming behavior left corresponding

weights unchanged.
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More precisely, coincident presynaptic and postsynaptic activities were detected by
NMDA receptors (NMDA-R), which were activated by concomitant glutamate release and
postsynaptic depolarization (see above). Calcium-dependent kinases and phosphatases
competed for the phosphorylation of early LTP (eLTP) and early LTD (eLTD) synaptic tags
(Figure 2a). Experimental data suggest the existence of distinct eLTP and eLTD traces (He et
al., 2015), which are furthermore needed for the overall potential synaptic changes to
become positive or negative. eLTP and eLTD tags formed traces that were short-lived: they
decayed to a non-phosphorylated state if not stabilized by a second event that consolidated
the early plasticity. This second event may be the release of a neuromodulator (He et al.,
2015), dopamine in the present model. Dopamine, through activation of D1 receptors (D1R),
activated another kinase-phosphatase couple that gated the eligibility traces into an increase
or decrease in the number of NMDAR at the synapse (Fig. 2a). In terms of biochemical
implementation, calcium-dependent CAMKinase Il and calcineurin phosphatase have been
suggested to participate in early LTP/LTD traces, putatively competing for the
phosphorylation of an ERK tag (Frémaux and Gerstner, 2016; Okuda et al., 2020), which
would decay if not reinforced by neuromodulators. D1R, through an increase of cAMP, would
activate the protein kinase A, translating pERK into changes in glutamate receptors (e.g.

through CREB-induced protein synthesis).

As such, the weight w( ) evolved according to the dopaminergic gating of
kinase/phosphatase cycles under the control of distinct e;rp and e, rp eligibility traces (He et

al., 2015), following

w — fSTDP (Kmax eyrp(Ca)™ _ pmax eyrp(Ca)™ Wor )
dt YK, +egp(Ca) Y B™ + eppp(Ca)H &)
Here, KJ'** represented the maximum reaction rate of the kinase, PJ*** that of the
phosphatase, K, and P,, the half-activation values, Ca the synaptic calcium concentration
and nH is the Hill's coefficient. The kinase-related t-LTP term was independent of synaptic
weight ("additive" t-LTP) while the phosphatase-related t-LTD term was weight-proportional
("multiplicative" t-LTD), consistent with the literature (Bi and Poo, 1998; van Rossum et al.,
STDP

2000). Weight dynamics were gated by fp,~", representing the level of dopamine-

dependent PKA activation (see below).
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The distinct e;1p and e, 7, eligibility traces themselves followed first-order dynamics with

intra-synaptic calcium-dependent kinase/phosphatase cycles, where

de;rp Ca™ Ca™

— gmax (1 — ey rp) — PTGX e
dt LTP KLTan"I'CanH LTP LTP PLTPnH_I_CanH LTP

deLTD _ max CanH Ca"H

= —1-e - P ————e
dt LTD Kirp™ + CanH( LTD) LTD Prp™ + Cantt LTD

The eligibility traces were considered distinct since LTP and LTD traces have different
dynamics and can be activated by different monoamines (e.g. NE for LTP and 5-HT for LTD,

He et al., 2015).

The dependence of the synaptic plasticity rule upon AP times (Bi and Poo, 1998; He et al.,
2015) came from calcium dynamics, according to the models of (Graupner and Brunel, 2012;

Sarazin et al., 2021). In this model, synaptic calcium followed

Ca =Cag+ Capyre + Capest

where the total calcium concentration took into account pre- and post-synaptic calcium
contributions.

Pre-synaptic spiking mediated calcium dynamics followed

dCa Ca
pre __ pre
TR ACay, Zia(t —te —tp)

where the first term corresponded to calcium extrusion/buffering with time constant 7., and
the second term to VDCC-mediated calcium entry due to pre-synaptic spiking, with ACa,,.
the amplitude of calcium entering at each AP of the presynaptic neuron, t(;) the times of the
pre-synaptic APs, and t, a delay modeling the time required for the activation of AMPA
channels, the depolarizing rise of the associated excitation post-synaptic potential (EPSP)
and the subsequent opening of voltage-dependent calcium channels (VDCC) that induces this

calcium entry.
Post-synaptic spiking-mediated calcium dynamics evolved according to

dCa t Ca t
dpos = ——22 + ACapost E '5(1‘ — t(y) + Eprepost E .5(’5 — t(»)Capre
t Tca ] J

and modeled extrusion/buffering (first-term) as well as calcium entries due to post-synaptic,

back-propagated spiking from the post-synaptic soma along the dendritic tree to the
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synapse, opening VDCC (central term) and NMDA channels (right term). &pyepose Was an
interaction coefficient and ¢, corresponded to AP times of the post-synaptic neuron. NMDA
activation was non-linear and depended on the product of a pre- and a post-synaptic term,
representing the dependence of NMDA channel openings on the associative conjunction of
pre-synaptic glutamate and post-synaptic depolarization, which releases the magnesium

blockade of NMDA channels.
Dopamine dynamics

Dopamine concentration followed second-order dynamics

quA dpa
FTR T[,‘je +8(t —tpa)

dppa _ —DPpat PbA" 9pa

- d
dt 7decay

— ~min
Xpa = Xpa + Ppa

TlSE

d . . .
where t55¢ and 7,5 capture the slow rise and decay time constants of dopamine released

at time tp, in the network following reward, x74™ the minimum dopamine concentration,

max peak

and ppi* chosen such that dopamine concentration peaks at x,,, ~ after a single reward-

induced dopamine release.

Dopaminergic neuromodulation gated NMDA conductance (Chen et al., 2004) and synaptic
plasticity through D1R, and equally affected all synapses of the network, corresponding to
diffuse VTA dopamine input. NMDA conductance gating followed

1

NMDA _ £NMDA NMDA NMDA
= o+ o
DA fpa (fpa f max) 1+ o-Gooaxht

MDA)/kNMDA

where fpP4 and f)"P4 corresponded to the function’s minimum and maximal

values, and xN4P4 and k)P4 the half-activation and inverse slope of the sigmoid function.

Similarly, synaptic plasticity gating followed

fipr = :
1 + e~ Cpa—xp D) /kp 0"

STDP kSTDP

where x5, " and represented the half-activation and inverse slope of the sigmoid

function.
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For simplicity purposes, dopamine gating of NMDA conductance and synaptic plasticity were
separated into learning (synaptic plasticity gating only) and test (NMDA conductance gating

only) trials (see below).

Learning and test trials

Animal learning was cut into 300 learning trials of 2 seconds each, where the mouse started
at a fixed distance (0.75 times the arena size) and random angle from the center while facing
the center, and converged in a straight line towards the center of the reward circle (of radius
Treward)- DOpamine was released in the network when the mouse obtained the reward, i.e.
entered the reward circle, leading to translation of synaptic eligibility traces into effective
long-term consolidation. 20 test trials of 3 seconds each were conducted every 15 learning
trials to evaluate the effect of synaptic plasticity on animal convergence towards the reward,
with the mouse’s position being similarly initialized. Networks were initialized with
randomized membrane potentials (uniformly distributed between 8, and 6, —5) and

synaptic channel openings mimicking average channel openings (Pampa~0.0025,

Pvmpa~0.2, Dcapa,~0.0025, pgapa,~0.15).

Procedures and parameters

Models were simulated and explored using custom developed code under MATLAB and were
numerically integrated using the forward Euler method with time-step At = 1ms in network
models. Unless indicated in the text, standard parameter values were as following.
Concerning mouse locomotion, T, = 500 ms, 7y, = 50 ms, V0 = 1m/s, Vi, = 0.1 m/s,
Tarena = 0.5M, Thouse = 0.03m, op = 0.025m, or¢ = 0.1m, 0 = 0.2m, 75, = 20 ms,
B=1, Tpause =15, Trewara = 0.05m. Concerning the network architecture, N =
500 neurons, pg = 0.8, p; = 0.2, Pg~r = PE-1 = Pi>E = Pi-1 = 0.25, u,, =0.03, o, =
0.02. Concerning the Integrate-and-Fire neural properties, C = 1 uF.cm™2, 6, = =50 mV,
A =5mV, 19 =5ms, V. =—60mV, At,p =1ms. Concerning currents, g, =
0.05mS.cm™2, V,= =70mV, Ats, =1ms, Gaypa =0.02mS.cm™2, Gyyps =
0.155mS.cm™2, ggapa, = 0.02mS.cm™2, goapay = 0.001mS.cm™2, Vayyps = Vympa =
0mV, Vgapa, =—=70mV, Vgapa, =—=90mV, [Mg**]=15mM, TICY = 2.5 ms,

decay __ decay __ decay __ _ -1 rise _
Tympa = 79 MS, Tgapa, = 10ms, Tgups, = 160ms, ayyps = 0.275ms™, Tyypa =

— -1 rise — 5 — -2 —
4.65ms, Qgapay = 0.015ms™, Tgapa, =90ms, Gamparr = 02mS.cm™, Ny =

30 neurons, xgy; = 0.025, Apampa = Aqnmpa = Apgapa, = Aqcapag = APamparr = 0.1,
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ogr = 0.1m, xpg = 0.01. Concerning synaptic properties, K'%* = p"a* = 103 ms™1,

K, =B, =025, K}% =PR% =KR% =PR% =25-10"*ms™1, Kyrp = 0.5379 uM,
PLTP = 0.165 IIM, KLTD = 0.3 IIM, PLTD = 0.1 II.M, TlH = 4, Cao = 0.1 HM, Tca = 4’00 ms,
ACay,,e = ACapose = 0.005 uM, tp =10ms, &prepost = 4. Concerning reward and

dopamine properties, x4" = 0.1, x5S =0.25, 55¢ = 100ms, Toe? =500 ms,
foarpa =01, fiP4 =05, xpAP4 = 0.15, k§yP4 = 0.01, x5LPF = 0.25, k5P =
0.025.

Statistical analysis

All statistical analyses were computed using Matlab (the Mathworks). Results were plotted
as amean +s.e.m. The total number (n) of observations in each group and the statistics used
are indicated in figure legends. Classical comparisons between means were performed using
parametric tests (Student’s T-test, or ANOVA for comparing more than two groups) when
parameters followed a normal distribution (Shapiro test P > 0.05), and non-parametric tests
(here, Wilcoxon or Mann-Whitney) when the distribution was skewed. Multiple comparisons
were Bonferroni corrected. Probability distributions were compared using the Kolmogorov-

Smirnov (KS) test.
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Chapter 8. Discussion

This thesis has demonstrated how conditionally bistable intrinsic currents, slow or tonic
inhibition and slow excitation increase the reliability of stable and dynamic attractors (or
mixtures of both) at the neuronal and network level in frontal circuits, in the context of chaotic
noise that characterizes awake cortical dynamics. These attractors emerge from non-learned
random synaptic connectivity matrices, inhibitory anti-Hebbian assemblies and anti-synaptic
chains (pathways), or excitatory Hebbian assemblies and synaptic chains learned through
detailed biophysical models of calcium-mediated and dopaminergic-gated STDP.

8.1. Mechanisms promoting the emergence of
reliable attractors

8.1.1. Macroscopic gradients of interneuron
proportions

Based upon experimental observations of an increasing gradient of dendritic spines numbers on
pyramidal neurons (Elston, 2007; Wang, 2020) and slower NMDA currents (Wang, 2020),
previous research has modeled longer neuronal timescales within the cortical hierarchy as
stronger and slower excitation (Chaudhuri et al., 2015), even though proportionally stronger
inhibitory currents are required to balance the effects of excitation positive feedback loops (i.e.
extinction or saturation of activity) and reinforce physiological bistability (Joglekar et al., 2018).
Accordingly, they do not account for the macroscopic gradient of interneuron proportions (i.e.
more SST+/CB+ and VIP+/CR+ interneurons in frontal areas; Torres-Gomez et al., 2020; Wang,
2020), nor the stronger and slower inhibitory currents in MCC (vs. LPFC lower in the cortical
hierarchy, Medalla et al., 2017). Chapter 3 and 4 give meaning to these observations, by
proposing that long neuronal timescales or bursting neural activity, peregrination between
stable discrete states, and even neural sequences — which are all essential for the operation of
executive functions in frontal circuits — emerge through inhibitory intrinsic (AHP) and strong
slow synaptic (GABA-B) currents, the latter amplifying the effect of synaptic heterogeneity on
global network activity. Such amplification could notably implement the temporal integration
of reward-action outcome history at multiple timescales, as well as evaluation of and switches
between behavioral strategies, both functions associated with the MCC.

Excitatory- or inhibitory-based gradient alternatives are not exclusive, as they concern
distinct synapses (Exc.— Exc. vs. Inh.— Exc./Inh.), the combination of both allowing
maximum expression of network dynamics and storage capacity (Mongillo et al., 2018). These
hypotheses seem actually rather complementary, as strong inhibition may gate multimodal
integration of diverse information provided through excitatory inputs (proposed in Chapter 4).
Indeed, VIP+/CR+ interneurons are known to inhibit specific SST+/CB+ neurons, which
themselves selectively inhibit pyramidal dendrites, allowing flexible pathway gating of
excitatory inputs through disinhibitory motifs (Wang and Yang, 2018). Furthermore, activation
of VIP cells in dorsomedial frontal cortex has been shown to enhance working memory retention
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and selectivity of pyramidal cell activity to specific stimuli (Kamigaki and Dan, 2017). This tells
us that disinhibition is crucial in separating pyramidal sustained delay activity to different
stimuli, and more generally that inhibitory to inhibitory connectivity contributes to
disentangling activity of assemblies.

Nonetheless, the aforementioned macroscopic gradients do not specify the proportions of
neurogliaform (NGF) cells (5HT3aR+ but VIP-, Rudy et al., 2011), which connect to different types
of interneurons and are an important locus of GABA-Bergic synaptic transmission in mouse
primary somatosensory cortex (S1) (Rudy et al., 2011). Furthermore, the MCC model in Chapter
3 assumes all interneurons have strong GABA-B synaptic transmission, whereas NGF cells
represent 15% of neurons in mouse S1 (Rudy et al., 2011). As such, further modeling work is
required to confirm whether small proportions of neurons projecting strong GABA-B currents
can similarly result in long timescales, network states and neuronal sequences. Injecting a
GABA-B antagonist during tasks requiring temporal integration of reward outcomes over long
periods of time while recording MCC neural activity would also help confirm the role of GABA-B
currents in generating long neuronal autocorrelogram timescales.

8.12.2.  Inhibitory currents, assemblies and sequences

We were surprised to discover in Chapter 4's additional results indicating that slow GABA-B
inhibition amplified the effect of synaptic heterogeneity on network activity such that we could
backtrack unprecedented synaptic architectures in the cortex (inhibitory anti-assemblies and
synaptic chains; but see Ponzi and Wickens, 2010, in a very different anatomical (striatum) and
functional context), from their resulting network dynamics (persistent activity and sequence
propagation, respectively) in randomly organized synaptic matrices. To our knowledge, such a
level of organizational complexity of network dynamics is without equivalent, with network
collective activity peregrinating according to three nested levels of dynamical organization : 1)
meta-states combining states, 2) elementary states themselves, and 3) persistent or sequential
spatiotemporal spiking patterns within states. Remarkably, this highly structured dynamics
emerged without any form of artificial or realistic plasticity rule, whether at the intrinsic or
synaptic level.

Retrospectively, such a powerful role of GABA-B makes sense, since the lower number
of inhibitory neurons and projecting synapses result in more pronounced effects of interneuron
activity on network dynamics (comparatively to 4x more numerous and thus diffuse effect of
excitatory neurons and synapses on network activity). This hints at the idea that the less
investigated and theoretically described inhibitory synaptic plasticity, beyond simply a
balancing role (Vogels et al., 2013; Froemke, 2015; Hennequin et al., 2017), might underpin
network attractor behavior.

Inhibitory currents can also promote reliable attractors emerging through excitatory
synaptic engrams. Indeed, Chapter 5 demonstrates that tonic increase of inhibitory frequency
or slower inhibitory currents onto excitatory neurons (when paired with stronger excitatory
connectivity) increases the stability and controllability (i.e. the capacity to replay sequences only
after an initial trigger) of learned excitatory sequences, thus representing biophysical
mechanisms that increase reliable attractor emergence. The identification of these mechanisms
comes from a theoretical understanding of the two activity regimes defining pack propagation

252



and resting-state activity, namely strong excitatory NMDA average-driven spiking and
disinhibitory GABA-A current fluctuations-driven spiking respectively. Theoretically, this can be
simply understood as bistable frequency dynamics, where excitatory frequency amplifies into
pack propagation above a frequency threshold and decreases until it reaches resting-state
activity below the threshold. In conjunction with STDP modulation and discrete or static
presentation stimuli, these mechanisms allow reliable emergence of many different types of
attractors, be they static/dynamic, discrete/continuous and uni-bidirectional (e.g. Hebbian
assembly, synfire chain, Hebbian phase sequence, ring attractors). As such, inhibitory currents
represent a generic mechanism promoting reliable emergence of a wide spectrum of attractor
types, potentially present across cognitive structures and functions.

While it is tempting to conclude that the generic inhibition-based mechanisms of Chapter 5
and slow GABA-B inhibition of Chapter 3-4 bear the same consequences, the tonic increase of
inhibition acts to stabilize and decrease excitatory activity outside of pack propagation, whereas
slow GABA-B inhibition precisely induces temporally-heterogeneous high frequency activity
such asinhibitory sequences. In other words, while assembly activation or sequence propagation
is supported by slow NMDA currents in excitatory assemblies or synaptic chains and dampened
by tonic inhibition, assembly activation or sequence propagation results from slow GABA-B
current disinhibition in inhibitory anti-assemblies or -synaptic chains. Both thus have similar
effects in fine but by different means, the control of excitatory synaptic structures vs inhibitory-
based synaptic structures. As such, strong GABA-B-induced currents precisely leads to
spontaneous sequence replay, drastically decreasing controllability of trajectory replay without
biophysical mechanisms to dampen such uncontrolled replay.

Accordingly, transitions between stable network states in monkey frontal areas (putatively
GABA-B-mediated, as suggested in Chapter 3), and dynamic network states containing RS
activity sequences in mouse mPFC (putatively NMDA-mediated) during working memory might
be similarly inhibition-induced. Indeed, interneuron spike bursts (LFP beta-band) occur briefly
before those of pyramidal neurons in LPFC and ACC when macaques shift from non-selective to
selective attentional stable states during a working memory task (~1oms before, Womelsdorf et
al., 2014). This is reminiscent of context switching between different RS neuronal sequences
(possibly each contained within a network state) during working memory in mouse mPFC,
promoted by mediodorsal thalamic activation of cortical inhibition (Rikhye et al., 2018). This
suggests a common role for inhibition as inducing transitions between network states,
potentially via GABA-B also in mouse mPFC.

8.1.3. Generic role of intrinsic bistability in prefrontal

dynamics

Chapter 2 shows that in a layer 5 PFC pyramidal neuron model, spike-mediated CAN and CaL
intrinsic currents promote conditional bistability (CB), i.e. where persistent activity after an
initial cue event is conditional upon depolarizing current (or, more directly, depolarized
membrane potential) during the delay period. This is in contrast to absolute bistability (AB), in
which persistent activity only requires the initial cue and is strongly stereotyped (highly regular
spiking). CB, representing a weaker form of bistability compared to AB, paradoxically allows a
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richer dynamical repertoire, with persistent activity being stable yet sufficiently labile to support
PFC network states transitions for elaborating adaptive working memory-related cognitive
processes (Abeles et al., 1995; Seidemann et al., 1996; Cossart et al., 2003).

This same weak bistability could also help temporarily stabilize sequences of neural activity,
with stable firing being conditional on subliminal input from vanishing activities of previous
neurons in the sequence. Indeed, Chapter 5 shows that, in addition to slow synaptic current
dynamics (NMDA, GABA-B) and tonic inhibition, sequence propagation is stabilized through
intrinsic currents promoting intrinsic transient bistability (i.e. intrinsic bistability induced
transiently, during the hundreds of milliseconds in which the previous excitatory neurons of the
sequence fire many action potentials at the next neurons). Furthermore, amongst the other
mechanisms, CAN and AHP currents was the only mechanism allowing excitatory network
activity to be unaffected by trajectory replay (independence), allowing parallel computations
(e.g. multiple simultaneous trajectory replay).

Finally, the LPFC and MCC models of Chapter 3-4 also required AHP currents, supporting
GABA-B currents by decreasing short states (and thus increasing the duration of network
states), and CAN currents, counterbalancing the strong GABA-B- and AHP-mediated frequency
decrease. Such versatile functionality hints at the importance of assessing the interaction
between intrinsic and synaptic properties for reliable emergence of attractors, alleviating the
constraints ensuring attractor stability from depending solely on synaptic currents and engrams
(Compte, 2006), ultimately enriching the computational capacities of neurons and networks.

8.1.4.  Alternative mechanisms and improvements

Beyond inhibitory and intrinsic currents, what other mechanisms promote reliability and
stability of static or dynamic attractors within synaptic noise? One of the shortcomings of the
current model is the lack of description of dendritic compartments. Computations using
dendritic compartments have been shown to allow supra-linear integration of synaptic inputs
(Cazé et al.,, 2013; Tran-Van-Minh et al., 2015), amplifying EPSPs evoked by action potential
coincidence, thus further separating the low frequency asynchronous irreqgular regime and high
frequency synchronous activity induced by sequence stimulus and replay. Furthermore,
dendritic membrane potential inflections due to backward-propagating dendritic spikes (such
as in HP, Jarsky et al., 2005) represent a more direct biophysical substrate for STDP (instead of
calcium, Graupner and Brunel, 2012), removing the magnesium block in NMDA receptors via
strong depolarization and thus inducing LTP. The thesis neuronal model is iso-potential,
potentially cutting short dendritic membrane potential and NMDA depolarization. Finally,
recruitment of distinct dendrites performing spatial summation of synaptic inputs may allow
further discrimination between multiple sequences or more complex population trajectories,
potentially solving the question raised above.

Additionally, short-term plasticity, in which synapses connecting bursting neurons undergo
facilitation, can promote more reliable network states and sequences. Similar to before, short-
term facilitation potentiates synapses on a short timescale (hundreds of milliseconds), allowing
supra-linear EPSP temporal summation during high frequency pre-synaptic activity. In line with
this idea, reliable reactivation of stable representations stored within short-term plasticity
hidden variables during dynamic neural activity has been proposed (Barak et al., 2010; Stokes et
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al., 2013; Stokes, 2015), and observed for rat mPFC neural activity sequences (Fujisawa et al.,
2008).

8.2. Learningreliable attractors

8.2.1.  Learning working memory and navigational
sequences

While the aforementioned mechanisms explain how attractors can be replayed in the absence
of learning or once learned, they do not describe the conditions underlying reliable learning of
such attractors during noisy synaptic activity. Chapter 6 describes how neural activity sequences
are learned through STDP and replay during network Al activity, whose disordering influence
potentially jeopardizes learning, replay and memory maintenance of trajectories (in contrast to
Chapter 5, which used a phenomenological STDP rule “offline”, i.e. not during network Al
activity). STDP results from non-linear spike-mediated calcium-based activation of kinase-
phosphatase couples, the non-linear activation dynamics inducing rapid learning of the
sequence through a single stimulus presentation while guaranteeing slow synaptic chain
forgetting (~2h) during network resting-state activity (preserving Al dynamics). Furthermore,
the stimulus could be iteratively learned through overlapping fragmented chunks (as for
navigational HP trajectories, Buzsaki and Moser, 2013).

However, while the current thesis focuses on learned neuronal sequences, several lines of
evidence point to navigational sequences pre-existing and being repurposed by behavior (Buhry
et al., 2011), with sequential activity during SWS or awake rest occurring before animals are
exposed to novel environments or representing trajectories never experienced by the animal. It
is possible that the former sequences subserve other representations than navigational
trajectories but co-occur with them, while the latter sequences might correspond to trajectories
learned outside of the experimental setup, questioning the exact nature of navigational
trajectory learning. Interestingly, the sequences arising within states (additional results of
Chapter 4) could form the neural basis of such pre-existing trajectories (as a form of “"dynamical
whiteboard”) that can be repurposed by learning. Furthermore, while navigational sequences
are characterized by straightforward sequential stimuli during behavioral runs, i.e. presentation-
based learning which we extensively model in Chapter 5 and 6, working memory and cortical
slice sequences might arise simply from repetition of the initial trigger, where the synaptic chain
beyond the initial neurons is iteratively built through repeated stimulation of initial neurons, i.e.
trigger-based learning, questioning the exact nature of working memory sequence learning.

Itis less clear how STDP rules during Al network activity could induce synaptic chains based
upon multiple repetitions of an initial trigger stimulus. Models that have achieved trigger-based
learning lack Al activity (Liu and Buonomano, 2009). In contrast, within the calcium-based STDP
concomitant to Al activity of Chapter 6, such repetition of high frequency stimuli can simply lead
to paroxysmal activity. However, even with slower plasticity, the unidirectional plasticity rule
would need to associate pre-synaptic high-frequency with post-synaptic low-frequency neurons
(instead of high-frequency neurons together only). Each trigger repetition of the initial neurons
would induce potentiation in a large proportion of outgoing synapses, affecting different
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proportions of synapses according to which post-synaptic neurons happen to fire. Competition
of outgoing synapses, e.g. via synaptic scaling of outgoing synapses, would allow progressive
selection of specific neurons as the next steps of the synaptic chain (Liu and Buonomano, 2009;
Fiete et al.,, 2010), although the biological realism of such meta-plasticity remains to be
determined. The chosen parameters for the calcium-based learning rule of Chapter 6 do not
allow such learning, due to its strongly non-linear hetero-associative nature, guaranteeing
strong potentiation of synapses only between neurons strongly co-active. Going further, such a
learning rule should instead solely potentiate synapses between a neuron with high and another
with low frequency —which is non-sensical since NMDA-mediated LTP detects coincident strong
firing —, or include stronger multiplicative LTD, in order to avoid paroxysmal activity. Finally, the
resulting synaptic chain might be much more complex than a sequence, potentially leading to
tree-like synaptic structures, i.e. multiple progressively diverging synaptic chains, each activated
in turn due to inhibitory retroaction-based competition between sequences.

8.2.2.  Dopaminergic neuromodulation of sequences

While it is unclear how STDP could promote sequence learning based on a repeated trigger,
Chapter 6 does not describe how sequence are learned toward a rewarding goal, even though
these navigational and working memory sequences are precisely observed within the context of
rewarding tasks. Furthermore, they cannot explain how internally-generated decisions are
taken in the absence of external triggering cues, even though animals can freely navigate.
Chapter 7 proposes an answer to these questions by assessing the interaction between two
biophysical effects of DA, 1) gating STDP eligibility traces such that a Hebbian assembly oriented
toward the repeatedly-rewarded goal emerges, and 2) gating synaptic NMDA excitability
(conductance strength), inducing strong synaptic reverberation and neural activity within the
assembly of neurons encoding the rewarded goal location, the mouse thus converging toward
the reward.

The current thesis further wunravels a third biophysical role to dopaminergic
neuromodulation, that of modulating synaptic excitability by slowing NMDA channel closing
dynamics (Chen et al., 2004; Onn and Wang, 2005; Onn et al., 2006). Since excitatory sequences
are mostly mediated by NMDA currents, such neuromodulation has been shown in Chapter 6 to
underpin the fast and regular timescale navigational trajectory replays (Skaggs and
McNaughton, 1996).

8.2.3.  States and sequences in the larger context of
complex temporal computations

It has been proposed that working memory delay activity translates into transient sequential
activity in rodent mPFC, whereas it translates into predominantly persistent activity in monkey
LPFC, due to the expansion of prefrontal microcircuits and their interconnectedness in primates
(Constantinidis et al., 2018). While the present thesis separately models these two as dynamic
and stable attractors respectively, both are in reality simultaneously observed in animal cortices.
Indeed, observations of dynamic coding subserved by transient or sequential neuronal activity
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profiles are becoming more common in monkey prefrontal cortex, as previously mentioned
(Rainer and Miller, 2002; Brody et al., 2003; Shafi et al., 2007; Meyers et al., 2008, 2008; Barak et
al., 2010; Machens et al., 2010; Stokes et al., 2013; Sreenivasan et al., 2014; Stokes and Spaak,
2016; Murray et al.,, 2017; Parthasarathy et al., 2017; Spaak et al., 2017; Cavanagh et al., 2018;
Lundquvist et al., 2018a3; Wasmuht et al., 2018). Conversely, persistent RS activity profiles are
observed alongside transient RS activity profiles in equal proportions in rodent mPFC (Rikhye et
al., 2018), blurring the distinction between persistent and dynamic activity. This further
reinforces the plausibility of mechanisms promoting reliability of both types of attractors (e.g.
aforementioned CAN and AHP intrinsic bistability).

More generally, the recent advent of massive multi-unit recording techniques coupled with
the development of dimensionality reduction techniques (Churchland et al., 2007; Cunningham
and Yu, 2014) allows the reinterpretation of complex single neuron coding schemes within
population activity repeatable trajectory single-trial coding schemes, such as for motor cortex
during reaching (Churchland et al., 2012), olfactory cortex during olfaction (Mazor and Laurent,
2005; Bathellier et al., 2008), and prefrontal cortex during working memory (Lundqyvist et al.,
2018a). One might be tempted to interpret these as sequences of neural activity. However,
although repeated neural activity sequences do lead to repeated trajectories in the population
activity space, the inverse is not necessarily true, i.e. that repeated trajectories of population
activity necessarily translate to sequences of neural activity. Indeed, population trajectories in
motor and olfactory cortex can potentially emerge from any temporally heterogeneous neural
activity profiles repeated across trials, not just transient sequential activity. In summary, all
neuronal sequences describe population trajectories, but not all population trajectories
correspond to neuronal sequences. Only the observation of raster plots of many simultaneously
recorded neurons may validate such conclusions, as is the case for rodent navigational and
working memory neural activity sequences.

In this context, it remains an open question whether the thesis model, or STDP-based
learning within asynchronous irregular (Al) activity in general, can generalize to population
activity trajectories with more complex neuronal temporal activity profiles. Indeed, models have
shown learning of multiple population trajectories within temporally complex activity (Laje and
Buonomano, 2013), but via non-STDP based learning rules, or have shown learning of multiple
sequences (Liu and Buonomano, 2009) but without Al network activity. A starting point for
learning multiple sequences through STDP within Al activity would be learning several (e.g. two)
transient bumps of neuronal activity (instead of only one) at different times within a sequence
replay. In such a case, synapses from two different sets of neurons (each representing a different
time in the sequence) will strongly project onto a given neuron. If both sets of neurons do not
strongly overlap, the given neuron will be able to differentiate between both sequence contexts,
leading to sequential replay where neurons strongly fire twice. This question is closely linked to
that of the maximum number of separate sequences a given network can learn and successfully
replay, in which some models have shown learning of such double sequences, although they lack
Al network activity (Liu and Buonomano, 2009).

For increasing heterogeneity of neural frequency temporal profiles (beyond simply two or
even N bumps), phenomenological frequency-based or biophysical calcium-based STDP might
not suffice. Indeed, temporal relationships between neurons would change across time, leading
to learning and unlearning of specific temporal relationships. Artificial learning rules, with
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synapses updated according to the distance between stimulus-induced and replay-induced
frequency temporal profiles, have been shown to allow robust learning of population trajectories
(Laje and Buonomano, 2013).

Theoretically, sequences of transient neuronal activity have the disadvantage of requiring
many more neurons to encode elapsed time (Goldman, 2009) compared to orthogonal
subspaces of stable and dynamic coding (Machens et al., 2010; Murray et al., 2017). Indeed,
sequences require more neurons to encode greater elapsed times, whereas no additional
neurons are required within dynamic subspaces as it would be encoded through time-varying
activity (i.e. changing neural frequency). However, recent evidence suggests that representation
of time elapsed in neural sequences is scalable in rat dorsal striatum, adapting to the required
time duration (Mello et al., 2015), the mechanisms of which are yet to be determined (as well as
resolved with contradicting evidence of non-scalable rat dorsal striatum sequences,
Akhlaghpour et al., 2016).

8.3. Multi-areal collaboration

The model explored in the thesis is a local recurrent neural network without distance-dependent
connectivity between pyramidal cells and interneurons, potentially corresponding to a cortical
column. Indeed, it has been shown that temporal sequences of neuronal activity are
anatomically intermixed at the ~20oum scale in mouse PPC (Harvey et al., 2012), i.e. an order of
distance compatible with within columnar organization. Furthermore, subnetworks in V1 layer
2/3 share interneurons (Yoshimura et al., 2005; Itskov et al., 2011), such that mechanisms for
reliable attractor replay based on local inhibition (although effective) may not be appropriate
(e.g. Hebbian phase sequence with multiple distinct excitatory and inhibitory neuronal
assemblies, Chenkov et al., 2017). However, it is not always clear at what spatial scale sequences
and assemblies are defined, and whether they truly do spatially extend beyond the confines of
the recording technique (e.g. ~1-2mm of multi-electrode array).

Such local networks are inscribed within larger interconnected brain areas, as can be
observed during navigational PFC-thalamic nucleus reuniens (NR)-HP and working memory
PFC-mediodorsal thalamus (MD) sequences, and proposed in the cortical hierarchy distributed
working memory theory (Mejias and Wang, 2020). It is not always clear whether synaptic chains
reflecting the same dynamic stimulus exist within each area, whether the synaptic chain is
distributed across areas, or whether the synaptic chain exists in only one area and neuronal
activity sequences are projected onto other areas. The trace-reactivation theory of memory
consolidation stipulates that hippocampal one-shot learned episodic memories are replayed
during SWR and gradually consolidated within PFC (Peyrache et al., 2009). The coordination of
sequence replays in HP and PFC generally linked to SWR events suggests synaptic chain
formation in both structures, whereas the proposed relay-function of NR thalamus could signify
an absence of synaptic chains within NR thalamus (Ito et al., 2015), although NR sequences
preceding PFC sequences could signify the opposite (Angulo-Garcia et al., 2018).

Furthermore, proposed models of multi-areal emergence of timescales within the cortical
hierarchy show how time-varying external inputs due to long-range projections originating from
other cortical areas are necessary to correctly capture local area timescales (Chaudhuri et al.,
2015). In the present model, external feedforward input does not vary across time. This
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assumption arises from its historical use guaranteeing Al dynamics (Brunel, 2000), as well as the
desire to capture how local (and not external) network synaptic mechanisms allow robust states
and sequences within chaotic dynamics and synaptic noise (itself arising from local synapses).
However, future work could investigate how time-varying or rhythmic external feedforward
input, e.g. originating from hippocampal theta (Siapas et al., 2005; Benchenane et al., 2011;
Zielinski et al., 2019) and olfactory delta (Moberly et al., 2018) rhythmic activity, modulates state
transitions and sequence propagation. Probably, strong rhythmic feedforward input would
disrupt stable sequence propagation at timescales above the rhythm’s duration (as previously
mentioned), as well as induce repeated sequences of state transitions, in a similar vein to cortical
oscillation gating working memory persistent activity (Dipoppa and Gutkin, 2013). The effect of
time-varying inputs would depend on their neuronal targets and specific temporal profile, where
ramping-up and -down inputs onto pyramidal cells would lead to more and less frequent
sequence replay respectively, as well as erasure of network states driven by inhibition.

8.4. Biophysical models

Throughout the thesis, biophysically detailed models, with excitatory and inhibitory populations
within recurrent synaptic matrices, synaptic and intrinsic current dynamics, and biophysical
learning rules are prioritized instead of artificial or phenomenological models. Indeed, most of
the answers found require comprehensive descriptions of intrinsic and synaptic current
dynamics, particularly the slow NMDA and GABA-B current dynamics inducing bursts of
neuronal activity and long-lasting collective dynamics. Furthermore, the origin of synaptic noise
itself, i.e. the high conductance state (Destexhe et al., 2003), is best described by detailed
biophysical descriptions of membrane potential, tight average balance of excitatory and
inhibitory currents, and current fluctuations. Simulating Poisson spike trains or noisy injected
currents to emulate synaptic noise does not allow to fully analyze interactions between reliable
attractors and synaptic noise. Indeed, both arise from similar mechanisms in the brain, i.e.
synaptic currents, resulting in complex interactions that cannot be modeled by separate
formalisms. In a similar fashion, assessing the physiological basis of plastic processes allowing
functional dynamics and representations in frontal cortices obviously requires to consider
biologically validated intrinsic and synaptic rules, rather than engineer-based artificial rules
targeted at efficiency rather than plausibility.

While most of the model’s biophysical properties are derived from previous experimental
literature, some aspects have been informed by active dialogue with experimentalists, notably
Jérémie Naudé’s team in Paris and Emmanuel Procyk’s team in Lyon. These exchanges have
been extremely productive, the former collaboration contributing, e.g. to correctly describing
GABA-B dynamics, which in turn allowed for the discovery of GABA-B currents being relevant in
capturing autocorrelogram timescales in the latter collaboration.

In this context, most of the conclusions are backed up by systematic parametric
explorations, checking whether articles’ conclusions hold when strongly varying model
parameters. This is important because biological systems present large variability at different
levels, and phenomena are observed across cortical structures with varying properties, such that
parametric analyses reinforce the plausibility of the models’ results. Nonetheless, testing
whether the results hold when removing different elemental model bricks would strengthen
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their plausibility across structures and contexts, and allow further identification of its minimal
set of necessary and sufficient constituents. Moreover, the currents described and which are
required in accounting for the studied network behaviors are ubiquitous across neurons (NMDA,
calcium-activated potassium channels inducing AHP and non-specific cationic channels or CAN)
and neocortices (GABA-B, Tamas et al., 2003; Olah et al., 2007), thus representing parsimonious
model choices which reinforce the genericity of the resulting network behaviors across cortical
structures.

In conclusion, we have studied the mechanistic underpinnings of reliable and emerging
static and dynamic attractorial collective forms of activity within noisy frontal networks in the
awaken state, be it at the levels of 1) individual neurons (intrinsic CAN/AHP conditional
bistability), 2) inhibitory networks (GABA-B-mediated sequential peregrination between
discrete states, composed of anti-assembly-based persistent activity and anti-synaptic chain-
based neural activity sequences) or 3) excitatory networks (NMDA-mediated sequences,
controlled and stabilized through slow or tonic inhibition and intrinsic CAN/AHP transient
bistability). We have also described how these attractors are learned (through
phenomenological and calcium-mediated STDP, or dopaminergic-gated eligibility-trace-based
STDP toward a reward) or not (GABA-B amplification of synaptic random heterogeneity).
Finally, we have described their successful recall (spontaneous or cue-based sequences and
states, as well as intrinsic dopamine-induced motivated recall).

As shown in this thesis, a description of neuronal and network dynamics through the
attractorial grammar of dynamical systems allows us to more easily understand the role of low-
level biophysical determinants, e.g. opening dynamics of specific channels, in the context of
functional properties of cortical networks, and by extension, of entire cortical areal networks
determining animal behaviors. This offers the neuroscientific community a better constrained
methodological paradigm in order to test hypotheses for the effect of local biophysical
determinants on behavior through biologically realistic models (e.g. GABA-A and autism,
Coghlanetal., 2012).
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